About this manual

Summary of contents

This manual gives you detailed information on RISC OS 3.5 and RISC OS 3.6, so that

you can write programs to run on Acorn computers that use them. It must be used in
conjunction with the RISC OS 3 Programmer’s Reference Manaadl is produced as a
replacement for the earlier volume 5 in the set that described RISC OS 3.5 only. The
pages are numbered ‘Barather than ‘5n’ to distinguish references to the two different
versions.

This manual only tells you about the differences between RISC OS 3.1, RISC OS 3.5
and RISC OS 3.6. Many cross references are given between this volume and the earlier
volumes so that you can always refer to the main topic to obtain further information.

The layout of chapters

We've laid out the information in this manual as consistently as possible, to help you
find what you need. Each chapter covers a specific topic, and in general includes:

« anlintroduction, so you can tell if the chapter covers the topic you are looking for

« anOverview, to give you a broad picture of the topic and help you to learn it for the
first time

« Technical Details, to use for reference once you have read the Overview
e« SWM calls, described in detail for reference

« * Commands, described in detail for reference

« Application notes, to help you write programs

« Example programs, to illustrate the points made in the chapter, and on which you
can base your own programs.

Appendix C: Errata and omissions for RISC OS 3 PRM

This appendix (on page 5a-667) contains a list of errata and omissionsRBIHES 3
Programmer’s Reference Manu#le suggest you add to your copy either the
corrections themselves, or areference to them.

5a-x

Conventions used

Indexes

The separate volume of Indexes replaces that supplied with the RISC OS 3
Programmer’s Reference Manyahd references all five volumes. It contains:

« anindex of * Commands

« anindex of OS Bytecals

« anindex of OS Word calls

e anumericindex of servicecalls

« anaphabetic index of servicecalls
e anumericindex of SWI cals

« anaphabetic index of SWI calls

e anindex by subject.

Conventions used

Certain conventions are used in this manual :

Hexadecimal numbers

Hexadecimal numbers are extensively used. They are always preceded by an ampersand.
They are often followed by the decimal equivalent which is given inside brackets:

& FFFF (65535)

This represents FFFF in hexadecimal, which is the same as 65535 in ordinary decimal
numbers.

Typefaces

Couri er typeisused for the text of example programs and commands, and any
extracts from the RISC OS source code. Since al characters are the same width in
Courier, this makes it easier for you to tell where there should be spaces.

Bol d Couri er typeisused in some examplesto show input from the user. We only
use it where we need to distinguish between user input and computer output.

Command syntax
Specia symbols are used when defining the syntax for commands:

« Itaicsindicate that you must substitute an actual value. For example, fi | enane
means that you must supply an actual filename.

« Bracesindicates that the item enclosed is optional. For example, [K] shows that
you may omit the letter ‘K'.

5a-xi

About this manual

e A barindicates an option. For example, 0| 1 means that you must supply the value
Oor1.

Programs
Many of the examplesin this manual are not complete programs. In general:
« BBCBASIC examples omit any line numbering

« BBCBASIC Assembler programs do not show the structure needed to perform the
assembly

« ARM Assembler programs assume that header files have been included that define
the SWI names as manifests for the SWI numbers.

« C programs assume that similar headers are included; they aso do not show the
inclusion of other headers, or the calling of mai n() .

Finding out more

For how to set up and maintain your computer, refer to the \Welcome Guide supplied with
your computer. The Welcome Guide also contains an introduction to the desktop which
new userswill find particularly helpful.

For details on the use of your computer and of its application suite, refer to the RISC OS
3 User Guide supplied with it.

If you wish to write BASIC programs on your RISC OS computer you will find the BBC
BASI C Reference Manual useful.

Your Acorn supplier hasavailable the Acorn C/C++ product, which you can useto write
programsin C, C++, and ARM assembler. The product runs in a desktop environment

with full supporting tools. It also provides the User Interface Toolbox, making it much
easier to design and code a desktop application’s user interface; for more detéis see
Toolbox modules on page 5a-657.

Technical Reference Manuals are available for all but the oldest of Acorn RISC OS
computers. These describe the hardware in full, including such things as parts lists and
circuit diagrams.

Reader comments

If you have any comments on this Manual, please complete and return the form on the
last page of the volume of Indexes to the address given there.

5a-xii

Reader comments

5a-xiii

Part 15 — The kernel

S5a-1

5a-2

98

Introduction

Introduction to RISC OS 3.5 and
RISC OS 3.6

RISC OS 3.5 isan operating system written by Acorn for its Risc PC computersthat use
the new ARM600 / ARM700 hardware architecture. This version was only changed
where it was necessary to support the changing hardware. RISC OS 3.6 is a further
development, which adds support for machines using the similar ARM 7500
architecture, and integrates software that was previously separately available. We have
tried to make both versions as compatible as possible with the RISC OS 3.1 operating
system.

RISC OS terminology

The operating system known as RISC OS 2 in this manual consists of two variants,
RISC 0S2.00 and RISC 0OS 2.01.

The operating system known as RISC OS 3 in this manual consists of two variants,
RISC 0S 3.00 and RISC OS 3.10.

The operating system known as RISC OS 3.5 in thismanual isRISC OS 3.50, and isthe
version supplied with the first generation of Risc PC computers.

The operating system known as RISC OS 3.6 in thismanual isRISC OS 3.60, and isthe
version supplied with the second generation of Risc PC computers, and the first
generation of A7000 computers.

Hardware overview

The main electronic components of a Risc PC computer are:

« AnARM (Advanced RISC Machines) ARM610 or ARM 700 processor, which
provides the main processing.

« A VIDC20 (Video Controller) chip, which provides the video and sound outputs.

e AnIOMD (Input Output Memory Device) which provides theinterface between the
ARM chip, the VIDC chip, the memory and other support chips.

This chip replaces the IOC and MEMC chips used in earlier RISC OS computers.

5a-3

Hardware overview

The main component of the A7000 is the ARM 7500 chip; this integrates all the above
functionality into asingle chip.

Other components
The other components are:
« ROM (Read Only Memory) chips containing the operating system.
« RAM (Random Access Memory) chips.
« VRAM (Video RAM) chips used for video display (if fitted).

o Peripheral controllers (for devices such as discs, the seria port, networks and so
on).

Schematic

The diagram on page 5a-5 gives a schematic of an architecture which may be viewed as
typical of the Risc PC range of computers.

ARM 610 and ARM 700

The ARM isaRISC (Reduced Instruction Set Computer) processor. The initial range of
Risc PC computers can use two different versions of the ARM processor.

« The ARM610 delivers about 5 times the power of an ARM 2 (23 MIPs, or million
instructions per second, compared to some 4 - 5 MIPS for the ARM?2).

« The ARM700 delivers about 8 times the power of an ARM 2 (an estimated
35 MIPS). The ARM 700 also has adirect connection for a hardware floating point
chip.

From the application programmer’s point of view, there is no difference between the two
processors. The ARM700 supports the same instruction set as the ARM610.

It is possible that other chips in the ARM6 / ARM7 family may also be used.

The VIDC20 chip

The VIDC20 chip is an updated version of the VIDC1 and VIDC1a chip used in the
previous generation of Acorn computers. The main differences are that VIDC20
provides:

« A wide range of resolution options including VGA, SuperVGA and XGA
resolution.

« 1,2,4,8,16 and 32 bits per pixel.
« 8 bit DACs giving 16 million colours.

S5a-4

Introduction to RISC OS 3.5 and RISC OS 3.6

Video / Audio | Random Access Memory CPU & Control Peripheral Control Expansion Interfaces
SAM data H) SIMM 1 (OpenBus Card 1|
32b| DIMM SIMM 0 (OpenBus Card 0|
SAMdataLO | yrAM DRAM ARM CPU
32b — — 7
. address bus _LW latched address bus
32b >
- 280 buffered 16b
32b A data bus > data bus HI
Row & > 32b d 16b
Column A
ddress buffered 16b
12 ata bus LO 50 16b » 11 » >m 3 » 8
control 32b 8b 4 b 6b 32b)
ARM Bus!
A A A
P] [g d AL
control . 9 80)
8 26
2 4
Yvy LAALINEE LS A WYV WY

VIDC20

IOMD

IIC
2
o] e

Erll
L] 5

82C665 .

- - /\ Expansion

ROMs Wm_w_\%mwww_ AN Network card |cards (8 max))
Controller
Y |
<__a%o y <m5m3m:mno:mim8
Fi di IDE
oppy disc Hard disc
Parallel

Serial

L— Mouse buttons

Quadrature Mouse

Key _N_ Uni-Directional Latch m Bi-Directional Buffer Internal to Case

IBM PS/2 Compatible Keyboard

Motherboard

Figure98.1 Schematic of a Risc PC computer

5a-5

Hardware overview

5a-6

Video data transfer

The VIDC20 has a 64 hit data bus allowing a high data bandwidth from memory.
VIDC20 takes data from the memory banks under DMA control. VIDC20 takesits data
from VRAM if it isfitted, otherwise it takes data from DRAM.

Palette

The VIDC 20 contains 296 write-only registers: 256 of these are used as the 28 bit video
palette entries. Each entry uses 8 bitsfor Red, 8 bits for Green and 8 bits for Blue with 4
bits for external data.

The video palette entries or Look up tables (LUT) alow for logical to physical
translation and gamma correction. The Red, Green and Blue LUTs each drive their
respective DACs. These DACs give atota of 16 million possible colours.

Pixel clock

VIDC20 can generate adisplay at any pixel rate up to at least 110Mhz. The clock can be
selected from one of three sources, and then divided by a factor of between 1 and 8.

The VIDC20 also contains a phase comparator which — when used with an external
Voltage Controlled Oscillator — forms a Phase Locked Loop. This allows a single
reference clock to generate all the required frequencies for any display mode. You do not
need multiple external crystals.

Sound system

The sound system is compatible with the VIDC1 sound system with an independent
sound clock (24MHz). It features an 8 bit (logarithmic) system using an internal DAC.
This gives eight channels each with its own stereo position.

The device can work with 1, 2, 4 or 8 stereo channels using time division multiplexing
to synthesise left and right outputs. The sample rate is programmable through the Sound
Frequency Register.

Cursor

VIDC20 has a hardware cursor for all its modes. The cursor is 32 pixels wide and any
number of pixels high. Each pixel can be transparent, or one of three colours chosen
from its own 28 bit wide palette. The cursor can be any shape or colour within these
limits.

Introduction to RISC OS 3.5 and RISC OS 3.6

The IOMD chip

ThelOMD isaspecialised custom chip that takes the place of several large chipsusedin
the old architecture.

IOMD includes some of the circuitry formerly in the IOC and MEMC chips, aswell as
a large amount of ‘glue’ logic.

The features of the IOMD include:

o Direct interface to ARM6xX/ARM7xx processors

« 16 bit steered bus, for on-board peripherals

« |OC functionality (ticker, interrupt manager, IIC, I/O control)
« Memory controller for DRAM and VRAM

« DMA controller for I/0O, sound, cursor and video data

« PC keyboard interface

« Quadrature mouse interface.

General architecture
The IOMD is a memory, DMA and 1/O controller.

It has a CPU interface for an ARM610/ARM700 type processor which can allow an
additional processor to be connected. The CPU interface consists of the processor

address, data and control buses.

There is a DRAM and VRAM control bus which has RAS, CAS, multiplexed address
and other control lines. There are a number of DMA address generators, for sound,

cursor, and general I/O DMA. There is also VRAM control logic, including logic to
generate transfer cycles.

Since the whole 32 bits of the main system bus connects to IOMD, it is possible for

IOMD to transfer data using DMA (Direct Memory Access) from DRAM into itself.

There is a 16 bit I/O bus on IOMD, and there is byte (and half-word) steering logic to

allow DMA data at arbitrary byte (or half-word) memory locations to be transferred

to/from the 1/O system using this bus. The 16 bit I/O bus forms the lower 16 bits of the
32 bit podule interface. IOMD controls the latches for the upper 16 bits of the extended

podule bus, which allows 32 bit transfers.

IOMD contains a large subset of the functionality of IOC, including two general purpose
counter/timers (timer 0 and timer 1) and the interrupt control registers. The 10C baud
rate and keyboard serial rate timers are not implemented in IOMD, nor are all of the
general purpose I/O lines. The allocation of interrupt lines is largely similar to previous

machines.

S5a-7

RISC OS overview

IOMD provides a PC keyboard interface instead of the Archimedes KART interface
supported by IOC. This consists of an 8 bit synchronous serial interface, with interrupt
generation capability.

The chip contains a quadrature mouse interface. This consists of X and Y counters that
are incremented and decremented by mouse movements. The counters wrap when they
overflow or underflow, and are read regularly under interrupt. The VSync interrupt is
used (although the centi-second timer could be used) asiit allows updating every frame;
there is no point in updating the screen more often than this. The X and Y counters are
each 16 bitswide.

ARM7500

The ARM7500 is amonolithic device that integrates an ARM7 processor, a video
generator similar to VIDC20, and most of the functions of IOMD. The mgjor differences
are:

« The ARM7500 provides two PS/2-style asynchronous serial keyboard ports (one
for the keyboard, and one for the mouse), rather than IOMD’s synchronous serial
keyboard port and quadrature mouse interface of IOMD.

« The ARM7500 provides a four channel PC joystick interface, not available with
IOMD.

RISC OS overview

The chapters that follow describe the changes introduced in RISC OS 3.5 and
RISC OS 3.6. These changes are summarised below.

RISC OS 3.5

« Memory management has been considerably improved. Much greater amounts of
physical memory are supported, and the address space is larger. Second processors
can claim memory. You can now create and manipulate your own dynamic areas.

« A module has been provided to support DMA (direct memory access).

« Video and sprite capabilities have been extended to support the huge range of screen
modes and colours now possible. There are new ways of selecting and specifying
screen modes and monitors, and a new sprite format. Many calls have been
extended to support these.

« The parallel and serial device drivers have been made considerably more fast and
efficient.

« The buffer manager now allows you to insert and remove buffered data without
incurring the overheads of calling SWis

5a-8

Introduction to RISC OS 3.5 and RISC OS 3.6

« Keyboard support has been removed from the kernel. It has been replaced by a
device driver module so a standard PC keyboard can be used, greatly expanding the
range of availableinput devices.

e The quadrature mouse driver has been removed from the kernel and placed inits
own module. A serial mouse driver for a PC-type mouse is available as an
alternative.

e« The CMOS RAM and hard disc can now be password protected against malicious
or accidental changes. The CMOS RAM can also be protected in hardware against
the effects of power-on resets.

e Thereset behaviour has been rationalised.
e Support isprovided in ROM for AUN (Acorn Universal Networking).

o The appearance of the desktop has been considerably improved. It now has a 3D
appearance, uses an outline font, and can tile window backgrounds with a texture.

« TheFiler now allows much longer filenames, and changes column widths to
accommodate them. A new icon is used to distinguish open directories. Dragged
objects now appear as an icon, rather than as a dashed rectangle.

« The Wimp's error system has been extended to improve its appearance, allow more
customisation, and provide more user friendly dialogues.

« DragASprite now makes dragged icons semi-transparent by default, so you can
easily see what lies under them.

« A watchdog has been added so you can easily kill runaway programs that do not
return control to the Wimp.

« A new Boot application has been added. Your applications can easily add and
remove commands to this application, making their installation and removal much
easier.

« A new ColourPicker module provides a facility for all applications to use when
colours must be specified. It of course supports the full range of colours available
under RISC OS 3.5.

« Expansion cards now have 32 bit wide data paths, and a directly mapped area of
16MB per card.

« A new dedicated network interface is supported.

« Screen blanking now supports monitor power saving using the new DPMS
standard.

RISC OS 3.6

« Modules can use a message file when outputting text from the help and command
keyword table.

5a-9

RISC OS overview

5a-10

Further minor extensions have been made to the video system: in particular, support
has been added for palettes in the new sprite format.

The SpriteExtend module’s SWI interface has been extended to support JPEG
images, providing information on the images, and simple scaled plotting and
printing.

The new CompressJPEG module provides SWIs with which you can compress raw
data into a JPEG image.

The Draw file format has been extended so you can include JPEG images.

FileSwitch, FileCore and the Free module have been extended to support larger
capacity storage devices. Under FileCore, the recommended maximum hard disc
size is 4 GB, and the maximum size of a file (and hence of an image filing system)
is 2 GB.

ADFS supports IDE discs that use logical block addressing — a method of disc
addressing which is superseding the old cylinder-head-sector method.

The 32 MB limit on the size of a DOSFS image file has been removed by using a
newer type of DOS boot block. DOSFS is also less stringent in its checking of DOS
formats; some discs that earlier versions of DOSFS rejected are now accepted.

Support has been added for CDs and CD-ROMSs. The CDFS filing system can
access files on a CD-ROM that conforms to the widely used 1SO 9660 standard.
There are commands with which you can play audio CDs and read audio data
directly from a CD.

The keyboard and mouse drivers support a PS/2 keyboard and mouse, using an
asynchronous serial interface such as the ARM7500 provides.

The cut-down Internet module provided as part of RISC OS 3.5’s AUN support has
been replaced by the complete version.

Acorn Access — Acorn’s entry level product for AUN networking — is now a part of
RISC OS. It provides peer to peer networking using TCP/IP protocols, allowing
sharing of resources such as discs and printers.

The new DragAnObject module provides SWI calls similar to those provided by the
DragASprite module, save that you can use them to make the pointer drag any
object that you can render.

The new DrawFile module renders Draw files either to the screen, or to a printer
driver during printing. This makes it easy for you to support imported Draw files in
your applications.

The range of Boot applications has been extended, mainly to support network
booting.

Further changes have been made to printing, largely to support JPEGs.

Introduction to RISC OS 3.5 and RISC OS 3.6

The SoundDMA module has been extended to support 16 bit sound, as well asthe
8 bit p-law sound used by al earlier versions of RISC OS.

The Joystick module has been extended both to support PC-style analogue
joysticks, and to provide calls used with analogue input devices on older Acorn
machines.

The Toolbox modules from Acorn C/C++ have been added to RISC OS. Toolbox
applications therefore don't need to load the modules into RAM, hence decreasing
their memory usage.

s5a-11

5a-12

99 ARM hardware

Introduction and Overview

The ARM architecture changed significantly with the introduction of the ARM6 series.
The section below describes the differences in behaviour of more recent ARM
processors, used with RISC OS 3.5 and later. For details of earlier ARM processors, see
the chapter entitled ARM Hardware on page 1-9.

32 bit architecture

New features in ARM6

The most notable change made in the ARM6 series was to extend the address bus and
program counter to a full 32 bits. As aresult:

o The PSR had to be separated from the PC into its own register, the CPSR (Current
Program Satus Register).

« The PSR can no longer be saved with the PC when changing processor modes,
instead, each privileged mode now has an extra register — the S®REERRrogram
Satus Register) — to hold the previous mode’s PSR.

« Instructions have been added to use these new status registers.

A further change was the addition of extra privileged processor modes, allowed by the
PSR now having a full 32 bits to use. These modes are used to handle Undefined
instruction and Abort exceptions. Consequently:

« Undefined instructions, aborts, and supervisor code no longer have to share the
same mode. This has removed restrictions on Supervisor mode programs which
existed on earlier ARMs.

5a-13

32 bit architecture

s5a-14

Processor configuration

The availability of these features in the ARM®6 series (and other later compatible chips)
is set by one of several on-chip control registers. One of three processor configurations
can be selected:

26 bit program and data space. This configuration forces ARM to operate with a
26 bit address space. In this configuration only the four 26 bit modes are available
(see Processor modes below); it isimpossible to select a 32 bit mode.

This configuration is set at reset on all current ARM6 and 7 series processors.

26 bit program space and 32 bit data space. Thisis the same as the 26 hit
program and data space configuration, except that address exceptions are disabled
to alow data transfer operations to access the full 32 bit address space.

32 bit program and data space. This configuration extends the address space to

32 bits, and introduces major changes to the programmer’s model. In this
configuration you can select any of the 26 bit and the 32 bit processor modes (see
Processor modes below).

Processor modes

When configured for a 32 bit program and data space, the ARM6 and ARM7 series
support ten overlappingrocessor modes of operation:

User mode: the normal program execution state — or

User26 mode: a 26 bit version of the above

FIQ mode: designed to support a data transfer or channel process — or
FIQ26 mode: a 26 bit version of the above

IRQ mode: used for general purpose interrupt handling — or

IRQ26 mode: a 26 bit version of the above

SVC mode: a protected mode for the operating system — or

SVC26 mode: a 26 bit version of the above

Abort mode (abbreviated to ABT mode): entered after a data or instruction prefetch
abort

Undefined mode (abbreviated to UND mode): entered when an undefined
instruction is executed.

The distinction between processoodes andconfigurations is important, and will be
rigidly adhered to in the rest of this manual.

ARM hardware

The 26 bit processor modes

When in a 26 bit processor mode, the programmer’s model reverts to that of earlier
26 bit ARM processors. The behaviour is the same as that of the ARM2aS macrocell
with the following alterations:

o Address exceptions are only generated by ARM when it is configured for 26 bit
program and data space.

In other configurations the OS may still simulate the behaviour of address
exception, using external logic such as a memory management unit to generate an
abort if the 64Mbyte range is exceeded, and converting that abort into an ‘address
exception trap’ for the application.

« The new instructions to transfer data between general registers and the program
status registers remain operative. The new instructions can be used by the operating
system to return to a 32 bit mode after calling a binary containing code written for a
26 bit ARM.

« When in a 32 bit program and data space configuration, all exceptions (including
Undefined Instruction and Software Interrupt) return the processor to a 32 bit mode,
so the operating system must be modified to handle them.

« If the processor attempts to write to a location between &0 and &1F inclusive (i.e.
the exception vectors), hardware prevents the write operation and generates a data
abort. This allows the operating system to intercept all changes to the exception
vectors and redirect the vector to some veneer code. The veneer code should place
the processor in a 26 bit mode before calling the 26 bit exception handler.

In all other respects, when operating in a 26 bit mode the ARM behaves as like a 26 bit
ARM. (See the chapter entitlddRM Hardware on page 1-9.) The relevant bits of the
CPSR appear to be incorporated back into R15 to form the PC/PSR with the | and F bits
in bits 27 and 26. The instruction set behaves like that of the ARM2aS macrocell, with
the addition of the MRS and MSR instructions.

RISC OS processor configuration and modes

Early in its startup code, RISC OS writes to the ARM’s control register to change it into
the 32 bit program and data space configuration, where it remains. You must not alter the
processor’s configuration yourself when writing code for RISC OS.

Although RISC OS runs under a 32 bit configuration, it remains in 26 bit modes for
normal operation, providing a high degree of backward compatibility with code written
to run on earlier 26 bit processors.

However, because the processor is in a 32 bit configuration, all exceptions (including

Undefined Instruction and Software Interrupt) force the processor to a privileged 32 bit
mode appropriate to the exception. There are therefore some differences in exception
handling between 26 and 32 bit architecture ARM chips, although RISC OS provides a

5a-15

32 bit architecture

considerable degree of backward compatibility by faking 26 bit behaviour on 32 hit
architecture chips in most circumstances. For full details, see the chapter entitled
Hardware vectors on page 5a-21.

Registers
The registers available in the ARM6 and ARM7 series are:

User and SvC and IRQ and FIQ and
User26 SVC26 IRQ26 ABT mode | UND mode FIQ26
mode mode mode mode
RO
R1
R2
R3
R4
R5
R6
R7
R8 R8_fiq
RO R9_fiq
R10 R10_fig
R11 R11_fiq
R12 R12_fiq
R13 R13 svc R13_irqg R13_abt R13_und R13_fiq
R14 R14 svc R14_irq R14 abt R14 und R14_fiq
R15 (PC)
CPSR
SPSR_svc SPSR_irq SPSR_abt SPSR_und SPSR_fig

Figure 99.1 32 bit register organisation

5a-16

ARM hardware

These are similar to those available in the ARM2 and ARM 3 series registers. The key
differences are:

o« thePCisafull 32 bitswide

« thePSRisheldinitsown register, the CPSR (seethe section entitled The CPSR and
PSR registers below)

« each privileged mode has a private SPSR register in which to save the CPSR

« there aretwo new privileged modes, each of which has private copies of R13 and
R14.

The CPSR and SPSR registers

The allocation of the bits within the CPSR (and the SPSR registersto which it is saved)
is shown in the figure The Current Process Satus Register (CPSR) below.

31 30 29 28 27 87 6 5 4 3 2 1 0

N|Zz|C|V < I | F M4 |M3|M2|M1|MO
I S

—— Processor mode
00000 User26 mode
00001 FIQ26 mode
00010 IRQ26 mode
00011 SVC26 mode
10000 User mode
10001 FIQ mode
10010 IRQ mode
10011 SVC mode
10111 ABT mode
11011 UND mode

FIQ disable
0] Enable
1 O Disable

IRQ disable
0 O Enable
1 O Disable

ooooooooog

Overflow

Carry/Not borrow/
Rotate extend

Zero

Negative/
Signed less than

Figure99.2 The Current Process Satus Register (CPSR)

S5a-17

Block diagram of core

Block diagram of core

5a-18

ABE —
ALE —

A bus

B/W R/W
A A
Address Register 5 «—
(9]
o
R “
py 3
0 Address |—§&
@ | Incrementer — —
— L = .«
[%2])
-
Register Bank .«
(32 bit Registers)
>
P _—
; Instruction
S Decoder —»
N and
] Multiplier CLonton S
ogic
> —>
w
c
& F
Barrel w >
Shifter w
LT
\ 32 bit ALU g
] P
47
. . Instruction Pipeline
Write Data Register and Read Data Register

7 i

D bus D bus

PH1

PH2

IRQ
FIQ

RESET

ABORT

OPC
TRANS

M bus

MREQ

SEQ

CPI
CPA

CPB

ARM hardware

Figure 99.3 ARM Core block diagram

5a-19

Block diagram of core

5a-20

100

Hardware vectors

Introduction and Overview

Exceptions

This chapter describes the ways in which the 32 bit processor configuration used by
RISC OS 3.5 and later affects exception handling. If you are writing any exception
handler, you must read both this chapter and the chapter entitled Hardware vectors on
page 1-113.

Introduction

Exceptions arise whenever there is a need for the normal flow of program execution to
be broken, so that (for instance) the processor can be diverted to handle an interrupt from
aperipheral. The processor state just prior to handling the exception must be preserved
so that the original program can be resumed when the exception routine has compl eted.
Many exceptions may arise at the same time.

ARM handles exceptions by making use of the banked registers to save state. The old
PC and PSR are copied, under RISC OS 3.1 or earlier (ie on a 26 bit addressing ARM)
to the appropriate R14, or under RISC OS 3.5 or later (ie on a 32 bit configured ARM)
to the appropriate R14 and SPSR. The PC and processor mode bits are forced to avalue
which depends on the exception. Interrupt disable flags are set where required to prevent
otherwise unmanageabl e nestings of exceptions. In the case of are-entrant interrupt
handler, R14 should be saved onto a stack in main memory before re-enabling the
interrupt. When multiple exceptions arise simultaneously afixed priority determinesthe
order in which they are handled.

FIQ (Fast interrupt request)

The FIQ (Fast Interrupt reQuest) exception is externally generated by taking the FIQ pin
LOW. Thisinput can accept asynchronous transitions, and is delayed by one clock cycle
for synchronisation before it can affect the processor execution flow. It is designed to
support a datatransfer or channel process, and has sufficient private registers to remove
the need for register saving in such applications, so that the overhead of context
switching is minimised.

5a-21

Exceptions

5a-22

The FIQ exception may be disabled by setting the F flag in the PSR (but note that thisis
not possible from User mode). If the F flag is clear ARM checksfor aLOW level onthe
output of the FIQ synchroniser at the end of each instruction.

When ARM is successfully FIQed it will:

1 SaveR15inR14 fig, and (for RISC OS 3.5 or later) save the CPSR in SPSR_fig.
2 Forcethe mode bits to FIQ mode and set the F and | bits in the PSR.

3 Force the PC to fetch the next instruction from address & 1C.

To return normally from FIQ use:

SUBS PC, R14_fiq, #4

Thiswill resume execution of the interrupted code sequence, and restore the original
mode and interrupt enable state.

IRQ (Interrupt request)

The IRQ (Interrupt ReQuest) exception isanormal interrupt caused by aLOW level on
the IRQ pin. Thisinput can accept asynchronous transitions, and is delayed by one clock
cycle for synchronisation before it can affect processor execution. It has alower priority
than FIQ, and is masked out when a FIQ sequence is entered. Its effect may be masked
out at any time by setting the | bit in the PC (but note that thisis not possible from user
mode). If the | flag isclear ARM checks for aLOW level on the output of the IRQ
synchroniser at the end of each instruction.

When ARM is successfully IRQed it will:

1 SaveR15inR14 irqg, and (for RISC OS 3.5 or later) save the CPSR in SPSR_irq.
2 Forcethe mode bits to IRQ mode and set the | bit in the PSR.

3 Force the PC to fetch the next instruction from address & 18.

To return normally from IRQ use:

SUBS PC, R14_irq, #4

Thiswill restore the origina processor state and thereby re-enable IRQ.

Address exception trap

Under RISC OS 3.5 or later, address exceptions are never generated, and you may
therefore ignore this section.

Abort

Hardware vectors

Under RISC OS 3.1 or earlier, an address exception arises whenever a datatransfer is
attempted with a calculated address above & 3FFFFFF. The ARM address bus is 26 bits

wide, but an address calculation has a 32 bit result. If this result has a logic ‘1’ in any of
the top 6 bits it is assumed that the address overflow is an error, and the address
exception trap is taken.

Note that a branch cannot cause an address exception, and a block data transfer
instruction which starts in the legal area but increments into the illegal area will not trap
(it wraps round to address 0 instead). The check is performed only on the address of the
first word to be transferred.

When an address exception is seen ARM will:

1 If the data transfer was a store, force it to load. (This protects the memory from
spurious writing.)

2 Complete the instruction, but prevent internal state changes where possible. The
state changes are the same as if the instruction had aborted on the data transfer.

3 Save R15in R14_svc.

4 Force the mode bits to SVC mode and set the | bit in the PSR.

5 Force the PC to fetch the next instruction from address &14.

Normally an address exception is caused by erroneous code, and it is inappropriate to

resume execution. If a return is required from this trapSWBS PC, R14_svc, #4.
This will return to the instruction after the one causing the trap.

The Abort signal comes from an external Memory Management system, and indicates
that the current memory access cannot be completed. ARM checks for an Abort at the
end of the first phase of each bus cycle. When successfully Aborted ARM will respond
in one of three ways.

Abort during instruction prefetch

If abort is signalled during an instruction prefetcliP{efetch abort), the prefetched
instruction is marked as invalid; when it comes to execution, it is reinterpreted as below.
(If the instruction is not executed, for example as a result of a branch being taken while
it is in the pipeline, the abort will have no effect.)

Then ARM wiill:

1 Save R15in R14_svc, or (for RISC OS 3.5 or later) save R15 in R14_abt and save
the CPSR in SPSR_abt.

2 Force the mode bits to SVC mode or (for RISC OS 3.5 or later) ABT mode and set
the | bit in the PSR.

5a-23

Exceptions

5a-24

3 Forcethe PC to fetch the next instruction from address & OC.

To continue after a Prefetch abort use SUBS PC, R14, #4 (whereR14 isR14_svc or
R14_abt depending on the version of RISC OS). The ARM will then re-execute the
aborting instruction, so you should ensure that you have removed the cause of the
original abort.

Abort during data access

If the abort command occurs during a data access (a Data Abort), the action depends on
the instruction type.

« Single datatransfer instructions (LDR and STR) are aborted as though the
instruction had not executed.

« Block datatransfer instructions (LDM and STM) complete, and if writeback is set,
the base is updated. If the instruction would normally have overwritten the base
with data (ie LDM with the base in the transfer list), this overwriting is prevented.
All register overwriting is prevented after the Abort isindicated, which meansin
particular that R15 (which isaways|last to be transferred) is preserved in an aborted
LDM instruction.

Then ARM will:

1 SaveR15inR14 svc, or (for RISC OS 3.5 or later) save R15in R14_abt and save
the CPSR in SPSR_aht.

2 Force the mode bitsto SV C mode or (for RISC OS 3.5 or later) ABT mode and set
the bit in the PSR.

3 Force the PC to fetch the next instruction from address & 10.

To continue after a data abort, remove the cause of the abort, then reverse any
auto-indexing that the original instruction may have done, then return to the origina
instructionwith SUBS PC, R14, #8 (whereR14 isR14_svc or R14_abt depending
on the processor configuration).

Abort during an internal cycle

The ARM ignores aborts signalled during internal cycles.

Using abortstoimplement virtual memory systems

The abort mechanism allows a ‘demand paged virtual memory system’ to be

implemented when a suitable memory management unit (such as MEMC) is available.
The processor is allowed to generate arbitrary addresses, and when the data at an address
is unavailable the memory manager signals an abort. The processor traps into system
software which must work out the cause of the abort, make the requested data available,
and retry the aborted instruction. The application program needs no knowledge of the
amount of memory available to it, nor is its state in any way affected by the abort.

Hardware vectors

Software interrupt

The software interrupt instruction is used for getting into supervisor mode, usually to
request a particular supervisor function. ARM will:

1 SaveR15inR14 svc, and (for RISC OS 3.5 or later) save the CPSR in SPSR_svc.
2 Force the mode bitsto SV C mode and set the | bit in the PSR.
3 Forcethe PC to fetch the next instruction from address & 8.

To return from a SWI, use MOVS PC, R14_svc. Thisreturnsto theinstruction
following the SWI.

Undefined instruction trap

Reset

When ARM executes a coprocessor instruction or an undefined instruction, it offersit to
any coprocessors which may be present. If acoprocessor can perform thisinstruction but
isbusy at that moment, ARM will wait until the coprocessor is ready. If no coprocessor
can handle the instruction ARM will take the undefined instruction trap.

When the undefined instruction trap is taken ARM will:

1 SaveR15inR14 svc, or (for RISC OS 3.5 or later) save R15 in R14_und and save
the CPSR in SPSR_und.

2 Force the mode bitsto SVC mode or (for RISC OS 3.5 or later) UND mode and set
the bit in the PSR.

3 Force the PC to fetch the next instruction from address & 4.
The undefined instruction trap may be used for software emulation of a coprocessor ina
system which does not have the coprocessor hardware; or for general purpose

instruction set extension by software emulation (the floating point instruction set is
implemented in software this way).

To return from thistrap (after performing a suitable emulation of the required function),
use MOVS PC, R14 (whereR14 isR14_svc or R14_und depending on the processor
configuration). Thiswill return to the instruction following the undefined instruction.

ARM can be reset by pulling its RESET pin HIGH. If this happens, ARM will stop the
currently executing instruction and start executing no-ops. When RESET goes LOW
again, it will:

1 SaveR15inR14 svc, and (for RISC OS 3.5 or later) save the CPSR in SPSR_svc.
2 Force the mode bitsto SV C mode and set the F and | bitsin the PSR.
3 Forcethe PC to fetch the next instruction from address &O.

5a-25

Exceptions

Vector summary

The first eight words of store normally contain branch instructions pointing to the
relevant routines. The FIQ routine may reside at & 000001C onwards, and thereby avoid
the need for (and execution time of) a branch instruction.

Address Definition

& 0000000 Reset

& 0000004 Undefined instruction
& 0000008 Software interrupt

& 000000C Abort (prefetch)

& 0000010 Abort (data)

& 0000014 Address exception

& 0000018 IRQ

&000001C FIQ

Exception Priorities

When multiple exceptions arise at the same time, afixed priority system determinesthe
order in which they will be handled:

Reset (highest priority)

Address exception, Data abort

FIQ

IRQ

Prefetch abort

Undefined Instruction, Software interrupt (lowest priority)

o o~ WDN B

Note that not all exceptions can occur at once. Address exception and data abort are
mutually exclusive, sinceif an addressisillegal the ARM will ignorethe ABORT input.
Undefined instruction and software interrupt are also mutually exclusive since they each
correspond to particular (non-overlapping) decodings of the current instruction.

If an address exception or data abort occurs at the sametime asa FIQ, and FIQs are
enabled (iethe F flag in the PSR is clear), ARM will enter the address exception or data
abort handler and then immediately proceed to the FIQ vector. A nhormal return from
FIQ will cause the address exception or data abort handler to resume execution. Placing
address exception and data abort at a higher priority than FIQ is hecessary to ensure that
the transfer error does not escape detection, but the time for this exception entry should
be added to worst case FIQ latency calculations.

5a-26

Hardware vectors

The pre-veneers

To ensure easy backward compatibility, versions of RISC OS from 3.5 onwardsinstall a
pre-veneer on all hardware vectors apart from FIQ (see the section entitled Writing to the
FIQ vector on page 5a-28) and address exception (which is never generated by a 32 hit
configured ARM). Each pre-veneer first sets up R14 to contain acombined PC and PSR
that will return the processor to the 26 bit mode it was in when the exception arose. It
then places the processor in the privileged 26 bit mode used by the earlier 26 bit chips
for that exception. It thus effectively fakes the behaviour of earlier versions of RISC OS
that run on those chips.

The pre-veneer is called before any exception handlers that are installed with software
interfaces such as OS_ChangeEnvironment, so you can usually use such exception
handlers unchanged on all versions of RISC OS (hardware dependencies excepted).

Entering 32 bit modes

One consequence of thisisthat you may not enter a 32 bit mode with |RQs enabled.
Were you to do so, and an IRQ were to occur, the IRQ pre-veneer would be entered; then
the IRQ handler would return you to a 26 bit mode, rather than the 32 bit mode you were
in at the time of the IRQ.

Note that you shouldn’t use 32 bit modes except for writing exception handlers; see the
section entitledRunning 32 bit code on page 5a-37.

Claiming the hardware vectors

Under earlier versions of RISC OS, you could also claim the hardware vectors directly,
by overwriting the existing instruction on the vector, and replacing it afterwards. It was
your responsibility to do any housekeeping, in particular checking for subsequent
claimants before restoring the original instruction.

Under 32 bit aware versions of RISC OS, if you attempt to write to any hardware vector
other than FIQ a data abort is generated. You must instead call the new SWiI
OS_ClaimProcessorVector (page 5a-30), passing it the address of your exception
handler. The handler is installed on the vector, and is called directly, before the
pre-veneers. Such handlers are therefore entered in a 32 bit mode.

S5a-27

Writing to the FIQ vector

For handlersinstalled directly on the vector to work across all versions of RISC OS, you
must therefore change the method of claiming and rel easing the vector depending on the
version of RISC OS:

« Onversionsup to RISC OS 3.1, you must write directly to the vector, doing any
appropriate housekeeping yourself

« Onlater versions you must call OS_ClaimProcessorVector.

Your handler must also cope with running in both 26 bit and 32 bit modes.

Writing to the FIQ vector

On a 32 bit architecture ARM, the FIQ vector isentered in FIQ mode (i.e. the 32 bit
form of the mode). There are no pre-veneers to simulate 26 bit behaviour. To install a
FIQ handler, you must write directly to the FIQ vector, just as aways.

The sample code below is the recommended way to write to the FIQ vector on both 26

and 32 bit configured processors — you can use the same code on all versions of
RISC OS. Obviously the handler you install must cope with running in both 26 bit and
32 bit FIQ modes. In practice this is unlikely to be a problem, and most existing handlers
will run unchanged once installed.

In the code, comments that are prefixed3®.*’ apply to a 32 bit configured processor,
and comments that are prefixed B: ' apply to a 26 bit configured processor.

5a-28

; We assune that at this point,

; 26: Does not alter

. NOP
; Push Ra

processor nod

; ORR Ra, Ra, #2_11000000 ;

; ORR Ra, Ra, #2_10000 ;

e.

26:
26:
26:
26:
26:
26:

Hardware vectors

you are already in a privileged 26 bit node.

Reads as foll ows:

Encodes a NOP (TST Ra, RO)
Pushes entry Ra onto stack
Corrupts Ra

Encodes a NOP (TEQ R9, Ra)
Corrupts Ra

Encodes a NOP (TEQ R9, Rb)

; 32: Switch to _32 nobde with IR and FI s off.
; 32: Must switch interrupts off before switching node as there can be
nstruction but before the next one.

; 32: an interrupt after the MSR i

MRS Ra, CPSR_ all ;
Push Ra ;
ORR Ra, Ra, #2_11000000 ;
MBR CPSR all, Ra ;
ORR Ra, Ra, #2_10000 ;
MBR CPSR all, Ra

32:
32:
32:
32:
32:
32:

Read privileged 26 bit node,
and push it onto the stack
Set IRQ and FIQ disable bits
Di sable 1RQs and FI (s

Set M4 bit (for 32 bit node)
Change to 32 bit node

; Now do a NOP, to let things settle down:
e.g. MOV RO, RO

NOP

; Nowin a suitable nobde to wite FIQ handl er

code to FIQ vector

; (&1C-&FC incl.), whatever the processor configuration.

; Code witten should be able to run in both fiq_32 and fig_26 nodes,
; and should end with a SUBS PC, R14,#4 to return normal ly.

; For exanple we might wite the handler code like this:

; Assume Rb already points to location fromwhich to copy the handl er.

MOV LR, #FI Qvector ;

40 LDR Ra, [Rb],
TEQS Ra, #0
STRNE Ra, [LR],
BNE YBT40

; The above may not be optinmal,

#4

#4

; Having witten FIQ vector,

; privileged 26 bit node.

; 26: Does not alter

: PULL Ra
; NOP

PUL Ra

MBR CPSR al |,

Ra

; Now back where we started,

; configuration.)

Get address of FIQ vector

Cet opcode.
Al done?
No, so copy to FIQ area. ..

and repeat for next opcode.

and is for illustration only.

now need to restore the original

processor nod

e.

26:
26:

32:
32:

Reads as foll ows:
Pull entry Ra from stack
Encodes a NOP (TST Ra, RO)

Pull saved CPSR, and
Restore privileged 26 bit node

except Ra and Rb should be treated as corrupted.
; (We must assume neither is preserved, because we don’t know the processor

5a-29

SWi Calls

SWI Calls
OS_ClaimProcessorVector
(swi &69)

Provides a means for a module to attach itself to one of the processor’s vectors

On entry
RO = vector and flags:

Bit Meaning

0-7 vector number:
0 ‘Branch through 0’ vector
1 Undefined instruction
2 SWI
3 Prefetch abort
4 Data abort
5 Address exception (only on ARM 2 and 3)
6 IRQ
(all other values reserved for future use)

8 00 release, 10 claim

9-31 reserved, must be 0

R1 = replacement address of exception handler
R2 = address which should currently be on vector (only needed for release)

On exit

RO preserved
R1 = address which has been replaced (only returned on claim)
R2 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

5a-30

Hardware vectors

Re-entrancy
Not defined

Use

This SWI provides a means for a module to attach itself to one of the processor’s

vectors. This is a direct attachment; you get no environment except what the processor
provides.

As such, claiming and releasing the vectors is somewhat primitive — the claims and
releases must occur in the right order (the release order being the reverse of claim order).
On release if the value in R2 doesn’t match what is currently on the vector then an error
will be returned. This ensures correct chaining of claims and releases.

Related SWis
None

Related vectors
None

5a-31

5a-32

101 Interrupts

Introduction and Overview

The new IOMD or ARM 7500 chips used under RISC OS 3.5 and 3.6 use new device
numbers (see Device numbers on page 1-120). These are:

O©CoO~NOUTD WNPEFO

Printer interrupt from controller

Unused

Floppy disc Index

V Sync Pulse

Power on reset — this should never appear in normal use

I0C Timer O

I0C Timer 1

FIQ Downgrade — reserved for the use of the current owner of FIQ
Expansion card FIQ Downgrade — this should normally be masked off
IDE hard disc interrupt

Serial port interrupt from controller — also mapped to FIQ device 4
Network card interrupt

Floppy disc interrupt from controller

Expansion card interrupt

Keyboard serial transmit register empty

Keyboard serial receive register full

DMA channel 0

DMA channel 1

DMA channel 2

DMA channel 3

DMA sound channel 0

DMA sound channel 1

ARM 7500 mouse port receive register full

ARM 7500 mouse port transmit register empty

ARM 7500 joystick A-to-D completion

ARM 7500 event 1

ARM 7500 event 2

Note that device numbers 22 - 26 are available with an ARM 7500, but not with an

IOMD.

5a-33

5a-34

102 Modules

Introduction and Overview

Message files for help and command keyword table

RISC OS 3.6 introduces facilities for using a message file when outputting text from the
help and command keyword table. Thisis done using a new field in the module header
to specify the pathname of the message file, and anew flag in the Help and command
keyword table’s information word, to indicate the use of the message file.

This makes it easier to internationalise modules.

Changes to existing SWis

OS_ServiceCall (page 1-254)

The list of service calls available in the SWI description obviously refers to
RISC OS 3.1, and so is now out of date. For a complete current list, refeiNuntbec
index of Service Calls on page Index-19 or thiphabetic index of Service Calls on
page Index-25.

5a-35

Technical details

Technical details
This section detail s changes introduced in RISC OS 3.6.

Module header format
The module header (see Module header format on page 1-208) has a new field added:

Offset Type Contains
&2C offset to string message file pathname (optional)

The string must be word-aligned and zero-terminated. It gives the pathname of a
message file used when outputting text from the help and command keyword table.

Help and command keyword table

Theinvalid syntax and help fields of the Help and command keyword table (see Help
and command keyword table on page 1-216) till give an offset to astring; thisstring is
either the actual message to output, or atoken to be looked up in the message file

Information word

The meaning of theinvalid syntax and help stringsis set by anew flag in theinformation
word.

Bit28=1

Theinvalid syntax and help strings are tokens, to be looked up in the message file given
in the module header.

The message file
The format of the message file is asfollows:
<t oken>. <t ext ><nul | byt e><li nef eed>

The <t ext > is output by OS_PrettyPrint (page 1-536)— but in this case, rather than
using the kernel dictionary, it uses the dictionary in:

Resour ces: Resources. Kernel . Di cti onary

5a-36

103 Memory management

Introduction

This chapter describes changes in memory management made in RISC OS 3.5. These
changes have been caused by the changes in the underlying hardware used in the new
architecture.

Memory management now incorporates the following:

e« Upto256MB DRAM and 2MB VRAM of memory is allowed.
o Direct memory access (DMA) control isimproved.

« Any second processor card can claim a chunk of memory.

« Physical RAM allocation does not have to be contiguous.

+ Pagetable alocation is added to support the memory management unit (MMU) in
newer ARM processors.

« Thelogical memory map is expanded due to the 32 bit address space.

Running 32 bit code

The new generation of ARM chips used provide 26 bit processor modes (which are
backwards compatible with the ARM2 and ARM3), and 32 bit processor modes. With
one exception, RISC OS 3.5 only supports 26 hit processor modes. You must not
execute codein 32 bit processor modes. If you try to do so, you may get unpredictable
crashes, especialy if you try to run the code in address space over 64M.

The exception mentioned above isif you are writing handlers that claim a hardware
vector. For details, see the chapter entitled Hardware vectors on page 5a-21.

5a-37

Overview

Overview

Free memory pool

In RISC OS 2 and 3 memory management was divided between the kernel and the

Wimp.

o Thekernel ordered the memory into dynamic areas and an application space.

« The Wimp managed afree pool and multiple applications mapped in turn into the
same application space; it was responsible for constructing and managing tasksin

the desktop. It grew or shrank tasks by mapping a free pool into application space
above the task, and then moving the boundary between the two.

RISC OS 3.5 supports amounts of memory so large that the free pool may now be too
large to map into application space.

« Thekernel istherefore now responsible for managing the free pool memory, which
it keepsin a new dynamic area, known as the free pool (area number 6).

« The Wimp’s operation is simplified, as it no longer needs to maintain its own free
pool.

How the free pool operates

When you grow or shrink dynamic areas other than the free pool, the free pool is used as
follows:

« If an area other than the free pool is grown, memory is taken from the free pool, if
any exists. The current application is not notified of this.

If having shrunk the free pool to zero size, there is still not enough memory for the
growth, the kernel attempts to remove pages from the application space as it does
under existing versions of RISC OS.

« If an area other than the free pool is shrunk, the pages recovered are added to the
free pool. The current application is not consulted.

The Wimp grows or shrinks tasks by shrinking or growing (respectively) the free pool
itself:

« If the free pool is grown, pages are taken from application space to put in it. The
current application is consulted beforehand.

« If the free pool is shrunk, the recovered pages are added to application space. The
current application is consulted beforehand.

The tasks themselves must still change their memory allocation using current RISC OS
interfaces (as before), rather than changing the size of the free pool.

5a-38

Dynamic areas

Memory management

In RISC OS 2 and 3 the main kernel interface for memory management was
OS_ChangeDynamicArea (page 1-384), with which you could resize the predefined
dynamic areas. This SWI then called other modules, depending on which dynamic area
was being resized. Thisleft no flexibility, and in particular, there were no facilities for
creating other dynamic areas. This meant the existing areas were often used illicitly by
applications which — once they quit — would leave the area badly fragmented.

Other memory related services were not available. For example it was not possible to
find out what memory was available on the system without knowing a great deal about
the platform.

From RISC OS 3.5 onwards the new SWI OS_DynamicArea (see page 5a-53) is
provided for you to create dynamic areas, get information on them, and delete them.
This allows you to claim and release your own area of memory that is managed by
hardware (and so does not suffer from garbage), and is persistent. This is far preferable
to illicitly using (say) a part of the RMA or sprite area, as has been common practice.

You should still use OS_ChangeDynamicArea just as before to alter the size of dynamic
areas.

As all operations on dynamic areas work in physical page numbers you cannot map
anything other than RAM pages (DRAM and VRAM) into a dynamic area. In particular
you cannot map in the extension to the existing expansion card bus space, known as the
EAS space.

5a-39

Technical Details

Technical Detalils

5a-40

Memory management

Logical memory map

More dynamic areas 1.5G Public®
256G .
Copy of physical space 512M Private
2G .
Dynamic areas 2G—64M Public
64M .
ROM 8M Private
56M .
Reserved for 2nd processor control registers 1M Private
55M
Reserved for future expansion 1M Private
54M
VIDC20 1M Private
53M .
Reserved for VIDC1 emulation 1M Private
52M
I/O space 4M Private®
48M .
Reserved for system use 4M Private
44M
RMA 11M Public®
33M
Reserved for fake screen (480K) 2M-64K Private
31M+64K
“Nowhere” 32K Private
31M+32K
Cursor / system space / sound DMA 32K Private
31M
Soft CAM map 1M-8K Private
30M+8K
Undefined stack 8K Public?
30M
System heap 2M-8K Private
28M+8K
SVC stack 8K Public?
28M
Application space 28M-32K Public
32K
Scratch space 16K Publict
16K
System workspace 16K
0

Notes about the logical memory map:
1 The public1 areamay be used by any module that is not

S5a-41

Memory terminology

e usedinanlIRQ routine
o usedif you call something else that might also useit.

An exampl e client would be FileCore using the scratch space to hold structures
while working out how to allocate some free space. Another example would be the
Filer using the scratch space to hold structures for OS_HeapSort.

2 The public? areas can be assumed to have their lowest address on a IMB boundary
(being descending stacks). An exception will occur if they are accessed beyond this
point. The exact location of these stacks should not be assumed.

3 The public3 area should not assume the location of the RMA or its maximum size.
However it will bein the lower 64MB (ie it can execute 26 bit code).

4 Theprivate* areais private, and used for 1/O except where device drivers export
hardware addresses.

5 The public5 areas can be used by a client to make its own dynamic area.

Memory terminology
There are three ways of referring to memory:

Physical address

This refersto the address of the memory in the physical address space, as presented by
the ARM chipto IOMD.

Logical address

Thisrefersto the logical address space that the ARM processor core presents to the
ARM chip memory management unit. Thisis controlled by the operating system.
Physical page number

Thisisan arbitrary number assigned to each page of RAM physically present in the
computer.

Page blocks

Several interfaces use page blocks to pass round lists of addresses and/or pages. These
are tables of 12-byte records (so a page block is 12n bytes long, where n is the number
of records). Each record has the following format:

Offset Meaning

0 Physical page number
4 Logical address
8 Physical address

S5a-42

Memory management

New SWIs

The following new SWIs have been created. They are defined in full at the end of this
chapter.

o OS DynamicArea (page 5a-53) is used for the control, creation and deletion of
dynamic areas. RO provides a reason code which determines which operation is
performed.

« OS Memory (page 5a-62) performs miscellaneous operations for memory
management. Again, RO provides a reason code which determines which operation
is performed.

Changes to existing SWIs

OS_ChangeDynamicArea (page 1-384)

You can now alter the space allocation of the free pool (see page 5a-38) by setting RO to
6 on entry.

OS_SetMemMapEntries (page 1-394)

With the new architecture you must use —1 to indicate that a page should become
inaccessible.

OS_ReadDynamicArea (page 1-396)

In RISC OS 3, if bit 7 of the dynamic area number is set then R2 will be returned with
the maximum area size.

This has changed slightly from RISC OS 3.5 onwards.

If the dynamic area number passed in is greater than or equal to 128 then R2 is returned
as the maximum size of the dynamic area. Also, if the dynamic area number passed in is
between 128 and 255 inclusive then the information is returned for the area whose
number is 128 less than the passed-in value.

The net result is that for old dynamic area numbers (0 - 5) the functionality is
unchanged, but the number-space impact of the interface is minimised.

Also, if RO is —1 on entry, it returns the following information on application space:

RO = base address (&8000)
R1 = current size (ie for current task)
R2 = maximum size{28MB-32kB in current implementation)

5a-43

Changes to existing * Commands

OS_Heap 0 (page 1-377)

RISC OS 2 and 3 place strong restrictions on the heap: the base of the heap as specified
in R1 must be word-aligned and less than 32Mbytes, and the size of the heap must be a
multiple of 4 and less than 16Mbytes.

From RISC OS 3.5 onwards the only restrictions are that the base of the heap must be
word-aligned, and the size must be a multiple of 4 bytes.

Wimp_TransferBlock (page 3-214)

In earlier operating systems Wimp_TransferBlock put all used task memory into the
application space, and then copied the relevant parts over. It cannot do this any more, as
the total used task memory may not fit into application space.

The algorithm used by this call has accordingly been changed, and the opportunity taken
to improve its performance. The call still has the same entry and exit conditions.

Wimp_ClaimFreeMemory (page 3-208)

Because the Wimp no longer maintains control of the free pool, the call
Wimp_ClaimFreeMemory has had to be modified; it simulates its previous behaviour as
well as possible. In general, applications written for older versions of RISC OS will
work unmodified; but you should be aware that the call may now return addresses that
use more than 26 bits. Thiswill be a problem if your old applications use any of the top
6 bitsfor their own purposes.

Using thiscall in new applications is deprecated. You should instead use
OS_DynamicArea (page 5a-53) to create your own dynamic area.

Cache_... SWis (page 4-192 onwards)

These ARM 3-specific SWIs are not implemented from RISC OS 3.5 onwards.

Changes to existing * Commands

5a-44

*Cache (page 4-201)

*Cache now switches both cacheing and write buffering on and off.

Memory management

Dynamic area handler routines

When you create a dynamic area with the new SWI OS_DynamicArea 0 (see

page 5a-55) you can a so specify the address of adynamic areahandler routine, whichis
called when the size of the areaisbeing changed. Theroutineiscalled in SV C mode; the
reason for calling it is given in areason code held in RO. The section below givesthe
entry and exit conditions of the routine for each valid reason code.

When called, OS_ChangeDynamicAreaisworking. It rejects requests to resize dynamic
areas. You should not use SWIs which resize dynamic areas, for example using
OS_Module to claim some workspace. File operations should be normally avoided,
athough 1/0 on an existing file isusually safe.

PreGrow (0)
Issued just before pages are moved to grow an area

On entry

RO = 0 (reason code)

R1 = pointer to a page block, the physical page numbers of which are set to —1;
or undefined if bit 8 of the areas flags was clear on creation (see
page 5a-55)

R2 = number of entries in page block (i.e. number of pages area is growing by)

R3 = amount area is growing by, in bytes (i.e X325)

R4 = current size of area, in bytes

R5 = page size, in bytes

R12 = pointer to workspace

On exit

All registers preserved

Use

This reason code is issued when a call to OS_ChangeDynamicArea results in an area
growing, before any pages are actually moved.

You can request that specific pages be used for growing the area by filling in their page
numbers in the page block. If you do so, you must specify all the pages. The first entry
in the page block corresponds to the lowest memory address of the extension, and the
last entry in the page block the highest memory address.

You can prevent the area changing size by returning an error. RO should point to a
standard RISC OS error block, or be set to zero for a generic error message to be used.
You should then return with the V flag set.

5a-45

Dynamic area handler routines

PostGrow (1)
Issued just after pages are moved to grow an area

On entry

RO = 1 (reason code)

R1 = pointer to a page block, only the physical page numbers of which are defined;
or undefined if bit 8 of the areas flags was clear on creation (see
page 5a-55)

R2 = number of entriesin page block (i.e. number of pages area grew by)

R3 = amount area grew by, in bytes (i.e. R2 x R5)

R4 = new size of area, in bytes

R5 = page size, in bytes

R12 = pointer to workspace

On exit

All registers preserved

Use

This reason code isissued when acall to OS_ChangeDynamicArearesultsin an area
growing. Itiscalled after the PreGrow reason code has been issued successfully and the
memory pages have been moved. It provides the handler with alist of which physical
pages have been moved into the area.

PreShrink (2)
Issued just before pages are moved to shrink an area

On entry

RO = 2 (reason code)

R3 = amount areais shrinking by, in bytes
R4 = current size of area, in bytes

R5 = page size, in bytes

R12 = pointer to workspace

On exit

R3 = amount area can shrink by, in bytes (must be < R3 on entry)
All other registers preserved

5a-46

Memory management

Use

This reason code isissued when acall to OS_ChangeDynamicArearesultsin an area
shrinking, before any pages are moved. You can limit the amount of memory moved out
of the area. If the permitted shrinkage you return is a non-page multiple, it will be
rounded down to a page multiple.

You can prevent the area changing size by returning an error. RO should point to anull
terminated error message, or be set to zero for a generic error message to be used. R3
should be zero, to show that no shrinkage is possible. You should then return with the V
flag set.

PostShrink (3)
Issued just after pages are moved to shrink an area

On entry

RO = 3 (reason code)

R3 = amount area shrunk by
R4 = new size of area, in bytes
R5 = page size, in bytes

R12 = pointer to workspace

On exit

All registers preserved

Use

This reason code isissued when acall to OS_ChangeDynamicArearesultsin an area
shrinking. It is called after the PreShrink reason code has been issued successfully even
if the memory pages cannot be moved.

Sequence of actions when SWI OS_ChangeDynamicArea is called

The system stack is used for the page block passed to the PreGrow routine, where
required. Asaconsequence thereisalimit to the amount that an area can be grown by at
one time. To get round this problem an area grow reguest of alarge amount will be
performed in several steps. If one of these steps fails then the grow will terminate early
with the area grown by however much was achieved, but not by the full amount
reguested.

Two new service calls are used; Service PagesUnsafe (page 5a-48) and

Service PagesSafe (page 5a-49). These are issued around page swapping to inform any
DMA subsystems (eg IOMD DMA or second processor) that some pages are being
swapped around.

S5a-47

Service calls

Service calls

Service _PagesUnsafe
(Service Ccall &8E)

Pages specified are about to be swapped for different pages

On entry
R1 = &8E (reason code)
R2 = page block filled in by the PreGrow routine, with the two address fields also
filledin
R3 = number of pages in page block
On exit
All registers preserved

Use

This service call informs reci pients that the pages specified are about to be swapped for
different pages. Direct memory access activities involving the specified pages should be
suspended until Service PagesSafe (page 5a-49) has been received indicating the pages
are safe.

You must not claim this service call.

This service call isonly issued from RISC OS 3.5 onwards.

5a-48

Memory management

Service_PagesSafe
(Service Call &8F)

Pages specified have been swapped for different pages

On entry

R1 = & 8F (reason code)

R2 = number of entriesin each page block
R3 = pointer to page block before move
R4 = pointer to page block after move

On exit
All registers preserved

Use

This service call informs recipients that the pages specified have been swapped for
different pages and what those different pages are.

The logical addresses in both page blocks will match. The ‘before’ page block will
contain the physical page numbers and physical addresses of the pages which were
swapped, and the ‘after’ block the page nhumbers and physical addresses of the different
pages which replaced them.

You must not claim this service call.

This service call is only issued from RISC OS 3.5 onwards.

5a-49

Service_DynamicAreaCreate (Service Call &£90)

Service_DynamicAreaCreate
(Service call &90)

Dynamic area has just been successfully created

On entry

R1 = &90 (reason code)
R2 = area number of dynamic areajust created

On exit
All registers preserved

Use
This service call isissued just after the successful creation of adynamic area.

This service call keepsthe rest of the system informed about changes to the dynamic
aress. It is used by the Task Manager, although other modules could make use of it.

You must not claim this service call.

This service cal isonly issued from RISC OS 3.5 onwards.

5a-50

Memory management

Service_DynamicAreaRemove
(Service Call &91)

Dynamic areais about to be removed

On entry

R1 = &91 (reason code)
R2 = area number of dynamic area about to be removed

On exit
All registers preserved

Use

This service call isissued just before the removal of adynamic area, after the area has
been successfully reduced to zero size, but before it has been removed completely.

This service call keeps the rest of the system informed about changes to the dynamic
aress. It is used by the Task Manager, athough other modules could make use of it.

You must not claim this service call.

This service cal is only issued from RISC OS 3.5 onwards.

5a-51

Service_DynamicAreaRenumber (Service Call &£92)

Service_DynamicAreaRenumber
(Service Call &92)

Dynamic areais being renumbered

On entry

R1 = &92 (reason code)
R2 = old area number
R3 = new area number

On exit
All registers preserved

Use
This service cal isissued when adynamic areais being renumbered.

This service call keepsthe rest of the system informed about changes to the dynamic
aress. It is used by the Task Manager, although other modules could make use of it.

You must not claim this service call.

This service cal isonly issued from RISC OS 3.5 onwards.

5a-52

Memory management

SWI calls

OS_DynamicArea
(swi &66)

Performs operations on dynamic areas

On entry

RO = reason code
Other registers depend upon the reason code

On exit

RO preserved
Other registers depend upon the reason code

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use
This SWI provides a number of calls to perform operations on dynamic areas.

The particular action of OS_DynamicAreais given by the reason code in RO as follows:

RO Action Page
0 Creates anew dynamic area 5a-55
1 Removes a previously created dynamic area 5a-58
2 Returns information on a dynamic area 5a-59
3 Enumerates dynamic areas 5a-60
4 Renumbers dynamic areas 5a-61

5a-53

OS_DynamicArea (SWI &66)

This cal isonly available from RISC OS 3.5 onwards.

Related SWis
OS_ChangeDynamicArea (page 1-384)

Related vectors
None

S5a-54

Memory management

OS_DynamicArea O
(swi &66)

Creates anew dynamic area

On entry

RO = 0 (reason code)

R1 = -1 (or new area number not in range 128 - 255; this is reserved for Acorn use)

R2 = initial size of area, in bytes

R3 = -1 (or base logical address of area; this is reserved for Acorn use)

R4 = area flags (see below)

R5 = maximum size of area, in bytes d;|1 total RAM size of the machine)

R6 = pointer to dynamic area handler routine (see page 5a-45), or O if no routine

R7 = pointer to workspace, passed in R12 on entry to dynamic area handler routine;
or —1 for RISC OS to instead pass base address of area; or 0 if R6 =0

R8 = pointer to null terminated string describing dynamic area (e.g. ‘Font cache’)

On exit

RO preserved

R1 = allocated area number

R2 preserved

R3 = specified or allocated base address of area
R4 preserved

R5 = specified or allocated maximum size of area
R6 - R8 preserved

Use
This call creates a new dynamic area.

The area is created initially with size zero (no pages assigned to it), and is then grown to
the size specified in R2, which involves calling the area handler (if any) pointed to by
R6. The area’s maximum size is set to the lesser of the amount given in R5 on entry and
the total RAM size of the machine; or to the total RAM size if R5 was —1 on entry.

RISC OS allocates a free area of logical address space which is big enough for the
dynamic area’s maximum size. The base logical address is the lowest logical address
used by that area. The area grows by adding pages at the high address end.

5a-55

OS_DynamicArea 0 (SWI &66)

5a-56

RISC OS allocates an area number itself, which is greater than or equal to 256. This
meansthat acall to OS_ReadDynamicAreawill aways return the maximum areasizein
R2 for these aresas.

The areaflags passed in R4 are as follows:

Bit(s) Meaning
0-3 accessprivileges to be given to each page in the area
(same format as for OS_Read/SetM emM apEntries)

4 o] areaisbufferable
1[0 areaisnot bufferable
5 0[] areaiscacheable
10 areaisnot cacheable
6 0[] areaissingly mapped
10 areais doubly mapped (reserved for Acorn use)
7 o] areasize may be dragged by the user in Task Manager window
(hasred bar)

10 areasize may not be dragged by the user in Task Manager
window (has green bar)
8 o] areadoesnot require specific physical pages
(ie Rl isundefined on entry to the PreGrow and PostGrow
handlers)
1 [areamay require specific physical pages
(ie R1 points at a page block on entry to the PreGrow and
PostGrow handlers)
9-31 reserved (must be zero)

The description string passed in R8 is used by the TaskManager in its display.

Oncethe area has been created, Service_DynamicAreaCreate isissued to inform the rest
of the system about this change.

If the create dynamic area call returns an error for any reason, it may be assumed that the
new area has not been created.

Notes for application writers

Applications should create only singly-mapped areas, and request that RISC OS allocate
area numbers and logical addresses. Thiswill prevent clashes of area numbers or
addresses. For details of other usage, which has been provided largely for internal
backwards compatibility, see the section entitled System use below.

Memory management

Dynamic area handler routine

On entry, R6 points to the area handler routine which gets called with various reason
codes when an areais grown or shrunk, and R7 specifies the workspace pointer that is
passedtoitin R12. If zerois passed in R6, then no routine will be called, and any shrink
or grow will be allowed.

Details of the entry and exit conditions for this routine are given in the section entitled
Dynamic area handler routines on page 5a-45

Errors

An error will be returned if:
« thegiven area number clasheswith an existing area.
« thegiven base addressis nhot on amemory page boundary.

« thelogical address space occupied by the area at maximum size would intersect
with any other area at maximum size.

« thereisnot enough contiguous logical address space to create the area.

« thereisnot enough memory in the free pool to allocate level 2 page tables to cover
the area at maximum size.

« thereisnot enough memory to grow the areato the initial size requested.

System use

The following facilities are intended for internal system use only:
« Theability to create areas with specific area numbers.

o Theability to create areas at specific logical addresses.

On entry, R3 holds the base address of the area, which must be aligned on amemory
page boundary (to read the page size use OS_ReadMemMaplnfo). With this usage,
RISC OS does not allocate an area of logical address space for the dynamic area.

o Theability to create doubly-mapped areas.
For doubly mapped areas the base logical address is the (fixed) boundary between
the two mappings: the first mapping ends at R3 -1, and the second starts at R3.
When one of these areas grows the pages in the first copy move down to
accommodate the new pages at the end, and the second copy simply grows at the
end.

5a-57

OS_DynamicArea 1 (SWI &66)

5a-58

OS_ DynamicArea 1
(swi &66)

Removes a previoudly created dynamic area

On entry

RO = 1 (reason code)
R1 = area number

On exit
All registers preserved

Use
This call removes a previously created dynamic area.
Before the areais removed, RISC OS attempts to shrink it to zero size. Thisis done
using OS_ChangeDynamicArea. If OS_ChangeDynamicAreareturns an error, then the
areawill be grown back toitsoriginal sizeusing OS_ChangeDynamicArea, and this call
will return with an error. If OS_ChangeDynamicArea successfully reduced the area to
zero size, then it will be removed.

Once the area has been removed Service_DynamicAreaRemove (page 5a-51) isissued
to inform the rest of the system about this change.

An error isreturned if the area was not removed for any reason.

Memory management

OS_DynamicArea 2
(swi &66)

Returns information on a dynamic area

On entry

RO = 2 (reason code)
R1 = area number

On exit

Use

RO, R1 preserved

R2 = current size of area, in bytes

R3 = base logical address of area

R4 = areaflags

R5 = maximum size of area, in bytes

R6 = pointer to dynamic area handler routine (see page 5a-45), or 0 if no routine

R7 = pointer to workspace, passed in R12 on entry to dynamic area handler routine

R8 = pointer to null terminated string describing dynamic area (e.g. ‘Font cache’)

This call returns information on a dynamic area.

For doubly-mapped areas, R3 on exit from this call returns the address of the boundary
between the first and second copies of the area, whereas OS_ReadDynamicArea returns
the start address of the first copy (for backwards compatibility).

5a-59

OS_DynamicArea 3 (SWI &66)

OS_DynamicArea 3
(swi &66)

Enumerates dynamic areas

On entry

RO = 3 (reason code)

R1 = -1 to start enumeration, or area number
On exit

R1 = next area number, or —1 if no further areas

Use
This call enumerates dynamic areas.

This allows an application to find out what dynamic areas are defined. —1 is passed on
entry to start the enumeration; the call is then repeated until -1 is returned on exit, which
indicates that the enumeration has finished.

5a-60

Memory management

OS_DynamicArea 4
(swi &66)

Renumbers dynamic areas

On entry

RO = 4 (reason code)
R1 = old area number
R2 = new area number

On exit
RO - R2 preserved

Use
This call renumbers dynamic areas, and isintended for system use only.

Once the area has been renumbered Service_DynamicAreaRenumber (page 5a-52) is
issued to inform the rest of the system about this change.

Anerror isreturned if the area specified by the old area number does not exist, or if the
new number clashes with an existing area.

5a-61

OS_Memory (SWI &68)

OS_Memory
(swi &68)

Performs miscellaneous operations for memory management

On entry
RO = reason code (bits 0 - 7) and flags (bits 8 - 31, reason code specific)
Other registers depend upon the reason code

On exit

RO preserved
Other registers depend upon the reason code

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy
Not defined

Use
This SWI performs miscellaneous operations for memory management.

The particular action of OS_Memory is given by the reason codein bits 0 - 7 of RO as

follows:
RO Action page
0 General page block operations 5a-64
1-5 Reserved for system use 5a-66
6 Reads the size of the physical memory arrangement table 5a-67
7 Reads the physical memory arrangement table 5a-68
8 Reads the amount of a specified sort of memory availablein 5a-69
the computer
9 Reads controller presence and base address 5a-70

5a-62

Memory management

This call isonly available from RISC OS 3.5 onwards.

Related SWis
None

Related vectors
None

5a-63

OS_Memory 0 (SWI &68)

5a-64

OS_Memory 0
(swi &68)

General page block operations

On entry

RO = reason code and flags:

Bits
0-7

8

9

10

11

12

13
14-15

16-31

Meaning

0 (reason code)

physical page number provided when set

logical address provided when set

physical address provided when set

physica page number will befilled in when set (if bit 8 also clear)
logical addresswill be filled in when set (if bit 9 also clear)
physical address will be filled in when set (if bit 10 also clear)
cacheability control:

0[] nochange

1 nochange

2 [disable cacheing on all specified pages

3 enablecachei ng on all specified pages

reserved (must be clear)

R1 = pointer to page block (see page 5a-42)
R2 = number of entriesin page block

On exit

Use

RO - R2 preserved

This call converts between the different memory spaces used to specify addressesin a
page block: i.e. logical address, physical address, and physical page number. It can also
alter the cacheability of pages. The addresses must be in RAM, but need not be
page-aligned. You can do address conversions and control the cacheability on a per-page
basis. You need not do any conversion when changing cacheability (i.e. bits 11 - 13 may

be clear).

The page block is scanned and the specified operations applied to it. If any page is made
physically uncacheable, then the cache will be flushed before the SWI exits. If any page
cannot be converted or is non-existent then an error will be returned and the cacheability

unaffected.

Memory management

Cacheability is accumulated for each page. For example, if there are five clients which
need cacheing turned off on a page, then each of them must turn cacheing back on
individually for that page actually to become cached again.

Where an ambiguity may occur, for example in doubly-mapped areas such as the screen,
one of the possible results will be chosen and filled in.

5a-65

OS_Memory 1 -5 (SWI &68)

OS Memory 1-5
(swi &68)

These reason codes are for system use only; you must not use them in your own code.

5a-66

Memory management

OS_Memory 6
(swi &68)

Reads the size of the physical memory arrangement table

On entry
RO = 6 (reason code); al flags are reserved, so bits 8 - 31 must be clear

On exit

RO preserved
R1 = table size (in bytes)
R2 = page size (in bytes)

Use

This call reads the size of the physical memory arrangement table, as returned by
OS Memory 7.

5a-67

OS_Memory 7 (SWI &68)

5a-68

OS_Memory 7
(swi &68)

Reads the physical memory arrangement table

On entry

RO =7 (reason code); al flags are reserved, so bits 8 - 31 must be clear
R1 = pointer to table to befilled in

On exit

Use

RO, R1 preserved

Thiscall reads the physical memory arrangement table into the block of memory pointed
to by R1. (You can find the required size of the block by calling OS Memory 6.)

Each page of physical memory space has one entry in the table. Due to the large number
of pagesthe table is packed down to only 4 bits per page. In each byte of the table the
low order 4 bits correspond to the page before the high order 4 bits, i.e. the tableis
little-endian. Thisisthe meaning of anibblein the table:
Bit Meaning
0-2 typeof memory:
not present
DRAM
VRAM
ROM
/0
5-7 undefined
3 00 page available for alocation
10 page not available for alocation

The page availability is based on whether it is RAM, and whether it has already been
alocated in such away that it can't be replaced with adifferent RAM page eg the OS's
page tables or screen memory.

A WNEFLO

If an area has particul ar requirements on the physical addresses used by it (eg if it needs
contiguous physical memory for its area) we recommend that you issue this call inside

the area’s PreGrow handler, and then choose which pages to ask for on the basis of this
information. This is preferable to issuing the call before you create the area, because the
page availability may change during the process of creating the area.

Memory management

OS_Memory 8
(swi &68)

Reads the amount of a specified sort of memory available in the computer

On entry

RO = reason code and flags:
Bits Meaning
0-7 8(reason code)
8-11 typeof memory:
1 [J DrRAM
200 VRAM
30 rRoOM
4l 1o
12 - 31 reserved (must be clear)

On exit

RO preserved
R1 = number of pages of specified sort of memory
R2 = page size (in bytes)

Use

This call reads the amount of a specified sort of memory available in the computer. For
1/0 memory, al I/O memory isincluded: ie 1/O space, VIDC space, and EASI space.

5a-69

OS_Memory 9 (SWI &68)

OS_Memory 9
(swi &68)

Reads controller presence and base address

On entry

RO = 9 (reason code); al flags are reserved, so bits 8 - 31 must be clear
R1 = controller ID:
Bit Meaning
0-7 controller sequence number
8-31 controller type:
0[] EASI card access speed control (for internal use only)
1 J EASI space (for internal use only)
2] vipc
30 viDc20

On exit

RO preserved
R1 = controller base address, or 0 if not present.

Use

Thiscall checksfor the presence of agiven controller, and returnsits base addressif it is
fitted. Controllers areidentified by type and sequence number so that a machine could
be constructed with, say, more than one IDE controller in it.

For EASI space this call gives the base address of expansion card n, where n isthe

sequence number given. This reason code is provided for internal use only and is

documented here for completeness’ sake. In particular you must use the Expansion Card
Manager to read this information and to control your expansion card’s EASI space
access speed.

5a-70

Modifiesthe ARM MMU control register

On entry

RO = reason code and flags (must be zero)
R1 = XOR mask
R2 = AND mask

On exit

R1 = old value of control register
R2 = new value of control register

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy
Not defined

Use

Memory management

OS_MMuUControl
(swi &6B)

This call modifiesthe ARM MMU control register. The new value of the register is:

((old value AND R2) XOR R1)

The old value of the register isreturned in R1, and the new valuein R2. If the call results
in the C (Cache enable) bit being changed, the cache is flushed.

Thiscal isintended for internal system use only. Users wishing to enable or disable the

cache should use the * Cache command instead.

This call isonly available from RISC OS 3.5 onwards.

S5a-71

Related SWis
None

Related vectors
None

5a-72

104 CMOS RAM allocation

Non-volatile memory

240 bytes of non-volatile memory are provided. The majority of these bytes are reserved
for, or used by Acorn. Some bytes are reserved for each expansion card; before using
these, see the section entitled CMOS RAM on page 4-133. There are also bytes reserved
for the user; you must not use these in any distributed product. Finally, there are bytes
reserved for applications; for an alocation, contact Acorn in writing, but see first the
section entitled CMOS RAM bytes on page 4-553.

CMOS usageis subject to changein different versions of RISC OS, and your application
should not assume the location of any particul ar information.

OS Byte 161 (page 1-369) alows you to read the CMOS memory directly, while
OS Byte 162 (page 1-371) can writeto it.

RISC OS 3.6 allocation

The full usage of CMOS RAM in RISC OS 3.6 is given below. Locations marked ‘1’
were reserved for Acorn use in RISC OS 3.5, unless noted otherwise. Locations marked
‘}’ were not used, or were used for a different purpose under RISC OS 3.1. For details of
CMOS RAM usage in RISC OS 3.1 and RISC OS 2, see page 1-361.

L ocation
0
1
2

H w

= © 00 o Ul

Function
Econet station number (not directly configurable)
Econet file server station id (0 name configured)
Econet file server net number (or first character of name — rest in bytes
158 -172)
Econet printer server station id [0 name configured)
Econet printer server net number (or first character of name —rest in
bytes 153 - 157)
Default filing system number
*Unplug for ROM modules: 16 bits for up to 16 modules
Reserved for Acorn use
*Unplug for ROM modules: 8 bits for up to 8 modules
Screen info:
Bits 0-3 reserved for Acorn use
Bit 4 TV interlace (first *TV parameter)
Bits5-7 TV vertical adjust (signed three-bit number)

5a-73

RISC OS 3.6 allocation

sSa-74

1

12
13
14
15

16

17

18-19
20-21
22
23
24
25
26
27

Misc configuration:
Bits0-21% ADFS drive
Bits3-5 10 ShCaps, Z1 NoCaps, 41 Caps
Bit 6 00 Dir, 10 NoDir
Bit 7 reserved for Acorn use
Keyboard auto-repeat delay
Keyboard auto-repeat rate
Printer ignore character
Printer information:
Bit 0 reserved for Acorn use
Bit 1 00O Ignore, 10 Nolgnore
Bits 2-4 serial baud rate (0 75,...,70 19200)
Bits 5-7 printer type
Miscellaneous flags:

Bit 0 reserved for Acorn use
Bit 1 00 Quiet, 10 Loud
Bit 2 reserved for Acorn use
Bit 3 00O Scroll, 10 NoScroll
Bit 4 00O NoBoot, 100 Boot
Bits 5-7 serial data format (0...7)
NetFiler:
Bit 0 FS list sorting mode: O by name, 10 by
number
Bit 1 library type: 00 default library returned by

file server, 10 $.ArthurLib
Bits 2-3 FS list display mode:[0 large icons,
10 small icons, 27 full info, 3 reserved
Bits4-7 reserved for Acorn use
*Unplug for ROM modules: 16 bits for up to 16 modules
*Unplug for extension ROM modules: 16 bits for up to 16 modules
WimpDoubleClickMove limit
WimpAutoMenuDelay time
Territory
Printer buffer size
IDE disc auto-spindown delay
Wimp menu drag delay

28

29¢t

30-45
46 - 59
60-79%
80

81

82 -105
106

107 -111
112 - 127
128 -129
130-131 ¢t

CMOS RAM allocation

FileSwitch options:

Bit0 truncate names: 0 O giveerror, 1 O truncate
no error
Bit 1 DragA Sprite and DragAnQObject:
00 don'tuse, 10 use
Bit 2 interactive file copy: @ use, 10 don't use
Bit 3 Wimp’s use of dither patterns on desktop:

00 don’tuse, 11 use
Bit4 t% type of click on toggle size icon that doesn’t
obscure icon bar: O click, 10 Shift-click
Bit 5 reserved for Acorn use
Bits 6-7 state of last shutdownD don'’t care,
10 failed, 20 due to power loss,
30 undefined
Mouse type:
00 standard quadrature mouse,
10 Microsoft compatible serial mouse,
20 Mouse Systems Corporation compatible
serial mouse,
30 PS/2 compatible serial mouse t,
4 - 255 reserved for Acorn use
Reserved for the user
Reserved for applications
Reserved for expansion card use
Freeway net number in Acorn Access, or reserved for RISC
&OF for Access to prevent RIS& booting, or reserved for RISKX
ShareFS disc names in Acorn Access, or reserved foriRISC
ADFSFiler disc sharing for Acorn Access:

Bit 0 share drive 4 if set
Bit 1 protect drive 4 if set
Bit 2 share drive 5 if set
Bit 3 protect drive 5 if set
Bit4 share drive 6 if set
Bit5 protect drive 6 if set
Bit 6 share drive 7 if set
Bit 7 protect drive 7 if set

Or reserved for RISEX

Reserved for RIS&

Reserved for expansion card use

Current year

*Unplug for ROM modules: 16 bits for up to 16 modules

S5a-75

RISC OS 3.6 allocation

132 DumpFormat, 16 bit sound control and quality:
BitsO-1 control character print control:
00O printin GSTrans format,
10 printasadot,
20 print decimal inside angle brackets,
30 print hex inside angle brackets

Bit 2 treat top-bit-set characters asvalid if set
Bit 3 AND character with & 7F in *Dump
Bit4 treat TAB as print 8 spaces

Bits5-6 16 bit sound control:
00 standard p-law sound (ie no 16 bit sound
output)
10 DACclockisslave, 11.2896MHz external
clock, standard VIDC20 or 44.1kHzx4/(4...45)
rates (as on ESP card)
2[00 DAC clock is slave, no external clock,
standard VIDC20 rates only
30 DAC clock is master, external clock,
suitable sound clock driver installed
Bit 7 16 bit sound quality:
00 use specified sample rate
10 perform sample interpolation to keep
sample rate over 25kHz
133 Sync, monitor type, some mode information:
Bits 0, 7 00O vertical sync, 11 composite sync,
30 auto sync)
Bitlt 00 enable LoadModeFile in !Boot,
10 disable LoadModeFile in !Boot
Bits2-6 monitortype: @I 0,10 1, ..., 310 auto
134 FontSize in units of 4K
135 Number of ADFS drives:
Bits0-2 floppy disc drives
Bits 3-5% no longer used (was ST506) — reserved for

Acorn use
Bits6-7 IDE disc drives
136 ADFS floppy disc drive step rates:

Bits0-1 floppy disc drive O

Bits 2-3 floppy disc drive 1

Bits4-5 floppy disc drive 2

Bits6-7 floppy disc drive 3
137 ADFSbuffers

5a-76

138

139

140

CMOS RAM allocation

CDFS number of discs and buffer size:
BitsO-4 number of CD-ROM drives
Bits5-7 buffersize: 00 OK, 10 8K, 20 16K,
30 32K,40 64K, 50 128K, 6 0 256K,
70 512K
TimeZone in 15min offsets from UTC, stored as signed 2's
complement number (RISC OS 3 version 3.10 onwards)
Desktop features:
BitO 3D: 00 2D look, 10 3D look
Bits 1-41 desktop font setting:
00 use Wimp$Font... variables,
10 use System font
2 -150 use font from ResourceFS
Bits5-6 reserved for Acorn use
Bit7% window background tiling: @ use tile_1,
10 nottiled (i.e. grey 1)

141 - 142 t% *Unplug for ROM modules: 16 bits for up to 16 modules

143
144
145
146
147
148

149 - 152
153 - 157
158 - 172
173-176
177 -184

185
186
187

Screen size, in pages
RAM disc size, in pages
System heap size to add after initialisation, in pages
RMA size to add after initialisation, in pages
Sprite size, in pages
SoundDefault parameters:

Bits0-3 channel 0 default voice

Bits4-6 loudness (0-17 &01, &13, &25, &37, &49,

&5B, &6D, &7F)

Bit 7 loudspeaker enable, if hardware supports it
Allocated to BASIC Editor
Printer server name characters 2 - 6 (character 1 at location 4)
File server name characters 2 - 16 (character 1 at location 2)
*Unplug for ROM modules: 32 bits for up to 32 modules
*Unplug for expansion card moduless 8 bits for up to 8 modules
per card
Configured language
Configured country
*Unplug for network card modules: 8 bits for up to 8 modules

sa-77

RISC OS 3.6 allocation

188

189 - 192
193

194
195

196
197

5a-78

Miscellaneous:
Bits0-1
Bit 2

Bits3-5

Bit 6

Bit7

Winchester size

ROMFS Opt 4 state

cacheicon enable state: 0 0 no cacheicon
state, 1 00 cachesicon

screen blanker time: 0 0 off, 1 0 30s,

20 1min, 30 2mins, 4 0 5mins,

50 10mins, 6 O 15mins, 7 0 30mins
screen blanker/Wrch interaction: 0 O ignore
Wrch, 1 0 Wrch unblanks screen

hardware test disable: 0 OO full tests,

10 disablelong tests at power-up

Protection state for immediate Econet commands:

Bit 0
Bit1
Bit 2
Bit 3
Bit 4
Bit5
Bit 6
Bit 7
Mouse multiplier
Miscellaneous:

Peek

Poke

JSR

User RPC

OSRPC

Halt

GetRegs

reserved for Acorn use

Bit 0 AUN BootNet: 0 [0 disabled, 1 0 enabled
Bitl AUN dynamic station numbering:
00 disabled, 10 enabled
Bit 2 type of last reset: 0 O ordinary,
10 CMOSreset
Bit 3 power saving: 0 O disabled, 1 O enabled
Bit4 mode and wimp mode: 0 0 use byte 196,
10 auto
Bit5 cache enablefor ARM: 0 0 enabled,
10 disabled
Bit 6 broadcast loader enable: 0 0 enabled,
10 disabled
Bit7 colour hourglass enable: 0 00 disabled,
10 enabled
Mode and Wimp mode
WimpFlags

198

199
200 - 205
206 - 207
208

209
210
211-214
215-216
217-219
220

221
222
223
224 -229

CMOS RAM allocation

Desktop state:
BitsO, 1 Filer display mode: 0 O largeicons,
10 smallicons, 2 0 full info, 3 reserved
Bits 2, 3 Filer sorting mode: 0 O sort by name,
10 sort by type, 2 0 sort by size,
30 sort by date

Bit4 force option (1 O force)
Bit5 confirm option (1 O confirm)
Bit 6 verbose option (1 O verbose)
Bit 7 newer option (1 O newer)

ADFS directory cache size
FontMax, FontMax1 - FontMax5
Reserved for Acorn use
SCSIFS flags
Bits0-2 number of discs (0 - 4)
Bits3-5 default drive — 4
Bits6-7 reserved
SCSIFS file cache buffers (must be 0)
SCSIFS directory cache size
SCSIFS disc sizes (their maps’ sizes / 256)
Reserved for Acorn use
*Unplug for ROM modules: 24 bits for up to 24 modules
Alarm and time byte
Bits0-2 format state:
00O illegal (Alarm checks for first run),
10 analogue with seconds,
2 [0 analogue without seconds,
30 HH:MM,
40 format is ‘%24:%mi:%se’,
50 format is
‘%z212:%mi:%se %am %zd %zmn %yr’,
6 & 7 reserved

Bit 3 deletion: 0O do not confirm, 10 confirm
Bit 4 auto save: @01 no auto save, I auto save
Bit5 5 day weeks: @ disabled, 10 enabled
Bit 6 alarm noise: @ not silent, 1] silent
Bit 7 Daylight Saving Time: @ normal time,
10 Daylight Saving Time (DST)
WimpDragDelay time

WimpDragMove limit

WimpDoubleClickDelay time

Local print server’s name, stored by printer server software,
or reserved for RIS

5a-79

RISC OS 3.6 allocation

230 t LCD panel brightness and contrast, or reserved for RISC
(was solely reserved for RIS& under RISC OS 3.5)
231 t% *Unplug for ROM modules: 8 bits for up to 8 modules

232 1 Reserved for Acorn use
233-238F FSLock
239 CMOS RAM checksum

The checksum must be correct for some of the above locations to have effect. See the
documentation of OS_Byte 162 on page 1-371 for more details.

