Part 11 — Sound

4-1

72 The Sound system

Introduction

The Sound system provides facilities to synthesise and playback high quality digital
samples of sound. Since any sound can be stored digitally, the system can equally well
generate music, speech and sound effects. Eight fully independent channels are
provided.

The sound samples are synthesised in real time by software. A range of different Voice
Generators generate a standard set of samples, to which further ones can be added. The
software a so includes the facility to build sequences of notes.

The special purpose hardware provided on ARM-based systems simply reads samples at
a programmable rate and converts them to an analogue signal. Filters and mixing
circuitry on the main board provide both a stereo output (suitable for driving personal
hi-fi stereo headphones directly, or connecting to an external hi-fi amplifier) and a
monophonic or stereophonic output to the internal speaker(s).

4-3

Overview

Overview

There are four parts to the software for the Sound system: the DMA Handler, the
Channel Handler, the Scheduler, and Voice Generators. These are briefly summarised
below, and described in depth in later sections.

The DMA Handler

The DMA Handler manages the DMA buffers used to store samples of sound, and the
associated hardware used.

The system uses two buffers of digital samples, stored as signed logarithms. The data
from one buffer is read and converted to an analogue signal, while datais
simultaneously written to the other buffer by a Voice Generator. Thetwo buffers arethen
swapped between, so that each buffer is successively written to, then read.

The DMA Handler is activated every time anew buffer of sound samplesis required. It
sendsaFill Request to the Channel Handler, asking that the correct Voice Generatorsfill
the buffer that has just been read from.

The DMA Handler also provides interfaces to program hardware registers used by the
Sound system. The number of channels and the stereo position of each one can be s,
the built-in loudspeaker(s) can be enabled or disabled, and the entire Sound system can
also be enabled or disabled. The sample length and sampling rate can also be set.

The services of the DMA Handler are mainly provided in firmware requiring privileged
supervisor status to program the system devices. It istightly bound to the Channel
Handler, sharing static data space. Consequently, this module must not be replaced or
amended independently of the Channel Handler.

The Channel Handler

The Channel Handler provides interfaces to control the sound produced by each
channel, and maintainsinternal tables necessary for the rest of the Sound system to
produce these sounds.

Theinterfaces can be used to set the overall volume and tuning, to attach the channelsto
different Voice Generators, and to start sounds with given pitch, amplitude and duration.

The following internal tables are built and maintained: a mapping of voice namesto
internal voice numbers; arecord for each channel of itsvolume, voice, pitch and timbre;
and linear and logarithmic lookup tables for Voice Generators to scale their amplitude to
the current overall volume setting.

Fill Reguestsissued by the DMA Handler are routed through the Channel Handler to the
correct Voice Generators. This alows any tables involved to be updated.

4-4

The Scheduler

The Sound system

The Channel Handler istightly bound to the DMA Handler, sharing static data space.
Consequently, this module must not be replaced or amended independently of the DMA
Handler.

The Scheduler is used to queue Sound system SWIs. Its most common use isto play
sequences of notes, and asimplified interface is provided for this purpose.

A beat counter is used which is reset every timeit reaches the end of a bar. Both its
tempo and the number of beats to the bar can be programmed.

You may replace this module, although it is unlikely to be necessary.

Voice Generators

Voice Generators generate and output sound samples to the DMA buffer on receiving a
Fill Request from the Channel Handler. Typical agorithms that might be used to
synthesise a sound sample include cal culation, lookup of filtered wavetables, or
frequency modulation. A Voice Generator will normally alow multiple channelsto be
attached.

An interface exists for you to add custom Voice Generators, expanding the range of
available sounds. The demands made on processor bandwidth by synthesis algorithms
are high, especially for complex sounds, so you must write them with great care.

Technical details

Technical details

DMA Handler

The DMA Handler manages the hardware used by the Sound system. Two physical
buffersin main memory are used. These are accessed using four registers in the sound
DMA Address Generator (DAG) within the MEM C (memory controller) chip:

« TheDAG sound pointer points to the byte of sound to be output
« Thecurrent end register points to the end of the DMA buffer
« Thenext start/end register pair point to the most recently filled buffer.

The sound pointer isincremented every time a byteis read by the video controller for
output. When it reaches the end of the current buffer the memory controller switches
buffers: the sound pointer and buffer end registers are set to the values stored in the next
start and next end registers respectively. An interrupt is then issued by 10C (the 1/0
controller) indicating the buffers have switched, and the DMA handler is entered.

