User Interface Toolbox
AMR

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:15 pm
Printed: 21 October, 1999 12:15 pm

Copyright © 1999 Acorn Computers Limited. All rights reserved.
Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

The product described in this manual is not intended for use as a critical component in
life support devices or any system in which failure could be expected to result in
personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product and its
use (including the information and particulars in this manual) are given by Acorn
Computers Limited in good faith. However, Acorn Computers Limited cannot accept
any liability for any loss or damage arising from the use of any information or
particulars in this manual.

If you have any comments on this manual, please complete the form at the back of the
manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your supplier
is available to help resolve any queries you might have.

ACORN, the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd.

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN 1 85250 165 0

Part number 0484,231

Issue 1, October 1999

Contents

Contents iii

Introduction to the Toolbox 1
Introduction 1
Toolbox Application Model 4
Toolbox objects 6
Event handling 11
Resourcefiles 14
Task initialisation and run-time information 15
Message texts and nationalisation 16
An Example object 17
Toolbox SWIs 19
SWI Toolbox_CreateObject (0x44ec0) 19
SWI Toolbox_DeleteObject (0x44ecl) 20
SWI Toolbox_ShowObject (0x44ec3) 21
SWI Toolbox_HideObject (0x44ecd) 22
SWI Toolbox_GetObjectState (Ox44ec5) 23
SWI Toolbox_ObjectMiscOp (0x44ec6) 24
SWI Toolbox_SetClientHandle (0x44ec7) 25
SWI Toolbox_GetClientHandle (0x44ec8) 25
SWI Toolbox_GetObjectClass (0x44ec9) 26
SWI Toolbox_GetParent (Ox44eca) 27
SWI Toolbox_GetAncestor (Ox44ech) 28
SWI Toolbox_GetTemplateName (0x44ecc) 29
SWI Toolbox_RaiseToolboxEvent (0x44ecd) 30
SWI Toolbox_GetSyslnfo (Ox44ece) 31
SWI Toolbox_Initialise (Ox44ecf) 32
SWI Toolbox_L oadResources (0x44ed0) 34
SWI Toolbox_Templatel ookUp (0x44efb) 35
Toolbox events 36

Contents

Building an application 39
Guide To Hyper 39
How !'Hyper was designed 41
How !'Hyper was implemented 43
HyperCard Control Language 64

Colour Dialogue box class 67
User interface 67
Application Program Interface 68
Colour Dialogue methods 71
Colour Dialogue events 78
Colour Dialogue templates 80

Colour Menu class 81
User interface 81
Application Program Interface 82
Colour Menu methods 84
Colour Menu events 88
Colour Menu templates 89
Colour Menu Wimp event handling 90

Discard/Cancel/Save Dialogue box class 91
User interface 91
Application Program Interface 92
DCS methods 94
DCS events 99
DCStemplates 102
DCS Wimp event handling 103

File Info Dialogue box class 105
User interface 105
Application Program Interface 106
File Info methods 108
File Info events 117
File Info templates 118
File Info Wimp event handling 119

Contents

Font Dialogue box class 121
User interface 121
Application Program Interface 122
Font Dialogue methods 125
Font Dialogue events 133
Font Dialogue Templates 135
Font Dialogue Wimp event handling 137

Font Menu class 139
User interface 139
Application Program Interface 140
Font Menu methods 142
Font Menu events 144
Font Menu templates 145
Font Menu Wimp event handling 146

Iconbar icon class 147
User interface 147
Application Program Interface 148
Iconbar icon methods 152
Iconbar icon events 164
Iconbar icon templates 165
Iconbar icon Wimp event handling 166

Menu class 167
User interface 167
Application Program Interface 168
Menu methods 175
Menu events 199
Menu Templates 201
Menu Wimp event handling 202

Print Dialogue box class 203
User interface 203
Application Program Interface 204
Print Dialogue Methods 208
Print Dialogue events 215
Print Dialogue templates 220
Print Dialogue Wimp event handling 222

Contents

Vi

Prog Info Dialogue box class 223
User interface 223
Application Program Interface 224
Prog Info methods 226
Prog Info events 232
Prog Info templates 233
Prog Info Wimp event handling 234

Quit Dialogue box class 235
User interface 235
Application Program Interface 235
Quit methods 238
Quit events 243
Quit templates 245
Quit Wimp event handling 246

SaveAs Dialogue box class 247
User interface 247
Application Program Interface 248
Save As methods 256
Save Asevents 267
Save Astemplates 270
Save As Wimp event handling 271

Scale Dialogue box class 273
User interface 273
Application Program Interface 274
Scale methods 278
Scale events 284
Scaletemplates 286
Scale Wimp event handling 287

Contents

Window class 289
User interface 289
Application Program Interface 290
Window methods 297
Other SWIs 315
Window events 318
Window templates 319
Window Wimp event handling 323
Toolbars 325
User interface 325
Application program interface 326
Toolbar methods 327

Gadgets 328

Application Program Interface 328
Generic gadget methods 333
Gadget Wimp event handling 341
Action buttons 342

Adjuster arrows 350

Button gadget 352

Display fields 360

Draggable gadgets 363

Labels 371

Labelled boxes 372

Number ranges 373

Option buttons 381

Pop-up menus 388

Radio buttons 392

Sliders 400

String sets 408

Writable fields 416

vii

Contents

ResEd 423
Starting ResEd 426
The object prototypes window 427
Theresourcefile display 428
Editing object templatesin general 432
Editing the Menu class 435
Example menu 440
Editing a Window object template and gadgets 444
Gadgets 455
Editing other classes 480
Exporting and importing messages 492
Keystroke equivalents 493
Mouse behaviour 494

ResTest 497
The event log window 499

DrawFile 501
SWI DrawFile Render 502
SWI DrawFile BBox 503
SWI DrawFile DeclareFonts 504

Resource File Formats 505
Resource fileformat 506

Support for RISC OS 3.10 511
Index 513

viii

1 Introduction to the Toolbox

his chapter isintended to give the reader an overview of the RISC OS Toolbox, and
to introduce the concepts used throughout the rest of this manual.

Introduction
The Toolbox was designed with the following goals:

I tofacilitate writing consistent, high-quality desktop applications under RISC OS
3.10 and later

to encourage the writing of applications whose user interface complies with the
RISC OS 3 Style Guide

| tobeeasytolearn

I to belanguage-independent

I tomakeit no harder to do operations which can currently be done using the Wimp.
The Toolbox has the following characteristics:

I itisstructured as aset of RISC OS relocatable modules

I itwill only runon RISC OS 3.10 or later

I it does not directly call back to code in the client application

I itisSWI-driven

I it can beused from C, C++, BASIC or Assembler with equal ease

I communication back to the client application is via events

I theclient application does not have direct access to data structures maintained by
the Toolbox

it uses anew resource file format to hold templates for the user interface objects
which the application will use at run-time.

Note: The appendix Support for RISC OS 3.10 on page 511 describes support for
RISC OS 3.10 machines.

Installing C/C++

Theinstructions for installing Acorn C/C++ are in the chapter Installing Acorn C/C++
on page 7 of the Desktop Tools manual.

Introduction

Terminology

The following terms are used throughout this manual :

Term
Class

Client application

Colours

Dialogue box

Method

Persistent dialogue box

Resource file

String

Textual name (name)

Transient dialogue box

User

M eaning

A datatype, together with a definition of the operations
which can be performed on that data type

A piece of software which uses the Toolbox

Refers either to desktop colours (in the range 0-15), or to
an RGB colour (represented by one word as Oxbbggrr00)

A window which contains gadgets, and which istypically
used to carry out a ‘dialogue’ with the user, ending in the
user either cancelling the dialogue, or confirming that
they want to apply the options indicated by the current
dialogue state

One of the operations defined for a class (it can be
thought of as a ‘function’)

One which remains on the screen even when the menu
tree is closed down. It must be explicitly removed by
cancelling it, or by pressing Escape.

Described Resource File Formats on page 505. Itis a
file containing a sequence of templates from which to
build objects.

A NUL-terminated sequence of ASCII characters.

Can be formed of any sequence of alphanumeric
characters and underscores (*). It must begin with an
alphabetic character. Special names used by the Toolbox
can begin with the underscore character (*_’).

A name cannot be longer than 12 characters, including
the NUL terminator character.

One which appears on the screen, and is removed when
the current menu tree is closed down

The human user of a client application

Term

User Interface Object
(object)

Word

General notes

Where a buffer holds a string, this string will be NUL-terminated on exit from a
SWI or when delivered in an event block. Strings which are given asinput
parameters to a SWI should be terminated by a control character (i.e. in the range

0-31inclusive).

Introduction to the Toolbox

M eaning

A fundamental building block for windowed applications
(e.g. a menu). All objects share a set of common methods
which can be applied to them. An object consists of a
fixed size header followed immediately in memory by a
variable size body.

A 4-byte entity, aligned at a 4-byte address.

Wherethe size of abuffer is specified, thisincludes any terminating character. If the

size of buffer supplied for a string is not large enough an error is not returned;

instead the buffer isfilled (including aterminating NUL), and the returned number

of bytes ‘written to the buffer’ will be the size of buffer which would be required.
Thus you may wish to check that the number of bytes written to the buffer is less
than or equal to the supplied buffer size.

Note thatall SWIs have a flags word in RO. All undefined bits in this flags word

should be 0.

Unless otherwise stated, changes to objects which are visible on the screen are

immediate.

Toolbox Application Model

Toolbox Application Model

The Toolbox isintended to provide alayer of abstraction between an application and the
Wimp. In amanner anal ogous to the use of High Level Programming Languages, the
Toolbox allows the programmer to think more in terms of the problem to be solved
rather than the detailed mechanics of how to achieve a solution.

Traditional desktop application

Inatraditional desktop application, the programmer writes code which interfaces

directly to the Window Manager (Wimp) through Wimp SWIs. Such an application uses

a ‘Templates’ file to define templates from which it can create windows at run-time, but
must create other user-interface objects from within its code (e.g. menus). The events
which are delivered to a Wimp application refer to low-level Wimp operations like

mouse clicks:
Figure1.1 Wimp application model
Client application | < Template file
Window
Wimp SWis descriptions

Wimp events

Wimp

Introduction to the Toolbox

Toolbox application

In a Toolbox desktop application, the programmer writes code which interfaces mainly

to the Toolbox through Toolbox ‘methods’, only occasionally resorting to making
low-level Wimp SWI calls. A Toolbox application uses a ‘Resources’ file to define
templates from which it can create a large number of user-interface objects including
windows, menus and iconbar icons. Events which are delivered to a Toolbox application
are at a higher level of abstraction than Wimp events.

Figure 1.2 Toolbox application model

Client application 4— Resource file

- -
7/ -
4 \ ‘object’
:;?;lr?gé(s \ Wimp descriptions
/ Toolbox | &VeNts
/ events
| /
e
{ Toolbox
|
\\ Wimp SWis
\ Wimp events
Wimp\
SWis
\ .
: Wimp
Wimp events

The application will generally see all Wimp events, with the following exceptions:

ColourDbox will not see redraw events.
Where it has input focus you will not see keypress events.
Window object will not see Open Window Request or Close Window

Request events if the window is marked as being auto-open
or auto-close respectively.

Toolbox objects

Toolbox objects

An object is essentially one part of the user interface of a desktop application; for
example, awindow or amenu or an icon on the icon bar.

At run-time, each object isidentified by an object id which is allocated when the object
iscreated. An object id is a 32-bit integer, which should not be interpreted by the client
application. An object id of 0 is used to indicate ‘no object’.

Object classes

The type of an object is called its ‘class’, which identifies its attributes and the set of
operations which can be performed on it at run-time.

It is possible to determine the class of an object at run-time, using
SWI Toolbox_GetObjectClass.

The set of classes which are supported in this release of the Toolbox are:

Class name Meaning page
Colour Menu a menu for selecting a desktop colour 81
Colour Dbox a dialogue box for selecting any colour 67
DCS a dialogue box for discard/cancel/save for unsaved data 91
File Info a dialogue box showing information on a given file 105
Font Dbox a dialogue box for selecting font characteristics 121
Font Menu a menu for selecting a font 139
Iconbar Icon an icon on the left or right of the iconbar 147
Menu a Wimp menu 167
Print Dbox a dialogue box for selecting print options 203
Prog Info a dialogue box for showing program information 223
Quit a dialogue box for handling quit with unsaved data 235
SaveAs a dialogue box for saving data by icon drag 247
Scale View a dialogue box for selecting a scale factor 273
Window a Wimp window 289

The Toolbox is designed to be extensible, so this set of classes will be increased in future
releases, and can also be increased by third party developers.

Introduction to the Toolbox

Object components

An object ‘component’ defines one of a set of distinct parts which make up an object; for
example a menu entry is a component of a Menu object, and a gadget (see later) is a
component of a Window object. A component is allocated a component id by which to
identify it uniquely within its containing object; this component id is chosen by the

client application when the component is created. For menus it can have a value in the
range 0 to Oxfffffffd, and for windows a value in the range 0 to Ox7fffff. All higher
component ids are reserved for internal Toolbox use. A component id of Oxffffffff is
used to indicate ‘no component’.

Object Methods

At run-time, the client application manipulates its objects by using ‘methods’, which are
in fact implemented via Toolbox SWIs. The Toolbox will dispatch these methods to the
appropriate module which implements the class of object to which the method is being
applied.

Creating an object

An object is created using SWI Toolbox_CreateObject (see page 19). The client
application supplies either the name of a template for the object, or the address of a
block of memory containing such a template. If a name is provided, then the Toolbox
will look for the template in the application's Resource file (see later). The client
application will be passed back an object id for the newly-created object if successful.

When an object which has ‘attached’ objects is created, then the attached objects are also
created. Segttached objects on page 11 for a fuller description of this process.

Given its object id, it is possible to find out the name of the template used to create an
object using SWI Toolbox_GetTemplateName.

Deleting an object

An object is deleted using SWI Toolbox_DeleteObject (see page 20). If the object is
visible on the screen and it is deleted, then the Toolbox first hides the object.

When an object which has attached objects is deleted, then unless the ‘non-recursive’ bit
is set in this SWI's flags word, all its attached objects are also deletedtt&zed
objects on page 11 for a fuller description of this process.

Showing an object
An object is shown on the screen using SWI Toolbox_ShowObject (see page 21).

By setting bits in the SWI's flags word, the client may choose to show the object with
either SWI Wimp_CreateMenu semantics or SWI Wimp_CreateSubMenu semantics.
This is generally referred to as showing the object ‘transiently’, and can be used, for

Toolbox objects

example, to show transient dialogue boxes. By default, an object is shown ‘persistently’,
in other words it must be explicitly dismissed from the screen. Not all objects support
both sets of semantics.

When an object is shown, the client application chooses where the object will appear on
the screen by specifying one of three ‘show types’.

I A'‘default’ show type means that the object will be shown at a place determined by
the module which implements the object's class. For example, a Menu object will be
shown by default at a place 64 OS units to the left of the mouse pointer's position, to
comply with the RISC OS 3 Style Guide.

I A'top left’ show type means that the client application supplies the coordinates of
the top lefthand corner of where the object should be shown.

I A'full specification’ show type means that the client application supplies a buffer
which contains all the information needed to position the object on the screen; the
contents of this buffer is separately defined for each object class.

Hiding an object

An object is hidden using SWI Toolbox_HideObject (page 22). If the object was not
visible on the screen, then this method has no effect.

Object-specific methods

Each object class provides a number of methods which are specific to that class (for
example, a Window obiject's title can be set using the Window_SetTitle method). These
methods are all accessed using SWI Toolbox_ObjectMiscOp (see page 24), with an
appropriate reason code.

Shared objects

It is often useful in an application for many objects to refer to one single instance of
another object. A typical example is a multi-document editor, where a potentially large
number of Windows all refer to a single shared Menu structure.

A shared object is specified as such in its template description. Whenever an attempt is
made to create an object from such a template, the Toolbox first checks to see if there is
already a copy of the object in existence, and in which case the id of this object is
returned.

Reference counts are maintained for Shared objects. When the client tries to create such
an object the reference count is incremented, and it is decremented when the client
attempts to delete the object. The Shared object is only really deleted when its reference
count reaches zero.

Shared objects can also be used effectively in conjunction with attached objects which
are described on page 11.

Introduction to the Toolbox

Note: Sharednessisinherited by attached objects.

Client handles

Each object can have associated with it a one-word value called its client handle. The
value of this handle is specified entirely by the client application and is not interpreted
by the Toolbox. This mechanism isintended to allow a state to be associated with an
object by the client application (e.g. in amulti-document editor a Window object’s client
handle might be a pointer to the data which must be displayed in the Window).

An object’s Client Handle is set and read using SWIs Toolbox_SetClientHandle (see
page 25) and Toolbox_GetClientHandle (see page 25) respectively.

Parent and ancestor objects

When an object is shown (using SWI Toolbox_ShowObject), there are two other objects
which may be useful for the client application; these are the parent and ancestor objects.

Parent abjects

The parent of an object is defined as the object (and optionally a component of that
object) which caused the object to be shown. Thisis represented by the parent object id
and parent component id. For example if a Window object has been displayed as the
result of a Menu selection, then that Window object has a parent with an object id given
by the Menu'sid, and a parent component id given by the component id of the entry
which was selected.

When SWI Toolbox_ShowObject is called explicitly by the client, the parent object and
component ids must be specified. When this SWI is called on the client’s behalf (for
example, when a Menu is shown automatically for a Window), then the Toolbox fills
thisvaluein for the client.

Ancestor objects

It is always possible to trace the ‘parentage’ of an object by recursively requesting the
Parent of that object, thus moving ‘up’ the invocation hierarchy of objects which have
been displayed. Since this is a common operation, an object can be designated as a
potential so-called ‘Ancestor’. When an object is shown, it normally inherits the
ancestor of its parent object; however, if the parent is marked as a potential ancestor,
then the ancestor of the shown object is set to the id of the parent object.

Take the case where a multi-document editor has a document Window which has a
Menu, which has a SaveAs dialogue box as a submenu. When an event occurs for the
dialogue box, the client is probably most interested in getting the id of the document

Toolbox objects

Window (to get at its data and save it). By designating the document Window as an
ancestor, the client can ensure that itsid is available when events occur on the SaveAs

dialogue box.
[G=] At inadow E

SaveAs dialogue

Panber Siraw An

P 5

e
Cancel | | Save |

I - __=F]

window designated as ancestor

The processes in the above example are as follows:

1 When the user presses Menu over the window, a Toolbox_ShowObject israised on
the Menu with the window as parent. As the window has been designated as
ancestor, the Menu’s ancestor will be the window.

2 When the user moves the pointer over the Save submenu arrow, the Menu module
will show the SaveAs dialogue with itself (i.e. the Menu) as the parent object, and
the Save component as the parent component. The SaveAs dialogue will inherit the
Menu’s ancestor (in this case the window).

3 Any event now raised on the SaveAs dialogue box will have the id block filled in
with the Menu as the parent and the window as the ancestor.

The parent and ancestor of an object can be obtained by calling the SWIs
Toolbox_GetParent and Toolbox_GetAncestor. Normally this will not be necessary,
since (as shown iheid block on page 13) these values are made available on every
return from Wimp_Poll.

Auto-create and Auto-show objects

In order to save on coding required, it is possible to get the Toolbox to create an object
from its template as soon as the resource file containing the template is loaded by the
application. This is achieved by setting the Auto-create bit in the object template's flags
word (see the chapt®esEd on page 423 to see how to do this). When such an object is
created, the Toolbox raises a Toolbox_ObjectAutoCreated event, to allow the
application to ascertain and store the object id of the newly-created object; the name of
the template used to create the object is reported in this event.

10

Introduction to the Toolbox

It is also possible to specify that as soon as an object is created, it should be ‘shown’ on
the screen. This is achieved by setting the Auto-show bit in the object template's flags
word (see the chapt®esEd on page 423 to see how to do this). When such an object is
created, it is shown using SWI Toolbox_ShowObiject in its default place, and with no
parent given.

It is also possible for an object to be auto-show but not auto-create.

Attached objects

Certain objects allow other objects to be attached to them. When an object is created, all
of its attached objects are also created, and a Toolbox_ObjectAutoCreated event is
raised for each such attached object.

An example of an attached object is the object which will be shown when a user clicks
the Select mouse button on an Iconbar Icon object. This attached object is created when
the Iconbar Icon object is created.

Such side-effects of creating a given object are described Apphieation Program
Interface section in the chapter on each object class.

When an object with attached objects is deleted using SWI Toolbox_ObjectDelete,
unless the non-recursive delete bit has been set, all attached objects are also deleted.

Attached objects can also usefully be combined with Shared objects. For example, if an
application wishes the same Window to be displayed when the use clicks Select and
Adjust on an Iconbar object, this can be achieved by specifying the same Window
template name as the attached object to show for each of these mouse clicks, and
marking the Window object as shared, so that the same object id is used for both cases.

It is important to note this side-effect of creating an object. For example, a Window
object which has a complex menu tree attached to it, with many submenus and dialogue
boxes, will have considerable side-effects when it is created.

Thus, in many cases, it is only necessary to create explicitly the ‘topmost’ object, and to
allow the Toolbox to create the entire tree of attached objects.

Event handling

An important part of managing the user interface using the Toolbox is the concept of a
Toolbox event.

A Toolbox event is a Wimp event (not a message) which is delivered to the client
application with an event code of Wimp_ToolboxEvent (0x200). Each Toolbox event
has its own event code, which is a 32-bit integer defined in a similar manner to Wimp
message numbers.

11

Event handling

12

Toolbox events are essentially an abstraction on Wimp events, and are generated by the
Toolbox modulesin response to user interaction with Toolbox objects, and alsoin
response to client application operations. Toolbox events are also used to warn the client
application that a particular action has been taken by the Tool box.

For example, if aclient application creates and shows a Print Dialogue Box, when the
user clicks on the Print button, a Toolbox event will be delivered to the application
indicating that a Print operation has been requested, and giving the number of pagesto
be printed, the scale factor to use during printing etc.

Note that underlying events will also be received by the client.

Toolbox event Codes

Event codes are allocated by Acorn. Events which are delivered by a Toolbox module
will have codes which start at the SWI chunk base of the module.

The allocations are as follows; event codes are in the range 0 - Ox9ffff:

Event codes Use

0x00001 - OxOffff Available for use by the client

0x10000 - Ox3ffff Reserved for inter-application protocols
0x40000 - Oxoffff Reserved for Toolbox module events

Format of a Toolbox event

When a Toolbox event is delivered to an application, the Wimp Poll block has the
following format:

Offset Contents
+0 size of Toolbox event block
(16 - 236 in amultiple of four bytes; i.e. words)
+4 unique reference number
+8 Toolbox event code
+12 flags
+16... Event-specific data

Unless otherwise stated flags will be zero.

Introduction to the Toolbox

The id block

Whenever the client application calls SWI Wimp_Poll, the Toolbox fillsin a 6-word
block of memory known asthe id block, to indicate which object an event has occurred
on. However, as Wimp messages do not typically occur on an object theid block will not
be updated for a Wimp message.

Thisblock islaid out as follows:

+0 self id
******************* Ancestor

+4 self component

+8 parent id
******************* Parent

+12 parent component

+16 ancestor id
******************* Self

+20 ancestor component

When a Toolbox event occurs, the object id of the object on which thisevent occurred is

placed in the ‘self id’ field of the id block, and the ‘self component’ field is also filled in
if the event has occurred for a particular component of that object. For example, a mouse

click on an action button gadget within a Window object will result in an

ActionButton_Selected Toolbox event being raised, with the Window object's id in the

self id field of the id block, and the component id of the action button in the self
component field.

The ‘parent id’ and ‘parent component’ fields are filled in by the Toolbox using the
values which were last passed to SWI Toolbox_ShowObject. The ‘ancestor id’ and

‘ancestor component’ fields are filled in accordingly (being the ancestor of the parent).

The Toolbox uses a value of 0 as an object id to indicate ‘no object’, and a valle of
as a component id to indicate ‘no component’.

When a Wimp event happens on an object, then the setting of the contents of the id block

is object-specific, and is described in the ob@vetts section in the chapter on each
object class.

The address of the 6-word block of client memory used as the application's id Block is
passed to the Toolbox when the application registers itself using SWI Toolbox_Initialise

(see page 32).

Note that Toolbox events are delivered to the object to which they are most appropriate,

so for example a SaveAs object will receive SaveAs_DialogueCompleted events,

whereas mouse clicks on a SaveAs object's underlying Window will be seen as being

delivered to the Window object.

13

Resource files

This behaviour can best be seen by taking some example Resource Files and dragging
them to ! ResTest, and monitoring the contents of theid Block as shown in !ResTest’slog
window, as events occur on the objects created from the Resource File.

Raising a Toolbox event

A Toolbox event is raised using SWI Toolbox_RaiseToolboxEvent. Normally a client
application will not need to use this SWI directly; the client simply quotes the Toolbox
event code (or number), and associates it with a particular user action in its description
of an object in the resource file. For example, one of the attributes of a Menu object, is
the Toolbox event which is raised when a particular Menu entry is selected by the user.
The Toolbox will raise this Toolbox event on the application’s behal f, whenever aMenu
Selection event isreturned for that menu entry.

Resource files

14

A resourcefile contains templates for the objectswhich aclient application will create at
run-time.

Loading resource files

An application can load aresource file at run-time using SWI Toolbox_L oadResources.

This is done on the application's behalf for a file called ‘res’ when the application calls
SWI Toolbox_lInitialise as described Task initialisation and run-time information on

page 15. SWI Toolbox_LoadResources could then be called after task start-up to load
any further Resource Files which it needs to use.

Resource file format

Resource files replace Wimp template files as the means to define templates for the user
interface objects which an application will create at run-time. Whereas Wimp template
files only allowed window descriptions to be given, a resource file will contain

templates for any kind of Toolbox object.

A resource file consists of a fixed size header, followed by a contiguous sequence of
object templates, where each template has a fixed size header, followed by an object
body.

Introduction to the Toolbox

A resource fileformat is similar to a Drawfile, and can be represented diagrammatically
asfollows:

‘ File Header 3 words

sequence of object templates

\ | EOF

Each template has a textual name which can have no more than 12 characters (including
the terminating NUL). This name is used by the application when using atemplatein a
call to SWI Toolbox_CreateObject.

If aresource file isloaded which has named templates whose names clash with earlier
loaded templ ates, the latest |oaded template will be used, and the earlier template will no
longer be accessible.

For afull description of the resource file format see the appendix Resource File Formats
on page 505.

Task initialisation and run-time information

Before it can use the Toolbox, aclient application must first call SWI Toolbox_Initialise
to register itself as a Toolbox task. This has severa side-effects:

If thereisafilecaled r es in the application’s resource directory then it is loaded
using SWI Toolbox_L oadResources; if such afile is not found, then the Toolbox
triesafile called r es<n>, where n isthe currently configured country number, to
allow for national variants.

The application directory is searched for a Spritesfile called Spri t es,
Sprites22,Sprites23orSprites24 depending on the current screen
mode. Thisfileisthen loaded into a block of memory and will be used as the
application’s sprite area.

The application directory is searched for afile called Messages, which isthen
loaded and registered with MessageTrans. If no such fileisfound, then afile called
Message<n> issearched for, where n isthe currently configured country number.
The minimum requirement is that the Messages file should contain a message
whosetag is_TaskNane, giving the name of the application.

SWI Wimp_Initialiseis then called on behalf of the application.

15

Message texts and nationalisation

When a Toolbox task has been registered with the Toolbox, the client application can
obtain the following information by calling SWI Toolbox_GetSysInfo:

I thetask’s name (as given by the _TaskName message in the Messagesfile).
I the4-word message file descriptor returned when the task was initialised.

I theapplication’s directory name.

I theapplication’s Wimp task handle.

I apointer to the sprite area used to load the application’s Sprites file.

Important: Since the Toolbox uses Wimp messages, a client aplication should not call
SWI Wimp_AddMessages or SWI Wimp_RemoveM essages.

Message texts and nationalisation

16

When using the Toolbox, the writer of a client application should be aware of where
textual messages are held, which will need translating if the client is to be ‘nationalised’
for a particular RISC OS territory.

All of the modules contained in the Toolbox have a default set of messages and object
templates which they will use when displaying windows, reporting errors, displaying
menus etc. These are registered with ResourceFS, and are looked up using
MessageTrans. So in order to produce a nationalised Toolbox, these messages and
templates will need replacing.

In a resource file, textual messages are held in Messages Tables, and objects created at
run-time will contain pointers to these messages. These messages are the ones which
have been specified by the client of the Toolbox to be used when creating objects, and
will often consist of alternative text to use instead of the defaults provided by the
Toolbox modules themselves. These messagewatagged messages looked up using
MessageTrans, but are actual strings.

The client application will also have a file called Messages in its application directory.
This file is automatically loaded by the Toolbox when the client calls SWI
Toolbox_Initialise. The Messages file will contain at least the name of the application

(in a message whose tag is _TaskName), and any other messages which the application
wishes to look up using MessageTrans at run-time. This will typically contain error
messages, and ones which are not associated with objects. After calling SWI
Toolbox_Initialise, the client will have a MessageTrans file descriptor to use when
looking up these Messages.

This means that in order to nationalise an application, the writer will need to provide
new Messages and new resource file messages fsioyt messages in ResEd).

An Example object

Introduction to the Toolbox

Let uslook at an example of a Toolbox object, to illustrate some of the features detailed

in earlier sections.

An Iconbar Icon object is used to place an application icon sprite (and optionally some
text) on the RISC OSicon bar. The template for such an object has the following fields,
which can be set using !ResEd (the Resource Editor):

Field
position

priority

sprite name

max sprite name
text

max text length

menu

select event

adjust event

select show

adjust show

help message

max help

M eaning

anegative integer giving the position of the Icon on the
| conbar (as specified in SWI Wimp_Createl con)

the priority of this Icon on the Iconbar (as specified in SWI
Wimp_Createl con)

the name of the sprite to use for this Iconbar Icon
the maximum length of sprite name to be used

an optional string which will be used for a Text& Sprite
Iconbar Icon (iethe text that will appear underneath the Icon
on the Iconbar)

if the Iconbar Icon has text, then thisfield gives the
maximum length of atext string which will be used for it

the name of the template to use to create a Menu object for
this Iconbar Icon

the Toolbox event code to be raised when the user clicks
Select on the Iconbar Icon (if O then Iconbar_Clicked is
raised)

the Toolbox event code to be raised when the user clicks
Adjust on the Iconbar Icon (if O then Iconbar_Clicked is
raised)

the name of atemplate to use to show an object when the user
clicks Select on the Iconbar Icon

the name of atemplate to use to show an object when the user
clicks Adjust on the Iconbar Icon

the message to respond to a help request with, instead of the
default

the maximum length of help message to be used

17

An Example object

18

The client application will create an Iconbar Icon object by calling SWI
Toolbox_CreateObject, supplying atemplate which gives values for al of the above
fields.

As aside-effect of this creation, the Iconbar | con’s attached objects are also created (if
their templates have been provided) i.e. menu, select show and adjust show. The object
ids of these attached objects are then held within the Toolbox internal data structure
which represents the | conbar Icon.

When the application calls SWI Toolbox_ShowObject on an Iconbar Icon, it will be
shown in a Style Guide compliant place on the Iconbar. When SWI Toolbox_HideObject
is called, the Icon will be removed from the Iconbar.

When a Hel pRequest message is received, the supplied help message will automatically
be returned to the sender of the message.

When the user clicks the Select or Adjust mouse buttons on the Iconbar I con, then if the
names of suitable object Templates have been supplied, these objects will be shown
automatically by the Toolbox.

When the user clicks the Menu button on the |conbar Icon, then if the name of a suitable
Menu object Template has been supplied, it will be shownin aRISC OS 3 Style Guide
compliant place (i.e. 96 OS units above the bottom of the screen).

There are anumber of methods which have been defined for an |conbar Icon to allow the
client application to manipulate it at run-time; for example if it wishes to change the
sprite used on the Iconbar for this Icon, then the Iconbar_SetSprite method will be used;
if it wishesto provide anew Menu object which will be displayed when the Menu button
isclicked on the Iconbar Icon, then the Iconbar_SetMenu method will be used.

Introduction to the Toolbox

Toolbox SWis

SWI Toolbox_CreateObject (0x44ec0)

On entry

RO = flags (bit O set means create from memory)
R1 = pointer to name of template
(R1 = pointer to description block if bit O of flags word set)

On exit

RO = id of created object
R1-R9 preserved

Use

This SWI creates an object either from a named templ ate description which has been
loaded from the resources file or from a template description block in memory. The
exact format of the description block depends on the class of the object.

If the client application wishes to use the description block form of this SWI, then the

block should begin with a standard object header, and the body of the object should be as
specified in the Templates section of the chapter for that object. Any StringReferences,
MsgReferences, and SpriteAreaReferences should hold ‘real’ pointers, and should not
require relocation; also the ‘body offset’ field should contain a real pointer to the object
body.

C veneer

extern _kernel _oserror *tool box_create_object (unsigned int flags,
void *nanme_or_tenpl ate,
Objectld *id

)

19

SWiI Toolbox_DeleteObject (0x44ecl)

SWI Toolbox_DeleteObject (Ox44ecl)

On entry
RO = flags (bit O set means do not delete recursively)
R1 = object id

On exit
R1 - R9 preserved

Use
This SWI deletes a given object.
By default, any objects ‘attached’ to this object are also deleted. If bit O of the flags word
is set, then this does not happen.
If it is a Shared object, this will result in its reference count being decremented, and it
will only be really deleted when this reaches 0.
The Toolbox raises a Toolbox_ObjectDeleted event when the object's reference count
reaches zero.

C veneer
extern _kernel _oserror *tool box_del ete_object (unsigned int flags,

ojectld id
)

20

Introduction to the Toolbox

SWI Toolbox_ShowObject (0x44ec3)

On entry

RO = flags

bit 0 set means show using the semantics of Wimp_CreateMenu

bit 1 set means show using the semantics of Wimp_CreateSubMenu
R1 = object id
R2 = show ‘type’:

Typevalue Meaning

0 show in the ‘default’ place. This has a different meaning
depending on the type of object shown

1 R3 points to a buffer giving full details of how to show
the object

2 R3 points to a 2-word buffer giving the screen coordinates

of the top left corner of the object to be displayed

R3=0

or pointer to buffer giving object-specific data for showing this object

or pointer to 2-word buffer giving coordinates of top left corner of object
R4 = Parent object id
R5 = Parent component id

On exit

Use

R1-R9 preserved

This SWI shows the given object on the screen.

R2 gives the type of ‘show’ operation which is being performed. Not all types of show
operation will be appropriate to all objects.

The buffer pointed at by R3 may hold data specific to this class of object, including
information as to where the object should appear on the screen. The exact format of the
buffer is specified separately for each object class. For example for a Window object, the
buffer will hold a block of data which can be passed to SWI Wimp_OpenWindow.

Note: some objects support a bit in their flags word specifying that a warning should be
raised before the object is shown. In this case, the SWI Toolbox_ShowObject will
return, but the object will not yet be visible on the screen. The object will be visible (at
the earliest) after the next call to Wimp_Poll after the warning is delivered.

21

SWiI Toolbox_HideObject (Ox44ec4)

C veneer
extern _kernel _oserror *tool box_show object (unsigned int flags,
Obj ectld id,
int show_type,
void *type,

Obj ectld parent,
Conponent 1 d parent_conponent

SWI Toolbox_HideObject (Ox44ec4)

On entry

RO = flags

R1 = object id
On exit

R1-R9 preserved
Use

This SWI removes the given object from the screen, if it is currently being shown.

C veneer

extern _kernel _oserror *tool box_hi de_object (unsigned int flags,
Oojectld id
)

22

Introduction to the Toolbox

SWI Toolbox_GetObjectState (0x44ecb5)

On entry
RO = flags
R1 = object id
On exit

RO = object state

Use

This SWI returns information regarding the current state of an object. The stateis

indicated by bitsin the valuereturned in RO. Bits O-7 refer to all objectsand bits8-31 are
used to indicate object-specific state.

The generic state bits are:

Bit M eaning when set
0 object is currently showing

C veneer

extern _kernel _oserror *tool box_get_object_state (unsigned int flags,
Obj ectld id,
unsigned int *state

)i

23

SWiI Toolbox_ObjectMiscOp (0x44ec6)

SWI Toolbox_ObjectMiscOp (0x44ec6)

On entry

RO = flags

R1 = object id

R2 = method code

R3-R9 contain method-specific data.

On exit
R1-R9 preserved

Use

The exact operation of this SWI depends on the class of the object being manipulated,
and on the reason code supplied.

Each object classimplements anumber of methods which are specific to that object (e.g.
aWindow class may implement a method for adding/removing keyboard short-cuts for
aWindow object).

24

Introduction to the Toolbox

SWI Toolbox_SetClientHandle (0x44ec7)

On entry
RO = flags
R1 = object id

R2 = client handle

On exit
R1-R9 preserved

Use
This SWI sets the value of the client handle for this object.

C veneer

extern _kernel _oserror *tool box_set_client_handle (unsigned int flags,
Objectld id,
void *client_handl e

)i

SWI Toolbox_GetClientHandle (0x44ec8)

On entry
RO = flags
R1 = object id
On exit

RO = client handle for this object

Use
This SWI returns the value of the client handle for this object.
C veneer
extern _kernel _oserror *tool box_get_client_handle (unsigned int flags,
Obj ectld id,

void *client_handle

)

25

SWiI Toolbox_GetObjectClass (0x44ec9)

SWI Toolbox_GetObjectClass (0x44ec9)

On entry
RO = flags
R1 = object id
On exit

RO = object class

Use
This SWI returns the class of the specified object. Thisis a 32-bit integer, which
identifies a given class; allocation of classidentifiersis handled by Acorn.
C veneer
extern _kernel _oserror *tool box_get_object_class (unsigned int flags,
Qojectld id,

bj ect Cl ass *obj ect _cl ass

)i

26

Introduction to the Toolbox

SWI Toolbox_GetParent (Ox44eca)

On entry
RO = flags
R1 = object id
On exit
RO = Parent id

R1 = Parent component id

Use

This returns the value of the object id which was passed as the parent in a SWI
Toolbox_ShowObject call (even if the parent has subsequently been deleted). The
component id isfor cases where the parent has a subcomponent like aMenu with a
Menu entry. An object which has not yet been shown will have a parent object id of O
and a component id of - 1.

C veneer

extern _kernel _oserror *tool box_get_parent (unsigned int flags,
Objectld id,
Obj ectld *parent,
Conponent 1 d *parent_conponent

27

SWiI Toolbox_GetAncestor (0x44ecb)

SWI Toolbox_GetAncestor (Ox44ech)

On entry
RO = flags
R1 = object id
On exit

RO = Ancestor id
R1 = Ancestor component id

Use

Thisreturnstheid of the Ancestor of the given object (and its component id, in the case
of an ancestor which has subcomponents like a Menu with a Menu entry). Note that the
Ancestor may have been deleted, since this object was shown. An object which has not
yet been shown will have an ancestor object id of 0 and a component id of - 1.

C veneer

extern _kernel _oserror *tool box_get _ancestor (unsigned int flags,
Objectld id,
Obj ectld *ancestor,
Conponent I d *ancest or _conponent

28

Introduction to the Toolbox

SWI Toolbox_GetTemplateName (0x44ecc)

On entry
RO = flags
R1 = object id

R2 = pointer to buffer to hold template name
R3 = length of buffer

On exit

R3 = length of buffer required (if R2 was zero)
else buffer pointed at by R2 holds template name
R3 holds number of bytes written to buffer

Use
This SWI returns the name of the template used to create the object whoseid ispassed in
R1.

C veneer

extern _kernel _oserror *tool box_get_tenplate_name (unsigned int flags,
ojectld id,
char *buffer,
int buff_size,
int *nbytes

29

SWI Toolbox_RaiseToolboxEvent (0x44ecd)

SWI Toolbox_RaiseToolboxEvent (Ox44ecd)

On entry
RO = flags
R1 = object id

R2 = component id
R3 = pointer to Toolbox event block

On exit
R1-R9 preserved

Use

This SWI raises the given Toolbox event. The block pointed at by R3 should have the
format described in Format of a Toolbox event on page 12. The Toolbox will put the
unique reference number into the block before exit from this SWI. The object id and
(optional) component id will be those filled in on return from Wimp_Poll; they refer to
the object on which the Toolbox event is being raised; the Toolbox does not check the
validity of these values.

C veneer

extern _kernel _oserror *tool box_raise_tool box_event (unsigned int flags,
Objectld id,
Conponent I d conponent,
Tool boxEvent *event

30

Introduction to the Toolbox

SWI Toolbox_GetSysinfo (Ox44ece)

On entry

On exit

Use

RO

= flags

RO Value

WNEFEO

M eaning

return task name

return 4-word messages file descriptor

return name of directory passed to Toolbox_Initialise
return task’s Wimp task handle

return pointer to sprite area used

R1, R2 depends on entry value of RO (see below)

RO

On entry

On exit

R2 holds size of buffer required (if R1 was 0)
else buffer pointed at by R1 holds task name

buffer pointed at by R1 contains a 4-word messages file
descriptor

R2 holds size of buffer required (if R1 was 0)
else buffer pointed at by R1 holds directory name passed to
Toolbox_Initialise

RO contains task handle
RO contains sprite area pointer

This SWI is used to get information for the client application. The nature of the
information required is indicated by RO.

C veneer

extern _kernel _oserror *tool box_get_sys_info (unsigned int reason_code,

_kernel _swi _regs *regs

E

31

SWI Toolbox_Initialise (Ox44ecf)

SWI Toolbox_Initialise (Ox44ecf)

On entry

RO = flags
R1 = last Wimp version number known to task * 100 (must be >310)
R2 = pointer to list of Wimp message humbers which the client wishes to receive,
terminated by a0 word
If R2 pointsto just a0 word, then all messages are delivered
If R2 = 0, then no messages are delivered (apart from the Quit message).
R3 = pointer to list of Toolbox event codes which the client wishes to receive,
terminated by a 0 word
If R3 pointsto just a0 word, then all Toolbox events are delivered
If R3 = 0, then no Toolbox events are delivered
R4 = pointer to Directory name in which to find resources
R5 = pointer to 4-word buffer to receive messages file descriptor
R6 = pointer to buffer to hold object ids on return from Wimp_Poll (the id block)

On exit

RO = current Wimp version number * 100

R1 = Wimp task handle for this client

R2 = Pointer to Sprite area used

Buffer pointed to by R5 isfilled in with a MessageTransfile descriptor for the messages
fileto be used

Use
This SWI is used by the client application before any other Toolbox SWis.

First the Toolbox triesto load afile called r es in the directory given by the string
pointed to by R4, thisis done by calling SWI Toolbox_L cadResources.

If afilecalledr es isnot found, then the Toolbox triesr es <n>where n isthe currently
configured country number.

The application directory is searched for a Sprites file appropriate for the current mode
(i.e.caledSprites,Sprites22,or Sprites23)andif such afileexists, asprite
areais alocated, and thefile loaded into thisarea. A pointer to the areaisreturned in R2
(or Lisreturned if there was no such file found, and so the Wimp Sprite pool is used for
Sprite references in the client application).

This SWI registers a file called ‘Messages’ found in the given directory with
MessageTrans and passes back a 4-word MessageTrans file descriptor for use by the
client. SWI Wimp_Initialise is called on the client’s behalf, using the Wimp version
number passed in R1, and the messages list pointed at by R2.

32

Introduction to the Toolbox

If afilecalled Messages is not found, then the Toolbox tries Message <n>where n
isthe currently configured country number.

The task name passed to SWI Wimp_Initialise must be given in the client's messages
file; it should be an entry with tag *_TaskName'.

The buffer pointed at by R6 will be used on each call to Wimp_Poll to inform the client
which object an event occurred on, and that object’s parent and ancestor objects. On
return from Wimp_Poll this block will be filled in as follows:

R6 +0 ancestor objectid

R6 +4 ancestor component id
R6 + 8 parent object id

R6 + 12 parent component id
R6 + 16 ‘self’ object id

R6 +20 ‘self’ componentid

C veneer

extern _kernel _oserror *tool box_initialise (unsigned int flags,
int winp_version,
int *w np_nessages,
int *tool box_events,
char *directory,
MessagesFD *nfd,
1 dBl ock *idb,
int *current_w np_version,
int *task,
int *sprite_area

33

SWiI Toolbox_LoadResources (0x44ed0)

SWI Toolbox_LoadResources (0x44ed0)

On entry

RO = flags
R1 = pointer to resource filename

On exit
R1 - R9 preserved

Use

This SWI loads the given resource file, and creates any objects which have the
auto-create bit set. When such an object is created, the Toolbox raises a
Toolbox_ObjectAutoCreated Toolbox event.

The filename of the resource file should be afull pathname.

After this SWI has been called, any templates from the resource file can be used to
create objects, by quoting the template name.

C veneer

extern _kernel _oserror *tool box_| oad_resources (unsigned int flags,
char *resources

);

34

Introduction to the Toolbox

SWI Toolbox_TemplateLookUp (0x44efb)

On entry

RO = flags
R1 = pointer to template name (Ctrl terminated)

On exit

RO = pointer to description block

Use
This SWI returns a pointer to a block suitable to pass to Toolbox_CreateObject or
Window_ExtractGadget.
C veneer
extern _kernel _oserror *tool box_tenpl ate_| ookup (unsigned int flags,
char *nane,

void **id,

)5

35

Toolbox events

Toolbox events

Toolbox_Error (0x44ecO)

36

Block

+8 0x44ec0
+16 error number
+ 20... error text

Use

All Toolbox SWIs may return direct errors, with the V bit set. If any part of the Toolbox
detects an error, whilst it is not processing a SWI, it will raise a Toolbox_Error event
which the client can report when he next calls Wimp_Poll.

For example, if aclient uses Toolbox_ShowObject on an object which has the bit set to
warn the client before the object is shown, the Toolbox will wait until the next call to
Wimp_Poll before actually showing the object; if there isan error when it triesto do the
show, then thiswill be reported through a Toolbox_Error event, since the SWI
Toolbox_ShowObject will have already returned with no error indicated.

C datatype
typedef struct
{
Tool boxEvent Header hdr;
i nt errnum
char errness [256-20-si zeof (Tool boxEvent Header)

-si zeof (Cbjectld)
- si zeof (Conponent | d)
-sizeof (int)];

} Tool boxErrorEvent;

Introduction to the Toolbox

Toolbox_ObjectAutoCreated (Ox44ecl)

Block

+8 Ox44ecl
+16... Name of template from which object was created

Use

This Toolbox event israised by the Toolbox after it creates objects from templateswhich
have their auto-create bit set, when the application’s resource file is loaded. This allows
the client application to get the ids of such objects for later use.

This event is also raised when an attached object is created as a side-effect of creating
the object to which it is atached.

The client can establish the object’s id by looking at the ‘self’ field of the id block which
it passed to Toolbox_Initialise (see later).

C datatype

typedef struct

{
Tool boxEvent Header hdr;

char t enpl at e_nane
[256- 20- si zeof (Tool boxEvent Header) - si zeof (bj ect | d) - si zeof (Conponent 1d)];
} Tool boxObj ect Aut oCr eat edEvent ;

Toolbox_ObjectDeleted (0x44ec?2)

Block
+8 Ox44ec2

Use

This Toolbox event is raised by the Toolbox after it deletes an object. It is useful when a
‘recursive’ delete is done, resulting in other objects being deleted.

The client can establish the object's id by looking at the ‘self’ field of the id block which
it passed to Toolbox_Initialise.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} Tool boxObj ect Del et edEvent ;

37

Toolbox events

38

2 Building an application

his chapter describes how an application (!Hyper, which can be found in the

Examples directory) was designed with Acorn C/C++. In particular it demonstrates
how using 'ResEd and !ResTest can lead to very short design times. The first section
describes how to use 'Hyper, and the second section is a description of how it was
designed and implemented.

Guide To Hyper

IHyper isamulti-document viewer for HCL files (see HyperCard Control Language on
page 64 for the syntax). HCL files define stacks of cards allowing multiple Draw objects
to be linked such that a user may click on active areas (called hot spots) of aviewer to
navigate between different cards. Only one card from a stack isvisible at any timein a
viewer, athough being multi-document, 'Hyper may display several views onto the
same stack, each of which may be displaying a different card.

IHyper is started by double-clicking on its application icon or by double clicking on an
HCL file (but only after 'Hyper has been seen by the Filer).

Application icon menu
Clicking Menu over the application icon will display the following menu:

Inig
Show stack
[T RS S
it

Info leads to a standard program information dial ogue box.

Show stack allows any closed viewers to be reopened or brings to the top an already
opened one.

Delete stack will remove it from memory.

Note that if no stacks have been loaded then the show stack/delete stack will be greyed
out.

Quit will exit the application.

39

Guide To Hyper

40

Once a stack has been loaded, 'Hyper will open a viewer displaying the ‘Home Card’ of
that stack. For example:

AE) Tog P E

About Agorn C/C4+

a @

The Taalbox

BeiFalhe doce camplas Ebranes ook

Prvious | bome | foades

The user can move from one card to another by clicking on hotspots. Hot Spots will
usually be identifiable in some way, though !Hyper will change the pointer shape whilst
it is over one. It is also possible to jump to the Home Card or back to the previous card
by clicking on the action buttons in the status area at the bottom of the window.

Pressing menu over a viewer window will display the following menu:

r
Fiks lritn *F1
Scale View F11 F
Find Haywond F4 -
Print ... Priri:
L Slalue Ling 5

This allows various operations to be performed on the stack being displayed:
File Info displays information about the file.

Scale View leads to a standard scale dialogue box which lets the user zoom in and out on
a card.

Find Keyword allows searching for keywords that are stored in the stack. This allows
an index type search to be applied.

Print... allows the current card to be printed.

Building an application

SatusL ine controls whether or not the status areais to be displayed at the bottom of the
viewer window.

Keyboard Short-cuts

Clicking in aviewer givesit the keyboard input focus. This then allows various
keyboard short-cuts to work. The standard keys for Find Keyword, Scale View,

File Infoand Print... all work (as can be seen from the menu, pictured above) aswell as
p and h for previous and home.

How !Hyper was designed

It isworth having 'Hyper at hand whilst reading this section. Loading its resourcefile
into 'ResEd and !ResTest will make it easier to see the various linkages between objects
and observe the events that are raised when interacting with the user interface. The
chapters later in this manual give full information on each of the classesinvolved.

Requirements

Before designing the structure of Hyper we had to decide what it must be ableto do. We
wanted to design a HyperCard-type application with the following features:

[multi-document capability

[navigation between cards (based around Draw files) using hotspots
[home/previous facility

[keyboard driven option

[suitable for range of screen modes/scalable output

[easily extendible

[easy to make a demo version

[find capability

[ability to print acard

[maintain history of al loaded cards.

41

How !Hyper was designed

42

Design decisions

From the required features, we made the following design decisions.

Shared objects and client handles

The multi-document support suggested the use of shared objects and the use of client
handles for maintaining what file the viewer was showing. By doing this we would
reduce memory usage (by just having one copy of the shared menus and dial ogues)
without complicating the association between events on a menu and the viewer that it
was opened from.

Event driven interface

Given that we wanted to extend and modify the interface easily, we decided to make it
event driven as opposed to object driven. In other words when registering event
handlers, we register for specific event numbers, rather than a generic event (e.g.
ActionButton_Selected) on a specific component of an object. Inthisway we are ableto
modify the interface (e.g. reorder a menu or even move menu entries off onto a
submenu) without having to change the code.

AboutToBeShown events

We also decided to take advantage of a number of features offered by the toolbox such

as the ‘About To Be Shown’ events. These made it possible to set up dialogue boxes as
they were being shown, and not have to update them constantly as other parts of the
application altered data. A less obvious benefit of this mechanism is that since the
toolbox tells us the object id of what is being shown, we do not have to remember this
ourselves, and in fact it is possible to let the toolbox automatically create such objects.

A good example of this is the Program Information box. This is created by the toolbox
as a side effect of creating the iconbar (which is created on initialisation due to it having
its AutoCreate bit set). We then just need to register for the
Proginfo_AboutToBeShownEvent and in our handler set the version string from our
message file.

Sandard objects

To be Style Guide compliant (and to make less work for ourselves) we can use the
standard PrintDbox, Scale, Proginfo and Filelnfo object templates supplied by the
Toolbox.

Keyboard short-cuts

As we want !Hyper to be keyboard drivable, we can make use of the Toolbox's keyboard
short-cuts facility.

Building an application

How !'Hyper was implemented

The rest of this chapter takes you through the stages involved in implementing Hyper.
It breaks down into the following sections:

I Creating and testing a simple resource file for 'Hyper (below).
I Fileloading on page 48 — coping with Filer_Open messages on HCL files.

I Handling views on page 50 — extending our simple resource file, redraw handlers,
implementing hotspots, linking data structures, showing and hiding views, adding
keyboard short-cuts etc.

Modifying the interface on page 59 — changing the interface by editing the resource
file.

I Client Events on page 63 — a list of client events used in !Hyper.
I Summary on page 63 — features of the toolbox demonstrated in this chapter.

Creating and testing a simple resource file for !Hyper

The first stage in implementing !Hyper was to create and test a very simple resource file
consisting of an IconBar object template, a Menu object template for the iconbar icon,
and a Proginfo object template.

43

How !Hyper was implemented

Creating a basic resourcefile

1 We began by starting the resource file editor (ResEd — described in the chapter
ResEd on page 423), and then opened a new resource file display. Next we opened
an object prototypes window and dragged an IconBar object template, menu and
Proginfo object template to our empty resource file:

drag the three
object prototypes

to the empty
resource file display

1=l

i@

rename this object template to | bar Menu

2 Next we double-clicked on the Proglnfo object template in the resource file display.
This opened its properties box and we entered the information we wanted to appear
in this box. We also switched @weliver event Before showing:

A Froglm | [
Tk
_J Dalaul li--:mnl ey L-r\-g'nl "
Prarprrss | Teal vt SEtusiieaion |
Auhor | e Comnpuises Lis, 1004 |
_|roveLcence” Lcenceiyps | P donen
D et gt
S Pt showereg J'ﬂ.‘l‘.’nh:tbn
| b o e e e
cancel | o |

3 Then we edited the Menu object template in the resource file display and renamed it
to | bar Menu. Next we double-clicked oinbar Menu and created two menu
entries. The first entry we namédf o, and the second ent@ui t .

44

Building an application

The Info entry we edited to include a submenu option to display the Proglnfo object

template:

1 open | bar Menu and create
an Info menu entry

2 open the properties box for
this menu entry and switch
on Has submenu

i 1|
ComporeeniD [&1 | 4
(=]
L1 — .
) By
_ | Tehme [tembrety | Fadet
g | |unp-|:| i
Shck mchon
Detus gonm B Coins J O
_ | 'Stew oiyed T gn FETEEE
Subrrerw azmn
Dmbeps pvmrd | Dotamsn 0 sy _j o
7 St o
f _carest |[_ox]

ELA S Cirtarria § Peypmr Fhypmr

0 2 8

b

3 drag the Proglnfo object to the
Show object option

The Quit entry was edited to return a particular event:

r'.l hlﬁml- mlnnmu [T
Compaonent ID 4
Canirdeeme
e i | maw Langh | * | /4
. Sorie
| micked || Has sebmens __|Faged
[et | | eangen] -]
Sk poion
Dwitvmr averd) Dbt i Cener | Bizad |
_Eﬁ'l:lw-:tpr.'l Shewe ma barmsni
Submeny scmn
D braier raar D vt herw v
Ehow ol
Caem || o |

As we could choose our own events,

However, thisis the same event that

the choice of 82a91 may seem strange.
is generated by the Quit dialogue class, hence

if we added editor features and required a quit confirmation, we could still use the

same handles.

45

How !Hyper was implemented

46

4 Finaly we edited the Iconbar object template. We set up the sprite name, inserted
some Help text, and dragged | bar Menu to the Menu button option:

A i s rmnker

P'ndh:ﬂlil_'_E

Pricriy

[+ Epm |

| T
‘et tmpfnn

_.|Emnnhim

AT paEDn

Jﬂhc-l:lrwﬂ

Hypa |

Dmbser gweri) Defouf W More,_) Ciher

Debeer et} Defoult O Mare) Cehar

1 DT AW

Cancs || o

Fl.inuhu.un El'l'.l*Hi'I'ul Inafdanuy |

I--FI'H anl |Tlnrl!|ub'h'pl-|l.|:|.lﬁ.‘uumn||_.nq]1=5|]

wangin| * | /4
unu.nlzl

drag | bar Menu to the Show object option

Using ResTest to check theresourcefile

To test out this initial design we dragged the resource file from !ResEd to !ResTest’s
iconbar icon (ResTest is described on page 497). As we had set the AutoCreate and
AutoShow options for the iconbar object template, it appeared immediately on the
iconbar. Pressing Menu over the icon opened our mdmar (Menu) with the Quit and

Info options. Sliding the mouse pointer over the submenu arrow opened the Proginfo

box:

Fyper
Hllrlul RosTes
Pupose| Toolbos demcnsiraton
At | C Aoom Computers Li, 1954
'ﬁ'ﬂs’ml
-]
— ‘out

OETGTHRA:mME

Building an application

Clicking on !ResTest's iconbar icon opened its Event Log window. We could now see
what events were being raised when we tested the interface:

dBlock is: (5o =HoBl3ACEEd sc =kxFFFFFFFF po =8xB1E3C0BR pe =HxFFFFFFFF
venklade: (client evenk ExdBEBRISLY (Flags = Ex@ABBEEEAT

dBlock is1 Csa =MwBUAACEEd so =BaFFFFFFFF po =BxAIEICOBR pe =AxFFFFFFFF [
venklede: Heau_AbowtToBefiawn Of lags = dxBOBEEEER)

dBlock isi (50 =BoBlAADETY so =BxFFFFFFFF po =@xBIEICEGE ¢ =AxBidARARI
ventCede: PragInfo_AboutTefeShoun (#lzgs = Bxdddnpbid s]
dBlock is; (50 =Bu@l38DELY sc =ExFFFFFFFF po =AxBBEEAARE pc =HcBE9ARBRE |)
uentCeder Mindou MindowHasBeenHidden (Fligs = GxREBEIEAE)
=1 s —- S e

Coding

We could now start writing some code. Being event driven, we decided to use eventlib.
Our initial code merely consisted of initialising the Toolbox and eventlib and then
registering our handlers. At this point we just needed some quit handlers (for the event
generated by the Quit menu option and for the Wimp messages) and a handler to fill in
the version string on the Proginfo box.

Note the use of wimplib to provide easy access to the Wimp SWis.
(from main.c)

static void app_init(void)

{
/* initialise as a tool box task */
_kernel _oserror *e;
if ((e=toolbox_initialise(0,310, nessages, tbcodes,
“<hyper$dir>",&mbl, &idblk,0,0,0)) = NULL) {
wimp_report_error(e,0,0,0,0,0);
exit(1);
}

/* initialise event lib */
event_initialise(&idblk);

/* not interested in nulls or keypresses- the toolbox
handles all our keyboard shortcuts */

event_set_mask(1+256);

/* register events */

event_register_message_handler(Wimp_MQuit,quit_handler,0);
event_register_toolbox_handler(-1,Quit_Quit,
tbquit_handler,NULL);

47

How !Hyper was implemented

(from handl er. c)

int tbquit_handl er(int event_code, Tool boxEvent *event,
1 dBl ock *id_block, void *handle)

| GNORE(event) ;
| GNORE(event _code) ;
| GNORE(handl e) ;
| GNORE(i d_bl ock) ;
quit =1;
return 1;
}
int quit_handl er (W npMessage *nessage, void *handl e)
{
| GNORE(message) ;
| GNORE(handl e) ;
quit =1;
return 1;

}

int proginfo_showint event_code, Tool boxEvent *event,
1dBl ock *id_block, void *handle)

{
| GNORE(handl e) ;
| GNORE(event) ;
| GNORE(event _code) ;
progi nfo_set _version(0,id_bl ock->self_id,
lookup_token(“Version™));
return 1,
}
File loading

Next we turned our attention to file loading. This involved coping with Filer_Open
messages on HCL files and files that are dragged to the iconbar icon. To do thiswe
registered some more Wimp message handlers.

(from main. c)

event _regi ster_nessage_handl er (W np_Mbat aOpen, fil e_| oader, 0);
event _regi ster_nessage_handl er (W np_MDat aLoad, fil e_| oader, 0);

(fromfile.c)

48

Building an application

int file_loader(WnpMessage *nmessage, void *handl e)

{
/* only interested in HCL files */
W npMessage nsg;
| GNORE(handl e) ;
i f (nmessage->data.data_open.file_type != Oxfac) return O;
msg = *nessage;
nsg. hdr.your _ref = nmsg. hdr.ny_ref;
I oad_hcl _fil e(nsg. dat a. dat a_I| oad_ack. | eaf _nane) ;
i f (message->hdr.acti on_code == W np_MDat aLoad)
nsg. hdr. acti on_code = W np_MDat aLoadAck;
wi np_send_nessage(W np_EUser Message, &rsg, nsg. hdr. sender, 0, 0) ;
return 1;
}

49

How !Hyper was implemented

Handling views

Now it was time to open aviewer onto afile. Thisinvolved going back to our resource

file and adding some more object templ ates:

I awindow object template to view the filesin, which we called HyperViewer

I amenu to be shown on the viewer, which we called ViewerMenu

I attached to this menu a Filelnfo box, a Scale box and a PrintDbox object template.

The dialogue box for Filelnfo wefilled in as follows (note that we switched on Deliver

event Before showing):

=] Fiminia: Fikdrio
Tie
@ Dedau®) Cther Langth
[Fisnama | HyperSiack
Fishpe | AFAC [(Bfach 1
Delwar By
[+ Betore showing __|When hidden
__ | Use altemative window

The dialogue box for Print we filled in as follows:

50

15 Prire
Opbehial fedtures
|Fl:tllll

i PrimiDibos

[Sese fcar |_1_:!:|_i-=.i.
_Ip'm rage Al Froem 1 o
[Crientation & Upngnt) Sideways
[Dea bution o w o
JSH'II.I.D bution Sy wemicow
Dl Wi i s IS B e s

__|3ave bution

D ver mven
__| Btre: ghowing __|whwin hidden

J Use altermative wircor

We changed the default values in the di

Building an application

alogue box for Scale as follows:

L

Soale Sonke

Tide
% Dolait) Ciher

Vakips

Prosot vaiues

ramun[10 | A 200 | Sapaaal 5 |

Langth

| 50 % [7 |

% 00 % [150 %

D bwar @ v
__| Before showing

__|include “Scals o &° bution

| s antmrnative window

__|when nidden

mnm|||:l:|

We then edited Vi ewer Menu, dragging the above three object templates to the Show

object options in the appropriate Menu

entry properties boxes.

For example, the Scale View Menu entry properties box:

mant & in e ieweT e nu

| wey] F11] Lemgm[- | £ L

[+ Has subsmeny |Fadkd

I-Eﬂliﬂ"-lzl fa

e AN n T
CompormetiD [&0 | /4

Canienis

i Tet | mpT—
J Spritn

_|TUH

[Helpreat |

Chch poteon

Dmier everd (0 Dafa
| Sihew okt

Subwmaris achan

Daliver gverd) Datat
7 St

_) Ot

P TR T T

@ Hane) Cther

Having filled in al three menu entries, we then edited the HyperViewer window object
template. We dragged Vi ewer Menu to the Show menu field, and filled in the other

window properties boxes as appropriate

51

How !Hyper was implemented

52

Note that, to receive redraw events, we switched off the Auto-redraw flag in the Other
properties dialogue in the HyperViewer window. This will affect the appearance in

IResTest and so, for the purposes of this demonstration, isleft on.

Our resource file display now looked like this:

:'I I SCS1: DHarrs !HIE&EI‘E‘

B O 0

File o e ry s Earkieny

e

FrniDHbou Progimio

=
&

WiswarhManu

o

After connecting them we dragged the resource file to 'ResTest. Our icon appeared on
the iconbar as before, but now when we pressed Menu over !ResTest’s icon and looked
at the Create submenu, we saw all the new object templates that we added.

Lo

Soale
Vimperfdeny
IEardiani
loonBar
Proginda
Prinilisoom
il |k

Hy parViarsar

We then clicked oryper Viewer to create a viewer. This also unfaded$hew option
and allowed us to go into the Show submenu and see all the object ids that had been

created:

B1HTCEFQ "Hyparviaws™
& 18T FACT “Fisinio”
1886140 “Soale"
E18070C0: Prindlioe”

& 187 A0 " Vewerkiony®

The Show submenu has three columns:

I the first indicates (via a tick) whether the object is showing
I the second is the unique identifier for a particular object — called the object id

I the third is the name of the template from which it was created.

Building an application

When we clicked on the HyperViewer entry in the Show submenu the viewer was
displayed on the screen. As aside effect of the creation the menu tree for the viewer was
created aswell. Pressing Menu over the viewer displayed the menu as one would expect:

e | Hy o 7 e]

i
=

Fie Info “Fl -
Geals View Fii &
Frnt Primt

Moving the pointer over the submenu arrows displayed the File I nfo and Scale View
dialogue boxes:

Fim info 5 | Soade Vins
R ifec? | [T a] 5% | 75% |
! Type | WyCal () m fa% 100%] 180
| HyperStach

Eize 1024 |

i |_ S|
Date| 10485 17-May- 1894 '

Clicking on Print ... displayed the Print dialogue persistently:

] %A H g
Coxpas A

E-m.lu T *

& Upnght _) Sideways

_|eame

Carcel || P |

The code to support these new features can be found in the C files under the 'Hyper
directory of the examples. As with the code fragments above, they take the form of
registering a handler for a specific event in app_init (e.g. Filelnfo_AboutToBeShown)

53

How !Hyper was implemented

54

and then handling the event el sewhere. Note that the print codeis an essentially standard
print job/render loop, differing only in that it uses the DrawfFile module to do the
rendering. See print.c for more information on this.

For the viewer (see view.c) we create awindow object from atemplate (called

HyperView, as seen in the !ResTest menu) and attach various handlers to cope with
RedrawRequests and CloseWindow requests. Note that there is no need to register for
OpenWindow requests as this is done on our behalf by the toolbox (as we set the

AutoOpen bit of the window’s template). We also register for mouse click events on the
window. The relevant handler (click_viewer) sets input focus to the window and if
applicable jumps to a new card.