5a-80

105

DMA

Introduction and Overview

DMA manager

From RISC OS 3.5 onwards, support for DMA (direct memory access) is provided by
the new DMAManager module. However, some computers’ hardware will not support
DMA, in which case the DMA manager becomes dormant.

The DMA (Direct Memory Access) is controlled by four DMA channels; these service a
potentially large number of devices.

The DMA manager:

« Performs the arbitration and switching between devices (with help from the device
drivers).

« Provides a general purpose software interface to the DMA channels’ available
hardware interface.

« Isolates software from hardware so that changes to the hardware do not affect DMA
clients — just the DMA manager.

« Handles memory mapping and memory management, so that any DMA clients are
not concerned with logical to physical addresses or if a page is remapped during a
DMA operation.

A DMA client registers itself with the DMA manager as the owner of a logical device. It
then requests DMA transfers as and when necessary.

The DMA manager processes the requests on a first-come-first-served basis; it does not
impose any priority on logical devices. It attempts to start the transfer as soon as
possible. If the required DMA channel is not free, the request is stored in a FIFO queue.
The request then starts when it is at the head of the queue and the required DMA channel
is free.

The DMA manager provides a set of callback routines to keep the client up-to-date on
the state of its operations; this is because of the possible time-lag between requesting
and starting an operation.

DMA requests can be suspended and resumed, examined and terminated.

5a-81

Technical details

Technical details

Logical and physical DMA channels
The DMA manager controls the following physical DMA channels provided by IOMD:

0 General purpose channel 0
1 General purpose channel 1
2 General purpose channel 2
3 General purpose channel 3

The four general purpose physical channels must be shared by several devicesvia
logical channels. The following logical channels are supported:

Logical channel Use Physical channel
& 000 Expansion card 0, DMA line 0 2
&001 Expansion card 0, DMA line 1

&010 Expansion card 1, DMA line 0 3
&011 Expansion card 1, DMA line 1

&020 Expansion card 2, DMA line 0

&021 Expansion card 2, DMA line 1

& 030 Expansion card 3, DMA line 0

&031 Expansion card 3, DMA line 1

& 040 Expansion card 4, DMA line 0

& 041 Expansion card 4, DMA line 1

& 050 Expansion card 5, DMA line 0

&051 Expansion card 5, DMA line 1

& 060 Expansion card 6, DMA line 0

& 061 Expansion card 6, DMA line 1

&070 Expansion card 7, DMA line 0

&071 Expansion card 7, DMA line 1

&100 On-board SCS

&101 On-board Floppy

&102 Parallel

&103 Sound out

& 104 Sound in

&105 Network card 0

5a-82

DMA

M apping between logical and physical channels

The mapping between logical and physical channelsis fixed. Logical channels with no
mapping shown above do not have DMA connected or are not controlled by the DMA
Manager, and the numbers they have been assigned are for future use only.

The four general purpose physical DMA channels can be connected to devices on either
side of the expansion card buffer. To avoid confusion, the expansion card buffer is not
output enabled during DMA operations to internal peripherals, but is enabled for DMA
operations to external devices. The DMA manager uses four bitsin the IOMD register
DMAEXT to specify whether the corresponding general purpose physical channel is
mapped to an internal or external device.

Memory manager interfaces

The DMA manager and the memory manager interface in the following ways.

1

The DMA manager maps logical addresses to physical addresses so that the IOMD
DMA registers can be programmed. It does so by creating a page table containing
the logical addresses of all pages used in the transfer, and then calling OS_Memory
(see page 5a-62) to get the memory manager to fill in the corresponding physical
addresses.

OnaDMA transfer from deviceto memory the DMA manager callsOS_Memory to
ask the memory manager to mark the pages being DMAed into as uncacheable. This
is so that reads from these pages return the transferred data rather than cached data.
The DMA manager flushes the cache after making this call, but before starting the
transfer. It makes the pages cacheable again once the transfer has completed.

The memory manager broadcasts Service PagesUnsafe when it is about to remap
some physical pages (i.e. when the physical addresses which correspond to arange
of logical addresses are about to change). This service call provides a page table of
the sameform asthat used inthe OS_Memory interface which contains the physical
addresses of the unsafe pages. The DMA manager then scans its page tables for all
active transfers and temporarily halts any transfer which is transferring to or from
an unsafe page. After the pages have been remapped the memory manager
broadcasts Service PagesSafe which provides the new physical addresses for the
unsafe pages. The DMA manager then continues any halted transfers using the new
physical addresses.

See the chapter entitled Memory management on page 5a-37 for more details.

5a-83

Device drivers

Device drivers

Device drivers call DMA_RegisterChannel (page 5a-88) to register with the DMA

manager which logical channels (devices) they control. The device drivers then call
DMA_QueueTransfer (page 5a-91) to place DMA requests on a queue which the DMA
manager processes in order. There are calls to terminate a transfer

(DMA_TerminateTransfer — page 5a-93), suspend a transfer (DMA_SuspendTransfer —
page 5a-95) and resume it (DMA_ResumeTransfer — page 5a-97), and to examine the
state of a transfer (DMA_ExamineTransfer — page 5a-99). If a device wishes to
relinquish control of a logical channel, it should do so by calling
DMA_DeregisterChannel (page 5a-90).

Control routines

5a-84

When a device driver calls DMA_RegisterChannel it passes a pointer to a word aligned
table of control routine addresses. These control routines are called by the DMA
manager during DMA; for a normal transfer the sequence is:

Start

Enable DMA
transfer
transfer

Disable DMA

Completed

The control routines will be called in IRQ or SVC mode with interrupts enabled or
disabled.

A control routine may alter processor mode as necessary. If interrupts are disabled on
entry a control routine must neither enable interrupts, nor should it call DMA manager
SWIs, as either may cause undesirable side effects. If interrupts are enabled on entry a
control routine may change interrupt state and call DMA manager SWIs. On exit a
control routine must restore the processor mode, interrupt status and processor flags (ie
by using the instruction MOVS R15, R14 or an equivalent LDM), so that the DMA
manager may continue where it left off. The only exception to this is that the Start
control routine may alter the status of the V flag to indicate an error.

DMA

The control routines must conform to the following interfaces:

Enable DMA

On entry

R11 = R2 from DMA_QueueTransfer call
R12 = R5 from DMA_RegisterChannel call

On exit

All registers preserved

Use

The DMA manager calls this control routine to enable device DMA before starting the
DMA transfers. It is assumed that the default state is for device DMA to be disabled.

Disable DMA

On entry

R11 = R2 from DMA_QueueTransfer call
R12 = R5 from DMA_RegisterChannel call

On exit
All registers preserved

Use

The DMA manager callsthis control routine to disable device DMA. This may be called
in mid transfer (for example, if DMA_TerminateTransfer or DMA_SuspendTransfer is
called), or when aDMA request has compl eted.

5a-85

Control routines

5a-86

Start

On entry

R11 = R2 from DMA_QueueTransfer call
R12 = R5 from DMA_RegisterChannel call

On exit

V set 0 RO = pointer to error block
All other registers preserved

Use

The DMA manager calls this control routine before starting a new DMA request. This
call is only made once for each DMA request; suspending and then resuming a transfer
does not call this routine again. If the device driver no longer wants this operation to
start then it should return with V set and RO pointing to an error block; the Completed
control routine isthen called with the same error. Otherwise, the DMA manager then
calls the Enable DMA control routine.

Completed

On entry

RO =0 (if V isclear) or pointer to error block (if V is set)
R11 = R2 from DMA_QueueTransfer call
R12 = R5 from DMA_RegisterChannel call

On exit

All registers preserved

Use

The DMA manager calls this control routine when a DMA request has completed. The
Disable DMA control routine will have been called and the scatter list brought fully up
to date before thisroutine is called. If the V flag is clear then the DMA request has
completed successfully. Otherwise, the DM A request has terminated prematurely due to
an error.

As soon as this control routine is called the DMA tag for the completed operation is no
longer valid.

Possible errorsinclude:

Error supplied to DMA_TerminateTransfer
Error returned from ‘Start’ control routine
‘DMA channel deregistered’

DMA

DMASync

On entry

R11 = R2 from DMA_QueueTransfer call
R12 = R5 from DMA_RegisterChannel call

On exit

RO = 0to continue, or n to stop after n bytes
All other registers preserved

Use

The DMA manager optionally calls this control routine after a fixed number of bytes
have been transferred. The calling of this routine is configured when your device driver
callsDMA_QueueTransfer (see page 5a-91) to queue arequest for DMA transfer.

Thisroutine allowsfor real-time synchronisation with DMA transfers, which is essential
for time critical device drivers where the driver has to know how far atransfer has
progressed.

If the device driver wants the transfer to stop then anon-zero value can bereturned in RO
which specifies how many more bytesto transfer. Note that the DMA manager will
attempt to stop after the specified number of bytes, but that this may not be possible
because the next two sections of the transfer may have been initiated already. This
means that the transfer might continue for at most

(2 x gap between DMASync calls + transfer unit size) bytes

If anumber greater than or equal to thisis returned by DMASync then the transfer is
guaranteed to stop after the specified number of bytes.

5a-87

SWi calls

SWI calls

DMA_RegisterChannel
(swi &46140)

Registers a client device as the controller of alogica channel

On entry

RO = flags:
bits 0 - 31 reserved (must be set to 0)
R1 = logica channel
R2 = DMA cycle speed (0 - 3)
R3 = transfer unit size (1, 2, 4 or 16 bytes)
R4 = pointer to table of control routine addresses
R5 = workspace pointer to be passed to control routinesin R12

On exit

RO = channéd registration handle
R1 - R5 preserved

Interrupts

Interrupt statusis not altered
Fast interrupts are not altered

Processor mode

Processor isin SV C mode

Re-entrancy

SWI is not re-entrant

Use

This call registers a client device as the controller of alogical channel; it istypically
called by adevice driver. The value passed in R4 is a pointer to aword aligned table of
control routine addresses:

5a-88

DMA

Routine Use

R4+0 Enable device DMA
R4+4 Disable device DMA
R4+8 Start

R4+12 Completed

R4+16 DMASync

These routines are called by the DMA manager to control the specified logical channel.
They are called with R12 set to the value supplied in R5, which is usually the device
driver's workspace pointer. For afull description of their use, see the section entitled
Control routines on page 5a-84.

Anerror isreturned if the logical channel isinvalid or has already been claimed, an
invalid cycle speed or transfer sizeis specified, or the control routine table is not word
aligned.

This call isonly available from RISC OS 3.5 onwards.

Related SWIs
DMA_DeregisterChannel (page 5a-90)

Related vectors
None

5a-89

DMA_DeregisterChannel (SWI &46141)

5a-90

DMA_DeregisterChannel
(swi &46141)

Deregisters a client device previously registered by DMA_RegisterChannel

On entry
RO = channéd registration handle

On exit
RO preserved

Interrupts

Interrupts may be disabled
Fast interrupts are not altered

Processor mode
Processor isin SVC mode

Re-entrancy
SWI is not re-entrant

Use

This call deregisters aclient device previously registered with the DMA manager by
DMA_RegisterChannel. Before the device is deregistered all DMA transfers will be
terminated on the logical channel it is controlling.

An error is returned if the channel registration handle passed in RO isinvalid.
This call is only available from RISC OS 3.5 onwards.

Related SWiIs
DMA_RegisterChannel (page 5a-88)

Related vectors
None

DMA

DMA_QueueTransfer
(swi &46142)

Queues a DMA transfer request for alogical channel

On entry

RO = flags:

bit 0 set O write (i.e. from memory to device),

clear O read (i.e. from device to memory)

bit 1 set O scatter listisacircular buffer, clear O not circular

bit 2 set 0 call DMASync control routine, clear 0 don’t call

bits 3 - 31 reserved (must be set to 0)
R1 = channel registration handle
R2 = value of R11 to be passed to control routines
R3 = pointer to word-aligned scatter list
R4 = number of bytes to transfer, or O for infinite length transfer (if bit 1 of RO set)
R5 = size of circular buffer (if bit 1 of RO set)
R6 = number of bytes between calls to DMASync control routine (if bit 2 of RO set)

On exit

RO = DMA tag
All other registers preserved

Interrupts

Interrupts may be disabled
Fast interrupts are not altered

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This call queues a DMA transfer request for a logical channel. The value in R2 is quoted
in R11 when the DMA manager calls any of the control routines, and it describes the
particular device/controller/transfer.

5a-91

DMA_QueueTransfer (SWI &46142)

5a-92

The scatter list isaword aligned table of (address, length) pairs, in that order:
« Both address and length are 32-bit values and are word aligned.

e Theaddresses are logical addresses which the client should not remap before the
transfer is compl ete.

« Thelengths are in bytes and are assumed to be a multiple of the transfer unit size
specified when the logical device was registered.

When the transfer specified by a scatter list entry pair has completed the addressis
incremented and the length decremented to reflect how much data was transferred. The
DMA manager then starts atransfer for the next pair and repeats until the total number
of bytes specified in R4 have been transferred.

If bit 1 of RO is set then the scatter list istreated as a circular buffer. This means that the
scatter list will not be updated as described above, and will instead wrap at the end to
start again at the beginning. In this case the transfer may be of infinite length, so R5
contains the size of the buffer. Transfers using circular buffers can be suspended and
resumed, and can be terminated explicitly by calling DMA_TerminateTransfer

(page 5a-93) or by the DM A Sync control routine (page 5a-87).

The value passed in R4 determines the number of bytesto be transferred, which must be
amultiple of the transfer unit size. If the transfer uses a circular buffer then this value

can be 0 to indicate an infinite length transfer. If the transfer doesn’t use a circular buffer
then this value must be less than or equal to the sum of the lengths of all scatter list
entries.

If bit 2 of RO is set then R6 contains the number of bytes which are to be transferred
between successive calls to the device driver's DMASync control routine; again this
value must be a multiple of the transfer unit size. This transfer method allows real-time
synchronisation.

An error is returned if the channel registration handle is invalid, the scatter list is not
word aligned, the length or the value in R5 or R6 (if either is used) is not a multiple of
the transfer unit size, or the transfer is activated and the Start control routine returns an
error.

This call is only available from RISC OS 3.5 onwards.

Related SWis

DMA_TerminateTransfer (page 5a-93)

Related vectors

None

DMA

DMA_TerminateTransfer
(swi &46143)

Terminates aDMA transfer

On entry

RO = pointer to an error block
R1=DMA tag

On exit
All registers preserved

Interrupts

Interrupts may be disabled
Fast interrupts are not altered

Processor mode
Processor isin SVC mode

Re-entrancy
SWI isre-entrant

Use
This call terminates a DMA transfer originally queued by DMA_QueueTransfer.

If the DMA transfer is activethen it is stopped, and the DMA manager callsthe Disable
DMA control routine (page 5a-85); otherwise, the request is simply removed from its
gueue. The DMA manager then calls the Completed control routine (on page 5a-86)
with V set and RO pointing to the supplied error block.

If the terminated DMA transfer request was blocking a logical channel (i.e. had been
suspended by acall to DMA_SuspendTransfer with bit O of RO clear), then the logical
channel is unblocked and its queued transfers are started again.

An error isreturned if the DMA tag isinvalid.
This call isonly available from RISC OS 3.5 onwards.

5a-93

DMA_TerminateTransfer (SWI &46143)

Related SWis
DMA_QueueTransfer (page 5a-91)

Related vectors
None

5a-94

DMA

DMA_SuspendTransfer
(swi &46144)

Suspends the given active DMA transfer

On entry
RO = flags:
bit Oclear [] don’t start queued transfers,
setl] start next queued transfer
bits 1 - 31 reserved (must be set to 0)
R1 = DMA tag
On exit

All registers preserved

Interrupts

Interrupts may be disabled
Fast interrupts are not altered

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This call suspends the given active DMA transfer. The DMA manager calls the Disable

DMA control routine (page 5a-85), suspends the active DMA request, updates the
scatter list and returns the request to a queue. If bit 0 of RO is clear then no DMA

requests for the same logical channel will be started until the suspended transfer is

resumed or terminated.

An error is returned if the DMA tag is invalid, or the specified DMA transfer is not in

progress.

This call is only available from RISC OS 3.5 onwards.

5a-95

DMA_SuspendTransfer (SWI &46144)

Related SWis
DMA_ResumeTransfer (page 5a-97)

Related vectors
None

5a-96

DMA

DMA_ResumeTransfer
(swi &46145)

Resume a previously suspended DMA transfer

On entry

RO = flags:
bits 0 - 31 reserved (must be set to 0)
R1=DMA tag

On exit
All registers preserved

Interrupts

Interrupts may be disabled
Fast interrupts are not altered

Processor mode

Processor isin SVC mode

Re-entrancy
SWI isre-entrant

Use

Thiscall resumesapreviously suspended DMA transfer. A suspended transfer maintains
its positionsin the queue, so aresumed transfer has priority over requests queued after it
was suspended. The DMA manager calls the Enable DMA control routine (page 5a-85)
when the suspended transfer is restarted.

Anerror isreturned if the DMA tag isinvalid, or the buffer is not suspended.
This call isonly available from RISC OS 3.5 onwards.

Related SWis
DMA_SuspendTransfer (page 5a-95)

5a-97

DMA_ResumeTransfer (SWI &46145)

Related vectors
None

5a-98

DMA

DMA_ExamineTransfer

Returns the progress of aDMA transfer

On entry

RO = flags:
bits 0 - 31 reserved (must be set to 0)
R1=DMA tag

On exit

RO = number of bytes transferred so far
All other registers preserved

Interrupts

Interrupt status may be disabled
Fast interrupts are not altered

Processor mode
Processor isin SVC mode

Re-entrancy
SWI isre-entrant

Use

(swi &46146)

This call returns progress of a DMA transfer, giving the total number of bytes

transferred.
Anerror isreturned if the DMA tag isinvalid.

This call isonly available from RISC OS 3.5 onwards.

Related SWis
None

5a-99

DMA_ExamineTransfer (SWI &46146)

Related vectors
None

5a-100

106 Video

Introduction

The new architecture uses a new video controller — VIDC20. Using this gives a much
improved video capability over the previous generation of computers that used VIDC1
or VIDC1a chips. In particular, it supports pixel depths of up tp@Z2bits per pixel) on

a much wider range of monitor types.

The video system was substantially changed in RISC OS 3.5, so that VIDC20 can be
used to its full capabilities. There are new ways of selecting and specifying screen
modes and monitor types. The sprite format has been extended to allow sprites that use
the new screen modes. Many calls have been extended to support these new features,
particularly in the kernel (including OS_SpriteOp calls) and in ColourTrans.

In RISC OS 3.6, further minor extensions have been made to the video system: in
particular, support has been added for palettes in the new sprite format.

Full details are in the rest of this chapigreinformation in thischapter appliesfrom
RISC OS 3.5 onwar ds, unless otherwise stated.

Furthermore, support for JPEG files has been added in RISC OS 3.6. This is described
separately, in the chapt#PEG images on page 5a-145.

5a-101

Overview

Overview

New ways of selecting modes

There are new ways of specifying and selecting screen modes, to take account of the
much wider range of screen modes potentially available. See Mode sel ection on
page 5a-104.

Many calls have been extended to use these new methods; see their individual entriesin
the section entitled Technical details on page 5a-104. A few calls have been added
where existing calls could not be extended, or to provide functionality not present in
RISC OS 3.

Monitor configuration stored in files
The new architecture can support a much wider range of monitors than in the past.

At start-up the monitor type, screen mode and sync are set from configured values, asin
RISC OS 3. However, the new architecture only detects bit O of the monitor lead ID, so
auto-configuration of monitor type, screen mode and sync is no longer so flexible (see
Service_MonitorLeadTrangdation on page 5a-114).

These defaults are then overridden by information read from amonitor-specific file,
each of which stores the full range of modes available for a specific monitor. For full
details, see Modelnfo files on page 5a-106, and The ScreenModes module on

page 5a-108.

New sprite format

The RISC OS 3 sprite format has been extended to support the new pixel depthsthat are
available. The new format is defined on page 5a-110.

OS_SpriteOp calls have also been extended to work with the new sprite format; see
Changesto OS SpriteOp on page 5a-117. Calls that create sprites will — where possible
— create an old format sprite. This is to ease exchange of files with machines running
older versions of RISC OS.

ColourTrans extended to support new modes and sprites

ColourTrans calls have been extended to support the changes to other parts of the video
software. For full details sgghanges to existing Colour Trans SMs on page 5a-120.

5a-102

Video

New PaletteV reason codes

The PaletteV software vector has been enhanced by the addition of extrareason codes.
These are for block reading and writing of the palette, and setting up gamma correction
tables for RGB values being programmed into the palette. See page 5a-113, and the
description of the new reason codes on page 5a-123.

All 8 bits of colour numbers are significant

All 8 bits of a colour component are now significant. Do not work in four bit quantities
and fill in the lower nibble either by setting it to zero or by copying the upper nibble.
This technique still works, but only allows access to sixteen of the possible 256
intensities.

5a-103

Technical details

Technical details

Mode selection

Because of theincreased number of colours and the range of resolutions available, using
amode number to define screen modes has become limiting. (There was a maximum of
only 128 modes, with just 64 available to Acorn.) To bypass this limitation a number of
different methods are now used to define modes. These methods and their terminology
are summarised below.

Mode numbers

The mode numbers used in earlier versions of RISC OS are still supported.

Mode selectors

5a-104

A mode selector isaword-aligned structure that defines a particular mode. Thisincludes
its resolution, numbers of colours, frame rate and other variables.

A mode selector has the following format:

Offset Value
0 mode selector flags:
bit 0 = 1 (see Distinguishing mode selectors from sprite areas on
page 5a-108)
bits 1 to 7 = format specifier (zero for this format)
bits 8 to 31 = other flags (reserved - must be zero)
4 x-resolution (in pixels)
8 y-resolution (in pixels)

12 pixel depth:
00 1bpp, 10 2bpp, 2 0 4bpp,
30 8bpp, 40 16bpp, 50 32bpp

16 frame rate (in Hz); - use highest rate available
20 pairs of [mode variable index, value] words;

there may be any number of these, including zero
n —1 (terminator)

The mode variable indexes mentioned here are the same numbers which specify mode
variables in the SWI OS_ReadModeVariable. See page 1-736 for more information.

Video

Mode specifiers

A mode specifier isaword passed to a SWI to specify amode. A mode specifier may be
either amode number (0 - 255), or a pointer to a mode selector (greater than 255). The
range of the value determineswhich it is.

Mode strings

Mode strings are atextual form of mode selection, used by several Wimp calls and the
command *WimpMode, as well as the Display manager utility.

A mode string has the following syntax:

Syntax Meaning

Xnnnn X resolution (nnnn is three or four digits)

Y nnnn Y resolution (nnnn is three or four digits)

Cccc Colours (ccc = 2, 4, 16, 64, 256, 32T, 32K, 16M)

Gggg Greys (ggg = 4, 16, 256)

EXn X EIG factor (n = 0 to 3, smaller values make text larger)
EYn Y EIG factor (n = 0 to 3, smaller values make text larger)

Ffff Frame rate (Hz) (fff is two or three digits)

For example:

X640 Y512 C16 Mode 20 (nb not supported by all monitors)
X640 Y480 C16 EXOEYO Mode 27 with extra-large text
X320,Y480,C64 VIDC 1 style 8bpp, VGA with rectangular pixels

o The parameters G and C cannot be specified together.
o ParametersEX and EY are optional and the default sizeis used if they are not given.

« Parameter F is optional; if it is omitted a value of —1 is used, which uses the highest
frame rate available.

The Display manager utility only changes modes using *WimpMode. A mode selection
string is constructed when the user clicks on OK in the window. If you want to use a
mode number, you can enter it instead of a mode string. For example you can enter 15 to
select the old mode 15.

5a-105

Mode selection

Modelnfo files

5a-106

Model nfo files contain definitions of al the screen modes available on a particular
monitor. The mode definitions are written in plain text, so the files can be edited.

o Spaces and tab characters (&09) are allowed anywhere in the file except in the
middle of keywords or numbers.

« Lines starting with any number of spaces or tabs followed by the hash character ‘#’
are treated as comments and ignored.
Header

The file always starts with the following two lines:

file_format: fornat
monitor_title: title

where:
format must be 1 for this format file
title is a textual description of this type of monitor

This may be followed by an optional line to control DPMS power saving\segor
power saving on page 5a-653):

DPMS_state: state
where:

State mustbe 0, 1,2 or 3

Under RISC OS 3.6 or later, the first two lines may instead be followed by an optional
line to indicate the file is for an LCD panel:

I cd_support: value
where:

value must be 1 (single panel) or 2 (dual panel)

M ode definitions

The header is followed by any number of mode definitions, as follows:

st artnode
node_nane: node_nane
Xx_res: x-resolution
y_res: y-resolution
h_timngs: hsync, hbpch, hlbdr, hdisp, hrbdr, hfpch
v_timngs: vsync, vbpch, vtbdr, vdisp, vbbdr, vfpch
pi xel _rate: pixel_rate
sync_pol : sync_pol arities
endnode

Video

where:
mode_name is atextual name for the mode for use in menus and such. The
mode name field must be present; however, the mode name itself
may be blank, which prevents the mode appearing on menus (eg
the Display Manager’s Resolution menu.)
x-resolution is the number of pixels displayed across the screen
y-resolution is the number of displayed rasters
hsync is the width of the hsync pulse
hbpch is the width of the horizontal back porch
hibdr is the width of the left hand border
hdisp is the number of displayed pixels horizontally, which is normally
the same ag-resolution)
hrbdr is the width of the right hand border
hfpch is the width of the horizontal front porch
vsync is the width of the vsync pulse
vbpch is the width of the vertical back porch
vtbdr is the width of the top border
vdisp is the number of displayed rasters vertically (normally the same
asy-resolution)
vbbdr is the width of the bottom border
vfpch is the width of the vertical front porch
pixel_rate is the pixel rate in kHz
sync_polaritie is a number indicating what kind of sync signals are required, as
S follows:
0 hsync normal, vsync normal
1 hsync inverted, vsync normal
2 hsync normal, vsync inverted
3 hsync inverted, vsync inverted

All values on the h_timings line are in units of pixels, and al values on the v_timings
line are in units of raster lines.

Note: VIDC20 imposes restrictions on these parameters. In particular, al the horizontal
timing values must be multiples of 2, and the horizontal total (hsync + hbpch + hibdr +
hdisp + hrbdr + hfpch) must be amultiple of 4. See the VIDC20 data sheet for details of
further restrictions.

Modelnfo files are used by the new ScreenM odes module; see The ScreenModes module
on page 5a-108.

5a-107

The ScreenModes module

Distinguishing mode selectors from sprite areas

In earlier versions of RISC OS, certain SWI calls (e.g. ColourTrans ones) were passed
screen modes either as mode numbers, or as pointers to sprite areas from which the
sprite’s screen mode was read. The two were differentiated by their values.

These calls now also accept a pointer to a mode selector, which must be distinguished
from a pointer to a sprite area. This is done by examining the first word of the area
pointed to. The first word of a sprite area is the size of the area; since the area must be
word aligned, bit 0 of this word will always be 0.For this reason a mode selector always
has bit O of its first word set, thus ensuring it can be distinguished from a sprite area.

The ScreenModes module

VIDC20 supports a much wider range of monitors than did VIDC1, with a wide range of
available line frequencies. Supporting these requires a new mechanism, without which
RISC OS would have had to define many new monitor type numbers.

Monitors are now supported usiMpdel nfo files (page 5a-106) held on hard disc. Each
file holds the timings for a full set of screen modes on a particular monitor. A new
ScreenModes module provides a * Command — *LoadModeFile (page 5a-142) — to load
one of these files. If the file contains valid information, the ScreenModes module then
calls OS_ScreenMode 3 (page 5a-135) to set the current MonitorType to 7 (file).

This makes available all the screen modes defined in the file, while removing all modes
defined in any previously loaded file.

Desktop screen modes

5a-108

Colours

The following colour options are supported on the desktop:
e« 1 bpp (monochrome)

« 2bpp(grey)

« 4bpp (grey)

« 4bpp (colour)

« 8 bpp (palette set to correspond with default VIDC1 operation — using tints)
« 8 bpp (palette set to provide 256 grey levels)

« 16 bpp (palette fixed, can only be used for Gamma correction)

« 32 bpp (palette fixed, can only be used for Gamma correction).

Video

This table shows how the bits per pixel value corresponds to the number of colours
available:

Bitsper pixel Number of colours

1 2

2 4

4 16

8 256 (or 64)
16 32 thousand
32 16 million

Screen memory

The limits of the capabilities of the VIDC20 depend upon the amount of screen memory
available. The new architecture can use either DRAM or VRAM based screen memory.

e« VRAM based screen memory can be IMB or 2MB in size.

o DRAM based screen memory islimited to IMB. There is the same trade-off asin
RISC OS 3 between the bandwidth used for video and that used for other purposes,
such as running applications.

Screen resolutions

The following are the maximum screen resol utions that the desktop supports. These
figures are maximum limits, and are for guidance only; some monitors will not be able
to display al these resolutions. Your software should not assume that any particular
combination is possible.

Using DRAM as screen memory

1024 x 768 4 bpp
800 x 600 8 bpp
768 x 288, or 480 x 352 16 bpp
384 x 288 32 bpp

Using IMB of VRAM as screen memory

1280 x 1024 4 bpp
1024 x 768 8 bpp
800 x 600 16 bpp
768 x 288, or 480 x 352 32 bpp

5a-109

New format of a sprite

Using 2M B of VRAM as screen memory

1280 x 1024 4bpp
1280 x 1024 8bpp
1024 x 768 16 bpp
800 x 600 32 bpp

The Display manager utility allows a selection of pre-defined modes to be chosen;
custom modes can also be used and defined.

Grey level modes and the Wimp

The Window Manager now allows the selection of 16 and 256 level grey scale modesin
the desktop.

In 16 grey-level modes the first eight desktop ‘colours’ are the same shades of grey as in
normal 16 colour modes, and the next eight ‘colours’ provide interpolated greys. This
means that the logical colours do not decrease in brightness monotonically.

In 256 grey-level modes the palette is set up so that a pixel value of 0 is black, 255 is
white, and the values between form a linear grey scale.

New format of a sprite

The sprite format has been extended to incorporate the new modes. The new format
avoids the problems that could be caused in previous versions of RISC OS by binding
sprite files to a mode number not available on the viewing computer. The new format
uses differengprite types for different pixel depths.

The old sprite format (page 1-777) is still fully supported. RISC OS distinguishes
between new and old format sprites by examining the top bits of the word that specified
the sprite mode in the old format. These bits were always zero for the old format; in the
new format these are used to store the (non-zero) sprite type.

Sprite Control Block
The Sprite Control Block has this fornfat new spritetypes.

Bytes Meaning
0-3 Offset to next sprite
4-15 Sprite name, up to 12 characters with trailing zeroes

16-19 Width in words -1
20-23 Height in scan lines -1
24 -27* 0 (reserved for future use)
— no left hand wastage is allowed on new format sprites

5a-110

Bytes
28-31
32-35
36- 39
40 - 43*

44...

Video

Meaning
Last bit used (right end of row)
Offset to sprite image
Offset to transparency mask, or offset to sprite image if no mask
New sprite mode word:
Bits Meaning
27-31 Spritetype:
00 oldtype; see page 1-777 for format
1-310 new type; these are defined below

14-26 Vertica dpi; should be 180, 90, 45 or 22
1-13 Horizontal dpi; should be 180, 90, 45 or 22

0 1; see Distinguishing sprite modes and mode selectors on
page 5a-112

Palette data (optional)

* These words have changed from the old format of sprite control block.

Spritetypes

Sprite types are as follows.

-
<
=]

[¢)

© 00N U~ WNPEFP O

Meaning

Backward compatible mode — see page 1-777

1bpp image; 1bpp mask; palette not supported by RISC OS 3.5
2bpp image; 1bpp mask; palette not supported by RISC OS 3.5
4bpp image; 1bpp mask; palette not supported by RISC OS 3.5
8bpp image; 1bpp mask; palette not supported by RISC OS 3.5
16bpp image; 1bpp mask; palette not supported by RISC OS
32bpp image; 1bpp mask; palette not supported by RISC OS
Allocated for CMYK, but not supported within RISC OS
Allocated for 24bpp, but not supported within RISC OS
Reserved for future expansion

5a-111

New format of a sprite

Pixel formats for 16 and 32bpp sprites
The formats of pixelsin 16 and 32bpp spritesis as follows:

16bpp sprites

Bit Use

0-4 Red

5-9 Green

10-14 Blue

15 Reserved (set to 0)
32bpp sprites

Bit Use

0-7 Red

8-15 Green

16 - 23 Blue

24-31 Reserved (set to 0)

Mask data structure

Whatever the depth of image, the mask for new type spritesis 1 bit per pixel. Each row
of mask bits begins word aligned. The layout of mask bitsisidentical to the layout of a
1bpp sprite’s image data.

Sprite palettes

RISC OS 3.5 does not support palettes for new type sprites, and will generate an error if
it finds one.

RISC OS 3.6 adds support for palettes in new type sprites that have up to 8bpp. It does

not support palettes in 16 or 32bpp sprites. The format of the palette data is the same as
for old type sprites.

Distinguishing sprite modes and mode selectors

You can now specify modes in some calls using either a mode specifier (i.e. a mode
number, as before, or a pointer to a mode selector), or a new sprite mode word. The
passed value is treated as a mode number if it is less than 256. The other two cases must
be distinguished somehow. It is for this reason that bit O is set for a new sprite mode
word; this bit is always clear in a pointer to a mode selector, since they must be
word-aligned.

5a-112

Video

New software vectors

PaletteV has been enhanced by the addition of extrareason codes. For afull description
see page 5a-123.

Block read and write

There are new reason codes for block reading and writing of the palette. A number of
other calls have been extended to use these reason codes in preference, before falling
back to older methods of reading the palette should thisfail.

Gamma correction

A further reason code can be used to set up gamma correction tables for RGB values
being programmed into the palette.

Claiming PaletteV

Not all PaletteV claimants support this code, so care must be take in the use of these
calls. The correct behaviour for aclaimant isto return all calls, but only set R4 to O for
those it knows. This avoids problems with different PaletteV claimants processing some
reason codes and passing on others it does not understand.

New Service Call

A new service call has been added:

« Service EnumerateScreenModes (page 5a-129) enumerates the avail able screen
modes. Applications should not issue this service call themselves, but should
instead use the front-end provided by the new SWI OS_ScreenMaode 2
(page 5a-135).

Changes to existing Service Calls

Service_ModeExtension (page 1-641)

Service_ModeExtension now uses a new format of VIDC list that is independent of the
video controller used. Thereisno support for the old formats of VIDC list used in earlier
versions of RISC OS, which included values corresponding directly to VIDC1 register
formats. In particular, this means that old mode extend modules will not work under
RISC OS 3.5 or later. For more information see page 5a-125.

5a-113

Changes to existing VDU calls

Service_ModeTranslation (page 1-645)

Thisservice call has been extended to allow the substitute mode passed back in R2 to be
an arbitrary mode specifier. However, the input mode will only ever be a mode number,
as amode change controlled by a pointer to a mode selector never uses a substitute
mode.

Service_MonitorLeadTranslation (page 1-646)

The new architecture can only detect the state of the IDO pin, and so the defaults set by
this service call have been changed. New defaults are;

IDO Monitor type Sync type Default mode
H 0 (TV standard) 1 (composite) 12
1 0 (TV standard) 1 (composite) 12
0 3 (VGA) 0 (separate) 27

Mono VGA monitors areinterpreted as TV standard monitors, so this class of monitor
requires manual configuration before use. Other monitor types are detected and an
appropriate mode is selected.

Changes to existing VDU calls

VDU 17 (page 1-585) and VDU 18 (page 1-586)

These calls have not been extended to work in 16bpp or 32bpp modes; in such casesthey
will behave asif in an 8bpp mode. This makesthe calls no longer useful, and you should
instead use OS_SetColour (page 1-754 and page 5a-116). The colour number to be used
can be found by using ColourTrans_ReturnColourNumber.

VDU 19 (page 1-588)

In 16bpp and 32bpp modes, the palette is altered for gamma matching only. VDU 19
should not be used in these modes. It is no longer necessary to duplicate nibbles — all 8
bits of the colour component are significant.

VDU 22 (page 1-594)

This call has not been altered, and so no longer allows all display modes to be chosen.
You should no longer use VDU 22; for full access to the screen modes available on the
computer you should instead use OS_ScreenMode (page 5a-133).

s5a-114

Video

VDU 23,17,0-3 (page 1-616)

This call worksfor all 8bpp screen modes, but is of little use for modes having afull 256
colour palette.

VDU 25,144-167 (page 1-628)
These callsto plot circles do not work properly with 180 x 45 or 45 x 180 screen modes.

New kernel SWI

The following new kernel SWI has been created. It is defined in full at the end of this
chapter:

o« OS_ScreenMode (page 5a-133) performs miscellaneous operations for screen mode
handling. RO provides areason code which determines which operation is
performed.

Changes to existing kernel SWis

OS_Byte 135 (page 1-670)
The returned mode may now be a mode specifier.

OS_Word 9 (page 1-700)
You should no longer use OS_Word 9 to read the pixel logical colour.

OS_Word 11 (page 1-704)
Use ColourTrans ReadPal ette (page 3-393) in preference to this call.

OS_Word 12 (page 1-706)
Use ColourTrans WritePalette (page 3-395) in preference to this call.

OS_ReadModeVariable (page 1-736)
You can now specify the mode using a mode specifier or a new sprite mode word.

A new ModeFlag has been assigned; bit 7 is set to show that an 8bpp mode uses a full
palette. Such modes also return 255 for NColour, whereas old-style 8bpp modes still
return 63.

5a-115

Changes to existing kernel SWis

If you are using a new sprite mode word, the values returned for certain VDU variables

depends on its sprite type (‘T’ below), and its horizontal and vertical dpi (‘hdpi’ and
‘vdpi’ respectively):

Name No. Returned value

NColour 3 T=10 1, T=20 3, T=30 15, T=40 63 or 255,
T=50 65535, T=60 &FFFFFFFF

XEigFactor 4 hdpi=22/28] 3, hdpi=450 2, hdpi=900 1,
hdpi=1800 0

YEigFactor 5 vdpi=22/231 3, vdpi=450 2, vdpi=900 1,
vdpi=1800 0

Log2BPP 9 T=11 0, T=20 1, T=30 2, T=40 3, T=50 4,
T=60 5

Log2BPC 10 T=11 0, T=20 1, T=30 2, T=40 3, T=50 4,
T=60 5

OS_CheckModeValid (page 1-742)
This call now accepts a mode specifier in RO, not just a mode number. In addition, the
returned substitute mode may be a mode specifier.

OS_Plot (page 1-744)
See VDU 25,144-167 (page 5a-115).

OS_SetColour (page 1-754)
This call now has two extra flag bits defined in RO. You can now read or write the text
and graphics foreground/background colours. The new flags are:
bit 6 setd] R1 =text colour, cleddl R1 = graphics colour
bit 7 setl] read colour, cledd set colour

When setting the colour all the flags are used. As before, you can specify graphics

colours using a pattern block or a colour number; text colours must be specified as
colour numbers.

When reading the colour only the foreground/background flag and the text/graphics flag

are used. For graphics colours youst supply a pattern block, whereas text colours are
returned in R1 as colour numbers.

The values returned can be passed straight back to OS_SetColour to restore the colour.

5a-116

Video

New OS_SpriteOp reason code

The following new reason code has been added to OS_SpriteOp. It is defined in full at
the end of this chapter:

e OS SpriteOp 17 (page 5a-131) checksthe validity of a sprite area.

Changes to OS_SpriteOp

OS_SpriteOp calls support new type sprites wherever appropriate. Thisis assumed, and
not stated below for each call.

Support for particular features has only been added as they have become lega in
RISC OS. In particular:

e Since RISC OS 3.5 did not alow new type sprites with a palette, you cannot use its
OS_SpriteOp callsto create them. RISC OS 3.6 alows new type sprites with up to
8bpp to have a palette, and so you can use the relevant calls to create such sprites.

« However, even though new type sprites with amask werelegal under RISC OS 3.5,
afew of its calls did not accept such sprites. These calls are specifically noted
below.

Forcing a mode number when creating sprites

Calls that create sprites will — where possible — create an old format sprite. This is to
ease exchange of files with machines running older versions of RISC OS. In doing so,
they may have to force the current mode from one specified by a mode selector back to
a mode number. The following modes are used:

1bpp 2bpp 4bpp 8bpp
90 x 45 dpi 0 8 12 15
45 x 45 dpi — 1 9 13
90 x 90 dpi 25 26 27 28

Combinations not shown in the above table (includingd&8pi at 1bpp) cannot be
forced back to a mode number, and must always use the new sprite types.

Use of trandation tables and palette entries

In general you must supply a translation table when plotting a sprite with 8bpp or less to
a 16 or 32 bpp mode. However, a few calls (noted in their descriptions below) provide a
new flag to force sprites to be plotted using their palette entries rather than translation
tables. The sprites must have full palette entries for you to do this.

Under RISC OS 3.5 only, when plotting an 8bpp sprite with a full palette to a 16 or
32bpp mode, it is plotted from its palette entries. However, for compatibility we suggest
that you do not rely on this, but instead use the new flag where relevant.

S5a-117

Changes to OS_SpriteOp

5a-118

OS_SpriteOp 15 — Create sprite (page 1-800)

On entry R6 can now be amode number (as before), or a sprite mode word, or a pointer
to amode selector.

OS_SpriteOp 31 — Insert row (page 1-809)
OS_SpriteOp 32 — Delete row (page 1-810)
OS_SpriteOp 33 — Flip about x axis (page 1-811)
OS_SpriteOp 35 — Append sprite (page 1-813)

Under RISC OS 3.5 these calls do not accept new type sprites that have a mask. This
restriction has been removed from RISC OS 3.6 onwards.

Notethat OS_SpriteOp 35 will generate an error if you attempt to append asprite with a
1bpp mask to one with a non-1bpp mask.

OS_SpriteOp 36 — Set pointer shape (page 1-815)

This call acceptstype O - 4 sprites. It does not accept types 5 and 6.

OS_SpriteOp 37 — Create/remove palette (page 1-817)

Under RISC OS 3.5 this call accepts new type sprites. It generates an error if you try to
create a palette, but does nothing if you try to remove one; thisis because RISC OS 3.5
does not support new type sprite pal ettes.

RISC OS 3.6 alows new type sprites with up to 8bpp to have a paette. This call
therefore can create or remove palettes from such sprites. New type sprites of a greater
depth (ie> 8bpp) are still accepted, but treated just asin RISC OS 3.5, since such sprites
are till not allowed to have a palette.

OS_SpriteOp 45 — Insert column (page 1-823)
OS_SpriteOp 46 — Delete column (page 1-824)
OS_SpriteOp 47 — Flip about y axis (page 1-825)

Under RISC OS 3.5 these calls do not accept new type sprites that have a mask. This
restriction has been removed from RISC OS 3.6 onwards.

OS_SpriteOp 52 — Put sprite scaled (page 1-830)

Bit 4 of R5, if set, forcesa 1, 2 or 4bpp sprite to be plotted into 16 or 32bpp using its
pal ette entries rather than atranslation table. The sprite must have afull palette.

Video

From RISC OS 3.6 onwards two further flags have been added:

o Bit5o0f R5, when set, indicatesthat awide trandation tableisbeing used. Thetable
is 1 byte wide when plotting into less than 8bpp, 2 bytes wide for 16bpp, and
4 byteswide for 32bpp. Thisissimilar to the action of bit 4 of R5in
ColourTrans_SelectTable (page 3-344).

o Bit 6 of R5, when set, makes RISC OS use dithering when plotting a 16 or 32bpp
sprite to a reduced depth. This bit is otherwise ignored.

OS_SpriteOp 53 — Put sprite greyscaled (page 1-831)

From RISC OS 3.6 onwards this call isno longer available. If you attempt to cal it, the
Sprite Extend module generates an appropriate error.

OS_SpriteOp 54 — Remove lefthand wastage (page 1-832)

This call will not accept new type sprites that have a mask. However, you should never
need to call it for new type sprites, since they are not allowed to have any lefthand
wastage.

OS_SpriteOp 56 — Put sprite transformed (page 1-833)

Bit 4 of R5, if set, forcesal, 2 or 4bpp sprite to be plotted into 16 or 32bpp using its
palette entries rather than atranglation table. The sprite must have afull palette.

From RISC OS 3.6 onwards, bit 5 of R5, when set, indicates that a wide translation
tableis being used. Thetableis 1 byte wide when plotting into less than 8bpp, 2 bytes
widefor 16bpp, and 4 byteswide for 32bpp. Thisissimilar to the action of bit 4 of R5in
ColourTrans_SelectTable (page 3-344).

OS_SpriteOp 57 and 58 — Insert/delete rows/columns (page 1-836)

Under RISC OS 3.5 these calls do not accept new type sprites that have a mask. This
restriction has been removed from RISC OS 3.6 onwards.

Changes to existing Wimp SWIs

Wimp_SetMode (page 3-185)

This call now accepts a mode specifier in RO. If thisis a pointer to a mode selector, the
Wimp copies the mode selector, so you can then re-use the memory.

5a-119

Changes to existing ColourTrans SWis

Changes to existing ColourTrans SWIs

5a-120

ColourTrans has been extended to support the new 16bpp and 32bpp modes. Facilities
have been provided to alow behaviour in these depths to be backwards compatible.

All ColourTrans calls will now accept a mode specifier rather than a mode number,
where appropriate. Most ColourTrans calls that use GCOLs will use 16 or 32 bit values
for 16 or 32bpp modes. Only the exceptions are noted below.

ColourTrans_SelectTable (page 3-344)
ColourTrans_GenerateTable (page 3-405)

The table size generated by an application attempting to map down from a 16 or 32bpp
to a 1-8bpp mode would be excessively large, so ColourTrans does not return full
translation tablesin these cases. There isno longer arelationship between the size of the
table returned by ColourTrans and the number of coloursin the source mode. You must
determine the size of the table before requesting it.

The revised trand ation table functionality is:

Source Mode
1,2,4,8 16, 32
bpp bpp

1,2,4,.8, See note 1 See note 2

Destination bpp below below2

Mode

See note 3 See note 4

16, 32 bpp below below

1 Thisistheexisting RISC OS 3.1 agorithm unchanged.
2 Thisreturnsastructureincluding apointer to a 32 KB table mapping from 5 bits per
primary colour to a colour number in the destination screen mode.
The structure of thetableis:
0 Word = &2E4B3233 (‘32K.)

4 Pointer to table
8 Word = &2E4B3233 (‘32K.")

The guard words each side of the pointer allow SpriteExtend to check whether the
translation table passed to it is of this form, or is a direct look up table.

The most commonly used tables are precalculated. In other cases the table must be
calculated when it is first requested, which may take a few seconds. The table
remains valid until the next palette change, mode change or switch output to

Video

screen/sprite. ColourTrans tracks this, and will not recalculate avalid table.
Therefore if an application isin any doubt whether the current table is correct, it
should request it again; the overheads will be the minimum possible.

3 Thisreturns abyte, representing a colour. This behaviour has been chosen to
provide a safe route for those applications which assume that the size of the tablein
bytes will always be the same as the number of coloursin the source mode. In
16bpp, two bytes per colour are returned. In 32bpp aword per colour is returned.

From RISC OS 3.5 onwards a new flag, bit 4 of R5, instructs the call to return
>8 bits per colour in apixel translation tableif the destination modeis>8bpp, rather
than to return bytes (indicating that the caller is aware that the colours/bytes
relationship no longer holds true).
R5 = flags:
bit 4 set O return > 8 bits per colour rather than bytes

If bit 4 isnot set, atable will be returned asif the target mode is 8bpp.

4 Thisdoes not generate alook up table. When plotting between these bpp modes
only hit stretching/packing is performed.

ColourTrans_SelectTable (page 3-344)
ColourTrans_SelectGCOLTable (page 3-346)
ColourTrans_GenerateTable (page 3-405)
From RISC OS 3.5 onwards, if R2 specifies a mode and R1 is —1, the table uses the

default palette for the given mode. This is because the current palette may be unsuitable
for the given mode. You can usually get back the old behaviour by using bit 1 of R5.

ColourTrans_SelectGCOLTable (page 3-346)
ColourTrans_GCOLToColourNumber (page 3-366)
ColourTrans_ColourNumberToGCOL (page 3-367)

These calls have not been extended to use 16 or 32 bit GCOL numbers.

ColourTrans_ReadPalette (page 3-393)
ColourTrans_WritePalette (page 3-395)

These calls process palette entries as words which contain 24 bit colour descriptions.
The whole palette must be read, modified and written back.

The bottom byte of the palette entry contains the supremacy bits; all 8 bits are reserved.
In 32bpp modes bits 7 - 4 are used; in other modes only bit 7 is used. ColourTrans and

the kernel now support this. (The kernel only expects one bit of supremacy and ignores
the rest.)

5a-121

New * Command

The palette entry passed through these callsisin theform & BBGGRRSO, where Sisthe
supremacy mask nibble.

For ColourTrans_ReadPalette, you may set R1 to 0 on entry to make the call use the
default palette.

ColourTrans_GenerateTable (page 3-344)

See page 5a-120 and page 5a-121.

New * Command

A new * Command is provided by the new ScreenM odes module;
« *LoadModeFile (page 5a-142) loads a Model nfo file into memory.

For more information see Modelnfo files on page 5a-106 and The ScreenModes module
on page 5a-108.

Changes to existing * Commands

*ScreenLoad (page 1-846)
*ScreenSave (page 1-847)

These calls are now far more likely to cause a mode change, and so reset the graphics
window and other state. You should only use these callsto load and save an entire
screen, rather than a part of the screen defined by the graphics window.

*WimpMode (page 3-283)

5a-122

This command now allows the mode to be specified either as a number or as a mode
string (see Mode strings on page 5a-105). Thisis reflected in the Display manager
application, which also allows this form.

*WimpMode is no longer supported when issued from a task window.

Video

Software vectors

PaletteV
(Vector &23)

Called whenever the palette is to be read or written.

The reason codes below have been added in RISC OS 3.5. For information on other
reason codes see page 1-105.

On entry
Register usage is dependent on areason code held in R4:

Read palette entries

RO = pointer to word aligned list of logical colours (words), or O

R1 = type and number of colours:
bits 0 - 23 = number of palette entries to read
bits 24 - 31 = type of colour (16,17,18,24 or 25)

R2 = pointer to word aligned buffer to receive 1st flash colour (&BBGGRRxx) —
device colours

R3 = pointer to word aligned buffer to receive 2nd flash colour (&8BBGGRRxx) —
device colours

R4 = 7 (reason code)

Write palette entries

RO = pointer to word aligned list of logical colours (words), or O
R1 = type and number of colours:

bits 0 - 23 = number of palette entries to write

bits 24 - 31 = type of colour (16,17,18,24 or 25)
R2 = pointer to word aligned list of device colours (&BBGGRRXxx)
R4 = 8 (reason code)

Gamma correction tables

RO = pointer to word aligned gamma correction table for red
R1 = pointer to word aligned gamma correction table for green
R2 = pointer to word aligned gamma correction table for blue
R4 =9 (reason code)

5a-123

PaletteV (Vector &23)

5a-124

On exit

Use

Gamma correction tables

R4 =00 the video drivers support gamma correction, and the tables have been
copied into system workspace
R4 #0 0O thevideo drivers do not support gamma correction

Other reason codes

R4 =00 operation complete

Reason code 7

The memory pointed at by R2 and R3 isfilled with words giving the device colour for
each flash state. Where only one specific flash state was requested, the information for
the other flash state is not filled in.

If nolist of logical coloursisgiven (RO isO on entry) and the colour typeis 16, 17 or 18,

then the call returns the number of pal ette entries requested starting from thefirst logical

colour — this allows a number of consecutive colours to be read without needing to set up
a list.

If the colour type is 16 (read both flash states) and R3 is 0, the area pointed at by R2 is
used for both flash states (in the order first state, second state, first state, etc).

Reason code 8

If no list of logical colours is given (RO is 0 on entry) and the colour type is 16, 17 or 18
on entry then the number of palette entries specified by R1 is written consecutively
starting from the first logical colour.

When the colour type is 16 the device colour entries pointed at by R2 should be in the
order first state, second state, first state etc.

Reason code 9

This call sets up tables to perfogamma correction on RGB values being programmed

into the palette. There are three 256-byte tables, one for each of red, green and blue.
Before being output to VIDC, the red component of the physical colour (in the range 0
to 255) is used as an index into the red gamma correction table - the value obtained is the
gamma corrected red value to be programmed into VIDC. Likewise, the green and blue
components are looked up in their respective tables before being output.

Video

Service calls

Service_ModeExtension
(Service Call &50)

Allow soft modes

On entry

R1 = &50 (reason code)

R2 = mode specifier that information is requested for

R3 = monitor type (or -1 for don't care)

R4 = memory bandwidth available (in bytes/second)
R5 = total amount of video RAM in system (in bytes)

On exit
All registers preserved (if not claimed)

If claimed:

R1=0

R2 preserved

R3 = pointer to VIDC list (type 3)

R4 = pointer to workspace list if mode specifier was a mode number,
or 0 if mode specifier was a pointer to a mode selector

Use

This service call is issued when information is needed on a particular mode: for example
on a mode change, or when mode variables are Téwtescription below isfor

RISC OS 3.5and later only; for details of this service call under earlier versions of

RISC OS, see page 1-641.

In RISC OS it is possible to load modules which provide additional screen modes and
additional monitor types. Such modules must claim this call and return the requested
information if they recognise the passed mode and monitor type, and if the mode being
selected would use no more than the specified video bandwidth and video memory.
Otherwise they should pass on the call.

A module that is checking if it recognises a mode selector must examine its format
specifier, held in bits 0 - 7 of the flags word (at offset 0). If the module does not
recognise the format, it must pass on the service call.

5a-125

Service_ModeExtension (Service Call £50)

5a-126

The mode selector could contain —1 as the frame rate, in which case the matching mode
with the highest frame rate should be returned.

If R3 holds -1 then RISC OS is making a general enquiry about that mode (eg to
determine the attributes of a sprite defined in that mode) so the module should only
check R2

The returned VIDC list consists of a series of words. The first word specifies the format
of the list, so this can be altered to cope with new hardware such as new versions of
VIDC. RISC OS 3 supports VIDC lists in formats 0 and 1; these include values that
directly correspond to VIDC1 register formats. These formata@reupported on

RISC OS 3.5 and later; mode extend modules for RISC OS 2 wauldl 130t work.

VIDC list: format 3

A new format list (type 3) is used from RISC OS 3.5 onwards, which is independent of
the video controller used

Offset Value
0 3 (format of list)

4 pixel depth: GJ 1bpp, TJ 2bpp, 21 4bpp
30 8bpp, 40 16bpp, 5 32bpp

8 horizontal: sync width (in pixels)

12 back porch (in pixels)

16 left border (in pixels)

20 display size (in pixels)

24 right border (in pixels)

28 front porch (in pixels)

32 vertical: sync width (in rasters)

36 back porch (in rasters)
40 top border (in rasters)

44 display size (in rasters)
48 bottom border (in rasters)
52 front porch (in rasters)

56 pixel rate (in kHz)

60 sync polarities when composite sync not configured:

bit 0 setd) Hsync inverted
bit 1 setdd Vsync inverted
bits 2 to 31 reserved (must be zero)

64 video control parameters list
n —1 (terminator)

Video

The video control parameterslist (at offset 64) does not normally contain entries for

normal video operation. These are only needed for special video operation. The list

contains pairs of words (control parameter index, value) terminated by a —1 word. These
control additional VIDC registers, bits in registers, and monitor power savings. These
are described in the following table. Refer to the VIDC20 data sheet for detailed
explanations.

Contro Parameter description Values

| index
1 LCD mode 00 disable, 10 enable
2 LCD dual-panel mode 0 disable, 10 enable
3 LCD offset register O 0-255
4 LCD offset register 1 0-255
5 Hi-res mode @ disable, 10 enable
6 DAC control 00 disable, 10 enable (default)
7 RGB pedestal enables bit0=R, bit1 =G, bit2=B
8 External register [7:0] 0-255
9 Reserved —
10 Reserved —
11 DPMS power saving 0 - 3; sékonitor power saving on
page 5a-653
Workspace list

Returning a workspace list is relevant only if a mode number is passed in. If a pointer to
a mode selector is passed in, RISC OS works out what the mode variables should be,
there is no need to return a workspace list, and R4 is set to zero on exit.

All values are words in the workspace list; its format is:

Offsat Value

0 0 (indicates format of list)
4 Workspace base mode

8 Mode variable index

12 Mode variable value

16 Mode variable index

20 Mode variable value

n -1

The workspace base mode is the number of an existing operating system screen mode
which is used to determine the values of mode variables not explicitly mentioned in the
list. The mode variable indices are the same as for the SWI OS_ReadModeVariable.

5a-127

Service_ModeExtension (Service Call £50)

5a-128

General notes

Modules can provide their own palette programming routines, including setting of the
default palette, by claiming PaletteV. For more details see PaletteV on page 1-105 and
page 5a-123, and Service_ModeChanging on page 1-648.

The new computers fitted with VIDC20 vary in their video capabilities. The monitor
type, video bandwidth and video RAM parameters allow a mode provider to supply
screen modes with identical resolutions but different frame rates, tuned to the particular
monitor and computer combination being used. However, any workspace parameters
returned must be the same, as the mode number is used as an identifier in spritesand in
calls such as OS_ReadModeVariable.

This service cal is not issued for combinations that RISC OS itself already supports.

Monitor types are alocated by Acorn. There are no monitor types pre-reserved for
general use by users.

Video

Service_EnumerateScreenModes
(Service call &8D)

Enumerates the available screen modes

On entry

R1 = &8D (reason code)

R2 = number of modes to skip

R3 = monitor type

R4 = memory bandwidth available (in bytes/sec)

R5 = total amount of video RAM in system (in bytes)

R6 = pointer to block to return data, or O to just count entries
R7 = size of block (in bytes) if R6 # 0, or 0if R6 =0

On exit

R1 =0if claimed (further valid modes are available, but would not fit in block);
else preserved

R2 = — (number of modes filled in)

R3 - R5 preserved

R6 = pointer to byte after last one filled in, or preserved if O on entry

R7 = amount of unused space in block,
or — (amount of space needed in block) if R6 = 0 on entry

Use

This service call enumerates the available screen modes. Modules return information on
all modes they provide that work on the specified monitor type and which require no

more than the specified memory bandwidth and video memory.

OS_ScreenMode 2 provides a front-end for applications (see page 5a-135); you should

use it rather than issuing this service call yourself.

By setting R6 and R7 to zero, clients can find the amount of space required to hold all
returned modes; they can then issue the call again to actually read the information.
Alternatively, clients can use a fixed size buffer, and repeatedly issue the call until it is
no longer claimed. When using this method, R2 on entry — the number of modes to skip

this iteration — should be set to:
(previous R2 on entry) — (R2 on exit)

This is the same as:
(number of modes skipped last time) + (number of modes filled in this time)

5a-129

Service_EnumerateScreenModes (Service Call &£8D)

Each mode returned in the block is of the following format:-
Offset

0
4

12
16
20
24

Value

size of entry in bytes (24 for this format)

mode provider flags:

bit0=1

bits 1 - 7 = mode info format specifier (zero for this format)
bits 8 - 31 = additional mode info flags (must be zero)
x-resolution (in pixels)

y-resolution (in pixels)

pixel depth (as for mode selector)

frame rate (in Hz, to the nearest integer)

mode name, null terminated, and then padded with nulls until it is
word aligned.

(For unnamed modes this will simply be a single word whose value is
0.)

Future modules may use different mode info formats, therefore callers should check bits

0 - 7 of the mode provider flags before extracting the other information in this block. If

the caller doesn’t recognise the mode info format for an entry, then it can skip the entry
by using the size field at offset 0. For format checking purposes, bits 8 - 31 should be

ignored.

Mode-providing modules that wish to respond to this service call should use this
algorithm:

For each node that they want to return
If R2 > 0 Then

Next

El se

Endl f

R2 -=

do nothing, ie skipit

If R6<>0 Then
(enunmeration case - filling in block)
If R7 >= entrysize Then
store entry at R6
R6 += entrysize

El se
(not enough space for next node)
Rl = 0 (Service_Serviced)
Return (service call clained)
Endl f
Endl f
R7 -= entrysize

1

Return (service call passed on)

This service call is only issued under RISC OS 3.5 and later.

5a-130

Video

SWiI calls
OS_SpriteOp 17
(swi &65)

Checks the validity of a sprite area

On entry

RO =17
R1 = pointer to control block of sprite area

On exit
RO, R1 preserved

Use

This checksthe validity of a sprite area. Other OS_SpriteOp calls do not make such
checks, since it would slow them down too much. Instead it is your application’s
responsibility to make this call. You would typically call it once after loading a sprite
file, to satisfy yourself of the data’s integrity. For efficiency, you should not make this
call within a redraw loop.

The validation treats offsets as unsigned numbers, and is as follows:

The offset to the first sprite is word aligned, and lies within the ‘used’ part of
the sprite area
The offset to the free area is word aligned, and lies within the sprite area
FOR each sprite
DO The offset to the next sprite is word aligned, and lies within the ‘used’
part of the sprite area
The first bit used is 0 for a new type sprite, or is in the range 0 - 31 for
an old type sprite
The last bit used is in the range 0 - 31
The offset to the image is word aligned, and lies within the sprite
The offset to the mask is word aligned, and lies within the sprite
The space allowed for the sprite image is sufficient to hold an image
of the given width, height, and bpp (assumed to be 1bpp if
the sprite’s mode number is unknown)
The space allowed for the sprite mask is sufficient to hold one of the

5a-131

OS_SpriteOp 17 (SWI &65)

given width, height, and bpp (1bpp for anew type sprite, or
assumed to be 1bpp if the sprite’s mode number is unknown)
oD

If the sprite area is invalid in some way, an error is generated in the usual way for a SWI;
the V flag is set on exit, and RO points to an error block.

Sprites with an unknown mode number are still allowed, because such sprites can
usefully occur in sprite files.

These checks do not exclude sprites that conform to the definition of sprite areas, but
include unusual features such as an extension area, or an unconventional palette size.

This call is only available from RISC OS 3.6 onwards.

Related SWis
OS_SpriteOp 10 (page 1-795), OS_SpriteOp 11 (page 1-796)

Related vectors
SpriteV

5a-132

Video

OS_ScreenMode
(swi &65)

Performs miscellaneous operations for screen mode handling

On entry

RO = reason code
Other registers depend upon the reason code

On exit

RO preserved
Other registers depend upon the reason code

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use
This SWI performs miscellaneous operations for screen mode handling.

The particular action of OS_ScreenMode is given by the reason code in RO as follows:

RO Action page

0 Selects a screen mode 5a-135
1 Returns the mode specifier for the current mode 5a-138
2 Enumerates the available screen modes 5a-139
3 Reserved for system use 5a-140

This call isonly available from RISC OS 3.5 onwards.

5a-133

OS_ScreenMode (SWI &65)

Related SWis
None

Related vectors
None

5a-134

On entry

Video

OS_ScreenMode 0
(swi &65)

Selects a screen mode

RO = 0 (reason code)
R1 = mode specifier

On exit

Use

All registers preserved

This call selects the given screen mode.

Mode number used

If amode number n is given, then the existing mechanisms are used to select this mode,
exactly asif VDU 22,n were issued:

If the mode number is recognised by RISC OS then the mode variables for that
mode are loaded from itsinternal tables. If it is not recognised then
Service_ModeExtension isissued; the module which responds to this passes back a
workspace list, which contains a base mode (that must be known to RISC OS) and a
list of changes to mode variables.

In certain circumstances a substitute mode can be used

M ode selector used

If apointer to amode selector is given, then a new mechanismis used:

The mode variables are set from the val ues given in the mode selector block. Any
mode variables which are not specified are given sensible defaults, based on the
specified x and y resolutions and the pixel depth (see below). Note that RISC OS
copies away the relevant information, so mode selector structures need not remain
valid after the call has returned.

If the specified mode cannot be selected for any reason, then an error is aways
returned.

5a-135

OS_ScreenMode 0 (SWI &65)

5a-136

The default values for any unspecified mode variables are as follows:

Variable Default value
ModeFlags 0

ScrRCol (xres >>3) -1

ScrBRow (yres>>3) -1

NColour 1,3, '15, 63, &FFFF, &FFFFEFFF for

pixdepth = 0 to 5 respectively

XEigFactor 1
e
LineLength (xres << pixdepth) >> 3
ScreenSize ((xres x yres) << pixdepth) >> 3
YShftFactor 0

Log2BPP pixdepth

Log2BPC pixdepth
XWindLimit xres-1
YWindLimit yres-1

Service_ModeExtension still getsissued, but only if RISC OS does not know the video
timings for the resolutions/pixel depth/frame rate asked for. The module responding
provides only timing and other hardware control information, and not any mode variable
values.

In the case where pixdepth=3, the default value of NColour is 63. This means that by
default, the palette in 256-colour modes behaves as it does on VIDC1-based machines,
i.e. palette entries get modified in groups of 16. Thisis so that programs which expect
the old behaviour work in these modes without modification.

To gain access to fully-pal ette-programmabl e 256 col our modes, you should explicitly
set these variables:

Variable Value
ModeFlags 128
NColour 255

All 256 palette entries then become programmable, although they areinitially identical
to those on a VIDC1-based machine.

Video

You might notice that thereis no explicit way of selecting a shadow screen mode. In
order to get this effect the program should ensure there is sufficient memory in the
screen dynamic area and then switch screen banks.

5a-137

OS_ScreenMode 1 (SWI &65)

OS_ScreenMode 1
(swi &65)

Returns the mode specifier for the current mode

On entry
RO = 1 (reason code)

On exit
R1 = mode specifier

Use
This call returns the mode specifier for the current screen mode.

If the current screen mode was selected by a mode number then that mode number is
returned; otherwise a pointer to a mode selector is returned.

5a-138

Video

OS_ScreenMode 2
(swi &65)

Enumerates the available screen modes

On entry

RO = 2 (reason code)

R2 = value of R2 to passto Service_EnumerateScreenM odes
R6 = value of R6 to passto Service EnumerateScreenM odes
R7 = value of R7 to passto Service_EnumerateScreenM odes

On exit

Use

R1 = value of R1 returned by Service_EnumerateScreenM odes
R2 = value of R2 returned by Service_EnumerateScreenM odes
R6 = value of R6 returned by Service EnumerateScreenM odes
R7 = value of R7 returned by Service_EnumerateScreenM odes

This call provides a front-end to Service_ EnumerateScreenM odes (see page 5a-129). It
fillsin R3 (the current monitor type), R4 (the memory bandwidth available) and R5 (the
total amount of video RAM), and then issues the service call.

5a-139

OS_ScreenMode 3 (SWI &65)

OS_ScreenMode 3
(swi &65)

This reason code is for system use only; you must not use it in your own code.

5a-140

Video

ScreenModes_ReadInfo
(swi &487C0)

Reads the current monitor title

On entry

RO =0 (reason code O read current monitor title)

On exit

RO = pointer to current monitor title

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy
Not defined

Use

This call reads the current monitor title, as loaded from the current Modelnfo file. It is
used by the Display Manager to show the monitor titleinitstitle bar.

Future versions of RISC OS may add other reason codes to this call.
This call isonly available from RISC OS 3.5 onwards.

Related SWis
None

Related vectors
None

5a-141

* Commands

* Commands

5a-142

*LoadModeFile

Loads a Modelnfo file into memory

Syntax
*|LoadModeFi | e filenane

Parameters

fil enane avalid pathname specifying afile

Use

Thiscommand loads aModel nfo fileinto memory. If thefile containsvalid information,
it setsthe current monitor typeto 7 (file). Thisthen makes available all the screen modes
defined in the file, while removing all modes defined in any previously loaded file.

This command is only available from RISC OS 3.5 onwards.

Example
*LoadMbdeFi | e adfs:: MHardy. $. Mbdes. AKF50

Related commands
None

Video

*VIDCBandwidthLimit

This command is for internal use only; you must not use it in your own code.

This command is only available from RISC OS 3.5 onwards.

5a-143

*VIDCBandwidthLimit

S5a-144

107 JPEG images

Introduction and Overview

The SpriteExtend module has been extended in RISC OS 3.6 to support JPEG images
through a SWI interface.

JPEG isan international standard dataformat for the lossy compression of photographic
data, capable of encoding colour images at screen resolutions using about 1% - 2%, bits
per pixel.

Because of the compression used, many of the operations you can perform on

uncompressed bitmaps — such as sprites — are difficult or impossible to perform on JPEG
images. This includes operations such as adding or deleting rows or columns, and
arbitrary transformations. The support provided for JPEG images is therefore restricted
in RISC OS 3.6 to providing information on them, and simple scaled plotting and
printing.

The CompressJPEG module

A separate CompressJPEG module provides SWIs with which you can compress raw
data into a JPEG image. See the chapoanpressJPEG on page 5a-617 for details both

of the compression and decompression algorithms used with JPEGs, and of the SWis it
provides.

5a-145

Technical details

Technical details

SWI naming and numbering

Although the SpriteExtend modul e provides the JPEG SWiIs, they use their own SWI
chunk (base number &49980) and SWI name prefix ((JPEG_’"). The SWIs are described
below, from page 5a-149 onwards.

The JPEG standard

The JPEG standard is split into two parts:

« ISO DIS 10918-1, Digital Compression and Coding of Continuous-tone Still
Images, Part 1: Requirements and guidelines.

« ISO DIS 10918-2, Digital Compression and Coding of Continuous-tone Still
Images, Part 2: Compliance testing.

At the time of going to press, Part 2 was still in draft stage.

You may also find these references useful:

« The JPEG Still Picture Compression Standard / Gregory K Wallace
in
IEEE Transactions on Consumer Electronics, December 1991.

« JPEG Still Image Data Compression Standard / William B. Pennebaker; Joan L.
Mitchell. — New York, USA: Van Nostrand Reinhold, 1993.

JFIF files

The JPEG standard is wide-ranging in its scope, and allows many bizarre parameters and
combinations. To limit these to more reasonable proportions various subsets of the
standard have been defined. By far the most popular of these is the JFIF (JPEG File
Interchange Format) standard, defined by C-Cube. This is widely used for the simple
interchange of JPEG data; indeed, when people talk about ‘JPEG files’, they usually
mean JFIF files.

The code in RISC OS modules only supports images that conform to version 1.02 or
earlier of the JFIF standard. JFIF files are allocated the file type &C85; the textual
equivalent is ‘JPEG’. The sprite for this file type is included in the Wimp sprite pool.
Documentation of the JFIF standard is available as follows:

« JPEG File Interchange Format (JFIF) / Eric Hamilton — version 1.02 — C-Cube
Microsystems, 1778 McCarthy Blvd, Miltipas, CA 95035.

5a-146

JPEG images

ChangeFSI and JPEG files
ChangeFSI can output JPEG files; these all conform to the JFIF standard.

ChangeFSl a'so accepts JPEG files asinput. If afile only uses the JFIF subset of the
JPEG standard, ChangeFSI fully understands it, and so correctly processesit. If afile
uses features that are excluded from the JFIF subset, about which ChangeFS| does not
know, it will make assumptions. Sometimes these will be correct, and so the file will be
correctly processed; otherwise the file will be incorrectly processed.

Hence you cannot use ChangeFSl to test for JFIF-confor mance. Some images that
ChangeFSI correctly processes may be faulted by the SpriteExtend JPEG SWIs as nhot
conforming to the JFIF standard.

Dithering of JPEGs

When you call the JPEG plotting SWIsyou can set bit flagsto request that when plotting
to a shallow screen mode the output is dithered, with or without error diffusion. Three
types of dithering are used:

Ordered dither

Thisisthe simplest form of dithering available; it displays colours that are unavailable
by using small patterns made up of the closest available colours. Thisisthe default form
of dithering, used in most cases when the dithering bit is set.

YUV error diffused dither

However, when decompressing a JPEG image into an 8bpp mode with the standard

palette, an optimised modeisused. Thisusesalimited error diffusion technique directly

on the YUV datain the JPEG, which vastly improves the appearance of the image. This
technique will only work on JPEG images which have been compressed using an X and

Y sample size of 2, as created both by the official Independent Group’s software and by
versions 1.03 onwards of ChangeFSlI.

It is thus possible that two apparently similar JPEG images can give quite different
display qualities because they are compressed differently, and so RISC OS can only
apply YUV error diffusion to one of them.

Full error diffused dither

If you set both the dithering and error diffusion bits, then this slower but more accurate
form of dithering is used. Speed and space considerations mean that the output image
will still not be quite so high a quality as ChangeFSI can produce.

S5a-147

Dithering of JPEGs

Under RISC OS 3.6 full error diffused dithering can only be used when plotting to an
8bpp screen mode.

5a-148

JPEG images

SWI Calls
JPEG_Info
(swi &49980)

Givesinformation on a JPEG image held in a buffer

On entry

RO = flags for desired operation:
bit 0 set O return dimensions, clear 0 don't return dimensions
all other bits reserved (must be zero)

R1 = pointer to buffer holding JPEG image

R2 = length of JPEG image, in bytes

On exit

RO = returned information flags:
bit 0 setl] greyscale image, cle@r colour image
bit 1 set0 transformed plots not supported, cleéarsupported
bit 2 setd pixel density is a simple ratio, cle@r pixel density is in dpi
R1 preserved
R2 = width, in pixels (if RO bit O set on entry)
R3 = height, in pixels (if RO bit O set on entry)
R4 = x pixel density
R5 =y pixel density
R6 = SpriteExtend’s additional extra workspace requirements to plot JPEG
(0O no additional extra workspace required)

Interrupts

Interrupt status is undefined
FIQs are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

5a-149

JPEG_Info (SWI &49980)

Use
This call givesinformation on a JPEG image held in a buffer in memory.

It checks the header enough to return the width and height, and does a partial validation
of the data. It returns an error if the image appearsto be invalid; if no error isreturned
you may assume that the datais a JPEG image.

This call is only available from RISC OS 3.6 onwards.

Related SWIs
JPEG_Filelnfo (page 5a-151)

Related vectors
None

5a-150

JPEG images

JPEG_Filelnfo
(swi &49981)

Gives information on a JPEG image held in afile

On entry

RO = flags for desired operation:
bit 0 set O return dimensions, clear 0 don't return dimensions
all other bits reserved (must be zero)

R1 = pointer to pathname of JPEG file, control character terminated

On exit

RO = returned information flags:
bit 0 setl] greyscale image, cle@r colour image
bit 1 set0) transformed plots not supported, cleéarsupported
bit 2 setd pixel density is a simple ratio, cle@r pixel density is in dpi
R1 preserved
R2 = width, in pixels
R3 = height, in pixels
R4 = x pixel density
R5 =y pixel density
R6 = SpriteExtend’s additional extra workspace requirements to plot JPEG
(0O no additional extra workspace required)

Interrupts

Interrupt status is undefined
FIQs are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Not defined

Use

This call gives information on a JPEG image held in a file.

5a-151

JPEG_Filelnfo (SWI &49981)

This call checks the header enough to return the width and height, and does a partial
validation of the data. It returns an error if the image appearsto beinvalid; if no error is
returned you may assume that the data is a JPEG image.

This cal isonly available from RISC OS 3.6 onwards.

Related SWIs
JPEG_Info (page 5a-149)

Related vectors
None

5a-152

JPEG images

JPEG_PlotScaled
(swi &49982)

Decompresses, scales, and plots on the screen a JPEG image held in a buffer

On entry

RO = pointer to buffer holding JPEG image

R1 = x coordinate at which to plot

R2 =y coordinate at which to plot

R3 = pointer to scale factors (see page 1-780): 0 O no scaling

R4 = length of JPEG image, in bytes

R5 = flags:
bit 0 set O dither output when plotting 24 bit JPEG at 16bpp or below
bit 1 set O dithering (if any) isfull error diffused when plotting at 8bpp
al other bits reserved (must be zero)

On exit

RO - R5 preserved

Interrupts

Interrupt status is undefined
FIQs are enabled

Processor mode

Processor isin SVC mode

Re-entrancy

Use

Not defined

This SWI decompresses, scales, and plots on the screen a JPEG image held in abuffer in
memory.

The functionality of this call for JPEGsis similar to that of OS_SpriteOp 52 (Put sprite
scaled - see page 1-830) for sprites. The scale factors and the coordinates have exactly
the same meaning, and the scaling algorithms used are the same in both calls. However,
this call only supports adirect plot (ie plot action 0 of OS_SpriteOp 52).

5a-153

JPEG_PlotScaled (SWI &49982)

In plotting the JPEG, the SpriteExtend module may claim extra workspace in adynamic

areato store tables etc. It keeps these cached until either it is asked to plot a different

JPEG, or the user decreases the dynamic area’s size. This speeds up successive replots of
the same JPEG. You can find how much extra workspace SpriteExtend will require — if
any — by first calling JPEG_Info (page 5a-149) or JPEG_Filelnfo (page 5a-151). You

can hence ensure there is sufficient free memory before making this call.

This call returns an error if it cannot claim sufficient memory to plot the JPEG image, or
if the image appears incomplete or corrupt in some way.

This call is only available from RISC OS 3.6 onwards.

Related SWis
JPEG_Info (page 5a-149), JPEG_Filelnfo (page 5a-151)

Related vectors
None

5a-154

JPEG images

JPEG_PlotFileScaled
(swi &49983)

Decompresses, scales, and plots on the screen a JPEG image held in afile

On entry

RO = pointer to pathname of JPEG file, control character terminated

R1 = x coordinate at which to plot

R2 =y coordinate at which to plot

R3 = pointer to scale factors (see page 1-780): 0 O no scaling

R4 = flags:
bit 0 set O dither output when plotting 24 bit JPEG at 16bpp or below
bit 1 set O dithering (if any) isfull error diffused when plotting at 8bpp
al other bits reserved (must be zero)

On exit
RO - R4 preserved

Interrupts

Interrupt status is undefined
FIQs are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use
This SWI decompresses, scales, and plots on the screen a JPEG image held in afile.

The functionality of this call for JPEGs is similar to that of OS_SpriteOp 52 (Put sprite

scaled — see page 1-830) for sprites. The scale factors and the coordinates have exactly
the same meaning, and the scaling algorithms used are the same in both calls. However,
this call only supports a direct plot (ie plot action 0 of OS_SpriteOp 52).

5a-155

JPEG_PlotFileScaled (SWI &49983)

5a-156

Thefileisloaded into memory for the duration of the call, but is not cached. This call
therefore uses as much memory asloading thefile into abuffer yourself and then calling
JPEG_PlotScaled (page 5a-153), and gives you no control over whether the image
remains cached. Furthermore, although the mechanism exists to pass this call on to the
printer drivers, they do not support it. We therefore strongly recommend that you use
JPEG_PlotScaled in preference to this call.

Aswell as the memory to hold the file, the SpriteExtend module may claim extra

workspace in adynamic areato store tables etc. It keeps these cached until either itis

asked to plot a different JPEG, or the user decreases the dynamic area’s size. This speeds
up successive replots of the same JPEG. You can find how much extra workspace
SpriteExtend will require — if any — by first calling JPEG_Info (page 5a-149) or
JPEG_Filelnfo (page 5a-151). You can hence ensure there is sufficient free memory
before making this call: enough both to hold the file, and to provide any extra workspace
required.

This call returns an error if it cannot claim sufficient memory to plot the JPEG image, or
if the image appears incomplete or corrupt in some way.

This call is only available from RISC OS 3.6 onwards.

