
S
o

u
n

d

4-1

4

Part 11 – Sound

4-2

S
o

u
n

d

4-3

4

72 The Sound system

Introduction
The Sound system provides facilities to synthesise and playback high quality digital
samples of sound. Since any sound can be stored digitally, the system can equally well
generate music, speech and sound effects. Eight fully independent channels are
provided.

The sound samples are synthesised in real time by software. A range of different Voice
Generators generate a standard set of samples, to which further ones can be added. The
software also includes the facility to build sequences of notes.

The special purpose hardware provided on ARM-based systems simply reads samples at
a programmable rate and converts them to an analogue signal. Filters and mixing
circuitry on the main board provide both a stereo output (suitable for driving personal
hi-fi stereo headphones directly, or connecting to an external hi-fi amplifier) and a
monophonic or stereophonic output to the internal speaker(s).

Overview

4-4

Overview
There are four parts to the software for the Sound system: the DMA Handler, the
Channel Handler, the Scheduler, and Voice Generators. These are briefly summarised
below, and described in depth in later sections.

The DMA Handler
The DMA Handler manages the DMA buffers used to store samples of sound, and the
associated hardware used.

The system uses two buffers of digital samples, stored as signed logarithms. The data
from one buffer is read and converted to an analogue signal, while data is
simultaneously written to the other buffer by a Voice Generator. The two buffers are then
swapped between, so that each buffer is successively written to, then read.

The DMA Handler is activated every time a new buffer of sound samples is required. It
sends a Fill Request to the Channel Handler, asking that the correct Voice Generators fill
the buffer that has just been read from.

The DMA Handler also provides interfaces to program hardware registers used by the
Sound system. The number of channels and the stereo position of each one can be set,
the built-in loudspeaker(s) can be enabled or disabled, and the entire Sound system can
also be enabled or disabled. The sample length and sampling rate can also be set.

The services of the DMA Handler are mainly provided in firmware requiring privileged
supervisor status to program the system devices. It is tightly bound to the Channel
Handler, sharing static data space. Consequently, this module must not be replaced or
amended independently of the Channel Handler.

The Channel Handler
The Channel Handler provides interfaces to control the sound produced by each
channel, and maintains internal tables necessary for the rest of the Sound system to
produce these sounds.

The interfaces can be used to set the overall volume and tuning, to attach the channels to
different Voice Generators, and to start sounds with given pitch, amplitude and duration.

The following internal tables are built and maintained: a mapping of voice names to
internal voice numbers; a record for each channel of its volume, voice, pitch and timbre;
and linear and logarithmic lookup tables for Voice Generators to scale their amplitude to
the current overall volume setting.

Fill Requests issued by the DMA Handler are routed through the Channel Handler to the
correct Voice Generators. This allows any tables involved to be updated.

S
o

u
n

d

The Sound system

4-5

The Channel Handler is tightly bound to the DMA Handler, sharing static data space.
Consequently, this module must not be replaced or amended independently of the DMA
Handler.

The Scheduler
The Scheduler is used to queue Sound system SWIs. Its most common use is to play
sequences of notes, and a simplified interface is provided for this purpose.

A beat counter is used which is reset every time it reaches the end of a bar. Both its
tempo and the number of beats to the bar can be programmed.

You may replace this module, although it is unlikely to be necessary.

Voice Generators
Voice Generators generate and output sound samples to the DMA buffer on receiving a
Fill Request from the Channel Handler. Typical algorithms that might be used to
synthesise a sound sample include calculation, lookup of filtered wavetables, or
frequency modulation. A Voice Generator will normally allow multiple channels to be
attached.

An interface exists for you to add custom Voice Generators, expanding the range of
available sounds. The demands made on processor bandwidth by synthesis algorithms
are high, especially for complex sounds, so you must write them with great care.

Technical details

4-6

Technical details

DMA Handler
The DMA Handler manages the hardware used by the Sound system. Two physical
buffers in main memory are used. These are accessed using four registers in the sound
DMA Address Generator (DAG) within the MEMC (memory controller) chip:

● The DAG sound pointer points to the byte of sound to be output

● The current end register points to the end of the DMA buffer

● The next start/end register pair point to the most recently filled buffer.

The sound pointer is incremented every time a byte is read by the video controller for
output. When it reaches the end of the current buffer the memory controller switches
buffers: the sound pointer and buffer end registers are set to the values stored in the next
start and next end registers respectively. An interrupt is then issued by IOC (the I/O
controller) indicating the buffers have switched, and the DMA handler is entered.

The DMA Handler calls the Channel Handler with a Fill request, asking that the next
buffer be filled. (See page 4-10 for details of the Channel Handler.) If this fill is
completed, control returns to the DMA Handler and it makes the next start and next end
registers point to the buffer just filled. If the fill is not completed then the next registers
are not altered, and so the same buffer of sound will be repeated, causing an audible
discontinuity.

Configuring the Sound system

The rest of this section outlines the factors that you must consider if you choose to
reconfigure the Sound system.

Terminology used
● The output period is the time between each output of a byte.

● The sample period is the time between each output for a given channel.

● The buffer period is the time to output an entire buffer.

There are corresponding rates for each of the above.

● The sample length is the number of bytes in the buffer per channel.

● The buffer length is the total number of bytes in the buffer.

S
o

u
n

d

The Sound system

4-7

DMA Buffer period

A short buffer period is desirable to minimise the size of the buffer and to give high
resolution to the length of notes; a long buffer period is desirable to decrease the
frequency and number of interrupts issued to the processor. A period of approximately
one centisecond is chosen as a default value, although this can be changed, for example
to replay lengthy blocks of sampled speech from a disc.

Sample rate: maximum

A high sample rate will give the best sound quality. If too high a rate is sought then
DMA request conflicts will occur, especially when high bandwidths are also required
from VIDC (the Video Controller) by high resolution screen modes. To avoid such
contention the output period must not be less than 4µs. Outputting a byte to one of eight
channels every 4µs results in a sample period of 32µs, which gives a maximum sample
rate of 31.25kHz.

Sample rate: default

The clock for the Sound system is derived from the system clock for the video controller,
which is then divided by a multiple of 24. Current ARM based computers use a VIDC
system clock of 24MHz, 25.175MHz or 36MHz, depending on the screen mode and
monitor type selected. The default output period is 6µs, which is compatible with VIDC
system clocks running at multiples of 4MHz from 12MHz upwards (ie 12MHz, 16MHz,
20MHz…). This 6µs output period is obtained as follows from the 24MHz and 36MHz
VIDC system clocks:

● 24MHz clock divided by 144 (6 × 24)

● 36MHz clock divided by 216 (9 × 24)

Unfortunately with a VIDC system clock of 25.175MHz (used for VGA screen modes)
the same output period cannot be produced. The divider used is the same as for a 24MHz
VIDC system clock (ie 144, or 6 × 24), which results in a slightly shorter output period,
and so sounds are approximately a semitone higher.

Outputting a byte to one of eight channels every 6µs results in a sample period of 48µs,
which gives a default sample rate of 20.833kHz.

DMA Handler

4-8

Buffer length

The DMA buffer length depends on the number of channels, the sample rate, and the
buffer period. It must also be a multiple of 4 words. Using the defaults outlined above,
the lengths shown in the middle two columns of the following table are the closest
alternatives:

Buffer lengths for one centisecond sample, at sample rate of 20.833 kHz:

The system default buffer period is chosen as 0.9984 centiseconds, thus the sample
length is 208 bytes, or 52 words (13 DMA quad-word cycles). The buffer length is a
multiple of this, depending on how many channels are used.

DMA Buffer format

The sound DMA system systematically outputs bytes at the programmed sample rate;
each (16-byte) load of DMA data from memory is synchronised to the first stereo image
position. Each byte must be stored as an eight bit signed logarithm, ready for direct
output to the VIDC chip:

Multiple channel operation is possible with two, four or eight channels; in this case the
data bytes for each channel must be interleaved throughout the DMA buffer at two, four
or eight byte intervals. When output the channels are multiplexed into what is effectively
one half, one quarter or one eighth of the sample period, so the signal level per channel
is scaled down by the same amount. Thus the signal level per channel is scaled,
depending on the number of channels; but the overall signal level remains the same for
all multi-channel modes.

Buffer length Output period

1 channel 208 bytes 224 bytes 48µs

2 channels 416 bytes 448 bytes 24µs

4 channels 832 bytes 896 bytes 12µs

8 channels 1664 bytes 1792 bytes 6µs

Buffer period 0.9984cs 1.0752cs

Interrupt rate 100.16Hz 93.01Hz

Bytes per channel &D0 &E0

S
o

u
n

d

The Sound system

4-9

Showing the interleaving schematically:

Single channel format:

Output rate = 20 kHz
Image registers 0 - 7 programmed identically

Two channel format:

Output rate = 40 kHz
Image registers 0+2+4+8 and 1+3+5+7 programmed per channel

Four channel format:

Output rate = 80 kHz
Image registers 0+4, 1+5, 2+6 and 3+7 programmed per channel

0 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

chan 1 chan 1 chan 1 chan 1 chan 1 chan 1 chan 1 chan 1

+8 byte 8 byte 9 byte 10 byte 11 byte 12 byte 13 etc...

chan 1 chan 1 chan 1 chan 1 chan 1 chan 1

0 byte 0 byte 0 byte 1 byte 1 byte 2 byte 2 byte 3 byte 3

chan 1 chan 2 chan 1 chan 2 chan 1 chan 2 chan 1 chan 2

+8 byte 4 byte 4 byte 5 byte 5 byte 6 byte 6 etc...

chan 1 chan 2 chan 1 chan 2 chan 1 chan 2

0 byte 0 byte 0 byte 0 byte 0 byte 1 byte 1 byte 1 byte 1

chan 1 chan 2 chan 3 chan 4 chan 1 chan 2 chan 3 chan 4

+8 byte 2 byte 2 byte 2 byte 2 byte 3 byte 3 etc...

chan 1 chan 2 chan 3 chan 4 chan 1 chan 2

Channel Handler

4-10

Eight channel format:

Output rate = 160 kHz
Image registers programmed individually.

The Channel Handler manages the interleaving for you by passing the correct start
address and increment to the Voice Generator attached to each channel.

Channel Handler
The Channel Handler registers itself with the DMA Handler by passing its address using
Sound_Configure. At this address there must be a standard header:

Channel Handler

Offset Value
0 pointer to fill code
4 pointer to overrun fixup code
8 pointer to linear-to-log table
12 pointer to log-scale table

The fill code handles fill requests from the DMA Handler. The Channel Handler
translates the fill request to a series of calls to the Voice Generators, passing the required
buffer offsets so that data from all channels correctly interleaves. Any unused channels
within the buffer are set to zero by the Channel Handler so they are silent.

The overrun fixup code deals with channels that are not successfully filled within a
single buffer period and hence repeat the same DMA buffer. This feature is no longer
supported in RISC OS and the fixup code is never called. (In the Arthur OS the
offending channel was marked as overrun, the previous Channel Handler was aborted,
and a new buffer fill initiated.)

The pointer to the linear-to-log table holds the address of the base of an 8 Kbyte table
which maps 32-bit signed integers directly to 8-bit signed volume-scaled logarithms in a
suitable format for output to the VIDC chip.

0 byte 0 byte 0 byte 0 byte 0 byte 0 byte 0 byte 0 byte 0

chan 1 chan 2 chan 3 chan 4 chan 5 chan 6 chan 7 chan 8

+8 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 etc...

chan 1 chan 2 chan 3 chan 4 chan 5 chan 6

S
o

u
n

d

The Sound system

4-11

The pointer to the log-scale table holds the address of a 256-byte table which scales the
amplitude of VIDC-format 8-bit signed logarithms from their maximum range down to
a value scaled to the volume setting. Voice Generators should use this table to adjust
their overall volume.

Sound Channel Control Block (SCCB)

The Channel Handler maintains a 256 byte Sound Channel Control Block (SCCB) for
each channel. An SCCB contains parameters and flags used by Voice Generators, and an
extension area for programmers to pass any essential further data. Such an extension
must be well documented, and used with care, as it will lead to Voice Generators that are
no longer wholly compatible with each other.

The 9 initial words hold values that are normally stored in R0 - R8 inclusive. They are
loaded from the SCCB using the instruction LDMIA R9,{R0-R8}

Offset Value
0 gate bit + channel amplitude (7-bit log)
1 index to voice table
2 instance number for attached voice
3 control/status bit flags
4 phase accumulator pitch oscillator
8 phase accumulator timbre oscillator
12 number of buffer fills left to do (counter)
16 (normally working R4)
20 (normally working R5)
24 (normally working R6)
28 (normally working R7)
32 (normally working R8)
36 - 63 reserved for use by Acorn (28 bytes)
64 - 255 available for users

The flag byte indicates the state of the voice attached to the channel, and may be used for
allocating voices in a polyphonic manner. Each time a Voice Generator completes a
buffer fill and returns to the Channel Handler it returns an updated value for the Flags
field in R0.

It is the responsibility of the Channel Handler to store the returned flag byte, and to
update the other fields of each SCCB as necessary.

Note – In the Arthur OS, the flag byte was also used to detect channels that had overrun.
If any were found then a call was made indirected through the fix up pointer (see above).

Scheduler

4-12

Voice Table

The Channel Handler uses a voice table recording the names of voices installed in the 32
available voice slots. It is always accessed through the SWI calls provided, and so its
format is not defined.

Scheduler

Header

The Scheduler registers itself with the DMA Handler by passing its address using
Sound_Configure. At this address there must be a pointer to the code for the Scheduler.

Use

Although the Scheduler is principally designed for queuing sound commands it can be
used to issue other SWIs. Thus it could be used to control, for example, an external
instrument interface (such as a Musical Instrument Digital Interface (MIDI) expansion
podule), or a screen-based music editor with real-time score replay.

Extreme care must be used with the Scheduler, as it has limitations. R2 - R7 are always
cleared when the SWI is issued, and the error-returning form (‘X’ form) of the SWI is
forced. Return parameters are discarded. If pointers are to be passed in R0 or R1 then the
data they address must be preserved until the SWI is called. If a SWI will not work
within these limitations it must not be called by the Scheduler.

The Scheduler implements the queue as a circular chain of records. A stack listing the
free slots is also kept. The number of free slots varies not only according to how many
events are queued, but also to how the events are ‘clustered’.

The queue is always accessed through the SWI calls provided, and so its precise format
is not defined.

Event dispatcher

Every centisecond the beat counter is advanced according to the tempo value, and any
events that fall within the period are activated in strict queuing order. Voice and
parameter change events are processed and the SCCB for each Voice Generator updated
as necessary by the Channel Handler, before fill requests are issued to the relevant Voice
Generators.

S
o

u
n

d

The Sound system

4-13

Voice Generators
A Voice Generator is added to the Sound system by issuing a Sound_InstallVoice call,
which passes its address to the Channel Handler. At this address there must be a standard
header:

Header

Offset Contents
0 B FillCode
4 B UpdateCode
8 B GateOnCode
12 B GateOffCode
16 B Instantiate
20 B Free
24 LDMFD R13!,{pc}
28 Offset from start of header to voice name

The Fill, Update, GateOn and GateOff entries provide services to fill the DMA buffer at
different stages of a note, as detailed in the section entitled Entry points for buffer filling
on page 4-15.

The Instantiate and Free entries provide facilities to attach or detach the Voice Generator
to or from a channel, as detailed in the section entitled Voice instantiation on page 4-16.

The Install entry was originally to be called when a Voice Generator was initialised.
Since Voice Generators are now implemented as Relocatable Modules, which offer
exactly this service in the form of the Initialisation entry point, this field is not supported
and simply returns to the caller (LDMFD R13!,{pc} above).

The voice name is used by the Channel Handler voice table. It should be both concise
and descriptive. The offset must be positive relative – that is, the voice name must be
after the header.

Buffer filling: entry conditions

A fill request to a Voice Generator is made by the Channel Handler using one of the four
buffer fill entry points. The registers are allocated as follows:

Register Function
R6 negative if configuration of Channel Handler changed
R7 channel number
R8 sample period in µs
R9 pointer to SCCB (Sound Channel Control Block)
R10 pointer to end of DMA buffer
R11 increment to use when writing to DMA buffer

Voice Generators

4-14

R12 pointer to (start of DMA buffer + interleaf offset)
R13 stack (Return address is on top of stack)
R14 do not use

Further parameters are available in the SCCB for that channel, which is addressed by
R9. See the section entitled Channel Handler on page 4-10 for details. The usage of the
parameters depends on which of the four entry points is called.

The ARM is in IRQ mode with interrupts enabled.

Buffer filling: routine conditions

The routine must fill the buffer with 8 bit signed logarithms in the correct format for
direct output to the VIDC chip:

The ARM is in IRQ mode with interrupts enabled. They must remain enabled to ensure
that system devices do not have a lengthy wait to be serviced. The code for a Voice
Generator must therefore be re-entrant, and R14 must not be used as a subroutine link
register, since an interrupt will corrupt it. Sufficient IRQ stack depth must be maintained
for system IRQ handling. You can enter SVC mode if you wish.

Buffer filling: exit conditions

When a Voice Generator has completed a buffer fill it sets a flag byte in R0, and returns
to the Channel Handler using LDMFD R13!,{PC}. The flag byte shows the status of
each channel, and is used to prioritise fill requests to the Voice Generators.

Bit Meaning
Q Quiet (GateOff flag)
K Kill pending (GateOn flag)
I Initialise pending (Update flag)
F Fill pending
A Active (normal Fill in progress)
V oVerrun flag (no longer supported)
F2, F1 2-bit Flush pending counter

Q K I F A V F2 F1

7 0

S
o

u
n

d

The Sound system

4-15

Entry points for buffer filling
There are four different entry points for buffer filling, which are used at the different
stages of a note. It is the responsibility of the Channel Handler to determine which Voice
Generator to call, which entry should be used, and to update the SCCB as necessary
when these calls return.

GateOn entry

The GateOn entry is used whenever a sound command is issued that requires a new
envelope. Normally any previous synthesis is aborted and the algorithm restarted.

On exit a the A bit (bit 3) of the flag byte is set.

Update entry

The Update entry is used whenever a sound command is issued that requires a smooth
change, without a new envelope (using extended amplitudes &180 to &1FF in the
*Sound command for example). Normally the previous algorithm is continued, with
only the amplitude, pitch and duration parameters supplied by the SCCB updated.

On exit the A bit (bit 3) of the flag byte is returned unless the voice is to stop sounding;
for example if the envelope has decayed to zero amplitude. In these cases the F2 bit
(bit 1) is set, and the Channel Handler will automatically flush out the next two DMA
buffers, before becoming dormant.

Fill entry

The Fill entry is used when the current sound is to continue, and no new command has
been issued.

On exit it is normal to return the same flags as for the Update entry.

GateOff entry

The GateOff entry is used to finish synthesising a sound. Simple voices may stop
immediately, which is liable to cause an audible ‘click’; more refined algorithms might
gradually release the note over a number of buffer periods. A GateOff entry may be
immediately followed by a GateOn entry.

On exit the F2 bit (bit 1) is set if the voice is to stop sounding, or the A bit (bit 3) is set if
the voice is still being released.

Voice instantiation

4-16

Voice instantiation
Two entry points are provided to attach or detach a voice generator and a sound channel.
On entry the ARM is in Supervisor mode, and the registers are allocated as follows:

Register Function
R0 physical Channel number –1 (0 to 7)
R14 usable

The return address is on top of the stack. All other registers must be preserved by the
routines, which must exit using LDMFD R13!,{pc}

R0 is preserved if the call was successful, else it is altered.

Instantiate entry

The Instantiate entry is called to inform the Voice Generator of a request to attach a
channel to it. Each channel attached is likely to need some private workspace. A Voice
Generator should ideally be able to support eight channels. The request can either be
accepted (R0 preserved on exit), or rejected (R0 altered on exit).

The usual reason for rejection is that an algorithm is slow and is already filling as many
channels as it can within each buffer period: for example very complex algorithms, or
ones that read long samples off disc.

Free entry

The Free entry is called to inform the Voice Generator of a request to detach a channel
from it. The call must release the channel and preserve all registers.

S
o

u
n

d

The Sound system

4-17

Service Calls
Service_Sound
(Service Call &54)

Parts of the Sound system are starting or dying

On entry

R0 = 0 DMA Handler starting
1 DMA Handler dying
2 Channel Handler starting
3 Channel Handler dying
4 Scheduler starting
5 Scheduler dying

R1 = &54 (reason code)

On exit

R0, R1 preserved

Use

This call is made to signal that a part of the Sound system is about to start up or finish.

SWI calls

4-18

SWI calls
Sound_Configure

(SWI &40140)

Configures the Sound system

On entry

R0 = number of channels, rounded up to 1,2,4 or 8
R1 = sample length (in bytes per channel – default 208)
R2 = sample period (in µs per channel – default 48)
R3 = pointer to Channel Handler (normally 0 to preserve system Handler)
R4 = pointer to Scheduler (normally 0 to preserve system Scheduler)

On exit

R0 - R4 = previous values

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This software interrupt is used to configure the number of sound channels, the sample
period and the sample length. It can also be used by specialised applications to replace
the default Channel Handler and Scheduler.

All current settings may be read by using zero input parameters.

The actual values programmed are subject to the limitations outlined earlier.

S
o

u
n

d

The Sound system

4-19

Related SWIs

None

Related vectors

None

Sound_Enable (SWI &40141)

4-20

Sound_Enable
(SWI &40141)

Enables or disables the Sound system

On entry

R0 = new state:
0 for no change (read state)
1 for OFF
2 for ON

On exit

R0 = previous state
1 for OFF
2 for ON

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This software interrupt is used to enable or disable all Sound interrupts and DMA
activity. This guarantees to inhibit all Sound system bandwidth consumption once a
successful disable has been completed.

Related SWIs

Sound_Speaker (page 4-24), Sound_Volume (page 4-26)

S
o

u
n

d

The Sound system

4-21

Related vectors

None

Sound_Stereo (SWI &40142)

4-22

Sound_Stereo
(SWI &40142)

Sets the stereo position of a channel

On entry

R0 = channel (C) to program
R1 = image position:

0 is centre
127 for maximum right
–127 for maximum left
–128 for no change (read state)

On exit

R0 preserved
R1 = previous image position, or –128 if R0 ≥ 8 on entry

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

For N physical channels enabled, this call will program stereo registers C, C+N,
C+2N… up to stereo register 8. For example, if two channels are currently in use, and
channel 1 is programmed, channels 3, 5 and 7 are also programmed; if channel 3 is
programmed, channels 5 and 7 are also programmed, but not channel 1.

This Software call only updates RAM copies of the stereo image registers and the new
positions, in fact, take effect on the next sound buffer interrupt.

IRQ code can call this SWI directly for scheduled image movement.

S
o

u
n

d

The Sound system

4-23

Related SWIs

None

Related vectors

None

Sound_Speaker (SWI &40143)

4-24

Sound_Speaker
(SWI &40143)

Enables or disables the speaker(s)

On entry

R0 = new state:
0 for no change (read state)
1 for OFF
2 for ON

On exit

R0 = previous state
1 for OFF
2 for ON

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This software interrupt enables/disables the monophonic or stereophonic mixed
signal(s) to the internal loudspeaker amplifier(s). It has no effect on the external stereo
headphone/amplifier output.

This SWI disables the speaker(s) by muting the signal; you may still be able to hear a
very low level of sound.

Related SWIs

Sound_Enable (page 4-20), Sound_Volume (page 4-26)

S
o

u
n

d

The Sound system

4-25

Related vectors

None

Sound_Volume (SWI &40180)

4-26

Sound_Volume
(SWI &40180)

Sets the overall volume of the Sound system

On entry

R0 = sound volume (1 - 127) (0 to inspect last setting)

On exit

R0 = previous volume

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call sets the maximum overall volume of the Sound system. A change of 16 in the
volume will halve or double the volume. The command scales the internal lookup tables
that Voice Generators use to set their volume; some custom Voice Generators may
ignore these tables and so will be unaffected.

A large amount of calculation is involved in this apparently trivial call. It should be used
sparingly to limit the overall volume; the volume of each channel should then be set
individually.

Related SWIs

Sound_Enable (page 4-20), Sound_Speaker (page 4-24)

Related vectors

None

S
o

u
n

d

The Sound system

4-27

Sound_SoundLog
(SWI &40181)

Converts a signed integer to a signed logarithm, scaling it by volume

On entry

R0 = 32-bit signed integer

On exit

R0 = 8-bit signed volume-scaled logarithm

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call maps a 32-bit signed integer to an 8 bit signed logarithm in VIDC format. The
result is scaled according to the current volume setting. Table lookup is used for
efficiency.

Related SWIs

Sound_LogScale (page 4-28)

Related vectors

None

Sound_LogScale (SWI &40182)

4-28

Sound_LogScale
(SWI &40182)

Scales a signed logarithm by the current volume setting

On entry

R0 = 8-bit signed logarithm

On exit

R0 = 8-bit signed volume-scaled logarithm

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This software interrupt maps an 8-bit signed logarithm in VIDC format to one scaled
according to the current volume setting. Table lookup is used for efficiency.

Related SWIs

Sound_SoundLog (page 4-27)

Related vectors

None

S
o

u
n

d

The Sound system

4-29

Sound_InstallVoice
(SWI &40183)

Adds a voice to the Sound system

On entry

R0 = pointer to Voice Generator
R1 = voice slot (0 to install in next free slot, else 1 - 32)

On exit

R0 = pointer to name of previous voice, or null terminated error string if R1 = 0
R1 = voice number allocated, or 0 if unable to install

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This software interrupt is used by Voice Modules or Libraries to add a Voice Generator
to the table of available voices. If an error occurs, this SWI does not set V in the usual
manner. Instead R1 is zero on exit, and R0 points directly to a null-terminated error
string.

Sound_InstallVoice (SWI &40183)

4-30

If R0 is in the range 0 - 3, this call takes other action as follows:

Related SWIs

Sound_RemoveVoice (page 4-35)

Related vectors

None

R0 Action Page
0 Reads the name of the voice installed in the specified slot 4-29

1 Adds a voice to the Sound system, specifying its name in the
local language

4-29

2 Reads the name of the voice installed in the specified slot, and its
local name

4-29

3 Changes the local name of the voice installed in the specified slot 4-29

S
o

u
n

d

The Sound system

4-31

Sound_InstallVoice 0
(SWI &40183)

Reads the name of the voice installed in the specified slot

On entry

R0 = 0
R1 = voice slot

On exit

R0 = pointer to name of installed voice
R1 preserved

Use

This call reads the name of the voice installed in the specified slot. If the slot is unused
RISC OS gives a null pointer. (The Arthur OS gave a pointer to the string ‘*** No
Voice’.)

Sound_InstallVoice 1 (SWI &40183)

4-32

Sound_InstallVoice 1
(SWI &40183)

Adds a voice to the Sound system, specifying its name in the local language

On entry

R0 = 1
R1 = voice slot (0 to install in next free slot, else 1 - 32)
R2 = pointer to Voice Generator
R3 = pointer to voice name in local language, or 0 if no local name

On exit

R0 preserved
R1 = voice number allocated, or 0 if unable to install
R2 = pointer to name of previous voice, or null terminated error string if R1 = 0
R3 preserved

Use

This software interrupt is used by Voice Modules or Libraries to add a Voice Generator
to the table of available voices, specifying its name in the local language. If an error
occurs, this SWI does not set V in the usual manner. Instead R1 is zero on exit, and R0
points directly to a null-terminated error string.

This reason code is not available in RISC OS 2.

S
o

u
n

d

The Sound system

4-33

Sound_InstallVoice 2
(SWI &40183)

Reads the name of the voice installed in the specified slot, and its local name

On entry

R0 = 2
R1 = voice slot

On exit

R0, R1 preserved
R2 = pointer to name of installed voice
R3 = pointer to name of installed voice in local language

Use

This call reads the name of the voice installed in the specified slot, and its local name. If
the slot is unused RISC OS gives a null pointer. (The Arthur OS gave a pointer to the
string ‘*** No Voice’.) The local name is otherwise guaranteed to be non-null and valid.

This reason code is not available in RISC OS 2.

Sound_InstallVoice 3 (SWI &40183)

4-34

Sound_InstallVoice 3
(SWI &40183)

Changes the local name of the voice installed in the specified slot

On entry

R0 = 3
R1 = voice slot
R2 = 0
R3 = pointer to new voice name in local language

On exit

R0 - R3 preserved

Use

This call changes the local name of the voice installed in the specified slot. The local
name is set to the new name given, even if it had no local name before this call was
made.

This reason code is not available in RISC OS 2.

S
o

u
n

d

The Sound system

4-35

Sound_RemoveVoice
(SWI &40184)

Removes a voice from the Sound system

On entry

R1 = voice slot to remove (1 - 32)

On exit

R0 = pointer to name of previous voice (or error message)
R1 is voice number de-allocated (0 for FAIL)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This software interrupt is used when Voice Modules or Libraries are to be removed from
the system. It notifies the Channel Handler that a RAM-resident Voice Generator is
being removed. If an error occurs, this SWI does not set V in the usual manner. Instead
R1 is zero on exit, and R0 points directly to a null-terminated error string.

This call must also be issued before the Relocatable Module Area is Tidied, since the
module contains absolute pointers to Voice Generators that are likely to exist in the
RMA.

Related SWIs

Sound_InstallVoice (page 4-29)

Sound_RemoveVoice (SWI &40184)

4-36

Related vectors

None

S
o

u
n

d

The Sound system

4-37

Sound_AttachVoice
(SWI &40185)

Attaches a voice to a channel

On entry

R0 = channel number (1 - 8)
R1 = voice slot to attach (0 to detach and mute channel)

On exit

R0 preserved (or 0 if illegal channel number)
R1 = previous voice number (or 0 if not previously attached)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call attaches a voice with a given slot number to a channel. The previous voice is
shut down and the new voice is reset.

Different algorithms have different internal state representations so it is not possible to
swap Voice Generators in mid-sound.

Related SWIs

Sound_AttachNamedVoice (page 4-43)

Related vectors

None

Sound_ControlPacked (SWI &40186)

4-38

Sound_ControlPacked
(SWI &40186)

Makes an immediate sound

On entry

R0 is AAAACCCC Amp/Channel
R1 is DDDDPPPP Duration/Pitch

On exit

R0,R1 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call is identical to Sound_Control (page 4-41), but the parameters are packed 16-bit
at a time into low R0, high R0, low R1, high R1 respectively. It is provided for BBC
compatibility and for the use of the Scheduler. The Sound_Control call should be used in
preference where possible.

Related SWIs

Sound_Control (page 4-41)

Related vectors

None

S
o

u
n

d

The Sound system

4-39

Sound_Tuning
(SWI &40187)

Sets the tuning for the Sound system

On entry

R0 = new tuning value (or 0 for no change)

On exit

R0 = previous tuning value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call sets the tuning for the Sound system in units of 1/4096 of an octave.

The command *Tuning 0 may be used to restore the default tuning.

Related SWIs

None

Related vectors

None

Sound_Pitch (SWI &40188)

4-40

Sound_Pitch
(SWI &40188)

Converts a pitch to internal format (a phase accumulator value)

On entry

R0 = 15-bit pitch value:
bits 14 - 12 are a 3-bit octave number
bits 11 - 0 are a 12-bit fraction of an octave (in units of 1/4096 octave)

On exit

R0 = 32-bit phase accumulator value, or preserved if R0 ≥ &8000 on entry

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This software interrupt maps a 15-bit pitch to an internal format pitch value (suitable for
the standard voice phase accumulator oscillator).

Related SWIs

None

Related vectors

None

S
o

u
n

d

The Sound system

4-41

Sound_Control
(SWI &40189)

Makes an immediate sound

On entry

R0 = channel number (1 - 8)
R1 = amplitude:

&FFF1 - &FFFF and 0 for BBC emulation amplitude (0 to -15)
&0001 - &000F BBC envelope not emulated
&0100 - &01FF for full amplitude/gate control:

bit 7 is 0 for gate ON/OFF
1 for smooth update (gate not retriggered)

bits 6 - 0 are 7-bit logarithm of amplitude
R2 = pitch

&0000 - &00FF for BBC emulation pitch
&0100 - &7FFF for enhanced pitch control:

bits 14 - 12 = 3-bit octave
bits 11 - 0 = 12-bit fractional part of octave
(&4000 is nominally Middle C)

&8000 + n ‘n’ (in range 0 - &7FFF) is phase accumulator increment
R3 = duration

&0001 - &00FE for BBC emulation in 5 centisecond periods
&00FF for BBC emulation ‘infinite’ time (converted to &F0000000)
> &00FF for duration in 5 centisecond periods.

On exit

R0 - R3 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Sound_Control (SWI &40189)

4-42

Re-entrancy

Not defined

Use

This call allows real-time control of a specified Sound Channel. The parameters are
immediately updated and take effect on the next buffer fill.

Gate on and off correspond to the start and end of a note and of its envelope (if
implemented). ‘Smooth’ update occurs when note parameters are changed without
restarting the note or its envelope – for example when the pitch is changed to achieve a
glissando effect.

If any of the parameters are invalid the call does not generate an error; instead it returns
without performing any operation.

Related SWIs

Sound_ControlPacked (page 4-38)

Related vectors

None

S
o

u
n

d

The Sound system

4-43

Sound_AttachNamedVoice
(SWI &4018A)

Attaches a named voice to a channel

On entry

R0 = channel number (1 - 8)
R1 = pointer to voice name (ASCII string, null terminated)

On exit

R0 is preserved, or 0 for fail
R1 is preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call attaches a named voice to a channel. If no exact match for the name is found
then an error is generated and the old voice (if any) remains attached. If a match is found
then the previous voice is shut down and the new voice is reset.

Different algorithms have different internal state representations so it is not possible to
swap Voice Generators in mid-sound.

Related SWIs

Sound_AttachVoice (page 4-37)

Related vectors

None

Sound_ReadControlBlock (SWI &4018B)

4-44

Sound_ReadControlBlock
(SWI &4018B)

Reads a value from the Sound Channel Control Block

On entry

R0 = channel number (1 - 8)
R1 = offset to read from (0 - 255)

On exit

R0 preserved (or 0 if fail, invalid channel, or invalid read offset)
R1 preserved
R2 = 32-bit word read (if R0 non-zero on exit)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call reads 32-bit data values from the Sound Channel Control Block (SCCB) for the
designated channel. This call can be used to read parameters not catered for in the
Sound_Control calls returned by Voice Generators, using an area of the SCCB reserved
for the programmer.

Related SWIs

Sound_WriteControlBlock (page 4-45)

Related vectors

None

S
o

u
n

d

The Sound system

4-45

Sound_WriteControlBlock
(SWI &4018C)

Writes a value to the Sound Channel Control Block

On entry

R0 = channel number (1 - 8)
R1 = offset to write to (0 - 255)
R2 = 32-bit word to write

On exit

R0 preserved (or 0 if fail, invalid channel, or invalid write offset)
R1 preserved
R2 = previous 32-bit word (if R0 non-zero on exit)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call writes 32-bit data values to the Sound Channel Control Block (SCCB) for the
designated channel. This call can be used to pass parameters not catered for in the
Sound_Control calls to Voice Generators, using an area of the SCCB reserved for the
programmer.

Related SWIs

Sound_ReadControlBlock (page 4-44)

Sound_WriteControlBlock (SWI &4018C)

4-46

Related vectors

None

S
o

u
n

d

The Sound system

4-47

Sound_QInit
(SWI &401C0)

Initialises the Scheduler’s event queue

On entry

No parameters passed in registers

On exit

R0 = 0, indicating success

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call flushes out all events currently scheduled and re-initialises the event queue.
The tempo is set to the default, the beat counter is reset and disabled, and the bar length
set to zero.

Related SWIs

None

Related vectors

None

Sound_QSchedule (SWI &401C1)

4-48

Sound_QSchedule
(SWI &401C1)

Schedules a sound SWI on the event queue

On entry

R0 = schedule period
–1 to synchronise with the previously scheduled event
–2 for immediate scheduling

R1 = 0 to schedule a Sound_ControlPacked call, or SWI code to schedule (of the form
&xF000000 + SWI number)
R2 = SWI parameter to be passed in R0
R3 = SWI parameter to be passed in R1

On exit

R0 = 0 for successfully queued
R0 < 0 for failure (queue full)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call schedules a sound SWI call. If the beat counter is enabled the schedule period
is measured from the last start of a bar, otherwise it is measured from the time the call is
made.

A schedule time of –1 forces the new event to be queued for activation concurrently with
the previously scheduled one.

S
o

u
n

d

The Sound system

4-49

The event is typically a Sound_ControlPacked type call, although any other sound SWI
may be scheduled. There are limitations: R2 - R7 are always cleared, and any return
parameters are discarded. If pointers are to be passed in R0 or R1 then any associated
data must still remain when the SWI is called (the workspace involved must not have
been reused, the Window Manager must not have paged it out, and so on).

Related SWIs

Sound_QFree (page 4-51)

Related vectors

None

Sound_QRemove (SWI &401C2)

4-50

Sound_QRemove
(SWI &401C2)

This SWI call is for use by the Scheduler only. You must not use it in your own code.

S
o

u
n

d

The Sound system

4-51

Sound_QFree
(SWI &401C3)

Returns minimum number of free slots in the event queue

On entry

No parameters passed in registers

On exit

R0 = number of guaranteed slots free
R0 < 0 indicates over worst case limit, but may still be free slots

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call returns the minimum number of slots guaranteed free. The calculation assumes
the worst case of data structure overheads that could occur, so it is likely that more slots
can in fact be used. If this guaranteed free slot count is exceeded this call will return
negative values, and the return status of Sound_QSchedule must be carefully monitored
to observe when overflow occurs.

Related SWIs

Sound_QSchedule (page 4-48)

Related vectors

None

Sound_QSDispatch (SWI &401C4)

4-52

Sound_QSDispatch
(SWI &401C4)

This SWI call is for use by the Scheduler only. You must not use it in your own code.

S
o

u
n

d

The Sound system

4-53

Sound_QTempo
(SWI &401C5)

Sets the tempo for the Scheduler

On entry

R0 = new tempo (or 0 for no change)

On exit

R0 = previous tempo value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This command sets the tempo for the Scheduler. The default tempo is &1000, which
corresponds to one beat per centisecond; doubling the value doubles the tempo (ie
&2000 gives two beats per centisecond), while halving the value halves the tempo (ie
&800 gives half a beat per centisecond).

The parameter can be thought of as a hexadecimal fractional number, where the three
least significant digits are the fractional part.

Related SWIs

Sound_QBeat (page 4-54)

Related vectors

None

Sound_QBeat (SWI &401C6)

4-54

Sound_QBeat
(SWI &401C6)

Sets or reads the beat counter or bar length

On entry

R0 = 0 to return current beat number
R0 = –1 to return current bar length
R0 < –1 to disable beat counter and set bar length 0
R0 = +N to enable beat counter with bar length N (counts 0 to N–1)

On exit

R0 = current beat number (R0 = 0 on entry), otherwise the previous bar length.

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

The simplest use of this call is to read either the current value of the beat counter or the
current bar length.

When the beat counter is disabled both it and the bar length are reset to zero. All
scheduling occurs relative to the time the scheduling call is issued.

When the beat counter is enabled it is reset to zero. It then increments, resetting every
time it reaches the programmed bar length (N–1). Scheduling using Sound_QSchedule
then occurs relative to the last bar reset; however, scheduling using *QSound is still
relative to the time the command is issued.

S
o

u
n

d

The Sound system

4-55

Related SWIs

Sound_QTempo (page 4-53)

Related vectors

None

Sound_QInterface (SWI &401C7)

4-56

Sound_QInterface
(SWI &401C7)

This SWI call is for use by the Scheduler only. You must not use it in your own code.

S
o

u
n

d

The Sound system

4-57

* Commands
*Audio

Turns the Sound system on or off

Syntax

*Audio On|Off

Parameters

On or Off

Use

*Audio turns the Sound system on or off. Turning the Sound system off silences it
completely, stopping all Sound interrupts and DMA activity. Turning the Sound system
back on restores the Sound DMA and interrupt system to the state it was in immediately
prior to being turned off.

All Channel Handler and Scheduler activity is effectively frozen during the time the
Audio system is off, but software interrupts are still permitted, even if no sound results.

Example

*Audio On

Related commands

*Speaker, *Volume

Related SWIs

Sound_Enable (page 4-20)

Related vectors

None

*ChannelVoice

4-58

*ChannelVoice

Assigns a voice to a channel

Syntax

*ChannelVoice channel voice_number|voice_name

Parameters

channel 1 to 8

voice_number 1 to 16, as given by *Voices; or 0 to mute the channel

voice_name name, as given by *Voices

Use

*ChannelVoice assigns a voice (sound) to one of the eight independent channels used for
sound output. It is better to specify the voice by name rather than by number, since the
name is independent of the order in which the voices are loaded. Note that the name is
case sensitive. Alternatively, you can mute a channel by assigning it a voice slot of 0.

By default, only the first of the eight voices will be available. To make others available,
use the SWI Sound_Configure, or enter BASIC and type

>VOICES n

where n is 2, 4 or 8 (the number of sound channels to enable). Do not, however, confuse
the VOICES command in BASIC with *Voices, the command described in this manual.

Example

*ChannelVoice 1 StringLib-Pluck

Related commands

*Stereo, *Voices

Related SWIs

Sound_Configure (page 4-18), Sound_AttachVoice (page 4-37),
Sound_AttachNamedVoice (page 4-43)

Related vectors

None

S
o

u
n

d

The Sound system

4-59

*Configure SoundDefault

Sets the configured speaker setting, volume and voice

Syntax

*Configure SoundDefault speaker volume voice_number

Parameters

speaker 0 to disable the internal loudspeaker(s) – although the
headphones remain enabled
1 to enable the internal loudspeaker(s)

volume 0 (quietest) to 7 (loudest)

voice_number 1 to 16, as given by *Voices

Use

*Configure SoundDefault sets the configured speaker setting, volume and voice. The
voice number is assigned to channel 1 only (the default system Bell channel).

Example

*Configure SoundDefault 1 7 1

Related commands

None

Related SWIs

None

Related vectors

None

*QSound

4-60

*QSound

Generates a sound after a given delay

Syntax

*QSound channel amplitude pitch duration beats

Parameters

channel 1 to 8

amplitude 0 (silent) and &FFFF (almost silent) down to &FFF1 (loud)
for a linear scale – or

&100 (silent) to &17F (loud) for a logarithmic scale, where a
change of 16 will halve or double the amplitude

pitch 0 to 255, where each unit represents a quarter of a semitone,
with a value of 53 producing middle C – or

256 (&100) to 32767 (&7FFF), where the bottom 12 bits
give the fraction of an octave, and the top three bits the
octave, with a value of 16384 (&4000) producing middle C

duration 0 to 32767 (&7FFF), giving the duration of the note in
twentieths of a second – but a value of 255 (&FF) gives a
note of infinite duration (limited by the envelope, if present)

beats beats delay before the sound is generated, occurring at the
rate set by *Tempo

Use

*QSound generates a sound after a given delay. It is identical in effect to issuing a
*Sound command after the specified number of beats have occurred. The channel will
only sound if at least that number of channels have been selected, and the channel has a
voice attached.

Example

*QSound 1 &FFF2 &5800 10 50

Related commands

*Sound, *Tempo

S
o

u
n

d

The Sound system

4-61

Related SWIs

Sound_QSchedule (page 4-48)

Related vectors

None

*Sound

4-62

*Sound

Generates an immediate sound

Syntax

*Sound channel amplitude pitch duration

Parameters

channel 1 to 8

amplitude 0 (silent) and &FFFF (almost silent) down to &FFF1 (loud)
for a linear scale – or

&100 (silent) to &17F (loud) for a logarithmic scale, where a
change of 16 will halve or double the amplitude

pitch 0 to 255, where each unit represents a quarter of a semitone,
with a value of 53 producing middle C – or

256 (&100) to 32767 (&7FFF), where the bottom 12 bits
give the fraction of an octave, and the top three bits the
octave, with a value of 16384 (&4000) producing middle C

duration 0 to 32767 (&7FFF), giving the duration of the note in
twentieths of a second – but a value of 255 (&FF) gives a
note of infinite duration (limited by the envelope, if present)

Use

*Sound generates an immediate sound. The channel will only sound if at least that
number of channels have been selected, and the channel has a voice attached.

Example

*Sound 1 &FFF2 &5800 10

Related commands

*QSound

Related SWIs

Sound_ControlPacked (page 4-38), Sound_Control (page 4-41)

S
o

u
n

d

The Sound system

4-63

Related vectors

None

*Speaker

4-64

*Speaker

Turns the internal speaker(s) on or off

Syntax

*Speaker On|Off

Parameters

On or Off

Use

*Speaker turns the internal speaker(s) on or off. It does not affect the 3.5 mm stereo jack
socket, which you can still use to play the sound through headphones or an amplifier.

You may still be able to hear a very low level of sound, as this command mutes the
speaker(s) rather than totally disabling them.

Example

*Speaker Off

Related commands

*Audio, *Volume

Related SWIs

Sound_Speaker (page 4-24)

Related vectors

None

S
o

u
n

d

The Sound system

4-65

*Stereo

Sets the position in the stereo image of a sound channel

Syntax

*Stereo channel position

Parameters

channel 1 to 8

position –127(full left) to +127(full right)

Use

*Stereo sets the position in the stereo image of a sound channel.

Example

*Stereo 2 100 set channel 2 output to come predominantly from the right

Related commands

*ChannelVoice, *Voices

Related SWIs

Sound_Stereo (page 4-22)

Related vectors

None

*Tempo

4-66

*Tempo

Sets the tempo for the Scheduler

Syntax

*Tempo tempo

Parameters

tempo 0 to &FFFF (default &1000)

Use

*Tempo sets the Sound system tempo (the rate of the beat counter). The default tempo is
&1000, which corresponds to one beat per centisecond; doubling the value doubles the
tempo (so &2000 gives two beats per centisecond), while halving the value halves the
tempo (so &800 gives a beat every two centiseconds).

Example

*Tempo &1200

Related commands

*QSound

Related SWIs

Sound_QTempo (page 4-53)

Related vectors

None

S
o

u
n

d

The Sound system

4-67

*Tuning

Alters the overall tuning of the Sound system

Syntax

*Tuning relative_change

Parameters

relative_change –16383 to 16383 (0 resets the default tuning)

Use

*Tuning alters the overall tuning of the Sound system. A value of zero resets the default
tuning. Otherwise, the tuning is changed relative to its current value in units of 1/4096 of
an octave.

Example

*Tuning 64

Related commands

None

Related SWIs

Sound_Tuning (page 4-39)

Related vectors

None

*Voices

4-68

*Voices

Displays a list of the installed voices

Syntax

*Voices

Parameters

None

Use

*Voices displays a list of the installed voices by name and number, and shows which
voice is assigned to each of the eight channels. A voice can be attached to a channel even
if that channel is not currently in use.

Example

*Voices
 Voice Name
12 1 WaveSynth-Beep
 34 2 StringLib-Soft
 3 StringLib-Pluck
 4 StringLib-Steel
 5 StringLib-Hard
 56 6 Percussion-Soft
 7 Percussion-Medium
 78 8 Percussion-Snare
 9 Percussion-Noise
^^^^^^^^ Channel Allocation Map

Related commands

*ChannelVoice, *Stereo

Related SWIs

Sound_InstallVoice (page 4-29)

Related vectors

None

S
o

u
n

d

The Sound system

4-69

*Volume

Sets the maximum overall volume of the Sound system

Syntax

*Volume volume

Parameters

volume 1 (quietest) to 127 (loudest)

Use

*Volume sets the maximum overall volume of the Sound system. A change of 16 in the
volume parameter will halve or double the actual volume.

The command scales the internal lookup tables that Voice Generators use to set their
volume (Some custom Voice Generators may ignore these tables and so will be
unaffected.) A large amount of calculation is involved in this. You should therefore use
this command sparingly, and only to limit the overall volume of all channels; if a single
channel is too loud or soft, you should alter just that channel’s volume.

Example

*Volume 127

Related commands

*Audio, *Configure SoundDefault, *Speaker

Related SWIs

Sound_Volume (page 4-26)

Related vectors

None

Application notes

4-70

Application notes
The most likely change to the Sound system is to add Voice Generators, thus providing
an extra range of sounds. Each Voice Generator must conform to the specifications given
earlier in the section entitled Voice Generators on page 4-13, and those given below. The
speed and efficiency of Voice Generator algorithms is paramount, and requires careful
attention to coding; some suggested code fragments are given to help you.

Code will not run fast enough in ROM, so ROM templates or user code templates must
be copied into the Relocatable Module Area where they will execute in fast sequential
RAM. If the RMA is to be tidied, all installed voices must be removed using the
Sound_RemoveVoice call, then reinstalled using the Sound_InstallVoice call.

Voice libraries are an efficient way of sharing common code and data areas; these must
be built as Relocatable Modules which install sets of voices, preferably with some form
of library name prefix.

Buffer filling algorithms
The Channel Handler sets up three registers (R12,11,10) which give the start address,
increment and end address for correct filling with interleaved sound samples. The
interleave increment has the value 1, 2, 4 or 8, and is equal to the number of channels.
This code is an example of how these registers should be used:

.loop
 ...
 ... ; e.g. form VIDC format 8 bit signed log in Rs
 STRB Rs,[R12],R11 ; store, and bump ptr
 CMPS R12,R10 ; check for end
 BLT loop ; and loop until fill complete

The DMA buffer is always a multiple of 4 words (16 bytes) long, and word aligned.
Loop overheads can therefore be cut down by using two byte store operations. A further
improvement is possible if R11, the increment, is one; this implies that values are to be
stored sequentially, so word stores may be used.

Example code fragments
The fundamental operations performed by nearly all voice generators involve
Oscillators, Table lookup and Amplitude modulation. In addition, some algorithms
(plucked string and drum in particular) require random bit generators. Simple in-line
code fragments are briefly outlined for each of these.

S
o

u
n

d

The Sound system

4-71

In all cases the aim is to produce the most efficient, and wherever possible highly
sequential, ARM machine code. In most algorithms the aim must be to get as many
working variables into registers as possible, and then adapt the synthesis algorithms
wherever possible to use the high-speed barrel shifter to effect.

Oscillator coding
The accumulator-divider is the most useful type of oscillator for most voices. A
frequency increment is added to a phase accumulator register and the high-order bits of
the resulting phase provide the index to a wavetable. Alternatively, the top byte can be
directly used as a sawtooth waveform.

The frequency of the oscillator is linearly related to the frequency increment. Vibrato
effects can be obtained by modulating the frequency increment

Sixteen-bit registers provide good audible frequency resolution, and are used in many
digital hardware synthesizer products. The 32-bit register width of the ARM is ideally
split 16/16 bits for phase/increment.

Schematically

Figure 72.1 Schematic of accumulator/divisor oscillator

Coding

Register field assignment: Rp

ADD Rp,Rp,Rp,LSL #16 ; phase accumulate

frequency increment

phase accumulator

ADD

16

16

8

16

Index
Sawtooth/

Phase Accumulator Increment

31 16 15 0

Wavetable access coding

4-72

Changing parameters or the voice table being used is best done at or close to
zero-crossing points, to avoid noise generation. If wavetables are arranged with
zero-crossing aligned to the start and end of the table then it is simple to add a branch to
appropriate code.

ADDS Rp,Rp,Rp,LSL #16 ; phase accumulate
BCS Update ; only take branch if past zero crossing

Wavetable access coding
Normally fixed-length (256-byte or a larger power of two) wavetables are used by most
voice generator modules. The high bits of the phase accumulator are added to a
wavetable base pointer to access the sample byte within the table:

Schematically

For a 256-byte table:

Figure 72.2 Schematic of wavetable access code

Coding
LDRB Rs,[Rt,Rp,LSR #24]

where the most significant 8 bits of Rp contain the Phase index, Rt is the Table base
pointer, and Rs is the register used to store the sample.

Amplitude modulation coding
The amplitude of the resultant byte may be altered for three reasons: firstly to scale for
the overall volume setting, secondly to scale for the channel’s volume setting, and lastly
to provide enveloping.

phase accumulator

wavetable base pointer

ADD

8

32

32

(byte fetch)
[Table]

S
o

u
n

d

The Sound system

4-73

Overall volume
If the overall volume setting changes, then your Update entry point will be called. You
can cope with the change in two ways. The first is to re-scale all the values in the
wavetable, using the SWI calls Sound_SoundLog or Sound_LogScale. This has the
advantage that buffer filling is faster as the values are already scaled, but has the
disadvantage that the wavetables might be stored to a lower resolution resulting in
increased noise levels.

The alternative is to re-scale the values between reading them from the wavetable and
outputting them, as in the example voice given later. The reverse then applies: buffer
filling is slower, but noise is reduced. This method is preferred, so long as the algorithm
is still able to fill the buffer within the required period.

Channel volume
The channel’s volume setting should be used by all well-behaved Voice Generators. The
volume is passed to the Voice Generator by the Channel Handler in the SCCB, as a
signed 8 bit logarithm, but in a different format to that used by the VIDC chip:

Amplitude Byte Data Format:

VIDC 8-bit sample format:

Coding

The coding is easiest if the values are treated as fractional quantities, and is then reduced
to subtracting logarithms and checking for underflow:

Ra contains amplitude in range 0 to 127
Rs contains sample data in range –127 to +127 [sign bit LSB]

0

7 6 5 4 3 2 1 0

Logarithm

7 6 5 4 3 2 1 0

Logarithm

Sign
bit

S

Envelope coding

4-74

; do this each time Voice Generator is entered
RSB Ra,Ra,#127 ; make attenuation factor

; do this inside loop, before each write to buffer
SUBS Rs,Rs,Ra,LSL #1 ; note shift to convert to VIDC format
MOVMI Rs,#0 ; correct for underflow

Note – The example voice shows how this can be combined with use of the
volume-scaled lookup table to scale for both the overall and channel volume on each fill.

Envelope coding
Envelopes (if used) must be coded within the Voice Generator. A lookup table must be
defined giving the envelope shape. This is then accessed in a similar manner to a
wavetable, using the timbre phase accumulator passed in the SCCB. The sample byte is
then scaled using this value, as shown above.

If you continue after a gate off, you must store your own copy of the volume, as any
value in the SCCB will be overwritten.

Linear to logarithmic conversion
Algorithms which work with linear integer arithmetic may use the Channel Handler
linear-log table directly to fill buffers efficiently. The table is 8 Kbyte in length, to allow
the full dynamic range of the VIDC sound digital to analogue converter to be utilised.
The format is chosen to allow direct indexing using barrel-shifted 32-bit integer values.
The values in the table are scaled according to the current volume setting.

Coding
; to access the lookup table pointer during initialisation:
 MOV R0,#0
 MOV R1,#0
 MOV R2,#0
 MOV R3,#0 ; get Channel Handler base
 MOV R4,#0
 SWI "XSound_Configure"
 BVS error_return
 LDR R8,[R3,#8] ; lin-to-log pointer

 ; in line buffer filling code:
 ; linear 32-bit value in R0
 LDRB R0,[R8,R0,LSR #19] ; lin -> log
 STRB R0,[R12],R11 ; output to DMA buffer

S
o

u
n

d

The Sound system

4-75

Random bit generator code
An efficient pseudo-random bit generator can be implemented using two internal
registers. This provides noise which is necessary for some sounds, percussion in
particular. One register is used as a multi-tap shift register, loaded with a seed value; the
second is loaded with an XOR bit mask constant (&1D872B41). The sequence produced
has a length of 4294967295. The random carry bit setting by the simple code fragment
outlined below allows conditional execution on carry set (or cleared):

Coding
MOVS R8,R8,LSL #1 ; set random carry
EORCS R8,R8,R9
xxxCC ; do this...
yyyCS ; ...or alternately this

Example program

4-76

Example program
This program shows a complete Voice Generator. It builds a wavetable containing a sine
wave at maximum amplitude. Scaling is performed when the table is read:

REM -> WaveVoice
 :
 DIM WaveTable% 255
 DIM Code% 4095
 :
 SYS "Sound_Volume",127 TO UserVolume
 FOR s%=0 TO 255
 SYS "Sound_SoundLog",&7FFFFFFF*SIN(2*PI*s%/256) TO WaveTable%?s%
 NEXT s% : REM build samples at full volume
 SYS "Sound_Volume",UserVolume TO UserVolume
 REM and restore volume to value on entry
 :
 FOR C=0 TO 2 STEP 2
 P%=Code%
 [OPT C
 ;**************************************
 ;* VOICE CO-ROUTINE CODE SEGMENT *
 ;**************************************
 ; On installation, point Channel Handler voice
 ; pointers to this voice control block
 ; (return address always on top of stack)
 .VoiceBase
 B Fill
 B Fill ; update entry
 B GateOn
 B GateOff
 B Instance ; Instantiate entry
 LDMFD R13!,{PC} ; Free entry
 LDMFD R13!,{PC} ; Initialise
 EQUD VoiceName - VoiceBase
 ;
 .VoiceName EQUS "WaveVoice"
 EQUB 0
 ALIGN
 ;**************************************
 .LogAmpPtr EQUD 0
 .WaveBase EQUD WaveTable%
 ;**************************************
 .Instance ; any instance must use volume scaled log amp table
 STMFD R13!,{R0-R4} ; save registers
 MOV R0,#0
 MOV R1,#0
 MOV R2,#0
 MOV R3,#0
 MOV R4,#0
 SWI "XSound_Configure"
 LDRVC R0,[R3,#12] ; get address of volume scaled log amp table
 STRVC R0,LogAmpPtr ; and store

S
o

u
n

d

The Sound system

4-77

 STRVS R0, [R13] ; return error pointer
 LDMFD R13!,{R0-R4,PC} ; restore registers and return
 ;**************************************
 ;* VOICE BUFFER FILL ROUTINES *
 ;**************************************
 ; on entry:
 ; r0-r8 available
 ; r9 is SoundChannelControlBlock pointer
 ; r10 DMA buffer limit (+1)
 ; r11 DMA buffer interleave increment
 ; r12 DMA buffer base pointer
 ; r13 Sound system Stack with return address and flags
 ; on top (must LDMFD R13!,{...,pc}
 ; NO r14 - IRQs are enabled and r14 is not usable
 .GateOn
 LDR R0,WaveBase ; wavetable base
 STR R0,[R9,#16] ; set up in SCCB as working register 5
 LDR R0,LogAmpPtr ; volume scaled log amp table
 STR R0,[R9,#20] ; set up as working register 6
 ;**************************************
 .Fill
 LDMIA R9,{R1-R6} ; pick up working registers from SCCB
 AND R1,R1,#&7F ; mask R1 so only channel amplitude remains
 ; R1 is amp (0-127) R2 is pitch phase acc
 ; R3 is timbre phase acc R4 is duration
 ; R5 is wavetable base R6 is amp table base
 ; move sign bit -> VIDC format log
 LDRB R1,[R6,R1,LSL #1] ; and lookup amp scaled to overall volume
 MOV R1,R1,LSR #1 ; move sign bit back again
 RSB R1,R1,#127 ; make attenuation factor
 .FillLoop
 ADD R2,R2,R2,LSL #16 ; advance waveform phase
 LDRB R0,[R5,R2,LSR #24] ; get wave sample
 SUBS R0,R0,R1,LSL #1 ; scale amplitude for overall & channel volumes
 MOVMI R0,#0 ; and correct underflow
 STRB R0,[R12],R11 ; generate output sample
 ADD R2,R2,R2,LSL #16 ; repeated in line four times...
 LDRB R0,[R5,R2,LSR #24]
 SUBS R0,R0,R1,LSL #1
 MOVMI R0,#0
 STRB R0,[R12],R11
 ADD R2,R2,R2,LSL #16
 LDRB R0,[R5,R2,LSR #24]
 SUBS R0,R0,R1,LSL #1
 MOVMI R0,#0
 STRB R0,[R12],R11
 ADD R2,R2,R2,LSL #16
 LDRB R0,[R5,R2,LSR #24]
 SUBS R0,R0,R1,LSL #1
 MOVMI R0,#0
 STRB R0,[R12],R11 ; end of repeats...
 CMP R12,R10 ; check for end of buffer fill
 BLT FillLoop ; loop if not
 ; check for end of note
 SUBS R4,R4,#1 ; decrement centisec count

Example program

4-78

 STMIB R9,{R2-R5} ; save registers to SCCB
 MOVPL R0,#%00001000 ; voice active if still duration left
 MOVMI R0,#%00000010 ; else force flush
 LDMFD R13!,{PC} ; return to level 1
 ;**************************************
 .GateOff
 MOV R0,#0
 .FlushLoop
 STRB R0,[R12],R11 ; fill buffer with zeroes
 STRB R0,[R12],R11
 STRB R0,[R12],R11
 STRB R0,[R12],R11
 CMP R12,R10
 BLT FlushLoop
 ; CAUSE level 1 TO FLUSH once more
 MOV R0,#%00000001 ; set flag to flush one more buffer
 LDMFD R13!,{PC} ; return to level 1
]
 NEXT C
 :
 DIM OldVoice%(8)
 SYS "Sound_InstallVoice",VoiceBase,0 TO a%,Voice%
 FOR v%=1 TO 8
 SYS "Sound_AttachVoice",v%,0 TO z%,OldVoice%(v%)
 VOICE v%,"WaveVoice"
 NEXT
 :
 ON ERROR PROCRestoreSound : END
 :
 VOICES 8
 *voices
 SOUND 1,&17F,53,10 :REM activate channel 1!
 PRINT’’"any key to make a noise, <ESCAPE> to finish"
 :
 C%=1
 REPEAT
 K%=INKEY(1)
 IF K%>0 THEN
 SOUND C%,&17F,K%,100
 C%+=1 : IF C%>8 THEN C%=1
 ENDIF
 UNTIL 0
 :
 DEF PROCRestoreSound
 ON ERROR OFF
 REPORT:PRINT ERL
 SYS "Sound_RemoveVoice",0,Voice%
 FOR v%=1 TO 8
 SYS "Sound_AttachVoice",v%,OldVoice%(v%)
 NEXT
 VOICES 1
 *voices
 PRINT’’
 ENDPROC

S
o

u
n

d

4-79

4

73 WaveSynth

Introduction
WaveSynth is a module that provides a voice generator which is used for the default
system bell.

In RISC OS 2 WaveSynth provided a SWI for its own internal use. This has since been
removed.

For more information about the use of sound in RISC OS, refer to the chapter entitled
The Sound system on page 4-3.

Example programs

4-80

Example programs
You can create new wavetables for use with WaveSynth, for example:

REM > OrganVoice
OUTFILE$="Organ01"
OUT=OPENOUT OUTFILE$
BPUT#OUT,"!WT:Organ"+STRING$(7,CHR$0);
sizeptr=PTR#OUT
PROCW(0)
FORI%=1TO8:PROCW(8):NEXT
PROCW(13):PROCW(0):PROCW(0)
PROCHDR
size=EXT#OUT
PTR#OUT=sizeptr:PROCW(size)
CLOSE#OUT
REM Pass local name Orgel as parameter on command line
*RMREINIT WAVESYNTH ORGAN01 Orgel
END

DEFPROCW(X%)
LOCALI%
FORI%=1TO4:BPUT#OUT,X%:X%=X%>>8:NEXT
ENDPROC

DEFFNW
RESTORE
DATA 1,1, 0.8,2, 0.6,4, 0.4,8, 0.2,16: REM amplitude,frequency
DATA 0,0
M=0
REPEAT
 READ A$,H$:A=EVALA$
 IF A>0 THEN M+=A
UNTIL A=0
M=&7FFFFFFF/M
RESTORE
B=0
REPEAT
 READ A$,H$:A=EVALA$:H=EVALH$
 IF A>0 THEN B+=FNSIN(A*M,H)
UNTIL A=0
=B

DEFFNSIN(A,F)=A*SIN(F*2*PI*s%/256)

S
o

u
n

d

WaveSynth

4-81

DEFPROCHDR
MODE0
ORIGIN0,512
MOVE0,0
RESTORE+0
FORI%=1TO14:READJ$:PROCW(EVALJ$):NEXT
PTR#OUT=256
FOR s%=0 TO 255
 B%=FNW
 SYS "Sound_SoundLog",B% TO wave%
 DRAW s%*4,B%>>22
 BPUT#OUT,wave%
NEXT
ENDPROC

REM offset 64 (index 8)
REM descriptor 8 (ATTACK)
DATA &0000007F + (1<<9)
DATA &00090001
REM descriptor 9 (DECAY)
DATA &000000F0 + (31<<9)
DATA &000A0001
REM descriptor 10 (SUS a)
DATA &00000080 + (500<<9)
DATA &000E0001
REM descriptor 11 (SUS b)
DATA &000000DF + (25<<9)
DATA &000A0001
REM descriptor 12 (SUSTAIN)
DATA &00000000 + (&FFFFF<<9)
DATA &000D0002
REM descriptor 13 (release)
DATA &00000080 + (1<<9)
DATA &000E0001
REM descriptor 14 (Dead)
DATA 0
DATA 0.

Example programs

4-82

You can then load the new wavetable into WaveSynth as a module initialisation
parameter, eg:

REM > Source
obj$="<Obey$Dir>.!RunImage"
DIM MC%1000,L%-1
FOR I%=8 TO 10 STEP 2
P%=MC%
[OPTI%
.start
 MOV R0, #14
 ADR R1, instantiation
 SWI "XOS_Module"
 MOV PC, R14

.instantiation
 ; Pass local name Orgel as parameter on command line
 EQUS "WaveSynth%Organ <Obey$Dir>.Organ01 Orgel"+CHR$0
]:NEXT
OSCLI "Save "+obj$+" "+STR$~start+" "+STR$~P%
OSCLI "SetType "+obj$+" &FFC"
OSCLI "Stamp "+obj$

The facility shown in the above examples for specifying a local name was introduced in
RISC OS 3.

U
tilities

4-83

4 Part 12 – Utilities

4-84

U
tilities

4-85

4

74 The Buffer Manager

Introduction and Overview
The buffer manager acts as a global buffer managing system, providing a set of calls for
setting up a buffer, inserting and removing data from a buffer, and removing a buffer.
The buffer manager extends the InsV, RemV and CnpV vector calls to provide access to
these buffers and to allow block transfers.

The buffer manager is not available in RISC OS 2.

The buffer manager is used by DeviceFS to provide buffers for the various devices that
can be accessed. A device may be linked to a buffer, and may supply routines to be
called when data enters the buffer as well as a routine to be called when a buffer is
removed (or a new device is attached).

When registering or creating a buffer you can force a specific buffer handle, or request
that the buffer manager assign a unique handle. You should note that buffer handles are
no longer stored as eight bit quantities.

Block transfers are signalled by setting bit 31 of the buffer handle. Anything you can do
on a byte by byte basis you can also do to a block, such as examining the buffer contents.

A number of vectors, events, service calls and UpCalls have been extended or created to
enable the buffer manager to function efficiently.

See also the chapter entitled Buffers on page 1-163.

Vectors

The SWIs for the buffer manager module allow you to modify the actual buffer itself,
but do not supply a way of inserting and removing data from these buffers. Extensions
have been made to the following vectors to handle the inserting and removing of data
from the buffers, and to allow block inserts. For more details of these vector calls see the
chapter entitled Software vectors on page 1-63.

● InsV inserts a byte in a buffer

● RemV removes a byte from a buffer

● CnpV counts the number of entries or spaces in a buffer, or
purges the contents of a buffer

Introduction and Overview

4-86

Events

Because of the above changes to vectors, the following events have been extended so
they can indicate that a block transfer occurred. For more details of these events see the
chapter entitled Events on page 1-147.

● Event_OutputEmpty issued when the last character is removed from a buffer

● Event_InputFull generated when a character or block is inserted and it
failed

Service calls

The service call Service_BufferStarting has been added to allow modules which wish to
register buffers with the buffer manager to do so. For more details of this service call see
page 4-87.

UpCalls

UpCalls are used by the buffer manager to communicate with buffer owners. For more
details of these UpCalls see the chapter entitled Communications within RISC OS on
page 1-179.

● OS_UpCall 8 issued when data is inserted into the buffer causing the
free space to fall below the specified threshold

● OS_UpCall9 issued when the free space in the buffer becomes greater
than the current threshold.

U
tilities

The Buffer Manager

4-87

Service Calls
Service_BufferStarting

(Service Call &6F)

Notifies modules that the buffer manager is starting

On entry

R1 = &6F (reason code)

On exit

All registers preserved

Use

This call is passed around modules after the buffer manager has been initialised or reset.
Once modules have received this service call they can then register buffers with the
buffer manager, and use the Buffer_… SWIs.

SWI calls

4-88

SWI calls
Buffer_Create
(SWI &42940)

Claims an area of memory from the RMA and registers it as a buffer

On entry

R0 = buffer’s flags word:
bit 0: 0 ⇒ buffer is dormant, and wake up routine should be called

when data enters it
bit 1: 1 ⇒ Event_OutputEmpty should be generated for this buffer
bit 2: 1 ⇒ Event_InputFull should be generated for this buffer
bit 3: 1 ⇒ UpCalls should be issued when this buffer’s free space

threshold is crossed
bits 4 - 31 reserved (should be set to 0 on creation)

R1 = size of buffer to be created
R2 = handle to be assigned to buffer (–1 ⇒ get buffer manager to generate handle)

On exit

R0 = buffer handle

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call claims an area of memory from the RMA and registers it as a buffer. If you
register a buffer n bytes long, it can hold at most n – 1 bytes.

U
tilities

The Buffer Manager

4-89

If R2 = –1 the buffer manager will attempt to find a unique handle; else the buffer
manager will assign the specified handle to the buffer, after checking it is unique.

The buffer’s flags word is used to indicate what should happen when data is being
inserted and removed from the buffer:

Bit 0 is set if the buffer is not dormant, and its wake up routine (see the section
entitled The wake up routine on page 4-97) has been called.

If this bit is clear then the buffer is dormant; when data is then put into the
buffer this bit is set and its wake up routine (if any) is called.

Bit 1 is set if Event_OutputEmpty should be generated for this buffer.

Bit 2 is set if Event_InputFull should be generated for this buffer.

Bit 3 is set if UpCalls should be issued when this buffer’s free space thresholds
are crossed.

Bit 0 should be clear when calling this SWI. Bits 1 - 3 may have any value. The
remaining bits are reserved, and should be clear when calling this SWI.

On exit R0 contains the buffer handle being used.

Related SWIs

Buffer_Remove (page 4-90), Buffer_Register (page 4-91),
Buffer_LinkDevice (page 4-96)

Related vectors

None

Buffer_Remove (SWI &42941)

4-90

Buffer_Remove
(SWI &42941)

Deregisters a buffer and frees its memory

On entry

R0 = handle of buffer to be removed

On exit

R0 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call attempts to deregister the given buffer. If it succeeds, then any data held by the
buffer will be purged, and any future access to the buffer via InsV, RemV and CnpV will
be ignored; it will then attempt to free the memory that was claimed for that buffer.

You should only use this call for buffers created and registered using Buffer_Create. If
you used Buffer_Register to register the buffer, you should instead call
Buffer_Deregister to deregister it.

Related SWIs

Buffer_Create (page 4-88), Buffer_Deregister (page 4-91),
Buffer_LinkDevice (page 4-96)

Related vectors

None

U
tilities

The Buffer Manager

4-91

Buffer_Register
(SWI &42942)

Registers an area of memory as a buffer

On entry

R0 = buffer’s flags word:
bit 0: 0 ⇒ buffer is dormant, and wake up routine should be called

when data enters it
bit 1: 1 ⇒ Event_OutputEmpty should be generated for this buffer
bit 2: 1 ⇒ Event_InputFull should be generated for this buffer
bit 3: 1 ⇒ UpCalls should be issued when this buffer’s free space

threshold is crossed
bits 4 - 31 reserved (should be set to 0 on registration)

R1 = pointer to start of memory for buffer
R2 = pointer to byte following end of buffer
R3 = handle to be assigned to buffer (–1 ⇒ get buffer manager to generate handle)

 On exit

R0 = buffer handle

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call registers an area of memory as a buffer. The routine accepts similar parameters
to Buffer_Create, but instead of the call claiming the memory for you, you must already
have done so yourself, and merely pass the buffer’s start and end. If you register a buffer
n bytes long, it can hold at most n – 1 bytes.

Buffer_Register (SWI &42942)

4-92

You should not put buffers in the application workspace, as this area of memory might
be switched out when someone else tries to access the buffer. However, you can do this
if your task will be the only one using the buffer, and it will only be accessed while your
task is paged in.

If R3 = –1 the buffer manager will attempt to find a unique handle; else the buffer
manager will assign the specified handle to the buffer, after checking it is unique.

The buffer’s flags word is used to indicate what should happen when data is being
inserted and removed from the buffer:

Bit 0 is set if the buffer is not dormant, and its wake up routine (see the section
entitled The wake up routine on page 4-97) has been called.

If this bit is clear then the buffer is dormant; when data is then put into the
buffer this bit is set and its wake up routine (if any) is called.

Bit 1 is set if Event_OutputEmpty should be generated for this buffer.

Bit 2 is set if Event_InputFull should be generated for this buffer.

Bit 3 is set if UpCalls should be issued when this buffer’s free space thresholds
are crossed.

Bit 0 should be clear when calling this SWI. Bits 1 - 3 may have any value. The
remaining bits are reserved, and should be clear when calling this SWI.

On exit R0 contains the buffer handle being used.

Related SWIs

Buffer_Create (page 4-88), Buffer_Deregister (page 4-93),
Buffer_LinkDevice (page 4-96)

Related vectors

None

U
tilities

The Buffer Manager

4-93

Buffer_Deregister
(SWI &42943)

Deregisters a buffer

 On entry

R0 = handle of buffer to be deregistered

On exit

R0 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call attempts to deregister the given buffer. If it succeeds, then any data held by the
buffer will be purged, and any future access to the buffer via InsV, RemV and CnpV will
be ignored.

You should only use this call for buffers registered using Buffer_Register. If you used
Buffer_Create to create and register the buffer, you should instead call Buffer_Remove
to deregister it.

Related SWIs

Buffer_Remove (page 4-90), Buffer_Register (page 4-91),
Buffer_LinkDevice (page 4-96)

Related vectors

None

Buffer_ModifyFlags (SWI &42944)

4-94

Buffer_ModifyFlags
(SWI &42944)

Modifies a buffer’s flags word

 On entry

R0 = handle of buffer to be modified
R1 = EOR mask
R2 = AND mask

 On exit

R1 = old value
R2 = new value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call modifies a buffer’s flags word (see page 4-89) by applying an AND mask,
followed by an EOR mask. On exit it returns the old and new values of the flags word.

The new value is worked out as follows:

new = (old AND R2) EOR R1

You should not modify any reserved bits in the flags word when issuing this call (ie bits
4 - 31 should be set in R2 and clear in R1).

Related SWIs

Buffer_LinkDevice (page 4-96)

U
tilities

The Buffer Manager

4-95

Related vectors

None

Buffer_LinkDevice (SWI &42945)

4-96

Buffer_LinkDevice
(SWI &42945)

Links a set of routines to the specified buffer

 On entry

R0 = buffer handle
R1 = pointer to routine to call when data enters the dormant buffer (0 ⇒ none)
R2 = pointer to routine to call when owner of buffer is to change (0 ⇒ cannot be

changed)
R3 = private word to be passed to above routines
R4 = pointer to workspace for above routines

 On exit

R0 - R4 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call links a set of routines to the specified buffer.

The routines are called with the same entry conditions. The processor may be in any
mode and interrupt state. The registers are as follows:

On entry
R0 = buffer handle
R8 = private word (as specified in R3)
R12 = pointer to workspace for routine (as specified in R4)

U
tilities

The Buffer Manager

4-97

Such routines are typically used to wake up devices attached to a previously dormant
buffer so they can start processing data that has appeared, and to shutdown a device
when another wishes to access its buffer. In particular, DeviceFS uses this mechanism.

The wake up routine

R1 contains a pointer to a routine to be called when data enters the buffer and it is
currently marked dormant. Before calling this ‘wake up’ routine, the buffer manager
first sets bit 0 in the buffer’s flags word, marking it as no longer dormant. On exit from
the wake up routine you must preserve the entire state of the processor: ie the register
contents (including the PSR), the mode, and the state of IRQ and FIQ.

If this pointer (ie R1) is zero, the buffer manager does not attempt to call a wake up
routine for the specified buffer.

The owner change routine

R2 contains a pointer to a routine to be called whenever the owner of the buffer is about
to change. This occurs:

● when an attempt is made to remove or deregister the buffer by calling
Buffer_Remove or Buffer_Deregister respectively

● when an attempt is made to link to the buffer by another call of this SWI for the
same buffer

● when an attempt is made to kill the buffer manager.

On return from this ‘owner change’ routine you can return an error in the usual way (V
set, R0 points to an error block) and thus halt the attempt to change the buffer’s owner;
you’ll also – coincidentally – halt whatever caused the attempt. For example, this SWI
may sometimes fail because the given buffer may already have an owner that is refusing
to detach itself. If you don’t return an error you must preserve the entire state of the
processor: ie the register contents (including the PSR), the mode, and the state of IRQ
and FIQ.

If this pointer (ie R2) is zero, the buffer manager will always return an error if an attempt
is made to change the buffer’s owner.

Related SWIs

Buffer_Remove (page 4-90), Buffer_Deregister (page 4-93),
Buffer_ModifyFlags (page 4-94), Buffer_UnlinkDevice (page 4-98)

Related vectors

None

Buffer_UnlinkDevice (SWI &42946)

4-98

Buffer_UnlinkDevice
(SWI &42946)

Unlinks a set of routines from the specified buffer

 On entry

R0 = buffer handle

 On exit

R0 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call unlinks all routines that were previously linked to the specified buffer by
calling Buffer_LinkDevice. No warning is given of this (ie the buffer’s change owner
routine is not called), and any data that is currently stored within the buffer is purged.

You should only make this call if it was you that initially linked the routines; anyone else
calling this SWI could confuse the system.

Related SWIs

Buffer_LinkDevice (page 4-96)

Related vectors

None

U
tilities

The Buffer Manager

4-99

Buffer_GetInfo
(SWI &42947)

Returns data about the buffer

On entry

R0 = buffer handle

On exit

R0 = buffer’s flags word
R1 = pointer to start of buffer in memory
R2 = pointer to byte following end of buffer
R3 = offset within buffer of insertion point
R4 = offset within buffer of removal point
R5 = remaining free space in buffer
R6 = number of characters in buffer

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call returns data about the buffer: its flags word, position in memory, the offsets
within the buffer of its insertion and removal points, the amount of free space, and the
number of characters in the buffer.

The insertion and removal points wrap around from the end of the buffer to the start, so
you should not assume that the insertion point’s offset will be greater than that of the
removal point. Furthermore, you should not assume that the sum of R5 and R6 (the free
space in the buffer and the number of characters in the buffer) will be the same as the
size of the buffer.

Buffer_GetInfo (SWI &42947)

4-100

Related SWIs

None

Related vectors

None

U
tilities

The Buffer Manager

4-101

Buffer_Threshold
(SWI &42948)

Sets or reads the warning threshold of the buffer

 On entry

R0 = buffer handle
R1 = threshold (0 = none, –1 to read)

On exit

R1 = previous value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call is used to set or read the warning threshold of the buffer. UpCalls are issued if
bit 3 of the buffer’s flags word is set, and the amount of free space in the buffer crosses
this threshold value. For details of the UpCalls see the chapter entitled Communications
within RISC OS on page 1-179.

Related SWIs

Buffer_Create (page 4-88), Buffer_Register (page 4-91)

Related vectors

None

4-102

U
tilities

4-103

4

75 Squash

Introduction and Overview
This module provides general compression and decompression facilities of a lossless
nature through a SWI interface. The algorithm is 12-bit LZW, however, this may change
in future releases.

The interface is designed to be restartable, so that compression or decompression can
occur from a variety of locations. Operations involving file I/O can easily be constructed
from the operations provided.