Redraw handler

The redraw handler (in draw.c) is a standard Wimp redraw handler that uses the
DrawFile module to render into the window. Note that the DrawFile module is a generic
renderer (i.e. not Wimp specific) and so needs absolute coordinates and a transformation
matrix. We use the latter in the simplest sense — just as a way of scaling the Draw files.

Scaling

The scaling is set whenever the user clicks scale on the Scale box. If you have the
IResTest Event log window open with the Resource file loaded, you will see that a
‘Scale_ApplyFactor’ event is generated. We use this in a handler (in draw.c) to adjust
the transformation matrix.

ek 15: (58 HeBIIETSTN 5¢ <heRICIIT pe -HeBiBdh
Eveaflode: ActocmButten_Selected (Flags = Au@BREREDA) i
TdBloek 9: (=8 =BxBLEEIGER = =@xBAICIBAE po =AsPAEdEdER pc =EcPAERIOlE sa =BcRRRRIBAE ac =Bodk

EventCode: ActuombBatton Selected (Flags = AxABRRGRAL |
TéBlock is: (5o =BxBLEEIGEE so =ExFFFFFFFF po =BaBdBdE9EE po «ExEdERE0EE s ~ExEOROIBIE a0 =Hdd
Eeeallode: Rindos BindouHas@espHidien (Flegs = BxiRdpdpap) !
TéBlock d5: (se =kaBLESEIAE me =EcBICNBNE po -BeBLETEAM po =EoBdBORORE 20 =BcBLATCERE ac =BuFR
Eveaf{ode: 5H|E_Fir§|-flﬂtl Cilegs = Bl pAEAERE)

tactor = 15 ¥

ancestor object id

The object id for the ancestor of the Scale_ApplyFactor event in this example is
&187CEFO. This equates to the object id of HyperViewer (as shown in the Show
submenu on page 52). This is because the viewer is the ancestor of this menu. The
usefulness of this becomes apparent when more than one viewer object is shown.

Building an application

Implementing hotspots

To implement the hotspots on a view, we add gadgets (components of a Window Object)
to our viewer window. We use the simplest gadget type, a button gadget, which is quite
closein functionality to aWimp icon (see but t on. ¢). Rather than hard code the
definition of the gadget into the code, Window_ExtractGadgetinfo is used to get the
basic gadget definition from a window template called ‘Properties’.

Linking the data structures

Not surprisingly, we link all the data structures for the loaded files together on a linked
list. However, we do not need to search down this list every time an event happens: by
using client handles (s@& ew. c) we can attach the address of the relevant structure to
an object. In this way, when we get a redraw event, we just find out the client handle of
the viewer on which it happened and can determine what Draw files are to be rendered.

This also works for the menu tree; even though we are sharing the menu tree amongst all
the open views, the IdBlock that initialised the toolbox is filled in with the ancestor of
the tree. In Hyper, that will be a viewer (we set the Ancestor bit of the HyperView
template). So, for example, when we receive a Scale_ApplyFactor evenstakng

on page 54), the ancestor is the viewer that leads to the scale object being shown. This
also applies to PrintDboxes, even though they are shown persistently.

Showing and hiding views

As we want a history of all views, we build a ‘Views’ submenu which will be off the

icon bar menu. In common with other applications we want the ability to show a view
and remove one from memory. In both cases the list of views is the same. This allows us
to take advantage of shared objects again. We just need one menu that we build up entry
by entry and make this a submenu of the ‘Remove View’ and ‘Show View’ entries that
are added to the iconbar menu. When an event happens on this menu, we just need to
find out the parent component (from the IdBlock) to determine whether we are removing
or showing a view. We can also use another useful toolbox feature, in that it is the client
that chooses the component ids. This means we can choose the address of the structure
that defines a view as its component id — allowing very easy association between the
menu entry and the view it refers to. Note that by having an about to be shown event
enabled for the iconbar menu, it was possible to fade or unfade the ‘Show view’ and
‘Remove view’ entries as required (simply by checking whether our linked list was
NULL).

Adding keyboard short-cuts

With the interface beginning to stabilise, it was possible to start adding some of the
keyboard short-cuts. These were generally decided by the Style Guide (e.g. F11 for
scale), though some aspects of the interface required keys specific to Hyper (e.g.

55

How !Hyper was implemented

56

previous and home) to generate events. All this was handled through !ResEd (using the
keyboard short-cuts option from the window object template menu) without any

additional code reguirement.

F rd shoftculs: H v Wl

- rintibox

od “Scale” 1T)
Show "Findigax® (1)
a3al

E
Event 4lA1
;"Eﬂpu "FI]rlnfu' (T
Event

key| Keyoods |)
| D avaen
__| Show cbject rormisn
Lipdate Deinie |

Adding a status bar

A status bar was also provided by creating a Toolbar containing a button gadget:

| | Butian

This Toolbar object template was then dragged to the Toolbars dialogue box from the

HyperViewer window:

=] Tomnars: Hyperyiawsr
Irtke el

__|op it

[Botmmien | Suws |
Esleral

__|Topwn

__| Bt bty

Cancel | (o

By using an internal bottom Ieft toolbar, the parent window could be resized whilst still
allowing the status to be visible. Previous and home action buttons were added
(generating the same event codes as the keyboard short-cuts, so no additional code was

required) as well.

|F'rw:l.rs Home | |Buian

Building an application

To control the visibility of the status bar, a menu entry (and appropriate keyboard
short-cut) was added that would tick according to whether the status was showing. The
handler for thisisin handler.c. Note that since the status is on a per-viewer basis, we
need to know when the viewer menu is opened (and over what viewer) to determine
whether the option should be ticked or not.

Adding a find capability

Finally, to provide a find capability, a custom dialogue was designed using !ResEd
starting from a basic Window and adding gadgets from the gadgets window:

label labelled box writable field =E Gaogats
Laba Labaled box
= Emlﬁ word Asen |
= | = =
Search From]
@ Home Gard) Current Card | e
| 4389 74 E
Bufion
\ / Cancel | Mot | [Smngeet L‘ﬁmw| |
v i
N gadgets window
radio buttons action buttons

The properties dialogues for the two action buttons were:

L L

Corpomni 0| 51 | ofwndon [Froomos Corponani 0| 80 | ofwmdon [Froomos
Tana| Carcel | g =] v 5 Tana| T | g =] v 5
_iB'IICIllI oy iT Thow ou e _IB'IICHI oy iT Thow ou e

Lk o wrvwre: Ligis o wrvwerr:

W Dt O) il [B150

Ewdn Eudn

| Ewtan _|Garcsi [[Cwace _|Garcsi [
BT u-'-'.l:r-j\\ BT | - s
| Prie | Prie

e | I e | I

leaving the Local options switched off results in the Toolbox
automatically closing the dialogue box when clicked on

The Next action button was made the default and assigned a specific event code.

57

How !Hyper was implemented

The Home Card radio button properties dialogue was filled in as follows (this radio
button was specified as the selected radio button):

| Fiackn bution
Componart I of window | FindDincw
in group | 1
Tm1| Home I'_'g.|:.;| | wl-_l £\
Dl frvmer o vt
) Dtk W Morg) Diher

[Seteced

__|Help st """F"El b
_ |Faded

camul|-:1+c|

The Current Card radio button properties dialogue was edited to be similar to the
Home Card radio button, except that it was not specified as the selected radio button.

The Keyword writable field properties dialogue was filled in as follows:

5| Wb e
Component D [83 | ofwindow | FinaObas
Tt | | Length[20 | 7

Sy
W Lait) Cerire _J Right

| Specty allowea charactrs Lengn[- |
Algwed chncen
&2 AL 0= Ot
| Passvened bshiavicus
Lirik io gadgats
| Beters __|Adier

_Jl:luhwamt wien winhes changss

e tangn[] .
_]F&L‘md
__Cancel | | x|

After choosing suitable components and event codes, the handler code can be writtenin
a self contained unit.

58

Modifying the interface

Building an application

One of the original requirements was that it should be easy to modify the interface to
IHyper. By taking an event driven approach, it is possible to make significant changesto
the User Interface, without altering the code. Alternatively, when adding new
functionality, this can be done in amodular fashion by adding the required handlers and
registering them when required.

Adding an export DrawFile facility

As an example, consider adding an export DrawFile facility. This would allow saving
away the Draw files that make up the card on show in the viewer. The best way to
implement thiswould be:

[add a new submenu to the main menu, and call this new submenu Fi | e

| create two menu entriesin this submenu; the first entry will replace the Filelnfo
menu entry currently on the main menu; the second entry would provide an export
facility (implemented using a simple SaveAs dialogue).

This can be achieved easily by some very simple editing of the resourcefile:

1 DragaMenu object template from the Object prototype window to the resourcefile,
and rename the object templateto Fi | eMenu.

2 Edit ViewerMenu and add a new menu entry to it:

ir E

L Wiera nriani

L

Fig Inl “Fi e
Scale View FUI1F

Firsd Kaywiond Fd
Print Frint
Exahps Lime *5

-

.'-.J:.

I ! Aaniu Viesnidani

=

Fila lnla

Scqibs Vigw
Fird Eaywond F4F

Prit
|+ Saatus Lins

Fui

Trm

g

| m— (] |17

59

How !Hyper was implemented

Now edit the new menu entry and renameit to Fi | e. Then drag the new menu
object template Fi | eMenu to the Show object option:

5] ey bty properies: oo inmenu
ComponentIl | &5 | v
Conisms
= s — .
J Tprie
| ke [+ Has submens | Famed
| e bt u.-..u:nEl £
Click aciion
Detmme mvent (8 Debauit _{Ehar
_.Eluw-t-d Show AE HAEMEET
Submeny EeEn
Dabesr ermart 8 Dabaull) hene) Clvir
[+ Show obgsct | Fheddaru
Cancel | o |

3 Next double-click on the FileMenu object template. Rename thetitle Fi | e, and
then Shift-drag the File I nfo menu entry from Vi ewer Menu to it. To make the
copied menu entry Style Guide compliant renameit to I nfo:

'I:I.-':I Manu Viesnfdany |I_.

i
P

Fie C
Segles View Fli e
Fird Kayword F4 - shift-drag the
Prink Prni File Info menu
< Smhsline *S | entry to the new
|71 submenu and rename
el 1] the entry Info

Moving the File I nfo menu entry from ViewerMenu to the new File submenu isa
very simple way of relocating this menu option from one menu to another. Aswe
rely on the FileInfo_AboutToBeShown event, it doesn't matter where it isin the
interface; it will still work.

60

Building an application

4 Now drag a SaveAs object template from the Object prototype window to the

resource file. Edit this object template to specify that the filetype should be

DrawFile:
[El BawnAs Gawnhs
Tidm
Dotaut) Cthar Langih
SN C
Filefype CrarsFile {Rall) ﬂ
__| it “Sakection” buton
__]u'l'!l'fll pRISCEa e Supports FUAM inansters
Dl ey !
__| Basfore showing __|wtain hidden
__| U alterrstive window
camcel [o |

5 Finaly return to the File menu and create an Export menu entry (by renaming the

default entry titte Menu Ent ry to Expor t). Edit thisentry and drag the SaveAs

object template to the Show object option:

Csbuer e) Debiul (F horw) Cther

IFsrm-umn| Savehs ';

r'.l Eﬂuqﬂ peojieitsn :uEr-:r.l'ﬂnlm-rruM
Componen I !
Conisns
- Tet | Exant [ey | taegn[-] ¢
. T
| ke [+ Has sabmens _|Faded
Jlihiil. l.'..':hlzl Fy
ek acion
Dwinmr mverd (0 Dwbauit - Caher
_Eﬁnw-:trd Showe we harmsni
Submens semn

e || ok |

61

How !Hyper was implemented

The final submenu should now appear as follows:

25 Manau . F e Manu

|]| |

The code for the export facility would consist of registering for the various toolbox
events and then handling them in a separate area of the code.

If you now dragged the resource file to ResTest, you would see:

LN i d]
' m boaified ® ']
Scale View F11 | Expost F i |
Find Keyword F4 - Type | HyCal rlac)
L SlEluE Ling 5 Bive | 1024
Date | 104553 17-May-1994

Info *F1 ¢ Saree An

Scaie oo F1 | (SRR

Fing Keyword F4 -

L SlalsLing *5 :
Cance | | Save |

Other possible modifications

By thistime the viewer menu could begin to get cluttered. It would then be very easy to
drag off some of the entries to a separate 'Utilities’ submenu. Again, being event driven
and remembering that the handlers operate on the Ancestor of the menu tree, they will
continue to work without code ateration.

Making ademo version of Hyper could be achieved by removing or fading parts of the
interface with 'ResEd.

62

Building an application

Client Events

A number of events were used in Hyper that were ‘Client specified’. These are listed
here to help understand properties and output in IResEd and 'ResTest.

Event

number Usage

&101 Go to Home card

&103 Go to previous card

&150 Start find operation

&151 Iconbar menu is about to be shown
&900 Viewer menu is about to be shown
&901 Toggle status bar

Other standard events were enabled for dialogues being shown, Print etc.

Summary
This chapter has demonstrated the following features of the toolbox:

Toolbox feature see section/file

shared objects and client handles Shared objects and client handles on
page 42

About to be shown events AboutToBeShown events on page 42

adding and removing gadgets button.c

at run-time (seelmplementing hotspots on page 55)

creating objects from a template view.c (see page 54)

auto creation AboutToBeShown events on page 42

the Draw file renderer draw.c (see page 54)

event handling with eventlib Coding on page 47

Menu handling Creating a basic resource file on page 44

keyboard short-cuts Adding keyboard short-cuts on page 55

client specified events and Showing and hiding views on page 55

component ids

63

HyperCard Control Language

HyperCard Control Language

HyperCard Control Language (HCL) is used by Hyper to control which draw files are
displayed to the user and when jumps should be made to new cards. It is beyond the
scope of this example to describe an editor, so the following section is provided to
describe the commands that are used.

HCL commands
All card definitions are enclosed within start and end directives:
Ilstart nane
I'l'end
where name is cardX X X XXX XX, XXXXXXXX being an 8 digit hex number.

Other commands are as follows:

Command Action

button bbox nane sets up a hotspot at the given position and setsits
behaviour to go to the named card when clicked
on

cl ear removes all buttons and Draw files from the
viewer window

colour n sets the background colour to the given decimal
value

gosub nane allows ‘inclusion’ of common functionality

got o nane allows common ending of cards

keyword string sets keyword(s) for this card — allows searching
with the find dialogue box

load file loads a file into the bottom layer — overlay will do
this if it follows a clear

overlay file loads a draw file into the next available layer

stack string sets the name of this stack to the given string. This
will appear in the iconbar menu

status string changes the status line to the given string

title string sets the title bar to the given string

There are also a number of commands that are only used by an editor. These are not
described here as they are not required by 'Hyper.

64

Building an application
. ___|

65

66

3 Colour Dialogue box class

Colour Dialogue box object allows the user to specify a colour using a variety of

colour models.

User interface

The colour selection window can be described as follows:

colour model
radio buttons

colour model
specific area

i FACE ,qu'ﬂ: I HEV

— Jm

_J Red L6 5%

H,n:m--|ﬁun| %
r-%

ﬂ'ﬁ

colour patch None button

N

action buttons

I Atthe top is a row of radio buttons — these select which colour model is being used.

I Inthe middle is an area defined by the current colour model —
described overleaf.

details of this are

I At the bottom of the window is the colour patch, an optidi@le button which
controls transparency, and the window’s action buttons.

67

Application Program Interface

Application Program Interface

Attributes

A Colour Dialogue object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes
flags

title

max title length

colour

Description
Bit M eaning
0 when set, this bit indicates that a

ColourDbox_AboutTobeShown event should be
raised when SWI Toolbox_ShowObject is called for
this object.

when set, this bit indicates that a

ColourDbox_Dia ogueCompleted event should be
raised when the Colour Dialogue object has been
removed from the screen.

when set, include a None button in the dialogue box
when set, select the None button when the dialogue
box is created

this gives an alternative string to use instead of the string
‘Colour Choice’ in the title bar of the dialogue box
(0 means use default)

this gives the maximum length in bytes of title text which will
be used for this object

an RGB value for the initial colour value

Note that it is possible to set and read whether a Colour Dialogue has a None entry at
run-time using the following methods (described on page 77):

ColourDbox_SetNoneAvailable
ColourDbox_GetNoneAvailable

Manipulating a Colour Dialogue object

Creating and deleting a Colour Dialogue object

A Colour Dialogue object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).

68

Colour Dialogue box class

A Colour Dialogue object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive del ete bit does not have ameaning for Colour Dialogue
objects.

Showing a Colour Dialogue object

When a Colour Dialogue object is displayed on the screen using SWI
Toolbox_ShowObject it has the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown on
the screen, or the coordinates given in its template, if it has
not already been shown

2 (topleft) R3+0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate

For most applications it will not be necessary to make these calls explicitly, but instead
to mark the templates with their auto-create bit set, so that a Colour Dialogue object is
created on start-up.

Before the dialogue box is shown

When the client calls Toolbox_ShowObject, a ColourDbox_AboutToBeShown Toolbox
event israised (if the appropriate flags bit is set), allowing the client to take any last
minute action. Typically, a client will indicate which of the colours should be shown as
the currently selected one, when it receives this event.

Setting and reading the colour used in a Colour Dialogue box

It is possible for the colour which is currently selected in the dialogue box to be set by

the client application. Thisis independent of the colour model being used, since the

colour is specified as an RGB colour value. The client passes a ‘colour block’ to the
Colour Dialogue module which has a one-word RGB value as its first word; the
remainder of the block is intended to support any future colour models other than RGB,
CMYK and HSV. It has a size field followed by colour-model-specific data. For clients
not requiring this extensibility, the size field should be set to 0. The method for setting
the colour thus used in a Colour Dialogue is ColourDbox_SetColour.

The current colour (and colour model data) can be read using the
ColourDbox_GetColour method (described on page 74).

69

Application Program Interface

70

Setting and reading the colour model used in a Colour Dialogue

The colour model used in a Colour Dialogue is normally chosen by the user by clicking
on the appropriate radio button. The client can however set this at run-time using the
ColourDbox_SetColourModel method, passing a colour number (RGB=0, CMYK=1,
HSV=2). If any other colour model is required, then further colour-model -specific data
must also be passed to this method (none are currently supported).

The current colour model used can be read using the ColourDbox_GetCol ourModel
method.

Reacting to colour selections

When the user has found the correct colour he wants, he will click the OK button in the
Colour Dialogue box. The Colour Dialogue module delivers a
ColourDbox_ColourSelected Toolbox event to the client at this point giving the RGB
value of the colour chosen.

Completion of a Colour Dialogue

When the Colour Dialogue module has hidden its dialogue box at the end of a dialogue,
it delivers a ColourDbox_Dia ogueCompleted Toolbox event to the client, with an
indication of whether a colour selection occurred during the dialogue.

Colour Dialogue box class

Colour Dialogue methods
The following methods are al invoked by calling SWI Toolbox_MiscOp with:

RO holding a flags word

R1 being a Colour Dialogue id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

ColourDbox_GetWimpHandle 0

On entry

RO = flags
R1 = Colour Dbox aobject id
R2=0

On exit

RO = Wimp window handle of underlying window

Use

This method returns the Wimp window handle of the window used by the underlying
Colour Picker module to implement the Colour dialogue. The value returned is only
valid when the Colour dialogue box is showing.

C veneer

extern _kernel _oserror *col ourdbox_get_w np_handl e (unsigned int flags,
Qbj ect 1d col ourdbox,
int *w np_handl e

)

71

Colour Dialogue methods

ColourDbox_GetDialogueHandle 1

On entry

RO = flags
R1 = Colour Dbox object id
R2=1

On exit
RO = ColourPicker dialogue handle of underlying dialogue box

Usage

This method returns the handle of the dialogue box used by the underlying Colour
Picker module to reference the Colour dialogue. The value returned is only valid when
the Colour dialogue box is showing.

C veneer

extern _kernel _oserror *col ourdbox_get_di al ogue_handl e (unsigned int flags,
Obj ect 1 d col ourdbox,
int *dial ogue_handl e

)

72

Colour Dialogue box class

ColourDbox_SetColour 2

On entry

RO =

flags
bit 0 set [0 select the None option

R1 = Colour Dbox object id
R2=2

R3 = pointer to colour block
On exit

R1-R9 preserved

Use

This method sets the colour currently displayed in the Colour Dialogue (adjusting the

colou
Thec

+0
+1
+2
+3
+4
+8
+12...

r slice shown, the sliders, and the writable fields appropriately).
olour block is defined as follows:

0

blue value (0, ..., &FF)

green value

red value

size of the remainder of this block (which may be 0)
colour model number
other model-dependent data

Currently there are no extra colour models supported, so the size field at byte offset 4
should be set to 0.

If bit O of the flags word is set (select the None option) then R3 may be 0.

C veneer

exter

n _kernel _oserror *col ourdbox_set_col our (unsigned int flags,
Obj ect 1 d col ourdbox,
int *col our_bl ock

)i

73

Colour Dialogue methods

ColourDbox_GetColour 3

On entry

RO = flags

R1 = Colour Dbox object id

R2=3

R3 = pointer to buffer for colour block
R4 = size of buffer

On exit
if bit 0 of ROisset 0 Noneisselected

R4 = size of buffer required (if R3 was 0)
(currently fixed because no extra colour models are supported)
else buffer pointed at by R3 contains colour information
R4 holds number of bytes written to buffer.

Use
This method returns the colour currently displayed in the Colour Dialogue.

The colour block is defined as follows:

+0 0

+1 blue value (0, ..., &FF)

+2 green value

+3 red value

+4 size of the remainder of this block (which may be 0)
+8 colour model number

+12... other model-dependent data

C veneer

extern _kernel _oserror *col ourdbox_get_col our (unsigned int flags,
bj ect I d col our dbox,
int *buffer,
int buff_size,
int *nbytes

74

Colour Dialogue box class

ColourDbox_SetColourModel 4

On entry

RO = flags

R1 = Colour Dbox object id
R2=4

R3 = pointer to colour model block
On exit

R1-R9 preserved

Use

This method sets the colour model currently used in the Colour Dialogue. The colour
which is being displayed will now be shown using the new colour model, and the layout
of the dialogue box will change accordingly.

The colour modél block is defined as follows:

+0 size of the remainder of this block (currently only 4)
+4 colour model number
+8... other model-dependent data

The current valid colour model numbers are:

0 RGB
1 CMYK
2 HSV

Currently there are no extra colour models supported, so the size field at byte offset O
should be set to 4 (i.e. just a colour model number).

C veneer

extern _kernel _oserror *col ourdbox_set_col our _nodel (unsigned int flags,
bj ect 1 d col our dbox,
int *col our _nodel _bl ock

)

75

Colour Dialogue methods

76

ColourDbox_GetColourModel 5

On entry

RO = flags

R1 = Colour Dbox object id

R2=5

R3 = pointer to buffer for colour block
R4 = size of buffer

On exit

R4 = size of buffer required (if R3 was 0)
(currently fixed because no extra colour models are supported)
else buffer pointed at by R3 contains colour information
R4 holds number of bytes written to buffer

Use

This method returns the number of the colour model currently used in the Colour
Diaogue.

The colour model block is defined as follows:

+0 size of the remainder of this block
+4 colour model number (currently: 0=RGB, 1 = CMYK and 2 = HSV)
+8... other model-dependent data

C veneer

extern _kernel _oserror *col ourdbox_get_col our _nodel (unsigned int flags,
Obj ect 1 d col our dbox,
int *buffer,

int buff_size,
int *nbytes

Colour Dialogue box class

ColourDbox_SetNoneAvailable 6

On entry

RO = flags

R1 = Colour Dbox object id

R2=6

R3 = non-zero means None is available
On exit

R1-R9 preserved

Use

This method sets whether a None option appearsin the Colour Dialogue.

C veneer

extern _kernel _oserror *col ourdbox_set_none_avail able (unsigned int flags,
Obj ect I d col our dbox,
int none

)

ColourDbox_GetNoneAvailable 7

On entry

RO = flags

R1 = Colour Dbox aobject id

R2=7

On exit

if bit 0 of RO is set, then Noneis available

Use

This method returns whether the None option appearsin a Colour Dialogue.

C veneer

extern _kernel _oserror *col ourdbox_get_none_avail abl e (unsigned int flags,
Obj ect I d col our dbox,
int *out_flags

)

77

Colour Dialogue events

Colour Dialogue events

78

There are anumber of Toolbox events which are generated by the Colour Dialogue

module;

ColourDbox_AboutToBeShown (0x829c0)

Block

+8
+12
+ 16

+ 20...

Use

0x829c0

flags (as passed in to Toolbox_ShowObject)

value which will be passed in R2 to ToolBox_ShowODbject

block which will be passed in R3 to ToolBox_ShowObject for the
underlying dialogue box.

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for a
Colour Dialogue object. It gives the application the opportunity to set fieldsin the
dialogue box before it actually appears on the screen.

C datatype

typedef struct

{

Tool boxEvent Header hdr;

i nt
uni on

{

show_t ype;

TopLeft pos;
W ndowShowbj ect Bl ock full;

} info;
} Col our DboxAbout ToBeShownEvent ;

Colour Dialogue box class

ColourDbox_DialogueCompleted (0x829c1)

Block
+8 0x829c1
+12 flags
bit O set means that a colour selection was done during this dialogue
Use

This Toolbox event is raised after the Colour Dialogue object has been hidden, either by
aCancel click, or after an OK click, or by the user pressing Escape. It allows the client
to tidy up its own state associated with this dialogue.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} Col our DboxDi al ogueConpl et edEvent ;

ColourDbox_ColourSelected (0x829c2)

Block

+8 0x829c2
+12 flagsbit O set means None was chosen
+16 colour block chosen

Use

This Toolbox event is raised when the user clicks OK in the dialogue box. The colour
block has the same format shown in the ColourDbox_SetColour method.

Note that event if the None button is set, a colour value is still returned, reflecting the
current state of the dialogue box.

C datatype

typedef struct
{

Tool boxEvent Header hdr;

unsi gned int col our _bl ock[(212/4)];
} Col our DboxCol our Sel ect edEvent;

79

Colour Dialogue templates

Colour Dialogue templates

The layout of a Colour Dialogue template is shown below. Fields which have types
MsgReference and StringReference are those which will require rel ocation when they
areloaded from aresource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

80

For more details on rel ocation, see appendix Resource File Formats on page 505.

Field Sizein bytes
flags 4
title 4
max_title 4
colour 4

Type
word

MsgReference
word

word

User interface

Colour Menu class

Colour Menu abject is used to show a menu giving the 16 desktop colours (and an
optional None entry), and to allow the user to select one of these colours by
clicking on its menu entry.

The Colour Menu allows the user to select from the set of available desktop colours (and
an optional None entry which appears at the bottom). The menu is displayed showing
the 16 desktop colours. Optionally any one of the colours can be shown as selected (with
atick against it).

When ahit isreceived for the Colour Menu, a Toolbox event is returned to the client.
This contains the colour number of the selected colour. The selected colour is shown as
ticked in the Colour Menu, when the menu is next shown (or immediately if Adjust is
held down).

81

Application Program Interface

Application Program Interface

Attributes

A Colour Menu object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attribute
flags word

menu title

max title length

colour

Description

Bit Meaning

0 when set, thisbit indicates that a
ColourMenu_AboutToBeShown event should be raised
when SWI Toolbox_ShowODbject is called for this Colour
Menu

1 when set, thishit indicates that a
ColourMenu_HasBeenHidden event should be rai sed when
the Menu has been removed from the screen

2 when set, include aNone entry in the menu (will appear
with None asits last entry)

this gives an alternative string to use instead of the string
‘Colour’ in the title bar of the menu

this gives the maximum length in bytes of title text which will
be used for this Colour Menu.

this is an indication of which colour is selected when the Colour
Menu is first created. Possible values are:

0-15 for the desktop colours

16 for ‘None’

-1 toindicate that no colour should be selected

Manipulating a Colour Menu object

Creating and deleting a Colour Menu
A Colour Menu object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).
A Colour Menu object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Colour menus.

82

Colour Menu class

Showing a Colour Menu

When a Colour menu is displayed on the screen using SWI Toolbox_ShowObject it has
the following behaviour:

Show type Position
0 (default) 64 OS units to the left of the mouse pointer
1 (full spec) R3 + 0 gives x coordinate of top-left corner of Menu

R3 + 4 gives y coordinate of top-left corner of Menu

2 (topleft) R3 + 0 gives x coordinate of top-left corner of Menu
R3 + 4 gives y coordinate of top-left corner of Menu

Before the menu is shown

When the client calls Toolbox_ShowObject, a ColourMenu_AboutToBeShown Toolbox
event israised (if the appropriate flags bit is set), allowing the client to take any last
minute action. Typically, aclient will indicate which of the colours should be shown as
the currently selected one, when it receives this event.

Setting and getting the selected colour

For a Colour Menu, one of the colour entries can be designated the selected colour
(indicated by atick against it in the menu). Colours within the menu are numbered like
the Wimp colours from 0-15 (with 16 meaning ‘None’, ariddmeaning ‘nothing
selected’).

The currently selected colour entry can be set and read dynamically using the
ColourMenu_SetColour/ColourMenu_GetColour methods.

Note that when the user clicks on a colour entry, that will become the selected colour
automatically without calling ColourMenu_SetColour. As will be seen later, a user click
results in a Toolbox event being delivered to the client, indicating which colour was
selected.

The client can dynamically set whethdlaene entry is given, by using the
ColourMenu_SetNoneAvailable method (and read whether it is available using the
ColourMenu_GetNoneAvailable method).

Processing a colour selection

Whenever the user clicks on a colour entry a ColourMenu_Selection Toolbox event is
raised to indicate which colour was chosen (one of 0-15, or 16 to indicate ‘None’).

83

Colour Menu methods

Getting the underlying menu object id

The object id of the underlying menu object used to implement a Colour Menu can be
obtained using the ColourMenu_GetMenul D method (normally you would not need to
do this).

Colour Menu methods

The following methods are all invoked by calling SWI Toolbox_MiscOp with:

RO holding a flags word

R1 being a Colour Menu id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data.

ColourMenu_SetColour 0

84

On entry

RO = flags

R1 = Colour Menu object id

R2=0

R3 = Wimp colour (0-15, or 16 for ‘None’, orl for ‘nothing selected’)

On exit

R1-R9 preserved

Use

This method selects a colour as being the currently selected one for this Colour Menu,
and places a tick next to it. Note that this change will only be visible when the Colour
Menu is next shown.

C veneer

extern _kernel _oserror *col ourmenu_set_col our (unsigned int flags,
bj ect I d col our menu,
int w np_col our

)

Colour Menu class

ColourMenu_GetColour 1

On entry

RO = flags

R1 = Colour Menu object id

R2=1

Exit

RO = Wimp colour selected (0-15, or 16 for ‘None’,-dt for ‘nothing selected’)

Use

This method returns the Wimp colour which is currently selected for this Colour Menu.

C veneer

extern _kernel _oserror *col ournenu_get_col our (unsigned int flags,
Obj ect 1 d col our nenu,
int *w np_col our

)i

ColourMenu_SetNoneAvailable 2

On entry

RO = flags

R1 = Colour Menu object id
R2=2

R3 = non-zero means allow a ‘None’ entry

On exit

R1-R9 preserved

Use

This method sets whether there is a ‘None’ entry for this Colour Menu.

C veneer

extern _kernel _oserror *col ournenu_set_none_avail able (unsigned int flags,
Obj ect I d col our nenu,
int none

)

85

Colour Menu methods

ColourMenu_GetNoneAvailable 3

On entry

RO = flags

R1 = Colour Menu object id
R2=3

On exit

RO = non-zero means there is a ‘None’ entry

Use

This method returns whether this Colour Menu has a ‘None’ entry.

C veneer

extern _kernel _oserror *col ournmenu_get_none_avail abl e (unsigned int flags,
bj ect 1 d col our menu,
int *none

)

ColourMenu_SetTitle 4

On entry

RO = flags

R1 = Colour Menu object id
R2=4

R3 = pointer to text string to use

Exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Colour Menu.

C veneer

extern _kernel _oserror *colournenu_set_title (unsigned int flags,
Obj ect I d col our menu,
char *title

)

86

Colour Menu class

ColourMenu_GetTitle 5

On entry

RO = flags

R1 = Colour Menu object id

R2=5

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

Exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Colour Menu'’s title bar.

C veneer

extern _kernel _oserror *col ournenu_get_title (unsigned int flags,
bj ect 1 d col our nenu,
char *buffer,
int buff_size,
int *nbytes

87

Colour Menu events

Colour Menu events

There are anumber of Toolbox Events which are generated by the Colour Menu module;

ColourMenu_AboutToBeShown (0x82980)

Block

+8 0x82980

+12 flags (as passed in to Toolbox_ShowObject)

+16 valuewhich will be passed in R2 to ToolBox_ShowODbject

+ 20... block which will be passed in R3 to Tool Box_ShowObject for the
underlying Menu object

Use

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for a
Colour Menu object. It gives the application the opportunity to set the selected colour
before the menu actually appears on the screen.

C datatype

typedef struct

{
Tool boxEvent Header hdr;
int show t ype;
TopLeft pos;

} Col our MenuAbout ToBeShownEvent ;

ColourMenu_HasBeenHidden (0x82981)

88

Block
+8 0x82981

Use

This Toolbox Event is raised by the Toolbox when Toolbox_HideObject is called on a
Colour Menu which has the appropriate bit set in its template flags word. It enables a
client application to clear up after amenu has been closed. It is also raised when clicking
outside amenu or hitting Escape.

C datatype

typedef struct
{
Tool boxEvent Header hdr;
} Col our MenuHasBeenH ddenEvent ;

Colour Menu class

ColourMenu_Selection (0x82982)

Block

+8 0x82982
+16 Wimp colour selected (0-15, or 16 for ‘None’)

Use

This Toolbox event is raised when the user has clicked on one of the Colour entries in
the Colour Menu. The colour value returned is in the range 0-15 for the desktop colours,
or 16 for ‘None’.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

int col our;
} Col our MenuSel ecti onEvent ;

Colour Menu templates

The layout of a Colour Menu template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from a resource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on relocation, see appefdsource File Formats on page 505.

Field Sizein bytes Type
flags 4 word
title 4 MsgReference
max-title 4 word
colour 4 word

89

Colour Menu Wimp event handling

Colour Menu Wimp event handling

The Colour Menu class responds to certain Wimp events and takes the actions as

described below:

Wimp event Action

Menu Selection The colour number corresponding to the menu
selection is sent back to the client viaa
ColourMenu_Selection event.
If Adjust isheld down, then the currently open menuis
re-opened in the same place.

User Msg Message HelpRequest

(while the pointer is over a Colour Menu object)

If ahelp message is attached to this Colour Menu, then
a reply is sent on the application’s behalf.

90

User interface

Discard/Cancel/Save Dialogue
box class

Discard/Cancel/Save (DCS) Dia ogue box isused by the client application when the
user attempts to close awindow containing modified and unsaved data.

A DCS dialogue object is used to allow the user to save data which has been modified,
usually before a document window is closed.

The dialogue box which appears on the screen has a number of components:

title bar ——» Exit

message

e Trig filg naE DEasn modhiec

Discard Cancal S
g A N
/ I \
Discard button Cancel button Save button

atitle bar (by default containing the name of the application, i.e. the message whose
tag is ‘*_TaskName’)

I a message stating (by default) that there is unsaved data

I three Action ButtonsDiscard, Cancel andSave (default action button).

The user sees the following behaviour (note that a click with the adjust button is treated
in the same way as a select click):

I if they click onDiscard, the box is closed, the parent window is closed, and its
(new) contents discarded

if they click outside the dialogue box (and it was opened transiently, i.e. with Menu
semantics), or click o@ancel, the box is closed, and the close on the parent

window is cancelled

if they click onSave or press Return, the box is closed, and either the data is saved
without further interaction (if a suitable full pathname is available), or a SaveAs
dialogue appears allowing an icon to be dragged to where the data should be saved.
When the save is complete, the parent window is closed.

91

Application Program Interface

Application Program Interface
When aDCS object is created, it has a number of optional components:
I an alternative title bar string instead of the client's name
I an alternative message to use in the dialogue box
I the name of an alternative template to use for the underlying Window obiject.

Just before the DCS dialogue box is shown on the screen, the client is delivered a
DCS_AboutToBeShown Toolbox event if enabled by the flags word.

Once the dialogue box is displayed on the screen, the DCS module handles events for it,
and raises a number of Toolbox Events to indicate what choice the user has made. These
are DCS_Discard, DCS_Cancel and DCS_Save respectively. If the dialogue is closed,
then the client receives a DCS_DialogueCompleted event if enabled by the appropriate
bit in the flags word (see below).

Attributes

A DCS object has the following attributes which are specified in its object template and
can be manipulated at run-time by the client application:

Attributes Description
flags Bit M eaning
0 when set, this bit indicates that a

DCS_AboutTobeShown event should be raised when
SWI Toolbox_ShowObject is called for this object.

1 when set, this bit indicates that a
DCS_DialogueCompleted event should be raised
when the DCS object has been removed from the
screen.

DCS title an alternative string for the title bar other than the client’s
name (0 means use application name)

max title length this gives the maximum length in bytes of title text which will
be used for this object

message an alternative message to use in the DCS dialogue box (other
than ‘This file has been modified’)

max message this gives the maximum length in bytes of the message which
length will be used for this object

window an alternative window template to use instead of the default
one (o means use default)

92

Discard/Cancel/Save Dialogue box class

Manipulating a DCS object

Creating and deleting a DCS object

A DCS object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).
A DCS object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for DCS objects.

Showing a DCS obj ect

When a DCS object is displayed on the screen using SWI Toolbox_ShowObject it has
the following behaviour:

Show type Position
0 (default) close to the pointer
1 (full spec) R3+0 visibleareaminimum x coordinate

R3+4 visibleareaminimum y coordinate

R3+8 visible areamaximum x coordinate

R3+ 12 visible areamaximum y coordinate

R3+ 16 scroll x offset relative to work area

R3+20 scroll y offset relative to work area

R3+24 Wimp window handle of window to open behind
-1 meanstop of stack
- 2 means bottom of stack
- 3 means the window behind the Wimp’s

backwindow

2 (topleft) R3+0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate
Changing the DCS dialogue’s message

When a DCS dialogue object is created it has a default message warning the user that he
has unsaved data which will belost if he closes the window.

This can be set and read dynamically usingthe DCS_SetMessage and DCS_GetM essage
methods (described on page 95).

Getting the id of the underlying window for a DCS object

The window object id of the Window object used to implement the DCS Dialogue can
be obtained by using the DCS_GetWindowID method.

93

DCS methods

DCS methods
The following methods are al invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word (which is zero unless otherwise stated)
R1 being a DCS Diaogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

DCS_GetWindowlD 0

On entry

RO = flags
R1 = DCSobjectid
R2=0

On exit
RO = Window object id for this DCS object

Use

Thismethod returnstheid of the underlying Window object used to implement this DCS
object.

C veneer

extern _kernel _oserror *dcs_get_window_id (unsigned int flags,
bj ect I d dcs,
Qoj ect1d *wi ndow

)

94

Discard/Cancel/Save Dialogue box class

DCS_SetMessage 1

On entry

RO = flags

R1 = DCSobject id

R2=1

R3 = pointer to buffer holding new message (Ctrl-terminated)
On exit

R1-R9 preserved

Use

This method sets the message used in the DCS dialogue’s window.

C veneer

extern _kernel _oserror *dcs_set_nessage (unsigned int flags,
bj ect1d dcs,
char *nessage

)

95

DCS methods

DCS_GetMessage 2

On entry

RO = flags

R1 = DCSobjectid

R2=2

R3 = pointer to buffer to hold message
R4 = size of buffer to hold message

On exit

R4 = size of buffer required to hold message (if R3 was 0)
else buffer pointed at by R3 holds message
R4 holds number of bytes written to buffer

Use

This method returns the current message used in a DCS object.

C veneer

extern _kernel _oserror *dcs_get_nessage (unsigned int flags,
Obj ectld dcs,
char *buffer,
int buff_size,
int *nbytes

96

Discard/Cancel/Save Dialogue box class

DCS_SetTitle 3

On entry

RO = flags

R1 = DCSobject id

R2=3

R3 = pointer to text string to use

On exit
R1-R9 preserved

Use

This method sets the text which isto be used in thetitle bar of the given DCS dialogue.

C veneer

extern _kernel _oserror *dcs_set_title (unsigned int flags,
Obj ectld dcs,
char *title

E

97

DCS methods

DCS_GetTitle 4

On entry

RO = flags

R1 = DCSobjectid

R2=4

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 containstitle text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a DCS dialogue’s title bar.

C veneer

extern _kernel _oserror *dcs_get_title (unsigned int flags,
bj ect 1 d dcs,
char *buffer,
int buff_size,
int *nbytes

98

Discard/Cancel/Save Dialogue box class

DCS events

The DCS module generates the following Toolbox events:

DCS_AboutToBeShown (0x82a80)

Block

+8 0x82a80

+12 value which will be passed in RO to Toolbox_ShowObject
(i.e. show flags, such as’Show as menu’)

+16 vauewhich will be passed in R2 to ToolBox_ShowObject

+20... block which will be passed in R3 to ToolBox_ShowODbject for the
underlying dialogue box.

Use

This Toolbox event is raised just before the DCS moduleis going to show its underlying
Window object.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

int show_t ype;
uni on

{

TopLeft pos;

W ndowShowbj ect Bl ock full;
} info;

} DCSAbout ToBeShownEvent ;

99

DCS events

DCS_Discard (0x82a81)

Block
+8 0x82a81

Use

This Toolbox event is raised when the user clicks on the Discard button.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} DCSDi scar dEvent ;

DCS_Save (0x82a82)

Block
+8 0x82a82

Use

This Toolbox event is raised when the user clicks on the Save Button or presses Return.
It is then the client’s responsibility to either save the data directly to file, or to display a
SaveAs Dialogue object.

C datatype

typedef struct
{
Tool boxEvent Header hdr;

} DCSSaveEvent;

100

Discard/Cancel/Save Dialogue box class

DCS_DialogueCompleted (0x82a83)

Block
+8 0x82a83

Use

This Toolbox event is raised after the DCS object has been hidden, either by a Cancel
click, aSave click or a Discard click, or by the user clicking outside the dialogue box (if
opened transiently) or pressing Escape. It allows the client to tidy up its own state
associated with this dialogue.

C datatype

typedef struct
{
Tool boxEvent Header hdr;

} DCSDi al ogueConpl et edEvent ;

DCS_Cancel (0x82a84)

Block
+8 0x82a84

Use
This Toolbox event is raised when the user clicks on the Cancel button or presses the
Escape key.

C datatype

typedef struct
{
Tool boxEvent Header hdr;

} DCSCancel Event ;

101

DCS templates

DCS templates

The layout of a DCS template is shown below. Fields which have types MsgReference
and StringReference are those which will require rel ocation when they are loaded from
aresourcefile. If the template is being constructed in memory, then these fields should
be real pointers (i.e. they do not require rel ocation).

For more details on rel ocation, see appendix Resource File Formats on page 505.

Field Sizein bytes Type

flags 4 word

title 4 MsgReference
max_title 4 word

message 4 MsgReference
max_message 4 word

window 4 StringReference

Underlying window template

The window object used to implement a DCS dia ogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified aternative Window templ ate:

Title bar must be indirected.

Gadgets
Component ids are derived by adding to 0x82a800

Component id Details

0 button gadget

1 action button (Discar d)
2 action button (Cancel)

must be marked as a ‘Cancel’ action button

3 action button $ave)
must be marked as a ‘Default’ action button

102

DCS Wimp event handling

Wimp event
Mouse Click

Key Pressed

* if enabled

Discard/Cancel/Save Dialogue box class

Action
on Discard button raise DCS_Discard Toolbox event, then a
DCS_DiaogueCompleted Toolbox event*

on Cancel button raise DCS_Cancel Toolbox event,
then aDCS_DialogueCompleted Toolbox event*

on Save button raise DCS_Save Toolbox event,
then a DCS_Dia ogueCompleted Toolbox event*
on Return raise DCS_Save Toolbox event,

then aDCS_Dia ogueCompleted Toolbox event*
on Escape then act asif Cancel had been clicked.

Note that if opened transiently, DCS_DialogueCompleted may be raised without any of
DCS Cancel, DCS Discard or DCS_Save being raised. This could arise from the user
clicking on the backdrop or opening a menu.

103

104

6 File Info Dialogue box class

FileInfo dialogue object is used to display information about afile (or adirectory or
application) in a dialogue box.

User interface
A File Info dialogue has the following information held in its dialogue box:

Abaut this Tils - modified
Mo bed? []
button gadget > EFE S
Type Tesl | |<«—— type of file
f||e Size EESlUl—'-'.'l"‘I‘S- EEIcr..
B \ _

) filename
file date ——»| Cmi= 104853 17-May- 154

an indication of whether the file is modified (atextual display field with the text

‘YES' or ‘NO’)

a sprite representing the file type (i.e. a sprite named file_xxx where xxx is the hex
representation of the file type). If the filetype is 0x1000 a directory sprite is used,
and if 0x2000 an application sprite is used.

the type of the file (a textual display field with the textual filetype followed by its
hex value in brackets)

I the full pathname of the file or ‘<untitled>’ (a display field)
I the size of the file in bytes (a display field giving the size of the file)

I the date the file was last written to (a textual display field showing the date in
“*time’ format).

105

Application Program Interface

Application Program Interface

Attributes

A File Info object has the following attributes which are specified in its object template
and can be manipulated at run-time by the client application:

Attributes
flags

File Info title

max title length

modified

filetype

filename

filesize
date

window

106

Description
Bit M eaning
0 when set, this bit indicates that a

Filelnfo_AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
Filelnfo_DialogueCompleted event should be raised
when the File Info object has been removed from the
screen.

alternative title to use instead of ‘About this file’
(0 means use default title)

this gives the maximum length in bytes of title text which will
be used for this object

an indication as to whether the file is to be marked as
modified from creation

a word giving the RISC OS filetype

the initial filename to use in the dialogue box (if this field is O,
then the string ‘<untitled>’ is used

size of the file in bytes
a 5-byte UTC time

the name of an alternative window template to use instead of
the default one (0 means use default)

Manipulating a File Info object

File Info Dialogue box class

Creating and deleting a File I nfo obj ect

A File Info object is created using SWI Toolbox_CreateObject.
When this object is created it has no attached objects (see page 11).
A File Info object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for File Info objects.

Showing a File Info object

When aFile Info object is displayed on the screen using SWI Toolbox_ShowObject it

has the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown on
the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3+0
R3 +4
R3+8
R3 + 12
R3 + 16
R3 + 20
R3+ 24

2 (topleft) R3+0
R3 +4

visible area minimum x coordinate
visible area minimum y coordinate

visible area maximum x coordinate
visible area maximum y coordinate

scroll x offset relative to work area

scroll y offset relative to work area

Wimp window handle of window to open behind
-1 means top of stack
- 2 means bottom of stack
- 3 means the window behind the Wimp’s

backwindow

visible area minimum x coordinate
visible area minimum y coordinate

Before the File Info dialogue box is shown

When SWI Toolbox_ShowODbject iscalled, aFilelnfo_AboutToBeShown Toolbox event
is raised, if the appropriate bit is set in the File Info dialogue object’s flags word. This
enables the client to set any of the dialogue box’s fields before it is displayed.

Setting and reading the fields of the File Info dialogue

All of the display fields in a File Info dialogue can be set and read dynamically at
run-time. The sprite displayed in the dialogue box depends on the value of the filetype

field.

107

File Info methods

The methods used to do this are:

Filelnfo_SetModified Filelnfo_GetModified
Filelnfo_SetFileType Filelnfo_GetFileType
FileInfo_SetFileName Filelnfo_GetFileName
Filelnfo_SetFileSize Filelnfo_GetFileSize
Filelnfo_SetDate Filelnfo_GetDate

File Info methods
The following methods are al invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word

R1 being a File Info Dialogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

FileInfo_GetWindowlID 0

On entry

RO = flags

R1 = File Info object id

R2=0

On exit

RO = window object id for this File Info object

Use

This method returnsthe id of the underlying window object used to implement this File
Info object.

C veneer

extern _kernel _oserror *fileinfo_get_window_.id (unsigned int flags,
Objectld fileinfo,
Obj ectld *wi ndow

);

108

File Info Dialogue box class

FileInfo_SetModified 1

On entry

RO = flags

R1 = FileInfo object id
R2=1

R3 = value

On exit
R1-R9 preserved

Use

This method sets whether the file is to be indicated as modified or not. If the value
passed in R3is0, thisindicates that thefile is not modified; any other valuein R3 means
thefileis modified.

C veneer

extern _kernel _oserror *fileinfo_set_nodified (unsigned int flags,
Objectld fileinfo,
int nodified

E

FileInfo_GetModified 2

On entry

RO = flags

R1 = FileInfo object id

R2=2

On exit

RO = modified state (0 0 unmodified, non-0 [0 modified)

Use

This method returns whether the file is indicated as modified or not.

C veneer

extern _kernel _oserror *fileinfo_get_nodified (unsigned int flags,
Objectld fileinfo,
int *rnodified

)i

109

File Info methods

FileInfo_SetFileType 3

On entry

RO = flags

R1 = File Info object id
R2=3

R3 = filetype

On exit

R1-R9 preserved

Use
This method sets the file type to be indicated in the dial ogue box.

C veneer

extern _kernel _oserror *fileinfo_set_file_type (unsigned int flags,
Obj ectld fileinfo,
int file_type

)

FileInfo_GetFileType 4

On entry

RO = flags

R1 = File Info object id
R2=4

On exit

RO = filetype

Use
This method returns the file type shown in the dialogue box.

C veneer

extern _kernel _oserror *fileinfo_get_file_type (unsigned int flags,
Obj ectld fileinfo,
int *file_type

)i

110

File Info Dialogue box class

FileInfo_SetFileName 5

On entry

RO = flags

R1 = FileInfo object id

R2=5

R3 = pointer to buffer holding filename

On exit
R1-R9 preserved

Use

This method sets the filename used in the File Info dialogue’s Window. There is a limit
of 256 characters on the filename length.

C veneer

extern _kernel _oserror *fileinfo_set_file_nane (unsigned int flags,
oj ectld fileinfo,
char *file_nane

)i

111

File Info methods

FileInfo_GetFileName 6

On entry

RO = flags

R1 = File Info object id

R2=6

R3 = pointer to buffer to hold filename
R4 = size of buffer to hold filename

On exit

R4 = size of buffer required to hold filename (if R3 was 0)
else buffer pointed at by R3 holds filename
R4 holds number of bytes written to buffer

Use

This method returns the current filename used in a File Info object.

C veneer

extern _kernel _oserror *fileinfo_get_file_name (unsigned int flags,
Obj ectld fileinfo,
char *buffer,
int buff_size,
int *nbytes

112

File Info Dialogue box class

FileInfo_SetFileSize 7

On entry

RO = flags

R1 = FileInfo object id
R2=7

R3 = filesize

On exit

R1-R9 preserved

Use

This method sets the file size to be indicated in the dialogue box.

C veneer

extern _kernel _oserror *fileinfo_set_file_size (unsigned int flags,
Qoj ectld fileinfo,
int file_size

)

FileInfo_GetFileSize 8

On entry

RO = flags

R1 = FileInfo object id
R2=8

On exit

RO = filesize

Use

This method returns the file size shown in the dial ogue box.

C veneer

extern _kernel _oserror *fileinfo_get_file_size (unsigned int flags,
oj ectld fileinfo,
int *file_size

)

113

File Info methods

FileInfo_SetDate 9

On entry

RO = flags

R1 = File Info object id

R2=9

R3 = pointer to 5-byte UTC time

On exit
R1-R9 preserved

Use

This method sets the date string used in the File Info dialogue’s window. The Territory
Manager is used to convert the UTC time into a time string.

C veneer

extern _kernel _oserror *fileinfo_set_date (unsigned int flags,
oj ectld fileinfo,
int *UTC

)

FileInfo_GetDate 10

On entry

RO = flags

R1 = File Info object id
R2 =10

R3 = pointer to buffer to hold 5-byte UTC time

On exit

R1-R9 preserved

Use

This method returns the current UTC time used in a File Info object.

C veneer

extern _kernel _oserror *fileinfo_get_date (unsigned int flags,
oj ectld fileinfo,
int *UTC

)

114

File Info Dialogue box class

FileInfo_SetTitle 11

On entry

RO = flags

R1 = FileInfo object id

R2=11

R3 = pointer to text string to use

On exit
R1-R9 preserved

Use

This method sets the text which isto be used in the title bar of the given File Info
dialogue.

C veneer

extern _kernel _oserror *fileinfo_set_title (unsigned int flags,
Objectld fileinfo,
char *title

)i

115

File Info methods

FileInfo_GetTitle 12

On entry

RO = flags

R1 = File Info object id

R2=12

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a File Info dialogue’s title bar.

C veneer

extern _kernel _oserror *fileinfo_get_title (unsigned int flags,
oj ectld fileinfo,
char *buffer,
int buff_size,
int *nbytes

116

File Info events

File Info Dialogue box class

The File Info module generates the following Toolbox events:

FileInfo_AboutToBeShown (0x82ac0)

Block

+8
+12
+ 16

+20...

Use

0x82ac0

flags (as passed in to Toolbox_ShowObject

value which will be passed in R2 to ToolBox_ShowObject

block which will be passed in R3 to ToolBox_ShowObject for the
underlying dialogue box

This Toolbox event is raised just before the File Info module is going to show its
underlying Window object.

C datatype

typedef struct

{

Tool boxEvent Header hdr;

int
uni on

{

show_t ype;

TopLeft pos;
W ndowShowbj ect Bl ock full;

} info;
} Fil el nf oAbout ToBeShownEvent;

117

File Info templates

FileInfo_DialogueCompleted (0x82ac1l)

Block
+8 0x82acl
+12 flags
(none yet defined)
Use

This Toolbox event israised after the File Info object has been hidden, either by the user
clicking outside the dialogue box or pressing Escape. It allows the client to tidy up its
own state associated with this dialogue.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} FilelnfoDi al ogueConpl et edEvent ;

File Info templates

The layout of aFile Info template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
areloaded from aresource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on rel ocation, see appendix Resource File Formats on page 505.

Field Sizein bytes Type

flags 4 word

title 4 MsgReference
modified 4 word

filetype 4 word

filename 4 MsgReference
filesize 4 word

date 8 2 words
window 4 StringReference

118

File Info Dialogue box class

Underlying window template

The window object used to implement a File Info dialogue has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82ac00.

Component id

g b~ W N » O

© 00 N O

File Info Wimp event handling
Wimp event
Open Window
Key Click
User Message

Details

Display Field (date)

Display Field (sizein bytes)
Display Field (filename)
Display Field (filetype)
Display Field (modified field)
Button gadget (indirected sprite used to display icon for file
type)

Label (date)

Label (size)

Label (modified)

Label (type)

Action
Request show the dial ogue box

if Escape, then cancel this dialogue.

Window_HasBeenHidden
hide the dialogue box

119

120

14 Font Dialogue box class

Font Dialogue box shows font, weight and style of the currently selected font,
together with achosen height and aspect ratio. The dialogue box also has awritable
field in which atest string in the chosen font is displayed.

User interface

The Font Dialogue box can be broken down into the following components:

string sets
labels b= Jipa e
Fort v \ Siuw
'S - - 8| 1cf 12| 14 18|
Fork | Triniy il : : action buttons
24| 20| 35| an] 72|
'-'J-Elgl'tl Pl s " '|
! Heght | 12 . ||
Style | i hain| | et |1.-_.-.' 4\ number ranges
T_rb | T sk B Fow juimips ouver e Ly dog - writable field
/ _ Cancet_| _ Aeely |
Try button Cancel button Apply button

A boxed area for setting the font, which contains three labels giving the font’s name,
weight and style; with three accompanying string sets (each string set contains a
display field and a pop-up menu, which gives viable values for these fields, based
on the list of currently available fonts). The pop-up menus are built and processed
by the Toolbox, and do not require (or allow) any client intervention. The Toolbox
deals with ensuring that only valid font id’s are available to be chosen.

Another boxed area, in which the user can set the height and aspect ratio used to plot
the selected font. There are a number of standard sizes which can be chosen by
clicking action buttons, and a number range into which a non-standard size can be
entered. The aspect ratio used is specified by the contents of another number range.

121

Application Program Interface

I Atthebottom of the dialogue box, thereisawritable field which by default contains
the string, ‘The quick brown fox jumps over the lazy dog’. When the user clicks on
theTry button, this string is rendered in the selected font (and height and aspect
ratio). The try string is limited to 64 characters long.

I The user can cancel the dialogue by clicking orlsiecel action button, or can
apply the font selection by clicking @pply.

Note that the strings which appear in the font, weight and style display fields may be
localised for the current territory, but the strings used to communicate font selections
between the client and the Toolbox are always the ‘real’ font id of the font (e.g.
Corpus.Bold.Oblique).

Application Program Interface

122

Attributes

A Font Dialogue object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes Description
flags word Bit Meaning
0 when set, this bit indicates that a

FontDbox_AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
FontDbox_DialogueCompleted event should be
raised when the Font Dialogue object has been
removed from the screen.

2 when set, include &ystem font entry in the list of
fonts.
title an alternative title for the dialogue box instead of ‘Type style’

(0 means use default title)

max title length the maximum length in bytes of title text which will be used
for this object

initial font the font id to be displayed in the dialogue box as the selected
font, on creation. If 0, the default is to display the first font in
the list of currently available fonts.

initial height the initial height value when the dialogue box is created

Font Dialogue box class

Attributes Description

initial aspect the initial aspect ratio value when the dialogue box is created

try string an alternative string to usein the Try writablefield, instead of
‘The quick brown fox jumps over the lazy dog’

window an alternative window template to use instead of the default
one.

Manipulating a Font Dialogue object

Creating and deleting a Font Dialogue object

A Font Dialogue object is created using SWI Toolbox_CreateObject.
When this object is created it has no attached objects (see page 11).
A Font Dialogue object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Font Dialogue

objects.

Showing a Font Dialogue object

When a Font Dialogue object is displayed on the screen using SWI
Toolbox_ShowObject it has the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown on
the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3+0
R3 +4
R3+8
R3 + 12
R3 + 16
R3 + 20
R3+ 24

2 (topleft) R3+0
R3 +4

visible area minimum x coordinate
visible area minimum y coordinate

visible area maximum x coordinate
visible area maximum y coordinate

scroll x offset relative to work area

scroll y offset relative to work area

Wimp window handle of window to open behind
-1 means top of stack
- 2 means bottom of stack
- 3 means the window behind the Wimp’s

backwindow

visible area minimum x coordinate
visible area minimum y coordinate

123

Application Program Interface

124

Before the Font Dialogue box is shown

When the client calls Toolbox_ShowObject, a FontDbox_AboutToBeShown Toolbox
event israised (if the appropriate flags bit is set), allowing the client to take any last
minute action. Typically, aclient will indicate which of the fonts should be shown asthe
currently selected one, when it receives this event.

Setting and getting the current selection

The currently selected font id can be set and read at run-time using the
FontDbox_SetFont and FontDbox_ GetFont methods. These use afont id which assumes
a<name>.<weight>.<style> structure (i.e. the first component appearsin the Font field,
the second in the Weight field, and the third in the Style field).

The size (both height and aspect ratio components) are set and read using the
FontDbox_SetSize/FontDbox_GetSize methods respectively.

The Try string can be set and read using the FontDbox_SetTryString and
FontDbox_GetTryString methods.
Recelving a font selection

When the user clicks the Apply button (or presses the Return key when the Font
Dialogue box has the input focus), the client application is sent a FontDbox_A pplyFont
Toolbox event. This event gives the font id of the currently selected font.

Completing a Font Dialogue

When the dialogue box is closed, either because Apply or Cancel has been clicked, or
Escape has been pressed, a FontDbox_Dial ogueCompleted Toolbox event is raised for
the client, with an indication of whether a font was selected during the dialogue.

Font Dialogue box class

Font Dialogue methods
The following methods are al invoked by calling SWI Toolbox_MiscOp with:

RO holding a flags word

R1 being a Font Dialogue Box id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

FontDbox_GetWindowlID 0

On entry

RO = flags
R1 = FontDbox object id
R2=0

On exit
RO = Window object id for this FontDbox object

Use

This method returns the id of the underlying Window object used to implement this
FontDbox object.

C veneer

extern _kernel _oserror *fontdbox_get_w ndow_i d(unsigned int flags,
Obj ect 1 d fontdbox,
Obj ectld *wi ndow

)i

125

Font Dialogue methods

FontDbox_SetFont 1

On entry

RO = flags

R1 = Font Dbox object id

R2=1

R3 = pointer to font id of font to select (0 means none)

On exit
R1-R9 preserved

Use

Thismethod selects afont as being the currently selected one for this Font Dial ogue box,
and displays its name appropriately in the Font/Weight/Style display fields.

The special font id ‘SystemFont’ is used to indicate thaBjfseem entry should be
selected.

C veneer

extern _kernel _oserror *fontdbox_set_font (unsigned int flags,
bj ect I d fontdbox,
char *font_id

)

126

Font Dialogue box class

FontDbox_GetFont 2

On entry

RO = flags

R1 = Font Dbox object id

R2=2

R3 = pointer to buffer to hold font id
R4 = buffer size for font id

On exit

R4 = size of buffer required (if R3 was 0)
else buffer pointed at by R3 holds font id
R4 holds number of bytes written to buffer

Use

This method returns the font id for the font which was last specified in a
FontDbox_ SetFont call, or was last chosen by a user choice from a pop-up menu.

The special font id ‘SystemFont’ is used to indicate thaBjfssem entry is selected.

C veneer

extern _kernel _oserror *fontdbox_get_font (unsigned int flags,
Obj ect 1 d fontdbox,
char *buffer,
int buff_size,
int *nbytes

127

Font Dialogue methods

FontDbox_SetSize 3

On entry

RO = flags
bit 0 set means change the height value
bit 1 set means change the aspect ratio
R1 = Font Dbox object id
R2=3
R3 = height value
R4 = aspect ratio value

On exit
R1-R9 preserved

Use

This method sets the height value and/or the aspect ratio displayed in the Font Dialogue
box.

C veneer

extern _kernel _oserror *fontdbox_set_size (unsigned int flags,
oj ect1d fontdbox,
int height,
int aspect _ratio

128

Font Dialogue box class

FontDbox_GetSize 4

On entry

RO = flags
R1 = Font Dbox object id
R2=4

On exit

RO = height value

R1 = aspect ratio

Use

This method returns the height value and/or aspect ratio currently displayed in the Font
Dialogue box.

C veneer

extern _kernel _oserror *fontdbox_get_size (unsigned int flags,
Obj ect 1 d fontdbox,
int *height,
int *aspect_ratio

FontDbox_SetTryString 5

On entry

RO = flags

R1 = Font Dbox object id
R2=5

R3 = pointer to ‘try’ string to use

On exit

R1-R9 preserved

Use

This method sets the string used in Thg writable field of a Font Dialogue box. If the
string is longer than 64 characters, an error is returned.

C veneer

extern _kernel _oserror *fontdbox_set_try_string (unsigned int flags,
oj ect1d fontdbox,
char *try_string

);

129

Font Dialogue methods

FontDbox_GetTryString 6

On entry

RO = flags

R1 = Font Dbox object id

R2=6

R3 = pointer to buffer to hold try string
R4 = buffer sizefor try string

On exit

R4 = size of buffer required (if R3 was 0)
else buffer pointed at by R3 holds try string
R4 holds number of bytes written to buffer

Use

This method returns the string currently displayed in the Try writable field of the Font
Dial ogue box.

C veneer

extern _kernel _oserror *fontdbox_get_try_string (unsigned int flags,
Obj ect 1 d fontdbox,
char *buffer,
int buff_size,
int *nbytes

130

Font Dialogue box class

FontDbox_SetTitle 7

On entry

RO = flags

R1 = Font Dbox object id
R2=7

R3 = pointer to text string to use

On exit
R1-R9 preserved

Use

This method sets the text which isto be used in the title bar of the given Font dialogue
box.

C veneer

extern _kernel _oserror *fontdbox_set_title (unsigned int flags,
Obj ect I d fontdbox,
char *title

)i

131

Font Dialogue methods

FontDbox_GetTitle 8

On entry

RO = flags

R1 = Font Dbox object id

R2=8

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = the size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 containstitle text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Font dialogue’s title bar.

C veneer

extern _kernel _oserror *fontdbox_get_title (unsigned int flags,
bj ectld fontdbox,
char *buffer,
int buff_size,
int *nbytes

132

Font Dialogue box class

Font Dialogue events

There are a number of Toolbox events which are generated by the Font Dialogue box
module.

FontDbox_AboutToBeShown (0x82a00)

Block

+8 0x82a00

+12 flags (as passed in to Toolbox_ShowObject)

+16 vauewhich will be passed in R2 to ToolBox_ShowObject

+20... block which will be passed in R3 to ToolBox_ShowODbject for the
underlying dialogue box

Use

This Toolbox Event israised when SWI Toolbox_ShowObject has been called for aFont
Dialogue Box object. It gives the application the opportunity to set the selected font
before the dialogue box actually appears on the screen.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

int show_t ype;
uni on
{
TopLeft pos;
W ndowShowbj ect Bl ock full;
} info;

} Font DboxAbout ToBeShownEvent ;

133

Font Dialogue events

FontDbox_DialogueCompleted (0x82a01)

Block

+8 0x82a01
+12 flags
Use

This Toolbox Event is raised after the Font Dial ogue object has been hidden, either by a
Cancel click, or by aclick on Apply. It allows the client to tidy up its own state
associated with this dialogue.