Related SWiIs

JPEG_PIlotScaled (page 5a-153)

Related vectors

None

JPEG images

JPEG_PlotTransformed
(swi &49984)

Decompresses, transforms, and plots on the screen a JPEG image held in a buffer

On entry

RO = pointer to buffer holding JPEG image

R1 =flags:
bit 0 set 0 R2 = pointer to destination coordinate block, else to matrix
bit 1 set O dither output when plotting 24 bit JPEG at 16bpp or below
bit 2 set O dithering (if any) isfull error diffused when plotting at 8bpp
al other bits reserved (must be zero)

R2 = pointer to destination coordinate block (if R2 bit O set), or
pointer to Draw-style transformation matrix (if R2 bit O clear)

R3 = length of JPEG image, in bytes

On exit
RO - R3 preserved

Interrupts

Interrupt status is undefined
FIQs are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This SWI decompresses, transforms, and plots on the screen a JPEG image held in a
buffer in memory.

The functionality of this call for JPEGsis similar to that of OS_SpriteOp 56 (Put sprite

transformed — see page 1-833) for sprites. The destination coordinate block and the
transformation matrix have exactly the same meaning. However, this call only supports

a direct plot (ie plot action 0 of OS_SpriteOp 56).

5a-157

JPEG_PlotTransformed (SWI &49984)

5a-158

Under RISC OS 3.6 this call only supports simple scaling, with no rotation or other
transformation involved. Any unsupported transformation gives an appropriate error.

In plotting the JPEG, the SpriteExtend module may claim extra workspace in adynamic

areato store tables etc. It keeps these cached until either it is asked to plot a different

JPEG, or the user decreases the dynamic area’s size. This speeds up successive replots of
the same JPEG. You can find how much extra workspace SpriteExtend will require — if
any — by first calling JPEG_Info (page 5a-149) or JPEG_Filelnfo (page 5a-151). You

can hence ensure there is sufficient free memory before making this call.

This call returns an error if it cannot claim sufficient memory to plot the JPEG image, or
if the image appears incomplete or corrupt in some way.

This call is only available from RISC OS 3.6 onwards.

Related SWiIs

JPEG_Info (page 5a-149), JPEG_Filelnfo (page 5a-151),
JPEG_PlotScaled (page 5a-153)

Related vectors

None

JPEG images

JPEG_PlotFileTransformed
(swi &49985)

Decompresses, transforms, and plots on the screen a JPEG image held in afile

On entry

RO = pointer to pathname of JPEG file, control character terminated

R1 =flags:
bit 0 set 0 R2 = pointer to destination coordinate block, else to matrix
bit 1 set O dither output when plotting 24 bit JPEG at 16bpp or below
bit 2 set O dithering (if any) isfull error diffused when plotting at 8bpp
al other bits reserved (must be zero)

R2 = pointer to destination coordinate block (if R2 bit O set), or
pointer to Draw-style transformation matrix (if R2 bit O clear)

On exit
RO - R2 preserved

Interrupts

Interrupt status is undefined
FIQs are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use
This SWI decompresses, transforms, and plots on the screen a JPEG image held in afile.
The functionality of this call for JPEGs is similar to that of OS_SpriteOp 56 (Put sprite

transformed — see page 1-833) for sprites. The destination coordinate block and the
transformation matrix have exactly the same meaning. However, this call only supports

a direct plot (ie plot action 0 of OS_SpriteOp 56).

Under RISC OS 3.6 this call only supports simple scaling, with no rotation or other
transformation involved. Any unsupported transformation gives an appropriate error.

5a-159

JPEG_PlotFile Transformed (SWI &49985)

5a-160

Thefileisloaded into memory for the duration of the call, but is not cached. This call
therefore uses as much memory asloading thefile into abuffer yourself and then calling
JPEG_PotTransformed (page 5a-157), and gives you no control over whether theimage
remains cached. Furthermore, although the mechanism exists to pass this call on to the
printer drivers, they do not support it. We therefore strongly recommend that you use
JPEG_PlotTransformed in preference to this call.

Aswell as the memory to hold the file, the SpriteExtend module may claim extra

workspace in adynamic areato store tables etc. It keeps these cached until either itis

asked to plot a different JPEG, or the user decreases the dynamic area’s size. This speeds
up successive replots of the same JPEG. You can find how much extra workspace
SpriteExtend will require — if any — by first calling JPEG_Info (page 5a-149) or
JPEG_Filelnfo (page 5a-151). You can hence ensure there is sufficient free memory
before making this call: enough both to hold the file, and to provide any extra workspace
required.

This call returns an error if it cannot claim sufficient memory to plot the JPEG image, or
if the image appears incomplete or corrupt in some way.

This call is only available from RISC OS 3.6 onwards.

Related SWiIs

JPEG_PIlotTransformed (page 5a-157)

Related vectors

None

JPEG images

JPEG_PDiriverintercept
(swi &49986)

Requests that SpriteExtend passes on all calls to JPEG plotting SWis

On entry
RO = flags:
bit 0 set 0 passon plotting calls, clear O don’t pass on plotting calls
bit 1 setd] use translation tables, cléardon’t use translation tables
all other bits reserved (must be zero)
On exit

RO = previous intercept state

Interrupts

Interrupt status is undefined
FIQs are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This SWI is used by the printer drivers to request that SpriteExtend passes on all calls to
JPEG plotting SWIs by itself calling PDriver_JPEGSWI (see page 5a-587). When
SpriteExtend passes on these calls, it ignores them itself.

You must not make this call from your own applications.
The JPEG plotting SWIs (ie those that are passed on) are lidRethied SMs below.

5a-161

Related SWis

JPEG_PlotScaled (page 5a-153), JPEG_PlotFileScaled (page 5a-155)
JPEG_PlotTransformed (page 5a-157), JPEG_PlotFileTransformed (page 5a-159)

Related vectors
None

5a-162

108 Miscellaneous kernel items

Introduction and Overview

This chapter describes some minor changes that do not belong in any of the previous
chapters about the kernel.

Changes to existing SWis

OS_Byte 129 (page 1-899)
When reading the OS version identifier, R1 returns on exit the value:
e &A5forRISC0OS3.5
e &A6for RISC OS 3.6.

New SWI
A SWI has been added in RISC OS 3.5 to reset the computer. It is described overleaf.

5a-163

SWi Calls

SWI Calls

5a-164

Performs a hard reset

On entry

On exit
Does not exit!

Interrupts

Interrupt state is not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Irrelevant
Use

This call performs a hard reset.

It is only available from RISC OS 3.5 onwards.
Related SWis

None

Related vectors
None

OS_Reset
(SWI &6A)

Part 16 — Filing and networking

5a-165

5a-166

109 FileSwitch

Introduction and Overview

Under RISC OS 3.6 FileSwitch has been extended to support larger capacity storage
devices, such as those now supported by FileCore-based filing systems.

The only change made has been to provide three new reason codes for OS_FSControl
(page 2-80), each of which duplicates previously available functionality, but allows
64 bit values to be passed or returned instead of 32 bit values.

New OS_FSControl reason codes (page 2-80)
The three new reason codes are:

RO Action Page

55 Read the free space on the disc or image file that holdsa 5a-168
specified object

56 Return the defect list for an image 5a-169

57 Map out a defect from an image 5a-170

New filing system entry points

For each of the new OS_FSControl reason codes, a corresponding new reason code has
been added to those that may be passed to a filing system’s FSEntry_Func entry point
and to an image filing system’s ImageEntry_Func entry point.

If you are writing a filing system, and hence need to know the details of these new
reason codes, you should &&ting a filing system on page 5a-261.

5a-167

SWi Calls

SWI Calls
OS FSControl 55
(swi &29)

Reads the free space on the disc or image file that holds a specified object

On entry

RO = 55 (reason code)
R1 = pointer to name of object (null terminated)

On exit

RO = bits 0 - 31 of free space
R1 = bits 32 - 63 of free space
R2 = largest creatable object
R3 = hits 0 - 31 of disc size
R4 = bits 32 - 63 of disc size

Use

This call reads the free space on the disc or image file that holds the specified object. It
aso returns the size of the largest creatable object, and the size of the disc.

Thiscal issimilar to OS_FSControl 49 (page 2-134), except the valuesfor disc size and
free space returned are 64 bit values. If an error occurs, this may mean the filing system
does not support this call, in which case you should then try OS_FSControl 49.

Thiscal isonly available from RISC OS 3.6 onwards, and returnsincorrect information
for NetFS.

5a-168

FileSwitch

OS _FSControl 56
(swi &29)

Returns the defect list for an image

On entry

RO = 56 (reason code)

R1 = pointer to name of image (null terminated)
R2 = pointer to buffer

R5 = buffer length

On exit
RO preserved
R1 = number of defects placed in buffer
R2, R5 preserved

Use

Thiscall fillsthe given buffer with adefect list, which givesthe byte offset to the start of
each defect. Each entry in the list is a pair of words — with the least significant one first
— giving the address of the defect as a 64 bit value.

This call is similar to OS_FSControl 41 (page 2-126). If an error occurs, this may mean
the filing system does not support this call, in which case you should then try
OS_FSControl 41.

This call is only available from RISC OS 3.6 onwards, and returns incorrect information
for NetFS.

5a-169

OS_FSControl 57 (SWI &29)

5a-170

OS_FSControl 57
(swi &29)

Maps out a defect from an image

On entry

RO = 57 (reason code)

R1 = pointer to name of image (null terminated)
R2 = bits 0 - 31 of offset to start of defect

R3 = hits 32 - 63 of offset to start of defect

On exit

Use

RO - R2 preserved

This call maps out a defect from the given image.

Thiscall issimilar to OS_FSControl 42 (page 2-127), except the offset to the defect is
passed as a 64 bit value. If an error occurs, this may mean the filing system does not
support this call, in which case you should then try OS_FSControl 42.

Thiscal isonly available from RISC OS 3.6 onwards, and returnsincorrect information
for NetFS.

110

FileCore

Introduction and Overview

Under RISC OS 3.5 and earlier, FileCore-based filing systems can support 4 hard discs,
each with amaximum size of 512 MB, giving a maximum storage capacity per filing
system of 2 GB.

Thislimitation meansthat using hard discslarger than 512 M B would involve mounting
separate partitions as ‘discs’; and using discs larger than 2 GB would require multiple
filing systems per disc.

With the continuing push by hard disc manufacturers to reduce the cost per megabyte of
their devices, drives with less than 512 MB capacity will cease to be the most
cost-effective ones. Furthermore, higher capacity drives are now becoming readily
available at affordable prices.

Clearly the limitations of FileCore-based filing systems are becoming increasingly
restrictive. RISC OS 3.6 introduces extensions to the logical format of FileCore-based
filing systems that remove many of these restrictions, as a result of which:

« the recommended maximum hard disc size is 4 GB

« the maximum size of a file (and hence of an image filing systeni}-4 bytes
(2 GB)

« the maximum number of disc objects remaifrs-2 (32766).
FileSwitch based systems remain as before:
« the maximum hard disc size is dependent on the underlying file system

« the maximum size of a file (and hence of an image filing systent}-+4 bytes
(4 GB)

« the maximum number of disc objects is dependent on the underlying file system.

5a-171

Technical details

Technical details

Disc record

Disc addresses

Thedisc record (page 2-204) has been extended to support large discs. This uses some of
the reserved bytes at the end of the record, thetail end of which now is as follows:

Offsat Name Meaning
36 disc size 2 Most significant word of disc size, in bytes
40 share_size bits0-3: log, (sharing granularity in sectors)
bits4-7: reserved — must be zero
41 big flag bit 0: setd RISC OS partition is > 512 MB
bits 1-7.: reserved — must be zero
42 -59 Reserved — must be zero

Thedisc_size 2 field gives the most significant word of the disc size, and so is used for
discs of over 4 GB. (The least significant word is held indike _size field.)

Thebig_flag bit is so FileCore can tell at mount time whether or not the RISC OS filing
system on the disc is big (ie > 512 MB in size), and hence whether or not it uses the new
logical format. It cannot use thiésc_size fields for this, since a disc of over 512 MB

may only have a small RISC OS partition, and use the rest of the disc foi’RISC

Theshare_size field controls the granularity of sharing. Seternal disc addresses on
page 5a-173.

Physical disc addresses

5a-172

FileCore performs all low-level disc access through two entry points — DiscOp and
MiscOp — provided by FileCore modules such as ADFS. Disc addresses are passed to
these entry points as a 32 bit quantity.

Under RISC OS 3.5 and earlier, the physical disc address (page 2-210) combines both
the drive number (0 - 7, held in bits 29 - 31), and the byte offset into the disc

(0-512 MB, held in bits 0 - 28). It is this offset field that restricts FileCore discs to a
maximum size of 512 MB.

However, some bits in the offset are redundant, since all programmer interfaces use
sector aligned addresses. In RISC OS 3.6 FileCore has been enhanced to make use of
these bits; it now also supports disc addresses where the offset is given in sectors, rather

FileCore

than in bytes. So with the resulting 29 bit sector number, and a sector size of 512 bytes
(astypically used on IDE hard discs), this gives a maximum theoretical disc size of
229 x 512 bytes, or 256 GB.

Internal disc addresses

Defect list

FileCore can share the use of a disc object on anew map disc (iealogical group of
fragments) between many objects (iefiles or directories). The objects must either be a
directory and files within that directory, or files that have the same parent directory.
There may not be more than one directory in any disc object, since the directory must
always be at the start of the disc object.

New map discs use an internal disc address (see page 2-211) to refer to shared objects,
specifying them in terms of their fragment id (O - & 7FFF), and their offset within the
disc object (0 - 254, stored as 1 - 255). Under RISC OS 3.5 and earlier, the offset isin
units of sectors, which with a 512 byte sector size correspondsto 0 - 127 KB. Thus
FileCore can only share the first 254 sectors (127 KB for our example) of a shared disc
object, and if the smallest fragment size islarger than this FileCore cannot share all the
space in shared disc objects.

From RISC OS 3.6 onwards, you can increase the granularity of the offset within the
disc object. It now gives the offset in units of 25'a€_S2€ gectors, where share_size comes
from the disc record. You should ensure that if you format a disc, share sizeis
sufficiently large for the following to be true:

smallest fragment size < (254 x 2/09258csize pshare_size)

FileCore can then share all the space within a shared disc object.

The defect list (page 2-215) has been extended by appending a second defect list
containing all defects more than 512 MB from the start of the disc. The list works
similarly to the first one, but all disc addresses are stored as absol ute sector numbers,
and thefinal marker word is &400000yy. The byteyy isacheck-byte cal culated from the
previous words in the second defect list only. It is calculated in the same way as the
check-byte for the first defect list. Thus anew defect list would look like:

defect byte address(es)
&200000xx

defect sector address(es)
&400000yy

An empty defect list would now be:

&20000000
&40000000

5a-173

Maximum practical disc size

To determine whether the second defect list is present, you should examine the big_flag
byte (see Disc record on page 5a-172). If bit O is set then the second defect list must be
present.

Maximum practical disc size

As discs get larger, so does the smallest fragment size required to format them. For
example on a4 GB disc the smallest fragment size risesto 128K, for two reasons:

« Themaximum length of anew map is64 KB, because the FreeLink field in the map
block header (see Header on page 2-203) must be able to point to the end of the
map, and is only two byteslong. There are hence 512K (64K x 8) allocation bitsin
the map.

The allocation sizeis disc size/ alocation bits, which is4GB / 512K, or 8 KB.

From page 2-206, the smallest fragment sizeis (idlen + 1) x alocation unit, which
is(15+ 1) x 8KB, or 128 KB.

« The number of possible fragment idsis 29", Since idlen cannot exceed 15, thisis
amaximum of 21°.

Each fragment must have availableits own fragment id. The smallest fragment size
is therefore (disc size / maximum fragment id), whichis4 GB / 2%°, or 128 KB.

You can use larger discs, but with smallest fragment sizes of 256 KB or more, you are
likely to waste high proportions of disc space in normal use. For this reason we don’t
recommend you do so.

Disc formats
D format hard discare not supported from RISC OS 3.5 onwards.
The RISC OS 3.6 version of FileCore supports all current E and F format discs.

Changes to existing SWis

FileCore_DiscOp (page 2-223)

With previous versions of FileCore, on exit from the call, R2 contains the disc address of
the next byte to be transferred. From RISC OS 3.6 onwards the address returned is
rounded down to be sector aligned.

FileCore_Create (page 2-228)

The descriptor block pointed to by RO has had a new flag bit added to indicate support
for sector addressing. SBescriptor block (page 2-597) on page 5a-265.

s5a-174

FileCore

FileCore_FreeSpace (page 2-231)

New SWIs

The values this call returns may now be too large to represent in asingle register. To
avoid such problems, the values returned are limited to a maximum of & 7FFFFFFF,
which you may take to mean ‘at least 2 GB'.

See also FileCore_FreeSpace64 (page 5a-183), a new SWI which provides facilities for
returning 64 bit values.

The following new SWIs have been added to FileCore:

FileCore_MiscOp has had two reason codes added:

Reason code 6 (page 5a-176) reads the information passed in a descriptor block
when creating a new instantiation of a FileCore based filing system. The main use
of this is to determine whether a filing system supports sector addressing, or only
byte addressing.

Reason code 7 (page 5a-177) returns the status of a drive; under RISC OS 3.6, this
information is restricted to whether or not a drive is locked.

FileCore_SectorOp (page 5a-178) provides the same functionality as
FileCore_DiscOp, save that it uses sector addresses rather than byte addresses.

FileCore_FreeSpace64 (page 5a-183) provides the same functionality as
FileCore_FreeSpace, but uses 64 bit values rather than 32 bit ones.

5a-175

SWi Calls

SWI Calls
FileCore_MiscOp 6
(swi &40549)

Reads information from a FileCore module’s descriptor block

Entry
RO = 6 (reason code)
R8 = pointer to FileCore instance private word.
Exit
RO = pointer to block:
Offset Contains
0 bit flags from FileCore module’s descriptor block
3 filing system number
4 address of filing system title
8 address of boot text
12 address of low-level disc op entry
18 address of low-level miscellaneous entry
Use

This call reads information from a FileCore module’s descriptor block (page 2-597 and
page 5a-265), as passed to FileCore_Create (page 2-228). However this call returns
addresses, rather than the offsets into the module that you pass to FileCore_Create.

The main use of this call is to determine whether a filing system supports sector
addressing (bit 2 of the bit flags is set), or only byte addressing (bit 2 of the bit flags is
clear).

This call is only available from RISC OS 3.6 onwards.

5a-176

Entry

Exit

Use

FileCore

FileCore_MiscOp 7
(swi &40549)

Returns the status of the given drive

RO = 7 (reason code)
R1 = drive number
R8 = pointer to FileCore instance private word.

R2 = flag word:
bit 0 set 00 driveislocked
all other bitsreserved

This call returns the status of the given drive. It can be called in the background

Themain use of thiscall is so that FileCore can cleanly check whether or not adriveis
locked before restarting a background read or write operation.

This call isonly available from RISC OS 3.6 onwards.

Sa-177

FileCore_SectorOp (SWI &4054A)

5a-178

FileCore_SectorOp
(swi &4054A)

Performs various operations on a disc using sector addressing

On entry

R1 bits 0 - 3 = reason code
bits4 - 7 = option hits
bits 8 - 31 = hits 2 - 25 of pointer to alternative disc record, or zero
R2 = disc address
R3 = pointer to buffer
R4 = length in bytes
R6 = cache handle
R8 = pointer to FileCore instance private word

On exit

R1 preserved

R2 = disc address of next sector to which to transfer
R3 = pointer to next buffer location to be transferred
R4 = number of bytes not transferred

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

FileCore

This call performs various disc operations as specified by bits 0 - 3 of R1:

Value Meaning Uses Updates
0 Verify R2, R4 R2, R4
1 Read sectors R2, R3, R4 R2, R3, R4
2 Write sectors R2, R3, R4 R2, R3, R4
3 Floppy disc: read track R2, R3
Hard disc: read Id R2, R3
4 Write track R2, R3
5 Seek (used only to park) R2
6 Restore R2
7 Floppy disc: stepin t
8 Floppy disc: step out t
9 Read sectors via cache R2, R3, R4, R6 R2, R3, R4, R6
1 Hard disc: specify R2
t These reason codes are only valid with the 1772 disc controller. They are not

supported on 710/711 based machines (such as the A5000) and should be
avoided for future compatibility.

This call provides the same functionality as FileCore_DiscOp (page 2-223), save that it
uses sector addresses rather than byte addresses. It is only available from RISC OS 3.6
onwards.

Option bits

The option bits have the following meanings:

Bit 4

This bit is set if an alternate defect list for a hard disc is to be used. This is assumed
to be in RAM 64 bytes after the start of the disc record pointed to by bits 8 - 31 of
R1 shifted left 6 bits (so they form bits 2 - 25 of the pointer).

This bit may only be set for old map discs.

5a-179

FileCore_SectorOp (SWI &4054A)

Bit 5

If this bit is set, then the meaning of R3 is atered. It does not point to the area of

RAM to or from which the disc dataisto be transferred. Instead, it pointsto a
word-aligned list of memory address/length pairs. All but the last of these lengths

must be amultiple of the sector size. These word-pairs are used for the transfer until

the total number of bytes given in R4 has been transferred.

On exit, R3 points to the first pair which wasn't fully used, and this pair is updated
to reflect the new start address/bytes remaining, so that a subsequent call would
continue from where this call has finished.

This bit may only be set for reason codes 0 - 2.

Bit 6

If this bit is set then escape conditions are ignored during the operation, otherwise
they cause it to be aborted.

Bit 7

If this bit is set, then the usual timeout for floppy discs of 1 second is not used.
Instead FileCore will wait (forever if necessary) for the drive to become ready.

Disc address

The disc address is a sector offset from the start of the disc. It must be on a track
boundary for reason codes other than 0-2 and 9. Note that you must make allowances for
any defects, as the disc address is not corrected for them.

For reason code 6 (restore), the disc address is only used for the drive number; the
bottom 29 bits should be set to zero.

Where the transfer length is not a multiple of the sector size, the end disc address
specifies the sector holding the byte after the last one that was transferred.

The specify disc command (reason code 15) sets up the defective sector list, hardware
information and disc description from the disc record supplied. Note that in memory,
this information must be stored in the order disc record, then defect list/hardware
parameters.

Read Track/I D (reason code 3)

If the alternate defect list option bit (bit 4) is set in R1 on entry when reading a track/ID,
then a whole track’s worth of ID fields is read. This usage is not available under
RISC OS 2.

5a-180

FileCore

The call reads 4 bytes of sector ID information into the buffer pointed to by R3 for every
sector on the track. The order of datais:

Cylinder

Head

Sector number

Sector size (0= 128, 1= 256, €tc)

For floppy discs, the operation is terminated after 200mS (1 revolution).

The first sector ID transferred will normally be that following theindex mark (it may be

the second if thereisabnormal interrupt latency from theindex pulseinterrupt). Thefirst

two ID’s read may also be duplicated at the buffer end due to interrupt latency.
Consequently the buffer should be at least 16 bytes longer than the maximum number of
IDs expected (512 bytes at most).

The disc record provided is updated to return the actual number of sectors per track
found (at offset 1). Note to use this option youst provide a valid defect list following

on after the disc record. The minimal defect list is a word of &20000000 for small discs
(ie byte addressed), or two words of &20000000 followed by &40000000 for large discs
(ie sector addressed).

Write Track (reason code 4)

If R3 (the buffer pointer) is non-zero on entry, this reason code is used to write a track.
This usage is specific to the 1772 disc controller.

If R3 is zero on entry, this reason code is instead used to format a track; R4 then points
to a disc format structure. This usage is available with all controllers, but is not available
under RISC OS 2.

The disc format structure pointed to by R4 is as follows:

Offset Length Meaning

0 4 Sector size in bytes (which must be a multiple of 128)
4 4 Gapl
8 4 Reserved — must be zero
12 4 Gap3
16 1 Sectors per track
17 1 Density:
1 single density (125Kbps FM)
2 double density (250Kbps FM)
3 double+ density (300Kbps FM)
(ie higher rotation speed double density)
4 quad density (500Kbps FM)
8 octal density (1000Kbps FM)
18 1 Options:
bit 0 1 index mark required

5a-181

FileCore_SectorOp (SWI &4054A)

5a-182

bit 1 1 double step
bits2-3 0 interleave sides
1-3 sequencesides
bits 4-7 reserved — must be 0
19 1 Sector fill value
20 4 Cylinders per drive (normally 80)
24 12 Reserved — must be 0
36 ? Sector ID buffer, 1 word per sector:
bits 0 - 7 Cylinder number mod 256
bits 8 - 15 Head (O for side 1, 1 for side 2)
bits 16 - 23 Sector number
bits 24 - 31 Log (sector size) — 7, eg 1 for 256 byte sector

An error is generated if the specified format is not possible to generate, or if the track
requested is outside the valid range. The tracks are numbered from 0 to (number of
tracks) — 1. The mapping of the address is controlled by the disc structure record.

Read sectors via cache (reason code 9)

This reason code reads sectors via a cache held in the RMA. It is not available under
RISC OS 2.

To start a sequence of these operations, set R6 (the cache handle) to zero on entry. Its
value will be updated on exit, and subsequent calls should use this new value.

Bits 4 - 7 of R1 should be zero, and are ignored if set.
To discard the cache once finished, call FileCore_DiscardReadSectorsCache (see
page 2-235).

Related SWis
None

Related vectors
None

FileCore

FileCore_FreeSpace64
(swi &4054B)

Returns 64 bit information on a disc’s free space

On entry

RO = pointer to disc specifier (null terminated)
R8 = pointer to FileCore instance private word

On exit

RO = bits 0 - 31 of total free space on disc
R1 = bits 32 - 63 of total free space on disc
R2 = size of largest object that can be created, or &7FFFFFFF if 2 GB or more

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

Not defined
Use
This call returns the total free space on the given disc, and the largest object that can be
created on it. As with FileCore_FreeSpace (see page 5a-175), the retegoéthrgest
object is restricted to a maximum of &7FFFFFFF, meaning ‘at least 2 GB'.
This call is only available from RISC OS 3.6 onwards.
Related SWis

None

Related vectors
None

5a-183

5a-184

111 ADFS

Introduction and Overview

Logical block addressing (LBA)

Logical block addressing (or LBA) is amethod of disc addressing for IDE discs, which
is superseding the old Cylinder-head-sector (or CHS) method of disc addressing. The
LBA method has been introduced by hard drive manufacturers because the CHS method
would not work under MS-DOS for drives greater than 528 MB; so LBA istypicaly
only used with these larger discs, and smaller discs continue to use CHS.

From RISC OS 3.6 onwards, ADFS supports | DE discs that use LBA. It recognises an
LBA disc by aflag in the hardware dependant parameters of the boot block, which is set
appropriately by formatting software such as HForm. The flag is at offset & 1BA in the
boot block; if bit 0 is set, the disc uses LBA.

The main advantage gained from the use of LBA isfaster conversion of disc addresses.
The disc address that FileCore passes to the low-level entry points of ADFSis a sector

offset into the disc (which is the same as the LBA), with adrive number in the top bits.

Converting to LBA just involves masking out the drive number, whereas converting to

CHS requirestwo divisions by humberswhich are only known at run-time. Since ADFS
converts disc addresses during IRQ handling, using LBA improves IRQ latency.

Changes to existing SWis

ADFS_DiscOp (page 2-283)

ADFS does not support reason code 3 for all hard discs. It also does not support bit 4 of
the option bits (ie the ‘use alternate defect list’ bit).

5a-185

New SWis

New SWiIs

5a-186

Three new SWIs have been introduced in RISC OS 3.6:

ADFS_LockIDE (page 5a-188) locks/unlocks the IDE bus.

ADFS_SectorDiscOp (page 5a-187) calls FileCore_SectorOp; it hence providesthe
same functionality as ADFS_DiscOp, save that it uses sector addresses rather than
byte addresses.

ADFS _FreeSpace64 (page 5a-189) calls FileCore FreeSpace64; it hence provides
the samefunctionality asADFS_FreeSpace, but uses 64 bit values rather than 32 bit
ones.

ADFS

SWI Calls
ADFS_SectorDiscOp
(swi &4024D)

Calls FileCore_SectorOp

On entry
See FileCore_SectorOp (page 5a-178)

On exit
See FileCore_SectorOp (page 5a-178)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This SWI calls FileCore_SectorOp (page 5a-178), after first setting R8 to point to the
FileCore instantiation private word for ADFS.

ADFS does not support reason code 3 for al hard discs. It aso does not support bit 4 of
the option bits (ie the ‘use alternate defect list’ bit).

This call is functionally identical to FileCore_SectorOp.

Related SWIs
FileCore_SectorOp (page 5a-178), ADFS_DiscOp (page 2-283)

Related vectors
None

5a-187

ADFS_LockIDE (SWI &40251)

ADFS_LockIDE
(swi &40251)

Locks/unlocks the IDE bus

On entry

RO = flags:
bit O clear O unlock IDE bus, set O lock IDE bus
al other bits reserved (must be zero)

On exit
RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call locks/unlocks the IDE bus. An error is generated (&1080A, ‘Driver in use’) if
the bus is already locked when you attempt to lock it.

When attempting to lock in the background, you should not attempt to loop, repeatedly
locking, since the process in control of the lock could be a foreground process. Instead,
you should be schedule a retry for a later time.

Related SWis
None

Related vectors
None

5a-188

ADFS

ADFS_FreeSpace64
(swi &40252)

CallsFileCore_FreeSpace64

On entry
See FileCore_FreeSpace64 (page 5a-183)

On exit
See FileCore_FreeSpace64 (page 5a-183)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy
Not defined

Use

ThisSWI callsFileCore FreeSpace64 (page 5a-183), after first setting R8to point to the
FileCore instantiation private word for ADFS.

This cal isfunctionally identical to FileCore FreeSpace64.

Related SWis
FileCore_FreeSpace64 (page 5a-183), ADFS_FreeSpace (page 2-287)

Related vectors
None

5a-189

5a-190

112 DOSFS

Introduction and Overview

Support for larger DOSFS image files

Under RISC OS 3.5 and earlier a DOSFS image file had a maximum size of 32 MB.
Thislimit was imposed by the DOS boot block used in laying out the image file.

RISC OS 3.6 uses a newer type of DOS boot block which removes this restriction.

Less stringent checking of DOS formats

Under RISC OS 3.6 and later, DOSFS s less stringent in its checking of DOS formats.
Some discs that earlier versions of DOSFS rejected are now accepted. In particular
DOSFS no longer checks for two FATS, and will accept discs that have just one FAT.

5a-191

5a-192

113 CDs and CD-ROMs

Introduction

Support has been added to RISC OS 3.6 for CDs and CD-ROMSs. This software was
previously separately available, and was typically supplied in aROM on the SCSI card
used to interface to a SCSI-based CD-ROM drive.

The software provides a filing system with which you can access files on a CD-ROM
that conforms to the widely used 1SO 9660 standard. It also provides commands with
which you can play audio CDs, starting, stopping and pausing wherever you like. You
can read audio data directly from a CD, provided the CD-ROM drive you are using
supports this facility.

CDs can store about 75 minutes of audio data. As CD-ROMs, they can be used to store
about 660 MB of data, making CDs suitable for mass data applications and as an
affordable publishing medium.

The future of CD-related modules

Acorn intend replacing all CD-related components of RISC OSin the next release.
Because of this, the SWI interface provided by the CDFSand CDFSDriver modules
will become obsolete, and so we do not document it here. If you wish to write
applicationsthat use these SWIs, you should:

« Contact Acorn Computersfor details of the SWis.

« Writeyour application sothat codethat callsthe SWIsis separate from the
rest of your application, and can be easily replaced in the future.

We do document the* Commands provided by the CDFS module, solely so that
you can use them from the command line. These may also become obsoletein the
future, and you should treat them in the same way as SWIswhen writing
applications.

You will aso need details of these SWIs if you wish to write a soft-loadable driver to
support a new type of CD-ROM drive under the current CD system. Again, you should
contact Acorn Computers for further details.

5a-193

CDFS

CDFS

5a-194

The CDFS module is responsible for interpreting the data on a CD-ROM that uses the
I SO 9660 standard, and ensuring the RISC OSfiling system is properly supported.

CDFSisimplemented as a FileSwitch-based filing system rather than as a FileCore

module, because some aspects of CD-ROMs such as directory size, disc size and

filename length can exceed limitations imposed by FileCore. Consequently you can use

the standard FileSwitch SWIs — such as OS_Byte, OS_File, OS_Find and OS_GBPB -
and * Commands to read files and data. Obviously you cannot write to disc, as CDs are
not a writable medium; CDFS is a read-only filing system, and gives an error if you
make a call that attempts to write data.

Because CDFS supports standard FileSwitch calls, correctly written applications will be
able to use the CDFS filing system without modification.

This ‘standard FileSwitch interface’ will remain supported in the next release of
RISC OsS.

CDs and CD-ROMs

* Commands
*Bye

Ends a CDFS session
Syntax
*Bye
Parameters
None
Use
*Bye ends a CDFS session by closing all files, unsetting all directories and libraries,
forgetting all CD-ROM names and parking the heads of CD-ROM drives to their ‘transit
position’ so that they can be moved without risking damage to the read head.
You should check that CDFS is the current filing system before you use this command,
or alternatively if another filing system is your current one, you can type:
* CDFS: Bye
Example
*Bye

Related commands

*Close (page 2-148), *Dismount (page 5a-201), *Shut (page 2-187),
*Shutdown (page 2-188)

5a-195

*CDDevices

*CDDevices

*CDDevices displays all the CD devices connected, and information about them

Syntax
* CDDevi ces

Parameters
None

Use

*CDDevices displays all the CD devices connected, their product name, capacity,
firmware revision, and their SCSI 1D (displayed as device, LUN, and card; or as zeroes
for non-SCSI devices). In more detail:

Drive isthe logical drive number assigned by CDFS

Dev, Lun and Card arethedeviceID, logical unit and card numbersthat together
make up the drive’s SCSI address

Product is a brief identification of the CD-ROM drive provided by its
manufacturer

Capacity is the total amount of information (both data and audio) on

the CD currently in the drive, or ‘Unknown’ if there is no
readable CD in the drive

Firmware is the version of the manufacturer’s firmware fitted to the
drive.

Unrecognised drive types are omitted from the list.

The information returned is liable to change in future versions; you should not rely on its
content or format.

Example
*CDDevi ces
Drive Dev LUN Card Product Capacity Fi r mnar e
00 0 0 0 CD- ROM CR- 571 413 Moytes 1. 0e

Related commands
None

5a-196

CDs and CD-ROMs

*CDFS

Selects the CD-ROM Filing System as the current filing system

Syntax
* CDFS

Parameters
None

Use

*CDFS selects the CD-ROM Filing System as the filing system for subsequent
operations. Remember that it is not necessary to switch filing systemsif you use the full
pathnames of objects. For example, you can refer to NetFS objects (on afile server, say)
when CDFSis the current filing system.

Example
* CDFS

Related commands

* ADFS (page 2-304), *Net (page 2-388), *RAM (page 2-322),
*ResourceFS (page 2-425)

5a-197

*CDSpeed

5a-198

*CDSpeed

Displays or sets the read speed of a CD-ROM drive

Syntax
*CDSpeed [drive [speed]]

Parameters
drive avalid CD-ROM drive number
speed the new read speed for that drive:
1 standard speed
2 doubl e speed
255 maximum speed
Use

*CDSpeed displays or sets the read speed of the given CD-ROM drive, or of the current
driveif noneis specified. To set the speed, you must specify both the drive number and
the new speed.

Note that many drives only support a single read speed; if you attempt to set their read
speed, you will get an ‘Invalid parameter’ error.

Example

* CDSpeed
Current speed setting is 2

Related commands
None

CDs and CD-ROMs

*Configure CDROMBuffers

Sets the configured amount of memory reserved for CD-ROM buffering

Syntax
*Configure COROMBuUffers size[K]

Parameters

size the size of memory to reserve, in kilobytes: can be 0, 8, 16,
32, 64, 128, 256 or 512

Use

*Configure CDROM Buffers sets the configured amount of memory reserved for
CD-ROM hbuffering, in kilobytes. This can be 0K, 8K, 16K, 32K, 64K, 128K, 256K, or
512K. If you specify any other size, then the next lowest value will be set.

The buffer space is used for a number of tasks such as cacheing blocks of data (ie 2048
bytes) and disc specific information — but it is mostly used to cache directory

information. This saves accessing a directory and all its parent directories each time a

request is made from it. With the slow seek time of CD-ROMSs, this saving gives a
significant performance increase, especially for deeply nested directories.

The performance of CDFS very much depends on it having adequate buffer space

available. The desirable amount depends on various things: in particular, CDFS caches
information for each disc in use, so using multiple CDs requires extra buffer space. Also,
discs holding more objects have more directory information to cache. As a rough guide,

a buffer size of 16 Kbytes is normally adequate for a single average CD.

To save memory usage, CDFS does not load at boot time if the computer is configured
to have zero CD-ROM drives, and so this command will not be available. However, you
can always use the Configure application to change all CDFS configuration settings,

even if CDFS itself is not loaded.

Example
*Configure CDROVBuUffers 64K

Related commands
None

5a-199

*Configure CDROMDirives

5a-200

*Configure CDROMDrives

Sets the configured number of CD-ROM drives recognised at power on

Syntax
*Configure CDROVDrives n

Parameters
n the number of CD-ROM drives, in therange 0 - 27

Use

*Configure CDROM Drives sets the configured number of CD-ROM drives recognised
at power on.

To save memory usage, CDFS does not load at boot time if the computer is configured
to have zero CD-ROM drives, and so this command will not be available. However, you
can always use the Configure application to change all CDFS configuration settings,
even if CDFSitself is not loaded.

Example
*Configure CDROVDrives 1

Related commands

*Configure Floppies (page 2-308), * Configure HardDiscs (page 2-309),
*Configure | DEDiscs (page 2-309)

CDs and CD-ROMs

*Dismount
Ensuresthat it is safe to finish using a CD-ROM
Syntax
*Di smount [di sc_spec]
Parameters
di sc_spec the name of the CD-ROM or number of the CD-ROM drive
Use

*Dismount ensures that it is safe to finish using a CD-ROM by closing dl itsfiles,
unsetting all its directories and libraries, forgetting its disc name, and parking its read
head. If no CD-ROM is specified, the current CD-ROM is used as the default.
*Dismount is useful before removing a particular CD-ROM; however, the * Shutdown
command is usually to be preferred, especially when switching off the computer.

Example
*Di smount

Related commands
*Mount (page 5a-205), * Shutdown (page 2-188)

5a-201

*Drive

*Drive
Sets the current CD-ROM drive

Syntax
*Drive drive

Parameters
drive the number of the CD-ROM drive, from O - 27
Use
*Drive sets the current CD-ROM drive if NoDir is set. Otherwise, * Drive has no
meaning.
Example
*Drive 3

Related commands
*Dir (page 2-163), *NoDir (page 2-175)

5a-202

CDs and CD-ROMs

*EJect
Ejects the disc from a CD-ROM drive

Syntax
*Ej ect [drive]

Parameters
drive avalid CD-ROM drive number

Use

*Eject gjectsthe disc from the given CD-ROM drive, or from the current driveif noneis
specified. Thiscommand will only work if the drawer has not been locked by the* Lock
command (see page 5a-204), and is electronically operated.

Example
*Eject O

Related commands
*Lock (page 5a-204), * Unlock (page 5a-211)

5a-203

*Lock

*Lock

Locksthe discin aCD-ROM drive, disabling the Eject button

Syntax
*Lock [drive]

Parameters
drive avalid CD-ROM drive number

Use

*Lock locksthe disc in the given CD-ROM drive, disabling the Eject button. If no drive
is specified, the current driveis locked. You must call the * Unlock command
(page 5a-211) before the disc can again be gjected.

Example
*Lock O

Related commands
*Unlock (page 5a-211)

5a-204

CDs and CD-ROMs

*Mount
Prepares a CD-ROM for general use
Syntax
*Mount [di sc_spec]
Parameters
di sc_spec the name of the CD-ROM or number of the CD-ROM drive
Use

*Mount prepares a CD-ROM for general use by setting the current directory to its root
directory, setting the library directory (if it is currently unset) to $.Library, and unsetting
the User Root Directory (URD). If no disc spec is given, the default CD-ROM driveis
used. The command is preserved for the sake of compatibility with earlier Acorn
operating systems, and ideally you should not use it.

Example
*Mpunt : VI DEOCLI P2

Related commands
*Dismount (page 5a-201)

5a-205

*Play

*Play

Plays from the specified audio track to the end of thediscinaCD_ROM drive

Syntax
*Play track [drive]

Parameters
track track from which to start playing, in the range 0 - 99
drive avaid CD-ROM drive number

Use

*Play plays from the specified audio track to the end of the disc in the given CD_ROM
drive, or in the current driveif noneis specified. No datais transferred to the computer;
playback uses the drive’s digital to analogue circuits and audio output — which is
typically via a jack socket, phono sockets or other in-line adaptors.

If the track number does not exist on the CD in the drive, you will get the error ‘Number
too small’ or ‘Number too big’. If you try to play a data track, you will get the error
‘Cannot play that data’.

Example
*Play 9 0

Related commands
*PlayMSF (page 5a-208), *Stop (page 5a-209)

5a-206

CDs and CD-ROMs

*PlayList
Lists the tracks — whether audio or data — on the disc in a CD-ROM drive

Syntax
*Pl ayLi st [drive]

Parameters
drive a valid CD-ROM drive number

Use

*PlayList lists the tracks — whether audio or data — on the disc in the given CD-ROM
drive, together with their start time and the total CD time. If no drive is specified, the
current disc’s tracks are listed.

The start time is given as a ‘Red Book address’, in minutes, seconds, and frames (each
of which is ¥75 of a second) from the start of the disc.

Example

*PlayList O

Track nunber, contains, starts from MM SS: FF
Track 01 is data 00: 00: 00

Track 02 is audio 23:24: 65

Track 03 is audio 27:59: 05

Tot al 03 track(s) 34:21: 74

Related commands
None

5a-207

*PlayMSF

*PlayMSF

Plays a piece of audio from the disc in a CD-ROM drive

Syntax
*Pl ayMSF mins: secs: frames mns: secs: franes [drive]

Parameters
m ns number of minutes from the start of the disc at which to
start/stop playing
secs number of seconds from the start of the disc at which to
start/stop playing
franes number of frames from the start of the disc at which to
start/stop playing
drive avalid CD-ROM drive number
Use

*PlayM SF plays a piece of audio from the disc in the given CD-ROM drive, or in the

current drive if none is specified. The start and stop times time are specified as a ‘Red
Book address’, in minutes, seconds, and frames (each of wHighdfa second) from

the start of the disc. The start time is the first of the two parameters.

Playing stops immediately a data track is encountered, so if the start time is in a data
track this command will appear to do nothing. You will get an error if the start and/or
end times lie outside the range of the CD.

Example
*Pl ayMSF 02: 05: 38 23:59: 74

Related commands
*Play (page 5a-206), *Stop (page 5a-209)

5a-208

CDs and CD-ROMs

*Stop

Stops playing the disc in a CD-ROM drive

Syntax
*Stop [drive]

Parameters
drive avalid CD-ROM drive number

Use

*Stop stops playing the disc in the given CD-ROM drive, or in the current drive if none
is specified. If the driveis not currently playing, this command isignored.

Example
*Stop O

Related commands
*Play (page 5a-206), * PlayM SF (page 5a-208)

5a-209

*Supported

*Supported

Lists the drive types recognised by CDFS

Syntax
*Support ed

Parameters
None

Use

* Supported lists the drive types recognised by CDFS, and hencethat are usable. Thelist
only gives manufacturers’ names, not model numbers.

RISC OS 3.6 nominally supports the following drives:

ATAPI Conformant drives

Chinon CDS-431

Hitachi CDR-3650/1650S and CDR-1750S

Philips CM212 and CDD521

Sony CDU-6111, CDU-6211, CDU-541 and CDU-561
Toshiba XM-3301 and XM-3401

However, since drives’ firmware can change, you should not treat the above list as
definitive. In particular, because the ATAPI standard is still in a state of flux, and not all
drives conform to the standard anyway, you may find that not all so-called ‘ATAPI’
drives work with RISC OS 3.6. However, you may find some other drives made by the
above manufacturers are sufficiently compatible to also work.

This call may not be supported in the future, or the information returned may change in
content and/or format. You should therefore not use this call in applications or scripts.

Example

*Support ed
SONY, LMs, TOSHI BA, HI TACHI, CHI NON (LMS — Laser Magnetic

Systems — is actually
Philips)

Related commands
None

5a-210

CDs and CD-ROMs

*Unlock

Re-enables the Eject button on a CD-ROM drive

Syntax
*Unl ock [drive]

Parameters
drive avalid CD-ROM drive number

Use

*Unlock re-enables the Eject button on the given CD-ROM drive, reversing the effect of
any earlier *Lock command. If no driveis specified, the current drive is unlocked.

Example
*Unl ock 0O

Related commands
*Eject (page 5a-203), *Lock (page 5a-204)

5a-211

*WhichDisc

*WhichDisc

Displays the unique ID number for the disc in the current CD-ROM drive

Syntax
*Whi chDi sc

Parameters
None

Use

*WhichDisc displays the unique ID humber for the disc in the current CD-ROM drive.
The number is calculated from the information in the disc’'s TOC (as definedRedhe
Book), therefore it is unlikely that two discs will have the same value.

Example
*Whi chDi sc
322279

Related commands

None

5a-212

114 NetPrint

Introduction and Overview

For details of the NetPrint printing protocol, see Printer server protocol interface on
page 5a-682.

A service call has been added to avoid potential clashes between Econet port numbers. It
is described overleaf:

5a-213

Service_NetPrintCheckD1 (Service Call &40200)

5a-214

Service_NetPrintCheckD1
(service call &40200)

Issued by NetPrint to determineif thereisalocal printer server running

On entry

R1 = &40200 (reason code)

On exit

Use

R1 = 0 to claim the command, or preserved to pass on

This service cal isissued by NetPrint to determine if thereis alocal printer server
running.

If NetPrint istrying to print to aremote server, it should listen for replies on Econet ports
&DO0 and & D1, since old and new versions (respectively) of the printer server protocol
use those ports. (See Printer server protocol interface on page 5a-682.) However, if a
printer server is running on the local machine, it uses port & D1 to listen for data. Hence
if both NetPrint and alocal printer server arein use, packets can arrive at port &D1 for
two different programs, with no way of telling the owner of a given packet.

To avoid any potential confusion, NetPrint issues this service cal. If it is claimed there
isalocal printer server running, and so NetPrint can only listen on port & DO; it cannot
communicate with printer servers that reply on port & D1 using the old protocol. If it is
not claimed, NetPrint can listen on ports & D0 and & D1, and can communicate with
older printer servers.

115 Parallel and serial device drivers

Introduction and Overview

This chapter outlines changes made in RISC OS 3.5 to the Buffer Manager, DeviceFS,
and the serial and parallel device driversin order to improve the performance of these
ports.

Buffer Manager

The buffer manager has been extended to provide facilities for insertion and removal of
buffered data without using SWI calls, hence avoiding all the related overheads. Thisis
done by directly calling the buffer manager service routine, which uses a reason code to
specify its action. The service routine provides all of the functionality of vectorsInsV,
RemV and CnpV, and has been based on the existing handlersin the buffer manager but
optimised as much as possible. For full details of the various reason codes, see The
buffer manager service routine on page 5a-217.

Device drivers wishing to use this service routine first have to call a new SWI —
Buffer_Internalinfo, described on page 5a-228. This provides the information that is
required to use the service routine with a particular buffer.

The existing vector interface is still supported, but takes the form of an extra layer on top
of the new code.

DeviceFS module

The DeviceFS module has been modified to call the buffer manager service routine in all
situations where InsV, RemV or CnpV were previously used; for example the calls
DeviceFS_ReceivedCharacter and DeviceFS_TransmitCharacter in the filing system
interface.

5a-215

Parallel device driver

Parallel device driver

The paralel device driver has been modified to use the buffer manager service routine,
hence greatly improving performance.

The paralel device can be opened either for input or output but not for both. When an
input or output stream is created, the parallel device driver calls Buffer_Internallnfo
(page 5a-228) to obtain the internal buffer 1D for the relevant buffer and the address of
the buffer manager serviceroutine. All callsto InsV, RemV or CnpV have been replaced
with calls to the buffer manager service routine.

Fast Centronics mode

The new 1/0O chips provide afast Centronics mode where bytes written to the FIFO are
automatically sent by the hardware at a very high transfer rate using STROBE and

BUSY signals as the handshake. The parallel device driver accesses this mode using a

new device called ‘fastparallel:’. To work with this device driver, technically speaking
the printer must assert BUSY within 500ns of receiving STROBE; in practice, it should
explicitly state it supports fast Centronics

The ‘parallel:’ device is still available as the default, since some printers cannot cope
with the fast transfer rate of the new device.

Serial device driver

5a-216

The serial device driver does not use the new buffer manager interface; this is to retain
maximum compatibility with existing applications that use the serial interface.

However, its performance has been considerably improved, and it can now support a
maximum serial port rate of 115200 baud. Other improvements have resulted in the
elimination of most interrupt problems affecting serial input. At the maximum serial port
rate of 115200 baud, the input FIFO will allow 1ms of interrupt latency before overrun
occurs. This should be ample under most circumstances. The allowed latency increases
as the baud rate is lowered.

OS_SerialOp has been extended with the addition of new baud rate codes and reason
codes; see page 5a-224.

Parallel and serial device drivers

Technical Details

The buffer manager service routine

The buffer manager service routine provides direct access to buffers without the
overheads of calling SWis.

A device driver wishing to use the service routine should first create or register its
buffers with the buffer manager. It must then call the SWI Buffer_Internallnfo

(page 5a-228) for each buffer. This returns the address of the service routine and a
pointer to its workspace (which are the same for all buffers), and an internal buffer ID
specific to that buffer.

Calling the buffer manager serviceroutine

The service routine provides various functions, specified by areason code. It can be
caledin IRQ or SVC mode, interrupts may be enabled or disabled. Entry conditions are:
RO = reason code (see below)
R1 = internal buffer ID
R12 = R2 value from Buffer_InternalInfo call
Other registers depend on reason code

Current reason codes are as follows:

RO Action Page

0 Insert byte 5a-218
1 Insert block 5a-218
2 Remove byte 5a-219
3 Remove block 5a-219
4 Examine byte 5a-220
5 Examine block 5a-220
6 Return used space 5a-221
7 Return free space 5a-221
8 Purge buffer 5a-221
9 Next filled block 5a-222

The service routine can use the internal buffer 1D to go straight to the appropriate buffer
record in the buffer manager’s workspace, rather than having to perform a linear search
on a buffer handle.

On exit from the service routine, registers are normally preserved, save for those used to
return results.

5a-217

The buffer manager service routine

If the device driver removes or deregisters a buffer, it must ensure it no longer quotes
that buffer’s internal ID when calling the buffer manager service routine.

Insert byte

On entry

RO = 0 (reason code)

R1 = internal buffer ID

R2 = byte to insert

R12 = R2 value from Buffer_Internalinfo call

On exit
All registers preserved
Cc =10 failed to insert

Use

This reason code inserts a byte into the specified buffer.

Insert block

On entry

RO = 1 (reason code)

R1 = internal buffer ID

R2 = pointer to data to insert

R3 = number of bytes to insert

R12 = R2 value from Buffer_Internallnfo call

On exit

R2 = pointer to first byte not inserted
R3 = number of bytes not inserted
All other registers preserved

C =10 unable to transfer all data (ie. RG)

Use

This reason code inserts a block of data into the specified buffer. The pointer and length
are adjusted to reflect how much data was actually inserted. If the data has already been
written directly into the buffer (ie. R2 = pointer to buffer insertion point), then no data is
copied and the buffer indices are simply updated.

5a-218

Parallel and serial device drivers

Remove byte

On entry

RO = 2 (reason code)
R1 =internal buffer ID
R12 = R2 value from Buffer_Internallnfo call

On exit

R2 = byte removed
All other registers preserved

C=10] unabletoremove byte

Use

This reason code removes a byte from the specified buffer.

Remove block

On entry

RO = 3 (reason code)

R1 =interna buffer ID

R2 = pointer to destination area

R3 = number of bytes to remove

R12 = R2 value from Buffer_InternaInfo call

On exit

R2 = pointer to first free byte in destination area
R3 = number of bytes not removed
All other registers preserved

Cc=1[0 unabletoremoveall data (ie. R3Z0)

Use

This reason code removes a block from the specified buffer. The pointer and length are
adjusted to reflect how much data was actually removed.

5a-219

The buffer manager service routine

Examine byte

On entry

RO = 4 (reason code)
R1 =internal buffer ID
R12 = R2 value from Buffer_Internalinfo call

On exit

R2 = next byte to be removed
All other registers preserved

C=10] unableto get byte

Use

This reason code reads the next byte to be removed from the specified buffer, without
actually removing it.

Examine block

On entry

RO = 5 (reason code)

R1 =internal buffer ID

R2 = pointer to destination area

R3 = number of bytesto examine

R12 = R2 value from Buffer_Internalinfo call

On exit

R2 = pointer to first free byte in destination area
R3 = number of bytes not transferred
All other registers preserved

C=1[] unableto transfer all data (ie. R3Z0)

Use

This reason code reads a block of datafrom the specified buffer, without actually
removing it. The pointer and length are adjusted to reflect the data transferred.

5a-220

Parallel and serial device drivers

Return used space

On entry

RO = 6 (reason code)
R1 =internal buffer ID
R12 = R2 value from Buffer_Internallnfo call

On exit

R2 = number of used bytesin buffer
All other registers preserved

Use

This reason code returns the number of bytesin the specified buffer.

Return free space

On entry

RO = 7 (reason code)
R1 = internal buffer ID
R12 = R2 value from Buffer_InternaInfo call

On exit

R2 = number of free bytesin buffer
All other registers preserved

Use

This reason code returns the number of free bytes in the specified buffer.

Purge buffer

On entry

RO = 8 (reason code)
R1 =internal buffer ID
R12 = R2 value from Buffer_Internallnfo call

On exit

All registers preserved

Use

This reason code purges all data from the specified buffer.

5a-221

Changes to existing SWis

Next filled block

On entry

RO = 9 (reason code)

R1 =internal buffer ID

R3 = number of bytesread since last call

R12 = R2 value from Buffer_InternalInfo call

On exit

R2 = pointer to first byte in next block to be removed
R3 = number of bytesin next block
All other registers preserved

c=10 buffer empty

Use

This reason code can be used to remove buffered data directly, rather than copying it
from the buffer using reason code 3. Initially, the call should be made with R3 = 0 so that
no bytes are purged. The call returns a pointer to the next byte to be removed from the
buffer, and the number of byteswhich can be removed from that address onwards. In the
next call R3 should equal the number of bytes read sincethe last call, at which point the
buffer indices will be updated to purge the data, and the next filled block will be
returned.

A device driver which uses this call must be the only application which removes data
from the buffer.

Changes to existing SWIs

5a-222

OS_ReadSysinfo (page 1-746)

This call has been extended to provide information on the new hardware supported by
RISC OS 3.5.

« Extravaues are now returned by reason code 2 (read presence of chips and unique
machine ID) to allow support of new hardware features. This is described below.

« Thevauesreturned by reason code 3 (read features mask) differ for the new
hardware, although the call itself has not changed, Again, thisis described below.

Furthermore, two new reason codes (4 and 5) have been added. However, these are for
internal use only, and you must not use them in your own code.

Parallel and serial device drivers

OS_ReadSyslnfo 2 (page 1-750)

This reason code has been extended in a backward-compatible manner to return
information on the new hardware supported by RISC OS 3.5. This has been done by
splitting into fields the values returned in RO - R2 on exit:

RO = hardware configuration word O:
bits 0 - 7 = specia functions chip type:
0L none, 1] 10EB ASIC
bits 8 - 15 = 1/O control chip type:
olJ 1oc,10 1omMD
bits 16 - 23 = memory control chip:
0] MEMCVUMEMC1a 1] 1OMD
bits 24 - 31 = video control chip type:
o] vibcia 1 viDC20

R1 = hardware configuration word 1.
bits0 - 7=1/0 chip type:
0[] absent, 1 [] 82C710/711 or SMC '665 or similar
bits 8 - 31 reserved (set to 0)

R2 = hardware configuration word 2:
bits 0 - 7 = LCD controller type:
o[absent, 1] present (type 1)
bits 8 - 31 reserved (set to 0)

The unique machine ID is still returned in R3 and R4, if available.

OS ReadSyslnfo3 (page 1-751)

This reason code has not been altered in functionality. However the values returned in
RO and R1 have altered, because RISC OS 3.5 machines do not use the 710/711 family
of chips, but instead use the broadly compatible SMC '665 family. Values returned in RO
are:

RO bits sub-unit SMC '665
0-3 IDE hard disc interface 1
4-7 floppy disc interface 1
8-11 parallel port 1
12-15 1st serial port 1
16- 19 2nd serial port 1
20-23 chip configuration 3
24- 31 reserved 0

5a-223

Changes to existing SWis

S5a-224

The only differenceisthe chip configuration, since the sub-units described still have the

same basic functionality. The SMC 665 has extra functionality: you can use a fast
parallel mode (with FIFO and hardware handshake), and use the serial FIFOs provided.
Hence the extra features mask returned in R1 differs to reflect this:

R1 bits sub-unit SMC '665
0-3 IDE hard disc interface 0
4-7 floppy disc interface 0
8-11 paralel port 1
12-15 1st serial port 1
16-19 2nd serial port 1
20-23 chip configuration 0
24- 31 reserved 0

OS_SerialOp (page 2-468)

New flag bit

OS_SerialOp 0 (page 2-470) accepts a new flag bit to enable or disable the serial FIFOs
(if present):

Read/Write or
Bit Read Only Value Meaning
8 R/W 0 Disable the serial FIFOs, if present

1 Enable the serial FIFOs, if present

New baud rates

OS_SerialOp 5 and 6 (page 2-479 and page 2-481) accept new baud rate codes to
support the higher baud rates possible under RISC OS 3.5. These are:

Value of R1 Baud rate
16 38400

17 57600

18 115200

New reason code

This call has also been extended by the addition of a new reason code, described later in
this chapter:

« OS_SerialOp 9 (page 5a-226) enumerates the available serial port speeds.

Parallel and serial device drivers

OS_Byte 7 (page 2-451) and 8 (page 2-453)

These calls have been updated to support the new reason codes used by OS _SerialOp 5
and 6 (see above). However, asin RISC OS 3, you should use the OS_SeriaOp calsin
preference.

5a-225

SWi calls

OS _SerialOp 9

SWiI calls
Enumerates the available serial port speeds
On entry
RO = 9 (reason code)
On exit
RO preserved
R1 = pointer to table of supported baud rates
R2 = number of entriesin table
Interrupts

5a-226

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode
Processor isin SV C mode

Re-entrancy
SWI is not re-entrant

Use

(swi &57)

This call enumeratesthe available serial port speeds, returning them asatable. Thetable
isword aligned; each word in the tabl e specifies abaud rate in units of 0.5 bit/sec. (This

isto support rates such as 134.5 baud.)

The index into the table (starting at 1) can be used in OS_SerialOp 5 and 6 callsto set

the corresponding baud rate.
This cal isavailable from RISC OS 3.5 onwards.

Parallel and serial device drivers

Related SWis
None

Related vectors
SeriaV

S5a-227

Buffer_Internalinfo (SWI &42949)

5a-228

Buffer_Internalinfo
(swi &42949)

Converts a buffer handle to a buffer manager internal buffer 1D

On entry
RO = buffer handle

On exit

RO = interna buffer ID
R1 = address of buffer manager service routine
R2 = value to pass to service routine in R12

Interrupts

Interrupt status is not altered
Fast interrupts are not altered

Processor mode

Processor isin SV C mode.

Re-entrancy
SWI is not re-entrant

Use

This call converts the buffer handle passed in RO to a buffer manager internal buffer ID,
which is specific to that buffer. It also returns the address of the buffer manager service
routine (see page 5a-217), and the value to quote in R12 when calling the service
routine; these are the same for all buffers.

If the buffer handleisinvalid an error is returned, but can be ignored; the service routine
address and R12 value will still be returned.

This cal isavailable from RISC OS 3.5 onwards.

Parallel and serial device drivers

Related SWis
None

Related vectors
None

5a-229

5a-230

116 Keyboard and mouse

Introduction and Overview

One of the main changesin RISC OS 3.5 was the removal of the Acorn keyboard

interface from the kernel and its replacement with a standard IBM PS/2 compatible

keyboard device driver, held in the separate ‘Keyboard’ module. For a description, see
The keyboard interface on page 5a-232.

The standard quadrature mouse driver was also removed form the kernel and is now a
separate driver, held in the ‘Mouse’ module. There is also a serial mouse driver that can
be used if you connect a standard PC-type (Microsoft or Mouse Systems) mouse to the
serial port; this is held in the ‘SerialMouse’ module.

In RISC OS 3.6 the PS/2 keyboard module was renamed ‘PS2Driver’, and extended to
support an IBM PS/2 compatible mouse.

For more details of mouse drivers Jéwe pointer interface on page 5a-234.

5a-231

Technical details

Technical details

The keyboard interface

The keyboard interface has been changed to remove hardware dependent code from the
kernel to separate keyboard device driver modules. This makesiit easier to support
different keyboard devices, and hence open up the choice of keyboards that can be
connected. RISC OS 3.5 and 3.6 both supply one keyboard device driver, suitable for
IBM PS/2 compatible keyboards.

The interface allows more than one keyboard device to provide input at any onetime.
Input from multiple devices is merged into one stream asif coming from one device.

The keyboard device driver and kernel communicate with each other through the KeyV
software vector (page 5a-240). The communication is two-way, so both the driver and
the kernel need to claim the vector using OS_Claim (page 1-66), and install aroutineto
handle the calls that the other may make.

(KeyV isasoftware vector that was used in 8 bit Acorn machines, but has not been used
since, and has now been redefined.)

The IOMD chip

The keyboard is connected to the new IOMD chip, or to the I/O circuitry integrated into
an ARM 7500 or similar, rather than to the IOC chip used in earlier versions of

RISC OS. The PS/2 compatible interface provided is similar to that provided by 10C,
and includes:

« interrupts on receiver full

e interrupts on transmitter empty

« independent transmit and receive data registers
e automatic parity generation on transmitted data

« statusand control line registers, capable of driving the keyboard Clock and Data
lines.

The keyboard device driver

5a-232

The keyboard device driver claims the keyboard device interrupts that IOMD generates
by calling OS_ClaimDeviceVector (page 1-123). It assumes that the keyboard sends
scan codes from IBM-MF compatible code set 2 (standard PS/2 code set); if the
keyboard does not, then you may get unexpected results.

Keyboard and mouse

The keyboard device driver converts the scan codes to the low level key numbers
expected by the RISC OS kernel. It then passes these to the kernel by calling the KeyV
software vector whenever akey is pressed or rel eased; areason code indicates which has
occurred. The keyboard device driver kegps atable of flags for key states, and only calls
KeyV when the state changes.

The keyboard firmware’s own auto-repeat capability is not used. Keys are instead
repeated by the kernel — just as in earlier versions of RISC OS — hence keeping the same
scheme for configuring auto-repeat delay and repeat rate.

The supplied keyboard device driver(s) can be replaced by a custom version if required
(eg for a special needs input device). If you wish to use some other device with this
vector, contact Acorn Technical Support for a keyboard ID allocation.

The keyboard handler

The keyboard handler is similar to that in earlier versions of RISC OS. It consists of a
look up table and a small amount of code. It converts low-level key numbers provided
by the keyboard device driver into an ASCII form, with extensions for special
characters.

The keyboard handler can be replaced by a custom version if required (eg to support a
foreign keyboard).

The kernel keyboard driver

The kernel keyboard driver is a part of the RISC OS kernel, and binds together the
keyboard device driver and keyboard handler. The kernel keyboard driver uses the
keyboard handler to convert the low-level key numbers into a recognisable form. The
kernel keyboard driver also debounces key presses, keeps track of keys down, and
generates auto-repeats of keys at the configured rate.

The kernel keyboard driver also tracks the state of the keyboard’s LEDs, and calls KeyV
to inform the keyboard device driver when it needs to change the state of an LED.

Supporting different keyboards

Now that different versions of RISC OS support different keyboards, you will find that
the labels on key tops differ for certain key codes sent to application®l Fb&©S 3

Syle Guide specifies applications’ behaviour in terms of these labels, rather than key
codes. Consequently, your application’s behaviour (and possibly its help text and
keyboard shortcuts) will have to change depending on which keyboard is in use. You can
find this out by calling OS_InstallKeyHandler (page 1-945) with RO = 1.

5a-233

The pointer interface

The pointer interface

Just as for the keyboard interface, al hardware dependent code has been removed from
the kernel and placed in separate pointer device driver modules. Multiple pointing
devices can exist on the computer, but only one can be active at any one time.

RISC OS 3.5 supplies two pointer device drivers:

o Thefirstissuitable for a quadrature mouse (such as has been used on all previous
versions of RISC OS). The IOMD chip provides a quadrature interface, and so
machines fitted with IOMD normally use this driver.

« The second drives a PC serial mouse that uses either Microsoft or Mouse Systems
dataformats. It is provided so that users can choose an alternative pointer device
from the large range available that uses these data formats.

These two drivers are held in separate modules.

RISC OS 3.6 adds a further pointer device driver:

e Thisdriverisfor aserial mouse that uses PS/2 data formats. The ARM 7500
providestwo PS/2 interfaces (onefor the keyboard, one for the mouse), but does not
provide aquadrature interface, and so machinesfitted with an ARM 7500 or similar
normally use this driver.

Thisdriver isheld in the same module as the PS/2 keyboard device driver

Again avector is used to communicate between the kernel and the device driver; both
need to claim the vector and install aroutine to handle the calls the other may make. The
vector isanew one, named PointerV (page 5a-242). Theinterfaceit providesis common
to al pointer device drivers. However, the drivers obviously differ in the way that they
access the pointer device’s hardware.

Passing the pointer position to the kernel

5a-234

The kernel requests pointer device movements every VSync by calling PointerV with
reason code 0; the pointer device driver returns the movements. The kernel then scales
the pointer device movements depending on the configured mouse step, and updates the

pointer position on the display.

The kernel is also responsible for:

« registering the pointer device buffer with the buffer manager
« all pointer device bounding

« responding to OS_Mouse calls.

Keyboard and mouse

Passing button presses to the kernel

When any buttons on the pointer device change state, the pointer device driver passes
thisto the kernel by calling KeyV, just as for a keyboard. The kernel treats these in the
same way as any other key, including debouncing them.

Pointer device types

Most calls use a pointer device type to differentiate between the supported pointer
devices. Currently defined devices are:

Type Device

0 Quadrature mouse

1 Microsoft mouse

2 Mouse Systems mouse

3 PS/2 mouse (RISC OS 3.6 onwards)

If you wish to use some other device with this vector, contact Acorn Technical Support
for a pointer device type allocation.

Configuring and selecting the pointer device type

The new command * Configure MouseType (page 5a-245) configures the pointer device
type to use thereafter. A new SWI, OS_Pointer (page 5a-244), sets or gets the currently
selected pointer device type. If anew typeis selected, the kernel calls PointerV with
reason code 2 so that pointer device drivers can enable or disable.

A further PointerV reason code of 1 can be used to enumerate the available pointer
devices as text. This has been incorporated in the Configure application, so users can
configure pointing devices from a menu.

Initialising a pointer device driver

When a pointer device driver initialises it must check the current pointer device type
using OS_Poainter; should the driver understand the type, it must enable itself.

The quadrature mouse driver

A guadrature mouse is connected to IOM D, which does not provide interrupt support for
mouse input. Instead it provides two 16-bit registers (for x and y directions) which
increment, decrement and wrap when the mouse is moved. The state of the mouse
buttonsis stored in a specific memory location.

The quadrature mouse driver responds to requests for pointer device type 0. It polls the
mouse position registersin IOMD, and cal cul ates the mouse movements to return to the
kernel by comparing the previous val ues of these registers with the new ones. Like wise,
it regularly reads the state of the buttons.

5a-235

The pointer interface

The Microsoft / Mouse Systems serial mouse driver

The Microsoft / Mouse Systems serial mouse driver responds to requests for pointer
device type 1 (Microsoft) or 2 (Mouse Systems). When it is selected (see Configuring
and selecting the pointer device type on page 5a-235 and PointerV on page 5a-242), it
configures the serial device using OS_SerialOp (page 2-468) and opensthe seri al :
device for input.

The driver also claims TickerV (page 1-99), and processes any data received by the
serial device on centisecond clock ticks. The code re-enables interrupts to avoid any
adverse effects on interrupt latency, and sets a flag to prevent re-entrancy whileit is
being executed. All mouse movements are amalgamated until the kernel calls PointerV
to request they be sent.

The driver does not prevent the reconfiguration of the serial port whileit isactiveitself;
however it ensures that theser i al : deviceisreopened if it is closed by an external
source. If another pointer device becomes selected, the driver releases TickerV and
closestheseri al : device.

The PS/2 serial mouse driver

The PS/2 serial mouse driver calls PointerV in asimilar way to the Microsoft / Mouse
Systems serial mouse driver; see The Microsoft / Mouse Systems serial mouse driver
above.

However, sinceit usesits own dedicated interface, it does not claim TickerV, nor doesiit
configure and use the serial device.

5a-236

Keyboard and mouse

Data formats for serial mice

The various serial mouse drivers communicate with serial mice which transmit datain
one of these formats:

Microsoft

Thefirst class of mice are Microsoft compatible, and are supported from RISC OS 3.5
onwards. They send data reports in the following format:

Bit 6 5 4 3 2 1 0
Byte 1 1 L R Y7 Y6 X7 X6
2 0 X5 X4 X3 X2 X1 X0
3 0 Y5 \z Y3 Y2 v1 Y0
4 0 M DT4 DT3 DT2 DT1 DTO
L,R,M bit flags for left, right and middie buttons: 1 00 button down
X7-X0 signed x distance, in range —128 (left) to +127 (right)
Y7-Y0 signed y distance, in range —128 (up) to +127 (down)
DT4-DTO device type: @ mouse, all others reserved

Some three button mice omit the 4th byte in the report, and set both the L and R bits
when the middle button is pressed. The driver can cope with this, and still detects the
state of the middle button. This featurena intended to support 2 button mice.

5a-237

The pointer interface

M ouse Systems

The second class of mice are Mouse Systems Corporation compatible, and are supported
from RISC OS 3.5 onwards. They send their data reportsin this format.

Bit 7 6 5 4 3 2 1 0
Byte 1 1 0 0 0 0 L M R
2 X7 X6 X5 X4 X3 X2 X1 X0
3 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO
4 X7 X6 X5 X4 X3 X2 X1 X0
5 Y7 Y6 Y5 Y4 Y3 Y2 Y2 YO
L,R,M bit flags for left, right and middie buttons: 0 O button down
X7-X0 signed x distance, in range —128 (left) to +127 (right)
Y7-YO0 signed y distance, in range —128 (down) to +127 (up)

The second set of X, Y data (bytes 4 and 5) is not a duplicate of the first, but the
movement of the mouse during transmission of the first report. It cannot be discarded.

PS/2

The third class of mice are PS/2 compatible, and are supported from RISC OS 3.6
onwards. They send their data reports in this format.

Bit 7 6 5 4 3 2 1 0

Byte 1 Yv Xv Y8 X8 1 M R L

2 X7 X6 X5 X4 X3 X2 X1 X0

3 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

L,R,M bit flags for left, right and middle buttonstil button down

X8 - X0 signed x distance, in range —256 (left) to +255 (right)

Y8-Y0 signed y distance, in range —256 (down) to +255 (up)

Xv x data overflow: 10 overflow

Yv y data overflow: 11 overflow

5a-238

Keyboard and mouse

Protocols for serial mice

The Microsoft / Mouse Systems serial mouse driver

This driver only accepts data from mice communicating in a stream mode operating at
1200 baud. It does not support the higher baud rates that some mice alow you to select
by sending them a command.

In Microsoft compatible format datais transferred in 7-bit bytes framed with 1 start bit
and 2 stop bits with no parity.

In Mouse Systems Corporation compatible format datais transferred in 8-bit bytes
framed with 1 start bit and 2 stop bits with no parity.

ThePS/2 serial mouse driver
The PS/2 serial device driver uses an asynchronous serial port.

In PS/2 compatible format datais transferred in 8-bit bytes, preceded by 1 start bit, and
followed by an odd parity bit and a stop hit.

5a-239

Software vectors

Software vectors
KeyV
(Vector &13)

Used to communicate between the kernel and a keyboard device driver

On entry
Register usage is dependent on areason code held in RO:

Keyboard present

RO = 0 (reason code)
R1 = keyboard ID: 1 O Archimedes keyboard, 2 0 PC-AT keyboard

Key released

RO = 1 (reason code)
R1 =low-level internal key number (see Low-level internal key numbers on page 1-158)

Key pressed

RO = 2 (reason code)
R1 = low-level internal key number (see Low-level internal key numberson page 1-158)

Notify driver of LED state

RO = 3 (reason code)
R1 = LED statusflags:
Bit M eaning when set

0 Scroll Lock on
1 Num Lock on
2 CapsLock on

3-31 reserved (should be ignored)

Enable keyboard devicedrivers

RO = 4 (reason code)

Reserved for Acorn use
RO =5 - 10 (reason codes)

5a-240

Keyboard and mouse

On exit
All registers preserved

Use
All of these calls should be passed on; none of them should normally be intercepted.
Keyboard present
When akeyboard device driver has successfully initialised, it must notify the kernel that
the keyboard is present by calling KeyV with this reason code.
Key released and Key pressed
When akey is released or pressed, akeyboard device driver must inform the kernel by
calling KeyV with these reason codes. It must not do so until it is enabled by the kernel;
see Enable keyboard device drivers bel ow.
The key numbers are the same as those used by the key up/down event; see Low-level
internal key numbers on page 1-158.
Notify driver of LED state
When the state of the keyboard LEDs changes, the kernel calls KeyV with this reason
code. A keyboard device driver must claim KeyV, and install a routine to handle such
calls by setting the keyboard’s LEDs as requested.
Enable keyboard devicedrivers
The kernel calls KeyV with this reason code to enable keyboard device drivers. A
keyboard device driver must not use the Key released and key pressed reason codes until
it has received this call; any attempt to do so will be ignored.
This isnot a reset call, and keyboard device drivers may see this call many times while
they are active. However, it does mean that the kernel has flushed its table of keys that
are held down, so the device driver should do the same if appropriate.
Reserved for Acorn use
Reason codes 5 - 10 are reserved for Acorn use.
Related SWis

OS_Claim (page 1-66)

5a-241

PointerV (Vector &26)

5a-242

PointerV
(Vector &26)

Used to communicate between the kernel and a pointer device driver

On entry

Register usage is dependent on areason code held in RO:

Request status of pointer device

RO = 0 (reason code)

R1 = device type — see page 5a-235
Enumerate pointer devicetypes

RO = 1 (reason code)
R1 = pointer to previously found driver’s device type record list, or O if none

Pointer devicetype selected

RO = 2 (reason code)
R1 = device type

On exit

Use

All registers preserved except:

Request status of pointer device

R2 = signed 32-bit x movement since last call
R3 = signed 32-bit y movement since last call

Enumerate pointer device types

R1 = pointer to driver’s device type record list

Request status of pointer device

The kernel calls PointerV with this reason code every VSync, to obtain the latest
movement of the pointer device. A pointer device driver that supports the specified
device type should intercept the call, returning the movement of the pointing device
since the last time this reason code was called. Otherwise it should pass the call on.

Keyboard and mouse

The kernel uses the returned values to update the pointer position.

Enumerate pointer devices

The kernel calls PointerV with this reason code to enumerate the available pointer
devicetypes. A pointer device driver must claim PointerV, and install aroutine that adds
toalinked list of pointer devices. It must add one record for each devicetypeit supports:

Offset Meaning

0 next pointer, giving address of next record

4 flags: bits 0 to 31 reserved (must be 0)

8 device type — see page 5a-235

9 name of pointer device, no more than 30 characters, null terminated

(for use in menus)

The pointer device driver must claim the space for the records from RMA. It must set the
next pointer field of the last record it added to the value that R1 had on entry, and pass
on the call with R1 pointing to the first record it added.

The caller must later free the memory claimed from RMA, usually as it reads the
returned list.

This call must not be intercepted.

Pointer device type selected

The kernel calls PointerV with this reason code when a device type is selected by
OS_Pointer (see page 5a-244). A pointer device driver should enable itself if it supports
the specified device type; otherwise it should disable itself.

This call must not be intercepted.

5a-243

SWi calls

SWI calls

OS_Pointer
(swi &64)

Gets or sets the currently selected pointer device type

On entry

RO = reason code: 0 0 get pointer type, 1 00 set pointer type
R1 = pointer device type (if R1 = 1 on entry) — see page 5a-235

On exit
RO = pointer device type (if R1 = 0 on entry) — see page 5a-235

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call gets or sets the currently selected pointer device type. This is used to ensure
that the correct pointer device driver responds to certain PointerV calls.

Selecting a new device type causes PointerV (page 5a-242) to be called with reason code
2 (Pointer device type selected), so that drivers can enable or disable.

Related SWiIs
None

Related vectors
PointerV (page 5a-242)

5a-244

Keyboard and mouse

* Commands
*Configure MouseType

Sets the configured pointer device to be used thereafter

Syntax
*Configure MouseType device type

Parameters
devi ce_type anumber giving the pointer device type (see page 5a-235)

Use
*Configure MouseType sets the configured pointer device to be used thereafter.

Example
*Configure MuuseType 0 Select Quadrature mouse

5a-245

5a-246

117 Filing system locking and resets

Introduction and Overview

The FSLock module (added in RISC OS 3.5) provides protection against inadvertent or
malicious changing of the CMOS RAM and hard disc contents. To do thisit intercepts
the callsthat update the contents of the hard disc and CMOS RAM, and returns an error
instead.

The Reset behaviour has been further changed in two ways. Firstly, it has been

simplified both to reduce the confusing range of options that were availablein earlier

versions of RISC OS and to ensure areset always realy starts the machine afresh.

Secondly, a link can be set on the machine’s circuit board to prevent resetting the CMOS
RAM by a Delete power-on or similar combination.

5a-247

Technical Details

Technical Detalils

Changes to power-on and reset

Hardware CMOS protection

Earlier versions of RISC OS allowed users to reset some or al of CMOS RAM by
holding down various keys whilst the machine was powered on. However, any resultant
accidental or deliberate alteration of CMOS RAM could be a nuisance in some
environments. To counteract this, RISC OS 3.5 has added support for aCMOS
protection connector inside the machine.

With the connector in the protected position, the CMOS RAM cannot be cleared as a
part of a power-on or reset sequence, no matter what keys are held down. With it in the
unprotected position, CMOS RAM clearing works just asin earlier versions of

RISC OS.

New reset behaviour

5a-248

The power-on and reset combinationsfor RISC OS 3.5 have been changed to rationalise
apreviously confusing set of options.

Under earlier versions of RISC OS areset had many variations depending on whether it
was a power-on reset, ordinary reset or break style reset, whether * FX200,2 had been
done before the reset, and so on. To most users this degree of flexibility was never useful
simply because it was so complex.

Under RISC OS 3.5 the hardware generates the same type of reset at power-on and when
the reset button is pressed. Both are now effectively hard resets; the previous concept of
hard and soft resets is no more. In both cases RISC OS 3.5 goes through the full
sequence of reset operations. It:

o« Peformsasdf test

« ClearsRAM

¢ Checksthe keyboard for CMOS RAM clearing
¢ Initialisesthe OS.

You can still usethe Break key as part of areset combination (see below). This performs
apartial reset that omits the self test and CMOS RAM clearing.

Filing system locking and resets

The following scheme is now used.

Key combination Function

Power-on Normal reset, use boot options

Ctrl-break Partial reset (no self-test or CMOS RAM reset),
use boot options

Reset Normal reset, use boot options

The following modifiers can be used in conjunction with the above resets to change the
boot behaviour:

M odifier Function
Shift Reverse action of configured boot option
* (on keypad) Use boot options, but boot to command line

instead of the configured language

For backward compatibility, pressing Shift-Break causes the same action as
Shift-Ctrl-Break.

The following modifiers can be used to reset some or all of CMOS RAM, provided the
CMOS protection connector isin the unprotected position:

M odifier Function

Delete Reset CMOS RAM

R Partially resst CMOS RAM

Copy As Delete, but configures separate sync

T AsR, but configures separate sync

0to 9 (on keypad) Configures monitor type

. (on keypad) Configure auto monitor type, sync and mode

The FSLock Module

The FSLock module protects the CMOS RAM and hard disc against unwanted
modification. It does so by intercepting any SWIsthat ater the hard disc contents or
CMOS RAM, and returning an error instead.

FSL ock cannot protect all discs on al filing systems; it can only protect drives4 - 7 on
any one filing system. By default, the Configure application sets FSLock to protect the
ADFS hard discs 4-7.

Of course, a machine which allows no hard disc updatesis not very useful, so two areas
of a protected disc have been left unprotected:

o $.Public can be used for generd file storage; it cannot be created while the
computer isin alocked state.

« $.!Boot.Resources.! Scrap.ScrapDir is writable to allow Scrap transfers of files
between applications.

5a-249

Changes to existing SWis

Lock states
FSLock operates in three states:

Fully unlocked

A fully unlocked machine has no password allocated to it, and can have its hard discs or
configuration modified. This state persists over any sort of reset, and is the default
selected after the CMOS RAM has been successfully cleared.

Partially unlocked

A partialy unlocked machine has a password alocated to it, but can still haveits hard
discs and configuration modified. If reset the machine reverts to being locked.

Locked

A locked machine has a password allocated to it, and cannot have its hard discs or
configuration modified. The machine staysin this state if it is reset.

Lock status
The lock states are passed to commands using alock status:

Satus Meaning

0 Fully unlocked
1 Partially unlocked
2 Locked

Permitted passwords

The password is case sensitive. The Configure application restricts the password to at

least five non-space characters that are acceptable in awritableicon. Although the SWIis

will accept any null terminated string, we strongly recommend you stay within the
restrictions imposed by the Configure application’s interface, otherwise users may find
the machine locked with an untypable password.

Changes to existing SWIs
OS_Byte 253 (page 1-935)

Under RISC OS 3.5 and later this call will always read the last type of reset as a
power-on reset (R1 = 1 on exit).

5a-250

Filing system locking and resets

SWI calls

FSLock Version
(swi &44780)

Returns information describing the FSLock module

On entry

On exit

RO = version number 100
R1 = pointer to module’s workspace

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use
This call returns information describing the FSLock module. RO gives the module’s
version number, and R1 gives a pointer to the module’s workspace.
This call is available from RISC OS 3.5 onwards.

Related SWis

None

Related vectors
None

5a-251

FSLock_Status (SWI &44781)

5a-252

FSLock Status
(swi &44781)

Returns the current lock status, and the locked filing system’s number

On entry

On exit

RO = lock status (page 5a-250)
R1 = locked filing system number (undefined if lock status = 0)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
This call returns the current lock status, and the locked filing system’s number.
This SWI can only be called by number; not by hame.
This call is available from RISC OS 3.5 onwards.

Related SWiIs

None

Related vectors
None

Filing system locking and resets

FSLock ChangeStatus
(swi &44782)

Changes one or more of the lock status, the password and the locked filing system

On entry

RO = new lock status (page 5a-250)

R1 = pointer to current file locking password
R2 = pointer to new filelocking password
R3 = new locked filing system number

On exit
RO - R3 preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy
SWI is not re-entrant

Use

This call changes one or more of the lock status, the password and the locked filing
system. The new lock status must always be passed in RO; other parameters may be
required depending on its value, and the current lock status:

Current lock status

0 1 2
New 0 — R1 R1
lock 1 R2, R3 R1, R2, R3 R1
status 5 R2, R3 — R1, R2, R3

If the old password is needed and not given correctly an error will be returned. If afiling
system number is needed then a check will be made for that filing system'’s existence.