This module is not available in RISC OS 2.

The module is used by the Squash application to generate files of type Squash (&FCA).
The format of these files is documented in the section entitled Squash files on
page 4-499.

Errors

The following errors can be returned by the Squash module:

Error number Error text
&921 Bad address for module Squash

&922 Bad input for module Squash

&923 Bad workspace for module Squash

&924 Bad parameters for module Squash

SWI calls

4-104

SWI calls
Squash_Compress

(SWI &42700)

Provides general compression of a lossless nature

On entry

R0 = flags:
bit 0: 0 ⇒ start new operation, 1 ⇒ continue existing operation (using

existing workspace contents)
bit 1: 0 ⇒ end of the input, 1 ⇒ more input after this
bit 2: reserved (must be zero)
bit 3: 0 ⇒ no effect, 1 ⇒ return the work space size required and the

maximum output size in bytes (all other bits must be 0)
bits 4 - 31 reserved (must be zero)

R1 = input size (–1 ⇒ do not return maximum output size) – if bit 3 of R0 is set;
or workspace pointer – if bit 3 of R0 is clear

R2 = input pointer – if bit 3 of R0 is clear
R3 = number of bytes of input available – if bit 3 of R0 is clear
R4 = output pointer – if bit 3 of R0 is clear
R5 = number of bytes of output space available – if bit 3 of R0 is clear

On exit

R0 = required work space size – if bit 3 of R0 set on input; else
output status – if bit 3 of R0 clear on input:

0 ⇒ operation completed
1 ⇒ operation ran out of input data (R3 = 0)
2 ⇒ operation ran out of output space (R5 < 12)

R1 = maximum output size (–1 ⇒ don’t know or wasn’t asked) – if bit 3 of R0 set
on input; else preserved – if bit 3 of R0 clear on input

R2 updated to show first unused input byte – if bit 3 of R0 clear on input
R3 updated to show number of input bytes not used – if bit 3 of R0 clear on input
R4 updated to show first unused output byte – if bit 3 of R0 clear on input
R5 updated to show number of output bytes not used – if bit 3 of R0 clear on input

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

U
tilities

Squash

4-105

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call provides general compression of a lossless nature. It acts as a filter on a stream
of data. The call returns if either the input or the output is exhausted.

It is recommended that you use the following facility to determine the maximum output
size rather than attempting to calculate it yourself:

Call the SWI first with bit 3 of R0 set and the input size placed in R1. The maximum
output size is then calculated and returned on exit in R1. You can use this value to
allocate the required amount of space and call the SWI again setting the registers as
appropriate.

If for any reason the SWI cannot calculate the maximum output size it will return –
1 in R1.

The workspace size required is returned in R0.

The algorithm used by this module is 12-bit LZW, as used by the UNIX ‘compress’
command (with –b 12 specified). If future versions of the module use different
algorithms, they will still be able to decompress existing compressed data.

If bits 0 and 1 of R0 are clear, and the output is definitely big enough, a fast algorithm
will be used.

The performance of compression on an 8Mhz A420 with ARM2 is approximately as
follows:

Store to store Fast case
24 Kbytes per second 68 Kbytes per second

where Fast case is store to store, with all input present, and with an output buffer large
enough to hold all output.

Related SWIs

Squash_Decompress (page 4-106)

Related vectors

None

Squash_Decompress (SWI &42701)

4-106

Squash_Decompress
(SWI &42701)

Provides general decompression of a lossless nature

On entry

R0 = flags:
bit 0: 0 ⇒ start new operation, 1 ⇒ continue existing operation (using

existing workspace contents)
bit 1: 0 ⇒ end of the input, 1 ⇒ more input after this
bit 2: 0 ⇒ normal, 1 ⇒ you may assume that the output will all fit in

this buffer (allows a faster algorithm to be used, if bits 0
and 1 are both 0)

bit 3: 0 ⇒ no effect, 1 ⇒ return the work space size required and the
maximum output size in bytes (all other bits must be 0)

bits 4 - 31 reserved (must be zero)
R1 = input size (–1 ⇒ do not return maximum output size) – if bit 3 of R0 is set;

or workspace pointer – if bit 3 of R0 is clear
R2 = input pointer – if bit 3 of R0 is clear
R3 = number of bytes of input available – if bit 3 of R0 is clear
R4 = output pointer – if bit 3 of R0 is clear
R5 = number of bytes of output space available – if bit 3 of R0 is clear

 On exit

R0 = required work space size – if bit 3 of R0 set on input; else
output status – if bit 3 of R0 clear on input:

0 ⇒ operation completed
1 ⇒ operation ran out of input data (R3 < 12)
2 ⇒ operation ran out of output space (R5 = 0)

R1 = maximum output size (–1 ⇒ don’t know or wasn’t asked) – if bit 3 of R0 set
on input; else preserved – if bit 3 of R0 clear on input

R2 updated to show first unused input byte – if bit 3 of R0 clear on input
R3 updated to show number of input bytes not used – if bit 3 of R0 clear on input
R4 updated to show first unused output byte – if bit 3 of R0 clear on input
R5 updated to show number of output bytes not used – if bit 3 of R0 clear on input

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

U
tilities

Squash

4-107

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI provides general decompression of a lossless nature.

Note: The current algorithm cannot predict what the size of the decompressed
output will be. This means that, currently, –1 is always returned on exit in R1. In
future releases this may change; it is therefore recommended that you call the SWI
first with bit 3 of R0 set and the input size placed in R1.

If R1 is not equal to –1 then you can use this value to allocate the required amount
of space and call the SWI again, setting the registers as appropriate. If R1 is equal to
–1 you must attempt to calculate the maximum output size yourself.

The workspace size required is returned in R0.

In the case where R3 < 12, the unused input must be resupplied.

The performance of decompression on an 8Mhz A420 with ARM2 is approximately as
follows:

Store to store Fast case
48 Kbytes per second 280 Kbytes per second

where Fast case is store to store, with all input present, and with an output buffer large
enough to hold all output.

Related SWIs

Squash_Compress (page 4-104)

Related vectors

None

4-108

U
tilities

4-109

4

76 ScreenBlank

Introduction and Overview
The ScreenBlank module provides the facilities needed to support screen blanking.
There are two service calls so that applications can tell when the screen is blanked and
when it is restored.

There is also a * Command with which you can override the default time of inactivity
before the screen blanks. The default time itself is set using the Configure application;
there is no defined programmers’ interface to do so.

The ScreenBlank module also provides a SWI for internal use by the Portable module;
you must not use it in your own code.

This module is not available in RISC OS 2.

Service Calls

4-110

Service Calls
Service_ScreenBlanked

(Service Call &7A)

Screen blanked by screen blanker

On entry

R1 = &7A (reason code)

On exit

All registers must be preserved.

Use

This service call is issued by the screen blanker, after the screen has been blanked This
service call should not be claimed.

U
tilities

ScreenBlank

4-111

Service_ScreenRestored
(Service Call &7B)

Screen restored by screen blanker

On entry

R0 = 0, or flags passed in R4 to ScreenBlanker_Control 2
R1 = &7B (reason code)

On exit

All registers must be preserved.

Use

This service call is issued by the screen blanker, after the screen has been restored. This
service call should not be claimed.

R0 is normally zero. If however the call results from a flash cycle, then it will be set to
the value of R4 that was passed to ScreenBlanker_Control 2.

SWI calls

4-112

SWI calls
ScreenBlanker_Control

(SWI &43100)

This SWI is for internal use by the Portable module. You must not use it in your own
code.

U
tilities

ScreenBlank

4-113

* Commands
*BlankTime

Sets the time of inactivity before the screen blanks

Syntax

*BlankTime [W|O] [time]

Parameters

W writing to the screen finishes screen blanking

O writing to the screen does not finish screen blanking

time time of inactivity before the screen blanks

Use

*BlankTime sets the time in seconds before the screen blanks. If, during this time, there
is no activity (ie no keyboard or mouse input is received, and – with the W option – there
is no writing to the screen) the screen then blanks. This saves ‘burn in’ on the phosphor
of your monitor, which occurs when the monitor consistently displays a particular
image, such as the desktop.

Screen blanking finishes as soon as there is activity (see above).

If no option is specified, O is assumed.

The blank time is only retained until the next reset.

Example

*BlankTime W 600 blanks the screen if neither input nor output occur for 10
minutes

Related commands

None

Related SWIs

None

4-114

Related vectors

WrchV (claimed by W option)

H
ard

w
are su

p
p

o
rt

4-115

4 Part 13 – Hardware support

4-116

H
ard

w
are su

p
p

o
rt

4-117

4

77 Expansion Cards and Extension
ROMs

Introduction
Expansion Cards provide you with a way to add hardware to your RISC OS computer.
They plug into slots provided in the computer, typically in the form of a backplane (these
are an optional extra on some models).

Extension ROMs are ROMs fitted in addition to the main ROM set, which provide
software modules which are automatically loaded by RISC OS on power-on. Note that
RISC OS 2 does not support extension ROMs. Extension ROMs are provided so that
Acorn can add extra modules to RISC OS, or provide replacement modules for those
already in RISC OS. You must not use them.

This chapter gives details of the software that RISC OS provides to manage and
communicate with expansion cards. It also gives details of what software and data needs
to be provided by expansion cards for RISC OS to communicate with them; in short, all
you need to know to write their software. For completeness, it gives the same
information for extension ROMs; but – of course – this is irrelevant to you, as you
shouldn’t use extension ROMs.

The two topics are covered together because both use substantially the same layout of
code and data, and the same SWIs. For more details on writing modules, see the chapter
entitled Modules on page 1-201.

One thing this chapter does not tell you is how to design expansion card hardware. This
is because:

● the range of hardware that can be added to a RISC OS computer is so large that we
can’t examine them all

● we don’t have the space to describe every RISC OS computer that Acorn makes

Instead, you should see the further sources of information to which we refer you.

Overview

4-118

Overview
RISC OS computers can support internal slots for expansion cards. If you wish to add
more cards than can be fitted to the supplied slots, you must use one of the slots to
support an expansion card that buffers the signals on the expansion card bus before
passing them on to external expansion cards.

Some RISC OS computers can also support extension ROMs. The availability, size and
number of extension ROM sockets depends on which type of RISC OS computer you
are using. For example, the A5000 has a single socket for an 8 bit wide ROM.

Software

Expansion cards

Expansion cards can have some or all of the following software included:

● an Expansion Card Identity, to give RISC OS information about the card (see
page 4-120 and page 4-122)

● Interrupt Status Pointers, to tell RISC OS where to look to find out if the card is
generating interrupts (see page 4-127)

● a Chunk Directory, that defines what separate parts of the card’s memory space are
used for (see page 4-128)

● a Loader, to access paged memory held outside the card’s address space (see
page 4-130)

A wide range of different types of code and data is supported by the Chunk Directories.

The use of the Loader and paged memory has been made as transparent to the end user
as possible.

Extension ROMs

Extension ROMs must include the following software:

● an Extension ROM Header, to give RISC OS information about the ROM and to
differentiate it from an expansion card (see page 4-119)

● an Extended Expansion Card Identity, to give RISC OS information about the ROM
(see page 4-122)

● null Interrupt Status Pointers, because a ROM cannot generate interrupts (see
page 4-127)

● a Chunk Directory, that defines what each part of the ROM’s memory space is used
for (see page 4-128).

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-119

Technical Details
In general, RISC OS recognises extension ROMs or ROM sets which are 8, 16 or 32 bits
wide, provided the ROM adheres to the specification below. 32 bit wide extension ROM
sets are directly executable in place, saving on user RAM. 8 or 16 bit wide sets have to
be copied into RAM to execute.

An extension ROM set must end on a 64K boundary or at the start of another extension
ROM. This is normally not a problem as it is unlikely you would want to use a ROM
smaller than a 27128 (16K), and the normal way of addressing this would mean that the
ROM would be visible in 1 byte out of each word, ie within a 64K addressable area.

Extension ROM Headers
Extension ROMs must have a 16 byte Extension ROM Header at the end of the ROM
image, which indicates the presence of a valid extension ROM. The ‘header’ is at the
end because RISC OS scans the ROM area downwards from the top.

For a ROM image of size n bytes, the format of the header at the end is as follows:

Byte address Contents
n-16 1-word field containing n

n-12 1-word checksum (bottom 32 bits of the sum of all words from
addresses 0 to n-16 inclusive)

n-8 2-word id ‘ExtnROM0’ indicating a valid extension ROM, ie:

n-8 &45 ‘E’
n-7 &78 ‘x’
n-6 &74 ‘t’
n-5 &6E ‘n’
n-4 &52 ‘R’
n-3 &4F ‘O’
n-2 &4D ‘M’
n-1 &30 ‘0’

Extension ROM width

Note that this header will not necessarily appear in the memory map in the last 16 bytes
if the ROM set is 8 or 16 bits wide. In the 8-bit case, the header will appear in one of the
four byte positions of the last 16 words, and in the 16-bit case, in one of the two
half-word positions of the last 8 words. However, RISC OS copes with this, and uses the
mapping of the ID field into memory to automatically derive the width of the extension
ROM.

Introduction to Expansion Card Identities

4-120

Introduction to Expansion Card Identities

Expansion cards

Each expansion card must have an Expansion Card Identity (or ECId) so that RISC OS
can tell whether an expansion card is fitted in a backplane slot, and if so, identify it. The
ECId may be:

● a simple ECId of only one byte – the low one of a word (see below)

● an extended ECId of eight bytes, which may be followed by other information (see
page 4-122).

The ECId (whether extended or not) must appear at the bottom of the expansion card
space immediately after a reset. However, it does not have to remain readable at all
times, and so it can be in a paged address space so long as the expansion card is set to the
page containing the ECId on reset.

The ECId is read by a synchronous read of address 0 of the expansion card space. You
may only assume it is valid from immediately after a reset until when the expansion card
driver is installed.

Extension ROMs

As well as the Extension ROM header at the end of the ROM image, Extension ROMs
must also have a header at the start of the ROM image. This header is identical in
format to an Extended Expansion Card Identity, and is present for the use of the
Expansion Card Manager, which handles much of the extension ROM processing. See
page 4-122 onwards, paying particular attention to the section entitled Mandatory
values for extension ROMs.

Simple Expansion Card Identity
Expansion cards can use a simple ECId, which is one byte long. You should only use one
for the very simplest of expansion cards, or temporarily during development.

● Most expansion cards should instead implement the extended ECId, which
eliminates the possibility of expansion card IDs clashing.

● Extension ROMs must use an extended ECId, rather than a simple ECId.

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-121

Restrictions imposed by a Simple ECId

If you do use a simple ECId, your expansion card must be 8 bits wide. The only
operations that you may perform on its ROM are Podule_RawRead (see page 4-151) or
Podule_RawWrite (see page 4-153).

Format of a simple ECId

A simple ECId shares many of the features of the low byte of an extended ECId, and is
as follows:

Bit(s) Value Meaning
A 0 Acorn conformant expansion card

1 non-conformant expansion card

ID[3:0] not 0 ID field
(0 extended ECId used)

FIQ 0 not requesting FIQ
1 requesting FIQ

IRQ 0 not requesting IRQ
1 requesting IRQ

Acorn conformance bit (A)

This bit must be zero for expansion cards that conform to this Acorn specification.

ID field (ID [3:0])

If you are using a simple ECId, the four ID bits may be used for expansion card
identification. They must be non-zero, as a value of zero shows that you are instead
using an extended ECId.

Interrupt status bits (IRQ and FIQ)

The interrupt status bits are discussed below in the section entitled Generating interrupts
from expansion cards on page 4-126.

Expansion card presence (bit 1)

This must be zero, as shown above. For more information, see the section entitled
Expansion card and extension ROM presence on page 4-125.

A ID[3] ID[2] ID[1] ID[0] FIQ 0 IRQ

7 6 5 4 3 2 1 0

Extended Expansion Card Identity

4-122

Extended Expansion Card Identity
An expansion card’s ECId is extended if the ID field of its ECId low byte is zero. This
means that RISC OS will read the next seven bytes of the ECId. The extended ECId
starts at the bottom of the expansion card space, and consists of the eight bytes defined
below.

Expansion card width

If an expansion card has an extended ECId, the first 16 bytes of its address space are
always assumed to be bytewide. These 16 bytes contain the 8 byte extended ECId itself,
and a further 8 bytes (typically the Interrupt status pointers – see below). If the ECId is
included in a ROM which is 16 or 32 bits wide, then only the lowest byte in each
half-word or word must be used for the first 16 (half) words.

If you use an extended ECId, you may specify the space after this as 8, 16 or 32 bits
wide. When you access this space

● if you are using the 8 bit wide mode, you should use byte load and store instructions

● if you are writing using the 16 bit wide mode, you should use word store
instructions, putting your half word in both the low and high half words of the
register you use

● if you are reading using the 16 bit wide mode, you should use word load
instructions, and ignore the upper half word returned

● if you are using the 32 bit wide mode, you should use word load and store
instructions.

Synchronous cycles are used by the operating system to read and write any locations
within this space (to simplify the design of synchronous expansion cards).

Current restrictions

You should note however that there are currently some restrictions on the widths you can
use. These are imposed both by current hardware and software:

● the I/O data bus is only 16 bits wide

● the current version of the RISC OS Expansion Card Manager only supports the 8 bit
wide mode; future versions may support the wider modes.

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-123

Format of an extended ECId

The format of an extended ECId is as follows:

Bit(s) Value Meaning
C[7:0] Country (see below)

M[15:0] Manufacturer (see below)

P[15:0] Product Type (see below)

R 0 mandatory at present
1 reserved for future use

W[1:0] 0 8-bit code follows after byte 15 of Id space
1 16-bit code follows after byte 15 of Id space
2 32-bit code follows after byte 15 of Id space
3 reserved

IS 0 no Interrupt Status Pointers follow ECId
1 Interrupt Status Pointers follow ECId

CD 0 no Chunk Directory follows
1 Chunk Directory follows Interrupt Status

pointers

A 0 Acorn conformant expansion card
1 non-conformant expansion card

FIQ 0 not requesting FIQ (or FIQ relocated)
1 requesting FIQ

IRQ 0 not requesting IRQ (or IRQ relocated)
1 requesting IRQ

C[7] C[6] C[5] C[4] C[3] C[2] C[1] C[0]

7 6 5 4 3 2 1 0

&1C

P[15] P[14] P[13] P[12] P[11] P[10] P[9] P[8] &10

P[7] P[6] P[5] P[4] P[3] P[2] P[1] P[0] &0C

R R R R R R R R &08

R R R R W[1] W[0] IS CD &04

A 0 0 0 0 FIQ 0 IRQ &00

M[15] M[14] M[13] M[12] M[11] M[10] M[9] M[8] &18

M[7] M[6] M[5] M[4] M[3] M[2] M[1] M[0] &14

Extended Expansion Card Identity

4-124

Country code (C[7:0])

Every expansion card should have a code for the country of origin. These match those
used by the International module, save that the UK has a country code of 0 for expansion
cards. If you do not already know the correct country code for your country, you should
consult Acorn.

Manufacturer code (M[15:0])

Every expansion card should have a code for manufacturer. If you have not already been
allocated one, you should consult Acorn.

Product type code (P[15:0])

Every expansion card type must have a unique number allocated to it. Consult Acorn if
you need to be allocated a new product type code.

Reserved fields (R)

Reserved fields must be set to zero to cater for future expansion.

Width field (W[1:0])

This field must currently be set to zero (expansion card is 8 bits wide). For more
information, see the earlier section entitled Expansion card width on page 4-122.

Interrupt Status Pointers presence (IS)

See the sections entitled Generating interrupts from expansion cards on page 4-126, and
Interrupt Status Pointers on page 4-127.

Chunk directory presence (CD)

See the section entitled Chunk directory structure on page 4-128.

Acorn conformance bit (A)

This bit must be zero for expansion cards that conform to this Acorn specification.

ID field (bits 6 - 3 of low byte)

If you are using an extended ECId, these bits must be zero, as shown above. A non-zero
value shows that you are instead using a simple ECId; for more information see
page 4-121.

Interrupt status bits (IRQ and FIQ)

The interrupt status bits are discussed below in the section entitled Generating interrupts
from expansion cards on page 4-126.

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-125

Expansion card presence (bit 1 of low byte)

This must be zero, as shown above. For more information, see the section entitled
Expansion card and extension ROM presence on page 4-125.

Mandatory values for extension ROMs

An extension ROM must include an extended ECId. This starts at the bottom of the
ROM image, and consists of eight bytes as defined above.

For an extension ROM, certain fields within the extended ECId must have particular
values:

● The product type code must be &87 (ie the product type is an extension ROM).

● The width field must always be 0 (8 bits wide), irrespective of the ROM’s actual
width, which RISC OS automatically derives (see the section entitled Extension
ROM width on page 4-119).

Because the width field does not vary, you do not need to change the image of an
extension ROM if you change the width of ROM in which it is placed.

● Both the Interrupt Status Pointer field and the Chunk Directory field must be 1,
showing the ECId is followed by Interrupt Status Pointers, then by a Chunk
Directory.

● The Acorn conformant field must be 0, to show that the extension ROM is Acorn
conformant.

● The interrupt status bits (FIQ and IRQ) must both be clear, to show that the
extension ROM is not requesting an interrupt.

Expansion card and extension ROM presence
All expansion cards and extension ROMs must have bit 1 low in the low byte of an
ECId (whether simple or extended), so that RISC OS can tell if there are any of them
present.

Normally bit 1 of the I/O data bus is pulled high by a weak pullup. Therefore:

● If no expansion card is present and RISC OS tries to read the ECId low byte, bit 1
will be set.

● If an expansion card is present, and the ECId is mapped into memory (which it must
be immediately after a reset), the bit will instead be clear.

Generating interrupts from expansion cards

4-126

Generating interrupts from expansion cards
Expansion cards must provide two status bits to show if the card is requesting IRQ or
FIQ.

with a simple ECId

If an expansion card only has a simple ECId, then the FIQ and IRQ status bits are bits 2
and 0 respectively in the ECId. If the card does not generate one or both of these
interrupts then the relevant bit(s) must be driven low.

with an extended ECId

If an expansion card has an extended ECId, you must set the IS bit of the ECId and
provide Interrupt Status Pointers (see below) if either of the following applies:

● you are also using Chunk Directories (see below)

● you want to relocate the interrupt status bits from the low byte of the ECId.

If neither of the above apply, then you can omit the Interrupt Status Pointers. The
interrupt status bits are located in the low byte of the ECId, and are treated in exactly the
same way as for a simple ECId (see above).

Finding out more

To find out more about generating interrupts from expansion cards under RISC OS, you
can:

● see the chapters entitled ARM Hardware on page 1-9 and Interrupts and handling
them on page 1-119.

● consult the Acorn RISC Machine family Data Manual. VLSI Technology Inc.
(1990) Prentice-Hall, Englewood Cliffs, NJ, USA: ISBN 0-13-781618-9.

● consult the datasheets for any components you use

● contact Customer Support and Services for further hardware-specific details.

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-127

Interrupt Status Pointers

Expansion cards

An Interrupt Status Pointer has two 4 byte numbers, each consisting of a 3 byte address
field and a 1 byte position mask field. These numbers give the locations of the FIQ and
IRQ status bits:

The 24-bit address field must contain a signed 2’s-complement number giving the offset
from &3240000 (the base of the area of memory into which podules are mapped). Hence
the cycle speed to access the status register can be included in the offset (encoded by bits
19 and 20). Bits 14 and 15 (that encode the slot number) should be zero. If the status
register is in module space then the offset should be negative: eg &DC0000, which is –
&240000.

The 8-bit position mask should only have a single bit set, corresponding to the position
of the interrupt status bit at the location given by the address field.

Note that these eight bytes are always assumed to be bytewide. Only the lowest byte in
each word should be used.

The addresses may be the same (ie the status bits are in the same byte), so long as the
position masks differ. An example of this is if you have had to provide an Interrupt
Status Pointer, but do not want to relocate the status bits from the low byte of the ECId;
the address fields will both point to the low byte of the ECId, the IRQ mask will be 1,
and the FIQ mask will be 4.

If the card does not generate FIQ or IRQ

If the card does not generate one or both of these interrupts then you must set to zero:

● the corresponding address field(s) of the Interrupt Status Pointer

● the corresponding position mask field(s) of the Interrupt Status Pointer

● the corresponding status bit(s) in the low byte of the ECId.

IRQ Status Bit address (24 bits)

IRQ Status Bit position mask

FIQ Status Bit address (24 bits)

IRQ Status Bit position mask

&40

&34

&30

&24

&20

Chunk directory structure

4-128

Extension ROMs

Extension ROMs must have a Chunk Directory, hence they must also provide Interrupt
Status Pointers. However, extension ROMs generate neither FIQ nor IRQ; consequently
their Interrupt Status Pointers always consist of eight zero bytes.

Chunk directory structure
If the CD bit of an extended ECId is set, then:

● the IS bit of the ECId must also be set

● Interrupt Status Pointers must be defined

● a directory of Chunks follow the Interrupt Status Pointers.

The chunks of data and/or code are stored in the expansion card’s ROM, or in the
extension ROM.

The lengths and types of these Chunks and the manner in which they are loaded is
variable, so after the eight bytes of Interrupt Status Pointers there follow a number of
entries in the Chunk Directory. The Chunk Directory entries are eight bytes long and all
follow the same format. There may be any number of these entries. This list of entries is
terminated by a block of four bytes of zeros.

You should note that, from the start of the Chunk Directory onwards, the width of the
expansion card space is as set in the ECId width field. From here on the definition is in
terms of bytes:

The start address is an offset from the base of the expansion card’s address space.

Start address: 4 bytes (32 bits)

Size in bytes: 3 bytes (24 bits)

Operating System identity byte

n+8

n+4

n+1

n

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-129

Operating System Identity Byte

The Operating System Identity Byte forms the first byte of the Chunk Directory entry,
and determines the type of data which appears in the Chunk to which the Chunk
Directory refers. It is defined as follows:

OS[3] 0 reserved
OS[3] 1 mandatory at present

OS[2:0] 0 Acorn Operating System 0: Arthur/RISC OS
D[3:0] 0 Loader

1 Relocatable Module
2 BBC ROM
3 Sprite
4 - 15 reserved

1 reserved
D[3:0] 0 - 15 reserved

2 Acorn Operating System 2: UNIX
D[3:0] 0 Loader

1 - 15 reserved

3 - 5 reserved
D[3:0] 0 - 15 reserved

6 manufacturer defined
D[3:0] 0 - 15 manufacturer specific

7 device data
D[3:0] 0 link

(for 0, the object pointed to is another
directory)

1 serial number
2 date of manufacture
3 modification status
4 place of manufacture
5 description
6 part number

(for 1 - 6, the data in the location pointed to
contains the ASCII string of the
information.)

7 Ethernet binary ID (length is always 6 bytes)

OS[3] OS[2] OS[1] OS[0] D[3] D[2] D[1] D[0]

7 6 5 4 3 2 1 0

Binding a ROM image

4-130

8 PCB revision (length is always 4 bytes,
treated as a word)

9 - 14 reserved
15 empty chunk

Those Chunks with OS[2:0] = 7, are operating system independent and are mostly
treated as ASCII strings terminated with a zero byte. They are not intended to be read by
programs, but rather inspected by users. It is expected that even minimum expansion
cards will have an entry for D[3:0] = 5 (description), and it is this string which is printed
out by the command *Podules.

Binding a ROM image
For a ROM to be read by the Expansion Card Manager it must conform to the
specification, even if only minimally. The simplest way to generate ROM images is to
use a BASIC program to combine the various parts together and to compute the header
and Chunk Directory structure.

An example program used with an expansion card is shown at the end of this chapter. Its
output is a file suitable for programming into a PROM or an EPROM.

Expansion card Code Space
The above forms the basis of storing software and data in expansion cards. However,
there is an obvious drawback in that the expansion card space is only 4 Kbytes (at word
boundaries), and so its usefulness is limited as it stands. To allow expansion cards to
accommodate more than this 4 Kbytes an extension of the addressing capability is used.
This extension is called the Code Space.

The Code Space is an abstracted address space that is accessed in an expansion card
independent way via a software interface. It is a large linear address space that is
randomly addressable to a byte boundary. This will typically be used for driver code for
the expansion card, and will be downloaded into system memory by the operating
system before it is used. The manner in which this memory is accessed is variable and so
it is accessed via a Loader.

Writing a Loader for an expansion card
The purpose of the Loader is to present to the Expansion Card Manager a simple
interface that allows the reading (and writing) of the Code Space on a particular
expansion card. The usual case is a ROM paged to appear in 2 Kbyte pages at the bottom
of the expansion card space, with the page address stored in a latch. This then permits

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-131

the Expansion Card Manager to load software (Relocatable Modules) or data from an
expansion card without having to know how that particular expansion card’s hardware is
arranged.

The Loader is a simple piece of relocatable code with four entry points and clearly
defined entry and exit conditions. The format of the Loader is optimised for ease of
implementation and small code size rather than anything else.

Registers

The register usage is the same for each of the four entry points.

Input/Output Comments
R0 Write/Read data Treated as a byte
R1 Address Must be preserved
R2-R3 May be used
R4-R9 Must be preserved
R10 May be used
R11 Hardware Combined hardware address: must be

preserved
R12 Private: must be preserved
R13 sp Stack pointer (FD): must be preserved
R14 Return address: use BICS pc, lr, #V_bit
R15 PC

The exception to this is the CallLoader entry point where R0 - R2 are the user’s entry
and exit data.

Entry points

All code must be relocatable and position independent. It can be assumed that the code
will be run in RAM in SVC mode.

Origin + &00 Read a byte
Origin + &04 Write a byte
Origin + &08 Reset to initial state
Origin + &0C SWI Podule_CallLoader

Initialisation

The first call made to the Loader will be to Read address 0, the start of a Chunk directory
for the Code Space.

Writing a Loader for an expansion card

4-132

Errors

Errors are returned in the usual way; V is set and R0 points at a word-aligned word
containing the error number, which is followed by an optional error string, which in turn
must be followed by a zero byte. ReadByte and WriteByte may be able to return errors
like ‘Bad address’ if the device is not as big as the address given, or ‘Bad write’ if using
read after write checks on the WriteByte call. If the CallLoader entry is not supported
then don’t return an error. If Reset fails then return an error.

Since your device drivers may well be short of space, you can return an error with R0=0.
The Expansion Card Manager will then supply a default message. Note that this is not
encouraged, but is offered as a suggestion of last resort. Errors are returned to the caller
by using ORRS pc, lr, #V_bit rather than the usual BICS exit.

Example

Here is an example of a Loader (this example, like all others in this chapter, uses the
ARM assembler rather than the assembler included with BBC BASIC V – there are
subtle syntax differences):

00 LEADR &FFFFFD00 ; Data
00 00003000 PageReg * &3000

00 0000000B PageSize * 11 ; Bits
00 EA00000B Origin B ReadByte
04 EA000019 B WriteByte

08 EA000001 B Reset
0C E3DEF201 BICS pc, lr, #V_bit
10 E59FA0E4 Reset LDR r10, =2_00000011111111111111000000000000

14 E00BA00A AND r10, r11, r10 ; Get hardware address from combined one
18 E28AAA03 ADD r10, r10, #PageReg
1C E3A02000 MOV r2, #0

20 E4CA2000 STRB r2, [r10]
24 E3DEF201 BICS pc, lr, #V_bit
28 E59F40C4 ReadByte LDR r3, =2_00000011111111111111000000000000

2C E00B4004 AND r3, r11, r3 ; Get hardware address from combined one
30 E284AA03 ADD r10, r3, #PageReg

34 E3510B3E CMP r1, #&F800 ; Last page
38 228F0048 ADRHS r0, ErrorATB
3C 239EF201 ORRHSS pc, lr, #V_bit

40 E2812B02 ADD r2, r1, #1 :SHL: PageSize
44 E1A025C2 MOV r2, r2, ASR #PageSize
48 E4CA2000 STRB r2, [r10]

4C E3C12BFE BIC r2, r1, #&7F :SHL: PageSize
50 E7D40102 LDRB r0, [r3, r2, ASL #2] ; Word addressing
54 E3DEF201 BICS pc, lr, #V_bit

58 E28F0000 WriteByte ADR r0, ErrorNW
5C E39EF201 ORRS pc, lr, #V_bit
60 00000580 ErrorNW DCD ErrorNumber_NotWriteable

64 DCB ErrorString_NotWriteable,0
92 00 00 ALIGN
94 00000584 ErrorATB DCD ErrorNumber_AddressTooBig

98 DCB ErrorString_AddressTooBig,0
AC END

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-133

The bit masks are used to separate the fields of a combined hardware address – see the
description of Podule_HardwareAddress (page 4-155) for details of these.

Loading the Loader

If the Expansion Card Manager is ever asked to ‘EnumerateChunk’ a Chunk containing
a Loader, it will automatically load the Loader. Since RISC OS enumerates all Chunks
from all expansion cards at a hard reset this is achieved by default.

If no Loader is loaded then Podule_EnumerateChunks will terminate on the zero at the
end of the Chunk Directory in the expansion card space. If, however, when the end of the
expansion card space Chunk Directory is reached a Loader has been loaded, then a
second Chunk Directory, stored in the Code Space, will appear as a continuation of the
original Chunk Directory. This is transparent to the user.

This second Chunk Directory is in exactly the same format as the original Chunk
Directory. Addresses in the Code Space Chunk Directory refer to addresses in the Code
Space. The Chunk Directory starts at address 0 of the Code Space (rather than address
16 as the one in expansion card Space does).

CMOS RAM
Each of the four possible internal expansion card slots has four bytes of CMOS RAM
reserved for it. These bytes can be used to store status information, configuration, and so
on.

You can find the base address of these four bytes by calling Podule_HardwareAddress
(page 4-155) or Podule_HardwareAddresses (page 4-159).

 ROM sections
Most of the SWIs provided by the Expansion Card Manager take a ROM section as a
parameter. This identifies the expansion card or extension ROM upon which the
command acts. ROM sections used by RISC OS are:

ROM section Meaning
–1 System ROM

0 Expansion card 0
1 Expansion card 1
2 Expansion card 2
3 Expansion card 3

–2 Extension ROM 1 (not in RISC OS 2)
–3 Extension ROM 2 (not in RISC OS 2)
–4 Extension ROM 3 (etc) (not in RISC OS 2)

‘Podules’

4-134

None of the SWIs described in this chapter will act upon the system ROM.

‘Podules’
In the Arthur operating system, expansion cards were known as Podules. The word
‘Podule’ was used in all the names of SWIs and * Commands.

These old names have been retained, so that software written to run under Arthur will
still run under RISC OS.

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-135

Service Calls
Service_PreReset

(Service Call &45)

Pre-reset

On entry

R1 = &45 (reason code)

On exit

R1 preserved to pass on (do not claim)

Use

This call is made just before a software generated reset takes place, when the user
releases Break. This gives a chance for expansion card software to reset its devices, as
this type of reset does not actually cause a hardware reset signal to appear on the
expansion card bus. This call must not be claimed.

Service_ADFSPodule (Service Call &10800)

4-136

Service_ADFSPodule
(Service Call &10800)

Issued by ADFS to locate an ST506 expansion card

On entry

R1 = &10800 (reason code)
R2 = address of current ST506 hard disc controller
R3 = address of IRQ status register for current hard disc controller
R4 = mask which, when ANDed with IRQ status register, gives non-zero value if

IRQs are enabled
R5 = address of IRQ mask register for current hard disc controller
R6 = mask which, when ORd with IRQ mask register, enables IRQ

On exit

All registers preserved to pass on, else:

R1 = 0 to claim
R2 = address of new ST506 hard disc controller
R3 = address of IRQ status register for new hard disc controller
R4 = mask which, when ANDed with IRQ status register, gives non-zero value if

IRQs are enabled
R5 = address of IRQ mask register for new hard disc controller
R6 = mask which, when ORd with IRQ mask register, enables IRQ

Use

This call is issued by ADFS to enable ST506 hard disc expansion cards to intercept
ADFS and use their own hardware rather than the hardware built into the machine. The
expansion card should claim the service call, updating the passed registers to the values
for its own hardware.

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-137

Service_ADFSPoduleIDE
(Service Call &10801)

Issued by ADFS to locate an IDE expansion card

On entry

R1 = &10801 (reason code)
R2 = address of current IDE hard disc controller
R3 = address of IRQ status register for current hard disc controller
R4 = mask which, when ANDed with IRQ status register, gives non-zero value if

IRQs are enabled
R5 = address of IRQ mask register for current hard disc controller
R6 = mask which, when ORd with IRQ mask register, enables IRQ
R7= address of data read routine for current hard disc controller (0 for default)
R8 = address of data write routine for current hard disc controller (0 for default)

On exit

All registers preserved to pass on, else:

R1 = 0 to claim
R2 = address of new IDE hard disc controller
R3 = address of IRQ status register for new hard disc controller
R4 = mask which, when ANDed with IRQ status register, gives non-zero value if

IRQs are enabled
R5 = address of IRQ mask register for new hard disc controller
R6 = mask which, when ORd with IRQ mask register, enables IRQ
R7= address of data read routine for new hard disc controller (0 for default)
R8 = address of data write routine for new hard disc controller (0 for default)

Use

This call is issued by ADFS to enable IDE hard disc expansion cards to intercept ADFS
and use their own hardware rather than the hardware built into the machine. The
expansion card should claim the service call, updating the passed registers to the values
for its own hardware.

Service_ADFSPoduleIDEDying (Service Call &10802)

4-138

Service_ADFSPoduleIDEDying
(Service Call &10802)

IDE expansion card dying

On entry

R1 = &10802 (reason code)

On exit

All registers preserved

Use

This call is issued by an IDE expansion card module to warn ADFS of its imminent
demise.

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-139

SWI calls
Podule_ReadID

(SWI &40280)

Reads an expansion card or extension ROM’s identity byte

On entry

R3 = ROM section (see page 4-133)

On exit

R0 = expansion card identity byte (ECId)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads into R0 a simple Expansion Card Identity, or the low byte of an extended
Expansion Card Identity. It also resets the Loader – if one is present, and has been
loaded.

Related SWIs

Podule_ReadHeader (page 4-140)

Related vectors

None

Podule_ReadHeader (SWI &40281)

4-140

Podule_ReadHeader
(SWI &40281)

Reads an expansion card or extension ROM’s header

On entry

R2 = pointer to buffer of 8 or 16 bytes
R3 = ROM section (see page 4-133)

On exit

—

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads an extended Expansion Card Identity into the buffer pointed to by R2. If
the IS bit is set (bit 1 of byte 1) then the expansion card also has Interrupt Status
Pointers, and these are also read into the buffer. This call also resets the Loader – if one
is present, and has been loaded.

If you do not know whether the card has Interrupt Status Pointers, you should use a 16
byte buffer. Extension ROMs always have Interrupt Status Pointers (although they’re
always zero), so you should always use a 16 byte buffer for them.

Related SWIs

Podule_ReadID (page 4-139)

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-141

Related vectors

None

Podule_EnumerateChunks (SWI &40282)

4-142

Podule_EnumerateChunks
(SWI &40282)

Reads information about a chunk from the Chunk Directory

On entry

R0 = chunk number (zero to start)
R3 = ROM section (see page 4-133)

On exit

R0 = next chunk number (zero if final chunk enumerated)
R1 = size (in bytes) if R0 ≠ 0 on exit
R2 = operating system identity byte if R0 ≠ 0 on exit
R4 = pointer to a copy of the module’s name if the chunk is a relocatable module

(ie if R2 = &81), else preserved

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call reads information about a chunk from the Chunk Directory. It returns its size
and operating system identity byte. If the chunk is a module it also returns a pointer to a
copy of its name; this is held in the Expansion Card Manager’s private workspace and
will not be valid after you have called the Manager again.

If the chunk is a Loader, then RISC OS also loads it.

To read information on all chunks you should set R0 to 0 and R3 to the correct ROM
section. You should then repeatedly call this SWI until R0 is set to 0 on exit.

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-143

RISC OS 2 automatically does this on a reset for all expansion cards; if there is a Loader
it will be transparently loaded, and any chunks in the code space will also be
enumerated. Later versions of RISC OS use Podule_EnumerateChunksWithInfo.

Related SWIs

Podule_ReadChunk (page 4-144), Podule_EnumerateChunksWithInfo (page 4-157)

Related vectors

None

Podule_ReadChunk (SWI &40283)

4-144

Podule_ReadChunk
(SWI &40283)

Reads a chunk from an expansion card or extension ROM

On entry

R0 = chunk number
R2 = pointer to buffer (assumed large enough)
R3 = ROM section (see page 4-133)

On exit

—

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call reads the specified chunk from an expansion card. The buffer must be large
enough to contain the chunk; you can use Podule_EnumerateChunks (see page 4-142) to
find the size of the chunk.

Related SWIs

Podule_EnumerateChunks (page 4-142)

Related vectors

None

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-145

Podule_ReadBytes
(SWI &40284)

Reads bytes from within an expansion card’s code space

On entry

R0 = offset from start of code space
R1 = number of bytes to read
R2 = pointer to buffer
R3 = expansion card slot number

On exit

—

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call reads bytes from within an expansion card’s code space. It does so using
repeated calls to offset 0 (read a byte) of its Loader. RISC OS must already have loaded
the Loader; note that the kernel does this automatically on a reset when it enumerates all
expansion cards’ chunks.

This command returns an error for extension ROMs, because they have neither code
space nor a Loader.

Related SWIs

Podule_WriteBytes (page 4-147)

Podule_ReadBytes (SWI &40284)

4-146

Related vectors

None

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-147

Podule_WriteBytes
(SWI &40285)

Writes bytes to within an expansion card’s code space

On entry

R0 = offset from start of code space
R1 = number of bytes to write
R2 = pointer to buffer
R3 = expansion card slot number

On exit

—

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call writes bytes to within an expansion card’s code space. It does so using repeated
calls to offset 4 (write a byte) of its Loader. RISC OS must already have loaded the
Loader; note that the kernel does this automatically on a reset when it enumerates all
expansion cards’ chunks.

This command returns an error for extension ROMs, because they have neither code
space nor a Loader.

Related SWIs

Podule_ReadBytes (page 4-145)

Podule_WriteBytes (SWI &40285)

4-148

Related vectors

None

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-149

Podule_CallLoader
(SWI &40286)

Calls an expansion card’s Loader

On entry

R0 - R2 = user data
R3 = expansion card slot number

On exit

R0 - R2 = user data

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Depends on Loader

Use

This call enters an expansion card’s Loader at offset 12. Registers R0 - R2 can be used
to pass data.

The action the Loader takes will vary from card to card, and you should consult your
card’s documentation for further details.

If you are developing your own card, you can use this SWI as an entry point to add extra
features to your Loader. You may use R0 - R2 to pass any data you like. For example, R0
could be used as a reason code, and R1 and R2 to pass data.

In some hardware designs it may be important to share hardware between the Loader
and the driver. You can do so by using this call to call the Loader, which can do hardware
accesses for the driver and maintain its own state. For example, if your hardware has a

Podule_CallLoader (SWI &40286)

4-150

7 bit page register and a 1 bit output port shared within a single 8 bit latch, the Loader
could maintain a flag for the state of the port, and write that bit correctly whenever it
writes to the page register.

This command returns an error for extension ROMs, because they have neither code
space nor a Loader.

Related SWIs

None

Related vectors

None

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-151

Podule_RawRead
(SWI &40287)

Reads bytes directly within an expansion card or extension ROM’s address space

On entry

R0 = offset from base of a podule’s address space (0…&FFF)
R1 = number of bytes to read
R2 = pointer to buffer
R3 = ROM section (see page 4-133)

On exit

—

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads bytes directly within an expansion card or extension ROM’s address
space. It is typically used to read from the registers of hardware devices on an expansion
card, or to read successive bytes from an extension ROM.

You should use Podule_ReadBytes (page 4-145) to read from within an expansion card’s
code space.

Related SWIs

Podule_RawWrite (page 4-153)

Podule_RawRead (SWI &40287)

4-152

Related vectors

None

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-153

Podule_RawWrite
(SWI &40288)

Writes bytes directly within an expansion card’s address space

On entry

R0 = offset from base of a podule’s address space (0…&FFF)
R1 = number of bytes to write
R2 = pointer to buffer
R3 = expansion card slot number

On exit

—

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call writes bytes directly within an expansion card’s address space. It is typically
used to write to the registers of hardware devices on an expansion card.

You should use Podule_WriteBytes (see page 4-147) to write within an expansion card’s
code space.

Obviously you cannot write to an extension ROM. You must not use this call to try to
write to the ROM area; if you do so, you risk reprogramming the memory and video
controllers.

Related SWIs

Podule_RawRead (page 4-151)

Podule_RawWrite (SWI &40288)

4-154

Related vectors

None

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-155

Podule_HardwareAddress
(SWI &40289)

Returns an expansion card or extension ROM’s base address, and the address of an
expansion card’s CMOS RAM

On entry

R3 = ROM section (see page 4-133), or base address of expansion card/extension
ROM

On exit

R3 = combined hardware address

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns an expansion card or extension ROM’s combined hardware address:

Bits Meaning
0 - 11 base address of CMOS RAM – expansion cards only (4 bytes)
12 - 25 bits 12 - 25 of base address of expansion card/extension ROM
26 - 31 reserved

You can use a mask to extract the relevant parts of the returned value. The CMOS
address in the low 12 bits is suitable for passing directly to OS_Byte 161 and 162.

In practice there is little point in finding the combined hardware address of an extension
ROM. The base address of the extension ROM is of little use, as the width of the ROM
can vary; and extension ROMs do not have CMOS RAM reserved for them.

Podule_HardwareAddress (SWI &40289)

4-156

Related SWIs

OS_Byte 161 (page 1-369), OS_Byte 162 (page 1-371),
Podule_HardwareAddresses (page 4-159)

Related vectors

None

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-157

Podule_EnumerateChunksWithInfo
(SWI &4028A)

Reads information about a chunk from the Chunk Directory

On entry

R0 = chunk number (zero to start)
R3 = ROM section (see page 4-133)

On exit

R0 = next chunk number (zero if final chunk enumerated)
R1 = size (in bytes) if R0 ≠ 0 on exit
R2 = operating system identity byte if R0 ≠ 0 on exit
R4 = pointer to a copy of the module’s name if the chunk is a relocatable module, else
preserved
R5 = pointer to a copy of the module’s help string if the chunk is a relocatable module,
else preserved
R6 = address of module if the chunk is a directly executable relocatable module, or 0 if
the chunk is a non-directly-executable relocatable module, else preserved

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call reads information about a chunk from the Chunk Directory. It returns its size
and operating system identity byte. If the chunk is a module it also returns pointers to
copies of its name and its help string, and its address if it is executable. These are held in
the Expansion Card Manager’s private workspace and will not be valid after you have
called the Manager again.

Podule_EnumerateChunksWithInfo (SWI &4028A)

4-158

If the chunk is a Loader, then RISC OS also loads it.

To read information on all chunks you should set R0 to 0 and R3 to the correct ROM
section. You should then repeatedly call this SWI until R0 is set to 0 on exit.

RISC OS automatically does this on a reset for all expansion cards; if there is a Loader
it will be transparently loaded, and any chunks in the code space will also be
enumerated.

This call is not available in RISC OS 2, which uses Podule_EnumerateChunks instead.

Related SWIs

Podule_EnumerateChunks (page 4-142), Podule_ReadChunk (page 4-144)

Related vectors

None

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-159

Podule_HardwareAddresses
(SWI &4028B)

Returns an expansion card or extension ROM’s base address, and the address of an
expansion card’s CMOS RAM

On entry

R3 = ROM section (see page 4-133)

On exit

R0 = base address of expansion card/extension ROM
R1 = combined hardware address

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns an expansion card or extension ROM’s base address, and its combined
hardware address:

Bits Meaning
0 - 11 base address of CMOS RAM – expansion cards only (4 bytes)
12 - 25 bits 12 - 25 of base address of expansion card/extension ROM
26 - 31 reserved

You can use a mask to extract the relevant parts of the returned value. The CMOS
address in the low 12 bits is suitable for passing directly to OS_Byte 161 and 162.

In practice there is little point in finding the combined hardware address of an extension
ROM. The base address of the extension ROM is of little use, as the width of the ROM
can vary; and extension ROMs do not have CMOS RAM reserved for them.

Podule_HardwareAddresses (SWI &4028B)

4-160

This call is not available in RISC OS 2.

Related SWIs

OS_Byte 161 (page 1-369), OS_Byte 162 (page 1-371),
Podule_HardwareAddress (page 4-155)

Related vectors

None

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-161

Podule_ReturnNumber
(SWI &4028C)

Returns the number of expansion cards and extension ROMs

On entry

—

On exit

R0 = number of expansion cards
R1 = number of extension ROMs

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns the number of expansion cards and extension ROMs. The number of
expansion cards returned is currently always 4, but you must be prepared to handle any
other value, including 0.

This call is used by the *Podules command.

This call is not available in RISC OS 2.

Related SWIs

None

Related vectors

None

* Commands

4-162

* Commands
*PoduleLoad

Copies a file into an expansion card’s RAM

Syntax

*PoduleLoad expansion_card_number filename [offset]

Parameters

expansion_card_number the expansion card’s number, as given by *Podules

filename a valid pathname, specifying a file

offset offset (in hexadecimal by default) into the Code
Space

Use

*PoduleLoad copies the contents of a file into an installed expansion card’s RAM,
starting at the specified offset. If no offset is given, then a default value of 0 is used.

Example

*PoduleLoad 1 $.Midi.Data 100

Related commands

*Podules, *PoduleSave

Related SWIs

Podule_WriteBytes (page 4-147)

Related vectors

None

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-163

*Podules

Displays a list of the installed expansion cards and extension ROMs

Syntax

*Podules

Parameters

None

Use

*Podules displays a list of the installed expansion cards and extension ROMs, using the
description that each one holds internally. Some expansion cards and/or extension
ROMs – such as one that is still being designed – will not have a description; in this
case, an identification number is displayed.

This command still refers to expansion cards as podules, to maintain compatibility with
earlier operating systems. This command does not show extension ROMs under
RISC OS 2.

Example

*Podules
Podule 0: Midi and BBC I/O podule
Podule 1: Simple podule &8
Podule 2: No installed podule
Podule 3: No installed podule

Related commands

None

Related SWIs

Podule_EnumerateChunks (page 4-142)

Related vectors

None

*PoduleSave

4-164

*PoduleSave

Copies the contents of an expansion card’s ROM into a file

Syntax

*PoduleSave expansion_card_number filename size [offset]

Parameters

expansion_card_number the expansion card’s number, as given by *Podules

filename a valid pathname, specifying a file

size in bytes

offset offset (in hexadecimal by default) into the Code
Space

Use

*PoduleSave copies the given number of bytes of an installed expansion card’s ROM
into a file. If no offset is given, then a default value of 0 is used.

Example

*PoduleSave 1 $.Midi.Data 200 100

Related commands

*Podules, *PoduleLoad

Related SWIs

Podule_ReadBytes (page 4-145)

Related vectors

None

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-165

Example program
This program is an example of how to combine the various parts of an expansion card
ROM. It also computes the header and Chunk Directory structure. The file it outputs is
suitable for programming into a PROM or EPROM:

Example program

4-166

 10 REM > &.arm.MidiAndI/O.MidiJoiner
 20 REM Author : RISC OS
 30 REM Last edit : 06-Jan-87
 40 PRINT"Joiner for expansion card ROMs"’"Version 1.05."
 50 PRINT"For Midi board.": DIM Buffer% 300, Block% 20
 70 INPUT’"Enter name of output file : "OutName$
 75 H%=OPENOUT(OutName$)
 80 IF H%=0 THEN PRINT"Could not create ’";OutName$;"’.":END
 90 ONERRORONERROROFF:CLOSE#H%:REPORT:PRINT" at line ";ERL:END
 100 Device%=0:L%=TRUE:REPEAT
 120 Max%=&800:REM Max% is the size of the normal area
 130 Low%=&100:REM Low% is the size of the pseudo directory
 140 Base%=0:REM The offset for file address calculations
 150 Rom%=&4000:REM Rom% is the size of BBC ROMs
 170 PROCByte(0):PROCHalf(3):PROCHalf(19):PROCHalf(0):PROCByte(0)
 180 PROCByte(0):PROC3Byte(0):PROCByte(0):PROC3Byte(0)
 190 IF PTR#H% <> 16 STOP
 200 Bot%=PTR#H%:REM Bot% is where the directory grows from
 210 Top%=Max%:REM Top% is where normal files decend from
 230 INPUT"Enter filename of loader : "Loader$
 240 IF Loader$ <> "" THEN K%=FNAddFile(&80, Loader$)
 250 IF K% ELSE PRINT"No room for loader.":
 PTR#H%=Bot%:PROCByte(0):CLOSE#H%:END
 270 INPUTLINE’"Enter product description : "Dat$
 280 IF Dat$ <> "" THEN PROCAddString(&F5, Dat$)
 300 PRINT:REPEAT
 310 INPUT"Enter name of file to add : "File$
 320 IF File$ <> "" THEN T%=FNType(File$) ELSE T%=0
 330 IF T%=0 ELSE K%=FNAddFile(T%, File$)
 340 IF K% ELSE PRINT"No more room."
 350 UNTIL (File$ = "") OR (K%=FALSE)
 360 IF K% ELSE PTR#H%=Bot%:PROCByte(0):CLOSE#H%:END
 370 IF L% PROCChange
 390 INPUTLINE"Enter serial number : "Dat$
 400 IF Dat$ <> "" THEN PROCAddString(&F1, Dat$)
 410 INPUTLINE"Enter modification status : "Dat$
 420 IF Dat$ <> "" THEN PROCAddString(&F3, Dat$)
 430 INPUTLINE"Enter place of manufacture : "Dat$
 440 IF Dat$ <> "" THEN PROCAddString(&F4, Dat$)
 450 INPUTLINE"Enter part number : "Dat$
 460 IF Dat$ <> "" THEN PROCAddString(&F6, Dat$)
 480 Date$=TIME$
 490 Date$=MID$(Date$,5,2)+"-"+MID$(Date$,8,3)+"-"+MID$(Date$,14,2)
 500 PROCAddString(&F2, Date$)
 530 REM PROCHeader(&F0, Z%+W%*Rom%-Base%, 0):REM Link
 550 PTR#H%=Bot%:PROCByte(0)
 570 CLOSE#H%: END
 590 DEF PROCByte(D%):BPUT#H%,D%:ENDPROC
 610 DEF PROCHalf(D%):BPUT#H%,D%:BPUT#H%,D%DIV256:ENDPROC
 630 DEF PROC3Byte(D%)
 640 BPUT#H%,D%:BPUT#H%,D%DIV256:BPUT#H%,D%DIV65535:ENDPROC
 660 DEF PROCWord(D%)
 670 BPUT#H%,D%:BPUT#H%,D%DIV256:BPUT#H%,D%DIV65535
 680 BPUT#H%,D%DIV16777216:ENDPROC
 700 DEF PROCAddString(T%, S$)

H
ard

w
are su

p
p

o
rt

Expansion Cards and Extension ROMs

4-167

 710 S$=S$+CHR$0
 720 IF L% THEN PROCAddNormalString ELSE PROCAddPsuedoString
 730 ENDPROC
 750 DEF PROCAddNormalString
 760 IF Top%-Bot% < 10+LEN(S$) THEN STOP
 770 PROCHeader(T%, Top%-LEN(S$)-Base%, LEN(S$))
 780 Top%=Top%-LEN(S$):PTR#H%=Top%:FOR I%=1 TO LEN(S$)
 790 BPUT#H%,ASC(MID$(S$,I%,1)):NEXTI%:ENDPROC
 810 DEF PROCAddPsuedoString
 820 IF Max%+Low%-Bot% < 9 THEN STOP
 830 PROCHeader(T%, Top%-Base%, LEN(S$))
 840 PTR#H%=Top%:FOR I%=1 TO LEN(S$)
 850 BPUT#H%,ASC(MID$(S$,I%,1)):NEXTI%
 860 Top%=Top%+LEN(S$):ENDPROC
 880 DEF PROCHeader(Type%, Address%, Size%)
 890 PTR#H%=Bot%
 900 PROCByte(Type%)
 910 PROC3Byte(Size%)
 920 PROCWord(Address%)
 930 Bot%=Bot%+8:ENDPROC
 950 DEF FNAddFile(T%, N$)
 960 F%=OPENIN(N$)
 970 IF F%=0 THEN PRINT"File ’";N$;"’ not found.":=FALSE
 980 S%=EXT#F%
 990 IF L% THEN =FNAddNormalFile ELSE =FNAddPsuedoFile
1010 DEF FNAddNormalFile
1020 E%=S%+9-(Top%-Bot%)
1030 IF E%>0 THEN PRINT"Oversize by ";E%;" bytes."’:
 PROCChange:=FNAddPsuedoFile
1040 PROCHeader(T%, Top%-S%-Base%, S%)
1050 Top%=Top%-S%:PTR#H%=Top%:FOR I%=1 TO S%
1060 BPUT#H%,BGET#F%:NEXTI%:CLOSE#F%:=TRUE
1080 DEF FNAddPsuedoFile
1090 IF Max%+Low%-Bot% < 9 THEN =FALSE
1100 PROCHeader(T%, Top%-Base%, S%)
1110 PTR#H%=Top%
1120 FOR I%=1 TO S%:BPUT#H%,BGET#F%:NEXTI%
1130 Top%=Top%+S%:CLOSE#F%:=TRUE
1150 DEF PROCChange
1160 PRINT"Changing up. Wasting ";Top%-Bot%;" bytes."
1170 PTR#H%=Bot%:PROCByte(0):REM Terminate bottom directory
1180 Bot%=Max%:Top%=Max%+Low%:Base%=Max%:L%=FALSE
1190 REM In the pseudo area files grow upward from Top%
1200 ENDPROC
1220 DEF FNType(N$)
1230 $Buffer%=N$:X%=Block%:Y%=X%/256:A%=5:X%!0=Buffer%
1240 B%=USR&FFDD:IF (B%AND255) <> 1 THEN PRINT"Not a file":=0
1250 V%=(Block%!3)AND&FFFFFF
1260 IFV%=&FFFFFA THEN =&81
1270 IF((Block%!2AND&FFFF)=&8000)AND((Block%!6AND&FFFF)=&8000)THEN=&82
1280 IFV%=&FFFFF9 THEN =&83
1290 =0

Example program

4-168

H
ard

w
are su

p
p

o
rt

4-169

4

78 Floating point emulator

Introduction
The Acorn RISC machine has a general coprocessor interface. The first coprocessor
available is one which performs floating point calculations to the IEEE standard. To
ensure that programs using floating point arithmetic remain compatible with all
Archimedes machines, a standard ARM floating point instruction set has been defined.
This can be implemented invisibly to the customer program by one of several systems
offering various speed performances at various costs. The current ‘bundled’ floating
point system is the software-only floating point emulator module. Floating point
instructions may be incorporated into any assembler text, provided they are called from
user mode. These instructions are recognised by the Assembler and converted into the
correct coprocessor instructions. However, these instructions are not supported by the
assembler in the BASIC interpreter.

Because this module doesn’t present any SWIs or other usual interface to programs
(apart from a SWI to return the version number), this chapter is structured differently
from most others. First, there is a discussion of the programmer’s model of the IEEE 754
floating point system. This is followed by the floating point instruction set. Finally the
SWI is detailed.

Generally, programs do not need to know whether a coprocessor is fitted; the only
effective difference is in the speed of execution. Note that there may be slight variations
in accuracy between hardware and software – refer to the instructions supplied with the
coprocessor for details of these variations.

Programmer’s model

4-170

Programmer’s model
The ARM IEEE floating point system has eight ‘high precision’ floating point registers,
F0 to F7. The format in which numbers are stored in these registers is not specified.
Floating point formats only become visible when a number is transferred to memory,
using one of the formats described below.

There is also a floating point status register (FPSR) which, like the ARM’s combined
PC and PSR, holds all the necessary status and control information that an application is
intended to be able to access. It holds flags which indicate various error conditions, such
as overflow and division by zero. Each flag has a corresponding trap enable bit, which
can be used to enable or disable a ‘trap’ associated with the error condition. Bits in the
FPSR allow a client to distinguish between different implementations of the floating
point system.

There may also be a floating point control register (FPCR); this is used to hold status
and control information that an application is not intended to access. For example, there
are privileged instructions to turn the floating point system on and off, to permit efficient
context changes. Typically, hardware based systems have an FPCR, whereas software
based ones do not.

Available systems
Floating point systems may be built from software only, hardware only, or some
combination of software and hardware. The following terminology will be used to
differentiate between the various ARM floating point systems already in use or planned:

System name System components
Old FPE Versions of the floating point emulator up to (but not including)

4.00

FPPC Floating Point Protocol Convertor (interface chip between ARM
and WE32206), WE32206 (AT&T Math Acceleration Unit chip),
and support code

FPE 400 Versions of the floating point emulator from 4.00 onwards

FPA ARM Floating Point Accelerator chip, and support code

The results look the same to the programmer. However, if clients are aware of which
system is in use, they may be able to extract better performance.

The old FPE has two different variants. Versions up to (but not including) 3.40 do not
provide any hardware support, whereas versions 3.40 to 3.99 inclusive provide support
for the FPPC hardware – if it is fitted. All versions of the FPE 400 provide support for
the FPA hardware.

H
ard

w
are su

p
p

o
rt

Floating point emulator

4-171

Precision
All basic floating point instructions operate as though the result were computed to
infinite precision and then rounded to the length, and in the way, specified by the
instruction. The rounding is selectable from:

● Round to nearest

● Round to +infinity (P)

● Round to –infinity (M)

● Round to zero (Z).

The default is ‘round to nearest’; in the event of a tie, this rounds to ‘nearest even’. If any
of the others are required they must be given in the instruction.

The working precision of the system is 80 bits, comprising a 64 bit mantissa, a 15 bit
exponent and a sign bit. Specific instructions that work only with single precision
operands may provide higher performance in some implementations, particularly the
fully software based ones.

Floating point number formats
Like the ARM instructions, the floating point data processing operations refer to
registers rather than memory locations. Values may be stored into ARM memory in one
of five formats (only four of which are visible at any one time, since P and EP are
mutually exclusive):

Floating point number formats

4-172

IEEE Single Precision (S)

Figure 78.1 Single precision format

● If the exponent is 0 and the fraction is 0, the number represented is ±0.

● If the exponent is 0 and the fraction is non-zero, the number represented is
±0.fraction × 2–126.

● If the exponent is in the range 1 to 254, the number represented is
±1.fraction × 2exponent – 127.

● If the exponent is 255 and the fraction is 0, the number represented is ±∞.

● If the exponent is 255 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

IEEE Double Precision (D)

Figure 78.2 Double precision format

● If the exponent is 0 and the fraction is 0, the number represented is ±0.

● If the exponent is 0 and the fraction is non-zero, the number represented is
±0.fraction × 2–1022.

● If the exponent is in the range 1 to 2046, the number represented is
±1.fraction × 2exponent – 1023.

● If the exponent is 2047 and the fraction is 0, the number represented is ±∞.

● If the exponent is 2047 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

Sign Exponent Fraction

31 30 23 22 0

msb lsb

Sign Exponent Fraction

31 30 20 19 0

msb lsb

Fractionmsb lsb

First word

Second word

H
ard

w
are su

p
p

o
rt

Floating point emulator

4-173

Double Extended Precision (E)

Figure 78.3 Double extended precision format

● If the exponent is 0, J is 0, and the fraction is 0, the number represented is ±0.

● If the exponent is 0, J is 0, and the fraction is non-zero, the number represented is
±0.fraction × 2–16382.

● If the exponent is in the range 0 to 32766, J is 1, and the fraction is non-zero, the
number represented is ±1.fraction × 2exponent – 16383.

● If the exponent is 32767, J is 0, and the fraction is 0, the number represented is ±∞.

● If the exponent is 32767 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

Other values are illegal and shall not be used (ie the exponent is in the range 1 to 32766
and J is 0; or the exponent is 32767, J is 1, and the fraction is 0).

The FPPC system stores the sign bit in bit 15 of the first word, rather than in bit 31.

Storing a floating point register in ‘E’ format is guaranteed to maintain precision when
loaded back by the same floating point system in this format. Note that in the past the
layout of E format has varied between floating point systems, so software should not
have been written to depend on it being readable by other floating point systems. For
example, no software should have been written which saves E format data to disc, to
have then been potentially loaded into another system. In particular, E format in the
FPPC system varies from all other systems in its positioning of the sign bit. However,
for the FPA and the FPE 400, the E format is now defined to be a particular form of
IEEE Double Extended Precision and will not vary in future.

Sign zeros Exponent

31 30 15 14 0

Fractionmsb lsb

First word

Second word

Fractionmsb lsbThird word

J

Floating point number formats

4-174

Packed Decimal (P)

Figure 78.4 Packed decimal format

The sign nibble contains both the significand’s sign (top bit) and the exponent’s sign
(next bit); the other two bits are zero.

d18 is the most significant digit of the significand d, and e3 of the exponent e. The
significand has an assumed decimal point between d18 and d17, and is normalised so
that for a normal number l≤ d18≤ 9. The guaranteed ranges for d and e are 17 and 3
digits respectively; d0, d1 and e3 may always be zero in a particular system. (By
comparison, an S format number has 9 digits of significand and a maximum exponent of
53; a D format number has 17 digits in the significand and a maximum exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation of ±∞ or a NaN (see below).

● If the exponent’s sign is 0, the exponent is 0, and the significand is 0, the number
represented is ±0.

Zero will always be output as +0, but either +0 or –0 may be input.

● If the exponent is in the range 0 to 9999 and the significand is in the range 1 to
9.999999999999999999, the number represented is ±d × 10±e.

● If the exponent is &FFFF (ie all the bits in e3 - e0 are set) and the significand is 0,
the number represented is ±∞.

● If the exponent is &FFFF and d0 - d17 are non-zero, a NaN (not-a-number) is
represented. If the most significant bit of d18 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

Sign

31 0

First word e3 e1e2 e0 d18 d17 d16

d15Second word d14 d12d13 d11 d10 d9 d8

d7Third word d6 d4d5 d3 d2 d1 d0

H
ard

w
are su

p
p

o
rt

Floating point emulator

4-175

Expanded Packed Decimal (EP)

Figure 78.5 Expanded packed decimal format

The sign nibble contains both the significand’s sign (top bit) and the exponent’s sign
(next bit); the other two bits are zero.

d23 is the most significant digit of the significand d, and e6 of the exponent e. The
significand has an assumed decimal point between d23 and d22, and is normalised so
that for a normal number l≤ d23≤ 9. The guaranteed ranges for d and e are 21 and 4
digits respectively; d0, d1, d2, e4, e5 and e6 may always be zero in a particular system.
(By comparison, an S format number has 9 digits of significand and a maximum
exponent of 53; a D format number has 17 digits in the significand and a maximum
exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation of ±∞ or a NaN (see below).

● If the exponent’s sign is 0, the exponent is 0, and the significand is 0, the number
represented is ±0.

Zero will always be output as +0, but either +0 or –0 may be input.

● If the exponent is in the range 0 to 9999999 and the significand is in the range 1 to
9.99999999999999999999999, the number represented is ±d × 10±e.

● If the exponent is &FFFFFFF (ie all the bits in e6 - e0 are set) and the significand is
0, the number represented is ±∞.

● If the exponent is &FFFFFFF and d0 - d22 are non-zero, a NaN (not-a-number) is
represented. If the most significant bit of d23 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

This format is not available in the old FPE or the FPPC. You should only use it if you
can guarantee that the floating point system you are using supports it.

Sign

31 0

First word e6 e4e5 e3 e2 e1 e0

d23Second word d22 d20d21 d19 d18 d17 d16

d15Third word d14 d12d13 d11 d10 d9 d8

d7Fourth word d6 d4d5 d3 d2 d1 d0

Floating point status register

4-176

Floating point status register
There is a floating point status register (FPSR) which, like ARM’s combined PC and
PSR, has all the necessary status for the floating point system. The FPSR contains the
IEEE flags but not the result flags – these are only available after floating point compare
operations.

The FPSR consists of a system ID byte, an exception trap enable byte, a system control
byte and a cumulative exception flags byte.

Figure 78.6 Floating point status register byte usage

System ID byte

The System ID byte allows a user or operating system to distinguish which floating
point system is in use. The top bit (bit 31 of the FPSR) is set for hardware (ie fast)
systems, and clear for software (ie slow) systems. Note that the System ID is read-only.

The following System IDs are currently defined:

System System ID
Old FPE &00
FPPC &80
FPE 400 &01
FPA &81

Exception Trap Enable Byte

Each bit of the exception trap enable byte corresponds to one type of floating point
exception, which are described in the section entitled Cumulative Exception Flags Byte
on page 4-178.

Figure 78.7 Exception trap enable byte

If a bit in the cumulative exception flags byte is set as a result of executing a floating
point instruction, and the corresponding bit is also set in the exception trap enable byte,
then that exception trap will be taken.

Currently, the reserved bits shall be written as zeros and will return 0 when read.

Exception Flags

7 0

System Control

15 8

Trap Enable

23 16

System ID

31 24

FPSR

Reserved

22

FPSR INX

20

UFL

19

OFL

18

DVZ

17

IVO

1623 21

H
ard

w
are su

p
p

o
rt

Floating point emulator

4-177

System Control Byte

These control bits determine which features of the floating point system are in use.

Figure 78.8 System control byte

 By placing these control bits in the FPSR, their state will be preserved across context
switches, allowing different processes to use different features if necessary. The
following five control bits are defined for the FPA system and the FPE 400:

ND No Denormalised numbers
NE NaN Exception
SO Select synchronous Operation of FPA
EP Use Expanded Packed decimal format
AC Use Alternative definition for C flag on compare operations

The old FPE and the FPPC system behave as if all these bits are clear.

Currently, the reserved bits shall be written as zeros and will return 0 when read. Note
that all bits (including bits 8 - 12) are reserved on FPPC and early FPE systems.

ND – No denormalised numbers bit

If this bit is set, then the software will force all denormalised numbers to zero to prevent
lengthy execution times when dealing with denormalised numbers. (Also known as
abrupt underflow or flush to zero.) This mode is not IEEE compatible but may be
required by some programs for performance reasons.

If this bit is clear, then denormalised numbers will be handled in the normal
IEEE-conformant way.

NE – NaN exception bit

If this bit is set, then an attempt to store a signalling NaN that involves a change of
format will cause an exception (for full IEEE compatibility).

If this bit is clear, then an attempt to store a signalling NaN that involves a change of
format will not cause an exception (for compatibility with programs designed to work
with the old FPE).

Reserved

14

FPSR AC

12

EP

11

SO

10

NE

9

ND

815 13

Floating point status register

4-178

SO – Select synchronous operation of FPA

If this bit is set, then all floating point instructions will execute synchronously and ARM
will be made to busy-wait until the instruction has completed. This will allow the precise
address of an instruction causing an exception to be reported, but at the expense of
increased execution time.

If this bit is clear, then that class of floating point instructions that can execute
asynchronously to ARM will do so. Exceptions that occur as a result of these
instructions may be raised some time after the instruction has started, by which time the
ARM may have executed a number of instructions following the one that has failed. In
such cases the address of the instruction that caused the exception will be imprecise.

The state of this bit is ignored by software-only implementations, which always operate
synchronously.

EP – Use expanded packed decimal format

If this bit is set, then the expanded (four word) format will be used for Packed Decimal
numbers. Use of this expanded format allows conversion from extended precision to
packed decimal and back again to be carried out without loss of accuracy.

If this bit is clear, then the standard (three word) format is used for Packed Decimal
numbers.

AC – Use alternative definition for C flag on compare operations

If this bit is set, the ARM C flag, after a compare, is interpreted as ‘Greater Than or
Equal or Unordered’. This interpretation allows more of the IEEE predicates to be tested
by means of single ARM conditional instructions than is possible using the original
interpretation of the C flag (as shown below).

If this bit is clear, the ARM C flag, after a compare, is interpreted as ‘Greater Than or
Equal’.

Cumulative Exception Flags Byte

Figure 78.9 Cumulative exception flags byte

Whenever an exception condition arises, the appropriate cumulative exception flag in
bits 0 to 4 will be set to 1. If the relevant trap enable bit is set, then an exception is also
delivered to the user’s program in a manner specific to the operating system. (Note that

Reserved

6

FPSR INX

4

UFL

3

OFL

2

DVZ

1

IVO

07 5

H
ard

w
are su

p
p

o
rt

Floating point emulator

4-179

in the case of underflow, the state of the trap enable bit determines under which
conditions the underflow flag will be set.) These flags can only be cleared by a WFS
instruction.

Currently, the reserved bits shall be written as zeros and will return 0 when read.

IVO – invalid operation

The IVO flag is set when an operand is invalid for the operation to be performed. Invalid
operations are:

● Any operation on a trapping NaN (not-a-number)

● Magnitude subtraction of infinities, eg +∞ + –∞

● Multiplication of 0 by ±∞

● Division of 0/0 or ∞/∞

● x REM y where x = ∞ or y = 0

(REM is the ‘remainder after floating point division’ operator.)

● Square root of any number < 0 (but √(–0) = –0)

● Conversion to integer or decimal when overflow, ∞ or a NaN operand make it
impossible

If overflow makes a conversion to integer impossible, then the largest positive or
negative integer is produced (depending on the sign of the operand) and IVO is
signalled

● Comparison with exceptions of Unordered operands

● ACS, ASN when argument’s absolute value is > 1

● SIN, COS, TAN when argument is ±∞
● LOG, LGN when argument is ≤ 0

● POW when first operand is < 0 and second operand is not an integer, or first
operand is 0 and second operand is ≤ 0

● RPW when first operand is not an integer and second operand is < 0, or first
operand is ≤ 0 and second operand is 0.

DVZ – division by zero

The DVZ flag is set if the divisor is zero and the dividend a finite, non-zero number. A
correctly signed infinity is returned if the trap is disabled.

The flag is also set for LOG(0) and for LGN(0). Negative infinity is returned if the trap
is disabled.

Floating Point Control Register

4-180

OFL – overflow

The OFL flag is set whenever the destination format’s largest number is exceeded in
magnitude by what the rounded result would have been were the exponent range
unbounded. As overflow is detected after rounding a result, whether overflow occurs or
not after some operations depends on the rounding mode.

If the trap is disabled either a correctly signed infinity is returned, or the format’s largest
finite number. This depends on the rounding mode and floating point system used.

UFL – underflow

Two correlated events contribute to underflow:

● Tininess – the creation of a tiny non-zero result smaller in magnitude than the
format’s smallest normalised number.

● Loss of accuracy – a loss of accuracy due to denormalisation that may be greater
than would be caused by rounding alone.

The UFL flag is set in different ways depending on the value of the UFL trap enable bit.
If the trap is enabled, then the UFL flag is set when tininess is detected regardless of loss
of accuracy. If the trap is disabled, then the UFL flag is set when both tininess and loss
of accuracy are detected (in which case the INX flag is also set); otherwise a correctly
signed zero is returned.

As underflow is detected after rounding a result, whether underflow occurs or not after
some operations depends on the rounding mode.

INX – inexact

The INX flag is set if the rounded result of an operation is not exact (different from the
value computable with infinite precision), or overflow has occurred while the OFL trap
was disabled, or underflow has occurred while the UFL trap was disabled. OFL or UFL
traps take precedence over INX.

The INX flag is also set when computing SIN or COS, with the exceptions of SIN(0) and
COS(1).

The old FPE and the FPPC system may differ in their handling of the INX flag. Because
of this inconsistency we recommend that you do not enable the INX trap.

Floating Point Control Register
The Floating Point Control register (FPCR) may only be present in some
implementations: it is there to control the hardware in an implementation-specific
manner, for example to disable the floating point system. The user mode of the ARM is
not permitted to use this register (since the right is reserved to alter it between
implementations) and the WFC and RFC instructions will trap if tried in user mode.

H
ard

w
are su

p
p

o
rt

Floating point emulator

4-181

You are unlikely to need to access the FPCR; this information is principally given for
completeness.

The FPPC system

The FPCR bit allocation in the FPPC system is as shown below:

Figure 78.10 FPCR bit allocation in the FPPC system

Bit Meaning
31-8 Reserved – always read as zero
7 PR Last RMF instruction produced a partial remainder
6 SBd Use Supervisor Register Bank ‘d’
5 SBn Use Supervisor Register Bank ‘n’
4 SBm Use Supervisor Register Bank ‘m’
3 Reserved – always read as zero
2 AS Last WE32206 exception was asynchronous
1 EX Floating point exception has occurred
0 DA Disable

Reserved bits are ignored during write operations (but should be zero for future
compatibility.) The reserved bits will return zero when read.

The FPA system

In the FPA, the FPCR will also be used to return status information required by the
support code when an instruction is bounced. You should not alter the register unless
you really know what you’re doing. Note that the register will be read sensitive; even
reading the register may change its value, with disastrous consequences.

The FPCR bit allocation in the FPA system is provisionally as follows:

Figure 78.11 FPCR bit allocation in the FPA system

—FPCR

31 8

PR

7

SBd

6

SBn

5

SBm

4

—

3

AS

2

EX

1

DA

0

20

—

19 18 172122232425

EO

26

MO

27

IE

282930

RU

31

FPCR

OP

4 3 2 1 056

PR

7

EN

8

RE

9

AB

10

SB

11121314

OP

15

(cont’d)

16

— — OP S1

DS RM S2

Floating Point Control Register

4-182

Bit Meaning
31 RU Rounded Up Bit
30 Reserved
29 Reserved
28 IE Inexact bit
27 MO Mantissa overflow
26 EO Exponent overflow
25, 24 Reserved
23-20 OP AU operation code
19 PR AU precision
18-16 S1 AU source register 1
15 OP AU operation code
14-12 DS AU destination register
11 SB Synchronous bounce: decode (R14) to get opcode
10 AB Asynchronous bounce: opcode supplied in rest of word
9 RE Rounding Exception: Asynchronous bounce occurred during

rounding stage and destination register was written
8 EN Enable FPA (default is off)
7 PR AU precision
6, 5 RM AU rounding mode
4 OP AU operation code
3-0 S2 AU source register 2 (bit 3 set denotes a constant)

Note that the SB and AB bits are cleared on a read of the FPCR. Only the EN bit is
writable. All other bits shall be set to zero on a write.

H
ard

w
are su

p
p

o
rt

Floating point emulator

4-183

The instruction set

Floating point coprocessor data transfer
op{condition}prec Fd,addr

op is LDF for load, STF for store

condition is one of the usual ARM conditions (see Appendix A: ARM assembler
on page 4-363)

prec is one of the usual floating point precisions (eg S for single, D for
double, P for packed decimal: see the section entitled Floating point
number formats on page 4-171)

addr is [Rn]{,#offset} or [Rn,#offset]{!}
({!} if present indicates that writeback is to take place.)

Fd is a floating point register symbol (defined via the FN directive).

Load (LDF) or store (STF) the high precision value from or to memory, using one of the
five memory formats. On store, the value is rounded using the ‘round to nearest’
rounding method to the destination precision, or is precise if the destination has
sufficient precision. Thus other rounding methods may be used by having previously
applied some suitable floating point data operation; this does not compromise the
requirement of ‘rounding once only’, since the store operation introduces no additional
rounding error.

The offset is in words from the address given by the ARM base register, and is in the
range –1020 to +1020. In pre-indexed mode you must explicitly specify writeback to
add the offset to the base register; but in post-indexed mode the assembler forces
writeback for you, as without write back post-indexing is meaningless.

You should not use R15 as the base register if writeback will take place.

Examples:

LDFS F0,[R0] ; load F0 from address held in R0
; (single precision)

STFP F1,[R2] ; store number held in F1 at R2
; as a packed decimal number

Floating point coprocessor multiple data transfer

4-184

Floating point literals

LDFS and LDFD can be given literal values instead of a register relative address, and
the Assembler will automatically place the required value in the next available literal
pool. In the case of LDFS a single precision value is placed, in the case of LDFD a
double precision value is placed. Because the allowed offset range within a LDFS or
LDFD instruction is less than that for a LDR instruction (–1020 to +1020 instead of –
4095 to +4095), it may be necessary to code LTORG directives more frequently if
floating point literals are being used than would otherwise be necessary.