Note that if the dialogue was cancelled, afont selection may still have been made, for
exampleif the user clicked Adjust on Apply, and then cancelled the dialogue.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} Font DboxDi al ogueConpl et edEvent ;

FontDbox_ApplyFont (0x82a02)

Block

+8 0x82a02
+16 font height
+20 aspect ratio
+24.. fontid

Use
This Toolbox Event informsthe client that a Font Dialogue box selection has been made.
The special font id SystemFont is used to indicate that the System entry is selected.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

unsi gned int hei ght ;
unsi gned int aspect;
char font[208];

} Font DboxAppl yFont Event ;

134

Font Dialogue box class

Font Dialogue Templates

The layout of a Font Dialogue box template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from aresourcefile. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on rel ocation, see appendix Resource File Formats on page 505.

Field Sizein bytes Type

flags 4 word

title 4 MsgReference
max_title 4 word
initial_font 4 StringReference
initial_height 4 word
initial_aspect 4 word

try_string 4 MsgReference
window 4 StringReference

Underlying Window template

The Window object used to implement a Font Dial ogue has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified aternative Window template:

Title bar must be indirected.

Gadgets
Component ids are derived by adding to 0x82a000

Component id Details

0 action button (Apply) must be marked as the ‘default’
action button

1 action buttonCancel) must be marked as the ‘cancel’
action button

2 action buttonTry) must be marked as a ‘local’ action
button

135

Font Dialogue Templates

136

Component id
3

6-15

16
17
18
19
20
21
22
23
24
25
26

Details
writable field
(Try string)

number range
(Aspect ratio)

number range (Height)

action buttons (Standard

sizes)

string set (Style)
string set (Weight)
string set (Font)
label box (Font)
label box (Style)
label (Height)
label (Aspect)
label (%)

label (Font)
label (Weight)
label (yle)

buffer must be 64 bytes

these should all be local action
buttons containing the text 8, 10
12, 14, 18, 24, 28, 36, 48 72
respectively.

non-writable, with pop-up menu
non-writable, with pop-up menu

non-writable, with pop-up menu

Font Dialogue box class

Font Dialogue Wimp event handling

The Font Dialogue box class responds to certain Wimp events and takes the actions as
described below:

Wimp event Action

Mouse Click on Apply, deliver a FontDbox_ApplyFont event
on Cancel, deliver a FontDbox_DialogueCompleted event
on one of the pop-up menu buttons, a menu is displayed

on one of the ‘standard sizes’, this size is entered into the
Height writable field

on one of the arrow keys, increment/decrement the value of its
associated writable field (either height or aspect ratio)

Key Pressed if Return then act aé& gply button had been clicked
if Escape, then act as@fancel button had been clicked

137

Font Dialogue Wimp event handling

138

User interface

Font Menu class

Font Menu is a menu which shows the currently selected font, and allows the user
to set this from alist of font names, and submenus which give styles and weights.

A typical Font Menu might look as follows:

e
e il font menu
Save FI P b
Bkt B il
Eot - Fenl 1L
| T TR 5 o
Foni Corpus i
¥ Deirear I
Ling spacng | fedildpay
Kargin
brvaai
Window wrap
Frwaground
Background F
Work area - submenu

When ahit isreceived for the Font Menu, it is decoded by the Font Menu module, and a
Toolbox event isreturned to the client. This contains the font id of the selected font (see
SWI Font_DecodeMenu). The chosen font is shown asticked in the font menu when the
menu is next shown (or immediately if Adjust is held down).

139

Application Program Interface

Application Program Interface

The RISC OS Font manager provides afacility of building afont menu from the current

fontlist.

A Font Menu object is an abstraction on thisfacility. A Font Menu is built for the client

using the Font manager.

Attributes

A Font Menu object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes
flags word

ticked font

Description
Bit M eaning
0 when set, this bit indicates that a

FontMenu_AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object

when set, this bit indicates that a
FontMenu_HasBeenHidden event should be raised
when the Font Menu object has been removed from
the screen

when set, include a System font entry at head of
menu

font id of the font to tick in the Font Menu when it isfirst

created
The special font id ‘SystemFont’ is used to indicate that the

System entry should be ticked.

Manipulating a Font Menu object

Creating and deleting a Font M enu object
A Font Menu object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).

A Font Menu object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Font Menu

objects.

140

Font Menu class

Showing a Font M enu object

When aFont Menu object is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

Show type Position
0 (default) 64 OS unitsto the left of the mouse pointer
1 (full spec) R3+ 0 gives x coordinate of top-left corner of Menu

R3 + 4 gives y coordinate of top-left corner of Menu

2 (topleft) R3 + 0 gives x coordinate of top-left corner of Menu
R3 + 4 gives y coordinate of top-left corner of Menu

Before the Font Menu is shown

When the client calls Toolbox_ShowObject, a FontMenu_AboutToBeShown Toolbox
event israised (if the appropriate flags bit is set), allowing the client to take any last
minute action. Typically, aclient will indicate which of the fonts should be shown asthe
currently selected one, when it receives this event.

Selecting a font

The currently selected font is shown ticked in the Font Menu. The selected font can be
set using FontM enu_SetFont, and can be read using FontMenu_GetFont. Note that the
string passed to these methods is the font id, not the trandlated string.

Receiving a font selection

When the user makes a Font sel ection from the Font Menu, a FontMenu_FontSelection
Toolbox event is raised. This givesthe font id of the font which has been chosen from
the Font Menu.

141

Font Menu methods

Font Menu methods
The following methods are all invoked by calling SWI Toolbox_MiscOp with:

RO holding a flags word

R1 being a Font Menu id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

FontMenu_SetFont O

On entry

RO = flags

R1 = Font Menu object id

R2=0

R3 = pointer to font id of font to select (0 means none)

On exit
R1-R9 preserved

Use

This method selects afont as being the currently selected one for this Font Menu, and
places a tick next to it. The special font id ‘SystemFont’ is used to indicate that the
System entry should be ticked.

C veneer

extern _kernel _oserror *fontnmenu_set_font (unsigned int flags,
bj ect I d fontnenu,
char *font_id

)

142

Font Menu class

FontMenu_GetFont 1

On entry

RO = flags

R1 = Font Menu object id

R2=1

R3 = pointer to buffer to hold font id
R4 = buffer size for font id

On exit

R4 = size of buffer required (if R3 was 0)
else buffer pointed at by R3 holds font id
R4 holds number of bytes written to buffer

Use

This method returns the font id for the font which was last specified in a
FontMenu_SetFont call, or was last chosen by a user mouse click (i.e. the one which is
ticked). The special font id ‘SystemFont’ is used to indicate thebsem entry was
last chosen.

C veneer

extern _kernel _oserror *fontmenu_get_font (unsigned int flags,
Obj ect I d fontnmenu,
char *buffer,
int buff_size,
int *nbytes

143

Font Menu events

Font Menu events

There are anumber of Toolbox events which are generated by the Font Menu module:

FontMenu_AboutToBeShown (0x82a40)

Block

+8 0x82a40

+12 flags (as passed in to Toolbox_ShowObject)

+16 valuewhich will be passed in R2 to ToolBox_ShowODbject

+ 20... block which will be passed in R3 to Tool Box_ShowObject for the
underlying Menu Object

Use

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for aFont
Menu object. It gives the application the opportunity to set the selected font before the
Menu actually appears on the screen.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

int show t ype;
TopLeft pos;
} Font MenuAbout ToBeShownEvent ;

FontMenu_HasBeenHidden (0x82a41)

Block
+8 0x82a41

Use

This Toolbox Event is raised by the Toolbox when Toolbox_HideObject is called on a
Font Menu which hasthe appropriate bit set in its template flagsword. It enablesaclient
application to clear up after amenu has been closed. It is aso raised when clicking
outside amenu or hitting Escape.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} Font MenuHasBeenHi ddenEvent ;

144

Font Menu class

FontMenu_FontSelection (0x82a42)

Block

+8 0x82a42
+16... fontid
Use

This Toolbox Event informs the client that a Font Menu selection has been made.

The special font id ‘SystemFont’ is used to indicate thaBifseem entry was last
chosen.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

char font _id[216];
} Font MenuSel ecti onEvent;

Font Menu templates

The layout of a Font Menu template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from a resource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on relocation, see appefdsource File Formats on page 505.

Field Sizein bytes Type
flags 4 word
ticked_font 4 StringReference

145

Font Menu Wimp event handling

Font Menu Wimp event handling

The Font Menu class responds to certain Wimp events and takes the actions as described

below:
Wimp event Action
Menu Selection The font id corresponding to the menu selection is sent
back to the client viaa FontMenu_FontSel ection event.
If Adjust is held down, then the currently open Menuis
re-opened in the same place.
User Msg Message HelpRequest (while the pointer is over a Font

Menu object) A reply is sent on the application’s behalf.

146

o) lconbar icon class

bjects of the Iconbar icon class are used to display an application icon on the
| conbar.

User interface

An Iconbar object is normally used to show that an application isrunning, by placing an
icon on the RISC OS | conbar.

SrcEdi

T intn

Sove all TFY
Save oplong
Optons

Coracane L

st
Iconbaricon ——» f ﬁ L'ﬁ ﬁf

Iconbar icon’s menu

An Iconbar abject can either be a spriteicon or atext& spriteicon. It does not appear on
the Iconbar until the application has called Toolbox_ShowObject or if the auto-show bit
has been set in its flags word. When the Toolbox places the icon on the Iconbar, it
positions the icon in a Style Guide compliant manner, including placement of the text in
atext& sprite icon. The bounding box used for the icon is taken from the sprite used for
that icon, also taking into consideration the text used, if the iconbar object istext& sprite.
If the application supports many icons on the Iconbar this can be achieved by creating
many |conbar objects.

The Toolbox supports handling of a Menu click over the icon, Select and Adjust clicks.

147

Application Program Interface

Application Program Interface

148

Attributes

An Iconbar icon object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes
flags

position

priority

sprite name
max sprite name

text

Description
Bit M eaning
0 when set, generate an

Iconbar_SelectAboutToBeShown event before the
object which has been associated with a Select
click is shown

1 when set, generate an
| conbar_AdjustAboutToBeShown event before the
object which has been associated with an Adjust
click is shown

2 when set, show the select_show object asa
transient
(i.e. with the semantics of Wimp_CreateMenu)

3 when set, show the adjust_show object asa
transient
(i.e. with the semantics of Wimp_CreateMenu)

4 reserved

5 when set, generate an Iconbar_Clicked (or
client-specified) event when Select is clicked
6 when set, generate an Iconbar_Clicked (or

client-specified) event when Adjust is clicked

anegative integer giving the position of the icon on the
Iconbar (as specified in SWI Wimp_Createl con)

gives priority of thisicon on the Iconbar (as specified in
SWI Wimp_Createlcon)

the name of the sprite to use for this Iconbar icon
the maximum length of sprite name to be used

an optional string which will be used for a Text& Sprite
Iconbar icon (i.e. the text that will appear underneath the
icon on the Iconbar)

Iconbar icon class

Attributes Description

max text length if the Iconbar icon hastext, then thisis a Text& Sprite
Iconbar icon, and this field gives the maximum length of a
text string which will be used for it

menu the name of the template to use to create a Menu object for
this Iconbar icon

select event the Toolbox Event code to be raised when the user clicks
Select on the Iconbar icon
(if O then Iconbar_Clicked is raised)

adjust event the Toolbox event code to be raised when the user clicks
Adjust on the Iconbar icon
(if O then Iconbar_Clicked is raised)

select show the name of atemplate to use to show an object when the
user clicks Select on the [conbar icon

adjust show the name of atemplate to use to show an object when the
user clicks Adjust on the Iconbar icon

help message the message to respond to a hel p request with, instead of the
default

max help the maximum length of help message to be used

Manipulating an Iconbar icon object

Creating and deleting an | conbar icon object
An Iconbar icon object is created using SWI Toolbox_CreateObject.

When an Iconbar Icon Object is created, the following attached objects (see page 11)
will be created (if specified):

| menu
I select show
I adjust show.
See the attributes table above for an explanation of what these objects are.

An Iconbar object is deleted using SWI Toolbox_DeleteObject. If it has any attached
objects (see above), these are also deleted, unless the non-recursive bit is set for this
SWI.

149

Application Program Interface

150

Showing an | conbar icon object

When alconbar icon object is displayed on the screen using SWI Toolbox_ShowObject
it has the following behaviour:

Show type Position

0 (default) display on the Iconbar in a place specified by the object’s
template’s position and priority fields.

1 (full spec) R3 +0 icon handle of icon to show icon to the {e3) or
right (- 4) of its position.

If the Iconbar icon’s position is any other value th@or- 4, then R3 should just be 0.

An Iconbar icon is hidden by using SWI Toolbox_HideObject.

The Iconbar icon’s position and priority

An Iconbar icon is created with a position and a priority. These are integer values as
specified in SWI Wimp_Createl con. Note that these values are fixed at create-time, but
are only used when the Iconbar icon is ‘shown’, either by explicitly calling
Toolbox_ShowObiject, or by setting the auto-show bit in the object template’s flags.

The semantics of position and priority are as documented in Wimp_ Createlcon.
Applications will mostly just use a position ol for the right of the iconbar.

Note that positions 6f3 and- 4 cannot be used in conjunction with the auto-show bit.
Such an Iconbar icon must be explicitly shown using Toolbox_ShowObiject to allow the
client to pass the Wimp handle of the icon to whose left/right this icon should be placed.

An Iconbar icon’s position and priority cannot be changed at run-time.

The lIconbar icon’s menu

Each Iconbar object can optionally have attached to it a Menu object. The Iconbar object
holds the object id of this Menu object.

Whenever the user of the application presses the Menu mouse button over an |conbar
icon, the Iconbar class module opensits attached Menu object, by making a SWI
Toolbox_ShowObiject passing the attached Menu’s id.

If the application wishes to perform some operations on the Menu before it is opened
(ticking some entries for example), then by setting the appropriate bit in the Menu’s
flags word, the application can request that a special Toolbox event
(Menu_AboutToBeShown) is delivered to it before the Menu is actually shown. The
precise details of this Toolbox event are described on page 199. On receipt of such a
Toolbox event, the client application is expected to make any changes it wants to the
Menu object, and then return to its SWI Wimp_Poll loop.

Iconbar icon class

When an Iconbar icon is created, if the client has specified the name of a Menu template
for that I conbar icon, then aMenu object is created from that template, and the id of that
Menu isheld in the Iconbar object. Thisid will be used to show the Menu when the user
presses the Menu button over the |conbar icon.

In most cases aMenu is attached to the Iconbar icon at resource editing time by entering

the name of the template to use for this Iconbar icon’s Menu. If the application wishes to
dynamically attach and detach the Menu for a given Iconbar icon, then this can be done
using the Iconbar_SetMenu method described on page 153.

The id of the Menu attached to an Iconbar icon can be read by using the
Iconbar_GetMenu method.

Select and Adjust click events

The client application can specify a Toolbox event to be raised when the user clicks
Select and/or one to be raised when the user clicks Adjust on the Iconbar icon.

This event will only be raised if the appropriate flags bits have been set for Select and
Adjust clicks.

Normally this is specified in the application’s resource file, but it can be set and read
using the Iconbar_SetEvent/lconbar_GetEvent methods.

Help messages
Each Iconbar object can optionally have attached to it a Help Message.

Whenever the Wimp delivers a HelpRequest message to the client application for this
Iconbar icon, the attached Help Message is sent back automatically by the Toolbox.

In most cases a help message is attached to the Iconbar object at resource editing time.
An Iconbar icon’s Help Message can be set dynamically using the
Iconbar_SetHelpMessage method described on page 158.

The text of the Help Message can be read using the Iconbar_GetHelpMessage method.

151

Iconbar icon methods

Iconbar icon methods
The following methods are al invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word

R1 being an Iconbar object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Iconbar_GetlconHandle 0

On entry

RO = flags

R1 = Iconbar object id
R2=0

On exit

RO = Wimp icon handle for this |conbar object

Use

This method returns the handle of the underlying Wimp icon used to implement this
I conbar object.

C veneer

extern _kernel _oserror *iconbar_get_icon_handle (unsigned int flags,
Obj ectld iconbar,
int *icon_handle

)

152

Iconbar icon class

Iconbar_SetMenu 1

On entry

RO = flags

R1 = Iconbar object id
R2=1

R3 = menuid

On exit

R1-R9 preserved

Use

This method is used to set the menu which will be displayed when the Menu button is
pressed over this Iconbar object. The Toolbox handles opening the menu for you.

If R3is0, then the menu for this Iconbar object is detached.

C veneer

extern _kernel _oserror *iconbar_set_nenu (unsigned int flags,
bj ectld iconbar,
bj ectld nenu_id

)i

Iconbar_GetMenu 2

On entry

RO = flags

R1 = Iconbar object id
R2=2

On exit

RO = Menu id

Use

This method is used to get the id of the menu which will be displayed when the Menu
button is pressed over this Iconbar object.

C veneer

extern _kernel _oserror *iconbar_get_nenu (unsigned int flags,
bj ectld iconbar,
bj ectld *nenu_id

)

153

Iconbar icon methods

Iconbar_SetEvent 3

154

On entry

RO = flags
bit O set means rai se the event code specified in R3 when Select is clicked
bit 1 set means rai se the event code specified in R4 when Adjust is clicked
R1 = Iconbar object id
R2=3
R3 = Toolbox Event code to raise for Select
R4 = Toolbox Event code to raise for Adjust

On exit
R1-R9 preserved

Use

This method specifies a Toolbox event to be raised when the user clicks Select and/or
Adjust on the Iconbar icon.

If R3 or R4is0, then an IconBar_Clicked Toolbox event will be raised instead.

C veneer

extern _kernel _oserror *iconbar_set_event (unsigned int flags,
bj ect I d iconbar,
int select_event,
i nt adjust_event

Iconbar icon class

Iconbar_GetEvent 4

On entry

RO = flags
bit 0 set means return the event code which will be raised
when Select is clicked
bit 1 set means return the event code which will be raised
when Adjust is clicked
R1 = Iconbar object id
R2=4

On exit

RO = Toolbox event code raised when Select is clicked on the |conbar icon
R1 = Toolbox event code raised when Adjust is clicked on the Iconbar icon

Use

This method reads the Toolbox Event to be raised when the user clicks Select or Adjust
on the Iconbar icon.

C veneer

extern _kernel _oserror *iconbar_get_event (unsigned int flags,
Obj ectld iconbar,
int *sel ect_event,
int *adj ust_event

155

Iconbar icon methods

Iconbar_SetShow 5

On entry

RO = flags
bit O set means show the object whoseid isgivenin R3
when Select is clicked
bit 1 set means show the object whoseid isgiven in R4
when Adjust is clicked
R1 = Iconbar object id
R2=5
R3 = id of object to show for Select
R4 = id of object to show for Adjust

On exit
R1-R9 preserved

Use

This method specifies an object to be shown when the user clicks Select and/or Adjust
on the Iconbar icon.

If R3 or R4 is0, then no object will be shown.

C veneer

extern _kernel _oserror *iconbar_set_show (unsigned int flags,
Obj ectld iconbar,
Obj ectld sel ect,
Obj ectld adj ust

156

Iconbar icon class

Iconbar_GetShow 6

On entry

RO = flags
bit O set means return the id of the object which will be
shown when Select is clicked
bit 1 set means return the id of the object which will be
shown when Adjust is clicked
R1 = Iconbar object id
R2=16

On exit

RO = id of object which will be shown when Select is clicked on the Iconbar icon. R1 =
id of object which will be shown when Adjust is clicked on the Iconbar icon

Use
This method reads the ids of the objects to be shown when the user clicks Select or

Adjust on the Iconbar icon.

C veneer

extern _kernel _oserror *iconbar_get_show (unsigned int flags,
bj ectld iconbar,
oj ectld *sel ect,
bj ect I d *adj ust

157

Iconbar icon methods

Iconbar_SetHelpMessage 7

On entry

RO = flags

R1 = Iconbar object id
R2=7

R3 = pointer to message text

On exit
R1-R9 preserved

Use

This method is used to set the hel p message which will be returned when a Help Request
message is received for this [conbar object. The Toolbox handles the reply message for
you.

If R3is0, then the Help Message for this Iconbar object is detached.

C veneer

extern _kernel _oserror *iconbar_set_hel p_nmessage (unsigned int flags,
Qbj ectld iconbar,
char *nessage_t ext

)i

158

Iconbar icon class

Iconbar_GetHelpMessage 8

On entry

RO = flags

R1 = Iconbar object id

R2=8

R3 = pointer to buffer (or 0)

R4 = size of buffer to hold message text

On exit

R4 = holds size of buffer required for message text (if R3 was 0)
else Buffer pointed at by R3 holds message text
R4 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when aHelp
Reguest message is received for this Iconbar object.

C veneer

extern _kernel _oserror *iconbar_get_hel p_nessage (unsigned int flags,
Obj ectld iconbar,
char *buffer,
int buff_size,
int *nbytes

159

Iconbar icon methods

Iconbar_SetText 9

On entry

RO = flags

R1 = Iconbar object id

R2=9

R3 = pointer to text string to use

On exit
R1-R9 preserved

Use

This method sets the text which isto be used in atext& sprite Iconbar object. If the text
islonger than the maximum size specified when the Iconbar icon was created, then an
error isreturned.

C veneer

extern _kernel _oserror *iconbar_set_text (unsigned int flags,
Obj ectld iconbar,
char *text

)

160

Iconbar icon class

Iconbar_GetText 10

On entry

RO = flags

R1 = Iconbar object id

R2=10

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = the size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains icon’s text
R4 holds number of bytes written to buffer

Use

This method is used for a text&sprite Iconbar object. It returns the text string displayed
for that object.

C veneer

extern _kernel _oserror *iconbar_get_text (unsigned int flags,
bj ectld iconbar,
char *buffer,
int buff_size,
int *nbytes

161

Iconbar icon methods

Iconbar_SetSprite 11

On entry

RO = flags

R1 = Iconbar object id

R2=11

R3 = pointer to name of spriteto use

On exit
R1-R9 preserved

Use
This method sets the sprite which isto be used in the I conbar object.

C veneer

extern _kernel _oserror *iconbar_set_sprite (unsigned int flags,
oj ectld iconbar,
char *sprite_nane

);

162

Iconbar icon class

Iconbar_GetSprite 12

On entry

RO = flags

R1 = Iconbar object id

R2=12

R3 = pointer to buffer to return the sprite namein (or 0)
R4 = size of buffer

On exit

R4 = holds size of buffer required for sprite name (if R3 was 0)
else Buffer pointed at by R3 holds sprite name
R4 holds number of bytes written to buffer

Use

This method returns the name of the sprite used for the |conbar object.

C veneer

extern _kernel _oserror *iconbar_get_sprite (unsigned int flags,
Obj ectld iconbar,
char *buffer,
int buff_len,
int *nbytes

163

Iconbar icon events

Iconbar icon events

Iconbar_Clicked (0x82900)

Block
+8 0x82900
+12 flags
bits 0, 1 and 2 show how the activation was done:
bit 0 set means Adjust was clicked
bit 1 reserved
bit 2 set means Select was clicked
Use

This Toolbox event is raised when the user clicks Select or Adjust on an Iconbar object,
and the client application has not associated any other Toolbox event with this event.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} IconbardickedEvent;

Iconbar_SelectAboutToBeShown (0x82901)

Block

+8 0x82901
+16 objectid of the object which will be shown
(note that the ‘self’ field in the id block will be for the Iconbar object).

Use

This Toolbox event is raised just before Toolbox_ShowObject is called for the object to
be shown on a Select click. Note that on receipt of this event, the client could call
Iconbar_SetShow to give the object id of a different object to be shown.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

oj ectld id;
} I conbar About ToBeShownEvent ;

164

Iconbar icon class

Iconbar_AdjustAboutToBeShown (0x82902)

Block

+8 0x82902
+16 objectid of the object which will be shown
(note that the ‘self’ field in the id block will be for the Iconbar object).

Use

This Toolbox event is raised just before Toolbox_ShowObiject is called for the object to
be shown on a Adjust click. Note that on receipt of this event, the client could call
Iconbar_SetShow to give the object id of a different object to be shown.

Note: This event and the Iconbar_SelectAboutToBeShown event both share the same
typedef.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

bj ectld id;
} 1 conbar About ToBeShownEvent ;

Iconbar icon templates

The layout of an Iconbar icon template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from a resource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on relocation, see appefdsource File Formats on page 505.

Field Sizein bytes Type

flags 4 word

position 4 word

priority 4 word
sprite_name 4 StringReference
max_sprite_name 4 word

text 4 MsgReference
max_text_len 4 word

165

Iconbar icon Wimp event handling

Field Sizein bytes Type

menu 4 StringReference
select_event 4 word
adjust_event 4 word
select_show 4 StringReference
adjust_show 4 StringReference
help_message 4 MsgReference
max_help 4 word

Iconbar icon Wimp event handling

Certain Wimp events for an Iconbar icon are fielded by the Iconbar class, and either
acted upon for the client, or result in a Toolbox event being raised. Such eventsare listed

below:

Wimp event Action

Mouse Click If the Menu button has been pressed, and thereisaMenu
object attached to this Iconbar icon, then the Menu is shown
using Toolbox_ShowODbject.
If the Select or Adjust buttons have been pressed and this
Iconbar icon has a Toolbox event associated with this, then
that Toolbox event is raised, and any attached object is also
shown using Toolbox_ShowObject.

User Msg Message HelpRequest (for this Iconbar icon)

If ahelp message is attached to this|conbar icon, then areply
is sent on the application’s behalf.

166

10 Menu class

menu allows the user to select an item from alist of choices using the mouse
pointer.

User interface

A menu should appear on the screen either when the user clicks the Menu mouse button,
or clicks on a Pop-up menu button. The menu will disappear again when the user clicks
outside the menu or presses Escape (or the client application hides it or the user opens
another menu).

When the user clicks on amenu entry the client application will typically perform some
task. The menu will then disappear, unless the selection was made using the Adjust
button in which case it will persist on the screen.

I A menu has atitle bar with black (Wimp colour 7) text on agrey (Wimp colour 2)
background.

Menu entries which contain text are black (7) on awhite (0) background; a menu
entry may alternatively contain a sprite.

I Menu entries may optionally be separated by a dotted line, to group related items.

I A menu entry may lead to further menus, or a dialogue box, in which case a
submenu arrow is displayed at the righthand edge of the entry. When a menu entry
is unavailable it is displayed as ‘shaded’ (i.e. its text is displayed in light grey).

Aresi
Siylas
O v
I ol |
+ ' Eaile Ty
5 peacial effacts

167

Application Program Interface

Application Program Interface

When aMenu object is created, the Toolbox deal swith ensuring that the colours used for
the Menu are Style Guide compliant. Each menu entry is set with aheight of 44 OS units
(or 68 if it has adotted line separator), and the width of the menu is calculated from
details of its entries on the application’s behalf.

The Menu module deals with keeping the menu tree displayed when a selection is made

with Adjust.

Attributes

Menu attributes

A Menu object has the following attributes which are specified in its object template and
can be manipulated at run-time by the client application:

Attribute
flags word

menu title

max title length

help message

max help length

168

Description

Bit M eaning

0 when set, this bit indicates that an event should be
raised when SWI Toolbox_ShowObject is called
for this Menu.

1 when set, this bit indicates that an event should be
raised when the Menu has been removed from the
screen.

gives atext string which will appear in the menu’s title bar
(0 means no title, an empty string means no titlebar)

gives the maximum length in bytes of title text which will
be used for this Menu.

when a HelpReguest message is received on this menu,
then thistext messageis sent in aHel pReply message. Note
that this help message isonly sent if the menu entry for
which the request was received has not got a help message
of itsown.

gives the maximum length in bytes of help text which will
be used for this Menu.

Attribute
show event

hide event

Menu entry attributes

Menu class

Description

this is a Toolbox event code which will be raised when SWI
Toolbox_ShowObiject is called for this menu.
If its value is- 1, then the default Menu_AboutToBeShown
event is raised. An event is only raised if the appropriate bit
is set in the menu's flags word.

this is a Toolbox event code which will be raised when this
menu has been removed from the screen (either as a result
of an explicit call to SWI Toolbox_HideObject or because
the Wimp has removed the menu).
If its value is- 1, then the default Menu_HasBeenHidden
event is raised. An event is only raised if the appropriate bit
is set in the menu's flags word.

A Menu also has a list of ‘entries’. Each entry has its own component id which uniquely
identifies it within this menu. An entry has the following attributes:

Attribute
flags

Description

Bit Meaning

0 when set, this entry is ticked.

1 when set, this entry has a dotted line immediately
after it.

2-7 must be 0.

8 when set, this entry is faded.

9 when set, this entry is a sprite (default is a text menu
entry).

10 when set, this entry has a submenu (ie a submenu
arrow appears next to the entry).

11 when set, an event (either Menu_SubMenu or
client-specified) is raised when the user traverses this
entry's submenu arrow with the mouse pointer (if bit
10 is set).

12 when set, if there is an object to be shown when this
entry is selected, then it will be shown with
Wimp_CreateMenu semantics. The default is to
show persistently.

169

Application Program Interface

170

Attribute
component id

text

max length

click show

submenu show

submenu event

click event

help message

max help length

Description

identifies this entry uniquely within this menu.
- 1and - 2 areinvalid component ids

depending on whether thisis atext or sprite entry (as
indicated by bit 9 of the flags word), thisis either:

| atext string which will appear in the menu entry

I the name of the sprite which will appear in the Menu
entry

gives the maximum length in bytes of entry text or sprite
name

the name of the template for an object to show, when the
user clicks on this entry.

0 means there is no object to be shown

the name of the template for an object to show, when the
user moves the pointer over the submenu arrow (if the entry
has a submenu).

0 means there is no object to be shown

a Toolbox event code which will be raised when the user
moves the pointer over the submenu arrow (if the entry has
asubmenu and bit 11 of the flagsword is set)

if itsvalueis 0 then the default Menu_Submenu event is
raised

a Toolbox event code which will be raised when the user
clickson thisentry

if itsvalueis 0 then the default Menu_Selection event is
raised

when a HelpRequest message is received on this entry of
this menu then this text string is sent in a HelpReply
message

0 means that the help message for the menu will be sent (if
such exists)

gives the maximum length in bytes of the entry’s help
message

Menu class

Manipulating a Menu object

Sincethere can only be one Menu visible on the screen at any onetime, it isusua for the

client application to mark Menu templates as ‘shared’ so that only one copy will exist in
memory. The application receives a Menu_AboutToBeShown Toolbox event just before
the Menu is shown, to allow it to set any attributes like ticks and fades, which may differ
depending on where the Menu is being shown; for example, in a multi-document editor
a single menu can be maintained for all document Windows; when the Toolbox receives
a Menu button click event from the Wimp, it will show the Menu associated with the
Window over which the mouse click occurred; when the application receives the
Menu_AboutToBeShown Toolbox event, it can tick and fade entries in the Menu
depending on the state of the document Window.

Another alternative for supporting multi-document editors is to create a Menu object for
each Window object. In this case it will not be necessary to use the
Menu_AboutToBeShown Toolbox event to make last minute changes to the menu, since
these can be made on a per-window basis as the changes occur. Whether this method is
used, or the above ‘shared’ scheme is really one of personal taste, and memory usage.

It is possible to associate a client handle with a Menu using the
Toolbox_SetClientHandle method, but normally an application will simply wish to use
the client handle of the object to which a Menu is attached (via the parent_id or the
ancestor_id in the id block).

Creating and deleting a menu
A Menu object is created using SWI Toolbox_CreateObject.

When a Menu object is created, the following attached objects (see page 11) are also
created for each menu entry for which they are defined:

I submenu show
I click show.
TheMenu entry attributes table on page 169 describes these objects.

Attached objects are also created when a menu entry is added to the Menu, if they are
referenced by the menu entry (and deleted when the menu entry is removed).

A Menu object is deleted using SWI Toolbox_DeleteObiject. If it has any attached
objects these are also deleted, unless the non-recursive bit is set for this SWI.

Note: Menus must not be mutually recursive (i.e. in a menu hierarchy, a menu entry may
not have, as a submenu, a menu further up the hierarchy). The menu module does not
check for such a case, so it is the client application’s responsibility to check for
correctness.

171

Application Program Interface

Showing a menu

When amenu is displayed on the screen using SWI Toolbox_ShowObject it has the
following behaviour:

Show type Position
0 (default) 64 OS units to the left of the mouse pointer
1 (full spec) R3 + 0 gives x coordinate of top-left corner of Menu

R3 + 4 gives y coordinate of top-left corner of Menu

2 (topleft) R3 + 0 gives x coordinate of top-left corner of Menu
R3 + 4 gives y coordinate of top-left corner of Menu

The client application should not need to make this call, since it is made automatically
by the Window and | conbar modules for objects which have a Menu attached to
them.The Window module will display the menu in its default place when the Menu
buttonisclicked, or in the case of apop-up menu directly to the right of the pop-up icon;
the Iconbar modul e displays the menu with its base 96 OS units from the bottom of the
screen, and 64 OS units to the right of the mouse pointer.

Adding and removing menu entries

Normally the set of entries in a Menu will be specified in the application’s resource file.
If, however, the application wishes to add and remove Menu entries dynamically at
run-time, this is done using the Menu_AddEntry and Menu_RemoveEntry methods.

Changing a Menu entry

A given Menu entry can either contain text or a sprite. Normally these will be fixed
when the menu is created, but they can be set and read dynamically using the
Menu_SetEntryText, Menu_GetEntryText, Menu_SetEntrySprite, and
Menu_GetEntrySprite methods.

Ticking or fading a Menu entry

Each Menu entry can be optionally ‘ticked’ (i.e. have a tick displayed to the left of it),
and/or ‘faded’ (i.e. displayed in light grey, and unselectable).

A given Menu entry can be ticked/unticked, faded/unfaded using the
Menu_SetTick/Menu_SetFade methods.

The client can determine the state of a particular entry using the
Menu_GetTick/Menu_GetFade methods.

172

Menu class

Attaching a submenu dynamically

Normally an application’s Menu structure is fully specified statically in its resource file,
but occasionally an application may wish to build a submenu at run-time, and attach it at
a particular point in the Menu tree.

This is achieved by creating the submenu object, and using the
Menu_SetSubMenuShow method already mentioned (and detailed on page 183).

Dealing with Menu hits

Each Menu entry can have a specified Toolbox event which will be raised when a menu
selection is made on that entry (i.e. the Wimp has returned a Menu Selection event to the
application).

Normally this Toolbox event is specified in the client application’s resource file, but it
can be read and set dynamically using the Menu_SetClickEvent and
Menu_GetClickEvent methods.

The client can also specify the name of a template of an object which should be shown
when the menu hit happens. The main use for this is to supply the name of the template
of a persistent dialogue box, on a Menu entry with an ellipsis (...). The object is only
shown after the ‘Menu hit event’ has been delivered to the clientstidretype value

passed in R2 to Toolbox_ShowObject will be 0 (default place).

It is possible to specify at run-time the object id of an object which should be shown
when a Menu hit happens, using the Menu_SetClickShow method (and the object id can
be read using the Menu_GetClickShow method).

If neither of the above is specified, then the Toolbox raises the Menu_Selection Toolbox
event, as described on page 200. This Toolbox event reports which entry was selected.

Dealing with Adjust clickson aMenu

When the user of the client application clicks Adjust on a Menu entry or on a Gadget in
a dialogue box which has been opened from a Menu, it is conventional for the Menu tree
to remain on the screen.

The Toolbox handles this automatically on behalf of the application, so the client does
not have to look for Adjust clicks; the client’s code just responds to the Toolbox events
raised by the user’s interaction with the Menu.

Note that the Toolbox ‘re-shows’ the Menu when the application next calls SWI
Wimp_Poll, after the Menu selection, so any ticking/fading etc of Menu entries, must be
done in response to the Toolbox event which was raised when a menu selection was
made.

173

Application Program Interface

174

Dealing with traversal of a submenu arrow

Each Menu entry can have a specified Toolbox event which will be raised when the user
moves the mouse pointer over the submenu arrow, which is displayed on al Menu
entries which have a submenu.

Normally this Toolbox event is specified in the client application’s resource file, but it
can be read and set dynamically using the Menu_SetSubMenuEvent and
Menu_GetSubMenuEvent methods.

The client can also specify the name of a template of an object which should be shown
when the user moves the mouse pointer over the submenu arrow. The main use for this
is to supply the name of the template of a transient dialogue box or a submenu. The
object is only shown after the Menu_SubMenu event has been delivered to the client.

It is possible to specify at run-time the object id of an object which should be shown
when the user moves the pointer over the submenu arrow, using the
Menu_SetSubMenuShow method (and the object id can be read using the
Menu_GetSubMenuShow method).

If neither of the above is specified, then the Toolbox raises the Menu_SubMenu Toolbox
event. This Toolbox event reports the entry over which the mouse pointer has moved.

Interactive help on Menus

Each Menu has an optional Help Message associated with it. When the client application
receives a HelpRequest for the Menu, the Toolbox replies automatically with this Help
Message.

Normally the Menu’s Help Message will be specified in the application’s resource file,
however the client can set and read the message dynamically using the
Menu_SetHelpMessage/Menu_GetHelpMessage methods.

Each Menu entry can also have a Help Message. If no such message is specified, then
the Toolbox will return the Menu’s Help Message instead. Normally, again, an entry’s
Help Message will have been specified in the resource file, but it can be read and set
using the Menu_SetEntryHelpMessage and Menu_GetEntryHelpMessage methods
(described on page 193).

Menu class

Writable menu entries

Writable menu entries as seen in older applications are not supported by the Toolbox as
these are not Style Guide compliant. Instead you should use small dialogues. For
example:

P rame bo

[t]
Cance | Renane

Menu methods

The following methods are al invoked by calling SWI Toolbox_MiscOp with:

RO holding a flags word

R1 being aMenu id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Menu_SetTick O

On entry

RO = flags

R1 = Menu aobject id
R2=0

R3 = component id of entry

175

Menu methods

R4 = value
0 means ‘untick’
non-zero means ‘tick’

On exit

R1-R9 preserved

Use

This method affects the tick state of a Menu entry.

C veneer

extern _kernel _oserror *nenu_set_tick (unsigned int flags,
Qoj ect1d nenu,
Conponent 1 d entry,
int tick

)

Menu_GetTick 1

176

On entry

RO = flags

R1 = Menu object id
R2=0

R3 = component id of entry

On exit

RO = tick state
non-zero means ticked
0 means unticked

Use

This method returns the tick state of a Menu entry.

C veneer

extern _kernel _oserror *nenu_get_tick (unsigned int flags,
bj ect 1 d nenu,
Conponentld entry,
int *ticked

Menu class

Menu_SetFade 2

On entry

RO = flags

R1 = Menu object id
R2=2

R3 = component id of entry
R4 = value

0 means unfade
non-zero means fade

On exit
R1-R9 preserved

Use

This method affects the fade state of a Menu entry.

C veneer

extern _kernel _oserror *menu_set_fade (unsigned int flags,
bj ectld nenu,
Conponentld entry,
int fade

177

Menu methods

Menu_GetFade 3

178

On entry
RO = flags
R1 = Menu object id
R2=3
R3 = component id of entry
On exit
RO = fade state
0 means unfaded

non-zero means faded

Use

This method returns the fade state of a Menu entry.

C veneer

extern _kernel _oserror *nenu_get_fade (unsigned int flags,
oj ect 1 d nenu,
Conponentld entry,
int *faded

Menu class

Menu_SetEntryText 4

On entry

RO = flags

R1 = Menu object id

R2=4

R3 = component id of entry

R4 = pointer to text string to use
On exit

R1-R9 preserved

Use

This method sets the text which isto be used in the named text Menu entry.

Anerror isreturned if the entry’stext buffer is not large enough to hold the supplied text.
An error isreturned if this SWI is called on an entry which is a sprite.

C veneer

extern _kernel _oserror *menu_set_entry_text (unsigned int flags,
Qoj ect1d nenu,
Conponent | d entry,
char *text

179

Menu methods

Menu_GetEntryText 5

180

On entry

RO = flags

R1 = Menu object id

R2=5

R3 = component id of entry

R4 = pointer to buffer to return the text in (or 0)
R5 = size of buffer

On exit

R5 = the size of buffer required to hold the text (if R4 was 0)
else Buffer pointed to by R4 contains entry text
R5 holds number of bytes written to buffer

Use

This method is used for atext Menu entry. It returns the text string displayed for that
entry.

C veneer

extern _kernel _oserror *nenu_get_entry_text (unsigned int flags,
bj ect 1 d nenu,
Conponentld entry,
char *buffer,
int buff_size,
int *nbytes

Menu class

Menu_SetEntrySprite 6

On entry

RO = flags

R1 = Menu object id

R2=6

R3 = component id of entry

R4 = pointer to name of sprite to use

On exit
R1-R9 preserved

Use
This method sets the sprite which is to be used in the named sprite Menu entry.

An error isreturned if the entry’s sprite name buffer is not large enough to hold the
supplied sprite name.

An error isreturned if this SWI is called on atext entry.

C veneer

extern _kernel _oserror *menu_set_entry_sprite (unsigned int flags,
Obj ectld nenu,
Conponentld entry,
char *sprite_nane

181

Menu methods

Menu_GetEntrySprite 7

182

On entry

RO = flags

R1 = Menu object id

R2=7

R3 = component id of entry

R4 = pointer to buffer to return the sprite name in (or 0)
R5 = size of buffer

On exit

R5 = the size of buffer required to hold the sprite name (if R4 was 0)
else Buffer pointed to by R4 contains sprite name
R5 holds number of bytes written to buffer

Use

This method is used for a sprite Menu entry. It returns the name of the sprite displayed
for that entry.

C veneer

extern _kernel _oserror *nenu_get_entry_sprite (unsigned int flags,
oj ect1d nenu,
Conponent | d entry,
char *buffer,
int buff_size,
int *nbytes

Menu class

Menu_SetSubMenuShow 8

On entry

RO = flags

R1 = Menu object id

R2=18

R3 = component id of entry where submenu should be attached
R4 = object id of the submenu (or 0)

On exit
R1-R9 preserved

Use

This method allows the client to specify the object id of an object to show when the user
moves the pointer over the submenu arrow.

If R4is0, then no object should be shown.
Calling this SWI also causes the submenu to be shown or hidden as appropriate.

C veneer

extern _kernel _oserror *menu_set_sub_nenu_show (unsigned int flags,
oj ect1d menu,
Conponentld entry,
bj ect1d sub_nenu

183

Menu methods

Menu_GetSubMenuShow 9

On entry

RO = flags

R1 = Menu object id
R2=9

R3 = component id

On exit
RO = id of object to be shown

Use

This method returns the object id of the object which will be shown when the user moves
the pointer over the submenu arrow.

C veneer

extern _kernel _oserror *nmenu_get_sub_menu_show (unsigned int flags,
Obj ect I d nenu,
Conponent |l d entry,
Obj ectld *sub_nenu

184

Menu class

Menu_SetSubMenuEvent 10

On entry

RO = flags

R1 = Menu object id

R2=10

R3 = component id of entry

R4 = Toolbox event code to raise

On exit
R1-R9 preserved

Use

This method specifies a Toolbox event to be rai sed when the user moves the mouse over
this entry’s submenu arrow.

If R4 is 0, then a Menu_SubMenu Toolbox event will be raised instead.
Calling this SWI also causes the submenu to be shown or hidden as appropriate.

C veneer

extern _kernel _oserror *menu_set_sub_nenu_event (unsigned int flags,
oj ect1d nenu,
Conponent | d entry,
int tool box_event

185

Menu methods

Menu_GetSubMenuEvent 11

On entry

RO = flags

R1 = Menu object id
R2=11

R3 = component id of entry

On exit

R4 = Toolbox event code

Use

This method reads the Toolbox event to be raised when the user moves the mouse over
this entry’s submenu arrow.

If no event has been specified, then 0 is returned.

C veneer

extern _kernel _oserror *nenu_get_sub_nenu_event (unsigned int flags,
Obj ect 1 d nenu,
Conponentld entry,
int *tool box_event

186

Menu class

Menu_SetClickShow 12

On entry

RO = flags

R1 = Menu object id

R2=12

R3 = component id of entry

R4 = object id to show

R5 = show flags: bit 0
if clear show persistently
if set show transiently

On exit
R1-R9 preserved

Use

This method allows the client to specify the object id of an object to show when the user
selects this Menu entry. By setting bit O of R5 it is possible to control whether the show
is persistent or not.

If R4 is 0, then no object should be shown.

C veneer

extern _kernel _oserror *menu_set_click_show (unsigned int flags,
Qoj ect1d nenu,
Conponent | d entry,
bj ect 1 d obj ect,
int show_ flags

187

Menu methods

Menu_GetClickShow 13

On entry

RO = flags

R1 = Menu object id
R2 =13

R3 = component id

On exit

RO = id of object to be shown
R1 = show flags

Use

This method returns the object id of the object which will be shown when the user
selectsthisMenu entry. If bit 0 of R1 isset on exit, it meansthat the object will be shown
transiently.

If no object has been specified, then 0 isreturned in RO.

C veneer

extern _kernel _oserror *nenu_get_click_show (unsigned int flags,
Obj ect I d nenu,
Conponentld entry,
Obj ectld *object,
int *show fl ags

188

Menu class

Menu_SetClickEvent 14

On entry

RO = flags

R1 = Menu object id

R2=14

R3 = component id of entry

R4 = Toolbox event code to raise

On exit
R1-R9 preserved

Use

Thismethod specifies a Toolbox event to be rai sed when the user selectsthe given Menu
entry.

If R4is0, then aMenu_Selection Toolbox event will be raised instead.

C veneer

extern _kernel _oserror *nmenu_set_click_event (unsigned int flags,
oj ectld nenu,
Conponent |l d entry,
int tool box_event

189

Menu methods

Menu_GetClickEvent 15

On entry

RO = flags

R1 = Menu object id
R2=15

R3 = component id of entry
On exit

R4 = Toolbox event code

Use

This method reads the Toolbox event to be raised when the user selects the given Menu
entry.

If no event has been specified, then 0 is returned.

C veneer

extern _kernel _oserror *nmenu_get _click_event (unsigned int flags,
Obj ect I d nenu,
Conponentld entry,
int *tool box_event

190

Menu class

Menu_SetHelpMessage 16

On entry

RO = flags

R1 = Menu object id
R2=16

R3 = pointer to message text

On exit
R1-R9 preserved

Use

Thismethod is used to set the help message which will be returned when a Help Request
message is received for this Menu object. The Toolbox handles the reply message for
you.

If R3is 0, then the Help Message for this Menu is detached.

C veneer

extern _kernel _oserror *menu_set _hel p_message (unsigned int flags,
Obj ectld nenu,
char *hel p_nmessage

)i

191

Menu methods

Menu_GetHelpMessage 17

On entry
R1 = Menu object id
R2=17

R3 = pointer to buffer
R4 = size of buffer to hold message text

On exit

R4 = size of buffer required for message text (if R3 was 0)
else Buffer pointed at by R3 holds message text
R4 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when aHelp
Request message is received for this Menu object.

C veneer

extern _kernel _oserror *nenu_get _hel p_nessage (unsigned int flags,
oj ect1d nenu,
char *buffer,
int buff_size,
int *nbytes

192

Menu class

Menu_SetEntryHelpMessage 18

On entry

RO = flags

R1 = Menu object id
R2=18

R3 = component id of entry
R4 = pointer to message text

On exit
R1-R9 preserved

Use

Thismethod is used to set the help message which will be returned when a Help Request
message is received for this Menu entry. The Toolbox handles the reply message for you.

If R4is0, then the Help Message for this Menu entry is detached.

C veneer

extern _kernel _oserror *menu_set_entry_hel p_nessage (unsigned int flags,
oj ect1d nenu,
Conponent | d entry,
char *hel p_nmessage

193

Menu methods

Menu_GetEntryHelpMessage 19

194

On entry

RO = flags

R1 = Menu object id

R2=19

R3 = component id of entry

R4 = pointer to buffer

R5 = size of buffer to hold message text

On exit

R5 = size of buffer required for message text (if R4 was Q)
else Buffer pointed at by R4 holds message text
R5 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when aHelp
Request message is received for this Menu object.

C veneer

extern _kernel _oserror *nenu_get_entry_hel p_message (unsigned int flags,
Obj ectld nenu,
Conponent |l d entry,
char *buffer,
int buff_size,
int *nbytes

Menu class

Menu_AddEntry 20

On entry

RO = flags (bit 0 set means add the entry before the specified entry)
R1 = Menu object id
R2=20
R3 = component id of entry after/before which to add this entry
(or - 1 to mean at the beginning, - 2 to mean at the end)
R4 = pointer to buffer containing a description of the new entry

On exit

RO = component id of added entry
R1-R9 preserved

Use

This method adds a new Menu entry at the specified place in the Menu. The description
of the Menu entry should have aformat as specified under the Menu Templates section.

By default the entry is added after the specified entry whose id is passed in R3, but the
client can specify that it is added before that entry, by setting bit 0 of the flags word.

If the component id in the template of the Menu entry was specified as - 1, then the
Toolbox uses the lowest numbered component id available for this Menu.

C veneer

extern _kernel _oserror *nmenu_add_entry (unsigned int flags,
Obj ect I d nenu,
Conponentld at_entry,
char *entry_description,
Conponentld *new_entry

195

Menu methods

Menu_RemoveEntry 21

On entry

RO = flags

R1 = Menu object id

R2=21

R3 = component id of the entry

On exit
R1-R9 preserved

Use

This method removes a Menu entry

C veneer

extern _kernel _oserror *nenu_renmove_entry (unsigned int flags,
oj ect Id nenu,
Conponent |l d entry

)

Menu_GetHeight 22

On entry

RO = flags
R1 = Menu object id
R2 =22

On exit
RO = height of menu work areain OS Units

R1-R9 preserved

Use

This method returns the height of the work area of the given Menu (in OS Units). It takes
into account whether itemsin the Menu have dashed line separators. This can be used to
accurately position the Menu in acall to Toolbox_ShowODbject.

C veneer

extern _kernel _oserror *nenu_get_height (unsigned int flags,
Obj ect I d nenu,
int *height

)

196

Menu class

Menu_GetWidth 23

On entry

RO = flags
R1 = Menu object id
R2=23

On exit

RO = width of menu work areain OS Units
R1-R9 preserved

Use

This method returns the width of the work area of the given Menu (in OS Units).

C veneer

extern _kernel _oserror *menu_get_width (unsigned int flags,
Obj ect I d nenu,
int *width

)

Menu_SetTitle 24

On entry

RO = flags

R1 = Menu aobject id

R2=24

R3 = pointer to text string to use

On exit
R1-R9 preserved

Use

This method sets the text which isto be used in the title bar of the given Menu. Note that
this has no immediate effect if the Menu is currently being displayed.

C veneer

extern _kernel _oserror *menu_set_title (unsigned int flags,
Obj ect 1 d nenu,
char *title

)

197

Menu methods

Menu_GetTitle 25

On entry

RO = flags

R1 = Menu object id

R2=25

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = the size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 containstitle text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Menu’s title bar.

C veneer

extern _kernel _oserror *nmenu_get_title (unsigned int flags,
bj ect 1 d nenu,
char *buffer,
int buff_size,
int *nbytes

198

Menu events

Menu class

Menu_AboutToBeShown (0x828c0)

Block

+8 0x828c0 (or client specified event — ddenu Templates on page 201)
+12 flags (as passed in to Toolbox_ShowObiject)

+16 value as passed in R2 to ToolBox_ShowObject

+ 20... block as passed in R3 to ToolBox_ShowObject

Use

This Toolbox event is raised due to a call to SWI Toolbox_ShowObject on a Menu
object which has bit 0 of its flags word set. It gives the application the opportunity to
tick, fade or change the text/sprite of any Menu entries before the Menu actually appears
on the screen.

This is useful where a shared Menu is being used by many Window objects, each of
which has a state which is reflected in the Menu state.

C datatype

typedef struct

{
Tool boxEvent Header hdr;
int show_t ype;
TopLeft pos;

} MenuAbout ToBeShownEvent ;

Menu_HasBeenHidden (0x828c1)

Block
+8 0x828c1 (or client specified event — 84enu Templates on page 201)

Use

This Toolbox event is raised by the Toolbox when Toolbox_HideObiject is called on a
Menu which has the appropriate bit set in its template flags word. It enables a client
application to clear up after a menu has been closed. It is also raised when clicking
outside a menu or hitting Escape.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} MenuHasBeenHi ddenEvent;

199

Menu events

200

Menu_SubMenu (0x828c2)

Block

+8 0x828c2
+ 16 x coordinate where the submenu will be shown
+20 vy coordinate where the submenu will be shown

Use

This Toolbox event is raised when the user moves the mouse over a Menu entry’s
submenu arrow, and the client application has not associated any other Toolbox event
with this event. The event is only delivered if the appropriate bit is set in the menu
entry’s flags word.

This Toolbox event is raised by the Menu class.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

TopLeft pos;
} MenuSubMenuEvent ;

Menu_Selection (0x828c3)

Block:
+8 0x828c3

Use

This Toolbox event is raised when the user makes a selection on a Menu object, and the
client application has not associated any other Toolbox event with this event.

This Toolbox event is raised by the Menu class.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} MenuSel ecti onEvent;

Menu class

Menu Templates

The layout of a Menu template is shown below. Fields which have types M sgReference
and StringReference are those which will require relocation when they are loaded from
aresource file. If the template is being constructed in memory, then these fields should
be real pointers (i.e. they do not require rel ocation).

The current version for Menu templatesis 102.

For more details on rel ocation, see appendix Resource File Formats on page 505.

Field Sizein bytes Type
flags 4 word
title 4 MsgReference
max_title 4 word
help_message 4 MsgReference
max_help 4 word
show_event 4 word
hide_event 4 word
num_entries 4 word

Followed by alist of menu entries, where each entry is:

Field Sizein bytes Type

flags 4 word
component_id 4 word

text 4 MsgReference or StringReference
max_text 4 word
click_show 4 StringReference
submenu_show 4 StringReference
submenu_event 4 word
click_event 4 word
help_message 4 MsgReference
max_entry_help 4 word

201

Menu Wimp event handling

Menu Wimp event handling

The Menu class responds to certain Wimp events and takes the actions as described

bel ow:

Wimp event
Menu Selection

Mouse Click

User Msg

202

Action

If thereisaclick event associated with the given Menu
entry, then that Toolbox event is raised;

if there is an object to be shown for this entry then show
it;

if neither of the above then the Menu_Selection Toolbox
event israised.

If Adjust is held down, then the currently open Menuis
re-opened in the same place.

(on adiaogue box attached to the Menu)
If Adjust is held down, then the currently open Menu is
re-opened in the same place.

Message HelpRequest

(whilethe pointer is over aMenu object) If ahelp message
is attached to this Menu or Menu entry, then areply is sent
on the application’s behalf.

Message_MenuWarning
If a submenu event is associated with the given Menu entry,
then this Toolbox event is raised,;

if a submenu object has been specified for this Menu
entry, then it is shown by the Toolbox.

if neither of the above, then a Menu_SubMenu Toolbox
event is raised.

Message_MenusDeleted
The Menu which was being shown is marked as hidden (as
if Toolbox_HideObject had been called).

11

User interface

Print Dialogue box class

Print dialogue object is used to alow the user to set a number of print options (e.g.

number of pages, number of copies etc), and then to request that a document be

printed given these options.

When a Print dialogue is created, it has the following components:

H | LWl NTX writable fields
& % From El -] |I|/
radio groups / WE|T| | number ranges
E.cnlnl_l-:il T -
W Upnght) Sdeways |Dralt < Draft button
= | “ | ™ print button

a set of buttons and writable fields giving a page range to print (optional)
anumber range giving the number of copiesto print (optional)

aradio group consisting of two buttons, indicating whether the printing is to be
done Upright or Sideways (optional).

an action button Save which saves the current print options (optional)

an action button Set Up... which brings up a dialogue box allowing further print
options to be set (optional)

an action button Cancel which closes the dialogue box without printing

adefault action button Print which causes a print operation to take place using
these print options

an option button Dr aft indicating that draft standard printing is to be used
anumber range giving a percentage scale factor to apply during printing (optional).

Pressing Escape cancels the dialogue (as well as clicking on the Cancel button).

Thetitle bar of the dialogue box displays the name of the currently selected printer or
‘Unknown printer’ if there is no such printer.

203

Application Program Interface

Application Program Interface
All processing of the dialogue box is handled by the Print module, and the client is

informed of any user actions via Toolbox events (PrintDbox_Print, PrintDbox_SetUp,
PrintDbox_DialogueCompleted and PrintDbox_Save).

Attributes

A Print Dialogue object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes Description

flags word Bit Meaning

0 when set, this bit indicates that a
PrintDbox_AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
PrintDbox_Dial ogueCompleted event should be raised
when the Print Dial ogue object has been removed from
the screen.

2 when set, this bit indicates generate
PrintDbox_ SetUpAboutToBeShown event before the
underlying SetUp abject is shown

3 when set, dialogue box has the All/From/To Page
Range options

4 when set, dialogue box has the Copies writablefield

5 when set, dialogue box has the Scale writable field

6 when set, dialogue box has the Orientation options (i.e.
Upright and Sideways)

7 when set, dialogue box has Save action button

when set, dialogue box has Set Up ... action button

9 when set, dialogue box has Dr aft option button

10 when set, dialogue box has From/to set from

(o]

All/From/to
11 when set, dialogue box has Sideways (and not Upright)
selected
12 when set, dialogue box has Dr aft selected
from initial value to put in the From writable field
to initial value to put in theto writable field

204

Print Dialogue box class

Attributes Description
copies initial value to put in the Copies number range
scale initial value to put in the Scale number range

further options name of the template for a Window object to be displayed
when Setup... is clicked

window name of the template for an alternative window to use instead
of the default one (0 means use default)

Manipulating a Print Dialogue object

Creating and deleting a Print Dialogue object
A Print Dialogue object is created using SWI Toolbox_CreateObject.

When a Print Dialogue object is created, the following attached object (see page 11) will
be created (if specified):

I further options.

A Print Dialogue object is deleted using SWI Toolbox_DeleteObject. If it has any
attached objects (see above), these are also deleted, unless the non-recursive bit is set for
this SWI.

The setting of the non-recursive del ete bit means that the SetUp dialogue box will not be
del eted.

Showing a Print Dialogue obj ect

When a Print Dialogue object is displayed on the screen using SWI
Toolbox_ShowObject it has the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown on
the screen, or the coordinates given in its template, if it has
not already been shown

205

Application Program Interface

Show type Position

1 (full spec) R3+0 visible areaminimum x coordinate

R3+4 visibleareaminimumy coordinate

R3+8 visible areamaximum x coordinate

R3+ 12 visible areamaximum y coordinate

R3+ 16 scroll x offset relative to work area

R3+ 20 scroll y offset relative to work area

R3+24 Wimp window handle of window to open behind
-1 meanstop of stack
- 2 means bottom of stack
- 3 means the window behind the Wimp'’s

backwindow

2 (topleft) R3 +0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate
Before the Print Dialogue box is shown

When the client (or the Toolbox) calls Toolbox_ShowObject on a Print Dial ogue object,
a PrintDbox_AboutToBeShown Toolbox event is raised before the dial ogue box
becomes visible on the screen (if the appropriate flags bit is set).

This allows the client to set up the contents of the dialogue box appropriately.
Getting and setting printing options

A Print dialogue box contains many fields which are either options or writable fields.

These are:

| pagerange

I number of copies

I scalefactor

I orientation

I draft.

Each of these components can be read and set dynamically using the following methods:
PrintDbox_ SetPageRange PrintDbox_GetPageRange
PrintDbox_SetCopies PrintDbox_GetCopies
PrintDbox_SetScale PrintDbox_GetScale
PrintDbox_SetOrientation PrintDbox_GetOrientation
PrintDbox_SetDraft PrintDbox_GetDraft

206

Print Dialogue box class

Responding to action button clicks

When the user clicks a particular action button (or presses Return or Escape), the client
receives one of the following Toolbox events:

I PrintDbox_Save if Save has been clicked.

I PrintDbox_Print if Print has been clicked or Return has been pressed.

I PrintDbox_SetUp if Set Up... hasbeen clicked and thereis no specified Window to
be shown.

Getting the Print Dialogue’s title

The string appearing in the Print Dialogue’s title bar is the currently selected printer (or
‘unknown printer’ if there is no such printer). This string can be read using the
PrintDbox_GetTitle method.

If the Print Dialogue is persistent, and the currently selected Printer is changed, then the
Title Bar will change to reflect this.

Getting theid of the underlying Window obj ect

The object id of the Window used to implement a Print Dialogue can be obtained using
the PrintDbox_GetWindowlID method.

The SetUp Window

It is possible to specify the name of a template to be used for showing an object when the
SetUp... button is pressed. This object is shown in its default place persistently.

207

Print Dialogue Methods

Print Dialogue Methods

208

The following methods are al invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word

R1 being a Print Dialogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

PrintDbox_GetWindowID 0

On entry

RO = flags
R1 = Print Dbox object id
R2=0

On exit
RO = Window object id for this Print object

Use

Thismethod returnstheid of the underlying Window object used to implement this Print
object.

C veneer

extern _kernel _oserror *printdbox_get_wi ndow_id (unsigned int flags,
Obj ectld printdbox,
Obj ectld *wi ndow

)

Print Dialogue box class

PrintDbox_SetPageRange 1

On entry

RO = flags

R1 = Print Dbox object id
R2=1

R3 = start of page range
R4 = end of page range
On exit

R1-R9 preserved

Use

This method is used to set the page range for a Print Dialogue.
A ‘start’ value of- 1 means ‘All'.

C veneer

extern _kernel _oserror *printdbox_set_page_range (unsigned int flags,
Obj ectld printdbox,
int start,
int end

PrintDbox_GetPageRange 2

On entry

RO = flags

R1 = Print Dbox object id

R2=2

On exit

RO = start of page range (a ‘start’ value dfmeans ‘All’)
R1 = end of page range

Use

This method is used to return the page range for a Print Dialogue.

C veneer

extern _kernel _oserror *printdbox_get_page_range (unsigned int flags,
bj ectld printdbox,
int *start,
int *end

209

Print Dialogue Methods

210

PrintDbox_SetCopies 3

On entry

RO = flags

R1 = Print Dbox object id
R2=3

R3 = number of copies

On exit
R1-R9 preserved

Use
This method is used to set the number of copiesfield for a Print Dialogue.

C veneer

extern _kernel _oserror *printdbox_set_copies (unsigned int flags,
Obj ectld printdbox,
int copies

)i

PrintDbox_GetCopies 4

On entry

RO = flags

R1 = Print Dbox object id
R2=4

On exit

RO = number of copiesto be printed

Use
This method returns the value of the Copiesfield for a Print Dialogue.

C veneer

extern _kernel _oserror *printdbox_get_copies (unsigned int flags,
Obj ectld printdbox,
int *copies

)

Print Dialogue box class

PrintDbox_SetScale 5

On entry

RO = flags

R1 = Print Dbox object id

R2=5

R3 = percentage value to scale by
On exit

R1-R9 preserved

Use

This method is used to set the scale factor for a Print Dialogue.

C veneer

extern _kernel _oserror *printdbox_set_scale (unsigned int flags,
bj ect Id printdbox,
int scale_factor

)

PrintDbox_GetScale 6

On entry

RO = flags

R1 = Print Dbox object id
R2=16

On exit

RO = percentage scal e factor

Use

This method returns the value of the scale factor for a Print Dialogue.

C veneer

extern _kernel _oserror *printdbox_get_scale (unsigned int flags,
bj ect Id printdbox,
int *scale_factor

)

211

Print Dialogue Methods

212

PrintDbox_SetOrientation 7

On entry

RO = flags

R1 = Print Dbox object id

R2=7

R3 = non-zero means Sideways, 0 means Upright

On exit
R1-R9 preserved

Use
This method is used to set the orientation for a Print Dial ogue.

C veneer

extern _kernel _oserror *printdbox_set_orientation (unsigned int flags,
bj ect I d printdbox,
int orientation

)

PrintDbox_GetOrientation 8

On entry

RO = flags

R1 = Print Dbox object id
R2=8

On exit

RO = orientation non-zero means Sideways, 0 means Upright

Use
This method returns the orientation for a Print Dialogue.

C veneer

extern _kernel _oserror *printdbox_get_orientation (unsigned int flags,
bj ect I d printdbox,
int *orientation

)

Print Dialogue box class

PrintDbox_GetTitle 9

On entry

RO = flags

R1 = Print Dbox object id

R2=9

R3 = pointer to buffer to hold title string
R4 = size of buffer to hold title string

On exit

R4 = size of buffer required to hold title string (if R3 was 0)
else buffer pointed at by R3 holdstitle string
R4 holds number of bytes written to buffer

Use

This method returns the current string used in a Print object’s title bar.

C veneer

extern _kernel _oserror *printdbox_get_title (unsigned int flags,
bj ect Id printdbox,
char *buffer,
int buff_size,
int *nbytes

213

Print Dialogue Methods

PrintDbox_SetDraft 10

On entry

RO = flags

R1 = Print Dbox object id
R2=10

R3 = non-zero means Draft, 0 means ‘non-draft’

On exit

R1-R9 preserved

Use

This method is used to set whether draft printing is used for a Print Dialogue.

C veneer

extern _kernel _oserror *printdbox_set_draft (unsigned int flags,
bj ectld printdbox,
int draft

)i

PrintDbox_GetDraft 11

On entry

RO = flags

R1 = Print Dbox object id
R2 =11

On exit

RO = draft non-zero means Draft, 0 means ‘non-draft’

Use

This method returns whether draft printing is used for a Print Dialogue.