5a-253

FSLock_ChangeStatus (SWI &44782)

This SWI can only be called by number; not by name.
This cal isavailable from RISC OS 3.5 onwards.

Related SWiIs
None

Related vectors
None

5a-254

Filing system locking and resets

* Commands
*FSLock _ChangePassword

Changes the locked filing system and password

Syntax

*FSLock_ChangePassword fs_nane [new password [new password [ol d_password]]]

Parameters

fs_nane afiling system name

new _password new file locking password

ol d_password current file locking password
Use

*FSLock_ChangePassword changes the locked filing system and password. If the

machine was fully unlocked then the old password need not be given. If any of the

passwords aren’t given then a prompt appears where the password can be entered
without it being seen, since each character typed is displayed on the screen as a hyphen

().

This command is available from RISC OS 3.5 onwards.

Example

*FSLock_ChangePassword scsifs
New password: ------

New password again: ------
ad password: --------

Related commands
None

5a-255

*FSLock _Lock

*FSLock Lock

L ocks the computer from the partially unlocked state

Syntax
*FSLock _Lock

Use
*FSLock_Lock locks the machine from the partially unlocked state.
If the machineis fully unlocked or locked then an error message is given.

This command is available from RISC OS 3.5 onwards.

Related commands
None

5a-256

Filing system locking and resets

*FSLock_Status

Displays the machine’s current lock state

Syntax
FSLock_St at us

Use
*FSLock_Status displays the machine’s current lock state.
This command is available from RISC OS 3.5 onwards.
Example

*FSLock_St at us
No filing systemis currently | ocked

Related commands
None

5a-257

*FSLock_Unlock

5a-258

*FSLock _Unlock

Unlocks the computer

Syntax
*FSLock_Unl ock [-full] [password]

Parameters

password current file locking password

Use
*FSLock_Unlock unlocks the computer.

If the- f ul | switchisgiventhenthe machinewill befully unlocked, otherwise apartial

unlock will be done. If the password isn’t given then a prompt appears where the
password can be entered without it being seen, since each character typed is displayed
on the screen as a hyphen (‘-").

If the machine is already in the required state (partially or fully unlocked) then an
appropriate error will be given.

This command is available from RISC OS 3.5 onwards.

Example
*FSLock_Unl ock -full gO.9pGoH

Related commands
None

118 Free

Introduction and Overview

The Free module has been updated in RISC OS 3.6 to support displaying free spacein
the desktop for filing systems with discs of more than 4 GB capacity.

5a-259

Technical details

Technical details

Changes to existing SWIs

Free_Register (page 2-522)

If a filing system’s free space routine does not recognise a reason code passed to it, it
should return with all registers preserved.

A new reason code has been defined in RISC OS 3.6 for the filing system’s free space
routine (as registered using this call). The new reason code (4) returns the free space on
the disc in 64 bits, rather than the 32 bits allowed by reason code 2:

Reason code 4— Get 64 bit free space for device

5a-260

On entry

RO=4

R1 = filing system number

R2 = pointer to 6 word buffer
R3 = pointer to device name/ ID
On exit

RO=0

R1 - R3 preserved

Details

This entry point is called to get the free space for adevice. You should fill in the buffer
pointed to by R2 with the following information:

Offset Meaning

0 bits 0 - 31 of total size of device (0 if unchanged from last time read)
4 bits 32 - 63 of total size of device (0 if unchanged from last time read)
8 bits 0 - 31 of free space on device

12 bits 32 - 63 of free space on device
16 bits 0 - 31 of used space on device
20 bits 32 - 63 of used space on device

From RISC OS 3.6 onwards, the Free module calls this reason code to find the free
space, rather than calling reason code 2. If RO is non-zero on exit (ie unaltered), or if an
error is generated, the Free module then calls reason code 2. Thus when returning an
error from this reason code, your free space routine must also return the same error for
reason code 2 before the Free module believesit to be an error.

119 Writing a filing system

Introduction and Overview

New FSEntry_Func and ImageEntry_Func reason codes

In RISC OS 3.6 OS_FSControl has three new reason codes (see FileSwitch on

page 5a-167), each of which duplicates previously available functionality, but allows

64 bit values to be passed or returned instead of 32 bit values. For each of the new
OS_FSControl reason codes, a corresponding new reason code has therefore been added

to those that may be passed to a filing system’s FSEntry_Func entry point and to an
image filing system’s ImageEntry_Func entry point:

OS FSControl FSImageEntry Func Name

55 35 ReadFreeSpace64
56 36 DefectList64

57 37 AddDefect64

These new reason codes are detailed in the next section.

Although ImageEntry _Func entry points have been defined, there is little point in an
image filing system supporting them under RISC OS 3.6. Since an image filing system
is restricted in size to the maximum file size of 4 GB, all quantities can be represented in
32 hits, and the old reason codes are therefore adequate. All programs calling the new
64 bit SWIs (and hence the new entry points) should revert to calling the old 32 bit SWIs
(and hence the old entry points) if they get an error; so you shouldn't get problems with
new software failing to work because you don't provide the new entry points.

5a-261

Interfaces

Interfaces

FSEntry_Func 35 and ImageEntry_Func 35

Read free space

On entry

RO =35

R1 = pointer to pathname of any object on image (FSEntry_Func 35 only)

R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 35); or image
filing system’s handle for image (ImageEntry_Func 35)

On exit

RO = bits 0 - 31 of free space
R1 = hits 32 - 63 of free space
R2 = biggest object creatable
R3 = bits 0 - 31 of disc size
R4 = bits 32 - 63 of disc size

This entry point is called by FileSwitch to read the free space for the image that holds the
object specified by R1 (FSEntry Func 35), or that is specified by the handle in R6
(ImageEntry_Func 35).

This entry point is not called by RISC OS 3.5 or earlier.

FSEntry Func 36 and ImageEntry Func 36

5a-262

Read defect list

On entry

RO =36

R1 = pointer to name of image (FSEntry_Func 36 only)

R2 = pointer to buffer

R5 = length of buffer

R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 36); or image
filing system’s handle for image (ImageEntry_Func 36)

Writing a filing system

On exit

RO preserved
R1 = number of defects placed in buffer
R2, R5, R6 preserved

Details

Thisentry point is called by FileSwitch to request that your filing system fills the given
buffer with adefect list giving the byte offsets to the start of any defectsin the specified
image. Each entry in the list is a pair of words — with the least significant one first —
giving the address of the defect as a 64 bit value.

It is an error if the specified image is not the root object in an image (eg it is an error to
map out a defect from adfs::HardDisc4.$.fred, but not an error to map it out from
adfs::HardDisc4.$).

This entry point is not called by RISC OS 3.5 or earlier.

FSEntry_Func 37 and ImageEntry_Func 37

Add a defect
On entry
RO =37

R1 = pointer to name of image (FSEntry_Func 37 only)

R2 = bits 0 - 31 of offset to start of defect

R3 = bits 32 - 63 of offset to start of defect

R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 37); or image
filing system’s handle for image (ImageEntry_Func 37)

On exit
RO - R2, R6 preserved

Details

This entry point is called by FileSwitch to request that your filing system maps out the
given defect from the specified image.

It is an error if the specified image is not the root object in an image (eg it is an error to
map out a defect from adfs::HardDisc4.$.fred, but not an error to map it out from
adfs::HardDisc4.9$). If the defect cannot be mapped out because it is not free, then you
should return an error.

5a-263

Thisentry point is not called by RISC OS 3.5 or earlier.

5a-264

120 Writing a FileCore module

Under RISC OS 3.6 FileCore has been extended to support larger discsthan the versions
previously supplied with RISC OS. This has been done by using sector addressesin the
interface to FileCore modules, rather than the byte addresses previously used.

Obviously you cannot use these larger discs without both the new version of FileCore,
and a new-style FileCore module that supports sector addressing. We therefore
recommend that you write all new-style FileCore modules to use sector addressing
internally. Existing old-style FileCore modules must be rewritten to use sector
addressing before you can use them with large discs.

Declaring your module (page 2-597)

The process for registering a FileCore modul e has been extended so that each of
FileCore and the registering FileCore module can determine whether the other supports
sector addressing. You must use this process whenever you register anew-style FileCore
module, including on module reinitialisation.

Descriptor block (page 2-597)

Thefirst stage in registering a new-style FileCore module is the same as before; your
module must call FileCore_Create (page 2-228). Two new flag bits have been defined in
the descriptor block it passes:

Bit Meaning when set

8 FileCore module supports MiscOp 7
9 FileCore module uses sector offsets (ie uses the new FileCore format)

All versions of FileCore that do not support MiscOp 7 or sector addressing simply
ignore these flag bits.

5a-265

Running new-style FileCore modules under the new FileCore

Ensuring the new FileCore is present

Immediately you have aregistered a new-style FileCore module using FileCore_Create,
you must then check it is running under the new FileCore. To do so, you should call
FileCore_MiscOp 6 (page 5a-176) using the module’s newly issued private word.

If no error is returned, you may then assume you are running under a FileCore that
understands sector addressing, and can take full advantage of the new larger disc sizes
available. Se®&unning new-style FileCore modules under the new FileCore on

page 5a-266.

If an error is returned, the FileCore module is running under an old version of FileCore.
You must then either:

« Generate an error stating your module cannot run, and deregister the module; or:

« Set an internal flag to force a backwards compatible mode, and run within the
limitations of the old FileCore. Sé&nning new-style FileCore modules under an
old FileCore on page 5a-268.

Running new-style FileCore modules under the new FileCore

DiscOp entry (page 2-602)

All disc addresses FileCore passes to the DiscOp entry point are sector addresses, rather
than the byte addresses used by older versions of FileCore. Since your new-style module
should be using sector addresses internally, you shouldn't need to translate these.

MiscOp entry (page 2-604)

The only MiscOp entry point which takes a disc address is MiscOp 0 (Mount). FileCore
can't know the sector size until after it has mounted the disc, so it can’t pass a sector
address to MiscOp 0. Thus the parameters passed to your module’s MiscOp entry point
are unchanged from earlier versions of RISC OS. The disc address of the boot block
(&CO00) is still passed as a byte address, and it is your module’s responsibility to deal
with this.

5a-266

Writing a FileCore module

Returning errors (page 2-600)

The meaning of RO when returning an error has been extended so that sector addresses
can be returned. From RISC OS 3.6 onwards, if bits 30 and 31 of RO are set, then bits
0 - 29 point to atwo-word block:

Offset Meaning
0 bits 0 - 7 are error number, bits 8 - 29 are clear

4 bits O - 28 are the sector number of the disc address,
bits 29 - 31 are the drive number

Calling FileCore DiscOp SWis

Your module is responsible for ensuring that any calls it makes to FileCore’s DiscOp

SWIs use the correct form of addressing:

« FileCore_SectorOp uses sector addressing; your module doesn’t need to translate

its own internal sector addresses.

+ FileCore_DiscOp continues to use byte addressing; your module must translate
between its own internal sector addresses and FileCore_DiscOp’s byte addresses,

both on entry and on exit.

Since FileCore has to do a similar translation back to sector addresses before calling
your module’s low-level entry points, calling FileCore_DiscOp is inefficient, and

your module should always use FileCore_SectorOp in preference.

Providing a SWI handler
Your module should provide a full SWI interface, including equivalenddl teelevant

FileCore SWI calls — both new and old. Any calls others make to your module’s SWI
handler will already use the correct form of addressing for the SWI being called, so
typically your handler just needs to set R8 to point to your module’s FileCore instance
private word, and then call the equivalent FileCore SWI. It does not need to perform any

address translation.

5a-267

Running new-style FileCore modules under an old FileCore

Running new-style FileCore modules under an old FileCore

5a-268

Low-level entry points

If you are running your new-style FileCore module under aversion of FileCore that does
not understand sector addressing, FileCore will call your low-level entry points using
the only form of addressing it knows about: byte addressing. See Module interfaces on
page 2-602.

Calling FileCore SWiIs

Your module must ensure that it only uses calls available under the old FileCoreit is

using. In particular this means that you must not call FileCore_SectorOp, but must

instead use FileCore_DiscOp, translating between your module’s own internal sector
addresses and FileCore_DiscOp’s byte addresses, both on entry and on exit.

Providing a SWI handler

Your module should still provide a full SWI interface, including equivalensl to

relevant FileCore SWI calls — both new and old. Your SWI handler should downgrade
any call to an unavailable 64 bit / sector-addressing SWI to instead call the
corresponding 32 bit / byte-addressing FileCore SWI, and then fake the return values for
the original 64 bit / sector-addressing call. Thus:

« Calls to FileCore_SectorOp (page 5a-178) should be downgraded to use
FileCore_DiscOp (page 2-223)

« Calls to FileCore_FreeSpace64 (page 5a-183) should be downgraded to use
FileCore_FreeSpace (page 2-231).

Your module’s handler must not attempt to validate reason codes passed to its own
DiscOp and MiscOp SWIs; you must — as usual — just set R8 to point to your module’s
FileCore instance private word, and then call the equivalent FileCore SWI. FileCore is
responsible for faulting any unavailable reason codes, such as an attempt to call
FileCore_MiscOp 6.

121

Econet

Introduction and Overview

New SWIs

The Econet module was removed from RISC OS 3.5, and is now supplied inaROM on
the Econet network card. (This ROM may also contain updated versions of other

RISC OS networking modules.) The first issue of the Econet card uses the Econet 5.70
module, which is the version described below.

The Econet module has had new SWIs added to it. These are documented on the
following pages.

Machine type numbers

Port numbers

A machine type number has been defined for machines using the Risc PC architecture,
and two further types have been allocated to athird party. In the section Machine type
numbers on page 2-644, the line:

& 000F to & FFF9 Reserved
should now read:
& 000F Risc PC architecture
& 0010 to & FFF7 Reserved
& FFF8 SJ Research GP server
& FFF9 SJ Research 80386 UNIX

From RISC OS 3.5 onwards, Econet uses its port numbers as follows:

Port Allocation

&00 Reserved

&01 - &0F Fixed reply ports, for backward compatibility

&10- &8F Dynamic ports, allocated by Econet_AllocatePort
&90-&FE Fixed ports, allocated by Acorn Computers

&FF Argument to Econet_CreateReceive for wild reception

5a-269

Changes to existing SWis

The section Port numbers on page 2-649 is no longer accurate for RISC OS 3.5
onwards:

« Allocation &54 for Digital Services Tape Storeis no longer used.

¢ The port number &DO has been reallocated in RISC OS 3.5 as
PrinterServerDataReply.

« Further fixed port numbers have been allocated to third parties, but for reasons of
confidentiality we do not list them here.

Changes to existing SWIs

Econet_AllocatePort (page 2-688)

The port numbers returned by this call now alwaysliein the range & 01 - & 8F, rather
than the range & 01 - & FE used by RISC OS 3.11 and earlier.

5a-270

Econet

SWI Calls

Econet_InetRxDirect
(swi &4001D)

Thiscall isfor internal use only. You must not use it in your own code.

5a-271

Econet_EnumerateMap (SWI &4001E)

5a-272

Econet_ EnumerateMap
(swi &4001E)

Enumerates subnetwork addresses within an AUN site network

On entry

RO = flags:
al bitsreserved (must be 0)
R4 = enumeration reference (0 to start)

On exit

RO preserved

R1 = net number

R2 = pointer to net name, or 0

R3 = IP subnetwork address

R4 = next enumeration reference, or —1 if no more

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Not defined

Use

This call enumerates subnetwork addresses within an AUN site network. It returns the
AUN net names, net numbers and IP addresses of the subnetworks active within an
AUN site network, as derived from the Map file located within an AUN gateway.

If R4 is —1 on exit then all subnetworks have been enumerated, and R1 - R3 are
undefined. If R4 is —1 on exit from the first call then the calling application is running
over a network containing no AUN gateways.

Under native Econet R4 is always returned as —1.

This call isavailable from RISC OS 3.5 onwards.

Related SWis
None

Related vectors
None

Econet

5a-273

Econet_EnumerateTransmit (SWI &4001F)

Econet_ EnumerateTransmit
(swi &4001F)

Returns the handles of open TXCBs

On entry
RO = index (1 to start with first transmit block)

On exit

RO = handle, or 0 if no more transmit blocks

Interrupts

Interrupt statusis unaltered
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call returns the handles of open TXCBs. On entry RO isthe index of the TXCB being
asked for (1, 2, 3, etc). If thevalue of RO isgreater than the number of open TxCBs, then
the value returned as the handle will be O, which isan invalid handle.

You should not make this call from an IRQ or event routine as, although it will not fail,
the returned information may be inaccurate.

This cal isavailable from RISC OS 3.5 onwards.

Related SWis

Econet_StartTransmit (page 2-667), Econet_Poll Transmit (page 2-669),
Econet_AbandonTransmit (page 2-671)

5a-274

Econet

Related vectors
None

5a-275

Econet_HardwareAddresses (SWI &40020)

Econet_HardwareAddresses
(swi &40020)

Returns the addresses of the Econet hardware and interrupt control registers

On entry

On exit

RO = address of MC68B54 ADLC
R1 = address of FIQ mask register
R2 = bit mask value to use on the FIQ mask register

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use
This call returns the addresses of the Econet hardware and interrupt control registers. It
is provided for the internal working of Econet diagnostic software, and is not intended
for any other use. The call returns an error if there is no native Econet.
This call is available from RISC OS 3.5 onwards.

Related SWis

None

Related vectors
None

5a-276

Econet

Econet_NetworkParameters
(swi &40021)

On entry

On exit

RO = Econet clock period itsus (eg 20 for a s period), or O if no clock
R1 = Econet clock frequency in kHz (eg 200 for a 200kHz frequency), or 0 if no clock
R2, R3 corrupted

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This call returns the Econet clock period and frequency. The call returns an error if there
is no native Econet.

This call is available from RISC OS 3.5 onwards.

Related SWis
None

Related vectors
None

5a-277

Econet_NetworkParameters (SWI &40021)

5a-278

122 AUN

Introduction

The AUN software that this chapter describes forms the core component of Acorn’s new
networking strategy, calleéicorn Universal Networking (AUN). AUN uses an industry
standard method of passing data over a network: a family of protocols called TCP/IP.

AUN uses the TCP/IP standard in such a way as to retain Econet’s existing program
interfaces, so your existing network programs should continue to work. Furthermore,
AUN’s use of the TCP/IP standard supports the concept of Open Systems. Acorn
machines — such as Level 4 FileServers — can now co-exist on the same network as other
machines that use TCP/IP — such as UNIX workstations and NFS file servers. You can
follow this path by using AUN in conjunction with its sister product, the TCP/IP

Protocol Suite; this is described in an application note, available from Acorn Customer
Services.

AUN has been designed with an eye to the future, to preserve users’ investment as long
as possible. In particular, it has been designed so that as new and faster networking
technologies become available, developers can easily add support for them by replacing
a single hardware-specific module.

For details on using existing Econet networks and AUN networks, refer to the guides
supplied with your computer, such as RI&C OSUser Guide. For details on installing
and managing an AUN network, see &lgN Manager’s Guide

You should note that networking modules are only loaded if the computer has a network
interface fitted.

Therest of this chapter will refer to an example network; thisis shown overleaf.

5a-279

5a-280

Net 128

AUN

compsciA compsciB
Network Network
backbone Network
art business
Network Network

Net 4

Net 130

5a-281

Overview

Overview

AUN concepts

The basic structure of an AUN site network is one of physically distinct networks,

typically associated by location and function with a particular room, department or
curriculum area. Adjacent networks are interlinked via gateway stations (described
below), which pass messages between the two networks.

Networks

A network isaphysical network of asingle type (e.g. Ethernet, Econet). A network is
delimited by any gateway stations used to connect it to other networks. For more
information on gateway stations, see the section below entitled Sations.

Network names

Each network must have a unique name. Network names are not seen or handled by
users; they are only used to configure the AUN software for a site.

Nets
A net isapart of anetwork that appears to the user as asingle entity.

In both Econet and Ethernet, individual segments of a physical network can be linked
together by abridge. However, there is a difference between the two:

« Two bridged Econets remain distinct from each other, and so constitute two distinct
nets. Hence in an Econet based network there may be several nets: theinitial net,
and an extra net for every bridge added.

For an example see the diagram on page 5a-280. The compsciA network is made up
from nets 1, 2 and 3, which are three Econet segments connected by a bridge.

« Two bridged Ethernets appears to users to be a single Ethernet, and so constitute a
single net. Hence in an Ethernet based network there will always be one net; in
other words, the net and the network are one and the same thing.

For an exampl e see the same diagram on page 5a-280. The science network and net
129 areidentical, and consist of the same two bridged Ethernet segments.

It isimportant that you grasp the distinction between a net and a network; this chapter
will rigorously distinguish between the two.

5a-282

AUN

Net numbers
Each net must have a unique number.

For an Econet the net number must be between 1 and 127.

« If thenetisapart of alarger Econet network linked together by bridges, its net
number will already be set in the bridge, and the network manager should use the
same net number for AUN.

« Ifthe netis not connected to any other Econets (i.e. there aren’t any bridges on the
net) it will not have a net number assigned to it; under native Econet it will just use
the default net number of 0. However, for AUN the network manager must assign it
an otherwise unused AUN net number in the permitted range 1 - 127.

For types of net other than Econet (e.g. Ethernet) the net number must be in the range
128 - 252. If such a net is tloaly net on the site (i.e. the whole AUN network consists

of a single non-Econet net, such as Ethernet), the network administrator need not set up
a net number. It will use net number 128 by default, but — since it is the local net for all
stations — users can also refer to it as net 0, in line with Econet convention.

Net numbers 0, 253, 254 and 255 are reserved.

Stations

A station is a computer connected to a net. There are two types of AUN stations.

Client stations

A client station has asingle AUN-configured network interface with which it is
connected to a net.

Client stations will form the vast majority of stations in each net, and are typically used
as personal workstations.

Gateway stations

A gateway station hastwo AUN-configured network interfaces with which it is

connected to a net in each adjacent AUN network. It relays messages between these two
networks via the interfaces. The networks may be of different physical types (e.qg.
Ethernet and Econet). There may only be a single gateway between any two networks.

Sation numbers

Each station must have a number, which must be between 2 and 254. Station numbers 0,
1 and 255 are reserved.

A station number must be unique on the net(s) to which the station is connected.

5a-283

AUN concepts

A gateway will have the same station number on both connected nets:

Net 1 Gateway is known to stations
on this net as station 1.2
(Net 1, station 2)

Gateway connects
nets 1 and 128.

Station number is 2.

Gateway is known to stations
on this net as station 128.2
Net 128 (Net 128, station 2)

A gateway station’s number must therefore be unused by any other station on either net.

5a-284

AUN

Technical details

Protocols

Software

AUN usesthe UDP, IP, ARP, RevARP and RIP protocols from the TCP/IP family:

Thetransport protocol is User Datagram Protocol (UDP), enhanced by aproprietary
handshake mechanism designed to support the semantics of Econet SWI calls. This
is not a straightforward port of the four-way handshake mechanism used by native
Econet, but is rather atwo-way handshake protocol overlaid with atimeout and
retransmission mechanism better suited to the characteristics of 1P traffic.
TCPitself isnot used, asit is a stream oriented protocol unsuited to supporting an
Econet-like data delivery service.

The network protocol is Internet Protocol (IP).

Address Resolution Protocol (ARP) is used to map IP addresses into physical
network addresses.

Reverse Address Resol ution Protocol (RevARP) isused by client stationsto request
their own | P addresses from gateway stations.

Routing Information Protocol (RIP) is used to pass routing table information
between stations.

The AUN software consists of severa closely related modules:

The Net module implements the two-way acknowledgement handshake, and
presents an Econet-like service to applications via Econet SWI calls. It also
implements the RIP function.

The Inter net module implements UDP, IP, ARP and RevARP protocols, and
exportsan industry standard (Berkel ey socket) interface to other RISC OS software
such as the TCP/IP Protocol Suite.

The device driver module provides a Driver Control Interface (or DCI) that
enablesthe AUN software to communicate with a particular network interface.
Each type of network interface needs its own device driver. There are no device
drivers supplied in RISC OS 3.5; they are instead normally supplied with network
interfaces, either in ROM or on disc.

The M bufM anager module provides memory management facilities for version 4
onwards of the DCI, and is used by protocol stacks and device drivers. (It was
previously an internal part of the Internet module, and so was not potentially
accessible to other protocol modules.)

5a-285

Software

The software in detail
The following diagram illustrates the relationship between the modulesin AUN:

Application .
e.g. NetFS NFSFiler

Econet TCP/IP
Swi Protocol
interface Suite

Net NFS

Econet Internet

(in RISC OS ROM) Socket

Internet

Econet

Driver
Control
interface

Network driver
e.g. Ethernet,
SLIP, Token Ring

Network MbufManager

Thereisaparticularly close connection between the Net module and the Econet module.

The Net modul e learns which nets may be accessed viaadirectly connected Econet, and

which nets need to be accessed via | P (ie nets that do not use Econet, or nets using

Econet that can only be reached via a gateway). The Net module intercepts SWI callsto

Econet from higher-level applications such as NetFS, NetPrint and Broadcast L oader,

and — by examining the destination net number — determines whether to route the calls to
the Econet module for traffic over native Econet, or to the Internet module for traffic
over IP.

If the AUN station does not have an Econet interface fitted then the Econet software
module will not be present, and so all traffic will be via the Internet module and IP
protocol.

5a-286

AUN

The Internet socket interface — used by the Net module in AUN — remains exposed for
parallel use by other applications. Hence other protocols running over IP, such as NFS,
can run at the same time as AUN. For more details of the Internet socket interface, see
The Internet module on page 5a-305.

Since device drivers are not a part of RISC OS itself, we don’t document the DCI in this
manual. (This also applies to the MbufManager module, which is anyway a conceptual
part of the DCI). Both the DCI and the MbufManager module are subject to change as
the range of Acorn networking products is expanded and updated. Should you wish to
program using the DCI (say to implement a new network interface), you should contact
Acorn Customer Services.

Addresses in Econet and AUN

Under native Econet, users and programs uniquely identify each station with two
one-byte numbers, thus:

net.station

Under AUN, users and programs use exactly the same scheme, to preserve compatibility
with native Econet. However, the underlying Internet protocols used by AUN use
four-byte numbers to identify stations. The AUN software therefore needs to translate
each two-byte address passed by a user or program into a four-byte IP address. The
AUN interpretation of each of the four bytes is:

site.network.net.station

The bottom two bytesgt.station) are the same two bytes as are seen by users and
programs. Thaetwork byte is used to provide additional routing information to the
underlying IP software only, so that it can route data to the correct destination network.
Thesite byte is currently unused and always has a value of one.

Technically speaking, an AUN IP address is a Class A IP address, with a netmask of
&FFFF0000.

For example, the AUN interpretation of a command — in the normal IP emphasis — to:
‘send data to host 1.3.129.16’

is actually:
‘send data to station 129.16... (which is located in network number 3)’

or, more meaningfully:
‘send data to station 129.16... (which is located in the science network)’.

5a-287

AUN IP address configuration

The difference between the addressing used by native Econet and the I P address used by
AUN is summarised by the table below:

Network Bytes Form Examples

3.2
Native Econet address 2 net.station 8.103
129.12

1.1.3.2
AUN IP address 4 1.network.net.station 1.4.8.103
1.3.129.12

AUN IP address configuration

How a gateway station finds its full IP address

When agateway station starts up, it reads its station number from CMOS RAM. (This
number is set by the SetStation command supplied with the AUN software.)

To find the site, network and net numbers of both its interfaces, the gateway station
looks at its AUN Map file and Configure file.

TheMap file

The Map filetells the gateway station the I P address of each net on the site. Asan
example, let’s look at the Map file for the site illustrated on page 5a-280:

| Exanple: Large site network containing 5 dept networks |inked via backbone

conpsci A 123 | ol d conpbl ock econet
conpsci B 128 | conpbl ock Et her net

sci ence 129 | science Ethernet

art 4 | art room econet

busi ness 130 | business studies ethernet
backbone 131 | backbone et hernet

5a-288

AUN

The gateway station converts each network name to a network number in the order

they’re read; the first network has the number 1, the second is nhumber 2, and so on.
Adding in the net numbers to the example above, the following full IP addresses apply
to the example network. (The site number defaults to 1, arsiatien field is read by

each individual station from its configured value in CMOS RAM):

Network Network Net Returned
name number number IP address
1 1.1.1.station
compsciA 1 2 1.1.2.station
3 1.1.3.station
compsciB 2 128 1.2.128.station
science 3 129 1.3.129.station
art 4 4 1.4.4.station
business 5 130 1.5.130.station
backbone 6 131 1.6.131.station

The Configurefile

The Configure file tells the gateway station its own position in the site: specifically,
which network is connected to which interface. For example:
| Exanpl el:

| networ k conpsci A i s Econet;
| networ k backbone is Ethernet.

Econet is conpsci A
Slot O is backbone

This tells the gateway that its Econet interface is connected to the compsciA network,
and its Ethernet interface (in slot 0) is connected to the backbone network. What it does
not tell the gateway is whether the Econet interface is connected to net 1, 2 or 3. The
gateway station resolves this by reading the correct net number (in this case 2) from an
Econet bridge on its own net. Thus, if the station number were 7, the two interfaces’ IP
addresses would be:

1.1.2.7 for the Econet interface
1.6.131.7 for the Ethernet interface

Note that an Ethernet network must always consist of a single net, and so the gateway
does not have to resolve the same ambiguities as for Econet.

5a-289

AUN IP address configuration

5a-290

How a client station finds its full IP address

Like a gateway station, an AUN client station reads its station number from CMOS
RAM at start-up time.

However, at this stage it does not know its site, network and net numbers; instead, it
finds these out from a gateway station connected to itslocal network.

To do so the client station broadcasts a RevA RP message requesting its |P address. The
gateway receives this broadcast on the interface that is connected to the client’s network,
and returns that interface’s IP address, first setting the station number to zero:

site.network.net.0

Because the gateway station’s interface and the client station are on the same network,
the returned site and network numbers are therefore the same as those of the client
station. The net numbers will also be the same, unless the client station and the gateway
station are on different nets within the same network (which can only be the case if they
are separated by Econet bridges).

The client station takes the returned address and substitutes its own station number. It
also determines if it is connected to a bridged Econet; if so, it replaces the returned net
number — which may be incorrect — with the correct net number, read from an Econet
bridge on its own net.

Default addresses

If a client station does not get a response to its request for its full IP address, this means
that no gateway computer is present and so the local network is isolated. This being the
case, then:

« If the station is connected to an Econet it will use native Econet rather than the
Internet protocols used by AUN.

« If the station is connected to any other network it adopts a default IP address of
1.0.128station, giving a user address of 1&ation.

Whenl/if a gateway computer subsequently comes ‘on-line’ it will immediately send a
message to the other stations on the previously isolated network, so they may then
complete their address and routing configuration, and get access to all other networks in
the AUN system.

Consequently while a network is isolated all its stations may communicate between
themselves; stations don't ‘hang’ awaiting a response from a gateway. You may later
start up a gateway station to bring the isolated network into your site’s AUN network.
However, since this is likely to change ‘on the fly’ all the addresses of that network’s
stations, you must take care only to do this when there are no users active on the
network.

AUN

Application program interface

The application program interface, or AP, isthe same as the RISC OS 3 (version 3.10)
Econet SWI interface, with certain usage qualifications described below. For full details,
refer to the RISC OS 3 Programmer’s Reference Manual

Existing user applications which access Econet do not require functional modification at
the network interface in order to run over an AUN network.

The AUN module intercepts SWI calls to Econet from user software. It treats the calls
differently according to how it can access the destination station:

o If the destination station can be accessed directly via Econet, AUN passes the SWI
callsto the resident Econet handler. This avoids unnecessary | P protocol overheads
for alocalised Econet-only transaction.

o Otherwise the destination station must be accessed vialP. AUN mapsthe SWI calls
into calls to the Internet module, having first expanded the two-byte netstation
destination address into a four-byte sitenetworknetstationl P address.

The maximum amount of data which can be passed in asingle transmission SWI vialP
is 8192 bytes.

When transmitting to a station via P, transmission SWI callswill return only the error
values Status NetError and Status NotListening in the event of failure. Over raw
Econet other Econet-specific error values may be returned.

Constraints on the use of Econet SWI calls over AUN

Immediate operations

In general the Immediate mechanism is considered to be Econet specific. The only
Immediate operation supported by AUN over |P is Econet_MachinePeek. All other
Immediate SWI calls return Status_NotListening, unless the destination station is
accessible viaa directly connected Econet.

Transmission strategy

An application’s choice of values for the Count and Delay parameters it passes to
transmission SWIs may make assumptions about the actual physical characteristics of
Econet. For example some Econet utility programs set the Count to 0 in Immediate
operations, relying on the fact that the return of a scout acknowledge frame in response
to a valid scout frame will always be effectively instantaneous. However, over an AUN
IP network this assumption is invalid; the functional equivalent of the scout
acknowledge may arrive ‘sometime’, or even ‘never’.

5a-291

Application program interface

Conseguently AUN uses a retransmission strategy more suitable to the nature of IP
traffic, whilst retaining the existing retransmission strategy for transmissionsto a
directly connected Econet. The retransmission strategy for AUN over IP isasfollows:

For ordinary data, AUN employsatwo-way handshake. A receiving station will return
a positive acknowledgement if it has successfully received a data frame into an open
receive block, or else areject message if thereis currently no open receive block, or
some other detectable reception error has occurred.

If Count > 1

The maximum elapsed timeout period in seconds (T) requested by the applicationis
computed as:

T = (Count x Delay) / 100.

On receipt of reject messages, the sender will retransmit the data frame 10 times
after 1 centisecond timeouts, then:

IfT<5

T x 10 retransmissions will occur, each after 10 centisecond timeouts;
Else

If the destination station is not on the same network as the sender

exactly 50 retransmissionswill occur, each after (T x 100) / 50 centisecond
timeouts;

Else
If the retry delay < 25 centiseconds
exactly 50 retransmissions will occur;
Else

(T x 4) retransmissions will occur, each after a 25 centisecond
timeout.

(This provides some optimisation for simultaneous loading of software from a
local file server, whilst protecting against excessive overload at gateway
stations caused by rapid retransmission.)
If no responseis received at all then:
IfT<5
1 retransmission will occur, after a5 second timeout;
Else
T / 5 retransmissions will occur, each after 5 second timeouts.

Else

The sender will transmit exactly once. The transmission status will not change until
a positive acknowledgement or a reject message has been received, or a5 second
timeout has el apsed.

5a-292

AUN

For an Immediate operation (i.e. Econet_MachinePeek), a SWI call with Count = 0 or
Count = 1 always results in a Status_NotL istening return; no actual network
transmission is made. In other cases the sender transmits an Immediate message exactly
once, changing transmission status only when a response has been received or a5
second timeout has el apsed.

Bridge protocol

Use of the Econet Bridge protocol by aRISC OS net utility program to identify valid net
numbers does not work over non-Econet networks within an AUN system, as no actual
Econet bridges are present to respond. However, cycling through the range of net
numbersin a sequence of callsto Econet_ReadTransportType can provide this
information without involving any network transactions; the call returns R2 = 0 if the
given net number is not currently accessible from the local station.

Note that this constraint does not affect use of the Bridge protocol onto a directly
connected Econet system.

Meaning of net 0

In AUN, astation may be connected to both an Econet and an Ethernet at the same time.
This means that the assumption that Net 0 means the local network isno longer safe, as
the AUN software could nat, in this case, distinguish the two connected networks with
certainty. Hence applications running over AUN should strive to supply an actual net
number with every transmission SWI call.

You should note that the actual net number of a connected Econet may in fact be O, if
there are no bridges present; however the net number of an Ethernet in a correctly
configured AUN network can never be 0, so no clash will occur. If anet number of O is
supplied to atransmission SWI, AUN mapsit to the net number of adirectly connected
net, with Econet taking priority over Ethernet if both are connected.

Local broadcasts

If astation is connected to both Econet and Ethernet, transmit SWI requests for alocal
broadcast — as issued by Broadcast Loader— are directed to the Econet only.
Data delivery

As with Econet, AUN over IP cannot guarantee that a message apparently correctly
received and acknowledged by a receiving station will not be retransmitted if the
acknowledgement is lost in transit. Applications using AUN should therefore ensure that
they can detect whether a transmission has been repeated. This is usually done by adding
a sequence number or bit to transmissions.

5a-293

* Commands

* Commands
*Configure BootNet

Sets the configured state for whether or not the AUN software is loaded

Syntax
*Configure BootNet On| OFf

Use
*Configure BootNet sets the configured state for whether or not the AUN softwareisto
be loaded from RISC OS 3.5. Drivers are always loaded from a network interface,
irrespective of this configured setting.
You should configure this value to ‘On’ if the station is to be a client station using an
AUN-configured network, and to ‘Off’ otherwise (i.e. if the station is to be a gateway
station, or to be connected to a TCP/IP-configured network).
The default state is ‘Off’.

Example

*Confi gure Boot Net On

Related commands
None

5a-294

AUN

*Devicelnfo

Displays driver module internal statistics

Syntax
*EBI nf o

Use

A *Devicelnfo command displays detailed information about driver modul e activity.
Note that this command is supplied by the driver that comes with a networ k
interface, rather than by RISC OS. Each of the standard Acorn drivers provides such a

command:
Command driver for:
*Eclnfo Acorn Econet
*Eblnfo Acorn Ethernet

We expect third party driversto provide a corresponding command; you should see the
documentation supplied for the command name.

It is presented mainly as an aid to trouble-shooting, should you require it.

Example

*EBI nf o
EtherB interface statistics

eb0: 80C04 Network slot, enabled, hardware address 00:00: A4: 10: 17: 00

packets received = 27735 packets transmtted = 2391
bytes received = 2040394 bytes transmitted = 392460
receive interrupts = 27279 transmt interrupts = 2390

Standard clients:

Franme = &0800, ErrLvl =00, AddrLvl=01, FrnlLvl=00
Frame = &0806, ErrLvl =00, AddrLvl=01, FrnlLvl=00
Franme = &0835, ErrLvl =00, AddrLvl=01, FrnlLvl=00

Log: Et her B nessages can appear here

Related commands
None

5a-295

*NetMap

5a-296

Displays the current AUN map table

Syntax

*Net Map [net_nunber]

Use

*NetMap

*NetMap displays the current AUN map table either for the specified net, or for al nets
if no parameter is specified. The map table shows the net number of each net, its name,
and its Internet address.

Each station obtains the information held in the map table from a gateway’s Map file.
Since this file is identical for all gateways on a correctly set up network, the output from
this command is the same for all stations, and only varies when the network’s layout is

altered.

Examples

* Net Map
129

* Net Map
1

2

3

128

129

4

130

131

129
sci ence

conpsci A
conpsci A
conpsci A
conpsci B
sci ence
art

busi ness
backbone

Related commands

*Networks

EREPRERREERERER
cuhwNERER

xX X

AUN

*NetProbe

Reports if aremote station is accessible and active

Syntax
*Net Probe net_number. st ati on_nunber

Parameters
net_number remote station’s net number
station_number remote station’s station number
Use

*NetProbe reports if a remote station is accessible and active, and hence can be reached
from the local station and network. This command does so by sending a control message
to the specified station and awaiting a reply.

Examples

*Net Probe 128. 135
Station present

*Net Probe 128. 201
Station not present

Related commands
None

5a-297

*NetStat

5a-298

Syntax

*NetStat

Displays the current status of any network interface(s) configured for AUN

*Net Stat [-a]

Parameters

Use

-a give al information, rather than simplified version

*NetStat displays the current status of any network interface(s) configured for AUN.
The optional parameter - a gives extrainformation, including traffic counters and full 1P
addresses. Known network numbers which are marked with an ast&fjslepresent
nets in a directly connected Econet network.

Example

*Net Stat -a
Nati ve Econet

Interface
AUN St ation
Full address
Interface
AUN Station
Ful | address
Known nets

supplied
TX stats

RX stats

Modul e st at us

0.5 information for native Econet
Econet ? information for first AUN interface
4.5

1.4.4.5

Et her B
131.5
1.6.131.5

information for second AUN interface

1 2 3 *4 128 129 130
131
information below only given if optional parameter a

Dat a=0, |mmedi ate=2, |nm Reply=0, Retry=0
Error=20, Data_Ack=5, Data_Rej =0, Broadcast=10
(1 ocal =0, gl obal =5)

Dat a=5, |mmedi ate=0, Broadcast=0, Di scard=0
Retry=0, Error=0, Data_Ack=0, Data_Rej=0
I mm_Repl y=2, Reply_Rej =0

0140

AUN

Related commands
None

5a-299

*NetTraceOff

5a-300

*NetTraceOff

Turns off a gateway’s tracing of routing protocol messages

Syntax
*Net Tr aceOF f

Use

*NetTraceOff turns off a gateway’s generation of trace information about its
transmission and reception of routing protocol messages. For more details, see the
description of the *NetTraceOn command.

This command is provided by the gateway variant of the AUN module, and is hence
only available on gateway stations. It is anyway irrelevant to client stations.

Example
*Net TraceOf f

Related commands
*NetTraceOn

AUN

*NetTraceOn

Turns on a gateway’s tracing of routing protocol messages

Syntax
*Net TraceOn [il enane]

Parameters
filenanme name of file to which to direct output

Use

*NetTraceOn turns on a gateway’s generation of trace information about its
transmission and reception of routing protocol messages. This information is stored in
the given file, or — if none is specified — in the file IGateway.Trace. You can load the
trace file into a text editor such as Edit in the usual way.

To view the default file you will need to open the Gateway application directory; hold
down theShift key while you double-click on its icon.

This command is provided by the gateway variant of the AUN module, and is hence
only available on gateway stations. It is anyway irrelevant to client stations.

Example
*Net TraceOn

Example output

Fri Mar 27 16:26:06: ==> 131.123
conpsci B | ocal
backbone | ocal

Fri Mar 27 16:26:17: ==> 131.5
conpsci B | ocal
backbone | ocal

Fri Mar 27 16:27:31: ==> 131.150
conpsci B | ocal
art gat eway=1
backbone | ocal

Related commands
*NetTraceOff

5a-301

*Networks

*Networks

Displaysthe current AUN routing table

Syntax
* Net wor ks

Use

*Networks displays the current AUN routing table. This shows the names of any local
networks (i.e. those to which the station is directly connected). It also shows the names
of those remote networks that the station knows how to reach, and the gateway that it
will useto do so.

The AUN routing table alters as gateways start up and shut down, and so the information
returned by this command varies as the state of the network alters.

Examples
*Net wor ks a client on the ‘backbone’
net
art gat eway=131.5 connected to the ‘art’ net
by
backbone | ocal gateway 131.5
*Net wor ks a gateway between the
‘art’
art | ocal net and the ‘backbone’ net
backbone | ocal (i.e. station 131.5 above)

Related commands
*NetMap

5a-302

AUN

*SetStation

Sets a station’s number

Syntax

*Set Station [station_nunber]

Parameters

station_nunber a station number in the range 2 - 254

Use

*SetStation sets a station’s number, storing it in CMOS RAM so it is not lost when the
computer is switched off. If no number is specified then one is prompted for. If the new
station number given is invalid, then the current station number is preserved.

This command is not a part of the standard AUN software, to prevent users from altering
station numbers. It is instead supplied as a separate program on the Support disc of the
AUN/Level 4 FileServer distribution, in the ArthurLib directory. You can run this

program from the desktop by double-clicking on its icon; a window shows the prompt
for the station number.

The number is stored in the same location as is used by Econet to store station numbers.
If the station is connected to both an AUN network and a native Econet, it will
accordingly use the same station number for both types of network. Altering the station
number for one network will alter it for the other.

You can find out a station’s current station number by typing at a command line:

*Hel p Station if Econet isfitted

or:

*Net St at if AUNisinstalled
Examples

*Set Station 20

*Set St ati on
New st ati on nunber: 20

Related commands
*Help Station

5a-303

*SetStation

5a-304

123 The Internet module

Introduction

This chapter gives you the guidance and reference material you need to use the socket
level programming interfaces provided by the Internet module. We strongly recommend
that you only do so once you have agood understanding of Internet protocols and the use
of sockets. You should also note that our support serviceswould prefer not to support the
Internet module at atutorial level, since this does not make the most effective use of
their resources.

The Internet module

The Internet module has been derived from the Berkel ey networking software that was
incorporated into the 4.3 BSD ‘Reno’ release of UNIX (also known as ‘net-1"), and into
subsequent variations — including Acorn RISC iX. Consequently, the concepts and (to a
large extent) the specifics of the programming interface to the Internet module are
identical to those provided under BSD UNIX. Most of the differences between the two
are caused by differences between the programming environments provided by

RISC OS and by UNIX: for example the mechanisms for asynchronous event
notification, the assumptions about task scheduling conventions, and so on.

The version of the Internet module in the RISC OS 3.5 ROM is only a partial
implementation of the Internet stack, supporting only those protocols needed by
then-existent Acorn products. It uses version 2 of the D@Mér Control Interface).

The Internet module in the RISC OS 3.6 ROM (and later) uses DCI 4, and provides a
full implementation of the protocol stack. If you wish to program using the Internet
socket interface, you should use the full version of the modul&etag the libraries

and full Internet module on page 5a-306.

The Internet C libraries

Acorn has C libraries available to help you program the Internet module, which provide
the same calls as are used in BSD Unix networking software. Although the Internet
module provides a SWI interface, we strongly recommend that you use the libraries, as
they provide many extra facilities. They will make it easier to program, especially when
porting software; and will enable you to get help from a wealth of supporting books and
materials.

5a-305

Getting the libraries and full Internet module

Getting the libraries and full Internet module

The libraries — Inetlib, Socklib and Unixlib — are available from Acorn’s FTP site
(ftp.acorn.co.uk), or on request from Acorn. There are two versions of each library:

« The filenames ending immare versions intended for use with modules. They are
compiled using thepsl, ff andzM switches in the C compiler, so there is no stack
limit checking, function names are not embedded, and they are suitable for linking
into relocatable modules.

« The other versions are versions intended for use with standard applications. They
are compiled using theps0 andfn switches in the C compiler (but not thd
switch), so there is stack limit checking, function names are embedded, and they are
not suitable for linking into relocatable modules.

The Internet application is also available from Acorn’s FTP site. This includes the
current version of the Internet module, which provides a full implementation of the
socket interface.

Contents of this chapter

5a-306

This chapter describes the library calls we recommend you use, rather than describing
the more limited range of SWIs. Its organisation is therefore a little different from other
chapters in this manual:

« Introductory tutorial on page 5a-308 gives an introductory tutorial to programming
with the Internet module using the libraries.

« Advanced tutorial on page 5a-324 contains a more advanced tutorial.
« Protocols on page 5a-361 describes the protocols used by the Internet module.

« Library callson page 5a-367 details the calls in the Socklib library, the Inetlib
library, and the Unixlib library. The section starts with an index of the calls.

« Servicecallson page 5a-461 describes the service calls used by the Internet module
and network device drivers.

« SWI callson page 5a-468 describes how to call the Internet module’s Socket_...
SWI calls; it refers to the earlier documentation.

« * Commands on page 5a-470 describes the * commands provided by the Internet
module.

The Internet module

About the tutorial sections

The tutorial sections are derived from sections 7 and 8 of the 4.3 BSD Unix
Programmer’s Manual Supplementary DocumenfsrPSJ). By comparing the two,
experienced Internet programmers will be able to see the changes that have been
necessary to port the software to RISC OS.

You should also note that the examples in the tutorial s assume a pre-emptive
multitasking environment such as UNIX, where even if acall does not return for an
indefinite period, other programs continue to run. Thisis not the case for RISC OS. The
example programs do not necessarily multitask correctly under RISC OS. Before
adapting any of the example code for use in RISC OS, you should be aware of which
calls might not return promptly, and why; and you should read Multitaskingon

page 5a-357 to find out how to avoid any problems with such calls.

About the protocol and library call sections

We've deliberately kept the documentation of protocols and library calls as similar as
possible to normal 4.3 BSD UNIX documentation, so you can easily see what changes
we've had to make to cater for RISC OS. (You'll find the equivalent BSD manual pages

in sections 2, 3 and 4 of a 4.3 BSD UNIX online manual.) Note that some section

headings have been changed for consistency. The function prototypes have also been
made consistent in style. Each prototype includes those header files needed to call the

functions; the functiondescription may mention other useful header files, such as
constants that may be passed to/from functions.

Finding out more...

Asweéll asthetutorialsin this chapter, you may also find the following book helpful:

« UNIX Network Programming / W. Richard Stevens. — Englewood Cliffs, NJ, USA:

Prentice Hall, 1990.

5a-307

Introductory tutorial

Introductory tutorial

Introduction

Overview

RISC OS offers several choicesfor interprocess communication. To aid the programmer
in developing applications which are comprised of cooperating programs, the different
choices are discussed and a series of example programs are presented. These programs
demonstrate in a simple way the use of sockets and the use of datagram and stream
communication. Theintent of thistutorial isto present afew simple example programs,
not to describe the networking systemin full.

At the core of interprocess communication are sockets, from which one reads, and to
which one writes. The use of a socket has three phases: its creation, its use for reading
and writing, and its destruction. One can write to a socket without full assurance of
delivery, since one can check later to catch occasional failures. Messages between
sockets can be kept as discrete units, or merged into a stream. One can ask to read, but
insist on not waiting if nothing isimmediately available.

Thistutorial presents simple examples that illustrate some of the ways of doing
interprocess communication in RISC OS. We presume you are familiar with the

C programming language, but not necessarily with system calls or with interprocess
communication. The tutorial reviews the types of communication that are supported by
RISC OS. A series of examples are presented that illustrate programs communicating
with each other; they show different ways of establishing channels of communication.
Finally, the calls that actually transfer data are reviewed. To clearly present how
communication can take place, the exampl e programs have been cleared of anything that
might be construed as useful work.

Domains and protocols

5a-308

If we want to communicate between two independent programs, we would like to have
them separately create sockets, and then have messages sent between the sockets. Thisis
often the case when providing or using a service in the system. Thisis aso the case
when the communicating programs are on separate machines. In RISC OS one can
create individual sockets, give them names and send messages between them.

Sockets created by different programs use names to refer to one another; names
generally must be translated into addresses for use. The space from which an addressis
drawn isreferred to as a domain. RISC OS supports a single domain for sockets, that
will be used in the examples here. Thisisthe Internet domain (or AF_INET, for Address

The Internet module

Format InterNET). The Internet domain is an implementation of the DARPA Internet
standard protocols IP/'TCP/UDP. Addressesin the Internet domain consist of a machine
network address and an identifying number, called a port. Internet domain names allow
communication between machines.

Communication follows some particular ‘style.” Currently, communication is either
through astream or by datagram. Stream communication implies several things.
Communication takes place across a connection between two sockets. The
communication is reliable, error-free, and no message boundaries are kept. Reading
from a stream may result in reading the data sent from one or several calls to
socketwrite() or only part of the data from a single call, if there is not enough room for

the entire message, or if not all the data from a large message has been transferred. The
protocol implementing such a style will retransmit messages received with errors. It will
also return error messages if one tries to send a message after the connection has been
broken. Datagram communication does not use connections. Each message is addressed
individually. If the address is correct, it will generally be received, although this is not
guaranteed. Often datagrams are used for requests that require a response from the
recipient. If no response arrives in a reasonable amount of time, the request is repeated.
The individual datagrams will be kept separate when they are read, that is, message
boundaries are preserved.

The difference in performance between the two styles of communication is generally
less important than the difference in semantics. The performance gain that one might
find in using datagrams must be weighed against the increased complexity of the
program, which must now concern itself with lost or out of order messages. If lost
messages may simply be ignored, the quantity of traffic may be a consideration. The
expense of setting up a connection is best justified by frequent use of the connection.
Since the performance of a protocol changes as it is tuned for different situations, it is
best to seek the most up-to-date information when making choices for a program in
which performance is crucial.

A protocol is a set of rules, data formats and conventions that regulate the transfer of
data between participants in the communication. In general, there is one protocol for
each socket type (stream, datagram, etc.) within each domain. The code that implements
a protocol keeps track of the names that are bound to sockets, sets up connections and
transfers data between sockets, perhaps sending the data across a network. This code
also keeps track of the names that are bound to sockets. It is possible for several
protocols, differing only in low level details, to implement the same style of
communication within a particular domain. Although it is possible to select which
protocol should be used, for nearly all uses it is sufficient to request the default protocol.
This has been done in all of the example programs.

One specifies the domain, style and protocol of a socket when it is created. For example,
in Figure 123.1 on page 5a-311 the call $ocket() causes the creation of a datagram
socket with the default protocol in the Internet domain.

5a-309

Closing sockets

Closing sockets

It is particularly important that you ensure your applications close all sockets before
quitting, say in an atexit() routine. Thisisonly shown in the first example program
(Figure 123.1 on page 5a-311); other examples omit thisfor reasons of space and clarity.

If an application terminates under RISC OS without closing an open socket, then that
socket will remain open indefinitely. This needlessly consumes resources; and it leaves
fewer sockets available for other programs to use, since socket descriptors are kept in a
single fixed-size table.

Datagrams in the Internet domain

Let us now look at two programs that create sockets separately. The programsin
Figure 123.1 on page 5a-311 and Figure 123.2 on page 5a-313 use datagram
communication rather than a stream. The structure used to name I nternet domain sockets
isdefined in the file "netinet/in.h". The definition has also been included in the example
for clarity.

Each program creates a socket with a call to socket(). These sockets are in the Internet
domain. Once a name has been created it is attached to a socket by the system call
bind(). Theroutinein Figure 123.2 usesits socket only for sending messages. It does not
create a name for the socket because no other program has to refer toit.

Internet addresses specify a host address (a 32-bit number) and a delivery slot, or port,
on that machine. These ports are managed by the system routines that implement a
particular protocol. When a message must be sent between machines it is sent to the
protocol routine on the destination machine, which interprets the address to determine to
which socket the message should be delivered. Several different protocols may be active
on the same machine, but, in general, they will not communicate with one another. Asa
result, different protocols are allowed to use the same port numbers. Thus, implicitly, an
Internet addressis atriple including a protocol aswell as the port and machine address.
An association is atemporary or permanent specification of apair of communicating
sockets. An association isthusidentified by the tuple <protocol, local machine address,
local port, remote machine address, remote port>. An association may be transient when
using datagram sockets; the association actually exists during asend operation.

The protocol for asocket is chosen when the socket is created. The local machine

address for asocket can be any valid network address of the machine, if it has more than

one, or it can be the wildcard value INADDR_ANY. The wildcard value is used in the

program in Figure 123.1. If a machine has several network addresses, it is likely that

messages sent to any of the addresses should be deliverable to a socket. Thiswill bethe

case if the wildcard value has been chosen. Note that even if the wildcard vaueis

chosen, a program sending messages to the named socket must specify avalid network
address. One can be willing to receive from ‘anywhere’, but one cannot send a message

5a-310

The Internet module

#i ncl ude <stdio. h>

#i nclude "sys/types.h"
#i ncl ude "sys/socket.h"
#i nclude "netinet/in.h"

/*
* In the included file "netinet/in.h" a sockaddr_in is defined as foll ows:
* struct sockaddr_in {

* short sin_famly;

* u_short sin_port;

* struct in_addr sin_addr;
* char sin_zero[8];

* };

* This program creates a datagram socket, binds a name to it, then reads
* fromthe socket.
*/

char buf[1024]; /*global rather than auto, so doesn’t go on SVC stack */
int sock =-1; /* mark socket as initially closed */

finalise() [* exit handler to close socket, registered with atexit */
{
if (sock !=-1) { /* if socket not already closed */
socketclose(sock); /* close it */
sock = -1; /* and mark it as closed */
}
}
main()
{
int length;

struct sockaddr_in name;

* Register finalisation code to close socket at exit */

if (atexit(finalise) != 0) {
fprintf(stderr, "Unable to register exit handler\n");
exit (1);

}

/* Create socket from which to read. */

sock = socket(AF_INET, SOCK_DGRAM, 0);

if (sock < 0) {
xperror("opening datagram socket");
exit(1);

Figure 123.1 Reading Internet domain datagrams

5a-311

Datagrams in the Internet domain

5a-312

/* Create name with wildcards. */

nanme.sin_famly = AF_I NET;

name. si n_addr.s_addr = | NADDR_ANY;

nane. sin_port = 0;

if (bind(sock, &name, sizeof(name))) {
xperror("bi ndi ng datagram socket");
exit(1);

}

/* Find assigned port value and print it out. */
length = sizeof (name);
if (getsockname(sock, &nane, & ength)) {
xperror("getting socket name");
exit(1);
}
printf("Socket has port #%d\n", ntohs(nane.sin_port));

/* Read fromthe socket */

if (socketread(sock, buf, 1024) < 0)
xperror("receiving datagram packet");

printf("-->%\n", buf);

/* Close the socket */
socket cl ose(sock);
sock = -1; /* mark it as closed */

Figure 123.1 Reading Internet domain datagrams (continued)

‘anywhere’. The program iRigure 123.2 is given the destination host name as a
command line argument. To determine a network address to which it can send the
message, it looks up the host address by the ogdttiostbyname(). The returned
structure includes the host’s network address, which is copied into the structure
specifying the destination of the message.

The port number can be thought of as the number of a mailbox, into which the protocol
places one’s messages. Certain daemons, offering certain advertised services, have
reserved or ‘well-known’ port numbers. These fall in the range from 1 to 1023. Higher
numbers are available to general users. Only servers need to ask for a particular number.
The system will assign an unused port number when an address is bound to a socket.
This may happen when an explibind call is made with a port number of 0, or when a
connect or send is performed on an unbound socket. Note that port numbers are not
automatically reported back to the user. After calbimgl(), asking for port 0, one may

call getsockname() to discover what port was actually assigned.

The format of the socket address is specified in part by standards within the Internet
domain. The specification includes the order of the bytes in the address. Because
machines differ in the internal representation they ordinarily use to represent integers,
printing out the port number as returnedgetsockname() may result in a
misinterpretation. To print out the number, it is necessary to use the natiotisg (for

The Internet module

#i ncl ude <stdio. h>

#i nclude "sys/types.h"
#i ncl ude "sys/socket.h"
#i nclude "netinet/in.h"
#i ncl ude "netdb. h"

#define DATA "The sea is cal mtonight, the tide is full . . ."

/*

* Here | send a datagramto a receiver whose name | get fromthe command

* line argunments. The form of the command line is dgramsend host nanme
* portnunber
*/

mai n(argc, argv)
int argc;
char *argv[];

int sock;
struct sockaddr _i n nane;
struct hostent *hp, *gethostbynane();

/* Create socket on which to send. */

sock = socket (AF_I NET, SOCK_DGRAM 0);

if (sock < 0) {
xperror ("openi ng datagram socket");
exit(1);

* Construct nane, with no wildcards, of the socket to send to.

* Get hostbynane() returns a structure including the network

* address of the specified host. The port nunber is taken from

* the command |ine.

*/

hp = get host byname(argv[1]);

if (hp ==0) {
fprintf(stderr, "%: unknown host\n", argv[1]);
exit(2);

}

bcopy(hp->h_addr, &name.sin_addr, hp->h_I ength);

nane.sin_fam ly = AF_I NET;

name. sin_port = htons(atoi (argv[2]));

/* Send message. */

if (sendto(sock, DATA, sizeof(DATA), 0, &nane, sizeof(nanme)) < 0)

xperror("sendi ng datagram nessage");

socket cl ose(sock) ;

Figure 123.2 Sending an Internet domain datagram

5a-313

Connections

Connections

5a-314

network to host: short) to convert the number from the network representation to the

host’s representation. On some machines, such as 68000-based machines, this is a null
operation. On others, such as ARMs and VAXes, this results in a swapping of bytes.
Another routine exists to convert a short integer from the host format to the network
format, callechtons(); similar routines exist for long integers.

To send data between stream sockets (having communication style SOCK_STREAM),
the sockets must be connectBtjure 123.3 on page 5a-315 arfelgure 123.5 on

page 5a-317 show two programs that create such a connection. The program in
Figure 123.3 is relatively simple. To initiate a connection, this program simply creates a
stream socket, then catiennect(), specifying the address of the socket to which it
wishes its socket connected. Provided that the target socket exists and is prepared to
handle a connection, connection will be complete, and the program can begin to send
messages. Messages will be delivered in order without message boundaries. The
connection is destroyed when either socket is closed (or soon thereafter). If a program
tries to send messages after the connection is closed, the call will fail, and the errno
variable is set to ‘EPIPE’.

Forming a connection is asymmetrical; one program, such as the program in

Figure 123.3, requests a connection with a particular socket, the other program accepts
connection requests. Before a connection can be accepted a socket must be created and
an address bound to it. This situation is illustrated in the top h&lfjafe 123.4 on

page 5a-316. Program 2 has created a socket and bound a port number to it. Program 1
has created an unnamed socket. The address bound to Program 2’s socket is then made
known to Program 1 and, perhaps to several other potential communicants as well. If
there are several possible communicants, this one socket might receive several requests
for connections. As a result, a new socket is created for each connection. This new
socket is the endpoint for communication within this program for this connection. A
connection may be destroyed by closing the corresponding socket.

The program irFigure 123.5 is a rather trivial example of a server. It creates a socket to
which it binds a name, which it then advertises. (In this case it prints out the socket
number.) The program then cdlilsten() for this socket. Since several clients may

attempt to connect more or less simultaneously, a queue of pending connections is
maintained in the system address sphisten() marks the socket as willing to accept
connections and initializes the queue. When a connection is requested, it is listed in the
gueue. If the queue is full, an error status may be returned to the requester. The
maximum length of this queue is specified by the second argumigsten(); the

maximum length is limited by the system. Once the listen call has been completed, the
program enters an infinite loop. On each pass through the loop, a new connection is
accepted and removed from the queue, and, hence, a new socket for the connection is
created. The bottom half Bfgure 123.4 shows the result of Program 1 connecting with

The Internet module

#i ncl ude <stdio. h>

#i nclude "sys/types.h"
#i ncl ude "sys/socket.h"
#i nclude "netinet/in.h"
#i ncl ude "netdb. h"

#define DATA "Half a | eague, half a league . . ."

/*

* This program creates a socket and initiates a connection with the socket
* given in the conmand line. One nessage is sent over the connection and
* then the socket is closed, ending the connection. The formof the

* command line is streamwite hostnane portnunber

*/

char buf[1024]; /*global rather than auto, so doesn’t go on SVC stack */
main(argc, argv)

int argc;
char *argvf[];

{

int sock;

struct sockaddr_in server;

struct hostent *hp, *gethostbyname();

/* Create socket */

sock = socket(AF_INET, SOCK_STREAM, 0);

if (sock < 0) {
xperror("opening stream socket");
exit(1);

}

/* Connect socket using name specified by command line. */

server.sin_family = AF_INET,;

hp = gethostbyname(argv[1]);

if (hp == 0) {
fprintf(stderr, "%s: unknown host\n", argv[1]);
exit(2);

}

bcopy(hp->h_addr, &server.sin_addr, hp->h_length);

server.sin_port = htons(atoi(argv[2]));

if (connect(sock, &server, sizeof(server)) < 0) {
xperror(“"connecting stream socket");
exit(1);

}

if (socketwrite(sock, DATA, sizeof(DATA)) < 0)
xperror("writing on stream socket");

close(sock);

}

Figure 123.3 Initiating an Internet domain stream connection

5a-315

Connections

5a-316

Program 1 Program 2
[=
—d
Program 1 Program 2

-

N) (&

Figure 123.4 Establishing a stream connection

the named socket of Program 2, and Program 2 accepting the connection. After the
connection is created, the service, in this case printing out the messages, is performed
and the connection socket closed. The accept() call will take a pending connection
request from the queue if oneis available, or block waiting for a request. M essages are
read from the connection socket. Reads from an active connection will normally block
until datais available. The number of bytes read is returned. When a connection is
destroyed, the read call returnsimmediately. The number of bytes returned will be zero.

The Internet module

#i ncl ude <stdio. h>

#i nclude "sys/types.h"
#i ncl ude "sys/socket.h"
#i nclude "netinet/in.h"
#i ncl ude "netdb. h"
#define TRUE 1

/*

* This program creates a socket and then begins an infinite | oop. Each
* time through the loop it accepts a connection and prints out nessages
* fromit. When the connection breaks, or a term nati on nessage cones

* through, the program accepts a new connection.

*/

char buf[1024]; /*global rather than auto, so doesn’t go on SVC stack */

main()
{
int sock, length;
struct sockaddr_in server;
int msgsock;
int rval;
inti;

[* Create socket */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0) {
xperror("opening stream socket");
exit(1);
}

/* Name socket using wildcards */

server.sin_family = AF_INET,;

server.sin_addr.s_addr = INADDR_ANY;

server.sin_port = 0;

if (bind(sock, &server, sizeof(server))) {
xperror("binding stream socket");
exit(1);

}

/* Find out assigned port number and print it out */

length = sizeof(server);

if (getsockname(sock, &server, &length)) {
xperror(“getting socket name");
exit(1);

printf("Socket has port #%d\n", ntohs(server.sin_port));

Figure 123.5 Accepting an Internet domain stream connection

5a-317

Connections

/* Start accepting connections */
l'i sten(sock, 5);
do {
nmsgsock = accept(sock, 0, 0);
if (msgsock == -1)
xperror("accept");
el se do {
bzer o(buf, sizeof (buf));
if ((rval = socketread(nmsgsock, buf, 1024)) < 0)
xperror("readi ng stream nmessage");
i =0;
if (rval == 0)
printf("Ending connection\n");
el se
printf("-->%\n", buf);
} while (rval '= 0);
cl ose(nsgsock);
} while (TRUE);
/*

Figure 123.5 Accepting an Internet domain stream connection (continued)

The program in Figure 123.6 on page 5a-319 isa dlight variation on the server in
Figure 123.5. It avoids blocking when there are no pending connection requests by
calling select() to check for pending requests before calling accept(). This strategy is
useful when connections may be received on more than one socket, or when data may
arrive on other connected sockets before another connection request.

5a-318

#i
#i
#i
#i
#i
#i

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

<stdio. h>
"sys/types. h"
"sys/socket. h"
"sys/tine.h"
"netinet/in.h"
"net db. h"

#define TRUE 1

/*
* This program uses sel ect()

* before calling accept().
*/

char buf

main()

{

[1024]; [/* global rather than auto, so doesn’t go on SVC stack */

int sock, length;

struct sockaddr_in server;
int msgsock;

int rval;

fd_set ready;

struct timeval to;

/* Create socket */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0) {
xperror("opening stream socket");
exit(1);
}

/* Name socket using wildcards */

server.sin_family = AF_INET,;

server.sin_addr.s_addr = INADDR_ANY;

server.sin_port = 0;

if (bind(sock, &server, sizeof(server))) {
xperror("binding stream socket");
exit(1);

}

/* Find out assigned port number and print it out */
length = sizeof(server);
if (getsockname(sock, &server, &length)) {
xperror(“getting socket name");
exit(1);

printf("Socket has port #%d\n", ntohs(server.sin_port));

The Internet module

to check that soneone is trying to connect

Figure 123.6 Using select() to check for pending connections

5a-319

Connections

/* Start accepting connections */

l'i sten(sock, 5);

do {

FD_ZERQ(&r eady) ;

FD_SET(sock,

&r eady) ;

to.tv_sec = 5;

if (select(sock + 1, &ready,

0, 0, &o) <0) {
xperror("select");
conti nue;

}
if (FD_I SSET(sock, & eady)) {

} else

} while (TRUE);

nmsgsock=accept (sock, (struct sockaddr *)0, (int *)0);
if (msgsock -1)
xperror("accept");
el se do {
bzer o(buf, sizeof (buf));
if ((rval =socketread(nsgsock, buf, 1024)) <0)
xperror("readi ng stream nmessage");
else if (rval == 0)
printf("Ending connection\n");

el se
printf("-->%\n",
} while (rval > 0);
cl ose(nsgsock);

buf);

printf("Do sonmething else\n");

Figure123.6 Using select() to check for pending connections (continued)

5a-320

The Internet module

Reads, writes, recvs, etc

Socklib has several system calls for reading and writing information. The simplest calls

are socketread() and socketwrite(). Socketwrite() takes as arguments the index of a

descriptor, a pointer to a buffer containing the data and the size of the data. The

descriptor indicates a connected socket. ‘Connected’ can mean either a connected
stream socket (as describeddonnections on page 5a-314) or a datagram socket for
which aconnect() call has provided a default destination (see page 5a-382).

Socketread() also takes a descriptor that indicates a so€keketwrite() requires a
connected socket since no destination is specified in the parameters of the system call.
Socketread() can be used for either a connected or an unconnected socket. These calls
are, therefore, quite flexible and may be used to write applications that require no
assumptions about the source of their input or the destination of their output. There are
variations orsocketread() andsocketwrite() that allow the source and destination of the
input and output to use several separate buffers. Thesecketreadv() and

socketwritev(), for read and writeector.

It is sometimes necessary to send high priority data over a connection that may have
unread low priority data at the other end. For example, a user interface program may be
interpreting commands and sending them on to another program through a stream
connection. The user interface may have filled the stream with as yet unprocessed
requests when the user types a command to cancel all outstanding requests. Rather than
have the high priority data wait to be processed after the low priority data, it is possible
to send it asut-of-band (OOB) data. The notification of pending OOB data results in

the generation of an Internet event (3be Internet event on page 5a-345). There are a

pair of calls similar teocketread andsocketwrite that allow options, including sending

and receiving OOB information; these aead() andrecv(). These calls also allow

peeking at data in a stream. That is, they allow a program to read data without removing
the data from the stream. One use of this facility is to read ahead in a stream to determine
the size of the next item to be read. When not using these options, these calls have the
same functions amcketread() andsocketwrite().

To send datagrams, one must be allowed to specify the destination. Tdsedta()

takes a destination address as an argument and is therefore used for sending datagrams.
The callrecvfrom() is often used to read datagrams, since this call returns the address of
the sender, if it is available, along with the data. If the identity of the sender does not
matter, one may uscketread() or recv().

Finally, there are a pair of calls that allow the sending and receiving of messages from
multiple buffers, when the address of the recipient must be specified. These are

sendmsg() andrecvmsg().

5a-321

Reads, writes, recvs, etc

The various options for reading and writing are shown in Figure 123.7 on page 5a-322,
together with their parameters. The parameters for each system call reflect the
differences in function of the different calls. In the examples given in this tutorial, the
calls socketread() and socketwrite() have been used whenever possible.

/*

* The variable "sock" must be the descriptor of a socket.
*/

cc = socketread(sock, buf, nbytes)

int cc, sock; char *buf; int nbytes;

/*

* An iovec can include several source buffers.
*/

cc = socketreadv(sock, iov, iovcnt)

int cc, sock; struct iovec *iov; int iovcnt;

cc = socketwite(sock, buf, nbytes)
int cc, sock; char *buf; int nbytes;

cc = socketwritev(sock, iovec, ioveclen)
int cc, sock; struct iovec *iovec; int ioveclen;

/*

* Flags may include MSG OOB and MSG_PEEK.
*/

cc = send(sock, nsg, len, flags)

int cc, sock; char *nsg; int len, flags;

cc = sendto(sock, nsg, len, flags, to, tolen)
int cc, sock; char *nsg; int len, flags;
struct sockaddr *to; int tolen;

cc = sendnsg(sock, nsg, flags)
int cc, sock; struct msghdr msg[]; int flags;

cc = recv(sock, buf, len, flags)
int cc, sock; char *buf; int len, flags;

cc = recvfrom(sock, buf, len, flags, from from en)
int cc, sock; char *buf; int len, flags;

struct sockaddr *from int *from en;

cc = recvnsg(sock, nsg, flags)
int cc, sock; struct msghdr msg[]; int flags;

Figure 123.7 Varieties of socketread and socketwrite commands

5a-322

Choices

What to do next

The Internet module

Thisintroductory tutorial has presented examples of some of the forms of
communication supported by RISC OS. These have been presented in an order chosen
for ease of presentation. It is useful to review these options emphasizing the factors that
make each attractive.

The Internet domain allows communication between machines. This makes the Internet
domain anecessary choice for programs running on separate machines.

The choice between datagrams and stream communication is best made by carefully
considering the semantic and performance requirements of the application. Streams can
be both advantageous and disadvantageous. One disadvantage is that a program is only
alowed alimited number of open streams, as there are usually only 96 entries available
in the system-wide open descriptor table. This can cause problemsif asingle server must
talk with alarge number of clients. Another isthat for delivering a short message the
stream setup and teardown time can be unnecessarily long. Weighed against thisis the
reliability built into the streams. Thiswill often be the deciding factor in favour of
streams.

Many of the examples presented here can serve as models for multiprocess programs
and for programs distributed across several machines. In devel oping anew multiprocess
program, it is often easiest to first write the code to create the programs and
communication paths. After this code is debugged, the code specific to the application
can be added.

5a-323

Advanced tutorial

Advanced tutorial

Introduction

This section gives you a more advanced tutorial on the communications programming
facilities provided by the Internet module. It looks at the overall model for
communication, outlines the communications primitives we’ve provided, and (in
particular) looks at how to use these primitives in developing applications.

This tutorial provides a high-level description of the communications facilities and their
use. It is complements the descriptions of the library calls later in this chapter by
examples of their use. The remainder of this section is organized in parts:

« Basicson page 5a-325 introduces the communication-related calls and the basic
model of communication.

« Network library routines on page 5a-334 describes some of the supporting library
routines users may find useful in constructing distributed applications.

« Client/server model on page 5a-339 is concerned with the client/server model used
in developing applications, and includes examples of the two major types of
servers.

« Thelnternet event on page 5a-345 describes the Internet event which is used by a
number of important features, such as asynchronous I/O, and out-of-band data.

« Advanced topics on page 5a-348 delves into advanced topics which sophisticated
users are likely to encounter when using the communications facilities.

« Multitasking on page 5a-357 outlines how to ensure that programs using the
Internet module multitask correctly under RISC @Ss essential that you read
this section and follow its recommendations.

You should be familiar with the C programming language, as all examples are written in
C.

5a-324

Basics

The Internet module

The basic building block for communication is the socket. A socket is an endpoint of
communication to which you can bind a name. Each socket in use has atype.

Sockets exist within communication domains. A communication domain is an
abstraction introduced to bundle common properties of programs communicating
through sockets. One such property is the scheme used to name sockets. Sockets
normally exchange data only with sockets in the same domain. (It may be possible to
cross domain boundaries, but only if some translation processis performed.)

The RISC OS socket subsystem currently only supports a single communication
domain: the Internet domain, which is used by programs which communicate using the
DARPA standard communication protocols.

Socket types

Sockets are typed according to the communication properties visible to a user. Programs
are presumed to communicate only between sockets of the same type, although thereis
nothing that prevents communication between sockets of different types should the
underlying communication protocols support this.

Three types of sockets currently are available to a user.

o A stream socket provides for the bidirectional, reliable, sequenced, and
unduplicated flow of data without record boundaries. (Aside from the
bidirectionality of dataflow, apair of connected stream sockets provides an
interface nearly identical to that of BSD UNIX pipes.)

o A datagram socket supports bidirectional flow of datawhich is not promised to be
sequenced, reliable, or unduplicated. That is, a program receiving messages on a
datagram socket may find messages duplicated, and, possibly, in an order different
from the order in which it was sent. An important characteristic of a datagram
socket is that record boundaries in data are preserved. Datagram sockets closely
model the facilities found in many contemporary packet switched networks such as
the Ethernet.

o A raw socket provides users access to the underlying communication protocols
which support socket abstractions. These sockets are normally datagram oriented,
though their exact characteristics are dependent on the interface provided by the
protocol. Raw sockets are not intended for the general user; they have been
provided mainly for those interested in developing new communication protocols,
or for gaining access to some of the more esoteric facilities of an existing protocol.
The use of raw socketsis considered in Selecting specific protocols on page 5a-350.

5a-325

Basics

5a-326

Socket creation

To create a socket the socket system call is used:
s = socket (domain, type, protocol);

This call requests that the system create a socket in the specified domain and of the
specified type. A particular protocol may also be requested.

« Thedomain is specified as one of the manifest constants defined in the file
"sys/socket.h". The manifest constants are named AF_... as they indicate the
‘address format’ to use in interpreting names; for the Internet domain supported by
RISC OS the constant is AF_INET.

« The socket types are also defined in this file and one of SOCK_STREAM,
SOCK_DGRAM, or SOCK_RAW must be specified.

« Ifthe protocol is left unspecified (a value of 0), the system will select an appropriate
protocol from those protocols which comprise the communication domain and
which may be used to support the requested socket type.

The user is returned a descriptor (a small integer number) which may be used in later
system calls which operate on sockets.

To create a stream socket in the Internet domain the following call might be used:
s = socket (AF_I NET, SOCK_STREAM 0);

This call would result in a stream socket being created with the TCP protocol providing
the underlying communication support. To create a datagram socket for the Internet
domain use the call might be:

s = socket (AF_I NET, SOCK_DGRAM 0);

The default protocol (used when th@tocol argument to theocket call is 0) should be
correct for most every situation. However, it is possible to specify a protocol other than
the default; this is covered 8electing specific protocols on page 5a-350.

There are several reasons a socket call may fail. Aside from the rare occurrence of lack
of memory (ENOBUFS), a socket request may fail due to a request for an unknown
protocol (EPROTONOSUPPORT), or a request for a type of socket for which there is no
supporting protocol (EPROTOTYPE).

The Internet module

Binding local names

A socket is created without aname. Until aname is bound to a socket, programs have no
way to reference it and, consequently, no messages may be received on it.
Communicating programs are bound by an association. In the Internet domain, an
association is composed of local and foreign Internet addresses, and local and foreign
port numbers. In most domains, associations must be unique. In the Internet domain
there may never be duplicate <protocol, local address, local port, foreign address,
foreign port> tuples.

The bind system call allows a program to specify half of an association, <local address,
local port>, while the connect and accept primitives are used to complete a socket’s
association.

In the Internet domain, binding names to sockets can be fairly complex. Fortunately, it is
usually not necessary to specifically bind an address and port number to a socket,
because theonnect andsend calls will automatically bind an appropriate address if they
are used with an unbound socket.

Thebind system call is used as follows:

bi nd(s, nane, nanel en);

The bound name is a variable length byte string which is interpreted by the supporting
protocol(s). Its interpretation may vary from communication domain to communication
domain (this is one of the properties which comprise the domain). As mentioned, in the

Internet domain names contain an Internet address and port number. If one wanted to
bind an Internet address, the following code would be used:

#i nclude "sys/types.h"
#i nclude "netinet/in.h"

struct sockaddr _in sin;
bi nd(s, (struct sockaddr *) &sin, sizeof (sin));

but the selection of what to place in the addsassequires some discussion. We will
come back to the problem of formulating Internet addresdéativork library routines
on page 5a-334, when the library routines used in name resolution are discussed.

Connection establishment

Connection establishment is usually asymmetric, with one progciengaand the
other aserver.

« The server, when willing to offer its advertised services, binds a socket to a
well-known address associated with the service and then passively ‘listens’ on its
socket.

It is then possible for an unrelated program to rendezvous with the server.

5a-327

Basics

« The client requests services from the server by initiating a ‘connection’ to the
server’s socket.

On the client side theonnect call is used to initiate a connection. Using the Internet
domain, this might appear as:

struct sockaddr_in server;

connect (s, (struct sockaddr *)&server, sizeof (server));

whereserver in the example above contains the Internet address and port number of the
server to which the client program wishes to speak.

If the client program’s socket is unbound at the time of the connect call, the system will
automatically select and bind a hame to the socket if necessary. This is the usual way
that local addresses are bound to a socket.

An error is returned if the connection was unsuccessful (any name automatically bound
by the system, however, remains). Otherwise, the socket is associated with the server
and data transfer may begin. Some of the more common errors returned when a
connection attempt fails are:

ETIMEDOUT After failing to establish a connection for a period of time,
the system decided there was no point in retrying the
connection attempt any more. This usually occurs because
the destination host is down, or because problems in the
network resulted in transmissions being lost.

ECONNREFUSE The host refused service for some reason. This is usually

D due to a server program not being present at the requested
name.

ENETDOWN or These operational errors are returned based on status

EHOSTDOWN information delivered to the client host by the underlying

communication services.
ENETUNREACH These operational errors can occur either because the

or network or host is unknown (no route to the network or host
EHOSTUNREAC s present), or because of status information returned by
H intermediate gateways or switching nodes. Many times the

status returned is not sufficient to distinguish a network
being down from a host being down, in which case the
system indicates the entire network is unreachable.

For the server to receive a client’s connection it must perform two steps after binding its
socket. The first is to indicate a willingness to listen for incoming connection requests:

listen(s, 5);

5a-328

The Internet module

The second parameter to the listen call specifies the maximum number of outstanding
connections which may be queued awaiting acceptance by the server program; this
number may be limited by the system. Should a connection be requested whilethe queue
isfull, the connection will not be refused, but rather the individual messages which
comprise the request will beignored. This gives a harried server time to make roomin
its pending connection queue while the client retries the connection request. Had the
connection been returned with the ECONNREFUSED error, the client would be unable
totell if the server was up or not. Asitisnow it isstill possibleto get the ETIMEDOUT
error back, though thisis unlikely. The backlog figure supplied with thelisten cal is
currently limited by the system to a maximum of 5 pending connections on any one
queue. This avoids the problem of programs hogging system resources by setting an
infinite backlog, then ignoring all connection requests.

With a socket marked as listening, a server may accept a connection:
struct sockaddr_in from

fron en
newsock

sizeof (from;
accept (s, (struct sockaddr *)& rom &fromen);

A new descriptor is returned on receipt of aconnection (along with anew socket). If the

server wishes to find out who its client is, it may supply a buffer for the client socket’s
name. The value-result paramédt@mlen is initialized by the server to indicate how

much space is associated wiithm, then modified on return to reflect the true size of the
name. If the client's name is not of interest, the second parameter may be a null pointer.

Accept normally blocks. That isaccept will not return until a connection is available or

the system call is interrupted — for example by Escape being pressed. Further, there is ho
way for a program to indicate it will accept connections from only a specific individual,

or individuals. It is up to the user program to consider who the connection is from and
close down the connection if it does not wish to speak to the program. If the server
program wants to accept connections on more than one socket, or wants to avoid
blocking on the accept call, there are alternatives; they will be consideheudainced

topics on page 5a-348.

Data transfer

With a connection established, data may begin to flow. To send and receive data there
are a number of possible calls. With the peer entity at each end of a connection anchored,
a user can send or receive a message without specifying the peer. In this case the
socketread andsocketwrite system calls are usable:

socketwite(s, buf, sizeof (buf));
socket read(s, buf, sizeof (buf));

In addition tosocketread andsocketwrite, the callssend andrecv may be used:

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

5a-329

Basics

5a-330

While send and recv are virtually identical to socketread and socketwrite, the extraflags
argument isimportant. The flags, defined in "sys/socket.h”, may be specified asa
non-zero value if one or more of the following is required:

MSG_0OOB send/receive out-of-band data
MSG_PEEK look at data without reading
MSG_DONTROUTE send data without routing packets

« Out-of-band datais a notion specific to stream sockets, and one which we will not
immediately consider.

« The option to have data sent without routing applied to the outgoing packetsis
currently used only by the routing table management program, and is unlikely to be
of interest to the casual user.

« Theability to preview datais, however, of interest. When MSG_PEEK is specified
with arecv call, any data present is returned to the user, but treated as still ‘unread’.
That is, the nexsocketread or recv call applied to the socket will return the data
previously previewed.

Discarding sockets

Once a socket is no longer of interest, it may be discarded by applsookgtcl ose to
the descriptor:

socket cl ose(s);

If data is associated with a socket which promises reliable delivery (eg a stream socket)
when a close takes place, the system will continue to attempt to transfer the data.
However, after a fairly long period of time, if the data is still undelivered, it will be
discarded. Should a user have no use for any pending data, it may pesfutaoan

on the socket prior to closing it. This call is of the form:

shut down(s, how);

wherehow is 0 if the user is no longer interested in reading data, 1 if no more data will
be sent, or 2 if no data is to be sent or received.