Syntax: LDFx Fn, = floating point number

Floating point coprocessor multiple data transfer
The LFM and SFM multiple data transfer instructions are supported by the assemblers,
but are not provided by the FPPC system, or by some versions of the old FPE:

● versions 2.80 - 2.84 do not support them

● versions 2.85 - 3.39 do support them

● version 3.40 – which is effectively a version of 2.80 that also provides FPPC
hardware support – does not support these instructions.

Attempting to execute these instructions on systems that do not provide them will cause
undefined instruction traps, so you should only use these instructions in software
intended for machines you are confident are using an appropriate version of the old FPE,
or the FPE 400, or the FPA system.

The LFM and SFM instructions allow between 1 and 4 floating point registers to be
transferred from or to memory in a single operation; such a transfer otherwise requires
several LDF or STF operations. The multiple transfers are therefore useful for efficient
stacking on procedure entry/exit and context switching. These new instructions are the
preferred way to preserve exactly register contents within a program.

The values transferred to memory by SFM occupy three words for each register, but the
data format used is not defined, and may vary between floating point systems. The only
legal operation that can be performed on this data is to load it back into floating point
registers using the LFM instruction. The data stored in memory by an SFM instruction
should not be used or modified by any user process.

The registers transferred by a LFM or SFM instruction are specified by a base floating
point register and the number of registers to be transferred. This means that a register set
transferred has to have adjacent register numbers, unlike the unconstrained set of ARM
registers that can be loaded or saved using LDM and STM. Floating point registers are
transferred in ascending order, register numbers wrapping round from 7 to 0: eg
transferring three registers with F6 as the base register results in registers F6, F7 then F0
being transferred.

H
ard

w
are su

p
p

o
rt

Floating point emulator

4-185

The assembler supports two alternative forms of syntax, intended for general use or just
stack manipulation:

op{condition} Fd,count,addr

op{condition}stacktype Fd,count,[Rn]{!}

op is LFM for load, SFM for store.

condition is one of the usual ARM conditions.

Fd is the base floating point register, specified as a floating point register
symbol (defined via the FN directive).

count is an integer from 1 to 4 specifying the number of registers to be
transferred.

addr is [Rn]{,#offset} or [Rn,#offset]{!}
({!} if present indicates that writeback is to take place).

stacktype is FD or EA, standing for Full Descending or Empty Ascending, the
meanings as for LDM and STM.

The offset (only relevant for the first, general, syntax above) is in words from the
address given by the ARM base register, and is in the range –1020 to +1020. In
pre-indexed mode you must explicitly specify writeback to add the offset to the base
register; but in post-indexed mode the assembler forces writeback for you, as without
write back post-indexing is meaningless.

You should not use R15 as the base register if writeback will take place.

Examples:

SFMNE F6,4,[R0] ;if NE is true, transfer F6, F7,
;F0 and F1 to the address
;contained in R0

LFMFD F4,2,[R13]! ;load F4 and F5 from FD stack -
LFM F4,2,[R13],#24 ;equivalent to same instruction

;in general syntax

Floating point coprocessor register transfer

4-186

Floating point coprocessor register transfer
FLT{condition}prec{round} Fn,Rd
FLT{condition}prec{round} Fn,#value
FIX{condition}{round} Rd,Fn
WFS{condition} Rd
RFS{condition} Rd
WFC{condition} Rd
RFC{condition} Rd

{round} is the optional rounding mode: P, M or Z; see below.
Rd is an ARM register symbol.
Fn is a floating point register symbol.

The value may be of the following: 0, 1, 2, 3, 4, 5, 10, 0.5. Note that these values must
be written precisely as shown above, for instance ‘0.5’ is correct but ‘.5’ is not.

FLT Integer to Floating Point Fn := Rd
FIX Floating point to integer Rd := Fm
WFS Write Floating Point Status FPSR := Rd
RFS Read Floating Point Status Rd := FPSR
WFC Write Floating Point Control FPC := R Supervisor Only
RFC Read Floating Point Control Rd := FPC Supervisor Only

The rounding modes are:

Mode Letter
Nearest (no letter required)
Plus infinity P
Minus infinity M
Zero Z

Floating point coprocessor data operations
The formats of these instructions are:

binop{condition}prec{round} Fd, Fn, Fm

binop{condition}prec{round} Fd, Fn, #value

unop{condition}prec{round} Fd, Fm

unop{condition}prec{round} Fd, #value

binop is one of the binary operations listed below
unop is one of the unary operations listed below
Fd is the FPU destination register
Fn is the FPU source register (binops only)

H
ard

w
are su

p
p

o
rt

Floating point emulator

4-187

Fm is the FPU source register
#value is a constant, as an alternative to Fm. It must be 0, 1, 2, 3, 4, 5, 10 or

0.5, as above.

The binops are:

ADF Add Fd := Fn + Fm
MUF Multiply Fd := Fn × Fm
SUF Subtract Fd := Fn – Fm
RSF Reverse Subtract Fd := Fm – Fn
DVF Divide Fd := Fn/Fm
RDF Reverse Divide Fd := Fm/Fn
POW Power Fd := Fn to the power of Fm
RPW Reverse Power Fd := Fm to the power of Fn
RMF Remainder Fd := remainder of Fn / Fm

(Fd := Fn – integer value of (Fn/Fm) × Fm)
FML Fast Multiply Fd := Fn × Fm
FDV Fast Divide Fd := Fn / Fm
FRD Fast Reverse Divide Fd := Fm / Fn
POL Polar angle Fd := polar angle of Fn, Fm

The unops are:

MVF Move Fd := Fm
MNF Move Negated Fd := –Fm
ABS Absolute value Fd := ABS (Fm)
RND Round to integral value Fd := integer value of Fm
SQT Square root Fd := square root of Fm
LOG Logarithm to base 10 Fd := log Fm
LGN Logarithm to base e Fd := ln Fm
EXP Exponent Fd := e to the power of Fm
SIN Sine Fd := sine of Fm
COS Cosine Fd := cosine of Fm
TAN Tangent Fd := tangent of Fm
ASN Arc Sine Fd := arcsine of Fm
ACS Arc Cosine Fd := arccosine of Fm
ATN Arc Tangent Fd := arctangent of Fm
URD Unnormalised Round Fd := integer value of Fm (may be abnormal)
NRM Normalise Fd := normalised form of Fm

 Note that wherever Fm is mentioned, one of the floating point constants 0, 1, 2, 3, 4, 5,
10, or 0.5 can be used instead.

FML, FRD and FDV are only defined to work with single precision operands. These
‘fast’ instructions are likely to be faster than the equivalent MUF, DVF and RDF
instructions, but this is not necessarily so for any particular implementation.

Floating point coprocessor status transfer

4-188

Rounding is done only at the last stage of a SIN, COS etc – the calculations to compute
the value are done with ‘round to nearest’ using the full working precision.

The URD and NRM operations are only supported by the FPA and the FPE 400.

Floating point coprocessor status transfer
op{condition}prec{round} Fm, Fn

op is one of the following:

CMF Compare floating compare Fn with Fm
 CNF Compare negated floating compare Fn with –Fm
 CMFE Compare floating with exception compare Fn with Fm

CNFE Compare negated floating with exception compare Fn with –Fm

{condition} an ARM condition.

prec a precision letter

{round} an optional rounding mode: P, M or Z

Fm A floating point register symbol.

Fn A floating point register symbol.

Compares are provided with and without the exception that could arise if the numbers
are unordered (ie one or both of them is not-a-number). To comply with IEEE 754, the
CMF instruction should be used to test for equality (ie when a BEQ or BNE is used
afterwards) or to test for unorderedness (in the V flag). The CMFE instruction should be
used for all other tests (BGT, BGE, BLT, BLE afterwards).

When the AC bit in the FPSR is clear, the ARM flags N, Z, C, V refer to the following
after compares:

N Less than ie Fn less than Fm (or –Fm)
Z Equal
C Greater than or equal ie Fn greater than or equal to Fm (or –Fm)
V Unordered

Note that when two numbers are not equal, N and C are not necessarily opposites. If the
result is unordered they will both be clear.

When the AC bit in the FPSR is set, the ARM flags N, Z, C, V refer to the following
after compares:

N Less than
Z Equal
C Greater than or equal or unordered
V Unordered

H
ard

w
are su

p
p

o
rt

Floating point emulator

4-189

In this case, N and C are necessarily opposites.

Finding out more…
Further details of the floating point instructions (such as the format of the bitfields
within the instruction) can be found in the Acorn RISC Machine family Data Manual.
VLSI Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ, USA:
ISBN 0-13-781618-9 and in the Acorn Assembler Release 2 manual.

SWI Calls

4-190

SWI Calls
FPEmulator_Version

(SWI &40480)

Returns the version number of the floating point emulator

On entry

—

On exit

R0 = BCD version number

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call returns the version number of the floating point emulator as a binary coded
decimal (BCD) number in R0.

This SWI will continue to be supported by the hardware expansion.

Related SWIs

None

Related vectors

None

H
ard

w
are su

p
p

o
rt

4-191

4

79 ARM3 Support

Introduction and Overview
The ARM3 Support module provides commands to control the use of the ARM3
processor’s cache, where one is fitted to a machine. The module will immediately kill
itself if you try to run it on a machine that only has an ARM2 processor fitted.

Summary of facilities
Two * Commands are provided: one to configure whether or not the cache is enabled at
a power-on or reset, and the other to independently turn the cache on or off.

There is also a SWI to turn the cache on or off. A further SWI forces the cache to be
flushed. Finally, there is also a set of SWIs that control how various areas of memory
interact with the cache.

The default setup is such that all RISC OS programs should run unchanged with the
ARM3’s cache enabled. Consequently, you are unlikely to need to use the SWIs
(beyond, possibly, turning the cache on or off).

Notes
A few poorly-written programs may not work correctly with ARM3 processors, because
they make assumptions about processor timing or clock rates.

This module is not available in RISC OS 2.00 (ie was introduced in RISC OS 2.01).

Finding out more
For more details of the ARM3 processor, see the Acorn RISC Machine family Data
Manual. VLSI Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ, USA:
ISBN 0-13-781618-9.

SWI Calls

4-192

SWI Calls
Cache_Control

(SWI &280)

Turns the cache on or off

On entry

R0 = XOR mask
R1 = AND mask

On exit

R0 = old state (0 ⇒ cacheing was disabled, 1 ⇒ cacheing was enabled)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call turns the cache on or off. Bit 0 of the ARM3’s control register 2 is altered by
being masked with R1 and then exclusive ORd with R0: ie new value = ((old value AND
R1) XOR R0). Bit 1 of the control register is also set, so the ARM 3 does not separately
cache accesses to the same address for user and non-user modes. (To do so would
degrade cache performance, and potentially cause cache inconsistency). Other bits of the
control register are set to zero.

Related SWIs

None

H
ard

w
are su

p
p

o
rt

ARM3 Support

4-193

Related vectors

None

Cache_Cacheable (SWI &281)

4-194

Cache_Cacheable
(SWI &281)

Controls which areas of memory may be cached

On entry

R0 = XOR mask
R1 = AND mask

On exit

R0 = old value (bit n set ⇒ 2MBytes starting at n×2MBytes are cacheable)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call controls which areas of memory may be cached (ie are cacheable). The
ARM3’s control register 3 is altered by being masked with R1 and then exclusive ORd
with R0: ie new value = ((old value AND R1) XOR R0). If bit n of the control register is
set, the 2MBytes starting at n×2MBytes are cacheable.

The default value stored is &FC007CFF, so ROM and logical non-screen RAM are
cacheable, but I/O space, physical memory, the RAM disc and logical screen memory
are not.

Related SWIs

Cache_Updateable (page 4-196), Cache_Disruptive (page 4-198)

H
ard

w
are su

p
p

o
rt

ARM3 Support

4-195

Related vectors

None

Cache_Updateable (SWI &282)

4-196

Cache_Updateable
(SWI &282)

Controls which areas of memory will be automatically updated in the cache

On entry

R0 = XOR mask
R1 = AND mask

On exit

R0 = old value (bit n set ⇒ 2MBytes starting at n×2MBytes are updateable)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call controls which areas of memory will be automatically updated in the cache
when the processor writes to that area (ie are updateable). The ARM3’s control
register 4 is altered by being masked with R1 and then exclusive ORd with R0: ie new
value = ((old value AND R1) XOR R0). If bit n of the control register is set, the
2MBytes starting at n×2MBytes are updateable.

The default value stored is &00007FFF, so logical non-screen RAM is updateable, but
ROM/CAM/DAG, I/O space, physical memory and logical screen memory are not.

Related SWIs

Cache_Cacheable (page 4-194), Cache_Disruptive (page 4-198)

H
ard

w
are su

p
p

o
rt

ARM3 Support

4-197

Related vectors

None

Cache_Disruptive (SWI &283)

4-198

Cache_Disruptive
(SWI &283)

Controls which areas of memory cause automatic flushing of the cache on a write

On entry

R0 = XOR mask
R1 = AND mask

On exit

R0 = old value (bit n set ⇒ 2MBytes starting at n×2MBytes are disruptive)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call controls which areas of memory cause automatic flushing of the cache when
the processor writes to that area (ie are disruptive). The ARM3’s control register 5 is
altered by being masked with R1 and then exclusive ORd with R0: ie new value = ((old
value AND R1) XOR R0). If bit n of the control register is set, the 2MBytes starting at
n×2MBytes are disruptive.

The default value stored is &F0000000, so the CAM map is disruptive, but ROM/DAG,
I/O space, physical memory and logical memory are not. This causes automatic flushing
whenever MEMC’s page mapping is altered, which allows programs written for the
ARM2 (including RISC OS itself) to run unaltered, but at the expense of unnecessary
flushing on page swaps.

H
ard

w
are su

p
p

o
rt

ARM3 Support

4-199

Related SWIs

Cache_Cacheable (page 4-194), Cache_Updateable (page 4-196)

Related vectors

None

Cache_Flush (SWI &284)

4-200

Cache_Flush
(SWI &284)

Flushes the cache

On entry

—

On exit

—

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call flushes the cache by writing to the ARM3’s control register 1.

Related SWIs

None

Related vectors

None

H
ard

w
are su

p
p

o
rt

ARM3 Support

4-201

* Commands
*Cache

Turns the cache on or off, or gives the cache’s current state

Syntax

*Cache [On|Off]

Parameters

On or Off

Use

*Cache turns the cache on or off. With no parameter, it gives the cache’s current state.

Example

*Cache Off

Related commands

*Configure Cache

Related SWIs

Cache_Control (page 4-192)

Related vectors

None

*Configure Cache

4-202

*Configure Cache

Sets the configured cache state to be on or off

Syntax

*Configure Cache On|Off

Parameters

On or Off

Use

*Configure Cache sets the configured cache state to be on or off.

Example

*Configure Cache On

Related commands

*Cache

Related SWIs

Cache_Control (page 4-192)

Related vectors

None

H
ard

w
are su

p
p

o
rt

ARM3 Support

4-203

Application Note
Games writers may wish to disable the ARM3 cache so that ARM3 based machines run
at a similar speed to older ARM2 based machines. You must ensure that your code only
tries to call ARM3Support SWIs and * Commands – such as *Cache Off – if the module
is present. A simple way to do so is to call the error-returning form of an ARM3Support
SWI, and see if an error is returned. For example:

SYS "XCache_Control",0,-1 TO R0;flags
IF (flags AND 1) THEN arm3=FALSE ELSE arm3=TRUE
IF arm3 THEN *Cache Off

Application Note

4-204

H
ard

w
are su

p
p

o
rt

4-205

4

80 The Portable module

Introduction
This module provides support for portable machines. The SWIs listed are not normally
intended to be issued from user programs, they will normally be issued by other modules
in the system.

Technical details

4-206

Technical details

Colour to grey-scale mapping
The Portable module has to convert the users RGB palette settings into a grey-scale
value in the range 0 to 14 (since the LCD panel only supports 15 unique grey levels). It
does this using the following algorithm:

Luminance = (4 × Green) + (2 × Red) + Blue

Red, Green and Blue are in the range 0 to 255, so the luminance is in the range 0 to 1785
(255 × 7). It is then mapped down onto the range 0 to 14 using the following table:

Luminance Grey level Palette values for R, G and B

0 - 118 0 &00
119 - 237 1 &12
238 - 356 2 &24
357 - 475 3 &37
476 - 594 4 &49
595 - 713 5 &5B
714 - 832 6 &6D
833 - 952 7 &7F
953 - 1071 8 &92
1072 - 1190 9 &A4
1191 - 1309 10 &B6
1310 - 1428 11 &C8
1429 - 1547 12 &DB
1548 - 1666 13 &ED
1667 - 1785 14 &FF

The mapping table above is provided for information only, and may be subject to change
in later versions of the Portable module.

In 256 colour modes the colour mapping is partly determined by the hardware, since the
top 4 bits of the pixel value go directly to particular bits of the three guns, and the LCD
ASIC only takes input from VIDC’s red output. Thus the grey level will not in general
map correctly from the luminance of the RGB value which would normally be output.

H
ard

w
are su

p
p

o
rt

The Portable module

4-207

Service calls
Service_Portable

(Service Call &8A)

Power down or up

On entry

R1 = reason code (&8A)
R2 = power up or down:

0 = power down
1 = power up

R3 = bit mask of which ports are being powered down (if R2 = 0)
(bit set ⇒ port is being powered down)

bit mask of which ports have been powered up (if R2 = 1)
(bit set ⇒ port has been powered up)

On exit

R1 = 0 if R3 = 0, else preserved to pass on
R2 preserved
R3 = bit mask of which ports may be powered down or up

(bit set ⇒ no objection to change of state)

Use

This call is issued before power is removed or after power is reapplied to the following:

Econet (bit 0)
serial buffer/oscillator (bit 3)
FDC oscillator (bit 14)

If a module wishes to prevent hardware being powered down, it should clear the
appropriate bit or bits in R3. In addition, if the resulting value in R3 is now zero, the
module should claim the service by setting R1 to zero. (This is to prevent the call being
unnecessarily passed round the rest of the modules). Otherwise the service should be
passed on by preserving R1.

This call should never be claimed.

SWI Calls

4-208

SWI Calls
Portable_Speed

(SWI &42FC0)

Controls the processor speed

On entry

R0 = EOR mask
R1 = AND mask

On exit

R0 = old speed
R1 = new speed (0 ⇒ fast, 1 ⇒ slow)

Interrupts

Interrupt status is not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI controls the processor speed, which is reduced when the system is idle in order
to save power.

The new speed is calculated as follows:

new speed = (old speed AND R1) EOR R0

Speed settings currently supported are:

0 fast
1 slow

H
ard

w
are su

p
p

o
rt

The Portable module

4-209

Related SWIs

Portable_Control (page 4-210)

Related vectors

None

Portable_Control (SWI &42FC1)

4-210

Portable_Control
(SWI &42FC1)

Controls various power control and miscellaneous bits

On entry

R0 = EOR mask
R1 = AND mask

On exit

R0 = old control
R1 = new control

Interrupts

Interrupt status is not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI controls various power control and miscellaneous bits in the portable
machine.

The new control is calculated as follows:

new control = (old control AND R1) EOR R0

H
ard

w
are su

p
p

o
rt

The Portable module

4-211

The bits in control are as follows:

Bit Meaning

0 Set ⇒ power to Econet enabled
1 Set ⇒ power to LCD display enabled
2 Set ⇒ power to external video display enabled
3 Set ⇒ power to serial buffer and oscillator enabled
4 Set ⇒ dual panel mode enabled
5, 6 Video clock control

0 ⇒ External clock input
1 ⇒ Crystal oscillator, divided by 2
2 ⇒ Crystal oscillator
3 ⇒ reserved, do not use

7 Set ⇒ invert video clock
8 Set ⇒ back-light enabled
9 Clear ⇒ 1 extra line on display

Set ⇒ 2 extra lines on display
10 Clear ⇒ 1 DRAM used for dual panel

Set ⇒ 2 DRAMs used for dual panel
11 - 13 Reserved
14 Set ⇒ power to FDC oscillator enabled
15 Reserved
16 Set ⇒ LCD palette set up for inverse video
17 - 31 Reserved

Reserved bits must not be modified, nor assumed to read any particular value.

Note that the 82C711 has one oscillator which is used by the serial subunit and by the
floppy disc controller (FDC). Power to the oscillator is removed only if bits 3 and 14 are
both clear.

On some computers the power to the oscillator cannot be removed because the same
oscillator drives other parts of the system (eg IOEB).

If this call results in bits 0, 3 or 14 changing (ie power being removed or applied to the
serial buffer/oscillator, Econet or FDC oscillator), then Service_Portable is issued (see
page 4-207).

Related SWIs

Portable_Speed (page 4-208)

Related vectors

None

Portable_ReadBMUVariable (SWI &42FC2)

4-212

Portable_ReadBMUVariable
(SWI &42FC2)

Reads Battery Management Unit variables

On entry

R0 = BMU variable number

On exit

R0 preserved
R1 = value of variable

Interrupts

Interrupts enabled except if R0 = 10
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI reads Battery Management Unit variables.

H
ard

w
are su

p
p

o
rt

The Portable module

4-213

The BMU variable numbers are:

Variable Read/Write Description

0 R version number and memory map of BMU microcode
1 R nominal battery capacity
2 R measured battery capacity
3 R used battery capacity
4 R usable battery capacity
5 R reserved
6 R/W charge estimate
7 R instantaneous voltage
8 R instantaneous current
9 R instantaneous temperature
10 R flags as follows:

Bit Meaning
1 Set ⇒ lid is open
2 Set ⇒ threshold 2 reached
3 Set ⇒ threshold 1 reached
4 Set ⇒ charging system fault
5 Set ⇒ charge state is known
6 Set ⇒ battery present
7 Set ⇒ charger connected

11 R charge rate (bits 4 to 7)

Reading any variable except the flags (variable 10) will enable IRQs (the flags are read
from a soft copy).

Related SWIs

Portable_WriteBMUVariable (page 4-214)

Related vectors

None

Portable_WriteBMUVariable (SWI &42FC3)

4-214

Portable_WriteBMUVariable
(SWI &42FC3)

Writes Battery Management Unit variables

On entry

R0 = BMU variable number
R1 = new value of variable

On exit

R0, R1preserved

Interrupts

Interrupts status is not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI writes Battery Management Unit variables.

The variable numbers are as for Portable_ReadBMUVariable on page 4-213. Variables
not marked with a ‘W’ should not be written.

Related SWIs

Portable_ReadBMUVariable (page 4-212)

Related vectors

None

H
ard

w
are su

p
p

o
rt

The Portable module

4-215

Portable_CommandBMU
(SWI &42FC4)

Issues a command to the Battery Management Unit

On entry

R0 = reason code
1 = Remove power
2 = Reserved
3 = Reserved
4 = Set autostart (R1 = delay, in minutes, – 1; eg 0 ⇒ 1 minute delay)

Other registers hold reason-code-dependent parameters

On exit

All registers preserved

Interrupts

Interrupts are not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI issues a command to the Battery Management Unit. The values of variables
after a command may not change immediately this command is issued.

Related SWIs

None

Related vectors

None

4-216

H
ard

w
are su

p
p

o
rt

4-217

4

81 Joystick module

Introduction and Overview
The Joystick module provides a SWI interface for reading the state of a joystick. When
the module initialises it tests for the existence of built-in joystick hardware and if it does
not find any then it will not initialise. Third parties can replace this module to provide
different hardware. It is recommended that any such modules have version numbers
greater than 2.00 so that Acorn can upgrade its own module without preventing its
replacement.

SWI Calls

4-218

SWI Calls
Joystick_Read
(SWI &43F40)

Returns the state of a joystick

On entry

R0 = joystick number

On exit

R0 = joystick state

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This SWI is used to obtain the state of the requested joystick. The state is returned in the
following format, which supports both digital and analogue devices:

Byte Value
0 Signed Y value in the range –127 to 127. For a single switch joystick,

–64⇒ Down, 0 ⇒ Rest, and 64 ⇒ Up.

1 Signed Y value in the range –127 to 127. For a single switch joystick,
–64⇒ Left, 0 ⇒ Rest, and 64 ⇒ Right.

2 Switches (eg fire buttons) starting in bit 0; unimplemented switches
return 0.

3 Reserved.

H
ard

w
are su

p
p

o
rt

Joystick module

4-219

Applications which are only interested in state (up, down, left, right) should not simply
test the bytes for positive, negative or zero. We recommend that the ‘at rest’ state should
span a middle range, say from –32 to 32, since analogue joysticks cannot be relied upon
to produce 0 when at rest.

Related SWIs

None

Related vectors

None

4-220

P
ro

g
ram

m
er’s support

4-221

4 Part 14 – Programmer’s support

4-222

P
ro

g
ram

m
er’s support

4-223

4

82 Debugger

Introduction
The debugger is a module that allows a program to be stopped at set places called
breakpoints. Whenever the instruction that a breakpoint is set on is reached, a command
line will be entered. From here, you can type debug commands and resume the program
when you want.

Other commands may be called at any time to examine or change the values contained at
particular addresses in memory and to list the contents of the registers. You can display
memory as words or bytes.

There is also a facility to disassemble instructions. This means converting the
instruction, stored as a word, into a string representation of its meaning. This allows you
to examine the code anywhere in readable memory.

Technical Details

4-224

Technical Details
The debugger provides one SWI, Debugger_Disassemble (SWI &40380), which will
disassemble one instruction. There are also the following * Commands:

Command Description
*BreakClr Remove breakpoint
*BreakList List currently set breakpoints
*BreakSet Set a breakpoint at a given address
*Continue Start execution from a breakpoint saved state
*Debug Enter the debugger
*InitStore Fill memory with given data
*Memory Display memory between two addresses/register
*MemoryA Display and alter memory
*MemoryI Disassemble ARM instructions
*ShowRegs Display registers caught by traps

When an address is required, it should be given in hexadecimal. A preceding & is
optional; that is, unlike most of the rest of the system, the debugger uses hexadecimal as
a default base rather than decimal.

*Quit should be used to return from the debugger to the previous environment after a
breakpoint – see page 1-330.

Note that the breakpoints discussed here are separate from those caused by OS_BreakPt.
See page 1-309 for details of this SWI.

When a breakpoint is set, the previous contents of the breakpoint address are replaced
with a branch into the debugger code. This means that breakpoints may only be set in
RAM. If you try to set a breakpoint in ROM, the error ‘Bad breakpoint’ will be given.

When a breakpoint instruction is reached, the debugger is entered, with the prompt

Debug*

from which you can type any * Command. An automatic register dump is also
displayed.

From RISC OS 3 onwards this module supports ARM 3 instructions, and warns of
certain unwise or invalid code sequences (see Appendix B: Warnings on the use of ARM
assembler on page 4-385). Some of the output when disassembling has been changed for
greater clarity than that provided by RISC OS 2.

P
ro

g
ram

m
er’s support

Debugger

4-225

SWI Calls
Debugger_Disassemble

(SWI &40380)

Disassemble an instruction

On entry

R0 = instruction to disassemble
R1 = address to assume the instruction came from

On exit

R0 = preserved
R1 = address of buffer containing null-terminated text
R2 = length of disassembled line

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

R0 contains the 32-bit instruction to disassemble. R1 contains the address from which to
assume the instruction came, which is needed for instructions such as B, BL,
LDR Rn, [PC…] , and so on. On exit, R1 points to a buffer which contains a zero
terminated string. This string consists of the instruction mnemonic, and any operands, in
the format used by the *MemoryI instruction. The length in R2 excludes the zero-byte.

Related SWIs

None

Debugger_Disassemble (SWI &40380)

4-226

Related vectors

None

P
ro

g
ram

m
er’s support

Debugger

4-227

*Commands
*BreakClr

Removes a breakpoint

Syntax

*BreakClr [addr|reg]

Parameters

addr hexadecimal address of breakpoint to clear

reg register containing address of breakpoint to clear

Allowed register names are r0 - r15, sp (equivalent to r13),
lr (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.

Use

*BreakClr removes the breakpoint at the specified address or register value, putting the
original contents back into that location. You can unset the last hit breakpoint with the
command *BreakClr pc

If you give no parameter then you can remove all breakpoints – you will be prompted:

Clear all breakpoints [Y/N]?

Example

*BreakClr 816C

Related commands

*BreakSet, *BreakList

Related SWIs

None

Related vectors

None

*BreakList

4-228

*BreakList

List all the breakpoints that are currently set

Syntax

*BreakList

Parameters

None

Use

*BreakList lists all the breakpoints that are currently set with *BreakSet.

Example

*BreakList
Address Old Data
0000816C EF00141C

Related commands

*BreakSet

Related SWIs

None

Related vectors

None

P
ro

g
ram

m
er’s support

Debugger

4-229

*BreakSet

Sets a breakpoint

Syntax

*BreakSet addr|reg

Parameters

addr hexadecimal address of breakpoint to set

reg register containing address of breakpoint to set

Allowed register names are r0 - r15, sp (equivalent to r13),
lr (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.

Use

*BreakSet sets a breakpoint at the specified address or register value, so that when the
code is executed and the instruction at that address is reached, execution will be halted.

When a breakpoint is set, the previous contents of the breakpoint address are replaced
with a branch into the debugger code. This means that you may only set breakpoints in
RAM. If you try to set a breakpoint in ROM, the error ‘Bad breakpoint’ is generated.

Example

*BreakSet 816C

Related commands

*BreakClr, *BreakList, *Continue

Related SWIs

None

Related vectors

None

*Continue

4-230

*Continue

Resumes execution after a breakpoint

Syntax

*Continue

Parameters

None

Use

*Continue resumes execution after a breakpoint, using the saved state. If there is a
breakpoint at the continuation position, then this prompt is given:

Continue from breakpoint set at &0000816C
Execute out of line? [Y/N]?

Reply ‘Y’ if it is permissible to execute the instruction at a different address (ie it does
not refer to the PC).

If the instruction that was replaced by the breakpoint contains a PC-relative reference
(such as LDR R0,label, a B or BL instruction, or an ADR directive), you should not
execute it out of line. Instead you should clear the breakpoint, and then re-issue the
*Continue command. The instruction will then be executed in line, avoiding the wrong
address being referenced.

Related commands

*BreakClr, *BreakList, *BreakSet

Related SWIs

None

Related vectors

None

P
ro

g
ram

m
er’s support

Debugger

4-231

*Debug

Enters the debugger

Syntax

*Debug

Parameters

None

Use

Debug enters the debugger. A prompt of Debug appears. Use Escape to return to the
caller, or *Quit to exit to the caller’s parent.

*Quit is documented on page 1-330.

Related commands

*Quit

Related SWIs

None

Related vectors

None

*InitStore

4-232

*InitStore

Fills user memory with a value

Syntax

*InitStore [value|reg]

Parameters

value word with which to fill user memory

reg register value with which to fill user memory

Allowed register names are r0 - r15, sp (equivalent to r13),
lr (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.

Use

*InitStore fills user memory with the specified value or register value, or with the value
&E6000010 (which is an illegal instruction) if no parameter is given. If you give this
command from within an application (eg BASIC) the machine will crash, and will have
to be reset.

RISC OS 2 used the value &E1000090 instead. This is no longer an illegal instruction
for all versions of the ARM processor.

Example

*InitStore &381E6677

Related commands

None

Related SWIs

None

Related vectors

None

P
ro

g
ram

m
er’s support

Debugger

4-233

*Memory

Displays the values in memory

Syntax

*Memory [B] addr1|reg1
*Memory [B] addr1|reg1 [+|-]addr2|reg2
*Memory [B] addr1|reg1 +|-addr2|reg2 +addr3|reg3

Parameters

B optionally display as bytes

addr1|reg1 hexadecimal address, or register containing address for start
of display

addr2|reg2 hexadecimal offset, or register containing offset

addr3|reg3 hexadecimal offset, or register containing offset

Allowed register names are r0 - r15, sp (equivalent to r13),
lr (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.

Use

*Memory displays the values in memory, in bytes if the optional B is given, or in words
otherwise.

If only one address is given, 256 bytes are displayed starting from addr1. If two
addresses are given, addr2 specifies the end of the range to be displayed (as an absolute
address or, if ‘+’ or ‘–’ is present, as an offset from addr1). If three addresses are given,
addr2 specifies an offset for the start from addr1, and addr3 specifies the end of the
range to be displayed (as an offset from the combined address given by addr1 and
addr2).

Example

*Memory 1000 -200 +500 Display memory from &E00 to &12FF

Related commands

*MemoryA, *MemoryI

*Memory

4-234

Related SWIs

None

Related vectors

None

P
ro

g
ram

m
er’s support

Debugger

4-235

*MemoryA

Displays and alters memory

Syntax

*MemoryA [B] addr|reg1 [value|reg2]

Parameters

B optionally display as bytes

addr1|reg1 hexadecimal address, or register containing address for start
of display

value value to write into the specified location

reg2 register containing value to write into the specified location

Allowed register names are r0 - r15, sp (equivalent to r13),
lr (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.

Use

*MemoryA displays and alters memory in bytes, if the optional B is given, or in words
otherwise.

If you give no further parameters, interactive mode is entered. At each line, something
similar to the following is printed:

*MemoryA 8000
+ 00008000 : x•.. : 00008F78 : ANDEQ R8,R0,R8,ROR PC
 Enter new value :

or, for byte mode:

*MemoryA B 8001
+ 00008001 : • : 8F :
 Enter new value :

 The first character shows the direction in which Return steps (‘+’ for forwards, ‘–’ for
backwards). Next is the address of the word/byte being altered, then the character(s) in
that word/byte, then the current hexadecimal value of the word/byte, and finally (for
words only) the instruction at that address.

*MemoryA

4-236

You may type any of the following at the prompt:

Return to go to the ‘next’ location
– to step backwards in memory
+ to step forwards in memory
hex digits Return to alter a location and proceed
. to exit.

As an alternative to using this command interactively, you can give the new data value
on the line after the address.

Example

*MemoryA 87A0 12345678

Related commands

*Memory, *MemoryI

Related SWIs

None

Related vectors

None

P
ro

g
ram

m
er’s support

Debugger

4-237

*MemoryI

Disassembles memory into ARM instructions

Syntax

*MemoryI addr1|reg1
*MemoryI addr1|reg1 [+|-]addr2|reg2
*MemoryI addr1|reg1 +|-addr2|reg2 +addr3|reg3

Parameters

addr1|reg1 hexadecimal address, or register containing address for start
of display

addr2|reg2 hexadecimal offset, or register containing offset

addr3|reg3 hexadecimal offset, or register containing offset

Allowed register names are r0 - r15, sp (equivalent to r13),
lr (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.

Use

*MemoryI disassembles memory into ARM instructions.

If only one address is given, 24 instructions are disassembled starting from addr1. If two
addresses are given, addr2 specifies the end of the range to be disassembled (as an
absolute address or, if ‘+’ or ‘–’ is present, as an offset from addr1). If three addresses
are given, addr2 specifies an offset for the start from addr1, and addr3 specifies the end
of the range to be disassembled (as an offset from the combined address given by addr1
and addr2).

These options are particularly useful for disassembling modules, which contain offsets,
not addresses.

*MemoryI

4-238

Example
*modules
No. Position Workspace Name
...
 22 0184D684 018016B4 Debugger Find address of Debugger
...

*memoryi 184D684 +24
0184D684 : : 00000000 : ANDEQ R0,R0,R0
0184D688 : \... : 0000005C : ANDEQ R0,R0,R12,ASR R0
0184D68C : (... : 00000128 : ANDEQ R0,R0,R8,LSR #2
0184D690 : : 00000104 : ANDEQ R0,R0,R4,LSL #2
0184D694 : (... : 00000028 : ANDEQ R0,R0,R8,LSR #32
0184D698 : >... : 0000003E : ANDEQ R0,R0,R14,LSR R0
0184D69C : h... : 00000168 : ANDEQ R0,R0,R8,ROR #2
0184D6A0 : ... : 00040380 : ANDEQ R0,R4,R0,LSL #7
0184D6A4 : ü... : 000005FC : MULEQ R0,R12,R5 ← Offset of SWI handler is &5FC

*memoryi 184D684 +5FC +20 Disassemble SWI handler
0184DC80 : .B-é : E92D4200 : STMDB R13!,{R9,R14}
0184DC84 : .À†ä : E49CC000 : LDR R12,[R12],#0
0184DC88 : ..;ã : E33B0000 : TEQ R11,#0
0184DC8C : : 0A000005 : BEQ &0184DCA8
0184DC90 : ..·â : E28F0004 : ADR R0,&0184DC9C
0184DC94 : _..ë : EB00075F : BL &0184FA18
0184DC98 : . è : E8BD8200 : LDMIA R13!,{R9,PC}
0184DC9C : : 0000010F : ANDEQ R0,R0,PC,LSL #2

Related commands

*Memory, *MemoryA

Related SWIs

Debugger_Disassemble (page 4-225)

Related vectors

None

/12

P
ro

g
ram

m
er’s support

Debugger

4-239

*ShowRegs

Displays the register contents for the saved state

Syntax

*ShowRegs

Parameters

None

Use

*ShowRegs displays the register contents for the saved state, which may be caught on
one of the five following traps:

● undefined instruction

● address exception

● data abort

● prefetch abort

● break point.

It also prints the address in memory where the registers are stored, so you can alter them
(for example after a breakpoint) by using *MemoryA on these locations, before using
*Continue.

Example
*ShowRegs
Register dump (stored at &01804D2C) is:
R0 = 0026D2CF R1 = 002483C1 R2 = 00000000 R3 = 00000000
R4 = 00000000 R5 = 52491ACE R6 = 42538FFD R7 = 263598DE
R8 = B278A456 R9 = C2671D37 R10 = A72B34DC R11 = 82637D2F
R12 = 00004000 R13 = 2538DAF0 R14 = 24368000 R15 = 7629D100
Mode USR flags set : nzcvif

Related commands

None

Related SWIs

None

*ShowRegs

4-240

Related vectors

None

P
ro

g
ram

m
er’s support

4-241

4

83 The shared C library

Introduction
The shared C library is a RISC OS relocatable module (called SharedCLibrary) which
contains the whole of the ANSI C library. It is used by many programs written in C.
Consequently, it saves both RAM space and disc space.

The shared C library is used by the RISC OS applications Edit, Paint, Draw and
Configure.

Generally you will use the shared C library by linking your programs with the library
stubs. However, you may also call it directly from assembly language by means of SWIs
provided by the shared C library (you would normally only want to do this if you are
implementing your own library stubs for your own language run-time system).

Overview

4-242

Overview

How to use the C library kernel

C library structure

The C library is organised into three layers:

● at the centre is the language-independent library kernel providing basic support
services;

● at the next level is a C-specific layer providing compiler support functions;

● at the outermost level is the actual C library.

A full description of all the C library functions is given in the section entitled C library
functions on page 4-288.

The library kernel

The library kernel is designed to allow run-time libraries for different languages to
co-reside harmoniously, so that inter-language calling can be smooth. It provides the
following facilities:

● a generic, status-returning, procedural interface to SWIs

● a procedural interface to commonly used SWIs, arithmetic functions and
miscellaneous functions

● support for manipulating the IRQ state from a relocatable module

● support for allocating and freeing memory in the RMA area

● support for stack-limit checking and stack extension

● trap handling, error handling, event handling and escape handling.

A full description of all the library kernel functions is given in the section entitled
Library kernel functions on page 4-275.

Interfacing a language run-time system to the Acorn library kernel

You can also write your own language Run-Time System to use the shared C library. For
full details, see the section entitled Interfacing a language run-time system to the Acorn
library kernel on page 4-242.

P
ro

g
ram

m
er’s support

The shared C library

4-243

How the run-time stack is managed and extended

Management

The run-time stack consists of a doubly-linked list of stack chunks. Each stack chunk is
allocated by the storage manager of the master language (in a C program allocating and
freeing stack chunks is accomplished using malloc() and free()).

Stack extension

Two types of stack extension are provided:

● Pascal/Modula-2 style

● C-style

Calling other programs from C
The C library procedure system() provides the means whereby a program can pass a
command to the host system’s command line interpreter – in this case the RISC OS
command line interpreter. For a full description, see the section entitled Calling other
programs from C on page 4-243.

Storage management
The storage manager manages the heap in the most ‘efficient’ manner possible. A
rudimentary understanding of it will help you make the best use of it; see the section
entitled Storage management on page 4-243.

Handling host errors
Calls made to RISC OS via a kernel function return a specific value if an operating
system error occurs. A call is provided to then find the associated error number and
string. For full details, see the section entitled Handling host errors on page 4-253.

Technical details

4-244

Technical details
The shared C library module implements a single SWI which is called by code in the
library stubs when your program linked with the stubs starts running. That SWI call tells
the stubs where the library is in the machine. This allows the vector of library entry
points contained in the stubs to be patched up in order to point at the relevant entry
points in the library module.

The stubs also contain your private copy of the library’s static data. When code in the
library executes on your behalf, it does so using your stack and relocates its accesses to
its static data by a value stored in your stack-chunk structure by the stubs initialisation
code and addressed via the stack-limit register. (This is why you must preserve the
stack-limit register everywhere if you use the shared C library and call your own
assembly language sub-routines.) The compiler’s register allocation strategy ensures
that the real dynamic cost of the relocation is almost always low: for example, by doing
it once outside a loop that uses it many times.

Execution time costs

It costs only 4 cycles (0.5µs) per function call and a very small penalty on access to the
library’s static data by the library (the user program’s access to the same data is
unpenalised). In general, the difference in performance between using the shared
C library and linking a program stand-alone with ANSILib is less than 1%. For the
important Dhrystone-2.1 benchmark the performance difference cannot be measured.

How to use the C library kernel

C library structure

The C library is organised into three separate layers. At the centre is the
language-independent library kernel. This is implemented in assembly language and
provides basic support services, described below, to language run-time systems and,
directly, to client applications.

One level out from the library kernel is a thin, C-specific layer, also implemented in
assembly language. This provides compiler support functions such as structure copy,
interfaces to stack-limit checking and stack extension, setjmp and longjmp support,
etc. Everything above this level is written in C.

Finally, there is the C library proper. This is implemented in C and, with the exception of
one module which interfaces to the library kernel and the C-specific veneer, is highly
portable.

P
ro

g
ram

m
er’s support

The shared C library

4-245

The library kernel

The library kernel provides the following facilities:

● initialisation functions

● stack management functions:

unwinding the stack
finding the current stack chunk
four kinds of stack extension –

small-frame and large-frame extension,
number of actual arguments known (eg Pascal), or unknown (eg C) by
the callee.

● program environment functions:

finding the identity of the host system (RISC OS, Arthur, etc)
determining whether the floating point instruction set is available
getting the command string with which the program was invoked
returning the identity of the last OS error
reading an environment variable
setting an environment variable
invoking a sub-application
claiming memory to be managed by a heap manager
finding the name of a function containing a given address
finding the source language associated with code at a given address
determining if IRQs are enabled
enabling IRQs
disabling IRQs.

● general utility functions:

generic SWI interface routines
special SWI interfaces for certain commonly used SWIs.

● memory allocation functions:

allocating a block of memory in the RMA
extending a block of memory in the RMA
freeing a block of memory in the RMA.

● language support functions:

unsigned integer division
unsigned integer remainder
unsigned divide by 10 (much faster than general division)
signed integer division
signed integer remainder
signed divide by 10 (much faster than general division).

How to use the C library kernel

4-246

Interfacing a language run-time system to the Acorn library kernel

In order to use the kernel, a language run-time system must provide an area named
RTSK$$DATA, with attributes READONLY. The contents of this area must be a
_kernel_languagedescription as follows:

 typedef enum { NotHandled, Handled } _kernel_HandledOrNot

 typedef struct {
 int regs [16];
 } _kernel_registerset;

 typedef struct {
 int regs [10];
 } _kernel_eventregisters;

 typedef void (*PROC) (void);
 typedef _kernel_HandledOrNot
 (*_kernel_trapproc) (int code, _kernel_registerset *regs);
 typedef _kernel_HandledOrNot
 (*_kernel_eventproc) (int code, _kernel_registerset *regs);

 typedef struct {
 int size;
 int codestart, codeend;
 char *name;
 PROC (*InitProc)(void); /* that is, InitProc returns a PROC */
 PROC FinaliseProc;
 _kernel_trapproc TrapProc;
 _kernel_trapproc UncaughtTrapProc;
 _kernel_eventproc EventProc;
 _kernel_eventproc UnhandledEventProc;
 void (*FastEventProc) (_kernel_eventregisters *);
 int (*UnwindProc) (_kernel_unwindblock *inout, char **language);
 char * (*NameProc) (int pc);
 } _kernel_languagedescription;

Any of the procedure values may be zero, indicating that an appropriate default action is
to be taken. Procedures whose addresses lie outside [codestart…codeend] also
cause the default action to be taken.

codestart, codeend

These values describe the range of program counter (PC) values which may be taken
while executing code compiled from the language. The linker ensures that this can be
described with just a single base and limit pair if all code is compiled into areas with the
same unique name and same attributes (conventionally, Language$$code, CODE,
READONLY. The values required are then accessible through the symbols
Language$$code$$Base and Language$$code$$Limit).

P
ro

g
ram

m
er’s support

The shared C library

4-247

InitProc

The kernel contains the entrypoint for images containing it. After initialising itself, the
kernel calls (in a random order) the InitProc for each language RTS present in the image.
They may perform any required (language-library-specific) initialisation: their return
value is a procedure to be called in order to run the main program in the image. If there
is no main program in its language, an RTS should return 0. (An InitProc may not itself
enter the main program, otherwise other language RTSs might not be initialised. In some
cases, the returned procedure may be the main program itself, but mostly it will be a
piece of language RTS which sets up arguments first.)

It is an error for all InitProcs in a module to return 0. What this means depends on the
host operating system; if RISC OS, SWI OS_GenerateError is called (having first taken
care to restore all OS handlers). If the default error handlers are in place, the difference
is marginal.

FinaliseProc

On return from the entry call, or on call of the kernel’s Exit procedure, the FinaliseProc
of each language RTS is called (again in a random order). The kernel then removes its
OS handlers and exits setting any return code which has been specified by a call of

_kernel_setreturncode.

TrapProc, UncaughtTrapProc

On occurrence of a trap, or of a fatal error, all registers are saved in an area of store
belonging to the kernel. These are the registers at the time of the instruction causing the
trap, except that the PC is wound back to address that instruction rather than pointing a
variable amount past it.

The PC at the time of the trap together with the call stack are used to find the
TrapHandler procedure of an appropriate language. If one is found, it is invoked in user
mode. It may return a value (Handled or NotHandled), or may not return at all. If it
returns Handled, execution is resumed using the dumped register set (which should have
been modified, otherwise resumption is likely just to repeat the trap). If it returns
NotHandled, then that handler is marked as failed, and a search for an appropriate
handler continues from the current stack frame.

If the search for a trap handler fails, then the same procedure is gone through to find a
‘uncaught trap’ handler.

If this too fails, it is an error. It is also an error if a further trap occurs while handling a
trap. The procedure _kernel_exittraphandler is provided for use in the case
the handler takes care of resumption itself (eg via longjmp).

How to use the C library kernel

4-248

(A language handler is appropriate for a PC value if LanguageCodeBase ≤ PC and PC <
LanguageCodeLimit, and it is not marked as failed. Marking as ‘failed’ is local to a
particular kernel trap handler invocation. The search for an appropriate handler
examines the current PC, then R14, then the link field of successive stack frames. If the
stack is found to be corrupt at any time, the search fails).

EventProc, UnhandledEventProc

The kernel always installs a handler for OS events and for Escape flag change. On
occurrence of one, all registers are saved and an appropriate EventProc, or failing that an
appropriate UnhandledEventProc is found and called. Escape pseudo-events are
processed exactly like Traps. However, for ‘real’ events, the search for a handler
terminates as soon as a handler is found, rather than when a willing handler is found (this
is done to limit the time taken to respond to an event). If no handler is willing to claim
the event, it is handed to the event handler which was in force when the program started.
(The call happens in CallBack, and if it is the result of an Escape, the Escape has already
been acknowledged.)

In the case of escape events, all side effects (such as termination of a keyboard read)
have already happened by the time a language escape handler is called.

FastEventProc

The treatment of events by EventProc isn’t too good if what the user level handler wants
to do is to buffer events (eg conceivably for the key up/down event), because there may
be many events to one event handler call. The FastEventProc allows a call at the time of
the event, but this is constrained to obey the rules for writing interrupt code (called in
IRQ mode; must be quick; may not call SWIs or enable interrupts; must not check for
stack overflow). The rules for which handler gets called in this case are rather different
from those of (uncaught) trap and (unhandled) event handlers, partly because the user
PC is not available, and partly because it is not necessarily quick enough. So the
FastEventProc of each language in the image is called in turn (in some random order).

UnwindProc

UnwindProc unwinds one stack frame (see description of _kernel_unwindproc for
details). If no procedure is provided, the default unwind procedure assumes that the
ARM Procedure Call Standard has been used; languages should provide a procedure if
some internal calls do not follow the standard.

NameProc

NameProc returns a pointer to the string naming the procedure in whose body the
argument PC lies, if a name can be found; otherwise, 0.

P
ro

g
ram

m
er’s support

The shared C library

4-249

How the run-time stack is managed and extended

The run-time stack consists of a doubly-linked list of stack chunks. The initial stack
chunk is created when the run-time kernel is initialised. Currently, the size of the initial
chunk is 4Kb. Subsequent requests to extend the stack are rounded up to at least this
size, so the granularity of chunking of the stack is fairly coarse. However, clients may
not rely on this.

Each chunk implements a portion of a descending stack. Stack frames are singly linked
via their frame pointer fields within (and between) chunks. See Appendix C: ARM
procedure call standard on page 4-399 for more details.

In general, stack chunks are allocated by the storage manager of the master language
(the language in which the root procedure – that containing the language entry point – is
written). Whatever procedures were last registered with
_kernel_register_allocs() will be used (each chunk ‘remembers’ the identity
of the procedure to be called to free it). Thus, in a C program, stack chunks are allocated
and freed using malloc() and free().

In effect, the stack is allocated on the heap, which grows monotonically in increasing
address order.

The use of stack chunks allows multiple threading and supports languages which have
co-routine constructs (such as Modula-2). These constructs can be added to C fairly
easily (provided you can manufacture a stack chunk and modify the fp, sp and sl
fields of a jmp_buf, you can use setjmp and longjmp to do this).

Stack chunk format

A stack chunk is described by a _kernel_stack_chunk data structure located at its
low-address end. It has the following format:

typedef struct stack_chunk {
 unsigned long sc_mark; /* == 0xf60690ff */
 struct stack_chunk *sc_next, *sc_prev;
 unsigned long sc_size;
 int (*sc_deallocate)();
} _kernel_stack_chunk;

sc_mark is a magic number; sc_next and sc_prev are forward and backward
pointers respectively, in the doubly linked list of chunks; sc_size is the size of the
chunk in bytes and includes the size of the stack chunk data structure;
sc_deallocate is a pointer to the procedure to call to free this stack chunk – often
free() from the C library. Note that the chunk lists are terminated by NULL pointers
– the lists are not circular.

The seven words above the stack chunk structure are reserved to Acorn. The stack-limit
register points 512 bytes above this (ie 560 bytes above the base of the stack chunk).

Calling other programs from C

4-250

Stack extension

Support for stack extension is provided in two forms:

● fp, arguments and sp get moved to the new chunk (Pascal/Modula-2-style)

● fp is left pointing at arguments in the old chunk, and sp is moved to the new chunk
(C-style).

Each form has two variants depending on whether more than 4 arguments are passed
(Pascal/Modula-2-style) or on whether the required new frame is bigger than 256 bytes
or not (C-style). See the appendix entitled Appendix C: ARM procedure call standard on
page 4-399 for more details.

_kernel_stkovf_copyargs

Pascal/Modula-2-style stack extension, with some arguments on the stack (ie stack
overflow in a procedure with more than four arguments). On entry, ip must contain the
number of argument words on the stack.

_kernel_stkovf_copy0args

Pascal/Modula-2-style stack extension, without arguments on the stack (ie stack
overflow in a procedure with four arguments or fewer).

_kernel_stkovf_split_frame

C-style stack extension, where the procedure detecting the overflow needs more than
256 bytes of stack frame. On entry, ip must contain the value of sp – the required frame
size (ie the desired new sp which would be below the current stack limit).

_kernel_stkovf_split_0frame

C-style stack extension, where the procedure detecting the overflow needs 256 or fewer
bytes of stack frame.

Stack chunks are deallocated on returning from procedures which caused stack
extension, but with one chunk of latency. That is, one extra stack chunk is kept in hand
beyond the current one, to reduce the expense of repeated call and return when the stack
is near the end of a chunk; others are freed on return from the procedure which caused
the extension.

Calling other programs from C
The C library procedure system() provides the means whereby a program can pass a
command to the host system’s command line interpreter. The semantics of this are
undefined by the draft ANSI standard.

P
ro

g
ram

m
er’s support

The shared C library

4-251

RISC OS distinguishes two kinds of commands, which we term built-in commands and
applications. These have different effects. The former always return to their callers, and
usually make no use of application workspace; the latter return to the previously set-up
‘exit handler’, and may use the currently-available application workspace. Because of
these differences, system() exhibits three kinds of behaviour. This is explained
below.

Applications in RISC OS are loaded at a fixed address specified by the application
image. Normally, this is the base of application workspace, &8000. While executing,
applications are free to use store between the base and end of application workspace.
The end is the value returned by SWI OS_GetEnv. They terminate with a call of SWI
OS_Exit, which transfers control to the current exit handler.

When a C program makes the call system("command") several things are done:

● The calling program and its data are copied to the top end of application workspace
and all its handlers are removed.

● The current end of application workspace is set to just below the copied program
and an exit handler is installed in case "command" is another application.

● "command" is invoked using SWI OS_CLI.

When "command" returns, either directly (if it is a built-in command) or via the exit
handler (if it is an application), the caller is copied back to its original location, its
handlers are re-installed and it continues, oblivious of the interruption.

The value returned by system() indicates

● whether the command or application was successfully invoked

● if the command is an application which obeys certain conventions, whether or not it
ran successfully.

The value returned by system (with a non-NULL command string) is as follows:

< 0 – couldn’t invoke the command or application (eg command not found);

>=0 – invoked OK and set Sys$ReturnCode to the returned value.

By convention, applications set the environmental variable Sys$ReturnCode to 0 to
indicate success and to something non-0 to indicate some degree of failure. Applications
written in C do this for you, using the value passed as an argument to the exit()
function or returned from the main() function.

If it is necessary to replace the current application by another, use:

 system("CHAIN:command");

Storage management (malloc, calloc, free)

4-252

If the first characters of the string passed to system() are "CHAIN:" or "chain:",
the caller is not copied to the top end of application workspace, no exit handler is
installed, and there can be no return (return from a built-in command is caught by the
C library and turned into a SWI OS_Exit).

Typically, CHAIN: is used to give more memory to the called application when no
return from it is required. The C compiler invokes the linker this way if a link step is
required. On the other hand, the Acorn Make Utility (AMU) calls each command to be
executed. Such commands include the C compiler (as both use the shared C library, the
additional use of memory is minimised). Of course, a called application can call other
applications using system(). A callee can even CHAIN: to another application and
still, eventually, return to the caller. For example, AMU might execute:

 system("cc hello.c");

to call the C compiler. In turn, cc executes:

 system("CHAIN:link -o hello o.hello $.CLib.o.Stubs");

to transfer control to the linker, giving link all the memory cc had.

However, when Link terminates (calls exit(), returns from main() or aborts) it
returns to AMU, which continues (providing Sys$ReturnCode is good).

Storage management (malloc, calloc, free)
The aim of the storage manager is to manage the heap in as ‘efficient’ a manner as
possible. However, ‘efficient’ does not mean the same to all programs and since most
programs differ in their storage requirements, certain compromises have to be made.

You should always try to keep the peak amount of heap used to a minimum so that, for
example, a C program may invoke another C program leaving it the maximum amount
of memory. This implementation has been tuned to hold the overhead due to
fragmentation to less than 50%, with a fast turnover of small blocks.

The heap can be used in many different ways. For example it may be used to hold data
with a long life (persistent data structures) or as temporary work space; it may be used to
hold many small blocks of data or a few large ones or even a combination of all of these
allocated in a disorderly manner. The storage manager attempts to address all of these
problems but like any storage manager, it cannot succeed with all storage
allocation/deallocation patterns. If your program is unexpectedly running out of storage,
see the section entitled Guidelines on using memory efficiently on page 1-346. This
gives you information on the storage manager’s strategy for managing the heap, and
may help you to remedy the problem.

Note the following:

P
ro

g
ram

m
er’s support

The shared C library

4-253

● The word heap refers to the section of memory currently under the control of the
storage manager.

● All block sizes are in bytes and are rounded up to a multiple of four bytes.

● All blocks returned to the user are word-aligned.

● All blocks have an overhead of eight bytes (two words). One word is used to hold
the block’s length and status, the other contains a guard constant which is used to
detect heap corruptions. The guard word may not be present in future releases of the
ANSI C library.

Handling host errors
Calls to RISC OS can be made via one of the kernel functions, (such as
_kernel_osfind(64, "...")). If the call causes an operating system error, the
function will return the value –2 . To find out what the error was, a call to
_kernel_last_oserror should be made. This will return a pointer to a
_kernel_oserror block containing the error number and any associated error
string. If there has been no error since _kernel_last_oserror was last called, the
function returns the NULL pointer. Some functions in the C library call _kernel
functions, so if an C library function (such as fopen("...", "r")) fails, try calling
_kernel_last_oserror to find out what the error was.

SWI Calls

4-254

SWI Calls
SharedCLibrary_LibInitAPCS_A

(SWI &80680)

This SWI interfaces an application which uses the old ‘A’ variant (SP=R12) of the
Procedure Call Standard to the shared C library. Its use is deprecated and it should not be
called in any programs. Use SharedCLibrary_LibInitAPCS_R instead.

P
ro

g
ram

m
er’s support

The shared C library

4-255

SharedCLibrary_LibInitAPCS_R
(SWI &80681)

Interfaces an application with the shared C library

On entry

R0 = pointer to list of stub descriptions each having the following format:
+00: library chunk id (1 or 2)
+04: entry vector base
+08: entry vector limit
+12: static data base
+16: static data limit

The list is terminated by an entry with a library chunk id of –1

R1 = pointer to workspace start
R2 = pointer to workspace limit
R3 = –1
R4 = 0
R5 = –1
R6 = Bits 0 - 15 = 0

Bits 16 - 31 = Root stack size in Kilobytes

On exit

Entry vectors specified by the stubs descriptions are patched to contain branches to
routines in the library.

If R5 > R4 on entry the users statics are copied to the bottom of the workspace specified
in R1 and the Client static data offset (at byte offset +24 from the stack base) is
initialised.

For each library chunk the library statics are copied either into the workspace specified
in R1 if R5 > R4 on entry or to the static data area specified in the chunks stub
description if R5 ≤ R4.

The Library static data offset (at byte offset +20 from the stack base) is initialised.

Space for the root stack chunk is claimed from the workspace specified in R1.

SharedCLibrary_LibInitAPCS_R (SWI &80681)

4-256

R0 = value of R2 on entry
R1 = stack base
R2 = limit of space claimed from workspace passed in R1. This value should be

used as the SP for the root stack chunk
R6 = library version number (currently = 5)

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI allows you to interface an application with the shared C library without using
the shared C library stubs.

LibInitAPCS_R is used by applications which use APCS_R (see Appendix C: ARM
procedure call standard on page 4-399 for more details).

Two library chunks are currently defined.

Chunk Id 1 - The Kernel module

The Kernel module defines 48 entries, these are described in the section entitled Library
kernel functions on page 4-275. You must reserve 48 words in your branch vector table.
The words at offsets +04 and +08 of the Kernel stub description must be initialised to the
start and limit (end + 1) of your vector table.

The Kernel module requires &31C bytes of static data space. You must reserve this
amount of storage. The words at offsets +12 and +16 must be initialised to the start and
limit (end + 1) of this storage.

Chunk Id 2 - The C library module

If you wish to use the C library module you must include the Kernel stub description
before the C library stub description in the list of stubs descriptions.

The C library module defines 183 entries, these are described in the section entitled
C library functions on page 4-288. You must reserve 183 words in your branch vector
table.

P
ro

g
ram

m
er’s support

The shared C library

4-257

The words at offsets +04 and +08 of the Kernel stub description must be initialised to the
start and limit (end + 1) of your vector table.

The C library module requires &B48 bytes of static data space. You must reserve this
amount of storage. The words at offsets +12 and +16 must be initialised to the start and
limit (end + 1) of this storage. This storage must be contiguous with that for the Kernel
module.

Calling library functions

Before calling any library functions you must call the kernel function _kernel_init (entry
no. 0). For details on how to call these functions refer to their entries in the section
entitled Library kernel functions on page 4-275.

SP, SL and FP must be set up before calling any library function. _kernel_init initialises
these for the root stack chunk passed to it.

If you wish to call C library functions you must pass a suitable kernel language
description block to _kernel_init. For details on the format of a kernel language
description block refer to the section entitled Interfacing a language run-time system to
the Acorn library kernel on page 4-242.

To call C library functions the fields of the kernel language description block must be as
follows:

size The size of this structure in bytes (24 - 52 depending on the number of
entries in this block).

codestart, These two words should be set to the start and limit of an area
codelimit which is to be treated as C code with respect to trap and event

handling. Both these values may be set to 0 in which case no traps or
events will be passed to the trap or event handler described in this
language description block.

name This must contain a pointer to the 0 terminated string "C".

InitProc Pointer to your initialisation procedure. Your initialisation procedure
must call _clib_initialise (entry no. 20). For details on how to call
_clib_initialise refer to its entry in the section entitled C library
functions on page 4-288. It should then load R0 with the address at
which execution is to continue at the end of initialisation.

FinaliseProc Pointer to your finalisation procedure. This may contain 0.

The remainder of the entries are optional and may omitted. You must set the size field
correctly if omitting entries. If all optional entries are omitted the size field should be set
to 24.

SharedCLibrary_LibInitAPCS_R (SWI &80681)

4-258

Related SWIs

SharedCLibrary_LibInitAPCS_A (SWI &80680)

Related vectors

None

P
ro

g
ram

m
er’s support

The shared C library

4-259

SharedCLibrary_LibInitModule
(SWI &80682)

Interfaces a module with the shared C library

On entry

R0 = pointer to list of stub descriptions each having the following format:
+00: library chunk id (1 or 2)
+04: entry vector base
+08: entry vector limit
+12: static data base
+16: static data limit

The list is terminated by an entry with a library chunk id of –1

R1 = pointer to workspace start
R2 = pointer to workspace limit
R3 = base of area to be zero-initialised
R4 = pointer to start of static data
R5 = pointer to limit of static data
R6 = Bits 0 - 15 = 0

Bits 16 - 31 = Root stack size in Kilobytes

On exit

Entry vectors specified by the stubs descriptions are patched to contain branches to
routines in the library.

If R5 > R4 on entry the users statics are copied to the bottom of the workspace specified
in R1 and the Client static data offset (at byte offset +24 from the stack base) is
initialised.

For each library chunk the library statics are copied either into the workspace specified
in R1 if R5 > R4 on entry or to the static data area specified in the chunks stub
description if R5 ≤ R4.

The Library static data offset (at byte offset +20 from the stack base) is initialised.

Space for the root stack chunk is claimed from the SVC stack.

R0 = value of R2 on entry
R1 = stack base
R2 = limit of space claimed from workspace passed in R1
R6 = library version number (currently = 5)

SharedCLibrary_LibInitModule (SWI &80682)

4-260

Note: You must save the words at offsets +20 and +24 from the returned stack base.
You must do this before exiting your module initialisation code. These words
contain the shared libraries static data offset and the client static data offset (the
offset you must use when accessing your static data). These must be restored in the
static data offset locations at offsets +00 and +04 from the base of the SVC stack
when you are re-entering the module in SVC mode (e.g. in a SWI handler). When
restoring the static data offsets you must save the previous static data offsets around
the module entry.

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI allows you to interface a module with the shared C library without using the
shared C library stubs.

SharedCLibrary_LibInitModule is used by modules, which must use APCS_R, and
must be called in the module Initialisation code.

Two library chunks are currently defined.

Chunk Id 1 - The Kernel module

The Kernel module defines 48 entries, these are described in the section entitled Library
kernel functions on page 4-275. You must reserve 48 words in your branch vector table.
The words at offsets +04 and +08 of the Kernel stub description must be initialised to the
start and limit (end + 1) of your vector table.

The Kernel module requires &31C bytes of static data space. You must reserve this
amount of storage. The words at offsets +12 and +16 must be initialised to the start and
limit (end + 1) of this storage.

Chunk Id 2 - The C library module

If you wish to use the C library module you must include the Kernel stub description
before the C library stub description in the list of stubs descriptions.

P
ro

g
ram

m
er’s support

The shared C library

4-261

The C library module defines 183 entries, these are described in the section entitled
C library functions on page 4-288. You must reserve 183 words in your branch vector
table.

The words at offsets +04 and +08 of the Kernel stub description must be initialised to the
start and limit (end + 1) of your vector table.

The C library module requires &B48 bytes of static data space. You must reserve this
amount of storage. The words at offsets +12 and +16 must be initialised to the start and
limit (end + 1) of this storage. This storage must be contiguous with that for the Kernel
module.

Calling library functions

Before calling any library functions you must call the kernel function
_kernel_moduleinit (entry no. 38). For details on how to call these functions refer to
their entries in the section entitled Library kernel functions on page 4-275.

SP, SL and FP must be set up before calling any library function. _kernel_init initialises
these for the root stack chunk passed to it.

If you wish to call C library functions you must pass a suitable kernel language
description block to _kernel_init. For details on the format of a kernel language
description block refer to the section entitled Interfacing a language run-time system to
the Acorn library kernel on page 4-242.

To call C library functions the fields of the kernel language description block must be as
follows:

size The size of this structure in bytes (24 - 52 depending on the number of
entries in this block).

codestart, These two words should be set to the start and limit of an area
codelimit which is to be treated as C code with respect to trap and event

handling. Both these values may be set to 0 in which case no traps or
events will be passed to the trap or event handler described in this
language description block.

name This must contain a pointer to the 0 terminated string "C".

InitProc Pointer to your initialisation procedure. Your initialisation procedure
must call _clib_initialise (entry no. 20). For details on how to call
_clib_initialise refer to its entry in the section entitled C library
functions on page 4-288. It should then load R0 with the address at
which execution is to continue at the end of initialisation.

FinaliseProc Pointer to your finalisation procedure. This may contain 0.

SharedCLibrary_LibInitModule (SWI &80682)

4-262

The remainder of the entries are optional and may omitted. You must set the size field
correctly if omitting entries. If all optional entries are omitted the size field should be set
to 24.

Accessing shared library data

The following items of data are exported from the shared library data and may be used
in your programs.

Name Offset Notes

errno &0000 The variable errno is set whenever certain error conditions arise in the
C library.

These error conditions are described in the section ‘errno’ on
page 4-307.

stdin &0004 These three variables contain the standard C library FILE
stdout &002C structures stdin, stdout and stderr. The address of these variables
stderr &0054 may be passed to any C library function which accept a FILE *

argument. For an example of their use see the call to ‘fputs’ in the
module example.

ctype &0290 This is a 256 byte array containing an 8 bit mask for each character in
the range 0 to 255. Each bit defines some aspect of the character as
follows:

bit 0 character is a whitespace character
bit 1 character is a punctuation character
bit 2 character is a blank (‘ ’)
bit 3 character is a lowercase letter
bit 4 character is an uppercase letter
bit 5 character is a decimal digit
bit 6 character is a control character
bit 7 character is one of the characters A, B, C, D, E, F or

a, b, c, d, e, f

This table is initialised for the C locale; it may be changed by calls to
the ‘setlocale’ function.

Note: The offsets given above are offsets into the C library statics. These must be
preceded immediately by the kernel statics, which are 800 (&31C) bytes long. To
convert offsets in the C library statics to offsets in the library statics add 800 (&31C).

If you are accessing static data within a program (i.e. code which uses
SharedCLibrary_LibInitAPCS_R) you can access the static data directly in your own
static data area definition. If, however, however you are accessing static data from
within a module (using SharedCLibrary_LibInitModule) you must use the add the client
static data relocation to the address in your own static data area definition to obtain the

P
ro

g
ram

m
er’s support

The shared C library

4-263

true address of the static data. If you wish your module to be multiply instantiable or
rommable you must add this relocation when accessing your own static data, not just
when accessing the libraries static data.

The client static data relocation is stored at offset -536 (-&218) from the SL register
(R10).

For an example of how to use the static data relocation see the call to ‘fputs’ in the
module example.

Related SWIs

None

Related vectors

None

Example programs

4-264

Example programs

Calling the shared C library
; This example demonstates how to call the shared C library.
; It is written for the ObjAsm assembler supplied with the Software
; Developers Toolkit (SDT) and the Desktop Development Environment (DDE).
;
r0 RN 0
r1 RN 1
r2 RN 2
r3 RN 3
r4 RN 4
r5 RN 5
r6 RN 6
sp RN 13
lr RN 14
pc RN 15

|_kernel_init| EQU 0 * 4 ; Offsets in kernel vector table

|_clib_initialise| EQU 20 * 4 ; Offsets in C vector table
fopen EQU 87 * 4
fprintf EQU 92 * 4
fclose EQU 85 * 4

OS_GenerateError EQU &2b
OS_Exit EQU &11

SharedCLibrary_LibInitAPCS_R EQU &80681

 IMPORT |Image$$RO$$Base| ; Linker defined symbol giving
 ; start of image.
 AREA printf, CODE, READONLY

 ENTRY

 ADR r0, stubs
 ADRL r1, workspace
 ADD r2, r1, #32 * 1024 ; 32K workspace. A real program
 MOV r3, #-1 ; would use OS_ChangeEnvironment
 MOV r4, #0 ; to find the memorylimit.
 MOV r5, #-1
 MOV r6, #&00080000
 SWI SharedCLibrary_LibInitAPCS_R
 MOV r4, r0
 ADR r0, kernel_init_block
 MOV r3, #0
 B kernel_vectors + |_kernel_init| ; Continues at c_init below

P
ro

g
ram

m
er’s support

The shared C library

4-265

stubs
 DCD 1
 DCD kernel_vectors
 DCD kernel_vectors_end
 DCD kernel_statics
 DCD kernel_statics_end DCD 2
 DCD clib_vectors
 DCD clib_vectors_end
 DCD clib_statics
 DCD clib_statics_end

 DCD -1

kernel_init_block
 DCD |Image$$RO$$Base|
 DCD rts_block
 DCD rts_block_end

rts_block
 DCD rts_block_end - rts_block
 DCD 0
 DCD 0
 DCD c_str
 DCD c_init
 DCD 0

rts_block_end

c_str DCB "C", 0 ; Must be "C" for CLib to finalise
 ALIGN ; properly.

c_init MOV r0, sp
 MOV r1, #0
 MOV r2, #0
 STMDB sp!, {lr}
 BL clib_vectors + |_clib_initialise|
 ADR r0, c_run ; Continue at c_run below
 LDMIA sp!, {pc}^

c_run ADR r0, outfile
 ADR r1, access
 BL clib_vectors + fopen
 CMP r0, #0
 ADREQ r0, Err_Open ; Will actually say
 SWIEQ OS_GenerateError ; Uncaught trap: Error opening ...
 MOV r4, r0
 ADR r1, format
 BL clib_vectors + fprintf
 MOV r0, r4
 BL clib_vectors + fclose
 CMP r0, #0
 ADRNE r0, Err_Close
 SWINE OS_GenerateError ; Uncaught trap: Error writing ...
 SWI OS_Exit

Calling the shared C library from a module

4-266

outfile DCB "OutFile", 0
access DCB "w", 0
format DCB "Sample string printed from asm using fprintf!", 10, 0
 ALIGN

Err_Open DCD &1000
 DCB "Error opening OutFile", 0
 ALIGN

Err_Close DCD &1001
 DCB "Error writing OutFile", 0
 ALIGN

kernel_vectors % 48 * 4
kernel_vectors_end

clib_vectors % 183 * 4
clib_vectors_end

kernel_statics % &31c
kernel_statics_end

clib_statics % &b48
clib_statics_end

workspace ; Start of workspace at end of app.