C veneer

extern _kernel _oserror *printdbox_get_draft (unsigned int flags,
Obj ectld printdbox,
int *draft

)

214

Print Dialogue box class

Print Dialogue events
The Print module generates the following Toolbox events:

PrintDbox_AboutToBeShown (0x82b00)

Block

+8 0x82b00

+12 flags (as passed in to Toolbox_ShowObject)

+16 vauewhich will be passed in R2 to ToolBox_ShowObject

+20... block which will be passed in R3 to ToolBox_ShowODbject for the
underlying dialogue box

Use
This Toolbox event is raised just before the Print moduleis going to show its underlying

Window object.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

int show_t ype;
uni on
{
TopLeft pos;
W ndowShowObj ect Bl ock full;
} info;

} Print DboxAbout ToBeShownEvent ;

215

Print Dialogue events

PrintDbox_DialogueCompleted (0x82b01)

Block

+8 0x82b01
+12 flags
Use

This Toolbox event is raised after the Print object has been hidden, either by a Cancel
click, or after asuccessful print, or by the user clicking outside the dialogue box (if it is
transient) or pressing Escape. It allowsthe client to tidy up its own state associated with
this dialogue.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} Print DboxDi al ogueConpl et edEvent ;

216

Print Dialogue box class

PrintDbox_SetUpAboutToBeShown (0x82b02)

Block

+8 0x82b02

+16 objectid of the object about to be shown
(note that the ‘self’ id in the id block will be for the Print Dialogue object,
not the object which will be shown)

+20 value which will be passed in R2 to ToolBox_ShowObject

+ 24... block which will be passed in R3 to ToolBox_ShowObiject for the
underlying dialogue box

Use
This Toolbox event is raised just before the Print module is going to show its underlying

Window object.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

bj ectld obj ect _id;
int show_t ype;
uni on
{
TopLeft pos;
W ndowShowbj ect Bl ock full;
} info;

} Print DboxSet UpAbout ToBeShownEvent ;

217

Print Dialogue events

PrintDbox_Save (0x82b03)

Block
+8 0x82b03
+12 flags

bit O set means print Sideways (default is Upright)
bit 1 set means print Draft (default is non-draft)
+16 pagerange start (- 1 means All)
+20 pagerangeend
+24 number of copies
+28 valueto scale by (a percentage)

Use

This Toolbox event is raised when the user clicks on the Save button. The client should
save any options associated with this Print Dialogue (usually in a document which is
being edited).

C datatype

typedef struct

{
Tool boxEvent Header hdr;

i nt start_page;

i nt fini sh_page;
int copi es;

i nt scal e_factor;

} PrintDboxSaveEvent;

PrintDbox_SetUp (0x82b04)

Block
+8 0x82b04

Use

This Toolbox event is raised when the user clicks on the Set Up... button, if thereisno
dialogue box associated with this button.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} Print DboxSet UpEvent ;

218

Print Dialogue box class

PrintDbox_Print (0x82b05)

Block
+8 0x82b05
+12 flags

bit O set means print Sideways (default is Upright)
bit 1 set means print Draft (default is non-draft)
+16 pagerange start (- 1 means All)
+20 pagerange end
+24 number of copies
+28 vaueto scale by (a percentage)

Use

This Toolbox event is raised when the user clicks on the Print button or presses Return.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

int start _page;
int fini sh_page;
int copi es;

int scal e_factor;

} PrintDboxPrintEvent;

219

Print Dialogue templates

Print Dialogue templates

220

The layout of a Print template is shown below. Fields which have types MsgReference
and StringReference are those which will require rel ocation when they are loaded from

aresourcefile. If the template is being constructed i
be real pointers (i.e. they do not require rel ocation).

n memory, then these fields should

For more details on rel ocation, see appendix Resource File Formats on page 505.

Field Sizein bytes
flags
from
to
copies
scale

further_options

O N N N N N

window

Underlying window template

Type
word

word
word
word
word
StringReference

StringReference

The Window object used to implement a Print dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a

client-specified aternative Window templ ate:
Title bar must be indirected.

Gadgets
Component ids are derived by adding to 0x82b000.

Component id Details

0 action button (Print)

1 action button $ave)

2 action buttonCancel)
3 radio button Erom/To)

this should be marked as the
‘default’ action button

this should be marked as a
‘local’ action button

this should be marked as the
‘cancel’ action button

this is selected to allow page
ranges to be printed

Component id
4

5&6

10
11
12

13
14
15
16

Details
radio button (All)

writable field (From)
writable field (To)

number range (Copies)

number range (Scale)

radio button (Upright)
radio button (Sideways)
option button (Dr aft)
action button (SetUp...)

label (To)
label (Copies)
label (Scale)
label (%)

Print Dialogue box class

selected for al page print

these are used by the user to
enter a page range

these are used by the user to
enter the number of copies

these are used by the user to
specify ascale

selected for portrait
selected for landscape
selected for draft

thisisused to bring up a
Window of further options

221

Print Dialogue Wimp event handling

Print Dialogue Wimp event handling

Wimp event Action

Mouse Click on Print button then raise PrintDbox_Print Toolbox event

on Cancel button then raise
PrintDbox_DialogueCompleted Toolbox event

on Save button then raise PrintDbox_Save Toolbox event

on Setup... thenraise a
PrintDbox_SetUpAboutToBeShown,
then show the specified Window object, or raise a
PrintDbox_SetUp Toolbox event if there is no such
Window

on All (pages) and All is off then
set All on
set From off
and shade the writable fields

on From and From is off then
set From on
set All to off
and unshade the writable fields

on Copies or Scale up/down arrows then
increment/decrement values

on Upright then set Upright on and Sideways off
on Sideways then set Sideways on and Upright off
on Draft then toggle state of option button

Key Pressed if key is Return raise PrintDbox_Print Toolbox event
if key is Escape act as if Cancel has been clicked
User Message Window_HasBeenHidden Toolbox event

hide the dialogue box, and raise a
PrintDbox_DialogueCompleted Toolbox event

Message HelpRequest
return help message to sender

222

12

User interface

Prog Info Dialogue box class

Prog Info dialogue object is used to display information about the client application
in adialogue box.

A Prog Info Dialogue has the following information held in its dialogue box:

| fbout this erearan |
name —» Hane | Edit
purpose ——» | Furpose| Text editar
author ——» | futhor| & Bcorn Computers Lid, 1993
licence type ——» | Ligease| Single Bser
version —» | Ugrsian| 1.4% (R5-Tul-93)

I the name of the application (taken from the message whose tag is ‘_TaskName’)
I the purpose of the application

I the author of the application

I the licence type of the application (optional)

I the version of the application.

All of the above are display field gadgets.

The last of these fields can be set dynamically by the client at run-time.

This gives the simplest of Prog Info Dialogue boxes. If the client wishes to use further
fields, or wishes to customise the dialogue box, then there is a facility for including the
name of a different template to use rather than the standard Prog Info one.

223

Application Program Interface

Application Program Interface

224

Attributes

A Prog Info object has the foll owing attributes which are specified in its object template
and can be manipulated at run-time by the client application:

Attributes
flags word

title

max title length

purpose
author
licence type
version

window

Description

Bit Meaning

0 when set, this bit indicates that a
Proglnfo_AboutTobeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
Proglinfo_DialogueCompleted event should be raised
when the Proglnfo object has been removed from the
screen.

2 when set, include a licence type field in the dialogue
box

alternative title bar string to ‘About this program’
(0 means use default title)

this gives the maximum length in bytes of title text which will
be used for this Prog Info dialogue’s title bar

a string giving the purpose of this application

a string giving the author of this application

an integer giving the licence type of the application
a string giving version information for this application

the name of an alternative window template to use instead of
the default one (0 means use default)

Manipulating a Prog Info object

Creating and deleting a Prog I nfo object
A Prog Info object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).
A Prog Info object is deleted using SWI Toolbox_Del eteObject.

The setting of the non-recursive del ete bit does not have a meaning for Prog Info objects.

Showing a Prog Info object

Prog Info Dialogue box class

When a Prog Info object is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

Show type
0 (default)

1 (full spec)

2 (topleft)

Position

the underlying window is shown at the last place shown on
the screen, or the coordinates given in its template, if it has
not already been shown

R3+0
R3+4
R3+8
R3 + 12
R3+ 16
R3+ 20
R3+ 24

R3+0
R3+4

Changing the version string

visible area minimum x coordinate

visible areaminimum y coordinate

visible area maximum x coordinate

visible area maximum y coordinate

scroll x offset relative to work area

scroll y offset relative to work area

Wimp window handle of window to open behind

-1 meanstop of stack

- 2 means bottom of stack

- 3 means the window behind the Wimp’s
backwindow

visible area minimum x coordinate
visible area minimum y coordinate

Most of the fields in a Prog Info object will remain unchanged at run-time.

The client may wish to set and read the version string field at run-time. Thisis done
using the Proglnfo_SetVersion/Proglnfo_GetVersion methods.

Setting thelicence type

If the client wishes to set and read the licence type displayed in the Prog Info dialogue
box, then it can use the Proginfo_SetLicenceType and Proginfo_GetLicenceType
methods (described on page 229).

Licence types are one of

public domain
single user
single machine
site

network
authority.

225

Prog Info methods

Prog Info methods
The following methods are al invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word

R1 being a Prog Info Dialogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Proginfo_GetWindowID 0

On entry

RO = flags

R1 = Prog Info object id

R2=0

On exit

RO = Window object id for this Prog Info object

Use

Thismethod returnstheid of the underlying Window object used to implement thisProg
Info object.

C veneer

extern _kernel _oserror *proginfo_get_window_.id (unsigned int flags,
Obj ect I d proginfo,
Obj ectld *wi ndow

);

226

Prog Info Dialogue box class

Proginfo_SetVersion 1

On entry

RO = flags

R1 = Prog Info object id

R2=1

R3 = pointer to buffer holding version string (Ctrl-terminated)
On exit

R1-R9 preserved

Use

This method sets the version string used in the Prog Info Dialogue’s Window.

C veneer

extern _kernel _oserror *proginfo_set_version (unsigned int flags,
bj ectld proginfo,
char *version_string

K

227

Prog Info methods

Proginfo_GetVersion 2

228

On entry

RO = flags

R1 = Prog Info object id

R2=2

R3 = pointer to buffer to hold version string
R4 = size of buffer to hold version string

On exit

R4 = size of buffer required to hold version string (if R3 was 0)
else buffer pointed at by R3 holds version string
R4 holds number of bytes written to buffer

Use

This method returns the current version string used in a Prog Info object.

C veneer

extern _kernel _oserror *proginfo_get_version (unsigned int flags,
Obj ect I d proginfo,
char *buffer,
int buff_size,
int *nbytes

Prog Info Dialogue box class

Proginfo_SetLicenceType 3

On entry

RO = flags
R1 = Prog Info object id
R2=3
R3 = licence type
00 public domain
10 single user
2 [0 single machine
30 site
40 network
50 authority

On exit
R1-R9 preserved

Use

This method sets the licence type used in the Prog Info Dialogue’s Window.

C veneer

extern _kernel _oserror *proginfo_set_licence_type (unsigned int flags,
Obj ectld proginfo,
int licence_type

)

229

Prog Info methods

Proginfo_GetLicenceType 4

On entry

RO = flags
R1 = Prog Info object id
R2=14

On exit

RO = licence type of application
00 public domain
10 single user
2[00 single machine
30 dte
4 [network
50 authority

Use

This method returns the current licence type used in a Prog Info object.

C veneer

extern _kernel _oserror *proginfo_get_licence_type (unsigned int flags,
bj ect1d proginfo,
int *licence_type

)

230

Prog Info Dialogue box class

Proginfo_SetTitle 5

On entry

RO = flags

R1 = Prog Info object id

R2=5

R3 = pointer to text string to use

On exit
R1-R9 preserved

Use

This method sets the text which isto be used in the title bar of the given Prog Info
dialogue.

C veneer

extern _kernel _oserror *proginfo_set_title (unsigned int flags,
Obj ectld proginfo,
char *title

K

Proginfo_GetTitle 6

On entry

RO = flags 6
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Prog Info dialogue’s title bar.

C veneer

extern _kernel _oserror *proginfo_get_title (unsigned int flags,
Obj ect I d proginfo,
char *buffer,
int buff_size,
int *nbytes

231

Prog Info events

Prog Info events
The Prog Info module generates the following Toolbox events:

232

Proginfo_AboutToBeShown (0x82b40)

Block

+8
+12
+ 16

+ 20...

Use

0x82b40

flags (as passed in to Toolbox_ShowObject)

value which will be passed in R2 to ToolBox_ShowODbject

block which will be passed in R3 to ToolBox_ShowObject for the
underlying dialogue box

This Toolbox event is raised just before the Prog Info module is going to show its
underlying Window object.

C datatype

typedef struct

{

Tool boxEvent Header hdr;

i nt
uni on

{

show t ype;

TopLeft pos;
W ndowShowbj ect Bl ock full;

} info;
} Progl nf oAbout ToBeShownEvent ;

Prog Info Dialogue box class

Proginfo_DialogueCompleted (0x82b41)

Block
+8 0x82b41
+12 flags
(none yet defined)
Use

This Toolbox event is raised after the Prog Info object has been hidden, either by the
user clicking outside the dialogue box or pressing Escape. It allows the client to tidy up
its own state associated with this dialogue.

C datatype

typedef struct

{
Tool boxEvent Header hdr;
} Progl nfoDi al ogueConpl et edEvent ;

Prog Info templates

The layout of a Prog Info template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from aresourcefile. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require rel ocation).

For more details on rel ocation, see appendix Resource File Formats on page 505.

Field Sizein bytes Type

flags 4 word

title 4 MsgReference
max-title 4 word

purpose 4 MsgReference
author 4 MsgReference
licence_type 4 word

version 4 MsgReference
window 4 StringReference

233

Prog Info Wimp event handling

Underlying window template

The Window object used to implement a Prog Info dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template.

Title bar must be indirected.

Gadgets
Component ids are derived by adding to 0x82b400.

Component id Details

display field (Name of Application)
display field (Purpose)
display field (Author)
display field (Licence Type)
display field (Version)

label (name)

label (purpose)

label (author)

label (licence)

label (version)

© 00 N o o b~ W N+, O

Prog Info Wimp event handling

Wimp event Action
Open Window reguest show the dial ogue box

Key Click if Escape then cancel dialogue

User Message Message MenusDeleted
hide the dialogue box

234

13 Quit Dialogue box class

AQuit Dialogue box is used by the client application when the user attempts to quit
the application or shut down the computer whilst there is still unsaved data.

User interface
A Quit Dialogue object is used to warn the user of quitting without saving unsaved data.

The dialogue box which appears on the screen has a number of components:

title bar ——» Bt

\j

message 2 Files maditsd

ue | [cancel

N

v
Quit button \ Cancel button
atitle bar (by default containing the name of the application, i.e. the message whose
tag is ‘*_TaskName’)
I amessage stating (by default) that there is unsaved data
I two action buttons:
I a Cancel button (default action button)
I a Quit button.
The user sees the following behaviour:
I if they click on Quit, the application quits

I ifthey click on Cancel (or press Return or Escape), the application returns to normal
operation.

Application Program Interface
When a Quit object is created, it has a number of optional components:
I an alternative title bar string instead of the client’s name
I an alternative message to use in the dialogue box
I the name of an alternative template to use for the underlying Window object.

235

Application Program Interface

If the dialogue box is opened as atransient dialogue box, then it closes when the user
clicks outside the box.

Just before the Quit dialogue box is shown on the screen, the client is delivered a
Quit_AboutToBeShown Toolbox event (if enabled by the appropriate bit in the flags).

Once the dialogue box is displayed on the screen, the Quit module handles events for it,
and raises anumber of Toolbox events to indicate what choice the user has made. These
are Quit_Dial ogueCompleted, Quit_Cancel and Quit_Quit (respectively).

Attributes

A Quit object has the following attributes which are specified in its object template and
can be manipulated at run-time by the client application:

Attributes Description
flags word Bit Meaning
0 when set, this bit indicates that a

Quit_AboutToBeShown event should be raised when
SWI Toolbox_ShowObject is called for this object.

1 when set, this bit indicates that a
Quit_DialogueCompleted event should be raised
when the Quit object has been removed from the
screen.

title alternative title to use instead of client’s name
(0 means default title)

max title length this gives the maximum length in bytes of title text which will
be used for this object

message the string to use as the message in the Quit dialogue box
(0 means default message)

max message maximum length of string used in dialogue’s message field

window alternative window template to use instead of the default one

Manipulating a Quit object
Creating and deleting a Quit object
A Quit object is created using SWI Toolbox_CreateObject.
When this object is created it has no attached objects (see page 11).

236

Quit Dialogue box class

A Quit object is deleted using SWI Toolbox_DeleteObject.
The setting of the non-recursive delete bit does not have a meaning for Quit objects.
Showing a Quit object

When a Quit object is displayed on the screen using SWI Toolbox_ShowObject it has
the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown on
the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3+0 visibleareaminimum x coordinate

R3+4 visibleareaminimum y coordinate

R3+8 visible areamaximum x coordinate

R3+ 12 visible areamaximum y coordinate

R3+ 16 scroll x offset relative to work area

R3+20 scroll y offset relative to work area

R3+24 Wimp window handle of window to open behind
-1 meanstop of stack
- 2 means bottom of stack
- 3 means the window behind the Wimp’s

backwindow

2 (topleft) R3+0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate
Changing the Quit Dialogue’s message

When a Quit Dialogue object is created it has a default message warning the user that he
has unsaved data which will be lost if he quits the application.

This can be set and read dynamically using the Quit_SetMessage and Quit_GetM essage
methods.

Getting the id of the underlying window for a Quit Dialogue

The Window object id of the Window object used to implement the Quit Dialogue can
be obtained by using the Quit_GetWindowlID method.

237

Quit methods

Quit methods
The following methods are al invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word (which is zero unless otherwise stated)
R1 being a Quit Dialogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Quit_GetWindowID 0

On entry

RO = flags

R1 = Quit object id

R2=0

On exit

RO = Window object id for this Quit object

Use
This method returnsthe id of the underlying Window object used to implement this Quit
object.

C veneer

extern _kernel _oserror *quit_get_wi ndow_id (unsigned int flags,
ojectld quit,
oj ectld *wi ndow

);

Quit_SetMessage 1

On entry

RO = flags

R1 = Quit object id

R2=1

R3 = pointer to buffer holding new message (Ctrl-terminated)
On exit

R1-R9 preserved

Use

This method sets the message used in the Quit Dialogue’s Window.

238

Quit Dialogue box class

C veneer

extern _kernel _oserror *quit_set_nessage (unsigned int flags,
ojectld quit,
char *nessage

);

239

Quit methods

Quit_GetMessage 2

On entry

RO = flags

R1 = Quit object id

R2=2

R3 = pointer to buffer to hold message
R4 = size of buffer to hold message

On exit

R4 = size of buffer required to hold message (if R3 was 0)
else buffer pointed at by R3 holds message
R4 holds number of bytes written to buffer

Use

This method returns the current message used in a Quit object.

C veneer

extern _kernel _oserror *quit_get_nessage (unsigned int flags,
Objectld quit,
char *buffer,
int buff_size,
int *nbytes

240

Quit Dialogue box class

Quit_SetTitle 3

On entry

RO = flags

R1 = Quit object id

R2=3

R3 = pointer to text string to use

On exit
R1-R9 preserved

Use
This method sets the text which isto be used in the title bar of the given Quit dialogue.

C veneer

extern _kernel _oserror *quit_set_title (unsigned int flags,
Objectld quit,
char *title

K

241

Quit methods

Quit_GetTitle 4

On entry

RO = flags

R1 = Quit object id

R2=4

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Quit dialogue’s title bar.

C veneer

extern _kernel _oserror *quit_get _title (unsigned int flags,
ojectld quit,
char *buffer,
int buff_size,
int *nbytes

242

Quit Dialogue box class

Quit events

The Quit module generates the following Toolbox events:

Quit_AboutToBeShown (0x82a90)

Block

+8 0x82a90

+12 flags (as passed in to Toolbox_ShowObject)

+16 vauewhich will be passed in R2 to ToolBox_ShowObject

+20... block which will be passed in R3 to ToolBox_ShowODbject for the
underlying dialogue box

Use
This Toolbox event israised just before the Quit module is going to show its underlying

Window object.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

int show_t ype;
uni on
{
TopLeft pos;
W ndowShowbj ect Bl ock full;
} info;

} Qui t About ToBeShownEvent ;

243

Quit events

Quit_Quit (0x82a91)
Block
+8 0x82a91
Use

This Toolbox event is raised when the user clicks on the Quit Button.

C datatype

typedef struct
{
Tool boxEvent Header hdr;

} QuitQuitEvent;

Quit_DialogueCompleted (0x82a92)

Block
+8 0x82892
+12 flags
(none yet defined)
Use

This Toolbox event is raised after the Quit object has been hidden, either by a Cancel
click, or aQuit click, or by the user clicking outside the dial ogue box (if it was opened
transiently) or pressing Escape. It allows the client to tidy up its own state associated
with this dialogue.

C datatype

typedef struct
{
Tool boxEvent Header hdr;

} Qui t Di al ogueConpl et edEvent ;

244

Quit Dialogue box class

Quit_Cancel (0x82a93)

Quit templates

Block
+8 0x82a93

Use

This Toolbox event israised when the user clicks on the Cancel button or presses Return
or Escape.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} QuitCancel Event;

The layout of a Quit template is shown below. Fields which have types MsgReference

and StringReference are those which will require relocation when they are loaded from
aresource file. If the template is being constructed in memory, then these fields should
be real pointers (i.e. they do not require rel ocation).

For more details on rel ocation, see appendix Resource File Formats on page 505.

Field Sizein bytes Type

flags 4 word

title 4 MsgReference
max_title 4 word

message 4 MsgReference
max_message 4 word

window 4 StringReference

245

Quit Wimp event handling

Underlying window template

The Window object used to implement a Quit Dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template.

Title bar must be indirected.

Gadgets
Component |ds are derived by adding 0x82a900:

Component id Details

0 button

1 action button (Quit)

2 action button (Cancel) must be marked asdefault and

Cancel action button

Quit Wimp event handling

Wimp event Action
Mouse Click on Quit button raise Quit_Quit and Quit_Dial ogueCompleted
(if enabled) Toolbox event

on Cancel button raise Quit_Cancel and
Quit_DialogueCompleted (if enabled) Toolbox event

Key Pressed if key is Return raise Quit_Cancel Toolbox event
if key is Escape act asif Cancel had been pressed

246

14

User interface

SaveAs Dialogue box class

bjects of the Save As Dialogue class are used to display a standard (or customised)

Save As dialogue box, and to handle the drag of the ‘file icon’ to its destination,
and to request the client application to do the save operation. Most of the Wimp message
protocol is hidden from the client.

A Save As Dialogue object is used to allow the user to drag an icon representing a
document from a dialogue box to another application or to a directory display.

When a Save As Dialogue object is created, it has a number of components:

title bar string ———»

298 35
@ < default filetype

| TextFile < default filename
Selection button —» | |Selestion
optional
(op) Cancel | | Save |
Cancel button Save button

It is possible to specify the following:

I adefault filename to use in the Save As dialogue box

I adefault filetype to use in the Save As dialogue box

I astring to use in the dialogue box’s title bar, instead of ‘Save as’.

I the name of a Window template to use instead of the Save As module’s internal
Window template.

The default Save As dialogue box, has a draggable sprite to represent the data to be
saved, a writable field giving the name to save the data un8aveddefault) action

button, aCancel action button, and an option button saying whether the whole data or
just a selection should be saved. If the client wishes to customise the dialogue box, then
the above components must be present in that dialogue box, and must have the same
component ids.

247

Application Program Interface

If the dialogue box is opened as atransient dialogue box, then it closes when the user
clicks outside the box.

The user can interact with the Save As dialogue box in the following ways:
I clicking Cancel or pressing Escape will close the dialogue box, and cancel the Save.

I clicking Save (or pressing Return) will save the datain afile whose name is given
by the contents of the Writable Field (if it isafull pathname).

I dragging the sprite to its destination will save the data to that destination, with the
‘leaf’ part of its name.

When theSelection option button is clicked on, then the filename will change to the
string ‘Selection’.

Application Program Interface

248

Once the Save As dialogue box is on display, the Save As module handles much of the
messaging protocols associated with saving to another application or to a directory
display. The client no longer deals in the normal Wimp protocols for data transfer, but
instead responds to Toolbox events raised by the Save As module. In fact in the very
simplest of cases, the client does no more than just provide a pointer to the data to be
saved, and leaves the rest up to the Save As module.

SaveAs Dialogue box class

Attributes

A Save As object has the following attributes which are specified in its object template
and can be manipulated at run-time by the client application:

Attributes Description
flags Bit Meaning
0 when set, this bit indicates that a

SaveAs AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
SaveAs DialogueCompleted event should be raised
when the Save As object has been removed from the
screen.

2 when set, do not include the Selection option button
in the dialogue box. Thisis used by clients where
there is no concept of acurrent selection.

3 when set, handle the SaveAs operation entirely in the
SaveAs module, from the supplied buffer

4 when set, client iswilling to support RAM transfers
filename amessage string which givesthe default filenameto usein the
writable field
filetype an integer giving the RISC OS type of thefile being saved
title astring to use for the Save As dialogue box title bar, instead

of ‘Save as’ (0 means use the default string)

max title length this gives the maximum length in bytes of title text which will
be used for this object

window an alternative window template to use instead of the default
one (null implies default)

Manipulating a SaveAs object

Creating and deleting a SaveAs aobj ect

A SaveAsobject is created using SWI Toolbox_CreateObject.
When this object is created it has no attached objects (see page 11).
A SaveAsobject is deleted using SWI Toolbox_DeleteObject.

249

Application Program Interface

250

The setting of the non-recursive delete bit does not have a meaning for SaveAs objects.

Showing a SaveAs obj ect

When a SaveAs object isdisplayed on the screen using SWI Toolbox_ShowObject it has
the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown on
the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3+ 0 visible area minimum x coordinate

R3 +4 visible area minimum y coordinate

R3 +8 visible area maximum x coordinate

R3 + 12 visible area maximum y coordinate

R3 + 16 scroll x offset relative to work area

R3 + 20 scroll y offset relative to work area

R3 + 24 Wimp window handle of window to open behind
-1 means top of stack
- 2 means bottom of stack
- 3 means the window behind the Wimp’s

backwindow

2 (topleft) R3+ 0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate

Setting the SaveAs Dialogue box’s filename and filetype

When a SaveAs Dialogue object is created, it is given the filename from its template to

usein itswritable field, and afiletype which will be used to look up and use a sprite

(from the Wimp sprite pool) whose nameisf i | e HHH, where HHHis a 3-digit hex
representation of the filetype. If such a sprite does not exist then a sprite called
file_xxxisusedinstead. For saving directories and applications the filetype values

0x1000 and 0x2000 should be used. In the latter case, the standard ‘App’ sprite is used.

Both of these attributes can be set and read dynamically using the
SaveAs_SetFileName/SaveAs_GetFileName and SaveAs_SetFileType/
SaveAs_GetFileType methods.

SaveAs Dialogue box class

Summary of how to save data from a Toolbox client

There are essentialy three sorts of application:

I Type 1 — an application which will allow the Toolbox to do data saving entirely on
its behalf.

Type 2 — an application which needs to do the data saving itself, but is not willing to
support RAM transfers.

Type 3 — an application which needs to do the data saving itself, and is willing to
support RAM transfers.

Let us look at how a client should react to each Toolbox event which it will receive.
Notice that these are the only events which the client needs to watch for to achieve the
SaveAs operation; there is no need to watch for user drags and window events, and no
need to watch for Message_RAMFetch events. The following is some pseudo-C
showing how a client might process Toolbox events delivered to it:

Typel

swi t ch(t ool box_event _code)
{
case SaveAs_About ToBeShown:
/* call SaveAs_Set FileSize, SaveAs_SetFil eNane, SaveAs_SetFil eType
and SaveAs_Sel ectionAvail able if necessary.
Al so call SaveAs_Set Dat aAddress to tell the Tool box
the address and size of data to be saved.
*/
break;

case SaveAs_SaveConpl et ed:
/* maybe mark a document as ‘unmodified’ */
break;

case SaveAs_DialogueCompleted:
/* do any tidying up
maybe delete the SaveAs object if desired
*/
break;
default:
break;

}
Type?2

switch(toolbox_event_code)
{
case SaveAs_AboutToBeShown:
/* call SaveAs_SetFileSize, SaveAs_SetFileName, SaveAs_SetFileType
and SaveAs_SelectionAvailable if necessary
*/
break;

251

Application Program Interface

case SaveAs_SaveToFil e:
/* save the data to the given fil enane
and call SaveAs_Fil eSaveConpl et ed
*/
break;

case SaveAs_SaveConpl et ed:
/* maybe mark a document as ‘unmodified’ */
break;

case SaveAs_DialogueCompleted:
/* do any tidying up
maybe delete the SaveAs object if desired
*/
break;

default:
break;

}
Type3

switch(toolbox_event_code)
{
case SaveAs_AboutToBeShown:
/* SaveAs_SetFileSize, call SaveAs_SetFileName, SaveAs_SetFileType
and SaveAs_SelectionAvailable if necessary
*/
break;

case SaveAs_SaveToFile:
/* save the data to the given filename
and call SaveAs_FileSaveCompleted
*/
break;

case SaveAs_FillBuffer:
[* if (address of buffer == 0)
allocate a buffer for RAM transfer
if (more data to go)

fill buffer with data
call SaveAs_BufferFilled
}
*/
break;

case SaveAs_SaveCompleted:
/* maybe mark a document as ‘unmodified’ */
break;

case SaveAs_DialogueCompleted:
/* do any tidying up
maybe delete the SaveAs object if desired
*/
break;

252

SaveAs Dialogue box class

defaul t:
break;

}
Setting the File Size for the SaveAs Dialogue

In the file transfer protocol under RISC OS, the sender of afile must specify an
estimated size in bytes of the file being saved. This should be set using the
SaveAs_SetFileSize method, and can be read using the SaveAs GetFileSize method.
Thisvalue will be used in the initial Message DataSave message which will be sent by
the SaveAs module when the file icon is dragged to its destination.

Enabling/disabling the Selection option button

In the dialogue box used to implement the SaveAs Dialogue object, there is an option
button which is used to show whether the Save operation is to be done on the wholefile
or just a selection. Handling this button is done entirely by the SaveAs module. It is,
however, the responsibility of the client to either enable or disable this option button,
depending on whether there is a selection currently in existence. Thiswill cause the
button to appear greyed out when no selection exists.

The SaveAs module provides the method SaveAs SelectionAvailable for this use. The
client should typically use this method in response to the SaveAs AboutToBeShown
Toolbox event.

Before the SaveAs Dialogue box is shown

Once a SaveAs dialogue has been started by using Toolbox_ShowObject on a SaveAs
Dialogue object, a SaveAs dialogue box will appear on the screen. By setting an

appropriate bit in the SaveAs Dialogue object's flags word, the client will be sent a
SaveAs_AboutToBeShown Toolbox event before the dialogue box appears. This allows
the client to set any relevant state like a different filename, or filetype etc.

Cancelling the dialogue

If the user clicks on th€ancel button or presses Escape (or clicks outside the SaveAs
dialogue box if it was transient), then the SaveAs module delivers a
SaveAs_DialogueCompleted Toolbox event to the client application (if enabled). This
allows the client to update any of its data structures and to clean up any state associated
with this dialogue.

Saving handled entirely by the SaveAs module

If the client is able to supply the data to be saved in a contiguous block of memory (i.e.
client type 1), then by setting bit 3 in the SaveAs object’s flags word, the client can
request that the SaveAs module handles the entire Save operation itself. To do this, the

253

Application Program Interface

254

client must supply the address of the data (and its size), using the
SaveAs SetDataAddress method. Typically the client will do thiswhen it receives the
SaveAs AboutToBeShown Toolbox event.

The SaveAs module will then conduct the rest of the dialogue. If it receives a
Message RAM Fetch message from the receiver, it will do aRAM transfer on behalf of
the client; otherwise it will do a scrap transfer (or save directly to file if the destination
isafiling system). All of thisistransparent to the client if bit 3 is set in the SaveAs
object’s flags word.

Savingto afile

If bit 3 of the SaveAs object’s flags word is not set (thus indicating that the Toolbox
cannot do a save operation on the client’'s behalf), then when the SaveAs module wants
the application to save to a file, it will deliver a SaveAs_SaveToFile Toolbox event. On
receipt of this event, the client (type 2 always and type 3 when necessary) should save its
data into the file whose name is given in the event block. The client should then use the
SaveAs_FileSaveCompleted method to inform the SaveAs module whether the Save
was successful or not. Thisust be done before the next call to SWI Wimp_Poll, since

the SaveAs module will assume this.

The SaveAs_SaveToFile event will be delivered if

I the user clicks oSave

I aWimp$Scrap transfer is being used

I the user has dragged the file icon onto a directory display.

Saving via RAM transfer

If bit 3 of the SaveAs object’s flags word is not set (thus indicating that the Toolbox
cannot do a save operation on the client’'s behalf), then the client (type 3 only) may wish
to help support RAM transfers if they are requested by the receiving task. This is
indicated by setting bit 4 of the SaveAs object’s flags word.

The client must supply a buffer, into which it places data ready for transmission to the
receiving task.

The SaveAs module will deal with all subsequent RAMFetch requests, and will call
SWI Wimp_TransferBlock to do the data transfer, and will reply to the receiver using
Message_RAMTransmit.

The client will receive SaveAs_FillBuffer Toolbox events when the buffer has been
transmitted, and on receipt of such events should fill the buffer and call the
SaveAs_BufferFilled method. If the field in the SaveAs_FillBuffer event giving the
address of the buffer is 0, then the client has not yet supplied a buffer, and they should
allocate one. Each SaveAs_FillBuffer Toolbox event contains an indication of how

SaveAs Dialogue box class

many bytes have been transmitted so far during the transfer. As soon as the number of
byteswhich the client writesinto the buffer isless than the size of the buffer, the SaveAs
modul e assumes that the transfer is complete.

Successful completion of a Save operation

When a Save operation has been successfully completed (i.e. the data has been saved),
the SaveAs modulewill send a SaveAs_SaveCompleted Toolbox event to the client, and
will hide the SaveAs object, unless the user has clicked Adjust on the Save button.

Onefieldin the event block passed back to the client is aone-word indication of whether

the destination was a ‘safe’ place (like a filing system) or ‘unsafe’ (like another
application). The client may choose to use this value to decide whether to mark the data
as ‘un-modified’, if the client is an editor.

If the original save operation was started by the user dragging the file icon from the
SaveAs dialogue box, then the SaveAs_SaveCompleted event block also contains the
Wimp message reference number of the Message_DataSave sent by the SaveAs module,
to allow the client to use in conjunction with any Message DataSaved replies.

Completion of the SaveAs dialogue

When the SaveAs module has hidden its dialogue box at the end of a dialogue, it delivers
a SaveAs_DialogueCompleted Toolbox event to the client, with an indication of
whether a successful save occurred during the dialogue.

Error handling

Any errors referring to the SaveAs dialogue box itself will be reported to the user by the
SaveAs module. For example, if there is only a leafname in the writable field, and the
user clicks orBave, then the SaveAs module will display an error box saying ‘To save,
drag the icon to a directory display’.

The SaveAs module will also report any errors which occur while it is carrying out a
Save operation.

The client should report (via SWI Wimp_ReportError), any errors which occur if it is
requested to save to a given filename.

255

Save As methods

Save As methods
The following methods are al invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word

R1 being a Save As Dialogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

SaveAs_GetWindowlID 0

On entry

RO = flags

R1 = Save Asobject id

R2=0

On exit

RO = Window object id for this Save As object

Use

Thismethod returnstheid of the underlying Window object used to implement this Save
Asabject.

C veneer

extern _kernel _oserror *saveas_get_wi ndow_id (unsigned int flags,
Obj ect I d saveas,
Obj ectld *wi ndow

)

256

SaveAs Dialogue box class

SaveAs_ SetTitle 1

On entry

RO = flags

R1 = Save Asobject id

R2=1

R3 = pointer to text string to use

On exit
R1-R9 preserved

Use

This method sets the text which isto be used in the title bar of the given Save As
dialogue.

C veneer

extern _kernel _oserror *saveas_set_title (unsigned int flags,
bj ectld saveas,
char *title

K

257

Save As methods

SaveAs_GetTitle 2

On entry

RO = flags

R1 = Save Asobject id

R2=2

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Save As dialogue’s title bar.

C veneer

extern _kernel _oserror *saveas_get _title (unsigned int flags,
Obj ect I d saveas,
char *buffer,
int buff_size,
int *nbytes

258

SaveAs Dialogue box class

SaveAs_SetFileName 3

On entry

RO = flags

R1 = Save Asobject id

R2=3

R3 = pointer to filename to use in writable field

On exit
R1-R9 preserved

Use

This method sets the filename which is to be used in the Save As object’s writable field.

C veneer

extern _kernel _oserror *saveas_set_file_name (unsigned int flags,
bj ectld saveas,
char *file_nane

K

259

Save As methods

SaveAs_GetFileName 4

On entry

RO = flags

R1 = Save Asobject id

R2=4

R3 = pointer to buffer to return the filename in (or 0) R4 =size of buffer

On exit

R4 = size of buffer required to hold the filename (if R3 was 0)
else Buffer pointed to by R3 contains filename
R4 holds number of bytes written to buffer

Use

This method returns the filename displayed in this Save As object’s writable field.

C veneer

extern _kernel _oserror *saveas_get_file_name (unsigned int flags,
Obj ect I d saveas,
char *buffer,
int buff_size,
int *nbytes

260

SaveAs Dialogue box class

SaveAs_SetFileType 5

On entry

RO = flags

R1 = Save Asobject id
R2=5

R3 = filetype

On exit

R1-R9 preserved

Use
Thismethod is used to set thefiletype for this Save As object, and hence the sprite which
will be displayed in the dialogue box.

C veneer

extern _kernel _oserror *saveas_set _file_type (unsigned int flags,
bj ectld saveas,
int file_type

)

SaveAs_GetFileType 6

On entry

RO = flags

R1 = Save Asobject id
R2=6

On exit

RO = filetype

Use
This method is used to get the filetype of this Save As object.

C veneer

extern _kernel _oserror *saveas_get file_type (unsigned int flags,
bj ect I d saveas,
int *file_type

)

261

Save As methods

SaveAs_SetFileSize 7

On entry

RO = flags

R1 = Save Asobject id
R2=7

R3 = filesizein bytes
On exit

R1-R9 preserved

Use

Thismethod is used to set the estimated file sizein bytesfor this Save As Dialogue. This
will be used in aMessage DataSave message when the fileicon is dragged to its
destination.

C veneer

extern _kernel _oserror *saveas_set_file_size (unsigned int flags,
Obj ect I d saveas,
int file_size

K

SaveAs_GetFileSize 8

On entry

RO = flags

R1 = Save Asobject id
R2=8

On exit

RO = filesize

Use

This method is used to get the file size of this Save As object.

C veneer

extern _kernel _oserror *saveas_get_file_size (unsigned int flags,
Obj ect I d saveas,
int *file_size

)

262

SaveAs Dialogue box class

SaveAs_SelectionAvailable 9

On entry

RO = flags

R1 = Save Asobject id

R2=9

R3 = non-zero means selection is available, otherwise it is not available

On exit
R1-R9 preserved

Use

This method is used to indicate to the Save As module whether there is a current
selection in existence. If there is a selection, then the Selection option button will be
enabled (i.e. the user can click on it), if not the Selection option button will be greyed
out.

If the Save As object has no Selection option button then an error is returned.

C veneer

extern _kernel _oserror *saveas_sel ection_avail able (unsigned int flags,
bj ect 1 d saveas,
int selection

)

263

Save As methods

SaveAs_SetDataAddress 10

264

On entry

RO = flags

R1 = Save Asobject id

R2=10

R3 = address of contiguous block of datawhich isto be saved

R4 = size of data

R5 = address of contiguous block of data, which isthe current selection
R6 = size of selection

On exit
R1-R9 preserved

Use

This method indicates to the Save As modul e the address of a contiguous block of
memory containing the data to be saved. It isused if the client wishes the entire Save
operation to be carried out by the Save Asmodule. It istypically called in response to a
SaveAs SaveAboutToBeShown Toolbox event. If thereis a current selection, then its
address and size should also be passed to this method.

Note: This method is only suitable for Type 1 clients.

C veneer

extern _kernel _oserror *saveas_set_data_address (unsigned int flags,
Obj ectld saveas,
voi d *data,
int data_size,
voi d *sel ection,
int selection_size

SaveAs Dialogue box class

SaveAs_BufferFilled 11

On entry

RO = flags

R1 = Save Asobject id

R2=11

R3 = address of buffer which has been filled
R4 = number of bytes written into buffer

On exit
R1-R9 preserved

Use

This method is used to respond to a SaveAs FillBuffer Toolbox event; it confirms that
the requested buffer fill has taken place, and states the number of bytes written to the
buffer.

C veneer

extern _kernel _oserror *saveas_buffer_filled (unsigned int flags,
bj ectld saveas,
voi d *buffer,
int bytes_witten

265

Save As methods

SaveAs_FileSaveCompleted 12

On entry

RO = flags bit 0 set means that the save was successful
R1 = Save Asobject id

R2=12

R3 = filename where the client tried to save the data
On exit

R1-R9 preserved

Use

This method is used by the client to report whether an attempt to save the datato file as
aresult of a SaveAs SaveToFile Toolbox event was successful or not.

If this SWI is called with bit 0 of RO clear, then it will return an error.
Note: This method is only suitable for Type 2 and Type 3 clients.

C veneer

extern _kernel _oserror *saveas_file_save_conpleted (unsigned int flags,
Obj ectld saveas,
char *filenane

)

266

SaveAs Dialogue box class

Save As events
The Save As module generates the following Toolbox events:

SaveAs_AboutToBeShown (0x82bc0)

Block

+8 0x82bc0

+12 flags (as passed in to Toolbox_ShowObject)

+16 vauewhich will be passed in R2 to ToolBox_ShowObject

+20... block which will be passed in R3 to ToolBox_ShowODbject for the
underlying dialogue box

Use

This Toolbox event is raised just before the Save As module is going to show its
underlying Window object, to enable the client to set its filename and filetype

appropriately.
C datatype

typedef struct

{
Tool boxEvent Header hdr;

int show_t ype;
uni on
{
TopLeft pos;
W ndowShowObj ect Bl ock full;
} info;

} SaveAsAbout ToBeShownEvent ;

267

Save As events

SaveAs_DialogueCompleted (0x82bc1)

Block
+8 0x82bcl
+12 flags
bit 0 set means that a successful save was done during this dialogue
Use

This Toolbox event israised after the Save As object has been hidden, either by a Cancel
click, or after a successful save, or by the user clicking outside the dialogue box or
pressing Escape. It allows the client to tidy up its own state associated with this
dialogue.

Note that if the dialogue was cancelled, a successful save may still have been done, for
exampleif the user clicked Adjust on Save, and then cancelled the dialogue.

C datatype

typedef struct
{
Tool boxEvent Header hdr;
} SaveAsDi al ogueConpl et edEvent ;

SaveAs_SaveToFile (0x82bc2)

268

Block

+8 0x82bc2
+12 flagsbit O set means save only the current selection
+16... nul-terminated filename to which the data should be saved

Use

This Toolbox event israised by the Save As modul e to request that the client should save
its data to the given filename. If bit O of the flags word is set, then only the current
selection should be saved.

C datatype

typedef struct
{

Tool boxEvent Header hdr;

char filename [212];
} SaveAsSaveToFi | eEvent;

SaveAs Dialogue box class

SaveAs_FillBuffer (0x82bc3)

Block
+8 0x82bc3
+12 flags

bit O set means a selection is being saved
+16 sizeof buffer being used
+20 addressof buffer
+24 number of bytes already transmitted

Use

This Toolbox event israised by the Save As modul e to request that the client should fill
the given buffer (which is the one which the client will have allocated).

If the address returned by this event is O, then the client application needs to do one of
the following:

I reserve memory for buffering and return its address using SWI BufferFilled
I maintain a pointer to the current location in the data to be transferred.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

int si ze;
char *addr ess;
int no_bhytes;

} SaveAsFil | Buf ferEvent;

269

Save As templates

SaveAs_SaveCompleted (0x82bc4)

Block
+8 0x82bc4
+12 flags

bit O set means a selection was saved
bit 1 set means the destination was safe (e.g. afiling system)
+16 Wimp message number of original Message DataSave
(or 0if the save operation was not started via a drag)
+20... if bit1issetintheflagsword (i.e. safe save), then thisfield indicates the
full pathname of the place where the save was done.

Use

This Toolbox event is raised when the Save is successfully completed. Bit O of the flags
word indicates whether just a selection was saved; bit 1 means that the Save wasto a
place where the dataiis safe (e.g. it isin areal file, on afiling system).

C datatype

typedef struct
{
Tool boxEvent Header hdr;
i nt Wi np_nmessage_no;
char filename [208];
} SaveAsSaveConpl et edEvent ;

Save As templates

270

The layout of a Save Astemplate is shown below. Fields which have types
MsgReference and StringReference are those which will require rel ocation when they
are loaded from aresource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on rel ocation, see appendix Resource File Formats on page 505.

Field Sizein bytes Type
flags 4 word
filename 4 MsgReference
filetype 4 word
title 4 MsgReference

SaveAs Dialogue box class

Field Sizein bytes Type
max_title 4 word
window 4 StringReference

Underlying Window template

The Window object used to implement a Save As dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified aternative Window template.

Title bar must be indirected.

Gadgets
Component ids are derived by adding to 0x82bc00.

Component id Details

0 draggable (file icon) must be sprite only

1 writable field (filename)

2 action button (Cancel) must be marked asaCancel
action button

3 action button (Save) must be marked as the
Default action button

4 (if required) option button (Selection)

Save As Wimp event handling

Wimp event Action
Mouse Click if thisisadrag event on thefile icon, then set up an
appropriate Wimp drag box

ActionButton_Selected on the Save button then start save operation

on the Cancel button then hide the dialogue box, and raise a
SaveAs DialogueCompleted Toolbox event

Draggable DragEnded start save operation to the destination of the drag (i.e. send a
(Toolbox event) Message DataSave to the destination window/icon pair.

271

Save As Wimp event handling

Wimp event Action

Key Pressed if dialogue box has the input focus, and the key pressed is
Return, then the Save Button is activated, and a save
operation is started

if key is Escape act as if Cancel had been pressed.

User Message Message DataSaveAck

User Message Recorded i f (a SaveAs dial ogue is in progress)
{
if (the save can be done entirely
by the SaveAs nodul e)

{
do the save
send Message_Dat aLoad to destination
}
el se
{
rai se a SaveAs_SaveToFi |l e Tool box event
}

}
Message Datal oadAck

if (a SaveAs dial ogue is in progress)

{
rai se a SaveAs_SaveConpl et ed Tool box event
If (not an Adjust click on OK)
(
hi de the dial ogue box
rai se a SaveAs_Di al ogueConpl et ed
Tool box event
)
}

Message RAMFetch

if (a SaveAs dial ogue is in progress)

{
transfer current buffer contents
send Message RAMIransmit to destination
if (save cannot be done entirely by the Tool box
nmodul e)
rai se SaveAs_Fil | Buffer Tool box event
}

Message MenusDeleted

If (a SaveAs dialogue is in progress)

{
}

rai se a SaveAs_Di al ogueConpl et ed Tool box event

272

15 Scale Dialogue box class

Scale Dialogue object is used to present the user with a dialogue box from which he
can set the scale factors for aview on adocument. Thisscaleisgiven asa
percentage of the original size of the document.

User interface

The Scale class provides a dial ogue box from which a scale factor can be chosen:

title bar string —» [] Scale wiey

| B |
Scale| 1] 7 4% — — } local action buttons

> LBEE 10|

number range
Cancel | | Scale |
P4 >
Cancel button Scale button

The default Scale dialogue box has the following attributes:
| atitlebar string

I awritable number range with up/down arrows and a percentage sign to the right of
the up/down arrows

four ‘standard’ size action buttons with the values: 33%, 80%, 100%, 120% as their
text plus an optionddcale to Fit action button

[a Cancel action button
[a Scale action button.

The user can:

I type an integral value in the writable field between its lower and upper bounds or
use the up/down arrows to adjust the value currently in the field

use one of the standard size action buttons to set the scale factor. Clicking on these
buttons only causes a value to be inserted in the writable field; it does not apply the
scale factors

click outside the dialogue box (if it is transient) or click@ancel, to cancel the
dialogue

click on Scale or press Return to apply the scale factors

273

Application Program Interface

I if thereisaScaleto Fit button, then clicking on it will have application-defined
behaviour (e.g. Scale to Fit window).

Application Program Interface

When a Scale object is created it has the following components:
I anoptional Scale To Fit button.

I an alternativetitle to use instead of the default.

I dternative bounds and step size for the writable field.

I anoptiona list of different standard size action buttons where each gives a
percentage value to insert into the Writable Field. These will be positioned
appropriately by the Scale modulein place of the default standard size buttons.
When a Scale object is shown, the client will be delivered a
Scale DialogueAboutToBeShown Toolbox event (if enabled), just before the
dialogue box becomes visible on the screen.

When the Scale dialogue is showing, the Scale module deals with all relevant Wimp
events and reports user actions back to the client via Toolbox events. If there are any
standard size action buttonsin the dial ogue box, then the Scale module deals with clicks
on them, and inserts the correct percentage val ue into the writable field.

Theclient is guaranteed to receive a Scale_Dial ogueCompleted Toolbox event when the
dialogueisover (i.e. the user has clicked on Cancel, or clicked outside the dial ogue box
(if it were transient), or clicked on Scale, or on Scale To Fit).

Attributes

A Scale object has the following attributes which are specified in its object template and
can be manipulated at run-time by the client application:

Attributes Description
flags Bit Meaning
0 when set, this bit indicates that a

Scale_ AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
Scale_DialogueCompleted event should be raised
when the Scale object has been removed from the
screen.

2 when set, dialogue box has a Scale To Fit button

274

Attributes
min val

max val
step size
Scaletitle

max title length

window

std1 value
std2 value
std3 value

std4 value

Scale Dialogue box class

Description

aternative minimum value for the writable field
alternative maximum value for the writable field
aternative step size for up/down arrows

alternative title for the dialogue rather than ‘Scale View’
(0 means use default)

this gives the maximum length in bytes of title text which will
be used for this object

the name of an alternative window template to use instead of
the default one (0 means use default)

value of first std scale button
value of second std scale button
value of third std scale button

value of fourth std scale button

Manipulating a Scale object

Creating and deleting a Scale obj ect
A Scale object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).
A Scale object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Scale objects.

275

Application Program Interface

Showing a Scale obj ect

When a Scale object is displayed on the screen using SWI Toolbox_ShowObject it has
the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown on
the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate

R3 +4 visible area minimum y coordinate

R3 +8 visible area maximum x coordinate

R3 + 12 visible area maximum y coordinate

R3 + 16 scroll x offset relative to work area

R3 + 20 scroll y offset relative to work area

R3 + 24 Wimp window handle of window to open behind
-1 means top of stack
- 2 means bottom of stack
- 3 means the window behind the Wimp’s

backwindow

2 (topleft) R3+ 0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate

Before the Scale Dialogue box is shown

When SWI Toolbox_ShowObject is called on a Scale object, the Scale Classraises a
Scale_AboutToBeShown Toolbox event (if enabled), just before it shows the underlying
Window object which implements this dialogue. Thiswill alow the client to set an
initial suitable value in the Scale dialogue’s Writable Field.

Applying a Scale factor

When the user clicks on tl8ale button, or on th&cale To Fit button if it is present,
the Scale module delivers a Scale_ApplyFactor to the client, giving the percentage
factor to apply. A special value of Oxffffffff is delivered if t&eale To Fit button is
clicked.

Cancelling a Scale dialogue

If the user clicks on th€ancel Button (or clicks outside the Scale dialogue box), then

the Scale module delivers a Scale_DialogueCompleted Toolbox event to the client
application. This allows the client to update any of its data structures and to clean up any
state associated with this dialogue.

276

Scale Dialogue box class

Completion of a Scale dialogue

When the Scale module has hidden its dialogue box at the end of adialogue, it delivers
a Scale DialogueCompleted Toolbox event to the client (if enabled), with an indication
of whether a scale factor was reported to the client during the dialogue.

Reading and setting thewritable field

Normally aclient will only need to respond to the Scale_ApplyFactor Toolbox event in
order to allow the user to set scale factors. If, however, the client wishes to read the
current valuein thewritablefield, or to set it explicitly (to asuitable start value when the
dialogue box is first shown), then it can use the Scale_SetValue/Scale_GetValue
methods.

Reading and setting the bounds of the writable field and step size

Normally aclient will specify the bounds and step size of the writable field in the
template description for the Scale object.

These can however be read and set dynamically using the Scale_SetBounds/
Scale_getBounds and Scale GetStepSize/Scale SetStepSize methods.

277

Scale methods

Scale methods

Scale_

278

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word

R1 being a Scale Dialogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

GetWindowlID O

On entry

RO = flags
R1 = Scale object id
R2=0

On exit
RO = Window object id for this Scale object

Use

This method returns the id of the underlying Window object used to implement this
Scale object.

C veneer

extern _kernel _oserror *scal e_get_window_id (unsigned int flags,
oj ectld scale,
Obj ectld *wi ndow

)

Scale Dialogue box class

Scale_SetValue 1

On entry

RO = flags

R1 = Scale object id
R2=1

R3 = value

On exit

R1-R9 preserved

Use
This method is used to set the value displayed in the writable field for this Scale object.

C veneer

extern _kernel _oserror *scal e_set_value (unsigned int flags,
Qoj ectld scal e,
int value

)

Scale_GetValue 2

On entry

RO = flags

R1 = Scale object id
R2=2

On exit

RO = value

Use

This method returns the value in the writable field of this Scale object.

C veneer

extern _kernel _oserror *scal e_get_val ue (unsigned int flags,
bj ectld scal e,
int *val ue

)

279

Scale methods

Scale_SetBounds 3

On entry

RO = flags
bit 0 set means set the lower bound to the given value
bit 1 set means set the upper bound to the given value
bit 2 set means set step size

R1 = Scale object id

R2=3

R3 = value of the lower bound

R4 = value of the upper bound

R5 = step size

On exit
R1-R9 preserved

Use

This method sets the lower and upper bounds and step size of the writable field in the
Scale abject.

C veneer

extern _kernel _oserror *scal e_set_bounds (unsigned int flags,
Obj ectld scale,
int |ower_bound,
int upper_bound,
int step_size

280

Scale Dialogue box class

Scale_GetBounds 4

On entry

RO = flags
bit 0 set means return the lower bound
bit 1 set means return the upper bound

bit 2 set means return step size
R1 = Scale object id
R2=4
On exit

RO = value of the lower bound
R1 = value of the upper bound
R2 = value of the step size

Use

This method returns either the lower and upper bounds and step size of the writable field
in the Scale object.

C veneer

extern _kernel _oserror *scal e_get_bounds (unsigned int flags,
oj ectld scal e,
int *l ower_bound,
int *upper_bound,
int *step_size

281

Scale methods

Scale_SetTitle 5

On entry

RO = flags

R1 = Scale object id

R2=5

R3 = pointer to text string to use

On exit
R1-R9 preserved

Use
This method sets the text which isto be used in the title bar of the given Scale dialogue.

C veneer

extern _kernel _oserror *scale_set_title (unsigned int flags,
Obj ectld scale,
char *title

E

282

Scale Dialogue box class

Scale_GetTitle 6

On entry

RO = flags

R1 = Scale object id

R2=6

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Scale dialogue’s title bar.

C veneer

extern _kernel _oserror *scale_get _title (unsigned int flags,
Qoj ectld scal e,
char *buffer,
int buff_size,
int *nbytes

283

Scale events

Scale events

284

The Scale modul e generates the following Toolbox events:

Scale_AboutToBeShown (0x82c00)

Block

+8
+12
+ 16

+ 20...

Use

0x82c00

flags (as passed in to Toolbox_ShowObject)

value which will be passed in R2 to ToolBox_ShowODbject

block which will be passed in R3 to ToolBox_ShowObject for the
underlying dialogue box

This Toolbox event israised just before the Scale moduleis going to show its underlying
Window object, to enable the client to set itsinitial value appropriately.

C datatype

typedef struct

{

Tool boxEvent Header hdr;

i nt
uni on

{

show t ype;

TopLeft pos;
W ndowShowObj ect Bl ock full;

} info;
} Scal eAbout ToBeShownEvent ;

Scale Dialogue box class

Scale_DialogueCompleted (0x82c01)

Block

+8 0x82c01
+12 flags
Use

This Toolbox event is raised after the Scale object has been hidden, either by a Cancel
click, or by aclick on Scale or Scale To Fit, or by the user clicking outside the dialogue
box (if it istransient). It allows the client to tidy up its own state associated with this
dialogue.

Note that if the dialogue was cancelled, a scale factor may still have been applied, for
example if the user clicked Adjust on Scale, and then cancelled the dialogue.

C datatype

typedef struct

{
Tool boxEvent Header hdr;
} Scal eDi al ogueConpl et edEvent ;

Scale_ApplyFactor (0x82c02)

Block

+8 0x82c02

+16 unsigned integer scale factor to apply
Use

This Toolbox event is raised when the user clicks on the Scal e button or the Scale To Fit
button (if present), or presses Return.

The scale factor to apply is a percentage; Oxffffffff means Scale To Fit.

C datatype

typedef struct

{
Tool boxEvent Header hdr;
unsi gned int factor;
} Scal eAppl yFact or Event ;

285

Scale templates

Scale templates

286

The layout of a Scale template is shown below. Fields which have types MsgReference
and StringReference are those which will require rel ocation when they are loaded from
aresourcefile. If the template is being constructed in memory, then these fields should
be real pointers (i.e. they do not require rel ocation).

For more details on rel ocation, see appendix Resource File Formats on page 505.

Field Sizein bytes Type

flags 4 word

min_val 4 word

max_val 4 word
step_size 4 word

title 4 MsgReference
max_title 4 word

window 4 StringReference
stdl_value 4 word
std2_value 4 word

std3 value 4 word
std4_value 4 word

Underlying window template

The Window object used to implement a Scale dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified aternative Window templ ate:

Title bar must be indirected.

Gadgets
Component ids are derived by adding to 0x82c000.

Component id Details

0 number range (Scal€) must have adjuster arrows,
and be writable
1-4 action buttons these should have the text
(standard scale factors) 33%, 80%, 100% and 120%

Scale Dialogue box class

Component id Details
5 action button (Cancel) this must be marked as a
Cancel action button
6 action button (Scale) this must be marked as the
default action button

7 label (%)

8 label (Scale)

9 action button (Scale to fit)

Scale Wimp event handling

Wimp event Action

Mouse Click on Scale or Scaleto Fit buttons, then deliver a
Scale ApplyFactor Toolbox event
on astandard size button then enter its value into the
Writable Field
on Cancel button then hide the dialogue box, and
deliver a Scale DialogueCompleted Toolbox event.

Key Pressed if key is Return then act asif Scale button had been
clicked
if key is Escape then act asif Cancel button had
been clicked.

User Message Message MenusDeleted

User Message Recorded deliver a Scale DialogueCompleted Toolbox event.

287

288

16 Window class

bjects of the Window class are used by the client application to display its
document windows, dialogue boxes etc.

User interface

A Window is essentially an extension of a Wimp window (in fact part of the Window
object definition is a Wimp window definition):

Back icon Close icon Title bar Toggle size icon
a0 E 4 P il

Slider

Adjust size icon

Many Wimp events which are delivered to this Window are dealt with automatically by
the Toolbox, based on the attributes of the Window. In this chapter we give further
details of exactly what aWindow consists of, and the semantics attached to Wimp events
for a Window.

The client application is always able to get the Wimp window handle of the underlying
Wimp window used to implement this Window object, and can perform all the usual
Wimp SWIs on that window (within reason, e.g. deleting an icon belonging to a gadget
may have undesirable efects).

289

Application Program Interface

Application Program Interface

Attributes

A Window object has the following attributes which are specified in its object template
and can be manipulated at run-time by the client application:

Attribute
flags word

help message

max help
pointer shape

max pointer shape

290

Description

Bit Meaning

0 when set, generate a
Window_AboutToBeShown event before
showing the underlying Wimp window

1 when set, automatically open this Window
when a Wimp OpenWindowRequest is
received
(when set the client will not see the
underlying Wimp requests)

2 when set, automatically close this Window
when a Wimp CloseWindowRequest is
received
(when set the client will not see the
underlying Wimp requests)

3 when set, generate a
Window_HasBeenHidden Event after hiding
the underlying Wimp window

4 when set, indicates that thistemplateis of a
toolbar (see Toolbars on page 325)

when aHelpRequest is received for this Window,
then thistext is sent in a HelpReply message. Note
that this Help message is only sent if the gadget
(see later) for which the request was received has
not got a Help message of its own, or if the pointer
is ot over any gadget.

maximum length in bytes of help message

this gives the name of a sprite to use as the pointer
shape, when a Pointer Entering Window event is
received for this Window (0 means do not change
the pointer shape).

maximum length in bytes of sprite name

Attribute

pointer x hot
pointer y hot

menu

num keyboard shortcuts

keyboard shortcuts

num gadgets

gadgets

default focus

window

internal_bl

internal _tl

external_bl

external_tl

Window class

Description

the x and y coordinates of the pointer’s hot spot.
These are relative pixels from the top left corner of
the sprite.

the name of the template to use to create a Menu
object for this Window

the number of keyboard short-cuts which are
associated with this Window

the pointer to the list of keyboard short-cuts for this
Window

the number of gadgets which are to appear in this
Window

the pointer to the list of gadgets for this Window.

the Component Id of the gadget which is given
input focus when the window is shown.

If this field is- 1 then no gadget will be given input
focus

if - 2 then window will be given input focus (but no
caret) allowing keyboard short-cuts to work
without having any writables

88-byte structure is the standard block which is
passed to Wimp_CreateWindow. The window is
shown to contain no icons, since these are
implemented by gadgets.

the window template to be used for this toolbar.
Anchored to the bottom left corner inside the
window. =

the window template to be used for this toolbar.
Anchored to the top left corner inside the window.

the window template to be used for this toolbar.
Anchored to the bottom left corner outside the
window. =

the window template to be used for this toolbar.
Anchored to the top left corner outside the window.

291

Application Program Interface

292

Attribute Description

show_event the event code to be raised when the window is
shown.

hide_event the event code to be raised after the window has
been hidden.

= these templates must have the Toolbar bit set.

Keyboard short-cut

The attributes of a Keyboard short-cut are as follows:

Attributes Description
flags word Bit Meaning
0 when set, show attached object as ‘transient’

wimp key code the key code returned by the Wimp in a Key Pressed event
block, for this keyboard short-cut

key event this is the Toolbox event to be raised when the Wimp
delivers a Key Pressed event with this Wimp key code.

0 means deliver no event

key show the name of the template for an object to create and show
when the Wimp delivers a Key Pressed event with this
Wimp key code.
0 means show no object

Note that because keyboard short-cuts work on Wimp key codes, certain key
combinations (such as Shift-Ctrl-P) will require the client to provide extra code.

Gadget

All gadgets have a common header, followed immediately by a body whichis
gadget-specific. The header is described on page 329, and the gadget-specific bodies are
described in their own sections.

Manipulating a Window object

Creating and deleting a Window obj ect
A Window object is created using SWI Toolbox_CreateObject.

When aWindow object is created, the following attached objects (see page 11) will be
created (if specified):

Window class

I menu
I key show (for each keyboard short-cut)
I Toolbars.

See the attributes table above for an explanation of what these objects are.

There are al so attached objects which are associated with gadgetsin a Window (see
later):

I click show (for an action button)
I menu (for a Pop-up menu).

These attached objects are also created when such a gadget is added to the Window, and
del eted when the gadget is removed.

A Window object is deleted using SWI Toolbox_DeleteObject. If it has any attached
objects (see above), these are also deleted, unless the non-recursive bit is set for this
SWI.

Showing a Window

When a Window abject is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown on
the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3+0 visible areaminimum x coordinate

R3+4 visibleareaminimumy coordinate

R3+8 visible areamaximum x coordinate

R3+ 12 visible areamaximum y coordinate

R3+ 16 scroll x offset relative to work area

R3+ 20 scroll y offset relative to work area

R3+24 Wimp window handle of window to open behind
-1 meanstop of stack
- 2 means bottom of stack
- 3 means the window behind the Wimp’s

backwindow

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate

293

Application Program Interface

294

The Window’s menu

Each Window object can optionally have attached to it a Menu object. The Window
object holds the unique id of this Menu object.

When aWindow is created, if the client has specified the name of a Menu template for
that Window, then aMenu object is created from that template, and the id of that Menu
is held in the Window object. Thisid will be used to show the Menu when the user
presses the Menu button over the Window.

Whenever the user of the application presses the Menu mouse button over aWindow, the
Window class module opens its attached Menu object, by making a SWI
Toolbox_ShowObject passing the attached Menu'’s id.

If the application wishes to perform some operations on the Menu before it is opened
(ticking some entries for example), then by setting the appropriate bit in the Menu’s
flags word, the application can request that a special Toolbox event
(Menu_AboutToBeShown) is delivered to it before the Menu is actually shown. The
precise details of this Toolbox event are describedenu events on page 199. On

receipt of such a Toolbox event, the client application is expected to make any changes
it wants to the Menu object, and then return to its SWI Wimp_Poll loop.

In most cases a Menu is attached to the Window at resource editing time by entering the
name of the template to use for this Window’s Menu. If the application wishes
dynamically to attach and detach the menu for a given Window (maybe based on a mode
of operation which is defined by the application, e.g. display mode or editing mode),
then this can be done using the Window_SetMenu method described on page 300.

The id of the Menu attached to a Window can be read by using the Window_GetMenu
method.

Window_SetMenu can only be used when a menu is not already being shown for this
Window.

Gadgetsin a window

A Window object can optionally contain a number of gadgets. Typically this is used to
create dialogue boxes.

There are many kinds of gadget. The Toolbox provides facilities to allow the client
application to manipulate a particular gadget in a manner which is appropriate to that
gadget, rather than in ‘low-level’ terms like setting the state of a Wimp icon. The set of
gadgets is defined to fit in with the RISC OS 3 Style Guide, and thus to encourage a
standard look and feel across dialogue boxes.

Gadgets are normally specified as part of a Window object template, but they can be
added to and removed from Window’s dynamically at run-time using the
Window_AddGadget and Window_RemoveGadget methods respectively.

Window class

Each gadget type defines its own set of methods, and many will have a number of
Toolbox events associated with them. This alows the application to receive Toolbox
events from user actions, rather than having to deal with mouse clicks and drags on
Wimp icons. Much of the low-level Wimp operations are handled automatically by the
Toolbox.