When a client or server machine crashes, the socket stays open on the machine that
hasn’t crashed. Afterwards, under RISC @®ketwrite or send calls will result in an
event being generated (SHee Internet event on page 5a-345) and a return error of
EPIPE,socketread or recv calls will return an EOF indication.

Connectionless sockets

To this point we have been concerned mostly with sockets which follow a connection
oriented model. However, there is also support for connectionless interactions typical of
the datagram facilities found in contemporary packet switched networks. A datagram

The Internet module

socket provides a symmetric interface to data exchange. While programs are still likely
to be client and server, there is no requirement for connection establishment. Instead,
each message includes the destination address.

Datagram sockets are created as before. If a particular local address is needed, the bind
operation must precede the first data transmission. Otherwise, the system will set the
local address and/or port when dataisfirst sent.

To send data, the sendto primitive is used:
sendto(s, buf, buflen, flags, (struct sockaddr *)& o, tolen);
« Thes, buf, buflen, and flags parameters are used as before.

« Theto and tolen values are used to indicate the address of the intended recipient of
the message.

When using an unreliable datagram interface, it is unlikely that any errors will be

reported to the sender. When information is present locally to recognize a message that

can not be delivered (for instance when a network is unreachable), the call will return —
1 and the global valuerrno will contain an error number.

To receive messages on an unconnected datagram socketytham primitive is
provided:

recvfrom(s, buf, buflen, flags, (struct sockaddr *)& rom &fronlen);

« Once again, théomlen parameter is handled in a value-result fashion, initially
containing the size of tHieom buffer, and modified on return to indicate the actual
size of the address from which the datagram was received.

In addition to the two calls mentioned above, datagram sockets may alsoamsmehe

call to associate a socket with a specific destination address. In this case, any data sent
on the socket will automatically be addressed to the connected peer, and only data
received from that peer will be delivered to the user. Only one connected address is
permitted for each socket at one time; a second connect will change the destination
address, and a connect to a null address (family AF_UNSPEC) will disconnect. Connect
requests on datagram sockets return immediately, as this simply results in the system
recording the peer’s address (as compared to a stream socket, where a connect request
initiates establishment of an end to end connectimtept andlisten are not used with
datagram sockets.

While a datagram socket is connected, errors from reeadicalls may be returned
asynchronously. These errors may be reported on subsequent operations on the socket,
or a special socket option used wgttsockopt, SO_ERROR, may be used to interrogate

the error status. Aelect for reading or writing will return true when an error indication

has been received. The next operation will return the error, and the error status is cleared.
Other of the less important details of datagram sockets are descriupemnced topics

on page 5a-348.

5a-331

Basics

5a-332

Input/output multiplexing

Onelast facility often used in developing applicationsis the ability to multiplex i/o
requests among multiple sockets. Thisis done using the select call:

#i ncl ude "sys/tinme.h"
#i ncl ude "sys/types. h"

fd_set readmask, writenask, exceptnask;
struct tinmeval tineout;

sel ect (nfds, & eadmask, &witenmask, &exceptmask, &tineout);

Select takes as arguments pointers to three sets:

« onefor the set of socket descriptors for which the caller wishes to be able to read
dataon

« onefor those descriptors to which dataisto be written

« onefor which exceptional conditions are pending
(Out-of-band data is the only exceptional condition currently implemented by the
socket. If the user is not interested in certain conditions — ie read, write, or
exceptions — the corresponding argument testheet should be a null pointer.

Each set is actually a structure containing an array of long integer bit masks; the size of
the array is set by the definition FD_SETSIZE. The array must be long enough to hold
one bit for each of FD_SETSIZE descriptors.

The macros FD_SETq, & mask) and FD_CLRid, & mask) have been provided for
adding and removing descriptiorin the setmask. The set should be zeroed before use,
and the macro FD_ZER®&fmnask) has been provided to clear the mask.

The parametenfds in theselect call specifies the range of descriptors (ie one plus the
value of the largest descriptor) to be examined in a set.

A timeout value may be specified if the selection is not to last more than a predetermined
period of time. If the fields itimeout are set to 0, the selection takes the form il B
returning immediately. If the last parameter is a null pointer, the selection will block
indefinitely.

Select normally returns the number of descriptors selected; igdliget call returns due
to the timeout expiring, then the value 0 is returned. Ibtheet terminates because of
an error or interruption, a —1 is returned with the error numbsrine, and with the
socket descriptor masks unchanged.

Assuming a successful return, the three sets will indicate which descriptors are ready to
be read from, written to, or have exceptional conditions pending. The status of a socket
descriptor in a select mask may be tested withrihel SSET(fd, & mask) macro, which
returns a non-zero valuefd is a member of the seiask, and 0 if it is not.

The Internet module

To determine if there are connections waiting on a socket to be used with an accept call,
select can be used, followed by aFD_ISSET(fd, & mask) macro to check for read
readiness on the appropriate socket. If FD_ISSET returns a non-zero value, indicating
permission to read, then a connection is pending on the socket.

As an example, to read data from two sockets, s1 and s2 asit is available from each and
with a one-second timeout, the following code might be used:

#i nclude "sys/tine.h"
#i nclude "sys/types. h"

fd_set read_tenplate;

struct tinmeval wait;

for (;;) {
wait.tv_sec = 1; /* one second */
wait.tv_usec = 0;

FD_ZERQ(& ead_t enpl ate);

FD SET(sl1, &read_tenplate);
FD_SET(s2, &read_tenplate);

nb = sel ect (FD_SETSI ZE, & ead_t enpl ate, (fd_set *)0, (fd_set *)0,&wait);
if (nb <=0) {
An error occurred during the select, or the select timed out.

}
if (FD_I SSET(s1l, & ead_tenplate)) {
Socket #1 is ready to be read from.

}
if (FD_I SSET(s2, & ead_tenplate)) {
Socket #2 is ready to be read from.

}
}
Select provides a synchronous multiplexing scheme. Asynchronous notification of
output completion, input availability, and exceptional conditionsis possible through use
of the Internet events described in The Internet event on page 5a-345.

5a-333

Network library routines

Network library routines

5a-334

The discussion in the previous part of thistutorial indicated the possible need to locate
and construct network addresses when using the communication facilitiesin a
distributed environment. To aid in this task a number of routines have been provided in
the Inetlib library. In this section we will consider the routines provided to manipulate
network addresses.

Locating a service on aremote host requires many levels of mapping before client and
server may communicate;

« A service is assigned a name which is intended for human consumption; eg ‘the
login server on host monet'.

« This name, and the name of the peer host, must then be translated into network
addresses which are not necessarily suitable for human consumption.

« Finally, the address must then used in locating a phylsication androute to the
service.

The specifics of these three mappings are likely to vary between network architectures.
For instance, it is desirable for a network to not require hosts to be named in such a way
that their physical location is known by the client host. Instead, underlying services in
the network may discover the actual location of the host at the time a client host wishes
to communicate. This ability to have hosts named in a location independent manner may
induce overhead in connection establishment, as a discovery process must take place,
but allows a host to be physically mobile without requiring it to notify its clientele of its
current location.

Standard routines are provided for mapping:
« host names to network addresses

« network names to network numbers

« protocol names to protocol numbers

« service names to port numbers and the appropriate protocol to use in
communicating with the server program.

The file"netdb.h" must be included when using any of these routines.

The Internet module

Host names
An Internet host name to address mapping is represented by the hostent structure:

struct hostent {

char *h_nane; /* official nanme of host */

char **h_al i ases; /* alias list */

int h_addrt ype; /* host address type (eg AF_INET) */

int h_l engt h; /* length of address */

char **h_addr _list; /* list of addresses, null term nated */

b
#define h_addr h_addr_list[0] /* first address, network byte order */

The routine gethostbyname takes an Internet host name and returns a hostent structure,
while the routine gethostbyaddr maps Internet host addresses into a hostent structure.

The official name of the host and its public aliases are returned by these routines, along
with the address type (family) and anull terminated list of variable length addresses.
Thislist of addressesisrequired becauseit is possiblefor ahost to have many addresses,
al having the same name. Theh_addr definition is provided for backward compatibility,
and is defined to be the first address in the list of addressesin the hostent structure.

The database for these callsis provided by the file InetDBase: hosts. When using
gethostbyname, only one address will be returned, but all listed aliases will be included.

Network names

Asfor host names, routines for mapping network names to numbers, and back, are
provided. These routines return a netent structure:

/*

* Assunption here is that a network nunber
* fits in 32 bits -- probably a poor one
*/

struct netent {

char *n_nane; /* official nanme of net */

char **n_al i ases; /* alias list */

int n_addrtype; /* net address type */

int n_net; /* network nunber, host byte order */

}s

The routines getnetbyname, getnetbynumber, and getnetent are the network counterparts
to the host routines described above. The routines extract their information from
InetDBase: networks.

Protocol names

For protocols, which are defined in InetDBase: protocols, the protoent structure defines
the protocol -name mapping used with the routines getprotobyname, getprotobynumber,
and getprotoent:

5a-335

Network library routines

5a-336

struct protoent {

char *p_nane; /* official protocol name */
char **p_aliases; /* alias list */
int p_proto; /* protocol nunber */

}s

Service names

Information regarding servicesisabit more complicated. A serviceisexpected toreside
at a specific port and employ a particular communication protocol. Thisview is
consistent with the Internet domain, but inconsistent with other network architectures.
Further, a service may reside on multiple ports. If this occurs, the higher level library
routines will have to be bypassed or extended. Services available are contained in the
file InetDBase: services. A service mapping is described by the servent structure:

struct servent {

char *s_nane; /* official service nane */

char **s aliases; /* alias list */

int s_port; /* port nunmber, network byte order */
char *s_proto; /* protocol to use */

}s

The routine getservbyname maps service names to a servent structure by specifying a
service name and, optionally, a qualifying protocol. Thusthe call:

sp = getservbynane(“telnet", (char *) 0)
returns the service specification for atelnet server using any protocol, while the call:
sp = getservbyname("telnet", "tcp")

returns only that telnet server which uses the TCP protocol. The routines getservbyport
and getservent are also provided. The getservbyport routine has an interface similar to
that provided by getservbyname; an optional protocol name may be specified to qualify
lookups.

Miscellaneous

With the support routines described above, an I nternet application program should rarely
have to deal directly with addresses. This alows services to be developed as much as
possible in anetwork independent fashion. It is clear, however, that purging all network
dependenciesis very difficult. So long as the user is required to supply network
addresses when naming services and sockets there will always some network
dependency in a program. For example, the normal code included in client programs,
such as the remote login program, is of the form shown in the example program in
Figure 123.8 on page 5a-338. (This example will be considered in more detail in
Client/server model on page 5a-339.)

The Internet module

If we wanted to make the remote |ogin program independent of the Internet protocols
and addressing scheme we would be forced to add alayer of routines which masked the
network dependent aspects from the mainstream login code. For the current facilities
available in the system this does not appear to be worthwhile.

Aside from the address-rel ated data base routines, there are several other routines
available in the Inetlib and Unixlib libraries which are of interest to users. These are
intended mostly to simplify manipulation of names and addresses. The table below
summarizes the Unixlib routines for manipulating variable length byte strings, and the
Inetlib routines for handling byte swapping of network addresses and values.

Call Synopsis

bemp(sl, s2, n) compare byte-strings; 0 if same, not O otherwise
bcopy(sl, s2, n) copy n bytesfrom sl to 2

bzero(base, n) zero-fill n bytes starting at base

htonl(val) convert 32-bit quantity from host to network byte order
htons(val) convert 16-bit quantity from host to network byte order
ntohl(val) convert 32-bit quantity from network to host byte order
ntohs(val) convert 16-bit quantity from network to host byte order

The byte swapping routines are provided because the operating system expects
addresses to be supplied in network order. On some architectures, such as ARMs and
VAXes, host byte ordering is different than network byte ordering. Consequently,
programs are sometimes required to byte swap quantities. The library routines which
return network addresses provide them in network order so that they may simply be
copied into the structures provided to the system. Thisimplies users should encounter
the byte swapping problem only when interpreting network addresses. For example, if
an Internet port is to be printed out the following code would be required:

printf("port nunber %\n", ntohs(sp->s_port));

(On machines where unneeded the byte swapping routines are defined as null macros.

Client/server model

The most commonly used paradigm in constructing distributed applicationsis the
client/server model. In this scheme client applications request services from a server
program. Thisimplies an asymmetry in establishing communication between the client
and server which has been examined in Basics on page 5a-325. In this part of the tutorial
we will look more closely at the interactions between client and server, and consider
some of the problemsin developing client and server applications.

The client and server require awell known set of conventions before service may be
rendered (and accepted). This set of conventions comprises a protocol which must be
implemented at both ends of a connection. Depending on the situation, the protocol may

5a-337

Client/server model

5a-338

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

mai n(arg

<stdio. h>
"sys/types. h"
"sys/socket. h"
"netinet/in.h"
"netdb. h"

c, argv)
int argc;
char *argv[];

struct sockaddr_in server;
struct servent *sp

struct hostent *hp

int s;

sp = getservbynanme("login", "tcp")

if (sp == NULL) {
fprintf(stderr, "rlogin: tcp/login: unknown service\n")
exit(1)

}

hp = get host bynanme(argv[1]);

if (hp == NULL) {
fprintf(stderr, "rlogin: %: unknown host\n", argv[1]);
exit(2)

}

bzero((char *)&server, sizeof (server))

bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_I ength)

server.sin_famly = hp->h_addrtype

server.sin_port = sp->s_port

s = socket (AF_I NET, SOCK_STREAM 0)
if (s <0) {
xperror("rlogin: socket")
exit(3)

/* Connect does the bind() for us */
if (connect(s, (char *)&server, sizeof (server)) < 0) {

xperror("rlogin: connect");
exit(5)

Figure 123.8 Remote login client code

The Internet module

be symmetric or asymmetric. In asymmetric protocol, either side may play the master or
slave roles. In an asymmetric protocol, one side isimmutably recognized as the master,
with the other asthe slave. An example of asymmetric protocol isthe TELNET protocol
used in the Internet for remote terminal emulation. An example of an asymmetric

protocol isthe Internet file transfer protocol, FTP. No matter whether the specific

protocol used in obtaining a service is symmetric or asymmetric, when accessing a
service there is a ‘client program’ and a ‘server program’. We will first consider the
properties of server programs, then client programs.

A server program normally listens at a well known address for service requests. That is,
the server program remains dormant until a connection is requested by a client’s
connection to the server’s address. At such a time the server program ‘wakes up’ and
services the client, performing whatever appropriate actions the client requests of it.

Servers

Most servers are accessed at well known Internet addresses. For example, the BSD
UNIX remote login server’'s main loop is of the form showiiigure 123.9 on

page 5a-340. (Although this example is a little strange in not being a RISC OS
application, it still contains a number of relevant and useful points.)

The first step taken by the server is to look up its service definition:

sp = getservbynane("login", "tcp");

if (sp == NULL) {
fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

}

The result of thgetservbyname call is used in later portions of the code to define the
Internet port at which it listens for service requests (indicated by a connection).

Once a server has established a pristine environment, it creates a socket and begins
accepting service requests. Thiad call is required to insure the server listens at its
expected location.

The main body of the loop is fairly simple:
for (;;) {

int g, len = sizeof (from;

g = accept(f, (struct sockaddr *)& rom &l en);
if (g<0) {
if (errno != EINTR)
xperror("rlogind: accept");
conti nue;
}
doit(g, & rom;
close(Q);

5a-339

Client/server model

5a-340

mai n(argc, argv)
int argc;
char *argv[]

{
int f;
struct sockaddr_in from
struct servent *sp;
sp = getservbyname("login", "tcp");
if (sp == NULL) {
fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);
}
sin.sin_port = sp->s_port;
f = socket (AF_I NET, SOCK_STREAM 0);
if (bind(f, (struct sockaddr *) &sin, sizeof (sin)) < 0) {
}
listen(f, 5);
for (;;) {
int g, len = sizeof (from;
g = accept (f, (struct sockaddr *)& rom & en);
if (g <0 {
if (errno !'= EINTR)
xperror("rlogind: accept");
conti nue;
}
doit(g, & rom;
close(Q);
}
}

Figure 123.9 Remote login server

An accept call blocks the server until a client requests service. This call could return a
failure status if the call isinterrupted, for example by an Escape. Therefore, the return
value from accept is checked to insure a connection has actually been established, and
an error report is printed if an error has occurred.

With a connection in hand, the server then invokes the main body of the remote login
protocol processing. The address of the client is also handed the doit routine because it
requiresit in authenticating clients.

Clients

The Internet module

The client side of the remote login service was shown earlier in Figure 123.8 on

page 5a-338. One can see the separate, asymmetric roles of the client and server clearly
in the code. The server is apassive entity, listening for client connections, while the
client program is an active entity, initiating a connection when invoked.

Let us consider more closely the steps taken by the client remote login program. Asin
the server program, the first step is to locate the service definition for a remote login:

sp = getservbynane("login", "tcp");

if (sp == NULL) {
fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(1);

}

Next the destination host is looked up with a gethostbyname call:

hp = gethostbynane(argv[1])

if (hp == NULL) {
fprintf(stderr, "rlogin: %: unknown host\n", argv[1]);
exit(2);

}

With this accomplished, all that isrequired is to establish a connection to the server at
the reguested host and start up the remote login protocol. The address buffer is cleared,
then filled in with the Internet address of the foreign host and the port number at which
the login program resides on the foreign host:

bzero((char *)&server, sizeof (server));

bcopy(hp->h_addr, (char *) &server.sin_addr, hp->h_|length);
server.sin_fam |y = hp->h_addrtype;

server.sin_port = sp->s_port;

A socket is created, and a connection initiated. Note that connect implicitly performsa
bind call, since sis unbound.

s = socket (hp->h_addrtype, SOCK_STREAM 0);
if (s <0) {

xperror("rlogin: socket");

exit(3);
}

if (connect(s, (struct sockaddr *) &server, sizeof (server)) < 0) {
xperror("rlogin: connect");
exit(4);

}

The details of the remote login protocol will not be considered here.

5a-341

Client/server model

Connectionless servers

5a-342

While connection-based services are the norm, some services are based on the use of

datagram sockets. One, in particular, is the 4.3BSD UNIX ‘rwho’ service which
provides users with status information for hosts connected to a local area network. This
service, while predicated on the abilitylimadcast information to all hosts connected

to a particular network, is of interest as an example usage of datagram sockets.

A user on any machine running the rwho server may find out the current status of a
machine with theuptime program. The output generated is illustrateBigure 123.10
on page 5a-342.

ar pa up 9: 45, 5 users, |oad 1. 15, 1. 39, 1.31
cad up 2+12: 04, 8 users, |oad 4. 67, 5.13, 4.59
cal der up 10: 10, 0 users, |oad 0. 27, 0. 15, 0.14
dal i up 2+06: 28, 9 users, |oad 1. 04, 1. 20, 1.65
degas up 25+09: 48, 0 users, |oad 1. 49, 1. 43, 1.41
ear up 5+00: 05, 0 users, |oad 1. 51, 1. 54, 1.56
ernie down 0: 24

esvax down 17: 04

ingres down 0: 26

ki m up 3+09: 16, 8 users, |oad 2.03, 2. 46, 3.11
mati sse up 3+06: 18, 0 users, |oad 0. 03, 0. 03, 0. 05
medea up 3+09: 39, 2 users, |oad 0. 35, 0. 37, 0.50
merlin down 19+15: 37

mro up 1+07: 20, 7 users, |oad 4,59, 3. 28, 2.12
nonet up 1+00: 43, 2 users, |oad 0. 22, 0. 09, 0. 07
oz down 16: 09

statvax up 2+15: 57, 3 users, |oad 1.52, 1. 81, 1. 86
uchvax up 9: 34, 2 users, |oad 6. 08, 5. 16, 3.28

Figure 123.10 ruptime output

Status information for each host is periodically broadcast by rwho server programs on
each machine. The same server program also receives the status information and uses it
to update a database. This database is then interpreted to generate the status information
for each host. Servers operate autonomously, coupled only by the local network and its
broadcast capabilities.

Note that the use of broadcast for such a task is fairly inefficient, as all hosts must
process each message, whether or not using an rwho server. Unless such a service is
sufficiently universal and is frequently used, the expense of periodic broadcasts
outweighs the simplicity.

The rwho server, in a simplified form, is picturedrigure 123.11 on page 5a-344.

There are two separate tasks performed by the server. The first task is to act as a receiver
of status information broadcast by other hosts on the network. This job is carried out in
the main loop of the program. Packets received at the rwho port are interrogated to
insure they've been sent by another rwho server program, then are time stamped with
their arrival time and used to update a file indicating the status of the host. When a host

The Internet module

main() {

sp = getservbynanme("who", "udp");

net = getnetbynanme("l ocal net");

sin.sin_addr = inet_nmakeaddr (| NADDR_ANY, net);
sin.sin_port = sp->s_port;

s = socket (AF_I NET, SOCK_DGRAM 0);

on = 1;

if (setsockopt(s, SOL_SOCKET, SO BROADCAST, &on, sizeof(on)) < 0) {
xperror("setsockopt SO BROADCAST");
exit(1);

}

bi nd(s, (struct sockaddr *) &sin, sizeof (sin));
onal rm();
for (;;) {

struct whod wd;
int cc, whod, len = sizeof (from;

cc = recvfron(s, (char *)&wwd, sizeof (struct whod), O,
(struct sockaddr *)& rom & en);
if (cc <=0) {
if (cc <0 & errno !'= EINTR)
xperror("rwhod: recv");
conti nue;
}
if (fromsin_port != sp->s_port) {
fprintf(stderr, "rwhod: %l: bad from port",
nt ohs(from sin_port));
conti nue;

}

if (!verify(wd. wd_hostnane)) {
fprintf(stderr, "rwhod: nmalfornmed host name from
%", ntohl (from sin_addr.s_addr));
conti nue;
}
(void) sprintf(path, "%/whod. %", RA\HODI R, wd. wd_host nane) ;
whod = open(path, O WRONLY | O CREAT | O TRUNC, 0666);

.(\I/;)i d) time(&w.wd_recvtine);
(void) wite(whod, (char *)&wd, cc);
(void) close(whod);

}

onal rm() {

/* Broadcast our status to other rwho servers, and then use
* OS_Cal |l After to re-enter this function after a given interval.

Figure 123.11 rwho server

5a-343

Client/server model

5a-344

has not been heard from for an extended period of time, the database interpretation
routines assume the host is down and indicate such on the status reports. This algorithm
is prone to error as a server may be down while ahost is actually up, but serves our
current needs.

The second task performed by the server isto supply information regarding the status of
its host. Thisinvolves periodically acquiring system status information, packaging it up
in amessage and broadcasting it on the local network for other rwho serversto hear. The
supply function onalrmis triggered by atimer, which it setsitself. Locating the system
status information is somewhat involved, but uninteresting. Deciding where to transmit
the resultant packet is somewhat problematical, however.

Status information must be broadcast on the local network. For networks which do not
support the notion of broadcast another scheme must be used to simulate or replace
broadcasting. One possihility isto enumerate the known neighbours (based on the status
messages received from other rwho servers). This, unfortunately, requires some
bootstrapping information, for aserver will have no idea what machines are its
neighbours until it receives status messages from them. Therefore, if al machineson a
net are freshly booted, no machine will have any known neighbours and thus never
receive, or send, any status information. Thisisthe identical problem faced by the
routing table management program in propagating routing status information. The
standard solution, unsatisfactory asit may be, isto inform one or more servers of known
nei ghbours and request that they always communicate with these neighbours. If each
server has at least one neighbour supplied to it, status information may then propagate
through a neighbour to hosts which are not (possibly) directly neighbours. If the server
is able to support networks which provide a broadcast capability, as well as those which
do not, then networks with an arbitrary topology may share status information'.

It isimportant that software operating in a distributed environment not have any
site-dependent information compiled into it. This would require a separate copy of the
server at each host and make maintenance a severe headache. 4.3BSD attemptstoisolate
host-specific information from applications by providing system calls which return the
necessary information®.

A mechanism exists, in the form of a socketioctl call, for finding the collection of
networks to which a host is directly connected. Further, alocal network broadcasting
mechanism has been implemented at the socket level. Combining these two features
alows a program to broadcast on any directly connected local network which supports

T One must, however, be concerned about ‘loops’. That is, if a host is connected to
multiple networks, it will receive status information from itself. This can lead to an

endless, wasteful, exchange of information.

¥ Anexample of such a system call is ¢lathostname call which returns the host'’s
‘official’ name.

The Internet module

the notion of broadcasting in asite independent manner. Thisallows 4.3BSD to solvethe
problem of deciding how to propagate status information in the case of rwho, or more
generally in broadcasting. Such statusinformation is broadcast to connected networks at
the socket level, where the connected networks have been obtained via the appropriate
socketioctl calls. The specifics of such broadcastings are complex, however, and will be
covered in Broadcasting and determining network configuration on page 5a-353.

The Internet event
(This description of the Internet event supersedes the old description on page 1-161.)

Under 4.3 BSD, signals are used to notify processes of specific events. Under RISC OS,
the Internet event performs a similar function:

Internet event

RO=19
R1 = event subcode:
10 asocket has input waiting to be read
2 0 an urgent event has occurred, such as the arrival of out-of-band data
30 socket connection is broken
40 aRevARP server has replied to a RevARP request
R2 = socket descriptor (if R1 =1, 2, or 3), or |P address of replying server (if R1 = 4)
R3 = IP address of requesting station (if R1 = 4)

This event is generated when certain Internet events occur:

#define I nternet_Event 19

#define Socket _Async_Event

#define Socket _Urgent_Event

#def i ne Socket _Broken_Event

#define RarpReply 4

« Theevent Internet_Event/Socket_Async_Event allows an event handler within a
program to run when a socket has input waiting to be read; normally the event
handler will make arecv call to read expected data, or an accept call to receive an
expected call.

o Theevent Internet_Event/Socket Urgent_Event allows an event handler to run if
some urgent event, such asthe arrival of out-of-band data, occurs.

o Theevent Internet_Event/Socket Broken Event allows an event handler to run if a
socket connection is broken.

« Theevent Internet_Event/RarpReply allows an event handler to run if a RevARP
server hasreplied to a RevARP request.

w N P

5a-345

The Internet event

Note that event subcodes 1, 2 and 3 are approximately equivalent to the UNIX SGIO,
S GURG and SIGPIPE signals respectively, and are generated under equivalent
circumstances.

Using the I nter net event

Use of the event facility requires these steps:

1 Youmust set up an event handler (see Events on page 1-147), and then claim the
event vector using the SWI1 OS_Claim (page 1-66).

You must enable the Internet event using the SWI OS_Byte 14 (page 1-152).

You must make a socketioctl FIOASYNC call for every socket that you require to
generate the event Internet_Event/Socket_ Async_Event:

/* All ow receipt of asynchronous |/O events */
#i nclude "sys/ioctl.h"

ints;

inton=1;

s = socket(AF_INET, SOCK_STREAM, 0);

if (socketioctl(s, FIOASYNC, &on) < 0) {
xperror("socketioctl error");

return(-1);

}

The Internet module only generates this event for a socket once you've made this
call.

5a-346

The Internet module

Advanced topics

A number of facilities have yet to be discussed. For most users of the communication
system the mechanisms aready described will suffice in constructing distributed
applications. However, otherswill find the need to utilise some of the features which we
consider in this section.

Out-of-band data

The stream socket abstraction includes the notion of out-of-band data. Out-of-band data
isalogicaly independent transmission channel associated with each pair of connected
stream sockets. Out-of-band datais delivered to the user independently of normal data.

The abstraction defines that the out-of-band data facilities must support the reliable
delivery of at least one out-of-band message at atime. This message may contain at |east
one byte of data, and at |east one message may be pending delivery to the user at any one
time. For communications protocols which support only in-band signalling (ie the
urgent datais delivered in sequence with the normal data), the system normally extracts
the datafrom the normal data stream and storesit separately. This alows usersto choose
between receiving the urgent datain order and receiving it out of sequence without
having to buffer all the intervening data.

It is possible to ‘peek’ (via MSG_PEEK) at out-of-band data. The Internet event
Socket_Urgent_Event (see page 5a-345) is generated when the protocol is notified of its
existence. If multiple sockets may have out-of-band data awaiting delisetgciacall

for exceptional conditions may be used to determine those sockets with such data
pending. Neither the event nor the select indicate the actual arrival of the out-of-band
data, but only notification that it is pending.

In addition to the information passed, a logical mark is placed in the data stream to
indicate the point at which the out-of-band data was sent. The remote login and remote
shell applications use this facility to propagate signals between client and server
programs. When a signal flushes any pending output from the remote program(s), all
data up to the mark in the data stream is discarded.

To send an out-of-band message the MSG_OOB flag is suppliesrid ar sendto

calls, while to receive out-of-band data MSG_OOB should be indicated when
performing arecvfrom or recv call. To find out if the read pointer is currently pointing at
the mark in the data stream, the SIOCATMARICketioctl is provided:

socketioctl (s, SIOCATMARK, &yes);

If yesis a 1 on return, the next read will return data after the mark. Otherwise (assuming
out-of-band data has arrived), the next read will provide data sent by the client prior to
transmission of the out-of-band signal. The routine used in the remote login program to
flush output — for example on an Escape — is shov#figare 123.12 below. It reads the
normal data up to the mark (to discard it), then reads the out-of-band byte.

5a-347

Advanced topics

5a-348

#i ncl ude "sys/ioctl.h"
#i nclude "sys/file.h"
#i ncl ude "kernel.h"

#i nclude "sw s. h"

char waste[BUFSIZ]; /* global rather than auto; doesn’t go on SVC stack */

oob() {
char mark;
_kernel_swi_regsr;

for (i) {
if (socketioctl(rem, SIOCATMARK, &mark) < 0) {
xperror(“ioctl");
break;

}
if (mark)
break;
(void) socketread(rem, waste, sizeof (waste));

}
if (recv(rem, &mark, 1, MSG_OOB) < 0) {
xperror("recv");

Figure 123.12 Flushing I/O on receipt of out-of-band data

A program may also read or peek at the out-of-band data without first reading up to the
mark. Thisis more difficult when the underlying protocol delivers the urgent data
in-band with the normal data, and only sends notification of its presence ahead of time
(eg the TCP protocol used to implement streams in the Internet domain). With such
protocols, the out-of-band byte may not yet have arrived when arecv is done with the
MSG_OOB flag. In that case, the call will return an error of EWOULDBLOCK. Worse,
there may be enough in-band data in the input buffer that normal flow control prevents
the peer from sending the urgent data until the buffer is cleared. The program must then
read enough of the queued data that the urgent data may be delivered.

Certain programs that use multiple bytes of urgent data and must handle multiple urgent
signals (eg telnet) need to retain the position of urgent data within the stream. This

treatment is available as a socket-level option, SO_OOBINLINE; see setsockopt for

usage. With this option, the position of urgent data (the ‘mark’) is retained, but the
urgent data immediately follows the mark within the normal data stream returned
without the MSG_OOB flag. Reception of multiple urgent indications causes the mark
to move, but no out-of-band data are lost.

The Internet module

Selecting specific protocols

If the third argument to the socket call is 0, socket will select adefault protocol to use

with the returned socket of the type requested. The default protocol is usualy correct,

and alternate choices are not usually available. However, when using ‘raw’ sockets to
communicate directly with lower-level protocols or hardware interfaces, the protocol
argument may be important for setting up demultiplexing. For example, raw sockets in
the Internet family may be used to implement a new protocol above IP, and the socket
will receive packets only for the protocol specified. To obtain a particular protocol one
determines the protocol number as defined within the communication domain. For the
Internet domain one may use one of the library routines discussed in section 3, such as
getprotobyname:

#i nclude "sys/types.h"

#i ncl ude "sys/socket.h"

#include "netinet/in.h"
#i ncl ude "netdb. h"

pp = get protobyname("newtcp");

s = socket (AF_I NET, SOCK_STREAM pp->p_proto);

This would result in a sockstusing a stream based connection, but with protocol type
of ‘newtcp’ instead of the default ‘tcp.’

Address binding

As was mentioned in the earlier sectRasics, binding addresses to sockets in the

Internet domain can be fairly complex. As a brief reminder, these associations are
composed of local and foreign addresses, and local and foreign ports. Port numbers are
allocated out of separate spaces, one for each system and one for each domain on that
system. Through thigind system call, a program may specify half of an association, the
<local address, local port> part, while ttwnect andaccept primitives are used to

complete a socket’s association by specifying the <foreign address, foreign port> part.
Since the association is created in two steps the association uniqueness requirement
indicated previously could be violated unless care is taken. Further, it is unrealistic to
expect user programs to always know proper values to use for the local address and local
port since a host may reside on multiple networks and the set of allocated port numbers
is not directly accessible to a user.

5a-349

Advanced topics

5a-350

To simplify local address binding in the Internet domain the notion of a ‘wildcard’
address has been provided. When an address is specified as INADDR_ANY (a manifest
constant defined ihnetinet/in.h"), the system interprets the address as ‘any valid
address’. For example, to bind a specific port number to a socket, but leave the local
address unspecified, the following code might be used:

#i ncl ude "sys/types. h"
#i nclude "netinet/in.h"

struct sockaddr_in sin;

s = socket (AF_I NET, SOCK_STREAM 0);
sin.sin_famly = AF_I NET;

si n.sin_addr.s_addr = htonl (| NADDR_ANY) ;
sin.sin_port = htons(MYPORT);

bi nd(s, (struct sockaddr *) &sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the specified
port number, and sent to any of the possible addresses assigned to a host. For example, if
a host has addresses 128.32.0.4 and 10.0.0.78, and a socket is bound as above, the
program will be able to accept connection requests which are addressed to 128.32.0.4 or
10.0.0.78. If a server program wished to only allow hosts on a given network connect to

it, it would bind the address of the host on the appropriate network.

In a similar fashion, a local port may be left unspecified (specified as zero), in which
case the system will select an appropriate port number for it. For example, to bind a
specific local address to a socket, but to leave the local port number unspecified:

hp = get host bynane(host nane) ;
if (hp == NULL) {

}

bcopy(hp->h_addr, (char *) sin.sin_addr, hp->h_length);
sin.sin_port = htons(0);

bi nd(s, (struct sockaddr *) &sin, sizeof (sin));

The system selects the local port number based on two criteria. The first is that
‘privileged’ Internet ports below IPPORT_RESERVED (1024) must be specifically

requested by a program, whereas higher values are used by RISC OS when it chooses a
port number, the program not having specified one. The second is that the port number

The Internet module

is not currently bound to some other socket. In order to find afree Internet port number
in the privileged range the rresvport library routine may be used as follows to return a
stream socket with a privileged port number:

int Iport = IPPORT_RESERVED - 1,
ints;

s = rresvport(&lport);
if (s <0){
if (errno == EAGAIN)
fprintf(stderr, "socket: all ports in use\n");
else
xperror(“rresvport: socket");

}

The restriction on allocating ports was done to allow programs executing in a ‘secure’
environment to perform authentication based on the originating address and port
number. The port number and network address of the machine from which the user is
logging in can be determined either by fieen result of theaccept call, or from the
getpeername call.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable
for an application. This is because associations are created in a two step process. For
example, the Internet file transfer protocol, FTP, specifies that data connections must
always originate from the same local port. However, duplicate associations are avoided
by connecting to different foreign ports. In this situation the system would disallow
binding the same local address and port number to a socket if a previous data
connection’s socket still existed. To override the default port selection algorithm, an
option call must be performed prior to address binding:

int on = 1;
set sockopt (s, SOL_SOCKET, SO REUSEADDR, &on, sizeof(on));

bi nd(s, (struct sockaddr *) &sin, sizeof (sin));

With the above call, local addresses may be bound which are already in use. This does
not violate the uniqueness requirement as the system still checks at connect time to be
sure any other sockets with the same local address and port do not have the same foreign
address and port. If the association already exists, the error EADDRINUSE is returned.

5a-351

Advanced topics

Broadcasting and determining network configuration

By using a datagram socket, it is possible to send broadcast packets on many networks
supported by the system. The network itself must support broadcast; the system provides
no simulation of broadcast in software. Broadcast messages can place ahigh load on a
network since they force every host on the network to service them. Consequently, the
ability to send broadcast packets has been limited to socketswhich are explicitly marked
asallowing broadcasting. Broadcast istypically used for one of two reasons: it isdesired
to find aresource on alocal network without prior knowledge of its address, or
important functions such as routing require that information be sent to all accessible
neighbours.

To send a broadcast message, a datagram socket should be created:
s = socket (AF_I NET, SOCK_DGRAM 0);

The socket is marked as allowing broadcasting,

int on = 1;

set sockopt (s, SOL_SOCKET, SO BROADCAST, &on, sizeof (on));

and at least a port number should be bound to the socket:

sin.sin_famly = AF_I NET;

sin.sin_addr.s_addr = htonl (1 NADDR_ANY) ;
sin.sin_port = htons(MYPORT);

bi nd(s, (struct sockaddr *) &sin, sizeof (sin));

The destination address of the message to be broadcast depends on the network(s) on
which the message isto be broadcast. The Internet domain supports a shorthand notation
for broadcast on the local network, the address INADDR_BROADCAST (defined in
"netinet/in.h"). To determine the list of addresses for al reachable neighbours requires
knowledge of the networksto which the host is connected. Since thisinformation should
be obtained in a host-independent fashion and may be impossible to derive, RISC OS
provides a method of retrieving this information from the system data structures. The
SIOCGIFCONF socketioctl call returns the interface configuration of ahost in the form

5a-352

The Internet module

of asingle ifconf structure; this structure contains a ‘data area’ which is made up of an
array ofifreq structures, one for each network interface to which the host is connected.
These structures are defined net/if.h" as follows:

struct ifconf {
int ifc_len; /* size of associated buffer */
uni on {
caddr _t ifcu_buf;
struct ifreq *ifcu_req;
} ifc_ifcu;

}

#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */

#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */
#defi ne |1 FNAMSI Z 16

struct ifreq {
char i fr_nane[| FNAMSI Z] ; /* if name, eg "en0" */
uni on {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;

short ifru_flags;
caddr _t ifru_data;
Yoifr_ifru;

b
#define ifr_addr ifr_ifru.ifru_addr /* address */
#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */
#define ifr_flags ifr_ifru.ifru_flags /* flags */
#define ifr_data ifr_ifru.ifru_data /* for use by interface */

The actual call which obtains the interface configuration is

struct ifconf ifc;
char buf [BUFSI Z] ;

ifc.ifc_len = sizeof (buf);
ifc.ifc_buf = buf;
if (socketioctl (s, SIOCA FCONF, (char *) & fc) < 0) {

}

After this callbuf will contain oneifreq structure for each network to which the host is
connected, andc.ifc_len will have been modified to reflect the number of bytes used by
theifreq structures.

5a-353

Advanced topics

5a-354

For each structure there exists a set of ‘interface flags’ which tell whether the network
corresponding to that interface is up or down, point to point or broadcast, etc. The
SIOCGIFFLAGSsocketioctl retrieves these flags for an interface specified bijren
structure as follows:

struct ifreq *ifr;
ifr = ifc.ifc_req;

for (n =ifc.ifc_len / sizeof (struct ifreq); --n >=0; ifr++) {
/ *
* We must be careful that we don’t use an interface
* devoted to an address family other than those intended;
* if we were interested in NS interfaces, the
* AF_INET would be AF_NS.
*/
if (ifr->ifr_addr.sa_family != AF_INET)
continue;
if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {

}
/*
* Skip boring cases.
*/
if ((ifr->ifr_flags & IFF_UP) ==0 ||
(ifr->ifr_flags & IFF_LOOPBACK) ||
(ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTTOPOINT)) == 0)
continue;

Once the flags have been obtained, the broadcast address must be obtained. In the case
of broadcast networks thisis done viathe SIOCGIFBRDADDR socketioctl, while for
point-to-point networks the address of the destination host is obtained with
SIOCGIFDSTADDR.

struct sockaddr dst;

if (ifr->ifr_flags & IFF_POINTTOPOINT) {
if (socketioctl(s, SIOCGIFDSTADDR, (char *) ifr) < 0) {

}
bcopy((char *) ifr->ifr_dstaddr, (char *) &dst,

sizeof (ifr->ifr_dstaddr)); }
else if (ifr->ifr_flags & IFF_BROADCAST) {
if (socketioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {

}
bcopy((char *) ifr->ifr_broadaddr, (char *) &dst,
sizeof (ifr->ifr_broadaddr));

The Internet module

After the appropriate socketioctl's have obtained the broadcast or destination address
(now indst), thesendto call may be used:

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof (dst));
}

In the above loop ongendto occurs for every interface to which the host is connected
that supports the notion of broadcast or point-to-point addressing. If a program only
wished to send broadcast messages on a given network, code similar to that outlined
above would be used, but the loop would need to find the correct destination address.

Received broadcast messages contain the sender’s address and port, as datagram sockets
are bound before a message is allowed to go out.

Socket options

It is possible to set and get a number of options on sockets \detdbekopt and
getsockopt system calls. These options include such things as marking a socket for
broadcasting, not to route, to linger on close, etc. The general forms of the calls are:

set sockopt (s, |evel, optname, optval, optlen);
and
get sockopt (s, |evel, optnanme, optval, optlen);

The parameters to the calls are as follasis:the socket on which the option is to be
applied.Level specifies the protocol layer on which the option is to be applied; in most
cases this is the ‘socket level’, indicated by the symbolic constant SOL_SOCKET,
defined in"sys/socket.h". The actual option is specified aptname, and is a symbolic
constant also defined Tisys/socket.h". Optval andoptlen point to the value of the option

(in most cases, whether the option is to be turned on or off), and the length of the value
of the option, respectively. Fgetsockopt, optlen is a value-result parameter, initially set

to the size of the storage area pointed togtyal, and modified upon return to indicate

the actual amount of storage used.

An example should help clarify things. It is sometimes useful to determine the type (eg
stream, datagram, etc) of an existing socket; programs imatié(described below)

may need to perform this task. This can be accomplished as follows via the SO_TYPE
socket option and thgetsockopt call:

#i nclude "sys/types.h"
#i ncl ude "sys/socket.h"

int type, size;
size = sizeof (int);
if (getsockopt(s, SOL_SOCKET, SO TYPE, (char *) &type, &size) < 0) {

}

5a-355

Multitasking

Multitasking

5a-356

After the getsockopt call, type will be set to the value of the socket type, as defined in
"sys/socket.h". If, for example, the socket were a datagram socket, type would have the
value corresponding to SOCK_DGRAM.

The examples in this tutorial — and in the eatiroductory tutorial — assume that they

are written for a pre-emptive multitasking environment such as Unix. In such cases, it
doesn’t matter if a call may not return for an arbitrary length of time, as it will not
prevent other software from running. However, RISC OS is a co-operative multitasking
environment, which relies on a program returning control to the operating system before
other programs can run. It is therefore vital that all the calls that your program makes
immediately return control to you.

These are the different ways you can do this:

« Before making a call that might block, csdlect with a zero timeout to determine
if the socket is ready for the call. If the socket is ready, then make the call.
Otherwise give back control to RISC OS, and retry later on.

Using theselect call is described in the earlier tutorials; see also its description on
page 5a-438.

« Before you first use a socket, mark it as non-blocking. Any call that would
otherwise block no longer does so, but instead returns an EWOULDBLOCK error.
If you get that error returned, you should give back control to RISC OS, and retry
later on.

SeeNon-blocking sockets on page 5a-358.

« Use the Internet event to receive notification of when data is available on a socket,
and an appropriate event handler to handle the resultant I/O — which will not block,
since it does not have to wait for data. The event handler must be in a module so that
it is paged into memory when the event occurs.

Seelnterrupt driven socket 1/0 on page 5a-358, arihe Internet event on
page 5a-345.

Some of the above methods require you to give back control to RISC OS, and retry later
on:

« With a desktop application, you do so by calling Wimp_Poll; however, there is no
guarantee how long it will be until control returns to your application.

« Analternative is to use OS_CallAfter or OS_CallEvery to arrange for an address to
be called after a given time delay; in this case, the address must be within a module
so that it is paged in when called.

The Internet module

Non-blocking sockets

When writing modules, or programs to run under the Wimp, you may often find it
convenient to make use of sockets which do not block. That is, I/O reguests which
cannot complete immediately and would therefore cause the program to be suspended
awaiting completion are not executed, and an error code is returned. Once a socket has
been created via the socket call, it may be marked as non-blocking by socketioctl as
follows:

#i nclude "sys/ioctl.h"

ints;
inton=1;

s = socket(AF_INET, SOCK_STREAM, 0);

if (socketioctl(s, FIONBIO, &on) < 0) {
xperror("socketioctl");
return(-1);

}

When performing non-blocking I/O on sockets, one must be careful to check for the
error EWOULDBLOCK (stored in the global variable errno), which occurs when an
operation would normally block, but the socket it was performed on is marked as
non-blocking. In particular, accept, connect, send, recy, read, and write can al return
EWOULDBLOCK, and programs should be prepared to deal with such return codes. If
an operation such as a send cannot be donein its entirety, but partial writes are sensible
(for example, when using a stream socket), the data that can be sent immediately will be
processed, and the return value will indicate the amount actually sent.

Interrupt driven socket I/O

The event Internet_Event/Socket_Async_Event allows a program to be notified viaan
event when a socket has data waiting to be read. The steps required to use the
Socket Async_Event facility are described in The Internet event on page 5a-345.

Sample code to alow agiven program to receive information on pending 1/0O requests as
they occur for asocket sisgiven in Figure 123.13 on page 5a-359. With the addition of
code to the handler to process the Socket_Urgent_Event event subcode, this code can
aso be used to prepare for receipt of Internet_Event/Socket_Urgent_Event events.

5a-357

Multitasking

#i ncl ude "kernel . h"
#i nclude "sw s. h"

mai n(char *argv, int argc)

{
if (claimeventv())
exit(l); /* Failed immediately, so nothing to tidy */
if (event_enable()) {
di sabl e_rel ease_eventv(); /* Rel ease events etc */
exit(2);
}
/* Event handler now installed and working */
di sabl e_rel ease_eventv(); /* On exit */
exit(0)
}
static _kernel _oserror *claimeventv(void)
{
_kernel _swi _regs r;
r.r[0] = EventV,
r.r[1] = (int)event_entry_nane; /*entry veneer conpiled by CVHG/
r.r[2] = (int)nodul e_wsp;
return (_kernel _swi (XOS_Bit | GS. Claim &r, &));
}
static _kernel _oserror *event_enabl e(void)
{
_kernel _swi _regs r;
r.r[0] = Event_Enabl e;
r.r[1] = Internet_Event;
return (_kernel _swi (XOS_Bit | OS_Byte, &, &));
}
static void disable_rel ease_eventv(void)
{
_kernel _swi _regs r;
r.r[0] = Event_Disable;
r.r[1] = Internet_Event;
(void) _kernel _sw (OS_Byte, &, &);
r.r[0] = EventV,
r.r[1] = (int)event_entry_nane; /*entry veneer conpiled by CVHG/
r.r[2] = (int)nmodul e_wsp;
(void) _kernel _swi (XOS_Bit | OS_Rel ease, &, &);
return;
}

Figure 123.13 Use of asynchronous notification of 1/0 requests

5a-358

The Internet module

int Internet_event_handl er (_kernel _swi _regs *r, void *pw)

{
/*
* cmhg event handler, for which event_entry_nane is the veneer function
*
* Paraneters:
* r : pointer to registers block
* pw : "R12" value established by nodule initialisation
* Returns:
* 0 => interrupt "claimed"
* 10 => interrupt not "clainmed"
*/
UNUSED(pw) ;
/* cmhg will only pass through this event anyway */
if (r->r[0] == Internet_Event)
{
/* if notification of asynchronous /0O */
if (r->r[1] == Socket_Async_Event &&
(r->r[2] == ny_atpsock || r->r[2] == ny_routedsock))
{
process_input(r->r[2]);
return 0O;
}
}
return 1;
}
static void process_input(int sock)
{
/*

* Process input on a socket: event has been received to indicate I/Ois
* "available" on this socket
*/

Figure 123.13 Use of asynchronous notification of 1/0 requests (continued)

5a-359

Protocols

Protocols
ICMP

Name
ICMP — Internet Control Message Protocol

Synopsis
#i ncl ude "sys/socket. h"

i nt socket (AF_I NET, SOCK _RAW proto);
i nt proto;

Description

ICMP is the error and control message protocol used by IP and the Internet protocol
family. It may be accessed through a ‘raw socket’ for network monitoring and diagnostic
functions. Theproto parameter to the socket call to create an ICMP socket is obtained
from getprotobyname. ICMP sockets are connectionless, and are normally used with the
sendto andrecvfrom calls, though theonnect call may also be used to fix the destination
for future packets (in which case tteev andsend system calls may be used).

Outgoing packets automatically have an IP header prepended to them (based on the
destination address). Incoming packets are received with the IP header and options

intact.

A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a
socket which already has one, or when trying to
send a datagram with the destination address
specified and the socket is already connected;

[ENOTCONN] when trying to send a datagram, but no
destination address is specified, and the socket
hasn’t been connected,;

[ENOBUFS] when the system runs out of memory for an
internal data structure;
[EADDRNOTAVAIL] when an attempt is made to create a socket with

a network address for which no network
interface exists.

5a-360

The Internet module

IP

Name
IP — Internet Protocol

Synopsis
#i ncl ude "sys/socket. h"

i nt socket (AF_I NET, SOCK RAW proto);
i nt proto;

Description

IP is the transport layer protocol used by the Internet protocol family. Options may be set

at the IP level when using higher-level protocols that are based on IP (such as TCP and
UDP). It may also be accessed through a ‘raw socket’ when developing new protocols,

or special purpose applications.

A single generic option is supported at the IP level, IP_OPTIONS, that may be used to
provide IP options to be transmitted in the IP header of each outgoing packet. Options
are set withsetsockopt and examined withyetsockopt. The format of IP options to be

sent is that specified by the IP protocol specification, with one exception: the list of
addresses for Source Route options must include the first-hop gateway at the beginning
of the list of gateways. The first-hop gateway address will be extracted from the option
list and the size adjusted accordingly before use. IP options may be used with any socket
type in the Internet family.

Raw IP sockets are connectionless, and are normally used wintie andrecvfrom
calls, though theonnect call may also be used to fix the destination for future packets
(in which case theecv andsend system calls may be used).

If protois 0, the default protocol IPPROTO_RAW is used for outgoing packets, and only
incoming packets destined for that protocol are receiveulotd is non-zero, that
protocol number will be used on outgoing packets and to filter incoming packets.

If proto is IPPROTO_RAW (or 0, which defaults to that) outgoing packets do not have
an IP header prepended to them, but go out ‘as is’. Otherwise outgoing packets
automatically have an IP header prepended to them (based on the destination address
and the protocol number the socket is created with). Incoming packets are received with
IP header and options intact.

5a-361

P

A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a
socket which already hasone, or when trying to
send a datagram with the destination address
specified and the socket is already connected;

[ENOTCONN] when trying to send a datagram, but no
destination address is specified, and the socket
hasn't been connected,;

[ENOBUFS] when the system runs out of memory for an
internal data structure;
[EADDRNOTAVAIL] when an attempt is made to create a socket with

a network address for which no network
interface exists.
The following errors specific to IP may occur when setting or getting IP options:
[EINVAL] an unknown socket option name was given;

[EINVAL] the IP option field was improperly formed; an
option field was shorter than the minimum
value or longer than the option buffer provided.

5a-362

The Internet module

TCP

Name

TCP — Internet Transmission Control Protocol

Synopsis
#i ncl ude "sys/socket. h"
i nt socket (AF_I NET, SOCK_STREAM 0);

Description

The TCP protocol provides reliable, flow-controlled, two-way transmission of data. It is

a byte-stream protocol used to support the SOCK_STREAM abstraction. TCP uses the
standard Internet address format and, in addition, provides a per-host collection of ‘port
addresses’. Thus, each address is composed of an Internet address specifying the host
and network, with a specific TCP port on the host identifying the peer entity.

Sockets utilising the tcp protocol are either ‘active’ or ‘passive’. Active sockets initiate
connections to passive sockets. By default TCP sockets are created active; to create a
passive socket tHésten socket call must be used after binding the socket witbitite
system call. Only passive sockets may usetoept call to accept incoming

connections. Only active sockets may usectimmect call to initiate connections.

Passive sockets may ‘underspecify’ their location to match incoming connection
requests from multiple networks. This technique, termed ‘wildcard addressing’, allows a
single server to provide service to clients on multiple networks. To create a socket which
listens on all networks, the Internet address INADDR_ANY must be bound. The TCP
port may still be specified at this time; if the port is not specified the system will assign
one. Once a connection has been established the socket’s address is fixed by the peer
entity’s location. The address assigned to the socket is the address associated with the
network interface through which packets are being transmitted and received. Normally
this address corresponds to the peer entity’s network.

TCP supports one socket option which is set sgtbockopt and tested witlyetsockopt.

Under most circumstances, TCP sends data when it is presented; when outstanding data
has not yet been acknowledged, it gathers small amounts of output to be sent in a single
packet once an acknowledgement is received. For a small number of clients, such as

5a-363

TCP

window systems that send a stream of mouse events which receive no replies, this
packetisation may cause significant delays. Therefore, TCP provides a boolean option,
TCP_NODELAY, to defeat this algorithm. The option level for the setsockopt call isthe
protocol number for TCP, available from getprotobyname.

Options at the IP transport level may be used with TCP. Incoming connection requests
that are source-routed are noted, and the reverse source route is used in responding.

A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a
socket which aready has one;

[ENOBUFS] when the system runs out of memory for an
internal data structure;

[ETIMEDOUT] when a connection was dropped due to
excessive retransmissions;

[ECONNRESET] when the remote peer forces the connection to
be closed;

[ECONNREFUSED] when the remote peer actively refuses

connection establishment (usually because no
program is listening to the port);

[EADDRINUSE] when an attempt is made to create asocket with
aport which has already been allocated;
[EADDRNOTAVAIL] when an attempt is made to create a socket with

anetwork address for which no network
interface exists.

5a-364

The Internet module

UDP

Name
UDP - Internet User Datagram Protocol

Synopsis
#i ncl ude "sys/socket. h"
i nt socket (AF_I NET, SOCK DGRAM 0);

Description

UDP is a simple, unreliable datagram protocol which is used to support the
SOCK_DGRAM abstraction for the Internet protocol family. UDP sockets are
connectionless, and are normally used withsimelto andrecvfrom calls, though the

connect call may also be used to fix the destination for future packets (in which case the
recv andsend system calls may be used).

UDP address formats are identical to those used by TCP. In particular UDP provides a
port identifier in addition to the normal Internet address format. Note that the UDP port
space is separate from the TCP port space (ie a UDP port may not be ‘connected’ to a
TCP port). In addition broadcast packets may be sent (assuming the underlying network
supports this) by using a reserved ‘broadcast address’; this address is network interface
dependent.

Options at the IP transport level may be used with UDP.

A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a
socket which already has one, or when trying to
send a datagram with the destination address
specified and the socket is already connected;

[ENOTCONN] when trying to send a datagram, but no
destination address is specified, and the socket
hasn’t been connected,;

[ENOBUFS] when the system runs out of memory for an
internal data structure;

[EADDRINUSE] when an attempt is made to create a socket with
a port which has already been allocated,;

[EADDRNOTAVAIL] when an attempt is made to create a socket with

a network address for which no network
interface exists.

5a-365

Library calls

Library calls

5a-366

INDEX

The following symbols are exported by Socklib, Inetlib and Unixlib:

Symbol
accept
access

bcmp

bcopy

bind

bzero

chdir

chmod

close
connect
endhostent
endnetent
endprotoent
endpwent
endservent
errno

filestat
flushinput
fstat
getdtablesize
getegid
geteuid
getgroups
gethostbyaddr
gethostbyname
gethostent
gethostname
getlogin
getnetbyaddr
getnetbyname

from
Socklib
Unixlib
Unixlib
Unixlib
Socklib
Unixlib
Unixlib
Unixlib
Unixlib
Socklib
Inetlib
Inetlib
Inetlib
Unixlib
Inetlib
Socklib
Unixlib
Unixlib
Unixlib
Unixlib
Unixlib
Unixlib
Unixlib
Inetlib
Inetlib
Inetlib
Unixlib
Unixlib
Inetlib
Inetlib

See

ACCEPT

ACCESS

BSTRING

BSTRING

BIND

BSTRING

CHDIR

CHMOD

CLOSE

CONNECT
GETHOSTBYNAME
GETNETENT
GETPROTOENT
GETPWENT
GETSERVENT
ERRNO

FILESTAT
FLUSHINPUT
FSTAT
GETDTABLESZE
GETEGID

GETUID
GETGROUPS
GETHOSTBYNAME
GETHOSTBYNAME
GETHOSTBYNAME
GETHOSTNAME
GETLOGIN
GETNETENT
GETNETENT

on page
5a-371
5a-373
5a-377
5a-377
5a-375
5a-377
5a-379
5a-380
5a-381
5a-382
5a-394
5a-398
5a-403
5a-405
5a-407
5a-384
5a-388
5a-389
5a-390
5a-391
5a-392
5a-415
5a-393
5a-394
5a-394
5a-394
5a-396
5a-397
5a-398
5a-398

Symbol
getnetent
getpass
getpeername
getpid
getprotobyname
getprotobynumber
getprotoent
getpwent
getpwnam
getpwuid
getservbyname
getservbyport
getservent
getsockname
getsockopt
getstablesize
gettimeofday
getuid
getvarhostname
getvarusername
getwd

herror
_host_stayopen
htonl

htons

index

inet_addr
_inet_error
inet_|naof
inet_makeaddr
inet_netof
inet_network
inet_ntoa

ioctl

killfile

listen

from
Inetlib
Unixlib
Socklib
Unixlib
Inetlib
Inetlib
Inetlib
Unixlib
Unixlib
Unixlib
Inetlib
Inetlib
Inetlib
Socklib
Socklib
Socklib
Unixlib
Unixlib
Unixlib
Unixlib
Unixlib
Unixlib
Inetlib
Inetlib
Inetlib
Unixlib
Inetlib
Socklib
Inetlib
Inetlib
Inetlib
Inetlib
Inetlib
Unixlib
Unixlib
Socklib

See

GETNETENT
GETPASS
GETPEERNAME
GETPID
GETPROTOENT
GETPROTOENT
GETPROTOENT
GETPWENT
GETPWENT
GETPWENT
GETSERVENT
GETSERVENT
GETSERVENT
GETSOCKNAME
GETSOCKOPT
GETSTABLES ZE
GETTIMEOFDAY
GETUID
GETVAR
GETVAR

GETWD
HERROR
GETHOSTBYNAME
BYTEORDER
BYTEORDER
STRING

INET

_INET_ERROR

INET
INET
INET
INET
INET
IOCTL
KILLFILE
LISTEN

The Internet module

on page
5a-398
5a-400
5a-401
5a-402
5a-403
5a-403
5a-403
5a-405
5a-405
5a-405
5a-407
5a-407
5a-407
5a-409
5a-410
5a-413
5a-414
5a-415
5a-416
5a-416
5a-417
5a-418
5a-394
5a-378
5a-378
5a-454
5a-419
5a-421
5a-419
5a-419
5a-419
5a-419
5a-419
5a-422
5a-423
5a-424

5a-367

INDEX

5a-368

Symbol
Iseek
_makecal
namisi padr
_net_stayopen
ntohl

ntohs
osreadc
_proto_stayopen
_pwbuf
read

readdir
readv

recv
recvfrom
recvmsg
rindex
rresvport
select

send
sendmsg
sendto
_serv_stayopen
sethostent
setnetent
setprotoent
setpwent
setservent
setsockopt
shutdown
socket
socketclose
socketioctl
socketread
socketreadv
socketstat
socketwrite

from
Unixlib
Socklib
Inetlib
Inetlib
Inetlib
Inetlib
Unixlib
Inetlib
Unixlib
Unixlib
Unixlib
Unixlib
Socklib
Socklib
Socklib
Unixlib
Inetlib
Socklib
Socklib
Socklib
Socklib
Inetlib
Inetlib
Inetlib
Inetlib
Unixlib
Inetlib
Socklib
Socklib
Socklib
Socklib
Socklib
Socklib
Socklib
Socklib
Socklib

See

LSEEK
_MAKECALL
NAMISIPADR
GETNETENT
BYTEORDER
BYTEORDER
OSREADC
GETPROTOENT
_PWBUF

READ
READDIR
READ

RECV

RECV

RECV

STRING
RRESVPORT
SELECT

SEND

SEND

SEND
GETSERVENT
GETHOSTBYNAME
GETNETENT
GETPROTOENT
GETPWENT
GETSERVENT
GETSOCKOPT
SHUTDOWN
SOCKET
SOCKETCLOSE
SOCKETIOCTL
SOCKETREAD
SOCKETREAD
SOCKETSTAT
SOCKETWRITE

on page
5a-426
5a-427
5a-428
5a-398
5a-378
5a-378
5a-430
5a-403
5a-431
5a-432
5a-433
5a-432
5a-434
5a-434
5a-434
5a454
5a-437
5a-438
5a-440
5a-440
5a-440
5a-407
5a-394
5a-398
5a-403
5a-405
5a-407
5a-410
5a-442
5a-443
5a-446
5a-447
5a-448
5a-448
5a-450
5a-452

The Internet module

Symbol from See on page
socketwritev Socklib SOCKETWRITE 5a-452
strcasecmp Unixlib STRING 5a-454
strncasecmp Unixlib STRING 5a-454
sys errlist Unixlib XPERROR 5a-459
sys nerr Unixlib XPERROR 5a-459
unlink Unixlib UNLINK 5a-455
_varnamebuf Unixlib _VARNAMEBUF 5a-456
write Unixlib WRITE 5a-457
writev Unixlib WRITE 5a-457
Xgets Unixlib XGETS 5a-458
xperror Unixlib XPERROR 5a-459
xputchar Unixlib XPUTCHAR 5a-460

5a-369

ACCEPT

ACCEPT

Name
accept — accept a connection on a socket

Synopsis

#i ncl ude "sys/socket. h"
#i ncl ude "sys/types.h"

i nt accept(s, addr, addrlen)
int s;

struct sockaddr *addr;

int *addrl en;

Description

The argumens is a socket that has been created wotiket, bound to an address with

bind, and is listening for connections aftelisken. Accept extracts the first connection

on the queue of pending connections, creates a new socket with the same propgerties of
and allocates a new socket descriptor for the socket. If no pending connections are
present on the queue, and the socket is not marked as non-blackapg blocks the

caller until a connection is present. If the socket is marked non-blocking and no pending
connections are present on the queegpt returns an error as described below. The
accepted socket may not be used to accept more connections. The origina socket
remains open.

The argumenaddr is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact formataaitithe
parameter is determined by the domain in which the communication is occurring (eg
Internet). Theaddrlen is a value-result parameter; it should initially contain the amount
of space pointed to kgddr; on return it will contain the actual length (in bytes) of the
address returned. This call is used with connection-based socket types, currently with
SOCK_STREAM.

Return value

The call returns —1 on error. If it succeeds, it returns a non-negative integer that is a
descriptor for the accepted socket.

5a-370

The Internet module

Errors
The cal will fail if:
[EBADF] The descriptor isinvalid.
[EOPNOTSUPPF| The referenced socket is not of type
SOCK_STREAM.
[EFAULT] The addr parameter isinvalid.
[EWOULDBLOCK] The socket is marked non-blocking and no
connections are present to be accepted.
See also
bind (page 5a-375), connect (page 5a-382), listen (page 5a-424), select (page 5a-438),
socket (page 5a-443)

Exported by
Socklib

5a-371

ACCESS

ACCESS

Name

access — determine accessibility of file

Synopsis
#i ncl ude "sys/fcntl.h"

#define ROK 4 /* test for read perm ssion */
#define WOK 2 /* test for wite perm ssion */
#define X K1 /* execute perm ssion, ignhored */
#define F OK 0O /* test for presence of file */

i nt access(path, node)
char *path;
i nt node;

Description

Access checks the given filpath for accessibility according tmode, which is an

inclusive or of the bits R_OK, W_OK and X_OK, definedsya/fcntl.h. Specifying

mode as F_OK (ie 0) tests whether the directories leading to the file can be searched and
the file exists.

Notice that only access bits are checked. A directory may be indicated as writable by
access, but an attempt to open it for writing will fail (although files may be created
there); a file may look executable, but executing it will fail unless it is in proper format.

Return value

If path cannot be found or if any of the desired access modes would not be granted, then
a —1 value is returned; otherwise a 0 value is returned.

Errors
Access to the file is denied if one or more of the following are true:
[ENOENT] The named file does not exist.
[EACCES] Permission bits of the file mode do not permit

the requested access. The permission is
checked with respect to the ‘owner’ read and
write mode bits.

5a-372

The Internet module

See also
chmod (page 5a-380), filestat (page 5a-388)

Exported by
Unixlib

5a-373

BIND

5a-374

Name

BIND

bind — bind a name to a socket

Synopsis

#i ncl ude "sys/socket. h"
#i ncl ude "sys/types.h"

i nt bind(s, name, namel en)
int s;

struct sockaddr *nane;

i nt nanel en;

Description

Bind assigns a name to an unnamed socket. When a socket is creasedheiti exists
in a name space (address family) but has no name asdgjne@dequests thatame be
assigned to the socket.

The rules used in name binding vary between communication domains.

Return value

Errors

If the bind is successful, a 0 value is returned. A return value of —1 indicates an error,
which is further specified in the globalkno.

The call will fail if:
[EBADF] sis not a valid descriptor.
[EADDRNOTAVAIL] The specified address is not available from the local
machine.
[EADDRINUSE] The specified address is already in use.
[EINVAL] The socket is already bound to an address.
[EFAULT] The name parameter is invalid.

The Internet module

See also

connect (page 5a-382), listen (page 5a-424), socket (page 5a-443),
getsockname (page 5a-409)

Exported by
Socklib

5a-375

BSTRING

BSTRING

Name

bcmp, bcopy, bzero — byte string operations

Synopsis

voi d bcopy(src, dst, length)
char *src, *dst;
int |ength;

int bcrmp(bl, b2, |ength)
char *bl, *b2;
int | ength;

char *bzero(b, |ength)
char *b;
int | ength;

Description

The functiongbcopy, bcmp andbzero operate on variable length strings of bytes. They
do not check for null bytes as the routinestiing do.

Bcopy copiedength bytes from stringrc to the stringlst.

Bcmp compares byte striftgl against byte string2, returning zero if they are identical,
non-zero otherwise. Both strings are assumed terigéh bytes long.

Bzero placedength null (0) bytes in the string.

Exported by
Unixlib

5a-376

Name

The Internet module

BYTEORDER

htonl, htons, ntohl, ntohs — convert values between host and network byte order

Synopsis
i nt
i nt
i nt
i nt

ht ons(host short);
host short ;

nt ohs(netshort);
net short;

#i ncl ude "sys/types. h"

u_l ong htonl (hostl ong);
u_l ong hostl ong;

u_l ong ntohl (netlong);
u_l ong netlong;

Description

These routines convert 16 and 32 bit quantities between network byte order and host
byte order.

These routines are most often used in conjunction with Internet addresses and ports as
returned bygethostbyname andgetservent.

See also

gethostbyname (page 5a-394), getservent (page 5a-407)

Exported by
Inetlib

5a-377

CHDIR

5a-378

CHDIR

Name
chdir — change current working directory

Synopsis

i nt chdir(path)
char *path;

Description

Path is the pathname of a directoShdir causes this directory to become the current
working directory, the starting point for incomplete path namestlf specifies a
different filing system, it also selects that as the current filing systegrathis a null
string, the directory is set to the user root directory.

Return value
Upon completion, a value of 0 is returned.

Errors

Chdir will fail and the current working directory will be unchanged if the named
directory does not exist.

Exported by
Unixlib

The Internet module

CHMOD

Name
chmod — change mode of file

Synopsis

i nt chnod(path, node)
char *path;
i nt node;

Description

The file whose name is given pgth has its read and write attributes changed to those
in mode. Modes are constructed by'ing together some combination of the following:

IREAD 00400 read by owner
IWRITE 00200 write by owner

Other bits acted on by the Unix version of this command are ignored.

Return value

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned anarrno is set to indicate the error.

Errors

Chmod will fail and the file mode will be unchanged if:
[ENOENT] The named file does not exist.

See also
access (page 5a-373)

Exported by
Unixlib

5a-379

CLOSE

CLOSE

Name
close — delete a descriptor

Synopsis

int close(d)
int d;

Description
Closeis a synonym fosocketclose; see page 5a-446. The call is provided mainly so that

you do not need to renamkbose calls in code that you are porting.

See also
socketclose (page 5a-446)

Exported by
Unixlib

5a-380

The Internet module

CONNECT

Name

connect — initiate a connection on a socket

Synopsis

#i ncl ude "sys/socket. h"
#i ncl ude "sys/types. h"

i nt connect(s, nane, nanelen)
int s;

struct sockaddr *nane;

i nt nanel en;

Description

The parametesis a socket. If it is of type SOCK_DGRAM, then this call specifies the
peer with which the socket is to be associated; this address is that to which datagrams are
to be sent, and the only address from which datagrams are to be received. If the socket is
of type SOCK_STREAM, then this call attempts to make a connection to another
socket. The other socket is specifiedrayne, which is an address in the

communications space of the socket. Each communications space interpnatsehe
parameter in its own way. Generally, stream sockets may successfulégt only

once; datagram sockets may asenect multiple times to change their association.
Datagram sockets may dissolve the association by connecting to an invalid address, such
as a null address.

Return value

If the connection or binding succeeds, then 0 is returned. Otherwise a —1 is returned, and
a more specific error code is storeainmo.

Errors
The call fails if:

[EBADF] sis not a valid descriptor.

[EADDRNOTAVAIL] The specified address is not available on this
machine.

[EAFNOSUPPORT] Addresses in the specified address family
cannot be used with this socket.

[EISCONN] The socket is already connected.

5a-381

CONNECT

5a-382

[ETIMEDOUT]

[ECONNREFUSED]
[ENETUNREACH]
[EADDRINUSE]
[EFAULT]
[EINPROGRESS]

[EALREADY]

See also

Connection establishment timed out without
establishing a connection.

The attempt to connect was forcefully rejected.
The network isn’'t reachable from this host.
The address is already in use.
The name parameter was invalid.
The socket is non-blocking and the connection
cannot be completed immediately.
The socket is hon-blocking and a previous
connection attempt has not yet been completed.

accept (page 5a-371), select (page 5a-438), socket (page 5a-443),

getsockname (page 5a-409)

Exported by
Socklib

The Internet module

ERRNO

Name

errno — global error variable
Synopsis

int errno;
Description

The global error variablerrno is used by several libraries — including Socklib — to
provide diagnostics for errors when making calls. Typically, when an error occurs the
call returns —1, andrnois set to a value that indicates the reason for the error. Possible
valueserrno may take are:

Value Name Meaning

0 Error O

1 EPERM Not owner

2 ENOENT No such file or directory
3 ESRCH No such process

4 EINTR Interrupted system call
5 EIO I/O error

6 ENXIO No such device or address
7 E2BIG Arg list too long

8 ENOEXEC Exec format error

9 EBADF Bad file number

10 ECHILD No children

11 EAGAIN Resource temporarily unavailable
12 ENOMEM Not enough memory

13 EACCES Permission denied

14 EFAULT Bad address

15 ENOTBLK Block device required
16 EBUSY Device busy

17 EEXIST File exists

18 EXDEV Cross-device link

19 ENODEV No such device

20 ENOTDIR Not a directory

5a-383

ERRNO

Value Name Meaning
21 EISDIR Isadirectory
22 EINVAL Invalid argument
23 ENFILE File table overflow
24 EMFILE Too many open files
25 ENOTTY Inappropriate 1/O control operation
26 ETXTBSY Text file busy
27 EFBIG Filetoo large
28 ENOSPC No space left on device
29 ESPIPE Illegal seek
30 EROFS Read-only file system
31 EMLINK Too many links
32 EPIPE Broken pipe
33 EDOM Argument value error
34 ERANGE Result out of range
35 EWOULDBLOCK Operation would block
36 EINPROGRESS Operation now in progress
37 EALREADY Operation already in progress
38 ENOTSOCK Socket operation on non-socket
39 EDESTADDRREQ Destination address reguired
40 EMSGSIZE Message too long
41 EPROTOTY PE Protocol wrong type for socket
42 ENOPROTOOPT Option not supported by protocol
43 EPROTONOSUPPOR Protocol not supported
T
ESOCKTNOSUPPOR Socket type not supported
T
45 EOPNOTSUPP Operation not supported on socket
46 EPFNOSUPPORT Protocol family not supported
47 EAFNOSUPPORT Address family not supported by protocol
family
48 EADDRINUSE Address already in use
49 EADDRNOTAVAIL Can'’t assign requested address
50 ENETDOWN Network is down
51 ENETUNREACH Network is unreachable
52 ENETRESET Network dropped connection on reset
53 ECONNABORTED Software caused connection abort

5a-384

Value
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

Name
ECONNRESET
ENOBUFS
EISCONN
ENOTCONN
ESHUTDOWN
ETOOMANYREFS
ETIMEDOUT
EREFUSED
ELOOP
ENAMETOOLONG
EHOSTDOWN
EHOSTUNREACH
ENOTEMPTY
EPROCLIM
EUSERS
EDQUOT
ESTALE
EREMOTE
ENOSTR
ETIME
ENOSR
ENOMSG
EBADMSG
EIDRM
EDEADLK
ENOLCK
ENOMSG
EIDRM
ELIBVER
ELIBACC
ELIBLIM
ELIBNOENT
ELIBNOEXEC
ENOSYS

The Internet module

Meaning
Connection reset by peer
No buffer space available
Socket is already connected
Socket is hot connected
Can’t send after socket shutdown
Too many references: can'’t splice
Connection timed out

Connection refused

Too many levels of symbolic links
File name too long

Host is down

Host is unreachable

Directory not empty

Too many processes

Too many users

Disc quota exceeded

Stale NFS file handle

Too many levels of remote in path
Not a stream device

Timer expired

Out of stream resources

No message of desired type

Not a data message

Identifier removed

Deadlock situation detected/avoided
No record locks available

No suitable message on queue
Identifier removed from system
Wrong version of shared library
Permission denied (shared library)
Shared libraries nested too deeply
Shared library file not found
Shared library exec format error

Function not implemented

For details of the errorsindividual calls may return, see their documentation.

5a-385

ERRNO

See also
_inet_error (page 5a-421), xperror (page 5a-459)

Exported by
Socklib

5a-386

The Internet module

FILESTAT

Name
filestat — get file status

Synopsis

int filestat(path, type)
char *path;
char *type;

Description

Filestat obtains information about the fifmth. Read or write permission of the named
file is not required, but all directories listed in the path name leading to the file must be
reachable. The file is searched for using the path held in the RISC OS system variable
File$Path. If path contains wildcards, only the first file matching the wildcard
specification is read.

On exit,type contains the file's object type:

0 Not found

1 File found

2 Directory found

3 Image file found (ie both file and directory)

Return value

Upon successful completion the length of the file is returned. Otherwise, a value of -1 is
returned anarrno is set to indicate the error.

Errors

Filestat will fail if:
[ENOENT] The named file does not exist

See also
access (page 5a-373)

Exported by
Unixlib

5a-387

FLUSHINPUT

FLUSHINPUT

Name
flushinput — flushes the input buffer

Synopsis
voi d fl ushinput ()

Description

Flushinput flushes the current RISC OS input buffer. The contents of the buffer are
discarded.

Exported by
Unixlib

5a-388

The Internet module

FSTAT

Name
fstat — get socket status

Synopsis

int fstat(sd, buf)
int sd;
char *buf;

Description

Fstat is a synonym fosocketstat; see page 5a-450. The call is provided mainly so that
you do not need to renarfsat calls in code that you are porting.

See also
socketstat (page 5a-450)

Exported by
Unixlib

5a-389

GETDTABLESIZE

GETDTABLESIZE

Name
getdtablesize — get descriptor table size

Synopsis
i nt getdtabl esize()
Description
Getdtablesize is a synonym fogetstablesize; see page 5a-413. The call is provided

mainly so that you do not need to renageteltablesize calls in code that you are porting.

See also
getstablesize (page 5a-413)

Exported by
Unixlib

5a-390

The Internet module

GETEGID

Name
getegid — get group identity

Synopsis
int getegid()

Description
Getegid returns the effective group ID of the current process.

As RISC OS has no concept of group IDs, the Unixlib version of this call always returns
9999. The call is provided mainly so that you do not need to remove cgdtedil
from code that you are porting.

See also
getuid (page 5a-415)

Exported by
Unixlib

5a-391

GETGROUPS

GETGROUPS

Name

getgroups — get group access list

Synopsis

i nt getgroups(gidsetlen, gidset)
int gidsetlen, *gidset;

Description

Getgroups gets the current group access list of the user process and stores it in the array
gidset. The parameteagidsetlen indicates the number of entries that may be placed in
gidset. Getgroups returns the actual number of groups returnegideet. No more than
NGROUPS, as defined irsys/param.h”, will ever be returned.

Note that thegidset array should be of typgi d_t , but remains integer for
compatibility with earlier BSD Unix systems.

As RISC OS has no concept of group access lists, the Unixlib version of this call always
places the single group ID 9999 in the amadset, and returns 1. The call is provided
mainly so that you do not need to remove callgetgroups from code that you are

porting.

Return value

This call always returns 1, which is the number of groups in the group set.

Exported by
Unixlib

5a-392

The Internet module

GETHOSTBYNAME

Name

gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent — get network host
entry

Synopsis

voi d set hostent (stayopen)
i nt stayopen;

voi d endhostent ()
#i ncl ude "netdb. h"

struct hostent *gethostbynanme(nane)
char *nane;

struct hostent *gethostbyaddr(addr, |en, type)
char *addr;
int len, type;

struct hostent *gethostent()

Description

Gethostbyname andgethostbyaddr each return a pointer to an object describing an

Internet host referenced by name or by address, respectively. The calls query entries in a
local data base file, setup laetDBase: hosts. The information is returned in the

following structure:

struct hostent ({

char *h_nane;

char **h aliases;

i nt h_addrt ype;

i nt h_I engt h;

char **h addr _|ist;

s
#define h_addr h_addr _I|ist[O0]

5a-393

GETHOSTBYNAME

The members of this structure are:

h_name Official name of the host.

h_aliases A zero terminated array of aternate namesfor the host.

h_addrtype The type of address being returned; currently always
AF_INET.

h_length The length, in bytes, of the address.

h_addr_list A zero terminated array of network addresses for the
host. Host addresses are returned in network byte order.

h_addr Thefirst addressinh_addr_list.

Gethostent reads the next line of InetDBase: hosts, opening the file if necessary.

Sethostent opens and rewinds the file. If the stayopen argument is non-zero, the hosts
data base will not be closed after each call to gethostbyname or gethostbyaddr.

Endhostent closes the file.

The_host_stayopen symbol is exported for internal use only. You must not useit in your
own code.

Return value

Error return status from gethostbyname and gethostbyaddr is indicated by return of a
null pointer.

Bugs
All information is contained in a static area so it must be copied if it isto be saved.

Exported by
Inetlib

5a-394

The Internet module

GETHOSTNAME

Name
gethostname — get name of current host

Synopsis

i nt get host nane(nanme, nanel en)
char *nane;
i nt nanel en;

Description

Gethostname returns the standard Internet host name for the current processor, as set in
the system variablet$HostName. The parametaramelen specifies the size of the
name array. The returned name is null-terminated unless insufficient space is provided.

If the system variablenet$HostName is not set, or if it is set to the null string, then the
call attempts to set it to ‘ARM_NoName’, and — whether or not successful — this is also
the name returned in tmame array.

Return value
A zero value is always returned.

Bugs

Host names are limited to MAXHOSTNAMELEN (frohsys/param.h”) characters,
currently 64.

All information is contained in a static area so it must be copied if it is to be saved.

Exported by
Unixlib

5a-395

GETLOGIN

GETLOGIN

Name
getlogin — get login name

Synopsis
char *getl ogi n()

Description

Getlogin is a synonym fogetvarusername; see page 5a-416. The call is provided
mainly so that you do not need to renagsttogin calls in code that you are porting.

See also
getvarusername (page 5a-416)

Exported by
Unixlib

5a-396

The Internet module

GETNETENT

Name

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent — get network entry

Synopsis

voi d set netent (stayopen)
i nt stayopen;

voi d endnet ent ()
#i ncl ude "netdb. h"
struct netent *getnetent()

struct netent *getnetbynanme(nane)
char *nane;

struct netent *getnetbyaddr(net, type)
int net, type;

Description

Getnetent, getnetbyname, andgetnetbyaddr each return a pointer to an object with the
following structure containing the broken-out fields of a line in the network data base,
InetDBase: networks.

struct netent {

char *n_nane;
char **n_aliases;
i nt n_addrt ype;
unsi gned | ong n_net;
b
The members of this structure are:
n_name The official name of the network.
n_aliases A zero terminated list of alternate names for the
network.
n_addrtype The type of the network number returned; currently only
AF_INET.
n_net The network number. Network numbers are returned in

machine byte order.

5a-397

GETNETENT

Getnetent reads the next line of InetDBase: networks, opening the file if necessary.

Setnetent opens and rewinds thefile. If the stayopen argument is non-zero, the net data
base will not be closed after each call to getnetbyname or getnetbyaddr.

Endnetent closes the file.

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file until
amatching net name or net address and type is found, or until EOF is encountered.
Network numbers are supplied in host order.

The _net_stayopen symbol is exported for internal use only. You must not useit in your
own code.

Return value
A Null pointer (0) is returned on EOF or error.

Bugs

All information is contained in a static area so it must be copied if it isto be saved.

Exported by
Inetlib

5a-398

The Internet module

GETPASS

Name

getpass — read a password

Synopsis

char *get pass(pronpt)
char *pronmpt;

Description

Getpass reads a password from the current input stream, after prompting with the
null-terminated stringgrompt and disabling echoing. A pointer is returned to a
null-terminated string of at most 8 characters.

Bugs
The return value points to static data whose content is overwritten by each call.

Exported by
Unixlib

5a-399

GETPEERNAME

GETPEERNAME

Name

getpeername — get name of connected peer

Synopsis
#i ncl ude "sys/socket. h"
#i ncl ude "sys/types.h"
i nt getpeernane(s, nane, nanel en)
int s;
struct sockaddr *nane;
i nt *nanel en;

Description

Getpeername returns the name of the peer connected to seckéenamelen parameter
should be initialized to indicate the amount of space pointed narbg. On return it
contains the actual size of the name returned (in bytes). The name is truncated if the
buffer provided is too small.

Return value

A 0O is returned if the call succeeds, -1 if it fails.

Errors
The call succeeds unless:
[EBADF] The argumensis not a valid descriptor.
[ENOTCONN] The socket is not connected.
[ENOBUFS] Insufficient resources were available in the
system to perform the operation.
[EFAULT] The name parameter was invalid.

See also

accept (page 5a-371), bind (page 5a-375), socket (page 5a-443),
getsockname (page 5a-409)

Exported by
Socklib

5a-400

The Internet module

GETPID

Name

getpid — get process identification

Synopsis
int getpid()

Description

Getpid returns the process ID of the current process. Most often it is used to generate
uniquely-named temporary files.

As RISC OS has no concept of process IDs, the Unixlib version of this call always
returns 9999. The call is provided mainly so that you do not need to remove calls to
getpid from code that you are porting.

Exported by
Unixlib

5a-401

GETPROTOENT

GETPROTOENT

Name

getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent — get
protocol entry

Synopsis

voi d set protoent (stayopen)
i nt stayopen;

voi d endprotoent ()
#i ncl ude "netdb. h"
struct protoent *getprotoent()

struct protoent *getprotobyname(nane)
char *narme;

struct protoent *getprotobynumnber (proto)
i nt proto;

Description

Getprotoent, getprotobyname, andgetprotobynumber each return a pointer to an object
with the following structure containing the broken-out fields of a line in the Internet
protocol data basénetDBase: protocols.

struct protoent {

char *p_nane;
char **p aliases;
i nt p_pr ot o;
b
The members of this structure are:
p_name The official name of the protocol.
p_aliases A zero terminated list of alternate names for the
protocol.
p_proto The protocol nhumber.