 END

Calling the shared C library from a module
; This example demonstates how to call the shared C library from a module.
; It is written for the ObjAsm assembler supplied with the Software
; Developers Toolkit (SDT) and the Desktop Development Environment (DDE)
r0 RN 0
r1 RN 1
r2 RN 2
r3 RN 3
r4 RN 4
r5 RN 5
r6 RN 6
r7 RN 7
r8 RN 8
r9 RN 9
r10 RN 10
r11 RN 11
r12 RN 12

sl RN 10
fp RN 11
sp RN 13
lr RN 14
pc RN 15

swibase EQU &88000

V_Bit EQU 1:SHL:28

P
ro

g
ram

m
er’s support

The shared C library

4-267

Module_Claim EQU 6

Service_Error EQU &06
Service_Help EQU &09

XOS_Module EQU &2001e
XSharedCLibrary_LibInitModule EQU &80682

OS_WriteS EQU 1
OS_Exit EQU &11

 ^ 0 ; Offsets in module workspace
size # 4 ; Size of this block
libreloc # 4 ; Offset for accessing librarys statics
clientreloc # 4 ; Offset for accessing our statics
ws_size # 0

Lib_Offset EQU 20 ; Offset of library relocation offset
 ; from base of stack.
SL_Lib_Offset EQU 540 ; Negative offset of library relocation
 ; offset from SL register
Client_Offset EQU 24 ; Offset of client relocation offset
SL_Client_Offset EQU 536 ; Negative offset of client relocation
 ; offset from SL register

|_kernel_command_string| EQU 7 * 4
|_kernel_moduleinit| EQU 38 * 4
|_kernel_entermodule| EQU 42 * 4

|_main| EQU 18 * 4
|_clib_initialise| EQU 20 * 4
atexit EQU 71 * 4
printf EQU 91 * 4
fputs EQU 104 * 4
putchar EQU 111 * 4
|_clib_finalisemodule| EQU 179 * 4

 IMPORT |__RelocCode| ; Linker supplied relocation routine
 IMPORT |Image$$RO$$Base| ; Linker defined base / limit symbols
 IMPORT |Image$$RW$$Base|
 IMPORT |Image$$RW$$Limit|
 IMPORT |Image$$ZI$$Base|

 AREA module_code, CODE, READONLY

module_base
 DCD start - module_base
 DCD init - module_base
 DCD terminate - module_base
 DCD service - module_base
 DCD title - module_base
 DCD help - module_base
 DCD cmdtbl - module_base
 DCD swibase
 DCD swicode - module_base
 DCD switbl - module_base

Calling the shared C library from a module

4-268

title DCB "SLClient", 0
help DCB "SLClient", 9, "1.00 (11-Dec-91)", 0
 ALIGN

base DCD |Image$$RW$$Base|
limit DCD |Image$$RW$$Limit|
zi_base DCD |Image$$ZI$$Base|

cmdtbl DCB "SLClient_Command", 0
 ALIGN
 DCD cmdcode - module_base
 DCB 0
 DCB &ff
 DCB 255
 DCB 0
 DCD 0 ; No syntax message
 DCD 0 ; No help message

switbl DCB "SLClient", 0
 DCB "SWI", 0 ; SLClient_SWI
 DCB 0
 ALIGN

init STMDB sp!, {r7-r11, lr} ; Save only regs that need saving
 MOV sl, sp, LSR #20 ; Get base of SVC stack in sl.
 MOV sl, sl, LSL #20
 LDMIA sl, {r4, r5} ; Save old relocation modifiers
 STMDB sp!, {r4, r5} ; from base of SVC stack
 BL |__RelocCode| ; Relocate module
 MOV r0, #Module_Claim
 LDR r4, base
 LDR r5, limit
 SUB r3, r5, r4
 ADD r3, r3, #ws_size
 SWI XOS_Module
 MOV r9, r12
 STR r2, [r12] ; Set private word
 MOV r12, r2
 STR r3, [r12] ; First word of block is size of block
 ADR r0, stubs
 ADD r1, r12, #ws_size
 ADD r2, r12, r3
 LDR r3, zi_base
 MOV r6, #4 :SHL: 16
 SWI XSharedCLibrary_LibInitModule
 ADD r8, r1, #Lib_Offset
 LDMIA r8, {r7, r8} ; Get Lib and Client reloc. offset
 STMIB r12, {r7, r8} ; Save in work area
 ADR r0, kernel_init_block
 BL call_moduleinit
 STMDB sp!, {r9} ; Save workspace pointer
 BL clib_vectors + |_clib_initialise|
 LDMIA sp!, {r2}

P
ro

g
ram

m
er’s support

The shared C library

4-269

 ADD r0, sp, #(10-7+2)*4 ; Point to R10 on stack
 LDMIA r0, {r0, r1}
 BL user_init
 MOV sl, sp, LSR #20 ; Get base of SVC stack in sl.
 MOV sl, sl, LSL #20
 LDMIA sp!, {r4, r5}
 STMIA sl, {r4, r5}
 LDMIA sp!, {r7-r11, lr}
 CMPS r0, #0
 BICEQS pc, lr, #V_Bit
 ORRS pc, lr, #V_Bit

; _kernel_moduleinit expects the return address to be in the first word on the
; stack rather than in LR. This function sets up the return address correctly.
call_moduleinit
 STMDB sp!, {lr}
 B kernel_vectors + |_kernel_moduleinit|

terminate
 STMDB sp!, {r7-r11, lr} ; Save only regs that need saving
 MOV sl, sp, LSR #20 ; Get base of SVC stack in sl.
 MOV sl, sl, LSL #20
 LDMIA sl, {r4, r5} ; Save old relocation modifiers
 MOV r0, r12 ; Set up private word pointer for
 ; _clib_finalisemodule
 LDR r12, [r12] ; Pointer to static data
 LDMIB r12, {r11, r12}
 STMIA sl, {r11, r12} ; Set up relocation modifiers
 ADD sl, sl, #SL_Lib_Offset
 MOV fp, #0 ; FP = 0 => end of linked stack frames
 ; so backtrace stops here
 BL clib_vectors + |_clib_finalisemodule|
 MOV sl, sp, LSR #20
 MOV sl, sl, LSL #20
 STMIA sl, {r4, r5} ; Restore old relocation modifiers
 LDMIA sp!, {r7-r11, pc}^

start ADR r0, kernel_init_block
 MOV r8, r12
 MOV r12, #-1
 MOV r6, #4 * 1024
 B kernel_vectors + |_kernel_entermodule|

c_init STMDB sp!, {lr}
 BL clib_vectors + |_clib_initialise|
 ADR r0, c_run ; Continue at c_run below
 LDMIA sp!, {pc}

c_run BL kernel_vectors + |_kernel_command_string|
 ADR r1, user_run ; Continue at user_run below
 B clib_vectors + |_main|

Calling the shared C library from a module

4-270

cmdcode STMDB sp!, {r10, r11, lr}
 MOV sl, sp, LSR #20 ; Get base of SVC stack
 MOV sl, sl, ASL #20
 LDMIA sl, {r4, r5} ; Save old relocation modifiers in R4, R5
 LDR r12, [r12]
 LDMIB r12, {r11, r12} ; Set up our relocation modifiers
 STMIA sl, {r11, r12}
 ADD sl, sl, #SL_Lib_Offset ; Set up stack limit for SVC stack
 MOV fp, #0 ; Stop backtrace here
 BL user_cmd ; Call APCS user_cmd routine
 MOV sl, sp, LSR #20
 MOV sl, sl, ASL #20 ; Get base of SVC stack again
 STMIA sl, {r4, r5} ; Restore old relocation modifiers
 LDMIA sp!, {r10, r11, lr}
 CMP r0, #0 ; Set V bit on R0 and return
 BICEQS pc, lr, #V_Bit
 ORRS pc, lr, #V_Bit

swicode STMDB sp!, {r0-r9, lr} ; Set up regset on SVC stack
 MOV sl, sp, LSR #20 ; Get base of SVC stack
 MOV sl, sl, ASL #20
 LDMIA sl, {r8, r9} ; Save old relocation modifiers in R8, R9
 MOV r0, r11
 MOV r1, sp ; Pointer to regs on stack
 MOV r2, r12
 LDR r12, [r12]
 LDMIB r12, {r11, r12} ; Set up relocation modifiers
 STMIA sl, {r11, r12}
 ADD sl, sl, #SL_Lib_Offset ; Set up stack limit for SVC stack
 MOV fp, #0 ; Stop backtrace here
 BL user_swi ; Call APCS user_swi routine
 MOV sl, sp, LSR #20 ; Get base of SVC stack again
 MOV sl, sl, ASL #20
 STMIA sl, {r8, r9} ; Restore old relocation modifiers
 CMP r0, #0 ; Set R0 on stack to error pointer
 STRNE r0, [sp] ; if error on return.
 LDMIA sp!, {r0-r9, lr}
 BICEQS pc, lr, #V_Bit ; Set V bit on R0 and return.
 ORRS pc, lr, #V_Bit

service TEQ r1, #Service_Help ; Check service nos. first for speed
 TEQNE r1, #Service_Error
 MOVNES pc, lr
 STMDB sp!, {r0-r9, sl, fp, lr} ; Set up regset on SVC/IRQ stack
 MOV r0, r1
 MOV r1, sp ; Pointer to regs on stack
 MOV r6, pc ; Save old mode
 BIC lr, r6, #3 ; To SVC mode from SVC/IRQ mode
 TEQP lr, #3
 MOV r0, r0 ; NOP after mode change
 MOV fp, #0 ; Stop backtrace
 MOV r7, lr ; Save SVC lr if entered in IRQ mode
 MOV sl, sp, LSR #20 ; Get base of SVC stack
 MOV sl, sl, ASL #20
 LDMIA sl, {r8, r9} ; Save old relocation modifiers in R8, R9

P
ro

g
ram

m
er’s support

The shared C library

4-271

 MOV r2, r12
 LDR r12, [r12]
 LDMIB r12, {r11, r12} ; Set up relocation modifiers
 STMIA sl, {r11, r12}
 ADD sl, sl, #SL_Lib_Offset ; Set up stack limit for SVC stack
 BL user_service ; Call APCS user_service routine
 MOV lr, r7 ; Restore SVC lr
 TEQP r6, #0 ; Back to entry mode
 MOV r0, r0 ; NOP after mode change
 MOV sl, sp, LSR #20 ; Get base of SVC stack
 MOV sl, sl, ASL #20
 STMIA sl, {r8, r9} ; Restore old relocation modifiers
 LDMIA sp!, {r0-r9, sl, fp, pc}^

; _kernel_oserror *user_init(char *cmd_tail, int base, void *pw);
user_init
 STMDB sp!, {r4, r9, lr}
 LDR r9, [sl, #-SL_Client_Offset] ; Get Client relocation
 MOV r4, r0
 ADR r0, format
 ADR r1, init_str
 BL clib_vectors + printf
 ADR r0, cmd_format
 LDR r1, stdout ; Address stdout in library statics
 ADD r1, r1, r9 ; Add client relocation
 BL clib_vectors + fputs
10 LDRB r0, [r4], #1
 CMP r0, #32
 MOVCC r0, #10
 BL clib_vectors + putchar
 BCS %B10
 ADR r0, user_exit ; Set up atexit handler
 BL clib_vectors + atexit
 MOV r0, #0
 LDMIA sp!, {r4, r9, pc}^

stdout DCD clib_statics + &2c

; void user_exit(void);
user_exit
 STMDB sp!, {lr}
 ADR r0, format
 ADR r1, exit_str
 BL clib_vectors + printf
 LDMIA sp!, {pc}^

Calling the shared C library from a module

4-272

; int user_run(int argc, char **argv);
user_run
 STMDB sp!, {r4, r5, r6, lr}
 MOV r4, r0
 MOV r5, r1
 ADR r0, format
 ADR r1, run_str
 BL clib_vectors + printf
 ADR r0, argc_format
 MOV r1, r4
 BL clib_vectors + printf
 MOV r6, #0
10 CMP r6, r4
 ADRCC r0, argv_format
 MOVCC r1, r6
 LDRCC r2, [r5, r6, LSL #2]
 BLCC clib_vectors + printf
 ADDCC r6, r6, #1
 BCC %B10
 MOV r0, #0
 LDMIA sp!, {r4, r5, r6, pc}^

; _kernel_oserror *user_cmd(char *args, int argc);
user_cmd
 STMDB sp!, {r4, r5, lr}
 MOV r4, r0
 MOV r5, r1
 ADR r0, format
 ADR r1, cmd_str
 BL clib_vectors + printf
 ADR r0, args_format
 MOV r1, r5
 BL clib_vectors + printf
10 LDRB r0, [r4], #1
 CMP r0, #32
 MOVCC r0, #10
 BL clib_vectors + putchar
 BCS %B10
 MOV r0, #0
 LDMIA sp!, {r4, r5, pc}^

; _kernel_oserror *user_swi(int swi_no, _kernel_swi_regs *r, void *pw);
user_swi
 STMDB sp!, {lr}
 ADR r0, format
 ADR r1, swi_str
 BL clib_vectors + printf
 MOV r0, #0
 LDMIA sp!, {pc}^

P
ro

g
ram

m
er’s support

The shared C library

4-273

; void user_service(int service_no, _kernel_swi_regs *r, void *pw);
user_service
 STMDB sp!, {lr}
 CMP r0, #Service_Help
 ADR r0, format
 ADREQ r1, help_str
 ADRNE r1, error_str
 BL clib_vectors + printf
 LDMIA sp!, {pc}^

format DCB "In %s code", 10, 0
 ALIGN
argc_format DCB "argc = %d", 10, 0
 ALIGN
argv_format DCB "argv[%d] = %s", 10, 0
 ALIGN
args_format DCB "argc = %d, args = ", 0
 ALIGN
cmd_format DCB "Command tail = ", 0
 ALIGN
init_str DCB "initialisation", 0
 ALIGN
exit_str DCB "exit", 0
 ALIGN
run_str DCB "run", 0
 ALIGN
cmd_str DCB "command", 0
 ALIGN
swi_str DCB "swi", 0
 ALIGN
help_str DCB "help", 0
 ALIGN
error_str DCB "error", 0
 ALIGN

stubs
 DCD 1
 DCD kernel_vectors
 DCD kernel_vectors_end
 DCD kernel_statics
 DCD kernel_statics_end

 DCD 2
 DCD clib_vectors
 DCD clib_vectors_end
 DCD clib_statics
 DCD clib_statics_end

 DCD -1

kernel_init_block
 DCD |Image$$RO$$Base|
 DCD rts_block
 DCD rts_block_end

Calling the shared C library from a module

4-274

rts_block
 DCD rts_block_end - rts_block
 DCD 0
 DCD 0
 DCD c_str
 DCD c_init
 DCD 0
rts_block_end

c_str DCB "C", 0
 ALIGN

kernel_vectors % 48 * 4
kernel_vectors_end

clib_vectors % 183 * 4
clib_vectors_end

; Unlike the application example the kernel statics and clib statics must be
in
; a data area otherwise the data size calculation above (using Image$$RW$$Base
; & Image$$RW$$Limit does not work.
;
; Ideally this would be a zero init area of appropriate size but the assembler
; doesn’t support zero init areas.
 AREA module_data

kernel_statics % &31c
kernel_statics_end

clib_statics % &b48
clib_statics_end

 END

P
ro

g
ram

m
er’s support

The shared C library

4-275

Library kernel functions
The library kernel functions are grouped under the following headings:

● initialisation functions

● stack management functions

● program environment functions

● general utility functions

● memory allocation functions

● language support functions.

Index of library kernel functions by entry number

entry no. Name on page
0 _kernel_init page 4-278
1 _kernel_exit page 4-281
2 _kernel_setreturncode page 4-281
3 _kernel_exittraphandler page 4-282
4 _kernel_unwind page 4-281
5 _kernel_procname page 4-281
6 _kernel_language page 4-281
7 _kernel_command_string page 4-281
8 _kernel_hostos page 4-282
9 _kernel_swi page 4-283

10 _kernel_osbyte page 4-284
11 _kernel_osrdch page 4-284
12 _kernel_oswrch page 4-284
13 _kernel_osbget page 4-284
14 _kernel_osbput page 4-284
15 _kernel_osgbpb page 4-284
16 _kernel_osword page 4-284
17 _kernel_osfind page 4-285
18 _kernel_osfile page 4-285
19 _kernel_osargs page 4-285
20 _kernel_oscli page 4-285
21 _kernel_last_oserror page 4-282
22 _kernel_system page 4-285
23 _kernel_getenv page 4-282
24 _kernel_setenv page 4-282
25 _kernel_register_allocs page 4-286
26 _kernel_alloc page 4-286
27 _kernel_stkovf_split_0frame page 4-280

Library kernel functions

4-276

entry no. Name on page
28 _kernel_stkovf_split page 4-280
29 _kernel_stkovf_copyargs page 4-280
30 _kernel_stkovf_copy0args page 4-280
31 _kernel_udiv page 4-286
32 _kernel_urem page 4-287
33 _kernel_udiv10 page 4-287
34 _kernel_sdiv page 4-287
35 _kernel_srem page 4-287
36 _kernel_sdiv10 page 4-287
37 _kernel_fpavailable page 4-282
38 _kernel_moduleinit page 4-279
39 _kernel_irqs_on page 4-283
40 _kernel_irqs_off page 4-283
41 _kernel_irqs_disabled page 4-283
42 _kernel_entermodule page 4-279
43 _kernel_escape_seen page 4-282
44 _kernel_current_stack_chunk page 4-280

 45 _kernel_swi_c page 4-283
46 _kernel_register_slotextend page 4-286
47 _kernel_raise_error page 4-282

Index of library kernel functions by function name

Name entry no. on page
_kernel_alloc 26 page 4-286
_kernel_command_string 7 page 4-281
_kernel_current_stack_chunk 44 page 4-280
_kernel_entermodule 42 page 4-279
_kernel_escape_seen 43 page 4-282
_kernel_exit 1 page 4-281
_kernel_exittraphandler 3 page 4-282
_kernel_fpavailable 37 page 4-282
_kernel_getenv 23 page 4-282
_kernel_hostos 8 page 4-282
_kernel_init 0 page 4-278
_kernel_irqs_disabled 41 page 4-283
_kernel_irqs_off 40 page 4-283
_kernel_irqs_on 39 page 4-283
_kernel_language 6 page 4-281
_kernel_last_oserror 21 page 4-282
_kernel_moduleinit 38 page 4-279

_kernel_osargs 19 page 4-285

P
ro

g
ram

m
er’s support

The shared C library

4-277

Name entry no. on page
_kernel_osbget 13 page 4-284
_kernel_osbput 14 page 4-284
_kernel_osbyte 10 page 4-284
_kernel_oscli 20 page 4-285
_kernel_osfile 18 page 4-285
_kernel_osfind 17 page 4-285
_kernel_osgbpb 15 page 4-284
_kernel_osrdch 11 page 4-284
_kernel_osword 16 page 4-284
_kernel_oswrch 12 page 4-284
_kernel_procname 5 page 4-281
_kernel_raise_error 47 page 4-282
_kernel_register_allocs 25 page 4-286
_kernel_register_slotextend 46 page 4-286
_kernel_sdiv 34 page 4-287
_kernel_sdiv10 36 page 4-287
_kernel_setenv 24 page 4-282
_kernel_setreturncode 2 page 4-281
_kernel_srem 35 page 4-287
_kernel_stkovf_copy0args 30 page 4-280
_kernel_stkovf_copyargs 29 page 4-280
_kernel_stkovf_split 28 page 4-280
_kernel_stkovf_split_0frame 27 page 4-280
_kernel_swi 9 page 4-283
_kernel_swi_c 45 page 4-283
_kernel_system 22 page 4-285
_kernel_udiv 31 page 4-286
_kernel_udiv10 33 page 4-287
_kernel_unwind 4 page 4-281
_kernel_urem 32 page 4-287

The following structure is common to all library kernel functions:

typedef struct {
 int errnum; /* error number */
 char errmess[252];/* error message (zero terminated) */
} _kernel_oserror;

Initialisation functions

4-278

Initialisation functions

Entry no. 0: _kernel_init

On entry

R0 = Pointer to kernel init block having the following format
+00: Image base (e.g. the value of the linker symbol Image$$RO$$Base)
+04: pointer to start of language description blocks
+08: pointer to end of language description blocks

R1 = base of root stack chunk (value returned in R1 from LibInitAPCS_A or
LibInitAPCS_R)

R2 = top of root stack chunk (value returned in R2 from LibInitAPCS_A or
LibInitAPCS_R)

R3 = 0 for application
1 for module

R4 = end of workspace

On exit

Does not return. Control is regained through the procedure pointer returned in R0 by one
of the language initialisation procedures (i.e. control is passed to the run code of the
language).

This call does not obey the APCS. All registers are altered. The APCS_R SL, FP and SP
(R10, R11 and R13) are set up. LR does not contain a valid return address when control
is passed to the run entry.

This function must be called by any client which calls LibInitAPCS_A or
LibInitAPCS_R. Modules should call this entry in their run entry.

The words at offsets +04 and +08 from R0 describe an area containing at least one
language description block. Any number of language description blocks may be present.
The size field of each block must be the offset to the next language description block.

The command line is copied to an internal buffer at the top of the root stack chunk. To
set a command line call SWI OS_WriteEnv. RISC OS sets up a command line before
running your application or entering your module.

Exit, Error, CallBack, Escape, Event, UpCall, Illegal Instruction, Prefetch Abort, Data
Abort and Address Exception handlers are set up.

Initial default alloc and free procs for use during stack extension are set up. These should
be replaced with your own alloc and free procs as soon as possible.

The kernel’s workspace pointers are initialised to the values contained in R1 and R4.
Note that it is assumed the root stack chunk resides at the base of the workspace area.

P
ro

g
ram

m
er’s support

The shared C library

4-279

A small stack (159 words) for use during stack extension is claimed from the workspace
following R2 (i.e. 159 words are claimed from R2 upwards).

Note: _kernel_init does not check that there is sufficient space in the workspace to
claim this area. You must ensure there is sufficient space before calling _kernel_init.

The availability of floating point is determined (by calling SWI FPE_Version).

If executing under the desktop the initial wimpslot size is determined by reading the
Application Space handler.

The initialisation for each language is called, then the run code if any is called. If no run
code is present the error No main program is generated.

Entry no. 38: _kernel_moduleinit

On entry

R0 = pointer to kernel init block as described in _kernel_init on page 4-278
R1 = pointer to base of SVC stack (as returned by SWI LibInitModule)

On exit

This call does not obey the APCS.
It assumes that LR has already been pushed on the stack, and so returns to the address on
top of the stack (ie the address pointed to by SP), rather than to the address contained in
LR on entry. The stack pointer is incremented by 4. See the section entitled Calling the
shared C library from a module on page 4-266 for an example.
On exit SL points to R1 on entry + 560.
R0, R1, R2 and R12 are indeterminate.

The kernel init block is copied for later use. The Image base is ignored.

The functions _kernel_RMAalloc and _kernel_RMAfree are established as the default
alloc and free procs for use during stack extension.

You should call this function after calling SWI LibInitModule.

Entry no. 42: _kernel_entermodule

On entry

R0 = pointer to kernel init block as described in _kernel_init on page 4-278
R6 = requested root stack size
R8 = modules private word pointer
R12 = –1

Stack management functions

4-280

On exit

Does not return.
Control is regained through the procedure pointer returned in R0 by one of the language
initialisation procedures.

The private word must point to the module workspace word which must contain the
application base, the shared library static offset, and the client static offset in words 0, 1
and 2 (the application base is ignored for modules).

After claiming workspace from the application space and claiming a root stack from this
_kernel_entermodule calls _kernel_init.

Stack management functions

Entry no. 27: _kernel_stkovf_split_0frame

This function is described in the section entitled How the run-time stack is managed and
extended on page 4-243.

Entry no. 28: _kernel_stkovf_split

This function is described in the section entitled How the run-time stack is managed and
extended on page 4-243.

Entry no. 29: _kernel_stkovf_copyargs

This function is described in the section entitled How the run-time stack is managed and
extended on page 4-243.

Entry no. 30: _kernel_stkovf_copy0args

This function is described in the section entitled How the run-time stack is managed and
extended on page 4-243.

typedef struct stack_chunk {
 unsigned long sc_mark; /* == 0xf60690ff */
 struct stack_chunk *sc_next, *sc_prev;
 unsigned long sc_size;
 int (*sc_deallocate)()
} _kernel_stack_chunk;

Entry no. 44: _kernel_stack_chunk *_kernel_current_stack_chunk(void)

Returns a pointer to the current stack chunk.

P
ro

g
ram

m
er’s support

The shared C library

4-281

typedef struct {
 int r4, r5, r6, r7, r8, r9;
 int fp, sp, pc, sl;
 int f4[3], f5[3], f6[3], f7[3];
} _kernel_unwindblock;

Entry no. 4: int _kernel_unwind(_kernel_unwindblock *inout,
char **language)

Unwinds the call stack one level. Returns:
 >0 if it succeeds
0 if it fails because it has reached the stack end or
<0 if it fails for any other reason (e.g. stack corrupt)

Input values for fp, sl and pc must be correct. r4-r9 and f4-f7 are updated if the frame
addressed by the input value of fp contains saved values for the corresponding registers.

fp, sp, sl and pc are always updated, the word pointed to by language is updated to
point to a string naming the language corresponding to the returned value of pc.

Program environment functions

Entry no. 5: char *_kernel_procname(int pc)

Returns a string naming the procedure containing the address pc (or 0 if no name for it
can be found).

Entry no. 6: char *_kernel_language(int pc)

Returns a string naming the language in whose code the address pc lies (or 0 if it is in no
known language).

Entry no. 7: char *_kernel_command_string(void)

Returns a pointer to a copy of the command string used to run the program.

Entry no. 2: void _kernel_setreturncode(unsigned code)

Sets the return code to be used by _kernel_exit.

Entry no. 1: void _kernel_exit(void)

Calls OS_Exit with the return code specified by a previous call to
_kernel_setreturncode.

Program environment functions

4-282

Entry no. 47: void _kernel_raise_error(_kernel_oserror *)

Generates an external error.

Entry no. 3: void _kernel_exittraphandler(void)

Resets the InTrapHandler flag which prevents recursive traps. Used in trap handlers
which do not return directly but continue execution. For example, the longjmp function
in the C library calls _kernel_exittraphandler if called from within a signal handler.

Entry no. 8: int _kernel_hostos(void)

Returns 6 for RISC OS.
(Returns the result of calling OS_Byte with R0 = 0 and R1 = 1.)

Entry no. 37: int _kernel_fpavailable(void)

Returns non-zero if floating point is available.

Entry no. 21: _kernel_oserror *_kernel_last_oserror(void)

Returns a pointer to an error block describing the last OS error since
_kernel_last_oserror was last called (or since the program started if there has been no
such call). If there has been no OS error it returns 0. Note that occurrence of a further
error may overwrite the contents of the block. This can be used, for example, to
determine the error which caused fopen to fail. If _kernel_swi caused the last OS error,
the error already returned by that call gets returned by this too.

Entry no. 23: _kernel_oserror *_kernel_getenv(const char *name, char
*buffer, unsigned size)

Reads the value of a system variable, placing the value string in the buffer (of size size).

Entry no. 24: _kernel_oserror *_kernel_setenv(const char *name,const
char *value)

Updates the value of a system variable to be string valued, with the given value (value =
0 deletes the variable).

Entry no. 43: int _kernel_escape_seen(void)

Returns 1 if there has been an escape since the previous call of _kernel_escape_seen (or
since the program start if there has been no previous call). Escapes are never ignored
with this mechanism, whereas they may be with the language EventProc mechanism
since there may be no stack to call the EventProc on.

P
ro

g
ram

m
er’s support

The shared C library

4-283

Entry no. 39: void _kernel_irqs_on(void)

Enable interrupts. You should not disable interrupts unless absolutely necessary. If you
disable interrupts you should re-enable them as soon as possible (preferably within
10uS).

This function can only be used from code running in SVC mode.

Entry no. 40: void _kernel_irqs_off(void)

Disable IRQ interrupts. You should not disable interrupts unless absolutely necessary. If
you disable interrupts you should re-enable them as soon as possible (preferably within
10uS).

This function can only be used from code running in SVC mode.

Entry no. 41: int _kernel_irqs_disabled(void)

Returns non-zero if IRQ interrupts are disabled.

General utility functions
typedef struct {
 int r[10]; /* only r0 - r9 matter for swi’s */
} _kernel_swi_regs;

Entry no. 9: _kernel_oserror *_kernel_swi(int no, _kernel_swi_regs *in,
_kernel_swi_regs *out)

Call the SWI specified by no . The X bit is set by _kernel_swi unless bit 31 of the SWI
no (in no) is set. in and out are pointers to blocks for R0 - R9 on entry to and exit from
the SWI.

Returns a pointer to an error block if an error occurred, otherwise 0.

Entry no. 45: _kernel_oserror *_kernel_swi_c(int no, _kernel_swi_regs *in,
_kernel_swi_regs *out, int *carry)

Similar to _kernel_swi but returns the status of the carry flag on exit from the SWI in the
word pointed to by carry .

General utility functions

4-284

Entry no. 10: int _kernel_osbyte(int op, int x, int y)

Performs an OS_Byte operation. If there is no error, the result contains:
the return value of R1 (x) in its bottom byte
the return value of R2 (y) in its second byte
1 in the third byte if carry is set on return, otherwise 0
0 in its top byte

Note that some OS_Byte calls return values too great too fit in a single byte.

Entry no. 11: int _kernel_osrdch(void)

Returns a character read from the currently selected OS input stream.

Entry no. 12: int _kernel_oswrch(int ch)

Writes a byte to all currently selected OS output streams. The return value just indicates
success or failure.

Entry no. 13: int _kernel_osbget(unsigned handle);

Returns the next byte from the file identified by handle. (–1 ⇒EOF)

Entry no. 14: int _kernel_osbput(int ch, unsigned handle)

Writes a byte to the file identified by handle. The return value just indicates success or
failure.

typedef struct {
 void * dataptr; /* memory address of data */
 int nbytes, fileptr;
 int buf_len; /* these fields for RISC OS gpbp extensions */
 char * wild_fld; /* points to wildcarded filename to match */
} _kernel_osgbpb_block;

Entry no. 15: int _kernel_osgbpb(int op, unsigned handle,
_kernel_osgbpb_block *inout);

Reads or writes a number of bytes from a filing system. The return value just indicates
success or failure. Note that for some operations, the return value of C is significant, and
for others it isn’t. In all cases, therefore, a return value of –1 is possible, but for some
operations it should be ignored.

Entry no. 16: int _kernel_osword(int op, int *data)

Performs an OS_Word operation. The size and format of the block pointed to by data
depends on the particular OS_Word being used; it may be updated.

P
ro

g
ram

m
er’s support

The shared C library

4-285

Entry no. 17: int _kernel_osfind(int op, char *name)

Opens or closes a file. Open returns a file handle (0 ⇒ open failed without error). For
close the return value just indicates success or failure.

typedef struct {
 int load, exec; /* load, exec addresses */
 int start, end; /* start address/length, end address/attributes */
} _kernel_osfile_block;

Entry no. 18: int _kernel_osfile(int op, const char *name,
_kernel_osfile_block *inout)

Performs an OS_File operation, with values of R2 - R5 taken from the osfile block. The
block is updated with the return values of these registers, and the result is the return
value of R0 (or an error indication).

Entry no. 19: int _kernel_osargs(int op, unsigned handle, int arg)

Performs an OS_Args operation. The result is the current filing system number (if op =
0) otherwise the value returned in R2 by the OS_Args operation.

Entry no. 20: int _kernel_oscli(char *s)

Calls OS_CLI with the specified string. If used to run another application the current
application will be closed down. If you wish to return to the current application use
_kernel_system. Any return value indicates an error in _kernel_oscli itself.

Entry no. 22: int _kernel_system(char *string, int chain)

Calls OS_CLI with the specified string. If chain is 0, the current application is copied to
the top of memory first, then handlers are installed so that if the command string causes
an application to be invoked, control returns to _kernel_system, which then copies the
calling application back into its proper place. Hence the command is executed as a
sub-program. If chain is 1, all handlers are removed before calling the CLI, and if it
returns (the command is built-in) _kernel_system exits. Any return value indicates an
error in _kernel_system itself.

Memory allocation functions

4-286

Memory allocation functions

Entry no. 26: unsigned _kernel_alloc(unsigned words, void **block)

Tries to allocate a block of size = words words. Failing that, it allocates the largest
possible block (may be size zero). If words is < 2048 it is rounded up to 2048. Returns
a pointer to the allocated block in the word pointed to by block. The return value gives
the size of the allocated block.

typedef void freeproc(void *);
typedef void * allocproc(unsigned);

Entry no. 25: void _kernel_register_allocs(allocproc *malloc, freeproc
*free)

Registers procedures to be used by the kernel when it requires to free or allocate storage.
Currently this is only used to allocate and free stack chunks. Since allocproc and
freeproc are called during stack extension, they must not check for stack overflow
themselves or call any procedure which does stack checking and must guarantee to
require no more than 41 words of stack.

The kernel provides default alloc and free procedures, however you should replace these
with your own procedures since the default procedures are rather naive.

typedef int _kernel_ExtendProc(int /*n*/, void** /*p*/);

Entry no. 46: _kernel_ExtendProc *_kernel_register_slotextend
(_kernel_ExtendProc *proc)

When the initial heap (supplied to _kernel_init) is full, the kernel is normally capable of
extending it by extending the wimpslot. However, if the heap limit is not the same as the
application limit, it is assumed that someone else has acquired the space between, and
the procedure registered here is called to request n bytes from it.

Its return value is expected to be ≥ n, or 0 to indicate failure. If successful the word
pointed to by p should be set to point to the space allocated.

Language support functions

Entry no. 31: unsigned _kernel_udiv(unsigned divisor, unsigned dividend);

Divide and remainder function, returns the remainder in R1.

P
ro

g
ram

m
er’s support

The shared C library

4-287

Entry no. 32: unsigned _kernel_urem(unsigned divisor, unsigned
dividend);

Remainder function.

Entry no. 33: unsigned _kernel_udiv10(unsigned dividend);

Divide and remainder function, returns the remainder in R1.

Entry no. 34: int _kernel_sdiv(int divisor, int dividend);

Signed divide and remainder function, returns the remainder in R1.

Entry no. 35: int _kernel_srem(int divisor, int dividend);

Signed remainder function.

Entry no. 36: int _kernel_sdiv10(int dividend);

Signed divide and remainder function, returns the remainder in R1.

C library functions

4-288

C library functions
The C library functions are grouped under the following headings:

● Language support functions

Provides functions for trap and event handling, initialisation and finalisation, and
mathematical routines such as number conversion and multiplication.

● assert

The assert module provides one function which is useful during program testing.

● ctype

The ctype module provides several functions useful for testing and mapping
characters.

● errno

The word variable __errno at offset 800 in the library statics is set whenever certain
error conditions arises.

● locale

This module handles national characteristics, such as the different orderings
month-day-year (USA) and day-month-year (UK).

● math

This module contains the prototypes for 22 mathematical functions. All return the
type double.

● setjmp

This module provides two functions for bypassing the normal function call and
return discipline.

● signal

Signal provides two functions.

● stdio

stdio provides many functions for performing input and output.

● stdlib

stdlib provides several general purpose functions.

● string

string provides several functions useful for manipulating character arrays and
other objects treated as character arrays.

● time

time provides several functions for manipulating time.

P
ro

g
ram

m
er’s support

The shared C library

4-289

Index of C library functions by entry number

 entry no. name on page
0 trapHandler page 4-298
1 uncaughtTrapHandler page 4-298
2 eventHandler page 4-299
3 unhandledEventHandler page 4-299
4 x$stack_overflow page 4-300
5 x$stack_overflow_1 page 4-300
6 x$udivide page 4-300
7 x$uremainder page 4-300
8 x$divide page 4-300
9 x$divtest page 4-300

10 x$remainder page 4-300
11 x$multiply page 4-300
12 _rd1chk page 4-301
13 _rd2chk page 4-301
14 _rd4chk page 4-301
15 _wr1chk page 4-301
16 _wr2chk page 4-301
17 _wr4chk page 4-301
18 _main page 4-301
19 _exit page 4-302
20 _clib_initialise page 4-302
21 _backtrace page 4-303
22 _count page 4-303
23 _count1 page 4-303
24 _stfp page 4-303
25 _ldfp page 4-303
26 _printf page 4-319
27 _fprintf page 4-319
28 _sprintf page 4-319
29 clock page 4-341
30 difftime page 4-341
31 mktime page 4-341
32 time page 4-342
33 asctime page 4-342
34 ctime page 4-342
35 gmtime page 4-342
36 localtime page 4-342
37 strftime page 4-342
38 memcpy page 4-336
39 memmove page 4-336

C library functions

4-290

 entry no. name on page
40 strcpy page 4-336
41 strncpy page 4-336
42 strcat page 4-337
43 strncat page 4-337
44 memcmp page 4-337
45 strcmp page 4-337
46 strncmp page 4-337
47 memchr page 4-338
48 strchr page 4-338
49 strcspn page 4-338
50 strpbrk page 4-339
51 strrchr page 4-339
52 strspn page 4-339
53 strstr page 4-339
54 strtok page 4-339
55 memset page 4-340
56 strerror page 4-340
57 strlen page 4-340
58 atof page 4-327
59 atoi page 4-327
60 atol page 4-327
61 strtod page 4-327
62 strtol page 4-328
63 strtoul page 4-328
64 rand page 4-329
65 srand page 4-329
66 calloc page 4-329
67 free page 4-330
68 malloc page 4-330
69 realloc page 4-330
70 abort page 4-330
71 atexit page 4-330
72 exit page 4-331
73 getenv page 4-331
74 system page 4-331
75 bsearch page 4-332
76 qsort page 4-332
77 abs page 4-332
78 div page 4-332
79 labs page 4-333

P
ro

g
ram

m
er’s support

The shared C library

4-291

 entry no. name on page
80 ldiv page 4-333
81 remove page 4-314
82 rename page 4-314
83 tmpfile page 4-314
84 _old_tmpnam page 4-315
85 fclose page 4-315
86 fflush page 4-315
87 fopen page 4-315
88 freopen page 4-316
89 setbuf page 4-317
90 setvbuf page 4-317
91 printf page 4-318
92 fprintf page 4-317
93 sprintf page 4-319
94 scanf page 4-320
95 fscanf page 4-320
96 sscanf page 4-320
97 vprintf page 4-321
98 vfprintf page 4-321
99 vsprintf page 4-321

100 _vprintf page 4-319
101 fgetc page 4-321
102 fgets page 4-321
103 fputc page 4-322
104 fputs page 4-322
105 __filbuf page 4-326
106 getc page 4-322
107 getchar page 4-322
108 gets page 4-322
109 __flsbuf page 4-327
110 putc page 4-323
111 putchar page 4-323
112 puts page 4-323
113 ungetc page 4-323
114 fread page 4-324
115 fwrite page 4-324
116 fgetpos page 4-324
117 fseek page 4-325
118 fsetpos page 4-325
119 ftell page 4-325
120 rewind page 4-326
121 clearerr page 4-326

C library functions

4-292

 entry no. name on page
122 feof page 4-326
123 ferror page 4-326
124 perror page 4-326
125 __ignore_signal_handler page 4-313
126 __error_signal_marker page 4-313
127 __default_signal_handler page 4-313
128 signal page 4-311
129 raise page 4-312
130 setjmp page 4-311
131 longjmp page 4-311
132 acos page 4-309
133 asin page 4-309
134 atan page 4-309
135 atan2 page 4-309
136 cos page 4-309
137 sin page 4-309
138 tan page 4-309
139 cosh page 4-309
140 sinh page 4-309
141 tanh page 4-309
142 exp page 4-309
143 frexp page 4-310
144 ldexp page 4-310
145 log page 4-310
146 log10 page 4-310
147 modf page 4-310
148 pow page 4-310
149 sqrt page 4-310
150 ceil page 4-310
151 fabs page 4-310
152 floor page 4-310
153 fmod page 4-310
154 setlocale page 4-308
155 isalnum page 4-305
156 isalpha page 4-305
157 iscntrl page 4-305
158 isdigit page 4-305
159 isgraph page 4-305
160 islower page 4-305
161 isprint page 4-306
162 ispunct page 4-306
163 isspace page 4-306

P
ro

g
ram

m
er’s support

The shared C library

4-293

 entry no. name on page
164 isupper page 4-306
165 isxdigit page 4-306
166 tolower page 4-306
167 toupper page 4-306
168 __assert page 4-305
169 _memcpy page 4-304
170 _memset page 4-304
171 localeconv page 4-308
172 mblen page 4-333
173 mbtowc page 4-334
174 wctomb page 4-334
175 mbstowcs page 4-334
176 wcstombs page 4-335
177 strxfrm page 4-338
178 strcoll page 4-337
179 _clib_finalisemodule page 4-304
180 _clib_version page 4-304
181 finalise page 4-304
182 tmpnam page 4-314

error condition EDOM page 4-307
error condition ERANGE page 4-307
error condition ESIGNUM page 4-307

Index of C library functions by function name

name entry no. on page
abort 70 page 4-330
abs 77 page 4-332
acos 132 page 4-309
asctime 33 page 4-342
asin 133 page 4-309
__assert 168 page 4-305
atan 134 page 4-309
atan2 135 page 4-309
atexit 71 page 4-330
atof 58 page 4-327
atoi 59 page 4-327
atol 60 page 4-327
_backtrace 21 page 4-303
bsearch 75 page 4-332
calloc 66 page 4-329
ceil 150 page 4-310

C library functions

4-294

name entry no. on page
clearerr 121 page 4-326
_clib_finalisemodule 179 page 4-304
_clib_initialise 20 page 4-302
_clib_version 180 page 4-304
clock 29 page 4-341
cos 136 page 4-309
cosh 139 page 4-309
_count 22 page 4-303
_count1 23 page 4-303
ctime 34 page 4-342
__default_signal_handler 127 page 4-313
difftime 30 page 4-341
div 78 page 4-332
__error_signal_marker 126 page 4-313
eventHandler 2 page 4-299
exit 72 page 4-331
_exit 19 page 4-302
exp 142 page 4-309
fabs 151 page 4-310
fclose 85 page 4-315
feof 122 page 4-326
ferror 123 page 4-326
fflush 86 page 4-315
fgetc 101 page 4-321
fgetpos 116 page 4-324
fgets 102 page 4-321
__filbuf 105 page 4-326
finalise 181 page 4-304
floor 152 page 4-310
__flsbuf 109 page 4-327
fmod 153 page 4-310
fopen 87 page 4-315
fprintf 92 page 4-317
_fprintf 27 page 4-319
fputc 103 page 4-322
fputs 104 page 4-322
fread 114 page 4-324
free 67 page 4-330
freopen 88 page 4-316
frexp 143 page 4-310
fscanf 95 page 4-320
fseek 117 page 4-325

P
ro

g
ram

m
er’s support

The shared C library

4-295

name entry no. on page
fsetpos 118 page 4-325
ftell 119 page 4-325
fwrite 115 page 4-324
getc 106 page 4-322
getchar 107 page 4-322
getenv 73 page 4-331
gets 108 page 4-322
gmtime 35 page 4-342
__ignore_signal_handler 125 page 4-313
isalnum 155 page 4-305
isalpha 156 page 4-305
iscntrl 157 page 4-305
isdigit 158 page 4-305
isgraph 159 page 4-305
islower 160 page 4-305
isprint 161 page 4-306

ispunct 162 page 4-306
isspace 163 page 4-306
isupper 164 page 4-306
isxdigit 165 page 4-306
labs 79 page 4-333
localeconv 171 page 4-308
ldexp 144 page 4-310
_ldfp 25 page 4-303
ldiv 80 page 4-333
localtime 36 page 4-342
log 145 page 4-310
log10 146 page 4-310
longjmp 131 page 4-311
_main 18 page 4-301
malloc 68 page 4-330
mblen 172 page 4-333
mbstowcs 175 page 4-334
mbtowc 173 page 4-334
memchr 47 page 4-338
memcmp 44 page 4-337
memcpy 38 page 4-336
_memcpy 169 page 4-304
memmove 39 page 4-336
memset 55 page 4-340
_memset 170 page 4-304
mktime 31 page 4-341

C library functions

4-296

name entry no. on page
modf 147 page 4-310
_old_tmpnam 84 page 4-315
perror 124 page 4-326
pow 148 page 4-310
printf 91 page 4-318
_printf 26 page 4-319
putc 110 page 4-323
putchar 111 page 4-323
puts 112 page 4-323
qsort 76 page 4-332
raise 129 page 4-312
rand 64 page 4-329
_rd1chk 12 page 4-301
_rd2chk 13 page 4-301
_rd4chk 14 page 4-301
realloc 69 page 4-330
remove 81 page 4-314
rename 82 page 4-314
rewind 120 page 4-326
scanf 94 page 4-320
setbuf 89 page 4-317
setjmp 130 page 4-311
setlocale 154 page 4-308
setvbuf 90 page 4-317
signal 128 page 4-311
sin 137 page 4-309
sinh 140 page 4-309
sprintf 93 page 4-319
_sprintf 28 page 4-319
sqrt 149 page 4-310
srand 65 page 4-329
sscanf 96 page 4-320
_stfp 24 page 4-303
strcat 42 page 4-337
strchr 48 page 4-338
strcmp 45 page 4-337
strcoll 178 page 4-337
strcpy 40 page 4-336
strcspn 4 page 4-338
strerror 56 page 4-340
strftime 37 page 4-342
strlen 57 page 4-340

P
ro

g
ram

m
er’s support

The shared C library

4-297

name entry no. on page
strncat 43 page 4-337
strncmp 46 page 4-337
strncpy 41 page 4-336
strpbrk 50 page 4-339
strrchr 51 page 4-339
strspn 52 page 4-339
strstr 53 page 4-339
strtod 61 page 4-327
strtok 54 page 4-339
strtol 62 page 4-328
strtoul 63 page 4-328
strxfrm 177 page 4-338
system 74 page 4-331
tan 138 page 4-309
tanh 141 page 4-309
time 32 page 4-342
tmpfile 83 page 4-314
tmpnam 182 page 4-314
tolower 166 page 4-306
toupper 167 page 4-306
trapHandler 0 page 4-298
uncaughtTrapHandler 1 page 4-298
ungetc 113 page 4-323
unhandledEventHandler 3 page 4-299
vfprintf 98 page 4-321
vprintf 97 page 4-321
_vprintf 100 page 4-319
vsprintf 99 page 4-321
wcstombs 176 page 4-335
wctomb 174 page 4-334
_wr1chk 15 page 4-301
_wr2chk 16 page 4-301
_wr4chk 17 page 4-301
x$divide 8 page 4-300
x$divtest 9 page 4-300
x$multiply 11 page 4-300
x$remainder 10 page 4-300
x$stack_overflow 4 page 4-300
x$stack_overflow_1 5 page 4-300
x$udivide 6 page 4-300
x$uremainder 7 page 4-300

Language support functions

4-298

Language support functions

Entry no. 0: TrapHandler

Entry no. 1: UncaughtTrapHandler

On entry:

R0 = error code
R1 = pointer to register dump

On exit:

Only exits if the trap was not handled

R0 = 0 (indicating that the trap was not handled).

These are the default TrapProc and UncaughtTrapProc handlers used by the C library in
its kernel language description (see the section entitled Interfacing a language run-time
system to the Acorn library kernel on page 4-242).

You may use these entries in your own kernel language description if you wish to have
trap handling similar to that provided by the C library, or you may call these entries
directly from your own trap handler if you wish to perform some pre-processing before
passing the trap on.

The error code on entry is converted to a signal number as follows:

Signal no. Error codes
2 (SIGFPE) &80000020 (Error_DivideByZero),

&80000200 (Error_FPBase) – &800002FF (Error_FPLimit – 1)
3 (SIGILL) &80000000 (Error_IllegalInstruction),

&80000001 (Error_PrefetchAbort),
&80000005 (Error_BranchThroughZero)

5 (SIGSEGV) &80000002 (Error_DataAbort),
&80000003 (Error_AddressException),
&80800EA0 (Error_ReadFail),
&80800EA1 (Error_WriteFail)

7 (SIGSTAK) &80000021 (Error_StackOverflow)
10 (SIGOSERROR) All other errors

It then determines whether a signal handler has been set up for the converted signal
handler; if no such handler has been set up (ie the signal handler is set to __SIG_DFL) it
returns with R0 = 0.

P
ro

g
ram

m
er’s support

The shared C library

4-299

Otherwise it calls the C library function raise with the derived signal number. If the
raise function returns (ie the signal handler returns) a postmortem stack backtrace is
generated.

Entry no. 2: EventHandler

Entry no. 3: UnhandledEventHandler

On entry:

R0 = event code
R1 = pointer to register dump

On exit:

R0 = 1 if the event was handled, else 0

These are the default EventProc and UnhandledEventProc handlers used by the
C library in its kernel language description (see the section entitled Interfacing a
language run-time system to the Acorn library kernel on page 4-242).

You may use these entries in your own kernel language description if you wish to have
event handling similar to that provided by the C library or you may call these entries
directly from your own event handler if you wish to perform some pre-processing before
passing the event on.

The event code on entry is either a RISC OS event number as described in the chapter
entitled Events on page 1-147, or –1 to indicate an escape event.

All events codes except –1 are currently ignored. The handler simply returns with R0 =
0 if R0 ≠ –1 on entry.

EventHandler then determines whether a SIGINT signal handler has been set up. If no
handler is set up (ie the signal handler is set to __SIG_DFL) EventHandler returns with
R0 = 0.

The C library function raise is then called with the signal number SIGINT. Note:
raise is always called by UnhandledEventHandler even if the signal handler is set to
__SIG_DFL.

If the signal handler returns the event handler returns with R0 = 1.

Certain sections of the C library are non-reentrant. When these sections are entered they
set the variable _interrupts_off at offset 964 in the library statics to 1.

EventHandler and UnhandledEventHandler check this variable and, if it is set, they set
the variable _saved_interrupt at offset 968 in the library statics to SIGINT and return
immediately with R0 = 1 and without calling raise.

Language support functions

4-300

When the non-reentrant sections of code finish they reset the variable _interrupts_off
and check the variable _saved_interrupts. If _saved_interrupts is non-zero it is reset to
zero and the signal number stored in _saved_interrupts (before it was reset to 0) is
raised.

Entry no. 4: x$stack_overflow

This entry branches directly to _kernel_stkovf_split_0frame which is described in the
section entitled How the run-time stack is managed and extended on page 4-243.

Entry no. 5: x$stack_overflow_1

This entry branches directly to _kernel_stkovf_split which is described in the section
entitled How the run-time stack is managed and extended on page 4-243.

Entry no. 6: x$udivide

This entry branches directly to _kernel_udiv described on page 4-286.

Entry no. 7: x$uremainder

This entry branches directly to _kernel_urem described on page 4-287.

Entry no. 8: x$divide

This entry branches directly to _kernel_sdiv described on page 4-287.

Entry no. 9: x$divtest

This function is used by the C compiler to test for division by zero when the result of the
division is discarded.

If R0 is non-zero the function simply returns. Otherwise it generates a Divide by
zero error.

Entry no. 10: x$remainder

This entry branches directly to _kernel_srem described on page 4-287.

Entry no. 11: x$multiply

On entry:

R0 = multiplicand
R1 = multiplier

P
ro

g
ram

m
er’s support

The shared C library

4-301

On exit:

R0 = R0 × R1
R1, R2 scrambled.

Entry no. 12: _rd1chk

Entry no. 13: _rd2chk

Entry no. 14: _rd4chk

The functions _rd1chk, _rd2chk and _rd4chk check that the value of R0 passed to
them is a valid address in the application space (&8000 ≤ R0 < &1000000). _rd2chk and
_rd4chk also check that the value is properly aligned for a half-word / word access
respectively.

If the value of R0 is a valid address the function just returns, otherwise it generates an
Illegal read error.

These calls are used by the C compiler when compiling with memory checking enabled.

Entry no. 15: _wr1chk

Entry no. 16: _wr2chk

Entry no. 17: _wr4chk

The functions _wr1chk, _wr2chk and _wr4chk check that the value of R0 passed to
them is a valid address in the application space (&8000 ≤ R0 < &1000000). _rd2chk and
_rd4chk also check that the value is properly aligned for a half-word / word access
respectively.

If the value of R0 is a valid address the function just returns, otherwise it generates an
Illegal write error.

These calls are used by the C compiler when compiling with memory checking enabled.

Entry no. 18: _main

On entry:

R0 = pointer to copy of command line (the command line pointed to by R0 on return
from OS_GetEnv should be copied to another buffer before calling _main; this
can be done using _kernel_command_string, detailed on page 4-281).

R1 = address of routine at which execution will continue when _main has finished.

Language support functions

4-302

The following entry and exit conditions apply for this routine:

On entry:

R0 = count of argument words.
R1 = pointer to block containing R0 + n words, each word of which

points to a zero terminated string which is the nth word in the
command line passed to _main. The last word in the block
contains 0.

On exit:

R0 = exit condition (0 = success, else failure)

For C programs this argument will generally point at main.

On exit:

Does not return. Control is regained through the R1 argument on entry.

This function parses the command line pointed to by R0 and then calls the function
pointed to by R1.

For C programs this function is called by the C library as a precursor to calling main to
provide the C entry / exit requirements.

Entry no. 19: void _exit(void)

This function is identical in behaviour to the C library function exit described on
page 4-331.

Entry no. 20: void _clib_initialise(void)

Performs initialisation required by the C library before other C library functions can be
called. You may call kernel library functions without first making this call. You should
call this function in your initialisation entry for a module and in your InitProc procedure
for applications or modules that have a run entry. For a description of InitProc
procedures, see page 4-257. The two programming examples on page 4-264 and
page 4-266 show how _clib_initialise should be called for an application and a module
respectively.

P
ro

g
ram

m
er’s support

The shared C library

4-303

Entry no. 21: void _backtrace(int why, int *address, _kernel_unwindblock
*uwb)

Displays a stack backtrace and exits with the exit code 1.

The _kernel_unwindblock structure is described with the _kernel_unwind function on
page 4-281. The argument why is an error code, if why is Error_ReadFail (&80800ea0)
or Error_WriteFail (&80800ea1) the address given by the address argument is
displayed at the top of the backtrace, otherwise the message postmortem
requested is displayed.

Entry no. 22: _count

Entry no. 23: _count1

These entries are used by the C compiler when generating profile code.

Both _count and _count1 increment the word pointed to by R14 (after stripping the
status bits); this will generally be the word immediately following a BL instruction to
the relevant routine. _count then returns to the word immediately following the
incremented word, _count1 returns to the word after that (the second word is used by the
C compiler to record the position in a source file that this count-point refers to).

 BL _count
 DCD 0 ; This word incremented each time _count is called
 ... ; Control returns here

 BL _count1
 DCD 0 ; This word incremented each time _count1 is called
 DCD filepos ; Offset into source file
 ... ; Control returns here

Entry no. 24: void _stfp(double d, void *x)

This function converts the double FP no. d to packed decimal and stores it at address x.
Note that the double d is passed in R0, R1 (R0 containing the first word when a double
is stored in memory, R1 containing the second word), the argument x is passed in R2.
Three words should be reserved at x for the packed decimal number.

Entry no. 25: double _ldfp(void *x)

This function converts the packed decimal number stored at x to a double FP no. and
returns this in F0.

Language support functions

4-304

Entry no. 169: void _memcpy(int *dest, int *source, int n)

This function performs a similar function to memcpy except that dest and source
must be word aligned and the byte count n must be a multiple of 4.

It is used by the C compiler when copying structures.

Entry no. 170: void _memset(int *dest, int w, int n)

This function performs a similar function to memset except that dest must be word
aligned, the byte value to be set must be copied into each of the four bytes of w (i.e. to
initialise memory to &01 you must use &01010101 in w) and the byte count n must be a
multiple of 4.

It is used by the C compiler when initialising structures.

Entry no. 179: _clib_finalisemodule

On entry:

R0 = private word pointer

On exit:

Block pointed to by private word is freed

This entry must be called in the finalisation code of a module which uses the shared
C library. Before calling it you must set up the static data relocation pointers on the base
of the SVC stack and initialise the SL register to point to the base of the SVC stack +
512. The old static data relocation pointers on the base of the SVC stack must be saved
around this call.

Entry no. 180: char *_clib_version(void)

This function returns a string giving version information on the shared C library.

Entry no. 181: Finalise

This function calls all the registered atexit functions and then performs some internal
finalisation of the alloc and io subsystems.

This entry is called automatically by the C library on finalisation; you should not call it
in your code.

P
ro

g
ram

m
er’s support

The shared C library

4-305

assert
The assert module provides one function which is useful during program testing.

Entry no. 168: void __assert(char *reason, char *file, int line)

Displays the message:

*** assertion failed: ’reason’, file ’file’, line ’line’

and raises SIGABRT.

This function is generally used within a macro which calls __assert if a specified
condition is false.

ctype
The ctype module provides several functions useful for testing and mapping
characters. In all cases the argument is an int, the value of which is representable as an
unsigned char or equal to the value –1. If the argument has any other value, the
behaviour is undefined.

Entry no. 155: int isalnum(int c)

Returns true if c is alphabetic or numeric

Entry no. 156: int isalpha(int c)

Returns true if c is alphabetic

Entry no. 157: int iscntrl(int c)

Returns true if c is a control character (in the ASCII locale)

Entry no. 158: int isdigit(int c)

Returns true if c is a decimal digit

Entry no. 159: int isgraph(int c)

Returns true if c is any printable character other than space

Entry no. 160: int islower(int c)

Returns true if c is a lower-case letter

ctype

4-306

Entry no. 161: int isprint(int c)

Returns true if c is a printable character (in the ASCII locale this means &20 (space) →
&7E (tilde) inclusive).

Entry no. 162: int ispunct(int c)

Returns true if c is a printable character other than a space or alphanumeric character

Entry no. 163: int isspace(int c)

Returns true if c is a white space character viz: space, newline, return, linefeed, tab or
vertical tab

Entry no. 164: int isupper(int c)

Returns true if c is an upper-case letter

Entry no. 165: int isxdigit(int c)

Returns true if c is a hexadecimal digit, ie in 0…9, a…f, or A…F

Entry no. 166: int tolower(int c)

Forces c to lower case if it is an upper-case letter, otherwise returns the original value

Entry no. 167: int toupper(int c)

Forces c to upper case if it is a lower-case letter, otherwise returns the original value

P
ro

g
ram

m
er’s support

The shared C library

4-307

errno
The word variable errno at offset 800 in the library statics is set whenever one of the
error conditions listed below arises.

EDOM (errno=1)

If a domain error occurs (an input argument is outside the domain over which the
mathematical function is defined) the integer expression errno acquires the value of
the macro EDOM, and HUGE_VAL is returned. EDOM may be used by non-mathematical
functions.

ERANGE (errno=2)

A range error occurs if the result of a function cannot be represented as a double value.
If the result overflows (the magnitude of the result is so large that it cannot be
represented in an object of the specified type), the function returns the value of the
macro HUGE_VAL, with the same sign as the correct value of the function; the integer
expression errno acquires the value of the macro ERANGE. If the result underflows
(the magnitude of the result is so small that it cannot be represented in an object of the
specified type), the function returns zero; the integer expression errno acquires the
value of the macro ERANGE. ERANGE may be used by non-mathematical functions.

ESIGNUM (errno=3)

If an unrecognised signal is caught by the default signal handler, errno is set to
ESIGNUM.

locale

4-308

locale
This module handles national characteristics, such as the different orderings
month-day-year (USA) and day-month-year (UK).

Entry no. 154: char *setlocale(int category, const char *locale)

Selects the appropriate part of the program’s locale as specified by the category and
locale arguments. The setlocale function may be used to change or query the
program’s entire current locale or portions thereof. Locale information is divided into
the following types:

Type Value Description
LC_COLLATE (1) string collation
LC_CTYPE (2) character type
LC_MONETARY (4) monetary formatting
LC_NUMERIC (8) numeric string formatting
LC_TIME (16) time formatting
LC_ALL (31) entire locale

The locale string specifies which locale set of information is to be used. For example,

setlocale(LC_MONETARY,"uk")

would insert monetary information into the lconv structure. To query the current locale
information, set the locale string to null and read the string returned.

Entry no. 171: struct lconv *localeconv(void)

Sets the components of an object with type struct lconv with values appropriate for the
formatting of numeric quantities (monetary and otherwise) according to the rules of the
current locale. The members of the structure with type char * are strings, any of which
(except decimal_point) can point to "", to indicate that the value is not available in
the current locale or is of zero length. The members with type char are non-negative
numbers, any of which can be CHAR_MAX to indicate that the value is not available in
the current locale. The members included are described above.

localeconv returns a pointer to the filled in object. The structure pointed to by the
return value will not be modified by the program, but may be overwritten by a
subsequent call to the localeconv function. In addition, calls to the setlocale
function with categories LC_ALL, LC_MONETARY, or LC_NUMERIC may overwrite
the contents of the structure.

math
This module contains 22 mathematical functions. All return the type double.

P
ro

g
ram

m
er’s support

The shared C library

4-309

Entry no. 132: double acos(double x)

Returns arc cosine of x. A domain error occurs for arguments not in the range –1 to 1

Entry no. 133: double asin(double x)

Returns arc sine of x. A domain error occurs for arguments not in the range –1 to 1

Entry no. 134: double atan(double x)

Returns arc tangent of x

Entry no. 135: double atan2(double x, double y)

Returns arc tangent of x/y

Entry no. 136: double cos(double x)

Returns cosine of x (measured in radians)

Entry no. 137: double sin(double x)

Returns sine of x (measured in radians)

Entry no. 138: double tan(double x)

Returns tangent of x (measured in radians)

Entry no. 139: double cosh(double x)

Returns hyperbolic cosine of x

Entry no. 140: double sinh(double x)

Returns hyperbolic sine of x

Entry no. 141: double tanh(double x)

Returns hyperbolic tangent of x

Entry no. 142: double exp(double x)

Returns exponential function of x

math

4-310

Entry no. 143: double frexp(double x, int *exp)

Returns the value x, such that x is a double with magnitude in the interval 0.5 to 1.0 or
zero, and value equals x times 2 raised to the power *exp

Entry no. 144: double ldexp(double x, int exp)

Returns x times 2 raised to the power of exp

Entry no. 145: double log(double x)

Returns natural logarithm of x

Entry no. 146: double log10(double x)

Returns log to the base 10 of x

Entry no. 147: double modf(double x, double *iptr)

Returns signed fractional part of x. Stores integer part of x in object pointed to by iptr.

Entry no. 148: double pow(double x, double y)

Returns x raised to the power of y

Entry no. 149: double sqrt(double x)

Returns positive square root of x

Entry no. 150: double ceil(double x)

Returns smallest integer not less than x (ie rounding up)

Entry no. 151: double fabs(double x)

Returns absolute value of x

Entry no. 152: double floor(double x)

Returns largest integer not greater than x (ie rounding down)

Entry no. 153: double fmod(double x, double y)

Returns floating-point remainder of x/y

P
ro

g
ram

m
er’s support

The shared C library

4-311

setjmp
This module provides two functions for bypassing the normal function call and return
discipline (useful for dealing with unusual conditions encountered in a low-level
function of a program).

Entry no. 130: int setjmp(jmp_buf env)

The calling environment is saved in env, for later use by the longjmp function. If the
return is from a direct invocation, the setjmp function returns the value zero. If the
return is from a call to the longjmp function, the setjmp function returns a non-zero
value.

Entry no. 131: void longjmp(jmp_buf env, int val)

The environment saved in env by the most recent call to setjmp is restored. If there
has been no such call, or if the function containing the call to setjmp has terminated
execution (eg with a return statement) in the interim, the behaviour is undefined. All
accessible objects have values as at the time longjmp was called, except that the
values of objects of automatic storage duration that do not have volatile type and that
have been changed between the setjmp and longjmp calls are indeterminate.

As it bypasses the usual function call and return mechanism, the longjmp function
executes correctly in contexts of interrupts, signals and any of their associated functions.
However, if the longjmp function is invoked from a nested signal handler (that is,
from a function invoked as a result of a signal raised during the handling of another
signal), the behaviour is undefined.

After longjmp is completed, program execution continues as if the corresponding call
to setjmp had just returned the value specified by val. The longjmp function
cannot cause setjmp to return the value 0; if val is 0, setjmp returns the value 1.

signal
Signal provides two functions.

typedef void Handler(int);

Entry no. 128: Handler *signal(int, Handler *);

The following signal handlers are defined:

Type value description
SIG_DFL (Handler*)-1 default routine
SIG_IGN (Handler*)-2 ignore signal routine
SIG_ERR (Handler*)-3 dummy routine to flag error return from signal

signal

4-312

The following signals are defined:

Signal value description
SIGABRT 1 abort (ie call to abort())
SIGFPE 2 arithmetic exception
SIGILL 3 illegal instruction
SIGINT 4 attention request from user
SIGSEGV 5 bad memory access
SIGTERM 6 termination request
SIGSTAK 7 stack overflow
SIGUSR1 8 user definable
SIGUSR2 9 user definable
SIGOSERROR 10 operating system error

The ‘signal’ function chooses one of three ways in which receipt of the signal number
sig is to be subsequently handled. If the value of func is SIG_DFL, default handling
for that signal will occur. If the value of func is SIG_IGN, the signal will be ignored.
Otherwise func points to a function to be called when that signal occurs.

When a signal occurs, if func points to a function, first the equivalent of
signal(sig, SIG_DFL) is executed. (If the value of sig is SIGILL, whether the
reset to SIG_DFL occurs is implementation-defined (under RISC OS the reset does
occur)). Next, the equivalent of (*func)(sig); is executed. The function may
terminate by calling the abort, exit or longjmp function. If func executes a return
statement and the value of sig was SIGFPE or any other implementation-defined value
corresponding to a computational exception, the behaviour is undefined. Otherwise, the
program will resume execution at the point it was interrupted.

If the signal occurs other than as a result of calling the abort or raise function, the
behaviour is undefined if the signal handler calls any function in the standard library
other than the signal function itself or refers to any object with static storage duration
other than by assigning a value to a volatile static variable of type sig_atomic_t. At
program start-up, the equivalent of signal(sig, SIG_IGN) may be executed for
some signals selected in an implementation defined manner (under RISC OS this does
not occur); the equivalent of signal(sig, SIG_DFL) is executed for all other
signals defined by the implementation.

If the request can be honoured, the signal function returns the value of func for most
recent call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is
returned and the integer expression errno is set to indicate the error.

Entry no. 129: int raise(int sig)

Sends the signal sig to the executing program. Returns zero if successful, non-zero if
unsuccessful.

P
ro

g
ram

m
er’s support

The shared C library

4-313

Entry no. 125: void __ignore_signal_handler(int sig)

This function is for compatibility with older versions of the shared C library stubs and
should not be called in your code.

Entry no. 126: void __error_signal_marker(int sig)

This function is for compatibility with older versions of the shared C library stubs and
should not be called in your code.

Entry no. 127: void __default_signal_handler(int sig)

This function is for compatibility with older versions of the shared C library stubs and
should not be called in your code.

stdio
stdio provides many functions for performing input and output. For a discussion on
Streams and Files refer to sections 4.9.2 and 4.9.3 in the ANSI standard.

The following two types are used by the stdio module:

typedef int fpos_t;

fpos_t is an object capable of recording all information needed to specify
uniquely every position within a file.

typedef struct FILE{
 unsigned char *_ptr; /* pointer to IO buffer */
 int _icnt; /* character count for input */
 int _ocnt; /* character count for output */
 int _flag; /* flags, see below */
 int internal[6];
}FILE;

The following flags are defined in the flags field above:

Flag Bit mask Description
_IOEOF &040 end-of-file reached
_IOERR &080 error occurred on stream
_IOFBF &100 fully buffered IO
_IOLBF &200 line buffered IO
_IONBF &400 unbuffered IO

stdio

4-314

FILE is an object capable of recording all information needed to control a stream, such
as its file position indicator, a pointer to its associated buffer, an error indicator that
records whether a read/write error has occurred and an end-of-file indicator that records
whether the end-of-file has been reached.

Entry no. 81: int remove(const char *filename)

Causes the file whose name is the string pointed to by filename to be removed.
Subsequent attempts to open the file will fail, unless it is created anew. If the file is open,
the behaviour of the remove function is implementation-defined (under RISC OS the
operation fails).

Returns: zero if the operation succeeds, non-zero if it fails.

Entry no. 82: int rename(const char *old, const char *new)

Causes the file whose name is the string pointed to by old to be henceforth known by
the name given by the string pointed to by new. The file named old is effectively
removed. If a file named by the string pointed to by new exists prior to the call of the
rename function, the behaviour is implementation-defined (under RISC OS, the
operation fails).

Returns: zero if the operation succeeds, non-zero if it fails, in which case if the file
existed previously it is still known by its original name.

Entry no. 83: FILE *tmpfile(void)

Creates a temporary binary file that will be automatically removed when it is closed or
at program termination. The file is opened for update.

Returns: a pointer to the stream of the file that it created. If the file cannot be created, a
null pointer is returned.

Entry no. 182: char *tmpnam(char *s)

Generates a string that is not the same as the name of an existing file. The tmpnam
function generates a different string each time it is called, up to TMP_MAX times. If it is
called more than TMP_MAX times, the behaviour is implementation-defined (under
RISC OS the algorithm for the name generation works just as well after tmpnam has
been called more than TMP_MAX times as before; a name clash is impossible in any
single half year period).

P
ro

g
ram

m
er’s support

The shared C library

4-315

Returns: If the argument is a null pointer, the tmpnam function leaves its result in an
internal static object and returns a pointer to that object. Subsequent calls to the tmpnam
function may modify the same object. If the argument is not a null pointer, it is assumed
to point to an array of at least L_tmpnam characters; the tmpnam function writes its
result in that array and returns the argument as its value.

Entry no. 84: char *__old_tmpnam(char *s)

This function is included for backwards compatibility for binaries linked with older
library stubs. You should not call this function in your code, call tmpnam (Entry no. 182)
instead.

Entry no. 85: int fclose(FILE *stream)

Causes the stream pointed to by stream to be flushed and the associated file to be
closed. Any unwritten buffered data for the stream are delivered to the host environment
to be written to the file; any unread buffered data are discarded. The stream is
disassociated from the file. If the associated buffer was automatically allocated, it is
deallocated.

Returns: zero if the stream was successfully closed, or EOF if any errors were detected
or if the stream was already closed.

Entry no. 86: int fflush(FILE *stream)

If the stream points to an output or update stream in which the most recent operation was
output, the fflush function causes any unwritten data for that stream to be delivered to
the host environment to be written to the file. If the stream points to an input or update
stream, the fflush function undoes the effect of any preceding ungetc operation on
the stream.

Returns: EOF if a write error occurs.

Entry no. 87: FILE *fopen(const char *filename, const char *mode)

Opens the file whose name is the string pointed to by filename, and associates a
stream with it. The argument mode points to a string beginning with one of the
following sequences:

r open text file for reading
w create text file for writing, or truncate to zero length
a append; open text file or create for writing at eof
rb open binary file for reading
wb create binary file for writing, or truncate to zero length
ab append; open binary file or create for writing at eof
r+ open text file for update (reading and writing)

stdio

4-316

w+ create text file for update, or truncate to zero length
a+ append; open text file or create for update, writing at eof
r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ create binary file for update, or truncate to zero length
a+b or ab+ append; open binary file or create for update, writing at

eof

● Opening a file with read mode (r as the first character in the mode argument) fails
if the file does not exist or cannot be read.

● Opening a file with append mode (a as the first character in the mode argument)
causes all subsequent writes to be forced to the current end of file, regardless of
intervening calls to the fseek function.

● In some implementations, opening a binary file with append mode (b as the second
or third character in the mode argument) may initially position the file position
indicator beyond the last data written, because of null padding (but not under
RISC OS).

● When a file is opened with update mode (+ as the second or third character in the
mode argument), both input and output may be performed on the associated stream.
However, output may not be directly followed by input without an intervening call
to the fflush function or to a file positioning function (fseek, fsetpos, or
rewind), nor may input be directly followed by output without an intervening call
to the fflush function or to a file positioning function, unless the input operation
encounters end-of-file.

● Opening a file with update mode may open or create a binary stream in some
implementations (but not under RISC OS). When opened, a stream is fully buffered
if and only if it does not refer to an interactive device. The error and end-of-file
indicators for the stream are cleared.

Returns: a pointer to the object controlling the stream. If the open operation fails,
fopen returns a null pointer.

Entry no. 88: FILE *freopen(const char *filename, const char *mode,
 FILE *stream)

Opens the file whose name is the string pointed to by filename and associates the
stream pointed to by stream with it. The mode argument is used just as in the fopen
function. The freopen function first attempts to close any file that is associated with
the specified stream. Failure to close the file successfully is ignored. The error and
end-of-file indicators for the stream are cleared.

Returns: a null pointer if the operation fails. Otherwise, freopen returns the value of
the stream.

P
ro

g
ram

m
er’s support

The shared C library

4-317

Entry no. 89: void setbuf(FILE *stream, char *buf)

Except that it returns no value, the setbuf function is equivalent to the setvbuf
function invoked with the values _IOFBF for mode and BUFSIZ for size, or if buf is
a null pointer, with the value _IONBF for mode.

Returns: no value.

Entry no. 90: int setvbuf(FILE *stream, char *buf, int mode, size_t size)

This may be used after the stream pointed to by stream has been associated with an
open file but before it is read or written. The argument mode determines how stream
will be buffered, as follows:

● _IOFBF causes input/output to be fully buffered.

● _IOLBF causes output to be line buffered (the buffer will be flushed when a
newline character is written, when the buffer is full, or when interactive input is
requested).

● _IONBF causes input/output to be completely unbuffered.

If buf is not the null pointer, the array it points to may be used instead of an
automatically allocated buffer (the buffer must have a lifetime at least as great as the
open stream, so the stream should be closed before a buffer that has automatic storage
duration is deallocated upon block exit). The argument size specifies the size of the
array. The contents of the array at any time are indeterminate.

Returns: zero on success, or non-zero if an invalid value is given for mode or size, or if
the request cannot be honoured.

Entry no. 92: int fprintf(FILE *stream, const char *format, …)

Writes output to the stream pointed to by stream, under control of the string pointed to
by format that specifies how subsequent arguments are converted for output. If there
are insufficient arguments for the format, the behaviour is undefined. If the format is
exhausted while arguments remain, the excess arguments are evaluated but otherwise
ignored. The fprintf function returns when the end of the format string is reached.
The format must be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: ordinary multibyte
characters (not %), which are copied unchanged to the output stream; and conversion
specifiers, each of which results in fetching zero or more subsequent arguments. Each
conversion specification is introduced by the character %. For a complete description of
the available conversion specifiers refer to section 4.9.6.1 in the ANSI standard. The
minimum value for the maximum number of characters that can be produced by any
single conversion is at least 509.

stdio

4-318

A brief and incomplete description of conversion specifications is:

[flags][field width][.precision]specifier-char

flags is most commonly -, indicating left justification of the output item
within the field. If omitted, the item will be right justified.

field width is the minimum width of field to use. If the formatted item is longer, a
bigger field will be used; otherwise, the item will be right (left)
justified in the field.

precision is the minimum number of digits to print for a d, i, o, u, x or X
conversion, the number of digits to appear after the decimal digit for
e, E and f conversions, the maximum number of significant digits for
g and G conversions, or the maximum number of characters to be
written from strings in an s conversion.

Either of both of field width and precision may be *, indicating that the value
is an argument to printf.

The specifier chars are:

d, i int printed as signed decimal
o, u, x, X unsigned int value printed as unsigned octal, decimal or

hexadecimal
f double value printed in the style [-]ddd.ddd
e, E double value printed in the style [-]d.ddd…e±dd
g, G double printed in f or e format, whichever is more

appropriate
c int value printed as unsigned char
s char * value printed as a string of characters
p void * argument printed as a hexadecimal address
% write a literal %

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

Entry no. 91: int printf(const char *format, …)

Equivalent to fprintf with the argument stdout interposed before the arguments to
printf.

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

P
ro

g
ram

m
er’s support

The shared C library

4-319

Entry no. 93: int sprintf(char *s, const char *format, …)

Equivalent to fprintf, except that the argument s specifies an array into which the
generated output is to be written, rather than to a stream. A null character is written at the
end of the characters written; it is not counted as part of the returned sum.

Returns: the number of characters written to the array, not counting the terminating null
character.

Entry no. 26: int _printf(const char *format, …)

This function is identical in function to printf except that it does not handle floating
point arguments.

It is used for space optimisation by the C compiler when using the non shared library and
when a literal format string does not contain any floating point conversions.

It is included in the shared library for compatibility with the non shared library.

Entry no. 27: int _fprintf(FILE *stream, const char *format, …)

This function is identical in function to fprintf except that it does not handle floating
point arguments.

It is used for space optimisation by the C compiler when using the non shared library and
when a literal format string does not contain any floating point conversions.

It is included in the shared library for compatibility with the non shared library.

Entry no. 28: int _sprintf(char *s, const char *format, …)

This function is identical in function to sprintf except that it does not handle floating
point arguments.

It is used for space optimisation by the C compiler when using the non shared library and
when a literal format string does not contain any floating point conversions.

It is included in the shared library for compatibility with the non shared library.

Entry no. 100: int _vfprintf(FILE *stream, const char *format, va_list arg)

This function is identical in function to vfprintf except that it does not handle floating
point arguments.

It is used for space optimisation by the C compiler when using the non shared library and
when a literal format string does not contain any floating point conversions.

It is included in the shared library for compatibility with the non shared library.

stdio

4-320

Entry no. 95: int fscanf(FILE *stream, const char *format, …)

Reads input from the stream pointed to by stream, under control of the string pointed
to by format that specifies the admissible input sequences and how they are to be
converted for assignment, using subsequent arguments as pointers to the objects to
receive the converted input. If there are insufficient arguments for the format, the
behaviour is undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated but otherwise ignored. The format is composed of zero or more
directives, one or more white-space characters, an ordinary character (not %), or a
conversion specification. Each conversion specification is introduced by the character
%. For a description of the available conversion specifiers refer to section 4.9.6.2 in the
ANSI standard, or to any of the references listed in the chapter entitled Introduction on
page 1 of the Acorn Desktop C Manual. A brief list is given above, under the entry for
fprintf.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an
input failure; otherwise, unless execution of the current directive is terminated with a
matching failure, execution of the following directive (if any) is terminated with an input
failure.

If conversions terminate on a conflicting input character, the offending input character is
left unread in the input stream. Trailing white space (including newline characters) is left
unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than via the %n directive.

Returns: the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, the fscanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early conflict between an
input character and the format.

Entry no. 94: int scanf(const char *format, …)

Equivalent to fscanf with the argument stdin interposed before the arguments to
scanf.

Returns: the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, the scanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early matching failure.

Entry no. 96: int sscanf(const char *s, const char *format, …)

Equivalent to fscanf except that the argument s specifies a string from which the
input is to be obtained, rather than from a stream. Reaching the end of the string is
equivalent to encountering end-of-file for the fscanf function.

P
ro

g
ram

m
er’s support

The shared C library

4-321

Returns: the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, the scanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early matching failure.

Entry no. 97: int vprintf(const char *format, va_list arg)

Equivalent to printf, with the variable argument list replaced by arg, which has been
initialised by the va_start macro (and possibly subsequent va_arg calls). The
vprintf function does not invoke the va_end function.

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

Entry no. 98: int vfprintf(FILE *stream, const char *format, va_list arg)

Equivalent to fprintf, with the variable argument list replaced by arg, which has
been initialised by the va_start macro (and possibly subsequent va_arg calls). The
vfprintf function does not invoke the va_end function.

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

Entry no. 99: int vsprintf(char *s, const char *format, va_list arg)

Equivalent to sprintf, with the variable argument list replaced by arg, which has
been initialised by the va_start macro (and possibly subsequent va_arg calls). The
vsprintf function does not invoke the va_end function.

Returns: the number of characters written in the array, not counting the terminating null
character.

Entry no. 101: int fgetc(FILE *stream)

Obtains the next character (if present) as an unsigned char converted to an int, from the
input stream pointed to by stream, and advances the associated file position indicator
(if defined).

Returns: the next character from the input stream pointed to by stream. If the stream is
at end-of-file, the end-of-file indicator is set and fgetc returns EOF. If a read error
occurs, the error indicator is set and fgetc returns EOF.

Entry no. 102: char *fgets(char *s, int n, FILE *stream)

Reads at most one less than the number of characters specified by n from the stream
pointed to by stream into the array pointed to by s. No additional characters are read
after a newline character (which is retained) or after end-of-file. A null character is
written immediately after the last character read into the array.

stdio

4-322

Returns: s if successful. If end-of-file is encountered and no characters have been read
into the array, the contents of the array remain unchanged and a null pointer is returned.
If a read error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

Entry no. 103: int fputc(int c, FILE *stream)

Writes the character specified by c (converted to an unsigned char) to the output stream
pointed to by stream, at the position indicated by the associated file position indicator
(if defined), and advances the indicator appropriately. If the file cannot support
positioning requests, or if the stream was opened with append mode, the character is
appended to the output stream.

Returns: the character written. If a write error occurs, the error indicator is set and
fputc returns EOF.

Entry no. 104: int fputs(const char *s, FILE *stream)

Writes the string pointed to by s to the stream pointed to by stream. The terminating
null character is not written.

Returns: EOF if a write error occurs; otherwise it returns a non-negative value.

Entry no. 106: int getc(FILE *stream)

Equivalent to fgetc except that it may be (and is under RISC OS) implemented as a
macro. stream may be evaluated more than once, so the argument should never be an
expression with side effects.

Returns: the next character from the input stream pointed to by stream. If the stream is
at end-of-file, the end-of-file indicator is set and getc returns EOF. If a read error
occurs, the error indicator is set and getc returns EOF.

Entry no. 107: int getchar(void)

Equivalent to getc with the argument stdin.

Returns: the next character from the input stream pointed to by stdin. If the stream is
at end-of-file, the end-of-file indicator is set and getchar returns EOF. If a read error
occurs, the error indicator is set and getchar returns EOF.

Entry no. 108: char *gets(char *s)

Reads characters from the input stream pointed to by stdin into the array pointed to by
s, until end-of-file is encountered or a newline character is read. Any newline character
is discarded, and a null character is written immediately after the last character read into
the array.

P
ro

g
ram

m
er’s support

The shared C library

4-323

Returns: s if successful. If end-of-file is encountered and no characters have been read
into the array, the contents of the array remain unchanged and a null pointer is returned.
If a read error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

Entry no. 110: int putc(int c, FILE *stream)

Equivalent to fputc except that it may be (and is under RISC OS) implemented as a
macro. stream may be evaluated more than once, so the argument should never be an
expression with side effects.

Returns: the character written. If a write error occurs, the error indicator is set and putc
returns EOF.

Entry no. 111: int putchar(int c)

Equivalent to putc with the second argument stdout.

Returns: the character written. If a write error occurs, the error indicator is set and putc
returns EOF.

Entry no. 112: int puts(const char *s)

Writes the string pointed to by s to the stream pointed to by stdout, and appends a
newline character to the output. The terminating null character is not written.

Returns: EOF if a write error occurs; otherwise it returns a non-negative value.

Entry no. 113: int ungetc(int c, FILE *stream)

Pushes the character specified by c (converted to an unsigned char) back onto the input
stream pointed to by stream. The character will be returned by the next read on that
stream. An intervening call to the fflush function or to a file positioning function
(fseek, fsetpos, rewind) discards any pushed-back characters. The external
storage corresponding to the stream is unchanged. One character pushback is
guaranteed. If the unget function is called too many times on the same stream without
an intervening read or file positioning operation on that stream, the operation may fail. If
the value of c equals that of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to the ungetc function clears the end-of-file indicator. The value of
the file position indicator after reading or discarding all pushed-back characters will be
the same as it was before the characters were pushed back. For a text stream, the value
of the file position indicator after a successful call to the ungetc function is

stdio

4-324

unspecified until all pushed-back characters are read or discarded. For a binary stream,
the file position indicator is decremented by each successful call to the ungetc
function; if its value was zero before a call, it is indeterminate after the call.

Returns: the character pushed back after conversion, or EOF if the operation fails.

Entry no. 114: size_t fread(void *ptr, size_t size, size_t nmemb, FILE
*stream)

Reads into the array pointed to by ptr, up to nmemb members whose size is specified
by size, from the stream pointed to by stream. The file position indicator (if defined)
is advanced by the number of characters successfully read. If an error occurs, the
resulting value of the file position indicator is indeterminate. If a partial member is read,
its value is indeterminate. The ferror or feof function shall be used to distinguish
between a read error and end-of-file.

Returns: the number of members successfully read, which may be less than nmemb if a
read error or end-of-file is encountered. If size or nmemb is zero, fread returns zero
and the contents of the array and the state of the stream remain unchanged.

Entry no. 115: size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE
*stream)

Writes, from the array pointed to by ptr up to nmemb members whose size is specified
by size, to the stream pointed to by stream. The file position indicator (if defined) is
advanced by the number of characters successfully written. If an error occurs, the
resulting value of the file position indicator is indeterminate.

Returns: the number of members successfully written, which will be less than nmemb
only if a write error is encountered.

Entry no. 116: int fgetpos(FILE *stream, fpos_t *pos)

Stores the current value of the file position indicator for the stream pointed to by
stream in the object pointed to by pos. The value stored contains unspecified
information usable by the fsetpos function for repositioning the stream to its position
at the time of the call to the fgetpos function.

Returns: zero, if successful. Otherwise non-zero is returned and the integer expression
errno is set to an implementation-defined non-zero value (under RISC OS fgetpos
cannot fail).

P
ro

g
ram

m
er’s support

The shared C library

4-325

Entry no. 117: int fseek(FILE *stream, long int offset, int whence)

Sets the file position indicator for the stream pointed to by stream. For a binary
stream, the new position is at the signed number of characters specified by offset
away from the point specified by whence. The specified point is the beginning of the
file for SEEK_SET, the current position in the file for SEEK_CUR, or end-of-file for
SEEK_END. A binary stream need not meaningfully support fseek calls with a
whence value of SEEK_END, though the Acorn implementation does. For a text
stream, offset is either zero or a value returned by an earlier call to the ftell
function on the same stream; whence is then SEEK_SET. The Acorn implementation
also allows a text stream to be positioned in exactly the same manner as a binary stream,
but this is not portable. The fseek function clears the end-of-file indicator and undoes
any effects of the ungetc function on the same stream. After an fseek call, the next
operation on an update stream may be either input or output.

Returns: non-zero only for a request that cannot be satisfied.

Entry no. 118: int fsetpos(FILE *stream, const fpos_t *pos)

Sets the file position indicator for the stream pointed to by stream according to the
value of the object pointed to by pos, which is a value returned by an earlier call to the
fgetpos function on the same stream. The fsetpos function clears the end-of-file
indicator and undoes any effects of the ungetc function on the same stream. After an
fsetpos call, the next operation on an update stream may be either input or output.

Returns: zero, if successful. Otherwise non-zero is returned and the integer expression
errno is set to an implementation-defined non-zero value (under RISC OS the value is
that of EDOM in math.h).