Gadgets are described in Gadgets on page 328.

Keyboard short-cuts

Each Window object can optionally define a set of mappings from Wimp key codes to
Toolbox events. Thisis particularly useful in allowing the client application to respond
identically to a keystroke or an equivalent menu hit, by giving both the same Toolbox
event. When a given keystroke is returned by the Wimp for the Window object, the
corresponding Toolbox event is raised.

Note that Shift-Ctrl-letter combinations are not allowed.

It is also possible to provide the name of atemplate for an object which will be created

and shown, when a particular keystroke happens. For example the client may wish to

display a dialogue box when F4 is pressed. If bit O of the keyboard short-cut’s flags word
is set, then the object is shown with the ‘Show with Wimp CreateMenu semantics’ bit set
in the RO passed to Toolbox_ShowObject.

Sets of Keyboard short-cuts will normally be defined by the client application in its
resource file, but they can also be added and removed dynamically using the
Window_AddKeyboardShortcuts (page 305) and Window_RemoveKeyboardShortcuts
(page 306) methods, passing as an argument an array of mappings.

Pointer shapes

Each Window object can optionally have a pointer shape defined, giving the name of a
sprite to use and its hot spot.

Whenever the Wimp pointer enters this Window, causing a PointerEnteringWindow
event, the Toolbox changes the pointer shape appropriately.

In most cases a pointer shape is attached to the Window at resource editing time by
entering the name of the sprite to be used, and the pointer's hot spot. If the application
wishes dynamically to change the pointer for a given Window (maybe based on a mode
of operation which is defined by the application, e.g. display mode or editing mode),
then this can be done using the Window_SetPointer method described in
Window_SetPointer 5 on page 301.

The name of the sprite used for the Window's pointer shape and its hot spot can be read
by using the Window_GetPointer method describediimdow_GetPointer 6 on
page 302.

295

Application Program Interface

296

Help messages
Each Window object can optionally have attached to it a Help message.

Whenever the Wimp delivers a Hel pRequest message to the client application for this
Window, the attached Help message is sent back automatically by the Toolbox.

In most cases a help message is attached to the Window at resource editing time. A
Window’s Help message can be set dynamically using the
Window_SetHelpMessage 7 described on page 303.

The text of the Help message can be read using the Window_GetHelpMessage method.

Changing a window'’s title

One of the attributes of a Window which is specified in the template for that Window is
the text which appearsin itstitle bar.

A Window'’s title can be changed dynamically at run-time using the Window_SetTitle
method.

The current title string can be read using the Window_GetTitle method.

Getting and setting a Window’s client handle

Theclient handle for aWindow is set and read using SWI Toolbox_SetClientHandle and
SWI Toolbox_GetClientHandl e respectively.

A typical use of this client handle would be to hold a pointer to a data structure
containing the state of a document which is being displayed in this Window in a
multi-document editor.

Window class

Window methods
The following methods are al invoked by calling SWI Toolbox_MiscOp with:

RO holding a flags word

R1 being a Window id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Window_GetWimpHandle 0

On entry

RO = flags

R1 = Window object id
R2=0

On exit

RO = Wimp window handle for this window

Use

This method returns the handle of the underlying Wimp window used to implement this
Window object.

C veneer

extern _kernel _oserror *w ndow_get_wi np_handl e (unsigned int flags,
bj ect1d wi ndow,
int *w ndow_handl e

)

297

Window methods

Window_AddGadget 1

On entry

RO = flags

R1 = Window object id

R2=1

R3 = pointer to description block for gadget

On exit

RO = component id
R1-R9 preserved
Use

This method adds a gadget to the list of gadgets for this Window object. The format of
the description block depends on the type of gadget being added.

If the Window is currently open on the screen, then the gadget will immediately be
visible in the Window.

If the gadget’s component id is specified ds then the Toolbox wil allocate an unused
component id.

C veneer

extern _kernel _oserror *w ndow_add_gadget (unsigned int flags,
bj ect I d wi ndow,
Gadget *gadget,
Conponent | d *gadget _conponent

298

Window class

Window_RemoveGadget 2

On entry

RO = flags

R1 = Window object id
R2=2

R3 = component id

On exit
R1-R9 preserved

Use

This method removes a gadget from a Window object. If the Window is currently
displayed on the screen, then this removal resultsin aredraw of the Window by the
Toolbox.

C veneer

extern _kernel _oserror *w ndow_r enpve_gadget (unsigned int flags,
bj ect I d wi ndow,
Conponent | d gadget

)

299

Window methods

Window_SetMenu 3

On entry

RO = flags

R1 = Window object id
R2=3

R3 = menu object id
On exit

R1-R9 preserved

Use

This method is used to set the Menu which will be displayed when the Menu button is
pressed over this Window object. The Toolbox handles opening the Menu for you.

If R3is0, then the Menu for this Window is detached.

C veneer

extern _kernel _oserror *w ndow_set_nenu (unsigned int flags,
Obj ect 1 d wi ndow,
Obj ectld menu_id

)

Window_GetMenu 4

On entry

RO = flags
R1 = Window object id
R2=4

On exit
RO = Menuid

Use

This method is used to get the id of the Menu which will be displayed when the Menu
button is pressed over this Window object.

C veneer

extern _kernel _oserror *w ndow_get_nenu (unsigned int flags,
Obj ect 1 d wi ndow,
Obj ectld *menu_id
)

300

Window class

Window_SetPointer 5

On entry

RO = flags

R1 = Window object id

R2=5

R3 = pointer to name of sprite to use for pointer
R4 = x hot spot

R5 =y hot spot

On exit
R1-R9 preserved

Use

This method is used to set the Pointer shape which will be used when the pointer enters
this Window object. The Toolbox handles setting the Wimp Pointer shape for you.

If R3is0, then the Pointer for this Window is detached.

C veneer

extern _kernel _oserror *w ndow_set_pointer (unsigned int flags,
Obj ect I d wi ndow,
char *sprite_naneg,
int x_hot_spot,
int y_hot_spot

301

Window methods

Window_GetPointer 6

On entry

RO = flags

R1 = Window object id

R2=6

R3 = pointer to buffer

R4 = size of buffer to hold sprite name
R5 = x hot spot

R6 =y hot spot

On exit

R4 = size of buffer required for sprite name (if R3 was 0)
else buffer pointed at by R3 holds sprite name
R4 holds number of bytes written to buffer

Use

This method is used to get the name of the sprite which will be used when the pointer
enters this Window object, and to get the pointer’s hot spot.

C veneer

extern _kernel _oserror *w ndow_get _pointer (unsigned int flags,
Obj ectld wi ndow,
char *buffer,
int buff_size,
int *nbytes,
int *x_hot_spot,
int *y_hot_spot

302

Window class

Window_SetHelpMessage 7

On entry

RO = flags

R1 = Window object id
R2=7

R3 = pointer to message text

On exit
R1-R9 preserved

Use

Thismethod is used to set the help message which will be returned when a Help Request
message is received for this Window object. The Toolbox handles the reply message for
you.

If R3is0, then the Help Message for this Window is removed.

C veneer

extern _kernel _oserror *w ndow_set _hel p_nmessage (unsigned int flags,
bj ect I d wi ndow,
char *nessage_t ext

K

303

Window methods

Window_GetHelpMessage 8

304

On entry

RO = flags

R1 = Window object id

R2=8

R3 = pointer to buffer

R4 = size of buffer to hold message text

On exit

R4 = size of buffer required for message text (if R3 was 0)
else Buffer pointed at by R3 holds message text
R4 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when aHelp
Request message is received for this Window object.

C veneer

extern _kernel _oserror *w ndow_get _hel p_message (unsigned int flags,
Obj ect I d wi ndow,
char *buffer,
int buff_len,
int *nbytes

Window class

Window_AddKeyboardShortcuts 9

On entry

RO = flags

R1 = Window object id

R2=9

R3 = number of short-cuts to add

R4 = pointer to memory block containing an array of description blocks for the
keyboard short-cuts. Each block islaid out in memory as described in
Window templates on page 319

On exit
R1-R9 preserved

Use

This method adds a number of keyboard short-cuts to the list of keyboard short-cuts for
this Window object. When a Key Pressed event is received for this Window, the given
Toolbox event is raised as the next Wimp event for the client application.

If any of the keyboard short-cuts are already defined for this Window, then they are
replaced by the new short-cuts.

C veneer

extern _kernel _oserror *wi ndow add_keyboard_shortcuts (unsigned int flags,
Ooj ectld wi ndow,
int no_shortcuts,
Keyboar dShortcut *shortcuts

305

Window methods

Window_RemoveKeyboardShortcuts 10

On entry

RO = flags

R1 = Window object id

R2=10

R3 = - 1 means remove all keyboard short-cuts
or R3 = number of short-cutsto remove

R4 = pointer to an array of key short-cuts to be removed
(number givenin R3)

On exit
R1-R9 preserved

Use

This method removes a number of keyboard short-cuts which have been associated with
this Window using the Window_AddK eyboardShortcuts method.

C veneer

extern _kernel _oserror *w ndow_renpve_keyboard_shortcuts (unsigned int flags,

Obj ect | d wi ndow,

int no_renove,

Keyboar dShortcut *shortcuts

)

306

Window class

Window_SetTitle 11

On entry

RO = flags

R1 = Window object id
R2=11

R3 = pointer to new text for title bar

On exit
R1-R9 preserved

Use

This method changes the text in a Window’s title bar. If the string is too long for the title
bar’s buffer, an error is returned.

C veneer

extern _kernel _oserror *w ndow_set_title (unsigned int flags,
bj ect I d wi ndow,
char *title

);

307

Window methods

Window_GetTitle 12

On entry

RO = flags

R1 = Window object id

R2=12

R3 = pointer to buffer to hold title text (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required (if R3 was 0)
else Buffer pointed at by R3 holdstitle text
R4 holds number of bytes written to buffer

Use

This method returns the string currently used in a Window’s title bar.

C veneer

extern _kernel _oserror *w ndow_get _title (unsigned int flags,
Obj ect I d wi ndow,
char *buffer,
int buff_size,
int *nbytes

308

Window class

Window_SetDefaultFocus 13

On entry

RO = flags

R1 = Window object id
R2=13

R3 = component id

On exit

R1-R9 preserved

Use

This method sets the default focus component for awindow. As with the template, a
value of - 1 means no default focus, and - 2 means put the focusin the window.

Note that this sets the default, i.e. only takes effect when next shown.

C veneer

extern _kernel _oserror *w ndow set_defaul t _focus (unsigned int flags,
Obj ectld wi ndow,
Conponent I d focus

)

Window_GetDefaultFocus 14

On entry

RO = flags

R1 = Window object id
R2=14

On exit

RO = component id
R1-R9 preserved

Use

This method returns the default focus component of awindow.

C veneer

extern _kernel _oserror *w ndow_get _defaul t_focus (unsigned int flags,
Obj ect I d wi ndow,
Conponent I d *f ocus

)

309

Window methods

Window_SetExtent 15

On entry

RO = flags

R1 = Window object id
R2=15

R3 = pointer to extent bounding box:
+0 minimum x coordinate
+4 minimum y coordinate
+8 maximum X coordinate
+12 maximumy coordinate

On exit
R1-R9 preserved

Use

This method changes the extent of the underlying Wimp window.

C veneer

extern _kernel _oserror *w ndow_set_extent (unsigned int flags,
bj ect I d wi ndow,
BBox *extent

)

310

Window class

Window_GetExtent 16

On entry

RO = flags

R1 = Window object id
R2=16

R3 = pointer to four word block to hold extent

On exit

R1-R9 preserved and block pointed to by R3 updated:
+0 minimum x coordinate
+4 minimum y coordinate
+8 maximum x coordinate
+12 maximumy coordinate

Use

This method returns the extent of the underlying Wimp window.

C veneer

extern _kernel _oserror *w ndow_get _extent (unsigned int flags,
Obj ect I d wi ndow,
BBox *extent

)i

311

Window methods

Window_ForceRedraw 17

On entry

RO = flags

R1 = Window object id
R2=17

R3 = pointer to areato redraw:
+0 minimum x coordinate
+4 minimum y coordinate
+8 maximum x coordinate
+12 maximumy coordinate

On exit
R1-R9 preserved

Use

This method forces aredraw on the area of the window given by the work area
coordinates pointed to by R3.

C veneer

extern _kernel _oserror *wi ndow_force_redraw (unsigned int flags,
Obj ect I d wi ndow,
BBox *redraw_box

)i

312

Window class

Window_SetToolBars 18

On entry

RO = mask
bit 0 set means set internal bl toolbar
bit 1 set means set internal tl toolbar
bit 2 set means set external bl toolbar
bit 3 set means set external tl toolbar

R3 = object id of internal bl toolbar

R4 = object id of internal tl toolbar

R5 = object id of external bl toolbar

R6 = object id of external tl toolbar

Use

This method sets the object ids of the toolbars that are attached to a particular window
object. If the object is showing then the new toolbars will be shown, and any toolbars of
the same type will be hidden (it is not possible to have more than one toolbar of each
type). The mask allows selective setting of toolbars.

Passing an Id of zero means that there is no toolbar of that type.

C veneer

extern _kernel _oserror *w ndow_set_tool _bars (unsigned int flags,
bj ect I d wi ndow,
oj ectld ibl,
ojectlditl,
oj ectld ebl,
oj ectld etl

313

Window methods

Window_GetToolBars 19

On entry

RO = mask
bit 0 set means return internal bl toolbar
bit 1 set means return internal tl toolbar
bit 2 set means return external bl toolbar
bit 3 set means return external tl toolbar

On exit

RO = object id of internal bl toolbar
R1 = object id of internal tl toolbar

R2 = object id of external bl toolbar
R3 = object id of external tl toolbar

Use

This method returns the object ids of the toolbars that are attached to a window object.
By setting the mask it is possible to control which ids are returned.

C veneer

extern _kernel _oserror *w ndow_get _tool _bars (unsigned int flags,
Obj ect I d wi ndow,
Obj ectld *ibl,
Objectld *itl,
Obj ectld *ebl,
Obj ectld *etl

314

Window class

Other SWis

SWI Window_GetPointerInfo (0x82883)

On entry
RO = flags

On exit

RO = x position
R1 =y position
R2 = buttons
bit set
0 adjust
1 menu
2 sdect
8 not over atoolbox window
R3 = Window id, or Wimp window handle if bit 8 set in R2
R4 = component id, or icon handle if bit 8 of R2 set

Use

This SWI is analogous to Wimp_GetPointerlnfo, but returns Object ids and
Component idsif the pointer is over atoolbox window.

C veneer

extern _kernel _oserror *w ndow_get _pointer_info (unsigned int flags,
int *x_pos,
int *y_pos,

int *buttons,
bj ect Id *w ndow,
Conponent | d *conponent

315

Other SWis

SWI Window_WimpToToolbox (0x82884)

On entry

RO = flags

R1 = Wimp window handle

R2 = icon handle

On exit

RO = toolbox object handle for window

R1 = component id

Use

This SWI returns the object handle and component id that contains the specified icon.
If the Wimp handle is not known by the toolbox, then the returned object id is 0.
Note that this only applies to Window objects.

C veneer

extern _kernel _oserror *w ndow_wi np_to_tool box (unsigned int flags,
int wi ndow_handl e,
int icon_handle,
Obj ectld *object,
Conponent I d *conponent

316

Window class

SWI Window_ExtractGadgetinfo (0x828be)

On entry

RO = flags
R1 = pointer window template
R2 = component id to match

On exit

RO = pointer to Gadget
R1 = size of gadget

Use

This SWI returns a pointer to a block of memory suitable for passing to
Window_AddGadget. It istypically used in conjunction with Toolbox_L ookupTemplate
and intended to be used for dynamic windows such as the Print dialogue box, or atask
manager type application.

Note that the returned area should be copied asit cannot be guaranteed to persist for the
duration of the task.

See Implementing hotspots on page 55 for an example of using this SWI.

C veneer

extern _kernel _oserror *w ndow_extract_gadget _info (unsigned int flags,
Obj ect Tenpl at eHeader *tenpl,
Conponent 1 d gadget,
voi d **desc,
int *size

K

317

Window events

Window events

318

The Window class generates the following Toolbox events:

Window_AboutToBeShown (0x82880)

Block

+8
+12
+ 16

+ 20...

Use

0x82880

flags (as passed in to Toolbox_ShowObject)
value as passed in R2 to ToolBox_ShowObject
block as passed in R3 to ToolBox_ShowObject

This Toolbox event is raised by the Toolbox when Toolbox_ShowObject is called on a
Window which has the appropriate bit set in its template flags word. It enables a client
application to set any appropriate attributes of the Window, before it appears on the

screen.

C datatype

typedef struct

{

Tool boxEvent Header hdr;

i nt
uni on

{

show_t ype;

TopLeft top_left;
W ndowShowbj ect Bl ock full _spec;

} info;
} W ndowAbout ToBeShownEvent ;

Window class

Window_HasBeenHidden (0x82890)

Block
+8 0x82890

Use

This Toolbox event is raised by the Toolbox when Toolbox_HideObject iscalled on a
Window which has the appropriate bit set in its template flags word. It enables a client
application to clear up after awindow has been closed. It is also raised when clicking a
non-local action button or clicking outside awindow that was opened with 'CreateM enu’
semantics.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} W ndowHasBeenHi ddenEvent ;

Window templates

The layout of a Window template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from aresourcefile. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation). Note that the
version in the object header should be 102.

For more details on relocation, see appendix Resource File Formats on page 505.

Field Sizein bytes Type

flags 4 word
help_message 4 MsgReference
max_help 4 word
pointer_shape 4 StringReference
max_pointer_shape 4 word
pointer_x_hot 4 word

pointer_y hot 4 word

menu 4 StringReference
num_keyboard_shortcuts 4 word

319

Window templates

Field Sizein bytes Type

keyboard shortcuts 4 ObjectOffset
num_gadgets 4 word

gadgets 4 ObjectOffset
default_focus 4 word
show_event 4 word

internal_bl 4 StringReference
internal _tl 4 StringReference
external_bl 4 StringReference
external _tl 4 StringReference
hide_event 4 word

window 88 WimpWindow
data variable array of bytes

320

Field

Vis_ Xxmin
Vis_ymin
Vis_xmax
Vis_ymax
scroll_x
scroll _y
behind
window_flags
title_fore
title_back
work_fore
work_back
scroll_outer
scroll_inner
title_inputfocus
filler
work_xmin
work_ymin
work_xmax
work_ymax
title flags
button_type
Sprite_area
min_width
min_height
title_text

title_validation

Sizein bytes

A DN N MDD DM DM DM DD PE R RP RP RP RP P P MDD DdD DD DD

A WimpWindow is an 88-byte structure with the following fields:

Type
word

word
word
word
word
word
word
word
byte
byte
byte
byte
byte
byte
byte
byte (must be 0)
word
word
word
word
word

word

Window class

SpriteAreaReference

half-word
half-word
MsgReference

StringReference

321

Window templates

Field Sizein bytes Type
title_buflen 4 word
num_icons 4 word (must be zero)

322

Keyboard short-cut

Field

flags

wimp_key code
key event

key show

Gadget

Field
flags
type/size
Xxmin
ymin
Xmax
ymax
component_id
help_text

max_help
data

Window Wimp event handling

Sizein bytes
4

4
4
4

Sizein bytes

R N - L S T S T R S

variable

Window class

Type
word

word
word

StringReference

Type
word

word
word
word
word
word
word
MsgReference
word

array of bytes

Certain Wimp events for a Window are handled by the Window class, and either acted
upon for you, or result in the raising of a Toolbox event. Such events are listed below:

Wimp event
Open Window Request

Close Window Request

Action

if the ‘auto-open’ bit is set for this Window object,
then Toolbox_ShowObject is called for this

Window

if the ‘auto-close’ bit is set for this Window object,
then Toolbox_HideObiject is called for this

Window

323

Window Wimp event handling

324

Wimp event
Pointer Leaving Window

Pointer Entering Window

Mouse Click

Key Pressed

User Msg

Action

if thereisapointer shape defined for this Window,
then the pointer is set back to its default shape

if thereisapointer shape defined for this Window,
then the pointer is set to that shape

if the Menu button has been pressed, and thereisa
Menu object attached to this Window, then the
Menu is shown using Toolbox_ShowObject

if akeyboard short-cut for the given Wimp key
code is attached to this Window, then its Toolbox
event israised as the next Wimp event for the
client application

Message HelpRequest

if ahelp messageis attached to this Window, then
a reply is sent on the application’s behalf

Window class

Toolbars

Toolbars are attachments to windows, and are used mainly astool boxes and statuslines.
They cannot exist purely by themselves. By using the toolbars supplied by the Window
module, applications will have a consistent mechanism for displaying/accessing such
functionality. It is not intended that they be used for anything beyond this.

User interface

A toolbar is a restricted window object — it cannot have any window furniture (such as a
title bar), nor does it have an absolute position when shown on the screen. It is anchored
either to the bottom left or to the top left of the parent's visible area; i.e. it does not move
or scroll when the parent scrolls its work area.

external top left internal top left

\ -_L/I Wi owy Cbsiet

internal bottom left

4

/4

external bottom left

A toolbar can be considered to be either internal (in which case its size will be clipped
when the parent resizes) or external (i.e. lying entirely outside the parent's visible area).
On moving a window with an external toolbar close to the extremities of the screen, the
bar will '‘bounce’ over the window until the window itself moves off screen.

Toolbars are displayed in a definite order:
I external toolbars will always be displayed above internal ones

325

Application program interface

I top left toolbars will always be displayed above bottom left ones.
Usually, thiswill only be noticed when reducing the size of awindow.

For example, when moving awindow to the left of the screen, the external toolbar will
be displayed above any toolbar inside the window.

Use of toolbars

Application tool box

Itisanticipated that the top |eft variety of toolbarswill be used as application tool boxes,
i.e. they will consist of gadgets that are used to control the behaviour of the application.
The decision asto whether an internal or external oneisused would typically depend on
the number of ‘tools’ that are required.

Satuslines
Internal bottom left toolbars are usually for status lines. For example:
The data is |oading, 50% conplete

and external bottom left toolbars for toolboxes that require width (e.g. because they
contain a writable) but are unlikely to be as wide as the work area (in which case they
would leave an irregular work space).

Note that if a toolbar contains a non-local action button then clicking on it will hide that
toolbar.

Application program interface

326

Attributes

Toolbar object attributes are described in the window attributes section on page 290.

Note that a toolbar should not have toolbars itself.

Window class

Manipulating a toolbar

Creating and deleting a toolbar object

Toolbar objects are created and deleted using the standard Toolbox_CreateObject and
Toolbox_DeleteObject methods.

Showing and Hiding

A toolbar can only be shown whilst its parent is showing. The only defined show typeis
ShowAsDefault. Thiswill make the window module show the toolbar in the place
appropriate for itstype. It is possible to hide atoolbar without hiding its parent. If a
toolbar ishidden, then thisis remembered’ such that hiding then showing the parent will
result in the toolbar still being hidden.

When atoolbar object is displayed on the screen using SWI Toolbox_ShowObject it
behaves in the same way as shown in User interface on page 325.

Toolbar methods

Toolbars use the same methods as windows (see Window methods on page 297).
However, the behaviour of the following methods are undefined:

Window_SetTitle

Window_GetTitle
Window_SetToolBars
Window_GetToolBars
Window_AddK eyboardShortcuts
Window_RemoveK eyboardShortcuts

Getting and setting the toolbars associated with a window object are described in
Window_GetToolBars 19 on page 314 and Window_SetTool Bars 18 on page 313.

Normally this would be done using ResEd.

327

Gadgets

Gadgets

Application Program Interface

328

Gadgets are not objects in their own right, but exist only as a component of a Window
object. Within that object they have unique component ids.

A gadget is essentially a part of a Window which provides functionality (for example, a
button or adider), and is usually implemented using Wimp icons. The use of iconsis
transparent to the client, who manipulates the gadgets using higher-level, abstract
methods which are appropriate to the particul ar gadget type.

Wherever a gadget isimplemented as a set of Wimp icons, the client can access these
using low-level Wimp SWIs, but in the vast majority of cases this should not prove
necessary.

Some gadgets are 'Composite’ in that they consist of gadgets themselves. These are
identifiable by the client asthey have aNULL icon list. The client will receive toolbox
events on both the composite gadget and the gadgets that make them up, but will
generaly only beinterested in the former. Certain gadgets have methods for accessing
the component ids of the gadgets that make them up, e.g.
NumberRange_GetComponents.

Some gadgets support anti-aliased fontsin place of the system font (which may itself be
an outline font on RISC OS 3 (version 3.5). When thisis the case, the Window module
handles mode changes and losing fonts on the client’s behalf.

The window modulereservesall component ids greater than Oxffffff. Standard dialogues
use the range 0x800000 to Oxffffff, leaving O to Ox7fffff free for the client.

There are many kinds of gadget. The Toolbox provides facilities to allow the client
application to manipulate a particular gadget in a manner which is appropriate to that

gadget, rather than in ‘low-level’ terms like setting the state of a Wimp icon. The set of
gadgets is defined to fit in with the RISC OS 3 Style Guide, and thus to encourage a

standard look and feel across dialogue boxes.

The available set of gadgets is currently:

Gadget See page
Action buttons 342
Adjuster arrows 350
Button gadget 352
Display fields 360

Window class

Gadget See page
Draggable gadgets 363
Labels 371
Labelled boxes 372
Number ranges 373
Option buttons 381
Pop-up menus 388
Radio buttons 392
Siders 400
Sring sets 408
Writable fields 416

Attributes

All gadgets have the following attributes which are specified in awindow template, and
most can be manipulated at run-time by the client application:

Attribute Description

flags word Bit Meaning
30 when set, gadget is at the back, i.e. created first
31 when set, gadget is ‘faded’

type/size this holds the size of the gadget’'s template (including its
header) in its top two bytes, and the type of the gadget in its
lower two bytes. The list of currently known gadget types is
given below.

Xmin the minimum x coordinate of the gadget’s bounding box (in
window work area coordinates).

ymin the minimum y coordinate of the gadget’s bounding box (in
window work area coordinates).

Xmax the maximum x coordinate of the gadget’s bounding box (in
window work area coordinates).

ymax the maximum y coordinate of the gadget’s bounding box (in

component id

window work area coordinates).

this identifies the gadget uniquely within this Window

329

Application Program Interface

330

Attribute Description

help message when a HelpRequest message is received for this gadget,
then this string is sent back in a HelpReply message. If 0,
then the help message for the Window will be sent.

max help maximum length in bytes of the gadget’s help message.

Note that for the gadgets listed below, the sizeis’built in’ to the Window module, and so
the size can be set to zero though gadgets.h defines gadget_Type which includes the
size.

The type of agadget is one of:

Gadget type Typefield
Action Button 128
Option Button 192
Labelled Box 256
Label 320
Radio Button 384
Display Field 448
Writable Field 512
Slider 576
Draggable 640
PopUp Menu 704
Adjuster Arrow 768
Number Range 832
String Set 896
Button 960

Manipulating a Gadget

Each gadget type defines its own set of methods, and many will have a number of
Toolbox events associated with them. This allows the application to receive Toolbox
events from user actions, rather than having to deal with mouse clicks and drags on
Wimp icons. Most of the low-level Wimp operations are handled automatically by the
Toolbox.

Window class

Normally all of the gadgets in a particular Window object will be specified in the
template for that Window in the resource file, but the Toolbox provides two methods for
adding and removing gadgets from a Window object dynamically, namely
Window_AddGadget and Window_RemoveGadget.

All gadgets have standard attributes, which give the gadget's component id in this
Window, the gadget’s bounding box, and the help message to be associated with this
gadget. These attributes are normally specified in the application’s resource file; the
Help messages can be changed and read using the methods
Gadget_SetHelpMessage/Gadget GetHelpMessage. Sending back a help message is
automatically handled by the Toolbox.

Each gadget has a flags word which defines the behaviour of that gadget; the exact list of
bit settings in this flags word depends on the type of gadget. The client can read and set
this word using the Gadget_GetFlags and Gadget_SetFlags methods. The top 8 bits of
this flags word are generic flags of relevance to all gadgets. The other 24 bits are used to
hold Gadget-specific flags. Currently the defined generic flags are:

Bit M eaning when set
30 Gadget is at the back, i.e. created first
31 Gadget is ‘faded’

There is a gadget method which returns a list of Wimp icon numbers for the icons used
to implement the gadget. The details of this list and the way in which icon numbers map
to the individual components of the gadget are specific to each gadget, and this mapping
is documented below for each gadget type. The method is called Gadget_GetlconlList.

This is implementation specific and subject to change in future releases of the window
module:

Gadget type Number of icon Icon list

numbersreturned
action button 1 the icon for the action button
option button 2 the icon for the sprite

the icon for the text

labelled box 2 the icon for the label
the icon for the box

label 1 the icon for the label
radio button 2 the icon for the sprite
the icon for the text
display field 1 the icon for the display field

331

Application Program Interface

332

Gadget type

writable field
dlider

draggable
pop-up menu
adjuster arrow
number range
string set

button

Number of icon Icon list

numbersreturned
1 theicon for the writable field
3 the icon for the ‘well’

the icon for the ‘background’
the icon for the ‘bar’

the icon for the draggable
the icon for the PopUp’s button

1

1

1 the icon for the arrow
0 composite

0

composite
1

Composite gadgets have specific methods to get the component ids of their constituent
gadgets. In thisway run time methods (e.g. the colour of adider in anumber range) may

be applied to the underlying gadgets. It is unlikely however that thiswill be particularly
useful and could in fact affect the behaviour of the toolbox.

Window class

Generic gadget methods
In all of the methods on gadgets

RO isused as a flags word

R1 holds the object id of this gadget’s parent Window object
R2 holds the method code

R3 holds the component id for this gadget

R4-R9 potentially holding method-specific data

The following methods can be applied to all gadgets.

Gadget_GetFlags 64

On entry

RO=0

R1 = Window object id
R2 = 64

R3 = Gadget component id

On exit

RO = flags settings for this gadget

Use

This method returns the flags word for the given gadget.

C veneer

extern _kernel _oserror *gadget_get_flags (unsigned int flags,
Obj ectld wi ndow,
Conponent | d gadget,
unsi gned int *flags_settings

333

Generic gadget methods

Gadget_SetFlags 65

On entry

R1 = Window object id

R2 = 65

R3 = Gadget component id
R4 = new flags settings

On exit
R1-R9 preserved

Use

This method sets the flags word for the given gadget. The only flags that can usefully be
changed are the faded bits. Modifying other bits is undefined.

C veneer

extern _kernel _oserror *gadget_set_flags (unsigned int flags,
Obj ect I d wi ndow,
Conponent 1 d gadget,
unsi gned int new flags_settings

334

Window class

Gadget_SetHelpMessage 66

On entry

RO = flags

R1 = Window object id

R2 = 66

R3 = Gadget component id

R4 = pointer to help message text

On exit
R1-R9 preserved

Use

This method sets the help message which will be returned, when ahelp request is
received for this gadget.

C veneer

extern _kernel _oserror *gadget_set_hel p_nmessage (unsigned int flags,
Obj ect1d wi ndow,
Conponent | d gadget,
char *nessage_t ext

335

Generic gadget methods

Gadget_GetHelpMessage 67

On entry

RO = flags

R1 = Window object id

R2 = 67

R3 = Gadget component id
R4 = pointer to buffer

R5 = size of buffer

On exit

R5 = size of buffer required to hold help text (if R4 was 0)
else buffer pointed at by R4 holds help text
R5 gives number of bytes written to buffer

Use

This method returns the help message which will be returned, when ahelp request is
received for this gadget.

C veneer

extern _kernel _oserror *gadget_get _hel p_message (unsigned int flags,
Obj ect 1 d wi ndow,
Conponent 1 d gadget,
char *buffer,
int buff_size,
int *nbytes

336

Window class

Gadget_GetlconList 68

On entry

RO = flags

R1 = Window object id

R2 = 68

R3 = Gadget component id
R4 = pointer to buffer

R5 = size of buffer

On exit

R5 = size of buffer required to hold icon list (if R4 was 0)
else buffer pointed at by R4 holds list of Wimp icon numbers for this gadget
R5 holds humber of bytes written to buffer

Use

This method returns alist of Wimp icon numbers (integers) for the icons used to
implement this gadget. For a composite gadget the size returned will be zero.

C veneer

extern _kernel _oserror *gadget _get _icon_list (unsigned int flags,
Obj ectld wi ndow,
Conponent 1 d gadget,
int *buffer,
int buff_size,
int *nbytes

)

The client should not cache the results of this call, since these values may change at a
later date.

337

Generic gadget methods

Gadget_SetFocus 69

On entry
RO = flags

On exit
R1-R9 preserved

Use

This method sets the input focus to the given component of awindow. Note that such a
component must be awritable field, or acomposite gadget which includes awritable
field such as a number range.

C veneer

extern _kernel _oserror *gadget_set_focus (unsigned int flags,
Obj ect I d wi ndow,
Conponent | d conponent

)

Gadget_GetType 70

On entry

RO=0

R1 = Window object id
R2=70

R3 = Gadget component id

On exit
RO = type of this Gadget

Use

Usage:
This method returns the type of the given gadget.

C veneer

extern _kernel _oserror *gadget_get_type (unsigned int flags,
Obj ect 1 d wi ndow,
Conponent 1 d gadget,
int *type

338

Window class

Gadget_MoveGadget 71

On entry

RO = flags

R1 = Window object id

R2=71

R3 = Gadget component id

R4 = pointer to new bounding box

On exit
R1-R9 preserved

Use

This method moves an already created gadget within a window. Note that as a new
bounding box is given, it allows the gadget to be resized as well, though the exact
behaviour of this feature will depend on the gadget type.

C veneer

extern _kernel _oserror *gadget _nove_gadget (unsigned int flags,
Obj ect I d wi ndow,
Conponent 1 d gadget,
BBox *new_bbox

339

Generic gadget methods

Gadget_GetBBox 72

On entry

RO = flags

R1 = Window object id
R2=72

R3 = Gadget component id
R4 = pointer to 4 word buffer

On exit
R1-R9 preserved

Use

This method copies the bounding box of a gadget into the supplied buffer.

C veneer

extern _kernel _oserror *gadget_get_bbox (unsigned int flags,
Obj ect I d wi ndow,
Conponent 1 d gadget,
BBox *box

)

340

Window class

Gadget Wimp event handling

Wimp event Action

Mouse Click if Select or Adjust on an action button, option button or radio
button member, then if a Toolbox event is associated with this
event, it israised. Otherwise the appropriate default Toolbox
event israised.
if on a pop-up menu button, then the associated Menu is
shown.
if on adraggable then a
Draggable Click/Draggable DoubleClick is reported.

Key Pressed This depends on the type of gadget.

For awritable field, if the keystroke is a down or up arrow,
then the caret is placed in the next or previous writable field
(using the field’s ‘before’ and ‘after’ values).

If return is pressed, then the Default action button is activated
(if present).
User Message Message HelpRequest

if a help message is attached to the gadget, then a reply is sent
on the application’s behalf.

341

Action buttons

Action buttons

An action button is normally used to invoke an operation which is available from a
dialogue box (e.g. a Cancel button or an OK button):

erpd
Spacing i A
[+ Show | Leck
Cancel || O

I~

action buttons

Such a gadget contains atext string, which is specified when the gadget is created.
The above attributes can be set and read using the methods
ActionButton SetText / ActionButton_GetText

Whenever the user clicks the Select or Adjust buttons on an action button an
ActionButton_Selected event is raised with the flags word indicating which mouse
button was used. The client can supply an alternative Toolbox event code in thetemplate
description for the action button, and can set and read this event code at run-time using
the ActionButton_SetEvent and ActionButton_GetEvent methods.

The client can al so specify an object which is to be shown when the action button is
clicked on using the Select or Adjust buttons. The name of this object can be givenin the
action button template or manipulated at run-time using the
ActionButton_SetClickShow and ActionButton_GetClickShow methods.

In a dialogue box, one action button can be chosen as the Default action button. This
button is displayed with adistinctive border, and is activated when Return is pressed. An
action button is marked as Default by setting a bit in the flags word for the gadget.

One action button can also be marked as the Cancel action button, by setting abit in its
flags word. This action button is also activated when its parent dialogue box has the
input focus, and the user presses Escape.

By default, when an action button is clicked using Select, its parent dialogue box is

closed. This behaviour can be over-ridden by setting a bit in the action button’s flags
word, to indicate that it is a ‘local’ button, whose effect is only to raise its associated
Toolbox event. This facility is generally used for buttons which only have a local effect
on the state of the dialogue box itself (e.g. a Try button in a font selector).

342

Window class

Clicking Adjust on an action button, raisesits Toolbox event and keeps its parent
diaogue box open (if it is marked as a Cancel action button, then the contents of any
Gadgets are returned to how they were when the parent window was last shown). The
Toolbox does not do this for you.

Bits in the flags word for an action button have the following meaning:

Bit M eaning

0 thisisthe Default action button

1 thisisthe Cancel action button

2 thisisalocal action button

3 if set, then the ‘click show’ object will be shown

transiently (i.e. with Wimp_CreateMenu
semantics — default is to show persistently)

Action button methods

ActionButton_SetText 128

On entry

RO = flags

R1 = Window object id

R2 =128

R3 = Gadget component id

R4 = pointer to text to appear in button

On exit
R1-R9 preserved

Use

This method sets the text which will be displayed in this action button.

C veneer

extern _kernel _oserror *actionbutton_set_text (unsigned int flags,
Obj ect 1 d wi ndow,
Conponent |l d action_button,
char *text

343

Action buttons

ActionButton_GetText 129

On entry

RO = flags

R1 = Window object id

R2 =129

R3 = Gadget component id
R4 = pointer to buffer

R5 = size of buffer

On exit

R5 = size of buffer required to hold text (if R4 was Q)
else buffer pointed at by R4 holds text
R5 holds number of bytes written to buffer

Use

This method returns the text which is currently displayed in this action button.

C veneer

extern _kernel _oserror *actionbutton_get_text (unsigned int flags,
bj ect I d wi ndow,
Conponent 1 d acti on_button,
char *buffer,
int buff_size,
int *nbytes

344

Window class

ActionButton_SetEvent 130

On entry

RO = flags

R1 = Window object id

R2 = 130

R3 = Gadget component id
R4 = Toolbox event code

On exit
R1-R9 preserved

Use

This method sets the Toolbox event code which will be raised when this action button is
clicked. Therest of the Toolbox event block remains the same asin
ActionButton_Selected.

C veneer

extern _kernel _oserror *actionbutton_set_event (unsigned int flags,
Qbj ect1d wi ndow,
Conponent 1 d acti on_button,
int event

345

Action buttons

ActionButton_GetEvent 131

On entry

RO = flags

R1 = Window object id
R2 =131

R3 = Gadget component id

On exit

RO holds Toolbox event code

Use

This method returns the Toolbox event code which will be rai sed when this action button
isclicked.

C veneer

extern _kernel _oserror *actionbutton_get_event (unsigned int flags,
Obj ect 1 d wi ndow,
Conponent 1 d acti on_button,
int *event

346

Window class

ActionButton_SetClickShow 132

On entry

RO = flags
R1 = Window object id
R2 =132
R3 = Gadget component id
R4 = object id of the object to show (or 0)
R5 = show flags: bit 0
if clear show persistently
if set show transiently

On exit
R1-R9 preserved

Use

This method allows the client to specify the object to show when the user clicks Select
or Adjust on the action button. By setting bit 0 of R5 it is possible to control whether the
show is persistent or not.

If R4is0, then no object should be shown.

C veneer

extern _kernel _oserror *actionbutton_set_click_show (unsigned int flags,
Obj ect1d wi ndow,
Conmponent 1 d acti on_button,
bj ect1d obj ect,
int show_ flags

347

Action buttons

ActionButton_GetClickShow 133

On entry

RO = flags

R1 = Window object id

R2 =133

R3 = Gadget component id
On exit

RO = id of object to be shown
R1 = show flags

Use

This method returns the object id of the object which will be shown when the user clicks
Select or Adjust on the action button. If bit O of R1 is set on exit, it means that the object
will be shown transiently.

C veneer

extern _kernel _oserror *actionbutton_get_click_show (unsigned int flags,
Obj ectld wi ndow,
Conponent |1 d acti on_button,
Obj ectld *object,
int * show flags

348

Window class

Action button Toolbox events

ActionButton_Selected (0x82881)

Block

+8 0x82881
+12 flags
bits 0, 1 and 2 show how the activation was done;
bit 0 set means Adjust was held down
bit 1 reserved
bit 2 set means Select was held down
If bits 0-2 are al 0, then Return was pressed on a default action
button, or Escape was pressed activating the cancel action button.
bits 3, 4 and 5 indicate what type of button it is:
bit 3 set means that thisis a Default action button
bit 4 set means that thisis a Cancel action button
bit 5 set means that thisisalocal action button (i.e its parent window
has not been closed)

Use

This Toolbox event is rai sed when the user clicks on an action button (or in the case of a
default action button presses Return), and the client has not specified their own event to
be associated with this button (by setting the event in the template to non-zero).

The returned flags word indicates whether the action button is a default and/or a cancel
button, and also which mouse button was used to select the button.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

} ActionButtonSel ect edEvent;

Action button templates

Field Sizein bytes Type

text 4 MsgReference
max_text_len 4 word
click_show 4 StringReference
event 4 word

349

Adjuster arrows

Adjuster arrows

An adjuster arrow gadget will be displayed as an up, down, left or right arrow icon, and
clicking on the arrow will raise an Adjuster_Clicked Toolbox event, with an indication
of whether the change is up or down:

Font cache |:I!21 7 EBgtes
~——— adjuster arrows

The adjuster arrow’s flags word indicates whether the adjuster is an incrementor or
decrementor. There is also a bit to indicate whether this is part of an ‘up/down’ or
‘left/right’ pair.

Bits in the flags word for an adjuster arrow have the following meaning:

Bit M eaning

0 setd] ‘increment’
cleard ‘decrement’

1 setl] one of an ‘up/down’ pair
clear one of a ‘left/right’ pair

Adjuster arrows Toolbox events

Adjuster_Clicked (0x8288c)

350

Block

+8 0x8288¢
+16 (0O down, 10 up)

Use

This Toolbox event is raised when the user clicks the mouse on an adjuster arrow
(Adjust clicks on a down arrow are reported as ‘up’, on an up arrow as ‘down’).

C datatype

typedef struct
{

Tool boxEvent Header hdr;

i nt direction;
} AdjusterdickedEvent;

Window class

Adjuster arrow templates
There are no extra fields than those in the gadget header.

351

Button gadget

Button gadget

The Button gadget issimilar to aWimp icon. The main differences are that a Button will
always have indirected data and that not all icon flags are settable:

I A Button created as sprite only cannot be made into any sort of text Button.
I A Button created as text only cannot be made into a sprite only Button.

I A sprite only Button can only refer to sprites by name and these must be in the
Wimp sprite pool or the task’s sprite area.

Bits in the flags word for a Button gadget have the following meanings:

Bit M eaning

0 Use the task's sprite area (requires the window to have client sprite
area) for sprite only buttons else use the Wimp sprite pool

1 return menu clicks

Button methods

Button_GetFlags 960

On entry

RO = flags

R1 = Window obiject id
R2 =960

R3 = Gadget component id

On exit

RO = icon flags

R1-R9 preserved

Use

This method returns the flags of the given button gadget. The bits have the same
meaning as those of a Wimp Icon.

C veneer

extern _kernel _oserror *button_get_flags (unsigned int flags,
Obj ect I d wi ndow,
Conponent I d button,
int *icon_flags

352

Window class

Button_SetFlags 961

On entry

RO = flags

R1 = Window object id

R2 = 961

R3 = Gadget component id
R4 = clear word

R5 = EOR word

On exit
R1-R9 preserved

Use

This method sets the flags of a button. The effect of the clear word and the EOR word
are analogous to those of Wimp_SetlconState, except that, as described above, not al
combinations are settable.

C veneer

extern _kernel _oserror *button_set_flags (unsigned int flags,
Obj ectld wi ndow,
Conponent I d button,
int clear_word,
int EOR_word

353

Button gadget

Button_SetValue 962

On entry

RO = flags

R1 = Window object id

R2 = 962

R3 = Gadget component id
R4 = new value

On exit
R1-R9 preserved

Use

This method sets the value (i.e. text or sprite name) of a Button.

C veneer

extern _kernel _oserror *button_set_value (unsigned int flags,
Obj ect I d wi ndow,
Conponent I d button,
char *val ue

354

Window class

Button_GetValue 963

On entry

RO = flags

R1 = Window object id

R2 = 963

R3 = Gadget component id

R4 = pointer to buffer to hold string
R5 = size of buffer

On exit

R5 = size of buffer required (if R4 was 0)
else buffer pointed at by R4 holds string
R5 holds humber of bytes written to buffer

Use

This method returns the value of a Button.

C veneer

extern _kernel _oserror *button_get_value (unsigned int flags,
bj ect I d wi ndow,
Conponent 1 d button,
char *buffer,
int buff_size,
int *nbytes

355

Button gadget

Button_SetValidation 964

On entry

RO = flags

R1 = Window object id

R2 = 964

R3 = Gadget component id
R4 = new value

On exit
R1-R9 preserved

Use
This method sets the validation string (e.g. sprite name) of a Button.

C veneer

extern _kernel _oserror *button_set_validation (unsigned int flags,
bj ect I d wi ndow,
Conponent |1 d button,
char *val ue

356

Window class

Button_GetValidation 965

On entry

RO = flags

R1 = Window object id

R2 = 965

R3 = Gadget component id

R4 = pointer to buffer to hold string
R5 = size of buffer

On exit

R5 = size of buffer required (if R4 was 0)
else buffer pointed at by R4 holds string
R5 holds humber of bytes written to buffer

Use

This method returns the validation string of a Button.

C veneer

extern _kernel _oserror *button_get_validation (unsigned int flags,
Obj ect I d wi ndow,
Conponent1d button,
char *buffer,
int buff_size,
int *nbytes

357

Button gadget

Button_SetFont 966

On entry

RO = flags

R1 = Window object id

R2 = 966

R3 = Gadget component id

R4 = pointer to font name to use
R5 = width in 16ths of a point
R6 = height in 16ths of a point

On exit
R1-R9 preserved

Use

This method makes the Button use an anti-aliased font. If the font nameis NULL, then
the field will use system font.

C veneer

extern _kernel _oserror *button_set_font (unsigned int flags,
Obj ect I d wi ndow,
Conponent 1 d button,
char *font_nane,
int wdth,
int height

Button toolbox events

The button gadget does not have any toolbox events. All click or key presses are
returned as Wimp events but with the component and window id of the tasksid block
updated.

Button templates

Field Sizein bytes Type
button_flags 4 Word
value 4 MsgReference
max_value 4 word

358

Window class

Field Sizein bytes Type
validation 4 StringReference
max_validation 4 word

359

Display fields

Display fields

A display field gadget is used to display information in a ‘read-only’ manner:
Ruthes| © Rearn Comuters Lid, 1393

The display field has a ‘slabbed in’ boxed display area in which a text string is
displayed. The contents of the display area can be set and read using the
DisplayField_SetValue and DisplayField_GetValue methods.

Bits in the flags word for a Label have the following meaning:

Bit M eaning

1-2 justification:
00 left-justified
10 right-justified
20 centred

Display field methods

DisplayField_SetValue 448

On entry

RO = flags

R1 = Window obiject id
R2 = 448

R3 = Gadget component id
R4 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text string shown in a display field. The change is immediately
visible if the parent dialogue box is currently on the screen.

360

Window class

C veneer

extern _kernel _oserror *displayfield_set_value (unsigned int flags,
bj ect1d wi ndow,
Conponent I d di splay_field,
char *text

DisplayField_GetValue 449

On entry

RO = flags

R1 = Window object id
R2 = 449

R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required else (if R4 was 0)
buffer pointed at by R4 contains text
R5 holds humber of bytes written to buffer

Use

This method returns the text string shown in a display field.

C veneer

extern _kernel _oserror *displayfield_get_value (unsigned int flags,
Qbj ect1d wi ndow,
Conponent 1 d display_field,
char *buffer,
int buff_size,
int *nbytes

361

Display fields

DisplayField_SetFont 450

On entry

RO = flags

R1 = Window object id

R2 = 450

R3 = Gadget component id

R4 = pointer to font name to use
R5 = width in 16ths of a point
R6 = height in 16ths of a point

On exit
R1-R9 preserved

Use

This method makes the display field use an anti-aliased font. If the font nameis NULL,
then the field will use system font.

C veneer

extern _kernel _oserror *displayfield_set_font (unsigned int flags,
Obj ect1d wi ndow,
Conponent | d display_field,
char *font_nane,

int wdth,
int height
)
Display field templates
Field Sizein bytes Type
text 4 MsgReference
max_text len 4 word

362

Window class

Draggable gadgets

A draggable gadget consists of a sprite, text or text& sprite which appearsin a dialogue
box, and can be dragged using the mouse. When the drag occurs, if thisis a sprite or
text& sprite draggabl e, then the Toolbox will use the standard CMOS bit to decide
whether to do a ‘solid’ drag or a ‘dotted line’ drag.

Solid dragging makes use of the DragAnObject module allowing both text and sprite to
be dragged (unlike DragASprite).

If it is a sprite draggable gadget, then the sprite used can be set and read dynamically
using the Draggable_SetSprite/Draggable_GetSprite methods.

If it is a text draggable gadget, then the text used can be set and read dynamically using
the Draggable_SetText/Draggable_GetText methods.

With a draggable of type click or doubleclick, a clicks or double click on the gadget will
be returned as a Wimp mouse click event, but the toolbox id block will be updated to
reflect the component and window (i.e. no special toolbox event is returned).

When the user begins to drag a draggable, the client can choose to receive a
Draggable_DragStarted Toolbox event. When the drag ends, the client will always
receive a Draggable DragEnded Toolbox event.

Bits in the flags word for a draggable have the following meaning:

Bit M eaning
0 warn of drag start using Draggable_DragStarted
1 draggable contains a sprite
2 draggable contains text
3-5 Draggable type:
00 drag only

10 click, drag, doubleclick
20 click selects, doubleclick, drag

6 deliver drag ended events as Toolbox id's rather than Wimp
windows (if possible)

7 dragged object has a drop shadow (if solid)

8 dragged object is not dithered (if solid)

363

Draggable gadgets

Draggable methods

Draggable_SetSprite 640

On entry

RO = flags

R1 = Window object id

R2 = 640

R3 = Gadget component id

R4 = pointer to sprite name to use

On exit
R1-R9 preserved

Use
This method sets the name of the sprite which will be used for this draggable.

C veneer

extern _kernel _oserror *draggabl e_set_sprite (unsigned int flags,
Obj ect I d wi ndow,
Conponent | d draggabl e,
char *sprite_nane

364

Window class

Draggable_GetSprite 641

On entry

RO = flags

R1 = Window object id

R2 = 641

R3 = Gadget component id

R4 = pointer to buffer (or 0)

R5 = size of buffer to hold sprite name

On exit

R5 = size of buffer required for message text (if R4 was 0)
else buffer pointed at by R4 holds sprite name
R5 holds humber of bytes written to buffer

Use

This method returns the name of the sprite which is currently being used for this
draggable.

C veneer

extern _kernel _oserror *draggabl e_get_sprite (unsigned int flags,
Obj ectld wi ndow,
Conponent | d draggabl e,
char *buffer,
int buff_size,
int *nbytes

365

Draggable gadgets

Draggable_SetText 642

On entry

RO = flags

R1 = Window object id

R2 = 642

R3 = Gadget component id
R4 = pointer to text to use

On exit
R1-R9 preserved

Use

This method sets the text which will be displayed in this draggable.

C veneer

extern _kernel _oserror *draggabl e_set_text (unsigned int flags,
bj ectld wi ndow,
Conponent | d draggabl e,
char *text

366

Window class

Draggable_GetText 643

On entry

RO = flags

R1 = Window object id

R2 = 643

R3 = Gadget component id
R4 = pointer to buffer

R5 = size of buffer

On exit

R5 = size of buffer required (if R4 was 0)
else buffer pointed at by R4 holds text
R5 holds humber of bytes written to buffer

Use

This method returns the text which is currently being used for this draggable.

C veneer

extern _kernel _oserror *draggabl e_get_text (unsigned int flags,
Obj ect I d wi ndow,
Conponent | d draggabl e,
char *buffer,
int buff_size,
int *nbytes

367

Draggable gadgets

Draggable_SetState 644

On entry

RO = flags

R1 = Window object id

R2 = 644

R3 = Gadget component id

R4 = state (0 0 deselected, 1 0 selected).

On exit
R1-R9 preserved

Use
This method sets the Draggabl e's state to either selected or deselected.

C veneer

extern _kernel _oserror *draggabl e_set_state (unsigned int flags,
Obj ect I d wi ndow,
Conponent | d draggabl e,
int state

Draggable_GetState 645

On entry

RO = flags

R1 = Window object id

R2 = 645

R3 = Gadget component id

On exit
RO = state

Use
This method returns the Draggables’ state (0 [0 deselected, 1 0 selected).

C veneer

extern _kernel _oserror *draggabl e_get_state (unsigned int flags,
Obj ect I d wi ndow,
Conponent | d draggabl e,
int *state

368

Window class

Draggable Toolbox events

Draggable_DragStarted (0x82887)

Block

+8 0x82887

+12 flags
bit 0 means Adjust is held down
bit 1 will be 0
bit 2 means Select is held down
bit 3 means Shift is held down
bit 4 means Ctrl is held down

Use

This Toolbox event is raised when the user starts a drag of a draggable gadget.

C datatype

typedef struct

{
Tool boxEvent Header hdr ;

} Draggabl eDragSt art edEvent;

369

Draggable gadgets

Draggable_DragEnded (0x82888)

Block
+8 0x82888
+12 flags:

bit O clear then:

+16 Wimp window handle of end of drag

+20 Wimpicon handle of end of drag

or bit O set:

+16 Window id of end of drag

+20 component id of end of drag
+24 destination x coordinate of mouse pointer
+28 destination y coordinate of mouse pointer

Use

This Toolbox event is rai sed when the user ends a drag of adraggable gadget. By setting
bit 6 when the draggableis created it is possible to receive events in terms of window
object ids and gadget component ids. If the drag ended over a non-toolbox window (or
bit 6 was zero) then Wimp handles are returned.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

i nt wi ndow_handl e;
int i con_handl e;

i nt X;

i nt y;

} Draggabl eDragEndedEvent ;

Draggable templates

Field Sizein bytes Type

text 4 MsgReference
max_text_len 4 word

sprite 4 StringReference
max_sprite_len 4 word

370

Labels

Label templates

Window class

A label consists of some explanatory text which appearsin adialogue box. The client
application can choose whether the bounding box of the label is shown by avisible box

or not.

I alabel contains text, which is unchangeable at run-time
I alabel can beright-justified, left-justified, or centred, asindicated by its flags word.

Bitsin the flags word for alabel have the following meaning:

Bit
0
1-2

Field
[abel

M eaning

omit bounding box
justification:

0 O left-justified
10 right-justified
2 0 centred

Sizein bytes Type
4 MsgReference

371

Labelled boxes

Labelled boxes
A labelled box gadget is used for collecting together a set of related items:

Printer pork
_ Home o Parallel
_) Serial _) Hek

The box has alabel which can be either text or a sprite, and this label will appear at the
top left hand corner of the box (a bit in the flags word for the gadget indicates whether
text or aspriteisto be used). ResEd creates |abelled boxes with bit 30 set so that they are
created behind other gadgets.

There are no Toolbox events or methods associated with alabelled box.

Bitsin the flags word for alabelled box have the following meaning:

Bit Meaning
0 labelled box has a sprite label (default is text)
1 in the case of a spritelabel, theicon isfilled if this bit is set,

otherwise it isunfilled. Thisis because certain sprites will
sufficiently obscure the border, and may be masked so should
allow the tile sprite to show through.

Labelled box templates

Field Sizein bytes Type
label 4 MsgReference or StringReference

372

Window class

Number ranges

A number range is a gadget used to display one of arange of possible integer or fixed
point values. The valueis shown in adisplay area, which can either be writable (in
which caseawritablefield isused) or not writable (in which case adisplay field is used).
It isalso possible to create a Number Range where there is no display area.

The value which the client gives to a Number Range Gadget (and which it receives

back) is a signed integer, to which a ‘precision’ will be applied. The precision is
essentially the power of 10 by which the value should be divided, and the number of
places which will be shown after the decimal point. For example to get the value 3.42
displayed in a Number Range the client would pass the value 342 with a precision of 2.
Normally the precision of a Number Range is specified when the Gadget is created, but
it can be set and read at run-time using the NumberRange_SetBounds and
NumberRange GetBounds methods. A Number Range can be made to display merely
integer values by specifying a precision of 0. The maximum precision is 10, i.e. there
can be up to ten digits after the decimal point.

The value displayed in a number range gadget is set using the NumberRange_SetValue
method. The value passed is an integer which will be divided by 10*precision and will
have precision digits after the decimal point. The value of a number range is read using
the NumberRange_GetValue method,; this value is an integer which should be divided
by 107precision to get its real equivalent. A number range has a lower and upper bound
which constrains the values to which it can be set; these bounds are in ‘integer’ terms
(i.e. before the precision has been applied). For example if a number range gadget has a
precision of 3, and the client wishes to have a lower bound of 1.000 and an upper bound
of 4.999, then the lower and upper bounds of the gadget should be set to 1000 and 4999
respectively.

A number range can also be given a step size. The step size is expressed in integer terms
(i.e. before the precision is applied). For example if a number range gadget has a
precision of 2, then setting a step size of 5 will result in a ‘real’ step size of 0.05. The
bounds and step size can be set and read using the NumberRange_SetBounds and
NumberRange_GetBounds methods.

A number range can also have a pair of adjuster arrows placed 8 OS Units to the right of
its display area (either the writable or display field). When the user clicks on these
arrows, the value of the number range is either decremented or incremented by its step
size, subject to its lower and upper bounds (and displayed using its precision).

A number range can also have an associated slider. The slider is like a slider gadget,
except that it can only be positioned relative to the Number Range's display area. The
possible positionings are:

I a horizontal slider 8 OS Units to the right of the display area
I a horizontal slider 8 OS Units to the left of the display area.

373

Number ranges

When both a slider and adjusters are requested, then the adjusters appear at either end of
the slider, rather than the positioning outlined above.

If the Number Rangeiswritable, then the underlying Writable Field isgiven avaidation

string which will only permit input of numeric digits (0-9), the decimal point character

for the current territory (unless the precision field is 0) and where applicable the minus

sign. It also has ‘before’ and ‘after’ values which are used to move the caret in the same
way as described for Writable Fields. Another Writable may reference the component id
of a Number Range in its before and after fields.

Whenever the value changes in a number range gadget, the client is informed of the
change via an NumberRange_ValueChanged Toolbox event, if it has set the appropriate
bit in the gadget's flags word.

Included in the definition of the number range is the length of the display field in OS
Units (display_length as shownMNumber range templates on page 380). This is
ignored if there is no slider.

Bits in the flags word for a number range gadget have the following meanings:

Bit M eaning when set

0 inform client of value changes using
NumberRange_ValueChanged

2 writable (default is read-only display)
no display area

4 has adjuster arrows

5-7 slider type:

value meaning

0 O noslider
1 0O slider to the right of the display area
2 0O slider to the left of the display area

8-9 justification:

00 left-justified
10 right-justified

20 centred
12-15 desktop colour of slider bar
16-19 desktop colour of slider background

Note: slider colours are in the same flag position as a Slider Gadget.

374

Window class

Number range methods

NumberRange_SetValue 832

On entry

RO = flags

R1 = Window object id

R2 = 832

R3 = Gadget component id
R4 = new value

On exit
R1-R9 preserved

Use

This method sets the value displayed in the number range’s display area, subject to its
bound constraints. The value will be displayed taking into account its precision.

C veneer

extern _kernel _oserror *nunberrange_set_val ue (unsigned int flags,
Obj ect I d wi ndow,
Conponent 1 d nunber _range,
int val ue

375

Number ranges

NumberRange_GetValue 833

On entry

RO = flags

R1 = Window object id
R2 = 833

R3 = Gadget component id

On exit

RO holds current value

Use

This method returns the value of the number range. Note that thisis the integer form of
what is actually displayed in the display area (i.e. not taking ‘precision’ into account).

C veneer

extern _kernel _oserror *nunberrange_get_val ue (unsigned int flags,
bj ect I d wi ndow,
Conponent | d nunber _r ange,
int *val ue

376

Window class

NumberRange_SetBounds 834

On entry

RO = flags
bit 0 set means change the lower bound
bit 1 set means change the upper bound
bit 2 set means change the step size
bit 3 set means change the precision

R1 = Window object id

R2 =834

R3 = Gadget component id

R4 = new lower bound

R5 = new upper bound

R6 = new step size

R7 = precision

On exit
R1-R9 preserved

Use

This method is used to set the lower and upper bounds, the step size and the precision of
the number range. Note that the bounds and step size are expressed in terms of an integer
before they are transformed using the precision value.

C veneer

extern _kernel _oserror *nunberrange_set_bounds (unsigned int flags,
Qbj ect1d wi ndow,
Conponent | d nunber _r ange,
int |ower_bound,
int upper_bound,
int step_size,
int precision

377

Number ranges

NumberRange_ GetBounds 835

On entry

RO = flags
bit O set means return the lower bound
bit 1 set means return the upper bound
bit 2 set means return the step size
bit 3 set means return the precision
R1 = Window object id
R2 = 835
R3 = Gadget component id

On exit

RO = lower bound
R1 = upper bound
R2 = step size
R3 = precision

Use

This method returns the lower and upper bounds, the step size and the precision of the
number range, depending on the setting of the appropriate flags bits. Note that the
bounds and step size are expressed in terms of an integer before they are transformed
using the precision value.

C veneer

extern _kernel _oserror *nunberrange_get_bounds (unsigned int flags,
Obj ectld wi ndow,
Conponent I d nunber _r ange,
int *lower_bound,
int *upper_bound,
int *step_size,
int *precision

378

Window class

NumberRange_GetComponents 836

On entry

RO = flags
bit O set means return the numerical field
bit 1 set means return the left adjuster
bit 2 set means return the right adjuster
bit 3 set means return the slider

R1 = Window object id

R2 = 836

R3 = Gadget component id

On exit

RO = numeric id
R1 = left adjuster id
R2 = right adjuster id
R3 = dlider id

Use

This method returns the component ids of the gadgets that make up the number range
depending on which flag bits are set. Note that the numeric id will be the component id
of the Display Field or Writable, dependent on how the Gadget was created.

C veneer

extern _kernel _oserror *nunberrange_get_conponents (unsigned int flags,
Qoj ect | d wi ndow,
Conponent | d nunber _r ange,
Conponent | d *nuneric_field,
Conponent | d *| eft_adj uster,
Conponent | d *right_adj uster,
Conponent I d *slider

379

Number ranges

Number range Toolbox events

NumberRange_ValueChanged (0x8288d)

Block

+8 0x8288d

+16 new value shown in display area
Use

This Toolbox event is raised when the value of the Number Range has changed.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

int new_val ue;
} Nunmber RangeVal ueChangedEvent ;

Number range templates

Field Sizein bytes Type
lower_bound 4 word
upper_bound 4 word
step size 4 word
initial_value 4 word
precision 4 word
before 4 word
after 4 word
display_length 4 word

380

Option buttons

Window class

An option button is used to indicate whether a particular option has been chosen or not
(e.g. case-sensitive in a Find dialogue box). It has two states — on and off:

[+ Worizantal seroll
|Vertieal serall

Such a gadget is displayed with a standard option icon, together with a textual label; the
textual label can be read and set at run-time using the OptionButton_SetLabel and
OptionButton_GetLabel methods.

The on/off state of the option button can be set and read using the
OptionButton_SetState/OptionButton_GetState methods.

If bit zero of the flags is set, then whenever the state of the Option Button changes, an
OptionButton_StateChanged event is raised, with the flags word indicating which
mouse button was used. The client can supply an alternative Toolbox Event code in the
template description for the Option Button, and can set and read this event code at
run-time using the OptionButton_SetEvent and OptionButton_GetEvent methods.

Bits in the flags word for Option Button have the following meaning:

Bit M eaning

0 generate a OptionButton_StateChanged when user clicks.

2 when set, this means that the Option Button is ‘On’ when first
created.

381

Option buttons

Option button methods

OptionButton_SetLabel 192

On entry

RO = flags

R1 = Window object id

R2 =192

R3 = Gadget component id

R4 = pointer to string giving label to use

On exit
R1-R9 preserved

Use
This method sets the label which will be used for this option button.

C veneer

extern _kernel _oserror *optionbutton_set_label (unsigned int flags,
Obj ect I d wi ndow,
Conponent 1 d opti on_button,
char *I| abel

382

Window class

OptionButton_GetLabel 193

On entry

RO = flags

R1 = Window object id

R2 =193

R3 = Gadget component id
R4 = pointer to buffer

R5 = size of buffer

On exit

R5 = size of buffer required to hold label (if R4 was 0)
else buffer pointed at by R4 holds label
R5 holds humber of bytes written to buffer

Use

This method returns the label which is currently displayed for this option button.

C veneer

extern _kernel _oserror *optionbutton_get_|abel (unsigned int flags,
Qbj ect1d wi ndow,
Conponent 1 d opti on_button,
char *buffer,
int buff_size,
int *nbytes

383

Option buttons

OptionButton_SetEvent 194

On entry

RO = flags

R1 = Window object id

R2 =194

R3 = Gadget component id
R4 = Toolbox event code

On exit
R1-R9 preserved

Use

This method sets the Toolbox event which will be raised when the state of this option
button changes. The rest of the Toolbox event block remains the same asin
OptionButton_StateChanged.

C veneer

extern _kernel _oserror *optionbutton_set_event (unsigned int flags,
Obj ect 1 d wi ndow,
Conponent 1 d opti on_button,
int event

384

Window class

OptionButton_GetEvent 195

On entry

RO = flags

R1 = Window object id
R2 = 195

R3 = Gadget component id

On exit
RO holds Toolbox event code.

Use

This method returns the Toolbox event which will be raised when this option button’s
state changes.