Getprotoent reads the next line dhetDBase: protocols, opening the file if necessary.

Setprotoent opens and rewinds the file. If thiayopen argument is non-zero, the
protocol data base will not be closed after each cajtiwrotobyname.

5a-402

The Internet module

Endprotoent closes thefile.

Getprotobyname and getprotobynumber sequentially search from the beginning of the
file until a matching protocol name or protocol number isfound, or until EOF is

encountered.

The _proto_stayopen symbol is exported for internal use only. You must not useit in
your own code.

Return value
A Null pointer (0) is returned on EOF or error.

Bugs
All information is contained in a static area so it must be copied if it isto be saved.

See also
Protocols on page 5a-361

Exported by
Inetlib

5a-403

GETPWENT

Name

GETPWENT

getpwent, getpwuid, getpwnam, setpwent, endpwent — get password file entry

Synopsis
voi d set pwent ()
voi d endpwent ()
#i ncl ude "pwd. h"

struct passwd *get pwui d(ui d)

int uid;

struct passwd *get pwnan{ nhane)

char *nane;

struct passwd *get pwent ()

Getpwent, getpwuid andgetpwnam each return a pointer to an object with the following

Description

structure.

struct passwd {
char *pw_nane;
char *pw_passwd;
union { uid_t _uid;
union { gid_t _gid;
int pw_quot a;
char *pw_comment ;
char *pw_gecos;
char *pw_dir;
char *pw_shel | ;

b

#define pw_uid _uid._uid

#define pw gid _gid._gid

/* see getpwent(3) */

int _padl;
int _pad2;

} _uid;
}o_gid;

The fieldspw_passwd, pw_quota, pw_comment, pw_gecos, pw_dir andpw_shell are

unused.

Getpwuid setspw_name to the name returned lygtvarusername, or to ‘root’ if none is
returned; and it sefav_uid to 32767, angw_gid to 9999.

Getpwnam setspw_name to name, pw_uid to 32767, angw_gid to 9999.

5a-404

The Internet module

Getpwent does the same as getpwuid thefirst timeit isever called, and thefirst timeit is
called after acall to setpwent or endpwent. It otherwise returns a NULL pointer (0).

Setpwent and endpwent have no effect other than altering the behaviour of getpwent (see
above).

These calls are provided mainly so that you do not need to remove them from code that
you are porting.

Bugs
All information is contained in a static area so it must be copied if it isto be saved.

See also
getlogin (page 5a-397), getvarusername (page 5a-416)

Exported by
Unixlib

5a-405

GETSERVENT

GETSERVENT

Name
getservent, getservbyport, getservbyname, setservent, endservent — get service entry

Synopsis

voi d setservent (stayopen)
i nt stayopen;

voi d endservent ()
#i ncl ude "netdb. h"
struct servent *getservent()

struct servent *getservbyname(nane, proto)
char *name, *proto;

struct servent *getservbyport(port, proto)
int port;
char *proto;

Description

Getservent, getservbyname, andgetservbyport each return a pointer to an object with the
following structure containing the broken-out fields of a line in the network services
data basdnetDBase: services.

struct servent ({

char *S nane;
char **s aliases;
i nt S_port;
char *s_proto;
b
The members of this structure are:
S_name The official name of the service.
s_aliases A zero terminated list of alternate names for the service.
s_port The port number at which the service resides. Port
numbers are returned in network byte order.
S_proto The name of the protocol to use when contacting the
service.

5a-406

The Internet module

Getservent reads the next line of the file, opening the file if necessary.

Setservent opens and rewinds the file. If the stayopen argument is non-zero, the services
data base will not be closed after each call to getservbyname or getservbyport.

Endservent closes the file.

Getservbyname and getservbyport sequentially search from the beginning of the file
until amatching protocol name or port number isfound, or until EOF is encountered. If
aprotocol nameis also supplied (non-NULL), searches must also match the protocol.

The_serv_stayopen symbol isexported for internal use only. You must not useit in your
own code.

Return value
A Null pointer (0) is returned on EOF or error.

Bugs
All information is contained in a static area so it must be copied if it isto be saved.

See also
getprotoent (page 5a-403)

Exported by
Inetlib

5a-407

GETSOCKNAME

5a-408

GETSOCKNAME

Name

getsockname — get socket name

Synopsis

#i ncl ude "sys/socket. h"

#i ncl ude "sys/types.h"

i nt getsocknane(s, nane, nanel en)
int s;

struct sockaddr *nane;

i nt *nanel en;

Description

Getsockname returns the curremtame for the specified socket. Tiiamelen parameter
should be initialized to indicate the amount of space pointed narbg. On return it
contains the actual size of the name returned (in bytes).

Return value

A 0O is returned if the call succeeds, -1 if it fails.

Errors
The call succeeds unless:
[EBADF] The argumensis not a valid descriptor.
[ENOBUFS] Insufficient resources were available in the
system to perform the operation.
[EFAULT] The name parameter was invalid.

See also
bind (page 5a-375), socket (page 5a-443)

Exported by
Socklib

The Internet module

GETSOCKOPT

Name
getsockopt, setsockopt — get and set options on sockets

Synopsis

i nt getsockopt (s, level, optnane, optval, optlen)
int s, level, optnaneg;

voi d *optval;

int *optlen;

i nt setsockopt(s, level, optnane, optval, optlen)
int s, level, optnaneg;

voi d *optval;

int optlen;

Description

Getsockopt andsetsockopt manipulateoptions associated with a socket. Options may
exist at multiple protocol levels; they are always present at the uppermost ‘socket’ level.

When manipulating socket options the level at which the option resides and the name of
the option must be specified. To manipulate options at the ‘socket’ lexatlis

specified as SOL_SOCKET. To manipulate options at any other level the protocol
number of the appropriate protocol controlling the option is supplied. For example, to
indicate that an option is to be interpreted by the TCP protegel,should be set to the
protocol number of TCP (s€e&ETPROTOENT on page 5a-403).

The parametersptval andoptlen are used to access option valuessétsockopt. For
getsockopt they identify a buffer in which the value for the requested option(s) are to be
returned. Fogetsockopt, optlen is a value-result parameter, initially containing the size
of the buffer pointed to bgptval, and modified on return to indicate the actual size of
the value returned. If no option value is to be supplied or retuopb@ may be

supplied as 0.

Optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include fllsys/socket.h" contains definitions for

‘socket’ level options, described below. Options at other protocol levels vary in format
and name.

5a-409

GETSOCKOPT

5a-410

Most socket-level optionstake anint parameter for optval. For setsockopt, the parameter
should be non-zero to enable a boolean option, or zero if the option is to be disabled.
SO_LINGER uses astruct linger parameter, defined in "sys/socket.h”, which specifies
the desired state of the option and the linger interval (see below).

The following options are recognized at the socket level. Except as noted, each may be
examined with getsockopt and set with setsockopt.

SO _REUSEADDR toggle local address reuse

SO _KEEPALIVE toggle keep connections alive

SO_DONTROUTE toggle routing bypass for outgoing messages

SO _LINGER linger on close if data present

SO BROADCAST toggle permission to transmit broadcast
messages

SO_OOBINLINE toggle reception of out-of-band datain band

SO_SNDBUF set buffer size for output

SO_RCVBUF set buffer size for input

SO _TYPE get the type of the socket (get only)

SO_ERROR get and clear error on the socket (get only)

SO_REUSEADDR indicates that the rules used in validating addresses supplied in a
bind call should allow reuse of local addresses. SO_KEEPALIVE enables the periodic
transmission of messages on a connected socket. Should the connected party fail to
respond to these messages, the connection is considered broken and programs using the
socket are notified viaan Internet_Event/Socket_Broken Event event, provided they
have enabled it (see The Internet event on page 5a-345). SO_DONTROUTE indicates
that outgoing messages should bypass the standard routing facilities. Instead, messages
are directed to the appropriate network interface according to the network portion of the
destination address.

SO_LINGER controls the action taken when unsent messages are queued on socket and
a socketclose is performed. If the socket promises reliable delivery of dataand
SO_LINGER is set, the system will block on the socketclose attempt until it is able to
transmit the data or until it decidesit is unable to deliver the information (atimeout
period, termed the linger interval, is specified in the setsockopt call when SO_LINGER
isrequested). If SO_LINGER is disabled and a socketclose is issued, the system will
process the socketclose in a manner that allows control to return to the caller as quickly
aspossible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the
socket. With protocols that support out-of-band data, the SO_OOBINLINE option
requests that out-of-band data be placed in the normal datainput queue as received; it
will then be accessible with recv calls without the MSG_OOB flag. SO_SNDBUF and
SO_RCVBUF are options to adjust the normal buffer sizes allocated for output and
input buffers, respectively. The buffer size may be increased for high-volume

The Internet module

connections, or may be decreased to limit the possible backlog of incoming data. The
system places an absolute limit on these values. Finally, SO_TYPE and SO_ERROR are
options used only with setsockopt. SO_TY PE returns the type of the socket, such as
SOCK_STREAM. SO_ERROR returns any pending error on the socket and clears the
error status. It may be used to check for asynchronous errors on connected datagram
sockets or for other asynchronous errors.

Return value

A O is returned if the call succeeds, —1 if it fails.

Errors
The call succeeds unless:
[EBADF] The argumens is not a valid descriptor.
[ENOPROTOOPT] The option is unknown at the level indicated.
[EFAULT] The address pointed to loptval is invalid. For

getsockopt, this error may also be returned if
optlen is invalid.

See also

ioctl (page 5a-422), socketioctl (page 5a-447), socket (page 5a-443),
getprotoent (page 5a-403)

Exported by
Socklib

5a-411

GETSTABLESIZE

GETSTABLESIZE

Name
getstablesize — get descriptor table size

Synopsis
i nt getstablesize()

Description

The Internet module has a fixed size descriptor table, which is guaranteed to have at
least 96 slots. The entries in the descriptor table are numbered with small integers
starting at 0. The cafjetstablesize returns the size of this table.

See also

getdtablesize (page 5a-391), close (page 5a-381), socketclose (page 5a-446),
select (page 5a-438)

Exported by
Socklib

5a-412

The Internet module

GETTIMEOFDAY

Name
gettimeofday — get date and time

Synopsis
#i ncl ude "sys/tine.h"

int gettineofday(tp, tzp)
struct tineval *tp;
struct tinezone *tzp;

Description

The system’s notion of the current Greenwich time and the current time zone is obtained
with thegettimeofday call. The time is expressed in seconds and microseconds since
midnight (O hour), January 1, 1970tp is zero, the time zone information will not be
returned or set.

The structures pointed to lyy andtzp are defined infsystime.h" as:

struct timeval {
| ong tv_sec; /* seconds since Jan. 1, 1970 */
| ong tv_usec; /* and microseconds */

}s

struct timezone {
int tz_m nuteswest; /* of G eenwich */
int tz_dsttine; /* type of dst correction to apply */

s

Thetimezone structure indicates the local time zone (measured in minutes of time
westward from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving
time applies locally during the appropriate part of the year.

Return value

A zero value is always returned. If the date is unset or out of the representable range,
thentv_sec is —1.

Exported by
Unixlib

5a-413

GETUID

GETUID

Name
getuid, geteuid — get user identity

Synopsis
int getuid()
i nt geteuid()

Description
Getuid returns the real user ID of the current procga®yuid the effective user ID.

As RISC OS has no concept of user IDs, the Unixlib version of this call always returns
32767. The call is provided mainly so that you do not need to remove agdtsitband
geteuid from code that you are porting.

See also
getegid (page 5a-392)

Exported by
Unixlib

5a-414

The Internet module

GETVAR

Name
getvarhostname, getvarusername — get host and user names from system variables

Synopsis
char *getvarhost nane()

char *getvarusernane()

Description

Getvarhostname returns the standard Internet host name for the current processor, as set
in the system variablemet$HostName. If the variable is not set, or if it is set to the null
string, then the call first attempts to set it to ‘ARM_NoName'.

Getvarusername returns the current user name, as previously set in the system variable
Inet$UserName. If Inet$UserName is not set, or if it is set to the null string,
getvarusername returns a NULL pointer (0).

The returned name is null-terminated.

Return value
If the call fails, then a NULL pointer (0) is returned.

Bugs

Host names are limited to MAXHOSTNAMELEN (frohsys/param.h”) characters,
currently 64.

The return value points to static data whose content is overwritten by each call.

See also
getlogin (page 5a-397)

Exported by
Unixlib

5a-415

GETWD

GETWD

Name
getwd — get current working directory pathname

Synopsis

char *getwd(pat hnane)
char *pat hnane;

Description

Getwd copies the pathname of the current working directopatiosname and returns a
pointer to the result.

Exported by
Unixlib

5a-416

The Internet module

HERROR

Name
herror — obsolete call

Synopsis

Description

Herror is now obsolete, and you must not use it in your code. It is exported from Unixlib
only to ensure backwards compatibility.

Exported by
Unixlib

S5a-417

INET

5a-418

INET

inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_Inaof, inet_netof — Internet
address manipulation routines

Synopsis

#i ncl ude "sys/types.h"

u_long inet_addr(cp)
char *cp;

u_long inet_network(cp)
char *cp;

#i ncl ude "netinet/in.h"

char *inet_ntoa(in)
struct in_addr in;

struct in_addr inet_nakeaddr(net, |na)
int net, |na;

i nt inet_|naof(in)
struct in_addr in;

int inet_netof(in)
struct in_addr in;

Description

The routinesnet_addr andinet_network each interpret character strings representing
numbers expressed in the Internet standard ‘.’ notation, returning numbers suitable for
use as Internet addresses and Internet network numbers, respectively. The routine
inet_ntoa takes an Internet address and returns an ASCII string representing the address
in *." notation. The routinénet_makeaddr takes an Internet network number and a local
network address and constructs an Internet address from it. The romginastof and
inet_Inaof break apart Internet host addresses, returning the network number and local
network address part, respectively.

All Internet address are returned in network order (bytes ordered from left to right). All
network numbers and local address parts are returned as machine format integer values.

The Internet module

Internet addresses

Values specified using the ‘.’ notation take one of the following forms:

a.b.c.d
a.b.c
a.b

a

When four parts are specified, each is interpreted as a byte of data and assigned, from
left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and
placed in the right-most two bytes of the network address. This makes the three part
address format convenient for specifying Class B network addresses as ‘128.net.host’.

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and
placed in the right-most three bytes of the network address. This makes the two part
address format convenient for specifying Class A network addresses as ‘net.host’.

When only one part is given, the value is stored directly in the network address without
any byte rearrangement.

All numbers supplied as ‘parts’ in a *.” notation may be decimal, octal, or hexadecimal,
as specified in the C language (ie a leading Ox or 0X implies hexadecimal; otherwise, a
leading O implies octal; otherwise, the number is interpreted as decimal).

Return value

The value —1 is returned liyet_addr andinet_network for malformed requests.

Bugs
The string returned biyiet_ntoa resides in a static memory area.

See also
gethostbyname (page 5a-394), getnetent (page 5a-398)

Exported by
Inetlib

5a-419

_INET_ERROR

_INET_ERROR

Name

_inet_error — global error variable

Synopsis
#i ncl ude "kernel . h"

_kernel _oserror _inet_error

Description

The global error structurdnet_error is used exclusively by the Socklib library. It
contains the most recent error block returned from a call into the Internet module, and is
set by the functiomakecall().

Exported by
Socklib

5a-420

The Internet module

|IOCTL

Name

ioctl — control device

Synopsis
#i ncl ude "sys/ioctl.h"

int ioctl(d, request, argp)
int d;

i nt request;

voi d *argp;

Description

loctl is a synonym fosocketioctl; see page 5a-447. The call is provided mainly so that
you do not need to renarieet! calls in code that you are porting.

See also
socketioctl (page 5a-447)

Exported by
Unixlib

5a-421

KILLFILE

KILLFILE

Name
killfile — remove directory entry

Synopsis
void killfile(path)
char *path;
Description

Killfile removes the entry for the objeuzth from its directory. The call fails if the
object is locked against deletion, or if it is a directory which is not empty, or if it is
already open.

No value is returned.

This call is now deprecated, and we recommend you insteathliisiein your code.
Killfile is exported from Unixlib only to ensure backwards compatibility.

See also
unlink (page 5a-455)

Exported by
Unixlib

S5a-422

The Internet module

LISTEN

Name

listen — listen for connections on a socket
Synopsis

int listen(s, backl og)

int s, backlog;
Description

To accept connections, a socket is first created soitket, a willingness to accept
incoming connections and a queue limit for incoming connections are specified with
listen, and then the connections are accepted aathpt. Thelisten call applies only to
sockets of type SOCK_STREAM.

Thebacklog parameter defines the maximum length the queue of pending connections
may grow to. If a connection request arrives with the queue full the client may receive an
error with an indication of ECONNREFUSED, or, if the underlying protocol supports
retransmission, the request may be ignored so that retries may succeed.

Return value

A 0O return value indicates success; —1 indicates an error.

Errors
The call fails if:
[EBADF] The argumens is not a valid descriptor.
[EOPNOTSUPP] The socket is not of a type that supports the

operationlisten.

Bugs
Thebacklog is currently limited (silently) to 5 and negative numbers are replaced by 0.

It is not the queue length — this is currently defined by:
(backlog x 3)/2 + 1

5a-423

LISTEN

See also
accept (page 5a-371), connect (page 5a-382), socket (page 5a-443)

Exported by
Socklib

5a-424

The Internet module

LSEEK

Name

Iseek — move read/write pointer

Synopsis
Il ong | seek(d, offset, whence)
int d;
| ong offset;
i nt whence;
Description

Lseek sets the file pointer af. Since you cannot seek on sockets, the Unixlib version of
Iseek always fails and the file pointer remains unchanged.

Return value
A value of —1 is always returned.

Errors

Errno is always set to indicate the error.
[ESPIPE] d is associated with a pipe or a socket.

Exported by
Unixlib

5a-425

_MAKECALL

_MAKECALL

Name

_makecall — wrapper for SWI calls
Synopsis

#i ncl ude kernel . h

int _makecall (swi num in, out)

int swi num

_kernel _swi _regs *in, *out
Description

Makecall provides a wrapper for calling SWIs, and is used by Socklib for all Socket_...
SWis calls it makes. The first thimgakecall does is to issue the SWI. Its subsequent
action depends on whether or not the SWI returns an error:

« Ifthe SWI does not return an error, the global error variedl® is set to zero, and
the return value afakecall is the value that was in RO on exit from the SWI.

« Ifthe SWI returns an erromakecall copies the returned error block into the global
error structure inet_error. It then setgrrno from the SWI's returned error number,
converting standard Internet errors (ie those returned by the SWI in the range
&20E00 - &20E7F) to the values used in C by subtracting &20EOQO. If — after that —
the value ofrrno is still greater than EREMOT akecall then setgrrno to
ESRCH. Finallymakecall returns a value of —1.

Exported by
Socklib

5a-426

The Internet module

NAMISIPADR

Name
namisipadr — get network host entry

Synopsis
#i ncl ude "netdb. h"

struct hostent *nam si padr (nane)
char* nane

Description

Namisipadr takes an Internet address and returns a pointer to an object describing an
Internet host. The Internet address is a character string representing numbers expressed
in the Internet standard ‘.’ notation; for more details|sgernet addresses on

page 5a-420The information is returned in the following structure:

struct hostent {

char *h_nane;

char **h aliases;

i nt h_addrt ype;

i nt h_I engt h;

char **h addr _|ist;

s
#define h_addr h_addr _|ist[O0]

The members of this structure are:

h_name Official name of the host.

h_aliases A zero terminated array of alternate names for the host.

h_addrtype The type of address being returned; currently always
AF_INET.

h_length The length, in bytes, of the address.

h_addr_list A zero terminated array of network addresses for the
host. Host addresses are returned in network byte order.

h_addr The first address in h_addr_list.

Return value
Error return status fromamisipadr is indicated by return of a null pointer.

S5a-427

NAMISIPADR

Bugs
All information is contained in a static area so it must be copied if it isto be saved.

See also
inet_addr (page 5a-419), gethostbyname (page 5a-394)

Exported by
Inetlib

5a-428

The Internet module

OSREADC

Name
osreadc — reads a character from the current input stream

Synopsis
i nt osreadc()

Description

Osreadc is a veneer to OS_ReadC (page 1-880), which reads a character from the
current input stream.

Return value
Osreadc returns the ASCII code of the key pressed, or EOF if Escape was pressed.

See also
xgets (page 5a-458)

Exported by
Unixlib

5a-429

_PWBUF

_PWBUF

Name
_pwbuf — symbol for internal use only

Synopsis

Description

The_pwbuf symbol is exported for internal use only. You must not use it in your own
code.

Exported by
Unixlib

5a-430

The Internet module

READ

Name
read, readv — read input

Synopsis
int read(d, buf, nbytes)
int d;
char *buf;
i nt nbytes;
#i ncl ude "sys/types. h"
#i ncl ude "sys/uio.h"

int readv(d, iov, iovcnt)

int cc, d;

struct iovec *iov;

int iovent;
Description

Read is a synonym fosocketread, andreadv a synonym fosocketreadv; see
page 5a-448. These calls are provided mainly so that you do not need to reschme
andreadv calls in code that you are porting.

See also

socketread and socketreadv (page 5a-448)

Exported by
Unixlib

5a-431

READDIR

5a-432

READDIR

Name
readdir — read a directory

Synopsis

int readdir(path, buf, |len, name, offset)
char *path, *buf;
int len, name, offset;

Description

Readdir reads an entry from the directgegth which match the wildcard nanmame; it

is returned in the buffdsuf (which is of lengtHen). Theoffset gives the directory entry
from which to start searching; it should be zero to start searching from the start of the
directory.

If path (which may contain wildcards) is a null string, then the currently-selected
directory is read. Ihame is a null string then *’ is used, and all files will be matched.

Return value

This call returns the offset from which you should continue searching to read more
entries; or —1 if no entry was read, or there are no more entries after the one read by this
call.

Bugs

This implementation ofeaddir is not a direct replacement or emulation of the Unix
readdir function. You should bear this especially in mind if you are porting software.

Exported by
Unixlib

The Internet module

RECV

Name

recv, recvfrom, recvmsg — receive a message from a socket
Synopsis

int recv(s, buf, len, flags)

int s;

char *buf;

int len, flags;

#i ncl ude "sys/socket. h"
#i ncl ude "sys/types. h"

int recvfron(s, buf, len, flags, from fronlen)
int s;

char *buf;

int len, flags;

struct sockaddr *from

int *from en;

#i ncl ude "sys/uio.h"

int recvmeg(s, nsg, flags)

int s;

struct nsghdr *nsgQ;

int flags;
Description

Recv, recvfrom, andrecvmsg are used to receive messages from a socket.

Therecv call is normally used only oncannected socket, whilerecvfrom andrecvmsg
may be used to receive data on a socket whether it is in a connected state or not.

If fromis non-zero, the source address of the message is fillebinlen is a

value-result parameter, initialized to the size of the buffer associateftenthand

modified on return to indicate the actual size of the address stored there. The length of
the message is returnedcm If a message is too long to fit in the supplied buffer, excess
bytes may be discarded depending on the type of socket the message is received from
(seesocket on page 5a-443).

5a-433

RECV

If no messages are available at the socket, the receive call waits for amessage to arrive,
unless the socket is non-blocking (see socketioctl on page 5a-447) in which case a cc of
—1 is returned with the external variable errno set to EWOULDBLOCK.

Theselect call may be used to determine when more data arrives.

Theflags argument to a recv call is formed tx/ing one or more of the values,

#defi ne MSG_OOB 0x1 /* process out-of-band data */
#define MSG_PEEK 0x2 /* peek at incom ng nmessage */

Therecvmsg call uses ansghdr structure to minimize the number of directly supplied
parameters. This structure has the following form, as definésyssocket.h":

struct nsghdr {

caddr _t nmsg_nhane; /* optional address */

int nsg_nanel en; /* size of address */

struct iovec *meg_i ov; /* scatter/gather array */

int nmsg_i ovl en; /* # elements in neg_iov */

caddr _t msg_accrights; /* access rights sent/received */
int nmsg_accrightslen;

}

Heremsg_name andmsg_namelen specify the destination address if the socket is
unconnectednsg_name may be given as a null pointer if no names are desired or
required. Thensg_iov andmsg_iovien describe the scatter gather locations, as described
in socketread on page 5a-448. A buffer to receive any access rights sent along with the
message is specified imsg_accrights, which has lengtimsg_accrightslen. Access

rights are currently limited to integer values. If access rights are not being transferred,
themsg_accrights field should be set to NULL.

Return value

These calls return the number of bytes received, or —1 if an error occurred.

Errors
The calls fail if:
[EBADF] The argumens is an invalid descriptor.
[EWOULDBLOCK] The socket is marked non-blocking and the
receive operation would block.
[EFAULT] The data was specified to be received into an
invalid address.
See also

socketread (page 5a-448), send (page 5a-440), select (page 5a-438),
getsockopt (page 5a-410), socket (page 5a-443)

5a-434

The Internet module

Exported by
Socklib

5a-435

RRESVPORT

5a-436

RRESVPORT

Name

rresvport — routine for returning a stream to a remote command

Synopsis

int rresvport(port);
int *port;

Description

Rresvport is a routine which returns a descriptor to a socket with an address in the
privileged port space bound to it. Privileged Internet ports are those in the range 0 to
1023.

Return value

Rresvport returns a valid, bound socket descriptor on success. It returns —1 on error with
the global valuerrno set according to the reason for failure (ERRNO on
page 5a-384). The error code EAGAIN is overloaded to mean ‘All network ports in use’.

Exported by
Inetlib

The Internet module

SELECT

Name
select — synchronous socket 1/0 multiplexing

Synopsis

#i ncl ude "sys/types. h"
#i ncl ude "sys/tine.h"

int select (nfds,readfds,witefds, exceptfds,tineout)
i nt nfds;

fd_set *readfds, *writefds, *exceptfds;

struct tineval *tineout;

FD_SET(fd, &fdset)
FD CLR(fd, &fdset)
FD_ | SSET(fd, &fdset)
FD_ZERQ(&f dset)

int fd;

fd_set fdset;

Description

SHect examines the socket descriptor sets whose addresses are pasadfdsn

writefds, andexceptfds to see if some of their descriptors are ready for reading, are ready
for writing, or have an exceptional condition pending, respectively. Thefiist
descriptors are checked in each set; ie the descriptors from 0 timfdegh in the

descriptor sets are examined. On retagtect replaces the given descriptor sets with
subsets consisting of those descriptors that are ready for the requested operation. The
total number of ready descriptors in all the sets is returnsfund.

The descriptor sets are stored as bit fields in arrays of integers. The following macros are
provided for manipulating such descriptor s€: ZERO(& fdset) initializes a

descriptor sefidset to the null setFD_SET(fd, & fdset) includes a particular descriptiok

in fdset. FD_CLR(fd, & fdset) removedd from fdset. FD_ISSET(fd, & fdset) is nonzero if

fd is a member didset, zero otherwise. The behaviour of these macros is undefined if a
descriptor value is less than zero or greater than or eqeBI_t8ETS ZE, which is

normally at least equal to the maximum number of descriptors supported by the system.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection
to complete. Itimeout is a zero pointer, the select blocks indefinitely. To affect a poll,
thetimeout argument should be non-zero, pointing to a zero-valued timeval structure.

5a-437

SELECT

5a-438

Any of readfds, writefds, and exceptfds may be given as zero pointers if no descriptors
are of interest.

Return value

Select returns the number of ready descriptorsthat are contained in the descriptor sets, or
-1 if an error occurred. If the time limit expires theetect returns 0. Ifselect returns
with an error, the descriptor sets will be unmodified.

Errors
An error return fronselect indicates:
[EBADF] One of the descriptor sets specified an invalid
descriptor.
[EINVAL] The specified time limit is invalid. One of its

components is negative or too large.

See also

accept (page 5a-371), connect (page 5a-382), socketread (page 5a-448),
socketwrite (page 5a-452

Exported by
Socklib

The Internet module

SEND

Name
send, sendto, sendmsg — send a message from a socket

Synopsis

int send(s, nsg, |len, flags)
int s;

char *nsg;

int len, flags;

#i ncl ude "sys/socket. h"
#i ncl ude "sys/types. h"

int sendto(s, nmsg, len, flags, to, tolen)
int s;

char *nsg;

int len, flags;

struct sockaddr *to;

int tolen;

#i ncl ude "sys/uio.h"

int sendnsg(s, nsg, flags)

int s;

struct nsghdr *nsgQ;

int flags;
Description

Send, sendto, andsendmsg are used to transmit a message to another s&eketmay
be used only when the socket is icoanected state, whilesendto andsendmsg may be
used at any time.

The address of the target is giventbyvith tolen specifying its size. The length of the
message is given bgn. If the message is too long to pass atomically through the
underlying protocol, then the error EMSGSIZE is returned, and the message is not
transmitted.

No indication of failure to deliver is implicit ingnd. Return values of —1 indicate some
locally detected errors.

5a-439

SEND

If no messages spaceis available at the socket to hold the message to be transmitted,
then send normally blocks, unless the socket has been placed in non-blocking 1/0 mode.
The select call (page 5a-438) may be used to determine when it is possible to send more
data.

The flags parameter may be set to MSG_OOB (otherwise 0) to send ‘out-of-band’ data
on sockets that support this notion (eg SOCK_STREAM); the underlying protocol must
also support ‘out-of-band’ data.

Seerecv for a description of thensghdr structure.

Return value

The call returns the number of characters sent, or —1 if an error occurred.

Errors
The call fails if:
[EBADF] An invalid descriptor was specified.
[EFAULT] An invalid address was specified for a
parameter.
[EMSGSIZE] The socket requires that message be sent

atomically, and the size of the message to be
sent made this impossible.

[EWOULDBLOCK] The socket is marked non-blocking and the
requested operation would block.
[ENOBUFS] The system was unable to allocate an internal

buffer. The operation may succeed when
buffers become available.

[ENOBUFS] The output queue for a network interface was
full. This generally indicates that the interface
has stopped sending, but may be caused by
transient congestion.

See also

recv (page 5a-434), select (page 5a-438), getsockopt (page 5a-410),
socket (page 5a-443), socketwrite (page 5a-452)

Exported by
Socklib

5a-440

The Internet module

SHUTDOWN

Name
shutdown — shut down part of a full-duplex connection

Synopsis
i nt shutdown(s, how)
int s, how,
Description

Theshutdown call causes all or part of a full-duplex connection on the socket associated
with sto be shut down. Ifiow is 0, then further receives will be disallowedhdfv is 1,

then further sends will be disallowedhtw is 2, then further sends and receives will be
disallowed.

Return value
A 0 return value indicates success; —1 indicates an error.

Errors
The call fails if:
[EBADF] sis not a valid descriptor.
[ENOTCONN] The specified socket is not connected.
[ENOTSOCK] sis a file, not a socket.

See also
connect (page 5a-382), socket (page 5a-443)

Exported by
Socklib

5a-441

SOCKET

SOCKET

Name

socket — create an endpoint for communication

Synopsis

i nt socket (domain, type, protocol)
i nt domain, type, protocol;

Description
Socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which
communication will take place; this selects the protocol family which should be used.
The protocol family generally is the same as the address family for the addresses
supplied in later operations on the socket. The currently understood format under RISC
OSis

PF_INET (Internet protocols).

The socket has the indicatggbe, which specifies the semantics of communication.
Currently defined types under RISC OS are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte
streams. An out-of-band data transmission mechanism may be supported. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a
fixed (typically small) maximum length). SOCK_RAW sockets provide access to
internal network protocols and interfaces.

Theprotocol specifies a particular protocol to be used with the socket. Normally only a
single protocol exists to support a particular socket type within a given protocol family.
However, it is possible that many protocols may exist, in which case a particular
protocol must be specified in this manner. The protocol number to use is particular to the
‘communication domain’ in which communication is to take placePsetcols on

page 5a-361.

Sockets of type SOCK_STREAM are full-duplex byte streams. A stream socket must be
in aconnected state before any data may be sent or received on it. A connection to
another socket is created witlt@nect call. Once connected, data may be transferred

5a-442

The Internet module

using some variant of the send and recv calls. When a session has been completed a
socketclose may be performed. Out-of-band datamay also be transmitted asdescribed in
send and received as described in recv.

The communi cations protocols used to implement aSOCK _STREAM insurethat datais

not lost or duplicated. If apiece of datafor which the peer protocol has buffer space

cannot be successfully transmitted within a reasonable length of time, then the

connection is considered broken and calls will indicate an error with —1 returns and with
ETIMEDOUT as the specific code in the global variable errno. The protocols optionally
keep sockets ‘warm’ by forcing transmissions roughly every minute in the absence of
other activity. An error is then indicated if no response can be elicited on an otherwise
idle connection for a extended period (eg 5 minutes). An
Internet_Event/Socket_Broken Event event occurs if a program sends on a broken
stream, provided the program has enabled the eventlisdpternet event on

page 5a-345)

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to
correspondents namedsend calls. Datagrams are generally received wativfrom,
which returns the next datagram with its return address.

The operation of sockets is controlled by socket legtbns. These options are defined
in the file" sys/socket.h". Setsockopt andgetsockopt are used to set and get options,
respectively.

Return value

Errors

A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing
the socket.

The socket call fails if:
[EPROTONOSUPPORT] The protocol type or the specified protocol is
not supported within this domain.
[EMFILE] The socket descriptor table is full.
[EACCES] Permission to create a socket of the specified
type and/or protocol is denied.
[ENOBUFS] Insufficient buffer space is available. The

socket cannot be created until sufficient
resources are freed.

5a-443

SOCKET

See also

accept (page 5a-371), bind (page 5a-375), connect (page 5a-382),

getsockname (page 5a-409), getsockopt (page 5a-410), socketioctl (page 5a-447),
listen (page 5a-424), socketread (page 5a-448), recv (page 5a-434),

select (page 5a-438), send (page 5a-440), shutdown (page 5a-442),

socketwrite (page 5a-452)

Exported by
Socklib

5a-444

The Internet module

SOCKETCLOSE

Name

socketclose — close an open socket
Synopsis

i nt socketcl ose(s)

int s;
Description

Socketclose closes an open socket, and releases any resources, including queued data,
associated with it.

Because RISC OS uses a global descriptor table, you can close another program’s
socket. You must therefore take care that the socket descriptor passed belongs to your
program.

If an application terminates under RISC OS without closing an open socket, then that
socket will remain open indefinitely, needlessly consuming resources. You therefore
must ensure your applications close all sockets before quitting.

Return value

Upon successful completion, a value of O is returned. Otherwise, a value of -1 is
returned and the global integer varia&eno is set to indicate the error.

Errors

The call will fail if:
[EBADF] sis not a valid descriptor.

See also
close (page 5a-381), accept (page 5a-371), socket (page 5a-443)

Exported by
Socklib

5a-445

SOCKETIOCTL

5a-446

SOCKETIOCTL

Name

socketioctl — control an open socket

Synopsis

i nt socketioctl (s, request, argp)
int s;

unsi gned | ong request;

voi d *argp;

Description

Socketioctl is used to alter the operating characteristics of an open seckbg
parameterequest specifies the socketioctl command, and has encoded within it both the
size of the argument pointed to angp, and whether the argument is an ‘in’ parameter
or an ‘out’ parameter. Macros and defines used in specifying a sockedipett are
located in the header filsys/ioctl.h".

Return value

If an error has occurred, a value of —1 is returned and errno is set to indicate the error.

Errors
The call will fail if:
[EBADF] sis not a valid descriptor.
[ENOTTY] The specified request does not apply to the kind
of object that the descriptdrreferences.
[EINVAL] Request or argp is not valid.

Exported by
Socklib

The Internet module

SOCKETREAD

Name
socketread, socketreadv — read input

Synopsis
i nt socketread(d, buf, nbytes)
int d;
char *buf;
i nt nbytes;
#i ncl ude "sys/types. h"
#i ncl ude "sys/uio.h"

i nt socketreadv(d, iov, iovcnt)

int cc, d;

struct iovec *iov;

int iovent;
Description

Socketread attempts to reanbytes of data from the object referenced by the descriptor
into the buffer pointed to biguf. Socketreadv performs the same action, but scatters the
input data into théovent buffers specified by the members of tbe array: iov[0],

iov[1], ..., iov[iovcnt-1].

For socketreadv, theiovec structure is defined as

struct iovec {
caddr _t iov_base;
i nt iov_len;

H

Eachiovec entry specifies the base address and length of an area in memory where data
should be placedocketreadv will always fill an area completely before proceeding to
the next.

Upon successful completiosgcketread andsocketreadv return the number of bytes

actually read and placed in the buffer. The system guarantees to read the number of bytes
requested if the descriptor references a normal file that has that many bytes left before
the end-of-file, but in no other case.

If the returned value is 0, then end-of-file has been reached.

Sa-447

SOCKETREAD

Return value

If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned
and the global variablerrno is set to indicate the error.

Errors
Socketread andsocketreadv will fail if one or more of the following are true:

[EBADF] D is not a valid socket descriptor open for
reading.

[EFAULT] Buf points outside the allocated address space.

[EIO] An /O error occurred while reading from the
socket.

[EINTR] A read from a slow device was interrupted
before any data arrived.

[EINVAL] The pointer associated witth was negative.

[EWOULDBLOCK] The socket was marked for non-blocking 1/O,

and no data were ready to be read.

In addition,socketreadv may return one of the following errors:

[EINVAL] lovent was less than or equal to O, or greater
than 16.

[EINVAL] One of theiov_len values in théov array was
negative.

[EINVAL] The sum of theiov_len values in theov array
overflowed a 32-bit integer.

[EFAULT] Part of theiov points outside the program’s

allocated address space.

See also
select (page 5a-438), socket (page 5a-443)

Exported by
Socklib

5a-448

The Internet module

SOCKETSTAT

Name

socketstat — get socket status
Synopsis

#i ncl ude "sys/types. h"

#i ncl ude "sys/stat.h"

i nt socketstat(s, buf)

int s;

struct stat *buf;
Description

Socketstat obtains information about the socket descrigtor

Buf is a pointer to atat structure into which information is placed concerning the
socket. The contents of the structure pointed tbubwre:

struct stat {

dev_t st _dev; /* device inode resides on */
ino_t st _i no; /* this inode’s number */

u_short st_mode; [* protection */

short st_nlink; /* number or hard links to the file */

uid_t st_uid; /* user-id of owner */

gid_t st_gid; /* group-id of owner */

dev_t st_rdev; /* device type, for inode that is device */
off t st_size; /* total size of file */

time_t st_atime; /* file last access time */

int st_sparel;

time_t st_mtime; /* file last modify time */

int st_spare2;

time_t st_ctime; /* file last status change time */

int st_spare3;

long st_blksize; /* optimal blocksize for file system i/o */
long st_blocks; /* actual number of blocks allocated */

long st_spare4|[2];
h

The st_blksize field may be either updated or preserved, depending on the socket’s
protocol. All other fields have little or no meaning for sockets, and are preserved.

Return value

Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is returned
anderrno is set to indicate the error.

5a-449

SOCKETSTAT

Errors

Socketstat will fail if one or more of the following are true:
[EBADF] sisnot avalid descriptor.

Exported by
Socklib

5a-450

The Internet module

SOCKETWRITE

Name
socketwrite, socketwritev — write output

Synopsis
int socketwite(d, buf, nbytes)
int d;
char *buf;
i nt nbytes;
#i ncl ude "sys/types. h"
#i ncl ude "sys/uio.h"

int socketwitev(d, iov, iovcnt)

int d;

struct iovec *iov;

int iovent;
Description

Socketwrite attempts to writebytes of data to the object referenced by the describtor
from the buffer pointed to biyuf. Socketvritev performs the same action, but gathers the
output data from theovent buffers specified by the members of ibearray: iov[0],
iov[1], ..., iov[iovcnt—1].

For socketwritev, theiovec structure is defined as

struct iovec {
caddr _t iov_base;
i nt iov_len;

H

Eachiovec entry specifies the base address and length of an area in memory from which
data should be writteiocketwritev will always write a complete area before
proceeding to the next.

Sockets are subject to flow control,secketwrite andsocketwritev may write fewer
bytes than requested; the return value must be noted, and the remainder of the operation
should be retried when possible.

5a-451

SOCKETWRITE

Return value

Upon successful completion the number of bytes actually written is returned. Otherwise
a —1 is returned and the global variadeo is set to indicate the error.

Errors

Socketwrite andsocketwritev will fail and the file pointer will remain unchanged if one
or more of the following are true:
[EBADF] D is not a valid descriptor open for writing.

[EPIPE] An attempt is made to write to a socket of type
SOCK_STREAM that is not connected to a
peer socket.

[EFAULT] Part ofiov or data to be written to the socket
points outside the program'’s allocated address
space.

[EINVAL] The pointer associated witth was negative.

[EIO] An 1/O error occurred while reading from or
writing to the socket.

[EWOULDBLOCK] The socket was marked for non-blocking 1/O,

and no data could be written immediately.
In addition,socketwritev may return one of the following errors:

[EINVAL] lovent was less than or equal to O, or greater
than 16.

[EINVAL] One of theiov_len values in theov array was
negative.

[EINVAL] The sum of theiov_len values in theov array

overflowed a 32-bit integer.

See also

select (page 5a-438)

Exported by
Socklib

5a-452

The Internet module

STRING

Name

strcasecmp, strncasecmp, index, rindex — string operations

Synopsis

int strcasecnp(sl, s2)
char *sl1, *s2;

int strncasecnp(sl, s2, n)
char *sl1, *s2;
int n

char *index(s, c)
char *s, c;

char *rindex(s, c)
char *s, c;

Description

These functions operate on null-terminated strings. They do not check for overflow of
any receiving string.

Srcasecmp compares its arguments and returns an integer of 1 or 0, accordihgsas
lexicographically not equal to, or equalsd Srncasecmp makes the same comparison
but looks at at most characters.

Index (rindex) returns a pointer to the first (last) occurrence of charadtestrings, or
zero ifc does not occur in the string.

Exported by
Unixlib

5a-453

UNLINK

UNLINK

Name

unlink — remove directory entry

Synopsis
i nt unlink(path)
char *path;
Description

Unlink removes the entry for the objgetth from its directory. The call fails if the object
is locked against deletion, or if it is a directory which is not empty, or if it is already
open.

Return value
A value of 0 is always returned.

Exported by
Unixlib

S5a-454

The Internet module

_VARNAMEBUF

Name

_varnamebuf — call for internal use only

Synopsis

Description

The_varnamebuf symbol is exported for internal use only. You must not use it in your
own code.

Exported by
Unixlib

5a-455

WRITE

WRITE

Name

write, writev — write output

Synopsis
int wite(d, buf, nbytes)
int d;
char *buf;
i nt nbytes;
#i ncl ude "sys/types.h"
#i ncl ude "sys/uio. h"

int witev(d, iov, iovcnt)

int d;

struct iovec *iov;

int iovent;
Description

Write is a synonym fosocketwrite, andwritev a synonym fosocketwritev; see
page 5a-452. These calls are provided mainly so that you do not need to vertame
andwritev calls in code that you are porting.

See also
socketwrite and socketwritev (page 5a-452)

Exported by
Unixlib

5a-456

The Internet module

XGETS

Name
Xgets — get a string from a stream

Synopsis

char *xgets(s)
char *s;

Description

Xgets reads a string intefrom the current input stream. The string is terminated by a
return character, which is replacedsiby a linefeed character; or by EOF. The last
character read inteis followed by a null characteXgets returns its argument.

Exported by
Unixlib

S5a-457

XPERROR

XPERROR

Name

xperror, sys_errlist, sys_nerr — system error messages

Synopsis
voi d xperror(s)
const char *s;
char *sys errlist[];

int sys nerr;

Description

Xperror produces a short error message on the current output stream describing the last
error encountered during a call to the system from a C program. First the argument string
sis printed, then a colon, then the message and a new-line. Most usefully, the argument
string is the name of the program which incurred the error. The error number is taken
from the external variablerrno, which is set when errors occur but not cleared when
non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message stymgsrlist is
provided;errno can be used as an index in this table to get the message string without
the newlineSys_nerr is the number of messages provided for in the table; it should be
checked because new error codes may be added to the system before they are added to
the table. Indeedperror makes such a check, and outputs a default message string if
errno exceedsys nerr.

See also
errno (page 5a-384)

Exported by
Unixlib

5a-458

The Internet module

XPUTCHAR

Name
xputchar — put character or word on a stream

Synopsis

char xputchar(c)
char c;

Description

Xputchar appends the characteto the current output stream. It returns the character
written.

Exported by
Unixlib

5a-459

Service calls

Service calls

This section documents the service calls that are used to communicate between network
devicedriversand therest of RISC OS. Unfortunately, you need to know and understand
the Driver Control Interface specification before you can follow all the details of these
descriptions, and that is beyond the scope of this manual to document. See The software
in detail on page 5a-286.

Driver information blocks

A devicedriver identifieseach logical interfaceit controls by adriver information block.
These are used by anumber of the service cals that follow, and have the following

structure:

Offset Value

0 The base of the device driver’s allocated SWI chunk

4 Pointer to the device driver’s unique short name, null terminated (eg ‘en’,
‘PpP’)

8 The unit number

12 Pointer to 6 bytes giving the hardware address of the interface

16 Pointer to the device driver’s title, null terminated (eg ‘Ether3’)

20 Pointer to a string describing the physical location of the interface, null

terminated (eg ‘Network Expansion Slot’, ‘Expansion Slot O, port #1")
24 Bitfield specifying physical slot:
bits 0 - 7 slot number: 0- @ physical expansion card slot
8 0 network expansion card slot
1280 parallel port
1290 Serial port (eg PPP)
1300 Econet socket
1310 PCMCIA card

bits 8- 15 reserved for device driver’'s use: may be used where one
card provides multiple independent interfaces

bits 16 - 20 physical PCMCIA slot, used when slot number is 131
bits 21 -31 reserved — must be zero

5a-460

The Internet module

Offset Value
28 Bitfield giving characteristics of device driver; meaning when set is:
bit O multicast reception is supported
bit 1 promiscuous reception is supported
bit 2 interface receives its own transmitted packets
bit 3 station number required
bit 4 interface can receive erroneous packets
bit 5 interface has a hardware address
bit 6 driver can alter interface’s hardware address
bit 7 interface is a point to point link
bit 8 driver supplies standard statistics
bit 9 driver supplies extended statistics
bit 10 interface is virtual (ie a software emulation of hardware);

refer to the Driver Control Interface specification
bits 11 - 31 reserved — must be zero

Each driver information block must be held as static data. In thisway, protocol modules
can identify an interface simply by comparing the addresses of driver information
blocks, rather than by laboriously comparing fields within the block.

This does mean that any use of the *RM Tidy command will kill any network stack on
the machine. In practice thisis unlikely to be a great problem, since this command has
long been deprecated.

The service call Service DCIDriverStatus (page 5a-464) provides a mechanism for a
devicedriver modulethat isre-initialised (via* RMRelnit) to pass the new address of its
driver information block to a protocol module.

5a-461

Service_EnumerateNetworkDrivers (Service Call &9B)

Service_EnumerateNetworkDrivers
(Service Call &9B)

Issued to obtain alinked list of all active network device drivers

On entry

RO = pointer to head of linked list of network device drivers
R1 = & 9B (reason code)

On exit

Use

5a-462

RO = pointer to new head of linked list of network device drivers
R1 preserved to pass on call

This service call isissued to obtain alinked list of all active network device driver
modulesin the system. When the service call isfirst issued, RO isanull pointer. When a
devicedriver receivesthiscall, it should chain an entry to the head of the linked list for
each logical interface it controls. Each entry is asfollows:

Offset Value
0 Pointer to the next entry in the linked list; the last entry is null
4 Pointer to the driver information block for this entry

These entries are transient objects: the device drivers should all ocate the space for them
from RMA using OS_Module 6 (page 1-237), and the program that issued the service
call should free them back into RMA using OS_Module 7 (page 1-238) after the call
returns. However, the driver information blocks referenced by each entry in the linked
list must be static data; see Driver information blocks on page 5a-461.

You must not claim this service call.

The Internet module

Service DCIDriverStatus
(Service call &9D)

Issued by anetwork device driver module once initialised, and when finalising

On entry

RO = pointer to driver information block for starting/terminating driver
R1 = &9D (reason code)

R2 = status (0 O starting, 1 O terminating)

R3 = DCI version supported x 100 (eg 403 for version 4.03)

On exit

Use

RO - R3 preserved

This service call isissued by a network device driver module once it has initialised and
isready to accept SWI calls (R2 = 0), and when it is finalising and can no longer accept
SWI cdls(R2 = 1). If the device driver controls multiplelogical interfaces, it issuesthis
service call once for each interface.

When a protocol modul e receives this service call from adriver that is starting up
(ileR2 =0), it should add the driver toitslist of device drivers. When a protocol module
receives the call from adriver that isterminating (ie R2 = 1), it should scan itslist of
device driversfor adriver information block matching the one addressed by RO, and
remove the corresponding driver from thelist.

You may instead decide to keep aterminating driver on thelist, but to mark it asinactive
in caseit later restarts. If you do this, you must not match driver information blocks by
comparing their addresses, as when a driver restarts the block may well be in adifferent
location. You instead have to match fields within the driver information block: the short
name and unit number (at offsets 4 and 8 respectively) together uniquely identify a
driver information block, and so a match of them is sufficient.

You must not claim this service call.

5a-463

Service_DCIFrameTypeFree (Service Call &9E)

Service_DCIFrameTypeFree
(Service Call &9E)

This Service Call requires you to use the Driver Control Interface, and so is beyond the
scope of this manual to document. See The software in detail on page 5a-286.

S5a-464

The Internet module

Service_DCIProtocolStatus
(Service call &9F)

Issued by a protocol module once it has initialised, and when it is finalising

On entry

RO = protocol modul€’s private word pointer

R1 = & 9F (reason code)

R2 = status (0 O starting, 1 O terminating)

R3 = DCI version supported x 100 (eg 403 for version 4.03)
R4 = pointer to protocol module's title string

On exit

Use

RO - R4 preserved

This service call isissued by a protocol module onceit hasinitialised and is ready to
accept SWI calls (R2=0), and when it isfinalising and can no longer accept SWI cals
(R2=1).

Thetitle string pointed to by R4 should be identical to the title string in the protocol
modul€e’s header. This string is not used anywhere elseinthe DCI. (It isintended for use
by modules that rely on the protocol module, but which do not communicate with it via
the DCI; these modules need to have the name of significant protocol modules built into
them.)

When aterminating protocol modul e issues this service cal, it must continue handling
receive eventsfor all frametypesit has not explicitly relinquished, until the service call
returns. Once the call has returned, device drivers should have deleted all references to
the protocol module which issued the service call.

This supersedes the unnamed service call &41200, which was never part of any formal
DCI specification, but which used to be issued during finalisation of the Internet
module.

You must not claim this service call.

5a-465

Service_InternetStatus (Service Call &B0)

Service_InternetStatus
(Service call &B0)

Issued by the Internet module when an interface address has been changed

On entry

RO = 0 (subreason code)
R1 = &BO0 (reason code)

On exit
RO, R1 preserved

Use

This service cal isissued by the Internet module upon successful completion of an
SIOCSIFADDR socketioctl() call; ie when an interface address has been changed.

You must not claim this service call.

5a-466

SWI calls

The Internet module

Thereisadirect SWI equivalent to each call availablein Socklib. In fact when you make

acall to Socklib, all that happensis that the parameters you pass are |loaded into the

ARM processor’s registers, and the relevant SWI is issued; any returned RISC OS error
block is converted to a C error number.

Calling the SWiIs

You may wish to issue the SWIs yourself — say if you're programming in BASIC. The
table below shows you how each Socket_... SWI corresponds to the Socklib calls
documented elsewhere in this chapter, giving the name and number of the SWI, the
equivalent Socklib call, and the page on which it is documented:

SWI name SWI no Socklib call Page
Socket_Accept &41203 accept 5a-371
Socket_Bind &41201 bind 5a-375
Socket_Close &41210 socketclose 5a-446
Socket_Connect &41204 connect 5a-382
Socket_Creat &41200 socket 5a-443
Socket_Getpeername &4120E getpeername 5a-401
Socket_Getsockname &4120F getsockname 5a-409
Socket_Getsockopt &4120D getsockopt 5a-410
Socket_Gettsize &41218 getstablesize 5a-413
Socket_loctl &41212 socketioctl 5a-447
Socket_Listen &41202 listen 5a-424
Socket_Read &41213 socketread 5a-448
Socket_Readv &41216 socketreadv 5a-448
Socket_Recv &41205 recv 5a-434
Socket_Recvfrom &41206 recvfrom 5a-434
Socket_Recvmsg &41207 recvmsg 5a-434
Socket_Select &41211 select 5a-438
Socket_Send &41208 send 5a-440
Socket_Sendmsg &4120A sendmsg 5a-440
Socket_Sendto &41209 sendto 5a-440
Socket_Sendtosm &41219 Reserved for internal —

use
Socket_Setsockopt &4120C setsockopt 5a-410
Socket_Shutdown &4120B shutdown 5a-442

5a-467

Calling the SWis

5a-468

SWI name SWI no Socklib call Page

Socket_Stat &41215 socketstat 5a-450
Socket_Write &41214 socketwrite 5a-452
Socket_Writev &41217 socketwritev 5a-452

Passing parameters

Errors

When calling a Socket_... SWI, you pass the parameters from the corresponding
Socklib call in registers RO upwards: the first parameter in RO, the second in R1, and so
on.

Say you wish to call Socket_Accept. The equivalent caltdspt:
int accept(s, addr, addrlen)

Therefore when calling the SWI, you would pass the parame@teR0,addr in R1, and
addrlen in R2.

Any returned value is passed back in RO: sincethept call returns an int, this will be
returned in RO for Socket_Accept.

Errors from Socket_... SWI calls are indicated in the standard way used by RISC OS:

« If the V (overflow) flag is clear on return from a SWI, then no error occurred and
the desired action was performed.

« Ifthe Vflag is set, then an error occurred, and RO points to an error block, the first
word of which contains an error number in the Internet module’s reserved range of
error numbers (&20E00 - &20EFF). The rest of the error block consists of a
null-terminated error message.

The lower half of the error numbers (ie &20E00 - &20E7F) are used for standard
Internet errors. These are &20EQO greater than the corresponding Unix error number
placed in thear r no variable after a Socklib call. For example, EINVAL is returned
from Socket_... SWI calls as &20E16, but is returned from Socklib calls as &16 — as
defined in the C header files.

The upper half of the error numbers (ie &20E80 - &20EFF) are used for errors that are
specific to DCI4 and later.

For a full description of how Socklib library calls deal with errors returned from
Socket_... SWIs, see the description wikecall on page 5a-427.

The Internet module

* Commands
*InetChecksum

Enables or disables various protocol checksums

Syntax
*| net Checksum [i|u|t On] OFf]

Parameters
i set |P checksum usage
u set UDP checksum usage
t set TCP checksum usage
On enable checksums
O f disable checksums

Use

* | netChecksum enables or disables various protocol checksums, or reports the current
state of the checksumsif you pass no parameters. You should not alter these values
unless you know what you are doing.

Example

*| net Checksum
I P checksuns are off, UDP checksuns are off, TCP checksuns are on

*] net Checksum u On

Related commands
None

5a-469

*InetGateway

*InetGateway

May be used to enable or to disable IP layer packet forwarding

Syntax
*Inet Gateway [On] OFf]

Parameters
On enable |P layer packet forwarding
O f disable IP layer packet forwarding
Use

* | netGateway may be used to enable or to disable IP layer packet forwarding (ie
gateway operation) if multiple network interfaces are present. With no parameters, the
current forwarding statusis reported.

The default state is off.

Example

*| net Gat eway
Packet forwarding not in operation

*I net Gat eway On

Related commands

None

5a-470

The Internet module

*Inetinfo
Displays Internet module internal statistics
Syntax
*InetInfo [r] [i] [p]
Parameters
r give details of internal resource usage (the default)
i give details of interfaces fitted
p give details of protocols
Use

*Inetinfo displaysinformation and statistics about the current state of the Internet
module, which forms a part of the AUN software. Most of the information displayed is
runicin nature. It is presented mainly as an aid to trouble-shooting, should you requireit.

Example

*Inetinfor
Resour ce usage:

Socket s
Active 10

Packet forwarding not in operation

Related commands
None

S5a-471

5a-472

124 Acorn Access

Introduction and Overview

Acorn Access is Acorn’s entry level product for AUN networking. It provides peer to

peer networking using TCP/IP protocols, allowing sharing of resources such as discs
and printers.

From RISC OS 3.6 onwards, Access is supplied as a part of the operating system.

Access components

There are three main modules that make up Access: Freeway, ShareFS and
RemotePrinterSupport.

Freeway

Freeway provides the protocols used by Access so it knows what shared resources are
available and can display windows showing them.

« The interfaces used by Freeway are for internal use only; you must not use them in
your own code.

ShareFS

ShareFS is a filing system that is used to share resources, both granting other hosts
access to your machine, and vice versa.

o ShareFS provides * Commands that you can use to share your own filing systems
with other Access users. The use of these is descride@dmmands on
page 5a-475.

« Italso provides SWIs that you can use to adtia e option to a Filer’s icon bar
menu; see the sectidriting Filers so they integrate with Access on page 5a-474.
RemotePrinterSupport

RemotePrinterSupport provides the support needed to share printers over an Access
network.

« The interfaces used by RemotePrinterSupport are for internal use only; you must
not use them in your own code.

5a-473

Writing filing systems so they integrate with Access

Writing filing systems so they integrate with Access

The Access* Commands call standard entry pointsto filing systems when making them
shared. You do not need to take any special steps to make afiling system work with
Access; any filing system will work, provided it conforms to the specificationsin the
chapters Writing a filing system on page 2-531 and page 5a-261; and (where applicable)
Witing a FileCore module on page 2-597 and page 5a-265.

Writing Filers so they integrate with Access

5a-474

For aFiler to integrate with Access, it needs to provide a Share menu option, and take
appropriate action when the option is chosen. Thisis done using a SWI interface to
ShareFsS.

These SWIs are subject to change as the range of Acorn networking productsis
expanded and updated, so we don't document them here. Should you wish to write a
Filer to integrate with Access, you should contact Acorn Customer Services.

Acorn Access

* Commands
*Desktop_ShareFSFiler

Command to start up ShareFS Filer

Syntax
*Deskt op_Shar eFSFi | er

Parameters
None

Use

*Desktop_... commands are used by the Desktop to start up ROM-resident Desktop
utilities that appear automatically on the icon bar. However, they are for internal use
only, and you should not use them; use *Desktop instead.

See page 3-277 for further details of *Desktop_... commands.

Related commands
*Desktop (page 3-275)

S5a-475

*Dismount

5a-476

*Dismount

Ensuresthat it is safe to finish using a remote shared disc

Syntax

*Di snount : di sc_nane

Parameters

di sc_nane the name of the remote shared disc

Use

*Dismount ensuresthat it is safe to finish using a remote shared disc by closing all its
files, unsetting al its directories and libraries, and discarding itslocal caches.
*Dismount is useful before finishing sharing a particular disc. However, the * Shutdown
command is usually to be preferred, especially when switching off the computer.

Example
*Di smount : Mat hs

Related commands
* Shutdown (page 2-188)

Acorn Access

*Free

Displays the total free space remaining on a remote shared disc

Syntax
*Free :disc_nane

Parameters

di sc_nane the name of the remote shared disc

Use

*Free displays the total free space remaining on a remote shared disc.

Example

*Free : Maths
Bytes free &00504400
Byt es used &02413c00

5260288
37829632

Related commands
None

sa-477

*FwShow

*FwShow

Displaysal currently known Freeway objects

Syntax
* FwShow

Parameters
None

Use

*FwShow displaysall currently known Freeway objects. Local objects are prefixed with
a™*’

Example

* FwShow
No renpte nets

Type 2:

Type 5: (Hosts)
*Name=794148708 Hol der=1. 97. 238. 89
Nanme=528163826 Hol der =1. 97. 238. 93
Nanme=873634028 Hol der=1.97. 238. 88

Type 1: (Discs)
Name=Engl i sh Hol der =1. 97. 238. 93
Nanme=Sci ence Hol der =1. 97. 238. 88
*Name=Mat hs Hol der =1. 97. 238. 89

Related commands
None

5a-478

Acorn Access

*Share

Makes alocal directory available as a shared disc

Syntax
*Share directory [disc_nane] [-protected] [-cdrom [-noicon]

Parameters
directory avalid pathname specifying a directory
di sc_nane the name to use for the shared disc
-protected causes the directory to be shared protected, rather than the
default of unprotected
-cdrom indicates that the shared directory is on a CD-ROM
- noi con prevents an icon appearing for the shared disc
Use

*Share makes alocal directory available as a shared disc. If no nameis given for the
shared disc, then the name of the directory is used, or — for the root directory — the name
of the disc itself.

If the directory is shared unprotected, then remote users have read and write access to all
objects beneath it. If the directory is shared protected, then remote users’ access to an
object beneath it is determined by that object’s public access attributes.

Example
*Share ADFS:: Maths.$ Maths -protected

Related commands
*Shares, *UnShare

5a-479

*ShareFS

5a-480

*ShareFS

Selects the Shared Filing System as the current filing system

Syntax
* Shar eFS

Parameters
None

Use

* ShareFS selects the Shared Filing System as the filing system for subsequent
operations. Remember that it is not necessary to switch filing systemsif you use the full
pathnames of objects. For example, you can refer to ADFS objects (on alocal disc)
when ShareFS s the current filing system.

Example
*Shar eFS

Related commands
*ADFS, *Net, *RAM, * ResourceFS

Acorn Access

*ShareFSlcon

Adds an icon to theicon bar for aremote shared disc

Syntax

*Shar eFSl con di sc_nane

Parameters

di sc_nane the name of the remote shared disc

Use

* ShareFSlcon adds an icon to the icon bar for aremote shared disc.

Example
*Shar eFSI con Mat hs

Related commands
None

5a-481

*ShareFSWindow

*ShareFSWindow

Changes or reports the size of the ShareFS transmission window

Syntax
*Shar eFSW ndow [si ze]

Parameters
size the size of the ShareFS transmission window

Use
*ShareFSWindow changes the size of the ShareFS transmission window, or — with no
parameter — reports its current size. You should not change the size unless you know
what you are doing.

Example

* Shar eFSW ndow
Current ShareFS wi ndow size: 2

Related commands

None

5a-482

Acorn Access

*Shares

*Shares lists the local directories currently made available as shared discs

Syntax
*Shar es

Parameters
None

Use

*Shareslists the local directories currently made available as shared discs, showing the
full * Share command with which it was shared.

Example

*Shar es
Share ADFS:: Maths. $ Maths -protected

Related commands
*Share

5a-483

*UnShare

*UnShare

*UnShare makes alocal directory no longer available as a shared disc

Syntax

*UnShare di sc_nane

Parameters

di sc_nane the name of the remote shared disc

Use

*UnShare makes alocal directory no longer available as a shared disc.

Example
*Unshare Mat hs

Related commands
*Share

5a-484

Part 17 — The desktop

5a-485

5a-486

125 The desktop

Introduction and Overview

Magjor changes were made to the desktop in RISC OS 3.5, many of them to improve its
appearance. Thisintroduction outlines those changes; the rest of the chapter details the
changes they have introduced to the programmers’ interface. Incidentally, some of the
changes below are entirely handled by RISC OS, and so have introduced no new
interfaces.

Desktop appearance

There have been sprite and template changes to give a 3D appearance to the windows.
You should refer to the RISC OS 3 Style Guide for more information in this area.

The desktop now uses a proportional font in the desktop and can tile the window
backgrounds with a texture.

The Filer

The Filer was changed so that:

the directory displays can have a variable column width

all text uses the current desktop font

filenames of up to 63 characters can be displayed, rather than 10 as before
objects are dragged as an icon rather than as an outline

open directories are differentiated using a new icon.

New error system

The Wimp error messages were changed to be more helpful, consistent and user friendly.
Applications can now provide a more suitable wording on Error messages and buttons.

The Pinboard

The Pinboard was changed to support outline fonts. The *Backdrop command was
extended so you can remove a backdrop.

5a-487

Terminology

DragASprite

DragA Sprite was changed so that the dragged sprite will by default be dithered (ie
semi-transparent). You can then see the area underneath a drag, and hence where you are
moving alarge sprite.

The Watchdog

Currently, if aprogram goesinto an 'infinite loop’ (eg it keeps posting an error box
without polling) there is no way to stop it. The Wimp now has awatchdog triggered by
a hot-key combination, which can be used to kill such rogue programs.

Terminology

Throughout this chapter, when we refer to the desktygiem font, we are referring to
text that the Wimp outputs using VDU calls (as in earlier versionsnatrio text
output using the outline System.Fixed font.

5a-488

The desktop

Technical Details

The desktop font

In previous versions of RISC OS, the Wimp plotted text in icons using the OS_Write...
calls and VDU commands; this uses siggtem font, which is a bit-mapped fixed width

font. From RISC OS 3.5 onwards the Wimp can instead call the Font Manager, and use
a single proportionally spacedtline font for text output.

In this chapter, we shall refer to the current font used by the Wimp deskbep font,
whether it be an outline font or the system font.

If painting an outline font generates an error for any reason, then the Wimp does not
report an error, but reverts to the system font. This avoids loops where reporting an
outline font error generates the same error itself.

The WIMPSymbol font

There are some characters that are present in the system font and used in the desktop, but
are not present in most outline fonts. A new font named WIMPSymbol has been created
that holds outline versions of the most commonly used such characters. It only has these
characters defined:

Code Character Source

&80 3 Selwyn, &62
&84 7 Selwyn, &63
&88 O Sydney, &DC
&89 O Sydney, &DE
&8A [Sydney, &DF
&8B O Sydney, &DD

If the Wimp is using an outline font, it switches to the WIMPSymbol font when
outputting these characters.

5a-489

Templates

Templates

Templates and outline fonts

When designing templates, you should ensure that they work with the system font, with
Homerton Medium at 12 point, and (preferably) with Trinity Medium at 12 point.

Where text may change, ensure there is enough space for a ‘worst case’. To help you in
this, you may find it useful to know that the widest Homerton character is ‘@’, and the
widest alphanumeric character is ‘W’. In Trinity the corresponding characters are ‘...’
(amongst others), and ‘W'.

You should be aware that you can no longer use spaces to align columns (such as those
in the Filer’s Full Info output). Instead you must use a separate icon for each column, or
use the new SWI Wimp_TextOp 2 (see page 5a-505) within a redraw loop.

2D and 3D templates

There is a CMOS bit that users can set to indicate whether they prefer to use a 2D or 3D
desktop (se€MOSRAM allocation on page 5a-73).

We do not require your application to provide both 2D and 3D templates. Should you
choose to do so, you should select the appropriate set by examining this bit at startup,
and whenever there is a mode change.

Sprite area control block pointers

Menus

When the Wimp loads a template, it now forces the sprite area control block pointer in
any window definitions to 1. This is because some template editors do not set this field
correctly, but the Wimp now uses it to search for a tiling spriteTisestwindow

backdrops on page 5a-492); an invalid value can have disastrous consequences.

The Wimp works out menu widths for you, even for outline fonts. Your application need
not worry about setting the correct width for a menu entry — except for a writable field,
when the supplied width will be used as minimum. Menus will be just wide enough to
contain the title, and all of the entries, in the menu.

Shortcuts

5a-490

In menus, keyboard shortcuts must be displayed right-aligned. Previously this was done
by using spaces to align the shortcuts, but this is no longer possible with outline fonts.
From RISC OS 3.5 onwards the Wimp automatically finds and right aligns any shortcut
at the end of a menu entry, using simple rules.

The desktop

For the Wimp to recognise amenu entry as having a shortcut, both the following must be
true:

e Themenu entry must be non-writable.
e It must contain at |east one space.

and at least one of the following must also be true:

o Thestring after the last space must start with no more than one of the patternsin the
Modifiers list, held in the Wimp’s Messages file. In the UK this list is:

garaom

« The entry must end with a pattern from KeyNames list, also held in the Wimp’s
Messages file. This list consists of:

Esc ESCF1F2 F3F4 F5F6 F7 F8 F9 F10 F11 F12 Print PRINT Break BREAK
Pause PAUSE Tab TAB Return RETURN Insert INSERT Home HOME PageUp
PAGE UP Delete DELETE Copy COPY End END PageDown PAGE DOWN Enter
ENTER Up UP Down DOWN Left LEFT Right RIGHT Select SELECT Menu
MENU Adjust ADJUST

If the above conditions are satisfied, the Wimp right aligns everything after the last
space.

By holding the lists in the Wimp’s messages file, they can be internationalised, so (for
example) the modifiers could be a whole word rather than just a symbol. We encourage
you to follow the guidelines in tH’l SC OS 3 Syle Guide for giving shortcuts.

Icon bar icons that use text

Some applications put icons on the icon bar that have text as well as a sprite. Obviously
the width of such icons can change as the desktop font is changed. From RISC OS 3.5
onwards, the Wimp calculates the width of all text and sprite icons that it places on the

icon bar.

Where the text of an icon is fixed, you should specify the icon’s width to be the same as
the sprite’s. The Wimp then calculates the actual width to make all the text readable,
both on the icon’s creation and on a font change.

Where the text may change (for example if it is used to display a status), you must
instead handle things yourself. You must measure the length of all potential strings using
Wimp_TextOp 1 (page 5a-503), and hence find the maximum width of the icon. You
must then create the icon with this width, disabling the Wimp’s auto-sizing by including
an ‘X' in the icon’s validation string. When you receive Message_FontChanged

(page 5a-511) to tell you the desktop font has changed, you must recalculate the widths,
and resize the icon by calling Wimp_Resizelcon (page 5a-509).

5a-491

Tiled window backdrops

An aternative to the above is to delete and recreate the icon each time the text changes,

and rely upon the Wimp to auto-size it (ie don’t include an ‘X’ in the icon’s validation
string). However, this causes much redrawing of the whole icon bar, and so is
deprecated.

Tiled window backdrops

If the Wimp finds a sprite naméd | e_1 in either a window’s sprite area or its own (eg
loaded with *IconSprites), then this is used to tile the background of a window that
normally has colour 1 as its background. To improve performance the Wimp sprite pool
is also searched for a sprite nameéd e_1- xx, wherexx is the number of bits per

pixel for the current screen mode; if one is found, this avoids the overhead of converting
the tiling sprite between different pixel depths.

Tiling sprites must not have a palette.

There is a CMOS bit to enable and disable this featureClgkas RAM allocation on
page 5a-73.

The Wimp’s error system

Introduction

Considerable changes were made to the Wimp’s error system in RISC OS 3.5. The
sections below provide an overview of the changésip_ReportError on page 5a-495
details how the programmers’ interface has changed.

General

Many applications use the Wimp’s error system to relay information just as much as to
raise errors, so we now refer to the dialogue boxeepasts rather than as error boxes.

To reflect this, the title bar has been changed to say ‘Message from'’ rather than ‘Error
from’.

The appearance of reports has been improved, and messages have been changed to be
more helpful, consistent and user friendly. Applications can now provide more suitable
wording for messages.

The ‘OK’ button has been changed so it instead says ‘Continue’, provided the calling
application is aware of the new error system. (Old applications will still use an ‘OK’
button.). This button is the default, and can be selected by pressing the Return key. The
‘Cancel’ button has not changed its wording.

5a-492

The desktop

However, you do not have to use just these buttons, and can add to them or replace them
with any number of buttons that use any wordsthat fit. In the rare event that your buttons
do not fit on the standard window, the Wimp automatically makes it wider to
accommodate them; but the buttons themselves are afixed size, at least under

RISC OS 3.5and 3.6.

New service calls make it easy to hook into your own buttons, and in particular to make
your buttons themselves open reports — say to give debugging information, or extra help.

Report categorisation

RISC OS 3.5 introduces a new scheme to categorise reports. Each category uses a
different sprite in the report, taken from the Wim@fsr i t es resource file.

A programreport indicates an error that should not normally occur. It strongly
implies that a program somewhere (whether system or application) contains a bug.
The user need not know the details of the cause, although an expert user might be
interested. It’ s quite possible that the application will have to be terminated, or even
that the machine will have to be reset.

The other types of errors are referred towmsing reports. They are errors that, sadly,
areto be expected in the normal running of the machine, or which have to be understood
by the user. Of these:

An error report indicates that something serious or unfortunate has happened, even
though it might not be a program’s fault. Examples include hardware faults, corrupt
or absent files or discs, and running out of a resource such as memory or disc space.

An information report is more an information bulletin than an error. No evasive
action is typically required of the user.

A question report asks a question of the user. For instance, this might be used when
the user is trying to quit with unsaved data.

Backward compatibility

There are two main problems faced by applications which wish to use the new error
system, and yet still work on earlier versions of RISC OS (ie 3.1 and before):

The ‘Continue’ button will be labelled ‘OK’ under earlier versions of RISC OS, and
so the text of the report needs to change

Custom buttons are not supported under earlier versions of RISC OS.

The first problem is easily solved by using alternative files for the text of reports. You
should use lines similar to the following in your !Run file:

Set App$Dir <Cbey$Dir>
Set App$Messages <Cbey$Dir>. NewMessages
RMEnsure W ndowManager 3.21 Set App$Messages <Obey$Dir>. O dMessages

5a-493

The caret

The caret

and then in your code, instead of opening <Obey$Dir>.Messages as is customary, you
should open App$M essages.

The second problem is more involved. Let’'s say you wish to display a report that has
‘Discard’, ‘Cancel’ and ‘Save’ buttons:

« Under earlier versions of RISC OS this would need custom code.

« Using the new error system, you can display this report using the extensions to
Wimp_ReportError.
However, if you try to use the same extensions under an earlier version of RISC OS,
it will ignore your custom buttons, and instead display an ‘OK’ button.
Furthermore, when the user clicks on ‘OK’ a value of 1 is returned, rather than
values of 3 upwards expected from your custom buttons.

The only workround is to switch conditionally between the two methods, either by use
of an environment variable as above, or by examining the version number returned by
Wimp_Initialise. This maintains backwards compatibility, but uses the more efficient
new features when possible.

A final issue is that report categorisation is not supported by earlier versions of
RISC OS, although this has no side affects on actual behaviour, just on appearance —
since the old warning sprite appears for all errors.

The Wimp sets the caret to colour 11 (ie red) in 16 and 32bpp modes.

Finding other applications

Some supplied applications have been moved, for example between the RISC OS ROM
image and the disc; in future releases they may move again. If your software uses
another RISC OS applicatioApp, it must not assumépp’s location, but should

instead find it by reading the value of thep$Dir system variable.

Changes to existing SWIs

5a-494

Wimp_CreateWindow (page 3-87)

The new 3D window surrounds introduced in RISC OS 3.5 ignore the scroll bar inner
and outer colours declared in bytes 36 and 37 of the window block. 2D windows still
behave as in earlier versions of RISC OS.

The desktop

Wimp_Createlcon (page 3-93)

The (K)eys command now restricts the caret to icons in the same ESG group from
RISC OS 3.5 onwards, rather than cycling through all icons — just as we advised would
happen in th&®ISC OS 3 Programmer’s Reference Manual

Wimp_CreateMenu (page 3-153)

Bytes 4 - 7 of each menu item may contain a submenu pointer or window handle, or —1
if neither. The way they are distinguished changed in RISC OS 3.5:

« A submenu pointer has bit O clear
« A window handle has bit 0 set, but is not equal to —1.

However, you should not rely upon this in your code, as it may be subject to further
change.

Wimp_ReportError (page 3-176)

This call was extended in RISC OS 3.5 to support the new types of error report. If bit 8
of the flags word passed in R1 is set, the new types are being used, and specified using
both further flag bits and other parameters passed in R3 - R5.

The new flag bits in R1 are:

Bits Meaning

8 Set use new types of error report, as given by bits 9 - 11 and R3 - R5
9-11 00 old error sprite (non classified),[1 information report,
20 error report, 31 program report, 41 question

The values passed in R3 - R5 (ignored unless bit 8 of R1 is set) are:
R3 = pointer to sprite name
R4 = pointer to sprite area, or 1 to use the Wimp sprite area
R5 = pointer to list of text for additional buttons, comma separated and
control character terminated; or O if none

For consistent results, all sprites you use should be defined in a 16 colour mode.

If no sprite name is passed in R3, or the error is an old style one, then the Wimp tries
I app as a sprite name. This is a desperate measure which may not internationalise well.

The strings passed in R5 are the text of additional buttons to create. If the dialogue box
does not have a Continue or Cancel button (ie bits 0 and 1 of R1 are clear on entry), then
the first additional button is the default one. If the first additional button is pressed, it
always returns 3 in R1 — even if it is the default. Any further buttons return 4, 5, and so
on. The Continue button is the rightmost one, followed by the Cancel one, followed by
any additional buttons in the order they are specified, with the Describe button (if added
by RISC OS - see below) appearing at the extreme left.

5a-495

Changes to existing SWis

Seriouserrors

Certain potentialy serious error numbers are treated slightly differently. This happensif
one or more of the following are true:

« Bit 31 of the error number is set, indicating an exception such as a data abort has
occurred.

o Bits24 - 29 of the error number have the binary value 011011, meaning the error
liesin apreviously unused range of error numbers now reserved for program errors

e Theerror number ison alist hard-coded into the Wimp, specifying some 150 errors
used in earlier versions of RISC OS that are now classified as program errors.

These errors are always generated as a program report. The report always has a Cancel

button, but the label on it is instead Quit. The error text is replacesbpyriay have

gone wrong. Click Quit to stofpp’. If the program did not request a Cancel/Quit

button, but it is pressed, then the Wimp terminates the application without re-entering it.
It does so by calling its exit handler, since the error handler may call Wimp_ReportError
again, which would be confusing or may even go into an infinite loop. A Describe
button is added; if this is pressed then the report is replaced by that originally provided
by the application (ie the Describe button disappears).

Wimp_ReadSysinfo (page 3-216)

This call accepts the following new system information index values from RISC OS 3.5
onwards:
RO on entry On exit

8 RO = font handle of desktop font, or zero if Wimp is currently using
system font
R1 = symbol font handle, or undefined if RO =0

9 RO = pointer to Wimp toolsprite control block
11 RO = maximum size of application space

DragASprite_Start (page 3-298)

This call was changed in RISC OS 3.5 so that the dragged sprite is by default dithered,
and hence appears semi-transparent. A new bit has been added to the flags word in RO to
control this feature. If bit 8 is clear (as should be the case for all existing applications)
then dithering occurs; if it is set then it is disabled.

5a-496

The desktop

Changes to existing commands

*Desktop_... (page 3-277)

The range of available *Desktop_... commands has changed in both RISC OS 3.5
and 3.6, as the range of ROM-based applications has changed. Some applications (eg
IPalette) are no longer used, others have been added (eg the Display Manager), and
others have moved between the ROM and the hard disc.

All such commands are — as ever — for internal use only, and so we don't list here the
*Desktop_... commands available in each version of RISC OS. If you do need such a
list, type*Hel p Desktop_. .

*Desktop_SetPalette (page 3-278)
This command is not available from RISC OS 3.5 onwards.

*Backdrop (page 3-293)

From RISC OS 3.5 onwards, *Backdrop supports an extra paramBgrove. Its
syntax is now:

*BackDrop [-Centre|-Scale|-Tile|-Renove] [filenane]

The new- Renpve parameter removes the current backdrop.

5a-497

Service Calls

Service Calls

Service_ErrorStarting
(Service call &400CO0)

Issued immediately after Wimp_ReportError is called

On entry

R1 = &400CO0 (reason code)
R2 - R7 = values of RO - R5 (respectively) intended for Wimp_ReportError —
see page 3-176 and page 5a-495

On exit

R1 preserved to pass on call
R2 - R7 = values of RO - R5 (respectively) actually passed to Wimp_ReportError —
see page 3-176 and page 5a-495

Use

This service call is issued immediately after Wimp_ReportError is called, and before
Service_WimpReportError 1 (page 3-75) is issued. It allows you to change the
parameters passed to Wimp_ReportError by altering the values in R2 - R7. You must not
alter any memory to which these registers point on entry; you should instead make a
copy of the memory, alter that, and change the relevant register to point to your copy.

If you are adding to the list of additional buttons, you must append your new buttons
rather than insert them. This avoids any confusion over button numbering should other
clients add their own buttons. You should obviously keep track of the position of any
buttons you have added.

This service call is only issued by RISC OS 3.5 and later.

You must pass this service call on.

5a-498

The desktop

Service ErrorButtonPressed
(Service call &400C1)

Issued when any button on the error report is pressed

On entry

RO=0

R1 = &400C1 (reason code)

R2 = button number (1 0 OK, 20 Cancel, 30 rightmost additional button...)
R3 = pointer to button list as it appeared on the error report

On exit

Use

RO = 0 to return to application
R1 preserved to pass on call
R2 = button number to return (normally unchanged)

or

RO =1 to redisplay error report

R1 =0 to claim call

R2 = pointer to block holding values for new report: words in same order as
registers passed to Wimp_ReportError — see page 3-176 and page 5a-495

This service call is issued when any button on an error report is pressed. You might use
it to recognise if one of your additional buttons has been pressed by checking the button
number. (Note that other clients may have added extra buttons after yours, and so the list
may differ from when the initial Service_ErrorStarting call was issued. Button numbers
should remain constant, though.) You can then take appropriate action, such as
displaying an extra report.

This service call is only issued by RISC OS 3.5 and later.

You must claim the call if you are going to redisplay the error report.

5a-499

Service_ErrorEnding (Service Call &400C2)

5a-500

Service ErrorEnding
(Service call &400C2)

Issued immediately before an error report closes

On entry

R1= &400C2 (reason code)
R2 = button number being returned to application

On exit

Use

R1=0toclaimcall
R2 = button number to return to application

This service call isissued immediately before an error report closes, after

Service_ WimpReportError 0 (page 3-75) has already been issued. It allows you to alter
the button number that is returned to the application that created the error report. Thisis
only of real useif you have dealt with the error yourself in some way.

If you do change the button number, you should claim the call; otherwise you should
passit on.

This servicecal isonly issued by RISC OS 3.5 and |ater.

The desktop

SWI Calls

Wimp_TextOp
(swi &400F9)

Manipulates and displays text using the current desktop font

On entry

RO = reason code and flags:

bits0- 7 reason code

bits8 - 31 flags (reason code dependent)
Other registers depend upon the reason code

On exit

RO corrupted or used to return data
Other registers typically preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI provides a number of calls to manipulate and display text using the current
desktop font.

5a-501

Wimp_TextOp (SWI &400F9)

The particular action of Wimp_TextOp is given by areason codein bits0 - 7 of RO as

follows:

RO Action Page

0 Sets the colour to use for text plotting with Wimp_TextOp 2 5a-50
3

1 Gets the width of a string for the current desktop font 5a-50
4

2 Plots text on the screen using the current desktop font 5a-50
5

This call is only available from RISC OS 3.5 onwards.

Related SWis
None

Related vectors
None

5a-502

The desktop

Wimp_TextOp O
(swi &400F9)

Sets the colour to use for text plotting with Wimp_TextOp 2

On entry

RO = 0 (reason code)
R1 = foreground colour (& BBGGRRQO0)
R2 = background colour (& BBGGRRO0O)

On exit

RO corrupted
R1, R2 preserved

Use

This call sets the colour to use for text plotting with Wimp_TextOp 2 (page 5a-505). If
an outlinefont isin use, this sets up the values for the next call to Font_Paint

(page 3-437). If the system font is being used, then this sets up the colours by calling
ColourTrans_SetGCOL (page 3-350), which will affect future graphics as well as text.

This call isonly available from RISC OS 3.5 onwards.