Entry no. 119: long int ftell(FILE *stream)

Obtains the current value of the file position indicator for the stream pointed to by
stream. For a binary stream, the value is the number of characters from the beginning
of the file. For a text stream, the file position indicator contains unspecified information,
usable by the fseek function for returning the file position indicator to its position at
the time of the ftell call; the difference between two such return values is not
necessarily a meaningful measure of the number of characters written or read. However,
for the Acorn implementation, the value returned is merely the byte offset into the file,
whether the stream is text or binary.

Returns: if successful, the current value of the file position indicator. On failure, the
ftell function returns –1L and sets the integer expression errno to an
implementation-defined non-zero value (under RISC OS ftell cannot fail).

stdio

4-326

Entry no. 120: void rewind(FILE *stream)

Sets the file position indicator for the stream pointed to by stream to the beginning of
the file. It is equivalent to (void)fseek(stream, 0L, SEEK_SET) except that
the error indicator for the stream is also cleared.

Returns: no value.

Entry no. 121: void clearerr(FILE *stream)

Clears the end-of-file and error indicators for the stream pointed to by stream. These
indicators are cleared only when the file is opened or by an explicit call to the
clearerr function or to the rewind function.

Returns: no value.

Entry no. 122: int feof(FILE *stream)

Tests the end-of-file indicator for the stream pointed to by stream.

Returns: non-zero if the end-of-file indicator is set for stream.

Entry no. 123: int ferror(FILE *stream)

Tests the error indicator for the stream pointed to by stream.

Returns: non-zero if the error indicator is set for stream.

Entry no. 124: void perror(const char *s)

Maps the error number in the integer expression errno to an error message. It writes a
sequence of characters to the standard error stream thus: first (if s is not a null pointer
and the character pointed to by s is not the null character), the string pointed to by s
followed by a colon and a space; then an appropriate error message string followed by a
newline character. The contents of the error message strings are the same as those
returned by the strerror function with argument errno, which are
implementation-defined.

Returns: no value.

Entry no. 105: int __filbuf(FILE *stream)

This function is used by the C library to implement the ‘getc’ macro. The definition of
the ‘getc’ macro is as follows:

#define getc(p) \
 (--((p)->__icnt) >= 0 ? *((p)->__ptr)++ : __filbuf(p))

where p is a pointer to a FILE structure.

P
ro

g
ram

m
er’s support

The shared C library

4-327

__filbuf fills the buffer associated with p from a file stream and returns the first
character of the buffer incrementing the buffer pointer and decrementing the input
character count.

Entry no. 109: int __flsbuf(int ch, FILE *stream)

This function is used by the C library to implement the putc macro. The definition of
the putc macro is as follows:

#define putc(ch, p) \
 (--((p)->__ocnt) >= 0 ? (*((p)->__ptr)++ = (ch)) : __flsbuf(ch,p))

where p is a pointer to a FILE structure.

__flsbuf flushes the buffer associated with p to a file stream and writes the character
ch to the file stream. The buffer pointer and output character count are reset.

stdlib
stdlib provides several general purpose functions

Entry no. 58: double atof(const char *nptr)

Converts the initial part of the string pointed to by nptr to double * representation.

Returns: the converted value.

Entry no. 59: int atoi(const char *nptr)

Converts the initial part of the string pointed to by nptr to int representation.

Returns: the converted value.

Entry no. 60: long int atol(const char *nptr)

Converts the initial part of the string pointed to by nptr to long int representation.

Returns: the converted value.

Entry no. 61: double strtod(const char *nptr, char **endptr)

Converts the initial part of the string pointed to by nptr to double representation. First
it decomposes the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by the isspace function), a subject sequence
resembling a floating point constant, and a final string of one or more unrecognised
characters, including the terminating null character of the input string. It then attempts to

stdlib

4-328

convert the subject sequence to a floating point number, and returns the result. A pointer
to the final string is stored in the object pointed to by endptr, provided that endptr is
not a null pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, plus or minus
HUGE_VAL is returned (according to the sign of the value), and the value of the macro
ERANGE is stored in errno. If the correct value would cause underflow, zero is
returned and the value of the macro ERANGE is stored in errno.

Entry no. 62: long int strtol(const char *nptr, char **endptr, int base)

Converts the initial part of the string pointed to by nptr to long int representation. First
it decomposes the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by the isspace function), a subject sequence
resembling an integer represented in some radix determined by the value of base, and a
final string of one or more unrecognised characters, including the terminating null
character of the input string.

It then attempts to convert the subject sequence to an integer, and returns the result. If
the value of base is 0, the expected form of the subject sequence is that of an integer
constant (described precisely in the ANSI standard, section 3.1.3.2), optionally preceded
by a + or - sign, but not including an integer suffix. If the value of base is between 2 and
36, the expected form of the subject sequence is a sequence of letters and digits
representing an integer with the radix specified by base, optionally preceded by a plus
or minus sign, but not including an integer suffix. The letters from a (or A) through z (or
Z) are ascribed the values 10 to 35; only letters whose ascribed values are less than that
of the base are permitted. If the value of base is 16, the characters 0x or 0X may
optionally precede the sequence of letters and digits following the sign if present. A
pointer to the final string is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, LONG_MAX or
LONG_MIN is returned (according to the sign of the value), and the value of the macro
ERANGE is stored in errno.

Entry no. 63: unsigned long int strtoul(const char *nptr, char **endptr,
int base)

Converts the initial part of the string pointed to by nptr to unsigned long int
representation. First it decomposes the input string into three parts: an initial, possibly
empty, sequence of white space characters (as determined by the isspace function), a

P
ro

g
ram

m
er’s support

The shared C library

4-329

subject sequence resembling an unsigned integer represented in some radix determined
by the value of base, and a final string of one or more unrecognised characters,
including the terminating null character of the input string.

It then attempts to convert the subject sequence to an unsigned integer, and returns the
result. If the value of base is zero, the expected form of the subject sequence is that of
an integer constant (described precisely in the ANSI Standard, section 3.1.3.2),
optionally preceded by a + or - sign, but not including an integer suffix. If the value of
base is between 2 and 36, the expected form of the subject sequence is a sequence of
letters and digits representing an integer with the radix specified by base, optionally
preceded by a + or - sign, but not including an integer suffix. The letters from a (or A)
through z (or Z) stand for the values 10 to 35; only letters whose ascribed values are less
than that of the base are permitted. If the value of base is 16, the characters 0x or 0X
may optionally precede the sequence of letters and digits following the sign, if present.
A pointer to the final string is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, ULONG_MAX
is returned, and the value of the * macro ERANGE is stored in errno.

Entry no. 64: int rand(void)

Computes a sequence of pseudo-random integers in the range 0 to RAND_MAX, where
RAND_MAX = 0x7fffffff.

Returns: a pseudo-random integer.

Entry no. 65: void srand(unsigned int seed)

Uses its argument as a seed for a new sequence of pseudo-random numbers to be
returned by subsequent calls to rand. If srand is then called with the same seed value,
the sequence of pseudo-random numbers will be repeated. If rand is called before any
calls to srand have been made, the same sequence is generated as when srand is first
called with a seed value of 1.

Entry no. 66: void *calloc(size_t nmemb, size_t size)

Allocates space for an array of nmemb objects, each of whose size is size. The space
is initialised to all bits zero.

Returns: either a null pointer or a pointer to the allocated space.

stdlib

4-330

Entry no. 67: void free(void *ptr)

Causes the space pointed to by ptr to be deallocated (made available for further
allocation). If ptr is a null pointer, no action occurs. Otherwise, if ptr does not match
a pointer earlier returned by calloc, malloc or realloc or if the space has been
deallocated by a call to free or realloc, the behaviour is undefined.

Entry no. 68: void *malloc(size_t size)

Allocates space for an object whose size is specified by size and whose value is
indeterminate.

Returns: either a null pointer or a pointer to the allocated space.

Entry no. 69: void *realloc(void *ptr, size_t size)

Changes the size of the object pointed to by ptr to the size specified by size. The
contents of the object is unchanged up to the lesser of the new and old sizes. If the new
size is larger, the value of the newly allocated portion of the object is indeterminate. If
ptr is a null pointer, the realloc function behaves like a call to malloc for the
specified size. Otherwise, if ptr does not match a pointer earlier returned by calloc,
malloc or realloc, or if the space has been deallocated by a call to free or
realloc, the behaviour is undefined. If the space cannot be allocated, the object
pointed to by ptr is unchanged. If size is zero and ptr is not a null pointer, the object
it points to is freed.

Returns: either a null pointer or a pointer to the possibly moved allocated space.

Entry no. 70: void abort(void)

Causes abnormal program termination to occur, unless the signal SIGABRT is being
caught and the signal handler does not return. Whether open output streams are flushed
or open streams are closed or temporary files removed is implementation-defined (under
RISC OS all these occur). An implementation-defined form of the status ‘unsuccessful
termination’ (1 under RISC OS) is returned to the host environment by means of a call
to raise(SIGABRT).

Entry no. 71: int atexit(void (*func)(void))

Registers the function pointed to by func, to be called without its arguments at normal
program termination. It is possible to register at least 32 functions.

Returns: zero if the registration succeeds, non-zero if it fails.

P
ro

g
ram

m
er’s support

The shared C library

4-331

Entry no. 72: void exit(int status)

Causes normal program termination to occur. If more than one call to the exit function
is executed by a program (for example, by a function registered with atexit), the
behaviour is undefined. First, all functions registered by the atexit function are
called, in the reverse order of their registration. Next, all open output streams are
flushed, all open streams are closed, and all files created by the tmpfile function are
removed. Finally, control is returned to the host environment. If the value of status is
zero or EXIT_SUCCESS, an implementation-defined form of the status ‘successful
termination’ (0 under RISC OS) is returned. If the value of status is
EXIT_FAILURE, an implementation-defined form of the status ‘unsuccessful
termination’ (1 under RISC OS) is returned. Otherwise the status returned is
implementation-defined (the value of status is returned under RISC OS).

Entry no. 73: char *getenv(const char *name)

Searches the environment list, provided by the host environment, for a string that
matches the string pointed to by name. The set of environment names and the method
for altering the environment list are implementation-defined.

Returns: a pointer to a string associated with the matched list member. The array pointed
to is not modified by the program, but may be overwritten by a subsequent call to the
getenv function. If the specified name cannot be found, a null pointer is returned.

Entry no. 74: int system(const char *string)

Passes the string pointed to by string to the host environment to be executed by a
command processor in an implementation-defined manner. A null pointer may be used
for string, to inquire whether a command processor exists. Under RISC OS, care
must be taken, when executing a command, that the command does not overwrite the
calling program. To control this, the string chain: or call: may immediately
precede the actual command. The effect of call: is the same as if call: were not
present. When a command is called, the caller is first moved to a safe place in
application workspace. When the callee terminates, the caller is restored. This requires
enough memory to hold caller and callee simultaneously. When a command is chained,
the caller may be overwritten. If the caller is not overwritten, the caller exits when the
callee terminates. Thus a transfer of control is effected and memory requirements are
minimised.

Returns: If the argument is a null pointer, the system function returns non-zero only if
a command processor is available. If the argument is not a null pointer, it returns an
implementation-defined value (under RISC OS 0 is returned for success and –2 for
failure to invoke the command; any other value is the return code from the executed
command).

stdlib

4-332

Entry no. 75: void *bsearch(const void *key, const void *base, size_t
nmemb, size_t size, int (*compar) (const void *, const void *))

Searches an array of nmemb objects, the initial member of which is pointed to by base,
for a member that matches the object pointed to by key. The size of each member of the
array is specified by size. The contents of the array must be in ascending sorted order
according to a comparison function pointed to by compar, which is called with two
arguments that point to the key object and to an array member, in that order. The
function returns an integer less than, equal to, or greater than zero if the key object is
considered, respectively, to be less than, to match, or to be greater than the array
member.

Returns: a pointer to a matching member of the array, or a null pointer if no match is
found. If two members compare as equal, which member is matched is unspecified.

Entry no. 76: void qsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *))

Sorts an array of nmemb objects, the initial member of which is pointed to by base.
The size of each object is specified by size. The contents of the array are sorted in
ascending order according to a comparison function pointed to by compar, which is
called with two arguments that point to the objects being compared. The function returns
an integer less than, equal to, or greater than zero if the first argument is considered to be
respectively less than, equal to, or greater than the second. If two members compare as
equal, their order in the sorted array is unspecified.

Entry no. 77: int abs(int j)

Computes the absolute value of an integer j. If the result cannot be represented, the
behaviour is undefined.

Returns: the absolute value.

Entry no. 78: div_t div(int numer, int denom)

Computes the quotient and remainder of the division of the numerator numer by the
denominator denom. If the division is inexact, the resulting quotient is the integer of
lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be
represented, the behaviour is undefined; otherwise, quot * denom + rem equals
numer.

Returns: a structure of type div_t, comprising both the quotient and the remainder.
The structure contains the following members: int quot; int rem. You may not
rely on their order.

P
ro

g
ram

m
er’s support

The shared C library

4-333

Entry no. 79: long int labs(long int j)

Computes the absolute value of an long integer j. If the result cannot be represented, the
behaviour is undefined.

Returns: the absolute value.

Entry no. 80: ldiv_t ldiv(long int numer, long int denom)

Computes the quotient and remainder of the division of the numerator numer by the
denominator denom. If the division is inexact, the sign of the resulting quotient is that
of the algebraic quotient, and the magnitude of the resulting quotient is the largest
integer less than the magnitude of the algebraic quotient. If the result cannot be
represented, the behaviour is undefined; otherwise, quot * denom + rem equals
numer.

Returns: a structure of type ldiv_t, comprising both the quotient and the remainder.
The structure contains the following members: long int quot; long int rem.
You may not rely on their order.

Multibyte character functions

The behaviour of the multibyte character functions is affected by the LC_CTYPE
category of the current locale. For a state-dependent encoding, each function is placed
into its initial state by a call for which its character pointer argument, s, is a null pointer.
Subsequent calls with s as other than a null pointer cause the internal state of the
function to be altered as necessary. A call with s as a null pointer causes these functions
to return a non-zero value if encoding have state dependency, and a zero otherwise.
After the LC_CTYPE category is changed, the shift state of these functions is
indeterminate.

Entry no. 172: int mblen(const char *s, size_t n)

If s is not a null pointer, the mblen function determines the number of bytes comprising
the multibyte character pointed to by s. Except that the shift state of the mbtowc
function is not affected, it is equivalent to mbtowc((wchar_t *)0, s, n).

Returns: If s is a null pointer, the mblen function returns a non-zero or zero value, if
multibyte character encodings, respectively do or do not have state-dependent
encodings. If s is not a null pointer, the mblen function either returns a 0 (if s points to
a null character), or returns the number of bytes that comprise the multibyte character (if
the next n or fewer bytes form a valid multibyte character), or returns –1 (if they do not
form a valid multibyte character).

stdlib

4-334

Entry no. 173: int mbtowc(wchar_t *pwc, const char *s, size_t n)

If s is not a null pointer, the mbtowc function determines the number of bytes that
comprise the multibyte character pointed to by s. It then determines the code for value
of type wchar_t that corresponds to that multibyte character. (The value of the code
corresponding to the null character is zero). If the multibyte character is valid and pwc
is not a null pointer, the mbtowc function stores the code in the object pointed to by
pwc. At most n bytes of the array pointed to by s will be examined.

Returns: If s is a null pointer, the mbtowc function returns a non-zero or zero value, if
multibyte character encodings, respectively do or do not have state-dependent
encodings. If s is not a null pointer, the mbtowc function either returns a 0 (if s points
to a null character), or returns the number of bytes that comprise the converted multibyte
character (if the next n of fewer bytes form a valid multibyte character), or returns –1 (if
they do not form a valid multibyte character).

Entry no. 174: int wctomb(char *s, wchar_t wchar)

Determines the number of bytes need to represent the multibyte character corresponding
to the code whose value is wchar (including any change in shift state). It stores the
multibyte character representation in the array object pointed to by s (if s is not a null
pointer). At most MB_CUR_MAX characters are stored. If the value of wchar is zero, the
wctomb function is left in the initial shift state).

Returns: If s is a null pointer, the wctomb function returns a non-zero or zero value, if
multibyte character encodings, respectively do or do not have state-dependent
encodings. If s is not a null pointer, the wctomb function returns a –1 if the value of
wchar does not correspond to a valid multibyte character, or returns the number of
bytes that comprise the multibyte character corresponding to the value of wchar.

Multibyte string functions

The behaviour of the multibyte string functions is affected by the LC_CTYPE category
of the current locale.

Entry no. 175: size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n)

Converts a sequence of multibyte characters that begins in the initial shift state from the
array pointed to by s into a sequence of corresponding codes and stores not more than n
codes into the array pointed to by pwcs. No multibyte character that follows a null
character (which is converted into a code with value zero) will be examined or
converted. Each multibyte character is converted as if by a call to the mbtowc function.
If an invalid multibyte character is found, mbstowcs returns (size_t)-1.
Otherwise, the mbstowcs function returns the number of array elements modified, not
including a terminating zero code, if any.

P
ro

g
ram

m
er’s support

The shared C library

4-335

Entry no. 176: size_t wcstombs(char *s, const wchar_t *pwcs, size_t n)

Converts a sequence of codes that correspond to multibyte characters from the array
pointed to by pwcs into a sequence of multibyte characters that begins in the initial shift
state and stores these multibyte characters into the array pointed to by s, stopping if a
multibyte character would exceed the limit of n total bytes or if a null character is stored.
Each code is converted as if by a call to the wctomb function, except that the shift state
of the wctomb function is not affected. If a code is encountered which does not
correspond to any valid multibyte character, the wcstombs function returns
(size_t)-1. Otherwise, the wcstombs function returns the number of bytes
modified, not including a terminating null character, if any.

string

4-336

string
string provides several functions useful for manipulating character arrays and other
objects treated as character arrays. Various methods are used for determining the lengths
of the arrays, but in all cases a char * or void * argument points to the initial (lowest
addresses) character of the array. If an array is written beyond the end of an object, the
behaviour is undefined.

Entry no. 38: void *memcpy(void *s1, const void *s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed to by s1. If
copying takes place between objects that overlap, the behaviour is undefined.

Returns: the value of s1.

Entry no. 39: void *memmove(void *s1, const void *s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed to by s1.
Copying takes place as if the n characters from the object pointed to by s2 are first
copied into a temporary array of n characters that does not overlap the objects pointed to
by s1 and s2, and then the n characters from the temporary array are copied into the
object pointed to by s1.

Returns: the value of s1.

Entry no. 40: char *strcpy(char *s1, const char *s2)

Copies the string pointed to by s2 (including the terminating null character) into the
array pointed to by s1. If copying takes place between objects that overlap, the
behaviour is undefined.

Returns: the value of s1.

Entry no. 41: char *strncpy(char *s1, const char *s2, size_t n)

Copies not more than n characters (characters that follow a null character are not
copied) from the array pointed to by s2 into the array pointed to by s1. If copying takes
place between objects that overlap, the behaviour is undefined. If terminating nul has
not been copied in chars, no term nul is placed in s2.

Returns: the value of s1.

P
ro

g
ram

m
er’s support

The shared C library

4-337

Entry no. 42: char *strcat(char *s1, const char *s2)

Appends a copy of the string pointed to by s2 (including the terminating null character)
to the end of the string pointed to by s1. The initial character of s2 overwrites the null
character at the end of s1.

Returns: the value of s1.

Entry no. 43: char *strncat(char *s1, const char *s2, size_t n)

Appends not more than n characters (a null character and characters that follow it are not
appended) from the array pointed to by s2 to the end of the string pointed to by s1. The
initial character of s2 overwrites the null character at the end of s1. A terminating null
character is always appended to the result.

Returns: the value of s1.

The sign of a non-zero value returned by the comparison functions is determined by the
sign of the difference between the values of the first pair of characters (both interpreted
as unsigned char) that differ in the objects being compared.

Entry no. 44: int memcmp(const void *s1, const void *s2, size_t n)

Compares the first n characters of the object pointed to by s1 to the first n characters of
the object pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether the
object pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

Entry no. 45: int strcmp(const char *s1, const char *s2)

Compares the string pointed to by s1 to the string pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

Entry no. 46: int strncmp(const char *s1, const char *s2, size_t n)

Compares not more than n characters (characters that follow a null character are not
compared) from the array pointed to by s1 to the array pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

Entry no. 178: int strcoll(const char *s1, const char *s2)

Compares the string pointed to by s1 to the string pointed to by s2, both interpreted as
appropriate to the LC_COLLATE category of the current locale.

string

4-338

Returns: an integer greater than, equal to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2
when both are interpreted as appropriate to the current locale.

Entry no. 177: size_t strxfrm(char *s1, const char *s2, size_t n)

Transforms the string pointed to by s2 and places the resulting string into the array
pointed to by s1. The transformation function is such that if the strcmp function is
applied to two transformed strings, it returns a value greater than, equal to or less than
zero, corresponding to the result of the strcoll function applied to the same two
original strings. No more than n characters are placed into the resulting array pointed to
by s1, including the terminating null character. If n is zero, s1 is permitted to be a null
pointer. If copying takes place between objects that overlap, the behaviour is undefined.

Under RISC OS 3 (version 3.10) this function only works for the default ANSI locale,
but not for other locales (ie not after a setlocale call).

Returns: The length of the transformed string is returned (not including the terminating
null character). If the value returned is n or more, the contents of the array pointed to by
s1 are indeterminate.

Entry no. 47: void *memchr(const void *s, int c, size_t n)

Locates the first occurrence of c (converted to an unsigned char) in the initial n
characters (each interpreted as unsigned char) of the object pointed to by s.

Returns: a pointer to the located character, or a null pointer if the character does not
occur in the object.

Entry no. 48: char *strchr(const char *s, int c)

Locates the first occurrence of c (converted to a char) in the string pointed to by s
(including the terminating null character). The BSD UNIX name for this function is
index().

Returns: a pointer to the located character, or a null pointer if the character does not
occur in the string.

Entry no. 49: size_t strcspn(const char *s1, const char *s2)

Computes the length of the initial segment of the string pointed to by s1 which consists
entirely of characters not from the string pointed to by s2. The terminating null
character is not considered part of s2.

Returns: the length of the segment.

P
ro

g
ram

m
er’s support

The shared C library

4-339

Entry no. 50: char *strpbrk(const char *s1, const char *s2)

Locates the first occurrence in the string pointed to by s1 of any character from the
string pointed to by s2.

Returns: returns a pointer to the character, or a null pointer if no character form s2
occurs in s1.

Entry no. 51: char *strrchr(const char *s, int c)

Locates the last occurrence of c (converted to a char) in the string pointed to by s. The
terminating null character is considered part of the string. The BSD UNIX name for this
function is rindex().

Returns: a pointer to the character, or a null pointer if c does not occur in the string.

Entry no. 52: size_t strspn(const char *s1, const char *s2)

Computes the length of the initial segment of the string pointed to by s1 which consists
entirely of characters from the string pointed to by s2.

Returns: the length of the segment.

Entry no. 53: char *strstr(const char *s1, const char *s2)

Locates the first occurrence in the string pointed to by s1 of the sequence of characters
(excluding the terminating null character) in the string pointed to by s2.

Returns: a pointer to the located string, or a null pointer if the string is not found.

Entry no. 54: char *strtok(char *s1, const char *s2)

A sequence of calls to the strtok function breaks the string pointed to by s1 into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by s2. The first call in the sequence has s1 as its first argument, and is followed by calls
with a null pointer as their first argument. The separator string pointed to by s2 may be
different from call to call. The first call in the sequence searches for the first character
that is not contained in the current separator string s2. If no such character is found, then
there are no tokens in s1 and the strtok function returns a null pointer. If such a
character is found, it is the start of the first token. The strtok function then searches
from there for a character that is contained in the current separator string. If no such
character is found, the current token extends to the end of the string pointed to by s1,
and subsequent searches for a token will fail. If such a character is found, it is
overwritten by a null character, which terminates the current token. The strtok
function saves a pointer to the following character, from which the next search for a
token will start. Each subsequent call, with a null pointer as the value for the first
argument, starts searching from the saved pointer and behaves as described above.

time

4-340

Returns: pointer to the first character of a token, or a null pointer if there is no token.

Entry no. 55: void *memset(void *s, int c, size_t n)

Copies the value of c (converted to an unsigned char) into each of the first n characters
of the object pointed to by s.

Returns: the value of s.

Entry no. 56: char *strerror(int errnum)

Maps the error number in errnum to an error message string.

Returns: a pointer to the string, the contents of which are implementation-defined.
Under RISC OS and Arthur the strings for the given errnums are as follows:

● 0 No error (errno = 0)

● EDOM EDOM – function argument out of range

● ERANGE ERANGE – function result not representable

● ESIGNUM ESIGNUM – illegal signal number to signal() or
raise()

● others Error code (errno) has no associated message.

The array pointed to may not be modified by the program, but may be overwritten by a
subsequent call to the strerror function.

Entry no. 57: size_t strlen(const char *s)

Computes the length of the string pointed to by s.

Returns: the number of characters that precede the terminating null character.

time
time provides several functions for manipulating time. Many functions deal with a
calendar time that represents the current date (according to the Gregorian calendar) and
time. Some functions deal with local time, which is the calendar time expressed for
some specific time zone, and with Daylight Saving Time, which is a temporary change
in the algorithm for determining local time.

struct tm holds the components of a calendar time called the broken-down time. The
value of tm_isdst is positive if Daylight Saving Time is in effect, zero if Daylight
Saving Time is not in effect, and negative if the information is not available.

P
ro

g
ram

m
er’s support

The shared C library

4-341

struct tm {
 int tm_sec; /* seconds after the minute, 0 to 60
 (0-60 allows for the occasional leap
 second) */
 int tm_min /* minutes after the hour, 0 to 59 */
 int tm_hour /* hours since midnight, 0 to 23 */
 int tm_mday /* day of the month, 0 to 31 */
 int tm_mon /* months since January, 0 to 11 */
 int tm_year /* years since 1900 */
 int tm_wday /* days since Sunday, 0 to 6 */
 int tm_yday /* days since January 1, 0 to 365 */
 int tm_isdst /* Daylight Saving Time flag */
};

Entry no. 29: clock_t clock(void)

Determines the processor time used.

Returns: the implementation’s best approximation to the processor time used by the
program since program invocation. The time in seconds is the value returned, divided by
the value of the macro CLOCKS_PER_SEC. The value (clock_t)-1 is returned if
the processor time used is not available. In the desktop, clock() returns all processor
time, not just that of the program.

Entry no. 30: double difftime(time_t time1, time_t time0)

Computes the difference between two calendar times: time1 - time0. Returns: the
difference expressed in seconds as a double.

Entry no. 31: time_t mktime(struct tm *timeptr)

Converts the broken-down time, expressed as local time, in the structure pointed to by
timeptr into a calendar time value with the same encoding as that of the values
returned by the time function. The original values of the tm_wday and tm_yday
components of the structure are ignored, and the original values of the other components
are not restricted to the ranges indicated above. On successful completion, the values of
the tm_wday and tm_yday structure components are set appropriately, and the other
components are set to represent the specified calendar time, but with their values forced
to the ranges indicated above; the final value of tm_mday is not set until tm_mon and
tm_year are determined.

Returns: the specified calendar time encoded as a value of type time_t. If the calendar
time cannot be represented, the function returns the value (time_t)-1.

time

4-342

Entry no. 32: time_t time(time_t *timer)

Determines the current calendar time. The encoding of the value is unspecified.

Returns: the implementation’s best approximation to the current calendar time. The
value (time_t)-1 is returned if the calendar time is not available. If timer is not a
null pointer, the return value is also assigned to the object it points to.

Entry no. 33: char *asctime(const struct tm *timeptr)

Converts the broken-down time in the structure pointed to by timeptr into a string in
the style Sun Sep 16 01:03:52 1973\n\0.

Returns: a pointer to the string containing the date and time.

Entry no. 34: char *ctime(const time_t *timer)

Converts the calendar time pointed to by timer to local time in the form of a string. It
is equivalent to asctime(localtime(timer)).

Returns: the pointer returned by the asctime function with that broken-down time as
argument.

Entry no. 35: struct tm *gmtime(const time_t *timer)

Converts the calendar time pointed to by timer into a broken-down time, expressed as
Greenwich Mean Time (GMT).

Returns: a pointer to that object or a null pointer if GMT is not available.

Entry no. 36: struct tm *localtime(const time_t *timer)

Converts the calendar time pointed to by timer into a broken-down time, expressed a
local time.

Returns: a pointer to that object.

Entry no. 37: size_t strftime(char *s, size_t maxsize, const char *format,
const struct tm *timeptr)

Places characters into the array pointed to by s as controlled by the string pointed to by
format. The format string consists of zero or more directives and ordinary characters.
A directive consists of a % character followed by a character that determines the
directive’s behaviour. All ordinary characters (including the terminating null character)
are copied unchanged into the array. No more than maxsize characters are placed into

P
ro

g
ram

m
er’s support

The shared C library

4-343

the array. Each directive is replaced by appropriate characters as described in the
following list. The appropriate characters are determined by the LC_TIME category of
the current locale and by the values contained in the structure pointed to by timeptr.

Directive Replaced by
%a the locale’s abbreviated weekday name
%A the locale’s full weekday name
%b the locale’s abbreviated month name
%B the locale’s full month name
%c the locale’s appropriate date and time representation
%d the day of the month as a decimal number (01 - 31)
%H the hour (24-hour clock) as a decimal number (00 - 23)
%I the hour (12-hour clock) as a decimal number (01 - 12)
%j the day of the year as a decimal number (001 - 366)
%m the month as a decimal number (01 - 12)
%M the minute as a decimal number (00 - 61)
%p the locale’s equivalent of either AM or PM designation

associated with a 12-hour clock
%S the second as a decimal number (00 - 61)
%U the week number of the year (Sunday as the first day of

week 1) as a decimal number (00 - 53)
%w the weekday as a decimal number (0 (Sunday) - 6)
%W the week number of the year (Monday as the first day of

week 1) as a decimal number (00 - 53)
%x the locale’s appropriate date representation
%X the locale’s appropriate time representation
%y the year without century as a decimal number (00 - 99)
%Y the year with century as a decimal number
%Z the time zone name or abbreviation, or by no character

if no time zone is determinable
%% %

If a directive is not one of the above, the behaviour is undefined.

Returns: If the total number of resulting characters including the terminating null
character is not more than maxsize, the strftime function returns the number of
characters placed into the array pointed to by s not including the terminating null
character. Otherwise, zero is returned and the contents of the array are indeterminate.

time

4-344

P
ro

g
ram

m
er’s support

4-345

4

84 BASIC and BASICTrans

Introduction and Overview
Facilities were added to BASIC (and to BASIC64) in RISC OS 3 so that its messages
can be translated for use in another territory. The BASIC interpreter issues calls to the
BASICTrans module, which is responsible for providing messages appropriate to a
particular territory. By replacing one BASICTrans module with another, you can change
the language used by BASIC for its messages.

Both BASIC and BASIC64 issue the same calls to the same BASICTrans module, thus
code and messages are shared between the two modules.

If you write a BASICTrans module, you can allocate memory for the translation from
the RMA:

● Memory inside the SWI call is invulnerable to the task swapping problem found
when BASIC itself attempts to use RMA memory. ‘Task manager’ swapping
between two BASIC programs does not occur when in SWI mode.

Using BBC BASIC
For the sake of completeness, this chapter documents the *BASIC and *BASIC64
commands used to enter BBC BASIC. For full details of using BBC BASIC, see the
BBC BASIC Reference Manual, available from your Acorn supplier.

SWI Calls

4-346

SWI Calls
BASICTrans_HELP

(SWI &42C80)

Interpret, translate if required, and print HELP messages

On entry

R0 = pointer to lexically analysed HELP text (terminated by &0D)
R1 = pointer to program’s name (BASIC or BASIC64)
R2 = pointer to the lexical analyser’s tables

On exit

R0 - R2 corrupted

Use

This call is made by BASIC to request that a BASICTrans module print a help message.
BASIC lexically analyses the HELP text, converting keywords to tokens, before making
this call. The currently loaded BASICTrans module then prints appropriate help text.

On entry R1 points to the program’s name, and so is non-zero; if it is still non-zero on
exit BASIC will print its own (short, English) Help text. Consequently, a BASICTrans
module will normally set R1 to zero on exit – but the English version of BASICTrans
sometimes preserves R1 so that its own help is followed by the default help.

In order to share the entirety of the HELP text between BASIC and BASIC64, this call
is implemented for English, and both BASIC and BASIC64 are assembled without their
own HELP text. About 15Kbytes are shared like this.

P
ro

g
ram

m
er’s support

BASIC and BASICTrans

4-347

BASICTrans_Error
(SWI &42C81)

Copy translated error string to buffer

On entry

R0 = unique error number (0 - 112)
R1 = pointer to buffer in which to place the error

On exit

R0 - R3 corrupted

Use

This call is made by BASIC to request that a BASICTrans module provide an error
message. The currently loaded BASICTrans module places a null terminated error string
for the given error number in the buffer pointed to by R1. The error string is null
terminated. BASIC then prints the error message, and performs other actions necessary
to smoothly integrate the error message with BASIC’s normal provisions for error
handling.

An error is generated if the BASICTrans module is not present (ie the SWI is not found),
or if BASICTrans does not perform the translation. BASIC then prints a default
(English) message explaining this.

In order to share the entirety of the error string text between BASIC and BASIC64, this
call is implemented for English, and both BASIC and BASIC64 are assembled without
their error messages. About 6Kbytes are shared like this. Correct error numbers are vital
to the functioning of the interpreter, and so – rather than being shared – these are held in
BASIC or BASIC64.

BASICTrans_Message (SWI &42C82)

4-348

BASICTrans_Message
(SWI &42C82)

Translate and print miscellaneous message

On entry

R0 = unique message number (0 - 25)
R1 - R3 = message dependent values

On exit

R0, R1 corrupted

Use

This call is made by BASIC to request that the BASICTrans module print a
‘miscellaneous’ message. Further parameters are passed that depend on the message you
require to be printed.

An error is generated if the BASICTrans module is not present (ie the SWI is not found),
or if BASICTrans does not perform the translation. BASIC then prints the full (English)
version of the message that it holds internally.

The English BASICTrans module behaves as if this call does not exist, so that the
default messages get printed. There are not many ‘miscellaneous’ messages, so no great
saving is to be had in providing RISC OS 3 with a shared implementation.

The classic problem of the error handler’s ‘ at line ’ can now be handled as follows:

TRACE OFF
IF QUIT=TRUE THEN
 ERROR EXT,ERR,REPORT$
ELSE
 RESTORE:!(HIMEM-4)=@%
 SYS"BASICTrans_Message",21,ERL,REPORT$ TO ;@%
 IF (@% AND 1)<>0 THEN
 REPORT:@%=&900:IF ERL<>0 THEN PRINT" at line "ERL ELSE PRINT
 ENDIF
@%=!(HIMEM-4)
ENDIF
END

This allows the BASICTrans_Message code to print the string and optional ‘ at line ’
ERL information in any order it likes.

P
ro

g
ram

m
er’s support

BASIC and BASICTrans

4-349

* Commands
*BASIC

*BASIC64

Starts the ARM BBC BASIC interpreter

Syntax

*BASIC [options]

Parameters

options see below

Use

*BASIC starts the ARM BBC BASIC V interpreter.

*BASIC64 starts the ARM BBC BASIC VI interpreter – provided its module has
already been loaded, or is in the library or some other directory on the run path.

For full details of BBC BASIC, see the BBC BASIC Reference Manual, available from
your Acorn supplier.

The options control how the interpreter will behave when it starts, and when any
program that it executes terminates. If no option is given, BASIC simply starts with a
message of the form:

ARM BBC BASIC V version 1.05 (C) Acorn 1989

Starting with 643324 bytes free

The number of bytes free in the above message will depend on the amount of free RAM
on your computer. The first line is also used for the default REPORT message, before
any errors occur.

One of three options may follow the *BASIC command to cause a program to be loaded,
and, optionally, executed automatically. Alternatively, you can use a program that is
already loaded into memory by passing its address to the interpreter. Each of these
possibilities is described in turn below.

In all cases where a program is specified, this may be a tokenised BASIC program, as
created by a SAVE command, or a textual program, which will be tokenised (and
possibly renumbered) automatically.

*BASIC *BASIC64

4-350

*BASIC -help

This command causes BASIC to print some help information describing the options
documented here. Then BASIC starts as usual.

*BASIC [-chain] filename

If you give a filename after the *BASIC command, optionally preceded by the
keyword -chain, then the named file is loaded and executed. When the program stops,
BASIC enters immediate mode, as usual.

*BASIC -quit filename

This behaves in a similar way to the previous option. However, when the program
terminates, BASIC quits automatically, returning to the environment from which the
interpreter was originally called. It also performs a CRUNCH %1111 on the program
(for further details see the description of the CRUNCH command in the BBC BASIC
Reference Manual). This is the default action used by BASIC programs that are
executed as * commands. In addition, the function QUIT returns TRUE if BASIC is
called in this fashion.

*BASIC -load filename

This option causes the file to be loaded automatically, but not executed. BASIC remains
in immediate mode, from where the program can be edited or executed as required.

*BASIC @start,end

This acts in a similar way to the -load form of the command. However, the program
that is ‘loaded’ automatically is not in a file, but already in memory. Following the @ are
two addresses. These give, in hexadecimal, the address of the start of the in-core
program, and the address of the byte after the last one. The program is copied to PAGE
and tokenised if necessary. This form of the command is used by Twin when returning to
BASIC.

Note that the in-core address description is fixed format. It should be in the form:

@xxxxxxxx,xxxxxxxx

where x means a hexadecimal digit. Leading zeros must be supplied. The command line
terminator character must come immediately after the last digit. No spaces are allowed.

*BASIC -chain @start,end

This behaves like the previous option, but the program is executed as well. When the
program terminates, BASIC enters immediate mode.

P
ro

g
ram

m
er’s support

BASIC and BASICTrans

4-351

*BASIC -quit @start,end

This option behaves as the previous one, but when the BASIC program terminates,
BASIC automatically quits. The function QUIT will return TRUE during the execution
of the program.

Examples

*BASIC
*BASIC -quit shellProg
*BASIC @000ADF0C,000AE345
*BASIC -chain fred

Related commands

None

Related SWIs

None

Related vectors

None

4-352

P
ro

g
ram

m
er’s support

4-353

4

85 Command scripts

Introduction
Command scripts are files of commands that you would normally type in at the
Command Line prompt. There are two common reasons for using such a file:

● To set up the computer to the state you want, either when you switch on or when
you start an application.

● To save typing in a set of commands you find yourself frequently using.

In the first case the file of commands is commonly known as a boot file.

You may find using an Alias$… variable to be better in some cases. The main advantage
of these variables is that they are held in memory and so are quicker in execution;
however, they are only really suitable for short commands. Even if you use these
variables you are still likely to need to use a command file to set them up initially.

There are two types of file available for writing command scripts: Command files, and
Obey files. The differences between these two file types are:

● An Obey file is read directly, whereas a Command file is treated as if it were typed
at the keyboard (and hence usually appears on the screen).

● An Obey file sets the system variable Obey$Dir to the directory it is in.

● An Obey file can be passed parameters

● An Obey file stops when an error is returned to the Obey module (or when an error
is generated and the exit handler is the Obey module – an untrapped error, not in an
application).

Overview and Technical Details

4-354

Overview and Technical Details

Creating a command script
A command script can be created using any text or word processor. With Edit you can
set the type of the file to Command or Obey, except under RISC OS 2, where you then
have to use the command *SetType .

You should save it in one of the following:

● the directory from which the command script will be run (typically your root
directory, or an application directory)

● the library (typically $.Library, but may be $.ArthurLib on a network; see
*Configure Lib on page 2-380).

Running the script
Provided that you have set the file to have a filetype of Command or Obey it can then be
run in the same ways as any other file:

● Type its name at the * prompt.

● Type its name preceded by a * at any other prompt (some applications may not
support this).

● Double-click on its icon from the desktop.

The same restrictions apply as with any other file. If the file is not in either your current
directory or the library, it will not be found if you just give the filename; you must give
its full pathname. (This assumes you have not changed the value of the system variable
Run$Path.)

You can force any text file to be treated as an obey file by using the command *Obey.
This overrides the current file type, such as Text or Command. Obviously, this will only
have meaning if the text in the file is valid to treat as an obey file.

Similarly, any file can be forced to be a command file by using *Exec. This is described
on page 2-167.

Obey$Dir

When an obey file is run, by using any of the above techniques, the system variable
Obey$Dir is set to the parent directory part of the pathname used. For example, if you
were to type *Obey a.b.c, then a.b is the parent directory of the pathname.

P
ro

g
ram

m
er’s support

Command scripts

4-355

Note that it is not set to the full parent name, only the part of the string passed to the
command as the pathname. So if you change the current directory or filing system
during the obey file, then it would not be valid any more.

Ideally, you should invoke Obey files (and applications, which are started by an Obey
file named !Run) by using their full pathname, and preceding that by either a forward
slash / or the word Run , for example:

/ adfs::MikeWinnie.$.Odds’nSods.MyConfig

Run adfs::MikeWinnie.$.Odds’nSods.MyConfig

This ensures that Obey$Dir is set to the full pathname of the Obey file.

Run$Path

The variable Run$Path also influences how this parent name is decoded. If you were to
type:

*Set Run$Path adfs::Winnie.Flagstaff.
*obeyfile par1 par2

Then it would be interpreted as:

*Run adfs::Winnie.Flagstaff.obeyfile par1 par2

If the filetype of obeyfile was &FEB, an obey file, then the command would be
interpreted as:

*Obey adfs::Winnie.Flagstaff.obeyfile par1 par2

This can also apply to application directories, as follows:

*Set Alias$@RunType_FEB Obey %*0
*Set File$Type_FEB Obey
*Set Run$Path adfs::Winnie.Flagstaff.
*!AppDir par1 par2

In this case, RISC OS would look for the !Run file within the application directory and
run it. Note that in most cases, the first two lines above are already defined in your
system. If !Run is an obey file, then it would be interpreted as:

*Obey adfs::Winnie.Flagstaff.!AppDir.!Run par1 par2

Note that Obey files can also be nested, calling other files to Obey; however, Command
files cannot be nested. This is one of the reasons why it is better to set up your file as an
Obey file rather than a Command file.

Making a script run automatically

4-356

Making a script run automatically
You can make scripts run automatically:

● From the network when you first log on.

The file must be called !ArmBoot. (This is to distinguish a boot file for a machine
running Arthur or RISC OS from an existing !Boot file already on the network for
the use of BBC model A, model B or Master series computers.)

● From a disc when you first switch the computer on.

The file must be called !Boot.

● From an application directory when you first display the directory’s icon under the
desktop.

The file must be called !Boot. It is run if RISC OS does not already know of a sprite
having the same name as the directory, and is intended to load sprites for
applications when they first need to be displayed. For further details see the section
entitled Application resource files on page 3-56.

● From an application directory when the application is run.

The file must be called !Run. For further details see the section entitled Application
resource files on page 3-56.

In the first two cases you will need to use the *Opt command as well (see page 2-179).

For an example of the latter two cases, you can look in any of the application directories
in the Applications Suite. If you are using the desktop, you will need to hold down the
Shift key while you open the application directory, otherwise the application will run.

Using parameters
An Obey file can have parameters passed to it, which can then be used by the command
script. A Command file cannot have parameters passed to it. The first parameter is
referred to as %0, the second as %1, and so on. You can refer to all the parameters after
a particular one by putting a * after the %, so %*1 would refer to the all parameters from
the second one onwards.

These parameters are substituted before the line is passed to the Command Line
interpreter. Thus if an Obey file called Display contained:

FileInfo %0
Type %0

then the command *Display MyFile would do this:

FileInfo MyFile
Type MyFile

P
ro

g
ram

m
er’s support

Command scripts

4-357

Sometimes you do not want parameter substitution. For example, suppose you wish to
include a *Set Alias$… command in your file, such as:

Set Alias$Mode echo |<22>|<%0> Desired command

The effect of this is to create a new command ‘Mode’. If you include the *Set Alias
command in an Obey file, when you run the file the %0 will be replaced by the first
parameter passed to the file. To prevent the substitution you need to change the % to
%%:

Set Alias$Mode echo |<22>|<%%0> Command needed in file

Now when the file is run, the ‘%%0’ is changed to ‘%0’. No other substitution occurs at
this stage, and the desired command is issued. See *Set on page 1-331.

Abbreviations
You must not use abbreviations for * Commands in scripts and programs, as these may
vary between releases of RISC OS. For example, in RISC OS 2 ‘*Te.’ was the minimum
abbreviation for *Tempo, whereas in RISC OS 3 this abbreviation instead runs the
*Territories command.

*Commands

4-358

*Commands
*Obey

Executes a file of * commands

Syntax

*Obey [[-v][-c] [filename [parameters]]]

Parameters

-v echo each line before execution

-c cache filename, and execute it from memory

filename a valid pathname, specifying a file

parameters strings separated by spaces

Use

*Obey executes a file of * commands. Argument substitution is performed on each line,
using parameters passed in the command.

With the -v option, each line is displayed before execution. With the -c option, the file
is cached and executed from memory. These options are not available in RISC OS 2.

Example

*Obey !commands myfile1 12

Related commands

*Exec, *Run

Related SWIs

None

Related vectors

None

P
ro

g
ram

m
er’s support

Command scripts

4-359

Application Notes
These example files illustrate several of the important differences between Command
and Obey files:

*BASIC
AUTO
FOR I = 1 TO 10
 PRINT "Hello"
NEXT I
END

If this were a command file, it would enter the BASIC interpreter, and input the file
shown. The command script will end with the BASIC interpreter waiting for another
line of input. You can then press Esc to get a prompt, type RUN to run the program, and
then type QUIT to leave BASIC. This script shows how a command file is passed to the
input, and can change what is accepting its input (in this case to the BASIC interpreter).

In contrast, if this were an Obey file it would be passed to the Command Line
interpreter, and an attempt would be made to run these commands:

*BASIC
*AUTO
*FOR I = 1 TO 10
* PRINT "Hello"
*NEXT I
*END

Only the first command is valid, and so as an Obey file all this does is to leave you in the
BASIC interpreter. Type QUIT to leave BASIC; you will then get an error message
saying File ‘AUTO’ not found, generated by the second line in the file.

The next example illustrates how control characters are handled in both Command and
Obey files:

echo <7>
echo |<7>

The control characters are represented in GSTrans format (see the chapter entitled
Conversions on page 1-453). These are not interpreted until the echo command is run,
and are only interpreted then because echo expects GSTrans format.

The first line sends an ASCII 7 to the VDU drivers, sounding a beep; see VDU 7 on
page 1-575 for more information. In the second line, the | preceding the < changes it
from the start of a GSTrans sequence to just representing the character <, so the overall
effect is:

echo <7> Send ASCII 7 to VDU drivers – beeps

echo |<7> Send <7> to VDU drivers – displays <7> on the screen

The last examples are a Command file:

Application Notes

4-360

*Set Alias$more %echo |<14>|m %type –tabexpand %*0|m %echo |<15>

and an Obey file that has the same effect:

Set Alias$more %echo |<14>|m %type –tabexpand %%*0|m %echo |<15>

The only differences between the two examples are that the Command file has a
preceding * added, to ensure that the command is passed to the Command Line
interpreter; and that the Obey file has the %*0 changed to %%*0 to delay the
substitution of parameters.

The file creates a new command called ‘more’ – taking its name from the UNIX ‘more’
command – by setting the variable Alias$more:

● The % characters that precede echo and type ensure that the actual commands are
used, rather than an aliased version of them.

● The sequence |m represents a carriage return in GSTrans format and is used to
separate the commands, just as Return would if you were typing the commands.

● The two echo commands turn paged mode on, then off, by sending the control
characters ASCII 14 and 15 respectively to the VDU drivers (see page 1-582
onwards of the chapter entitled VDU Drivers for more information).

● The | before each < prevents the control characters from being interpreted until the
aliased command ‘more’ is run.

The command turns paged mode on, types a file to the screen expanding tabs as it does
so, and then turns paged mode off.

A
p

p
en

d
ixes an

d
 tab

les

4-361

4 Appendixes and tables

4-362

A
p

p
en

d
ixes an

d
 tab

les

4-363

4

86 Appendix A: ARM assembler

Introduction
Assembly language is a programming language in which each statement translates
directly into a single machine code instruction or piece of data. An assembler is a piece
of software which converts these statements into their machine code counterparts.

Writing in assembly language has its disadvantages. The code is more verbose than the
equivalent high-level language statements, more difficult to understand and therefore
harder to debug. High-level languages were invented so that programs could be written
to look more like English so we could talk to computers in our language rather than
directly in their own.

There are two reasons why, in certain circumstances, assembly language is used in
preference to high-level languages. The first reason is that the machine code program
produced by it executes more quickly than its high-level counterparts, particularly those
in languages such as BASIC which are interpreted. The second reason is that assembly
language offers greater flexibility. It allows certain operating system routines to be
called or replaced by new pieces of code, and it allows greater access to the hardware
devices and controllers.

Available assemblers

The BASIC assembler

The BBC BASIC interpreter, supplied as a standard part of RISC OS, includes an ARM
assembler. This supports the full instruction set of the ARM 2 processor. At present it
neither supports extra instructions that were first implemented by the ARM 3 processor,
nor does it support coprocessor instructions.

It is the BASIC assembler that is described below, serving as an introduction to ARM
assembler.

Available assemblers

4-364

The Acorn Desktop Assembler

The Acorn Desktop Assembler is a separate product that provides much more powerful
facilities than the BASIC assembler. With it you can develop assembler programs under
the desktop, in an environment common to all Acorn desktop languages. It contains two
different assemblers:

● AAsm is an assembler that produces binary image files which can be executed
immediately.

● ObjAsm is an assembler that creates object files that cannot be executed directly,
but must first be linked to other object files. Object files linked with those produced
by ObjAsm may be produced from some programming language other than
assembler, for example C.

These assemblers are not described in this appendix, but use a broadly similar syntax to
the BASIC assembler described below. For full details, see the Acorn Assembler
Release 2 manual, which is supplied with Acorn Desktop Assembler, or is separately
available.

A
p

p
en

d
ixes an

d
 tab

les

Appendix A: ARM assembler

4-365

The BASIC assembler

Using the BASIC assembler
The assembler is part of the BBC BASIC language. Square brackets ‘[’ and ‘]’ are used
to enclose all the assembly language instructions and directives and hence to inform
BASIC that the enclosed instructions are intended for its assembler. However, there are
several operations which must be performed from BASIC itself to ensure that a
subsequent assembly language routine is assembled correctly.

Initialising external variables

The assembler allows the use of BASIC variables as addresses or data in instructions
and assembler directives. For example variables can be set up in BASIC giving the
numbers of any SWI routines which will be called:

OS_WriteI = &100
…
[
…
SWI OS_WriteI+ASC">"
…

Reserving memory space for the machine code

The machine code generated by the assembler is stored in memory. However, the
assembler does not automatically set memory aside for this purpose. You must reserve
sufficient memory to hold your assembled machine code by using the DIM statement.
For example:

1000 DIM code% 100

The start address of the memory area reserved is assigned to the variable code%. The
address of the last memory location is code%+100. Hence, this example reserves a total
of 101 bytes of memory. In future examples, the size of memory reserved is shown as
required_size, to emphasise that you must substitute a value appropriate to the size of
your code.

Using the BASIC assembler

4-366

Memory pointers

You need to tell the assembler the start address of the area of memory you have reserved.
The simplest way to do this is to assign P% to point to the start of this area. For example:

DIM code% required_size
…
P% = code%

P% is then used as the program counter. The assembler places the first assembler
instruction at the address P% and automatically increments the value of P% by four so
that it points to the next free location. When the assembler has finished assembling the
code, P% points to the byte following the final location used. Therefore, the number of
bytes of machine code generated is given by:

P% - code%

This method assumes that you wish subsequently to execute the code at the same
location.

The position in memory at which you load a machine code program may be significant.
For example, it might refer directly to data embedded within itself, or expect to find
routines at fixed addresses. Such a program only works if it is loaded in the correct place
in memory. However, it is often inconvenient to assemble the program directly into the
place where it will eventually be executed. This memory may well be used for
something else whilst you are assembling the program. The solution to this problem is to
use a technique called ‘offset assembly’ where code is assembled as if it is to run at a
certain address but is actually placed at another.

To do this, set O% to point to the place where the first machine code instruction is to be
placed and P% to point to the address where the code is to be run.

To notify the assembler that this method of generating code is to be used, the directive
OPT, which is described in more detail below, must have bit 2 set.

It is usually easy, and always preferable, to write ARM code that is position
independent.

Implementing passes

Normally, when the processor is executing a machine code program, it executes one
instruction and then moves on automatically to the one following it in memory. You can,
however, make the processor move to a different location and start processing from there
instead by using one of the ‘branch’ instructions. For example:

.result_was_0
…

BEQ result_was_0

A
p

p
en

d
ixes an

d
 tab

les

Appendix A: ARM assembler

4-367

The fullstop in front of the name result_was_0 identifies this string as the name of a
‘label’. This is a directive to the assembler which tells it to assign the current value of the
program counter (P%) to the variable whose name follows the fullstop.

BEQ means ‘branch if the result of the last calculation that updated the PSR was zero’.
The location to be branched to is given by the value previously assigned to the label
result_was_0.

The label can, however, occur after the branch instruction. This causes a slight problem
for the assembler since when it reaches the branch instruction, it hasn’t yet assigned a
value to the variable, so it doesn’t know which value to replace it with.

You can get around this problem by assembling the source code twice. This is known as
two-pass assembly. During the first pass the assembler assigns values to all the label
variables. In the second pass it is able to replace references to these variables by their
values.

It is only when the text contains no forward references of labels that just a single pass is
sufficient.

These two passes may be performed by a FOR…NEXT loop as follows:

DIM code% required_size
FOR pass% = 0 TO 3 STEP 3
 P% = code%
 [
 OPT pass%
 … further assembly language statements and assembler directives
]
NEXT pass%

Note that the pointer(s), in this case just P%, must be set at the start of both passes.

The OPT directive

The OPT is an assembler directive whose bits have the following meaning:

Bit Meaning
0 Assembly listing enabled if set
1 Assembler errors enabled
2 Assembled code placed in memory at O% instead of P%
3 Check that assembled code does not exceed memory limit L%

Bit 0 controls whether a listing is produced. It is up to you whether or not you wish to
have one or not.

Saving machine code to file

4-368

Bit 1 determines whether or not assembler errors are to be flagged or suppressed. For the
first pass, bit 1 should be zero since otherwise any forward-referenced labels will cause
the error ‘Unknown or missing variable’ and hence stop the assembly. During the second
pass, this bit should be set to one, since by this stage all the labels defined are known, so
the only errors it catches are ‘real ones’ – such as labels which have been used but not
defined.

Bit 2 allows ‘offset assembly’, ie the program may be assembled into one area of
memory, pointed to by O%, whilst being set up to run at the address pointed to by P%.

Bit 3 checks that the assembled code does not exceed the area of memory that has been
reserved (ie none of it is held in an address greater than the value held in L%). When
reserving space, L% might be set as follows:

DIM code% required_size
L% = code% + required_size

Saving machine code to file
Once an assembly language routine has been successfully assembled, you can then save
it to file. To do so, you can use the *Save command. In our above examples, code%
points to the start of the code; after assembly, P% points to the byte after the code. So we
could use this BASIC command:

OSCLI "Save "+outfile$+" "+STR$~(code%)+" "+STR$~(P%)

after the above example to save the code in the file named by outfile$.

Executing a machine code program

From memory

From memory, the resulting machine code can be executed in a variety of ways:

CALL address
USR address

These may be used from inside BASIC to run the machine code at a given address. See
the BBC BASIC Guide for more details on these statements.

From file

The commands below will load and run the named file, using either its filetype (such as
&FF8 for absolute code) and the associated Alias$@LoadType_xxx and
Alias$@RunType_xxx system variables, or the load and execution addresses defined
when it was saved.

A
p

p
en

d
ixes an

d
 tab

les

Appendix A: ARM assembler

4-369

*name
*RUN name
*/name

We strongly advise you to use file types in preference to load and execution addresses.

Format of assembly language statements
The assembly language statements and assembler directives should be between the
square brackets.

There are very few rules about the format of assembly language statements; those which
exist are given below:

● Each assembly language statement comprises an assembler mnemonic of one or
more letters followed by a varying number of operands.

● Instructions should be separated from each other by colons or newlines.

● Any text following a full stop ‘.’ is treated as a label name.

● Any text following a semicolon ‘;’, or backslash ‘\’, or ‘REM’ is treated as a
comment and so ignored (until the next end of line or ‘:’).

● Spaces between the mnemonic and the first operand, and between the operands
themselves are ignored.

The BASIC assembler contains the following directives:

EQUB int Define 1 byte of memory from LSB of int (DCB, =)
EQUW int Define 2 bytes of memory from int (DCW)
EQUD int Define 4 bytes of memory from int (DCD)
EQUS str Define 0 - 255 bytes as required by string expression

str (DCS)
ALIGN Align P% (and O%) to the next word (4 byte) boundary
ADR reg,addr Assemble instruction to load addr into reg

● The first four operations initialise the reserved memory to the values specified by
the operand. In the case of EQUS the operand field must be a string expression. In
all other cases it must be a numeric expression. DCB (and =), DCW, DCD and DCS
are synonyms for these directives.

● The ALIGN directive ensures that the next P% (and O%) that is used lies on a word
boundary. It is used after, for example, an EQUS to ensure that the next instruction
is word-aligned.

● ADR assembles a single instruction – typically but not necessarily an ADD or SUB
– with reg as the destination register. It obtains addr in that register. It does so in a
PC-relative (ie position independent) manner where possible.

Registers

4-370

Registers
At any particular time there are sixteen 32-bit registers available for use, R0 to R15.
However, R15 is special since it contains the program counter and the processor status
register.

R15 is split up with 24 bits used as the program counter (PC) to hold the word address of
the next instruction. 8 bits are used as the processor status register (PSR) to hold
information about the current values of flags and the current mode/register bank. These
bits are arranged as follows:

The top six bits hold the following information:

Bit Flag Meaning
31 N Negative flag
30 Z Zero flag
29 C Carry flag
28 V Overflow flag
27 I Interrupt request disable
26 F Fast interrupt request disable

The bottom two bits can hold one of four different values:

M Meaning
0 User mode
1 Fast interrupt processing mode (FIQ mode)
2 Interrupt processing mode (IRQ mode)
3 Supervisor mode (SVC mode)

User mode is the normal program execution state. SVC mode is a special mode which is
entered when calls to the supervisor are made using software interrupts (SWIs) or when
an exception occurs. From within SVC mode certain operations can be performed which
are not permitted in user mode, such as writing to hardware devices and peripherals.
SVC mode has its own private registers R13 and R14. So after changing to SVC mode,
the registers R0 - R12 are the same, but new versions of R13 and R14 are available. The
values contained by these registers in user mode are not overwritten or corrupted.

Similarly, IRQ and FIQ modes have their own private registers (R13 - R14 and R8 - R14
respectively).

Although only 16 registers are available at any one time, the processor actually contains
a total of 27 registers.

For a more complete description of the registers, see the chapter entitled ARM Hardware
on page 1-9.

A
p

p
en

d
ixes an

d
 tab

les

Appendix A: ARM assembler

4-371

Condition codes
All the machine code instructions can be performed conditionally according to the status
of one or more of the following flags: N, Z, C, V. The sixteen available condition codes
are:

AL Always This is the default
CC Carry clear C clear
CS Carry set C set
EQ Equal Z set
GE Greater than or equal (N set and V set) or

(N clear and V clear)
GT Greater than ((N set and V set) or

(N clear and V clear)) and Z clear
HI Higher (unsigned) C set and Z clear
LE Less than or equal (N set and V clear) or

(N clear and V set) or Z set
LS Lower or same (unsigned) C clear or Z set
LT Less than (N set and V clear) or

(N clear and V set)
MI Negative N set
NE Not equal Z clear
NV Never
PL Positive N clear
VC Overflow clear V clear
VS Overflow set V set

Two of these may be given alternative names as follows:

LO Lower unsigned is equivalent to CC
HS Higher / same unsigned is equivalent to CS

You should not use the NV (never) condition code – see page 4-390.

The instruction set

4-372

The instruction set
The available instructions are introduced below in categories indicating the type of
action they perform and their syntax. The description of the syntax obeys the following
standards:

« » indicates that the contents of the brackets are optional (unlike all
other chapters, where we have been using [] instead)

(x|y) indicates that either x or y but not both may be given

#exp indicates that a BASIC expression is to be used which evaluates
to an immediate constant. An error is given if the value cannot be
stored in the instruction.

Rn indicates that an expression evaluating to a register number (in
the range 0 - 15) should be used, or just a register name, eg R0.
PC may be used for R15.

shift indicates that one of the following shift options should be used:

ASL (Rn|#exp) Arithmetic shift left by contents of Rn
or expression

LSL (Rn|#exp) Logical shift left

ASR (Rn|#exp) Arithmetic shift right

LSR (Rn|#exp) Logical shift right

ROR (Rn|#exp) Rotate right

RRX Rotate right one bit with extend

In fact ASL and LSL are the same (because the ARM does not
handle overflow for signed arithmetic shifts), and synonyms. LSL
is the preferred form, as it indicates the functionality.

A
p

p
en

d
ixes an

d
 tab

les

Appendix A: ARM assembler

4-373

Move instructions

Syntax:

opcode«cond»«S» Rd, (#exp|Rm)«,shift»

There are two move instructions. ‘Op2’ means ‘(#exp|Rm)«,shift»’:

Instruction Calculation performed
MOV Move Rd = Op2
MOVN Move NOT Rd = NOT Op2

Each of these instructions produces a result which it places in a destination register (Rd).
The instructions do not affect bytes in memory directly.

Again, all of these instructions can be performed conditionally. In addition, if the ‘S’ is
present, they can cause the condition codes to be set or cleared. These instructions set N
and Z from the ALU, C from the shifter (but only if it is used), and do not affect V.

Examples:

MOV R0, #10 ; Load R0 with the value 10.

Special actions are taken if the source register is R15; the action is as follows:

● If Rm=R15 all 32 bits of R15 are used in the operation ie the PC + PSR.

If the destination register is R15, then the action depends on whether the optional ‘S’ has
been used:

● If S is not present only the 24 bits of the PC are set.

● If S is present the whole result is written to R15, the flags are updated from the
result. (However the mode, I and F bits can only be changed when in non-user
modes.)

The instruction set

4-374

Arithmetic and logical instructions

Syntax:

opcode«cond»«S» Rd, Rn, (#exp|Rm)«,shift»

The instructions available are given below; again, ‘Op2’ means ‘(#exp|Rm)«,shift»’:

Instruction Calculation performed
ADC Add with carry Rd = Rn + Op2 + C
ADD Add without carry Rd = Rn + Op2
SBC Subtract with carry Rd = Rn – Op2 – (1 – C)
SUB Subtract without carry Rd = Rn – Op2
RSC Reverse subtract with carry Rd = Op2 – Rn – (1 – C)
RSB Reverse subtract without carry Rd = Op2 – Rn

AND Bitwise AND Rd = Rn AND Op2
BIC Bitwise AND NOT Rd = Rn AND NOT (Op2)
ORR Bitwise OR Rd = Rn OR Op2
EOR Bitwise EOR Rd = Rn EOR Op2

Each of these instructions produces a result which it places in a destination register (Rd).
The instructions do not affect bytes in memory directly.

As was seen above, all of these instructions can be performed conditionally. In addition,
if the ‘S’ is present, they can cause the condition codes to be set or cleared. The
condition codes N, Z, C and V are set by the arithmetic logic unit (ALU) in the
arithmetic operations. The logical (bitwise) operations set N and Z from the ALU, C
from the shifter (but only if it is used), and do not affect V.

Examples:

ADDEQ R1, R1, #7 ; If the zero flag is set then add 7
; to the contents of register R1.

SBCS R2, R3, R4 ; Subtract with carry the contents of register R4 from
; the contents of register R3 and place the result in
; register R2. The flags will be updated.

AND R3, R1, R2, LSR #2 ; Perform a logical AND on the contents of register R1
; and the contents of register R2 / 4, and place the
; result in register R3.

Special actions are taken if any of the source registers are R15; the action is as follows:

● If Rm=R15 all 32 bits of R15 are used in the operation ie the PC + PSR.

● If Rn=R15 only the 24 bits of the PC are used in the operation.

If the destination register is R15, then the action depends on whether the optional ‘S’ has
been used:

● If S is not present only the 24 bits of the PC are set.

A
p

p
en

d
ixes an

d
 tab

les

Appendix A: ARM assembler

4-375

● If S is present the whole result is written to R15, the flags are updated from the
result. (However the mode, I and F bits can only be changed when in non-user
modes.)

Comparison instructions

Syntax:

opcode«cond»«S|P» Rn, (#exp|Rm)«,shift»

There are four comparison instructions; again, ‘Op2’ means ‘(#exp|Rm)«,shift»’:

Instruction Calculation performed
CMN Compare negated Rn + Op2
CMP Compare Rn – Op2
TEQ Test equal Rn EOR Op2
TST Test Rn AND Op2

These are similar to the arithmetic and logical instructions listed above except that they
do not take a destination register since they do not return a result. Also, they
automatically set the condition flags (since they would perform no useful purpose if they
didn’t). Hence, the ‘S’ of the arithmetic instructions is implied. You can put an ‘S’ after
the instruction to make this clearer.

These routines have an additional function which is to set the whole of the PSR to a
given value. This is done by using a ‘P’ after the opcode, for example TEQP.

Normally the flags are set depending on the value of the comparison. The I and F bits
and the mode and register bits are unaltered. The ‘P’ option allows the corresponding
eight bits of the result of the calculation performed by the comparison to overwrite those
in the PSR (or just the flag bits in user mode).

Example

TEQP PC, #&80000000 ; Set N flag, clear all others. Also enable
; IRQs, FIQs, select User mode if privileged

The above example (as well as setting the N flag and clearing the others) will alter the
IRQ, FIQ and mode bits of the PSR – but only if you are in a privileged mode.

The instruction set

4-376

The ‘P’ option is also useful in user mode, for example to collect errors:

STMFD sp!, {r0, r1, r14}
...
BL routine1
STRVS r0, [sp, #0] ; save error block ptr in return r0

; in stack frame if error
MOV r1, pc ; save psr flags in r1
BL routine2 ; called even if error from routine1
STRVS r0, [sp, #0] ; to do some tidy up action etc.
TEQVCP r1, #0 ; if routine2 didn’t give error,
LDMFD sp!, {r0, r1, pc} ; restore error indication from r1

Multiply instructions

Syntax:

MUL«cond»«S» Rd,Rm,Rs
MLA«cond»«S» Rd,Rm,Rs,Rn

There are two multiply instructions:

Instruction Calculation performed
MUL Multiply Rd = Rm × Rs
MLA Multiply-accumulate Rd = Rm × Rs + Rn

The multiply instructions perform integer multiplication, giving the least significant 32
bits of the product of two 32-bit operands.

The destination register must not be R15 or the same as Rm. Any other register
combinations can be used.

If the ‘S’ is given in the instruction, the N and Z flags are set on the result, and the C and
V flags are undefined.

Examples:

MUL R1,R2,R3

MLAEQS R1,R2,R3,R4

A
p

p
en

d
ixes an

d
 tab

les

Appendix A: ARM assembler

4-377

Branching instructions

Syntax:

B«cond» expression
BL«cond» expression

There are essentially only two branch instructions but in each case the branch can take
place as a result of any of the 15 usable condition codes:

Instruction
B Branch
BL Branch and link

The branch instruction causes the execution of the code to jump to the instruction given
at the address to be branched to. This address is held relative to the current location.

Example:

BEQ label1 ; branch if zero flag set

BMI minus ; branch if negative flag set

The branch and link instruction performs the additional action of copying the address of
the instruction following the branch, and the current flags, into register R14. R14 is
known as the ‘link register’. This means that the routine branched to can be returned
from by transferring the contents of R14 into the program counter and can restore the
flags from this register on return. Hence instead of being a simple branch the instruction
acts like a subroutine call.

Example:

BLEQ equal
.........; address of this instruction
.........; moved to R14 automatically

.equal; start of subroutine
.........

MOVS R15,R14 ; end of subroutine

The instruction set

4-378

Single register load/save instructions

Syntax:

opcode«cond»«B»«T» Rd, address

The single register load/save instructions are as follows:

Instruction
LDR Load register
STR Store register

These instructions allow a single register to load a value from memory or save a value to
memory at a given address.

The instruction has two possible forms:

● the address is specified by register(s), whose names are enclosed in square brackets

● the address is specified by an expression

Address given by registers

The simplest form of address is a register number, in which case the contents of the
register are used as the address to load from or save to. There are two other alternatives:

● pre-indexed addressing (with optional write back)

● post-indexed addressing (always with write back)

With pre-indexed addressing the contents of another register, or an immediate value, are
added to the contents of the first register. This sum is then used as the address. It is
known as pre-indexed addressing because the address being used is calculated before the
load/save takes place. The first register (Rn below) can be optionally updated to contain
the address which was actually used by adding a ‘!’ after the closing square bracket.

Address syntax Address
[Rn] Contents of Rn
[Rn,#m]«!» Contents of Rn + m
[Rn,«–»Rm]«!» Contents of Rn ± contents of Rm
[Rn,«–»Rm,shift #s]«!» Contents of Rn ± (contents of Rm shifted by s places)

A
p

p
en

d
ixes an

d
 tab

les

Appendix A: ARM assembler

4-379

With post-indexed addressing the address being used is given solely by the contents of
the register Rn. The rest of the instruction determines what value is written back into Rn.
This write back is performed automatically; no ‘!’ is needed. Post-indexing gets its name
from the fact that the address that is written back to Rn is calculated after the load/save
takes place.

Address syntax Value written back
[Rn],#m Contents of Rn + m
[Rn],«–»Rm Contents of Rn ± contents of Rm
[Rn],«–»Rm,shift #s Contents of Rn ± (contents of Rm shifted by s places)

Address given as an expression

If the address is given as a simple expression, the assembler will generate a pre-indexed
instruction using R15 (the PC) as the base register. If the address is out of the range of
the instruction (±4095 bytes), an error is given.

Options

If the ‘B’ option is specified after the condition, only a single byte is transferred, instead
of a whole word. The top 3 bytes of the destination register are cleared by an LDRB
instruction.

If the ‘T’ option is specified after the condition, then the TRANs pin on the ARM
processor will be active during the transfer, forcing an address translation. This allows
you to access User mode memory from a privileged mode. This option is invalid for
pre-indexed addressing.

Using the program counter

If you use the program counter (PC, or R15) as one of the registers, a number of special
cases apply:

● the PSR is never modified, even when Rd or Rn is the PC

● the PSR flags are not used when the PC is used as Rn, and (because of pipelining) it
will be advanced by eight bytes from the current instruction

● the PSR flags are used when the PC is used as Rm, the offset register.

The instruction set

4-380

Multiple register load/save instructions

Syntax:

opcode«cond»type Rn«!», {Rlist}«^»

These instructions allow the loading or saving of several registers:

Instruction
LDM Load multiple registers
STM Store multiple registers

The contents of register Rn give the base address from/to which the value(s) are loaded
or saved. This base address is effectively updated during the transfer, but is only written
back to if you follow it with a ‘!’.

Rlist provides a list of registers which are to be loaded or saved. The order the registers
are given, in the list, is irrelevant since the lowest numbered register is loaded/saved
first, and the highest numbered one last. For example, a list comprising {R5,R3,R1,R8}
is loaded/saved in the order R1, R3, R5, R8, with R1 occupying the lowest address in
memory. You can specify consecutive registers as a range; so {R0–R3} and
{R0,R1,R2,R3} are equivalent.

The type is a two-character mnemonic specifying either how Rn is updated, or what sort
of a stack results:

Mnemonic Meaning
DA Decrement Rn After each store/load
DB Decrement Rn Before each store/load
IA Increment Rn After each store/load
IB Increment Rn Before each store/load

EA Empty Ascending stack is used
ED Empty Descending stack is used
FA Full Ascending stack is used
FD Full Descending stack is used

● an empty stack is one in which the stack pointer points to the first free slot in it

● a full stack is one in which the stack pointer points to the last data item written to it

● an ascending stack is one which grows from low memory addresses to high ones

● a descending stack is one which grows from high memory addresses to low ones

In fact these are just different ways of looking at the situation – the way Rn is updated
governs what sort of stack results, and vice versa. So, for each type of instruction in the
first group there is an equivalent in the second:

A
p

p
en

d
ixes an

d
 tab

les

Appendix A: ARM assembler

4-381

LDMEA is the same as LDMDB
LDMED is the same as LDMIB
LDMFA is the same as LDMDA
LDMFD is the same as LDMIA

STMEA is the same as STMIA
STMED is the same as STMDA
STMFA is the same as STMIB
STMFD is the same as STMDB

All Acorn software uses an FD (full, descending) stack. If you are writing code for SVC
mode you should try to use a full descending stack as well – although you can use any
type you like.

A ‘^’ at the end of the register list has two possible meanings:

● For a load with R15 in the list, the ‘^’ forces update of the PSR.

● Otherwise the ‘^’ forces the load/store to access the User mode registers. The base
is still taken from the current bank though, and if you try to write back the base it
will be put in the User bank – probably not what you would have intended.

Examples:

LDMIA R5, {R0,R1,R2} ; where R5 contains the value
 ; &1484

; This will load R0 from &1484
; R1 from &1488
; R2 from &148C

LDMDB R5, {R0-R2} ; where R5 contains the value
; &1484
; This will load R0 from &1478
; R1 from &147C
; R2 from &1480

If there were a ‘!’ after R5, so that it were written back to, then this would leave R5
containing &1490 and &1478 after the first and second examples respectively.

The examples below show directly equivalent ways of implementing a full descending
stack. The first uses mnemonics describing how the stack pointer is handled:

STMDB Stackpointer!, {R0-R3} ; push onto stack
…
LDMIA Stackpointer!, {R0-R3} ; pull from stack

and the second uses mnemonics describing how the stack behaves:

STMFD Stackpointer!, {R0,R1,R2,R3} ; push onto stack
…
LDMFD Stackpointer!, {R0,R1,R2,R3} ; pull from stack

The instruction set

4-382

Using the base register

● You can always load the base register without any side effects on the rest of the
LDM operation, because the ARM uses an internal copy of the base, and so will not
be aware that it has been loaded with a new value.

However, you should see Appendix B: Warnings on the use of ARM assembler on
page 4-385 for notes on using writeback when doing so.

● You can store the base register as well. If you are not using write back then no
problem will occur. If you are, then this is the order in which the ARM does the
STM:

1 write the lowest numbered register to memory

2 do the write back

3 write the other registers to memory in ascending order.

So, if the base register is the lowest-numbered one in the list, its original value is
stored:

STMIA R2!, {R2-R6} ; R2 stored is value before write back

Otherwise its written back value is stored:
STMIA R2!, {R1-R5} ; R2 stored is value after write back

Using the program counter

If you use the program counter (PC, or R15) in the list of registers:

● the PSR is saved with the PC; and (because of pipelining) it will be advanced by
twelve bytes from the current position

● the PSR is only loaded if you follow the register list with a ‘^’; and even then, only
the bits you can modify in the ARM’s current mode are loaded.

It is generally not sensible to use the PC as the base register. If you do:

● the PSR bits are used as part of the address, which will give an address exception
unless all the flags are clear and all interrupts are enabled.

SWI instruction

Syntax:

SWI«cond» expression

SWI«cond» "SWIname" (BBC BASIC assembler)

The SWI mnemonic stands for SoftWare Interrupt. On encountering a SWI, the ARM
processor changes into SVC mode and stores the address of the next location in R14_svc
– so the User mode value of R14 is not corrupted. The ARM then goes to the SWI
routine handler via the hardware SWI vector containing its address.

A
p

p
en

d
ixes an

d
 tab

les

Appendix A: ARM assembler

4-383

The first thing that this routine does is to discover which SWI was requested. It finds this
out by using the location addressed by (R14_svc – 4) to read the current SWI instruction.
The opcode for a SWI is 32 bits long; 4 bits identify the opcode as being for a SWI, 4
bits hold all the condition codes and the bottom 24 bits identify which SWI it is. Hence
224 different SWI routines can be distinguished.

When it has found which particular SWI it is, the routine executes the appropriate code
to deal with it and then returns by placing the contents of R14_svc back into the PC,
which restores the mode the caller was in.

This means that R14_svc will be corrupted if you execute a SWI in SVC mode – which
can have disastrous consequences unless you take precautions.

The most common way to call this instruction is by using the SWI name, and letting the
assembler translate this to a SWI number. The BBC BASIC assembler can do this
translation directly:

SWINE "OS_WriteC"

See the chapter entitled An introduction to SWIs on page 1-23 for a full description of
how RISC OS handles SWIs, and the index of SWIs for a full list of the operating
system SWIs.

The instruction set

4-384

A
p

p
en

d
ixes an

d
 tab

les

4-385

4

87 Appendix B: Warnings on the use
of ARM assembler

Introduction
The ARM processor family uses Reduced Instruction Set (RISC) techniques to
maximise performance; as such, the instruction set allows some instructions and code
sequences to be constructed that will give rise to unexpected (and potentially erroneous)
results. These cases must be avoided by all machine code writers and generators if
correct program operation across the whole range of ARM processors is to be obtained.

In order to be upwards compatible with future versions of the ARM processor family
never use any of the undefined instruction formats:

● those shown in the Acorn RISC Machine family Data Manual as ‘Undefined’ which
the processor traps;

● those which are not shown in the manual and which don’t trap (for example, a
Multiply instruction where bit 5 or 6 of the instruction is set).

In addition the ‘NV’ (never executed) instruction class should not be used (it is
recommended that the instruction ‘MOV R0,R0’ be used as a general purpose no-op).

This chapter lists the instructions and code sequences to be avoided. It is strongly
recommended that you take the time to familiarise yourself with these cases because
some will only fail under particular circumstances which may not arise during testing.

For more details on the ARM chip see the Acorn RISC Machine family Data Manual.
VLSI Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ, USA: ISBN
0-13-781618-9.

Restrictions to the ARM instruction set

4-386

Restrictions to the ARM instruction set
There are three main reasons for restricting the use of certain parts of the instruction set:

● Dangerous instructions
Such instructions can cause a program to fail unexpectedly, for example:

LDM R15,Rlist

uses PC+PSR as the base and so can cause an unexpected address exception.

● Useless instructions
It is better to reserve the instruction space occupied by existing ‘useless’
instructions for instruction expansion in future processors. For example:

MUL R15,Rm,Rs

only serves to scramble the PSR.

This category also includes ineffective instructions, such as a PC relative LDC/STC
with writeback; the PC cannot be written back in these instructions, so the
writeback bit is ineffective (and an attempt to use it should be flagged as an error).

Note: LDC/STC are instructions to load/store a coprocessor register from/to
memory; since they are not supported by the BASIC assembler, they were not
described in Appendix A: ARM assembler.

● Instructions with undesirable side-effects
It is hard to guarantee the side-effects of instructions across different processors. If,
for example, the following is used:

LDR Rd,[R15,#expression]!

the PC writeback will produce different results on different types of processor.

Instructions and code sequences to avoid
The instructions and code sequences are split into a number of categories. Each category
starts with an indication of which of the two main ARM variants (ARM2, ARM3) it
applies to, and is followed by a recommendation or warning. The text then goes on to
explain the conditions in more detail and to supply examples where appropriate.

Unless a program is being targeted specifically for a single version of the ARM
processor family, all of these recommendations should be adhered to.

TSTP/TEQP/CMPP/CMNP: Changing mode

Applicability: ARM2

When the processor’s mode is changed by altering the mode bits in the PSR using a
data processing operation, care must be taken not to access a banked register
(R8-R14) in the following instruction. Accesses to the unbanked registers (R0-R7,
R15) are safe.