C veneer

extern _kernel _oserror *optionbutton_get_event (unsigned int flags,
bj ect1d wi ndow,
Conponent 1 d opti on_button,
int *event

OptionButton_SetState 196

On entry

RO = flags

R1 = Window object id
R2 =196

R3 = Gadget component id
R4 = state (@1 off, 10 on)

On exit

R1-R9 preserved

Use

This method sets the option button’s state to on or off.

C veneer

extern _kernel _oserror *optionbutton_set_state (unsigned int flags,
Qbj ect1d wi ndow,
Conponent 1 d opti on_button,
int state

385

Option buttons

OptionButton_GetState 197

On entry

RO = flags

R1 = Window object id

R2 =197

R3 = Gadget component id

On exit
RO = state

Use

This method returns the option button’s statél(@ff, 1 0 on).

C veneer

extern _kernel _oserror *optionbutton_get_state (unsigned int flags,
Obj ect 1 d wi ndow,
Conponent 1 d opti on_button,
int *state

386

Window class

Option button Toolbox events

OptionButton_StateChanged (0x82882)

Block
+8 0x82882
+12 flags

bits 0, 1 and 2 show how the activation was done;
bit 0 set means Adjust was held down
bit 1 reserved
bit 2 set means Select was held down
+16 newstate(00O off, 10 on)

Use

This Toolbox event is raised when the state of an option button changes, and the client
has not specified an event to be associated with this change.

The returned flags word indicates which mouse button was used to select the button.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

int new_st at e;
} OptionButtonSt at eChangedEvent ;

Option button templates

Field Sizein bytes Type
flags 4 word
label 4 MsgReference
max_label_len 4 word
event 4 word

387

Pop-up menus

Pop-up menus

A pop-up menu gadget will be displayed as a ‘menu-arrow’ icon, and its associated
Menu object will be displayed when a mouse button is clicked over this icon:

ﬂ Pager | A4 iGeneriz OP) B {Gemeric B9
&3 {Geseric B
8 {Geseric B#)
Fanfold (Generic DF)
pop-up menu icon ?

associated menu object

The Menu to be displayed can be set and read dynamically at run-time using the
PopUp_SetMenu and PopUp_GetMenu methods. It can also be done with ResEd.

If the appropriate bit is set in the flags word, then a PopUp_AboutToBeShown Toolbox
event is delivered before the associated pop-up Menu is shown. This allows the client to
build a new Menu object and associate it with the pop-up using PopUp_SetMenu.

Note that Menu ‘hits’ will be reported for the Menu object, and not for the pop-up
gadget. The Menu will have as its parent, the dialogue box in which the pop-up exists,
and the pop-up itself as the parent component. Note also that the associated pop-up
Menu may also have its flags word bit set which requests a warning before it is shown;
this event will be delivered after the PopUp_AboutToBeShown event.

Bits in the flags word for a pop-up Menu have the following meaning:

Bit M eaning

0 warn using PopUp_AboutToBeShown before the associated
menu is shown.

388

Window class

Pop-up menu methods

PopUp_SetMenu 704

On entry

RO = flags

R1 = Window object id

R2 =704

R3 = Gadget component id
R4 = object id of Menu to use

On exit
R1-R9 preserved

Use

This method sets the Menu object which will be shown when the pop-up button is
clicked on.

C veneer

extern _kernel _oserror *popup_set_nenu (unsigned int flags,
Obj ect I d wi ndow,
Conponent1d popup,
Obj ectld nenu

389

Pop-up menus

PopUp_GetMenu 705

On entry

RO = flags

R1 = Window object id

R2 = 705

R3 = Gadget component id

On exit
RO = Menu object id

Use

This method returns the object id of the Menu which will be shown when the pop-up
button is clicked on.

C veneer

extern _kernel _oserror *popup_get_nenu (unsigned int flags,
Obj ect1d wi ndow,
Conponent I d popup,
bj ectId *nmenu

390

Window class

Pop-up menu Toolbox events

PopUp_AboutToBeShown (0x8288b)

Block

+8 0x8288b
+16 objectid of Menu object which will be shown
(note that the ‘self’ id and component fields will refer to the
parent Window’s object id and the PopUp’s component id respectively)

Use
This Toolbox event is raised when the user has clicked on a pop-up button. The Menu is

actually shown on the next call to Wimp_Poll.

C datatype

typedef struct

{
Tool boxEvent Header hdr;

bj ectld nenu_i d;
} PopUpAbout ToBeShownEvent ;

Pop-up menu templates

Field Sizein bytes Type
menu 4 StringReference

391

Radio buttons

Radio buttons

392

A radio button is used for making a single choice from a set of options, and a number of
radio buttons are normally used in a ‘group’. The group to which a radio button belongs
is determined by the radio button's ‘group number’.

A radio button is displayed as a standard radio icon, together with a text label. The label
for a radio button can be set and read using the RadioButton_SetLabel and
RadioButton_GetLabel methods.

A radio button has two states: ‘On’ and ‘Off’. Only one radio button in a group is in the
on state at any one time. When the user clicks on a radio button its state is set to on.

i Dutet biep _) Loud baip

Whenever the state of a radio button changes, a RadioButton_StateChanged event is
raised, with the flags word indicating which mouse button was used, if the appropriate
bit was set in the flags word for the radio button, requesting that a
RadioButton_StateChanged event is generated. The client can supply an alternative
Toolbox event code in the template description for the radio button, and can set and read
this event code at run-time using the RadioButton_SetEvent and RadioButton_GetEvent
methods.

Bits in the flags word for a radio button have the following meaning:

Bit Meaning
0 generate a RadioButton_StateChanged when user clicks
2 when set, means that the radio button is On when first created

Window class

Radio button methods

RadioButton_SetLabel 384

On entry

RO = flags

R1 = Window object id

R2 =384

R3 = Gadget component id

R4 = pointer to string giving label to use

On exit
R1-R9 preserved

Use
This method sets the |abel which will be used for this radio button.

C veneer

extern _kernel _oserror *radi obutton_set_label (unsigned int flags,
Obj ect I d wi ndow,
Conponent1d radi o_button,
char *1| abel

393

Radio buttons

RadioButton_GetLabel 385

On entry

RO = flags

R1 = Window object id

R2 = 385

R3 = Gadget component id
R4 = pointer to buffer

R5 = size of buffer

On exit

R5 = size of buffer required to hold label (if R4 was 0)
else buffer pointed at by R4 holds label
R5 holds number of bytes written to buffer

Use

This method returns the label which is currently displayed for this radio button.

C veneer

extern _kernel _oserror *radi obutton_get_| abel (unsigned int flags,
Obj ect1d wi ndow,
Conponent |1 d radi o_button,
char *buffer,
int buff_size,
int *nbytes

394

Window class

RadioButton_SetEvent 386

On entry

RO = flags

R1 = Window object id

R2 = 386

R3 = Gadget component id
R4 = Toolbox event code

On exit
R1-R9 preserved

Use

This method sets the Toolbox event which will be raised when the state of theradio
button changes. The rest of the Toolbox event block will be the same as for the
RadioButton_StateChanged Toolbox event.

C veneer

extern _kernel _oserror *radi obutton_set_event (unsigned int flags,
Obj ect I d wi ndow,
Conponentld radi o_button,
int event

395

Radio buttons

RadioButton_GetEvent 387

On entry

RO = flags

R1 = Window object id

R2 = 387

R3 = Gadget component id

On exit

RO holds Toolbox event code

Use

This method returns the Toolbox event which will be raised when this radio button’s
state changes.

C veneer

extern _kernel _oserror *radi obutton_get_event (unsigned int flags,
Obj ect1d wi ndow,
Conponent | d radi o_button,
int *event

396

Window class

RadioButton_SetState 388

On entry

RO = flags

R1 = Window object id

R2 = 388

R3 = Gadget component id
R4 = state (00 Off, 10 On)

On exit
R1-R9 preserved

Use

This method sets the state of the radio button to On or Off. When a button which is Off
is set to On, the button which was previously On is set to Off. If by setting the radio
button to Off, this would result in no button being On in the group, then an error is
returned.

C veneer

extern _kernel _oserror *radi obutton_set_state (unsigned int flags,
Obj ect 1 d wi ndow,
Conponent 1 d radi o_button,
int state

397

Radio buttons

RadioButton_GetState 389

On entry

RO = flags

R1 = Window object id

R2 = 389

R3 = Gadget component id

On exit

RO = state (0 O Off, 10 On)
R1 = component id of radio button which is On in the group

Use
This method returns the state of the given radio button.

The client can determine which radio button is On in agroup by calling this method for
any one button in the group, since the component id of the On buttonisalso returned (in
R1).

C veneer

extern _kernel _oserror *radi obutton_get_state (unsigned int flags,
Obj ect1d wi ndow,
Conponent |1 d radi o_button,
int *state,
Conponent |d *sel ected

398

Radio button Toolbox events

RadioButton_StateChanged (0x82883)

Block
+8 0x82883
+12 flags

Window class

bits 0, 1 and 2 show how the activation was done:
bit 0 set means Adjust was held down
bit 1isreserved
bit 2 set means Select was held down
+16 state (00 Off, 10 On)
+20 component id of the radio button within the group which

was On before this state change

Use

This Toolbox event is raised when the state of aradio button changes, and the client has
not specified an event to be associated with this change.

The returned flags word indicates which mouse button was used to select the radio

button.

C datatype

typedef struct
{

Tool boxEvent Header hdr;

int
Conponent | d

state;
ol d_on_button;

} Radi oButt onSt at eChangedEvent ;

Radio button templates
Field
group_number
| abel
max_label_len

event

Sizein bytes
4

E

Type
word

MsgReference
word

word

399

Sliders

Sliders

400

A slider gadget is used to display a ‘bar’, which may be draggable by the user, displayed
in a ‘well’. Whether the slider is draggable or not is indicated by its flags word:

alune -/

By setting a bit in the slider’s flags word the client can request that all changes in the
slider’s value are returned as the bar is dragged. Alternatively it may request to receive
value changes only when the bar dragging stops (i.e. when the user releases the mouse
button). Such changes are reported via the Slider_ValueChanged Toolbox event.

A slider is specified as either being ‘vertical’ or ‘horizontal’.

A slider has associated with it an initial value, a minimum value, a maximum value, and
a step size. If the slider is draggable (indicated by a flags bit), then when the user drags
the bar with the mouse, the bar moves a number of pixels commensurate with the step
size, and the bounding box of the slider.

The maximum and minimum values and the step size can be set and read dynamically
using the Slider_SetBound/Slider_GetBound methods.

A Slider also has associated with it, the colour used for its ‘bar’ — this is a Desktop
colour. This is normally specified in the resource file, but can be set and read
dynamically using the Slider_SetColour/Slider_GetColour methods.

The current value of the slider can be set and read using the
Slider_SetValue/Slider_GetValue methods.

Bits in the flags word for a slider have the following meaning:

Bit M eaning

0 if set then deliver value changes when user clicks/drags

1 if set then deliver value changes constantly whilst dragging else
just at start/end

3 if set means slider is vertical (default is horizontal)

4 if set then bar is draggable/clickable

12-15 the desktop colour of the bar

16-19 the desktop colour of the background

Window class

Slider methods

Slider_SetValue 576

On entry

RO = flags

R1 = Window object id

R2 = 576

R3 = Gadget component id
R4 = integer value

On exit
R1-R9 preserved

Use

This method sets the value of a slider. The slider’s bar is changed accordingly.

C veneer

extern _kernel _oserror *slider_set_value (unsigned int flags,
bj ectld wi ndow,
Conponent 1 d slider,
int val ue

401

Sliders

402

Slider_GetValue 577

On entry

RO = flags

R1 = Window object id
R2 = 577

R3 = Gadget component id

On exit

RO = slider’s value

Use

This method returns the value of a slider.

C veneer

extern _kernel _oserror *slider_get_value (

unsi gned int flags,
Obj ect I d wi ndow,
Conponent I d slider,
int *val ue

Window class

Slider_SetBound 58

On entry

RO = flags
bit 0 set means set upper bound
bit 1 set means set lower bound

bit 2 set means set step size
R1 = Window object id
R2 = 578

R3 = Gadget component id
R4 = upper bound

R5 = lower bound

R6 = step size

On exit
R1-R9 preserved

Use

This method sets the lower bound, upper bound and step size of a slider gadget.

C veneer

extern _kernel _oserror *slider_set_bound (unsigned int flags,
Obj ectld wi ndow,
Conponent 1 d slider,
int upper_bound,
int |ower_bound,
int step_size

403

Sliders

Slider_GetBound 579

On entry

RO = flags
bit O set means return upper bound
bit 1 set means return lower bound
bit 2 set means return step size

R1 = Window object id

R2 =579

R3 = Gadget component id

On exit

RO = upper bound
R1 = lower bound
R2 = step size

Use

This method returns the lower bound, upper bound and step size of a slider gadget.

C veneer

extern _kernel _oserror *slider_get_bound (unsigned int flags,
Obj ect I d wi ndow,
Conponent 1 d slider,
int *upper_bound,
int *lower_bound,
int *step_size

404

Window class

Slider_SetColour 580

On entry

RO = flags

R1 = Window object id
R2 = 580

R3 = Gadget component id
R4 = Desktop colour value for bar
R5 = Desktop colour value for background

On exit
R1-R9 preserved

Use
This method sets the Desktop colour used in a dlider.

C veneer

extern _kernel _oserror *slider_set_colour (unsigned int flags,
Obj ect I d wi ndow,
Conponent1d slider,
int bar_col our,
int back_col our

405

Sliders

Slider_GetColour 581

On entry

RO = flags

R1 = Window object id
R2 = 581

R3 = Gadget component id

On exit

RO = Desktop colour value for bar
R1 = Desktop colour value for background

Use
This method returns the Desktop colour used in aslider.

C veneer

extern _kernel _oserror *slider_get_colour (unsigned int flags,
Qbj ect1d wi ndow,
Conponent 1 d slider,
int *bar_col our,
int *back_col our

406

Window class

Slider Toolbox events

Slider_ValueChanged (0x82886)

Block
+8 0x82886
+12 flags:

bits 0 -2:
0 means ‘start of drag or just click’
1 means ‘drag still in progress’
2 means ‘drag has ended’
+ 16 new value of slider.

Use

This Toolbox event is raised when the value of the slider has changed. This may be due
to an update caused by a user action (e.g. dragging the bar).

C datatype

typedef struct

{

Tool boxEvent Header hdr;

int new_val ue;
} SliderVal ueChangedEvent;

Slider templates

Field Sizein bytes Type
lower_bound 4 word
upper_bound 4 word
step_size 4 word
initial_value 4 word

407

String sets

String sets

408

A string set is agadget used to display one of an ordered set of text strings.

The string which is shown in the display area is known as the ‘selected string’. The
display area can be either writable (in which case a writable field is used) or not writable
(in which case a display field is used).

A string set has a pop-up Menu placed 8 OS Units to the right of the display area. The
client supplies a set of available strings, and the Toolbox will display the selected string
in the string set's display area. The Toolbox will build a Menu on the client's behalf, and
display it when the pop-up menu button is clicked. The selected string will be shown as
ticked in the Menu, and hits on the Menu will result in the string corresponding to the
Menu entry text becoming the selected string.

If the string set is writable, then if the user enters a string which is not in the string set,
no entry would be shown as ticked in an associated pop-up Menu.

The set of available strings can be set at run-time using the StringSet_SetAvailable
method. The selected string is set and read using the StringSet_SetSelected and
StringSet_GetSelected methods.

Whenever the selected string changes in a string set gadget, the client is informed of the
change via a StringSet_ValueChanged Toolbox event, if it has set the appropriate bit in
the gadget’s flags word.

If a string set is writable, it can also have a set of allowable characters which the user can
type into the display area. This is identical to the ‘a’ directive used in a Wimp icon’s
validation string.

The set of allowable characters can be set at run-time using the StringSet_SetAllowable
method.

In the template description for a writable string set, the client specifies the component
ids of any writable fields which come before and after it. These are used to move the
caret between writable fields when the user presses the arrow and tab keys. A special
value of- 1 indicates that there is no writable field before or after this one.

Bits in the flags word for a string set gadget have the following meanings:

Bit Meaning

0 inform client of changes to the selected string using
StringSet_ValueChanged

1 writable (default is read-only display)

3 inform client just before showing the menu

Window class

Bit M eaning
4 does not have any display field or writable
5-6 justification:

00 left-justified
10 right-justified
20 centred

String set methods

StringSet_SetAvailable 896

On entry

RO = flags

R1 = Window object id

R2 = 896

R3 = Gadget component id

R4 = pointer to block of contiguous strings which are to be used as the
available set of strings

On exit
R1-R9 preserved

Use

This method is used to set the available set of strings in a string set, and a pop-up menu

will be built from them. Strings are separated using a comma (,’); a comma must be
escaped using the \ character, if the client wishes it to appear in the display area. To get
the '\ character itself, \\' should be used.

Note that there is no StringSet_GetAvailable.

C veneer

extern _kernel _oserror *stringset_set_available (unsigned int flags,
bj ect I d wi ndow,
Conponentld string_set,
char *strings

409

String sets

410

StringSet_SetSelected 898

On entry

RO = flags
bit O set meansindex of string is supplied in R4
clear means the string itself is supplied
R1 = Window object id
R2 = 898
R3 = Gadget component id
R4 = pointer to string to be selected or R4 = index of string to be selected

On exit
R1-R9 preserved

Use

This method sets which string in the string set is selected. The string can either be
specified as atext string or as an index into the array of available strings (depending on

the setting of bit O in the flags word). The selected string is shown in the string set’s
display area, and will be ticked in the associated pop-up Menu.

C veneer

extern _kernel _oserror *stringset_set_selected (unsigned int flags,
Obj ect 1 d wi ndow,
Conponent 1 d string_set,
char *string_to_select

Window class

StringSet_GetSelected 899

On entry

RO = flags

bit O set means return index of selected string

clear means the string itself is returned

R1 = Window object id
R2 = 899
R3 = Gadget component id
R4 = index of selected string or R4 = pointer to buffer to hold selected string
R5 = size of buffer

On exit

RO = index of selected string (if bit O of flags word was set)
else
if R4 was 0 then R5 holds size of buffer required
else
buffer pointed at by R4 holds selected string
R5 holds humber of bytes written to buffer

Use

This method returns the currently selected string for this string set (i.e. the one shownin
the display area). This may be either an index into the set of available strings or a buffer
containing the string itself. If the selected string is not in the available set (e.g. it has
been typed into awritable string set), then the value - 1 isreturned if an index is
requested (by setting bit 0 of the flags word for this call).

C veneer

extern _kernel _oserror *stringset_get_selected (unsigned int flags,
Qbj ect1d wi ndow,
Conponentld string_set,

411

String sets

StringSet_SetAllowable 900

On entry

RO = flags

R1 = Window object id

R2 = 900

R3 = Gadget component id

R4 = pointer to string giving new set of allowable characters

On exit
R1-R9 preserved

Use

This method defines the set of allowable characters which can be typed into awritable
string set. The set is specified in the same way as a Wimp ‘a’ validation string directive
(without including the letter ‘a’).

C veneer

extern _kernel _oserror *stringset_set_allowable (unsigned int flags,
Obj ect I d wi ndow,
Conponentld string_set,
char *al | owabl e

412

Window class

StringSet_GetComponents 902

On entry

RO = flags
bit 0 set means return the a phanumerical field
bit 1 set means return the popup menu

R1 = Window object id

R2 = 902

R3 = Gadget component id

On exit

RO = aphanumeric id
R1 = popup id

Use

This method returns the component ids of the gadgets that make up the string set
depending on which flag bits are set. Note that the alphanumeric id will be the
component id of the Display Field or Writable, dependent on how the Gadget was
created.

C veneer

extern _kernel _oserror *stringset_get_conponents (unsigned int flags,
Qbj ect1d wi ndow,
Conponentld string_set,
Conponent | d *al phanuneric_field,
Conponent | d *popup_nenu
)

413

String sets

String set Toolbox events

414

StringSet_ValueChanged (0x8288e)

Block
+8 0x8288e
+12 flags

if bit O is set, then the text string was too long to fit into the event block
+ 16... text string shown in string set’s display area (or null string if too long to fit)

Use

This Toolbox event is raised when the value of the string set has changed. If the text
string was too long to fit into the event block, then bit O of the flags word is set.

C datatype

typedef struct
{
Tool boxEvent Header hdr;
char
string[sizeof (Tool boxEvent) - si zeof (Tool boxEvent Header)] ;
} StringSetVal ueChangedEvent;

StringSet_AboutToBeShown (0x8288f)

Block
+8 0x8288f

Use
This Toolbox event is raised just before the string set's menu is to be shown. This allows
the client to make changes to the string set just when it is used, rather than continually.

C datatype
typedef struct

{
Tool boxEvent Header hdr;
} StringSet About ToBeShownEvent ;

Window class

String set templates

Field Sizein bytes Type
string_set 4 MsgReference
initial_selected_string 4 MsgReference
max_selected_string_len 4 word
alowable 4 MsgReference
max_allowable 4 word
before 4 word
after 4 word

415

Writable fields

Writable fields

416

The writable field has a boxed display areain which atext string is displayed and can be
edited by the user. The contents of the display area can be set and read using the
WritableField_SetValue and WritableField_GetValue methods. The user can click the
mouse in awritable field and enter its value from the keyboard:

fefault screen IIﬂE'l i

Whenever the value in awritable field is changed, the client receives a
WritableField ValueChanged Toolbox event, if it has set the appropriate bit in the flags
word. Thiswill happen when the user presses a key whilst the caret isin it.

Note that it is possible to get different values from Writable GetValue on subsequent
calls, without receiving a ValueChanged Event in between. Thisis because the value
represents what is actually visible in the gadget.

A writable field can also have a set of alowable characters which the user can type into
the display area. This is identical to the ‘a’ directive used in a Wimp icon’s validation
string.

The set of allowable characters can be set at run-time using the
WritableField_SetAllowable method. To allow all characters, this attribute should be
NULL.

In the template description for a writable field, the client specifies the component ids of
writable fields which come ‘before’ and ‘after’ it. These are used to move the caret
between writable fields when the user presses the arrow and tab keys. A special value of
- 1 indicates that there is no writable field before or ‘after this one. The exact semantics
for the keys are as follows:

up-arrow or shift-TAB O move the caret to the writable field before the
one which currently has the caret

down-arrow or TAB 00 move the caret to the writable field after the one
which currently has the caret

Window class

Bitsin the flags word for awritable field have the following meaning:

Bit Meaning
0 inform of value changes using WritableField ValueChanged
2-3 justification:
00 left-justified
10 right-justified
20 centred
4 do not display text, use * for each character (password support)

Writable field methods

WritableField_SetValue 512

On entry

RO = flags

R1 = Window object id

R2 =512

R3 = Gadget component id

R4 = pointer to text string to use

On exit
R1-R9 preserved

Use

This method sets the text string shown in awritable field. The change isimmediately
visibleif the parent dialogue box is currently on the screen.

C veneer

extern _kernel _oserror *witablefield_set_value (unsigned int flags,
bj ect I d wi ndow,
Conponentld witable,
char *text

417

Writable fields

WritableField_GetValue 513

On entry

RO = flags

R1 = Window object id

R2 =513

R3 = Gadget component id
R4 = pointer to buffer

R5 = size of buffer

On exit

R5 = size of buffer required (if R4 was 0)
else buffer pointed at by R4 contains text
R5 holds number of bytes written to buffer

Use

This method returns the text string shown in awritable field.

C veneer

extern _kernel _oserror *witablefield_get_value (unsigned int flags,
Obj ect I d wi ndow,
Conponentld writable,
char *buffer,
int buff_size,
int *nbytes

418

Window class

WritableField _SetAllowable 514

On entry

RO = flags

R1 = Window object id

R2 =514

R3 = Gadget component id

R4 = pointer to string giving new set of allowable characters

On exit

R1-R9 preserved

Use

This method defines the set of allowable characters which can be typed into awritable
field. The set is specified in the same way as a Wimp ‘a’ validation string directive
(without including the letter ‘a’). If the string is NULL, then all characters are allowable.

C veneer

extern _kernel _oserror *witablefield_set_allowable (unsigned int flags,
bj ect I d wi ndow,
Conponentld writabl e,
char *all owed

419

Writable fields

WritableField _SetFont 516

On entry

RO = flags

R1 = Window object id

R2 = 516

R3 = Gadget component id

R4 = pointer to font name to use
R5 = width in 16ths of a point
R6 = height in 16ths of a point

On exit
R1-R9 preserved

Use

This method makes the writable field use an anti-aliased font. If thefont nameisNULL,
then the field will use system font.

C veneer

extern _kernel _oserror *witablefield set_font (unsigned int flags,
Obj ectld wi ndow,
Conponentld witable_field,
char *font_nane,
int wdth,
int height

420

Window class

Writable field Toolbox events

WritableField_ValueChanged (0x82885)

Block
+8 0x82885
+12 flags

if bit O is set, then the text string was too long to fit into the event block
+ 16... text string shown in writable field

Use

This Toolbox event is raised when the value of the writable field has changed. The text
string is copied into the event block, and is nul-terminated. If the text string wastoo long
to fit into the event block, then bit O of the flagsword is set and anull string is supplied.

C datatype

typedef struct
{
Tool boxEvent Header hdr;
char
string[si zeof (Tool boxEvent) - si zeof (Tool boxEvent Header)] ;
} Witabl eFi el dval ueChangedEvent ;

Writable field templates

Field Sizeinbytes Type
text 4 MsgReference
max_text_len 4 word
alowable 4 MsgReference
max_allowable len 4 word
before 4 word
after 4 word

421

Writable fields

422

17 ResEd $h

esEd isthetool used to construct and edit Toolbox resource files. It provides the
following:

A display of the object templates present in the resource file (called the resourcefile
display), each object template being represented by a named icon. You can drag
these icons to move and copy object templates between resource file displays (and
other co-operating applications).

A selection of pre-defined object templates for you to drag into aresource file
display (thisis the standard way to populate a resource file display with object
templates).

A specialised editor to alow you to edit all the various classes of object templates.

To use this chapter you should have a basic understanding of the Toolbox and objects.

Overview
The process for creating, editing, and saving a resource file can be summarised as
follows:
1 Start ResEd.
2 Open anew resource file display.
3 Open an object prototypes display containing pre-defined object templates.
4 Drag the object templates you require from the object prototypes window into the
resource file display.
5 Double-click on an object template to open an editing window for it.
6 Edit the object templates.
7 Savethe edited object templates into a resource file.

The following section, Creating and editing a Toolbox resource file, gives a detailed
description of the above process.

423

$

Creating and editing a Toolbox resource file

1

2

Inio

Py
it

424

Start ResEd in a similar way to other RISC OS applications, by double-clicking on
its applicationicon. It loads and installs an icon on the iconbar.

Open a new resource file display by clicking Select on the ResEd iconbar icon or
choosing New from the ResEd menu. A new, untitled resource file display will
appear on the screen.

The object prototypes window allows you to drag any prototype object template
into the resourcefile display. To open the object prototypeswindow click Adjust on
the iconbar icon or choose Prototypes... from the ResEd menu.

T et praiotypes [
= EBE [E B [F [

ColouDboe. Calmrban ocE Feenn FomDies

B [B [E Fd

[Dnadess © oy | Fomeny feobar Menu PriniDbo Proginto
- E @ @ ':L 1=
| i Syemhy Saole Tewd Protoyges.. F_E

L T8 |

B ®

Drag one or more object templates from the object prototypes window into the
resource file display.

1Ed | iyt oty Iz
= E O B [|

ColowDbos Colurbary ooE Fisiro FrevDcas
= Lin b e

] - =
@ I-u-rl:rln.l h;lu H'I::DEM Eh
E [E E T;gﬁa 'HiE\:w i
PiDbas Wndow [!

ResEd

5 Toedit aWindow object template double-click on itsicon in the resource file
display. An editing window will appear showing the object templatein full:

double click on an
object template icon an editing window for that template is displayed

| b B

= & -

6 When you have finished editing awindow object template, close the editing
window using the close icon (some object templates are displayed for editing in
dialogue boxes, and you close these by clicking on the OK button):

=] Phraiow nbpec! 5]
i
Labwllid boa
[L s
J Fadn Lkl | v s matn
=l =) Ak |

BT Arion . Fassin _'JI

7 Whenyou havefinished editing all the object templates you can savethem using the
Save option from the resource file display menu. This leadsto a Save as dialogue
box, which allows you to save some or all of your object templates.

A I..E E

A e

Cancel | Save |

425

Starting ResEd

Starting ResEd

Start ResEd in a similar way to other RISC OS applications, by double-clicking on its
application icon. It loads and installs an icon on the iconbar. It may also be loaded by
double-clicking on afile of type Resour ce, in which case thefileisloaded and
displayed.

Each resourcefileisdisplayed in itsown resourcefile display. If you load afilewhichis
already loaded, that file’s window is raised to the top of the window stack.

Whenever a resource file is loaded, a corresponding Sprites file is sought in the same
directory. If one is found its sprites are loaded with *iconsprites and used when
displaying the resources in the resource file display. Sprite files may also be loaded by
dragging to the iconbar icon.

The iconbar icon

426

The iconbar icon responds to the mouse in the following ways:

I clicking Select on the icon opens an empty resource file display
I clicking Menu on the icon opens the ResEd Menu

I clicking Adjust on the icon opens the object prototypes window.

Empty resource files are opened with incrementally-unique nddnes € | ed1,
Unti t| ed2 etc). Each one is opened in a slightly different position to the last.

The object prototypes window contains prototype object templates of each class. You
can drag these into the resource file display in order to populate it with object templates.
The object prototypes window is fully describedrtre object prototypes window on

page 427.

Theiconbar menu

Clicking Menu on the iconbar icon displays the following menu:

ResEd
Inl r
Prlezwy
Profolypas

Ot

Info displays an Info dialogue box.
New opens an empty, untitled resource file display.
Prototypes... opens the object prototypes window (described on page 427).

Quit exits the program.

ResEd

The object prototypes window

Resource file displays may be populated with object templates by dragging them in from
the object prototypes window. The templates are named after the classes they represent.
You can copy them into your resource file display by drag and drop, rename them as
desired, and then view and edit them by double-clicking on their icons.

7 E2 | Dbt prodotypas
==l m—— —_
E E = [E
ColourDe Colourifsr] Fimirdn Eort Dbas
— : e :
F [5] [
Foniklanu loonbar Pl i PrindDibog Froginio
T]
= = 4 [H
Cuit Savesa Sealy Teslba Widow [
The following object templates are available;
Colour Dbox Colour menu DCS Dbox File Info Dbox
Font Dbox Font menu Iconbar icon Menu
Print Dbox Prog Info Dbox Quit Dbox Save As Dbox

Scale Dbox Toolbar Window

To open or raise the object prototypes window, choose Prototypes... from the iconbar
menu or click Adjust on theiconbar icon. The object prototypes window is very similar
to an ordinary resource file display, but attempts to move, rename, modify or delete
object templateswithin it areignored. It is not possible to edit an object template within
the object prototypes window; instead you must first drag the object template into a
resource file display. The object prototypes window does not have a menu and only
Ctrl-Z and Ctrl-A keyboard short-cuts are available.

427

The resource file display

The resource file display

428

Theresource file display is Filer-like, in that it contains a grid of icons, one per object
template held in the resource file. The sprite associated with each icon isapictoria clue
astothetype of object template that icon represents; each class of object template hasits
own sprite. The text associated with each icon is the name assigned to that object
template.

BE it
0 B O |

Figinio Menu
@ B L
PrniDeo Soale Windice =

Icons may be selected, deselected and dragged from one resource file display to another
(asinthe Filer).

Editing an object template

To edit an object template, double-click on itsicon. A window will then open for that
object template. Some common features of editing object templates are described in
Editing object templatesin general on page 432.

For details of editing the individual types of object templates see
I Editing the Menu class on page 435

1 Editing a Window object template and gadgets on page 444

I Editing other classes on page 480.

Copying object templates

You can copy object templates between resource file displays by dragging their icons.
You can also make a copy of an object template within one resource file display by using
Shift-Drag Select.

Moving object templates

You can move an object template from one resource file display to another using
Shift-Drag Select. Thiswill remove the object template from the source window.

Note: Copy or move operations that would result in duplicate names are resolved by the
new object templates names being automatically disambiguated by the addition of a
unique numeric suffix (you will be warned if this happens).

ResEd

If you drag a selection into a different application, the result is the exporting of a
resource file containing just the selected object templates. Thisfileis named
Sel ection.

If the resource file display isthe target of a drag and drop or DataSave interaction from
another application, it checks the file type and rejects the file if not of type Resource or

Text (for more information on text files see Exporting and importing messages on

page 492). Resource files areimported into the resource file display and object template
names are disambiguated if necessary, as described above. Importing afile doesnot ater

the filename of the destination resource file display — the name of the incoming file is
simply ignored.

The resource file display menu

BT
[T
Birvi =
Enfusit iTiisads I

Clicking Menu on the resource file display shows the ResEd menu:

ReiEd
Fiks r
Edit I
Prodilypas

TheFilemenu
Info leads to a File Info dialogue box.

Saveleads to a Save as dialogue box, which includes a Selection button for saving only
the selected object templates.

Export messages leads to a Save as dialogue box allowing you to produce a text file
containing all the user-visible messages for the file (or selectiBayéselection is

set). The messages may then be edited (typically, translated into a different language)
and then re-imported by dropping the file back into the resource file display.

For more information about exporting and importing messageSxpeeting and
importing messages on page 492.

429

The resource file display

[
ey I
R raie P
Dbt .
Objacifags *0 e
Sebactal |
Clivir' sleon =2

430

The Edit menu

Copy (which is shaded unless only one object template is selected) leads to the
following dialogue box:

LR I el
| Mewikire

cance ||_copy |

The namefield isfilled in with the name of the selected object template. To make acopy
of the object template in the samefile, alter the name and click Copy.

Rename leads to a dialogue box with awritable icon for entering a new name for the
selected object template and a Rename button to accept the change:

Farame bo

| Mewikire
Gancel || Rename]
The writableiconisinitialy filled in with the current name. When Rename is pressed,

the object template is renamed unless a name clash would occur, in which case an error
message is issued instead.

You can also change an object template’s name by clicking Alt-Select inside the
icon’s name, editing the string and pressing Return:

EE| Hingl I EE| mingl * I
a H 4 @ B
lJun\u S =t M:‘nu_ | S ===t
click Alt-select inside the icon’s name edit the name and press Return

Pressing Escape or clicking outside the writable icon cancels the rename.
Delete deletes all the selected object templates.

Object flags allows you to edit the settings of the object flags for the selected object
templates. Se&he Object flags dialogue box on page 431 for more details.

Select all selects all the object templates in a resource file display.

Clear selection deselects all the selected object templates.

Prototypes...

This option displays the object prototypes window.

ResEd

The Object flags dialogue box

You can edit most object template data by double-clicking onitsicon. Thereis, however,
a32-hit flagsfield in the object header. These flags are applicableto all classes of object,
and you may view the flags of an individual object template by selecting it and entering
the Object flags dialogue box. It has the following appearance:

Ctject ags

Aufo-creale
I YRE 0 Mo

Aafo-shorm
s i Mo A

Shared chyect
J¥es & ho

Ancesior object
_J¥es @ Mo

Cancel || ox |

To summarise, the flags are:

Bit M eaning when set

0 create object when resource file is loaded

1 show object as soon as it is created

2 object is shared

3 mark this as an Ancestor object
If there is one object template sel ected, or multiple object templates which have identical
flag values, the buttons will be set to Yes or No as appropriate. If there are multiple

selected object templates with different flag settings, then the flags which differ will be
set to Asls, indicating to the user that the flag value differs across the object templates.

You may adjust the settings as required, and on pressing OK the new flag valueswill be
applied to the selected object templates. Any flags which are set to As Iswill not be
applied to the selected object templates; each object template will retain its existing

value for those flags. So, for example, you could change a number of object templatesto
be ‘Shared’ without altering their other flags.

431

Editing object templates in general

Editing object templates in general

432

Once you have dragged an object template from the Objects prototype window into the
resource file display you can edit it by double-clicking on itsicon. You can then edit a
properties box for that object template specifying how you want it to appear and behave.
All the object properties boxes share the following features.

Length fields

Help messages
The Window and Menu object templates, and all gadget templates, include thefacility to
specify a help message:

| He g nent Lan;ﬂ'ulzl

If you switch on the Help text option you are then able to enter a help message into the
associated message field:

[/ Helpwat | Help message i | Lengn| -] s

By default an asterisk is displayed in the Length field. This asterisk ensures that,
whatever string you enter into the message field, the exact length of that string
(including its terminator) will be passed to the Tool box.

Alternatively you can manually change the size of the L ength field to be greater than the
length of the help message itself. Thisisuseful if you wish to alter the help message at
run-time. If you type a number into the L ength field directly, then, when you click on
OK, the size of the Length field will be set to the length of the string you entered +1
(unless the number you entered is greater than the length of the string, in which case the
number will remain asyou entered it).

The following are some points to bear in mind when entering help text:

1 If you switch off the Help text option then any help message you entered in the
associated message field will be removed.

I If you switch on the Help text option, but leave the associated message field empty,
then the Interactive help window will go blank when the user moves the pointer
over the relevant object.

Other length fields

Some other options in object properties boxes behave in a similar manner to the above;
for example, editing the Titles of objects.

ResEd

The selection model

ResEd supports some new selection techniques to improve the way you can manipulate
objects and object templates.

Selection highlighting
ResEd provides two levels of selection with two corresponding types of highlight:

1 afull highlight for a selection within awindow that has the input focus
I apartial highlight for the previous selection in a desel ected window.

For example, when you select one or more object templates in the object prototypes
window and drag them to a resource file display, the original object templates remain
partially highlighted. This allows you to return to the object prototypes window and, by
clicking on any of the object templates within the original selection, automatically select
all of the original selection. For example:

- it prototy s E
= = 3 [|
=] Tt] | ColurDoo Cokrring nCE Flgdrde FomeDeas
- f -]
a2 2 2B B
E | — E -
| Goale | \ E' @ 5@& Sae T%. .-,;E.;;. L
LY
object templates fully highlighted object templates remain partially
in resource file display highlighted in previous window

You can use this additional selection technique throughout ResEd; for example, you can
select menu entries when editing a Menu object template, and still retain them asa
selection if you temporarily need to edit a different window:

E] = Meny Coodetber | E] = Meny Coodetber |

_ _
[& [&
=1 =1

T B T B I BB
Window has input focus ~ two menu entries selected menu entries still selected
within the window when the window no longer

has the input focus

433

Editing object templates in general

434

Box selection

If you use the mouse to drag a Select box around a group of object templates, you can
control whether al the objects (even those partly) within the box are selected, or just the
ones wholly within the box:

1= Lintdedl *
ﬁ . : [dragging a box around a group
m [iconbar | of object templates will select an
: ob'ecJt templ F‘E tl holl g
| | j plate partly or wholly
E ii | within the Select box
= |
Select box
1= Lintdedl *
. : dragging a box around a group
\me,,.._, ErmE of object templates while holding
: : down Shift will select only objects
@ ii | wholly within the Select box
- [—
sous I

Groups of gadgets (in the Window editor) or groups of menu entries (in the Menu editor)
can be selected in asimilar way.

Cancel and OK

Cancel

Clicking Cancel (or pressing Escape) will close the dialogue box without making any
changes.

Clicking Adjust Cancel (or pressing Shift-Escape) will |eave the dial ogue box displayed
but will remove any changes made since opening the box.

OK

Clicking OK (or pressing Return) will close the dialogue box and include any changes
in the object template.

Clicking Adjust OK (or pressing Shift-Return) will leave the dialogue box displayed
and update all changes made since opening the box (e.g. if you increased the contents of
a help message field, the Length field would then be increased automatically).

Editing the Menu class

ResEd

Double-clicking on a menu object template in the resource file display will display a
Menu editing window with the following appearance:

] Weru: Blenu
=

click Menu inside the editing window to
display the top-level menu

-

-P.Hrlu Emiry |

double-click on the menu title to display the

Menu properties dialogue for the menu

double-click on a menu entry to open the
Menu entry properties dialogue for that entry

The editing window displays the menu asit will appear when displayed by the Toolbox.

The Menu editor

Dwrlitia ;
Froga s .
Gebaczal My

Cliar salgcion =2

Clicking Menu inside the editing window displays the following menu:

Bania a-dilor

Eili
Properies. . "M
Fainiig anires

r-

Edit leads to the Edit submenu.

Delete deletes the sel ected menu entries.

Properties... opens the Menu entry properties dialogue box for the selected menu
entry (see Editing a Menu entry on page 436).

Select all selects all the menu entries in the menu.

Clear selection deselects all the menu entries in the menu.

Properties... displays the Menu properties dialogue box, described in Editing the Menu

on page 438.

Menu entries... displays the Menu entries window, described in Inserting a new Menu

entry on page 439.

435

Editing the Menu class

Editing a Menu entry

TheMenu entry properties dialogue box

Thisisadialogue box for viewing and editing the characteristics of a menu entry. You
can open it by selecting a menu entry in the editing window and then selecting
Properties... from the Edit menu (or by double-clicking on a menu entry):

i WU o BINEE oI niant &0 in meenu WManu
Canmptrant 1D | &0 N
Canienis
i Test | Psaniu Enryl | Ky Lmufhlzl
_JEpnin
| Ticken | Has subimen _||Faed
| e et Length| ° |
Chick action
Dmlber svard (W Dalsad _J e
| Sihew okt ¥ A6 FanER!
Sulrmeris mohan
Calsear gwnrd . | Fine T
Carcel |

Component 1D isatext field containing the hexadecimal component identifier of this
menu entry. Normally there is no need for you to edit thisfield as the component
identifiers are automatically assigned. If you wish to assign identifiers yourself, you
must ensure that they are unique within each menu.

Note: Clicking OK while any component ids are the same will elicit an error message
and the dialogue box will stay open until thisis sorted out.

Text and Sprite determine the contents of the menu entry:

If you select Text, you can then enter the text and keyboard short-cut to be

displayed, and the maximum permissible length for the entry’s text to be set to at
run-time.

If you want to enter a keyboard short-cut intoktey field manually, you may have

to use !Chars to display short-cuts such as Shift F3. It is more advisable to create a
keyboard short-cut first (in the Keyboards shortcut dialogue box), and then drag this
short-cut to the menu entry properties dialogue box.

This process is fully described irsing a keyboard short-cut entry to fill in’ a

menu entryon page 453.

436

ResEd

If you select Sprite, you may then enter the name of a sprite to be displayed.
Ticked displays atick next to this entry.
Has Submenu controls whether the entry has a submenu arrow.

Faded displays this entry in grey; when the menu is shown by an application the entry
will be unselectable.

The writable field next to Help text allows you to supply a suitable interactive help
string for the Toolbox to send to !Help when the mouse pointer is over this menu. If
Help text is switched off, the Toolbox will instead supply any help text associated with
the menu as a whole — sediting the Menu on page 438).

TheClick action section specifies what happens when the user selects this menu entry.
The first thing that will happen is that the application will receive an event:

SelectingDefault specifies that you will receive the default event
(Menu_Selection).

SelectingOther allows you to receive whichever event you specify in the
associated writable field (the event can be entered as a hex number, e.g. ‘&345’, or
as a decimal number).

After the event has been delivered, you can specify whether an object will be shown
automatically. You can do this by turning on 8iew object option and entering the
name of the object to be shown in the associated writable field.

TheSubmenu action section is very similar, and specifies what should happen when the
user traverses the submenu arrow of this entry. (The section is faded unldas the
Submenu option has been selected). The text fields have the same meanings as for menu
selection. The default event in this case is Menu_Submenu.

The twoShow object name fields may be filled in by dragging an object template's icon
from the resource file display into the appropriate text entry field (or onto the
corresponding option icon if the text entry field is shaded).

437

Editing the Menu class

Editing the Menu

TheMenu properties dialogue box

Thisisadialogue box for editing the top-level characteristics of amenu. It is opened
from the Edit menu or by double-clicking on the menu'stitle;

=] Manu propadies: Manu
Tips | P BT ';_l_-m;i,lll ., |

Delver eeent beiome showing
W Mees J Dbl J{Hllur

Derwer event wihen hidden
i Mo) Delauk _JCihar
||'bb Bl '._I-_I-mjlll_'-l 4
Camcel Ol

The Title field contains the text shown at the head of the menu.

Note: If a Menu with no titleis shown, the Wimp will not display atitle bar. Thisis not
Style Guide compliant, but the Menu editor allows this so that you can set atitle at
run-time.
Deliver event before showing controls the following:

I None specifies that no event should be returned.

I Default specifies that the default event (Menu_AboutTobeShown) should be
returned immediately before showing the window.

I Other alowsyou to specify adifferent event to be delivered to the application.
The associated field displays the event code in hex; you may enter event codes
in either decimal or hex (by prefixing with ‘&’).

Deliver event when hidden controls the following:
I None specifies that no event should be returned.

I Default specifies that the default event (Menu_HasBeenHidden) should be
returned immediately after the window is hidden.

I Other allows you to specify a different event to be delivered to the application.
The associated field displays the event code in hex; you may enter event codes
in either decimal or hex (by prefixing with ‘&’).

The writable field next télelp text allows you to supply a suitable interactive help
string for the Toolbox to send to !Help when the mouse pointer is over this menu (if
Help text is switched off, the Toolbox will not reply to such HelpRequest messages).

438

ResEd

Inserting a new Menu entry

You can insert new menu entries into the menu using the Menu entries window. The
Menu entries window is opened by selecting Menu entries... from the top-level menu.

C]] Manu o)
Monu Eniry
[Menu Eniry r|

+ hsnu Entry

The Menu entries window contains a dotted line separator and three prototype menu
entries:

I abasic menu entry
I amenu entry with a submenu arrow
I aticked menu entry.

The menu entries in the Menu entries window may be dragged with the mouse and
dropped over the menu areato insert new menu entries and separators. The new entry is
placed between two existing entries according to the vertical position of the drop point.
If the mouse pointer is within the menu'stitle, it isinserted after thetitle; if it is dropped
after the final entry it is appended at the bottom.

Manipulating menu entries

Copying menu entries

You can copy amenu entry from one part of a menu to another using Shift-Drag Select.
The insertion point is determined as for inserting a new item. New menu entries are
automatically assigned unique component ids within the menu.

You can also use Drag Select to copy menu entries between editing windows.

Moving menu entries between different editing windows

You can move menu entries between different Menu editing windows using Shift-Drag
Select. The selected entries are deleted from the source window.

Re-ordering menu entries

You can re-order menu entries using Drag Select. The insertion point is determined as
for inserting a new item.

Note: If acopy or move operation resultsin amenu containing two entries with the same
component id, the editor forces the newly inserted one to have auniqueid.

439

Example menu

Example menu

440

This example shows you how you might create the three menu entries in the following
typical menu:

il

I I

Creating a submenu

The first menu entry in the above example (Pen) has an associated submenu, so the
Menu entry properties box could befilled in asfollows:

i AWani RE o0 mant &0 0 iy Doocks e nu
Comporst ID | &0 F
Canignis
W Test | Pun | oy Lﬂ'llirﬁlzl A
_) Eprin
| Tiged [Has submensy |Fackd
| i Length| ° | ("
Chich acton
Dalbar gvert (8 Data (e
| Shens ot Ewy &6 IranEant
Suinrmis mchian
Dulwer svnnt) Dedeat @ hone) Other
[Show chject | Penkionu |
Carcal [(i

The minimum sections to edit in the Menu entry properties box are
I Text — give the menu entry a unique name (e.g. ‘Pen’).
I Hassubmenu — switch it on.

I Show object (in the Submenu action area) — switch it on and specify the name of
the object to show if the user traverses the submenu arrow (e.g. ‘PenMenu’).

You would then create another menu object template and give it the name ‘PenMenu’.
This object would be displayed when the user traverses the submenu arrow.

Displaying a dialogue box

ResEd

The second menu entry in the above example (Styles...) has an associated dialogue box,
so the Menu entry properties box could be filled in as follows:

The minimum sections to edit in the Menu entry properties box are as follows:

i AWanis @ fige companant &1 0 mesi Doooke e nu
Cartporwnt ID | &1 i
Camenis
W Test | Shyles | Ky Lf"ll:l'ﬁlzl '
_J Epritn
| Tz | Has submen _ [Fasded
__|Help peat I..uﬂ;ﬂll * | !
Clich action
Dmiker evart (0 Dalad) v
[Show object | StylesBan | | Shew e ransant
Subrmarid actaon
Daalevnr @nr CLEE Fane | Diher
ey CEREC
Cancal (a

I Text — give the menu entry a unique name (e.g. ‘Styles’). In this particular example
the ellipsis (...) signifies to the user that the dialogue box that will be displayed is a
persistent dialogue box (so tBrow astransient option should not be selected).

Show object (in the Click action area) — switch it on and specify the name of the

object to show if the user clicks on this entry (e.g. ‘StylesBox’).

You would then create a window object template for the dialogue box and give it the
name ‘StylesBox'. This object would be displayed when the user clicksy/tss...

Note: Any object (e.g. submenus and dialogue boxes) can also be built dynamically at
run-time by the client application (s@&aching a submenu dynamically on page 173).

441

Example menu

Creating a keyboard short-cut

The third menu entry in the above example (Group OF3) returns an event if the user
clicks on the entry or uses a keyboard short-cut (Shift F3); this would allow the client
application to perform an appropriate action on receipt of the event.

Creating this keyboard short-cut requires two stages:
I defining the keyboard short-cut within the window object template itself.
I dragging this keyboard short-cut to the Menu entry properties box.

Defining the keyboar d short-cut

Thefirst stage is to define the keyboard short-cut within the window object template
itself. For example:

I H:HIbl:ﬂ.l'\d phoriciis: Whincoaw

Fary 8183 [TFI} -» Evend E345

Key I"—Fﬂ Ky code |_ &3 |
[Detver avant £345
_|stowotiea | Tramben
Update | Doiete |
Cancal | | ok |

1 Click Select onthe Key field and press Shift F3; the corresponding code (& 193) is
automatically entered into the Key code field.

2 Specify the event code in the Deliver event box (e.g. ‘&345").
3 Click onUpdate to add the new keyboard short-cut to the scrolling list.
4 Click onOK to add the new keyboard short-cut to the Window object template.

For more information on keyboard short-cuts lsegboard short-cuts on page 451.

442

ResEd

Filling in the M enu entry properties box

The next stage is to open the third menu entry and give it a unique name (i.e. ‘Group’),
and then drag the keyboard short-cut to it. This will automatically fill in:

| the Key short-cut (e.g. Shift F3) in tKeey field
I the event code to return if the user clicks on this entry (e.g. ‘&345):

B Manis o aE companant &2 i meeni Doocke Menu
Comporsnt 10 | &2 i F
Camenls
i Tent | Group |Hw|"f3! Lrlﬂ'hlzl 3
) Eprin
| ek | Has subimen | Fasiea
__| el et urnndtlzl ok
Clich gl —
Dmimer evard) Daltal ﬂﬁl‘rlll'l &3as |
_lsm abgect P TR T T
Surrapris mchan
Doy iar @il 1 B Fgine sy
Show oliye
Cancal [o

Interactive help for menu entries

The Help window gives you information about the Menu window and also displays the
component id of an individual menu entry:

If the pointer is over a menu entry
the component id of that entry will
be displayed in the help window

EE l intraciive haip E
This is & menu ey with 1D = &2 A
Deng SELECT b mosa f2iaclhon
Orag TSELECT to copy sslecion |
Clich ADJLIST b desalkei | ¥
Doubis-cick SELECT 1o adit propartios, [

443

Editing a Window object template and gadgets

Editing a Window object template and gadgets

Double-clicking on awindow object template in the resourcefile display will display an
editing window. This window displays the window object template as it will appear
(complete with gadgets) when displayed by the Toolbox. It has the following
appearance:

L L LT SR =i double-click Select on
B the window background
to display the Main
| properties dialogue box
e ——— e | |

The Window menu

Inkz

Eit

T Ty e
v o e
ool i

Extéit

Ky sharicuts
Tzl bears

Cingd

[Liarigei

Lloum

444

Info leads to an Info box showing the object template’s name.

Edit leads to the Edit submenu for the selected gadget(s).
SeeThe Edit submenu on page 458.

Main properties... opens the Main window properties dialogue box. This box allows
you to specify those properties.
SeeThe Main properties dialogue box on page 445 for more details.

Other properties... opens the Other window properties dialogue box. This box allows
you to edit those properties of a window object template that you would normally only
specify once.

SeeThe Other properties dialogue box on page 447 for more details.

Colours... opens the Window Colours dialogue box.
SeeWindow Colours on page 450 for more details.

Extent... opens the Window Extent dialogue box.
SeeWindow Extent on page 450 for more details.

Key shortcuts... opens the Keyboard short-cuts dialogue box. This allows you to define
keyboard short-cuts for use inside the window.
SeeKeyboard short-cuts on page 451 for more details.

Toolbars... allows you to attach toolbar object templates to this windowT&ebar
object template on page 462 for more details.

ResEd

Grid leads to the Grid dial ogue box. This allows you to display an optional grid of
alignment pointsto assist in the uniform placement of gadgets.
See The Grid on page 453 for more details.

Gadgets... opens, or bringsto the front, the gadgets window. Thisis a selection of
gadgets which may be dragged into a Window object template to populate it with
gadgets. See The gadgets window on page 455 for more details.

Close closes the window and incorporates any changes.

The Main properties dialogue box

Wi This diaogue box allows you to edit the main properties of awindow object template.
:"-‘ :: The name of the window object template that the dialogue box refersto is displayed in
m thetitlebar. Choose M ain properties... from the Window menu or double-click Select
v e i on the window background to display this box:
Cirlinais
Ezarn = Al Poiaian Win Clowy [OpR e G Yl e
Ky salus i i 1
Teolburs T oars
id G [V T Window object | Langtn| + | ¢4
Ciarigein “0 dustity i _JLsit @ Cenire) Right
Clesn 3 [Back [/ Cimse [¢ Toggie [Hsomil [veort [Sioe

JE’MI‘M‘U
Detaut inpul loous
& Mora b Insisble oot _J I gmedged

[Aucopen [o Aulo-closs
Cebver eveni belore showing

) Datgun @ Mone _J sy
Dedirver svent wihen hidden
_ Dedmatt & hone _} Cthear
| Hedp it Lmuml_ :] £l

_;,,._n_,.|| oK |

445

Editing a Window object template and gadgets

446

I cons controls the following features:

b ns

[Titia | Wirdow abject |Lr'|:||h . |
Jusiiy lite . _jLelt @ Cemm) Right

[v Back [+ Cicss [Toggke [o Heooll [V veond [V S

Title allows you to enter the title of the window within the title bar. If you switch
this option off the window will not have atitle bar.

Note: Thewindow titleisalways avertically-centred, indirected text iconin system
font; there is no facility to set avalidation string.

Justify title allows you to specify the justification of thetitle within the title bar.

The Back, Close, Toggle, Hscrall, Vscroll and Size option buttons control whether
theBack icon, Closeicon, Toggle Sizeicon, Horizontal scroll bar, Vertical scroll bar
and Adjust size icons are displayed.

Show Menu isan option button that controls whether the window has a menu attached
toit. If thisis switched on, the associated writable field is unshaded for the menu object
template’'s nameto be entered. Alternatively thefield can befilled in by dropping amenu
object template onto it (or onto the corresponding option icon if the field itself is
shaded).

Default input focus allows you to set the characteristics of the default input focus for
the window.

Daafault et focus
& Mona) Inrwisibber carmt i i

None specifies that the window has no input focus and no caret.

Invisible caret specifies that the window has input focus, but no caret is displayed
until the user clicks in an appropriate area.

In gadget specifiesthat the window hasinput focus and the caret is displayed inside
agadget. You can enter the component id of the gadget in the adjoining field or drag
agadget to the field (or to the corresponding radio button if the field itself is
shaded).

Auto-open controls whether the Window module automatically (re-)opens the window
when a Wimp_OpenWindowRequest event is received.

Auto-close controls whether the Window modul e automatically closes the window
when a Wimp_CloseWindowRequest event is received.

Wmdow

Iz
Eiin
I 1y o T

Coinbini i
Estiril

Ky sl
lood bwrs
Cind

I Linriget

Llcmim

W

ResEd

Deliver event before showing controls the following:

I Default specifiesthat the default event (Window_AboutTobeShown) should be
returned immediately before showing the window.

I None specifies that no event should be returned.

I Other alowsyou to specify adifferent event to be delivered to the application.
The associated field displays the event code in hex; you may enter event codes
in either decimal or hex (by prefixing with ‘&’).

Deliver event when hidden controls the following:

| Default specifies that the default event (Window_HasBeenHidden) should be
returned immediately after the window is hidden.

I None specifies that no event should be returned.

I Other allows you to specify a different event to be delivered to the application.
The associated field displays the event code in hex; you may enter event codes
in either decimal or hex (by prefixing with ‘&’).

The writable field next tédelp text allows you to supply a suitable interactive help
string for the Toolbox to send to !Help when the mouse pointer is over this window (if
Help text is switched off, the Toolbox will not reply to such HelpRequest messages).

The above controls are described in\Wadow Manager chapter in Volume 3 of the
RISC OS 3 Programmer’s Reference Manaad in the chapter Window clas®n
page 289.

The Other properties dialogue box

This dialogue box allows you to edit those properties of awindow object template that
you would normally only specify once. You can only display this box by choosing
Other properties... from the Window menu:

I Cthar w insdoiw PTopa rias W iy

Flags

_|Pane | Movmable [Backoop |Alow olfsomen
_|Hetheys [+ Auter-racra _|Peal colours. | Force on-sereen

Bumon type o H _|Estendabin X = |Ewisndable ¥
User poral SpAile area

W Off _jAuic-repeal) Debounced (8 Wimp _J Client

Pointar
| Shaps Lemgm| ° | /L Hompot X ¥

carcel || o

447

Editing a Window object template and gadgets

448

Flags controls the following features:

Flags
|P‘a.nu F Weramabls Backdrap |Alcwr cif-screen
_|Hoteeys [Adtcrecrew |Real colours | Forow on-screan

Pane specifies that the window is a pane.
M oveable determinesif the window is moveable, i.e. it can be dragged by the user.

Backdrop, if selected, does not alow any other windows to be opened below this
one.

Allow offscreen allows the window to be opened or dragged outside the screen area
(regardiess of the Configure option settings).

Hot keys allows events to be generated for hot keys.

Auto-redraw specifies that the window can be redrawn entirely by the Wimp, i.e.
there are no user graphicsin the work area.

Real colour s specifiesthat the window colours should be treated as GCOL humbers
instead of standard Wimp colours.

For ce on-screen forces the window to stay on screen.

Note: Old-style window flags are not supported (i.e. bit 31 of the window flagsword is
always set).

Button type determines how the Wimp will deal with mouse movementsand clicksover

the window's background. There are 16 possible types which can be selected from the
Pop-up menu (see tRISC OS 3 Programmer’s Reference Marengty for

Wimp_Createl con on page 3-96 for more details).

Extendable X ignores the right-hand extent if the Adjust sizeicon of the window is
dragged.

Extendable Y ignoresthe lower extent if the Adjust size icon of the window is dragged.
User scroll controls the Scroll_Request event:

Lisar sorodl
W O) Auio-epsat) Debounced

Off does not return a Scroll_Request event.

Autorepeat returns a Scroll_Request event when a mouse button is clicked on one
of the arrow icons (with auto-repeat) or in the outer scroll bar region (no
auto-repeat).

ResEd

Debounced returns a Scroll_Request event when a mouse button is clicked on one
of the arrow icons (but with no auto-repeat) or in the outer scroll bar region (no
auto-repeat).

Sprite area controls whether sprites are located in the client area or the Wimp sprite
area.

Shape is an option button that controls whether the mouse pointer should change shape
when it is over the window. If thisis switched on, the associated writable fields are
unshaded for the pointer sprite’s name, itslength, and the coordinates of its hotspot to be
entered.

Manipulating the window

You can use the icons around the window object template to manipul ate the window’s
size, position and scroll offsets. Thisinformation is saved with the template. The
stacking position is not saved; all templates are saved with a stacking position of - 1 (top
of stack) unless the window’s Backdrop flag is set, in which case the position is- 2
(bottom of the stack).

Re-sizing the window

You can resize windows which have no scrollbar using Ctrl-Shift-Drag Adjust. The
window can only be resized subject to the constraints of its current work area extent.

M oving the window

You can move windows which have no title bar using Ctrl-Shift-Drag Select.

Closing the window

Thewindow’s Closeicon, if present, may be used to close the window. The window may
also be closed by using the Close menu option, or by the keyboard short-cut Ctrl-F2.

449

Editing a Window object template and gadgets

Window Colours

This dia ogue box allows you to edit the colours of awindow:

| Wirdlow colnurs: \Winidow

Tils i

Foregrouni - H Bn:-wuu’dl Il

putfoas| 12 1

eah s

Foreground - H En:l-l.urul.r-:l| 1 '_':|

Eoroll bars

Fosgrownd | 1+ T Backgroues [N |
Cancel | oK

The display fields contain the Wimp colour number of the chosen colour, and have their
backgrounds set to that colour. The menu buttons invoke a pop-up menu offering a

choice of the 16 Wimp colours. The menus for Titlebar: Foreground and Work area:
Background also offer the choice Transparent.

An alternative form of this dialogue box is displayed if the window obj&

coloursflag has been set (s&he Other properties dialogue box on page 447). In this

case the pop-up menus are not available and the colour display fields are replaced by
writable icons; values in the range 0 to 255 may be entered.

Wadow
Ini =
Eiit "
W 1 e Tl . WY
[T T
Estaiit E
Foiy slwrieusa i
Taod s T
Gind Jel
i cigei B
Llzua o
Window Extent
Waow
Iniz 5
Eit *
Wy e Tl .. WY
oo o
ol i

Ky el i

Teood tir =i
Cind L
Ciacigwsn =
Lioua i

Waark anas

| |- wsm i N mciomy
W Emam pia £
WiaEn | [Hu;nll 1w |

K| 1260 |'\-'| Q1

450

lower-left corner

This dialogue box allows you to edit the extent (work area size) of a window:

upper-right corner

adjuster arrows
for altering the
corner coordinates

ResEd

TheWork areais represented by two pairs of x,y coordinates for the lower-left and
upper-right corners. You may adjust these coordinates by typing into the adjoining
writable fields, or using the adjuster arrows on the ‘adjustable square’.

Clicking on theClip button causes the size of the work area to be made equal to the
window's current visible area on your screen.

Width andHeight allow you to enter the size below which the window may not go.

Keyboard short-cuts

Iz

Edin

Wi [
Cofaid o i
Coliis

Extarit

|zl bl
Linsd

I Linrigei

Llosa

-

Each window may have a list of keyboard short-cuts associated with it. These are
programmable mappings from Wimp key codes to Toolbox events. When a keystroke
event is delivered, the Window module checks to see if it is in the list of short-cuts for
the window containing the caret. If so, it delivers the associated event to the application.
Alternatively (or additionally), a keyboard short-cut may be associated with an object
template which specifies an object to be shown when the keystroke happens.

The keyboard short-cuts assigned to a window may be created and modified using the
Keyboard shortcuts dialogue box. The name of the window that the dialogue box refers
to is displayed in the titlebar:

o Keyboan shorbouts: Wi ndow

| =

_| Dl wrwiain
__|Snow oect
Update |

Cancal | O

Existing keyboard short-cuts are displayed in the scrolling area. Double-click on one of
them to load its details into the icons below for editing; alternatively simply type in the
details of the new one.

Key is a special icon which allows you to define a key code by pressing the
corresponding key(s) on the keyboard. First click Select on the icon to activate it and
then press the key combination. The corresponding code appearKieytbede field,

and a description of the key appears inKleg field. Note that Shift-Ctrl-letter
combinations are not allowed.

451

Editing a Window object template and gadgets

452

Key code isthe Wimp keycode for the event as described in the RISC OS 3
Programmer’s Reference Manuaitry for Wimp_Poll (see page 3-115). Thiscodeis
displayed automatically when you enter akey pressinto the Key field, or you may
specify it yourself as a decimal number or a hex number (by preceding it with &).

Deliver event selects whether the keystroke will generate an event. The associated
writable field allows you to enter the event code as a decimal or hex number.

Show object selects whether the keystroke should show an object. The associated
writable field allows you to specify the name of the object template to be shown.

Transient causes the object to be shown with transient behaviour.

Update adds the new keyboard short-cut to the scrolling list, replacing any short-cut for
the same key already present.

Delete deletes the sel ected short-cuts from the list. The short-cuts listed in the scrolling
list can be selected for deleting by clicking on them (Adjust toggles whether the
short-cut is selected or not).

OK accepts the updated list of short-cuts and closes the window.

Cancel closes the window, discarding any changes.

ResEd

Using a keyboard short-cut entry to ‘fill in’ a menu entry

You can fill in the Key field and Click action fields (Deliver event Show objectand
Show as transien} in amenu entry by dragging a keyboard short-cut entry from the
Keyboard shortcuts scrolling area and dropping it into a Menu entry properties

dialogue box in the Menu editor:

drag the required keyboard
short-cut to the Menu entry
Properties dialogue box -

the Key field and Click action
fields and options will be filled in

B s A0n
Componen 10 A
Coimieme
e e)
J Sprie
™ | Tickad _ |Hasssbmens _ |Faded
| baat u.-.m-.El Y
Ok apion

C

Delvcwr mvent) Debauit ﬁﬂlﬂf\ |M4h|>

[Showespes | Shapshesu | W
e

Ha whixieuts: Wndr
- ek L bl Tl LEtE
[le n |
Tancel K
T
[V Doimimvent | a35 |
[v Show obmc 5!'q_:-ai'.-hm | [w Trammism
Lkt | Delate
camel || ow

The Grid

[[
Eiin *
I o o . WY
O oo ...
Cotlni e

Estarit e
Kby sesriuss e
Teolinrs T
ETY
Ciariges 0
Clcuin 3

The Grid dialogue box can display an optional grid of alignment pointsto assist in the

uniform placement of gadgets:

e |

Grid

| Sww grid
Girid spacing
Hmmnul 05 units
".I'nfhn.l & O anits

| Lokt grid

Cancel || oK

453

Editing a Window object template and gadgets

The grid is represented by a matrix of dots which overlay the contents of the window.
The grid spacing is specified as a number of OS Units between grid points, this being
configurable independently for different windows.