5a-503

Wimp_TextOp 1 (SWI &400F9)

Wimp_TextOp 1
(swi &400F9)

Gets the width of astring for the current desktop font

On entry

RO = 1 (reason code)
R1 = pointer to control character terminated string
R2 = number of charactersto include, or O for whole string

On exit

RO = width of string for current font, in OS units
R1, R2 preserved

Use

Thiscall getsthe width of astring for the current desktop font. The width returned isthat
of the first n characters where R2 = n. If there are less than n charactersin the string or
R2 < 0 then the full string width is returned.

This call might be made before plotting the string in an icon, or before using
Wimp_TextOp 2 (page 5a-505). For instance, it is used by the Filer when calculating the
widths of the columnsin adirectory display.

This cal isonly available from RISC OS 3.5 onwards.

5a-504

The desktop

Wimp_TextOp 2
(swi &400F9)

Plots text on the screen using the current desktop font

On entry

RO = reason code and flags:
bits 0 - 7 = 2 (reason code)
bits 8 - 29 reserved (must be zero)
bit 30 set O verticaly justify text so baseline matches that of system font
bit 31 set O right justify text to position given by R4 and R5
R1 = pointer to null terminated string
R2, R3 reserved (must be —-1)
R4 = bottom left x coordinate, in screen OS units
R5 = bottom left y coordinate, in screen OS units

On exit

RO corrupted
R1 - R5 preserved

Use

This call plots text on the screen using the current desktop font. If bit 31 of RO is set,
then the text is right-justified to the given position. If bit 30 is set then the text will be

vertically justified so that the baseline will be the same as for the system font.

This call should be made from a redraw loop; as such Wimp_SetColour (page 3-191) or
Wimp_TextOp 0 (page 5a-503) is used to determine what colours are used for the text.
Because an outline font may be used, the background colour must be set, so that the

antialiasing colours may be found.
This call does not preserve the current font, nor the font colours.

This call is only available from RISC OS 3.5 onwards.

5a-505

Wimp_SetWatchdogState (SWI &400FA)

5a-506

Wimp_SetWatchdogState
(swi &400FA)

Sets the state of the watchdog

On entry

RO = state (0 O disable, 1 0 enable)
R1 = code word, or O if none

On exit
RO, R1 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy

SWI is not re-entrant

Use
This call setsthe state of the watchdog, and is intended for use by screenlocks and
protection mechanisms.
When disabling the watchdog a code word may be supplied, in which case the watchdog
may only be re-enabled by supplying the same code word. In this way, another program
may not turn the watchdog back on. If R1 was zero on disabling, no code word is
required when re-enabling.
Thiscall isonly available from RISC OS 3.5 onwards.

Related SWis

None

The desktop

Related vectors
None

5a-507

Wimp_Extend (SWI &400FB)

Wimp_Extend
(swi &400FB)

Thiscall isfor internal use only; you must not use it in your own code.

5a-508

The desktop

Wimp_Resizelcon
(swi &400FC)

Resizes or moves an icon that has already been created

On entry

RO = window handle (-1 for iconbar)
R1 =icon handle
R2 - R5 = new icon bounding box

On exit

RO - R5 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call resizes an icon that has already been created. As the icon’s bounding box is
given, this call may also be used to move an icon.

Although general purpose, it is most likely to be used by an application needing to resize
icons after a font changed message. It does not invalidate the area of the icon, although
this is not necessary on a font change since the message is always followed by a redraw
request.

An error is given if either of the window or icon handle are invalid.

This call is only available from RISC OS 3.5 onwards.

5a-509

Wimp_Resizelcon (SWI &400FC)

Related SWis
None

Related vectors
None

5a-510

The desktop

Messages

Wimp messages

Message FontChanged (&400CF)

This messageis used by the Wimp to inform all tasks that the desktop font has changed.
This message isonly used by RISC OS 3.5 and later.

Tasksthat change the desktop font

Any task that changes the desktop font (see * Configure WimpFont on page 5a-512) must
call Wimp_SendM essage to request that the Wimp broadcast this message. The message
itself must include no message data (ie the block is 20 bytes long).

Informing tasks of a change to the desktop font

The Wimp checks for a change in the desktop font at desktop startup, at a mode change,
and whenever atask requests that this message be broadcast. It does so by examining the
CMOS bits and system variables used by * Configure WimpFont (see page 5a-512).

If it detects a change it loses the current font, and attempts to find the new font with the
font manager. If successful, then it selects that font; otherwise it reverts to the system
font. The Wimp then broadcasts Message FontChanged to all tasks, with one word of
message data:

R1+20 Font handle, or O for system font
Tasks can use the font handle as they seefit.

The Wimp then issues redraw requests to all windows, so that old applications which do
not understand this message will still appear correctly.

5a-511

* Commands

* Commands
*Configure WimpFont

Sets the configured value for the font to use on the desktop

Syntax
*Configure WnpFont n

Parameters
n A number O - 15 specifying the font to use:
00 use Wimp$Font... variables (see below)
10 use System font
2 - 150 use font from ResourceFS (see below)
Use

*Configure WimpFont sets the configured value for the font to use on the desktop.
A parameter of 1 sets the System font.

Parameters 2 - 15 set a font from ResourceFS, used at a size of 12 points. Starting at
Resour ces: $. Font s, every directory which has a descendamt Met ri c* (eg.
IntMetrics,IntMetricO0)is numbered consecutively, starting from 2. So on a
standard RISC OS 3.5 system the mapping would be:

Value Font

2 Corpus.Bold

3 Corpus.Bold.Oblique

4 Corpus.Medium

5 Corpus.Medium.Oblique
6 Homerton.Bold

7 Homerton.Bold.Oblique
8 Homerton.Medium

9 Homerton.Medium.Oblique
10 Trinity.Bold

11 Trinity.Bold.ltalic

12 Trinity.Medium

13 Trinity.Medium.ltalic

14 WIMPSymbol

You must not assume this mapping, since fonts can be added to ResourceFS.

5a-512

The desktop

A parameter of 0 tells RISC OSto find the font and size to use from system variables:

W nmp$Font the name of the font to use
W np$Font Si ze the size (height) of the font in ¥gths of a point
W np$Font W dt h the width of the font in ¥gths of apoint

The font size and width are both optional. If the sizeis unset, avalue of 192 isused (ie
12 point); if the width is unset, it isthe same asthe size.

This command is only available from RISC OS 3.5 onwards.

Examples

*Configure WnpFont 1 Use system font

*Configure WnpFont 8 Use 12pt Homerton.Medium from
ResourceFS (assuming standard

mapping)

Set W np$Font NewHal | . Medi um Set variables specifying NewHall font,

Set W np$Font Wdth 160 and width of 16915 points (ie 10 point)

*Configure WnpFont O Use system variables to set font

5a-513

*WimpKillSprite

5a-514

*WimpKillSprite
Removes a given sprite from the Wimp’s RAM sprite pool

Syntax
*WmpKil | Sprite sprite_nane

Parameters

sprite_nane name of a sprite in the Wimp sprite pool

Use

*WimpKillSprite removes the given sprite from the Wimp’s RAM sprite pool. It should
be used with care, as deleting certain sprites will cause some applications to fail.

An error is given if the sprite to be removed is not in the Wimp’s RAM sprite pool.

This command is only available from RISC OS 3.5 onwards.

Example
*WnpKi | | Sprite file fff

126 Drag An Object

Introduction and Overview

InRISC OS 3.6 the DragAnObject modulewasintroduced. It provides SWI callssimilar
to those provided by the DragA Sprite module, save that you can use them to make the
pointer drag any object around the screen. To do so, you must specify aSWI or a

C / assembler function to render the object.

Since not all users will prefer this effect to dragging an outline — whether for aesthetics
or performance — there is a bit in the CMOS RAM used to indicate their preference. (See
CMOSRAM allocation on page 5a-73.) You should examine that bit before using this
module; if it shows that the user would prefer to drag outlines, oblige them!

To drag an object:

1 Find or create a SWI or a C/ assembler function to render the object to the screen.
For example, you might use the SWI DrawFile_Render (page 5a-526) to render a
Draw file.

2 Set up any registers / parameters you need to pass to the SWI / function; and any
workspace they may point to, including — if necessary — the object itself.

3 Call the SWI DragAnObject_Start (see page 5a-516). This renders your object into
its own workspace — so you can dispose of any workspace required by the rendering
SWI / function whenever you like — and then starts a Wimp drag.

4 When the Wimp sends you an indication that your drag has finished, you should call
the SWI DragAnObject_Stop (see page 5a-519).

5a-515

SWi calls

SWiI calls
DragAnObject_Start
(swi &49C40)
Starts dragging an object
On entry
RO = flags
R1 = renderer called to render the object:
SWI number (RO bit 16 = 0 on entry), or pointer to C / assembler function
R2 = pointer to block holding registers/ parameters to passto SWI / function
R3 = pointer to 16-byte block containing box
R4 = pointer to optional 16-byte block containing bounding box (see flags)
On exit
RO - R4 preserved
Interrupts

5a-516

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor isin SV C mode

Re-entrancy
Not defined

Use

This call starts dragging an object. To do so, it uses the given SWI / function to render
your object twice into workspace that it claims. It then combines the two imagesinto a
single masked image, so only those pixels rendered will be used for the drag. It finally
starts a Wimp drag of the masked image, and frees any workspace not needed for the
drag itself.

Drag An Object

You may dispose of any workspace used by the rendering SWI / function as soon asthis
cal returns. If there isinsufficient memory available to start the drag, the call revertsto
anormal drag of a dotted outline.

The flags given in RO have the following meanings:

Bits Meaning
0-1 Horizontal location of object in box:

00 left

01 centre

10 right
2-3 Vertical location of object in box:

00 bottom

01 centre

10 top
4-5 Drag bounding box is:

00 whole screen

01 display area of window that the pointer’s over

10 specified in block pointed to by R4
6 Bounding box applies to:

0 the box

1 the pointer
7 Control of drop-shadow:

0 don’t do a drop-shadow

1 make a drop shadow
8 Control of dithering:

0 dither the dragged object

1 don’t dither the dragged object
9-15 Reserved for future use — should be set to 0
16 Rendering is done by:

0 a SWI (see below)

1 a C/ assembler function (see below)
17 If the renderer is a function, it is called in:

0 User mode

1 SVC mode (use for modules; also allows access to statics)

18 - 31 Reserved for future use — should be set to 0

The type of renderer is set by bit 16 of the flags:

« Ifthe bitis clear then the renderer is a SWI. The block pointed to by R2 should be
ten words long. These ten words are loaded into RO - R9, and the SWI is then called
from SVC mode.

S5a-517

DragAnObject_Start (SWI &49C40)

« If thebitis set then the renderer isa C / assembler function, which iscalled in an
APCS-conformant manner. The block pointed to by R2 should be four words long;
these are loaded into RO - R3 (known asal - a4 inthe APCS) and passed as
parameters to the function. R10 is set to the stack limit for afull descending stack
(known as sl inthe APCS), R13 isthe stack pointer (known assp inthe APCS),
and R14 isthelink register (known as| r inthe APCS).

For modules, you should set bit 17 to request that the function be called in SVC
mode. This also allows access to statics.

The blocks pointed to by R3 and — optionally — R4 have the following format:

Offset Use

0 x-low [Jbox

4 y-low [lbottom-left (x-low, y-low) is inclusive
8 x-high Dtop-right (x-high, y-high) is exclusive

12 y-high [

Related SWis
DragASprite_Start (page 3-298), DragAnObject_Stop (page 5a-519)

Related vectors
None

5a-518

Drag An Object

DragAnObject_Stop
(swi &49C41)

Terminates any current drag operation, and rel eases workspace

On entry

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

Not defined

Use
This call terminates any current drag operation, and releases any workspace still claimed
to do a drag. You should make this call when your application receives the
User_Drag_Box reason code from Wimp_Poll (see page 3-112) during a drag.

Related SWis

DragAnObject_Start (page 5a-516)

Related vectors
None

5a-519

Example programs

Example programs

SWI renderer

Code renderer

5a-520

The following code fragments show how you might call DragAnObject_Start from C:

void start_drag(...)
{

_kernel _swi _regs regs, render;

/* Set up registers for Wnp_Plotlcon renderer */
render.r[1] = (int) & con;

render.r[4] =0;

render.r[5] =0;

/* Set
regs
regs
regs
regs

up registers for DragAnCbject_Start... */
.r[0] = sone fl ags;

.r[1] = Wnp_Plotlcon;

.r[2] = (int) &render;

.r[3] = (int) &bbox;

/* ...and call it */

_kernel _swi (DragAnQbj ect _Start, & egs, & egs) ;

void _ny_render (dat a)

{
/* do the render */
}
void start_drag(...)
{
_kernel _swi _regs regs
int render[4]
/* Set up registers for _ny_render renderer; render[0] - render[3]
/* will be passed to the function as parameters */
render[0] = (int) data; /* as required by renderer */
/* Set up registers for DragAnCbject_Start... */
/* (tell it we're a function and a module) */
regs.rf0] = sone_fl ags + (1<<16) + (1<<17);
regs.r[1] = (int) _my_render;
regs.r[2] = (int) &render;
regs.r[3] = (int) &bbox;
/*..and call it */
_kernel_swi(DragAnObject_Start,®s,®s);
}

127 Draw file renderer

Introduction and Overview

DrawFileisamodule that renders Draw files. You can do so either to the screen, or to a
printer driver during printing. This makesit easy for you to support imported Draw files
in your applications.

You can render aDraw file using either a SWI (DrawFile_Render; see page 5a-526) or a
* command (* Render; see page 5a-531). Both provide similar facilities; in particular,
they allow arbitrary transformations. The SWI DrawFile_BBox (see page 5a-528)
allows you to determine a Draw file’s bounding box before rendering it.

You can also declare the fonts within a Draw file when printing, without having to scan
through the file yourself, by calling the SWI DrawFile_DeclareFonts (see page 5a-529).

Finally, there are service calls that the above SWiIs issue if they encounter unknown
objects within a Draw file. This provides a hook for modules that extend the Draw file
format to support any new object types they may define. The service calls are
Service_DrawObjectRender (page 5a-524) and Service_DrawObjectDeclareFonts
(page 5a-525).

5a-521

Technical details

Technical details

Differences between DrawFile output and !Draw output

There are some small differences between the output of the DrawFile module and that of
IDraw:

Text

A text line that uses a font which can’t be found is rendered in the system font at a size
to fit its bounding box.

Transformed text
Transformed text lines in the system font are supported.

A transformed text line that uses a font which can't be found is rendered in the system
font at a size to fit its bounding box; its transformation is ignored.

Text areas

In a text area, if you change (for example) the margin size \M command), the change
doesn't take effect until the next output line. In Draw this refers to printable characters;
but in DrawFile it includes colour and font change commands as well. (This is because
DrawFile uses the Font Manager to remember the current font and colours.) This means
that line breaks can happen at slightly different places when using DrawFile.

The following commands cause output to occur:
BCUVdigits

The following do not:
Il s ADFLMP

By preceding the former with the latter, the problem can be avoided.
Sprite colours

For a sprite without a palette, the colours used are the Wimp colours, found by using
Wimp_ReadPalette.

5a-522

Errors

The errors the DrawFile module provides are

Error name

Error_DrawFileNotDraw

Error_DrawFileVersion
Error_DrawFileFontTab

Error_DrawFileBadFontNo

Error_DrawFileBadMode
Error_DrawFileBadFile

Error_DrawFileBadGroup

Error_DrawFileBadTag

Error_DrawFileSyntax

Error_DrawFileFontNo

Error_DrawFileAreaVer

Error_DrawFileNoAreaVer

Error
number

&20C00

&20C01

&20C02

&20C03

&20C04

&20C05

&20C06

&20C07

&20C08

&20C09

&20CO0A

&20C0B

Draw file renderer

Meaning

Thefileisnot aDraw file (as
recognised by the first 4 characters
‘D, ', fal, 'w).

The file specifies a format version
number which is not understood.

The file contains more than one font
table.

A text line (or transformed text line)
uses a font that is not in the font table
object.

The file contains a sprite defined in a
mode which is not recognised.

The size of an object in the file is
larger than the size of the file allows.

The size of an object in a group is
greater than the size of the group
allows.

The size of a tagged object’s data is
larger than the size of the tagged
object allows.

A text area has an illegal or
unrecognised command sequence in
it.

An attempt was made to set a font
(with a \<digit> command) which
had no definition (\F command).

The text area version command (\!)
has specified a version which is not
understood.

There is a text area with no version
(\)) command.

5a-523

Service calls

Service calls
Service_DrawObjectRender
(Service call &45540)

Issued when the SWI DrawFile_Render encounters an unrecognised object

On entry

RO = object type

R1 = & 45540 (reason code)

R2 = pointer to block giving render state:
+0 pointer to unknown object (see Objects on page 4-465 and 5a-665)
+4 pointer to Draw file data, as passed to DrawFile_Render
+8 pointer to font table object, or 0 if none found yet
+12 flags, as passed to DrawFile_Render
+16 pointer to transformation matrix, as passed to DrawFile_Render
+20 pointer to clipping rectangle, as passed to DrawFile_Render
+24 flatness, as passed to DrawFile_Render
+28 pointer to error block, or O if no error yet

On exit
R1=0if claimed, otherwise preserved

Use

This service cal isissued when the SWI DrawFile_Render encounters an object with a
type it doesn’t recognise, and so cannot process. If a module recognises the unknown
object type, it should claim the service call and itself render the object.

If the module encounters an error during rendering, it should examine the error pointer
word in the passed render state block:

« If the word is zero, the declaring module should store its own error pointer in the
word.

« Ifthe word is non-zero, it is already storing an earlier error pointer, which you
should not overwrite.

The DrawFile module attempts to render all objects. When it has finished it examines
the error pointer word, and if it is non-zero returns the stored error.

5a-524

Draw file renderer

Service_DrawObjectDeclareFonts
(Service Call &45541)

Issued when the SWI DrawFile DeclareFonts encounters an unrecognised object

On entry

RO = object type
R1 = &45541 (reason code)
R2 = pointer to declare font state block
+0 pointer to unknown object (see Objects on page 4-465 and 5a-665)
+4 pointer to Draw file data, as passed to DrawFile_DeclareFonts
+8 pointer to font table object, or 0 if none found yet
+12 flags, as passed to DrawFile_DeclareFonts
+16 pointer to error block, or O if no error yet

On exit

R1=0if claimed, otherwise preserved

Use

This service call isissued when the SWI DrawFile_DeclareFonts encounters an object

with a type it doesn’t recognise, and so cannot process. If a module recognises the
unknown object type, it should claim the service call and itself declare any fonts in the

object.

If the module encounters an error while declaring the fonts, it should examine the error

pointer word in the passed font state block:

« If the word is zero, the declaring module should store its own error pointer in the

word.

« Ifthe word is non-zero, it is already storing an earlier error pointer, which you
should not overwrite.

The DrawFile module attempts to declare fonts for all objects. When it has finished it

examines the error pointer word, and if it is non-zero returns the stored error.

5a-525

SWi calls

SWiI calls
DrawFile_Render
(swi &45540)
Renders a Draw file to the screen
On entry
RO = flags:
bit 0 set O render the bounding boxes around objects as dotted red
rectangles
bit 1 set 0 do not render the objects themselves
bit 2 set 0 R5 isused as the flatness parameter
R1 = pointer to Draw file data
R2 = size of Draw file data, in bytes
R3 = pointer to transformation matrix, or O for identity
R4 = pointer to clipping rectangle in OS units, or O if no clipping rectangle set up
R5 = flathess with which to render lines (if bit 2 of RO set on entry)
On exit
RO - R5 preserved
Interrupts

Interrupt status in undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call renders a Draw file to the screen. Its position is given by the x- and
y-trangdlations in the transformation matrix, which uses the same format as Draw (see
Transfor mation matrix on page 3-536).

5a-526

Draw file renderer

Hence to render anon-rotated 1:1 Draw file at screen coordinates (x, y) OS units, the
transformation matrix is:

1<<16 0
0 1<<16
256 xx 256 xy

The effects of calling the module with the matrix not of the form:

+#H 0
0 +f
Xy

(ieatrandation and a magnification) should not be relied on for underlined text.

If no transformation matrix isgiven (ie R3 = 0), the unit matrix is used, and so the Draw
fileis rendered with its bottom |eft corner at screen coordinates (0, 0).

The clipping rectangleistypically aredraw rectangle returned by the Wimp on aredraw
window request. If R4 = 0, then the whole Draw fileis rendered. If non-zero, only
objects which intersect the clipping rectangle are rendered.

All output calls used when rendering are ones that the printer drivers handle correctly, so
you can also use this call to output Draw files when printing.

Just asfor all other screen output calls, if you make this call in aWimp redraw loop (ie
after calling Wimp_RedrawWindow) you cannot use Wimp_ReportError to report any
error that is returned — since this might lead to an infinite loop of error boxes and
redraws of the rectangle covered by the error box. This restriction does not apply to
printing redraw loops (ie after calling PDriver_DrawPage).

Related SWis
DrawFile_BBox (page 5a-528), DrawFile_DeclareFonts (page 5a-529)

Related vectors
None

5a-527

DrawFile_BBox (SWI &45541)

5a-528

DrawFile_BBox
(swi &45541)

Returns the bounding box (in Draw units) a given Draw file will occupy

On entry

RO = flags: all bits reserved (must be 0)

R1 = pointer to Draw file data

R2 = size of Draw file data, in bytes

R3 = pointer to transformation matrix, or O for identity

R4 = pointer to 4 word buffer to hold the bounding box of the Draw file
(x0, y0, x1, y1) ininternal Draw units

On exit
RO - R4 preserved

Interrupts

Interrupt status in undefined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy

Not defined

Use
This call returns the bounding box (in Draw units) the given Draw file would occupy,
wereit to be plotted with the given transformation.

Related SWIs

DrawFile_Render (page 5a-526), DrawFile_DeclareFonts (page 5a-529)

Related vectors
None

Draw file renderer

DrawFile _DeclareFonts
(swi &45542)

Declares al fontsin a Draw file by calling PDriver_DeclareFont

On entry

RO = flags:

bit 0 set O do not download font (passed to PDriver_DeclareFont)
R1 = pointer to Draw file data
R2 = size of Draw file data, in bytes

On exit
RO - R2 preserved

Interrupts

Interrupt status in undefined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy
Not defined

Use

This call declares all fontsin aDraw file by calling PDriver_DeclareFont (see

page 3-648). If the printer driver you are using supports PDriver_DeclareFont you
should call this SWI once for each Draw file to be printed, at the point where you would
normally declare fonts (see Declare the fonts your document uses on page 3-569). This
saves you having to scan the Draw file yourself to see which fontsit uses. It is your
responsibility to make the final call to PDriver_DeclareFont to indicate the end of the
list of fonts.

All fonts are declared as ‘kerned’, since this includes the non-kerned case.

5a-529

DrawFile_DeclareFonts (SWI &45542)

Related SWis
DrawFile_Render (page 5a-526), DrawFile_BBox (page 5a-528)

Related vectors
None

5a-530

* Commands

Syntax

Draw file renderer

*Render

Displays the contents of a Draw file

*Render [-file] filename [DO nD1 mlO nmil n20 nP1]
[-bbox] [-suppress] [-flatness flatness]

Parameters

Use

[-file] filenane

mo, n01, M0, ni 1

2o, n21

- bbox

- suppress
-flatness fl atness

avalid pathname specifying the Draw file to be
rendered

four decimal numbers giving the first four elements
of the transformation matrix, which specify the
transformation

two decimal humbers giving the other two elements
of the transformation matrix, which specify the
translation in OS units

render the bounding boxes around objects as dotted
red rectangles

suppress the rendering of the objects themselves
adecimal number giving the flatness used to render
curved paths, in OS units

*Render displays the contents of a Draw file. You can optionally transform the output
with atransformation matrix, render the bounding boxes around objects as dotted red
rectangles, suppress the rendering of the objects themselves, and change the flatness
used to render curved paths. In doing so, thefile is checked for consistency.

Note that you must quote any negative arguments; see the example below.

Example
*Render adfs::Mardy.$.DrawFile 0 "-1.5" 1.5 0 O 800 -bbox -flatness .5

Related commands

None

5a-531

*Render

5a-532

128 RISC OS boot applications

Introduction and Overview

A boot application sets the machine up whenever the computer is reset, giving users and
applications control over the start up, configuration and use of the desktop. It also works
interactively when a user double clicks onitsicon.

RISC OS 3.5's boot application is named !'Boot. RISC OS 3.6 introduced a wider range
of boot applications (eg !Boot for booting from disc, !ArmBoot and !ShareBoot for
booting from a remote machine or server on a network). You can use boot applications
to boot older machines.

A boot application provides:

« startup files that applications can modify

« facilities to link applications into the Apps icon’s directory display

« desktop boot saving

« locations for saving application-specific choices

« computer configuration using !Configure, which is held as a sub application
« hard disc locking with a password, as a part of !Configure

« ISystem, !Scrap and !Fonts as sub applications that are unseen by the user.

This chapter details the facilities provided by boot applications for integrating
applications into the desktop, and that will continue to be supported in the future. Unless
otherwise stated, all such facilities are available from RISC OS 3.5 onwards.

Although a search through a boot application will doubtless reveal features that are not
documented here, you must not use them if you wish your application to work under
future versions of RISC OS.

The user interface is described in RISC OS 3 User Guide.

5a-533

Technical details

Technical details

Writing to a boot application

Amongst other things, this chapter tells you ways you can add to the files in a boot
application. When doing so you must be aware that you may not have write permission,
especially if the boot application is on aremote file server. If you try to write to a boot
application, and the write fails, your software should fail gracefully, giving a suitable
error message.

Starting the boot application

The kernel determines which boot application to run depending on the configured Boot
state, filing system, drive/file server, and so on. It then tries to find the boot application.
If it fails, it saves the resultant error message in the system variable Boot$Error; if it
succeeds, it runs the boot application.

Environment set up

The Boot$... variables
Once a boot application has been found and run, it sets up a number of system variables

asitfirst starts:

Variable Comments

Boot$Dir The boot application’s directory

Boot$OSVersion The major version of RISC OS on the booting
computer: for example ‘200, ‘3107, ‘350’, or ‘360’

Boot$Path Comma separated list of boot application
directory(s), each with a trailing ‘.’

Boot$State The stage of booting: ‘commands’ or ‘desktop’

Boot$ToBeLoaded PreDesk directory (see page 5a-540)

Boot$ToBeTasks Tasks directory (see page 5a-543)

Boot$Unique ‘Local’ if the boot file is local; a unique identifier for

the machine if the boot file is remote

(The RISC OS 3.5 !Boot application does not set the Boot$State and Boot$SUnique
variables.)

5a-534

RISC OS boot applications

The Choices$... variables

It then uses these variables to set up other variables giving the location(s) of Choices
directory(s), which are used by applications — including the Boot application itself — to
store start-up files, user preferences, and so on:

Variable Comments

Choices$Dir Most recently used Choices directory

Choices$Path Comma separated list of Choices directory(s) from
which to read, each with a trailing ‘.’

Choices$Write Choices directory to which to write

Choices directories

A boot application may have multiple Choices directories, and so store different choices
for different machines, such as remote network stations. Each Choices directory can
have the same structure beneath it, varied as required by the different machine(s) using
each one.

RISC OS 3.6’s network boot applications set the Choices$... variables to use the
directoryBoot : MchConf i g. <Boot $Uni que> out of preference, if it exists; failing

that, to usaBoot : Ut i | s. RO<Boot $0SVer si on>Hook if that exists, or otherwise

to useBoot : Choi ces. Remote network stations will thus look for machine-specific
choices; then either for RISC OS version-specific choices, or for system-wide choices.
Network managers can hence use these different directories to support a mix of versions
of RISC OS, and to provide machine-specific exceptions to the general setup.

For example, with the boot applicatidlet : : Server. $. ! Ar nBoot , these
directories might be named:

« Machine-specific choices:
Net:: Server.$.! ArnBoot . MchConfi g. St n128! 005 or:
Net:: Server.$.! ArnBoot . MchConfi g. EL268AFB etc

o RISC OSversion-specific choices:
Net::Server.$.! ArnBoot. Utils. RO200OHook or:
Net::Server.$.! ArnBoot. Utils. ROB10Hook etc

e System-wide choices:
Net : : Server. $.! ArnBoot . Choi ces

You must not access the Choices directories by evaluating their full pathnames yourself,
as the internal structure of boot applications is liable to change in future versions. You
must instead use the methods described in the sections below.

5a-535

Loading CMOS

Loading CMOS

After setting these system variables, the next thing of interest the boot application does
isto look for thefile:

<Boot $Di r >. MchConf i g. <Boot $Uni que>. ! RO<Boot $0SVer si on>CMOS

If it exists, the boot application uses the * LoadCM OS command to load the contents of
thefileinto CMOS RAM.

Files used before the desktop is started
The boot application then runs things before the desktop is entered. It uses two locations

for this:
« ThePreDesktop fileisan Obey file. It creates various useful aliases for common
tasks.

You can add to this file as necessary, in the manner described below. If you only
need to use an Obey file, thisis the preferred method to use.

o ThePreDesk directory holds files and directories all of which are run after the
PreDesktop file.

Adding files and directories here gives you much moreflexibility over how they are
run. You should use this method if your needs are not met by the PreDesktop file.

For full details, see the sections below.

The PreDesktop file

The PreDesktop file contains the command line setup sequence. It getsinvoked using
Obey -c where possible, so that filing system or network software can be reloaded
during its execution.

Accessing the file

The PreDesktop file must always be accessed as.
<Choi ces$W it e>. Boot . Pr eDeskt op

Thisisto preserve future compatibility, should the structure of boot applications change.

Format of the file

The file has been divided into well defined sections for ease of maintenance, and to

make it easy for scripts to install and remove application-specific entries. Each section
starts with a header:

| Start Conpany Application Version Section

5a-536

RISC OS boot applications

and ends with afooter:
| End

Asan example, the Aliases section supplied by !Boot in RISC OS 3.5 looks like this:
| Start Acorn !Boot 0.25 Aliases
commands and comments...
| End

Scripts that scan the file should be extremely lax in what they accept. They should

accept any amount of white space between each element (including before and after the

‘| that introduces the header/footer), ignore case, and ignore the version numbers used
by other applications.

When writing to the file scripts should use the exact syntax in the above example; see
Adding to thefile on page 5a-537.

Sections

The sections supplied by a boot application are:
« Comments

e Aliases

o Paths

« Options

e ResApps

« Miscellaneous options.

These are described in more detail below, starting @éthments on page 5a-538.

Adding to the file

Wherever possible, you should split anything you add into the same sections as above,
each of which includes a header and footer. Each application should provide a script to
install its sections. For each section, the script must:

1 Search for the boot application’s corresponding section.
2 Add the new section after the boot application’s corresponding section.

So a finished file might look like this:
| Start Acorn !Boot 0.25 Coments
comments...
| End
| Start Acorn !Boot 0.25 Aliases
commands and comments...
| End

5a-537

The PreDesktop file

| Start Acorn !Boot 0.25 Paths
commands and comments...

| End

| Start Acorn !Boot 0.25 Options
commands and comments...

| End

| Start MySWHouse ! MyApp 1.10 Options
commands and comments...

| End

| Start Acorn !Boot 0.25 ResApps
commands and comments...

| End

| Start Acorn !Boot 0.25 M scel |l aneous options
commands and comments...

| End

It is courteous to also supply a script to remove the entries.

Comments
The function of this section should be obvious!

Aliases
This section sets aliases.
A boot application’s section adds several aliases that you may find useful yourself:
Alias
The first alias set is for Alias itself, so that the following command:
Alias alias command

sets the aliaal i as for the commanadonmand.

Unalias

This makes the command Unalias to remove an alias:
Unalias alias

Path

The next alias gives a convenient way to set setting of paths:
Path path full_path

5a-538

RISC OS boot applications

so you can refer to afull pathname f ul | _pat hr est using the shorthand
pat h: r est . For example:

Path Iib ADFS:: HardDi sc4.$. Li brary.

would enable the following convenient commands:
*Dir lib:
/1ib:cc

PathMacro

PathMacro works similarly to Path, except the system variable set is a macro variable.
For example:

Set Thing$Dir <Chey$Dir>
Pat hMacro Thi ng <Thi ng$Dir>.

To enable Thi ng: to beareferenceto <Thi ng$Di r >.

Paths
This section is used to set standard paths and directories.

Run$Path is defined here to include the Library directory held within the boot
application. This allows you to use the various commands held in the library, and
defined in* Commands on page 5a-545.

Options
This section has been set aside for options that do not have any other place to be set.

ResApps

This section uses the AddApp library command (see page 5a-545) to register
applications with ResourceFS for display in Resources:$.Apps.

A boot application’s ResApps section registers all applicatioBsat : ~. Apps:
AddApp Boot: ". Apps.!*

Miscellaneous options

This section is used for any setup that does not obviously belong in any of the above
sections. An example might be loading and binding a novel system beep.

5a-539

The PreDesk directory

The PreDesk directory

5a-540

Accessing the directory
The PreDesk directory must always be accessed as.

<Boot $ToBelLoaded>

Thisisto preserve future compatibility, should the structure of boot applications change.

Adding files and subdirectories

Your application ! App may add asingle file or subdirectory named App. You should
only do so if the PreDesktop file does not meet your needs, since if too many
applications use this directory, it may become full.

Your application may modify its own file(s) as it seesfit.

Action taken on files and subdirectories

RISC OS3.60

Under RISC OS 3.60, the files held within the PreDesk directory are acted on as
follows:

Any files of type Obey are run using * Obey -c, or * Obey for versions of RISC OS
where the -c flag is not supported.

Any files of type Absolute are run.

Any files of type Sprite are loaded using * IconSprites.
Any files of type Module are loaded using * RM L oad.
Any files of type BASIC are run using *BASIC -quit.
Any files of type Utility arerun.

All other files are loaded using * L oad.

Then any directories are run; this searches for the file! Run in the directory, and runs it
if found.

RISC OS boot applications

RISC OS 3.50

Under RISC OS 3.50, the files and directories held within the PreDesk directory are
acted on in the following order:

Any files of type Module are run using *RM L oad.

2 Any filesof type Sprite are run using * |conSprites.
3 Any files of type Obey are run using * Obey -c.
4 Any directories are run using * Run; this searchesfor thefile ! Run in the directory,

and runsit if found.

All other files are ignored.

Files used once the desktop is started

Desktop saving

The method for saving the desktop from the Task Manager remains the same as before,
and is still the preferred way for applications to set themselves up and start. You should
continue to use desktop saving provided it meets your needs.

If it does not meet your needs, you should read the sections bel ow.

Other files

Earlier sections described how boot applications provide afile and a directory that are
used to run things before the desktop is entered. They provide asimilar file and directory
that your application can use to start itself and/or any associated tasks:

« The Desktop fileis afile of type Desktop, run as the desktop is entered. It boots
important system resources.

You can add to thisfile as necessary, in the manner described below. If you only
need to use a Desktop file, but cannot use the Task Manager’s desktop boot file,
then it is preferable to use this file rather than adding to the Tasks directory.

« The Tasks directory holds files all of which the Desktop file starts as Wimp tasks,
including the desktop boot file saved from the Task Manager.

You should only add files here if your needs are met neither by the Task Manager’s
desktop boot file, nor by the Desktop file.

For full details, see the sections below.

5a-541

The Desktop file

The Desktop file

Accessing the file

The Desktop file must always be accessed as:
<Choi ces$W i t e>. Boot . Deskt op

Thisisto preserve future compatibility, should the structure of boot applications change.

Format of the file

Thefile has the same format asthe PreDesktop file. It is split into sections using headers
and footers with the same syntax. See Format of the file on page 5a-536.

Sections

The sections supplied by a boot application are:
« Autotasks
« Completion

The Auto tasks section is described in more detail below.

Adding to the file

You should add sections to the Desktop file in just the same way as for the PreDesktop
file. See Adding to the file on page 5a-537.

Note that you should only add an Auto tasks section. There should be no Completion
section in the file apart from that provided by the boot application itself.

Auto tasks

This section boots al the system resources held in Boot : Resour ces:
Repeat Filer_Boot Boot: Resources -Applications -Tasks

This includes such things as ! System, ! Scrap and ! Fonts.

It then runs all the filesin the Tasks directory as Wimp tasks:
Repeat Fil er_Run <Boot $ToBeTasks> - Tasks

5a-542

RISC OS boot applications

The Tasks directory

Accessing the directory

The Tasks directory must always be accessed as:
<Boot $ToBeTasks>

Thisisto preserve future compatibility, should the structure of boot applications change.

Adding files and subdirectories

Your application ! App may add a single file or subdirectory named App. You should
only do so if the Desktop file does not meet your needs, since if too many applications
use this directory, it may become full.

Your application may modify its own file(s) asit seesfit.

Action taken on files

The files and directories held within the Tasks directory are run using Filer_Run.

Storing application choices

Your application ! App can create its own Choices directory, and use it to store user
preferences.

Accessing the directory

Your application ! App must always access its Choices directory as:
<Choi ces$Wite>. App

Thisisto preserve future compatibility, should the structure of boot applications change.

Adding files and subdirectories

Your application ! App may add any files or subdirectoriesit needsto. It may modify its
own file(s) asit seesfit.

Changes to existing * Commands

*Logon (page 2-386)

You should note that from RISC OS 3.6 onwards, the Boot application aliases the
*Logon command to * Safel_ogon, described on page 5a-554. (Although thisis not
strictly a change to the * Logon command, most people will seeit as such.)

5a-543

The BootCommands module

In the unlikely event you need to force the use of the standard * Logon command, you

must do so by using the ‘%’ character to skip alias checkingJsegffects on

page 1-956), rather than by unsetting the variable Alias$Logon. This ensures that the
change only applies to your command line, and does not alter the environment other
programs expect to find.

The BootCommands module

5a-544

A boot application uses various commands not provided by RISC OS 3.1 or earlier.

In RISC OS 3.5, these are provided by the boot application’s Library subdirectory,
which is added to the run path when the boot application is first run. In RISC OS 3.6
most of these are instead provided by a new module named BootCommands.

The advantage of the BootCommands module is that it avoids the need to load the
commands over the network if a station is using a remote boot application. Booting is
thus made faster.

RISC OS boot applications

* Commands
*AddApp

Adds entries in Resources:$.Apps for all applications matching awildcard pattern

Syntax
*AddApp [directory.] pattern

Parameters
directory avalid pathname specifying a directory
pattern wildcarded pattern to match

Use

* AddApp adds entries in Resources:$.Apps for all applications matching the wildcard
pattern in the given directory, or in the current directory if noneis specified. If nothing
matches the pattern, no error is generated; the command just returns.

You must not use this command to add applicationsthat are already held in ResourceFS.

This command is provided either by the boot application’s Library subdirectory (which
is added to the run path when the boot application is first run), or by the BootCommands
module added in RISC OS 3.6.

Example
*AddApp adfs:: MHardy. $. MyApps. *

Related commands
None

5a-545

*AppSize

*AppSize
Moves memory into or out of the RMA

Syntax
AppSi ze size[K]

Parameters

si ze[K] number of (kilo)bytes of memory desired for applications

Use

* AppSize moves memory into or out of the RMA, attempting to move the difference
between the current size of application workspace and the given desired size. In

RISC OS 3.1 and earlier, the memory was transferred to/from the application workspace
(hence the name of the command); from RISC OS 3.5 onwards, memory is transferred
to/from the free pool.

This command is used at startup to shrink the RMA to its smallest possible size by
setting the desired application size to alarge value, and should not be used by other
applications.

This command is provided either by the boot application’s Library subdirectory (which
is added to the run path when the boot application is first run), or by the BootCommands
module added in RISC OS 3.6.

Example
AppSi ze 514000K

Related commands

None

5a-546

RISC OS boot applications

*Do
Passes a command to XOS_GSTrans, and then passesit to the CLI

Syntax

*Do conmmand

Parameters

conmmand command to have GSTrans’d before execution

Use
*Do passes a command to XOS_GSTrans, and then passes it to the CLI.

Itis useful when the command being invoked does not itself GSTrans its parameters, but
you wish to pass parameters using GS string format (eg system variables). For more
details, se€&Sstring operations on page 1-454.

This command is provided either by the boot application’s Library subdirectory (which
is added to the run path when the boot application is first run), or by the BootCommands
module added in RISC OS 3.6.

Example

*Do BadCnd <Cbey$Dir> Expands Obey$Dir before calling
BadCmd

Related commands
None

S5a-547

*FontMerge

*FontMerge

Merges new fonts into an existing !Fonts directory

Syntax
Font Merge source [destination]

Parameters
source source directory of fontsto merge
desti nation destination directory of fontsto merge
Use

*FontM erge merges new fontsinto an existing 'Fonts directory. Thefirst thing it doesis
to work out the destination for the merge.

If no destination is given, the third-from-last element of Font$Path is used. This may
seem a hit strange, but consider what Font$Path will ook like:

Font $Pat h(Macr o) :
ADFS: : Har dDi sc4. $. ! Boot . Resour ces. ! Fonts. , . , Resour ces: $. Font s.

The last element is in the Resource filing system, which cannot be used as the
destination. The next-to-last element is <Font$Prefix>; thisis provided for backwards
compatibility, so it isnot agood ideato useit as the destination. The third-from-last
element is therefore the one used.

*FontMerge can automatically create and use an overflow directory should the original
destination become full. For a directory !Fonts, the overflow directories are ! Fontsl,
IFonts2, and so on. * FontMerge checks for the presence of such overflow directories,
and uses the highest numbered one as the initial destination.

Once * FontM erge has worked out the destination, it merges the fonts, creating overflow
directories as necessary. It automatically processes font messagesfiles, generating them
for all languages given in the source and destination.

*FontMerge can be run from desktop applications. It initialises itself asaWimp task to
generate Wimp error boxesif it hasan error; it calls Hourglass Percentage as it doesthe
merge.

This command is provided by the boot application’s Library subdirectory (which is
added to the run path when the boot application is first run). *FontMerge is a directory,
and should be left as such. This is to enable *FontMerge to be localised for a particular

5a-548

RISC OS boot applications

country simply by replacing the messages file inside the FontMerge directory. Even
though *FontMerge is a directory and not afile, you useit just like any other command
line program.

Example
*Font Merge adfs:: Font Vendor. $.! Fonts

Related commands
None

5a-549

*IfThere

*IfThere

Checks for the presence of a given object, and executes one command if it exists, or
another if it does not

Syntax

*| f There obj ect_spec Then true _conmand [El se fal se_conmand]

Parameters
obj ect _spec avalid (wildcarded) pathname specifying afile or directory
true_conmmand command to execute if obj ect _spec is matched
fal se_conmand command to executeif obj ect _spec is not matched
Use

*|fThere checks for the presence of the given object, and executes the true command if
it exists, or the optional false command if it does not.

The check isdone using OS _File 17 (page 2-38). Note that non-files (eg directories and
partitions) will still cause the true command to execute.

This command is provided either by the boot application’s Library subdirectory (which
is added to the run path when the boot application is first run), or by the BootCommands
module added in RISC OS 3.6.

Example
*| f There adfs:: MHardy. $. Run Then Del ete adfs:: Mardy. $. Run

Related commands
None

5a-550

RISC OS boot applications

*LoadCMOS

Loads a file into the computer's CMOS RAM

Syntax
*LoadCMOS fil enane

Parameters
filenanme a valid pathname specifying a file

Use

*LoadCMOS loads a file into the computer’s CMOS RAM, preserving only the station
number, the current year, and the DST flag. All other configured values are replaced by
those stored in the file.

This command is used by boot applications to load a station's CMOS RAM at startup
time, thus ensuring the machine is always in the same state. The boot application
searches for the file:

<Boot $Di r >. MchConf i g. <Boot $Uni que>. ! RO<Boot $0SVer si on>CMOS

and, if it finds the file, uses this command to load it. Note that the location of saved
CMOS files is subject to change in future versions of boot applications.

This command is provided by the BootCommands module added in RISC OS 3.6.
Unlike most other commands documented in this chapter, it is not a standard part of the
RISC OS 3.5 boot application.

Example
*LoadCMOS adf s: : MHar dy. $. Saf e. MyCMOS

Related commands
None

5a-551

*Repeat

*Repeat

Scans a given directory, applying a command to everything it finds

Syntax

*Repeat conmand directory [-Directories] [-Applications]
[-Files|-Type file type] [-ConmandTail cndtail] [-Tasks]

Parameters
command command to apply to objects in the given directory
directory avalid pathname specifying a directory
-Directories apply the command only to directories
- Applications apply the command only to applications
-Files apply the command only to files
- Type apply the command only to filesof typefil e_t ype
file type anumber (in hexadecimal by default) or text description of
thefiletypeto match. The command * Show Fi | e$Type*
displays alist of valid file types.
- ConmandTai | postfix the found object with cndt ai |
cndt ai | command tail to apply to objectsin the given directory
- Tasks apply the command as a Wimp task
Use

*Repeat scans the given directory applying acommand to everything it finds, within the
limits of the other parameters. The command executed is:

conmand found_obj ect [cndtaill]

This utility does not recurse. Only those objects identified at the top level have the
command applied to them.

This command is provided either by the boot application’s Library subdirectory (which
is added to the run path when the boot application is first run), or by the BootCommands
module added in RISC OS 3.6.

The Library-based version uses the Scrap directory, and hence there must be some free
space on the file system holding !Scrap for it to work. The BootCommands version does
not have this limitation.

5a-552

RISC OS boot applications

Example
*Repeat Filer_Boot Boot: Resources -Applications -Tasks

Related commands
None

5a-553

*SafeLogon

*
SafelLogon
Logsyou onto afile server if you are not already logged on
Syntax
*Saf eLogon [[:]file_server_nunber|:file_server_nane] user_nanme [[: Return] password]
Parameters
file_server_nunber the file server number to log on to
file_server_nane thefile server nametolog onto
user_narne as issued by the network manager
password as set by the user
Use

*Safel. ogon logs you on to afile server if you are not aready logged on.

The command first checksto seeif the current temporary filing systemis NetFS, and the
given user is already logged on to the given file server; if so, the command exits
immediately. Otherwise the command passes on a* Logon command to the current
temporary filing system, leaving the command line tail unaltered.

This means that — unlike *Logon — *SafeLogon will not log you off a file server, and
then immediately log you back on.

This command is provided by the BootCommands module added in RISC OS 3.6.
Unlike most other commands documented in this chapter, it is not a standard part of the
RISC OS 3.5 boot application.

Example

*Saf eLogon :fs guest

Related commands

*Logon

5a-554

129 The colour picker

Introduction and Overview

The new hardware supported by RISC OS 3.5 supports a much greater pixel depth than
previous versions, and can display up to 16 million colours. The colour picker moduleis
autility that allows users to pick a colour from thisimmense choice. This utility should
be used by all applications that need to choose colours.

This chapter describes how aclient application and the colour picker modul e interact.

Unless stated otherwise, al the facilities described in this chapter are available from
RISC OS 3.5 onwards.

Terminology used

The colour picker module provides a colour picker dialogue for applications to use;
different types of dialogue are available. The dialogue is not a Wimp task. The colour
picker makes use of the Wimp filter mechanism to receive events for its dial ogues.

A colour picker client is an application which use the colour picker. All clients must be
Wimp tasks.

A colour descriptor is astructure giving the full details of a colour. It is defined on
page 5a-558.

5a-555

Technical details

Technical details

How the colour picker works

The colour picker works as follows:

Typical usage

The client application communicates with the colour picker by calling SWis.

Whenever a client opens a hew colour picker dialogue, the colour picker module
installs a Wimp pre-filter and post-filter box around that client application.

The colour picker module then maintains the colour dialogue by intercepting Wimp
events directed to it, and passing the user’s colour choices to the client using Wimp
messages.

Once the dialogue is opened, it is identified in all SWIs and messages by a handle.
This avoids confusion if multiple clients are using the colour picker at once.

From the client’s point of view, a typical colour selection looks like this:

dient receives colour sel ection request by user

dient prepares structure describing dial ogue

dient issues the SW Col ourPi cker _OpenDi al ogue and resunes polling the Wnp
User nmkes col our selection

dient receives the nessage Message_Col our Pi cker Col our Choi ce

dient applies colour information

dient receives the nessage Message_Col our Pi cker C oseDi al ogueRequest

dient issues the SW Col our Pi cker_C oseDi al ogue

SWis and messages used

5a-556

SWis

The full range of SWIs that clients may use are as follows:

ColourPicker_OpenDialogue (page 5a-563) — Creates and opens a colour picker
dialogue for a client.

ColourPicker_CloseDialogue (page 5a-566) — Closes a colour picker dialogue
which is in progress.

ColourPicker_UpdateDialogue (page 5a-567) — Updates some or all of the contents
of a colour picker dialogue.

ColourPicker_ReadDialogue (page 5a-569) — Reads the current state of a colour
picker dialogue without changing it.

The colour picker

« ColourPicker_HelpReply (page 5a-572) — Makes the colour picker respond to a
Message_HelpRequest with its own help text.

Messages
The messages that the client may receive are:

+« Message_ColourPickerColourChoice (page 5a-575) — issued whenever the user
makes a definite choice of colour.

« Message_ColourPickerColourChanged (page 5a-575) — optionally issued when the
colour displayed in the dialogue changes.

« Message_ ColourPickerCloseDialogueRequest (page 5a-576) — optionally issued
when the user dismisses the dialogue.

« Message_ColourPickerOpenParentRequest (page 5a-576) — issued when the user
opens a toolbox dialogue’s parent by clicking Adjust or Shift-Adjust on its Close
icon.

« Message_ColourPickerResetColourRequest (page 5a-576) — issued when the user
requests the colours be reset to those currently in effect.
This message is not issued by RISC OS 3.5.

Dialogue types

When the client calls ColourPicker_OpenDialogue (page 5a-563) to create and open the
colour picker dialogue, it can choose between different types of dialogue:

« A normal dialogue hasOK andCance buttons, and issues
Message_ColourPickerColourChoice (page 5a-575) v@i€rnis used.

« A toolbox dialogue has ndOK andCancel buttons, but has Back and Close icons
on its window. It never issues Message_ColourPickerColourChoice; the client can
call ColourPicker_ReadDialogue (page 5a-569) to read the colour when it needs to,
or monitor the colour continuously by making the dialogue issue
Message_ColourPickerColourChanged (page 5a-575).

« A menudialogueis like a normal dialogue, but the ColourPicker opens it using
Wimp_CreateMenu; it is therefore automatically closed by the Wimp when the user
clicks elsewhere.

« A submenu dialogue is like a menu dialogue, except that it is attached to an open
menu tree, and hence created using Wimp_CreateSubMenu.

Transient dialogues

Because the closing of menu and submenu dialogues is handled by the Wimp rather than
the colour picker, they are classedrassient dialogues.

5a-557

Colour descriptors

Colour descriptors

Colours are passed to and from the colour picker as a colour descriptor, which isa
structure of two or more words.

The colour isalways held in aword as a 24 bit RGB value; the simplest form of acolour
descriptor has no extrainformation. However, the descriptor may also hold datagiving a
colour model, the colour value as represented in that model, and optional extra data.
Clients may store the entire colour descriptor, and make full use of the information it
stores.

A colour descriptor has this structure:

Offset Data

0 0

1 red value (0 - &FF)

2 green value (0 - &FF)

3 bluevalue (0 - &FF)

4 aword giving the size of the optional extension to the block, in bytes
The optional extension consists of:

Offset Data

8 colour model number: 00 RGB,10 CMYK, 20 HSV

12 colour model dependent data (see below)

An application may treat the colour descriptor as a self contained block to be stored
away, and retrieved for use later with the colour picker.

Colour model dependent data

5a-558

All colour model dependent data uses fixed point 32 bit numbers, with 16 bits below the
point, and 16 bits above the point. Offsets given below are relative to the start of the
colour model dependent data.

RGB (model number 0)

The extradatais:

Offset Data

0 Red value
4 Greenvaue
8 Blue value

All values should be in the range & 00000000 - & 00010000.

The colour picker

CMYK (model number 1)

The extradatais:

Offset Data

0 Cyanvalue

4 Magenta value
8 Yellow value

12 Key (black) value
All values should be in the range & 00000000 - & 00010000.

HSV (model number 2)

The extradatais:

Offset Data

0 Hue angle

4 Saturation percentage
8 Value percentage

The Hue should be in the range & 00000000 - & 0167FFFF. The Saturation and Value
should be in the range & 00000000 - & 00010000.

Wimp events and the client

Wimp events directed to the colour picker are also sent to the client. They can be
distinguished by the window handle in the event block.

These events have already been fully processed by the colour picker. They are sent to the

client merely as a ‘hook’ for unusual circumstances where special action is required.
This won’t normally be necessary, and the client should ignore these events, just as it
should any events it does not understand.

For example, if it is told of a request for help by a User_Message event (of type
Message_HelpRequest) that has the colour picker’s window handle, it should not supply
help, since the colour picker will already have done so.

5a-559

Service Calls

Service Calls

Service_ColourPickerLoaded
(Service Call &93)

This service cal isfor internal use only; you must not useit in your code.

5a-560

The colour picker

SWI calls

ColourPicker_RegisterModel
(swi &47700)

This call isfor internal use only; you must not use it in your own code.

5a-561

ColourPicker_DeregisterModel (SWI &47701)

ColourPicker_DeregisterModel
(swi &47701)

Thiscall isfor internal use only; you must not use it in your own code.

5a-562

The colour picker

ColourPicker_OpenDialogue
(swi &47702)

Creates and opens a colour picker dialogue for aclient

On entry

RO = flags:
bits 0, 1 = dialogue type:
00 normal dialogue, 1 O menu dialogue
2 [0 toolbox dialogue, 3 0 submenu dialogue
al other bits reserved (must be set to 0)
R1 = pointer to a colour picker block (see below)

On exit

RO = dialogue handle
R1 = window handle

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode
Processor isin SVC mode

Re-entrancy
SWI is not re-entrant

Use

Thiscall creates and opens acolour picker dialogue for aclient, so that auser can choose
acolour. Theflagsin RO set the type of dialogue (see Dial ogue types on page 5a-557),
and hence whether or not the dialogue is transient.

5a-563

ColourPicker_OpenDialogue (SWI &47702)

The colour picker block specifiesthe initial settings for the dialogue. This block is aso
used by other colour picker SWIs. Itsformat is as follows:

Offset Meaning

0 flags:
Bit Meaning
0 10 dialogue has a None button

1 10 dialogue has the None button selected
2-3 diaogue button type, defining when
Message ColourPickerColourChanged is issued for it:
00 neverissued; 1 O issued on any change, except during
drags, which give amessage at drag end; 2 [0 issued on any
change, including during drags
4 10 dialogue ignores Message HelpRequest messages
5 10 dialogue does not pass on unhandled key presses to the
Wimp (RISC OS 3.6 onwards)
4 pointer to thetitle to be used, or O for adefault title
8 x coordinate of top left of the visible area of the dialogue
12 reserved (must be & 80000000)
16 reserved (must be & 7FFFFFFF)
20 y coordinate of top left of the visible area of the dialogue
24 reserved (must be 0)
28 reserved (must be 0)
32 colour descriptor (see page 5a-558)

Bits0 and 1 of the flags control whether a None button appears between the colour patch
and the Cancel button, and whether it isinitially selected.

If the dialogue ignores Message HelpRequest messages (page 3-242) directed to it, the
client may send the Wimp message Message HelpReply (page 3-243) to respond with
its own text, or it may pass the message to the SWI ColourPicker HelpReply

(page 5a-572) to force the colour picker to reply with its own text. The client can hence
replace the colour picker’s help text for some or all parts of the dialogue.

If bit 4 is set, it is up to the calling application — rather than the dialogue — to pass on
unhandled key presses to the Wimp. This bit is ignored under RISC OS 3.5.

The returned dialogue handle is used as an argument to the other ColourPicker SWIs,
and also in the Wimp messages that the ColourPicker module sends to the application to
provide feedback on the user's selection of a colour.

5a-564

The colour picker

Related SWis
ColourPicker_CloseDia ogue (page 5a-566)

Related vectors
None

5a-565

ColourPicker_CloseDialogue (SWI &47703)

5a-566

ColourPicker_CloseDialogue
(swi &47703)

Closes a colour picker dialogue which isin progress

On entry

RO = flags: all bits reserved (must be set to 0)
R1 = dialogue handle

On exit
RO, R1 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode
Processor isin SVC mode

Re-entrancy
SWI is not re-entrant

Use

This call closes a colour picker dialogue which isin progress. This may either be done
by the client, or by the Wimp if the dialogue was set to be transient when created (see
Transient dialogues on page 5a-557).

Itisnormally called in response to Message Col ourPickerCloseDia ogueRequest (see
page 5a576).

Related SWIs
ColourPicker_OpenDialogue (page 5a-563)

Related vectors
None

The colour picker

ColourPicker _UpdateDialogue
(swi &47704)

Updates some or al of the contents of a colour picker dialogue

On entry

RO = flags:
Bit
0
1
2
3
4
5
6
7
8
9

Part of dialogueto update when set

whether the dialogue has a None button

whether the dialogue has the None button selected

the button type of the dialogue

the visible area of the dialogue (RISC OS 3.6 onwards)

reserved (must be clear)

the window title

colour setting, from the colour descriptor’s initial RGB triplet only
the colour model and setting, from the colour descriptor’s model
dependent data only (including optional data)

whether the dialogue ignores Message_HelpRequest events
whether the dialogue passes on unhandled key presses to the
Wimp (RISC OS 3.6 onwards)

all other bits reserved (must be set to 0)
R1 = dialogue handle
R2 = pointer to a colour picker block (see page 5a-564)

On exit

RO - R2 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

5a-567

ColourPicker_UpdateDialogue (SWI &47704)

5a-568

Use

This call updates some or al of the contents of the colour picker dialogue whose handle
is given. Only the parts of the box indicated by the flags word are updated.

The new values are taken from the passed colour picker block; all other parts of the
block are ignored. The block need only be large enough to hold the highest offset field
required.

The None button may be added or removed, and its setting adjusted. The title, setting
and colour model may also be adjusted independently of each other.

If you are changing the visible area (ie bit 3 is set), you must fill in offsets 8 - 20
inclusive of the colour picker block (see page 5a-564), including the reserved words.
Thisisfor future compatibility.

If bit 7 is set then bit 6 isignored; the colour model is updated, and the RGB triplet is
calculated from the data in the colour model block. If bit 6 is set and bit 7 is clear, then

the colour setting is updated from the colour descriptor’s initial RGB triplet and the
colour model left unchanged, even if the current colour model isn't that in the colour
descriptor.

Related SWis

ColourPicker_OpenDialogue (page 5a-563)

Related vectors

None

The colour picker

ColourPicker_ReadDialogue
(swi &47705)

Reads the current state of a colour picker dialogue without changing it

On entry

RO = flags: dl bitsreserved (must be set to 0)

R1 = dialogue handle

R2 = pointer to a buffer to hold a colour picker block (see page 5a-564),
or O to read required size

On exit

RO preserved
R1 = window handle
R2 = required size of buffer (if 0 on entry); else preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor isin SVC mode

Re-entrancy

SWI is not re-entrant

Use

Thiscall readsthe current state of acolour picker dialogue without changing it. The state
isreturned as a colour picker block in the given buffer, which is assumed to be large
enough to hold it. Because the size of the block may change when the colour model
changes, you should always call this SWI twice: once to read the required size, then
again to read the state of the colour picker dialogue.

5a-569

ColourPicker_ReadDialogue (SWI &47705)

Related SWis
None

Related vectors
None

5a-570

The colour picker

ColourPicker_SetColour
(swi &47706)

This call isreserved for future expansion; you must not use it in your own code.

S5a-571

ColourPicker_HelpReply (SWI &47707)

ColourPicker _HelpReply
(swi &47707)

Makes the colour picker respond to a Message HelpReguest with its own help text

On entry

RO = flags: all bits reserved (must be zero)
R1 = pointer to Message HelpRequest message block (page 3-242), as returned
from Wimp_Poll (page 3-112)

On exit
RO, R1 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call makes the colour picker respond to aMessage HelpRequest with its own help
text. It is typically used by a client that wishes to replace part of the colour picker’s help
system.

Such a client would, on creating and opening a colour picker dialogue, force it to ignore
help requests (see page 5a-563). The client would then selectively respond to help
requests itself, or use this call to make the colour picker respond instead.

Related SWIs
ColourPicker_OpenDialogue (page 5a-563)

5a-572

The colour picker

Related vectors
None

5a-573

ColourPicker_ModelSWI (SWI &47708)

ColourPicker _ModelSWI
(swi &47708)

Thiscall isfor internal use only; you must not use it in your own code.

5a-574

The colour picker

Messages

Colour picker messages

These Wimp messages are generated by the Colour Picker in response to Wimp events
on the colour picker dialogue. For more details about Wimp messages, see
Wimp_SendMessage on page 3-193, and Messages on page 3-228.

Message ColourPickerColourChoice (&47700)

This message isissued to the client whenever the user makes a definite choice of colour,
by clicking Select or Adjust on the OK button of the dialogue. The format of the

message block is:
R1+20 dialogue handle
R1+24 flags:
bit 0 set 0 Nonechosen
R1+28... colour descriptor chosen (see page 5a-558)

The colour descriptor gives the state of the dialogue so that a sensible default may be
given next time the dialogue is used. When flags bit 0 is set, signifyinjdhatwas
chosen, the colour descriptor will still be present.

The message may or may not be followed by a
Message_ColourPickerCloseDialogueRequest.

Message ColourPickerColourChanged (&47701)
This optional message is issued to the client when the colour displayed in the dialogue

changes.

The format of the message block is:
R1+20 dialogue handle
R1+24 flags:

bit 0 setl] Nonechosen
bit 1 setl] drag in progress
R1+28... colour descriptor chosen (see page 5a-558)

The client specifies when this message is to be sent (if at all) lugiog type flags,
passed to ColourPicker_OpenDialogue (page 5a-563) as it creates and opens the
dialogue.

5a-575

Colour picker messages

5a-576

Message_ColourPickerCloseDialogueRequest (&47702)

This message isissued to the client when the user dismisses the dialogue by clicking
Select on the OK or Cancel icons or by using the Close icon of atoolbox dialogue. The
client should respond by calling ColourPicker_CloseDial ogue (page 5a-566) with the
given handle. The format of the message block is:

R1+20 dialogue handle

This message is not issued for transient dialogues (see Transient dialogues on
page 5a-557); the ColourPicker will instead automatically close the dialogue itself.

Message_ColourPickerOpenParentRequest (&47703)

This message is issued when the user opens a toolbox dialogue’s parent by clicking
Adjust or Shift-Adjust on its Close icon. If the colour picker has a parent dialogue box,
the client should ensure that window is open and brought to the front. The format of the
message block is:

R1+20 dialogue handle

In the former case (ie Adjust), the message will be followed by a
Message_ColourPickerCloseDialogueRequest.

Message_ColourPickerResetColourRequest (&47704)

This message is issued to the client whenever the user clicks Adjust@anitet
button of the dialogue. The format of the message block is:

R1+20 dialogue handle
The client should respond by calling ColourPicker_UpdateDialogue (page 5a-567), to
reset the dialogue so that it displays the colour currently in effect. This is the last colour

selected by clicking Adjust on the dialogu&K icon, or failing that, the colour the
dialogue showed when first opened.

This message is not issued under RISC OS 3.5.

* Commands

The colour picker

*ModelList

Lists all the loaded colour models

Syntax

*Mbdel Li st

Parameters

None

Use

*ModelList lists al the loaded colour models.

Example

*Model Li
0:

1

2:

st

RGB

The "physicist’s nodel :" the quantity of each primary colour (red, green, blue).

QWK

The "printer's nodel:" the quantity of each secondary colour (cyan, nmagenta, yellow), alongwith the key (bl ack).
HSV

The "artist’s nodel :" hue (or "tint"), saturation (or “"shade") and value (or "tone").

Related commands

None

Related vectors

None

S5a-577

*ModelList

5a-578

130 Printing

Introduction

The printing system has been extended under RISC OS 3.5, mainly to support the vastly
greater number of colours available. A new version of !Printers (1.22) has also been
released for use under RISC OS 3, incorporating all changes relevant to the ol der
hardware and operating system. Further changes have been made in RISC OS 3.6,
largely to support printing JPEGs.

This chapter describes the few resultant changes the above have madein the
programmer’s interface. It does not describe in detail the rather more considerable
internal changes made to the printing system.

5a-579

Overview

Overview

Trapping of output calls

The printing system still worksin the same way as before, intercepting the same calls.
Support has been added to track extensions made in RISC OS, such as the use of mode
specifiers, new sprite formats and wide translation tables. Because of this, the
information in Trapping of output calls on page 3-573 is still correct; calls documented
there as being processed by the printer drivers are till correctly handled.

There are some new calls handled by the printer drivers; these are documented below.

SpriteV
Treatment of SpriteOp reason codes

The table on page 3-586 shows the printer driver’s treatment of each SpriteOp reason

code in RISC OS 3. The table below shows the same information for the new reason

code added in RISC OS 3.6:

Reason Meaning Printer driver’s treatment
code
17 Check the validity of a sprite area Passed on

JPEG SWis

RISC OS 3.6 provides calls to output JPEG images. The printer driver interacts with
these calls using a mechanism broadly similar to that used for font output. When printing
starts, the printer driver issues the SWI JPEG_PDriverintercept (page 5a-161). The
JPEG code then alters its SWI handling so that:

« It processes certain SWis itself, as normal.

« It passes certain SWIs to the printer driver using the SWI PDriver_JPEGSWI
(page 5a-587). The printer driver may then:
1 process the call
2 fault the call.
The JPEG code does not process such SWis itself.

5a-580

Printing

The table below shows how each SWI is handled:

JPEG SWI Meaning Processing
Info GIV?S mformatlgn on a JPEG Processed by JPEG code as usual
image held in a buffer
File Info G|ve§ |nformat|or_1 on ‘?JPEG Processed by JPEG code as usual
image held in a file
Decompresses, scales, and . .
Plot Scaled plots on the screen a JPEG Passed to printer dnyer and
processed by it

image held in a buffer

Passed to printer driver and faulted by
it: file operations are not allowed
when printing

Decompresses, scales, and
Plot File Scaled plots on the screen a JPEG
image held in a file

Decompr ransforms, an . .
ecompresses, transforms, and Passed to printer driver and

Plot Transformed plots on the screen a JPEG .
. . processed by it
image held in a buffer

. Decompresses, transforms, and | Passed to printer driver and faulted by
Plot File e -
plots on the screen a JPEG it: file operations are not allowed
Transformed . . ’ L
image held in afile when printing

Requests that SpriteExtend

PDriver Intercept passes on all calls to JPEG
plotting SWis

Processed by JPEG code as usual

5a-581

Technical details

Technical details

The structure of the printing system

Front and back ends merged

In RISC OS 3.6, the front and back ends of the Printers application have been merged. It
isimportant for future compatibility that any software you write does not assume the
internal structure of the Printers application, asit may change again in subsequent
releases of RISC OS.

New printer dumper

In RISC OS 3.6, a new printer dumper has been added for printers using Epson’s Esc/P2
control language. The dumper’s name is PDumperE2; its number is 6.

Colour input

The range of colour documents ‘understood’ as inputs remains unchanged on
RISC OS 3 systems, save that PDriverDP has been extended to take in 8bpp, full palette
sprites.

Support for new types of colour document has been added to the printing system as it has
been added to other parts of RISC OS. So from RISC OS 3.5 onwards, 16/32 bpp true
colour sprites are handled. From RISC OS 3.6 onwards, new type sprites of up to 8bpp
with a palette and JPEG images — both files, and inserts in Draw files — are also handled.

New strip types

In order to support the improved colour output facilities some extra strip types have been
defined from RISC OS 3.5 onwards, and all calls that use strip types have been extended
to support them. The table below should replace that on page 3-675:

Value Meaning

0 monochrome

1 grey scale

2 256 colour

3 Multiple pass 24 bit colour (RISC OS 3 only)

4 Single pass 16 bit colour (RISC OS 3.5 or later)
5 Single pass 24 bit colour (RISC OS 3.5 or later)

5a-582

Printing

Multiple pass 24 hit colour allows true colour output under RISC OS 3. Colour output is
limited to 24bpp, and caches some very small colour conversion tables for optimum
performance.

Single pass 16 and 24 bit colour strips only work under RISC OS 3.5 or later. Using a

single pass gives faster output than using multiple passes. 16 bit colour renders

internaly using 16 bits of information; thisis slightly faster than 24 bits, and requires

less memory — but the images produced may contain slightly less colour information,
depending on how the printer output palette has been defined. Attempting to use these
strip types under RISC OS 3 will cause error messages from modules such as
ColourTrans and from OS_SpriteOp calls; however, !Printers does not allow this, and so
this is not a problem in normal use.

Pre-scanning of rectangles

New SWIs

From RISC OS 3.6 onwards the printer driver may choose to make a pre-scanning pass
of the print rectangles that the application wants printed, provided the application is
aware this may happen. Under RISC OS 3.6, when the bit image drivers are plotting a
JPEG image thesust do a pre-scan pass to ascertain memory requirements. In future,
pre-scanning may be used for other purposes.

Whether or not the printer driver chooses to perform a pre-scan pass should be
transparent to your application, which need only respond to all returned plotting
rectangles as normal. A pre-scan pass should not increase printing times significantly
provided that the majority of work your application does for each rectangle is to make
plotting calls, which are simply ‘swallowed’ during the pre-scan.

Your application should not rely on information such as ColourTrans tables remaining
valid between the pre-scan pass and the real pass.

From RISC OS 3.5 onwards you can enumerate the available strip types by calling
PDriver_MiscOp with the new reason code of &80000002; for details see page 5a-586.

From RISC OS 3.6 onwards, there is a new SWI PDriver_JPEGSWI used to pass on
JPEG SWIs to the printer drivers. For details, see page 5a-587.

5a-583

Changes to existing SWis

Changes to existing SWIs

PDriver_Info (page 3-611)

A new bit has been added in RISC OS 3.6 to the features word returned in R3 that
describes the printer driver:

Bit(s) Value Meaning
13 0 it does not expect aflag byte to be passed in RO for
PDriver_DrawPage (see below for details).
1 it expects aflag byte to be passed in RO for

PDriver_DrawPage (see below for details).

PDriver_DrawPage (page 3-635)

The meaning of RO has been altered in RISC OS 3.6; the top byte now holds flags.
Currently only asingle bit is used, to support pre-scanning. On entry:

RO = number of copiesto print, and flags:
bits 0 - 23 = number of copiesto print
bit 24 set O application knows about pre-scan of rectangles by printer
driver
bits 25 - 31 reserved (must be zero)

and on exit:

RO = zero if finished; else more rectangles to be printed, and:
bit 24 set O thisrectangleisfor pre-scan only

We recommend that before calling this SWI you should first call PDriver_Info (see
above) to check if the printer driver expects to receive the flag byte:

« If it does, you should set any relevant flags when calling this SWI (ie set bit 24),
even if you believe you don't need to for the particular document you are printing.
This ensures future compatibility.

« Ifitdoes not, you must not set any of the flags when calling this SWI, otherwise you
will get a very large number of copies output!

PDriver_GetRectangle (page 3-637)

The meaning of RO on exit has been extended in RISC OS 3.6 in the same way as for
PDriver_DrawPage:

RO = zero if finished; else more rectangles to be printed, and:
bit 24 set] this rectangle is for pre-scan only

5a-584

Printing

PDumperReason_SetDriver (page 3-678)
Extra bits have been added to the configuration word:

Bit M eaning when set

4 Printer does black removal (PDumperLJ) — RISC OS 3.5 onwards
5 Printer supports colour (PDumperLJ) — RISC OS 3.6 onwards

PDumperReason_AbortJob (page 3-684)

This call has been extended from RISC OS 3.5 onwards so that the printer dumper can
reset the printer should a print job be terminated (eg by Escape). R3 on entry has an extra
bit flag from RISC OS 3.5 onwards, which if set also causes R4 to be used:

R3 bit 24 sefl reset printer
R4 = pointer to copy of PDriverDP and dumper configuration data (see page 3-678)
—only if bit 24 of R3 is set

If a printer dumper is called with this bit set it must output to file the appropriate
graphics termination and reset sequences to ensure the printer is in a sensible state.

This avoids problems where a job cancelled in the middle of a graphics sequence might
leave the printer awaiting the rest of the sequence: the printer then hangs, and possibly
even wrecks the next print job by treating its start as the end of the missing sequence.

PostScript restriction on 16 or 32bpp sprites with a mask

When the PostScript printer driver plots a 16 or 32bpp sprite with a mask to a colour
printer, the masked pixels are white (not transparent), and so overwrite any graphics
underneath the sprite. This is because the PostScript imaging model does not directly
support a bitmap mask; the method used to emulate it for sprites with up to 8 bits per
pixel does not generalise to sprites with a large number of colours.

This limitation only applies when output is to a colour printer; on black-and-white
printers the sprite is reduced to 256 shades of grey, and the mask is transparent.

New palette file format in PDumperSupport

PDumperSupport has been enhanced in RISC OS 3.5 to allow better control over the
quality of the printed image. To do so it uses a new format of palette file. In order to
minimise prompting for the disc, these palette files are loaded into RMA and made
available through ResourceFS. You can modify a palette file using the !RePRO tool,
available from Oak Solutions.

5a-585

SWi Calls

SWI Calls

PDriver_MiscOp
(swi &8015A)

Returns a bit mask showing which strip types a printer dumper supports

On entry
RO = &80000002 (reason code)
R1 = number of printer dumper for which to obtain strip types bitmask
On exit
RO = supported strip types bit mask (if dumper loaded), otherwise preserved

Use

This call returns a bit mask showing which strip types a printer dumper supports (see
page 5a-582). If bit n of the mask is set, then it shows that the printer dumper can output
strip type n.

The new RISC OS 3 dumpers described in this chapter return 2_1111, and the
RISC OS 3.5 dumpers return 2_110111. Older dumpersreturn 2_111.

5a-586

Printing

PDriver JPEGSWI
(swi &8015D)

Passes JPEG SWis to the printer driver

On entry

R8 = JPEG SWI number modulo 64
All other registers as for original JPEG_... call

On exit

R8 corrupted (JPEG SWI's original R8 preserved by SpriteExtend)
All other registers preserved

Interrupts

Interrupt state is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Not defined

Use

This call passes JPEG SWiIs to the printer driver, once the printer driver has called
JPEG_PDriverintercept (page 5a-161) to enable interceptionlPE€& SWIs on
page 5a-580.

This call is for internal use only; you must not use it in your own code.

Related SWIs
JPEG_PDriverintercept (page 5a-161)

Related vectors
None

5a-587

5a-588

131 Internationalisation

Introduction and Overview

This chapter describes some minor changes to the various internationalisation modul es,
all madein RISC OS 3.5.

International module

All calls (page 3-771 onwards)

The International module has been enhanced so that from RISC OS 3.5 onwards the
strings it returns are terminated.

New countries

The following extra countries are supported from RISC OS 3.5 onwards:
Finland, Denmark, Austria, Belgium, Japan, MiddleEast, Netherlands, Switzerland,
Wales.

Territory manager

Territory_Register (page 3-801)

From RISC OS 3.5, on entry to a territory module’s SWI handler RO is now always set
to the current territory number. (If the SWI was called with a territory number of -1 to
indicate the current territory, the territory manager resolves this before calling the SWI
handler.)

On exit RO should be preserved unless it is explicitly used to return a value from the
SWI.

5a-589

New MessageTrans SWI

Territory_ConvertTimeToOrdinals (page 3-823)
Territory_ConvertTimeStringToOrdinals (page 3-825)
Territory_ConvertOrdinalsToTime (page 3-827)
Territory_SelectKeyboardHandler (page 3-831)
Territory_ReadCalendarinformation (page 3-847)

From RISC OS 3.5 onwards, these calls return the current territory in RO on exit.

New MessageTrans SWI
A new SWI was added to MessageTransin RISC OS 3.5:

« MessageTrans_Dictionary returns a pointer to the kernel’'s MessageTrans
dictionary. This call is for internal use only; see page 5a-591.

5a-590

Internationalisation

SWiI calls
MessageTrans_Dictionary
(swi &41509)

Returns a pointer to the kernel's MessageTrans dictionary

On entry

On exit

RO = pointer to the kernel's MessageTrans dictionary

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use
This call returns a pointer to the kernel's MessageTrans dictionary. (This is not the same
as the OS_PrettyPrint dictionary, as described on page 1-536.)
Since the contents of this dictionary are liable to change with each successive release of
RISC OS, this call is for internal use only; you must not use it in your own code.
This call is only available from RISC OS 3.5 onwards.

Related SWis

None

Related vectors
None

5a-591

5a-592

Part 18 — Miscellaneous

5a-593

5a-594

132

Sound

Introduction and Overview

Hardware

From RISC OS 3.6 onwards the SoundDMA module has been extended to support
16 bit sound, as well as the 8 bit p-law sound used by al earlier versions of RISC OS.
This moduleis also supplied with the 16 bit Audio Card upgrade for the Risc PC.

Machines using the new architecture all output sound using the VIDC20 video controller
— whether it is a separate chip, or integrated into the ARM 7500 chip. VIDC20 provides
two different types of sound output:

« It provides 8 bitu-law sound on 8 channels; this is fully backward compatible with
the sound provided by VIDC1 under earlier versions of RISC OS.
This is output as an analogue signal, via internal sound DACs (digital-to-
analogue converters) — just as with VIDC1.

« Italso provides 16 bit linear stereo sound (ie CD-style).

This is output as digital data, and requires an external DAC. The 16 bit Audio Card
upgrade for the Risc PC provides such a DAC; one is fitted as standard to later
designs of computer.

You may only use one of these types of sound output at a time; when 16 bit sound is
fitted, the circuitry for 8 bit sound is disconnected or absent.

Configuration

The type of hardware fitted is set in CMOS RAM (§&840S RAM allocation on

page 5a-73)using the new command *Configure SoundSystem (page 5a-615). The
configured sound hardwameust match the actual hardware present, or you will get no
sound output, and may get other unpredictable results. This configuration is read only
when the SoundDMA module is initialised; hence you cannot adjust the hardware
configuration without also re-initialising the SoundDMA module.

Under RISC OS 3.5, the default configuration is for an 8 bit sound system (ie no
external 16 bit DAC is fitted). Under RISC OS 3.6 the kernel can detect the presence of
16 bit sound hardware and sets the default configuration accordingly: for a 16 bit sound
system if it detects the hardware, and for an 8 bit sound system otherwise.

5a-595

Technical details

Technical details

The way the new SoundDMA module works depends on which type of VIDC20 sound
output it is configured to use: 8 bit or 16 hit. You can determine how the sound systemiis
configured by calling the new SWI Sound_Mode 0 (page 5a-603).

8 bit sound output

When the new SoundDMA module uses VIDC20'’s 8 bit sound output, it works just as
on earlier versions of RISC OS. The standard VIDC20 interialv DACs are used, as
with VIDCL1 and earlier versions of RISC OS.

16 bit sound output

The new features of the SoundDMA module become available when it is using
VIDC20's 16 bit sound output.

16 bit sound is generated byiaear handler, which places 16 bit linear stereo sound
samples in the sound DMA buffer. The SoundDMA module is responsible for requesting
the linear handler to fill the buffer, and for outputting the data from this buffer to the
external 16 bit DAC.

As before, the maximum size of the sound DMA buffer is one page, which is 4 Kbytes
under RISC OS 3.6. Thus the maximum number of 16 bit stereo samples in the buffer is
1K, since each stereo pair takes up 32 bits (ie 4 bytes).

Sample rates
Sample rates for the 16 bit sound system are set and stored using a sample rate index:

« The sample rate index is an integer in the rangest. thenumber ofsample
rates). As the index increases, so does the corresponding sample rate.

You should not assume any particular valuenior nor any particular binding of
index values to sample rates. Both may be affected by the sound hardware’s
configuration, and by future hardware or software developments.

For maximum portability and future compatibility, you should always fully determine
the sample rates available from the sound system before using it:

« You can find the value ofsr by calling Sound_SampleRate 0 (page 5a-611).

« Once you have done this, you can then use Sound_SampleRate 2 (page 5a-613) to
enumerate the available sample rates, or to find a match for a required sample rate.

5a-596

Sound

Other reason codes for Sound_SampleRate allow you to read and set the sample index,
and hence the sample rate:

« You can read the current sample rate index, and the corresponding sample rate, by
calling Sound_SampleRate 1 (page 5a-612).

o You can set the current sample rate index by calling Sound_SampleRate 3
(page 5a-614).

Oversampling

Any digital sound system can generate an undesirabl e high-pitched noise that is
correlated with the main signal; thisis a by-product of the digital-to-analogue
conversion process, and is more audible at lower sample rates. This high frequency
image of the output analogue signal is sometimes inaccurately called the alias.

This effect can be reduced by atechnique called oversampling. Extra samples are added
between existing samples (typically by interpolation); the new sample is then played

back at a higher rate, thus making the image noise less audible. A side effect can be a

dlight reduction in amplitude of higher frequencies; however in most cases this slight

loss of ‘treble’ is outweighed in subjective terms by the benefit of reduced image noise
level

You can make the RISC OS 16 bit sound system automatically use oversampling at all
sample rates up to and including 25kHz:

« You can configure your preference using *Configure SoundSystem (page 5a-615)

« Applications can enable or disable oversampling, overriding the configured
preference, by calling the new SWI Sound_Mode 1 (page 5a-604).

The output data stream is oversampled by a factor of two, by simple linear interpolation,
before it reaches the DACs. This consumes a small amount of processor time on each
sound system interrupt: at worst approximately 3% of a 30 MHz ARM610 processor
with a selected sample rate of 25 kHz.

Note that when you are using oversampling the maximum number of samples a linear
handler can place in the sound DMA buffer is halved to 512, so there is room for the
extra interpolated samples.

5a-597

Changes to existing SWis

Support for 8 bit sound

The new SoundDMA modul e also supports 8 bit u-law sound. The sound isgenerated in
the same way as before: the 8 bit Channel Handler generates pi-law data which it places
in the sound DMA buffer. (For full details see The Sound system on page 4-3.) The
SoundDMA module converts this data from multiple channelsin 8 bit p-law format to
two stereo channelsin 16 bit linear format. It then calls the linear handler (if any) tofill
the DMA buffer with its own sound data; the linear handler can either overwrite the
converted 8 bit sound data already in the buffer, or can mergeit with its own sound data.
All linear handlers should alow the user to configure their preference for this.

Restrictions of the 8 bit emulation

This conversion of 8 bit sound to 16 bit sound is transparent, and in general no
difference from the old 8 bit sound system will be apparent. However:

Although the 16 bit sound system provides many of the sample periods possible

under the old 8 bit sound system — including the default periodusf dSed by the
standard voice generators and many applications — there are a few less commonly
used periods for which it can only provide a close match.

The 8 bit samples must fit within the sound DMA buffer when they are converted to
16 bit stereo sound, and hence must total less than a page in size. This means that
the number of 8 bit samples is limited to 1K without oversampling, or 512 with
oversampling. Again, this is not a problem with the 8 bit default of 208 samples per
channel.

Changes to existing SWIs

5a-598

Sound_Configure (page 4-18)

When the computer is configured for 16 bit sound, this call affects both 16 bit sound and
the emulated 8 bit sound:

RO gives the number of channels for 8 bit sound, just the same as ever. It is ignored
by the 16 bit sound system, which always has two channels (the left and right stereo
pair).

R1 was originally defined as the ‘sample length (in bytes per channel)'. You should
now think of R1 as giving ‘the number of samples per channel’ for both 8 and 16 bit
sound. The two definitions are effectively the same for 8 bit sound, but the new
definition also covers 16 bit sound.

R2 sets the sample period for both 8 bit and 16 bit sound. However, the new SWiI
Sound_SampleRate (page 5a-609) is the preferred way to control sample rates for
16 bit sound.

Sound

When you have 16 bit sound configured, the values of RO and R1 must be such that 8 bit,
converted 8 hit and 16 bit sound data can al fit within a page, which is the maximum
size of the sound DMA buffer. If not, the number of samplesis set to the highest value
for which al three types of datawill fit. Also, not al sample periods can be provided; in
such cases the sample period is set to the closest match. As always, you can check the
number of samples and sample period actually set by calling Sound_Configure with null
parameters.