A
p

p
en

d
ixes an

d
 tab

les

Appendix B: Warnings on the use of ARM assembler

4-387

The following instructions are affected, but note that mode changes can only be made
when the processor is in a non-user mode:

TSTP Rn,Op2
TEQP Rn,Op2
MPP Rn,Op2
CMNP Rn,Op2

These are the only operations that change all the bits in the PSR (including the mode
bits) without affecting the PC (thereby forcing a pipeline refill during which time the
register bank select logic settles).

The following examples assume the processor starts in Supervisor mode:

a) TEQP PC,#0
 MOV R0,R0 Safe: NOP added between mode change and
 ADD R0,R1,R13_usr access to a banked register (R13_usr)

b) TEQP PC,#0
 ADD R0,R1,R2 Safe: No access made to a banked register

c) TEQP PC,#0
 ADD R0,R1,R13_usr Fails: Data not read from Register R13_usr!

The safest default is always to add a NOP (e.g. MOV R0,R0) after a mode changing
instruction; this will guarantee correct operation regardless of the code sequence
following it.

LDM/STM: Forcing transfer of the user bank (Part 1)

Applicability: ARM2, ARM3

Do not use writeback when forcing user bank transfer in LDM/STM.

For STM instructions the S bit is redundant as the PSR is always stored with the PC
whenever R15 is in the transfer list. In user mode programs the S bit is ignored, but in
other modes it has a second interpretation; S=1 is used to force transfers to take values
from the user register bank instead of from the current register bank. This is useful for
saving the user state on process switches.

Similarly, in LDM instructions the S bit is redundant if R15 is not in the transfer list. In
user mode programs, the S bit is ignored, but in non-usermode programs where R15 is
not in the transfer list, S=1 is used to force loaded values to go to the user registers
instead of the current register bank.

In both cases where the processor is in a non-user mode and transfer to or from the user
bank is forced by setting the S bit, writeback of the base will also be to the user bank
though the base will be fetched from the current bank. Therefore don’t use writeback
when forcing user bank transfer in LDM/STM.

Instructions and code sequences to avoid

4-388

The following examples assume the processor to be in a non-user mode and Rlist not
to include R15:

 STMxx Rn!,Rlist Safe: Storing non-user registers with write
back to the non-user base register

 LDMxx Rn!,Rlist Safe: Loading non-user registers with write
back to the non-user base register

 STMxx Rn,Rlist^ Safe: Storing user registers, but no base
write-back

 STMxx Rn!,Rlist^ Fails: Base fetched from non-user register,
but written back into user register

 LDMxx Rn!,Rlist^ Fails: Base fetched from non-user register,
but written back into user register

LDM: Forcing transfer of the user bank (Part 2)

Applicability: ARM2, ARM3

When loading user bank registers with an LDM in a non-user mode, care must be
taken not to access a banked register (R8-R14) in the following instruction.
Accesses to the unbanked registers (R0-R7,R15) are safe.

Because the register bank switches from user mode to non-user mode during the first
cycle of the instruction following an LDM Rn,Rlist^, an attempt to access a banked
register in that cycle may cause the wrong register to be accessed.

The following examples assume the processor to be in a non-user mode and Rlist not
to include R15:

 LDM Rn Rlist^
 ADD R0,R1,R2 Safe: Access to unbanked registers after

LDM^

 LDM Rn,Rlist^
 MOV R0,R0 Safe: NOP inserted before banked register
 ADD R0,R1,R13_svc used following an LDM^

 LDM Rn,Rlist^
 ADD R0,R1,R13_svc Fails: Accessing a banked register

immediately after an LDM^ returns the
wrong data

A
p

p
en

d
ixes an

d
 tab

les

Appendix B: Warnings on the use of ARM assembler

4-389

 ADR R14_svc, saveblock
 LDMIA R14_svc, {R0 - R14_usr}^
 LDR R14_svc, [R14_svc,#15*4] Fails: Banked base register
 MOVS PC, R14_svc (R14_svc) used immediately

after the LDM^

 ADR R14_svc, saveblock
 LDMIA R14_svc, {R0 - R14_usr}^
 MOV R0,R0 Safe: NOP inserted before
 LDR R14_svc, [R14_svc,#15*4] banked register
 MOVS PC, R14_svc (R14_svc) used

Note: The ARM2 and ARM3 processors usually give the expected result, but cannot be
guaranteed to do so under all circumstances, therefore this code sequence should be
avoided in future.

SWI/Undefined Instruction trap interaction

Applicability: ARM2

Care must be taken when writing an undefined instruction handler to allow for an
unexpected call from a SWI instruction. The erroneous SWI call should be
intercepted and redirected to the software interrupt handler.

The implementation of the CDP instruction on ARM2 may cause – under certain
circumstances – a Software Interrupt (SWI) to take the Undefined Instruction trap if the
SWI was the next instruction after the CDP. For example:

 SIN F0
 SWI &11 Fails: ARM2 may take the undefined instruction

trap instead of software interrupt trap.

All Undefined Instruction handler code should check the failed instruction to see if it is
a SWI, and if so pass it over to the software interrupt handler by branching to the SWI
hardware vector at address 8.

Note: CDP is a Coprocessor Data Operation instruction; since it is not
supported by the BASIC assembler, it was not described in Appendix A: ARM
assembler.

Undefined instruction/Prefetch abort trap interaction

Applicability: ARM2, ARM3

Care must be taken when writing the Prefetch abort trap handler to allow for an
unexpected call due to an undefined instruction.

Instructions and code sequences to avoid

4-390

When an undefined instruction is fetched from the last word of a page, where the next
page is absent from memory, the undefined instruction will cause the undefined
instruction trap to be taken, and the following (aborted) instructions will cause a prefetch
abort trap. One might expect the undefined instruction trap to be taken first, then the
return to the succeeding code will cause the abort trap. In fact the prefetch abort has a
higher priority than the undefined instruction trap, so the prefetch abort handler is
entered before the undefined instruction trap, indicating a fault at the address of the
undefined instruction (which is in a page which is actually present). A normal return
from the prefetch abort handler (after loading the absent page) will cause the undefined
instruction to execute and take the trap correctly. However the indicated page is already
present, so the prefetch abort handler may simply return control, causing an infinite loop
to be entered.

Therefore, the prefetch abort handler should check whether the indicated fault is in a
page which is actually present, and if so it should suspect the above condition and pass
control to the undefined instruction handler. This will restore the expected sequential
nature of the execution sequence. A normal return from the undefined instruction
handler will cause the next instruction to be fetched (which will abort), the prefetch
abort handler will be re-entered (with an address pointing to the absent page), and
execution can proceed normally.

Single instructions to avoid

Applicability: ARM2, ARM3

The following single instructions and code sequences should be avoided in writing
any ARM code.

Any instruction that uses the ‘NV’ condition flag

Avoid using the NV (execute never) condition code:

 opcodeNV ...

i.e. any operation where {cond}= NV

By avoiding the use of the ‘NV’ condition code, 228 instructions become free for future
expansion.

Note: It is recommended that the instruction MOV R0,R0 be used as a general purpose
NOP.

Data processing

Avoid using R15 in the Rs position of a data processing instruction:

MOV|MVN{cond}{S} Rd,Rm,shiftname R15

CMP|CMN|TEQ|TST{cond}{P} Rn,Rm,shiftname R15

A
p

p
en

d
ixes an

d
 tab

les

Appendix B: Warnings on the use of ARM assembler

4-391

ADC|ADD|SBC...|EOR{cond}{S} Rd,Rn,shiftname R15

Shifting a register by an amount dependent upon the code position should be avoided.

Multiply and multiply-accumulate

Do not specify R15 as the destination register as only the PSR will be affected by the
result of the operation:

MUL{cond}{S} R15,Rm,Rs
MLA{cond}{S} R15,Rm,Rs,Rn

Do not use the same register in the Rd and Rm positions, as the result of the operation
will be incorrect:

MUL{cond}{S} Rd,Rd,Rs
MLA{cond}{S} Rd,Rd,Rs

Single data transfer

Do not use a PC relative load or store with base writeback as the effects may vary in
future processors:

LDR|STR{cond}{B}{T} Rd,[R15,#expression]!
LDR|STR{cond}{B}{T} Rd,[R15,{-}Rm{,shift}]!

LDR|STR{cond}{B}{T} Rd,[R15],#expression
LDR|STR{cond}{B}{T} Rd,[R15],{-}Rm{,shift}

Note: It is safe to use pre-indexed PC relative loads and stores without base writeback.

Avoid using R15 as the register offset (Rm) in single data transfers as the value used will
be PC+PSR which can lead to address exceptions:

LDR|STR{cond}{B}{T} Rd,[Rn,{-}R15{,shift}]{!}
LDR|STR{cond}{B}{T} Rd,[Rn],{-}R15{,shift}

A byte load or store operation on R15 must not be specified, as R15 contains the PC, and
should always be treated as a 32 bit quantity:

LDR|STR{cond}B{T} R15,Address

A post-indexed LDR|STR where Rm=Rn must not be used (this instruction is very
difficult for the abort handler to unwind when late aborts are configured – which do not
prevent base writeback):

LDR|STR{cond}{B}{T} Rd,[Rn],{-}Rn{,shift}

Do not use the same register in the Rd and Rm positions of an LDR which specifies (or
implies) base writeback; such an instruction is ambiguous, as it is not clear whether the
end value in the register should be the loaded data or the updated base:

Instructions and code sequences to avoid

4-392

LDR{cond}{B}{T} Rn,[Rn,#expression]!
LDR{cond}{B}{T} Rn,[Rn,{-}Rm{,shift}]!

LDR{cond}{B}{T} Rn,[Rn],#expression
LDR{cond}{B}{T} Rn,[Rn],{-}Rm{,shift}

Block data transfer

Do not specify base writeback when forcing user mode block data transfer as the
writeback may target the wrong register:

STM{cond}<FD|ED...|DB> Rn!,Rlist^
LDM{cond}<FD|ED...|DB> Rn!,Rlist^

where Rlist does not include R15.

Note: The instruction:

LDM{cond}<FD|ED...|DB> Rn!,<Rlist,R15>^

does not force user mode data transfer, and can be used safely.

Do not perform a PC relative block data transfer, as the PC+PSR is used to form the base
address which can lead to address exceptions:

LDM|STM{cond}<FD|ED...|DB> R15{!},Rlist{^}

Single data swap

Do not perform a PC relative swap as its behaviour may change in the future:

SWP{cond}{B} Rd,Rm,[R15]

Avoid specifying R15 as the source or destination register:

SWP{cond}{B} R15,Rm,[Rn]
SWP{cond}{B} Rd,R15,[Rn]

Note: SWP is a Single Data Swap instruction, typically used to implement
semaphores, and introduced in the ARM3; since it is not supported by the
BASIC assembler, it was not described in Appendix A: ARM assembler.

Coprocessor data transfers

When performing a PC relative coprocessor data transfer, writeback to R15 is prevented
so the W bit should not be set:

LDC|STC{cond}{L} CP#,CRd,[R15]!

LDC|STC{cond}{L} CP#,CRd,[R15,#expression]!

LDC|STC{cond}{L} CP#,CRd,[R15]#expression!

A
p

p
en

d
ixes an

d
 tab

les

Appendix B: Warnings on the use of ARM assembler

4-393

Undefined instructions

ARM2 has two undefined instructions, and ARM3 has only one (the other ARM2
undefined instruction has been defined as the Single data swap operation).

Undefined instructions should not be used in programs, as they may be defined as a new
operation in future ARM variants.

Register access after an in-line mode change

Care must be taken not to access a banked register (R8-R14) in the cycle following an
in-line mode change. Thus the following code sequences should be avoided:

1 TSTP|TEQP|CMPP|CMNP{cond} Rn,Op2

2 any instruction that uses R8-R14 in its first cycle.

Register access after an LDM that forces user mode data transfer

The banked registers (R8-R14) should not be accessed in the cycle immediately after an
LDM that forces user mode data transfer. Thus the following code sequence should be
avoided:

1 LDM{cond}<FD|ED...|DB> Rn,Rlist^
where Rlist does not include R15

2 any instruction that uses R8-R14 in its first cycle.

Other points to note

This section highlights some obscure cases of ARM operation which should be borne in
mind when writing code.

Use of R15

Applicability: ARM2, ARM3

Warning: When the PC is used as a destination, operand, base or shift register,
different results will be obtained depending on the instruction and the exact usage of
R15.

Full details of the value derived from or written into R15+PSR for each instruction class
is given in the Acorn RISC Machine family Data Manual. Care must be taken when
using R15 because small changes in the instruction can yield significantly different
results. For example, consider data operations of the type:-

opcode{cond}{S} Rd,Rn,Rm
or opcode{cond}{S} Rd,Rn,Rm,shiftname Rs

Instructions and code sequences to avoid

4-394

● When R15 is used in the Rm position, it will give the value of the PC together with
the PSR flags.

● When R15 is used in the Rn or Rs positions, it will give the value of the PC without
the PSR flags (PSR bits replaced by zeros).

 MOV R0,#0
 ORR R1,R0,R15 ; R1:=PC+PSR (bits 31:26,1:0 reflect PSR flags)
 ORR R2,R15,R0 ; R2:=PC (bits 31:26,1:0 set to zero)

Note: The relevant instruction description in the ARM Acorn RISC Machine family Data
Manual should be consulted for full details of the behaviour of R15.

STM: Inclusion of the base in the register list

Applicability: ARM2, ARM3

Warning: In the case of a STM with writeback that includes the base register in the
register list, the value of the base register stored depends upon its position in the
register list.

During an STM, the first register is written out at the start of the second cycle of the
instruction. When writeback is specified, the base is written back at the end of the
second cycle. An STM which includes storing the base, with the base as the first register
to be stored, will therefore store the unchanged value, whereas with the base second or
later in the transfer order, it will store the modified value.

For example:

 MOV R5,#&1000
 STMIA R5!,{R5-R6} ; Stores value of R5=&1000

 MOV R5,#&1000
 STMIA R5!,{R4-R5} ; Stores value of R5=&1008

MUL/MLA: Register restrictions

Applicability: ARM2, ARM3

Given MUL Rd,Rm,Rs
or MLA Rd,Rm,Rs,Rn

Then Rd & Rm must be different registers
Rd must not be R15

Due to the way the Booth’s algorithm has been implemented, certain combinations of
operand registers should be avoided. (The assembler will issue a warning if these
restrictions are overlooked.)

The destination register (Rd) should not be the same as the Rm operand register, as Rd is
used to hold intermediate values and Rm is used repeatedly during the multiply. A MUL
will give a zero result if Rm=Rd, and a MLA will give a meaningless result.

A
p

p
en

d
ixes an

d
 tab

les

Appendix B: Warnings on the use of ARM assembler

4-395

The destination register (Rd) should also not be R15. R15 is protected from modification
by these instructions, so the instruction will have no effect, except that it will put
meaningless values in the PSR flags if the S bit is set.

All other register combinations will give correct results, and Rd, Rn and Rs may use the
same register when required.

LDM/STM: Address Exceptions

Applicability: ARM2, ARM3

Warning: Illegal addresses formed during a LDM or STM operation will not cause
an address exception.

Only the address of the first transfer of a LDM or STM is checked for an address
exception; if subsequent addresses over-flow or under-flow into illegal address space
they will be truncated to 26 bits but will not cause an address exception trap.

The following examples assume the processor is in a non-user mode and MEMC is
being accessed:

 MOV R0,#&04000000 ; R0=&04000000
 STMIA R0,{R1-R2} ; Address exception reported

: (base address illegal)

 MOV R0,#&04000000
 SUB R0,R0,#4 ; R0=&03FFFFFC
 STMIA R0,{R1-R2} ; No address exception reported

: (base address legal)
; code will overwrite data at address &00000000

Note: The exact behaviour of the system depends upon the memory manager to which
the processor is attached; in some cases, the wraparound may be detected and the
instruction aborted.

LDC/STC: Address Exceptions

Applicability: ARM2, ARM3

Warning: Illegal addresses formed during a LDC or STC operation will not cause an
address exception (affects LDF/STF).

The coprocessor data transfer operations act like STM and LDM with the processor
generating the addresses and the coprocessor supplying/reading the data. As with
LDM/STM, only the address of the first transfer of a LDC or STC is checked for an
address exception; if subsequent addresses over-flow or under-flow into illegal address
space they will be truncated to 26 bits but will not cause an address exception trap.

Note that the floating point LDF/STF instructions are forms of LDC and STC.

Instructions and code sequences to avoid

4-396

The following examples assume the processor is in a non-user mode and MEMC is
being accessed:

 MOV R0,#&04000000 ; R0=&04000000
 STC CP1,CR0,[R0] ; Address exception reported

: (base address illegal)

 MOV R0,#&04000000
 SUB R0,R0,#4 ; R0=&03FFFFFC
 STFD F0,[R0] ; No address exception reported

: (base address legal)
; code will overwrite data at address &00000000

Note: The exact behaviour of the system depends upon the memory manager to which
the processor is attached; in some cases, the wraparound may be detected and the
instruction aborted.

LDC: Data transfers to a coprocessor fetch more data than expected

Applicability: ARM3

Data to be transferred to a coprocessor with the LDC instruction should never be
placed in the last word of an addressable chunk of memory, nor in the word of
memory immediately preceding a read-sensitive memory location.

Due to the pipelining introduced into the ARM3 coprocessor interface, an LDC
operation will cause one extra word of data to be fetched from the internal cache or
external memory by ARM3 and then discarded; if the extra data is fetched from an area
of external memory marked as cacheable, a whole line of data will be fetched and placed
in the cache.

A
p

p
en

d
ixes an

d
 tab

les

Appendix B: Warnings on the use of ARM assembler

4-397

A particular case in point is that an LDC whose data ends at the last word of a memory
page will load and then discard the first word (and hence the first cache line) of the next
page. A minor effect of this is that it may occasionally cause an unnecessary page swap
in a virtual memory system. The major effect of it is that (whether in a virtual memory
system or not), the data for an LDC should never be placed in the last word of an
addressable chunk of memory: the LDC will attempt to read the immediately following
non-existent location and thus produce a memory fault.

The following example assumes the processor is in a non-user mode, FPU hardware is
attached and MEMC is being accessed:

 MOV R13,#&03000000 ; R13=Address of I/O space
 STFD F0,[R13,#-8]! ; Store F.P. register 0 at top of physical memory

: (two words of data transferred)
 LDFD F1,[R13],#8 ; Load F.P. register 1 from top of physical

; memory, but three words of data are
; transferred, and the third access will read
; from I/O space which may be read sensitive

Static ARM problems
The static ARM is a variant of the ARM processor designed for low power consumption,
that is built using static CMOS technology. (The difference between it and the standard
ARM is similar to that between SRAM and DRAM.)

The static ARM exhibits different behaviour to ARM2 and ARM3 when executing a PC
relative LDR with base writeback. This class of instruction has very limited application,
so the discrepancy should not be a problem, but if you wish to use any of the following
instructions in your code you are advised to contact Acorn Computers.

LDR Rd,[PC,#expression]!
LDR Rd,[PC],#expression
LDR Rd,[PC,{-}Rm{,shift}]!
LDR Rd,[PC],{-}Rm{,shift}

Note: A PC relative LDR without writeback works exactly as expected.

Provided that this instruction class is unused, it is likely that writeback to the PC on LDR
and STR will be disabled completely in the future. The fewer incidental ways there are
to modify the PC the better.

Unexpected Static ARM2 behaviour when executing a PC relative LDR with
writeback

The instructions affected are:-

● LDR Rd,[PC,#expression]!

4-398

● LDR Rd,[PC],#expression

Case 1: LDR Rd,[PC,#expression]!

Expected result: Rd ← (PC+8+expression)
PC ← PC+8+expression

…so execution continues from PC+8+expression

Actual ARM2 result: Rd ← Rd {no change}
PC ← PC+8+expression+4

…so execution continues from PC+12+expression

Case 2: LDR Rd,[PC],#expression

Expected result: Rd ← (PC+8)
PC ← PC+8+expression

…so execution continues from PC+8+expression

Actual ARM2 result: Rd ← Rd {no change}
PC ← PC+8+expression+4

…so execution continues from PC+12+expression

A
p

p
en

d
ixes an

d
 tab

les

4-399

4

88 Appendix C: ARM procedure call
standard

This appendix relates to the implementation of compiler code-generators and language
run-time library kernels for the Acorn RISC Machine (ARM) but is also a useful
reference when interworking assembly language with high level language code.

The reader should be familiar with the ARM’s instruction set, floating-point instruction
set and assembler syntax before attempting to use this information to implement a
code-generator. In order to write a run-time kernel for a language implementation,
additional information specific to the relevant ARM operating system will be needed
(some information is given in the sections describing the standard register bindings for
this procedure-call standard).

The main topics covered in this appendix are the procedure call and stack disciplines.
These disciplines are observed by Acorn’s C language implementation for the ARM
and, eventually, will be observed by other high level language compilers too. Because C
is the first-choice implementation language for RISC OS applications and the
implementation language of Acorn’s UNIX product RISC iX, the utility of a new
language implementation for the ARM will be related to its compatibility with Acorn’s
implementation of C.

At the end of this appendix are several examples of the usage of this standard, together
with suggestions for generating effective code for the ARM.

The purpose of APCS
The ARM Procedure Call Standard is a set of rules, designed:

● to facilitate calls between program fragments compiled from different source
languages (eg to make subroutine libraries accessible to all compiled languages)

● to give compilers a chance to optimise procedure call, procedure entry and
procedure exit (following the reduced instruction set philosophy of the ARM). This
standard defines the use of registers, the passing of arguments at an external
procedure call, and the format of a data structure that can be used by stack
backtracing programs to reconstruct a sequence of outstanding calls. It does so in
terms of abstract register names. The binding of some register names to register
numbers and the precise meaning of some aspects of the standard are somewhat
dependent on the host operating system and are described in separate sections.

Design criteria

4-400

Formally, this standard only defines what happens when an external procedure call
occurs. Language implementors may choose to use other mechanisms for internal calls
and are not required to follow the register conventions described in this appendix except
at the instant of an external call or return. However, other system-specific invariants may
have to be maintained if it is required, for example, to deliver reliably an asynchronous
interrupt (eg a SIGINT) or give a stack backtrace upon an abort (eg when dereferencing
an invalid pointer). More is said on this subject in later sections.

Design criteria
This procedure call standard was defined after a great deal of experimentation,
measurement, and study of other architectures. It is believed to be the best compromise
between the following important requirements:

● Procedure call must be extremely fast.

● The call sequence must be as compact as possible. (In typical compiled code, calls
outnumber entries by a factor in the range 2:1 to 5:1.)

● Extensible stacks and multiple stacks must be accommodated. (The standard
permits a stack to be extended in a non-contiguous manner, in stack chunks. The
size of the stack does not have to be fixed when it is created, avoiding a fixed
partition of the available data space between stack and heap. The same mechanism
supports multiple stacks for multiple threads of control.)

● The standard should encourage the production of re-entrant programs, with writable
data separated from code.

● The standard must support variation of the procedure call sequence, other than by
conventional return from procedure (eg in support of C’s longjmp, Pascal’s
goto-out-of-block, Modula-2+’s exceptions, UNIX’s signals, etc) and
tracing of the stack by debuggers and run-time error handlers. Enough is defined
about the stack’s structure to ensure that implementations of these are possible
(within limits discussed later).

The Procedure Call Standard
This section defines the standard.

Register names

The ARM has 16 visible general registers and 8 floating-point registers. In interrupt
modes some general registers are shadowed and not all floating-point operations are
available, depending on how the floating-point operations are implemented.

A
p

p
en

d
ixes an

d
 tab

les

Appendix C: ARM procedure call standard

4-401

This standard is written in terms of the register names defined in this section. The
binding of certain register names (the call frame registers) to register numbers is
discussed separately. We do this so that:

● Diverse needs can be more easily accommodated, as can conflicting historical usage
of register numbers, yet the underlying structure of the procedure call standard – on
which compilers depend critically – remains fixed.

● Run-time support code written in assembly language can be made portable between
different register bindings, if it obeys the rules given in the section entitled Defined
bindings of the procedure call standard on page 4-409.

The register names and fixed bindings are given immediately below.

General Registers

First, the four argument registers:

a1 RN 0 ; argument 1/integer result
a2 RN 1 ; argument 2
a3 RN 2 ; argument 3
a4 RN 3 ; argument 4

 Then the six ‘variable’ registers:

v1 RN 4 ; register variable
v2 RN 5 ; register variable
v3 RN 6 ; register variable
v4 RN 7 ; register variable
v5 RN 8 ; register variable
v6 RN 9 ; register variable

Then the call-frame registers, the bindings of which vary (see the section entitled
Defined bindings of the procedure call standard on page 4-409 for details):

sl ; stack limit / stack chunk handle
fp ; frame pointer
ip ; temporary workspace, used in

 procedure entry
sp RN 13 ; lower end of current stack frame

Finally, lr and pc, which are determined by the ARM’s hardware:

lr RN 14 ; link address on calls/temporary workspace
pc RN 15 ; program counter and processor status

In the obsolete APCS-A register bindings described below, sp is bound to r12; in all
other APCS bindings, sp is bound to r13.

The Procedure Call Standard

4-402

Notes

Literal register names are given in lower case, eg v1, sp, lr. In the text that follows,
symbolic values denoting ‘some register’ or ‘some offset’ are given in upper case, eg R,
R+N.

References to ‘the stack’ denoted by sp assume a stack that grows from high memory to
low memory, with sp pointing at the top or front (ie lowest addressed word) of the stack.

At the instant of an external procedure call there must be nothing of value to the caller
stored below the current stack pointer, between sp and the (possibly implicit, possibly
explicit) stack (chunk) limit. Whether there is a single stack chunk or multiple chunks,
an explicit stack limit (in sl) or an implicit stack limit, is determined by the register
bindings and conventions of the target operating system.

Here and in the text that follows, for any register R, the phrase ‘in R’ refers to the
contents of R; the phrase ‘at [R]’ or ‘at [R, #N]’ refers to the word pointed at by R or
R+N, in line with ARM assembly language notation.

Floating-point Registers

The floating-point registers are divided into two sets, analogous to the subsets a1–a4
and v1–v6 of the general registers. Registers f0–f3 need not be preserved by a called
procedure; f0 is used as the floating-point result register. In certain restricted
circumstances (noted below), f0–f3 may be used to hold the first four floating-point
arguments. Registers f4–f7 , the so called ‘variable’ registers, must be preserved by
callees.

The floating-point registers are:

 f0 FN 0 ; floating point result (or 1st FP argument)
 f1 FN 1 ; floating point scratch register (or 2nd FP arg)
 f2 FN 2 ; floating point scratch register (or 3rd FP arg)
 f3 FN 3 ; floating point scratch register (or 4th FP arg)
 f4 FN 4 ; floating point preserved register
 f5 FN 5 ; floating point preserved register
 f6 FN 6 ; floating point preserved register
 f7 FN 7 ; floating point preserved register

Data representation and argument passing

The APCS is defined in terms of N (≥ 0) word-sized arguments being passed from the
caller to the callee, and a single word or floating-point result passed back by the callee.
The standard does not describe the layout in store of records, arrays and so forth, used by
ARM-targeted compilers for C, Pascal, Fortran-77, and so on. In other words, the
mapping from language-level objects to APCS words is defined by each language’s

A
p

p
en

d
ixes an

d
 tab

les

Appendix C: ARM procedure call standard

4-403

implementation, not by APCS, and, indeed, there is no formal reason why two
implementations of, say, Pascal for the ARM should not use different mappings and,
hence, not be cross-callable.

Obviously, it would be very unhelpful for a language implementor to stand by this
formal position and implementors are strongly encouraged to adopt not just the letter of
APCS but also the obviously natural mappings of source language objects into argument
words. Strong hints are given about this in later sections which discuss (some) language
specifics.

Register usage and argument passing to external procedures

Control Arrival

We consider the passing of N (≥ 0) actual argument words to a procedure which expects
to receive either exactly N argument words or a variable number V (≥ 1) of argument
words (it is assumed that there is at least one argument word which indicates in a
language-implementation-dependent manner how many actual argument words there
are: for example, by using a format string argument, a count argument, or an
argument-list terminator).

At the instant when control arrives at the target procedure, the following shall be true
(for any M, if a statement is made about argM, and M > N, the statement can be
ignored):

arg1 is in a1
arg2 is in a2
arg3 is in a3
arg4 is in a4
for all I >= 5, argI is at [sp, #4*(I-5)]

fp contains 0 or points to a stack backtrace structure (as described in the next section).

The values in sp, sl, fp are all multiples of four.

lr contains the pc+psw value that should be restored into r15 on exit from the
procedure. This is known as the return link value for this procedure call.

pc contains the entry address of the target procedure.

Now, let us call the lower limit to which sp may point in this stack chunk SP_LWM
(Stack-Pointer Low Water Mark). Remember, it is unspecified whether there is one stack
chunk or many, and whether SP_LWM is implicit, or explicitly derived from sl; these
are binding-specific details. Then:

Space between sp and SP_LWM shall be (or shall be on demand) readable, writable
memory which can be used by the called procedure as temporary workspace and
overwritten with any values before the procedure returns.

The Procedure Call Standard

4-404

sp >= SP_LWM + 256.

This condition guarantees that a stack extension procedure, if used, will have a
reasonable amount – 256 bytes – of work space available to it, probably sufficient to call
two or three procedure invocations further.

Control Return

At the instant when the return link value for a procedure call is placed in the pc+psw,
the following statements shall be true:

fp, sp, sl, v1-v6, and f4-f7 shall contain the same values as they did at the instant
of the call. If the procedure returns a word-sized result, R, which is not a floating-point
value, then R shall be in a1. If the procedure returns a floating-point result, FPR, then
FPR shall be in f0.

Notes

The definition of control return means that this is a ‘callee saves’ standard.

The requirement to pass a variable number of arguments to a procedure (as in K&R C)
precludes the passing of floating-point arguments in floating-point registers (as the
ARM’s fixed point registers are disjoint from its floating-point registers). However, if a
callee is defined to accept a fixed number K of arguments and its interface description
declares it to accept exactly K arguments of matching types, then it is permissible to pass
the first four floating-point arguments in floating-point registers f0-f3. However,
Acorn’s C compiler for the ARM does not yet exploit this latitude.

The values of a2-a4, ip, lr and f1-f3 are not defined at the instant of return.

The Z, N, C and V flags are set from the corresponding bits in the return link value on
procedure return. For procedures called using a BL instruction, these flag values will be
preserved across the call.

The flag values from lr at the instant of entry must be restored; it is not sufficient
merely to preserve the flag values across the call.

(Consider a procedure ProcA which has been ‘tail-call optimised’ and does:

CMPS a1, #0
MOVLT a2, #255
MOVGE a2, #0
B ProcB

If ProcB merely preserves the flags it sees on entry, rather than restoring those
from lr, the wrong flags may be set when ProcB returns direct to ProcA’s caller).

A
p

p
en

d
ixes an

d
 tab

les

Appendix C: ARM procedure call standard

4-405

This standard does not define the values of fp, sp and sl at arbitrary moments during
a procedure’s execution, but only at the instants of (external) call and return. Further
standards and restrictions may apply under particular operating systems, to aid event
handling or debugging. In general, you are strongly encouraged to preserve fp, sp and
sl, at all times.

The minimum amount of stack defined to be available is not particularly large, and as a
general rule a language implementation should not expect much more, unless the
conventions of the target operating system indicate otherwise. For example, code
generated by the Arthur/RISC OS C compiler is able, if there is inadequate local
workspace, to allocate more stack space from the C heap before continuing. Any
language unable to do this may have its interaction with C impaired. That sl contains a
stack chunk handle is important in achieving this. (See the section entitled Defined
bindings of the procedure call standard on page 4-409 for further details).

The statements about sp and SP_LWM are designed to optimise the testing of the one
against the other. For example, in the RISC OS user-mode binding of APCS, sl
contains SL_LWM+512, allowing a procedure’s entry sequence to include something
like:

CMP sp, sl
BLLT |x$stack_overflow|

where x$stack_overflow is a part of the run-time system for the relevant language.
If this test fails, and x$stack_overflow is not called, there are at least 512 bytes
free on the stack.

This procedure should only call other procedures when sp has been dropped by 256
bytes or less, guaranteeing that there is enough space for the called procedure’s entry
sequence (and, if needed, the stack extender) to work in.

If 256 bytes are not enough, the entry sequence has to drop sp before comparing it with
sl in order to force stack extension (see later sections on implementation specifics for
details of how the RISC OS C compiler handles this problem).

The Procedure Call Standard

4-406

The stack backtrace data structure

At the instant of an external procedure call, the value in fp is zero or it points to a data
structure that gives information about the sequence of outstanding procedure calls. This
structure is in the format shown below:

Figure 88.1 Stack backtrace data structure

This picture shows between four and 26 words of store, with those words higher on the
page being at higher addresses in memory. The presence of any of the optional values
does not imply the presence of any other. The floating-point values are in extended
format and occupy three words each.

save mask pointer [fp]

return link value [fp, #-4]

return sp value [fp, #-8]

fp value [fp, #-12]

 saved v6 value

 saved v5 value

 saved v4 value

 saved v3 value

 saved v2 value

 saved v1 value

 saved a4 value

 saved a3 value

 saved a2 value

 saved a1 value

 saved f7 value three words

 saved f6 value three words

 saved f5 value three words

 saved f4 value three words

fp points to here:














Optional
values

A
p

p
en

d
ixes an

d
 tab

les

Appendix C: ARM procedure call standard

4-407

At the instant of procedure call, all of the following statements about this structure shall
be true:

● The return fp value is either 0 or contains a pointer to another stack backtrace data
structure of the same form. Each of these corresponds to an active, outstanding
procedure invocation. The statements listed here are also true of this next stack
backtrace data structure and, indeed, hold true for each structure in the chain.

● The save mask pointer value, when bits 0, 1, 26, 27, 28, 29, 30, 31 have been
cleared, points twelve bytes beyond a word known as the return data save
instruction.

● The return data save instruction is a word that corresponds to an ARM instruction of
the following form:

 STMDB sp!, {[a1], [a2], [a3], [a4],
 [v1], [v2], [v3], [v4], [v5], [v6],
 fp, ip, lr, pc}

Note the square brackets in the above denote optional parts: thus, there are 12 x
1024 possible values for the return data save instruction, corresponding to the
following bit patterns:

 1110 1001 0010 1101 1101 10xx xxxx xxxx APCS-R, APCS-U

 or ! ! !

 1110 1001 0010 1100 1100 11xx xxxx xxxx APCS-A (obsolete)

The least significant 10 bits represent argument and variable registers: if bit N is set,
then register N will be transferred.

The optional parts a1, a2, a3, a4, v1, v2, v3, v4, v5 and v6 in this instruction
correspond to those optional parts of the stack backtrace data structure that are
present such that: for all M, if vM or aM is present then so is saved vM value or
saved aM value, and if vM or aM is absent then so is saved vM value or
saved aM value. This is as if the stack backtrace data structure were formed by
the execution of this instruction, following the loading of ip from sp (as is very
probably the case).

The Procedure Call Standard

4-408

● The sequence of up to four instructions following the return data save instruction
determines whether saved floating-point registers are present in the backtrace
structure. The four optional instructions allowed in this sequence are:

 STFE f7, [sp, #-12]! ; 1110 1101 0110 1101 0111 0001 0000 0011
 STFE f6, [sp, #-12]! ; 1110 1101 0110 1101 0110 0001 0000 0011
 STFE f5, [sp, #-12]! ; 1110 1101 0110 1101 0101 0001 0000 0011
 STFE f4, [sp, #-12]! ; 1110 1101 0110 1101 0100 0001 0000 0011
 !

Any or all of these instructions may be missing, and any deviation from this order or
any other instruction terminates the sequence.

(A historical bug in the C compiler (now fixed) inserted a single arithmetic
instruction between the return data save instruction and the first STFE. Some Acorn
software allows for this.)

The bit patterns given are for APCS-R/APCS-U register bindings. In the obsolete
APCS-A bindings, the bit indicated by ! is 0.

The optional instructions saving f4, f5, f6 and f7 correspond to those optional
parts of the stack backtrace data structure that are present such that: for all M, if
STFE fM is present then so is saved fM value; if STFE fM is absent then so
is saved fM value.

● At the instant when procedure A calls procedure B, the stack backtrace data
structure pointed at by fp contains exactly those elements v1, v2, v3, v4, v5, v6,
f4, f5, f6, f7, fp, sp and pc which must be restored into the corresponding
ARM registers in order to cause a correct exit from procedure A, albeit with an
incorrect result.

Notes

The following example suggests what the entry and exit sequences for a procedure are
likely to look like (though entry and exit are not defined in terms of these instruction
sequences because that would be too restrictive; a good compiler can often do better
than is suggested here):

entry MOV ip, sp
 STMDB sp!, {argRegs, workRegs, fp, ip, lr, pc}
 SUB fp, ip, #4
exit LDMDB fp, {workRegs, fp, sp, pc}^

Many apparent idiosyncrasies in the standard may be explained by efforts to make the
entry sequence work smoothly. The example above is neither complete (no stack limit
checking) nor mandatory (making arguments contiguous for C, for instance, requires a
slightly different entry sequence; and storing argRegs on the stack may be
unnecessary).

A
p

p
en

d
ixes an

d
 tab

les

Appendix C: ARM procedure call standard

4-409

The workRegs registers mentioned above correspond to as many of v1 to v6 as this
procedure needs in order to work smoothly. At the instant when procedure A calls any
other, those workspace registers not mentioned in A’s return data save instruction will
contain the values they contained at the instant A was entered. Additionally, the registers
f4-f7 not mentioned in the floating-point save sequence following the return data save
instruction will also contain the values they contained at the instant A was entered.

This standard does not require anything of the values found in the optional parts a1, a2,
a3, a4 of a stack backtrace data structure. They are likely, if present, to contain the
saved arguments to this procedure call; but this is not required and should not be relied
upon.

Defined bindings of the procedure call standard

APCS-R and APCS-U: The RISC OS and RISC iX PCSs

These bindings of the APCS are used by:

● RISC OS applications running in ARM user-mode

● compiled code for RISC OS modules and handlers running in ARM SVC-mode

● RISC iX applications (which make no use of sl) running in ARM user mode

● RISC iX kernels running in ARM SVC mode.

The call-frame register bindings are:

sl RN 10 ; stack limit / stack chunk handle
; unused by RISC iX applications

fp RN 11 ; frame pointer
ip RN 12 ; used as temporary workspace
sp RN 13 ; lower end of current stack frame

Although not formally required by this standard, it is considered good taste for compiled
code to preserve the value of sl everywhere.

The invariants sp > ip > fp have been preserved, in common with the obsolete
APCS-A (described below), allowing symbolic assembly code (and compiler
code-generators) written in terms of register names to be ported between APCS-R,
APCS-U and APCS-A merely by relabelling the call-frame registers provided:

● When call-frame registers appear in LDM, LDR, STM and STR instructions they are
named symbolically, never by register numbers or register ranges.

● No use is made of the ordering of the four call-frame registers (eg in order to
load/save fp or sp from a full register save).

Defined bindings of the procedure call standard

4-410

APCS-R: Constraints on sl (For RISC OS applications and modules)

In SVC and IRQ modes (collectively called module mode) SL_LWM is implicit in sp: it
is the next megabyte boundary below sp. Even though the SVC-mode and IRQ-mode
stacks are not extensible, sl still points 512 bytes above a skeleton stack-chunk
descriptor (stored just above the megabyte boundary). This is done for compatibility
with use by applications running in ARM user-mode and to facilitate module-mode
stack-overflow detection. In other words:

sl = SL_LWM + 512.

When used in user-mode, the stack is segmented and is extended on demand. Acorn’s
language-independent run-time kernel allows language run-time systems to implement
stack extension in a manner which is compatible with other Acorn languages. sl points
512 bytes above a full stack-chunk structure and, again:

sl = SL_LWM + 512.

Mode-dependent stack-overflow handling code in the language-independent run-time
kernel faults an overflow in module mode and extends the stack in application mode.
This allows library code, including the run-time kernel, to be shared between all
applications and modules written in C.

In both modes, the value of sl must be valid immediately before each external call and
each return from an external call.

Deallocation of a stack chunk may be performed by intercepting returns from the
procedure that caused it to be allocated. Tail-call optimisation complicates the
relationship, so, in general, sl is required to be valid immediately before every return
from external call.

APCS-U: Constraints on sl (For RISC iX applications and RISC iX kernels)

In this binding of the APCS the user-mode stack auto-extends on demand so sl is
unused and there is no stack-limit checking.

In kernel mode, sl is reserved by Acorn.

APCS-A: The obsolete Arthur application PCS

This obsolete binding of the procedure-call standard is used by Arthur applications
running in ARM user-mode. The applicable call-frame register bindings are as follows:

sl RN 13 ; stack limit/stack chunk handle
fp RN 10 ; frame pointer
ip RN 11 ; used as temporary workspace
sp RN 12 ; lower end of current stack frame

A
p

p
en

d
ixes an

d
 tab

les

Appendix C: ARM procedure call standard

4-411

(Use of r12 as sp, rather than the architecturally more natural r13, is historical and
predates both Arthur and RISC OS.)

In this binding of the APCS, the stack is segmented and is extended on demand. Acorn’s
language-independent run-time kernel allows language run-time systems to implement
stack extension in a manner which is compatible with other Acorn languages.

The stack limit register, sl, points 512 bytes above a stack-chunk descriptor, itself
located at the low-address end of a stack chunk. In other words:

sl = SL_LWM + 512.

The value of sl must be valid immediately before each external call and each return
from an external call.

Although not formally required by this standard, it is considered good taste for compiled
code to preserve the value of sl everywhere.

Notes on APCS bindings

Invariants and APCS-M

In all future supported bindings of APCS sp shall be bound to r13. In all supported
bindings of APCS the invariant sp > ip > fp shall hold. This means that the only
other possible binding of APCS is APCS-M:

sl RN 12 ; stack limit/stack chunk handle
fp RN 10 ; frame pointer
ip RN 11 ; used as temporary workspace
sp RN 13 ; lower end of current stack frame

This binding of APCS is unlikely to be used (by Acorn).

Further Restrictions in SVC Mode and IRQ Mode

There are some consequences of the ARM’s architecture which, while not formally
acknowledged by the ARM Procedure Call Standard, need to be understood by
implementors of code intended to run in the ARM’s SVC and IRQ modes.

An IRQ corrupts r14_irq, so IRQ-mode code must run with IRQs off until r14_irq
has been saved. Acorn’s preferred solution to this problem is to enter and exit IRQ
handlers written in high-level languages via hand-crafted ‘wrappers’ which on entry
save r14_irq, change mode to SVC, and enable IRQs and on exit return to the saved
r14_irq (which also restores IRQ mode and the IRQ-enable state). Thus the handlers
themselves run in SVC mode, avoiding this problem in compiled code.

Both SWIs and aborts corrupt r14_svc. This means that care has to be taken when
calling SWIs or causing aborts in SVC mode.

Defined bindings of the procedure call standard

4-412

In high-level languages, SWIs are usually called out of line so it suffices to save and
restore r14 in the calling veneer around the SWI. If a compiler can generate in-line
SWIs, then it should, of course, also generate code to save and restore r14 in-line,
around the SWI, unless it is known that the code will not be executed in SVC mode.

An abort in SVC mode may be symptomatic of a fatal error or it may be caused by page
faulting in SVC mode. Acorn expects SVC-mode code to be correct, so these are the
only options. Page faulting can occur because an instruction needs to be fetched from a
missing page (causing a prefetch abort) or because of an attempted data access to a
missing page (causing a data abort). The latter may occur even if the SVC-mode code is
not itself paged (consider an unpaged kernel accessing a paged user-space).

A data abort is completely recoverable provided r14 contains nothing of value at the
instant of the abort. This can be ensured by:

● saving R14 on entry to every procedure and restoring it on exit

● not using R14 as a temporary register in any procedure

● avoiding page faults (stack faults) in procedure entry sequences.

A prefetch abort is harder to recover from and an aborting BL instruction cannot be
recovered, so special action has to be taken to protect page faulting procedure calls.

For Acorn C, R14 is saved in the second or third instruction of an entry sequence.
Aligning all procedures at addresses which are 0 or 4 modulo 16 ensures that the critical
part of the entry sequence cannot prefetch-abort. A compiler can do this by padding all
code sections to a multiple of 16 bytes in length and being careful about the alignment of
procedures within code sections.

Data-aborts early in procedure entry sequences can be avoided by using a software
stack-limit check like that used in APCS-R.

Finally, the recommended way to protect BL instructions from prefetch-abort corruption
is to precede each BL by a MOV ip, pc instruction. If the BL faults, the prefetch abort
handler can safely overwrite r14 with ip before resuming execution at the target of the
BL. If the prefetch abort is not caused by a BL then this action is harmless, as R14 has
been corrupted anyway (and, by design, contained nothing of value at any instant a
prefetch abort could occur).

A
p

p
en

d
ixes an

d
 tab

les

Appendix C: ARM procedure call standard

4-413

Examples from Acorn language implementations

Example procedure calls in C

Here is some sample assembly code as it might be produced by the C compiler:

; gggg is a function of 2 args that needs one register variable (v1)
gggg MOV ip, sp
 STMFD sp!, {a1, a2, v1, fp, ip, lr, pc}
 SUB fp, ip, #4 ; points at saved PC
 CMPS sp, sl
 BLLT |x$stack_overflow| ; handler procedure
 ...
 MOV v1, ... ; use a register variable
 ...
 BL ffff
 ...
 MOV ..., v1 ; rely on its value after ffff()

Within the body of the procedure, arguments are used from registers, if possible;
otherwise they must be addressed relative to fp. In the two argument case shown above,
arg1 is at [fp,#-24] and arg2 is at [fp,#-20]. But as discussed below,
arguments are sometimes stacked with positive offsets relative to fp.

Local variables are never addressed offset from fp; they always have positive offsets
relative to sp. In code that changes sp this means that the offsets used may vary from
place to place in the code. The reason for this is that it permits the procedure
x$stack_overflow to recover by setting sp (and sl) to some new stack segment.
As part of this mechanism, x$stack_overflow may alter memory offset from fp
by negative amounts, eg [fp, #-64] and downwards, provided that it adjusts sp to
provide workspace for the called routine.

If the function is going to use more than 256 bytes of stack it must do:

SUB ip, sp, #<my stack size>
CMPS ip, sl
BLLT |x$stack_overflow_1|

instead of the two-instruction test shown above.

If a function expects no more than four arguments it can push all of them onto the stack
at the same time as saving its old fp and its return address (see the example above);
arguments are then saved contiguously in memory with arg1 having the lowest
address. A function that expects more than four arguments has code at its head as
follows:

Examples from Acorn language implementations

4-414

MOV ip, sp
STMFD sp!, {a1, a2, a3, a4} ; put arg1-4 below stacked args
STMFD sp!, {v1, v2, fp, ip, lr, pc} ; v1-v6 saved as necessary
SUB fp, ip, #20 ; point at newly created call-frame
CMPS sp, sl
BLLT |x$stack_overflow|
...
...
LDMEA fp, {v1, v2, fp, sp, pc}^ ; restore register vars & return

The store of the argument registers shown here is not mandated by APCS and can often
be omitted. It is useful in support of debuggers and run-time trace-back code and
required if the address of an argument is taken.

The entry sequence arranges that arguments (however many there are) lie in consecutive
words of memory and that on return sp is always the lowest address on the stack that
still contains useful data.

The time taken for a call, enter and return, with no arguments and no registers saved, is
about 22 S-cycles.

Although not required by this standard, the values in fp, sp and sl are maintained
while executing code produced by the C compiler. This makes it much easier to debug
compiled code.

Multi-word results other than double precision reals in C programs are represented as an
implicit first argument to the call, which points to where the caller would like the result
placed. It is the first, rather than the last, so that it works with a C function that is not
given enough arguments.

Procedure calls in other language implementations

Assembler

The procedure call standard is reasonably easy and natural for assembler programmers
to use. The following rules should be followed:

● Call-frame registers should always be referred to explicitly by symbolic name,
never by register number or implicitly as part of a register range.

● The offsets of the call-frame registers within a register dump should not be wired
into code. Always use a symbolic offset so that you can easily change the register
bindings.

Fortran

The Acorn/TopExpress Arthur/RISC OS Fortran-77 compiler violates the APCS in a
number of ways that preclude inter-working with C, except via assembler veneers. This
may be changed in future releases of the Fortran-77 product.

A
p

p
en

d
ixes an

d
 tab

les

Appendix C: ARM procedure call standard

4-415

Pascal

The Acorn/3L Arthur/RISC OS ISO-Pascal compiler violates the APCS in a number of
ways that preclude inter-working with C, except via assembler veneers. This may be
changed in future releases of the ISO-Pascal product.

Lisp, BCPL and BASIC

These languages have their own special requirements which make it inappropriate to use
a procedure call of the form described here. Naturally, all are capable of making external
calls of the given form, through a small amount of assembler ‘glue’ code.

General

Note that there is no requirement specified by the standard concerning the production of
re-entrant code, as this would place an intolerable strain on the conventional
programming practices used in C and Fortran. The behaviour of a procedure in the face
of multiple overlapping invocations is part of the specification of that procedure.

Various lessons

This appendix is not intended as a general guide to the writing of code-generators, but it
is worth highlighting various optimisations that appear particularly relevant to the ARM
and to this standard.

The use of a callee-saving standard, instead of a caller-saving one, reduces the size of
large code images by about 10% (with compilers that do little or no interprocedural
optimisation).

In order to make effective use of the APCS, compilers must compile code a procedure at
a time. Line-at-a-time compilation is insufficient.

The preservation of condition codes over a procedure call is often useful because any
short sequence of instructions (including calls) that forms the body of a short IF
statement can be executed without a branch instruction. For example:

if (a < 0) b = foo();

can compile into:

CMP a, #0
BLLT foo
MOVLT b, a1

In the case of a leaf or fast procedure – one that calls no other procedures – much of the
standard entry sequence can be omitted. In very small procedures, such as are frequently
used in data abstraction modules, the cost of the procedure can be very small indeed. For
instance, consider:

Examples from Acorn language implementations

4-416

typedef struct {...; int a; ...} foo;
int get_a(foo* f) {return(f->a);}

The procedure get_a can compile to just:

LDR a1, [a1, #aOffset]
MOVS pc, lr

This is also useful in procedures with a conditional as the top level statement, where one
or other arm of the conditional is fast (ie calls no procedures). In this case there is no
need to form a stack frame there. For example, using this, the C program:

int sum(int i)
{

if (i <= 1)
return(i);

else
return(i + sum(i-1));

}

could be compiled into:

sum CMP a1, #1 ; try fast case
 MOVSLE pc, lr ; and if appropriate, handle quickly!
 ; else, form a stack frame and handle the rest as normal code.
 MOV ip, sp
 STMDB sp!, {v1, fp, ip, lr, pc}
 CMP sp, sl
 BLLT overflow
 MOV v1, a1 ; register to hold i
 SUB a1, a1, #1 ; set up argument for call
 BL sum ; do the call
 ADD a1, a1, v1 ; perform the addition
 LDMEA fp, {v1, fp, sp, pc}^ ; and return

This is only worthwhile if the test can be compiled using only ip, and any spare of
a1-a4, as scratch registers. This technique can significantly speed up certain
speed-critical routines, such as read and write character. At the present time, this
optimisation is not performed by the C compiler.

Finally, it is often worth applying the tail call optimisation, especially to procedures
which need to save no registers. For example, the code fragment:

 extern void *malloc(size_t n)
 {
 return primitive_alloc(NOTGCABLEBIT, BYTESTOWORDS(n));
 }

is compiled by the C compiler into:

A
p

p
en

d
ixes an

d
 tab

les

Appendix C: ARM procedure call standard

4-417

malloc ADD a1, a1, #3 ; 1S
 MOV a2, a1, LSR #2 ; 1S
 MOV a1, #1073741824 ; 1S
 B primitive_alloc ; 1N+2S = 4S

This avoids saving and restoring the call-frame registers and minimises the cost of
interface ‘sugaring’ procedures. This saves five instructions and, on a 4/8MHz ARM,
reduces the cost of the malloc sugar from 24S to 7S.

4-418

A
p

p
en

d
ixes an

d
 tab

les

4-419

4

89 Appendix D: Code file formats

This appendix defines three file formats used to store processed code and the format of
debugging data used by debuggers:

● AOF – Arm Object Format

● ALF – Acorn Library Format

● AIF – RISC OS Application Image Format

● ASD – ARM Symbolic Debugging Format.

Language processors such as CC and ObjAsm generate processed code output as AOF
files. An ALF file is a collection of AOF files constructed from a set of AOF files by the
LibFile tool. The Link tool accepts a set of AOF and ALF files as input, and by default
produces an executable program file as output in AIF.

Terminology
Throughout this appendix the terms byte, half word, word, and string are used to mean
the following:

Byte: 8 bits, considered unsigned unless otherwise stated, usually used to store flag bits
or characters.

Half word:16 bits, or 2 bytes, usually unsigned. The least significant byte has the lowest
address (DEC/Intel byte sex, sometimes called little endian). The address of a half word
(ie of its least significant byte) must be divisible by 2.

Word: 32 bits, or 4 bytes, usually used to store a non-negative value. The least significant
byte has the lowest address (DEC/Intel byte sex, sometimes called little endian). The
address of a word (ie of its least significant byte) must be divisible by 4.

String: A sequence of bytes terminated by a NUL (0X00) byte. The NUL is part of the
string but is not counted in the string’s length. Strings may be aligned on any byte
boundary.

For emphasis: a word consists of 32 bits, 4-byte aligned; within a word, the least
significant byte has the lowest address. This is DEC/Intel, or little endian, byte sex, not
IBM/Motorola byte sex.

Undefined Fields

4-420

Undefined Fields
Fields not explicitly defined by this appendix are implicitly reserved to Acorn. It is
required that all such fields be zeroed. Acorn may ascribe meaning to such fields at any
time, but will usually do so in a manner which gives no new meaning to zeroes.

Overall structure of AOF and ALF files
An object or library file contains a number of separate but related pieces of data. In order
to simplify access to these data, and to provide for a degree of extensibility, the object
and library file formats are themselves layered on another format called Chunk File
Format, which provides a simple and efficient means of accessing and updating distinct
chunks of data within a single file. The object file format defines five chunks:

● header

● areas

● identification

● symbol table

● string table.

The library file format defines four chunks:

● directory

● time-stamp

● version

● data.

There may be many data chunks in a library.

The minimum size of a piece of data in both formats is four bytes or one word. Each
word is stored in a file in little-endian format; that is the least significant byte of the
word is stored first.

Chunk file format
A chunk is accessed via a header at the start of the file. The header contains the number,
size, location and identity of each chunk in the file. The size of the header may vary
between different chunk files but is fixed for each file. Not all entries in a header need be
used, thus limited expansion of the number of chunks is permitted without a wholesale
copy. A chunk file can be copied without knowledge of the contents of the individual
chunks.

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-421

Graphically, the layout of a chunk file is as follows:

ChunkFileId marks the file as a chunk file. Its value is C3CBC6C5 hex. The
maxChunks field defines the number of the entries in the header, fixed when the file is
created. The numChunks field defines how many chunks are currently used in the file,
which can vary from 0 to maxChunks. The value of numChunks is redundant as it can
be found by scanning the entries.

Each entry in the header comprises four words in the following order:

chunkId a two word field identifying what data the chunk file contains

Offset a one word field defining the byte offset within the file of the chunk
(which must be divisible by four); an entry of zero indicates that the
corresponding chunk is unused

size a one word field defining the exact byte size of the chunk (which need
not be a multiple of four).

The chunkId field provides a conventional way of identifying what type of data a
chunk contains. It is split into two parts. The first four characters (in the first word)
contain a universally unique name allocated by a central authority (Acorn). The

ChunkFileId

maxChunks

numChunks

entry1

entry2

entry "maxChunks"

chunk 1

chunk "numChunks"

3 words

4 words per entry

End of header (3 + 4*MaxChunks) words
Start of data chunks

Chunk file format

4-422

remaining four characters (in the second word) can be used to identify component
chunks within this universal domain. In each part, the first character of the name is
stored first in the file, and so on.

For AOF files, the first part of each chunk’s name is OBJ_; the second components are
defined later. For ALF files, the first part is LIB_.

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-423

AOF
ARM object format files are output by language processors such as CC and ObjAsm.

Object file format
Each piece of an object file is stored in a separate, identifiable, chunk. AOF defines five
chunks as follows:

Chunk Chunk Name

Header OBJ_HEAD
Areas OBJ_AREA
Identification OBJ_IDFN
Symbol Table OBJ_SYMT
String Table OBJ_STRT

Only the header and areas chunks must be present, but a typical object file will
contain all five of the above chunks.

A feature of chunk file format is that chunks may appear in any order in the file.
However, language processors which must also generate other object formats – such as
UNIX’s a.out format – should use this flexibility cautiously.

A language translator or other system utility may add additional chunks to an object file,
for example a language-specific symbol table or language-specific debugging data, so it
is conventional to allow space in the chunk header for additional chunks; space for eight
chunks is conventional when the AOF file is produced by a language processor which
generates all five chunks described here.

The header chunk should not be confused with the chunk file’s header.

Format of the AOF header chunk

The AOF header is logically in two parts, though these appear contiguously in the
header chunk. The first part is of fixed size and describes the contents and nature of the
object file. The second part is variable in length (specified in the fixed part) and is a
sequence of area declarations defining the code and data areas within the OBJ_AREA
chunk.

Object file format

4-424

The AOF header chunk has the following format:

Object file type

C5E2D080 (hex) marks an object file as being in relocatable object format

Version ID

This word encodes the version of AOF to which the object file complies: AOF 1.xx is
denoted by 150 decimal; AOF 2.xx by 200 decimal.

Number of areas

The code and data of the object file is presented as a number of separate areas, in the
OBJ_AREA chunk, each with a name and some attributes (see below). Each area is
declared in the (variable-length) part of the header which immediately follows the fixed
part. The value of the Number of Areas field defines the number of areas in the file
and consequently the number of area declarations which follow the fixed part of the
header.

Number of symbols

If the object file contains a symbol table chunk OBJ_SYMT, then this field defines the
number of symbols in the symbol table.

Object file type

Version Id

Number of areas

Number of Symbols

Entry Address area

1st Area Header

2nd Area Header

nth Area Header

Entry Address Offset

5 words per area header

(6 + 5*Number of Areas) words in

6 words in the fixed part

the AOF header

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-425

Entry address area/ entry address offset

One of the areas in an object file may be designated as containing the start address for
any program which is linked to include this file. If so, the entry address is specified as an
<area-index, offset> pair, where area-index is in the range 1 to Number
of Areas, specifying the nth area declared in the area declarations part of the header.
The entry address is defined to be the base address of this area plus offset.

A value of 0 for area-index signifies that no program entry address is defined by this
AOF file.

Format of area headers

The area headers follow the fixed part of the AOF header. Each area header has the
following form:

Area name

Each name in an object file is encoded as an offset into the string table, which stored in
the OBJ_STRT chunk. This allows the variable-length characteristics of names to be
factored out from primary data formats. Each area within an object file must be given a
name which is unique amongst all the areas in that object file.

AL

This byte must be set to 2; all other values are reserved to Acorn.

AT (Area attributes)

Each area has a set of attributes encoded in the AT byte. The least-significant bit of AT
is numbered 0.

Link orders areas in a generated image first by attributes, then by the (case-significant)
lexicographic order of area names, then by position of the containing object module in
the link-list. The position in the link-list of an object module loaded from a library is not
predictable.

Area name

zeros

Area size

Number of relocations

Unused - must be zero

AT AL

(offset into string variable)

5 words in total

Object file format

4-426

When ordered by attributes, Read-Only areas precede Read-Write areas which precede
Debug areas; within Read-Only and Read-Write Areas, Code precedes Data which
precedes Zero-Initialised data. Zero-Initialised data may not have the Read-Only
attribute.

Bit 0

This bit must be set to 0.

Bit 1

If this bit is set, the area contains code, otherwise it contains data.

Bit 2

Bit 2 specifies that the area is a common block definition.

Bit 3

Bit 3 defines the area to be a (reference to a) common block and precludes the area
having initialising data (see Bit 4, below). In effect, the setting of Bit 3 implies the
setting of Bit 4.

Common areas with the same name are overlaid on each other by Link. The Size field
of a common definition defines the size of a common block. All other references to this
common block must specify a size which is smaller or equal to the definition size. In a
link step there may be at most one area of the given name with bit 2 set. If none of these
have bit 2 set, the actual size of the common area will be size of the largest common
block reference (see also the section entitled Linker defined symbols on page 4-433).

Bit 4

This bit specifies that the area has no initialising data in this object file and that the area
contents are missing from the OBJ_AREA chunk. This bit is typically used to denote
large uninitialised data areas. When an uninitialised area is included in an image, Link
either includes a read-write area of binary zeroes of appropriate size or maps a
read-write area of appropriate size that will be zeroed at image start-up time. This
attribute is incompatible with the read-only attribute (see the section on Bit 5, below).

Note: Whether or not a zero-initialised area is re-zeroed if the image is re-entered is a
property of Link and the relevant image format. The definition of AOF neither requires
nor precludes re-zeroing.

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-427

Bit 5

This bit specifies that the area is read-only. Link groups read-only areas together so that
they may be write protected at run-time, hardware permitting. Code areas and debugging
tables should have this bit set. The setting of this bit is incompatible with the setting of
bit 4.

Bit 6

This bit must be set to 0.

Bit 7

This bit specifies that the area contains symbolic debugging tables. Link groups these
areas together so they can be accessed as a single contiguous chunk at run-time. It is
usual for debugging tables to be read-only and, therefore, to have bit 5 set too. If bit 7 is
set, bit 1 is ignored.

Area size

This field specifies the size of the area in bytes, which must be a multiple of 4. Unless
the Not Initialised bit (bit 4) is set in the area attributes, there must be this
number of bytes for this area in the OBJ_AREA chunk.

Number of relocations

This specifies the number of relocation directives which apply to this area.

Format of the areas chunk

The areas chunk (OBJ_AREA) contains the actual areas (code, data, zero- initialised
data, debugging data, etc.) plus any associated relocation information. Its chunkId is
OBJ_AREA. Both an area’s contents and its relocation data must be word-aligned.
Graphically, the layout of the areas chunk is:

Area 1 relocation

Area 1

Area n

Area n relocation

Object file format

4-428

An area is simply a sequence of byte values, the order following that of the addressing
rules of the ARM, that is the least significant byte of a word is first. An area is followed
by its associated relocation table (if any). An area is either completely initialised by the
values from the file or not initialised at all (ie it is initialised to zero in any loaded
program image, as specified by bit 4 of the area attributes).

Relocation directives

If no relocation is specified, the value of a byte/half word/word in the preceding area is
exactly the value that will appear in the final image.

Bytes and half words may only be relocated by constant values of suitably small size.
They may not be relocated by an area’s base address.

A field may be subject to more than one relocation.

There are 2 types of relocation directive, termed here type-1 and type-2. Type-2
relocation directives occur only in AOF versions 1.50 and later.

Relocation can take two basic forms: Additive and PCRelative.

Additive relocation specifies the modification of a byte/half word/word, typically
containing a data value (ie constant or address).

PCRelative relocation always specifies the modification of a branch (or branch with
link) instruction and involves the generation of a program- counter-relative, signed,
24-bit word-displacement.

Additive relocation directives and type-2 PC-relative relocation directives have two
variants: Internal and Symbol.

Additive internal relocation involves adding the allocated base address of an area to the
field to be relocated. With Type-1 internal relocation directives, the value by which a
location is relocated is always the base of the area with which the relocation directive is
associated (the Symbol IDentification field (SID) is ignored). In a type-2 relocation
directive, the SID field specifies the index of the area relative to which relocation is to be
performed. These relocation directives are analogous to the TEXT-, DATA- and
BSS-relative relocation directives found in the a.out object format.

Symbol relocation involves adding the value of the symbol quoted.

A type-1 PCRelative relocation directive always references a symbol. The relocation
offset added to any pre-existing in the instruction is the offset of the target symbol from
the PC current at the instruction making the PCRelative reference. Link takes into
account the fact that the PC is eight bytes beyond that instruction.

In a type-2 PC-relative relocation directive (only in AOF version 1.50 and later) the
offset bits of the instruction are initialised to the offset from the base of the area of the
PC value current at the instruction making the reference – thus the language translator,

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-429

not Link, compensates for the difference between the address of the instruction and the
PC value current at it. This variant is introduced in direct support of compilers that must
also generate UNIX’s a.out format.

For a type-2 PC-relative symbol-type relocation directive, the offset added into the
instruction making the PC-relative reference is the offset of the target symbol from the
base of the area containing the instruction. For a type-2, PC-relative, internal relocation
directive, the offset added into the instruction is the offset of the base of the area
identified by the SID field from the base of the area containing the instruction.

Link itself may generate type-2, PC-relative, internal relocation directives during the
process of partially linking a set of object modules.

Format of Type 1 relocation directives

Diagrammatically:

Offset

Offset is the byte offset in the preceding area of the field to be relocated.

SID

If a symbol is involved in the relocation, this 16-bit field specifies the index within the
symbol table (see below) of the symbol in question.

FT (Field Type)

This 2-bit field (bits 16 – 17) specifies the size of the field to be relocated:

00 byte
01 half word
10 word
11 illegal value

R (relocation type)

This field (bit 18) has the following interpretation:

0 Additive relocation
1 PC-Relative relocation

Offset

O A R FT SID

Object file format

4-430

A (Additive type)

In a type-1 relocation directive, this 1-bit field (bit 19) is only interpreted if bit 18 is a
zero.

A=0 specifies Internal relocation, meaning that the base address of the area (with which
this relocation directive is associated) is added into the field to be relocated. A=1
specifies Symbol relocation, meaning that the value of the given symbol is added to the
field being relocated.

Bits 20 - 31

Bits 20-31 are reserved by Acorn and should be written as zeroes.

Format of Type 2 relocation directives

These are available from AOF 1.50 onwards.

The interpretation of Offset, FT and SID is exactly the same as for type-1 relocation
directives except that SID is increased from 16 to 24 bits and has a different meaning –
described below – if A=0).

The second word of a type-2 relocation directive contains 1 in its most significant bit;
bits 28 - 30 must be written as 0, as shown.

The different interpretation of the R bit in type-2 directives has already been described in
the section entitled Relocation directives on page 4-428.

If A=0 (internal relocation type) then SID is the index of the area, in the OBJ_AREA
chunk, relative to which the value at Offset in the current area is to be relocated. Areas
are indexed from 0.

Format of the symbol table chunk

The Number of Symbols field in the header defines how many entries there are in
the symbol table. Each symbol table entry has the following format:

Offset

FT1000 RA 24-bit SID

Name

Value

Area name

AT

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-431

Name

This value is an index into the string table (in chunk OBJ_STRT) and thus locates the
character string representing the symbol.

AT

This is a 7 bit field specifying the attributes of a symbol as follows:

Bits 1 and 0

(10 means bit 1 set, bit 0 unset).

01 The symbol is defined in this object file and has scope limited to this object file
(when resolving symbol references, Link will only match this symbol to
references from other areas within the same object file).

10 The symbol is a reference to a symbol defined in another area or another object
file. If no defining instance of the symbol is found then Link attempts to match
the name of the symbol to the names of common blocks. If a match is found it
is as if there were defined an identically-named symbol of global scope, having
as value the base address of the common area.

11 The symbol is defined in this object file and has global scope (ie when
attempting to resolve unresolved references, Link will match this symbol to
references from other object files).

00 Reserved by Acorn.

Bit 2

This attribute is only meaningful if the symbol is a defining occurrence (bit 0 set). It
specifies that the symbol has an absolute value, for example, a constant. Otherwise its
value is relative to the base address of the area defined by the Area Name field of the
symbol table entry.

Bit 3

This bit is only meaningful if bit 0 is unset (that is, the symbol is an external reference).
Bit 3 denotes that the reference is case-insensitive. When attempting to resolve such an
external reference, Link will ignore character case when performing the match.

Bit 4

This bit is only meaningful if the symbol is an external reference (bits 1,0 = 10). It
denotes that the reference is weak, that is that it is acceptable for the reference to remain
unsatisfied and for any fields relocated via it to remain unrelocated.

Note: A weak reference still causes a library module satisfying that reference to be
auto-loaded.

Object file format

4-432

Bit 5

This bit is only meaningful if the symbol is a defining, external occurrence (ie if bits
1,0 = 11). It denotes that the definition is strong and, in turn, this is only meaningful if
there is a non-strong, external definition of the same symbol in another object file. In
this scenario, all references to the symbol from outside of the file containing the strong
definition are resolved to the strong definition. Within the file containing the strong
definition, references to the symbol resolve to the non-strong definition.

This attribute allows a kind of link-time indirection to be enforced. Usually, strong
definitions will be absolute and will be used to implement an operating system’s entry
vector which must have the forever binary property.

Bit 6

This bit is only meaningful if bits 1,0 = 10. Bit 6 denotes that the symbol is a common
symbol – in effect, a reference to a common area with the symbol’s name. The length of
the common area is given by the symbol’s value field (see below). Link treats common
symbols much as it treats areas having the common reference bit set – all symbols with
the same name are assigned the same base address and the length allocated is the
maximum of all specified lengths.

If the name of a common symbol matches the name of a common area then these are
merged and symbol identifies the base of the area.

All common symbols for which there is no matching common area (reference or
definition) are collected into an anonymous linker pseudo-area.

Value

This field is only meaningful if the symbol is a defining occurrence (ie bit 0 of AT set)
or a common symbol (ie bit 6 of AT set). If the symbol is absolute (bit 2 of AT set), this
field contains the value of the symbol. Otherwise, it is interpreted as an offset from the
base address of the area defined by Area Name, which must be an area defined in this
object file.

Area name

This field is only meaningful if the symbol is not absolute (ie if bit 2 of AT is unset) and
the symbol is a defining occurrence (ie bit 0 of AT is set). In this case it gives the index
into the string table of the character string name of the (logical) area relative to which the
symbol is defined.

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-433

String table chunk (OBJ_STRT)

The string table chunk contains all the print names referred to within the areas and
symbol table chunks. The separation is made to factor out the variable length
characteristic of print names. A print name is stored in the string table as a sequence of
ISO8859 non-control characters terminated by a NUL (0) byte and is identified by an
offset from the table’s beginning. The first 4 bytes of the string table contain its length
(including the length word – so no valid offset into the table is less than 4 and no table
has length less than 4). The length stored at the start of the string table itself is identically
the length stored in the OBJ_STRT chunk header.

Identification chunk (OBJ_IDFN)

This chunk should contain a printable character string (characters in the range
[32 - 126]), terminated by a NUL (0) byte, giving information about the name and
version of the language translator which generated the object file.

Linker defined symbols
Though not part of the definition of AOF, the definitions of symbols which the AOF
linker defines during the generation of an image file are collected here. These may be
referenced from AOF object files, but must not be redefined.

Linker pre-defined symbols

The pre-defined symbols occur in Base/Limit pairs. A Base value gives the address of
the first byte in a region and the corresponding Limit value gives the address of the first
byte beyond the end of the region. All pre-defined symbols begin Image$$ and the
space of all such names is reserved by Acorn.

None of these symbols may be redefined. The pre-defined symbols are:

Image$$RO$$Base Address and limit of the Read-Only section
Image$$RO$$Limit of the image.

Image$$RW$$Base Address and limit of the Read-Write section
Image$$RW$$Limit of the image.

Image$$ZI$$Base Address and limit of the Zero-initialised data
Image$$ZI$$Limit section of the image (created from areas having

bit 4 of their area attributes set and from
common symbols which match no area name).

If a section is absent, the Base and Limit values are equal but unpredictable.

Image$$RO$$Base includes any image header prepended by Link.

Obsolescent and obsolete features

4-434

Image$$RW$$Limit includes (at the end of the RW section) any zero-initialised
data created at run-time.

The Image$$xx$${Base,Limit} values are intended to be used by language
run-time systems. Other values which are needed by a debugger or by part of the
pre-run-time code associated with a particular image format are deposited into the
relevant image header by Link.

Common area symbols

For each common area, Link defines a global symbol having the same name as the area,
except where this would clash with the name of an existing global symbol definition
(thus a symbol reference may match a common area).

Obsolescent and obsolete features
The following subsections describe features that were part of revision 1.xx of AOF
and/or that were supported by the 59x releases of the AOF linker, which are no longer
supported. In each case, a brief rationale for the change is given.

Object file type

AOF used to define three image types as well as a relocatable object file type. Image
types 2 and 3 were never used under Arthur/RISC OS and are now obsolete. Image type
1 is used only by the obsolete Dbug (DDT has Dbug’s functionality and uses
Application Image Format).

 AOF Image type 1 C5E2D081 hex (obsolescent)
 AOF Image type 2 C5E2D083 hex (obsolete)
 AOF Image type 3 C5E2D087 hex (obsolete)

AL (Area alignment)

AOF used to allow the alignment of an area to be any specified power of 2 between 2
and 16. By convention, relocatable object code areas always used minimal alignment
(AL=2) and only the obsolete image formats, types 2 and 3, specified values other than
2. From now on, all values other than 2 are reserved by Acorn.

AT (Area attributes)

Two attributes have been withdrawn: the Absolute attribute (bit 0 of AT) and the
Position Independent attribute (bit 6 of AT).

The Absolute attribute was not supported by the RISC OS linker and therefore had no
utility. Link in any case allows the effect of the Absolute attribute to be simulated.

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-435

The Position Independent bit used to specify that a code area was position independent,
meaning that its base address could change at run-time without any change being
required to its contents. Such an area could only contain internal, PC-relative relocations
and must make all external references through registers. Thus only code and pure data
(containing no address values) could be position-independent.

Few language processors generated the PI bit which was only significant to the
generation of the obsolete image types 2 and 3 (in which it affected AREA placement).
Accordingly, its definition has been withdrawn.

Fragmented areas

The concept of fragmented areas was introduced in release 0.04 of AOF, tentatively in
support of Fortran compilers. To the best of our knowledge, fragmented areas were
never used. (Two warnings against use were given with the original definition on the
grounds of: structural incompatibility with UNIX’s a.out format; and likely inefficient
handling by Link. And use was hedged around with curious restrictions). Accordingly,
the definition of fragmented areas is withdrawn.

ALF

4-436

ALF
ALF is the format of linkable libraries (such as the C RISC OS library RISC_OSLib).

Library file format types
There are two library file formats described here, termed new-style and old-style. Link
can read both formats, though no tool will actually generate an old-style library.

Currently, only the Acorn/Topexpress Fortran-77 compiler generates old-style libraries
(which it does instead of generating AOF object files). Link handles these libraries
specially, including every member in the output image unless explicitly instructed
otherwise.

Old-style libraries are obsolescent and should no longer be generated.

Library file chunks
Each piece of a library file is stored in a separate, identifiable, chunk, named as follows:

Chunk Chunk Name

Directory LIB_DIRY
Time-stamp LIB_TIME
Version LIB_VSRN – new-style libraries only
Data LIB_DATA

Symbol table OFL_SYMT – object code libraries only
Time-stamp OFL_TIME – object code libraries only

There may be many LIB_DATA chunks in a library, one for each library member.

LIB_DIRY
The LIB_DIRY chunk contains a directory of all modules in the library each of which is
stored in a LIB_DATA chunk. The directory size is fixed when the library is created. The
directory consists of a sequence of variable length entries, each an integral number of
words long. The number of directory entries is determined by the size of the LIB_DIRY
chunk.

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-437

This is shown pictorially in the following diagram:

ChunkIndex

The ChunkIndex is a 0 origin index within the chunk file header of the corresponding
LIB_DATA chunk. The LIB_DATA chunk entry gives the offset and size of the library
module in the library file. A ChunkIndex of 0 means the directory entry is not in use.

EntryLength

The number of bytes in this LIB_DIRY entry, always a multiple of 4.

DataLength

The number of bytes used in the Data section of this LIB_DIRY entry. This need not be
a multiple of 4, though it always is in new-style libraries.

Data

The data section consists of a 0 terminated string followed by any other information
relevant to the library module. Strings should contain only ISO-8859 non-control
characters (ie codes [0-31], 127 and 128+[0-31] are excluded). The string is the name
used by the library management tools to identify this library module. Typically this is the
name of the file from which the library member was created.

In new-style libraries, an 8-byte, word-aligned time-stamp follows the member name.
The format of this time-stamp is described in the section entitled LIB_TIME on
page 4-438. Its value is (an encoded version of) the time-stamp (ie the last modified
time) of the file from which the library member was created.

ChunkIndex

EntryLength

DataLength

Data

Padding

In old-style library,
may be an odd
number of bytes

Integral
number
of words

LIB_TIME

4-438

Applications which create libraries or library members should ensure that the
LIB_DIRY entries they create contain valid time-stamps. Applications which read
LIB_DIRY entries should not rely on any data beyond the end of the name-string being
present unless the difference between the DataLength field and the name-string length
allows for it. Even then, the contents of a time-stamp should be treated cautiously and
not assumed to be sensible.

Applications which write LIB_DIRY or OFL_SYMT entries should ensure that padding
is done with NUL (0) bytes; applications which read LIB_DIRY or OFL_SYMT entries
should make no assumptions about the values of padding bytes beyond the first,
string-terminating NUL byte.

LIB_TIME
The LIB_TIME chunk contains a 64 bit time-stamp recording when the library was last
modified, in the following format:

LIB_VSRN
In new-style libraries, this chunk contains a 4-byte version number. The current version
number is 1. Old-style libraries do not contain this chunk.

LIB_DATA
A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY
chunk. No interpretation is placed on the contents of a member by the library
management tools. A member could itself be a file in chunk file format or even another
library.

TimeStamp

High-address byte Low-address byte

2 byte microsecond count, usually 0

6 bytes of centi-seconds since
1/1/1900 00:00 GMT

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-439

Object code libraries
An object code library is a library file whose members are files in AOF. All libraries you
are likely to use with the DDE are object code libraries.

Additional information is stored in two extra chunks, OFL_SYMT and OFL_TIME.

OFL_SYMT contains an entry for each external symbol defined by members of the
library, together with the index of the chunk containing the member defining that
symbol.

The OFL_SYMT chunk has exactly the same format as the LIB_DIRY chunk except
that the Data section of each entry contains only a string, the name of an external symbol
(and between 1 and 4 bytes of NUL padding). OFL_SYMT entries do not contain
time-stamps.

The OFL_TIME chunk records when the OFL_SYMT chunk was last modified and has
the same format as the LIB_TIME chunk (see above).

AIF

4-440

AIF
AIF is the format of executable program files produced by linking AOF files. Example
AIF files are !RunImage files of applications coded in C or assembler.

Properties of AIF
● An AIF image is loaded into memory at its load address and entered at its first word

(compatible with old-style Arthur/Brazil ADFS images).

● An AIF image may be compressed and can be self-decompressing (to support faster
loading from floppy discs, and better use of floppy-disc space).

● If created with suitable linker options, an AIF image may relocate itself at load time.
Self-relocation is supported in two, distinct senses:

● One-time Position-Independence: A relocatable image can be loaded at any
address (not just its load address) and will execute there (compatible with
version 0.03 of AIF).

● Specified Working Space Relocation: A suitably created relocatable image will
copy itself from where it is loaded to the high address end of applications
memory, leaving space above the copied image as noted in the AIF header (see
below).

In addition, similar relocation code and similar linker options support many-time
position independence of RISC OS Relocatable Modules.

● AIF images support being debugged by the Desktop Debugging Tool (DDT), for C,
assembler and other languages. Version 0.04 of AIF (and later) supports debugging
at the symbolic assembler level (hitherto done by Dbug). Low-level and
source-level debugging support are orthogonal (capabilities of debuggers
notwithstanding, both, either, or neither kind of debugging support may be present
in an AIF image).