Show grid controls whether the grid is currently displayed for this window.

If Lock to grid is selected, gadgets may only be moved or resized in units of grid
spacing. This meansthat if you have a group of gadgets then you can move (or resize)
them, either horizontally or vertically, in multiples of the selected grid spacing, and they
will keep their relative positions.

Note: If you drag gadgets into awindow, the gadgets will not be locked to the grid in the
window until you use the Snap to grid option (see page 459).

Grid spacing controls the spacing of the grid. For maximum compatibility across
different RISC OS modes you are advised to set grid spacings to exact multiples of 8,
and to this end the adjuster arrows alter the grid spacing in steps of 8. Valuesthat are not
amultiple of 8 may be entered from the keyboard but will be forced to be exact multiples
of 4. For example:

Ny]
FH | Grid
[+ Shem grid | Lok 12 gyriet
Gnd spacing
l"l:lrmlrlallzl VDS s
"."l.-m-ral OF units
cancel || ox
“I

There isaso an option that allows you to snap gadgets to grid points. Thisis described
in Snap to grid on page 459.

454

Gadgets

The gadgets window

ResEd

You can popul ate awindow with gadgets by dragging them in from the gadgets window.
Thisisaread-only window containing atypical example of each supported gadget type.
You can display the gadgets window by choosing the Gadgets... option from a Window

menu (or by pressing Ctrl-G):

BE Gargats
Laba Labaled box
Acticn |
Cisplay ?JIE::: 7 I
[—
',—“” .
Smngset H praggates T

The gadgetsin the gadgets window may not be moved or deleted. The gadgets window
does not have amenu, and only the keyboard short-cuts *A and ~Z are available.

Positioning and moving gadgets
You can drag any of the gadgets from the gadgets window into your window object

template and drop them wherever is appropriate.
= | Gadgets
E Wandow Labei |- Labeded bon
Adion |
__|opsion -
s ey L L)) Radi i I
C Adlion [—
- & |an|
Bl oraggabis
m
| e e drag a gadget from the

Gadgets window into the
Window object template

455

Gadgets

456

Repositioning and copying

You can reposition one or more gadgets in your window by first selecting them and then
using Drag-Select with the pointer over one of the selected gadgets. If Lock to grid is
on, the gadgets are moved by the nearest multiple of the grid spacing. If you hold down
Shift, a copy of the gadgets is made.

Accurate positioning

There are three ways to position a gadget accurately:

I specify its coordinates in the window’s work-area coordinate system
(seeThe Coordinates dialogue on page 460)

1 align it with one or more other gadgets using the Align menu (see page 461).

I move the gadget (or selection of gadgets) using the cursor keys. This can be done by
selecting a gadget, holding down the Select button (as if dragging), and then
pressing any of the four cursor keys.

Auto-scrolling

If you want to move a gadget beyond the visible area of the window on the screen you
must drag the gadge¢ry slowly towards one of the sides of the window. Auto-scrolling

of the window will occur when the mouse pointer comes close to a side of the window;
scrolling is faster the closer the pointer is to the edge.

| j Windiow objact __| | Wndosy cbiec

.- -e o [|
g Adon |

B —— s

drag a gadget slowly to any side of
the window to start auto-scrolling

M oving gadgets between windows

You can copy gadgets between windows by dragging them from one window object
template to another (to avoid auto-scrolling you should not drag a gadget too slowly
when dragging between windows).

If you hold down Shift the gadgets are deleted from the source window.

=]

ResEd

Moving a gadget in one direction only

You can move a gadget in one direction only using Drag-Adjust on the top, bottom, |eft
or right resize handles (if Lock to grid is switched on, the gadgets are moved by the
nearest multiple of the grid spacing):

move vertically only
move horizontally only —————= &) Rag -<————— move horizontally only

move vertically only

Changing the size of a gadget

You can change the size of a gadget using Drag-Select on aresize handle (if Lock to
Grid ison the change in size of the gadget (or selection of gadgets) is alwaysamultiple
of the grid spacing).

You can a so change the size of one gadget, or of aselection of gadgets, using the Width
and Height options in the Coordinates dial ogue box (see page 460).

Stacking

Gadgets are not intended to be stacked; so there are no facilities for placing one gadget

‘above’ another. Gadgets whose bounding boxes overlap will stack in an arbitrary order;
there is no way you can guarantee that this order will remain unchanged. The exception
to this rule is the labelled box gadget, which is always placed beneath all other gadgets.

Moving the caret between writable gadgets

Dor it
Prigiii
Sran 1o grid

Do 2ol i
Akgn
St il

et
Llssr sslacian

i)

"4

You can define the order in which the caret is moved between writable gadgets (in
response to the Tab, Shift-Tab, up-arrow and down-arrow keys) by filling Befbee
andAfter fields of the gadget properties dialogues:

Link o gadgats
| Betere | arvar

These fields contain the component ids of the two gadgets ‘before’ and ‘after’ the
gadget. To help you fill these in, you can drag gadgets into them, or more typically you
can use théink writables option in the Edit submenu. This automatically fills in these
fields for all the selected gadgets that support caret movement (writable fields, string
sets and number ranges). The ordering imposed is left-to-right and top-to-bottom (as if
you were reading a page of text).

457

Gadgets

The Edit submenu

Exil

Do .

B 1o grid !

Lk vl e "L

ol

Algn

SGudact il &

Gdad

Ll mlsacbon "
[Galcl |

Dol it i e

Dl mion
Caafal dod

458

If you select one or more gadgets then, depending on the gadgets selected, some of the
following edit options in the Edit submenu will be available;

Delete deletes the selection of gadgets.

Properties... opens the gadget properties dialogue box for the selected gadget. An
alternative way to open this dialogue box is to double-click Select on the gadget itself.

Snap to grid snaps sel ected gadgets to the window grid (see Shap to grid on page 459).
Note that this option is independent of the L ock to grid setting, and is operative even
when the grid points are not displayed.

Make radio group makes any selected radio buttons into a radio group (see
Mani pulating radio groups on page 459).

Link writableslinksthe selected writable gadgets together so that they can be traversed
with Tab, Shift-Tab, up arrow and down arrow keys (see Moving the caret between
writable gadgets on page 457).

Coordinates allows gadget coordinates to be entered from the keyboard for precise
positioning (see The Coordinates dial ogue on page 460).

Align alows you to align gadgets with one another (see The Align menu on page 461).
Select all selectsal the gadgetsin the window.
Select leads to the Select submenu.
Radio group selects all the radio buttons in the radio group to which the selected
radio button belongs (see Manipulating radio groups on page 459).
Next writable selects the gadget that is linked after the selected gadget.

Previous writable selects the gadget that is linked before the selected gadget.

Default writable selects any gadget that is assigned as the ‘default input focus’ for
the window.

Default action selects any action button that is assigned as the default action
button.

Cancel action selects any action button that is assigned as the cancel action button.

Clear selection deselects all the gadgets in the window.

ResEd

Snap to grid
Ead | The Snap to grid operation on the Edit submenu makes each selected gadget move so
— " that its alignment point is on the nearest gridpoint.
m The ‘alignment point’ of a gadget is as follows:
Linkwritabless “L I the Y-coordinate is always the centre of the gadget
Covare ruid o e
. I the X-coordinate is normally the lefthand side of the gadget.
| Setect ai S (the only exception is the label gadget; where the alignment point is on the lefthand
Shilger i side if the label is left-justified, on the righthand side if the label is right-justified,

Llswr sslsec brn

and in the centre if the label is centre-justified)

Snap to grid shaps each selected gadget independently (when the selection is moved
under grid-lock, the relative positions of the gadgets are preserved).

If you drag a selection of gadgets into a window they will not be snapped to the grid in
that window (even if. ock to grid were switched on). If they were snapped
automatically to the grid it would alter their relative positions to each other, and this
might not be desired. The gadgets remain selected when dragged into a window, so if
you do want to snap them to the grid then you can just press Ctrl-Shéjptto grid).

Manipulating radio groups

Ecd | When you drag radio buttons into a Window object template from the gadgets window,
F‘“’* " each one ends up in its own new radio group. You must then select and group them
Sapiogdd 8 explicitly using theM ake radio group option in the Edit menu.

TheMake radio group option is faded unless the window's selection consists entirely
Cosrfinales 10 1 of radio buttons. When you choose this menu entry, the selected radio buttons are placed

| into a single new radio group.
Gabact il e

Galsct ' To select all members of a radio group, press Menu over one of them andRbhdase
Clesr siacton “3 group from the Select submenu in the Edit menu. This enables you to see instantly the

grouping relationship between radio buttons.

When a radio button is copied within a window by use of Shift-Drag, the copy is put into
the same group as the original. So the easiest method to create a radio group is to drag a
single radio button into the Window object template and make multiple copies of it using
Shift-Drag Select.

Dragging a group of radio buttons between window templates

Adding radio buttons to a window never adds them to a pre-existing group; but any radio
groups added to a window remain as groups.

459

Gadgets

The Coordinates dialogue

Exd This did ogue box allows you to position or size selected gadgets by entering
F"“" " coordinates (in the window’s work-area coordinate system) from the keyboard:
Sriap 1o grid -] -l_I EME
Wiaka rao roud “H -
! wiTlald . Positian
[Cocrirates i Mx [zl
Algn F
St sl o] Siee
s - 7 woan 130 17 v
Cler malacton °F =

cancel | o |

When asingle gadget is selected, all four option buttons are switched on and the four
writable fields are filled in with its position and size.

If you select more than one gadget, they are checked to seeif they have common values
for any of the four attributes. Those attributes with common values arefilled in, and the
corresponding option buttons switched on. Those attributes with differing values are
faded, and the corresponding option buttons switched off. You may toggle the option
buttons to alter the settings of any of the latter attributes.

When you click OK, the attributes are set from those fields with the option buttons
switched on. The attributes that have their option buttons off are left alone. Thus, it is
possible to set several gadgets to have the same X position without altering their Y
positions, and at the same time equalise the width of the selected gadgets:

=l oo iiriabies
Positian

|+ % | 0o | T
Sizw

selecting the four [+ wckn | 250 | |Height
gadgets below, and -

setting Position and cancel | o |
Size as opposite would result in this
=] Window ohpec I =] Wndowohpel 7]
Ll o
'R
Asdon

460

ResEd

The Aligh menu

Dol

Snag 1o grid

"B

.-

Mk Fadd groud A

e

vl ruiid s

Sudact il
et
Llssr sslacian

LK

B

"4

The Align menu allows you to align a group of selected gadgets in a window
1 select one or more gadgets

2 decide which gadget you want to align the other gadgets to and press Menu over it
(this gadget does not need to be part of the selection)

3 gointo the Align menu and click on the required type of alignment:

Aign
Top edgRs
Canirs ines

EHiam &g s

Lell edges
Canire Wngs

Right edges

The gadgets are then moved to align with the nominated gadget.

If you press Menu when the pointer is not over a gadget the Align menu will be faded.
Lock to grid isignored when aigning.

Aligning gadgets from top to bottom

The top three options control how the gadgets will be aligned from top to bottom. In the
following example the gadgets are aligned with the slider gadget:

-
Ll

1-|

#
= gl

Draggeakie Hl IV pmpgabie
Before aligning Top edges Centre lines Bottom edges

461

Gadgets

Aligning gadgetsfrom left toright

The bottom three options control how the gadgets will be aligned from left to right. In
the following exampl e the gadgets are aligned with the Labelled box gadget:

Action | Action Action Achon |
Labeied bo Labsiled box Labeiier bom Labeled bow
Before aligning Left edges Centre lines Right edges

Toolbar object template
The toolbar object prototype isawindow object template. Double-clicking onitinside a
resource file display will display ablank editing window:

You can then edit this window, move it round the screen (using Ctrl-Shift-Drag Select),
change its size (using Ctrl-Shift-Drag Adjust) and colour, drag gadgetsinto it etc, in
exactly the same way as you would edit awindow object template.

462

Ao

[[
Eiin [

ATy oo Tl .. = WY
o T g
Conlni i

Estarit e
Ky ihaarieas]

Cingd G F
(i i =0
Llcmim i

Positioning the toolbar within a window

ResEd

Once you have finished designing your toolbar you can open awindow object template,
go into the window menu for that template, and select the Toolbar s... option. Thiswill

display the following box:

F T
Il
[Top i
| Batioims bt
Exleral
_|Toper

| Bt e besht

Coi el

- Windcrs

w0l Pl s |

O

You can enter atoolbar object template name into awritable field after switching on the
corresponding optionicon (e.g. to theright of Top left), or drop atoolbar object template
onto the writable field (or onto the associated option icon if the writable field is faded).

463

Gadgets

Interactive help for gadgets
The Help window displaysthe id, size and position of a gadget in a window.

In the following example, awindow has been customised as a Find dial ogue box and the
pointer has been moved over two of the gadgets in the window:

= E L Lt [
Thiz i a writable field with 1D = &3 a1{1968,-200, wire (532,525 i
g SELECT o nepieilion
Drag MSELECT o copy.

Qlick SELECT b3 sedect. click ADWUIST b3 ackd oo aaksction ¥
Double-click SELECT 1o adif propartias. [T

Help displays the id, size and position
of the writable field gadget

El Finad Kiayword
Keypword ' |
Search Erom
lfﬂ:ln'-ﬂu.rd) Camment Card
Cancel | et |

Help displays the id, size and position
of the radio button gadget

[H E| Intnractivn haip [
This is & radso beSon with iD= &6 a1 {32 -120, see (312 44) i
Drag SELECT fo repositn
Drag MSELECT %o copy.

Click SELECT b galest. dick ADJUST 15 Gk o sakeaion r
DOoublig-click SELECT 1o adif propartias. [T

The customised window shown above is described in Adding a find capability on
page 57 in the User Interface Toolbox manual.

464

ResEd

Common features in gadget properties boxes

Some features are common to several or all gadget properties boxes. These are described
here rather than repeating their descriptionsin each gadget section:

title bar
Component ID
__l Acfion bulton 2
I Campansn ID of wyer ciowy Windoe <«—— name of
. ; window
Text field ——»r Text| Action] | Ltng'.hl =1
) | S gt T YT
Deliver
event Dl fvar @yt
W Dedaul) Ceher
Biuttcen
Dok Cancel Loca
Help text = o =i
N | Help st Lengm| * | s Length field
Faded — | —IFaded
option Carcal | O
A 4

OK and Cancel buttons

I Thetitle bar contains a string describing the type of gadget being edited.

I Thefirst field is always awritable icon containing the gadget's Component 1D.
Normally you do not have to enter anything into this field as a unique number is
automatically assigned to it. If you need to, you can change a gadget’sid by typing
anew id into thisicon. When OK is pressed, the gadget will be renumbered.
Duplicate component ids are not allowed within awindow; any attempt to set a
component id to one aready used by a gadget in the same window will be faulted.
New gadgets dragged in from the gadgets window have a new unique component id
chosen automatically.

Next to the component id is a display field showing the name of the window object
template that the gadget belongs to.

Many of the dialogues have a Text field allowing you to type in a string which
appears in the gadget.

All gadgets have a Help text field. Thisisawritableicon for you to supply a
suitable interactive help string for the Toolbox to send to !Help when the mouse
pointer is over the gadget. If the Help text option icon is not selected, the
underlying window will respond to !Help instead.

All gadgets have a Faded option button. Setting this fades the gadget and makes it
inactive to mouse clicks.

465

Gadgets

I Some string entry fields (including Help and Text) have an associated L ength field.
Thisisawritable number range which specifies the length of the buffer used to hold
the text. For more details on how this field works see Help messages on page 432.

I Several of the dialogues feature a Deliver event section. This section allows you to
specify whether or not you want an event to be returned, and what that event should
be:

I Default specifies that the default event should be returned.
I None (if present) specifies that no event should be returned.

I Other isused to specify auser event; you may enter event codes in either
decimal or hex (by prefixing with ‘&’).

I Every gadget properties dialogue l@s andCancel buttons (see page 434 for
more details).
Opening a gadget properties box

You can open the properties dialogue box for a gadget by double-clicking on the gadget
in the Window editor.

The following sections describe in detail the layout and extra controls of each type of
gadget properties dialogue:

Gadget see page
Action button properties 467
Adjuster arrow properties 468
Button properties 468
Display field properties 470
Draggable properties 470
Label properties 471
Labelled box properties 472
Number range properties 472
Option button properties 474
Pop-up menu properties 475
Radio button properties 475
Slider properties 476
String set properties 477
Writable field properties 479

466

Aticn

ResEd

Action button properties

The action button properties box is displayed as follows:

= Acficn bation
Campansn ID of war ciow Window
Im.'.; Achion | Ltn-g'.hl =
Do e gyt
W Dataail) Ceher
Biuttcen
__ | Dedaui __|cancel __|Loca
| Herlp gt Im;rr:l. ‘.-l
__|Faded
Carcal | L&

The Show object option controls whether pressing this button should cause another
object to be shown automatically. You can enter the object template’s name into the
associated writable field, or drag the object template into this field (or onto the
associated optioniconif thefield isfaded). This mechanism may be used to make nested
dialogues.

Show astransient selects whether the object will be shown as a transient or not.
The Button section allows you to specify the operation of the action button.

Default controls whether this button is the default for the window it isin. If you
select it, the button is given a highlighted border and is activated by any presses of
the Return key within its window.

Cancel controls whether this button is the cancel button for the window it isin. If
thisis selected, all clicks on the button cause the window to be closed. Also any
Escape key presses when the parent window has the caret cause the Cancel button to
be activated.

When you make an action button into the Default or Cancel button for its window,
that attribute is removed from the button that previously had it.

If you drag an action button into another window, the editor checks that the

strictures regarding Default and Cancel buttons are not violated (that there must be

at most one of each). If necessary the previous ‘owners’ of these attributes are made
into normal action buttons.

467

Gadgets

Whenever the Default attribute is added to an action button, its bounding box is
automatically enlarged to include the specia border, and when the attribute is
removed, the bounding box is made correspondingly smaller.

L ocal makes an action button into aLocal action button. Unlike a normal action
button, activating it will not cause the parent window to be closed.
Adjuster arrow properties

The adjuster arrow properties box is displayed as follows:

= Adpssinr Arros
Componsnt IO cfwindow | Wincow
Drmction
i Lefl W Figh g) Down
| Hep et L:ngr-D
| Fagea
Cancel | x|

The Direction radio buttons control the direction that the arrow button is pointing in,
and hence whether the button will return ‘up’ or ‘down’ events.

Button properties

The Button gadget exposes most of the underlying Wimp icon, allowing you to create
Bution custom controls. The Button properties box is displayed as follows:

=l Buidn

n
Component |0 &0 ||','l'-m1|:|:rn| ‘Pl
[Text |Spriw Bution] LmE F A
Wialsasen | Langen 1 | ¢4
_|Usa chert's sprite s __| Rerturn many clicks
Bufion wype| Q E EEL‘-E y
Colours
roreground [N Bakgowd [0
lemni Bage
[V Bomer [Homoss [Voerired |Filted
_|esmst |HeFere |Mesdiheln Flighl sified
| Hep st Lengn| * |
__|Faoed
Canosl || ok |

468

ResEd

Text and Sprite are option buttons controlling the contents of the icon. By switching the
two buttons on or off, or just switching one of them on, you can produce four
combinations. The effects of these various combinations are described in the RISC OS 3
Programmer’s Reference Manuai page 3-101. If necessary you can then specify a
validation string in the Validation field. Note, however, that if you only switch on
Sprite, then the pointer must be to a sprite name.

Use client’s sprite areaspecifies that the Toolbox should first check on those areas set
up by Toolbox_Initialise, rather than using the default Wimp Sprite area.

Return menu clicksspecifies that a Menu click is returned to the client application
(instead of being processed and acted upon by the Toolbox).

Button Type isastring set offering the sixteen possible Wimp button types:

0 Never 8 Double/Drag

1 Always 9 Menuicon

2 Auto-repeat 10 Double/Click/drag
3 Click 11 Radio

4 Release 12 Typel2

5 Doubleclick 13 Typel3

6 Click/Drag 14 Write/Click/Drag
7 Release/Drag 15 Writeable

ESGisawriteable field for the input of the icon’s Exclusive Selection Group humber.
This number is constrained to be between 0 and 31.

Foreground and Background offer the choice of the sixteen standard Wimp colours
from a pop-up menu. The associated display field shows the chosen colour, aswell as
the Wimp colour number in a contrasting colour.

The option buttons under Icon flags are used to set the remaining icon flag bits that are
not implicitly defined by the above settings. The correspondence between buttons and
icon flag bitsis as follows (see the RISC OS 3 Programmer’s Reference Maraindty
for Wimp_Createl con on page 3-96 for more details):

Button Bit
Border 2
H-centred 3
V-centred 4
Filled 5
Adjust 10
Half size 11
Needs help 7

Right justified 9

469

Gadgets

There are three icon flag bits that are pre-set which you cannot change:

Bit
6
8
21

Set to

always set to system font

always indirected

aways unselected when first displayed

Display field properties

Disply The display field properties box is displayed as follows:
[El Dispiy Said
Componert I | 80 | ofwindow | Window
T Displary| | Lengm| = | ¥4
Jusify
. Left @ Centre .} Figrt
| Hetp et Lengs| * | 74
_|Faded
Carcel j| ok |

The Justify radio buttons are used to choose whether the contents are positioned to the

left, right or centre of the gadget.

Draggable properties

E The draggable properties box is displayed as follows:

Dhviteirgya 5 | Draggabls
Componert (D] &0 | of window | Window
[Text Draggable | ngmE fA
Moee [nmete | Leagm| - | ¢4
__| Deiver gvent & slart of drag
| s Toolios Ds

Deag type
% Drag) DoubleChck _) DoutieSalec
[+ Has drop shacow [¥ Dithered
| e it unthl Y
__|Faged
Canoel || oK

470

Label

ResEd

The Draggable gadget may have a writable text string, a sprite, or both, as chosen by
relevant option buttons. At least one of these must be on.

The Déeliver event at start of drag option allows you to control delivery of the
Draggable DragStarted event.

Use Toolbox | Ds allows you to specify that object/component id pairs of the drag
destination will be reported, rather than Wimp window handle/icon handle pairs.

The Drag type radio buttons allow you to select the behaviour of the draggable.

Drag provides drag behaviour equivalent to dragging a standard Save As box.
Double/Click is equivalent to I con button type 10.
Double/Select is equivalent to Icon button type 8.

Has drop shadow allows you to specify whether the draggable has a grey drop shadow
when dragged.

Dithered allows you to specify whether the draggable is displayed as semi-transparent
when dragged.

Label properties

The label properties box is displayed as follows:

Camponant 1D oF wyr Ciowy Windoe
Tent | Labei
Sty
i _) Bentre W Aigre
| Displary bneder
pire gt] /
__|Fades
Careal | O |

The Justify radio buttons are used to choose whether the contents are positioned to the
left, right or centre of the gadget.

Display border controls whether the gadget’s bounding box is drawn or not.

471

Gadgets

Labelled box properties

Labedad o The labelled box properties box is displayed as follows:
= | Labellad box -
Compenert I ofwincow | Window
Lainmi

o Test | Labelad bos] |

) Epritn Filled
|l et Lengm| " | ¥4
__|Faded L
cancet || ok |

The labelled box can have either atextual or sprite label, but not both. Thisis chosen

using the Text and Sprite radio buttons. The text entry field next to the unselected radio
button is faded.

Filled allows you to specify that the background to the sprite is set to grey.

Number range properties

| 4909 /4 The number range properties box is displayed as follows:
El Humbar Aange =
Camponant ID Hmdu-n- [""ﬁ!ndu 1
| Derlver pvents when salue changes
Withses

Mnimam | 0 | Masimos [10000] itial] 4999 |
Pnd:-m[F: | Ehp:i::ll B

[Hasnumerical deplsy @ Display) Wiitable
dusstity

Jlet jCente @8 Right | Disploy width 110

[¥ Hasadussems __|Has slider Lisst Faghi

Bar| Background |

Link i gack(s s
Hetore Al

|l st kangtn| - | 7 4
F
Al Carcal J| o |

472

ResEd

Deliver events when value changes controls whether the application receives
NumberRange ValueChanged events when the contents of the writable change.

Initial, Minimum, Maximum and Step Size are writable fields in which you specify
the main parameters of the number range. They are always specified as integers.

Precision controls the display of adecimal point; its value is the number of digitsto be
displayed to the right of the point (thusif precisionis 2, the value 2.34 is specified as
234). To display integers, set Precision to O.

Has numerical display controls whether any numbers are displayed.

Display and Writable select whether the display area may be typed into. If
Writableison, the Link to gadgets section allows you to specify which gadgets
the caret should be moved to when the Tab, Shift Tab, up-arrow and down-arrow
keys are pressed. If you drag a gadget into the Before or After writable fields (or
their associated option icons) its component id is entered into the field
automatically. Normally, however, you would use the Link writables option in the
Edit menu to determine the path taken by the caret. See Moving the caret between
writable gadgets on page 457 for more details.

The Justify radio buttons are used to choose whether the numeric value is positioned to
the left, right or centre of the numerical display field.

Display width allows you to specify the width (in multiples of 4 OS units) of the field
that displays the number (only if Has slider is switched on).

Has adjusters controls whether adjuster arrows are displayed; if selected, they will
appear asapair of buttons to the right of the display area (or, if thereisadlider, at either
end of the dlider).

Has slider controls the presence and positioning of the gadget's associated slider. The
dlider is aways placed 8 OS units away from the display area, and may be to the | eft or
right of it. The slider will be interactive only if the writable radio button is selected.

The Slider colour section allows you to specify the colours of the slider:

Bar isadisplay field showing the colour of the slider’s bar. The colour is set by
specifying a Wimp colour number from the attached pop-up menu.

Background isadisplay field showing the background colour of the slider’s bar.
The colour is set by specifying a Wimp colour number from the attached pop-up
menu.

473

Gadgets

Altering the size of the numerical field

Aswell asthe normal eight resize handles, number range gadgets which display adider
and numerical display have an additional handle. You can drag this handle to the left or
right to adjust the size of the numerical display field:

[n— R
q Il | 1 | [
ﬂ— |:|-l-i|!;-a:| j— :1 FTTT =
=] =] ' T =
'—/|495|9 [— |\ 4095
drag the handle to the right drag the handle to the left
to shorten the numerical field to lengthen the numerical field

Note: You can only alter the size of the numerical field on one number range gadget at a
time. If you try and resize this field on a selection of number range gadgets only the
gadget you are actually resizing will be resized.

Option button properties

_| omtien The option button properties box is displayed as follows:
=] Opbicn Bafion
Component i ofwingow | Window
rml Opption | Length El
D s @rvas
_J Dedaut W More) Other

__ | Getecien

_| Help et Lengm| - | /4
__|Fades

_Cancel || oOx |

Selected chooses whether this button isinitially switched on or not.

474

4 Radia

ResEd

Pop-up menu properties
The pop-up menu properties box is displayed as follows:

Coampanant I0 l:l‘mum- | e

&'urmmeml |

| Dehwer @ven bedors Bhimwing
| Help et Length[* | ¢
_|Fnr|m:|

Carcel | o |

Show menu controls whether a menu will be automatically shown when the menu
button is clicked. The template name of the menu to be attached may befilled in by
dragging a Menu object template to thisfield. If no Menu object templateis supplied,
the application will be expected to createit at run-time in response to the
PopUp_MenuAboutToBeShown event.

Deliver event before showing controls whether the client application will receive a
PopUp_MenuAboutToBeShown event when the object is about to be shown.

Radio button properties
The radio button properties box is displayed as follows:

| Fackn butinn
Companart |0 EQ of windiow | Window
in group T
Teut | Fada | [mu‘nlu'- | 74

Dl e mvemerrt
) Dadauik @ Bore) Diher

[Setacied

_|Heipsmat nghEl ’
__|Faded

Carcel | O

Each radio button is a separate gadget and belongs to a ‘radio group’, this group being
the set of radio buttons with which it is mutually exclusive. The radio group is
implemented by means of a ‘Group Number’ (Radio buttons on page 392) in the

Toolbox data structure that describes the gadget; the group number is not the same as the

475

Gadgets

476

Wimp's ESG (which the Toolbox does not use). You cannot specify the group number
explicitly, instead you must use the Make radio group option in the Edit menu;
however, the group number assigned by ResEd is aways displayed inthein group field.

Selected chooses whether the button isinitialy on or off; only one button in the group
may be on at once, and switching another on will turn off the previously-on button.

Slider properties

The slider properties box is displayed as follows:

= Skoar
Componant Il:r of wan Ciow ! WWind o
Typ=
W et _) Dasplay
Orension
_J Heizantal W vehcal
Slicer colour
oo I = Backgows| o o
[l e ey

% Mone) Continuously) Afend of drag

Vithsers

Mokwn| G| Mesimm| 10]

el % | swpssel 1 |

| st e[* | .5

_|Faded
Carcal | oK |

The Type radio buttons select between a read/write slider and a read-only one.

The Orientation radio buttons select whether the slider is horizontal or vertical. When a
slider’s orientation is changed, it is rotated through 90 degrees about its centre point.

Slider colour Bar is a display field showing the colour of the slider's bar. The colour is
set by specifying a Wimp colour number from the attached pop-up menu.

Slider colour Background is a display field showing the background colour of the

slider. The colour is set by specifying a Wimp colour number from the attached pop-up
menu.

TheDeliver events buttons control when the application will receive
Slider_ValueChanged events.

ResEd

Minimum and M aximum are the signed integer bounds of the slider’s range.

The Initial value and Step size are constrained to be valid given the current minimum

and maximum settings.

String set properties

[sringest T

The string set properties box is displayed as follows:

'| hy rand inmch
Abpwed chamciers

T -0 Hmr

ek Iy el cges

__|Help et

__|Fade

=] Siring et
Comporert D] &0 | ofwindow| Window
[¥ Tre r_ fama
Strings Hiesm 1.01mm 2
initial Sy 54 | Lemgm| " | 74
[Has dispiay Seid ¥ Display) Wiitnbis

dustity

et ¥ Cenre _) Right

Delvarevanis | Vale Ghanged | About To Be Shown

-:m-m||r:-c|

Lengh

To set up astring set, enter thelist of available stringsinto the Stringswritablefield. The

list is comma-separated; to include a commain one of

the strings, precede it with a

backslash. To include aliteral backslash, use two backslashes.

The Initial writable field isfor entering the string whose value will be used astheinitial
contents of the string set. This string does not have to be one of the list of available

strings.

Hasdisplay field controls whether any text is displayed.

Display and Writable select whether the display

area may be typed into. If

Writableis switched on, the display area of the string set will be writable and the

user may enter any desired string into it — not just one of the predetermined choices.

Switching onWritable also enables you to fill in tHgpecify allowed characters

section.

ar77

Gadgets

The Justify radio buttons are used to choose whether the contents are positioned to the
left, right or centre of the display area.

Deliver events Value Changed controls whether the application receives
StringSet_ ValueChanged events when the contents of the writable change.

Deliver events About To Be Shown controls whether the client application will receive
a StringSet_ AboutToBeShown event when the abject is about to be shown.

The Specify allowed character s section allows you to specify what characters may be
typed into the display area. If you do not switch on this option any character will be
accepted (before you can fill in the Specify allowed char acter s section you must first
switch on Writable).

Length determines the size of buffer allocated to the validation string.

Allowed char acter s accepts a pattern for the characters that should be allowed in
the gadget.

I Thethree option buttons marked a-z, A-Z and 0-9 enable you to specify the
lower-case letters a-z, the upper-case letters A-Z and the digits 0-9.

I The Other option allows you to enter a pattern as for the Wimp’sicon
validation string ‘A’ command (for more information on the A command see
theRISC OS 3 Programmer’s Reference Maramity for Wimp_Createl con
on page 3-102).
For example, if you wanted to specify that the only characters alowed were the
digits 0-9 and the lower-case letters a-z, except for ‘d’, ‘p’ and ‘u’, you would fill
this section in as follows:

|..r' Epecity allowed characters Length| 1 |
Allcrms] SForgdece

Tui _Iaz 709 7 onm

TheLink to gadgets section allows you to specify which gadgets the caret should be
moved to when the Tab, Shift Tab, up-arrow and down-arrow keys are pressed. If you
drag a gadget into tHgefore or After writable fields (or into the associated option icon

if the writable field is faded) its component id is entered into the field automatically.
Normally, however, you would use thénk writables option in the Edit menu to
determine the path taken by the caret./8edng the caret between writable gadgetson

page 457 for more detalils.

478

ResEd

Writable field properties

Writakri The writable field properties box is displayed as follows:
7 | Winakia feid
Camponant |0 ol windos | Wincow
Taxt| ‘Wiritable! -LengrEl
Sy
) Lt @ Cerre _) Fight

| Specty allowea charactors Langen| * |
Alpwad chiFncemn

_|F.:p5:5.-.-m Eshasdcasr

Link o gadgets
__|E.au'n'p _iﬁlln'
__||:lrh'erf'.'en':| wien wit ke changes
| Hep et Langn| * |
| Faded
Cancal] (4.9

The Justify radio buttons are used to choose whether the contents are positioned to the
left, right or centre of the gadget.

The Specify allowed character s section allows you to specify what characters may be

typed into the display area. L ength determines the size of buffer allocated to the

validation string. Allowed char acter s accepts a pattern for the characters that should be

allowed in the gadget as for the Wimp's icon validation string ‘A’ command. For a full
description of allowed characters see the section on allowed characters on the previous
page.

If Password behaviour is switched on, then any characters entered will be displayed as
minus signs.

TheLink to gadgets section allows you to specify which gadgets the caret should be
moved to when the Tab, Shift Tab, up-arrow and down-arrow keys are pressed. If you
drag a gadget into tHgefore or After writable fields (or into the associated option icon

if the writable field is faded) its component id is entered into the field automatically.
Normally, however, you would use thénk writables option in the Edit menu to
determine the path taken by the caret./8edng the caret between writable gadgetson

page 457 for more details.

Deliver events when value changes controls whether the application receives
WritableField_ValueChanged events when the contents of the writable change.

479

Editing other classes

Editing other classes

There are three stages in editing any of the remaining object templates.

1 Display the object prototypes window and drag the required object templates from
the object prototypes window into your resource file display:

= E Qutect protoes '
=l " 'I-
=2 B & [F
ColouriDoom Colourferu DCS Fiminfo FortDbox
7 Cnitipd = 5 | e -
G B v k— . 5 [
E EI = lconbar Pl PrindDbox Proginio
st 1 I T = (e
=
@ E Saveas Sl Tl bar ‘liracon E‘
Frogindo SaveAs - drag the required object templates

to your resource file display

Edit each object template by double-clicking onitsicon in the resource file display.

An editing window for that object template will then be opened.
For example, the File Info object template:

|

Figinia: Filkenio

THe
W Dotaul

__|Fisrams
Fishype |

_J Ciher

A0

D liwad @iag-mt
_|B-EFn-rE- shewng

JLE-E' alie rative wrsiow

Langth

‘.'i

ja0on;

_J\'d'lun hudden

o |

':nmm||

In general the editing dialogue boxes for these remaining object templates are not
WY SIWY G representations of the underlying objects.

Close the editing window with the OK button to confirm the changes you have

made. If you close the editing window with the Cancel button, the modified datais

discarded.

480

ResEd

Common features in standard dialogue boxes and menus

Some features are common to several or al standard dial ogue boxes or standard menus.
These are described here rather than repeating their descriptions in each individual

section:
= Fialnia: Fikeindo
Title —» Tis
& Dodavit _J Ciher Langth
__|F#apams
Deliver Fishpe | 2000 (A0CO}

event —— = Didwr ovant
| Bt showing | When hiddden

¢ | Lise allsrmzhyve wincow

Cancal | OH

Use
alternative

window OK and Cancel buttons

Titleisthetitle string to appear in thetitle bar of the dialogue box or menu. If this
is set to Default, the module will provide a suitable default. If it is set to Other, the
accompanying writable fields are unfaded for you to specify an initia title and its
maximum length.

Deliver event controls the following:

Before showing controls whether the client application will receive a
DialogueAboutToBeShown event when the object is about to be shown.
When hidden specifies that the client application will receive a
DialogueCompleted event when the object is hidden.

Use alter native window is an option button which controls the availability of the

writable field next to it. If the option is switched on, you may enter the name of a

Window object template to be used as the prototype for creating the relevant object
template, instead of the standard one (alternatively you can drag a window object

template icon from the resource file display into the writable field — or into the
associated option icon if the writable field is faded). This enables any standard
dialogue or menu to be given a custom appearance. The custom window must
contain gadgets similar to those used in the default module window; see the relevant
chapter on the particular module for details.

Every dialogue box and menu Hak andCancel buttons.

481

Editing other classes

Colour Dialogue class
The Colour Dialogue object template is displayed as follows:

8 | Cailour diabngun” ColourDEos
Tl
% Detaut) Diher Langin

| inchuds THone™ Eatton Akt " Mo ™

witial colow | B00000000
D ier et
__| Before: showing __|when hidden

Carcel | L5

Include" None" button isan option button that decides whether the dial ogue will allow
the choice of ‘no’ colour.

Select " None" button specifies that thBlone button is selected by default.

Initial colour is a display field that shows the RGB value of the selected colour. Next to
it is a pop-up button which summons a colour picker from which the initial colour may
be chosen.

Colour Menu class
The Colour Menu object template is displayed as follows:

[E| Colour menu: ColourMenu
Title
(@ Default _) Other Length

J Include "None" entry

|7 Initial colour I 0 ﬂ

Deliver event
JBefore showing JWhen hidden

Cancel || ok |

Include” None" entry is an option button that controls the presence of an entry for ‘no
colour’ (i.e.None) on the menu.

Thelnitial colour display field shows the initially-ticked colour, and the pop-up menu
to the right of it is itself a colour menu enabling the initial colour to be chosen. The
option icon controls whether any value is ticked or not.

482

DCS class

ResEd

The DCS (Discard, Cancel, Save) object template is displayed as follows:

= OGS OCE
T
& Dotaat) Ofher Length
Mes 06
& Cetout) Diner Lengin
Dl 0" il T
__|Betore showing __ | iten higidan
__ | Use ate s windo
careet || o

Message isawritable field for entering the message to be displayed in the centre of the
window. Its behaviour is similar to that of the Title field.

File Info class

The File Info object template is displayed as follows:

Fieinfo: Fileinia
L]
& Oetoadt) Ofer Lengh
__|Fiznama
Fietpe | &000 (moooy
Dalpser avom
__|Betore showing __|#han hicden
| Use aitemedve windos
Carcs

o |

Filename isawritable field containing the initial contents of the filename display.

Filetypeisadisplay field showing theinitial filetype's name and hex value. Next toitis
a pop-up menu button which displays alist of filetypes for you to choose from. If you

want to specify afiletype not on thislist you can go to the Filetype dial ogue box (viathe
Other menu option) and fill in the writable field with any filetype name or number. The

number must be in decimal unless preceded with '&’. The two special filetypes
‘directory’ (&1000) and ‘application’ (&2000) may also be entered.

483

Editing other classes

Note that no interface is provided for setting the ‘filesize’, ‘modified’ and ‘date’ fields of
the File Info object template because these cannot be known when the template is being
created. They must be filled in by the application at run-time.

Font Dialogue class
The Font Dialogue object template is displayed as follows:

8 | Fort dalogua: FordDibos
T
@ Dodaul) Cther Langih
_] il Ao

Fotheight [12 | (L Aspectrstio

|_..r'- Eample Sring e quick brovn fox jumps over the lazy dog
| Alkcr gyeem fam

| use atisrrmtive wincow

Deslwer fveim
_ | Befone showing __|wWhen hidden

Cancel | oK

Initial font is a writable field for you to type in the initial font name to be put into the
font dialogue. Alternatively, you can select a font from the pop-up menu next to the
writable field. Note that it is possible that the initial font will not be available at
run-time; if so, a default will be substituted by the module (as will be the case if the
option icon is not switched on).

Font height is a number range giving the initial contents of the object's font height
setting. You can change the integer value using the adjuster arrows, or type a new value
in yourself.

Aspect ratio is a number range giving the initial contents of the object's aspect ratio
setting. You can change the integer value using the adjuster arrows, or type a new value
in yourself.

Samplestring is a writable field that lets you specify the test string to be displayed
when the Font Dialogue's Try button is pressed. If the option icon is not switched on, the
module will substitute a default.

TheAllow system font option button controls whether System Font will be selectable
using the Font Dialogue object.

484

ResEd

Font Menu class
The Font Menu object template is displayed as follows:

| ot e Fonifdani
| itiaal Fort
_| Ao oy saem Bors
[islwsr gt
__|Batone showing __|w¥han hidden

i:an:nll-m|

Initial font isawritable field for you to type in theinitial font name. Alternatively, you
can select afont from the popup menu next to the writable field. Note that it is possible
that theinitial font will not be available at run-time; if so, adefault will be substituted by
the module (as will be the case if the option icon is not switched on).

The Allow system font option button controls whether System Font will be on the
menu. If you switch this option on, the I nitial font menu has System Font on it too.

485

Editing other classes

Iconbar icon class

The Iconbar icon object templateis displayed as follows:

(& | lennbar con; loonbar
Prostion Il"_T Priceity
[Sprim rEsed | Length| | £
| Tamt W riaT | LBﬂiI'h::_' | A
Bl buon
Delwargwent _JDefaull Mone® Omar [a0 |
__| Show ohject Tramsimni
Dl ovannt bafore shosving
Bsfjuet bumcn
Doiverevent) Default) Mone (' Oer
| S okyece Tramsment
L isspr ewrnt betore shownmg
_|Mermbumon Show menu
| v st L-I-n|IH1|:| i
Cancel || ok |

Position and Priority control where on theiconbar theicon will appear. You can select
the position from the adjoining pop-up menu or enter avalue directly into the writable

field.
Value Fositan
-1 L Fight sica of iconiber
-2 Left sde of ioonbar

-3 Lal ol epciliead icon

-4 Right of speaitied icon

-5 Lial piks, seawning froem kel
-6 Lalt sice, scanning from right
-7 Right ik, searming from kel
-8 Right sida, scanning from right

I Types- 3and - 4 require aWimp icon handle to be passed into the call to
Toolbox_ShowObject to specify which icon the position is relative to.
They are a so incompatible with the object’s auto-show bit being set, asthey depend
on aWimp icon handle being specified in the call to Toolbox_ShowObject. The
editor does not force this bit to be clear in these cases; the effect of setting it is
undefined.

486

ResEd

Types- 5, - 6, - 7 and - 8 require an integer Priority to be specified in the writable
field provided. The priority level isas documented in the RISC OS 3 Programmer’s
Reference Manuantry for Wimp_Createl con on page 3-96. The Priority field is
faded when Position is not set to one of - 5 through - 8. Priority isnormally a
decimal integer, but a hex value may be entered by preceding it with an'& .

Sprite name is awritable field where you can enter the name of the sprite to be
displayed in theicon. If theicon isto display text aswell, you should switch on the Text
option button. This unfades the two writable fields next to it, enabling you to enter the
initia string and maximum length. Switching this option button on sets bit O of the
object’s flags word.

Grouped under Select button and Adjust button are the controls for specifying what
should happen when the user clicks on the icon with the appropriate mouse buttons:

Deliver event isawritablefield for the input of an event code to be delivered to the
application.

Show object isawritable field that takes the name of an object template to be
shown. You can enter the name of the object template by typing or by dragging an
object template into the writable field (or into the associated option icon if the
writable field is faded). It is possible to ask for both an event to be delivered and an
object to be shown.

The Transient option selects whether the object will be shown as atransient or not.

Deliver event before showing controls whether the client application will receive
an |conbar_Dial ogueAboutToBeShown event when the object is about to be shown.

Show menu isawritable field for you to specify the name of a menu to be shown when
the user clicksin theicon with the Menu mouse button. If the associated option buttonis
turned off, the field is faded and no menu will be shown. You can enter the name of the
menu by dragging a Menu object template from the resource file display into the
writable field (or into the associated option icon if the writable field is faded).

The writable field next to Help text allows you to supply a suitable interactive help
string for the Toolbox to send to 'Help when the mouse pointer is over the object. If
Help text is switched off then no help text will be sent.

487

Editing other classes

Print Dialogue class
The Print Dialogue object template is displayed as follows:

8 | Prirg dalogua; PrimfDibos

Optonal festumes

Foomes [1]

[Sestemacior | 100 |

|? Page rarge - oAl _) From 1o
[Crianiation & Upright) Sideways

[+ Ceaibuon _Jon & o

__|Setup button Ciromw winciow

[+ Save bution

Dl ey vt
Jﬂgu:ae showing Welsn Bigden

| Use alterrative window

Listed under Optional features are a number of option buttons that select which of the
optional controlswill be present on the dialogue box. Some of these option buttons
control the availability of further parameters.

Copies selects whether the dialogue box will allow the user to specify the number of
copiesto be printed. If thisis selected, the writable field to its right is unfaded for the
initial value of the number of copiesto be specified.

Scalefactor selects whether the dialogue box will allow the user to specify ascale
factor for the print job. If thisis selected, the writable field to itsright is unfaded for the
initial value of the scale factor to be specified.

Page range selects whether the dial ogue box will allow the user to specify the range of
pages to be printed. If you switch this option on, the two radio buttons to its right are
unfaded for you to specify the default page range. Selecting All means that the default
will be for all pagesto be printed. Selecting From means that only a specified range of
pages will be printed; this range is specified using the two writable fields (which are
faded until From is selected.)

Orientation selects whether the Print dialogue box will include a choice of Upright
(portrait) or Sideways (landscape) mode. The radio buttons to the right of it are faded
unless you switch on this option, and enable you to choose what the default orientation
will be.

488

ResEd

Draft button selects whether the Print dialogue box has a Draft option button or not.
The associated radio buttons choose the initial state of the Draft button.

Setup button selects whether the dialogue box has a Setup button. If you switch this
option on, the fields underneath and to the right are unfaded to enable the specification
of the following parameters:

Show window is the name of the Window object template to be used for the Setup
dialogue. You can enter this by typing, or by dragging a Window object template
into the writable field (or into the associated option icon if thewritablefield is
faded).

Deliver event before showing is an option button that controls whether a
Print_SetUpAboutToBeShown event will be delivered before the Setup dialogueis
shown.

Save button selects whether the Print dialogue box has a Save action button for saving
the current printing setup.

Prog Info class
The Prog Info object template is displayed as follows:

[E] Froginfo. Froginin
Tidn
Dedauk) Cther Langth
Paposs |
ﬁu‘.hu-rl Acorn Computen: Lid, 1004 |
'-'u-m-:rl 001 [dd-mmmeyyi |
| iecuste Lizencs Licance typa |
Deiver Bveni
| B shiwving | Wireen ik
__| U= e rratives window
Cancel || o |

Purpose, Author and Version are writable fields that allow you to specify the contents
of the corresponding parts of the Prog Info dialogue box.

Include” Licence" is an option button which controls whether the Prog Info dialogue
box hasaL icencetypefield. If you switch on this option, you can select the licence type
from the pop-up menu next to the writable field. The licence types available are Public
domain, Single user, Single machine, Site, Network and Authority.

489

Editing other classes

Quit Dialogue class
The Quit Dialogue object templateis displayed as follows:

| Cul Qull
Tris
@ Dodaul) Cther Langih
e safe
W Detout) Other Length
D rwar & v
_|Hﬂte1hulﬂ1n:r _J'l'lhrn hadiden
| s altemative window

M essage is awritable field that allows you to enter the message to be displayed in the
centre of the window. Its behaviour is similar to that of the Title field.

Save As class
The Save As object template is displayed as follows:

(& | Savabs SaenAs
Tre
W Detaut) Cither Lengih
Flb:rq'n-nl Untided

| e, -
__| inciuds “Salsction” buton

_I'l:ii'&hlmrﬁ{-'ﬁm ppeorts PR irgneders
Dielver oven
__ | Before showing __|When hidden
JLheurrun-uiwni-ﬂ-ml
Carcel || or |

Filename isawritable field for you to enter the default filename to be displayed in the
dialogue.

Fikrtgpe Filetypeisadisplay field showing the current filetype's name and hex value. Next to it

| 000 is apop-up menu button which displaysalist of filetypesfor you to choose from. If you
want to specify afiletype not on thislist you can go to the Filetype dial ogue box (viathe

490

ResEd

Other menu option) and fill in the writable field with any filetype name or number. The
number must be in decimal unless preceded with '&’.The two special filetypes
‘directory’ (&1000) and ‘application’ (&2000) may also be entered.

Include" Selection" Button is an option button that allows you to control the presence
or absence of the Save As dialogugkection option.

If the Client participates option button

I is off, the Save As module will itself handle all data saving on behalf of the client,
and theSupports RAM transfers option button remains faded.

is on, the Save As module will involve the client in data saving, using the RAM
transfer protocol only when tt®ipports RAM transfers option button is on.

Scale Dialogue class
The Scale Dialogue object template is displayed as follows:

&= Soale Snpls
Tidn
% Dotauf) Cihwr Langh
Viahigs
r.tumumlil l.l:lIl'l'n.l'ﬂl 400 | Siep soe 1 |
Preset vaiues
[22 % [80 % [0 % [120 %

__|Inciude *Scals i #° bution
(=] T T
_|E-Hu-m- showing J When fedden

JLBI' afie rnan e window

Cancsl |' o |

Minimum, Maximum andStep size are writable integer fields for entering the
constraints to be placed on user-specified scale factors.

Preset valuesis a list of four writable fields allowing you to specify the scale factors on
the preset size local action buttons.

Include" Scaletofit" button is an option button that allows you to control the presence
or absence of 8caleto fit action button in the Scale Dialogue object.

491

Exporting and importing messages

Exporting and importing messages

492

For some purposes, especially internationalisation, you may want to edit the user-visible
messages held in aresource file en masse. Rather than manually stepping through every
object templateinthefile, it isuseful to be ableto edit all the messagesin one place. You
can do thisusing the Export messages menu item (see page 429). This menu item leads
to a Save as box containing a Textfile icon. If you drag thisicon into a Filer window or
atext editor, ResEd generates afile of messages in MessageTrans format (see the
RISC OS 3 Programmer's Reference Marfoaldetails).

The file produced contains the messages from each object template in turn. Because
these do not have specific tags, a unique tag is generated automatically for each
message. These tags take the form:

<obj ect name>| <nunber>:
where

<obj ect nane> isthe name of the object template
<numnber > is the number of the message within that object

You can then edit the resulting message file, and drag it back into the resourcefile
display. A warning is displayed, and you must click on Import to proceed.

The messages are matched to their respective objects by use of the information stored in
the tags. So, for example, the message

Set Col ours| 5: This is the setcol ours dial ogue

will replace the fifth message in the object template whose name is ‘Setcolours’. This
means that you should take extra care when editing a resource file after its messages
have been exported, and before they have been imported back again. Objects should not
be renamed, and gadgets within window object templates must not be deleted. On the
other hand it is safe to add new templates, or to add new gadgets, or move existing
gadgets within a window.

Note: it is important that you do not alter any of the tags while editing the messages.

When revised messages are imported, to an object that is currently being edited it is
forcibly re-loaded to ensure that its editor is kept up-to-date with the changes. Thus there
is potential for you to lose changes made while editing, so care should be exercised
when importing message files. Indeed, it is best, before exporting or importing
messages, to ensure that there are no unconfirmed changes in any dialogue boxes
associated with the file.

Keystroke equivalents

ResEd

On occasions, it can be quicker when you are working in ReskEd to use the keyboard
instead of the mouse, especially when you are familiar with ResEd.

In the resource file display

Keystroke
Ctrl-O
F3

In the Window editor

Keystroke
Ctrl-w
Ctrl-E
Shift-K
Ctrl-T
Ctrl-G
Ctrl-P
Shift-C
Shift-G
Ctrl-S
Ctrl-R
Ctrl-L
Ctrl-F2
Shift-R

In the Menu editor

Keystroke
Ctrl-M

Citrl-P

Effect

open the Object flags dialogue box for the selected objects
display a Save As dialogue box

Effect

open the Main properties dialogue box

open the Extents dialogue box

open the Keyboard shortcuts dialogue box

open the Toolbar s dialogue box

open the Gadgets dialogue box

open the properties dialogue box for the selected gadget
open the Coor dinates dialogue box for the selected gadget
open the Grid dial ogue box

snap the selected gadgets to the grid

make the selected radio buttonsinto aradio group

link the selected writable gadgets together

close this window

show all members of the radio group to which the selected radio
button belongs

Effect

open the M enu properties dialogue box for editing the
top-level characteristics of amenu

open the Menu entry properties dialogue box for the selected
menu entry

493

Mouse behaviour

When editing in general

Keystroke
Ctrl-A
Ctrl-K
Ctrl-Z

Mouse behaviour

The following mouse actions work on individual menu entries, gadgets or object

Effect

select al entries, gadgets or objects
delete selected entries, gadgets or objects
clear current selection

templates or selections of the same.

Object prototype windows, gadget windows and menu entry windows behave in the
same manner as described bel ow, except that, as they are non-editing windows, they do
not allow operations such as deletion or repositioning.

In the Window editor

M ouse action
Double-click

Drag Select

Drag Adjust

Shift-Drag Select

Ctrl-Shift-Drag Select

Ctrl-Shift-Drag Adjust

494

Effect

on a gadget to open its properties dialogue box
on a gadget to move it around the window

or to copy it from one window to another

or on the resize handle of a gadget to resize it

on the resize handle of a gadget to moveitin
one direction only

on agadget to make a copy of it within the
window

or move it from one window to another (deletes
the original)

on awindow (with or without atitlebar) to move
it around the screen

on awindow (with or without an Adjust size
icon) to changeitssize

Page
466
456

457
457

456

449

449

In the Menu editor window

Mouse action
Double-click

Drag Select

Shift-Drag Select

In the resource file display

M ouse action
Double-click

Drag Select

Shift-Drag Select

Box selection

Effect

on amenu entry to open its properties dialogue
box

on amenu entry to reposition it within thelist of
menu entries

or to copy it from one menu to another

on amenu entry to make a copy of it within the
list of menu entries

or move it from one menu to another (deletes
the origina)

Effect

on awindow, toolbar or menu object template to
open its editor

on any other object template to open its
properties dialogue box

on an object template to copy it from one
resource file display to another

on an object template to make a copy of it
within the resource file display

or move it from one resource file display to
another (deletes the original)

The mouse can be used in two ways to select a group of object templates:

ResEd

Page
436

439

439

Page
428

428

428

| Dragging abox around a group of object templates will select any object template
partly or wholly within the Select box.

Dragging a box around a group of object templates while holding down Shift will
select only object templates wholly within the Select box.

Groups of gadgets (in the Window editor) or groups of menu entries (in the Menu editor)
can be selected in a similar way.

495

496

18

ResTest

aving constructed a resource file you may wish to experiment with the interface to
ensure that the proper links have been made between the different objectsin the
file. The resource file test application (ResTest) allows you to

I check the appearance and behaviour of all the objectsin your resource file

I monitor the flow of Toolbox and Wimp event codes inside an event log window
and, if reguired, save this event log to afile.

Starting ResTest

&

Start ResTest in asimilar way to other RISC OS applications, by double-clicking on its
application icon. Then drag your resource file (or a selection of object templates from
ResEd) to the ResTest iconbar icon.

ResTest will read the resource file and register it with the Toolbox. If your resourcefile
contains any objects marked as auto-create they will be created automatically; any
objects marked as auto-create and auto-show will be created and displayed. Thus certain
objectsin the resource file may appear immediately (e.g. iconbar icons). If these objects
are linked to other objects, they will also be created, and these will be shown when you
perform the appropriate action. For example, if an iconbar icon is linked to a menu, the
menu will be shown when you press the Menu button on theicon. Then if the menu itself
islinked to submenus, these will be shown when you traverse the submenu arrows.

The iconbar menu

Info *
Creake »
Show o
Deleke
Choices
Quik

Once you have dragged your resource file to the ResTest icon then you can click Menu
on the iconbar icon and the ResTest menu will be displayed.

Info displays an Info dial ogue box.

Create displays all the object template names in the resource file. Choosing an entry
calls Toolbox_CreateObject on that template and creates the object. Shared objects
which have already been created are shaded to indicate that they cannot be created more
than once.

497

Show displaysall the objects that have been created from the object templates. If you go
to this submenu immediately after dragging your resource fileto ResTest, only two types
of object will be displayed:

I those objects marked auto-create
I other objects referenced from those objects (see Attached objects on page 11).

So, for example, if the only object marked auto-create was an iconbar icon object, then
that object would be displayed, plus the menu object referenced by the iconbar icon
object, plus any objects referenced by that menu object. Other objects are added to the
Show list as you create them from the Create submenu.

Each entry shows the run-time generated object id and the name, or the object template
from which it was created. For example:

Sincey
1812600 Froginda™ e« ——
#1891 2880 “Toarkienu®
& 191 2080, "loon Bla”

+ B THTHE2ED "Hypery e
A 1BIFCFD: "Flalmlg”
B190E&00: "Soale™

objectid ————»| &1BOCEID: *Print D"

B190FFI10: "Viewarfdany ™

object

template name
currently
showing

Entries which are currently showing are ticked. You can cause an unshown object to be
shown by clicking Select on its entry, and cause a shown object to be unshown by
unticking. Click with the Adjust button causes an object to be shown transiently, and the
menu tree will not stay open.

Delete displays all the objects that have been created. You can call
Toolbox_DeleteObject on an object by clicking on its entry. If the object has unshared
children then they are deleted too (a shared object will only be deleted when all its uses
are deleted — sdeeleting an object on page 7).

Note: If you delete one or more objects created by a menu object (i.e. attached to the
menu object), and then try and delete the menu object itself, you may see the following
ResTest error displayed (you should not worry about this error):

Invalid Object Id (object id)

obj ect id isthe objectid of the attached object that was deleted before the menu
object was deleted

So, in the example displayed of a Show menu (taken from the example application
constructed in the chaptBuilding an application on page 39), if the Scale object were
deleted, and then ViewerMenu were deleted (ViewerMenu is the menu object that
created the Scale object), then the above error message would be displayed and the
object id would be that of the Scale object.

498

ResTest

Choices displays the following dialogue box:

Pisplay details an
[+ Taalbox event cade [Ewent bleck

[« Tealbox id bleck MINP evenis 7

G | Caseel || W |

This box allows you to select what information is displayed in the event log window.
The options are fully described in the following section The event log window.

Quit shuts down ResTest, removes all its windows from the screen, and del etes any
objects that were created in that session.

The event log window

If you click Select on the ResTest iconbar icon, the event log window is displayed. This
window contains alog of the events received from the Toolbox. You can use thisto
verify that the proper assignment of events to user actions has been made.

The output in the log window displays four sets of information, depending on what
options you have selected from the Choices box in the ResTest menu:

Hoot ToBeshown (Flags = HxbBESdaHE
yentCade Meau_Selection (flags = AxBiddnEmd)
ventlade: (elient eyent ExdBBBEIA2} (flags = AxOBBEdEAR)

TdBlock is: (5o =Be@l960FEC sc =@aFFFFFFFF pa =BxBR9GDENC po =BxFFFFFFFF ao =@xA1
TdBlock is: (50 =Bo@l960FEC sc =dxABBBIEAd po =HxBR3GDENC po =BxFFFFFFFF an s@xAl
TdBlock is: (50 =B=@l96070 sc -SxABBBEEAE po =HxBI3GDFEC po =ExdA0RBEEY ap =8xA]
windaw hardle = Bx@1BT0ERS

icom handle =-1

1= 458

y = 46l

TKP ewent: Painker_Entering_Hindow
TKP #wint: Fainter_Leavisg_Windsw

-

Toolbox event code

This displaysthe event code (including client-specified events) and the flags value of the
event block. It is always preceded by ‘EventCode:’

EvestCode: Menu_B&aufTeReShoun (flags = Bxbidanneg)

EveatCode: Menu_S¢lectien (Flags = BxdddnBbdd)
EveatCode: {cliest svent @xBBBEE20Z} (flags = HxBEddERRE)

499

The event log window

Toolbox id block
This displays the contents of the id block. It is always preceded by ‘ldBlock:’

TdElack is: (so =@xRIBEIFAC sc =RAxFFFFFFFF po =Be@1B6BEAC po =@xFFFFFFFF a0 =RxBid6(
ldElack 15 (2o =@xA1BEQFAC sc =HxBRddaBRBd po =Badl9eBEdl po =HxFFFRFFFF a0 =BxBl36[
TdElack is: (so =@xA1BERTCC sc =AxBEGARRBE po =ExA1P60FAC po =HxABBEARRY 20 =AxBli6l

where

so = self object

sc = self component

po = parent object

pc = parent component

ao = ancestor object

ac = ancestor component
Event block

Once an event has occurred (e.g. DragEnded), information about that event is returned in
the event block. This information is always displayed indented by eight spaces (how
much information is displayed depends on the event):

vindaw handle = Ex@1B7EEA5
\ce@ handle = =]

x = 438
y = 46H
WIMP events
This option allows you to select various types of Wimp events from the attached pop-up
Redray menu. The information displayed is always preceded by ‘WIMP event:’.
Open
Close The following example shows the Wimp events reported oamter in andPointer
Painter aul out have been selected from the pop-up menu:
Pointer in - e Poister Enterine Hind
i event: Foamier_Enter1ing_sinom

E:s:r::;:: WINF eyvent: Poamter_Leswing_Mindou

The ResTest menu

ResTest | If you click Menu in the log window the ResTest menu is displayed.
Save &
Elear Save leads to &ave as dialogue allowing you to save the text in the log window to a
file.

Clear removes any text in the log window.

500

19

DrawFile

DrawFiIe is amodule that renders Draw files.

Differences between DrawFile output and !Draw output

The following are some small differences between the output of the DrawFile module
and ! Draw.

Text

A text line that uses a font which can’t be found will be rendered (in system font) at a
size to fit its bounding box.

Transfor med text

Transformed text lines in system font are supported. A transformed text line that uses a
font which can’t be found will be rendered (in system font) at a size to fit its bounding
box. The transformation will be ignored.

Text areas

In a text area, if you change (for example) the margin size \M command), the change
doesn't take effect until the next output line. In Draw, this refers to printable characters:
but in DrawFile, it includes colour and font change commands as well (this is because
DrawFile uses the Font Manager to remember the current font and colours). This means
that line breaks can happen at slightly different places when using DrawFile.

The following commands cause output to occur:
B C U V <digits>

The following do not:
Il s ADFLMP

By preceding the former with the latter, the problem can be avoided.

Sprite colours

For a sprite without a palette, the colours used are the WIMP colours, found by using
Wimp_ReadPalette.

501

SWI DrawFile _Render

SWI DrawFile_Render

502

On entry

RO = flags:
bit 0 set means render bounding boxes (as dotted red rectangles)
bit 1 set means do not render the objects themselves
bit 2 set means R5 is used as the flatness parameter
R1 = pointer to Draw file data
R2 = size of Draw file in bytes
R3 = pointer to transformation matrix
0 #useidentity
R4 = pointer to clipping rectangle in OS units
0 # no clipping rectangle set up
R5 = flatness with which to render lines (if bit 2 of RO set)

On exit

Use

All registers preserved

This SWI renders a Draw file at agiven screen position where that position is defined as
screen position 0, O with the x- and y-translations as specified in the transformation
matrix. Hence to render anon-rotated 1:1 Draw file at X, y (screen coordinatesin OS
units) the transformation matrix is:

1<<16 0
0 1<<16
256*x 256*y

The effects of calling the module with the matrix not of the form:

f 0
0 f
Xy

(which isatranslation and amagnification). If R3 = 0, then unit transformation matrix is
assumed (i.e. the Draw fileis rendered with its bottom left corner at screen coordinates

(0, 0)).

DrawkFile

The clipping rectangleistypically aredraw rectangle returned by the Wimp on aredraw
window request. If R4 = 0, then the whole Draw file is rendered. If non-zero, only
objects which intersect the clipping rectangle are rendered.

C veneer

extern _kernel _oserror *drawfil e_render (int flags, void *data,
int size, Transform*trfm
BBox *clip,int flatness);

SWI DrawFile_BBox

On entry

RO = flags (must be 0)

R1 = pointer to Draw file data

R2 = size of Draw filein bytes

R3 = pointer to transformation matrix
0 # useidentity

R4 = pointer to 4-word buffer to hold the bounding box of the Draw file
(x0, y0, x1, y1) in Draw units

On exit
All registers preserved
Buffer pointed at by R4 holds the bounding box of the Draw file (x0, y0, x1, y1) in Draw

units
Use
This SWI is used to determine the bounding box (in Draw units) of the given Draw file,
asif it were plotted with the transformation given.
C veneer
extern _kernel _oserror *drawfil e_bbox (int flags, void *data,
int size, Transform*trfm
BBox *box);

503

SWI DrawFile DeclareFonts

SWI DrawFile_DeclareFonts

On entry

RO = flags

bit 0 set means do not download font (passed to PDriver_DeclarefFont)
R1 = pointer to Draw file data
R2 = size of Draw file in bytes

On exit
All registers preserved
All fonts used by the document have been declared

Use
If aprinter requires font declarations, this SWI must be called for each Draw fileto be
printed, between the calls to PDriver_SelectJob and PDriver_DrawPage.
All fonts are declared as ‘kerned’, since this includes the non-kerned case.

C veneer

extern _kernel _oserror *drawfil e_declare_fonts (int flags, void *data,
int size);

504

Appendix A: Resource File Formats

his appendix describes the resource file format, which is intended to replace the
Wimp Template file format, allowing you to specify the appearance of not only
window definitions, but also menu definitions and dialogue boxes.

Terminology

The following terms are used throughout this appendix:

Term
word

resource file

string

message

M eaning

4 bytes stored in a file in ‘little-endian’ format; that is the least
significant byte of the word is stored first.

consists of a fixed size header, followed by a contiguous set of

user interface object templates or ‘objects’. An object consists
of a fixed size header followed by the variable size ‘body’ of
the object, followed by 3 tables:

string table

message table

relocations table
All object headers are word-aligned. Unless otherwise
explicitly stated, all occurrences of a ‘word’ in this appendix
are assumed also to be aligned on a 4-byte address.

is a sequence of ASCII characters terminated by a NUL
character. There is one table per object which holds all such
strings.