Linear handlers

Registering linear handlers

A linear handler registersitself with SoundDMA by calling the new SWI

Sound_LinearHandler 1 (page 5a-605). When registering, you give the address of the

handler code —which is called to fill the sound DMA buffer — and a parameter passed to

the handler in RO. Typically the parameter will be a pointer to a data area containing any

information the handler may need to perform its task. The address and parameter of the
previous linear handler (if any) are returned.

Only one linear handler can be registered with the SoundDMA module. You should
therefore only register your linear handler immediately before starting to play sound,
and should re-register the previous handler as soon as you have finished.

You can find which linear handler is currently registered by calling
Sound_LinearHandler O (page 5a-607).

How linear handlers are called

The handler is passed the address of the sound DMA buffer for it to fill with 16 bit linear
stereo sound data. Each sample is stored in a word as a pair of signed (2's complement)
16 bit values, with the right channel data in bits 0 - 15, and the left channel data in bits
16 - 31. A flag indicates if the buffer already contains sound data converted from
multiple channels in 8 bji-law format; se€upport for 8 bit sound on page 5a-598 for

more details of the action the linear handler should take in this case.

5a-599

Linear handlers

5a-600

The full conditions for entry and exit are asfollows:

On entry

RO = parameter passed in R2 to Sound_LinearHandler 1 when registering
R1 = pointer to quadword-aligned sound DMA buffer
R2 = pointer to word immediately after sound DMA buffer

R3 =flags:
bits0 - 2 initial buffer content indicator:
0 datain buffer isinvalid and must be overwritten
1 datain buffer has been converted from multiple channels
in 8 bit p-law format, and isnot all 0.
2 datain buffer isall O: if handler would generate silent

output, it may simply return.
3-7 reserved

bits8 - 31 reserved, and should be ignored
R4 = sample rate for playback, measured in units of ¥1024 Hz; for example 20 kHz

(20000 Hz) would be passed as 20000 x 1024, which is 20480000
On exit
RO - R10 may be corrupted
R11, R12, R13 must be preserved
Interrupts

Interrupts may be enabled during execution of the handler

Processor mode

Handler may be called in either IRQ mode or SV C mode
Processor mode must be preserved on exit

Sound

SWiI calls
Sound_Mode
(swi &40144)

Examines and controls the 16 bit sound system’s configuration

On entry

RO = reason code
Other registers depend on reason code

On exit

Registers depend on reason code

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

Not defined
Use
This call examines and controls the 16 bit sound system'’s configuration.
The particular action of Sound_Mode is given by the reason code in RO as follows:
RO Action Page
0 Reads the current sound system configuration 5a-603
1 Enables or disables automatic oversampling 5a-604
Related SWis
None

5a-601

Sound_Mode (SWI &40144)

Related vectors
None

5a-602

On entry

Sound

Sound_Mode 0
(swi &40144)

Reads the current sound system configuration

RO = 0 (reason code)

On exit

Use

RO = sound system capabilities:

00 the sound system only supports 8 hit p-law sound; R1is 0, and R2
preserved

10 the sound system supports 16 bit sound, and also 8 hit p-law sound
by emulation; other registers as below

R1 = the configuration stored in SoundSystem bits at offset 132 of CMOS RAM

(see CMOS RAM allocation on page 5a-73):

bits0- 1 16 bit sound control configuration, from bits5 - 6
bits2- 3 reserved

bit 4 16 bit sound quality configuration, from bit 7
bits5- 31 reserved

This call readsthe current sound system configuration. Any new sound applications you
write — particularly those capable of 16 bit sound output — should always call this SWI to
determine whether the configured sound output hardware supports 16 bit sound output.

If the configured hardware does not support 16 bit sound output, RO is 0 on return.
You should only use the original sound system SWIs — in particular
Sound_Configure — to determine and control sound output parameters such as
sampling rate. Other Sound_Mode reason codes are not available, nor are SWIs in
the range &40145 - &4017F inclusive. The sound system will behave in a fully
backward compatible manner.

If the configured hardware does support 16 bit sound output, RO is 1 on return. You
can use all Sound_Mode reason codes, and the Sound_LinearHandler and
Sound_SampleRate SWIs. R1 gives an indication of any external sound clock
hardware facilities present, and the configured state of automatic oversampling. A
subset of the original sound system’s sample rates are availabResséetions of

the 8 bit emulation on page 5a-598.

5a-603

Sound_Mode 1 (SWI &40144)

Sound _Mode 1
(swi &40144)

Enables or disables automatic oversampling

On entry

RO = 1 (reason code)
R1 = new state of automatic linear 2x oversampling: 0 O disabled, 1 O enabled

On exit
RO preserved
R1 = previous state of automatic linear 2x oversampling: 0 O disabled,
10 enabled
Use

Thiscall enables or disablesautomatic linear 2x oversampling, overriding the default set
in CMOS RAM by * Configure SoundSystem (page 5a-615).

For a description of oversampling, see Oversampling on page 5a-597.

5a-604

Sound

Sound_LinearHandler
(swi &40145)

Examines and controls the 16 bit linear stereo sound handler

On entry

RO = reason code
Other registers depend on reason code

On exit

RO preserved
Other registers depend on reason code

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call examines and controls the 16 bit linear stereo sound handler.

The particular action of Sound_LinearHandler is given by the reason codein RO as

follows:

RO Action

0 Returns the current 16 bit linear stereo sound handler
1 Registers or removes the 16 bit linear stereo sound handler

Page
5a-607
5a-608

You must not use this call unless 16 bit sound hardware is configured, as determined by
apreceding call of Sound_Mode O (see page 5a-603).

5a-605

Sound_LinearHandler (SWI &40145)

Related SWis
None

Related vectors
None

5a-606

Sound

Sound_LinearHandler O
(swi &40145)

Returns the current 16 bit linear stereo sound handler

On entry
RO = 0 (reason code)

On exit

RO preserved
R1 = pointer to current handler code, or O if no handler isinstalled
R2 = parameter passed in RO to current handler, or —1 if no handler is installed

Use

This call returns the current 16 bit linear stereo sound handler, giving the address of the
handler code, and the parameter passed to it in RO.

5a-607

Sound_LinearHandler 1 (SWI &40145)

5a-608

Sound_LinearHandler 1
(swi &40145)

Registers or removes the 16 bit linear stereo sound handler

On entry

RO = 1 (reason code)
R1 = pointer to new handler code, or 0 to remove the handler
R2 = parameter passed in RO to handler, or -1 if removing the handler

On exit

Use

RO preserved
R1 = pointer to previous handler code, or 0 if no handler was installed
R2 = parameter passed in RO to previous handler, or —1 if no handler was installed

This call registers or removes the 16 bit linear stereo sound handler. When registering,
you give the address of the handler code — which is called to fill the sound DMA buffer
— and a parameter passed to the handler in RO. The address and parameter of the
previous linear handler (if any) are returned.

Only one linear handler can be registered with the SoundDMA module. You should
therefore only register your linear handler immediately before starting to play sound,
and should re-register the previous handler as soon as you have finished.

Determine/control sound sample rate

On entry

RO = reason code
Other registers depend on reason code

On exit

RO preserved
Other registers depend on reason code

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call controls the sound sample rate.

Sound

Sound_SampleRate
(swi &40146)

The particular action of Sound_SampleRate is given by the reason code in RO as

follows:
RO Meaning Page
0 Reads the number of available sample rates 5a-611
1 Reads the current sample rate index, and the corresponding 5a-612
samplerate
2 Reads the sampl e rate corresponding to asamplerateindex 5a-613
3 Sets the current sampl e rate index 5a-614

5a-609

Sound_SampleRate (SWI &40146)

You must not use this call unless 16 bit sound hardware is configured, as determined by
apreceding call of Sound_Mode 0 (see page 5a-603).

Related SWiIs
None

Related vectors
None

5a-610

Sound

Sound_SampleRate O
(swi &40146)

Reads the number of available sample rates

On entry
RO = 0 (reason code)

On exit

RO preserved
R1 = number of available sample rates, or nsr (see page 5a-596)

Use
This call reads the number of available sample rates, or nsr.

You need to know this value to ensure that the sample rate index you must pass to most
other Sound_SampleRate reason codesisin the required range 1 - nsr (see Samplerates
on page 5a-596).

5a-611

Sound_SampleRate 1 (SWI &40146)

Sound_SampleRate 1
(swi &40146)

Reads the current sample rate index, and the corresponding sample rate

On entry
RO = 1 (reason code)

On exit

RO preserved
R1 = current sample rate index, in the range 1 - nsr (see page 5a-596)
R2 = current sample rate, in units of %1024 Hz

Use

This call reads the current sample rate index, and the corresponding sample rate,
measured in units of %1024 Hz. For example a sample rate of 20 kHz (20000 Hz) would
be returned in R2 as 20000 x 1024, which is 20480000.

5a-612

Sound

Sound_SampleRate 2
(swi &40146)

Reads the sampl e rate corresponding to a sample rate index

On entry

RO = 2 (reason code)
R1 = samplerate index to be read, in the range 1 - nsr (see page 5a-596)

On exit

RO, R1 preserved
R2 = sample rate corresponding to the given sample rate index, in units of ¥1024 Hz

Use

This call reads the sample rate corresponding to a sample rate index, in units of ¥1024
Hz. For example a sample rate of 20 kHz (20000 Hz) would be returned in R2 as
20000 x 1024, which is 20480000.

Onceyou have called Sound_SampleRate 0 to find the number of available sample rates
(nsr), you can then:

o Enumerate the available sample rates by repeatedly making this call with R1 set to
all validindexes (ie 1 - nsr inclusive).

o Find aparticular sample rate (or the closest approximation, if acceptable) by using
this call in a ‘binary chop’ algorithm, since sample rates increase monotonically
with increasing sample rate index.

5a-613

Sound_SampleRate 3 (SWI &40146)

Sound_SampleRate 3
(swi &40146)

Sets the current sample rate index

On entry

RO = 3 (reason code)
R1 = new sample rate index, in the range 1 - nsr (see page 5a-596)

On exit

RO preserved
R1 = previous sample rate index
R2 = previous sample rate, in units of ¥1024 Hz

Use
This call sets the current sample rate index.

It returns the previous sample rate index, and the corresponding sample rate measured in
unitsof ¥1024 Hz. For example asample rate of 20 kHz (20000 Hz) would be returned in
R2 as 20000 x 1024, which is 20480000.

5a-614

Sound

* Commands
*Configure SoundSystem

Sets the configured value for the type of sound hardware to use

Syntax
*Configure SoundSystem 8bit | 16bit [oversanpled] | n

Parameters
8bit standard 8 bit pu-law sound, as on older hardware
16bi t standard 16 bit sound, as on newer hardware or Acorn 16 bit
Audio Card
over sanpl ed perform sampleinterpolation to keep samplerate over 24kHz
n value 0 - 7 to store in SoundSystem bits of CMOS RAM (at
offset 132, bits 5 - 7: see CMOS RAM allocation on
page 5a-73)
Use

*Configure SoundSystem sets the configured value for the type of sound hardware to
use, and whether to use oversampling for 16 bit sound.

For a description of oversampling, see Oversampling on page 5a-597.

Example
*Configure SoundSystem 16bit oversanpl ed

Related commands
None

5a-615

*Configure SoundSystem

5a-616

133 CompressJPEG

Introduction and Overview

The CompressJPEG module is available from RISC OS 3.6 onwards. It provides SWIs
with which you can compress raw image datainto a JPEG image. It isa port of release 5
of the Independent JPEG Group’s software.

The module is not in the RISC OS 3.6 ROM, but is instead held in the System
application. If you wish to use the module in a program, you should first use the
following command to ensure it is loaded:

RMEnsur e ConpressJPEG 0. 00 RMLoad System Modul es. JConphod

To compress raw image data into a JPEG image, you start by calling
CompressJPEG_Start (page 5a-619), which sets up the compression environment. You
then compress each row of the source image with a separate call to
CompressJPEG_WriteLine (page 5a-621). Finally you finish the compression by calling
CompressJPEG_Finish (page 5a-622).

5a-617

Technical details

Technical details

How JPEG images are compressed

JPEG files encode colour picturesas YUV (Y =intensity, U and V are colour) data.
Compressing involves the following steps:

5a-618

Convert RGB datato YUV.
Throw away 3 out of 4 of the U and V pixels.

Convert 8x8 tiles of Y, U and V values through a Discrete Cosine Transform, into
an 8x8 square of frequency coefficients.

Discard coefficients which are zero, or close to zero. Thiswill tend to change the
visual appearance of the picture very little.

Reduce the accuracy with which the remaining coefficients are held (known as
‘gquantisation’). Again, this changes the appearance very little. The amount by
which this is done, controls the compression factor of the image. By now, most of
the coefficients will be zero.

Reorder the 64 coefficients in a zig-zag order, which increases the average length of
runs of zeros in the coefficient block.

Huffman-encode the resulting stream of values.

(Incidentally, decompression involves reversing these steps.)

CompressJPEG

SWiI calls
CompressJPEG_Start
(swi &4A500)

Starts the JPEG compression process, setting up various parameters for it

On entry

RO = pointer to buffer for JPEG data
R1 = size of JPEG data buffer
R2 = pointer to block of parameters:
+0 width of image in pixels
+4 height of image in pixels
+8 quality value (0 - 100): lower quality resultsin asmaller image
+12 number of 8 bit components in source:
30 24 bit colour, 1 O 8 hit greyscale
+16 horizontal DPI of image, or O if unknown
+20 vertical DPI of image, or 0 if unknown
R3 = pointer to workspace area, or 0 for the CompressJPEG module to allocate its
own workspace from the RMA
R4 = size of workspace area (if R3 # 0)

On exit
RO = JPEG tag, to be passed to other CompressIPEG SWIs

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use
This call starts the JPEG compression process, setting up various parameters for it.

5a-619

CompressJPEG_Start (SWI &4A500)

The buffer for the JPEG data should be as large as possibl e, since the JPEG compression
routines cannot guarantee to compress the image by a fixed amount.

If you wish to supply your own workspace area, its required size for a colour (24 bit)
imageis:
20000 + ((image width rounded up to amultiple of 16) x 30)

and its required size for agreyscale (8bit) imageis:
20000 + ((image width rounded up to amultiple of 16) x 9)

An error is returned if the workspace area becomes full.

Related SWis
CompressJPEG_WriteLine (page 5a-621), CompressJPEG_Finish (page 5a-622)

Related vectors
None

5a-620

CompressJPEG

CompressJPEG_WriteLine
(swi &4A501)

Compresses one row of source pixelsinto the JPEG buffer

On entry
RO = JPEG tag
R1 = pointer to arow of pixels:
For colour: a buffer of continuous RGB values — ie a byte stream of
the format R, G, B, R, G, B...
For greyscale: a buffer of continuous 8 bit gray values
On exit

RO, R1 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

Not defined
Use
This call compresses one row of source pixels into the JPEG buffer. It should be called
once for each row of the source data.
An error is returned if the JPEG buffer becomes full.
Related SWis

CompressJPEG_Start (page 5a-619), CompressJPEG_Finish (page 5a-622)

Related vectors
None

5a-621

CompressJPEG_Finish (SWI &4A502)

5a-622

CompressJPEG_Finish
(swi &4A502)

Finishes the JPEG compression process, returning the size of the complete image

On entry
RO = JPEG tag

On exit
RO = size of JPEG image within the buffer

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call finishes the JPEG compression process, returning the size of the complete
image. Any workspace claimed by the CompressJPEG module for the compression is
released.

Related SWiIs
CompressJPEG_Start (page 5a-619), CompressJPEG_WriteLine (page 5a-621)

Related vectors
None

CompressJPEG

Example program

The pseudo-code below shows you how you might convert a 32 bpp sprite into a JPEG:

/* Pseudo C code for converting a 32bpp sprite to a JPEG */

Al l ocate buffer for JPEG = JPEG buffer;
Al | ocate buffer for workspace = workspace_buffer;
Al locate buffer for |ine of source pixels = line_buffer;

ar gunent _bl ock argunents;

argunents.wi dth = sprite_wi dth_i n_pixels;
argunents. hei ght = sprite_hei ght_i n_pi xel s;
argunents.quality = quality,;

argunents. conponents = 3;

argunents. horizontal _dpi = O;
argunents.vertical _dpi = 0;

sprite_pointer = start_of_data_within_sprite;

JPEG tag = ConpressJPEG Start (JPEG buffer, JPEG buffer_size, argunents,
wor kspace_buf fer, workspace_buffer_si ze);

for loop = 1 to sprite_height_in_pixels {
convert_sprite_data_to_rgb(sprite_pointer, line_buffer);
ConpressJPEG Wi teLine(JPEG tag, |ine_buffer);
sprite_pointer += sprite_w dth_i n_words;

}

Conpr essJPEG _Fi ni sh(JPEG_ t ag) ;

5a-623

5a-624

134 Expansion card support

Introduction and Overview
The expansion card interface has been enhanced in several ways for RISC OS 3.5. It
now supports:
o 32 bit wide data paths
o adirectly mapped area of 16MB per card, known as EASI space
o aninterface dedicated to a network card
o Direct Memory Addressing (DMA).

This chapter covers the changes that have been made in order to support these
enhancements; all these changes apply from RISC OS 3.5onwards.

5a-625

Technical details

Technical details

Using EASI space

EASI spaceisan extension of the existing space giving adirectly mapped areaof 16MB
for each expansion card. The address of this spaceis set in the RISC OS ROM.

ROMs in EASI space

The expansion card busis electrically capable of having ROMs (or EPROMS)
connected, which RISC OS can then read. The ROMs are only 8 bitswide and are
copied once at start up into RAM.

Under earlier versions of RISC OS, this was always done using a loader and paging
register. However, from RISC OS 3.5 onwards there is no need for thisif aROM is
mapped into EASI space, since RISC OS does the loading itself. Mapping a ROM into
EASI space has other advantages: access to the entire ROM address space is faster, and
not having loaders frees-up ROM space.

The format for aROM in EASI space is the same as that for aROM in the normal
expansion card space; it must contain the same ECId information. However, since the
sizerestriction islifted there is no need to have a second Chunk directory accessed
through the loader. Note that although the ROM isin the EASI space, the interrupt
relocations are still relative to the base of expansion card space.

Determining where a ROM is to be loaded

RISC OS will cope with aROM in only one of expansion card space and EASI space,
not both at once. When determining which is present, it first checksfor aROM in
expansion card space by reading location O. If bit 1islow it assumesthereisaROM in
expansion card space, and does not access EASI space.

If youwish to useaROM in EASI space, it isvital that your expansion card either does
not respond to reads of location O, or provides datawith bit 1 set high. Failure to do this
will make RISC OS read spurious data as it attempts to load a non-existent ROM from
expansion card space, and ignores the ROM in EASI space.

It also follows that you must not map read-sensitive hardware into location O, or its state
may be altered as RISC OS attemptsto load ROMs at boot time.

Finding EASI space

You can read the logical and physical addresses of the areaand its size by calling
Podule_ReadInfo (page 5a-631). The returned addresses are stable as long as the
machine configuration is stable, and therefore only need be read once, after areset.

5a-626

The network card

Expansion card support

ROMs on the network card

RISC OS 3.5 — and later versions — loads the ROM on a network card itself, in a similar
manner to ROMs mapped into EASI space. For this loader to work, it is vital that your
network card conforms to the current hardware specification.

The format for a ROM on a network card is also the same as that for a ROM in the
normal expansion card space. It must contain the same ECId information; the interrupt
relocations must be present and all be set to zero. Since the loader is effectively loaded
before the enumeration begins, there is again no need to have a second Chunk directory.

SWis and the network card

Most SWIis work with the network card, simply by quoting its ROM section when
calling (seeROM sections on page 5a-628). You should note the following:

Podule_ReadBytes (page 4-145) reads the network ROM image using the loader
built in to RISC OS.

Podule_WriteBytes (page 4-147) will not accept the network ROM section, because
its ROM space is treated as read only.

Podule_CallLoader (page 4-149) will not accept the network ROM section, because
the loader isn't valid.

Podule_RawRead (page 4-151) and Podule_RawWrite (page 4-153) access the
network card’s device address space.

Calls such as Podule_HardwareAddress (page 4-155) and
Podule_HardwareAddresses (page 4-159) return the device address.

5a-627

ROM sections

ROM sections

New ROM section numbers

ROM section numbers have been alocated for a further four expansion cards, and for
the network card. The network card is the highest numbered one, and islast in the
printout from * Podules.

The new numbers are:

ROM section Meaning

Expansion card 4
Expansion card 5
Expansion card 6
Expansion card 7
Network card

O~NO 01

New ways of specifying the ROM section

All expansion card SWIs (with the single exception of Podule_ReturnNumber) use R3
to specify which expansion card or extension ROM to access. Some calls can access
both, and are documented as accepting a ROM section number; others can access only
expansion cards, and are documented as accepting an expansion card slot number (iea
subset of ROM sections).

Aswell as ROM section numbers, these SWIs now also accept a hardware base address
(asreturned by Podule_HardwareAddress or Podule HardwareAddress), whether or not
it is combined with a CMOS address.

The ‘formal definition’ of what is acceptable in R3 is as follows (demonstrated by the
following pseudo code):

CASE
VWHEN Val ue = -1: System ROM ==> Error "System ROM not acceptabl e as
Expansi on Card or Extension ROM nunber"
WHEN Val ue <= -2 AND >= -16: Extension ROM -Val ue-1)
VWHEN Val ue >= 0 AND <= 31: Expansi on Card(Val ue)
VHEN Val ue AND &FFE73000 = &03240000: Expansion Card((Val ue AND &C000)>>14)
WHEN Val ue AND &FFE73000 = &03270000: Expansion Card(4+(Val ue AND &0000) >>14)
VWHEN Val ue AND &FFFF3FFF &03000000: Expansi on Card((Val ue AND &C000) >>14)
WHEN Val ue AND &FFFF3FFF = &03030000: Expansion Card(4+(Val ue AND &C000) >>14)
VWHEN Val ue >= &70 AND <=&7F: Expansi on Card((Val ue AND &C) >>2)
WHEN Val ue >= &3C AND <=&4F: Expansion Card(7-((Value AND &C)>>2))
VWHEN Val ue = EASI Logi cal Base(0..7): Expansion Card(0..7)
WHEN Val ue = EASI Physi cal Base(0..7): Expansion Card(0..7)
OTHERW SE Error "Bad Expansion Card or Extension ROM nunber"
ENDCASE

5a-628

Expansion card support

Changes to the combined hardware address

The definition of the combined hardware address has had to be changed to allow for the
introduction both of the network card and of processors with 32 bit addressing.

The combined hardware address consists of the base address of CMOS RAM and the

base address of an expansion card or extension ROM, OR’d together. The bits that are
set in one address can be guaranteed unused in the other, because the two addresses are
so widely separated. By using two different masks, the two addresses can be extracted.

In earlier versions of RISC OS:

« Allexpansion cards had a base address above &1000, and so the lower 12 bits of the
combined address were used for the CMOS base address.

o The processor used 26 bit addressing, so the top 6 bits of the combined address
were unused

However, under RISC OS 3.5 and later:

« The network card has a base address below &1000, and so now only the lower
10 bits of the combined address are used for the CMOS base address (which is still
sufficient).

« The processor supports 32 bit addressing, so the combined address now uses all
32 bits.

The new definition is thus:

Bits Meaning
0-9 base address of CMOS RAM - expansion cards only (10 bits)
12-32 bits 12 - 32 of base address of expansion card/extension ROM

All this has really done is to move the boundary between the two parts of the combined
address. Existing expansion cards and extension ROMs will continue to work, because
their base address under RISC OS 3.5 will still only have bits 12 - 25 set, as before.

These changes apply both to SWIs returning combined hardware addresses, and to the
entry points for loaders. Entry points in new expansion cards should now extract the
hardware base address by masking the incoming register value thus:

LDR Rnmv, =2_00000000000000000000001111111111
Bl C Rba, Rha, Rmv

or thus:

LDR Rnv, =2 1111112111112112111111110000000000
AND Rba, Rha, Rnv

and should obtain the CMOS base address thus:

5a-629

Simple expansion card descriptions

LDR Rnv, =2 111111111112111111111110000000000
BI C Rca, Rha, Rmv

or thus:

LDR Rnv, =2 00000000000000000000001111111111
AND Rca, Rha, R

Simple expansion card descriptions

Some expansion cards use only asimple ECId, where the product isidentified by a4 bit
ID field unique to that product. However, there is no way of providing atextual
description of the product. Support for this has been added from RISC OS 3.5 onwards.

The description isheld in thefile:
Resour ces: $. Resour ces. Podul e. Messages

It islooked up as atoken consisting of the string Si npl e followed by asingle
hexadecimal digit giving the ID field (which must be 1 - F). For example, thelinethatis
looked up for an ID field of 1is:

Si npl el: Acorn Econet

This method is used to extend * Podules (to return a description of simple expansion
cards. The description can also be read using Podule_ReadInfo.

New chunk type for device data

5a-630

A new chunk type has been defined for device data (see Operating System I dentity Byte
on page 4-129). The value 9 indicates atwo byte chunk used to store a CRC of the
ROM, typically only used by proprietary diagnostic and test software.

Expansion card support

SWI calls

Podule ReadInfo
(swi &4028D)

This call returns a selection of data specific to a given expansion card

On entry

RO = bitmask of required results (see below)

R1 = pointer to buffer to receive word aligned word results
R2 = length in bytes of buffer

R3 = ROM section (see page 4-133 and page 5a-628)

On exit

RO, R1 preserved
R2 = length of results
R3 preserved

Interrupts

Interrupt statusis unaltered
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy

SWI is re-entrant

Use

Thiscall returns a selection of data specific to the given expansion card. Theinformation
required is specified by bit flags. The datais returned in single words, which are placed
into the user supplied buffer at word intervals, in the same order as the bit flags (ie data
for the lowest bit set is at the lowest address).

5a-631

Podule_ReadInfo (SWI &4028D)

5a-632

The bit flags are;

Bit Valueto return when set

0 Expansion card/Extension ROM number

1 Normal (synchronous) base address of hardware
2 CMOS address

3 CMOSsizein bytes

4 Extension ROM or network ROM base address
5 Expansion card ID

6 Expansion card product type

7 Combined hardware address

8 Pointer to description (zero for no description)
9 Address of EASI space

10 Size of the EASI space in bytes

11 Logical number of the primary DMA channel
12 Logical number of the secondary DMA channel
13 Address of Interrupt Status Register

14 Address of Interrupt Request Register

15 Address of Interrupt Mask Register

16 Interrupt Mask value

17 Device Vector number (for IRQ)

18 Address of FIQ as Interrupt Status Register

19 Address of FIQ as Interrupt Request Register
20 Address of FIQ as Interrupt Mask Register

21 FIQ as Interrupt Mask value

22 Device Vector number (for FIQ as IRQ)

23 Address of Fast Interrupt Status Register

24 Address of Fast Interrupt Request Register

25 Address of Fast Interrupt Mask Register

26 Fast Interrupt Mask value

27 Ethernet address (low 32 hits)

28 Ethernet address (high 16 bits)

29 Address of MEMC space (zero for no space)
30- 31 Reserved (must be zero) — error if set

The description strings may be in temporary buffers (for example, MessageTrans error
buffers) so it is wise to copy them to private workspace before calling any other SWis.

When updating any of the nine interrupt registers it is essential that both IRQ and FIQ
are disabled for the duration.

This SWI supersedes other expansion card SWIs such as Podule_HardwareAddress.

This call is only available from RISC OS 3.5 onwards.

Expansion card support

Related SWis

Podule_ReadID (page 4-139), Podule ReadHeader (page 4-140),
Podule_HardwareAddress (page 4-155), Podule HardwareAddresses (page 4-159),
Podule_ReturnNumber (page 4-161)

Related vectors
None

5a-633

Podule_SetSpeed (SWI &4028E)

Podule_SetSpeed
(swi &4028E)

Changes the speed of access to expansion card hardware

On entry

RO = new speed required:
00 Nochange, 10 IOMD+ timing type A, 2 0 10OMD+ timing type B
30 IOMD+ timing type C, 4 0 10OMD+ timing type D

R3 = ROM section (see page 4-133 and page 5a-628)

On exit
RO = previous speed setting
R3 preserved

Interrupts

Interrupt statusis unaltered
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
SWI isre-entrant

Use

This call changes the speed of accessto expansion card hardware. The kernel initialises
all expansion cards’ access speed to type A.

This call is only available from RISC OS 3.5 onwards.

Related SWis
None

Related vectors
None

5a-634

Expansion card support

Application Notes

Reading the machine supplied value for the Ethernet address should ideally be carried
out using the following code. Note that thisis not the only way to get the required result,
but it is the recommended way:

Get Et her net Addr ess

; Entry;
; R3 ==> Any recogni sabl e part of podul e addressing

;o Exitg
; RO ==> Low 32 bits of the Ethernet address
; Rl ==> High 16 bits of the Ethernet address

STMD sp!, { r0-r2, r4, Ir }

MOV r0, &18000000 ; Bits for read high and | ow

MoV rl, sp ; Point to the buffer

MoV r2, #8 ; Size of buffer

SW XPodul e_Readl nf o

LDWCFD sp!, { r0-r2, r4, pc } ; Return with results if OK

MoV r4, r0 ; Save the original error

MoV ro, #0 ; Start at the first chunk
Loop

SW XPodul e_Enuner at eChunks

BVS ErrorExit

TEQ ro, #0

BEQ ErrorExit ; End of list, so not found

TEQ r2, #&F7 ; Ethernet Address?

BNE Loop

TEQ rl, #6 ; Wong size is a failure

BNE ErrorExit

SUB ro, r0, #1 ; Back to the chunk we I|iked

MoV r2, sp ; Pass in the data pointer

sSw XPodul e_ReadChunk

LDWCFD sp!, { r0-r2, r4, pc } ; Return with results if OK
ErrorExit

cwP pc, #&80000000 ; Set V

STR r4, [sp, #0] ; Original error Podul e_Readl nfo

LDVD sp!, { r0-r2, r4, pc }

5a-635

5a-636

135 Joystick module

Introduction and Overview

The Joystick module has been extended in RISC OS 3.6 to provide support for PC-style
analogue joysticks, aswell as the Atari-style digital joysticks supported by earlier
versions of RISC OS.

Support has also been added for calls used with analogue input devices on older Acorn
machines.

5a-637

Technical details

Technical details

Changes to existing SWIs

Joystick_Read (page 4-218)

Joystick_Read has been extended to support reason codes. In RISC OS 3.6 these are
used to specify the format in which to return the read values: 8 bit, or 16 bit (available
for analogue only). For full details, see page 5a-647.

New SWiIs

Joystick calibration

Different analogue joysticks will output different voltages when in the same position.
Two new SWIs have been added to calibrate the voltages, so that all analogue joysticks
return consistent values when their position is read. These are:

« Joystick CalibrateTopRight (page 5a-651)
o Joystick_CalibrateBottomL eft (page 5a-651)

OS_Byte calls
You should also see OS Byte calls on page 5a-639 for details of OS_Byte calls added.

Acorn 1/O expansion card compatibility

Previoudly, analogue input devices could be connected to aRISC OS computer using the
Acorn I/O Podule’s ADC port.

Pinout of connectors

The old I/O Podule and the new joystick interface use the same type of connector.
However, the pinout used by a PC-style joystick — and hence by the new joystick
interface — differs from that used by the I/O Podule’s ADC port. You will therefore need
an adaptor cable to connect devices intended for the old 1/O Podule to the new joystick
interface.

5a-638

Joystick module

Backward compatibility of software

The I/O Podule provides various OS_Byte calls and the BASIC ADVAL command to
support its ADC port. If thereis no I/O Podule present then the Joystick module
providesthe same calls, which instead access the joystick interface (provided it has been
configured for anal ogue input).

OS Bytecalls
The OS_Byte calls provided are:

OS Byte 16 (page 5a-640), which stores the number of channels to be sampled

OS Byte 17 (page 5a-641), which returns to the caller, doing nothing (rather than
forcing an ADC conversion, as on the I/O Podul€)

OS Byte 128, 0-4 (page 5a-642), which returns the switch state and last channel
converted, or a channel’s uncalibrated position

OS_Byte 188 (page 5a-644), which reads the current channel
OS_Byte 189 (page 5a-645), which reads the number of channels to be sampled
OS_Byte 190 (page 5a-646), which reads the resolution of conversion.

Differences between the 1/0 Podule’s hardware and the joystick interface’s hardware
mean that not all the OS_Byte calls provide identical functionality in both
implementations. However, the vast majority of /0 Podule software should still run
using the joystick interface, without change.

TheBASIC ADVAL keyword

ADVAL is a BASIC function that takes a single parameter. The Joystick module adds
support for parameters 0 - 4:

ADVAL (0) returns an integer giving the state of switch 0 on joysticks O (in bit 0)
and 1 (in bit 1).

ADVAL (1) returns an integer giving the raw position of channel 1; this is
uncalibrated, in the range 0 - 65535.

Similarly, ADVAL (2), (3) and (4) return respectively the raw position of channel 2,
3and 4.

All other ADVAL parameters continue to work in the same way as always; they are
documented in thBBC BASIC Reference Manual.

5a-639

SWi calls

SWI calls
OS_ Byte 16
(swi &06)

Stores the number of channels to be sampled

On entry

RO = 16 (reason code)
R1 = number of channelsto be sampled (O - 4)

On exit
RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call storesthe number of channelsto be sampled. If the value passed is greater than
4, it is stored as 4. This stored value can be read using OS_Byte 189.

(Onthel/O Podulethis call also set the number of channelsto be sampled; but thisis not
possible on the joystick interface’s hardware.)

Related SWis
OS_Byte 189 (page 5a-645)

Related vectors
None

5a-640

Joystick module

OS_Byte 17
(swi &06)

Returns to the caller, doing nothing

On entry

RO = 17 (reason code)
R1 = channel number on which to force ADC conversion (0 - 4) — not implemented

On exit
RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

Not defined
Use
This call returns to the caller, doing nothing.
(On the 1/0 Podule this call forced an ADC conversion on the given channel; but this is
not possible on the joystick interface’s hardware.)
Related SWis

None

Related vectors
None

5a-641

OS_Byte 128, 0-4 (SWI &06)

OS_Byte 128, 0-4
(swi &06)

Returns the switch state and last channel converted, or a channel’s uncalibrated position

On entry

RO = 128 (reason code)

R1 = sub-reason code:
0 return switch state and number of last channel converted
1-4 channel number for which to return position

On exit

RO preserved

R1 = state of switch 0 on joysticks O (in bit 0) and 1 (in bit1) —if R1=1 on entry;
or low byte of 16 bit uncalibrated position for channel given in R1 on entry

R2 = number of last channel converted - if R1=1 on entry;
or high byte of 16 bit uncalibrated position for channel given in R1 on
entry

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call returns the switch state and last channel converted, or a channel’s uncalibrated
position, depending on the value passed in R4:

« If R4 is zero on entry, this call returns the state of one switch on each of the first two
joysticks; the reason only two values are returned is for backward compatibility
with the 1/0O Podule software. This call also returns the number of the last channel
used for ADC conversion.

5a-642

Joystick module

« If R4isachannel number on entry (ie 1 - 4), thiscall instead returns the
uncalibrated position of that channel, in the range 0 - 65535.

(On the I/O Podule this call does the same.)
For details of other OS_Byte 128 sub-reason codes, see page 1-170.

Related SWis
None

Related vectors
None

5a-643

OS_Byte 188 (SWI &06)

5a-644

Reads the current channel

On entry
RO = 188 (reason code)

On exit

RO preserved
R1 = current channel (1 - 4)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use
This call reads the current channel.
(On the 1/O Podule this call does the same.)

Related SWis
None

Related vectors
None

OS_Byte 188
(swi &06)

Joystick module

OS_Byte 189
(swi &06)

Reads the number of channels to be sampled

On entry
RO = 189 (reason code)

On exit

RO preserved
R1 = number of channelsto be sampled (0 - 4)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use
This call reads the number of channels to be sampled, as stored using OS _Byte 16.
(On the 1/0O Podule this call does the same.)

Related SWis
OS Byte 16 (page 5a-640)

Related vectors
None

5a-645

OS_Byte 190 (SWI &06)

5a-646

OS_Byte 190
(swi &06)

Reads the resolution of conversion

On entry
RO = 190 (reason code)

On exit

RO preserved
R1 = 0 (default conversion, which is 16 bit)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call reads the resolution of conversion. Thisis aways returned as 0, meaning the
default for the hardware, which is 16 bit.

(Onthel/O Podulethiscall can return O for the default (which for its hardwareis 12 bit),
or 8 for 8 hit conversion, or 12 for 12 bit conversion; however, hardware limitations
mean that conversion can only be guaranteed to 8 hits.)

Related SWis
None

Related vectors
None

Joystick module

Joystick_Read
(swi &43F40)

Returns the state of ajoystick

On entry
RO = joystick number and reason code:
bits0- 7 joystick number (0 O first joystick, 1 0 second, etc)
bits8 - 15 reason code
bits 16 - 31 reserved (must be zero)

On exit

Registers depend on reason code

Interrupts

Interrupt statusis unaltered
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy

Not defined
Use
This SWI is used to obtain the state of the requested joystick. The format in which the
stateis returned is set by the reason code in bits 8 - 15 of RO:
Reason Meaning Page
0 Returnsthe 8 bit state of adigital or analogue joystick 5a-649
1 Returns the 16 bit state of an analogue joystick 5a-650
Related SWIs
None

5a-647

Joystick_Read (SWI &43F40)

Related vectors
None

5a-648

Joystick module

Joystick Read O
(swi &43F40)

Returnsthe 8 hit state of adigital or analogue joystick

On entry

On exit

Use

RO = joystick number and reason code:
bits0- 7 joystick number (0 O first joystick, 1 0 second, etc)
bits8 - 15 0 (reason code)
bits 16 - 31 reserved (must be zero)
RO = 8 bit joystick state:
bits0- 7 signed Y value in the range —127 (down) to 127 (up);
for a single switch joystick, —64 down, 0O rest, and
640 up
bits 8 - 15 signed X value in the range —127 (left) to 127 (right);
for a single switch joystick, —64 left, 00 rest, and
640 right
bits 16 - 23 switches (eg fire buttons) starting in bit 16;
unimplemented switches return O
bits 24 - 31 reserved

This reason code returns the 8 bit state of a digital or analogue joystick.

For an analogue joystick, this call reads the last conversion made; it does not force a
conversion itself. Furthermore, conversions are not started until you first call this SWI.
That first call always returns X =0, Y =0, and no switches closed, since there is no
completed conversion to read.

Applications which are only interested in state (up, down, left, right) should not simply
test the bytes for positive, negative or zero. We recommend that the ‘at rest’ state should
span a middle range, say from —32 to 32, since you cannot always rely upon analogue
joysticks to produce a particular value when at rest.

This reason code is available from RISC OS 3 onwards. (In earlier versions of the
RISC OS 3 Programmer’s Reference Mantmaiesreferred to simply as Joystick Read,
since reason codes were not in use.)

5a-649

Joystick_Read 1 (SWI &43F40)

Joystick_Read 1
(swi &43F40)

Returns the 16 hit state of an analogue joystick

On entry

On exit

Use

5a-650

RO = joystick number and reason code:
bits0 - 7 joystick number (0 O first joystick, 1 0 second, etc)
bits 8 - 15 1 (reason code)
bits 16 - 31 reserved (must be zero)
RO = 16 bit joystick position:
bits0- 7 signed Y valuein the range 0 (down) to 65535 (up)
bits8 - 15 signed X value in the range O (left) to 65535 (right)
R1 = joystick switch state:
bits0- 7 switches (eg fire buttons) starting in bit O;
unimplemented switches return O
bits8 - 31 reserved

This reason code returns the 16 hit state of an analogue joystick.

For an analogue joystick, this call reads the last conversion made; it does not force a
conversion itself. Furthermore, conversions are not started until you first call this SWI.
That first call dwaysreturns X =0, Y =0, and no switches closed, since thereisno
completed conversion to read.

Applications which are only interested in state (up, down, left, right) should not simply

test the bytes for minimum, middle, and maximum values. We recommend that the ‘at
rest’ state should span a middle range, say from 24576 (&6000) to 40960 (&A000),
since you cannot always rely upon analogue joysticks to produce a particular value when
at rest.

This reason code is available from RISC OS 3.6 onwards.

Joystick module

Joystick _CalibrateTopRight
(swi &43F41)

Calibrates analogue joysticks to return the full range of values

On entry

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call calibrates analogue joysticks to return the full range of values. You should
make this call with all joysticks held in the top right position.

To calibrate, you must call both this SWI and Joystick_CalibrateBottomLeft. Once you
have called one of this pair of SWIs, Joystick_Read (page 5a-647) and the ADVAL
command return an error, until you have completed the process of calibration by calling
the other one of the pair. The read calls will then return their full range of values.

Related SWis
Joystick_CalibrateBottomLeft (page 5a-652)

5a-651

Joystick_CalibrateBottomLeft (SWI &43F42)

5a-652

Joystick CalibrateBottomLeft
(swi &43F42)

Calibrates analogue joysticks to return the full range of values

On entry

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call calibrates analogue joysticks to return the full range of values. You should
make this call with all joysticks held in the bottom left position.

To calibrate, you must call both this SWI and Joystick_CalibrateTopRight. Once you
have called one of this pair of SWIs, Joystick_Read (page 5a-647) and the ADVAL
command return an error, until you have completed the process of calibration by calling
the other one of the pair. The read calls will then return their full range of values.

Related SWis
Joystick_CalibrateTopRight (page 5a-651)

136 Monitor power saving

Introduction and Overview

Government agencies and independent organisations worldwide are involved in setting

limits or goals for power consumption in office equipment, in order to slow the growth

in overall demand for electric power. Desktop computers are one of these agencies’
primary targets, especially their displays, which are a significant portion of their power
consumption.

VESA (the Video Electronics Standards Association) has produced a proposed standard
called Display Power Management Signalling (DPMS), which provides a common
means for a display controller to send a signal to the display that makes it enter various
power management states. DPMS is likely to be adopted by most major monitor
manufacturers.

Where the monitor supports this mechanism, RISC OS 3.5 and later versions can use it.
This has been done by incorporating DPMS into the code used in RISC OS 3 to blank
the screen after the computer has been left untouched for a certain amount of time.

5a-653

Technical Details

Technical Detalils

The DPMS power saving states are distinguished by the presence or absence of pulses
on the horizontal and vertical sync lines.

Sate Power Recover Horiz. Vert. Video
saving time sync sync
On None None Pulses Pulses Pulses
Stand by Minimal Short No Pulses Pulses Blanked
Suspend Substantial Longer Pulses No Blanked
Pulses
Off Maximum System NoPulses No Blanked
Dependent Pulses

To be compliant with DPM S, displays do not necessarily have to have al four states, but
they must implement at |east one reduced power consumption state.

From RISC OS 3.5 onwards the screen blanking mechanism has been extended so that it
can select any of the power states above:

« Theexisting RISC OS 3 screen blanking mechanism (ie blanking the video whilst
leaving the sync pulses active) must still be possible. Thisisto avoid problems with
older monitors which do not support DPM S and require the presence of sync pulses.

« Screen blanking must be able to select all three reduced power states, since the
DPMS proposed standard does not specify which of the three statesa DPM S
monitor must support.

Controlling DPMS power saving states

The DPM S power saving state to enter during screen blanking for aparticular monitor is
configured by an optional linein its Modelnfo file (see Model nfo files on page 5a-106).
The different states are specified using the values 0 - 3:

Value Meaning

0 DPM S disabled - screen blank just blanks video.
1 Screen blank enters 'Stand-by’ mode.

2 Screen blank enters 'Suspend’ mode.

3 Screen blank enters 'Off’” mode.

Thereis no simple user interface to set or alter thisvalue.

The power saving state is actually set by avideo control parameter; see
Service_ModeExtension on page 5a-125. The control index is 11, and the valueisin the
range 0 to 3, with the same meanings as above. The line in the Modelnfo file makes the
ScreenM odes module append such an entry to all VIDC listsit passes to the kernel.

5a-654

Monitor power saving

5a-655

5a-656

137 The Toolbox modules

Introduction and Overview

The Acorn C/C++ product introduced the RISC OS Toolbox, which makes it much
easier to write consistent, high-quality desktop applications whose user interface
complies with the RISC OS 3 Style Guide. The key parts of the Toolbox are:

A number of object modules, each of which provides code that handles an object
(ie apart of the user interface of a desktop application such asawindow, or amenu,
or an icon on the icon bar) and the components that make up that object (such as
menu entries, buttons and dliders)

ResEdit, which is an interactive editor for designing the different objectsin the
application’s user interface, and saving them tesaurce file

ResTest, which is an application to check the appearance and behaviour of all the
objects in a resource file

The Toolbox module itself, which is at the core of the system; it provides a layer of
abstraction between an application and the Wimp, loads objects from resource files,
and calls the code in object modules

The TinyStubs module, which provides TinySupport_... SWIs for internal use
within the Toolbox.

Advantages of the Toolbox
Using the Toolbox has a number of advantages. In particular:

The object modules provide much of the code needed to handle your user interface,
so you don't need to write the code yourself

ResEdit and ResTest provide a much quicker and easier way of designing user
interfaces than the past method, which involved designing window templates and
creating other components of your user interface (such as menus) in your
application’s code.

The Toolbox modules support multiple applications, so their code can be shared,
avoiding unnecessary duplication of code, and hence cutting down on memory
usage.

5a-657

Toolbox modules in RISC OS

Toolbox modules in RISC OS

To cut down still further on the memory requirement of applications written to use the
Toolbox, the RISC OS 3.6 ROM contains all its modules (ie the Toolbox module itself,

the TinyStubs module, and each of the object modules). Toolbox applications therefore
don't need to load the modules into RAM, and much of their user interface is
implemented by shared code that runs from ROM. The object modules supplied are:

Module Provides

ColourMenu a menu for selecting a desktop colour

ColourDbox a dialogue box for selecting any colour

DCS a dialogue box for discard/cancel/save for unsaved data, and
a dialogue box for handling quit with unsaved data

Filelnfo a dialogue box showing information on a given file

FontDbox a dialogue box for selecting font characteristics

FontMenu a menu for selecting a font

Iconbar an icon on the left or right of the iconbar

Menu a Wimp menu

PrintDbox a dialogue box for selecting print options

Proglnfo a dialogue box for showing program information

SaveAs a dialogue box for saving data by icon drag

Scale a dialogue box for selecting a scale factor

Window a Wimp window

Toolbox documentation

The Toolbox is documented in thiser Interface Toolbox guide, supplied with
Acorn C/C++.

Writing applications to use the Toolbox

5a-658

To write applications that use the Toolbox, you will need to purches® C/C++, so
that you have:

« documentation
« the means to create resource files (ie ResEdit)

« abinary distribution licence for the Toolbox modules so you can supply them with
your application, and it can hence run on RISC OS 3.1 and 3.5.

The Toolbox modules

Applications communicate with the Toolbox using standard RISC OS mechanisms such

as SWIs (known as Tool box methods) and Wimp events (known as Tool box events). You
therefore don’t have to write Toolbox applications using the languages supplied with
Acorn C/C++ (ie C, C++, and ARM assembler); you can use other languages such as
BASIC.

5a-659

5a-660

Appendixes

5a-661

5a-662

138

Appendix A: Warnings on the use
of ARM assembler

Early versionsof ARM 7 series processors corrupt the cache when code performs a store
multipleto the last word in acache line, which isin the cache, but is not written through
the write buffer. These processors are fitted only to avery few Acorn computers.

To work round this problem, all areas of memory that can be cached must also use the
write buffer. This requires that:

o All page tables that mark pages/sections as cacheable must also mark them as
bufferable.

e The control register must never be set up such that the cacheis on, but the write
buffer is disabled.

« When the cacheisdisabled it is also flushed (as advised in the ARM 710 datasheet).
You must ensure that your own code follows these guidelines.

RISC OS does not contravene these guidelines, except for versions of ROMPatch
supplied with RISC OS 3.5, afixed version of which has been supplied with the very
few processor upgrades that may show this fault.

5a-663

5a-664

139

Draw files

Objects

Appendix B: File formats

The Draw file format (see page 4-463) has been extended in RISC OS 3.6:

A new object has been defined for including JPEG imageswithin aDraw file. It usesthe
same object header as other Draw objects; see page 4-465. The rest of the datafor the
object is asfollows:

JPEG object

Object type number 16

Size Description

4 width of image, in Draw units

4 height of image, in Draw units

4 X pixel density, in dpi

4 y pixel density, in dpi

24 transformation matrix

4 length n of the JPEG image data

n JPEG image datain JFIF format

0-3 up to 3 bytes, to pad to aword boundary

The first four words can be derived from information returned by JPEG_Info

(page 5a-149). The transformation matrix is as described in Font_Paint (see

page 3-437), in the same format used el sewhere in the Draw module and for other Draw
file objects.

For more details of JPEG images, see JPEG images on page 5a-145, and
CompressJPEG on page 5a-617.

The Draw applications supplied with RISC OS 2 and RISC OS 3 do not use this object
type.

5a-665

5a-666

140

Appendix C: Errata and
omissions for RISC OS 3 PRM

This appendix contains a number of errata and omissions for the RISC OS 3
Programmer’s Reference Manugbgether with clarification of some text.

Unless otherwise specified, the comments bel ow for any given operation or call refer to
all versions of RISC OS that support it.

InsV, RemV, CnpV (page 1-88)

The documentation for each of these vectors states that ‘it must be called with interrupts
disabled... therefore code on the vector can only be entered with interrupts disabled and
is not re-entrant.’

From RISC OS 3 onwards, the default owner of the vector is the buffer manager, which
disables interrupts itself. Calling code need no longer disable interrupts, and code
claiming the vector should no longer assume that interrupts are disabled on entry.

PaletteV (page 1-105)

An undocumented reason code was added in RISC OS 3; this is R4 = 6. The reason code
is reserved for internal use.

Device numbers (page 1-120)

For models using the 82C710 or 82C711 peripheral controller (eg the A5000), device
numbers 11 and 12 were transposed. They should read:

11 Floppy disc interrupt from 82C710/711
12 IDE hard disc interrupt

Events (page 1-147)
Events may not be received in the order in which they are generated.

Internet receive event and Internet transmission status event (page 1-161)

These events are not used by DCI4 versions of the Internet module, such as the one in
RISC OS 3.6.

5a-667

5a-668

Code offset (page 1-217)

R1 is undefined on entry in the case of a configuration keyword.

Help and command keyword table (page 1-216)

If the byte 1 of the information word is such that the final parameter is GSTrans'd, the
command tail passed to the module will have a trailing space.

SWI handler code (page 1-220)

The SWI handler code it passed the value of R9 specified by the caller. The
RISC OS SWI despatcher corrupts R9 before calling a module’s SWI handler code, and
on exit from the handler restores R9 to the value specified by the caller.

This may be fixed in future versions of RISC OS so that the SWI despatcher passes R9
uncorrupted to and from the SWI handler code. In preparation for this, you should
ensure that any SWI handler code does not incorrectly corrupt R9. (Currently this would
be hidden by the SWI despatcher preserving R9 around the SWI handler code.)

Also, the example code on page 1-221 is wrong; it makes a SWI call in SVC mode
without preserving R14, and then uses the corrupted R14 to return. It should read:

. UnknownSW Er r or

STMFD R13!, {R14} ; Push R14 to call SW in SVC
ADR RO, ErrToken

MoV R1, #0

MoV R2, #0

ADR R4, ModuleTitle ; From nodul e header

S " XMessageTr ans_Error Lookup"

LDMFD R13!, {R14} ; Pull R14

ORRS PC, R14, #Overflow_ Fl ag

OS_Module 20 (page 1-252)

This reason code is not available in RISC OS 2.

Unused SWI (page 1-295)

The first paragraph of this description should read:

This handler is called by the default owner of the UKSWIV. (When a SWI is called,

RISC OS first checks if it is a kernel SWI; it then checks if it is a module SWI by

looking at its hash table constructed from the headers of initialised modules. It then calls
UKSWIV,; this allows a user routine on that vector to try to deal with the SWI. If there is

no such routine, or the one(s) that is present passes the call on, then the default owner of
the vector — which is the kernel — calls the Unused SWI handler.)

Appendix C: Errata and omissions for RISC OS 3 PRM

The default handler returns the error ‘SWI &xxxxxxxx not known’, or just ‘SWI not
known’ if the SWI was called from an IRQ process.

OS_ReadVarVal (page 1-314)

If you are checking for the existence/length of a variable (ie bit 31 of R2 is set on entry),
RO is corrupted on exit.

Transient CallBacks (page 1-296)

You must not rely on any relationship between the order in which Transient CallBacks
are added and the order in which they are called.

Transient CallBacks are not called between successive lines of an Obey file, nor when
screen scrolling is disabled by tSeroll Lock or Ctrl-Shift keys.

OS_RemoveTickerEvent (page 1-445)

You cannot use this call to remove a ticker event from within that event’s own code.
Instead, your ticker event must call OS_AddCallBack (page 1-324) to add a transient
CallBack that makes the call to OS_RemoveTickerEvent.

OS_CheckModeValid (page 1-742)

For all versions of RISC OS, this call returns -2 to indicate there is ‘insufficient
memory’ if thecurrently allocated amount of screen memory is too little for the
specified mode. It does not take into account whether the area could grow.

File operations (page 1-774)

You may get unpredictable results when using *ScreenLoad to load a sprite that was not
created by *ScreenSave. The same applies to the equivalent SWis.

Pixel translation table (page 1-780)

A number of calls that use a pixel translation table specify it as optional. You can only
omit it if the sprite you are plotting has the same number of bits per pixel as the current
screen mode. We recommend you always supply a table, and leave it to RISC OS to
ignore it if it is unnecessary.

Creating sprites (page 1-775)

If you try to create a sprite with a palette, the palette is incorrect if it is for a different
number of bits per pixel to that used by the current mode. The best workround is to
create the sprite without a palette, and then to add the palette.

5a-669

5a-670

OS_SpriteOp (page 1-788)
OS_SpriteOp is not re-entrant.

OS_SpriteOp 60 (page 1-838)

The purpose of the save areaisto preserve your own context should anyone switch
output away from you.

OS_HeapSort (page 1-970)

In the section Advanced features, it states that bit 31 may optionally be used in
conjunction with bit 30. In fact, setting bit 30 (ie build word-array of pointers pointed to
by R1 from R4,R5) also causes the bit 31 action to be taken (ie sort true objects pointed
to by R4 after sorting the pointers). Thusif you wish to sort only the pointers and not the
recordsto which they point, you must build the pointer array yourself, rather than setting
bit 30 to have this call build it.

IIC_Control (page 1-977)
RO is corrupted on exit.

FileSwitch (page 2-11)

All callsthat open afile for writing when it cannot be written to (eg write-protected
media, no write access, locked filing system) do not generate an error. The error is not
generated until an attempt is actually made to write to thefile.

Special fields (page 2-14)
The root directory $ was omitted from the example, which should read:

net #MJHar dy: : di sc1. $. ni ke
#MIHar dy: : di sc1. $. i ke

- net #MJHar dy- : di sc1. $. ni ke
- #MJHar dy- : di sc1. $. i ke

File$Path and Run$Path (page 2-18),
Using other path variables (page 2-19)

When using path variables you must remember that they may specify multiple objects,
and hence there are clear limitations. Reading an object specified by a correctly
constructed path will always work; but writing or deleting objects using a path may be
undefined in behaviour, and may hence be disallowed.

Appendix C: Errata and omissions for RISC OS 3 PRM

Filing system numbers (page 2-21)

The entry for DOSFS refers to a stand alone filing system called DOSFS, released with
certain versions of the PC Emulator. All image filing systems (including the DOSFS
supplied in RISC OS 3 onwards) use a filing system number of 0 to distinguish them
from ordinary filing systems.

OS_FSControl 41 (page 2-126)
OS_FSControl 42 (page 2-127)

These calls return incorrect information for NetFS.

Disc formats (page 2-199)

The ‘perfect’ disc formats referred to in this section may not always be attainable. For
example, the 710/711 controllers cannot achieve a gapl of more than 255 bytes, and
hence use a good alternative. See also FileCore_DiscFormat (page 2-236) and
ADFS_VetFormat (page 2-291) for a description of the process used to negotiate an
attainable format.

Entries (page 2-212)

The NewDirAtts are as follows:

@

M eaning when set

Object has owner read access
Object has owner write access
Object is locked

Obiject is a directory

Object has public read access
Object has public write access
Reserved (must be zero)
Reserved (must be zero)

~NOo b~ wWNEO

FileCore_MiscOp (page 2-240)

The cross references to the various reason codes should read:

Value Meaning Page

0 Mount 2-242

1 Poll changed 2-244
2 Lock drive 2-246

3 Unlock drive 2-247

4 Poll period 2-248

5 Eject disc 2-249

5a-671

Software protection schemes (page 2-267)
Limitations of disc controllers place further restrictions on using 128 byte sectors:
« Always create the master disc with a machine that has a 1772 disc controller
« Only read asingle 128 byte sector at atime.

ADFS_SetIDEController (page 2-298)

In the versions of ADFS supplied before RISC OS 3.5, R4 must be 1 on entry (ie the
interrupt status must bein bit 0).

DOSFS (page 2-323)

The mapping of DOS attributes to RISC OS attributesis not described in this chapter. It
isasfollows:

If aDOSfileisread only, its RISC OS attributes are LWR; otherwise they are RW. If a
RISC OSfileislocked, it isaread only file when transferred to DOS; otherwiseitisa
read/writefile.

Other attributes are preserved where possible, using a mechanism that is subject to
change and so not documented.

Directory structure (page 2-416)

This section — and others in the chapter — describe the Apps and Fonts directories as
containing ‘ROM-resident’ objects. This is not so for all versions of RISC OS; some or
all of these objects may be on disc.

OS_SerialOp (page 2-468)

Two reason codes were added to OS_SerialOp in RISC OS 3, but were not documented
in the RISC OS 3 Programmers Reference Manual. These are described later in this
chapter:

« OS_SerialOp 7 (page 5a-690) is for internal use only.

« OS_SerialOp 8 (page 5a-691) reads/writes the serial input buffer threshold value. It
is provided as a replacement for OS_Byte 203 (page 2-462), and you should use it
in preference.

Redirection (page 2-496)
printer: (page 2-497)

When using *Copy to send a file to thei nt er: system device, you should ensure
you are using the F copy option. For example:

5a-672

Appendix C: Errata and omissions for RISC OS 3 PRM

*Copy nyfile printer: ~CF~V

Free_Register (page 2-522)
The free space routine should exit using the instruction:
LDM A R13!, {PC

FSEntry_Open and ImageEntry_Open (page 2-541)

The documentation states that — for FSEntry_Open — reason code 1 is only used by
RISC OS 2. It can in fact be called by other versions of RISC OS under certain very
specific conditions.

FSEntry_Func 33 (page 2-587)

The heading for this section should read ‘FSEntry _Func 33 and ImageEntry_Func 33’,
since this entry point can be called for an image filing system — as stated in its
description.

Descriptor block flags (page 2-598)

Under RISC OS 2, bit 2 when set means that the FileCore module supports background
operations. The bit is reserved (as documented) only from RISC OS 3 onwards.

Wherever possible, you should make hard discs support mount like floppies do, and
hence set bit 4. If you do not do so, FileCore may have trouble mounting discs that use
an alien format, as it then has no way of determining their geometry, and so has to make
some assumptions that may be invalid

Returning errors (page 2-603)
This section should read:

If there is no error then RO must be zero on exit and the V flag clear. If there is an error
then V must be set and RO must be one of the following:

Value M eaning

< &100 internal FileCore error number

Bit 30 set, bit 31 clear pointer to error block

Bit 30 clear, bit 31 set disc error bits:
bits 0 - 20 = disc byte address / 256
bits 21 - 23 = drive
bits 24 - 29 = disc error number

For a list of internal FileCore error numbers, see the section efRéfeching errors on
page 2-600.

5a-673

5a-674

MiscOp entry (page 2-604)

When this entry point is called, R12 is a pointer to your FileCore module’s private word.
All other registers are as documented (ie the same values as were passed to
FileCore_MiscOp). In general, all FileCore_MiscOp calls are passed straight through to
your FileCore module, which should implement their full functionality; however,
FileCore counts lock/unlock calls itself, and only calls your module when it should
actually lock or unlock the drive.

Port numbers (page 2-649)
The following port numbers are also reserved:

Port Allocation

&AO0 SJ Research *FAST protocol (file server management)
&AF SJ Research Nexus net finder reply port

Service_EconetDying (page 2-653)

When this service call is issued, the Econet module is already being finalised, and you
may not make further calls to it. Resources such as ports, CBs etc are no longer valid,
and you may dispose of any relevant local workspace.

Layout of windows (page 3-10)

The last line of page 3-13 should read:
work_area_pixel_at_origin_x = scroll_offset_x — visible_area_min_x
work_area_pixel_at_origin_y = scroll_offsgt— visible_area_max_y
Similarly, the ‘entire formula’ given near the top of the next page should read:

work area x = screen_x + (scroll_offset_x — visible_area_min_x)
work area y = screen_y + (scroll_offsgt- visible_area_max_y)

Misc icons (page 3-33)

There is no ‘acorn’ icon; the Task Manager uses the ‘switcher’ icon referretctmin
bar icons on page 3-32.

Appendix C: Errata and omissions for RISC OS 3 PRM

Wimp_Initialise (page 3-85)
The description of R3 on entry iswrong, and should read:

R3 = pointer to alist of message numbers terminated by a 0 word (not if RO isless
than 300). If Wimp version number is=310 then anull pointer indicates
that no messages are important to this task, whereas anull list indicates
that all messages are important; this isthe reverse of what you might
expect.

Wimp_Createlcon (page 3-93)
Icon validation strings are order dependent; they are scanned from left to right.

If you use 2 icons with the ‘S’ validation string they must both be the same size.

Wimp_Poll (page 3-112)

From RISC OS 3 onwards, on exit, if RO is 18 (User_Message Recorded) then R2 is set
to the task handle of the sender.

Wimp_DecodeMenu (page 3-158)
The returned string is terminated.

Wimp_ReadPalette (page 3-189)

From RISC OS 3 onwards, if R2 is ‘TRUE’ on entry (ie &45555254), then the returned
palette entries are 24 bit rather than 12 bit: llb@rrnn rather than &0r0g0Onn. This

saves having to copy the top nibbles into the bottom nibbles before making ColourTrans
calls.

Wimp_SpriteOp (page 3-198)
R1 is corrupted on exit.

Message RAMFetch (page 3-253)

The versions of !Edit supplied before RISC OS 3.5 only respond to this message if it is
sent as a User_Message_Recorded (ie if acknowledgement is requested).

Message WindowlInfo (page 3-256)

The section heading for this message should read ‘Message_WindowlInfo...’, not
‘Message_WindowlInf...”. The description of the message should read:

5a-675

5a-676

R1+20 window handle
R1+24 reserved (must be 0)

R1+28 st ri ng giving trailing part of sprite name to use, null terminated
— sprite name usediis_string
R1+36 string giving title to use, null terminated; this should be as short

as possible, and may be truncated by the iconiser (eg Pinboard
truncates at a space or at the 10th character, whichever is shorter)

TaskWindow_Input (page 3-263)

Location R1+24 of the message block holds the input data itself, not a pointer to it. The
data needs no terminator, because its length is held in R1+20.

TaskWindow_Ego (page 3-263)
TaskWindow_Morio (page 3-263)

The versions of !Edit supplied before RISC OS 3.5 only respond to these messages if
they are sent as a User_Message (ie if no acknowledgement is requested).

TaskWindow_NewTask (page 3-264)

The versions of |Edit supplied before RISC OS 3.5 only respond to this message if it is
sent as a User_Message (ie if no acknowledgement is requested).

The command passed in this message is only the head of the command that must be
issued via Wimp_StartTask. The full command is:

command XXXXXXXX YYYyyyyy nb there is a trailing space!

wherexxxxxxxx andyyyyyyyy are the ask andt xt parameters passed when
creating the task window (s&&askWindow on page 3-324).

Filter_RegisterPostFilter (page 3-306)

Under RISC OS 3, if a filter routine sets RO to —1 to claim an event and prevent it being
passed to its task, then that event is not passed on to any further post filters. From
RISC OS 3.5 onwards, claiming an event does not prevent other post filters from being
called, but does still prevent the event being passed to the task.

Appendix C: Errata and omissions for RISC OS 3 PRM

TaskWindow (page 3-319)
Changing screen mode from task windows can have unpredictable results.

*TaskWindow (page 3-324)

See TaskWindow_NewTask above for correct information on how to respond to this
message.

ColourTrans_SelectTable (page 3-344)

The cross reference to ColourTrans_GenerateTabl e should refer to page 3-405, not
page 3-346.

ColourTrans_SelectTable (page 3-344)

ColourTrans_GenerateTable (page 3-405)
If RO is 256 on entry, it isassumed not to point to a sprite area, but R1 is still assumed to
point to asprite. This special valueisuseful if you need to use spritesthat are not held in

asprite area. For example, Draw usesit for sprites that are held in a Draw file without a
preceding sprite area control block.

Thus RO is only assumed to be a pointer if it is greater than 256.

*FontInstall (page 3-522)

FontlInstall will only rescan adirectory aready on the path if it moves to the head of the
path. The best way to force are-scan after changing a directory known to the Font
Manager isto call * FontRemove, then * Fontinstall.

*LoadFontCache (page 3-526)
*SaveFontCache (page 3-527)

A saved font cacheisonly valid if RMA usageisthe same aswhen it was saved, sinceit
contains absol ute pointers to RISC OS modules and their workspace. If RMA usage has

altered (eg the cache is loaded to a different address, or the Font Manager’s workspace is
in a different location) you will get no error on loading the cache; but you will get many

subsequent errors. These calls are therefore deprecated.

Winding rules (page 3-536)
The first sentence of the description of the even-odd winding rule should read:

Even-odd means that an area is filled if a ray from that area to outside the path’s
bounding box crosses an odd number of paths.

5a-677

Line thickness (page 3-541)
The second bullet point should read:

« If thethicknessisn, then the line will be drawn with athickness of n/2 user
coordinates translated to pixels on either side of the theoretical line position.

DrawV when printing (page 3-581)

The rounding of coordinatesis printer driver specific. Some drivers may not output
paths that are less than one output device pixel wide. However, paths of width O (ie ‘as
thin as possible’) should always result in output.

Service_PDriverChanged (page 3-610)

This service call is only issued when the PDriver sharer module has selected a new
printer driver. This means it is not issued if the currently selected printer driver is
deselected, but no new one is selected.

PDriver_SelectJob (page 3-622)
Under RISC OS 3.1 and earlier, R7 is corrupted on exit.

PDriver_Reset (page 3-630)

The state of the printer driver after this call is not necessarily the same as it is after
initialisation. For example, the PostScript printer driver does not know of any fonts (see
PDriver_MiscOp on page 3-656).

PDriver_Selectlllustration (page 3-644)

We now recommend that the user should explicitly choose when a print job is to be
saved to file for use as an illustration in another document. Only if the user has made that
choice should you call this SWI; you should call PDriver_SelectJob for all other

printing.

PDriver_EnumerateDrivers (page 3-655)
The values on exit are:

RO = handle to enumerate next driver, or zero if no more
R1 = printer driver number (page 3-604) if RQ, or undefined if no more

5a-678

Appendix C: Errata and omissions for RISC OS 3 PRM

Printer definition files (page 3-709)

To aid recovery from aborted jobs, we recommend that form feed strings always contain
aform feed, page end strings a full printer reset, and end of text job strings both aform
feed and full printer reset.

General points, and Epson and IBM compatible printers (page 3-711)

The printer typeis used to differentiate between printer definitions. If you try to
overload a printer definition with one having the same printer type, the old datais
retained. This avoids any delays that might occur if the user tries to load the samefile
twice.

It follows that if you make minor alterations to a definition and wish to load it in place
of or beside the original, you must change the printer type.

Loading and setting the current territory (page 3-795)
The description in this section is wrong, and should read:

Each computer running RISC OS has a configured value for the current territory, set
using * Configure Territory (see page 3-854), and stored in its CMOS RAM. On areset
or apower-on, RISC OS will try to load this territory as follows:

1 Itwill load any territory modulesin ROM. (Typicaly thereisonly one, for the
territory into which the computer has been sold.) If one of these is the configured
territory, no further action is taken.

2 Otherwise, it will look on the configured device (ie the configured filesystem and
drive) for the module & .! Territory.Territory, and load it.

3 If successful, it will then search for the directory ...!Territory.Messages, and load
any modules it contains. The directory should exist, even if it contains no modules.

At the end of this process:

« If the configured territory is in ROM, only those territory modules in ROM will be
loaded

« If the configured territory is not in ROM, both those territory modules in ROM and
another territory module (hopefully the configured one) will be loaded.

RISC OS then selects as the current territory either the configured territory, or — if it is
not present — a default territory from ROM.

Sound_Speaker (page 4-24)
*Speaker (page 4-64)

These commands may not work on all machines, particularly those that use the
headphone socket to mute the loudspeaker.

5a-679

5a-680

Squash_Compress (page 4-104)
Squash_Decompress (page 4-106)
The input and output pointers for these calls must be word-aligned.

_kernel_swi (page 4-283)

_kernel_swi_c (page 4-283)
If you use these functions to call a SWI that returns an error longer than 148 bytes, the
register dump areais corrupted; even longer errors may corrupt other vital system data.

You should ensure that no error will be returned — or workround this problem by instead
using the internal functionsw X, which is documented in the C library header files.

*Obey (page 4-358)

Recursive calls of *Obey are only possible to a limited depth (currently 20, although you
should not rely upon this).

Draw files (page 4-463)
There are some errors in the documentation of Draw file formats, as follows:

« The font table object (page 4-465) may contain multiple
pairs, which follow immediately after each other; ie the padding to a word boundary
only occurs at the end of the object.

In RISC OS 3.5 and earlier, the Draw application expects the font table object to be
the first object in the file; we suggest that any Draw files you generate obey this
restriction. From RISC OS 3.6 onwards, Draw merely expects that the font table
object precedes any text objects or transformed text objects that use it.

« The translation part of the transformation matrix must be zero for a transformed text
object (page 4-474).

« The description of transformed sprite objects (page 4-475) should refer to ‘EIG
factors’, not to ‘eigen factors’.

Font files (page 4-476)
There are some errors in the documentation of font file formats, as follows:

« The headindntMetrics/ IntMetn files on page 4-476 should rebatMetrics/
IntMetricn files.

« The section entitle@caffold data on page 4-484 should start:

Size Description
lor2 character code of ‘base’ scaffold entryl(hone)

Appendix C: Errata and omissions for RISC OS 3 PRM

In the section entitled Character data on page 4-486, the lines:

If character flags bit 3 is set:
bit 4 set 0 composite character
bit 5 set 0 with an accent as well

would be clearer were they to read:

If character flags bit 3 is set:
bit 4 set 0 composite base character follows
bit 5 set 0 composite accent character follows

On the next page, the line:

if character flags bits 3 or 4 are clear:

should read:

if character flags bit 3is clear, or bit 3is set and bits4 and 5 are clear:

and the final line of the section:
Word-aligned at the end of the character data.
should read:

Word-aligned at the end of the chunk.

5a-681

Printer server protocol interface

Printer server protocol interface

The printer server protocol interface was omitted from the RISC OS 3 Programmer’s
Reference Manualt is currently as follows.

NetPrint status protocol

Status enquiry packet

To request the current state of a printer server the client sends an 8 byte status enquiry
packet to port & 9F:

Byte Meaning

1-6 printer name, padded with spaces

7 reason code (1 O statusrequest, 6 [name request)

8 reserved (must be zero)

Status request

If the reason codeis 1 (status request) the printer server should check the printer name.
The check should be case insensitive, but with accents significant, preferably using
Territory_Collate (see page 3-842):

« If the name matches the name of a printer connected to the server (eg ‘PScrpt’), the
server should send its status.

« If the name matches the string ‘PRINT’ or ‘'SPOOL’, the server should send the
status of the user’s default printer. (With Acorn’s !Spooler software, this is the most
recently used printer, or the first listed printer if none has yet been used).

« If the name matches neither of the above cases, the server should not reply.
The status reply, if any, must be sent to port &9E:
Byte Meaning

1 status: O Ready, 10 Busy, 20 Jammed, &1 Offline;
all other values reserved

2 station number for Busy status, or 0

3 net number for Busy status, or 0

If the server is Busy, the second and third byte of the status packet are the station and net
number with which it is busy. If the server is Busy with no particular station, or if the
status is not Busy, these bytes should both be set to zero.

Using the name ‘PRINT’ is deprecated because it makes it difficult for a printer server
that supports multiple logical printers. Wherever possible you should use the printer’s
name.

5a-682

Appendix C: Errata and omissions for RISC OS 3 PRM

Name request

If the status enquiry reason code is 6 (name request) then the client is asking the printer
server for its name. The name sent by the client is ‘PRINT’ or ‘SPOOL’, but it is not
necessary to check this. The server must reply to port &9E:

Byte Meaning
1-6 printer name, padded with spaces

If the printer server supports multiple logical printers it may send multiple replies with
different names. If the client discards duplicate replies then it should take account of the
name in the packet as well as the station and net numbers.

Flag bytes

For all status packets the flag byte currently has no meaning. Clients should send a flag
byte of zero, and servers should send back the flag byte that they received from the
client.

NetPrint printing protocol

Finding the status before printing

Before starting to print, the client should ideally send a status enquiry to the server to
ensure it is ready (see above).

Establishing the connection

The connection is then established using packets where the flag byte is relevant. It has
this meaning:

Bits Meaning

0 sequence bit

1,2 modes

3-6 taskid

7 reserved (must be zero)

The client first sends a zero or one byte packet to port &D1 on the server, with the flag
byte's sequence bit clear, and its mode bits set to 2_01. The task id bits of this packet’s
flag byte — and its data — are used to negotiate how to send the print data. Their possible
values are dependent on the version of NetFS in use, and are as follows:
« Ifthe flag byte's task id is 2_0000then the client will only send datain & 50 byte

blocks.

If any byteis sent it should be zero, but isignored.

5a-683

NetPrint printing protocol

« If the flag byte’s task id is 2_1000then the client code is both asking for the
alocation of atask id by the server, and trying to establish if the server can accept
large blocks of data (up to the size returned by SWI Econet_PacketSize) or only
small ones (up to &50 bytes).

If anon-zero byteis sent, the client is also seeking to negotiate a features mask with
the server. The bits show the features the client supports:

Bit Meaning when set
of Use reply port &DO (allows local loopback etc to work)
1 Print data is compressed (not yet implemented)

2 Use dynamic port for data packets
3-6 Reserved
7 More features in extension packet (not yet implemented)

T This bit must always be set if any other bits are set.
« Other values of the flag byte’s task id are reserved.

If the server is unwilling to accept the print it doesn’t send a reply. If it is willing then it
replies as follows:

« If the client’s task id was 2_0000the server sends back a single zero byteto
port & D1, with the flag byte the same as that it received from the client.

« If the client’s task id was 2_1000the server uses the flag byte to respond to the
request for large packets and task id...

« If the server isn't willing to assign task ids — and hence accept more than one
connection from a single client — it sends back the client’s (illegal) task id of
2_1000 (see below); otherwise it sends back a task id chosen from the ranges
2 0001 to 2 0111, or2_1001to 2 1111.

« Ifthe server can accept large blocks of data it sets the mode bits to 2_10, else it
sets them to 2_01.

...and it uses the byte(s) it sends back to respond to any request for a features mask:

« If the client did not request a features mask, or the server does not support any
features, it sends back a single zero byte to port &D1.

« Ifthe client requested a features mask, and the server supports this, it ANDs its
own mask with that sent by the client. If bit 2 is clear, the server sends the
single mask byte to port &DO; if it is set, the server gets a dynamic port using
Econet_AllocatePort, and sends two bytes to port &DO: the mask followed by
the port.

The connection is now established. The client then examines the final flag byte sent by
the server, changing a task id of 2_1000 to 2_0000. This version of the flag byte is the
one that will be used when sending the data.

5a-684

Appendix C: Errata and omissions for RISC OS 3 PRM

Sending the data

The client then sends the datain blocks, the size of which can vary from zero bytes up to
the maximum established by the connect protocol. The dataiis sent to the dynamic port
returned at connection time, if any; otherwise it is sent to port & D1. The flag byte for
each block is the same as that negotiated when connecting (see above), save that the
sequence bit istoggled for each block. Thisisto avoid duplicate data packets; the server
discards and ignores any packets that have the same sequence bit as that previously
received.

Acknowledging the data

Each time the server receives anew block and is ready to accept another, it must
acknowledge the received block with a one byte packet. If the features mask negotiated
in the connect protocol had bit O set, thereply is sent to port & DO, and the byte givesthe

status.
Value Meaning
0 Ready (send next data packet)
1 Busy (don't send next data packet yet)

Otherwise the reply is a zero byte sent to port &D1.

The packet’s flag byte must match that received from the client. Again, the sequence bit
is used to avoid duplicates; if the flag byte of an acknowledgement received by the client
does not match the packet it most recently sent, it is a duplicate of a reply to the previous
packet, and so is discarded.

Closing the connection

When the client wants to close the connection, it sends a data packet with the mode bits
setto 2_11. The data for this last packet must be terminated by an &03.

Port claiming

NetPrint claims ports &D0, &D1 and &9E with Econet_ClaimPort. A printer server
should claim port &9F.

5a-685

Deprecated calls

Deprecated calls

This section lists calls, often provided for backwards compatibility, that are now
deprecated in favour of other calls. Much of thisinformation is already in other parts of
the PRM, but has been gathered together for reference.

VDU calls

Many of the VDU callsthat are present in RISC OS have been superseded by either the
OS Plot call or other SWis. Instead of using the VDU call, you should call the relevant
SWI.

Examples
e You should use OS_Plot instead of VDU 25.

« You should use the standard printer driver interfaces to direct output to the printer,
instead of calling VDU 2 and VDU 3.

« You should ColourTrans SWIsto set text and graphics colours instead of calling
VDU 17 and VDU 18.

« You should use the font manager instead of calling VDU 23,25-26.
e Youshould use OS_SpriteOp SWisinstead of VDU 23,27

OS_Byte/OS_Word calls

Many of the OS Byte and OS_Word calls are very archaic, and are only present in
RISC OS for backwards compatibility with older 8 bit machines. Many of these calls
have been superseded by RISC OS SWIswhich you should use instead.

It isworth noting that many of the OS_Byte calls are either not necessary or there are
SWI equivalents. In future versions of the operating system OS_Byte may be removed
altogether, and the useful calls be coded as proper RISC OS SWIs. The same appliesto
OS Word calls.

OS_Byte examples

« OS_Byte 7 and 8 are used to specify the serial port's baud rates for receiving and
sending data. These calls have been superseded by OS_SerialOp 5 and 6.

« OS Byte 128 is used for reading the position/state of the mouse. It has been
superseded by OS_Mouse.

« OS _Byte 71 selects the keyboard or alphabet. It has been replaced by the concept of
territories. You should call the Territory manager for doing this sort of operation.

5a-686

Appendix C: Errata and omissions for RISC OS 3 PRM

« All the OS Bytesthat refer to buffers (such as 15 to flush a buffer) have been
replaced by the relevant software vectors.

« TheOS Bytecadlsthat refer to the escape key (such as 125 to set Escape condition)
are usually irrelevant, and should not be used on a multi-tasking operating system.
An exception is OS_Byte 229, which may be useful to temporarily alter the Escape
key status between successive Wimp polls.

o OS Byte 143 should not be used for issuing service calls, OS_ServiceCall should
be used instead.

« OS Byte 160 readsa VDU variable; it has been superseded by
OS_ReadVduVariables.

OS_Word examples

FileSwitch

« OS Word 9 should no longer be used to read the logical colour of apixel. You
should use OS_ReadPoint instead.

« OS Word 11 should no longer be used to read the palette. OS_ReadPalette should
be used instead.

o OS ReadVduVariables should be used instead of OS Word 13 to read current and
previous graphics cursor positions.

« OS Word 21,0 should no longer be used for setting the pointer shape etc. You
should use OS_SpriteOp 36 (set pointer shape) instead.

Service_StartUpFS has been removed.

As noted before, OS _Byte calls are deprecated. For example:
o OS Byte 127 is deprecated, and you should use OS_Args 5 instead.

« You should no longer use OS_Byte 139 to set filing system options. *Opt 1 isno
longer supported anyway. For the * Opt 4 usage you should instead use
OS_FSControl 48. (This is in preference to OS_FSControl 10 which — although it is
the direct equivalent — requires some state to be set up with the *Dir command
before calling it.)

5a-687

System extension/application SWis

Many OS_GBPB calls are al so deprecated:

« You should not use OS_GBPB 5 to read the name and boot option of adisc. You
should instead use OS_FSControl 37 (canonicalise path) and/or OS_FSControl 47
(read boot option),

« You should no longer call OS_GBPB 6 or 7 to read a directory name and privilege
byte. OS_FSControl 37 (canonicalise path) provides an alternative for reading
directory names; privilege bytes are no longer supported.

e Youshould use OS_GBPB 9in preferenceto OS_GBPB 8.

Finally, as hinted above, you should use OS_FSControl 48 in preference to
OS_FSControl 10.

System extension/application SWis

RISC OS implements many SWis for application and system extension (ie modules)
development. Although theses SWis are present and usablein the OS, some of them are
archaic and have alternatives that should be used.

Econet

With the event of AUN, most of the immediate operations are no longer supported. The
only immediate operation supported under AUN is Econet_MachinePeek. If an
application wishesto be AUN compatibl e then they should not attempt to implement the
other immediate operations.

Time and date

You should no longer use SWIs such as OS_ConvertDateAndTime and
OS_ConvertStandardDateAndTime. You should instead use the SWIs provided by the
Territory manager.

Font Manager

When scanning a string for information (eg the width of the string or the caret position)
you should call Font_ScanString instead of calls such as Font_StringWidth, Font_Caret,
Font_StringBBox etc. However, Font_ScanString is a RISC OS 3 only SWI.

When setting font colours you should use ColourTrans_SetFontColours instead of
Font_SetFontColours.

When calling Font_Paint with control sequences to set the colour, you should use
control sequence 19 instead of 17 and 18. Again, control sequence 19 isonly available
with RISC OS 3.

5a-688

Appendix C: Errata and omissions for RISC OS 3 PRM

You should not normally use the calls Font_SetFontMax (and the equivalent * Configure
FontMax), Font_ReadFontMax, Font_SetScal eFactor, Font_ReadScal eFactor, and
Font_SetThresholds. In doing so, you would be overriding the values set up by users

and/or managed by the Wimp.
ColourTrans

Applications should not use GCOLSs; they should instead deal with RGB pal ette entries
and colour numbers.

If you must set a GCOL you should call ColourTrans SetGCOL, or
ColourTrans_ReturnColourNumber and OS_SetColour; you should not call
ColourTrans_ReturnGCOL and then set the colour.

5a-689

SWi Calls

SWI Calls
OS_SerialOp 7
(swi &57)

This reason codeis for system use only; you must not use it in your own code.

5a-690

Appendix C: Errata and omissions for RISC OS 3 PRM

OS SerialOp 8
(swi &57)

Read/write serial input buffer threshold value

On entry

RO = 8 (reason code)
R1 = -1 to read or new value to write

On exit

RO preserved
R1 = value before being overwritten

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
The serial input routine attempts to halt input when the amount of free space left in the
input buffer falls below a certain level. This call allows the value at which input is halted
to be read or changed.
OS_SerialOp 0 can be used to examine or change the handshaking method.
The default value in RISC OS 3.5 is 17 characters, but this is subject to change and
should not be relied upon.

Related SWis

OS_Byte 203 (page 2-462)

5a-691

Related vectors
SeriaV

5a-692