Debugging tables have the property that all references from them to code and data
(if any) are in the form of relocatable addresses. After loading an image at its load
address these values are effectively absolute. All references between debugger table
entries are in the form of offsets from the beginning of the debugging data area.
Thus, following relocation of a whole image, the debugging data area itself is
position independent and can be copied by the debugger.

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-441

Layout of an AIF image
The layout of an AIF image is as follows:

The header is small, fixed in size, and described below. In a compressed AIF image, the
header is NOT compressed.

Once an image has been decompressed – or if it is uncompressed in the first place – it
has the following layout:

Debugging data are absent unless the image has been linked appropriately and, in the
case of source-level debugging, unless the constituent components of the image have
been compiled appropriately.

The relocation list is a list of byte offsets from the beginning of the AIF header, of words
to be relocated, followed by a word containing –1. The relocation of non-word values is
not supported.

Header

Compressed image

Decompression data

Decompression code

This data is position-independent

This code is position-independent

Header

Read-only area

Read-write area

Debugging data

Self-relocation code

Relocation list

(optional)

Must be position-independent

List of words to relocate, terminated by -1

AIF header layout

4-442

After the execution of the self-relocation code – or if the image is not self-relocating –
the image has the following layout:

At this stage a debugger is expected to copy the debugging data (if present) somewhere
safe, otherwise they will be overwritten by the zero-initialised data and/or the heap/stack
data of the program. A debugger can seize control at the appropriate moment by
copying, then modifying, the third word of the AIF header (see below).

AIF header layout

Header

Read-only area

Read-write area

Debugging data (optional)

BL DecompressedCode

BL SelfRelocCode

BL ZeroInitCode

BL ImageEntryPoint

SWI OS_Exit

Image ReadOnly size

Image ReadWrite size

Image Debug size

Image zero-init size

Image debug type

Image base

Work space

Four reserved words (0)

Zero-init code (16 words)

BLNV 0 if the image is not compressed

BLNV 0 if the image is not self-relocating

BLNV 0 if the image has none

BL to make header addressable via R14

Just in case silly enough to return

Includes header size and any padding

Exact size - a multiple of 4 bytes

Exact size - a multiple of 4 bytes

Exact size - a multiple of 4 bytes

0,1,2 or 3 (see below)

Address of the AIF header - set by link

Min work space - in bytes - to be reserved by

Header is 32 words long

a self-moving relocatable image

Exact size - a multiple of 4 bytes

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-443

BL is used everywhere to make the header addressable via R14 (but beware the PSR
bits) in a position-independent manner and to ensure that the header will be
position-independent.

It is required that an image be re-enterable at its first instruction. Therefore, after
decompression, the decompression code must reset the first word of the header to BLNV
0. Similarly, following self-relocation, the second word of the header must be reset to
BLNV 0. This causes no additional problems with the read-only nature of the code
segment – both decompression and relocation code must write to it anyway. So, on
systems with memory protection, both the decompression code and the self-relocation
code must be bracketed by system calls to change the access status of the read-only
section (first to writable, then back to read-only).

The image debug type has the following meaning:

0: No debugging data are present.

1: Low-level debugging data are present.

2: Source level (ASD) debugging data are present.

3: 1 and 2 are present together.

All other values are reserved by Acorn.

Zero-initialisation code
The Zero-initialisation code is as follows:

BIC R11, LR, #&FC000003 ; clear status bits -> header + &C
ADD R11, R11, #8 ; -> Image ReadOnly size
LDMIA R11, {R0,R1,R2,R3} ; various sizes
CMPS R3, #0
MOVLES PC, LR ; nothing to do
SUB R11, R11, #&14 ; image base
ADD R11, R11, R0 ; + RO size
ADD R11, R11, R1 ; + RW size = base of 0-init area
MOV R0, #0
MOV R1, #0
MOV R2, #0
MOV R4, #0

ZeroLoop
STMIA R11!, {R0,R1,R2,R4}
SUBS R3, R3, #16
BGT ZeroLoop
MOVS PC, LR ; 16 words in total.

Self relocation

4-444

Relationship between header sizes and linker pre-defined symbols

AIFHeader.ImageBase = Image$$RO$$Base

AIFHeader.ImageBase +
AIFHeader.ROSize = Image$$RW$$Base

AIFHeader.ImageBase +
AIFHeader.ROSize +
AIFHeader.RWSize = Image$$ZI$$Base

AIFHeader.ImageBase +
AIFHeader.ROSize +
AIFHeader.RWSize +
AIFHeader.ZeroInitSize = Image$$RW$$Limit

Self relocation
Two kinds of self-relocation are supported by AIF and one by AMF; for completeness,
all three are described here.

One-time position independence is supported by relocatable AIF images. Many-time
position independence is required for AMF Relocatable Modules. And only AIF images
can self-move to a location which leaves a requested amount of workspace.

Why are there three different kinds of self-relocation?

● The rules for constructing RISC OS applications do not forbid acquired
position-dependence. Once an application has begun to run, it is not, in general,
possible to move it, as it isn’t possible to find all the data locations which are being
used as position-dependent pointers. So, AIF images can be relocated only once.
Afterwards, the relocation table is over-written by the application’s zero-initialised
data, heap, or stack.

● In contrast, the rules for constructing a RISC OS Relocatable Modules (RM)
require that it be prepared to shut itself down, be moved in memory, and start itself
up again. Shut-down and start-up are notified to a RM by special service calls to it.
Clearly, a RM must be relocatable many times so its relocation table is not
overwritten after first use.

● Relocatable Modules are loaded under the control of a Relocatable Module Area
(RMA) manager which decides where to load a module initially and where to move
each module to whenever the RMA is reorganised. In contrast, an application is
loaded at its load address and is then on its own until it exits or faults. An
application can only be moved by itself (and then only once, before it begins
execution proper).

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-445

Self-relocation code for relocatable modules

In this case there is no AIF header, the code must be executable many times, and it must
be symbolically addressable from the Relocatable Module header. The code below must
be the last area of the RMF image, following the relocation list. Note that it is best
thought of as an additional area.

When the following code is executed, the module image has already been loaded
at/moved to its target address. It only remains to relocate location-dependent addresses.
The list of offsets to be relocated, terminated by (–1), immediately follows End. Note
that the address values here (eg |__RelocCode|) will appear in the list of places to be
relocated, allowing the code to be re-executed.

IMPORT |Image$$RO$$Base| ; where the image is linked at...
EXPORT |__RelocCode| ; referenced from the RM header

|__RelocCode|
LDR R1, RelocCode ; value of __RelocCode (before relocation)
SUB R11, PC, #12 ; value of __RelocCode now
SUBS R1, R11, R1 ; relocation offset
MOVEQS PC, LR ; relocate by 0 so nothing to do
LDR R11, ImageBase ; image base prior to relocation...
ADD R11, R11, R1 ; ...where the image really is
ADR R2, End

RelocLoop
LDR R0, [R2], #4
CMNS R0, #1 ; got list terminator?
MOVLES PC, LR ; yes => return
LDR R3, [R11, R0] ; word to relocate
ADD R3, R3, R1 ; relocate it
STR R3, [R11, R0] ; store it back
B RelocLoop ; and do the next one

RelocCode DCD |__RelocCode|
ImageBase DCD |Image$$RO$$Base|
End ; the list of locations to relocate

; starts here (each is an offset from the
; base of the module) and is terminated
; by –1.

Note that this code, and the associated list of locations to relocate, is added
automatically to a relocatable module image by Link (as a consequence of using Link
with the SetUp option Module enabled).

Self-move and self-relocation code for AIF

This code is added to the end of an AIF image by Link, immediately before the list of
relocations (terminated by –1). Note that the code is entered via a BL from the second
word of the AIF header so, on entry, R14 points to AIFHeader + 8.

Self relocation

4-446

RelocCode ROUT
BIC R11, LR, #&FC000003 ;clear flag bits; -> AIF header + &08
SUB R11, R11, #8 ; -> header address
MOV R0, #&FB000000 ; BLNV #0
STR R0, [R11, #4] ; won’t be called again on image re-entry

;does the code need to be moved?
LDR R9, [R11, #&2C] ; min free space requirement
CMPS R9, #0 ; 0 => no move, just relocate
BEQ RelocateOnly

;calculate the amount to move by...
LDR R0, [R11, #&20] ; image zero-init size
ADD R9, R9, R0 ; space to leave = min free + zero init
SWI GetEnv ; MemLimit -> R1
ADR R2, End ; -> End

01 LDR R0, [R2], #4 ; load relocation offset, increment R2
CMNS R0, #1 ; terminator?
BNE %B01 ; No, so loop again
SUB R3, R1, R9 ; MemLimit - freeSpace
SUBS R0, R3, R2 ; amount to move by
BLE RelocateOnly ; not enough space to move...
BIC R0, R0, #15 ; a multiple of 16...
ADD R3, R2, R0 ; End + shift
ADR R8, %F01 ; intermediate limit for copy-up

;
; copy everything up memory, in descending address order, branching
; to the copied copy loop as soon as it has been copied.
;
02 LDMDB R2!, {R4-R7}

STMDB R3!, {R4-R7}
CMP R2, R8 ; copied the copy loop?
BGT %B02 ; not yet
ADD R4, PC, R0
MOV PC, R4 ; jump to copied copy code

03 LDMDB R2!, {R4-R7}
STMDB R3!, {R4-R7}
CMP R2, R11 ; copied everything?
BGT %B03 ; not yet
ADD R11, R11, R0 ; load address of code
ADD LR, LR, R0 ; relocated return address

RelocateOnly
LDR R1, [R11, #&28] ; header + &28 = code base set by Link
SUBS R1, R11, R1 ; relocation offset
MOVEQ PC, LR ; relocate by 0 so nothing to do
STR R11, [R11, #&28] ; new image base = actual load address
ADR R2, End ; start of reloc list

RelocLoop
LDR R0, R2], #4 ; offset of word to relocate
CMNS R0, #1 ; terminator?
MOVEQS PC, LR ; yes => return
LDR R3, [R11, R0] ; word to relocate
ADD R3, R3, R1 ; relocate it
STR R3, [R11, R0] ; store it back
B RelocLoop ; and do the next one
End ; The list of offsets of locations to

relocate

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-447

; starts here; terminated by -1.

ASD

4-448

ASD
Acknowledgement: This design is based on work originally done for Acorn Computers
by Topexpress Ltd.

This section describes the format of symbolic debugging data generated by ARM
compilers and assemblers running under RISC OS and used by the desktop debugger
DDT.

For each separate compilation unit (called a section) the compiler produces debugging
data in a special AREA of the object code (see the section entitled AOF on page 4-423
for an explanation of AREAs and their attributes). Debugging data are position
independent, containing only relative references to other debugging data within the
same section and relocatable references to other compiler-generated AREAs.

Debugging data AREAs are combined by the linker into a single contiguous section of a
program image (see the section entitled AIF on page 4-440 for a description of
Application Image Format). Because the debugging section is position-independent, the
debugger can move it to a safe location before the image starts executing. If the image is
not executed under debugger control the debugging data is simply overwritten.

The format of debugging data allows for a variable amount of detail. This potentially
allows the user to trade off among memory used, disc space used, execution time, and
debugging detail.

Assembly-language level debugging is also supported, though in this case the debugging
tables are generated by the linker, not by language processors. These low-level
debugging tables appear in an extra section item, as if generated by an independent
compilation. Low-level and high-level debugging are orthogonal facilities, though DDT
allows the user to move smoothly between levels if both sets of debugging data are
present in an image.

Order of Debugging Data
A debug data AREA consists of a series of items. The arrangement of these items
mimics the structure of the high-level language program itself.

For each debug AREA, the first item is a section item, giving global information about
the compilation, including a code identifying the language and flags indicating the
amount of detail included in the debugging tables.

Each data, function, procedure, etc., definition in the source program has a
corresponding debug data item and these items appear in an order corresponding to the
order of definitions in the source. This means that any nested structure in the source
program is preserved in the debugging data and the debugger can use this structure to
make deductions about the scope of various source-level objects. Of course, for

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-449

procedure definitions, two debug items are needed: a procedure item to mark the
definition itself and an endproc item to mark the end of the procedure’s body and the
end of any nested definitions. If procedure definitions are nested then the procedure -
endproc brackets are also nested. Variable and type definitions made at the outermost
level, of course, appear outside of all procedure/endproc items.

Information about the relationship between the executable code and source files is
collected together and appears as a fileinfo item, which is always the final item in a
debugging AREA. Because of the C language’s #include facility, the executable code
produced from an outer-level source file may be separated into disjoint pieces
interspersed with that produced from the included files. Therefore, source files are
considered to be collections of ‘fragments’, each corresponding to a contiguous area of
executable code and the fileinfo item is a list with an entry for each file, each in turn
containing a list with an entry for each fragment. The fileinfo field in the section item
addresses the fileinfo item itself. In each procedure item there is a ‘file entry’ field which
refers to the file-list entry for the source file containing the procedure’s start; there is a
separate one in the endproc item because it may possibly not be in the same source file.

Representation of Data Types
Several of the debugging data items (eg procedure and variable) have a type word field
to identify their data type. This field contains, in the most significant 3 bytes, a code to
identify a base type and, in the least significant byte, a pointer count: 0 to denote the type
itself; 1 to denote a pointer to the type; 2 to denote a pointer to a pointer to…; etc.

For simple types the code is a positive integer as follows:

void 0 (all codes are decimal)

signed integers
single byte 10
half-word 11
word 12

unsigned integers
single byte 20
half-word 21
word 22

floating point
float 30
double 31
long double 32

Representation of Source File Positions

4-450

complex
single complex 41
double complex 42

functions
 function 100

For compound types (arrays, structures, etc.) there is a special kind of debug data item
(array, struct, etc.) to give details of the type such as array bounds and field types. The
type code for such types is negative being the negation of the (byte) offset of the special
item from the start of the debugging AREA.

If a type has been given a name in a source program, it will give rise to a type debugging
data item which contains the name and a type word as defined above. If necessary, there
will also be a debugging data item such as an array or struct to define the type itself. In
that case, the type word will refer to this item.

Enumerated types in C and scalars in Pascal are treated simply as integer sub-ranges of
an appropriate size, the name information is not available in the this version of the
debugging format. Set types in Pascal are not treated in detail: the only information
recorded for them is the total size occupied by the object in bytes.

Fortran character types are supported by a special kind of debugging data item the
format of which is yet to be defined.

Representation of Source File Positions
Several of the debugging data items have a sourcepos field to identify a position in the
source file. This field contains a line number and character position within the line
packed into a single word. The most significant 10 bits encode the character offset
(0-based) from the start of the line and the least- significant 22 bits give the line number.

Debugging Data Items in Detail
The first word of each debugging data item contains the byte length of the item (encoded
in the most significant 16 bits) and a code identifying the kind of item (in the least
significant 16 bits). The following codes are defined:

1 section
2 procedure
3 endproc
4 variable
5 type
6 struct
7 array

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-451

8 subrange
9 set
10 fileinfo

The meaning of the second and subsequent words of each item is defined below.

Where items include a string field, the string is packed into successive bytes beginning
with a length byte, and padded at the end to a word boundary (the padding value is
immaterial, but NUL or ‘ ’ is preferred). The length of a string is in the range [0 - 255]
bytes.

Where an item contains a field giving an offset in the debugging data area (usually to
address another item), this means a byte offset from the start of the debugging data for
the whole section (in other words, from the start of the section item).

Section

A section item is the first item of each section of the debugging data. The first five fields
are held in a single word:

language one byte code identifying the source language
debuglines 1 bit: set ⇒ tables contain line numbers
debugvars 1 bit: set ⇒ tables contain data about local variables
spare 14 reserved bits (must be zero)
debugversion one byte version number of the debugging data
codeaddr pointer to start of executable code in this section
dataaddr pointer to start of static data for this section
codesize byte size of executable code in this section
datasize byte size of the static data in this section
fileinfo offset in the debugging data of the file information for

this section (or 0 if no fileinfo is present)
debugsize total byte length of debugging data for this section
name or nsyms string or integer

The name field contains the program name for Pascal and Fortran programs. For C
programs it contains a name derived by the compiler from the main file name (notionally
a module name). Its syntax is similar to that for a variable name in the source language.
For a low-level debugging section (language = 0) the field is treated as a 4 byte integer
giving the number of symbols following.

The following language byte codes are defined:

0 Low-level debugging data (notionally, assembler)
1 C
2 Pascal
3 Fortran77
other reserved to Acorn.

Debugging Data Items in Detail

4-452

The fileinfo field is 0 if no source file information is present.

The debugversion field was defined to be 1; the new debugversion for the extended
debugging data format (encompassing low-level debugging data) is 2. For low-level
debugging data, other fields have the following values:

language 0
codeaddr Image$$RO$$Base
dataaddr Image$$RW$$Base
codesize Image$$RO$$Limit - Image$$RO$$Base
datasize Image$$RW$$Limit - Image$$RW$$Base
fileinfo 0
nsyms number of symbols within the following debugging data
debugsize total size of the low-level debugging data including the

size of the section item

The section item is immediately followed by nsyms symbols, each having the following
format:

stridx:24 byte offset in string table of symbol name
flags:8 (see below)
value the value of the symbol

The flags field has the following values:

0/1 the symbol is a local/global symbol
+ (there may be many local symbols with the same name)
0/2/4/6 symbol names an absolute/code/data/zero-init value

Note that the linker reduces all symbol values to absolute values. The flags field records
the history, or origin, of the symbol in the image.

The string table is in standard AOF format. It consists of a length word followed by the
strings themselves, each terminated by a NUL (0). The length word includes the length
of the length word, so no offset into the string table is less than 4. The end of the string
table is padded to the next word boundary.

Procedure

A procedure item appears once for each procedure or function definition in the source
program. Any definitions with the procedure have their related debugging data items
between the procedure item and the matching endproc item. The format of procedure
items is as follows:

type the return type if this is a function, else 0
args the number of arguments
sourcepos a word encoding the source position of the start of the

procedure

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-453

startaddr pointer to the first instruction of the procedure
bodyaddr pointer to the first instruction of the procedure body (see

below)
endproc offset of the related endproc item
fileentry offset of the file list entry for the source file
name string

The bodyaddr field points to the first instruction after the procedure entry sequence, that
is the first address at which a high-level breakpoint could sensibly be set. The startaddr
field points to the beginning of the entry sequence, that is the address at which control
actually arrives when the procedure is called.

A label in a source program is represented by a special procedure item with no matching
endproc (the endproc field is 0 to denote this). Pascal and Fortran numerical labels are
converted by the compiler into strings prefixed by ‘$n’.

For Fortran77, multiple entry points to the same procedure each give rise to a separate
procedure item but they all have the same endproc offset referring to a single endproc
item.

Endproc

This item marks the end of the debugging data items belonging to a particular procedure.
It also contains information relating to the procedure’s return. Its format is as follows:

sourcepos a word encoding the position in the source file of the end
of the procedure

endaddr a pointer to the code byte AFTER the compiled code for
the procedure

filentry offset of the file list entry for the procedure’s end
nreturns number of procedure return points (may be 0)
retaddrs… pointers to the procedure-return code

If the procedure body is an infinite loop, there will be no return point so nreturns will be
0. Otherwise the retaddrs should each point to a suitable location at which a breakpoint
may be set ‘at the exit of the procedure’. When execution reaches this point, the current
stack frame should still be in this procedure.

Variable

This item contains debugging data relating to a source program variable or a formal
argument to a procedure (the first variable items in a procedure always describe its
arguments). Its format is as follows:

Debugging Data Items in Detail

4-454

type a type word
sourcepos a word encoding the source position of the variable
class a word encoding the variable’s storage class
location see explanation below
name string

The following codes define the storage classes of variables:

1 external variables (or Fortran common)
2 static variables private to one section
3 automatic variables
4 register variables
5 Pascal var arguments
6 Fortran arguments
7 Fortran character arguments

The meaning of the location field of a variable item depends on the storage class: it
contains an absolute address for static and external variables (relocated by the linker); a
stack offset (ie an offset from the frame- pointer) for automatic and var-type arguments;
an offset into the argument list for Fortran arguments; and a register number for register
variables (the 8 floating point registers are numbered 16 - 23).

No account is taken of variables which ought to be addressed by +ve offsets from the
stack-pointer rather than -ve offsets from the frame-pointer.

The sourcepos field is used by the debugger to distinguish between different definitions
having the same name (eg identically named variables in disjoint source-level naming
scopes such as nested block in C).

Type

This item is used to describe a named type in the source language (eg a typedef in C).
The format is as follows:

type a type word (described earlier)
name string

Struct

This item is used to describe a structured data type (eg a struct in C or a record in
Pascal). Its format is as follows:

fields the number of fields in the structure
size total byte size of the structure
fieldtable… a table of fields entries in the following format:

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-455

offset byte offset of this field within the structure
type a type word (interpretation as described earlier)
name string

Union types are described by struct items in which all fields have 0 offsets.

C bit fields are not treated in full detail: a bit field is simply represented by an integer
starting on the appropriate word boundary (so that the word contains the whole field).

Array

This item is used to describe a one-dimensional array. Multi-dimensional arrays are
described as arrays of arrays. Which dimension comes first is dependent on the source
language (different for C and Fortran). The format is as follows:

size total byte size of each element
arrayflags (see below)
basetype a type word
lowerbound constant value or stack offset of variable
upperbound constant value or stack offset of variable

If the size field is zero, debugger operations affecting the whole array, rather than
individual elements of it, are forbidden.

The following bit numbers in the arrayflags field are defined:

0 lower bound is undefined
1 lower bound is a constant
2 upper bound is undefined
3 upper bound is a constant

If a bound is defined and not constant then it is an integer variable on the stack and the
boundvalue field contains the stack offset of the variable (from the frame-pointer).

Subrange

This item is used to describe subrange typed in Pascal. It also serves to describe
enumerated types in C and scalars in Pascal (in which case the base type is understood to
be an unsigned integer of appropriate size). Its format is as follows:

size half-word: 1, 2, or 4 to indicate byte size of object
typecode half-word: simple type code
lwb lower bound of subrange
upb upper bound of subrange

Debugging Data Items in Detail

4-456

Set

This item is used to describe a Pascal set type. Currently, the description is only partial.
The format is:

size byte size of the object

Fileinfo

This item appears once per section after all other debugging data items. The half of the
header word which would usually give the item length is not required and should be set
to 0.

Each source file is described by a sequence of ‘fragments’, each of which describes a
contiguous region of the file within which the addresses of compiled code increase
monotonically with source-file position. The order in which fragments appear in the
sequence is not necessarily related to the source file positions to which they refer.

Note that for compilations that make no use of the #include facility, the list of fragments
will have only one entry and all line-number information will be contiguous.

The item is a list of entries each with the following format:

length length of this entry in bytes (0 marks the final entry)
date date and time when the file was last modified
filename string (or null if the name is not known)
n number of fragments following
fragments… n fragments with the following structure…

fragmentsize length of this entry in bytes
firstline linenumber
lastline linenumber
codeaddr pointer to the start of the fragment’s executable code
codesize byte size of the code in the fragment
lineinfo… a variable number of line number data

There is one lineinfo half-word for each statement of the source file fragment which
gives rise to executable code. Exactly what constitutes an executable statement may be
defined by the language implementation; the definition may for instance include some
declarations. The half-word can be regarded as 2 bytes: the first contains the number of
bytes of code generated from the statement and cannot be zero; the second contains the
number of source lines occupied by the statement (ie the difference between the line
number of the start of the statement and the line number of the next statement). This may
be zero if there are multiple statements on the same source line.

If the whole half-word is zero, this indicates that one of the quantities is too large to fit
into a byte and that the following 2 half-words contain (in order) the number of lines
followed by the number of bytes of code generated from the statement.

A
p

p
en

d
ixes an

d
 tab

les

Appendix D: Code file formats

4-457

4-458

A
p

p
en

d
ixes an

d
 tab

les

4-459

4

90 Appendix E: File formats

Introduction
The file formats described in this appendix are those generated by RISC OS itself and
various applications. Each is shown as a chart giving the size and description of each
element. The elements are sequential and the sizes are in bytes.

This appendix contains information about the following file formats:

● Sprite files

● Template files

● Draw files

● Font files, including IntMetrics, Outlines and bitmap files

● Music files

● Squash files

Sprite files

4-460

Sprite files
A sprite file is saved in the same format as a sprite area is saved in memory, except that
the first word of the sprite area is not saved.

For a full description of sprite area formats, refer to the section entitled Format of a
sprite area on page 1-777.

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-461

Template files
The following section describes the Wimp template file format:

Header
The file starts with a header:

Size Description
4 file offset of font data (–1 if none)

4 reserved (must be zero)

4 reserved (must be zero)

4 reserved (must be zero)

Index entries
The header is followed by a series of index entries to data later in the file:

Size Description
4 file offset of data for this entry

4 size of data for this entry

4 entry type (1 = window)

12 identifier (control character terminated)

Terminator
The index entries are terminated by a null word:

Size Description
4 0

Data
Each set of entries referred to earlier in the index contains the following:

Size Description
88 window definition (as in Wimp_CreateWindow – see page 3-87)

ni × 32 icon definitions (as in Wimp_CreateIcon – see page 3-93)

? indirected icon data

Any pointers to indirected icon data are offsets from the start of the current entry. Any
references to anti-aliased fonts use internal handles.

Font data

4-462

Font data
The file ends with an optional set of font data (the presence of which is indicated by the
first word of the header):

Size Description
4 x-point-size × 16

4 y-point-size × 16

40 font name (control character terminated)

The first font entry is that referred to by internal handle 1, the second font entry is that
referred to by internal handle 2, etc.

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-463

Draw files
The Draw file format provides an object-oriented description of a graphic image. It
represents an object in its editable form, unlike a page-description language such as
PostScript which simply describes an image.

Programmers wishing to define their own object types should contact Acorn; see
Appendix H: Registering names on page 4-551.

Coordinates
All coordinates within a Draw file are signed 32-bit integers that give absolute positions
on a large image plane. The units are 1/(180 × 256) inches, or 1/640 of a printer’s point.
When plotting on a standard RISC OS screen, an assumption is made that one OS-unit
on the screen is 1/180 of an inch. This gives an image reaching over half a mile in each
direction from the origin. The actual image size (eg the page format) is not defined by
the file, though the maximum extent of the objects defined is quite easy to calculate.
Positive-x is to the right, positive-y is up. The printed page conventionally has the origin
at its bottom left hand corner. When rendering the image on a raster device, the origin is
at the bottom left hand corner of a device pixel.

Colours
Colours are specified in Draw files as absolute RGB values in a 32-bit word. The format
is:

Byte Description
0 reserved (must be zero)
1 unsigned red value
2 unsigned green value
3 unsigned blue value

For colour values, 0 means none of that colour and 255 means fully saturated in that
colour.

You must always write byte 0 (the reserved one) as 0, but don’t assume that it always
will be 0 when reading.

The bytes in a word of an Draw file are in little-endian order, eg the least significant byte
appears first in the file.

The special value &FFFFFFFF is used in the filling of areas and outlines to mean
‘transparent’.

File headers

4-464

File headers
The file consists of a header, followed by a sequence of objects.

The file header is of the following form.

Size Description
4 ‘Draw’

4 major format version stamp – currently 201 (decimal)

4 minor format version stamp – currently 0

12 identity of the program that produced this file – typically 8 ASCII
characters, padded with spaces

4 x-low  bounding box

4 y-low  bottom-left (x-low, y-low) is inclusive

4 x-high  top-right (x-high, y-high) is exclusive

4 y-high 
When rendering a Draw file, check the major version number. If this is greater than the
latest version you recognise then refuse to render the file (eg generate an error message
for the user), as an incompatible change in the format has occurred.

The entire file is rendered by rendering the objects one by one, as they appear in the file.

The bounding box indicates the intended image size for this drawing.

A Draw file containing a file header but no objects is legal; however, the bounding box
is undefined. In particular the ‘x-low’ value may be greater than the ‘x-high’ value (and
similarly for the y values).

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-465

Objects
Each object consists of an object header, followed by a variable amount of data
depending on the object type.

Object header

The object header is of the following form:

Size Description
4 object type field

4 object size: number of bytes in the object – always a multiple of 4

4 x-low  object bounding box

4 y-low  bottom-left (x-low, y-low) is inclusive

4 x-high  top-right (x-high, y-high) is exclusive

4 y-high 
The bounding box describes the maximum extent of the rendition of the object: the
object cannot affect the appearance of the display outside this rectangle. The upper
coordinates are an outer bound, in that the device pixel at (x-low, y-low) may be affected
by the object, but the one at (x-high, y-high) may not be. The rendition procedure may
use clipping on these rectangles to abandon obviously invisible objects.

Objects with no direct effect on the rendition of the file have no bounding box (hence the
header is only two words long). Such objects will be identified explicitly in the object
descriptions that follow. If an unidentified object type field is encountered when
rendering a file, ignore the object and continue.

The rest of the data for an object depends on the object type.

Font table object

Object type number 0

A font table object has no bounding box in its object header, which is followed by a
sequence of font number definitions:

Size Description
1 font number (non-zero)

n n character textual font name, null terminated

0 - 3 up to 3 zero characters, to pad to a word boundary

This object type is somewhat special in that only one instance of it ever appears in a
Draw file. It has no direct effect on the appearance of the image, but maps font numbers
(used in text objects) to textual names of fonts. It must precede all text objects.
Comparison of font names is case-insensitive.

Objects

4-466

Text object

Object type number 1

Size Description
4 text colour

4 text background colour hint

4 text style

4 unsigned nominal x size of the font (in 1/640 point)

4 unsigned nominal y size of the font (in 1/640 point)

8 x, y coordinates of the start of the text base line

n n characters in the string, null terminated

0 - 3 up to 3 zero characters, to pad to a word boundary

The character string consists of printing ANSI characters with codes within the ranges
32 - 126 and 128 - 255. This need not be checked during rendering, but other codes may
produce undefined or system-dependent results.

The text style word consists of the following:

Bit(s) Description
0 - 7 one byte font number
8 - 31 reserved (must be zero)

Italic, bold variants etc are assumed to be distinct fonts.

The font number is related to the textual name of a font by a preceding font table object
within the file (see above). The exception to this is font number 0, which is a system font
that is sure to be present. When rendering a Draw file, if a font is not recognised, the
system font should be used instead. The system font is monospaced, with the gap
between letters equal to the nominal x size of the font.

The background colour hint can be used by font rendition code when performing
anti-aliasing. It is referred to as a hint because it has no effect on the rendition of the
object on a ‘perfect’ printer; nevertheless for screen rendition it can improve the
appearance of text on coloured backgrounds. The font rendition code can assume that
the text appears on a background that matches the background colour hint.

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-467

Path object

Object type number 2

Size Description
4 fill colour (–1 ⇒ do not fill)

4 outline colour (–1 ⇒ no outline)

4 outline width (unsigned)

4 path style description

? optional dash pattern definition

? sequence of path components

An outline width of 0 means draw the thinnest possible outline that the device can
represent. A path component consists of:

Size Description
4 1-word tag identifier:

bits 0 - 7 = tag identifier byte:
0 ⇒ end of path: no arguments
2 ⇒ move to absolute position: followed by

one x, y pair
5 ⇒ close current sub-path: no arguments
8 ⇒ draw to absolute position: followed by one

x, y pair
6 ⇒ Bezier curve through two control points,

to absolute position: followed by three
x, y pairs

bits 8 - 31 reserved (must be zero)

n × 8 sequence of n 2-word (x, y) coordinate pairs (where n is zero, one
or three, as determined by the value of the tag identifier)

The tag values match the arguments required by the Draw module. This block of
memory can be passed directly to the Draw module for rendition; see the chapter entitled
Draw module on page 3-533 for precise rules concerning the appearance of paths. See
also manuals on PostScript. (Reference: PostScript Language Reference Manual. Adobe
Systems Incorporated (1990) 2nd ed. Addison-Wesley, Reading, Mass, USA).

The possible set of legal path components in a path object is described as follows. A path
consists of a sequence of (at least one) subpaths, followed by an ‘end of path’ path
component. A subpath consists of a ‘move to’ path component, followed by a sequence
of (at least one) ‘draw to’ and/or ‘Bezier to’ path components, followed (optionally) by
a ‘close sub-path’ path component.

Objects

4-468

The path style description word is as follows:

Bit(s) Description
0 - 1 join style:

0 = mitred joins
1 = round joins
2 = bevelled joins

2 - 3 end cap style:
0 = butt caps
1 = round caps
2 = projecting square caps
3 = triangular caps

4 - 5 start cap style (same possible values as end cap style)

6 winding rule:
0 = non-zero
1 = even-odd

7 dash pattern:
0 = dash pattern missing
1 = dash pattern present

8 - 15 reserved (must be zero)

16 - 23 triangle cap width:
a value within 0 - 255, measured in sixteenths of the line
width

24 - 31 triangle cap length:
a value within 0 - 255, measured in sixteenths of the line
width

The mitre cut-off value is the PostScript default (eg 10). If the dash pattern is present
then it is in the following format:

Size Description
4 offset distance into the dash pattern to start

4 number of elements in the dash pattern

followed by, for each element of the dash pattern:

Size Description
4 length of the dash pattern element

The dash pattern is reused cyclically along the length of the path, with the first element
being filled, the next a gap, and so on.

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-469

Sprite object

Object type number 5

This is followed by a sprite. See the section entitled Format of a sprite on page 1-777 for
details.

This contains a pixelmap image. The image is scaled to entirely fill the bounding box.

If the sprite has a palette then this gives absolute values for the various possible pixels.
If the sprite has no palette then colours are defined locally. Within RISC OS the
available ‘Wimp colours’ are used – for further details see the chapter entitled Sprites on
page 1-773 and the chapter entitled The Window Manager on page 3-3.

Group object

Object type number 6

Size Description
12 group object name, padded with spaces

This is followed by a sequence of other objects.

The objects contained within the group will have rectangles contained entirely within
the rectangle of the group. Nested grouped objects are allowed.

The object name has no effect on the rendition of the object. It should consist entirely of
printing characters. It may have meaning to specific editors or programs. It should be
preserved when copying objects. If no name is intended, twelve space characters should
be used.

Tagged object

Object type number 7

Size Description
4 tag identifier

This is followed by an object and optional word-aligned data.

To render a Tagged object, simply render the enclosed object. The identifier and
additional data have no effect on the rendition of the object. This allows specific
programs to attach meaning to certain objects, while keeping the image renderable.

Programmers wishing to define their own object tags should contact Acorn; see
Appendix H: Registering names on page 4-551.

Objects

4-470

Text area object

Object type number 9

Size Description
? 1 or more text column objects (object type 10, no data – see

below)

4 zero, to mark the end of the text columns

4 reserved (must be zero)

4 reserved (must be zero)

4 initial text foreground colour

4 initial text background colour hint

? the body of the text column (ASCII characters, terminated by a
null character)

0 - 3 up to 3 zero characters, to pad to a word boundary

A text area contains a number of text columns. The text area has a body of text
associated with it, which is partitioned between the columns. If there is just one text
column object then its bounding box must be exactly coincident with that of the text
area.

The body of the text is paginated in the columns. Effects such as font settings and colour
changes are controlled by escape sequences within the body of the text. All escape
sequences start with a backslash character (\); the escape code is case sensitive, though
any arguments it has are not.

Arguments of variable length are terminated by a ‘/’ or <newline>. Arguments of fixed
length are terminated by an optional ‘/’.

Values with range limits mean that if a value falls outside the range, then the value is
truncated to this limit.

Escape sequence Description

● \! <version><newline or />
Must appear at the start of the text, and only there.
<version> must be 1.

● \A<code><optional />
Set alignment. <code> is one of L (left = default),
R (right), C (centre), D (double). A change in alignment
forces a line break.

● \B<R><spaces><G><spaces><newline or />
Set text background colour hint to the given RGB
intensity (or the best available approximation). Each
value is limited to 0 - 255.

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-471

● \C<R><spaces><G><spaces><newline or />
Set text foreground colour to the given RGB intensity
(or the best available approximation). Each value is
limited to 0 - 255.

● \D<number><newline or />
Indicates that the text area is to contain <number>
columns. Must appear before any printing text.

● \F<digit*><name><spaces><size>[<spaces><width>]<newline or />
Defines a font reference number. <name> is the name of
the font, and <size> its height. <width> may be omitted,
in which case the font width and height are the same.
Font reference numbers may be reassigned. <digit*> is
one or two digits. <size> and <width> are in points.

● \<digit*><optional />
Selects a font, using the font reference number

● \L<leading><newline or />
Define the leading in points from the end of the (output)
line in which the \L appears – ie the vertical separation
between the bases of characters on separate lines.
Default, 10 points.

● \M<leftmargin><spaces><rightmargin><newline or />
Defines margins that will be left on either size of the
text, from the start of the output line in which the
sequence appears. The margins are given in points, and
are limited to values > 0. If the sum of the margins is
greater than the width of the column, the effects are
undefined. Both values default to 1 point.

● \P<leading><newline or />
Define the paragraph leading in points, ie the vertical
separation between the end of one paragraph and the
beginning of a new paragraph. Default, 10 points.

● \U<position><spaces><thickness><newline or />
Switch on underlining, at <position> units relative to the
character base, and of <thickness> units, where a unit is
1/256 of the current font size. <position> is limited to –
128…+127, and <thickness> to 0…255. To turn the
underlining off, either give a thickness of 0, or use the
command ‘\U.’

● \V[–]<digit><optional />
Vertical move by the specified number of points.

Objects

4-472

● \– Soft hyphen: if a line cannot be split at a space, a hyphen
may be inserted at this point instead; otherwise, it has no
printing effect.

● \<newline> Force line break.

● \\ appears as \ on the screen

● \;<text><newline> Comment: ignored.

Other escape sequences are flagged as errors during verification.

Lines within a paragraph are split either at a space, or at a soft hyphen, or (if a single
word is longer than a line) at any character.

A few other characters have a special interpretation:

● Control characters are ignored, except for tab, which is replaced by a space.

● Newlines (that are not part of an escape sequence) are interpreted as follows:

Occurring before any printing text: a paragraph leading is inserted for each
newline.

In the body of the text: a single newline is replaced by a space, except when it is
already followed or preceded by a space or tab. A sequence of n newlines inserts a
space of (n–1) times the paragraph leading, except that paragraph leading at the top
of a new text column is ignored.

Lines which protrude beyond the limits of the box vertically, eg because the leading is
too small, are not displayed; however, any font changes, colour changes, etc. in the text
are applied. Characters should not protrude horizontally beyond the limits of the text
column, eg owing to italic overhang for this font being greater than the margin setting.

Restrictions

If a chunk of text contains more than 16 colour change sequences, only the last 16 will
be rendered correctly. This is a consequence of the size of the colour cache used within
the font manager. A chunk in this case means a block of text up to anything that forces a
line break, eg the end of a paragraph or a change on the alignment.

Text column object

Object type number 10

No further data, ie just an object header.

A text column object may only occur within a text area object. Its use is described in the
section on text area objects.

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-473

Options object

Object type number 11

The object header for an options object has space allocated for a bounding box, but since
one would be meaningless, the space is unused. You must treat the 4 words normally
used for the bounding box as reserved, and set them to zero.

Size Description
4 (paper size + 1) × &100 (ie &500 for A4)

4 paper limits options:
bit 0 set ⇒ paper limits shown
bits 1 - 3 reserved (must be zero)
bit 4 set ⇒ landscape orientation (else portrait)
bits 5 - 7 reserved (must be zero)
bit 8 set ⇒ printer limits are default
bits 9 - 31 reserved (must be zero)

8 grid spacing (floating point)

4 grid division

4 grid type (zero ⇒ rectangular, non-zero ⇒ isometric)

4 grid auto-adjustment (zero ⇒ off, non-zero ⇒ on)

4 grid shown (zero ⇒ no, non-zero ⇒ yes)

4 grid locking (zero ⇒ off, non-zero ⇒ on)

4 grid units (zero ⇒ inches, non-zero ⇒ centimetres)

4 zoom multiplier (1 - 8)

4 zoom divider (1 - 8)

4 zoom locking (zero ⇒ none, non-zero ⇒ locked to powers of
two)

4 toolbox presence (zero ⇒ no, non-zero ⇒ yes)

4 initial entry mode: one of
bit 0 set ⇒ line
bit 1 set ⇒ closed line
bit 2 set ⇒ curve
bit 3 set ⇒ closed curve
bit 4 set ⇒ rectangle
bit 5 set ⇒ ellipse
bit 6 set ⇒ text line
bit 7 set ⇒ select

4 undo buffer size, in bytes

Objects

4-474

When Draw reads a draw file, only the first options object is taken into account – any
others are discarded. When it saves a diagram to file, the options in force for that
diagram are saved with it.

The Draw application supplied with RISC OS 2 does not use this object type.

Transformed text object

Object type number 12

Size Description
24 transformation matrix

4 font flags:
bit 0 set ⇒ text should be kerned
bit 1 set ⇒ text written from right to left
bits 2 - 31 reserved (must be zero)

4 text colour

4 text background colour hint

4 text style

4 unsigned nominal x size of the font (in 1/640 point)

4 unsigned nominal y size of the font (in 1/640 point)

8 x, y coordinates of the start of the text base line

n n characters in the string, null terminated

0 - 3 up to 3 zero characters, to pad to a word boundary

The transformation matrix is as described in Font_Paint (see page 3-437), in the same
format used elsewhere in the Draw module.

The remaining fields are exactly as specified for Text objects (see page 4-466).

The Draw application supplied with RISC OS 2 does not use this object type.

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-475

Transformed sprite object

Object type number 13

Size Description
24 Transformation matrix

This is followed by a sprite. See the section entitled Format of a sprite on page 1-777 for
details.

This contains a pixelmap image. The image is transformed from its own coordinates (ie
the bottom-left at (0, 0) and the top-right at (w × x_eig, h × y_eig), where (w, h) are the
width and height of the sprite in pixels, and (x_eig, y_eig) are the eigen factors for the
mode in which it was defined) by the transformation held in the matrix.

If the sprite has a palette then this gives absolute values for the various possible pixels.
If the sprite has no palette then colours are defined locally. Within RISC OS the
available ‘Wimp colours’ are used – for further details see the chapter entitled Sprites on
page 1-773 and the chapter entitled The Window Manager on page 3-3.

The Draw application supplied with RISC OS 2 does not use this object type.

Font files

4-476

Font files
In all the formats described below, 2-byte quantities are little-endian: that is, the least
significant byte comes first, followed by the most-significant. The values are unsigned
unless otherwise stated.

Fonts are described in:

● IntMetrics and IntMetn files

● x90y45 files (old style 4-bpp bitmaps)

● New font file formats.

IntMetrics / IntMetn files

Header

Size Description
40 name of font, padded with Return characters

4 16

4 16

1 nlo = low byte of number of characters that may be defined

1 version number of file format:
0 flags and nhi must be zero
1 not supported
2 flags supported; n can be > 255

1 flags:
bit 0 set ⇒ there is no bbox data (use Outlines)
bit 1 set ⇒ there is no x-offset data
bit 2 set ⇒ there is no y-offset data
bit 3 set ⇒ there is more data after the metrics
bit 4 reserved (must be zero)
bit 5 set ⇒ character map size precedes map
bit 6 set ⇒ kern characters are 16-bit, else 8-bit
bit 7 reserved (must be zero)

1 nhi = high byte of number of characters that may be defined:
n = nhi × 256 + nlo

If flags bit 5 is set:

2 m = character map size
0 ⇒ no map

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-477

Some of the n character definitions can be blank; the number defines the number of slots
available – though not necessarily used – in the character definition tables.

Character mapping

Size Description
m character mapping (ie indices into following tables)

For example, if the 40th byte in this mapping has the
value 4, then the fourth entry in each of the following
arrays refers to character 40. A zero entry means that
character is not defined in this font.

If flags bit 5 is clear, 256 characters are mapped (ie
m = 256).

If there is no map (see above), the character code is used to index into the tables.

Note that since the mapping table is 8-bit, there cannot be one if n > 256.

Table of bounding boxes

If flags bit 0 is clear:

Size Description
2n x0  bounding box for each character (16-bit signed)

2n y0  bottom-left (x0, y0) is inclusive

2n x1  top-right (x1, y1) is exclusive

2n y1  coordinates are in 1/1000th em

Coordinates are relative to the ‘origin point’.

Tables of character widths

If flags bit 1 is clear:

Size Description
2n x-offset after printing each character, in 1/1000th em

(16-bit signed)

If flags bit 2 is clear:

Size Description
2n y-offset after printing each character, in 1/1000th em

(16-bit signed)

IntMetrics / IntMetn files

4-478

To calculate the offset to this point in the file, let:

nlo = byte at offset 48 in file
version number = byte at offset 49 in file
flags = byte at offset 50 in file
nhi = byte at offset 51 in file
If version number < 2 then flags = 0 (which it should be anyway!)
n = nhi × 256 + nlo

Then:

offset = 52
if (flags bit 5 clear) then offset += 256
else offset += 2 + byte(52) + 256 × byte(53)
if (flags bit 0 clear) then offset += 8n
if (flags bit 1 clear) then offset += 2n
if (flags bit 2 clear) then offset += 2n

Offsets to extra data areas

If flags bit 3 is set:

Size Description
2 offset to ‘miscellaneous’ data area

2 offset to kern pair data area

2 offset to reserved data area #1

2 offset to reserved data area #2

The offsets are relative to the start of the table. The entries must be consecutive in the
file, so the end of one area coincides with the beginning of the next. The areas are not
necessarily word-aligned, and the space at the end of each area is reserved (ie there must
not be any ‘dead’ space at the end of an area).

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-479

Miscellaneous data area

Size Description
2 x0  maximum bounding box for font (16-bit signed)

2 y0  bottom-left (x0, y0) is inclusive

2 x1  top-right (x1, y1) is exclusive

2 y1  all coordinates are in 1/1000ths em

2 default x-offset per char (if flags bit 1 is set), in 1/1000th em
(16-bit signed)

2 default y-offset per char (if flags bit 2 is set), in 1/1000th em
(16-bit signed)

2 italic h-offset per em (–1000 × TAN (italic angle)) (16-bit signed)

1 underline position, in 1/256th em (signed)

1 underline thickness, in 1/256th em (unsigned)

2 CapHeight in 1/1000th em (16-bit signed)

2 XHeight in 1/1000th em (16-bit signed)

2 Descender in 1/1000th em (16-bit signed)

2 Ascender in 1/1000th em (16-bit signed)

4 reserved (must be zero)

Kern pair data

If flags bit 6 is clear, character codes are 8-bit; if flags bit 6 is set, character codes are
16-bit (lo, hi).

Size Description
1 or 2 left-hand character code 
1 or 2 right-hand character code  
2 x-kern amount (if flags bit 1 is clear)  

in 1/1000ths em (16-bit signed)  repeat  repeat

2 y-kern amount (if flags bit 2 is clear)  
in 1/1000ths em (16-bit signed)  

1 or 2 0 ⇒ end of list for this letter 
1 or 2 0 ⇒ end of kern pair data

Reserved data areas #1 and #2

These must be null.

x90y45 font files

4-480

x90y45 font files
If the length of a x90y45 file is less than 256 bytes, then the contents are the name of the
f9999x9999 file to use as master bit maps.

Index entries

Each font file starts with a series of 4-word (ie 16 byte) index entries, corresponding to
the sizes defined:

Size Description
1 point size, not multiplied by 16

1 bits per pixel (4)

1 pixels per inch in the x-direction

1 pixels per inch in the y-direction

4 reserved (must be zero)

4 offset of pixel data in file

4 size of pixel data

The list is terminated by:

1 0

Pixel data

Pixel data is limited to 64KBytes per block. Each block starts word-aligned relative to
the start of the file:

Size Description
4 x-size, in 1/16ths point × x pixels per inch

4 y-size, in 1/16ths point × y pixels per inch

4 pixels per inch in the x-direction

4 pixels per inch in the y-direction

1 x0  maximum bounding box for font

1 y0  bottom-left (x0, y0) is inclusive

1 x1  top-right (x1, y1) is exclusive

1 y1  all coordinates are in pixels

512 2-byte offsets from table start of character data.
A zero value means the character is not defined.

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-481

Character data

Size Description
1 x0  bounding box for character

1 y0  bottom-left (x0, y0) is inclusive

1 x1 – x0 = X  top-right (x1, y1) is exclusive

1 y1 – y0 = Y  all coordinates are in pixels

X × Y / 2 4-bits per pixel (bpp), consecutive rows bottom to top: not
aligned until the end

0 - 3.5 alignment

Other font file formats
The new font file formats includes definitions for the following types of font files:

● f9999x9999 (new style 4-bpp anti-aliased fonts)

● b9999x9999 (1-bpp bitmaps)

● Outlines (outline font format, for all sizes)

‘9999’ = pixel size (ie point size × 16 × dpi / 72) zero-suppressed decimal number.

If the length of an outlines file is less than 256 bytes, then the contents are the name of
another font whose glyphs are to be used instead (with this font’s metrics).

Other font file formats

4-482

File header

The file header is of the following form:

Size Description
4 ‘FONT’ – identification word

1 bpp (bits per pixel):
0 ⇒ outlines
1 ⇒ 1 bpp
4 ⇒ 4 bpp

1 version number of file format (changes are cumulative):
4 no ‘don’t draw skeleton lines unless smaller

than this’ byte present
5 byte at [table+512] = maximum pixel size for

skeleton lines (see below)
6 byte at [chunk + indexsize] = dependency mask

(see below)
7 flag word precedes index in chunk (offsets are

relative to index, not chunk)
8 file offset array is in a different place

2 If bpp = 0: design size of font

If bpp > 0: flags:
bit 0 set ⇒ horizontal subpixel placement
bit 1 set ⇒ vertical subpixel placement
bits 2-5 reserved (must be zero)
bit 6 set ⇒ flag word precedes index in chunk (must be

set if version number ≥ 7, else clear).
bit 7 reserved (must be zero)

Outline files derive the value of bit 6 from
version number.

2 x0  maximum bounding box for font (16-bit signed)

2 y0  bottom-left (x0, y0) is inclusive

2 x1 – x0  top-right (x1, y1) is exclusive

2 y1 – y0  all coordinates are in pixels or design units

If version number < 8, the number of chunks nchunks = 8, and these bytes end the
header:

Size Description
4 file offset of 0…31 chunk (word-aligned)

4 file offset of 32…63 chunk (word-aligned)

20 file offsets of further chunks, in order (word-aligned)

4 file offset of 224…255 chunk (word-aligned)

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-483

4 file offset of end (ie size of file)

If offset(n+1)=offset(n), then chunk n is null.

If version number ≥ 8, these bytes end the header:

Size Description
4 file offset of area containing file offsets of chunks

4 nchunks = number of defined chunks

4 ns = number of scaffold index entries (including entry[0] = size)

4 scaffold flags:
bit 0 set ⇒ all scaffold base chars are 16-bit
bit 1 set ⇒ these outlines should not be anti-aliased (eg

System.Fixed)
bits 2 - 31 reserved (must be zero)

4 × 5 all reserved (must be zero)

Table start

Size Description
2 n = size of table/scaffold data

Table data

Bitmaps

If bpp > 0, the file defines a bitmap, and only the following 8 bytes of table data are
used. For such a file, n=10 – other values are reserved.

Size Description
2 x-size (1/16th point)

2 x-resolution (dpi)

2 y-size (1/16th point)

2 y-resolution (dpi)

Other font file formats

4-484

Outlines

If bpp = 0, the file defines outlines, and the following table data is used. (Files with
version number < 8 behave as if ns = 256 and scaffold flags = 0.)

Size Description
ns × 2 – 2 offsets to scaffold data (16-bit):

If scaffold flags bit 0 is clear:
bits 0 - 14 = offset of scaffold data from table start
bit 15 set ⇒ base character code is 2 bytes, else 1 byte

If scaffold flags bit 0 is set:
bits 0 - 15 = offset of scaffold data from table start

base character code is always 2 bytes

0 ⇒ no scaffold data for char

1 skeleton threshold pixel size (if version number ≥ 5)

When rastering the outlines, skeleton lines will only be
drawn if either the x- or the y- pixel size is less than this
value (except if value = 0, which means ‘always draw
skeleton lines’).

? … sets of scaffold data follow, each set of which can include
many scaffold lines (see descriptions below)

Scaffold data

Size Description
1 character code of ‘base’ scaffold entry (0 ⇒ none)

1 bit n set ⇒ x-scaffold line n is defined in base character

1 bit n set ⇒ y-scaffold line n is defined in base character

1 bit n set ⇒ x-scaffold line n is defined locally

1 bit n set ⇒ y-scaffold line n is defined locally

… local scaffold lines follow (see description below)

Scaffold lines

Size Description
2 bits 0 - 11 = coordinate in 1/1000ths em (signed)

bits 12 - 14 = scaffold link index (0 ⇒ none)
bit 15 set ⇒ ‘linear’ scaffold line

1 width (254 ⇒ L-tangent, 255 ⇒ R-tangent)

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-485

Table end

Size Description
? description of contents of file:

Font name, 0, ‘Outlines’, 0,
‘999x999 point at 999x999 dpi’, 0

… word-aligned chunk data follows (see description below)

If version number ≥ 8:

Size Description
4 file offset of chunk 0 (word-aligned)

4 file offset of chunk 1 (word-aligned)

4 × (nchunks–3) file offset of further chunks in order (word-aligned)

4 file offset of chunk (nchunks – 1) (word-aligned)

4 file offset of end (ie size of file)

Chunk data

If version number ≥ 7:

Size Description
4 flag word:

bit 0 set ⇒ horizontal subpixel placement
bit 1 set ⇒ vertical subpixel placement
bits 2 - 6 reserved (must be zero)
bit 7 set ⇒ dependency byte(s) present (see below)
bits 8 - 30 reserved (must be zero)
bit 31 reserved (must be one)

Other font file formats

4-486

For all versions there follow nchunks of chunk data in this format:

Size Description
32 offset within chunk to character data

0 ⇒ character is not defined

Size is × 4 if vertical placement is used, and × 4 if horizontal
placement is used (because the character data is repeated for each
of four possible sub-placements). Character index is more tightly
bound than vertical placement, which is more tightly bound than
horizontal placement.

? dependency bytes (if outline file, and version number ≥ 6)
One bit required for each chunk in file.
Bit n set ⇒ chunk n must be loaded in order to rasterise
this chunk. This is required for composite characters
which include characters from other chunks (see below).

…character data follows, word-aligned at end of chunk (see
description below)

Note: All character definitions must follow the index in the order in which they are
specified in the index. This is to allow the font editor to easily determine the size of each
character.

Character data

Size Description
1 character flags:

bit 0 set ⇒ coordinates are 12-bit, else 8-bit
bit 1 set ⇒ data is 1-bpp, else 4-bpp
bit 2 set ⇒ initial pixel is black, else white
bit 3 set ⇒ data is outline, else bitmap

If character flags bit 3 is clear:
bits 4 - 7 = ‘f’ value for char (0 ⇒ not encoded)

If character flags bit 3 is set:
bit 4 set ⇒ composite character
bit 5 set ⇒ with an accent as well
bit 6 set ⇒ character codes within this character are

16-bit, else 8-bit (not yet implemented – must
be zero)

bit 7 reserved (must be zero)

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-487

if character flags bits 3 and 4 are set:

Size Description
1 or 2 character code of base character

if character flags bits 3 and 5 are set:

Size Description
1 or 2 character code of accent

2 or 3 x, y offset of accent character

if character flags bits 3 or 4 are clear:

Size Description
1 or 1.5 x0  bounding box for character (8- or 12-bit signed)

1 or 1.5 y0  bottom-left (x0, y0) is inclusive

1 or 1.5 x1 – x0  top-right (x1, y1) is exclusive

1 or 1.5 y1 – y0 all coordinates are in pixels or design units

? data: (depends on type of file)

1-bpp uncrunched: rows from bottom to top
4-bpp uncrunched: rows from bottom to top
1-bpp crunched: list of (packed) run-lengths
outlines: list of move/line/curve segments

Word-aligned at the end of the character data.

Outline character format

Here the ‘pixel bounding box’ is actually the bounding box of the outline in terms of the
design size of the font (in the file header). The data following the bounding box consists
of a series of move/line/curve segments followed by a terminator and an optional extra
set of line segments followed by another terminator. When constructing the bitmap from
the outlines, the font manager will fill the first set of line segments to half-way through
the boundary using an even-odd fill, and will thin-stroke the second set of line segments
(if present). For further details see the chapter entitled Draw module on page 3-533.

Other font file formats

4-488

Each line segment consists of:

Size Description
1 bits 0 - 1 = segment type:

0 terminator (see description below)
1 move to x, y
2 line to x, y
3 curve to x1, y1, x2, y2, x3, y3

bits 2 - 4 = x-scaffold link
bits 5 - 7 = y-scaffold link

? coordinates in design units

Terminator:

Size Description
1 bit 2 set ⇒ stroke paths follow (same format, but paths are not

closed)
bit 3 set ⇒ composite character inclusions follow:

Composite character inclusions:
1 or 2 character code of character to include (0 ⇒ finished)

2/3 x, y offset of this inclusion (design units)

The coordinates are either 8- or 12-bit sign-extended, depending on bit 0 of the
character flags (see above), including the composite character inclusions.

The scaffold links associated with each line segment relate to the last point specified in
the definition of that move/line/curve, and the control points of a Bezier curve have the
same links as their nearest endpoint.

Note that if a character includes another, the appropriate bit in the parent character’s
chunk dependency flags must be set. This byte tells the Font Manager which extra
chunk(s) must be loaded in order to rasterise the parent character’s chunk.

1-bpp uncompacted format

1 bit per pixel, bit set ⇒ paint in foreground colour, in rows from bottom-left to
top-right, not aligned until word-aligned at the end of the character.

1-bpp compacted format

The whole character is initially treated as a stream of bits, as for the uncompacted form.
The bit stream is then scanned row by row: consecutive duplicate rows are replaced by a
‘repeat count’, and alternate runs of black and white pixels are noted. The repeat counts
and run counts are then themselves encoded in a set of 4-bit entries.

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-489

Bit 2 of the character flags determines whether the initial pixel is black or white (black
= foreground), and bits 4 - 7 are the value of ‘f’ (see below). The character is then
represented as a series of packed numbers, which represent the length of the next run of
pixels. These runs can span more than one row, and after each run the pixel colour is
changed over. Special values are used to denote row repeats.

File Meaning
n nibbles, value 0 run length =

next_n+1_nibbles + (13–f) × 16 + f+1 – 16

1 nibble, value 1…f run length = this_nibble

1 nibble, value f+1…13 run length =
next_nibble + (this_nibble–f–1) × 16 + f+1

1 nibble, value 14 row repeat count = next_packed_number

1 nibble, value 15 row repeat count = 1

where:

● this_nibble is the actual value (1…f, or f+1…13) of the nibble

● next_nibble is the actual value (0…15) of the nibble following this_nibble

● next_n+1_nibbles is the actual value (0…24(n+1) – 1) of the next n+1 nibbles
after the n zero nibbles

● next_packed_number is the value of the packed number following the nibble of
value 14.

The optimal value of f lies between 1 and 12, and must be computed individually for
each character, by scanning the data and calculating the length of the output for each
possible value. The value yielding the shortest result is then used, unless that is larger
than the bitmap itself, in which case the bitmap is used.

Repeat counts operate on the current row, as understood by the unpacking algorithm, ie
at the end of the row the repeat count is used to duplicate the row as many times as
necessary. This effectively means that the repeat count applies to the row containing the
first pixel of the next run to start up.

Note that rows consisting of entirely white or entirely black pixels cannot always be
represented by using repeat counts, since the run may span more than one row, so a long
run count is used instead.

Encoding files
An encoding file is a text file which contains a set of identifiers which indicate which
characters appear in which positions in a font. Each identifier is preceded by a ‘/’, and
the characters are numbered from 0, increasing by 1 with each identifier found.

Comments are introduced by ‘%’, and continue until the next control character.

Encoding files

4-490

The following special comment lines are understood by the font manager:

%%RISCOS_BasedOn base_encoding
%%RISCOS_Alphabet alphabet

where base_encoding and alphabet denote positive decimal integers.

Both lines are optional, and they indicate respectively the number of the base encoding
and the alphabet number of this encoding.

If the %%RISCOS_BasedOn line is not present, then the Font Manager assumes that the
target encoding describes the actual positions of the glyphs in an existing file, the data
for which is in:

font_directory.IntMetricsalphabet
font_directory.Outlinesalphabet

where alphabet is null if the %%RISCOS_Alphabet line is omitted.

(In fact the leafnames are shortened to fit in 10 characters, by removing characters from
just before the alphabet suffix).

In this case the IntMetrics and Outlines files are used directly, since there is a one-to-one
correspondence between the positions of the characters in the datafiles and the positions
required in the font.

If the %%RISCOS_BasedOn line is present, then the Font Manager accesses the
following datafiles:

font_directory.IntMetricsbase_encoding
font_directory.Outlinesbase_encoding

and assumes that the positions of the glyphs in the datafiles are as given by the contents
of the base encoding file.

The base encoding is called ‘/Basen’, and lives in the Encodings directory under
Font$Path, along with all the other encodings. Because it is preceded by a ‘/’, the Font
Manager does not return it in the list of encodings returned by Font_ListFonts.

Note that only one encoding file with a given name can apply to all the fonts known to
the system. Because of this, a given encoding can only be either a direct encoding, where
the alphabet number is used to reference the datafiles, or an indirect encoding, where the
base encoding number specifies the datafile names.

Here is the start of a sample base encoding (‘/Base0’):

% /Base0 encoding

%%RISCOS_Alphabet 0

/.notdef /.NotDef /.NotDef /.NotDef
/zero /one /two /three /four /five /six /seven /eight

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-491

Here is the start of a sample encoding file (‘Latin1’):

% Latin 1 encoding

%%RISCOS_BasedOn 0
%%RISCOS_Alphabet 101

/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/space /exclam /quotedbl /numbersign
/dollar /percent /ampersand /quotesingle

(Note that the sample /Base0 file is not the same as the released one).

These illustrate several points:

● The %% lines must appear before the first identifier.

● Character 0 in any encoding must be called ‘.notdef’, and represent a null character.

● Other null characters in the base encoding must be called ‘.NotDef’, to distinguish
them from character 0.

● Non-base encoding files wanting to refer to the null character should use ‘.notdef’
in all cases.

● The other character names should follow the Adobe PostScript names wherever
possible. (See PostScript Language Reference Manual. Adobe Systems
Incorporated (1990) 2nd ed. Addison-Wesley, Reading, Mass, USA.) This is to
enable the encoding to refer to Adobe character names when included as part of a
print job by the PostScript printer driver.

● The number of characters described by the base encoding can be anything from 0 to
768, and should refer to distinct characters (apart from the ‘.NotDef’s). Other
encodings, however, must contain exactly 256 characters, which need not be
distinct.

Font Messages files
The format of font Messages files is the same as that of ordinary message files, as
documented in the chapter entitled MessageTrans on page 3-745, with those exceptions
detailed below.

The valid tokens are:

Encoding_ encoding (based on a base encoding)
BEncoding_ base encoding (eg Base0)
Font_ font which doesn’t vary with alphabet (eg Symbol font)
LFont_ font which does vary with alphabet (a ‘language’ font)

Font Messages files

4-492

The tokens are of the form ‘Font_’ followed by the identifier of the font in the font
directory, and their values are the names of those fonts. If the value is null, then the font
name is taken to be the same as the identifier.

The values of the encoding tokens should normally be null, but you must define them
for all encodings within the directory holding the Messages file if you want to use a font
that references them. Also, you must not prefix the base encoding id with ‘/’ even
though its filename is ‘/Basen’. This is because the ‘/’ in the filename is only used by
Font_ListFonts when it is scanning a font directory to determine base encodings from
encodings.

Identifiers should use characters in the range &20 - &7E, to aid in international
portability. However, the font names should use the alphabet of the relevant territory, as
determined by the country number on the end of the message file name.

Within a font name, the following characters are special:

. The first dot encountered causes the font to be split over two menu levels.
Subsequent dots do not cause further submenu splitting.

* An asterisk as the last character of a font name is not treated as part of the
name, but marks this font as being the default for that family. Clicking on the
menu entry for the font family will select the default weight and/or style for the
family, even though the font weights and styles are in a subdirectory. This is
normally fontfamily.Medium, but there are other examples (eg Selwyn).

Note that if a font name is given as ‘*’ alone, then the name is the same as the identifier
and it is also made the default for that family.

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-493

For example, a ‘Messages1’ file for the ROM fonts might be:

BEncoding_Base0:
Encoding_Latin1:
Encoding_Latin2:
Encoding_Latin3:
Encoding_Latin4:
LFont_Corpus.Bold:
LFont_Corpus.Bold.Oblique:
LFont_Corpus.Medium:*
LFont_Corpus.Medium.Oblique:
LFont_Homerton.Bold:Helvetica bold
LFont_Homerton.Bold.Oblique:Helvetica bold oblique
LFont_Homerton.Medium:Helvetica*
LFont_Homerton.Medium.Oblique:Helvetica oblique
LFont_Trinity.Bold:
LFont_Trinity.Bold.Italic:
LFont_Trinity.Medium:*
LFont_Trinity.Medium.Italic:

This aliases the Homerton font family so that users see it named ‘Helvetica’, and sets the
default font in each family to the one of ‘Medium’ weight.

Music files

4-494

Music files

Header

Size Description
8 ‘Maestro’ followed by linefeed (&0A)

1 2 (type 2 music file)

This is followed by zero or more of the following blocks in any order. It is terminated by
the end of the file. Note that types 7 to 9 are not implemented in Maestro, but are
described for any extensions or other music programs that may be written.

Music data

Size Description
1 1 indicates Music data follows

5 n = number of bytes in the ‘Gates’ array (stored as a BASIC
integer – ie &40 followed by four bytes of data, most significant
first).

5 × 8 q1…q8 = number of bytes in queue of notes and rests for each of
the 8 channels 1…8 (stored as BASIC integers – ie &40 followed
by four bytes of data, most significant first).

n gate data (see Gates on page 4-496)

For c = 1 to 8 (ie for each channel in turn)
Σq1…q8 data for all notes or rests in channel c (see Notes and

rests on page 4-498)
Next c

Stave data

Size Description
1 2 indicates Stave data follows

1 number of music staves – 1 (0 - 3)

1 number of percussion staves (0 - 1)

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-495

Which channels are used by which staves depends on the number of music staves and
the number of percussion staves as follows:

Music Percussion
staves staves Stave 1 Stave 2 Stave 3 Stave 4 Percussion
1 0 1 - 8

1 1 1 - 7 8

2 0 1 - 4 5 - 8

2 1 1 - 4 5 - 7 8

3 0 1 2 - 5 6 - 8

3 1 1 2 - 5 6, 7 8

4 0 1, 2 3, 4 5, 6 7, 8

4 1 1, 2 3, 4 5, 6 7 8

Instrument data

Instrument names are not recorded; only channel numbers.

Size Description
1 3 indicates Instrument data follows

This is followed by 8 blocks of 2 bytes each:

Size Description
1 channel number (always consecutive 1 - 8)
1 voice number: 0 ⇒ no voice attached

Volume data

Size Description
1 4 indicates Volume data follows

1 × 8 volume on each channel (0 - 7 = ppp - fff); one byte for each
channel

Stereo position data
Size Description
1 5 indicates Stereo data follows

1 × 8 stereo position of channel (0 - 6 = full left - full right); one byte
for each channel

Gates

4-496

Tempo data
Size Description
1 6 indicates Tempo data follows

1 0 - 14, which corresponds to one of: 40, 50, 60, 65, 70, 80, 90,
100, 115, 130, 145, 160, 175, 190, or 210beats per minute

To convert to values to program into SWI Sound_QTempo, use the formula:

Sound_QTempo value = beats per minute × 128 × 4096 / 6000

Title string
Size Description
1 7 indicates title string follows

n null terminated string of n characters total length

Instrument names
Size Description
1 8 indicates Instrument names follow

Σn1…n8 8 null terminated strings for each voice number used in
ascending order in command 3 above.

MIDI channels
Size Description
1 9 indicates MIDI channel numbers follow

1 × 8 MIDI channel number on this stave (0 ⇒ not transmitted over
MIDI, else 1 - 16); one byte for each channel

Gates
A Gate is a point in the music where something is interpreted: eg a note, time signature,
key signature, bar line or clef can each occupy a gate. The gate data is one byte for a note
or rest, or 2 bytes for an attribute such as a time signature, key signature, bar line, clef,
etc.

Note or rest

A note or rest is represented by a single non-zero byte.

Bit(s) Description
0 - 7 Gate mask: bit n set ⇒ gate 1 note or rest from queue n.

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-497

Attribute

An attribute is represented by a null byte (so that it can be distinguished from a note or
rest), followed by a byte describing the attribute.

Byte Description
0 0

1 one of the following forms:

Time signature

Bit(s) Description
0 1
1 - 4 number of beats per bar – 1 (0 - 15)
5 - 7 beat type (0 = breve, to 7 = hemidemisemiquaver)

Key signature

Bit(s) Description
0 - 1 10 binary (ie bit 1 set)
2 type of accidental (0 = sharp, 1 = flat)
3 - 5 number of accidentals in key signature (0 - 7)
6 - 7 reserved (must be zero)

Clef

Bit(s) Description
0 - 2 100 binary (ie bit 2 set)
3 - 4 0 = treble, 1 = alto, 2 = tenor, 3 = bass
5 reserved (must be zero)
6 - 7 stave – 1 (0 - 3)

Slur

Bit(s) Description
0 - 3 1000 binary (ie bit 3 set)
4 1 = on, 0 = off
5 reserved (must be zero)
6 - 7 stave – 1 (0 - 3)

Octave shift

Bit(s) Description
0 - 4 10000 binary (ie bit 4 set)
5 0 = up, 1 = down
6 - 7 stave – 1 (0 - 3)

Notes and rests

4-498

Bar

Bit(s) Description
0 - 5 100000 binary (ie bit 5 set)
6 - 7 reserved (must be zero)

Reserved for future expansion

Bit(s) Description
0 - 6 1000000 binary (ie bit 6 set)
0 - 7 10000000 binary (ie bit 7 set)

Notes and rests
Notes and rests are each stored in a 2 byte block that has some common elements.

Notes

Bit(s) Description
0 stem orientation (0 = up, 1 = down)

1 1 ⇒ join beams (barbs) to next note

2 1 ⇒ tie with next note

3 - 7 stave line position (1 - 31, 16 = centre line)

8 - 10 accidental:
0 = no accidental
1 = natural
2 = sharp
3 = flat
4 = double-sharp
5 = double-flat
6 = natural sharp
7 = natural flat

11 - 12 number of dots (0 - 3)

13 - 15 type (0 = breve, to 7 = hemidemisemiquaver)

Rests
Bits Description
0 - 10 reserved (set to zero)

11 - 12 number of dots (0 - 3)

13 - 15 type (0 = breve, to 7 = hemidemisemiquaver)

If a rest coincides with a note, its position is determined by the following note on the
same channel.

A
p

p
en

d
ixes an

d
 tab

les

Appendix E: File formats

4-499

Squash files
Squash files are generated by the !Squash application, which in turn uses the Squash
module, as documented in the chapter entitled Squash on page 4-103.

Squash files consist of a small fixed size header put in by !Squash, followed by
compressed data produced by the Squash module. The header has the following format:

typedef struct
{

char id[4]; /* Should be “SQSH” */
unsigned int length;
unsigned int load;
unsigned int exec;
int reserved; /* Should be zero */

} squash_header;

The length, load and exec are the file length, load address and execution address of the
original file before it was compressed (although the load and exec typically hold the
filetype and date/time stamp). If the id is not SQSH, then the rest of the file is not in the
same format.

4-500

A
p

p
en

d
ixes an

d
 tab

les

4-501

4

91 Appendix F: System variables

This appendix details standard variables used in RISC OS, and gives important
guidelines on the names you should use for any system variables you create for your
applications to use.

Application variables
The following section gives standard names used for variables that are bound to a
particular application. An application should not need to set all these variables, but
where one of the variables below matches your needs, you should use it and follow the
given guidelines. Where you need a system variable and can’t find a relevant one below,
you should use your own, naming it App$…

In the descriptions below you should replace App with your application’s name. You
must first register this name with Acorn, to avoid any possibility of your system
variables clashing with those used by other programmers’ applications; see Appendix H:
Registering names on page 4-551.

App$Dir

An App$Dir variable gives the full pathname of the directory that holds the application
App. This is typically set in the application’s !Run file by the line:

Set App$Dir <Obey$Dir>

App$Path and App$Path_Message

An App$Path variable gives the full pathname of the directory that holds the application
App. An App$Path variable differs from an App$Dir variable in two important respects:

● The pathname includes a trailing ‘.’

● The variable may hold a set of pathnames, separated by commas.

An App$Path_Message variable gives an alternative error message to be used if the path
App: cannot be found. This message is then used instead of the default one provided by
RISC OS.

It’s common to use an App$Dir variable rather than an App$Path variable, but there may
be times when you need the latter.

Application variables

4-502

An App$Path variable might, for example, be set in the application’s !Run file by the
line:

Set App$Path <Obey$Dir>.,%.App.

if the application held further resources in the subdirectory App of the library.

App$Options

An App$Options variable holds the start-up options of the application App:

● An option that can be either on or off should consist of a single character, followed
by the character ‘+’ or ‘-’ (eg M+ or S-).

● Other options should consist of a single character, followed by a number (eg P4 or
F54).

● Options should be separated by spaces; so a complete string might be
F54 M+ P4 S-.

This variable is typically used to save the state of an application to a desktop boot file,
upon receipt of a desktop save message. A typical line output to the boot file might be:

Set App$Options F54 M+ P4 S-

You should only save those options that differ from the default, and hence not output a
line at all if the application is in its default state. You should however be prepared to read
options that set the default values, in case users explicitly add such options.

App$PrintFile

An App$PrintFile variable holds the name of the file or system device to which the
application App prints. Typically this will be printer:, and would be set in your
application’s !Run file as follows:

Set App$PrintFile printer:

App$Resources

An App$Resources variable gives the full pathname of the directory that holds the
application App’s resources. This might be set in the application’s !Run file by the line:

Set App$Resources App:Resources

Note the use of App: to make use of App$Path.

A
p

p
en

d
ixes an

d
 tab

les

Appendix F: System variables

4-503

App$Running

An App$Running variable shows that the application App is running. It should have the
value ‘Yes’ if the application is running. This might be used in the application’s !Run file
as follows:

If "App$Running" <> "" then Error App is already running
Set App$Running Yes

When the application stops running, you should use *Unset to delete the variable.

Changing and adding commands

Alias$Command

An Alias$Command variable is used to define a new command named Command. For
example:

Set Alias$Mode echo |<22>|<%0>

By using the name of an existing command, you can change how it works.

FileSwitch variables

FileSwitch$…

FileSwitch$CurrentFilingSystem contains the name of the current filing system, and
FileSwitch$TemporaryFilingSystem contains the name of the temporary filing system.
FileSwitch$SpecialField contains the last special field to have been evaluated as a path
was processed. See also the section entitled Using FileSwitch$SpecialField with path
variables on page 2-20.

FileSwitch$ FilingSystem$…

Most filing systems provide system variables used to store their currently selected
directory, previously selected directory, library directory, and user root directory. For a
filing system fs, these are respectively FileSwitchfsCSD, FileSwitchfsPSD,
FileSwitchfsLib and FileSwitchfsURD.

Using file types

4-504

Using file types

File$Type_XXX

A File$Type_XXX variable holds the textual name for a file having the hexadecimal file
type XXX. It is typically set in the !Boot file of an application that provides and edits that
file type. For example:

Set File$Type_XXX TypeName

The reason the !Boot file is used rather than the !Run file is so that the file type can be
converted to text from the moment its ‘parent’ application is first seen, rather than only
from when it is run.

Alias$@LoadType_XXX, Alias$@PrintType_XXX and
Alias$@RunType_XXX

These variables set the commands used to respectively load, print and run a file of
hexadecimal type XXX. They are typically set in the !Boot file of an application that
provides and edits that file type. For example:

Set Alias$@PrintType_XXX /<Obey$Dir> -Print
Set Alias$@RunType_XXX /<Obey$Dir>

Note that the above lines both have a trailing space (invisible in print!).

The reason the !Boot file is used rather than the !Run file is so that files of the given type
can be loaded, printed and run from the moment their ‘parent’ application is first seen,
rather than only from when it is run.

For more information see the section entitled Load-time and run-time system variables
on page 2-17.

Absent filing systems

FilingSystem$Path_Message

A FilingSystem$Path_Message variable gives an alternative error message to be used if
the FilingSystem cannot be found. This message is then used instead of the default one
provided by RISC OS.

A
p

p
en

d
ixes an

d
 tab

les

Appendix F: System variables

4-505

Setting the command line prompt

CLI$Prompt

The CLI$Prompt variable sets the command line interpreter prompt. By default this is
‘*’. One common way to change this is so that the system time is displayed as a prompt.
For example:

SetMacro CLI$Prompt <Sys$Time> *

This is set as a macro so that the system time is evaluated each time the prompt is
displayed.

Configuring RISC OS commands

Copy$Options, Count$Options and Wipe$Options

These variables set the behaviour of the *Copy, *Count and *Wipe commands. For a full
description, see page 2-154, page 2-157 and page 2-195 respectively.

System path variables

File$Path and Run$Path

These variables control where files are searched for during, respectively, read operations
or execute operations. They are both path variables, which means that – in common with
other path variables – they consist of a comma separated list of full pathnames, each of
which has a trailing ‘.’.

If you wish to add a pathname to one of these variables, you must ensure that you
append it once, and once only. For example, to add the ‘bin’ subdirectory of an
application to Run$Path, you could use the following lines in the application’s !Boot
file:

If "<App$Path>" = "" then Set Run$Path <Run$Path>,<Obey$Dir>.bin.
Set App$Path <Obey$Dir>.

For more information see the section entitled File$Path and Run$Path on page 2-18.

Obey files

4-506

Obey files

Obey$Dir

The Obey$Dir variable is set to the directory from which an Obey file is being run, and
may be used by commands within that Obey file. For examples, see various other
sections of this chapter. For more detailed information, see the section entitled Obey$Dir
on page 4-354.

Time and date

Sys$Time, Sys$Date and Sys$Year

These variables are code variables that are evaluated at the time of their use to give,
respectively, the current system time, date and year.

For an example of the use of Sys$Time, see the section entitled CLI$Prompt on
page 4-505.

Sys$DateFormat

The Sys$DateFormat variable sets the format in which the date is presented by the SWI
OS_ConvertStandardDateAndTime (see page 1-447). For details of the format used by
this variable, see the section entitled Format field names on page 1-412.

Return codes

Sys$ReturnCode, Sys$RCLimit

The Sys$ReturnCode variable contains the last return value given by the SWI OS_Exit,
and the Sys$RCLimit variable sets the maximum return value that will not generate an
error. For more details, see page 1-303.

!System and !Scrap

System$Dir and System$Path

These variables give the full pathname of the System application. They have the same
value, save that System$Path has a trailing ‘.’, whereas System$Dir does not. You must
not change their values.

(There are two versions of this pathname for reasons of backward compatibility.)

A
p

p
en

d
ixes an

d
 tab

les

Appendix F: System variables

4-507

Wimp$Scrap

The Wimp$Scrap variable gives the full pathname of the Wimp scrap file used by the
file transfer protocol. You must not use this variable for any other purpose, nor change
its value.

Wimp$ScrapDir

The Wimp$ScrapDir variable gives the full pathname of a scrap directory within the
Scrap application, which you may use to store temporary files. You must not use this
variable for any other purpose, nor change its value.

The desktop

Desktop$File

The Desktop$File variable shows the desktop boot file that was used to start the desktop.

Wimp$State

The Wimp$State variable shows the current state of the Wimp. If the desktop is running,
it has the value ‘desktop’; otherwise it has the value ‘commands’.

The Task Window

TaskWindow$Server

The TaskWindow$Server variable gives the pathname of the application used to start up
task windows.