A ‘string reference’ is given by its byte offset from the start of
the strings table.

A null string reference is represented-h.

typedef int StringReference;

is some textual information which is visible to the user. All
such messages for an object are held in its Messages Table.

A null message reference is represented hy
typedef int MsgReference;

505

Resource file format

Resource file format

Diagrammatic representation

Diagrammatically, aresource file is as follows:

File Header
3 words
sequence of object templates
| |
| |
| |
| |
| |
| |
| |
| |
| |
EOF
where the file header is.
Resource File ID ‘RESF’ 1 word
Version Number 1 word
Objects Offset 1 word

506

Resource File Formats

A resource file containing no objects has an objects Offset of - 1 where an object

templateis:

Object Header

Object

Tables

Body

String Table Offset

Messages Table Offset

Relocation Table Offset

Object Class

Flags

Version

Name

Object Size (in bytes)

Body Offset

Body Size (in bytes)

Body
(nul padded)

/000

String Table

Messages Table

nrelocs
Relocations Table

lword ——

1 word

1 word
1 word
1 word
1 word ¢
3 words
1 word

1 word

1 word ‘L

A String Table Offset of - 1 is used to denote an Object Template which has no String

Table.

A Messages Table Offset of - 1 is used to denote an Object Template which has no

Messages Table.

A Relocation Table Offset of - 1 is used to denote an Object Template which has no
Relocation Table, and hence the nrelocs must always be > 0, if the Relocation Table

exists.

When the Resource File is |oaded by the Toolbox, the body offset field is always
relocated to be areal pointer (but thisis not specified as arelocation in the rel ocation

table)

507

Resource file format

Resource File Format Description
A resource file begins with a standard fixed size header which has the format:

‘RESF’ 1 word
Version number 1 word (* 100, e.g. 109 means 1.09)
Objects Offset 1 word

The current version number is 1.01

The objects Offset gives the byte offset from the beginning of the file where the object
templates begin.

typedef struct

{
int file_id;
int version_number;
int objects_offset;

} ResF_FileHeader;

Therest of the file starts with a contiguous sequence of object templates where each
template has 3 words giving the byte offsets from the beginning of the template of each
of the string, messages and relocations tables, followed by a standard fixed size header,
followed by the body of the object, followed by its tables. All object headers are
word-aligned.

Where the object header is:

Field Type
Class of object 1 word
Flags 1 word
Version of the class module required 1 word
Object name 3 words
Total size of object in bytes 1 word
Offset of object body from start of object header 1 word
Total size of object body in bytes 1 word

Note that the name of an object is limited to 12 bytesincluding a terminating NUL
character.

‘Total size’ of object refers to the total size of the object header, the object body and the
string and message tables.

‘Body size’ refers only to the size of the object’s body (i.e. without its string and
message tables).

508

Resource File Formats

typedef struct

{
i nt cl ass;
i nt flags;
i nt ver si on;
char name[12] ;
i nt total size;
i nt body of f set;
i nt body_si ze;

} oj ect Tenpl at eHeader ;

typedef struct

{
i nt string_table offset;
i nt nessages_tabl e _of fset;
i nt rel ocations_tabl e offset;

oj ect Tenpl at eHeader hdr ;
} ResourceFi | eObj ect Tenpl at eHeader ;

The use of abody_offset field isto allow expansion in the header, without losing
backwards compatibility.

Relocations at Load Time

When the resource file is loaded into memory, the rel ocations table for each object is
used to relocate any string, message, sprite area references and object offsets which
appear in the object’s body.

This means that the file can be loaded in one operation into memory, and when
relocation has been done, the memory can be used directly to create an object.

Table Formats

There are three tables which optionally appear at the end of an object template: strings
table, messages table, and relocations table.

Sringstable

The string table contains all strings which are not visible to the user which are
referenced elsewhere in the object. A string is a sequence of ASCII characters
terminated by a NULL character.

509

Resource file format

510

M essages Table

The messages table contains alist of strings consisting of text strings which will be
visible to the user at run-time, and which are referred to by the object template.
Relocations Table

The first word of the relocations table gives the number of relocationsin the table.

The relocations table contains entries which give the byte offset of aword in the object

which should be relocated at load time; this is an offset from the base of the object’s
body. Each entry is two words long: the byte offset, and a relocation directive. Possible
relocation directives are:

Relocation Directive Value M eaning

StringReference 1 add the address of the base of the
strings table to this word

MsgReference 2 add the address of the base of the
messages table to this word

SpriteAreaReference 3 enter the address of the Sprite area into
which the client’s Sprites file has been
loaded

ObjectOffset 4 add the address of the object's body to
this word

Appendix B: Support for RISC OS 3.10

T his appendix describes the support provided for RISC OS 3.10.

RISC OS 3.10 support islocated in Syst em Modul es. 310Support :

RISC OS 3.10 has the following restrictions which would affect Toolbox applications:

I basic 3.10 does not have 3D icons as standard (e.g. option buttons and radio
buttons)

fading icons on 3.10 is not always consistent (e.g. text label will gain awhite box
behind the text)

I deleting a window while a ‘slabbed’ button is pressed in will cause a crash.

The ThreeTen module addresses the above restrictions. It is automatically loaded by the
Window module when running on a RISC OS 3.10 machine, and also looks for a new
version of DragASprite and BorderUltils. It is able to co-exist with New Look.

511

512

Index

A

action buttons 342-349
editing 467
events
ActionButton Selected 349
methods
ActionButton_GetClickShow 348
ActionButton GetEvent 346
ActionButton GetText 344
ActionButton_SetClickShow 347
ActionButton_SetEvent 345
ActionButton SetText 343
templates 349
adjuster arrows 350
editing 468
events
Adjuster_Clicked 350
templates 351
ancestor objects 9
attached objects 11
auto-create 10
auto-show 10

B

button gadget 352-359

editing 468

events 358

methods
Button_GetFlags 352
Button_GetValidation 357
Button_GetValue 355
Button_SetFlags 353
Button_SetFont 358
Button_SetValidation 356

Button_SetValue 354
templates 358

C

class, definition 2
client application, definition 2
client handle
returning value of 25
setting and reading 9
Colour Dialogue box class 67-80
Application Program Interface 68
attributes 68
before dialogue box is shown 69
colour selections 70
completing a colour dialogue 70
creating and deleting 68
editing 482
events
ColourDbox_AboutToBeShown 78
ColourDbox_ColourSelected 79
ColourDbox_DialogueCompleted 79
methods
ColourDbox_GetColour 74
ColourDbox_GetColourModel 76
ColourDbox_GetDialogueHandle 72
ColourDbox_GetNoneAvailable 77
ColourDbox_GetWindowHandle 71
ColourDbox_SetColour 73
ColourDbox_SetColourModel 75
ColourDbox_SetNoneAvailable 77
setting and reading colour model 70
setting and reading colours 69
showing 69
templates 80
user interface 67

513

Index

Colour Menu Class DCS_Save 100
editing 482 getting the underlying window ID 93
Colour Menu class 81-90 methods
Application Program Interface 82 DCS _GetMessage 96
attributes 82 DCS _GetTitle 98
before menu is shown 83 DCS_GetWindowID 94
colour selection processing 83 DCS_SetMessage 95
creating and deleting 82 DCS SetTitle 97
events showing 93
ColourMenu_AboutToBeShown 88 templates 102
ColourMenu_ColourSelection 89 user interface 91
ColourMenu_HasBeenHidden 88 Wimp event handling 103
getting underlying Object ID 84 window definition 102
methods display fields 360-362
ColourMenu_GetColour 85 editing 470
ColourMenu_GetNoneAvailable 86 methods
ColourMenu_GetTitle 87 DisplayField_GetValue 361
ColourMenu_SetColour 84 DisplayField_SetFont 362
ColourMenu_SetNoneAvailable 85 DisplayField_SetValue 360
ColourMenu_SetTitle 86 templates 362
setting and getting selected colour 83 draggable gadgets 363-370
showing 83 editing 470
templates 89 events
user interface 81 Draggable DragEnded 370
Wimp event handling 90 Draggable DragStarted 369
colours, definition 2 methods
component 7 Draggable_GetSprite 365

Draggable GetState 368
Draggable GetText 367
Draggable_SetSprite 364

D Draggable SetState 368
dialogue box, definition 2 Draggable SetText 366
Discard/Cancel/Save Dialogue box class 91-103 templates 370

Application Program Interface 92 DrawFile 501-504

attributes 92 example 54

changing the DCS message 93 specifying 61

creating and deleting 93 SWis

editing 483 DrawFile_BBox 503

events DrawFile DeclareFonts 504

DCS AboutToBeShown 99 DrawFile Render 502

DCS Cancel 101
DCS DialogueCompleted 101
DCS Discard 100

514

E

events see Toolbox event 42
exampl e application see Hyper example 39

F

File Info Dialogue box class 105-119
Application Program Interface 106
attributes 106
before File Info box is shown 107
creating and deleting 107
editing 483
events
Filelnfo_AboutToBeShown 117
Filelnfo_DialogueCompleted 118

methods
Filelnfo_GetDate 114
Filelnfo_GetFileName 112
Filelnfo_GetFileSize 113
Filelnfo_GetFileType 110
Filelnfo_GetModified 109
Filelnfo_GetTitle 116
Filelnfo_GetWindowID 108
Filelnfo_SetDate 114
Filelnfo_SetFileName 111
Filelnfo_SetFileSize 113
Filelnfo_SetFileType 110
Filelnfo_SetModified 109
Filelnfo_SetTitle 115

setting and reading fields 107

showing 107

templates 118

user interface 105

Wimp event handling 119

window definition 119

Font Dialogue box class 121-137
Application Program Interface 122
attributes 122
before Font box is shown 124
completing a Font dialogue 124
creating and deleting 123

Index

current selection 124

editing 484

events
FontDbox_AboutToBeShown 133
FontDbox_ApplyFont 134
FontDbox_DialogueCompleted 134

font selection 124

methods
FontDbox_GetFont 127
FontDbox_GetSize 129
FontDbox_GetTitle 132
FontDbox_GetTryString 130
FontDbox_GetWindowID 125
FontDbox_SetFont 126
FontDbox_SetSize 128
FontDbox_SetTitle 131
FontDbox_SetTryString 129

showing 123

templates 135

user interface 121

Wimp event handling 137

Window definition 135

Font Menu class 139-146

Application Program Interface 140

attributes 140

before Font Menu is shown 141

creating and deleting 140

editing 485

events
FontMenu_AboutToBeShown 144
FontMenu_FontSelection 145
FontMenu_HasBeenHidden 144

font selection 141
receiving 141

methods
FontMenu_GetFont 143
FontMenu_SetFont 142

showing 141

templates 145

user interface 139

Wimp event handling 146

515

Index

G

Gadgets 294, 328-341

Application Program Interface 328

attributes 329

creating and deleting 331

flags 331

hotspots 55

methods 333
Gadget_GetFlags 333
Gadget_GetHelpMessage 336
Gadget_GetlconList 337
Gadget_GetType 338
Gadget MoveGadget 339
Gadget_SetFlags 334
Gadget_SetHelpMessage 335

Wimp event handling 341

H

Hyper example 39-64
client events 63
client handle

example of 42

coding 47,53
component id 55
creating a basic resourcefile 44
description of 'Hyper 39
design requirements 41
designing 41
DrawFile 54
event driven interface 42
exporting adrawfile 59
fileloading 48
find box 57
handlers 47
handling views 50
HCL files 39, 64
hotspots 55
keyboard short-cuts 55
linking data structures 55
objectid 54

516

redraw handler 54
ResTest 46
scaling 54

shared objects 42
status bar 56

Iconbar icon class 147-166

Adjust click events 151

Application Program Interface 148

attributes 148

creating and deleting 149, 171, 293

editing 486

events
Iconbar_AdjustAboutToBeShown 165
Iconbar_Clicked 164
Iconbar_SelectAboutToBeShown 164

Help messages 151

menu 150

methods
Iconbar_GetEvent 155
Iconbar_GetHelpMessage 159
Iconbar_GetlconHandle 152
Iconbar_GetMenu 153
Iconbar_GetShow 157
Iconbar_GetSprite 163
Iconbar_GetText 161
Iconbar_SetEvent 154
Iconbar_SetHelpMessage 158
Iconbar_SetMenu 153
Iconbar_SetShow 156
Iconbar_SetSprite 162
Iconbar_SetText 160

position and priority 150

Select click events 151

showing 150

templates 165

user interface 147

Wimp event handling 166

id block 13

L

labelled boxes 372
editing 472
templates 372

labels 371
editing 471
templates 371

M

Menu class 167-202

adding menu entries 172

Adjust clicksonaMenu 173

Application Program Interface 168

attaching a submenu dynamically 173

attributes 168

changing aMenu entry 172

creating and deleting 171

events
Menu_AboutToBeShown 199
Menu_HasBeenHidden 199
Menu_Selection 200
Menu_SubMenu 200

fading aMenu entry 172

interactive help 174

menu attributes 168

menu entry attributes 169

Menu hits 173

methods
Menu_AddEntry 195
Menu_GetClickEvent 190
Menu_GetClickShow 188
Menu_GetEntryHelpMessage 194
Menu_GetEntrySprite 182
Menu_GetEntryText 180
Menu_GetFade 178
Menu_GetHeight 196
Menu_GetHelpMessage 192
Menu_GetSubMenuEvent 186
Menu_GetSubMenuShow 184
Menu_GetTick 176

Index

Menu_GetTitle 198
Menu_GetWidth 197
Menu_RemoveEntry 196
Menu_SetClickEvent 189
Menu_SetClickShow 187
Menu_SetEntryHelpMessage 193
Menu_SetEntrySprite 181
Menu_SetEntryText 179
Menu_SetFade 177
Menu_SetHelpMessage 191
Menu_SetSubMenuEvent 185
Menu_SetSubMenuShow 183
Menu_SetTick 175
Menu_SetTitle 197
removing menu entries 172
showing 172
submenu arrows 174
templates 201
ticking aMenu entry 172
user interface 167
Wimp event handling 202
messages 16
exporting 492
importing 492
messages table 510
method, definition 2
methods of objects 7

N

number ranges 373-380

editing 472

events
NumberRange ValueChanged 380

methods
NumberRange GetBounds 378
NumberRange_GetValue 376
NumberRange SetBounds 377
NumberRange SetValue 375

templates 380

517

Index

O
object
ancestor 9
returning 28
attached objects 11
auto-create 10
auto-show 10
classes 6
component 7
creating 7, 19
side effects 11
customising a dialogue box 57
definition 3
deleting 7, 20
example 17
getting class of 6
getting the template name 29
hiding 8, 22
id 6
methods 7
miscellaneous operation 24
parent 9
returning 27
returning class of 26
returning information on 23
returning value of client handle 25
setting value of client handle 25
shared 8, 42
show types 8
showing 7
showing on screen 21
template flags 431
objectid 6
example 54
option buttons 381-387
editing 474
events
OptionButton_StateChanged 387
methods
OptionButton_GetEvent 385
OptionButton_GetLabel 383
OptionButton_GetState 386

518

OptionButton_SetEvent 384

OptionButton_Setl abel 382

OptionButton_SetState 385
templates 387

P

parent objects 9
persistent dialogue box, definition 2
pop-up menus 388-391
editing 475
events
PopUp_AboutToBeShown 391
methods
PopUp_GetMenu 390
PopUp_SetMenu 389
templates 391
Print Dialogue box class 203-222
action button clicks 207
Application Program Interface 204
attributes 204
before Print box is shown 206
creating and deleting 205
editing 488
events
Print_AboutToBeShown 215
Print_DialogueCompleted 216
Print_Print 219
Print_Save 218
Print_SetUp 218

Print_SetUpAboutToBeShown 217
getting and setting printing options 206

getting Print Dialogue’s title 207

getting underlying object ID 207

methods
Print_GetCopies 210
Print_GetDraft 214
Print_GetOrientation 212
Print_GetPageRange 209
Print_GetScale 211
Print_GetTitle 213
Print_GetWindowID 208

Print_SetCopies 210
Print_SetDraft 214
Print_SetOrientation 212
Print_SetPageRange 209
Print_SetScale 211

printing options 206

SetUp window 207

showing 205

templates 220

user interface 203

Wimp event handling 222

Window definition 220

Prog Info Dialogue box class 223-234

Application Program Interface 224

attributes 224

creating and deleting 224

editing 489

events
Proginfo_AboutToBeShown 232
Proginfo_DialogueCompleted 233

licencetype 225

methods
Proglnfo_GetLicenceType 230
Proginfo_GetTitle 231
Proginfo_GetVersion 228
Proginfo_GetWindowlID 226
Proglnfo_SetLicenceType 229
Proginfo_SetTitle 231
Proginfo_SetVersion 227

showing 225

templates 233

user interface 223

version string 225

Wimp event handling 234

Window definition 234

Quit Dialogue box class 235-246

Application Program Interface 235
attributes 236
changing the Quit Dialogue’s message 237

creating and deleting 236

editing 490

events
Quit_AboutToBeShown 243
Quit_Cancel 245
Quit_DialogueCompleted 244
Quit_Quit 244

getting ID of underlying window 237

methods
Quit_GetMessage 240
Quit_GetTitle 242
Quit_GetWindowID 238
Quit_SetMessage 238
Quit_SetTitle 241

showing 237

templates 245

user interface 235

Wimp event handling 246

Window definition 246

R

radio buttons 392-399
editing 475
events
RadioButton_SetLabel 393
RadioButton_StateChanged 399
methods
RadioButton_GetEvent 396
RadioButton_GetLabel 394
RadioButton_GetState 398
RadioButton_SetEvent 395
RadioButton_SetState 397
templates 399
relocations table 509-510
ResEd
action button properties 467
adjuster arrow properties 468
aligning gadgets 461
faded menu 461
button properties 468
Cancel box 434

Index

colour dialogue template 482
colour menu template 482
common features in gadget properties 465
common features in standard dial ogue boxes
and menus 481
creating aresource file 423
DCStemplate 483
dialogue boxes and standard menus 480-491
common features 481
editing 480
example 441, 480
display field properties 470
draggable properties 470
editing an object template 428
example application 44
exporting messages 492
fileinfo template 483
font dialogue template 484
font menu template 485
gadgets 455-479
Align menu 461
auto-scrolling 456
common features 465
coordinates dialogue box 460
Edit menu 458
inserting into awindow 455
moving the caret between gadgets 457
positioning and moving 455
radio groups 459
re-sizing 457
snap to grid 459
stacking 457
grid in window template 453
Help
for gadgets 464
on menu entries 443, 464
help messages 432
iconbar icon template 486
importing messages 492
keyboard short-cuts 451
example 55, 442-443
label properties 471
labelled box properties 472

520

length fields 432
Menu class 435-441
copying menu entries 439
Edit menu 435
example 440
inserting a new menu entry 439
menu entry properties 436
menu properties 438
moving menu entries 439
re-ordering menu entries 439
messages
exporting 492
importing 492
number range properties 472
object flags 431
object prototypes window 427
object templates
box selection 434
Cancel box 434
help messages 432
Length fields 432
OK box 434
selection model 433
OK box 434
option button properties 474
pop-up menu properties 475
print dialogue template 488
prog info template 489
quit dialogue template 490
radio button properties 475
radio groups 459
ResEd iconbar icon 426
ResEd iconbar menu 426
resource file display 428-431
copying object templates 428
Edit menu 430
File menu 429
moving object templates 428
Object flags 431
saving aresource file 429
save as template 490
scale dialogue template 491
selection model for object templates 433

dlider properties 476
snap to grid 459
starting ResEd 426
string set properties 477
toolbar example 56
toolbar template 462
window objects 444-454
closing the window 449
coloursinawindow 450
extent of awindow 450
grid 453
main properties 445
moving the window 449
other properties 447
re-sizing the window 449
Window menu 444
writable field properties 479
resourcefile
definition 2, 14
format 14
loading 14, 34
resource file formats 505-510
description 508
diagrammatic representation 506
messagestable 510
relocations at load time 509
relocations table 510
stringstable 509
ResTest 497-500
event log window
clear text in log window 500
event block 500
savetext in log window 500
Toolbox event code 499
Toolbox id block 500
WIMP events 500
example session 46
iconbar menu 497
Choices 499
Create 497
Delete 498
Show 498
object ids 54

Index

starting ResTest 497

RISC OS 3.10 support 511

SaveAs Dialogue box class 247-272

Application Program Interface 248

attributes 249

before dialogue box is shown 253

cancelling the dialogue 253

creating and deleting 249

dialogue completed 255

editing 490

error handling 255

events
SaveAs AboutToBeShown 267
SaveAs DialogueCompleted 268
SaveAs FillBuffer 269
SaveAs SaveCompleted 270
SaveAs SaveToFile 268

file size, setting 253

filename and filetype, setting 250

methods
SaveAs BufferFilled 265
SaveAs FileSaveCompleted 266
SaveAs GetFileName 260
SaveAs GetFileSize 262
SaveAs GetFileType 261
SaveAs GetTitle 258
SaveAs GetWindowlID 256
SaveAs SelectionAvailable 263
SaveAs SetDataAddress 264
SaveAs SetFileName 259
SaveAs SetFileSize 262
SaveAs SetFileType 261
SaveAs SetTitle 257

save completed successfully 255

saving by the module 253

saving datafrom a Toolbox client 251

saving to afile 254

saving viaRAM transfer 254

Selection option button 253

521

Index

setting file size 253

setting filename and filetype 250
showing 250

templates 270

user interface 247

Slider_GetColour 406
Slider_GetVaue 402
Slider_SetBound 403
Slider_SetColour 405
Slider_SetVaue 401

Wimp event handling 271 templates 407
Window definition 271 string sets 408-415
Scale Dialogue box class 273-287 editing 477
Application Program Interface 274 events
attributes 274 StringSet_AboutToBeShown 414

before Scale box is shown 276 StringSet_VaueChanged 414

cancelling a Scale dialogue 276

completion of a Scale dialogue 277

creating and deleting 275

methods
StringSet GetSelected 411
StringSet_SetAllowable 412

editing 491 StringSet_SetAvailable 409
events StringSet_SetSelected 410
Scale_AboutToBeShown 284 templates 415
Scale ApplyFactor 285 string, definition 2
Scale DialogueCompleted 285 strings table 509
methods support for RISC 0S 3.10 511

Scale_GetBounds 281
Scale_GetTitle 283
Scale GetVaue 279 T
Scale GetWindowID 278
Scale_SetBounds 280 task initialisation 15
Scale_SetTitle 282 template flags 431
Scale_SetVaue 279 templates
reading and setting the writable field 277 getting a template name 29
reading and setting writable field terminology used in thismanual 2

parameters 277 textual name (name), definition 2
scalefactor 276 title, changing 296
showing 276 toolbar 462
templates 286 editing 462
user interface 273 example 56
Wimp event handling 287 positioning 462
Window definition 286 Toolbox
shared objects 8 application model 4
sliders 400-407 get information for client application 31
editing 476 initialising 15, 32
events loading given resourcefile 34
Slider_VaueChanged 407 messages 16
methods SWis

Slider_GetBound 404 Toolbox_CreateObject 19

522

Toolbox_DeleteObject 20
Toolbox_GetAncestor 28
Toolbox_GetClientHandle 25
Toolbox_GetObjectClass 26
Toolbox_GetObjectinfo 23
Toolbox_GetParent 27
Toolbox_GetSysinfo 31
Toolbox_GetTemplateName 29
Toolbox_HideObject 22
Toolbox_Initialise 32
Toolbox_L oadResources 34
Toolbox_ObjectMiscOp 24
Toolbox_RaiseToolboxEvent 30
Toolbox_SetClientHandle 25
Toolbox_ShowObject 21
Toolbox event 11-14

AboutToBeShown 42

definition 11

event codes 12

events
Toolbox_Error 36
Toolbox_ObjectAutoCreated 37
Toolbox_ObjectDeleted 37

format of 12

id block 13

raising an event 14

raising given event 30

redraw 55

transient dialogue box, definition 2

U

User Interface Object (object), definition 3
user, definition 2

W
Wimp
events 5
Window class 289-324
Application Program Interface 290

Index

attributes 290

changing the title 296

events
Window_AboutToBeShown 318
Window_HasBeenHidden 319

gadgets
inawindow 294
see also Gadgets

getting and setting aclient handle 296

Help messages 296

keyboard short-cuts 292, 295, 323

menu 294

methods
Window_AddGadget 298
Window_AddK eyboardShortcuts 305
Window_GetHelpMessage 304
Window_GetMenu 300
Window_GetPointer 302
Window_GetTitle 308
Window_GetWimpHandle 297
Window_RemoveGadget 299
Window_RemoveK eyboardShortcuts 306
Window_SetHelpMessage 303
Window_SetMenu 300
Window_SetPointer 301
Window_SetTitle 307

pointer shapes 295

showing 293

templates 319

user interface 289

Wimp event handling 323

word, definition 3
writable fields 416-421

editing 479
events
WritableField_VaueChanged 421
methods
WritableField GetVaue 418
WritableField_SetAllowable 419
WritableField_SetFont 420
WritableField_SetVaue 417
templates 421

523

Index

524

Reader’'s Comment Form

User Interface Toolbox, Issue 1
0484,231

We would gresatly appreciate your comments about this Manual, which will be taken into account for the next
issue:

Did you find the infor mation you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

How would you classify your experience with computers?

Used computers before Experienced User Programmer Experienced Programmer

Cut out (or photocopy) and post to: Your name and address:
Dept RC, Technical Publications
Acorn Computers Limited
Acorn Housg, Vision Park

HIStOI’], Cambrldge CB44AE This information will only be used to get in touch with you in case we wish to explore your
England comments further

	User Interface Toolbox
	AMR

	Contents
	Contents�iii
	Introduction to the Toolbox�1
	Building an application�39
	Colour Dialogue box class�67
	Colour Menu class�81
	Discard/Cancel/Save Dialogue box class�91
	File Info Dialogue box class�105
	Font Dialogue box class�121
	Font Menu class�139
	Iconbar icon class�147
	Menu class�167
	Print Dialogue box class�203
	Prog Info Dialogue box class�223
	Quit Dialogue box class�235
	SaveAs Dialogue box class�247
	Scale Dialogue box class�273
	Window class�289
	ResEd�423
	ResTest�497
	DrawFile�501
	Resource File Formats�505
	Support for RISC�OS 3.10�511
	Index�513

	1 Introduction to the Toolbox
	Introduction
	Installing C/C++
	Terminology
	General notes

	Toolbox Application Model
	Traditional desktop application
	Figure 1.1� Wimp application model

	Toolbox application
	Figure 1.2� Toolbox application model
	Wimp events

	Toolbox objects
	Object classes
	Object components
	Object Methods
	Creating an object
	Deleting an object
	Showing an object
	Hiding an object
	Object-specific methods

	Shared objects
	Client handles
	Parent and ancestor objects
	Parent objects
	Ancestor objects
	1 When the user presses Menu over the window, a Toolbox_ShowObject is raised on the Menu with the...
	2 When the user moves the pointer over the Save submenu arrow, the Menu module will show the Save...
	3 Any event now raised on the SaveAs dialogue box will have the id block filled in with the Menu ...

	Auto-create and Auto-show objects
	Attached objects

	Event handling
	Toolbox event Codes
	Format of a Toolbox event
	The id block
	Raising a Toolbox event

	Resource files
	Loading resource files
	Resource file format

	Task initialisation and run-time information
	Message texts and nationalisation
	An Example object
	Toolbox SWIs
	SWI Toolbox_CreateObject (0x44ec0)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_DeleteObject (0x44ec1)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_ShowObject (0x44ec3)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_HideObject (0x44ec4)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_GetObjectState (0x44ec5)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_ObjectMiscOp (0x44ec6)
	On entry
	On exit
	Use

	SWI Toolbox_SetClientHandle (0x44ec7)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_GetClientHandle (0x44ec8)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_GetObjectClass (0x44ec9)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_GetParent (0x44eca)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_GetAncestor (0x44ecb)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_GetTemplateName (0x44ecc)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_RaiseToolboxEvent (0x44ecd)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_GetSysInfo (0x44ece)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_Initialise (0x44ecf)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_LoadResources (0x44ed0)
	On entry
	On exit
	Use
	C veneer

	SWI Toolbox_TemplateLookUp (0x44efb)
	On entry
	On exit
	Use
	C veneer

	Toolbox events
	Toolbox_Error (0x44ec0)
	Block
	Use
	C data type

	Toolbox_ObjectAutoCreated (0x44ec1)
	Block
	Use
	C data type

	Toolbox_ObjectDeleted (0x44ec2)
	Block
	Use
	C data type

	2 Building an application
	Guide To Hyper
	Application icon menu
	Keyboard Short-cuts

	How !Hyper was designed
	Requirements
	Design decisions
	Shared objects and client handles
	Event driven interface
	AboutToBeShown events
	Standard objects
	Keyboard short-cuts

	How !Hyper was implemented
	Creating and testing a simple resource file for !Hyper
	Creating a basic resource file
	1 We began by starting the resource file editor (ResEd – described in the chapter ResEd on page�4...
	2 Next we double-clicked on the ProgInfo object template in the resource file display. This opene...
	3 Then we edited the Menu object template in the resource file display and renamed it to IbarMenu...
	4 Finally we edited the Iconbar object template. We set up the sprite name, inserted some Help te...

	Using ResTest to check the resource file
	Coding

	File loading
	Handling views
	Redraw handler
	Scaling
	Implementing hotspots
	Linking the data structures
	Showing and hiding views
	Adding keyboard short-cuts
	Adding a status bar
	Adding a find capability

	Modifying the interface
	Adding an export DrawFile facility
	1 Drag a Menu object template from the Object prototype window to the resource file, and rename t...
	2 Edit ViewerMenu and add a new menu entry to it:
	3 Next double-click on the FileMenu object template. Rename the title File, and then Shift-drag t...
	4 Now drag a SaveAs object template from the Object prototype window to the resource file. Edit t...
	5 Finally return to the File menu and create an Export menu entry (by renaming the default entry ...

	Other possible modifications

	Client Events
	Summary

	HyperCard Control Language
	HCL commands

	3 Colour Dialogue box class
	User interface
	Application Program Interface
	Attributes
	Manipulating a Colour Dialogue object
	Creating and deleting a Colour Dialogue object
	Showing a Colour Dialogue object
	Before the dialogue box is shown
	Setting and reading the colour used in a Colour Dialogue box
	Setting and reading the colour model used in a Colour Dialogue
	Reacting to colour selections
	Completion of a Colour Dialogue

	Colour Dialogue methods
	ColourDbox_GetWimpHandle 0
	On entry
	On exit
	Use
	C veneer

	ColourDbox_GetDialogueHandle 1
	On entry
	On exit
	Usage
	C veneer

	ColourDbox_SetColour 2
	On entry
	On exit
	Use
	C veneer

	ColourDbox_GetColour 3
	On entry
	On exit
	Use
	C veneer

	ColourDbox_SetColourModel 4
	On entry
	On exit
	Use
	C veneer

	ColourDbox_GetColourModel 5
	On entry
	On exit
	Use
	C veneer

	ColourDbox_SetNoneAvailable 6
	On entry
	On exit
	Use
	C veneer

	ColourDbox_GetNoneAvailable 7
	On entry
	On exit
	Use
	C veneer

	Colour Dialogue events
	ColourDbox_AboutToBeShown (0x829c0)
	Block
	Use
	C data type

	ColourDbox_DialogueCompleted (0x829c1)
	Block
	Use
	C data type

	ColourDbox_ColourSelected (0x829c2)
	Block
	Use
	C data type

	Colour Dialogue templates

	4 Colour Menu class
	User interface
	Application Program Interface
	Attributes
	Manipulating a Colour Menu object
	Creating and deleting a Colour Menu
	Showing a Colour Menu
	Before the menu is shown
	Setting and getting the selected colour
	Processing a colour selection
	Getting the underlying menu object id

	Colour Menu methods
	ColourMenu_SetColour 0
	On entry
	On exit
	Use
	C veneer

	ColourMenu_GetColour 1
	On entry
	Exit
	Use
	C veneer

	ColourMenu_SetNoneAvailable 2
	On entry
	On exit
	Use
	C veneer

	ColourMenu_GetNoneAvailable 3
	On entry
	On exit
	Use
	C veneer

	ColourMenu_SetTitle 4
	On entry
	Exit
	Use
	C veneer

	ColourMenu_GetTitle 5
	On entry
	Exit
	Use
	C veneer

	Colour Menu events
	ColourMenu_AboutToBeShown (0x82980)
	Block
	Use
	C data type

	ColourMenu_HasBeenHidden (0x82981)
	Block
	Use
	C data type

	ColourMenu_Selection (0x82982)
	Block
	Use
	C data type

	Colour Menu templates
	Colour Menu Wimp event handling

	5 Discard/Cancel/Save Dialogue box class
	User interface
	Application Program Interface
	Attributes
	Manipulating a DCS object
	Creating and deleting a DCS object
	Showing a DCS object
	Changing the DCS dialogue’s message
	Getting the id of the underlying window for a DCS object

	DCS methods
	DCS_GetWindowID 0
	On entry
	On exit
	Use
	C veneer

	DCS_SetMessage 1
	On entry
	On exit
	Use
	C veneer

	DCS_GetMessage 2
	On entry
	On exit
	Use
	C veneer

	DCS_SetTitle 3
	On entry
	On exit
	Use
	C veneer

	DCS_GetTitle 4
	On entry
	On exit
	Use
	C veneer

	DCS events
	DCS_AboutToBeShown (0x82a80)
	Block
	Use
	C data type

	DCS_Discard (0x82a81)
	Block
	Use
	C data type

	DCS_Save (0x82a82)
	Block
	Use
	C data type

	DCS_DialogueCompleted (0x82a83)
	Block
	Use
	C data type

	DCS_Cancel (0x82a84)
	Block
	Use
	C data type

	DCS templates
	Underlying window template
	Gadgets

	DCS Wimp event handling

	6 File Info Dialogue box class
	User interface
	Application Program Interface
	Attributes
	Manipulating a File Info object
	Creating and deleting a File Info object
	Showing a File Info object
	Before the File Info dialogue box is shown
	Setting and reading the fields of the File Info dialogue

	File Info methods
	FileInfo_GetWindowID 0
	On entry
	On exit
	Use
	C veneer

	FileInfo_SetModified 1
	On entry
	On exit
	Use
	C veneer

	FileInfo_GetModified 2
	On entry
	On exit
	Use
	C veneer

	FileInfo_SetFileType 3
	On entry
	On exit
	Use
	C veneer

	FileInfo_GetFileType 4
	On entry
	On exit
	Use
	C veneer

	FileInfo_SetFileName 5
	On entry
	On exit
	Use
	C veneer

	FileInfo_GetFileName 6
	On entry
	On exit
	Use
	C veneer

	FileInfo_SetFileSize 7
	On entry
	On exit
	Use
	C veneer

	FileInfo_GetFileSize 8
	On entry
	On exit
	Use
	C veneer

	FileInfo_SetDate 9
	On entry
	On exit
	Use
	C veneer

	FileInfo_GetDate 10
	On entry
	On exit
	Use
	C veneer

	FileInfo_SetTitle 11
	On entry
	On exit
	Use
	C veneer

	FileInfo_GetTitle 12
	On entry
	On exit
	Use
	C veneer

	File Info events
	FileInfo_AboutToBeShown (0x82ac0)
	Block
	Use
	C data type

	FileInfo_DialogueCompleted (0x82ac1)
	Block
	Use
	C data type

	File Info templates
	Underlying window template
	Gadgets

	File Info Wimp event handling

	7 Font Dialogue box class
	User interface
	Application Program Interface
	Attributes
	Manipulating a Font Dialogue object
	Creating and deleting a Font Dialogue object
	Showing a Font Dialogue object
	Before the Font Dialogue box is shown
	Setting and getting the current selection
	Receiving a font selection
	Completing a Font Dialogue

	Font Dialogue methods
	FontDbox_GetWindowID 0
	On entry
	On exit
	Use
	C veneer

	FontDbox_SetFont 1
	On entry
	On exit
	Use
	C veneer

	FontDbox_GetFont 2
	On entry
	On exit
	Use
	C veneer

	FontDbox_SetSize 3
	On entry
	On exit
	Use
	C veneer

	FontDbox_GetSize 4
	On entry
	On exit
	Use
	C veneer

	FontDbox_SetTryString 5
	On entry
	On exit
	Use
	C veneer

	FontDbox_GetTryString 6
	On entry
	On exit
	Use
	C veneer

	FontDbox_SetTitle 7
	On entry
	On exit
	Use
	C veneer

	FontDbox_GetTitle 8
	On entry
	On exit
	Use
	C veneer

	Font Dialogue events
	FontDbox_AboutToBeShown (0x82a00)
	Block
	Use
	C data type

	FontDbox_DialogueCompleted (0x82a01)
	Block
	Use
	C data type

	FontDbox_ApplyFont (0x82a02)
	Block
	Use
	C data type

	Font Dialogue Templates
	Underlying Window template
	Gadgets

	Font Dialogue Wimp event handling

	8 Font Menu class
	User interface
	Application Program Interface
	Attributes
	Manipulating a Font Menu object
	Creating and deleting a Font Menu object
	Showing a Font Menu object
	Before the Font Menu is shown
	Selecting a font
	Receiving a font selection

	Font Menu methods
	FontMenu_SetFont 0
	On entry
	On exit
	Use
	C veneer

	FontMenu_GetFont 1
	On entry
	On exit
	Use
	C veneer

	Font Menu events
	FontMenu_AboutToBeShown (0x82a40)
	Block
	Use
	C data type

	FontMenu_HasBeenHidden (0x82a41)
	Block
	Use
	C data type

	FontMenu_FontSelection (0x82a42)
	Block
	Use
	C data type

	Font Menu templates
	Font Menu Wimp event handling

	9 Iconbar icon class
	User interface
	Application Program Interface
	Attributes
	Manipulating an Iconbar icon object
	Creating and deleting an Iconbar icon object
	Showing an Iconbar icon object
	The Iconbar icon’s position and priority
	The Iconbar icon’s menu
	Select and Adjust click events
	Help messages

	Iconbar icon methods
	Iconbar_GetIconHandle 0
	On entry
	On exit
	Use
	C veneer

	Iconbar_SetMenu 1
	On entry
	On exit
	Use
	C veneer

	Iconbar_GetMenu 2
	On entry
	On exit
	Use
	C veneer

	Iconbar_SetEvent 3
	On entry
	On exit
	Use
	C veneer

	Iconbar_GetEvent 4
	On entry
	On exit
	Use
	C veneer

	Iconbar_SetShow 5
	On entry
	On exit
	Use
	C veneer

	Iconbar_GetShow 6
	On entry
	On exit
	Use
	C veneer

	Iconbar_SetHelpMessage 7
	On entry
	On exit
	Use
	C veneer

	Iconbar_GetHelpMessage 8
	On entry
	On exit
	Use
	C veneer

	Iconbar_SetText 9
	On entry
	On exit
	Use
	C veneer

	Iconbar_GetText 10
	On entry
	On exit
	Use
	C veneer

	Iconbar_SetSprite 11
	On entry
	On exit
	Use
	C veneer

	Iconbar_GetSprite 12
	On entry
	On exit
	Use
	C veneer

	Iconbar icon events
	Iconbar_Clicked (0x82900)
	Block
	Use
	C data type

	Iconbar_SelectAboutToBeShown (0x82901)
	Block
	Use
	C data type

	Iconbar_AdjustAboutToBeShown (0x82902)
	Block
	Use
	C data type

	Iconbar icon templates
	Iconbar icon Wimp event handling

	10 Menu class
	User interface
	Application Program Interface
	Attributes
	Menu attributes
	Menu entry attributes

	Manipulating a Menu object
	Creating and deleting a menu
	Showing a menu
	Adding and removing menu entries
	Changing a Menu entry
	Ticking or fading a Menu entry
	Attaching a submenu dynamically
	Dealing with Menu hits
	Dealing with Adjust clicks on a Menu
	Dealing with traversal of a submenu arrow
	Interactive help on Menus
	Writable menu entries

	Menu methods
	Menu_SetTick 0
	On entry
	On exit
	Use
	C veneer

	Menu_GetTick 1
	On entry
	On exit
	Use
	C veneer

	Menu_SetFade 2
	On entry
	On exit
	Use
	C veneer

	Menu_GetFade 3
	On entry
	On exit
	Use
	C veneer

	Menu_SetEntryText 4
	On entry
	On exit
	Use
	C veneer

	Menu_GetEntryText 5
	On entry
	On exit
	Use
	C veneer

	Menu_SetEntrySprite 6
	On entry
	On exit
	Use
	C veneer

	Menu_GetEntrySprite 7
	On entry
	On exit
	Use
	C veneer

	Menu_SetSubMenuShow 8
	On entry
	On exit
	Use
	C veneer

	Menu_GetSubMenuShow 9
	On entry
	On exit
	Use
	C veneer

	Menu_SetSubMenuEvent 10
	On entry
	On exit
	Use
	C veneer

	Menu_GetSubMenuEvent 11
	On entry
	On exit
	Use
	C veneer

	Menu_SetClickShow 12
	On entry
	On exit
	Use
	C veneer

	Menu_GetClickShow 13
	On entry
	On exit
	Use
	C veneer

	Menu_SetClickEvent 14
	On entry
	On exit
	Use
	C veneer

	Menu_GetClickEvent 15
	On entry
	On exit
	Use
	C veneer

	Menu_SetHelpMessage 16
	On entry
	On exit
	Use
	C veneer

	Menu_GetHelpMessage 17
	On entry
	On exit
	Use
	C veneer

	Menu_SetEntryHelpMessage 18
	On entry
	On exit
	Use
	C veneer

	Menu_GetEntryHelpMessage 19
	On entry
	On exit
	Use
	C veneer

	Menu_AddEntry 20
	On entry
	On exit
	Use
	C veneer

	Menu_RemoveEntry 21
	On entry
	On exit
	Use
	C veneer

	Menu_GetHeight 22
	On entry
	On exit
	Use
	C veneer

	Menu_GetWidth 23
	On entry
	On exit
	Use
	C veneer

	Menu_SetTitle 24
	On entry
	On exit
	Use
	C veneer

	Menu_GetTitle 25
	On entry
	On exit
	Use
	C veneer

	Menu events
	Menu_AboutToBeShown (0x828c0)
	Block
	Use
	C data type

	Menu_HasBeenHidden (0x828c1)
	Block
	Use
	C data type

	Menu_SubMenu (0x828c2)
	Block
	Use
	C data type

	Menu_Selection (0x828c3)
	Block:
	Use
	C data type

	Menu Templates
	Menu Wimp event handling

	11 Print Dialogue box class
	User interface
	Application Program Interface
	Attributes
	Manipulating a Print Dialogue object
	Creating and deleting a Print Dialogue object
	Showing a Print Dialogue object
	Before the Print Dialogue box is shown
	Getting and setting printing options
	Responding to action button clicks
	Getting the Print Dialogue’s title
	Getting the id of the underlying Window object
	The SetUp Window

	Print Dialogue Methods
	PrintDbox_GetWindowID 0
	On entry
	On exit
	Use
	C veneer

	PrintDbox_SetPageRange 1
	On entry
	On exit
	Use
	C veneer

	PrintDbox_GetPageRange 2
	On entry
	On exit
	Use
	C veneer

	PrintDbox_SetCopies 3
	On entry
	On exit
	Use
	C veneer

	PrintDbox_GetCopies 4
	On entry
	On exit
	Use
	C veneer

	PrintDbox_SetScale 5
	On entry
	On exit
	Use
	C veneer

	PrintDbox_GetScale 6
	On entry
	On exit
	Use
	C veneer

	PrintDbox_SetOrientation 7
	On entry
	On exit
	Use
	C veneer

	PrintDbox_GetOrientation 8
	On entry
	On exit
	Use
	C veneer

	PrintDbox_GetTitle 9
	On entry
	On exit
	Use
	C veneer

	PrintDbox_SetDraft 10
	On entry
	On exit
	Use
	C veneer

	PrintDbox_GetDraft 11
	On entry
	On exit
	Use
	C veneer

	Print Dialogue events
	PrintDbox_AboutToBeShown (0x82b00)
	Block
	Use
	C data type

	PrintDbox_DialogueCompleted (0x82b01)
	Block
	Use
	C data type

	PrintDbox_SetUpAboutToBeShown (0x82b02)
	Block
	Use
	C data type

	PrintDbox_Save (0x82b03)
	Block
	Use
	C data type

	PrintDbox_SetUp (0x82b04)
	Block
	Use
	C data type

	PrintDbox_Print (0x82b05)
	Block
	Use
	C data type

	Print Dialogue templates
	Underlying window template
	Gadgets

	Print Dialogue Wimp event handling

	12 Prog Info Dialogue box class
	User interface
	Application Program Interface
	Attributes
	Manipulating a Prog Info object
	Creating and deleting a Prog Info object
	Showing a Prog Info object
	Changing the version string
	Setting the licence type

	Prog Info methods
	ProgInfo_GetWindowID 0
	On entry
	On exit
	Use
	C veneer

	ProgInfo_SetVersion 1
	On entry
	On exit
	Use
	C veneer

	ProgInfo_GetVersion 2
	On entry
	On exit
	Use
	C veneer

	ProgInfo_SetLicenceType 3
	On entry
	On exit
	Use
	C veneer

	ProgInfo_GetLicenceType 4
	On entry
	On exit
	Use
	C veneer

	ProgInfo_SetTitle 5
	On entry
	On exit
	Use
	C veneer

	ProgInfo_GetTitle 6
	On entry
	On exit
	Use
	C veneer

	Prog Info events
	ProgInfo_AboutToBeShown (0x82b40)
	Block
	Use
	C data type

	ProgInfo_DialogueCompleted (0x82b41)
	Block
	Use
	C data type

	Prog Info templates
	Underlying window template
	Gadgets

	Prog Info Wimp event handling

	13 Quit Dialogue box class
	User interface
	Application Program Interface
	Attributes
	Manipulating a Quit object
	Creating and deleting a Quit object
	Showing a Quit object
	Changing the Quit Dialogue’s message
	Getting the id of the underlying window for a Quit Dialogue

	Quit methods
	Quit_GetWindowID 0
	On entry
	On exit
	Use
	C veneer

	Quit_SetMessage 1
	On entry
	On exit
	Use
	C veneer

	Quit_GetMessage 2
	On entry
	On exit
	Use
	C veneer

	Quit_SetTitle 3
	On entry
	On exit
	Use
	C veneer

	Quit_GetTitle 4
	On entry
	On exit
	Use
	C veneer

	Quit events
	Quit_AboutToBeShown (0x82a90)
	Block
	Use
	C data type

	Quit_Quit (0x82a91)
	Block
	Use
	C data type

	Quit_DialogueCompleted (0x82a92)
	Block
	Use
	C data type

	Quit_Cancel (0x82a93)
	Block
	Use
	C data type

	Quit templates
	Underlying window template
	Gadgets

	Quit Wimp event handling

	14 SaveAs Dialogue box class
	User interface
	Application Program Interface
	Attributes
	Manipulating a SaveAs object
	Creating and deleting a SaveAs object
	Showing a SaveAs object
	Setting the SaveAs Dialogue box’s filename and filetype
	Summary of how to save data from a Toolbox client
	Type 1
	Type 2
	Type 3
	Setting the File Size for the SaveAs Dialogue
	Enabling/disabling the Selection option button
	Before the SaveAs Dialogue box is shown
	Cancelling the dialogue
	Saving handled entirely by the SaveAs module
	Saving to a file
	Saving via RAM transfer
	Successful completion of a Save operation
	Completion of the SaveAs dialogue
	Error handling

	Save As methods
	SaveAs_GetWindowID 0
	On entry
	On exit
	Use
	C veneer

	SaveAs_SetTitle 1
	On entry
	On exit
	Use
	C veneer

	SaveAs_GetTitle 2
	On entry
	On exit
	Use
	C veneer

	SaveAs_SetFileName 3
	On entry
	On exit
	Use
	C veneer

	SaveAs_GetFileName 4
	On entry
	On exit
	Use
	C veneer

	SaveAs_SetFileType 5
	On entry
	On exit
	Use
	C veneer

	SaveAs_GetFileType 6
	On entry
	On exit
	Use
	C veneer

	SaveAs_SetFileSize 7
	On entry
	On exit
	Use
	C veneer

	SaveAs_GetFileSize 8
	On entry
	On exit
	Use
	C veneer

	SaveAs_SelectionAvailable 9
	On entry
	On exit
	Use
	C veneer

	SaveAs_SetDataAddress 10
	On entry
	On exit
	Use
	C veneer

	SaveAs_BufferFilled 11
	On entry
	On exit
	Use
	C veneer

	SaveAs_FileSaveCompleted 12
	On entry
	On exit
	Use
	C veneer

	Save As events
	SaveAs_AboutToBeShown (0x82bc0)
	Block
	Use
	C data type

	SaveAs_DialogueCompleted (0x82bc1)
	Block
	Use
	C data type

	SaveAs_SaveToFile (0x82bc2)
	Block
	Use
	C data type

	SaveAs_FillBuffer (0x82bc3)
	Block
	Use
	C data type

	SaveAs_SaveCompleted (0x82bc4)
	Block
	Use
	C data type

	Save As templates
	Underlying Window template
	Gadgets

	Save As Wimp event handling

	15 Scale Dialogue box class
	User interface
	Application Program Interface
	Attributes
	Manipulating a Scale object
	Creating and deleting a Scale object
	Showing a Scale object
	Before the Scale Dialogue box is shown
	Applying a Scale factor
	Cancelling a Scale dialogue
	Completion of a Scale dialogue
	Reading and setting the writable field
	Reading and setting the bounds of the writable field and step size

	Scale methods
	Scale_GetWindowID 0
	On entry
	On exit
	Use
	C veneer

	Scale_SetValue 1
	On entry
	On exit
	Use
	C veneer

	Scale_GetValue 2
	On entry
	On exit
	Use
	C veneer

	Scale_SetBounds 3
	On entry
	On exit
	Use
	C veneer

	Scale_GetBounds 4
	On entry
	On exit
	Use
	C veneer

	Scale_SetTitle 5
	On entry
	On exit
	Use
	C veneer

	Scale_GetTitle 6
	On entry
	On exit
	Use
	C veneer

	Scale events
	Scale_AboutToBeShown (0x82c00)
	Block
	Use
	C data type

	Scale_DialogueCompleted (0x82c01)
	Block
	Use
	C data type

	Scale_ApplyFactor (0x82c02)
	Block
	Use
	C data type

	Scale templates
	Underlying window template
	Gadgets

	Scale Wimp event handling

	16 Window class
	User interface
	Application Program Interface
	Attributes
	Keyboard short-cut
	Gadget

	Manipulating a Window object
	Creating and deleting a Window object
	Showing a Window
	The Window’s menu
	Gadgets in a window
	Keyboard short-cuts
	Pointer shapes
	Help messages
	Changing a window’s title
	Getting and setting a Window’s client handle

	Window methods
	Window_GetWimpHandle 0
	On entry
	On exit
	Use
	C veneer

	Window_AddGadget 1
	On entry
	On exit
	Use
	C veneer

	Window_RemoveGadget 2
	On entry
	On exit
	Use
	C veneer

	Window_SetMenu 3
	On entry
	On exit
	Use
	C veneer

	Window_GetMenu 4
	On entry
	On exit
	Use
	C veneer

	Window_SetPointer 5
	On entry
	On exit
	Use
	C veneer

	Window_GetPointer 6
	On entry
	On exit
	Use
	C veneer

	Window_SetHelpMessage 7
	On entry
	On exit
	Use
	C veneer

	Window_GetHelpMessage 8
	On entry
	On exit
	Use
	C veneer

	Window_AddKeyboardShortcuts 9
	On entry
	On exit
	Use
	C veneer

	Window_RemoveKeyboardShortcuts 10
	On entry
	On exit
	Use
	C veneer

	Window_SetTitle 11
	On entry
	On exit
	Use
	C veneer

	Window_GetTitle 12
	On entry
	On exit
	Use
	C veneer

	Window_SetDefaultFocus 13
	On entry
	On exit
	Use
	C veneer

	Window_GetDefaultFocus 14
	On entry
	On exit
	Use
	C veneer

	Window_SetExtent 15
	On entry
	On exit
	Use
	C veneer

	Window_GetExtent 16
	On entry
	On exit
	Use
	C veneer

	Window_ForceRedraw 17
	On entry
	On exit
	Use
	C veneer

	Window_SetToolBars 18
	On entry
	Use
	C veneer

	Window_GetToolBars 19
	On entry
	On exit
	Use
	C veneer

	Other SWIs
	SWI Window_GetPointerInfo (0x82883)
	On entry
	On exit
	Use
	C veneer

	SWI Window_WimpToToolbox (0x82884)
	On entry
	On exit
	Use
	C veneer

	SWI Window_ExtractGadgetInfo (0x828be)
	On entry
	On exit
	Use
	C veneer

	Window events
	Window_AboutToBeShown (0x82880)
	Block
	Use
	C data type

	Window_HasBeenHidden (0x82890)
	Block
	Use
	C data type

	Window templates
	Keyboard short-cut
	Gadget

	Window Wimp event handling
	Toolbars
	User interface
	Use of toolbars
	Application tool box
	Status lines

	Application program interface
	Attributes
	Manipulating a toolbar
	Creating and deleting a toolbar object
	Showing and Hiding

	Toolbar methods
	Gadgets
	Application Program Interface
	Attributes
	Manipulating a Gadget

	Generic gadget methods
	Gadget_GetFlags 64
	On entry
	On exit
	Use
	C veneer

	Gadget_SetFlags 65
	On entry
	On exit
	Use
	C veneer

	Gadget_SetHelpMessage 66
	On entry
	On exit
	Use
	C veneer

	Gadget_GetHelpMessage 67
	On entry
	On exit
	Use
	C veneer

	Gadget_GetIconList 68
	On entry
	On exit
	Use
	C veneer

	Gadget_SetFocus 69
	On entry
	On exit
	Use
	C veneer

	Gadget_GetType 70
	On entry
	On exit
	Use
	C veneer

	Gadget_MoveGadget 71
	On entry
	On exit
	Use
	C veneer

	Gadget_GetBBox 72
	On entry
	On exit
	Use
	C veneer

	Gadget Wimp event handling
	Action buttons
	Action button methods
	ActionButton_SetText 128
	On entry
	On exit
	Use
	C veneer

	ActionButton_GetText 129
	On entry
	On exit
	Use
	C veneer

	ActionButton_SetEvent 130
	On entry
	On exit
	Use
	C veneer

	ActionButton_GetEvent 131
	On entry
	On exit
	Use
	C veneer

	ActionButton_SetClickShow 132
	On entry
	On exit
	Use
	This method allows the client to specify the object to show when the user clicks Select or Adjust...
	If R4 is 0, then no object should be shown.
	C veneer

	ActionButton_GetClickShow 133
	On entry
	On exit
	Use
	C veneer

	Action button Toolbox events
	ActionButton_Selected (0x82881)
	Block
	Use
	C data type

	Action button templates
	Adjuster arrows
	Adjuster arrows Toolbox events
	Adjuster_Clicked (0x8288c)
	Block
	Use
	C data type

	Adjuster arrow templates
	Button gadget
	Button methods
	Button_GetFlags 960
	On entry
	On exit
	Use
	C veneer

	Button_SetFlags 961
	On entry
	On exit
	Use
	C veneer

	Button_SetValue 962
	On entry
	On exit
	Use
	C veneer

	Button_GetValue 963
	On entry
	On exit
	Use
	C veneer

	Button_SetValidation 964
	On entry
	On exit
	Use
	C veneer

	Button_GetValidation 965
	On entry
	On exit
	Use
	C veneer

	Button_SetFont 966
	On entry
	On exit
	Use
	C veneer

	Button toolbox events
	Button templates
	Display fields
	Display field methods
	DisplayField_SetValue 448
	On entry
	On exit
	Use
	C veneer

	DisplayField_GetValue 449
	On entry
	On exit
	Use
	C veneer

	DisplayField_SetFont 450
	On entry
	On exit
	Use
	C veneer

	Display field templates
	Draggable gadgets
	Draggable methods
	Draggable_SetSprite 640
	On entry
	On exit
	Use
	C veneer

	Draggable_GetSprite 641
	On entry
	On exit
	Use
	C veneer

	Draggable_SetText 642
	On entry
	On exit
	Use
	C veneer

	Draggable_GetText 643
	On entry
	On exit
	Use
	C veneer

	Draggable_SetState 644
	On entry
	On exit
	Use
	C veneer

	Draggable_GetState 645
	On entry
	On exit
	Use
	C veneer

	Draggable Toolbox events
	Draggable_DragStarted (0x82887)
	Block
	Use
	C data type

	Draggable_DragEnded (0x82888)
	Block
	Use
	C data type

	Draggable templates
	Labels
	Label templates
	Labelled boxes
	Labelled box templates
	Number ranges
	Number range methods
	NumberRange_SetValue 832
	On entry
	On exit
	Use
	C veneer

	NumberRange_GetValue 833
	On entry
	On exit
	Use
	C veneer

	NumberRange_SetBounds 834
	On entry
	On exit
	Use
	C veneer

	NumberRange_GetBounds 835
	On entry
	On exit
	Use
	C veneer

	NumberRange_GetComponents 836
	On entry
	On exit
	Use
	C veneer

	Number range Toolbox events
	NumberRange_ValueChanged (0x8288d)
	Block
	Use
	C data type

	Number range templates
	Option buttons
	Option button methods
	OptionButton_SetLabel 192
	On entry
	On exit
	Use
	C veneer

	OptionButton_GetLabel 193
	On entry
	On exit
	Use
	C veneer

	OptionButton_SetEvent 194
	On entry
	On exit
	Use
	C veneer

	OptionButton_GetEvent 195
	On entry
	On exit
	Use
	C veneer

	OptionButton_SetState 196
	On entry
	On exit
	Use
	C veneer

	OptionButton_GetState 197
	On entry
	On exit
	Use
	C veneer

	Option button Toolbox events
	OptionButton_StateChanged (0x82882)
	Block
	Use
	C data type

	Option button templates
	Pop-up menus
	Pop-up menu methods
	PopUp_SetMenu 704
	On entry
	On exit
	Use
	C veneer

	PopUp_GetMenu 705
	On entry
	On exit
	Use
	C veneer

	Pop-up menu Toolbox events
	PopUp_AboutToBeShown (0x8288b)
	Block
	Use
	C data type

	Pop-up menu templates
	Radio buttons
	Radio button methods
	RadioButton_SetLabel 384
	On entry
	On exit
	Use
	C veneer

	RadioButton_GetLabel 385
	On entry
	On exit
	Use
	C veneer

	RadioButton_SetEvent 386
	On entry
	On exit
	Use
	C veneer

	RadioButton_GetEvent 387
	On entry
	On exit
	Use
	C veneer

	RadioButton_SetState 388
	On entry
	On exit
	Use
	C veneer

	RadioButton_GetState 389
	On entry
	On exit
	Use
	C veneer

	Radio button Toolbox events
	RadioButton_StateChanged (0x82883)
	Block
	Use
	C data type

	Radio button templates
	Sliders
	Slider methods
	Slider_SetValue 576
	On entry
	On exit
	Use
	C veneer

	Slider_GetValue 577
	On entry
	On exit
	Use
	C veneer

	Slider_SetBound 58
	On entry
	On exit
	Use
	C veneer

	Slider_GetBound 579
	On entry
	On exit
	Use
	C veneer

	Slider_SetColour 580
	On entry
	On exit
	Use
	C veneer

	Slider_GetColour 581
	On entry
	On exit
	Use
	C veneer

	Slider Toolbox events
	Slider_ValueChanged (0x82886)
	Block
	Use
	C data type

	Slider templates
	String sets
	String set methods
	StringSet_SetAvailable 896
	On entry
	On exit
	Use
	C veneer

	StringSet_SetSelected 898
	On entry
	On exit
	Use
	C veneer

	StringSet_GetSelected 899
	On entry
	On exit
	Use
	C veneer

	StringSet_SetAllowable 900
	On entry
	On exit
	Use
	C veneer

	StringSet_GetComponents 902
	On entry
	On exit
	Use
	C veneer

	String set Toolbox events
	StringSet_ValueChanged (0x8288e)
	Block
	Use
	C data type

	StringSet_AboutToBeShown (0x8288f)
	Block
	Use
	C data type

	String set templates
	Writable fields
	Writable field methods
	WritableField_SetValue 512
	On entry
	On exit
	Use
	C veneer

	WritableField_GetValue 513
	On entry
	On exit
	Use
	C veneer

	WritableField_SetAllowable 514
	On entry
	On exit
	Use
	C veneer

	WritableField_SetFont 516
	On entry
	On exit
	Use
	C veneer

	Writable field Toolbox events
	WritableField_ValueChanged (0x82885)
	Block
	Use
	C data type

	Writable field templates

	17 ResEd
	Overview
	1 Start ResEd.
	2 Open a new resource file display.
	3 Open an object prototypes display containing pre-defined object templates.
	4 Drag the object templates you require from the object prototypes window into the resource file ...
	5 Double-click on an object template to open an editing window for it.
	6 Edit the object templates.
	7 Save the edited object templates into a resource file.

	Creating and editing a Toolbox resource file
	1 Start ResEd in a similar way to other RISC�OS applications, by double-clicking on its applicati...
	2 Open a new resource file display by clicking Select on the ResEd iconbar icon or choosing New f...
	3 The object prototypes window allows you to drag any prototype object template into the resource...
	4 Drag one or more object templates from the object prototypes window into the resource file disp...
	5 To edit a Window object template double-click on its icon in the resource file display. An edit...
	6 When you have finished editing a window object template, close the editing window using the clo...
	7 When you have finished editing all the object templates you can save them using the Save option...

	Starting ResEd
	The iconbar icon
	The iconbar menu

	The object prototypes window
	The resource file display
	Editing an object template
	Copying object templates
	Moving object templates
	The resource file display menu
	The File menu
	The Edit menu
	Prototypes...

	The Object flags dialogue box

	Editing object templates in general
	Length fields
	Help messages
	Other length fields

	The selection model
	Selection highlighting
	Box selection

	Cancel and OK
	Cancel
	OK

	Editing the Menu class
	The Menu editor
	Editing a Menu entry
	The Menu entry properties dialogue box

	Editing the Menu
	The Menu properties dialogue box

	Inserting a new Menu entry
	Manipulating menu entries
	Copying menu entries
	Moving menu entries between different editing windows
	Re-ordering menu entries

	Example menu
	Creating a submenu
	Displaying a dialogue box
	Creating a keyboard short-cut
	Defining the keyboard short-cut
	1 Click Select on the Key field and press Shift F3; the corresponding code (&193) is automaticall...
	2 Specify the event code in the Deliver event box (e.g. ‘&345’).
	3 Click on Update to add the new keyboard short-cut to the scrolling list.
	4 Click on OK to add the new keyboard short-cut to the Window object template.

	Filling in the Menu entry properties box

	Interactive help for menu entries

	Editing a Window object template and gadgets
	The Window menu
	The Main properties dialogue box
	Icons controls the following features:
	The Other properties dialogue box

	Manipulating the window
	Re-sizing the window
	Moving the window
	Closing the window

	Window Colours
	Window Extent
	Keyboard short-cuts
	Using a keyboard short-cut entry to ‘fill in’ a menu entry

	The Grid

	Gadgets
	The gadgets window
	Positioning and moving gadgets
	Repositioning and copying
	Accurate positioning
	Auto-scrolling
	Moving gadgets between windows
	Moving a gadget in one direction only

	Changing the size of a gadget
	Stacking
	Moving the caret between writable gadgets
	The Edit submenu
	Snap to grid
	Manipulating radio groups
	Dragging a group of radio buttons between window templates

	The Coordinates dialogue
	The Align menu
	1 select one or more gadgets
	2 decide which gadget you want to align the other gadgets to and press Menu over it (this gadget ...
	3 go into the Align menu and click on the required type of alignment:
	Aligning gadgets from top to bottom
	Aligning gadgets from left to right

	Toolbar object template
	Positioning the toolbar within a window

	Interactive help for gadgets
	Common features in gadget properties boxes
	Opening a gadget properties box

	Action button properties
	Adjuster arrow properties
	Button properties
	Display field properties
	Draggable properties
	Label properties
	Labelled box properties
	Number range properties
	Altering the size of the numerical field

	Option button properties
	Pop-up menu properties
	Radio button properties
	Slider properties
	String set properties
	Writable field properties

	Editing other classes
	1 Display the object prototypes window and drag the required object templates from the object pro...
	2 Edit each object template by double-clicking on its icon in the resource file display. An editi...
	3 Close the editing window with the OK button to confirm the changes you have made. If you close ...
	Common features in standard dialogue boxes and menus
	Colour Dialogue class
	Colour Menu class
	DCS class
	File Info class
	Font Dialogue class
	Font Menu class
	Iconbar icon class
	Print Dialogue class
	Prog Info class
	Quit Dialogue class
	Save As class
	Scale Dialogue class

	Exporting and importing messages
	Keystroke equivalents
	In the resource file display
	In the Window editor
	In the Menu editor
	When editing in general

	Mouse behaviour
	In the Window editor
	In the Menu editor window
	In the resource file display
	Box selection

	18 ResTest
	Starting ResTest
	The iconbar menu
	The event log window
	Toolbox event code
	Toolbox id block
	Event block
	WIMP events
	The ResTest menu

	19 DrawFile
	Differences between DrawFile output and !Draw output
	Text
	Transformed text
	Text areas
	Sprite colours

	SWI DrawFile_Render
	On entry
	On exit
	Use
	C veneer

	SWI DrawFile_BBox
	On entry
	On exit
	Use
	C veneer

	SWI DrawFile_DeclareFonts
	On entry
	On exit
	Use
	C veneer

	Appendix�A: Resource File Formats
	Terminology
	Resource file format
	Diagrammatic representation
	Resource File Format Description
	Relocations at Load Time
	Table Formats
	Strings table
	Messages Table
	Relocations Table

	Appendix�B: Support for RISC�OS 3.10
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