Setting default options for devices

DeviceFS$Device$Options

The DeviceFS$Device$Options variable holds default options for a DeviceFS device.
For more details see the chapter entitled DeviceFS on page 2-429.

Setting paths for printing

4-508

Setting paths for printing

PrinterType$n

A PrinterType$n variable contains the path used to print to printer type n. For example:

*Show PrinterType$0
PrinterType$0 : null:

A
p

p
en

d
ixes an

d
 tab

les

4-509

4

92 Appendix G: The Acorn Terminal
Interface Protocol

Introduction
This appendix describes version 1.00 of the Acorn Terminal Interface Protocol (or
Acorn TIP) used to communicate between a terminal emulator and a protocol module.
By using this protocol you can integrate your own terminal emulators and protocol
modules with those provided by the TCP/IP Protocol Suite.

Although this chapter only talks about the Acorn TIP in the context of terminal
emulators and protocol modules, there’s no reason why you shouldn’t use it for other
applications that involve input and output.

Protocol modules
A protocol module converts one of the many different protocols computers use for input
and output to the Acorn TIP. For example in the case of the VT220 application and the
protocol modules supplied as part of the TCP/IP Protocol Suite, we have:

Figure 92.1 Structure of the VT220 module and protocol modules

● Data passing between a terminal emulator and a protocol module uses the
Acorn TIP, and passes over a logical link. These are grey in the drawing above.

Ftp I/O

(Internet)

Ftp
protocol
module

Acorn

TIP

Telnet I/O

(Internet)

Serial I/O

(serial cable)

Serial
protocol
module

Telnet
protocol
module

VT220
terminal
emulator

Writing a protocol module

4-510

● Data passing between a protocol module and a remote machine or process uses
whatever protocol the module is designed to support, and passes over a connection.
These are black in the drawing above.

Using the Acorn TIP

If you decide to write other protocol modules and/or terminal emulators, you should use
the Acorn TIP. Since this provides a standard interface between protocol modules and
terminal emulators, users will be able to use your modules and emulators with the
TCP/IP ones, and with ones that other programmers write too. If your software is
compatible, we think it’s more likely users will buy it.

Writing a protocol module
If you’re writing a protocol module, you must first familiarise yourself with how a
RISC OS relocatable module works. You’ll find full details of this in the chapter entitled
Modules on page 1-201. Your protocol module must conform to the standards laid out in
that chapter.

Service calls

You must support the service calls detailed in this chapter.

SWIs

You must also support various SWIs from the set detailed in this chapter. These must be
at the defined offsets from your module’s SWI base number, which is allocated by
Acorn. To support many of these SWIs you will need to send suitable commands over
the physical connection to the remote host.

● You must support:

Offset SWI name
0 Protocol_OpenLogicalLink
1 Protocol_CloseLogicalLink
2 Protocol_GetProtocolMenu
3 Protocol_OpenConnection
4 Protocol_CloseConnection
7 Protocol_MenuItemSelected
8 Protocol_UnknownEvent
9 Protocol_GetLinkState
10 Protocol_Break

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-511

● If your protocol module supports the sending of data over a connection to a remote
machine (or process) you must also support:

Offset SWI Name
5 Protocol_TransmitData

If you have chosen to support file transfer SWIs you must furthermore support:

Offset SWI Name
11 Protocol_SendFile
12 Protocol_SendFileData
13 Protocol_AbortTansfer

● If your protocol module supports the receipt of data over a connection from a
remote machine (or process) you must also support:

Offset SWI Name
6 Protocol_DataRequest

If you have chosen to support file transfer SWIs you must furthermore support:

Offset SWI Name
13 Protocol_AbortTransfer
14 Protocol_GetFileInfo
15 Protocol_GetFileData
17 Protocol_GetFile

● You may also choose to support:

Offset SWI Name
18 Protocol_DirOp

Data structures

Your protocol module must keep two different types of data structure constantly
updated, as terminal emulators may directly access these any time they need to. These
are:

● A single protocol information block which contains the following information:

Offset Information
0 pointer to protocol name string
4 pointer to protocol version string
8 pointer to protocol copyright string
12 maximum number of connections allowed by module
16 current number of open connections

The three strings are all null-terminated, and have a maximum length of 30
characters. For more details see Protocol_OpenLogicalLink (Offset 0) on
page 4-520.

Writing a terminal emulator

4-512

● A poll word for each logical link that shows the status of that link by the state of
various bit flags:

Bit Meaning when set
0 data is pending
1 file is pending
2 paused operation is to continue

For more details see Protocol_OpenConnection (Offset 3) on page 4-524.

Multiple links and connections

All protocol modules must (if physically possible) support multiple logical links, and
multiple connections.

Writing a terminal emulator
If you’re writing a terminal emulator there are various functions that it’s likely you’ll
want it to support. This section tells you which SWIs you’ll need to use for many such
functions, and outlines how to use them. The later section that details each SWI will give
you the detailed information you need.

Finding available and compatible protocols

To find what protocols are available and compatible with the needs of your emulator,
you must repeatedly issue Service_FindProtocols (page 4-516) until it is not claimed.
Then you must issue Service_FindProtocolsEnd (page 4-518).

Choosing a protocol and opening a link

For your user to choose a protocol, you’ll probably want to give them a menu of the ones
you found to be available. Once they’ve made the choice, you can then issue
Service_ProtocolNameToNumber (page 4-519) to find the base SWI number of their
chosen protocol module. You can then use this base number to call the SWI
Protocol_OpenLogicalLink (page 4-520), since its offset from the base number you just
found is zero.

You can also use the facilities outlined in the section entitled Protocol modules and the
Wimp on page 4-514 to provide menus so that your user can set up the way the protocol
and connection will work.

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-513

Opening a connection

To open a connection, call Protocol_OpenConnection (page 4-524). Sometimes the
protocol module won’t immediately be able to open the connection; you’ll need to use
Protocol_GetLinkState (page 4-535) to find out whether the connection eventually
makes or fails.

Closing a connection and a link

To close a connection, call Protocol_CloseConnection (page 4-527). To close a logical
link, call Protocol_CloseLogicalLink (page 4-522); this also closes any associated
connections.

Examining the poll word

When you open a connection, you set the address of a poll word. The protocol module
sets bits in this word when it needs attention. It’s vital that your emulator regularly
examines this word so that the protocol module gets adequate service. We suggest you
do so each time you get a null event from Wimp_Poll.

Sending data

To send data, call Protocol_TransmitData (page 4-528).

Receiving data

When the protocol module receives data over a connection, it will notify your emulator
by setting a bit in the poll word. To get the data forwarded to your emulator, call
Protocol_DataRequest (page 4-530).

Sending files

To send a file, call Protocol_SendFile (page 4-539) to give details of the file to the
protocol module. When the protocol module shows it is ready for you to send the file (by
using the poll word), send the file in one or more data packets by repeatedly calling
Protocol_SendFileData (page 4-541). Finally, call Protocol_SendFileData (page 4-541)
a last time to mark the end of the file transfer.

You can use this call to send multiple files.

Wherever possible you should make sure that the data packets are small enough that
they can be quickly sent, so your emulator doesn’t hog the computer for long periods.

Writing a terminal emulator

4-514

Receiving files

When the protocol module receives a file over a connection, it will notify your emulator
by setting a bit in the poll word. To get the file forwarded to your emulator, call
Protocol_GetFileInfo (page 4-544) to get details of the file. When the protocol module
shows it is ready to forward the file (again by using the poll word), call
Protocol_GetFileData (page 4-545) until you’ve received all the data packets making up
the file.

Explicitly getting a file

To explicitly get a file, call Protocol_GetFile (page 4-548). You’ll actually receive it just
as we outlined above.

Aborting file operations

To abort any file operation, call Protocol_AbortTransfer (page 4-543).

Directory operations

There are no SWIs specified in the Acorn TIP to send, receive or get entire directories in
one call. Instead we provide a single SWI call – Protocol_DirOp (page 4-549) – with
which you can create a directory, move into a directory, and move one level up a
directory tree. You can combine this SWI with the ones outlined above to move around
a remote file system, creating directories, and sending and getting files at will (subject,
of course, to your having access rights).

Protocol modules and the Wimp

The Acorn TIP provides several calls which help interaction between the Wimp and
protocol menus. These are necessary because the ‘pick and mix’ nature of protocol
modules and terminal emulators means you’ll have to combine menus from each; and
because protocol modules are not foreground tasks, and so don’t receive notice of menu
selections and Wimp events.

To get a protocol’s menu tree, call Protocol_GetProtocolMenu (page 4-523); you can
then combine it with your emulator’s menu tree. If a user clicks on the protocol module’s
part of the menu tree, call Protocol_MenuItemSelected (page 4-532) to pass this on. To
pass on a Wimp event to a protocol module, call Protocol_UnknownEvent (page 4-534);
you should do this for every event your emulator can’t deal with, as the protocol module
may be able to.

Generating a break

Finally, you can generate a Break over the connection by calling Protocol_Break
(page 4-537).

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-515

Documentation of Service Calls and SWIs
The rest of this chapter details in turn each Service Call and SWI used to communicate
between a protocol module and a terminal emulator. It looks at each in three stages:

1 What your terminal emulator should do before calling the Service Call or SWI.

2 What a protocol module should do when it receives the Service Call or SWI.

3 What your terminal emulator should do when the call returns to it.

We’ve followed the same viewpoint throughout as we have above: we assume that
you’re writing a terminal emulator to work with someone else’s protocol module. So we
talk about your terminal emulator, but the protocol module. If, in fact, you’re writing a
protocol module, you should find it easy enough to make the necessary shift of
viewpoint.

Service Calls

4-516

Service Calls
Service_FindProtocols

(Service Call &41580)

Finds all available compatible protocols

On entry

R1 = &41580 (reason code)
R2 = lowest TIP version supported × 100 (first public version was 1.00)
R3 = last TIP version known × 100 (current version is 1.00)
R4 = emulator flags

On exit

R1 = 0 to claim, else registers preserved to pass on
R2 = pointer to protocol name string (null terminated)
R3 = base SWI number of protocol module
R4 = pointer to protocol information block
R5 = protocol flags

Use

Use this service call in your terminal emulator to find all available compatible protocol
modules. (For full details of OS_ServiceCall see page 1-254.) You should:

1 Repeatedly issue this service call until it is not claimed – without polling the Wimp
in the meantime.

2 Issue Service_FindProtocolsEnd (see page 4-518).

The emulator flags have the following meanings:

Bits Value Meaning
0 0 emulator doesn’t support file transfer calls

1 emulator supports file transfer calls

1-2 00 direction of link immaterial
01 one-way link wanted – protocol to emulator
10 one-way link wanted – emulator to protocol
11 two-way link needed

3 0 bits 1-2 are minimum requirement
1 bits 1-2 are exact requirement

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-517

All other bits are reserved and must be zero.

The protocol module checks to see if:

● it uses a version of the Acorn TIP in the range supported by the terminal emulator

● it supports links in the direction required by the terminal emulator.

If one of the above isn’t true, the protocol module must not claim the call – that is, it
must return with registers preserved.

If both the above are true it must claim the call – that is, it must return with the values
shown above in the section entitled On exit. It must then set an internal flag so it doesn’t
claim this call again until it receives a Service_FindProtocolsEnd.

The protocol information block it returns contains the following information:

Offset Information
0 pointer to protocol name string
4 pointer to protocol version string
8 pointer to protocol copyright string
12 maximum number of connections allowed by module
16 current number of open connections

The three strings are all null-terminated, and have a maximum length of 30 characters.
The protocol module must always keep this block updated so terminal emulators can
directly access it.

The protocol flags it returns have the following meanings:

Bits Value Meaning
0 0 can open new link

1 can’t open new link, or not useful (see
below)

1 0 protocol doesn’t support file transfer SWIs
1 protocol supports file transfer SWIs

2 0 protocol doesn’t support Protocol_DirOp
1 protocol supports Protocol_DirOp

If the protocol is mainly for file transfer (such as Ftp) and the terminal emulator doesn’t
support file transfer calls (bit 0 of R3 was clear on entry) the protocol module should set
bit 0 to show it’s ‘not useful’.

All other bits are reserved and must be zero.

Related Service Calls

Service_FindProtocolsEnd (page 4-518),
Service_ProtocolNameToNumber (page 4-519)

Service_FindProtocolsEnd (Service Call &41581)

4-518

Service_FindProtocolsEnd
(Service Call &41581)

Indicates that protocol modules must again respond to Service_FindProtocols

On entry

R1 = &41581 (reason code)

On exit

R1 = 0 to claim, else preserved to pass on

Use

Use this service call in your terminal emulator to indicate the end of your search for
available protocols.

Protocol modules must change their internal flag so they respond again to
Service_FindProtocols calls – from whatever terminal emulator the calls originate. They
must not claim this call.

Related Service Calls

Service_FindProtocols (page 4-516),
Service_ProtocolNameToNumber (page 4-519)

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-519

Service_ProtocolNameToNumber
(Service Call &41582)

Requests the conversion of a protocol name to a base SWI number

On entry

R1 = &41582
R2 = pointer to protocol name (null-terminated)

On exit

R1 = 0 to claim, else registers preserved to pass on
R2 = base SWI number for protocol

Use

Use this service call in your terminal emulator to request the conversion of a protocol
name to a base SWI number.

If a protocol module recognises the protocol name it must claim the call and return the
base SWI number of the protocol. Otherwise it must pass the call on.

Related Service Calls

Service_FindProtocols (page 4-516),
Service_FindProtocolsEnd (page 4-518)

SWI calls

4-520

SWI calls
Protocol_OpenLogicalLink

(Offset 0)

Opens a logical link to a protocol module

On entry

R0 = terminal emulator’s link handle
R1 = pointer to terminal identifier string (null terminated)

On exit

R0 = protocol module’s link handle
R1 = protocol module’s Wimp_Poll mask
R2 = pointer to protocol information block
R3 = protocol information flags

Use

Use this call in your terminal emulator to open a logical link to a protocol module. The
handle you pass on entry will be returned to you by future SWI calls you make to the
protocol module – we suggest you use a pointer to your data structures that are specific
to this link.

You may use the terminal identifier string for such things as setting the ‘type’ of your
terminal emulator on the remote machine.

The protocol module returns its own handle for the link – again this is typically a
pointer to its own data that is specific to the link. The Wimp_Poll mask it returns
specifies those Wimp events that it doesn’t need.

The protocol information block contains the following information:

Offset Information
0 pointer to protocol name string
4 pointer to protocol version string
8 pointer to protocol copyright string
12 maximum number of connections allowed by module
16 current number of open connections

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-521

The three strings are all null-terminated, and have a maximum length of 30 characters.
The protocol module must always keep this block updated so terminal emulators can
directly access it.

The protocol information flags have the following meanings:

Bit Meaning when set
0 protocol needs more information to open a connection
1 protocol supports file transfer SWIs
2 protocol supports Protocol_DirOp

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you should examine bit 0 of the
protocol information flags. If it is clear then you should immediately call
Protocol_OpenConnection; if it is set you will have to wait until the user shows they are
ready to supply the information the protocol module needs (by, for instance, moving the
pointer over the arrow that shows an ‘open connection’ menu item to have a submenu).

Also, you should AND the protocol module’s Wimp_Poll mask with your terminal
emulator’s own one. Use the resultant mask whenever you call Wimp_Poll.

Related SWIs

Protocol_CloseLogicalLink (page 4-522), Protocol_OpenConnection (page 4-524),
Protocol_CloseConnection (page 4-527), Protocol_GetLinkState (page 4-535)

Protocol_CloseLogicalLink (Offset 1)

4-522

Protocol_CloseLogicalLink
(Offset 1)

Closes a logical link to a protocol module

On entry

R0 = protocol module’s link handle

On exit

R0 preserved

Use

Use this call in your terminal emulator to close a logical link to a protocol module.

The protocol module closes any connections that are associated with the logical link.

Related SWIs

Protocol_OpenLogicalLink (page 4-520), Protocol_OpenConnection (page 4-524),
Protocol_CloseConnection (page 4-527), Protocol_GetLinkState (page 4-535)

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-523

Protocol_GetProtocolMenu
(Offset 2)

Gets a protocol’s menu tree

On entry

R0 = protocol module’s link handle

On exit

R0 = terminal emulator’s link handle
R1 = pointer to protocol and link specific Wimp menu block

(as used by Wimp_CreateMenu)

Use

Use this call in your terminal emulator to get a protocol’s menu tree. You must use this
call each time you want to open the protocol’s menu, as it may change depending on the
state of the logical link. For example items may become unavailable and so be greyed
out, or the user may change the contents of a writable entry.

The protocol module returns a pointer to a menu block that is the same as that used by
Wimp_CreateMenu. (See page 3-153 for details of this call.) This menu block must
accurately reflect the current state of the logical link between the terminal emulator and
the protocol module.

Related SWIs

Protocol_MenuItemSelected (page 4-532), Protocol_UnknownEvent (page 4-534)

Protocol_OpenConnection (Offset 3)

4-524

Protocol_OpenConnection
(Offset 3)

Opens a connection from a protocol module

On entry

R0 = protocol module’s link handle
R1 = pointer to poll word for this connection
R3 = pointer to protocol specific string (null-terminated), or 0
R4 = x coordinate of top-left corner of dialogue box
R5 = y coordinate of top-left corner of dialogue box

On exit

R0 = terminal emulator’s link handle
R1 = pointer to connection name (null-terminated)
R2 = pointer to protocol specific information, or 0
R3 = protocol status flags

Use

Use this call in your terminal emulator to open a connection from a protocol module.
At the same time you pass the protocol module the address of a poll word in your
workspace, which your terminal emulator must regularly check to review the state of the
logical link to the protocol module. We suggest you do so each time you get a null event
from Wimp_Poll.

When a bit is set in the poll word, something needs attention. The table below shows the
meaning of each bit, and the initial SWI call you have to make to handle the situation.
See the relevant pages for details of what to do, and of any further calls you may need to
make.

Bit Meaning when set Call needed
0 data is pending Protocol_DataRequest
1 file is pending Protocol_GetFileInfo
2 paused operation is to continue Protocol_GetFileData or

Protocol_SendFileData or
Protocol_DirOp

The poll word must be in RMA space, so the protocol module can update it whether or
not your terminal emulator is the foreground task.

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-525

The values you need to pass in R3, R4 and R5 depend on circumstances:

● If the protocol module needs no further information to open the connection these
values are ignored.

● If the user has shown they are ready to supply the information the protocol module
needs (typically by moving the pointer over the arrow that shows an ‘open
connection’ menu item to have a submenu), you must set R3 to zero, and R4 and R5
to the coordinates where you want the protocol module to open a dialogue box. You
can get these coordinates by making your terminal emulator’s menu issue
Message_MenuWarning when the submenu is to be activated (see
Wimp_CreateMenu on page 3-153 and Wimp_SendMessage on page 3-193).

● If the user has already supplied you with the information that the protocol module
needs (say in a script) you should pass that in R3. The values of R4 and R5 are
ignored.

The protocol module opens the connection after first (if necessary) using a dialogue
box to get any information it needs.

The documentation of a protocol module must state the format of information it expects
to find in R3 (if it needs any). Wherever possible, this format should consist of the same
fields that the protocol module provides in its dialogue box, in the same order, and
comma-separated.

The protocol module returns a connection name suitable for the terminal emulator to use
as a window title (if the connection is open or pending). The protocol specific
information it returns may be used for error messages. The protocol status flags it returns
have the following meanings:

Bits Value Meaning
0-1 00 no connection opened

01 connection pending
10 connection open
11 connection failed

2 0 no data pending
1 data pending

All other bits are reserved and must be zero. The protocol module should select
‘connection failed’ in preference to ‘no connection opened’.

When this call returns to your terminal emulator you must examine the state of these
flags:

● If the connection failed (bits 0 and 1 are set) and no data is pending (bit 2 is clear)
you must attempt to close the connection by calling Protocol_CloseConnection.

Protocol_OpenConnection (Offset 3)

4-526

● If the connection is pending you must wait until bit 0 of the logical link’s poll word
is set. Then you should call Protocol_GetLinkState to find if the connection was
opened, or if it failed.

● Bit 2 (‘data pending’) has exactly the same meaning as bit 0 of a logical link’s poll
word, and is provided to reduce the amount of polling that needs to be done. If it is
set you should initiate the data transfer by calling Protocol_DataRequest.

Related SWIs

Protocol_OpenLogicalLink (page 4-520), Protocol_CloseLogicalLink (page 4-522),
Protocol_CloseConnection (page 4-527), Protocol_GetLinkState (page 4-535)

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-527

Protocol_CloseConnection
(Offset 4)

Closes a link’s connection from a protocol module

On entry

R0 = protocol module’s link handle

On exit

R0 = pointer to protocol specific information, or 0

Use

Use this call in your terminal emulator to close a link’s connection from a protocol
module.

The protocol module closes the connection associated with the given link.

Related SWIs

Protocol_OpenLogicalLink (page 4-520), Protocol_CloseLogicalLink (page 4-522),
Protocol_OpenConnection (page 4-524), Protocol_GetLinkState (page 4-535)

Protocol_TransmitData (Offset 5)

4-528

Protocol_TransmitData
(Offset 5)

Transmits data over a connection via a protocol module

On entry

R0 = protocol module’s link handle
R1 = pointer to receive buffer
R2 = length of receive buffer (in bytes)
R3 = pointer to transmit buffer
R4 = length of transmit buffer (in bytes)
R5 = emulator transmit flags

On exit

R0 = terminal emulator’s link handle
R2 = number of bytes of data placed in receive buffer
R3 = protocol status flags
R4 = pointer to protocol specific information

Use

Use this call in your terminal emulator to transmit data over a connection via a
protocol module. You’ll also receive any pending data that the protocol module has been
holding for you.

The emulator transmit flags have the following meanings:

Bit Value Meaning
3 0 transmitted data is in bytes

1 transmitted data is in words

All other bits are reserved and must be zero. If the transmitted data is in words, each
word contains one character in the least significant byte.

The protocol module transmits the data over the connection. Also, if it has any pending
data for the terminal emulator it forwards as much as it is able to place in the emulator’s
receive buffer.

The protocol specific information it returns may be used for error messages.

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-529

The protocol status flags it returns have the following meanings:

Bits Value Meaning
0-1 00 no connection opened

01 connection pending
10 connection open
11 connection failed

2 0 no data pending
1 more data pending

3 0 data is in bytes
1 data is in words

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you must check R2 to see if you have
received any data, and process it if necessary. You must also examine the protocol status
flags in R3:

● If the connection failed (bits 0 and 1 are set) and no data is pending (bit 2 is clear)
you must attempt to close the connection by calling Protocol_CloseConnection.

● If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

● Bit 2 (‘more data pending’) has exactly the same meaning as bit 0 of a logical link’s
poll word, and is provided to reduce the amount of polling that needs to be done. If
it is set you should initiate the data transfer by calling Protocol_DataRequest.

● If the data you’ve received is in words, each word contains one character in the least
significant byte.

Related SWIs

Protocol_SendFile (page 4-539), Protocol_SendFileData (page 4-541)

Protocol_DataRequest (Offset 6)

4-530

Protocol_DataRequest
(Offset 6)

Requests that a protocol module forwards any pending data

On entry

R0 = protocol module’s link handle
R1 = pointer to receive buffer
R2 = length of receive buffer (in bytes)

On exit

R0 = terminal emulator’s link handle
R1 preserved
R2 = number of bytes of data placed in receive buffer
R3 = protocol status flags
R4 = pointer to protocol specific information

Use

Use this call in your terminal emulator to request that a protocol module forwards any
pending data. You should do so in either of these cases:

● if bit 0 (‘data pending’) of the link’s poll word is set

● if the ‘data pending’ bit (commonly bit 2) of the protocol status flags (commonly in
R3) is set on return from a Protocol… SWI call.

The protocol module forwards as much of the pending data as it is able to place in the
emulator’s receive buffer.

The protocol specific information it returns may be used for error messages. The
protocol status flags it returns have the following meanings:

Bits Value Meaning
0-1 00 no connection opened

01 connection pending
10 connection open
11 connection failed

2 0 no data pending
1 more data pending

3 0 data is in bytes
1 data is in words

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-531

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you must examine the state of these
flags:

● If the connection failed (bits 0 and 1 are set) and no data is pending (bit 2 is clear)
you must attempt to close the connection by calling Protocol_CloseConnection.

● If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

● Bit 2 (‘data pending’) has exactly the same meaning as bit 0 of a logical link’s poll
word, and is provided to reduce the amount of polling that needs to be done. If it is
set you should continue the data transfer by calling Protocol_DataRequest.

● If the data is in words, each word contains one character in the least significant byte.

Related SWIs

Protocol_GetFileInfo (page 4-544), Protocol_GetFileData (page 4-545),
Protocol_GetFile (page 4-548)

Protocol_MenuItemSelected (Offset 7)

4-532

Protocol_MenuItemSelected
(Offset 7)

Requests that a protocol module services a menu selection

On entry

R0 = protocol module’s link handle
R1 = pointer to menu selection block
R2 = x coordinate of mouse
R3 = y coordinate of mouse
R4 = emulator menu flags

On exit

R0 - R4 preserved

Use

Use this call in your terminal emulator to request that a protocol module services a
selection made within its own menu. You should call this if you:

● get notice of a mouse click within the protocol’s menu, via a Menu_Selection
reason code from Wimp_Poll

● get notice of the pointer moving over a right arrow to activate one of the protocol’s
submenus, via a MenuWarning message

(See the descriptions of Wimp_Poll on page 3-112 and Wimp_SendMessage on
page 3-193 for more details.)

The menu selection block contains:

R1 item in protocol menu that was selected (starting with 1)
R1+1 item in first protocol submenu that was selected
R1+2 item in second protocol submenu that was selected
…
terminated by 0 byte

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-533

Note: There are several important differences between this menu selection block and
that returned by Wimp_Poll with a Menu_Selection reason code:

Wimp menu selection block Protocol menu selection block
Menu items start from 0 Menu items start from 1
Each number is a word Each number is a byte
List is terminated by –1 List is terminated by 0
R1 gives item in main menu R1 gives item at root of protocol menu

The emulator menu flags show why you have made this call:

Bit Value Meaning
0 0 called because of a mouse click

1 called because of a MenuWarning message

All other bits are reserved and must be zero.

The protocol module services the menu selection, either doing what the user clicked
over, or displaying the necessary submenu.

Related SWIs

Protocol_GetProtocolMenu (page 4-523), Protocol_UnknownEvent (page 4-534)

Protocol_UnknownEvent (Offset 8)

4-534

Protocol_UnknownEvent
(Offset 8)

Passes on Wimp events to a protocol module

On entry

R0 = pointer to Wimp event block (as returned by Wimp_Poll)

On exit

R0 preserved

Use

Use this call in your terminal emulator to pass on Wimp events you can’t deal with to
the protocol module you’re using. You should also pass on idle events if the protocol
module’s Wimp_Poll mask (see Protocol_OpenLogicalLink) doesn’t mask them out –
even if your terminal emulator uses them.

The protocol module processes the Wimp event if it is one in which it is interested.

Related SWIs

Protocol_GetProtocolMenu (page 4-523), Protocol_MenuItemSelected (page 4-532)

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-535

Protocol_GetLinkState
(Offset 9)

Gets the state of a logical link

On entry

R0 = protocol module’s link handle

On exit

R0 = terminal emulator’s link handle
R1 = pointer to connection name (null-terminated)
R2 = pointer to protocol specific information, or 0
R3 = protocol status flags

Use

Use this call in your terminal emulator to get the state of a logical link.

One time you should do so is if an attempt you’ve made to open a connection has
resulted in a pending connection. You should then wait for bit 0 of the logical link’s poll
word (‘data pending’) to be set before making this call to find if the connection was
opened, or if it failed.

The protocol module returns a connection name suitable for the terminal emulator to
use as a window title (if the connection is open or pending). The protocol specific
information it returns may be used for error messages. The protocol status flags it returns
have the following meanings:

Bits Value Meaning
0-1 00 no connection opened

01 connection pending
10 connection open
11 connection failed

2 0 no data pending
1 data pending

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you must examine the state of these
flags:

● If the connection failed (bits 0 and 1 are set) and no data is pending (bit 2 is clear)
you must attempt to close the connection by calling Protocol_CloseConnection.

Protocol_GetLinkState (Offset 9)

4-536

● If the connection is pending you must wait until bit 0 of the logical link’s poll word
is set. Then you should call either Protocol_DataRequest or Protocol_GetLinkState
to find if the connection was opened, or if it failed.

● Bit 2 (‘data pending’) has exactly the same meaning as bit 0 of a logical link’s poll
word, and is provided to reduce the amount of polling that needs to be done. If it is
set you should initiate the data transfer by calling Protocol_DataRequest.

Related SWIs

Protocol_OpenLogicalLink (page 4-520), Protocol_CloseLogicalLink (page 4-522),
Protocol_OpenConnection (page 4-524), Protocol_CloseConnection (page 4-527)

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-537

Protocol_Break
(Offset 10)

Forces a protocol module to generate a Break

On entry

R0 = protocol module’s link handle

On exit

R0 = terminal emulator’s link handle
R3 = protocol status flags

Use

Use this call in your terminal emulator to force a protocol module to generate a Break.

The protocol module generates a Break. The precise interpretation of this varies from
module to module.

The documentation of a protocol module must state how it interprets this call.

The protocol status flags it returns have the following meanings:

Bits Value Meaning
0-1 00 no connection opened

01 connection pending
10 connection open
11 connection failed

2 0 no data pending
1 data pending

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you must examine the state of these
flags:

● If the connection failed (bits 0 and 1 are set) and no data is pending (bit 2 is clear)
you must attempt to close the connection by calling Protocol_CloseConnection.

● If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

Protocol_Break (Offset 10)

4-538

● Bit 2 (‘data pending’) has exactly the same meaning as bit 0 of a logical link’s poll
word, and is provided to reduce the amount of polling that needs to be done. If it is
set you should initiate the data transfer by calling Protocol_DataRequest.

Related SWIs

None

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-539

Protocol_SendFile
(Offset 11)

Initiates sending a file over a protocol module’s connection

On entry

R0 = protocol module’s link handle
R1 = RISC OS file type
R2 = pointer to file name (null terminated)
R3 = estimated size of file (in bytes)
R4 = emulator send flags

On exit

R0 = terminal emulator’s link handle
R1 = protocol status flags

Use

Use this call in your terminal emulator to initiate sending a file over a protocol
module’s connection.

The emulator send flags have the following meanings:

Bit Meaning when set
0 transfer cannot be safely paused (ie is a RAM transfer)
1 transfer is part of a multiple file transfer

All other bits are reserved and must be zero.

The protocol module must ready itself to accept the file over the terminal emulator’s
logical link, and to send it over the connection that is associated with the link. When it is
ready it must show this by setting bit 2 of the link’s poll word.

If bit 1 of the emulator send flags is set (a multiple file transfer) and the protocol module
uses dialogue box(es) to show the state of the transfer, it must use the same box(es) for
each file in turn, rather than using a new one for each file.

Protocol_SendFile (Offset 11)

4-540

The protocol status flags it returns have the following meanings:

Bits Value Meaning
0-1 00 no connection opened

01 connection pending
10 connection open
11 connection failed

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you must examine the state of these
flags:

● If the connection failed (bits 0 and 1 are set) and no data is pending (bit 2 of the
link’s poll word is clear) you must attempt to close the connection by calling
Protocol_CloseConnection.

● If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

When you start a file transfer with this call the link is in a paused state. You should wait
for bit 2 of the link’s poll word to be set before you try to resume the transfer by calling
Protocol_SendFileData (see the next page).

Related SWIs

Protocol_TransmitData (page 4-528), Protocol_SendFileData (page 4-541),
Protocol_AbortTransfer (page 4-543), Protocol_DirOp (page 4-549)

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-541

Protocol_SendFileData
(Offset 12)

Sends the data in a file over a protocol module’s connection

On entry

R0 = protocol module’s link handle
R1 = pointer to transmit buffer
R2 = length of transmit buffer (in bytes)
R3 = emulator send data flags

On exit

R0 = terminal emulator’s link handle
R1 = protocol status flags

Use

Use this call in your terminal emulator to send the data in a file over a protocol
module’s connection. You can (if necessary) split the file into separate data packets and
repeatedly use this call to transmit each packet.

The emulator send data flags have the following meanings:

Bit Meaning when set
0 last data packet of a file (ie EOF)
1 no data is included – end of file transfer

All other bits are reserved and must be zero.

You must not set both these bits at once, so a file transfer must end with two calls of this
SWI: the first with bit 0 set (EOF), the second with bit 1 set (end of file transfer).

The protocol module sends the file over the connection that is associated with the link.
If it has to pause the transfer it must show when it is ready to resume by setting bit 2 of
the link’s poll word.

Protocol_SendFileData (Offset 12)

4-542

The protocol status flags it returns have the following meanings:

Bits Value Meaning
0-1 00 no connection opened

01 connection pending
10 connection open
11 connection failed

2-3 00 transfer not started
01 transfer paused
10 transfer completed
11 transfer failed or aborted

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you must examine the state of these
flags:

● If the connection failed (bits 0 and 1 are set) and the transfer is not paused (bits 2-3
do not have the value 01) you must attempt to close the connection by calling
Protocol_CloseConnection.

● If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

● If the transfer is paused (bits 2-3 have the value 01) you must wait for bit 2 of the
link’s poll word to be set before making this call again to continue the transfer.

Related SWIs

Protocol_TransmitData (page 4-528), Protocol_SendFile (page 4-539),
Protocol_AbortTransfer (page 4-543), Protocol_DirOp (page 4-549)

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-543

Protocol_AbortTransfer
(Offset 13)

Aborts a file transfer

On entry

R0 = protocol module’s link handle

On exit

R0 preserved

Use

Use this call in your terminal emulator to abort a file transfer.

The protocol module aborts the transfer and makes sure that the connection associated
with the link is ready for other use.

Related SWIs

Protocol_SendFile (page 4-539), Protocol_SendFileData (page 4-541),
Protocol_GetFileInfo (page 4-544), Protocol_GetFileData (page 4-545),
Protocol_GetFile (page 4-548)

Protocol_GetFileInfo (Offset 14)

4-544

Protocol_GetFileInfo
(Offset 14)

Requests that a protocol module initiates forwarding a pending file

On entry

R0 = protocol module’s link handle

On exit

R0 = terminal emulator’s link handle
R1 = RISC OS file type
R2 = pointer to file name (null terminated)
R3 = 0, or estimated size of file if available (in bytes)

Use

Use this call in your terminal emulator to request that a protocol module initiates
forwarding a pending file. You should do so:

● if bit 1 (‘file pending’) of the link’s poll word is set.

This will usually be as a result of your calling Protocol_GetFile to request that the
file be sent.

The protocol module returns details of the file to the terminal emulator.

When this call returns to your terminal emulator you must use these details to get ready
to receive the file, before calling Protocol_GetFileData to actually get the data.

Related SWIs

Protocol_DataRequest (page 4-530), Protocol_AbortTransfer (page 4-543),
Protocol_GetFileData (page 4-545), Protocol_GetFile (page 4-548),
Protocol_DirOp (page 4-549)

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-545

Protocol_GetFileData
(Offset 15)

Requests that a protocol module forwards the data in a file

On entry

R0 = protocol module’s link handle
R1 = pointer to receive buffer
R2 = length of receive buffer (in bytes)

On exit

R0 = terminal emulator’s link handle
R1 preserved
R2 = number of bytes of data placed in receive buffer
R3 = protocol status flags

Use

Use this call in your terminal emulator to request that a protocol module forwards the
data in a file.

The protocol module must forward the file data to the terminal emulator. It can (if
necessary) split the file into separate data packets, pausing the transfer after each packet.
If so, it must show when it is ready to forward the next packet by setting bit 2 of the
link’s poll word.

The protocol status flags it returns have the following meanings:

Bits Value Meaning
0-1 00 no connection opened

01 connection pending
10 connection open
11 connection failed

2-3 00 transfer not started
01 transfer paused
10 transfer completed
11 transfer failed or aborted

All other bits are reserved and must be zero.

Protocol_GetFileData (Offset 15)

4-546

When this call returns to your terminal emulator you must examine the state of these
flags:

● If the connection failed (bits 0 and 1 are set) and the transfer is not paused (bits 2-3
do not have the value 01) you must attempt to close the connection by calling
Protocol_CloseConnection.

● If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

● If the transfer is paused (bits 2-3 have the value 01) you must wait for bit 2 of the
link’s poll word to be set before making this call again to continue the transfer.

Related SWIs

Protocol_DataRequest (page 4-530), Protocol_AbortTransfer (page 4-543),
Protocol_GetFileInfo (page 4-544), Protocol_GetFile (page 4-548),
Protocol_DirOp (page 4-549)

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-547

Protocol_MenuHelp
(Offset 16)

Requests that a protocol module sends its interactive help message for a menu entry

On entry

R0 = protocol module’s link handle
R1 = pointer to menu selection array, relative to protocol-specific menu tree

On exit

R0, R1 preserved

Use

Use this call in your terminal emulator to request that a protocol module sends its
interactive help message for the menu entry. The menu selection array you send must be
terminated by a null.

The protocol module must send the appropriate help message.

Related SWIs

Protocol_GetProtocolMenu (page 4-523), Protocol_MenuItemSelected (page 4-532)

Protocol_GetFile (Offset 17)

4-548

Protocol_GetFile
(Offset 17)

Requests that a protocol module gets a file over a connection

On entry

R0 = protocol module’s link handle
R1 = pointer to file name (null terminated)

On exit

R0, R1 preserved

Use

Use this call in your terminal emulator to request that a protocol module gets a file over
a connection.

The protocol module gets the necessary information to respond to a
Protocol_GetFileInfo call, and the first packet of the file to respond to a
Protocol_GetFileData call, before showing that it is ready by setting bit 1 (‘file
pending’) of the link’s poll word.

Related SWIs

Protocol_DataRequest (page 4-530), Protocol_AbortTransfer (page 4-543),
Protocol_GetFileInfo (page 4-544), Protocol_GetFileData (page 4-545),
Protocol_DirOp (page 4-549)

A
p

p
en

d
ixes an

d
 tab

les

Appendix G: The Acorn Terminal Interface Protocol

4-549

Protocol_DirOp
(Offset 18)

Performs various directory operations over a connection

On entry

R0 = protocol module’s link handle
R1 = reason code
R2 = pointer to directory name – reason codes 1 & 2 only (null terminated)

On exit

R0 = terminal emulator’s link handle
R1, R2 preserved
R3 = protocol status flags

Use

Use this call in your terminal emulator to perform various directory operations over a
connection. The type of operation is set by a reason code in R1:

Reason code Type of operation
0 null – see below
1 create directory
2 move into directory
3 move up one level in directory tree

The protocol module performs the specified operation. The protocol status flags it
returns have the following meanings:

Bits Value Meaning
0-1 00 no connection opened

01 connection pending
10 connection open
11 connection failed

2-3 00 invalid context
01 operation in progress – paused
10 operation completed
11 operation failed or aborted

All other bits are reserved and must be zero.

Protocol_DirOp (Offset 18)

4-550

When this call returns to your terminal emulator you must examine the state of these
flags:

● If the connection failed (bits 0 and 1 are set) and there is no operation in progress
(bits 2-3 do not have the value 01) you must attempt to close the connection by
calling Protocol_CloseConnection.

● If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

● If the operation is still in progress (bits 2-3 have the value 01) you must wait for bit
2 of the link’s poll word to be set. You can then make this call again with a null
reason code to read the flags for the completed operation.

Related SWIs

Protocol_SendFile (page 4-539), Protocol_SendFileData (page 4-541),
Protocol_AbortTransfer (page 4-543), Protocol_GetFileInfo (page 4-544),
Protocol_GetFileData (page 4-545), Protocol_GetFile (page 4-548)

A
p

p
en

d
ixes an

d
 tab

les

4-551

4

93 Appendix H: Registering names

Introduction
Various names and numbers that appear in RISC OS must be registered with Acorn to
ensure that they don’t clash with those used by other programmers. This appendix tells
you what those names and numbers are, and how to register them with Acorn.

Generally, you can propose the name(s) that you would like to use, and will be allocated
them if they are previously unused. However, numbers are normally allocated
consecutively, so you are unlikely to have any choice as to which ones you are allocated.

Acorn keeps a single central set of header files that record all such names and numbers.
Your request will be checked against the relevant file. Finally, your allocation will be
recorded in the file, and you will be informed of it.

Things requiring registration

Filetypes

If you need to use a new filetype, you must register it with Acorn.

You should give a proposed textual equivalent for the filetype (8 characters maximum,
as used by the ‘Full info’ Filer displays), and a more complete description of the
filetype’s functionality and/or conformance to any standards. Acorn will then inform
you whether your name is unique, and – if it is unique – which filetype number you have
been allocated.

For a list of currently defined filetypes, see Table C: File types on page 4-565.

Associated sprites

Registering filetypes is necessary to prevent any clashes in the Wimp’s sprite pool
between different ‘file_XXX’ and ‘small_XXX’ sprites (where XXX is a hexadecimal
filetype) used by the Filer to display the filetype. Once you have registered a filetype,
you may consider such sprites as also registered.

Things requiring registration

4-552

Associated system variables

Registering filetypes is also necessary to prevent any clashes between File$Type_XXX,
Alias$@LoadType_XXX, Alias$@PrintType_XXX and Alias$@RunType_XXX system
variables (where XXX is a hexadecimal filetype). Once you have registered a filetype,
you may consider such variables as also registered.

SWI chunk numbers and names

If you need to supply your own SWIs, you must ask Acorn for an allocation of a SWI
chunk number, the use of the SWIs within which you can then determine yourself.

You should give a proposed name for the SWI chunk. Acorn will then inform you
whether your name is unique, and – if it is unique – which SWI chunk number you have
been allocated.

SWIs are named as ChunkName_FunctionName (so in Wimp_Initialise, Wimp is the
chunk name, and Initialise is the function name). The chunk name is normally the name
of the application or module providing the SWI, which will itself need registration – see
below.

For more information on SWI numbers and names, see the chapter entitled An
introduction to SWIs on page 1-23.

Wimp message numbers

Wimp message numbers are allocated by Acorn from the same number space as SWI
numbers. If you need to use a new Wimp message and have a SWI chunk allocated, you
may use as Wimp message numbers the same 64 numbers that are held in that SWI
chunk. Otherwise you must ask Acorn for an allocation of a range of Wimp message
numbers, the use of which you can then determine yourself.

For more information on Wimp messages, see Wimp_SendMessage (SWI &400E7) on
page 3-193.

Error numbers

If you need to generate your own errors, you must ask Acorn for an allocation of a range
of error numbers, the use of which you can then determine yourself.

For more information on error numbers, see the section entitled Error numbers on
page 1-42.

A
p

p
en

d
ixes an

d
 tab

les

Appendix H: Registering names

4-553

Filing system numbers and names

If you create your own filing system, you must register it with Acorn.

You should give a proposed name for the filing system, and a more complete description
of its functionality and/or conformance to any standards. Acorn will then inform you
whether your name is unique, and – if it is unique – which filing system number you
have been allocated.

For a list of currently defined filing system numbers, see the section entitled Filing
system information word on page 2-532.

Expansion cards: manufacturer codes and product type codes

If you create an expansion card, you must ask Acorn for an allocation of a manufacturer
code and a product type code.

You should give a brief description of its functionality and/or conformance to any
standards. Acorn will then inform you which codes you have been allocated.

For more information on these codes, see the section entitled Extended Expansion Card
Identity on page 4-122.

CMOS RAM bytes

There are 4 bytes of CMOS RAM reserved for each expansion card slot, which your
expansion cards may freely use; see the section entitled Non-volatile memory (CMOS
RAM) on page 1-361. For all other purposes you should remember state in some other
manner (for example using an App$Options system variable in a desktop boot file, or
using a Choices file within your application). It is only in very exceptional
circumstances that Acorn may allocate CMOS RAM bytes to other parties.

Territory, country and alphabet numbers and names

If you need to use a new territory, country, or alphabet, you must register it with Acorn.

You should give a proposed name for the territory, country, or alphabet, and (for
alphabets) a more complete description of its functionality and/or conformance to any
standards. Acorn will then inform you whether your name is unique, and – if it is unique
– which territory, country, or alphabet number you have been allocated.

For a list of currently defined country and alphabet numbers, see the section entitled
Names and numbers on page 3-768.

DrawFile object types and tagged object types

If you need to use a new object type or tagged object type in a Draw file, you must
register it with Acorn.

Things requiring registration

4-554

For an object type you should give full details of its file format. For a tagged object type
you should give a brief description of the purpose of the tag. Acorn will then inform you
which type numbers you have been allocated.

For a list of currently defined object types and tagged object types, see the section
entitled Draw files on page 4-463.

Module names

If you create a new module, you must register it with Acorn, since only one module of a
given name can be loaded at once.

You should give a proposed name for the module and a brief description of its
functionality. Acorn will then inform you whether your name is unique, and hence if you
may use it.

Associated system variables

Registering module names is also necessary to prevent any clashes between system
variables used by modules, such as Module$Options. Once you have registered the
module name ‘Module’, you may consider all variables beginning with ‘Module$’ as
also registered.

To ensure there are no clashes with ‘App$’ or ‘Resource$’ system variables, Acorn will
also check that your module name does not match any other programmers’ registered
application or shared resource names. However, you may register identical module,
application and /or shared resource names; it is then your responsibility to prevent any
clashes between your own system variables.

Application names

If you create a new application, you must register it with Acorn.

You should give a proposed name for the application and a brief description of its
functionality. Acorn will then inform you whether your name is unique, and hence if you
may use it.

Associated sprites

Registering application names is necessary to prevent any clashes in the Wimp’s sprite
pool between different application’s ‘!app’ and ‘sm!app’ sprites, used by the Filer to
display the application directory’s icon. Once you have registered an application name,
you may consider such sprites as also registered.

A
p

p
en

d
ixes an

d
 tab

les

Appendix H: Registering names

4-555

Associated system variables

Registering application names is also necessary to prevent any clashes between system
variables used by applications, such as App$Dir or App$Options. Once you have
registered the application name ‘App’, you may consider all variables beginning with
‘App$’ as also registered.

To ensure there are no clashes with ‘Module$’ or ‘Resource$’ system variables, Acorn
will also check that your application name does not match any other programmers’
registered module or shared resource names. However, you may register identical
module, application and /or shared resource names; it is then your responsibility to
prevent any clashes between your own system variables.

Shared resources

If you create a new shared resource directory, you must register it with Acorn.

You should give a proposed name for the shared resource and a brief description of its
functionality. Acorn will then inform you whether your name is unique, and hence if you
may use it.

Associated sprites

Registering shared resource names is necessary to prevent any clashes in the Wimp’s
sprite pool between different shared resource’s ‘!resource’ and ‘sm!resource’ sprites
(used by the Filer to display the shared resource directory’s icon). Once you have
registered an shared resource name, you may consider such sprites as also registered.

Associated system variables

Registering shared resource names is also necessary to prevent any clashes between
system variables used by shared resources, such as Resource$Dir. Once you have
registered the shared resource name ‘Resource’, you may consider all variables
beginning with ‘Resource$’ as also registered.

To ensure there are no clashes with ‘Module$’ or ‘App$’ system variables, Acorn will
also check that your shared resource name does not match any other programmers’
registered module or application names. However, you may register identical module,
application and /or shared resource names; it is then your responsibility to prevent any
clashes between your own system variables.

* Commands

If you create a new * Command, you must register it with Acorn.

You should give a proposed name for the command, and a brief description of its
functionality. Acorn will then inform you whether your name is unique, and hence if you
may use it.

Things requiring registration

4-556

Sprite names

If you add a sprite to the Wimp sprite pool – for example using *IconSprites – you must
register it with Acorn.

You should give a proposed name for the sprite. Acorn will then inform you whether
your name is unique, and hence if you may use it.

Provided you have registered a filetype, application or shared resource, you need not
register the associated sprites that the Filer uses to display them. See page 4-551,
page 4-554 and page 4-555 respectively.

You should not register the names of sprites that are held in your applications’ own
sprite areas. Desktop applications must not use the system sprite pool.

Font names

If you create a new font, you must register it with Acorn.

You should give a proposed name for the font. Acorn will then inform you whether your
name is unique, and hence if you may use it.

Device numbers

If you need to add a new device, you must ask Acorn for an allocation of a major and a
minor device number.

You should give a brief description of the device’s functionality. Acorn will then inform
you which device numbers you have been allocated.

Printer driver and printer dumper numbers

If you create a new printer driver or dumper module, you must ask Acorn for an
allocation of a printer driver or dumper number.

You should give a brief description of the printer driver or dumper’s functionality. Acorn
will then inform you which ID number you have been allocated.

A
p

p
en

d
ixes an

d
 tab

les

4-557

4

94 Table A: VDU codes

List of VDU codes
A list of the VDU codes is given in the table below. Some VDU codes require extra
bytes to be sent as parameters; for example, VDU 22 (select screen mode) needs one
extra byte to specify the mode. The number of extra bytes needed is also given in the
table:

VDU
code

Ctrl
plus

Extr
a
bytes

Meaning Page

 0 @ 0 Does nothing 1-568

 1 A 1 Sends next character to printer only 1-569

 2 B 0 Enables printer 1-570

 3 C 0 Disables printer 1-571

 4 D 0 Writes text at text cursor 1-572

 5 E 0 Writes text at graphics cursor 1-573

 6 F 0 Enables VDU driver 1-574

 7 G 0 Generates bell sound 1-575

 8 H 0 Moves cursor back one character 1-576

 9 I 0 Moves cursor on one space 1-577

10 J 0 Moves cursor down one line 1-578

11 K 0 Moves cursor up one line 1-579

12 L 0 Clears text window 1-580

13 M 0 Moves cursor to start of current
line

1-581

14 N 0 Turns on paged mode 1-582

15 O 0 Turns off paged mode 1-583

16 P 0 Clears graphics window 1-584

17 Q 1 Defines text colour 1-585

18 R 2 Defines graphics colour 1-586

19 S 5 Defines logical colour 1-588

20 T 0 Restores default logical colours 1-592

21 U 0 Disables VDU drivers 1-593

22 V 1 Selects screen mode 1-594

List of VDU codes

4-558

23 W 9 Multi-purpose command: 1-599

23,0 Sets the interlace and controls
cursor appearance

1-600

23,1 Controls text cursor appearance 1-601

23,2-5 Defines ECF pattern and colours 1-602

23,6 Sets dot-dash line style 1-603

23,7 Scrolls text window or screen 1-604

23,8 Clears a block of the text window 1-606

23,9 Sets first flash time 1-608

23,10 Sets second flash time 1-609

23,11 Sets default patterns 1-610

23,12-15 Defines simple ECF patterns and
colours

1-612

23,16 Controls cursor movement after
printing

1-614

23,17,0-3 Sets the tint for a colour 1-616

23,17,4 Chooses ECF patterns 1-617

23,17,5 Exchanges text foreground and
background colours

1-618

23,17,6 Sets ECF origin 1-619

23,17,7 Sets character size/spacing 1-620

23,18-24 Reserved for future expansion 1-621

23,25-26 Private Font Manager calls 1-622

23,27 Private Sprite Manager calls 1-623

23,28-31 Reserved for use by application
programs

1-624

23,32-255 Redefines printable characters 1-625

24 X 8 Defines graphics window 1-627

25 Y 5 PLOT command 1-628

26 Z 0 Restores default windows 1-631

27 [0 Does nothing 1-632

28 \ 4 Defines text window 1-633

29] 4 Defines graphics origin 1-634

30 ^ 0 Homes text cursor 1-635

VDU
code

Ctrl
plus

Extr
a
bytes

Meaning Page

A
p

p
en

d
ixes an

d
 tab

les

Table A: VDU codes

4-559

31 _ 2 Moves text cursor 1-636

127 0 Delete 1-637

VDU
code

Ctrl
plus

Extr
a
bytes

Meaning Page

List of VDU codes

4-560

A
p

p
en

d
ixes an

d
 tab

les

4-561

4

95 Table B: Modes

The modes available in RISC OS depend on the configured monitor type (see
*Configure MonitorType on page 1-759) and the model of computer. Below is a table of
all modes provided by RISC OS, which shows:

● the mode number

● the text resolution in columns × rows

● the graphics resolution in pixels, which corresponds to the clarity of the mode’s
display

● the resolution in OS units, which corresponds to the area of workspace shown by
the mode

● the number of logical colours available

● the memory used to display the screen (to the nearest 0.1Kbyte)

● the vertical refresh rate to the nearest Hz (invalid for monitor type 5), which
indicates the degree of flickering that you may perceive

● the bandwidth used to display the screen (to the nearest 0.1Mbyte/second), which
corresponds to the load the mode places on the computer

● the monitor types that support that mode:

Type Monitor
0 50Hz TV standard colour or monochrome monitor
1 Multi-frequency monitor
2 64Hz high-resolution monochrome monitor
3 60Hz VGA-type monitor
4 Super-VGA-type monitor (not available in RISC OS 2)
5 LCD (liquid crystal display) (not available in RISC OS 2)

● the notes on the following page that are relevant to the mode.

4-562

Mode Text Pixel OS units Logical Mem Refresh Band- Monitor Notes
resolution resolution resolution colours used rate width types

0 80 × 32 640 × 256 1280 × 1024 2 20K 50Hz 1M/s 0,1,3,4,5 ¬
1 40× 32 320× 256 1280× 1024 4 20K 50Hz 1M/s 0,1,3,4,5 ¬
2 20× 32 160× 256 1280× 1024 16 40K 50Hz 2M/s 0,1,3,4,5 ¬
3 80× 25 Text only Text only 2 40K 50Hz 2M/s 0,1,3,4,5 ¬ƒý
4 40× 32 320× 256 1280× 1024 2 20K 50Hz 1M/s 0,1,3,4,5 ¬
5 20× 32 160× 256 1280× 1024 4 20K 50Hz 1M/s 0,1,3,4,5 ¬
6 40× 25 Text only Text only 2 20K 50Hz 1M/s 0,1,3,4,5 ¬ƒý
7 40× 25 Teletext Teletext 16 80K 50Hz 4M/s 0,1,3,4,5 ¬ƒ
8 80× 32 640× 256 1280× 1024 4 40K 50Hz 2M/s 0,1,3,4,5 ¬
9 40× 32 320× 256 1280× 1024 16 40K 50Hz 2M/s 0,1,3,4,5 ¬
10 20× 32 160× 256 1280× 1024 256 80K 50Hz 4M/s 0,1,3,4,5 ¬
11 80× 25 640× 250 1280× 1000 4 40K 50Hz 2M/s 0,1,3,4,5 ¬«
12 80× 32 640× 256 1280× 1024 16 80K 50Hz 4M/s 0,1,3,4,5 ¬
13 40× 32 320× 256 1280× 1024 256 80K 50Hz 4M/s 0,1,3,4,5 ¬
14 80× 25 640× 250 1280× 1000 16 80K 50Hz 3.9M/s 0,1,3,4,5 ¬«
15 80× 32 640× 256 1280× 1024 256 160K 50Hz 8M/s 0,1,3,4,5 ¬
16 132× 32 1056× 256 2112× 1024 16 132K 50Hz 6.6M/s 0,1 Ý
17 132× 25 1056× 250 2112× 1000 16 132K 50Hz 6.5M/s 0,1 Ý«
18 80× 64 640× 512 1280× 1024 2 40K 50Hz 2M/s 1
19 80× 64 640× 512 1280× 1024 4 80K 50Hz 4M/s 1
20 80× 64 640× 512 1280× 1024 16 160K 50Hz 8M/s 1
21 80× 64 640× 512 1280× 1024 256 320K 50Hz 16M/s 1
22 96× 36 768× 288 768× 576 16 108K 50Hz 5.4M/s 0,1 ¿¥
23 144× 56 1152× 896 2304× 1792 2 126K 64Hz 8.1M/s 2
24 132× 32 1056× 256 2112× 1024 256 264K 50Hz 13.2M/s 0,1 Ý
25 80× 60 640× 480 1280× 960 2 37.5K 60Hz 2.3M/s 1,3,4,5
26 80× 60 640× 480 1280× 960 4 75K 60Hz 4.5M/s 1,3,4,5
27 80× 60 640× 480 1280× 960 16 150K 60Hz 9M/s 1,3,4,5
28 80× 60 640× 480 1280× 960 256 300K 60Hz 18M/s 1,3,4,5
29 100× 75 800× 600 1600× 1200 2 58.6K 56Hz 3.3M/s 1,4 ¿¡
30 100× 75 800× 600 1600× 1200 4 117.2K 56Hz 6.6M/s 1,4 ¿¡
31 100× 75 800× 600 1600× 1200 16 234.4K 56Hz 13.2M/s 1,4 ¿¡
33 96× 36 768× 288 1536× 1152 2 27K 50Hz 1.4M/s 0,1 ¿
34 96× 36 768× 288 1536× 1152 4 54K 50Hz 2.7M/s 0,1 ¿
35 96× 36 768× 288 1536× 1152 16 108K 50Hz 5.4M/s 0,1 ¿
36 96× 36 768× 288 1536× 1152 256 216K 50Hz 10.8M/s 0,1 ¿
37 112× 44 896× 352 1792× 1408 2 38.5K 60Hz 2.3M/s 1 ¿
38 112× 44 896× 352 1792× 1408 4 77K 60Hz 4.6M/s 1 ¿
39 112× 44 896× 352 1792× 1408 16 154K 60Hz 9.2M/s 1 ¿
40 112× 44 896× 352 1792× 1408 256 308K 60Hz 18.5M/s 1 ¿
41 80× 44 640× 352 1280× 1408 2 27.5K 60Hz 1.7M/s 1,3,4,5 ¿¬Ð
42 80× 44 640× 352 1280× 1408 4 55K 60Hz 3.3M/s 1,3,4,5 ¿¬Ð
43 80× 44 640× 352 1280× 1408 16 110K 60Hz 6.6M/s 1,3,4,5 ¿¬Ð
44 80× 25 640× 200 1280× 800 2 15.7K 60Hz 0.9M/s 1,3,4,5 ¿¬
45 80× 25 640× 200 1280× 800 4 31.3K 60Hz 1.9M/s 1,3,4,5 ¿¬
46 80× 25 640× 200 1280× 800 16 62.5K 60Hz 3.8M/s 1,3,4,5 ¿¬

A
p

p
en

d
ixes an

d
 tab

les

Table B: Modes

4-563

Notes on display modes

1 These modes are not available in RISC OS 2.00, nor (except for mode 31) are they
available in RISC OS 2.01.

2 These modes are not available on early models of RISC OS computers (ie the
Archimedes 300, 400 and 400/1 series, and the A3000), because they are unable to
clock VIDC at the necessary rate.

3 These modes are handled differently with a VGA or Super-VGA-type monitor. If
you are using such a monitor:

● RISC OS 2.00 does not implement these modes.

● These modes are all displayed on a screen having 352 raster lines. Where a
mode has fewer than 352 vertical pixels, it is centred on the screen with blank
rasters at the top and bottom. Because of their appearance these modes are
known as letterbox modes.

● The refresh rate is 70Hz.

● The bandwidths shown in the table for these modes are lower than these
monitor types consume, because no allowance has been made for the blank
rasters.

● Early models of RISC OS computers (ie the Archimedes 300, 400 and 400/1
series, and the A3000) scan these modes some 4.7% slow. Again this is because
they are unable to clock VIDC at the necessary rate. Most VGA and
Super-VGA-type monitors can still successfully lock onto this signal, but some
may not. Furthermore, these models do not provide a Sync Polarity signal. This
makes the effect of letterbox modes (see above) more severe.

4 Early models of RISC OS computers (ie the Archimedes 300, 400 and 400/1 series,
and the A3000) also scan these modes some 4.7% slow with multi-frequency
monitors. Again this is because they are unable to clock VIDC at the necessary rate.

5 These modes do not display graphics, and are provided for compatibility with
BBC/Master series computers.

6 In these modes circles, arcs, sectors and segments do not look circular. This is
because the aspect ratio of the pixels is not in a 1:2, 1:1 or 2:1 ratio.

7 These are gap modes, where the colour of the gaps is not necessarily the same as the
text background.

8 These modes are not a multiple of eight pixels high. By default, in these modes the
bottom of the screen corresponds to the bottom line of ECF patterns, but the top line
will not correspond to the top line of ECF patterns.

9 This mode is not available in RISC OS 3 (version 3.00). It provides a double-sized
display suitable for use by visually impaired people. Unfortunately some
applications may not provide correct displays when used with this mode.

4-564

Other notes

Mode 32 has not been defined.

If an attempt is made to select a mode which is not appropriate to the current monitor
type (or OS version), a suitable mode for that monitor is used. For example, an attempt
to select mode 23 on a type 0 monitor will result in mode 0 being used.

In 256 colour modes, there are some restrictions on the control of the colours. Only 64
base colours may be selected; 4 levels of tinting turn the base colours into 256 shades.
Also, the selection from the colour palette of 4096 shades is only possible in groups of
16.

A
p

p
en

d
ixes an

d
 tab

les

4-565

4

96 Table C: File types

List of file types
File types are three-digit hexadecimal numbers. They are divided into ranges:

E00 - FFF allocated by Acorn for generic data types
B00 - DFF allocated by Acorn to software houses for applications
A00 - AFF reserved for use by Acorn applications
400 - 9FF allocated by Acorn to software houses for applications
100 - 3FF allocated by Acorn to public domain applications
000 - 0FF free for users

For information about the allocation of file types, see Appendix H: Registering names on
page 4-551.

For each type, there may be a default action on loading and running the file. These
actions may change, depending on whether the desktop is in use, and which applications
have been seen. The system variables Alias$@LoadType_XXX and
Alias$@RunType_XXX give the actions (XXX = file type).

Some types have a textual equivalent set at start-up, which may be used in most
commands (but not in the above system variables) instead of the hexadecimal code.
These are indicated in the table below by a double dagger ‘‡’, or by a single dagger ‘†’
if not available in RISC OS 2. For example, file type &FFF is set at start-up to have the
textual equivalent Text. Other textual equivalents may be set as an application is first
‘seen’ by the Filer, or as it starts – for example, Acorn Desktop Publisher sets up file
type &AF9 to be DtpDoc, and file type &AFA to be DtpStyle. These textual equivalents
are set using the system variables File$Type_XXX, where XXX is the hexadecimal file
type.

You should use the hexadecimal file type in command scripts and in programs,
otherwise you will find that your files will give an error if you try to run them on a
machine that uses a territory with different textual equivalents.

The following types are currently used or reserved by Acorn. Most file types used by
other software houses are not shown. This list may be extended from time to time:

List of file types

4-566

Acorn file types

Type Description Textual equivalent

FFF Plain ASCII text Text ‡
FFE Command (Exec) file Command ‡
FFD Data Data ‡
FFC Position independent code Utility ‡
FFB Tokenised BASIC program BASIC ‡
FFA Relocatable module Module ‡
FF9 Sprite or saved screen Sprite ‡
FF8 Absolute application loaded at &8000 Absolute ‡
FF7 BBC font file (sequence of VDU operations) BBC font ‡
FF6 Font (4 bpp bitmap only) Font ‡
FF5 PostScript PoScript ‡
FF4 Dot Matrix data file Printout †
FF3 LaserJet data file LaserJet
FF2 Configuration (CMOS RAM) Config †
FF1 Raw unprocessed data (eg terminal streams) RawData
FF0 Tagged Image File Format TIFF
FED Palette data Palette ‡
FEC Template file Template ‡
FEB Obey file Obey ‡
FEA Desktop Desktop †
FE9 ViewWord ViewWord
FE8 ViewPS ViewPS
FE7 ViewSheet ViewSht
FE6 UNIX executable UNIX Ex
FE4 DOS file DOS †
FE3 Atari file Atari
FE2 Commodore Amiga file Amiga
FE1 Make data Make
FDF TCP/IP suite: VT220 script VTScript
FDE TCP/IP suite: VT220 setup VTSetup
FDD Master utilities MasterUtl
FDC TCP/IP suite: unresolvable UNIX soft link SoftLink
FDB Text using CR and LF for line ends TextCRLF
FDA PC Emulator: DOS batch file MSDOSbat
FD9 PC Emulator: DOS executable file MSDOSexe
FD8 PC Emulator: DOS command file MSDOScom
FD7 Obey file in a task window TaskObey †
FD6 Exec file in a task window TaskExec †
FD5 DOS Pict Pict
FD4 International MIDI Assoc. MIDIfiles standard MIDI

A
p

p
en

d
ixes an

d
 tab

les

Table C: File types

4-567

FD3 Acorn DDE: debuggable image DebImage
FD1 BASIC stored as text BASICTxt
FD0 PC Emulator: configuration PCEmConf
FCF Font cache FontCache †
FCE FileCore floppy disc image FileCoreFloppyDisc
FCD FileCore hard disc image FileCoreHardDisc
FCC Device object within DeviceFS Device †
FCA Single compressed file Squash
FC9 Sun raster file SunRastr
FC8 DOS MultiFS disc image DOSDisc ‡
FC7 Macintosh format Type 1 font MacType1
FC6 !Printers printer definition file PrintDfn
FC3 !Patch patch definition file Patch
FC2 Audio Interchange file format AIFF

Industry standard file types

Type Description Textual equivalent

DFE Comma separated variables CSV
DEA Data exchange format (AutoCAD etc) DXF
DB4 SuperCalc III file SuperCalc
DB3 DBase III file DBaseIII
DB2 DBase II DBaseII
DB1 DBase index file DBaseIndex
DB0 Lotus 123 WK1 format WK1
CE5 TEX file TeX
CB6 Amiga Sound Tracker AmigaSTM
CAF IGIS graphics IGIS
CAE Hewlett-Packard graphics language HPGLPlot
C85 JPEG (Joint Photographic Experts Group) file JPEG
C35 Corel Draw file CorlDraw

BBC ROM file type

Type Description Textual equivalent

BBC BBC ROM file (ROMFS) BBC ROM ‡

Acornsoft file types

Type Description Textual equivalent

AFF Draw file DrawFile †
AFE Mouse event record Mouse
AFA DTP style file DtpStyle

List of file types

4-568

AF9 DTP documents DtpDoc
AF8 First Word Plus file 1stWord+
AF7 Help file HelpInfo
AF1 Maestro file Music
AF0 ArcWriter file ARCWriter
AE9 Alarm file Alarms
ADB Outline font New Font

A
p

p
en

d
ixes an

d
 tab

les

4-569

4

97 Table D: Character sets

Introduction
This chapter includes tables of all the alphabet sets available on your Acorn computer.
Most are based on the International Standards Organisation ISO 8859 document.

Loading alphabets
When you load an alphabet it overlays the previous alphabet. Most alphabets have a
number of undefined characters, shown in the tables below by a light grey square. In
such cases, the previous character definition for that code remains in effect.

The character codes 0 - 31 and 127 are not printable characters; they have special
meaning to the VDU drivers, as described in the chapter entitled VDU Drivers on
page 1-547. They are represented in the tables below by a dark grey square.

You can load alphabets using OS_Byte 71 (page 3-780) or *Alphabet (page 3-783).

How alphabets are initially set up

The default alphabet

When the kernel is booted it sets up a default alphabet.

The kernel’s default alphabet always contains all characters that are defined in the
Latin1 alphabet for the release of RISC OS in use (see page 4-571). Note that this
definition has been gradually extended by the addition of extra characters in the range
&80 - &9F (128 - 159).

The kernel’s representation of characters that are neither defined in the Latin1 alphabet
nor used by the VDU drivers varies. In RISC OS 2 they are represented by the
underlined string ‘These·characters·are·not·defined’, and in RISC OS 3 by the
hexadecimal value of their character code. In the future some of these undefined
characters may be used to further extend the Latin1 alphabet, or their representation may
change. Furthermore, it is these characters that users are most likely to redefine if
necessary. Consequently, you must not rely upon their initial representation.

Keyboard shortcuts

4-570

The configured alphabet

The default alphabet is then overlaid by the alphabet that is correct for the computer’s
configured territory, as set by *Configure Territory (page 3-854). Under RISC OS 2, the
alphabet used is instead determined by the computer’s configured country; see
*Configure Country on page 3-786.

The window manager

When the window manager starts, it redefines some characters. In RISC OS 2 these
were used to draw windows’ borders, and so have to be present for the desktop to have
the correct appearance. Later versions of RISC OS still redefine some of these
characters for backwards compatibility, but do not themselves use them. You must not
rely on the presence of these characters unless your program is running under the
desktop in RISC OS 2.

Keyboard shortcuts
The description of the *Country command on page 3-789 explains the relationship
between country, alphabet and keyboard. There are some useful keyboard shortcuts
which you can use to access various characters and alphabets while you are working.
You can use these wherever you can use the keyboard: for example, in the Command
Line, in Edit, or when entering a filename to save a file. The first two keystroke
combinations allow you to switch easily between keyboard layouts:

Alt Ctrl F1 Selects the keyboard layout appropriate to the country UK.

Alt Ctrl F2 Selects the keyboard layout appropriate to the country for which
the computer is configured (if available).

and the other allows you to access top bit set characters without using the Chars
application:

Alt <decimal character code typed on numeric keypad>
Enters the character corresponding to the character code typed.

The following sequence also switches the keyboard layout:

1 Press and hold Alt and Ctrl together.

2 Press F12.

3 Release Ctrl.

4 Still holding Alt, type on the numeric keypad the international telephone dialling
code for the country you want (eg 49 for Germany, 39 for Italy, 33 for France).

5 Release Alt.

A
p

p
en

d
ixes an

d
 tab

les

Table D: Character sets

4-571

Latin1 alphabet (ISO 8859/1)
This is the default alphabet used by Acorn computers.

In RISC OS 2 characters &80 - &9F (128 - 159) are undefined.

In RISC OS 3 (version 3.00) characters &80 - &8B (128 - 139) are undefined.

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

ˆ

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

˜

W

w

Y

y

…

™

‰

•

‘

’

‹

›

“

”

„

–

—

−

Œ

œ

†

‡

fi

fl

¡

¢

£

¤

¥

¦

§

¨

©

ª

«

¬

-

®

¯

°

±

²

³

´

µ

¶

·

¸

¹

º

»

¼

½

¾

¿

À

Á

Â

Ã

Ä

Å

Æ

Ç

È

É

Ê

Ë

Ì

Í

Î

Ï

Ð

Ñ

Ò

Ó

Ô

Õ

Ö

×

Ø

Ù

Ú

Û

Ü

Ý

Þ

ß

à

á

â

ã

ä

å

æ

ç

è

é

ê

ë

ì

í

î

ï

ð

ñ

ò

ó

ô

õ

ö

÷

ø

ù

ú

û

ü

ý

þ

ÿ

ˆ

ˆ

ˆ

ˆ

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Latin2 alphabet (ISO 8859/2)

4-572

Latin2 alphabet (ISO 8859/2)

In RISC OS 2 characters &80 - &9F (128 - 159) are undefined.

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

ˆ

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

˜

…

™

‰

•

‘

’

‹

›

“

”

„

–

—

−

Œ

œ

†

‡

fi

fl

A

˘

Ł

¤

L

S

§

¨

Š

S

T

Z

-

Ž

Z

°

a

˛

ł

´

l

s

ˇ

¸

š

s

t

z

˝

ž

z

R

Á

Â

A

Ä

L

C

Ç

C

É

E

Ë

E

Í

Î

D

Ð

N

N

Ó

Ô

O

Ö

×

R

U

Ú

U

Ü

Ý

T

ß

r

á

â

a

ä

l

c

ç

c

é

e

ë

e

í

î

d

d

n

n

ó

ô

o

ö

÷

r

u

ú

u

ü

ý

t

˙

˛

ˇ

´

¸
ˇ

´

˙

˛

ˇ

´

¸
ˇ

´

˙

´

˘

´

´

ˇ

˛

ˇ

ˇ

´

ˇ

˝

ˇ

˚

˝

¸

´

˘

´

´

ˇ

˛

ˇ

ˇ

-

´

ˇ

˝

ˇ

˚

˝

¸

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

A
p

p
en

d
ixes an

d
 tab

les

Table D: Character sets

4-573

Latin3 alphabet (ISO 8859/3)

In RISC OS 2 characters &80 - &9F (128 - 159) are undefined.

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

ˆ

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

˜

…

™

‰

•

‘

’

‹

›

“

”

„

–

—

−

Œ

œ

†

‡

fi

fl

H

˘

£

¤

H

§

¨

I

S

G

J

-

Z

°

h

²

³

´

µ

h

·

¸

ı

s

g

j

½

z

À

Á

Â

Ä

C

C

Ç

È

É

Ê

Ë

Ì

Í

Î

Ï

Ñ

Ò

Ó

Ô

G

Ö

×

G

Ù

Ú

Û

Ü

U

S

ß

à

á

â

ä

c

c

ç

è

é

ê

ë

ì

í

î

ï

ñ

ò

ó

ô

g

ö

÷

g

ù

ú

û

ü

u

s

˙

—

ˆ

˙

¸
˘

ˆ

˙

-

ˆ

¸

˘

ˆ

˙

˙

ˆ

˙

ˆ

˘

ˆ

˙

ˆ

˙

ˆ

˘

ˆ

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Latin4 alphabet (ISO 8859/4)

4-574

Latin4 alphabet (ISO 8859/4)

In RISC OS 2 characters &80 - &9F (128 - 159) are undefined.

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

ˆ

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

˜

…

™

‰

•

‘

’

‹

›

“

”

„

–

—

−

Œ

œ

†

‡

fi

fl

A

K

R

¤

I

L

§

¨

Š

E

G

T

-

Ž

¯

°

a

˛

r

´

ı

l

ˇ

¸

š

e

g

t

ž

A

Á

Â

Ã

Ä

Å

Æ

I

C

É

E

Ë

E

Í

Î

I

Ð

N

O

K

Ô

Õ

Ö

×

Ø

U

Ú

Û

Ü

U

U

ß

a

á

â

ã

ä

å

æ

i

c

é

e

ë

e

í

î

ı

d

n

o

k

ô

õ

ö

÷

ø

u

ú

û

ü

u

u

˙

˛

¸

˜

¸

¯

¸

˛

¸

˜

¸

¯

¯

˛
ˇ

˛

˙

¯

¸
¯

¸

˛

˜

¯

¯

˛

ˇ

˛

˙

¯

-

¸

¯

¸

˛

˜

¯

– -

¸

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

A
p

p
en

d
ixes an

d
 tab

les

Table D: Character sets

4-575

Cyrillic alphabet (ISO 8859/5)

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

ˆ

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

˜

+

-

F

<

D

U

L

T

:

P

B

Q

R

K

V

Y

J

G

H

C

N

E

A

{

W

X

I

O

)

S

M

"

?

Z

f

,

d

u

l

t

;

p

b

q

r

k

v

y

j

g

h

c

n

e

a

[

w

x

i

o

(

s

m

'

/

z

=

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Greek alphabet (ISO 8859/7)

4-576

Greek alphabet (ISO 8859/7)

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

ˆ

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

˜

‘

’

£

¦

§

¨

©

«

¬

-

—

°

±

²

³

'

¨

·

»

½

Α

Ε
Η
Ι

Ο

ϒ
Ω

ι
Α
Β
Γ
∆
Ε
Ζ
Η
Θ
Ι
Κ
Λ
Μ
Ν
Ξ
Ο

Π
Ρ

Σ
Τ
ϒ
Φ
Χ
Ψ
Ω
Ι
ϒ
α
ε
η
ι

υ
α
β
γ
δ
ε
ζ
η
θ
ι
κ
λ
µ
ν
ξ
ο

π
ρ
ς
σ
τ
υ
φ
χ
ψ
ω
ι
υ
ο
υ
ω

'

'

'

'

'

'

'

'

'̈

¨

¨

'

'

'

'

'̈

¨

¨
'

'

'

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

A
p

p
en

d
ixes an

d
 tab

les

Table D: Character sets

4-577

Hebrew alphabet (ISO 8859/8)

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Cyrillic2 alphabet (DOS code page 866)

4-578

Cyrillic2 alphabet (DOS code page 866)

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

ˆ

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

˜

F

<

D

U

L

T

:

P

B

Q

R

K

V

Y

J

G

H

C

N

E

A

{

W

X

I

O

)

S

M

"

?

Z

f

,

d

u

l

t

;

p

b

q

r

k

v

y

j

g

h

c

n

e

a

[

w

x

i

o

(

s

m

'

/

z

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

A
p

p
en

d
ixes an

d
 tab

les

Table D: Character sets

4-579

BFont characters
This character set is used in the BBC Master microcomputer. It is retained for the sake of
compatibility, but should not be used for new applications.

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Back
space
and

delete
F

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0 Nothing

Next to printer

Start printer

Stop printer

Join cursors

Enable VDU

Bell

Back

Scroll mode

Separate
cursors

Clear graphics

Disable VDU

Select mode

Plot

Nothing

Move text
cursor

Move text
cursor to (0,0)

Define text
area

Define graphics
origin

Default text /
graphics areas

Define graphics
area

Reprogram
characters

Default logical
colours

Define logical
colours

Define graphics
colour

Define text
colour

0 1 2 3 4 5 6 7 8 9 A B C D E F

Forward

Down

Up

Start of line

Paged mode

Clear screen

Teletext characters (used only in mode 7)

4-580

Teletext characters (used only in mode 7)

Teletext alphanumeric

Back
space
and

delete

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

Nothing

Reprogram
characters

Nothing

Nothing

Nothing

Nothing

Nothing

Nothing

Nothing

Nothing

Select
mode

Disable
VDU

Nothing

Nothing

cursor
Move

to (0,0)
Move cursor

Bell

Back

Forward

Down

Nothing

Nothing

Nothing

Up

Clear
Screen

Start of
line

Paged
mode

Next to
printer

Start
printer

Stop
printer

Enable
VDU

Scroll
mode

1 2 3 4 5 6 7

A
p

p
en

d
ixes an

d
 tab

les

Table D: Character sets

4-581

Teletext characters (used only in mode 7)

4-582

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Flash

Steady *

Nothing

Nothing

Nothing

Nothing

Double
height

Normal
height *

Alpha
white *

Alpha
cyan

Alpha
blue

Alpha
magenta

Alpha
red

Alpha
green

yellow
Alpha

Nothing

New
background

background
Black *

Nothing

Nothing

Hold
graphics

Conceal
display

Graphic
white

Graphic
cyan

Graphic
magenta

Graphic
red

Graphic
green

Graphic
yellow

Graphic
blue

Release
graphics *

* every line starts with these options set

8 9 A B C D E F

graphics

Contiguous
graphics *

Separated

A
p

p
en

d
ixes an

d
 tab

les

Table D: Character sets

4-583

Teletext characters (used only in mode 7)

4-584

Teletext graphics

Back
space
and

delete

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

Nothing

Bell

Back

Forward

Down

Up

Scroll
mode

Paged
mode

Start of
line

Clear
screen

Enable
VDU

Stop
printer

Nothing

Nothing

Start
printer

Next to
printer

Nothing

Nothing

Nothing

Nothing

Nothing

Nothing

Nothing

Nothing

Nothing

Nothing

Nothing

Move
cursor

Move cursor
to (0,0)

Reprogram
characters

Select
mode

Disable
VDU

1 2 3 4 5 6 7

A
p

p
en

d
ixes an

d
 tab

les

Table D: Character sets

4-585

Teletext characters (used only in mode 7)

4-586

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Nothing

Flash

Steady *

Nothing

Nothing

Nothing

Nothing

Alpha
red

Alpha
green

Alpha
yellow

Alpha
blue

Alpha
magenta

Alpha
cyan

Alpha
white *

Normal
height *

Double
height

Nothing

Nothing

Graphic
red

Graphic
green

Graphic
yellow

Graphic
blue

Graphic
magenta

Graphic
cyan

Graphic
white

Conceal
display

Contiguous
graphics *

Separated
graphics

Black *
background

New
background

Hold
graphics

Release
graphics *

* every line starts with these options set

8 9 A B C D E F

A
p

p
en

d
ixes an

d
 tab

les

Table D: Character sets

4-587