The DMA Handler calls the Channel Handler with a Fill request, asking that the next
buffer be filled. (See page 4-10 for details of the Channel Handler.) If thisfill is
completed, control returns to the DMA Handler and it makes the next start and next end
registers point to the buffer just filled. If thefill is not completed then the next registers
are not altered, and so the same buffer of sound will be repeated, causing an audible
discontinuity.

Configuring the Sound system

Therest of this section outlines the factors that you must consider if you choose to
reconfigure the Sound system.

Terminology used

4-6

« Theoutput period is the time between each output of a byte.

« Thesample period is the time between each output for a given channel.
« Thebuffer period is the time to output an entire buffer.

There are corresponding rates for each of the above.

« Thesamplelength isthe number of bytesin the buffer per channel.

« Thebuffer length is the total number of bytesin the buffer.

The Sound system

DMA Buffer period

A short buffer period is desirable to minimise the size of the buffer and to give high
resolution to the length of notes; along buffer period is desirable to decrease the
frequency and number of interruptsissued to the processor. A period of approximately
one centisecond is chosen as a default value, athough this can be changed, for example
to replay lengthy blocks of sampled speech from a disc.

Sample rate: maximum

A high sample rate will give the best sound quality. If too high arate is sought then
DMA request conflicts will occur, especially when high bandwidths are also required
from VIDC (the Video Controller) by high resolution screen modes. To avoid such
contention the output period must not be less than 4us. Outputting a byte to one of eight
channels every 4usresultsin asample period of 32us, which gives a maximum sample
rate of 31.25kHz.

Sample rate: default

The clock for the Sound system isderived from the system clock for the video controller,
which is then divided by amultiple of 24. Current ARM based computersuseaVIDC
system clock of 24MHz, 25.175MHz or 36MHz, depending on the screen mode and

monitor type selected. The default output period is 6us, which is compatible with VIDC
system clocks running at multiples of 4AMHz from 12MHz upwards (ie 12MHz, 16MHz,
20MHz...). This us output period is obtained as follows from the 24MHz and 36 MHz
VIDC system clocks:

e 24MHz clock divided by 144 (8 24)

o 36MHz clock divided by 216 (8 24)

Unfortunately with a VIDC system clock of 25.175MHz (used for VGA screen modes)
the same output period cannot be produced. The divider used is the same as for a 24MHz

VIDC system clock (ie 144, or%24), which results in a slightly shorter output period,
and so sounds are approximately a semitone higher.

Outputting a byte to one of eight channels every @sults in a sample period ofy43
which gives a default sample rate of 20.833kHz.

DMA Handler

Buffer length

The DMA buffer length depends on the number of channels, the sample rate, and the
buffer period. It must also be a multiple of 4 words. Using the defaults outlined above,
the lengths shown in the middle two columns of the following table are the closest

alternatives:

Buffer lengths for one centisecond sample, at sample rate of 20.833 kHz:

Bufferlength Output period
1 channel 208 bytes 224 bytes 48us
2 channels 416 bytes 448 bytes 24us
4 channels 832 bytes 896 bytes 12ps
8 channels 1664 bytes 1792 bytes 6us
Buffer period 0.9984cs 1.0752cs
Interrupt rate 100.16Hz 93.01Hz
Bytes per channel &DO0 &EO

The system default buffer period is chosen as 0.9984 centiseconds, thus the sample
length is 208 bytes, or 52 words (13 DMA quad-word cycles). The buffer lengthisa
multiple of this, depending on how many channels are used.

DMA Buffer format

The sound DMA system systematically outputs bytes at the programmed sampl e rate;
each (16-byte) load of DMA datafrom memory is synchronised to the first stereo image
position. Each byte must be stored as an eight bit signed logarithm, ready for direct
output to the VIDC chip:

Multiple channel operation is possible with two, four or eight channels; in this case the
data bytes for each channel must be interleaved throughout the DMA buffer at two, four
or eight byte intervals. When output the channels are multiplexed into what is effectively
one half, one quarter or one eighth of the sample period, so the signal level per channel
is scaled down by the same amount. Thus the signal level per channel is scaled,
depending on the number of channels; but the overall signal level remains the same for
all multi-channel modes.

Showing theinterleaving schematically:

Single channel format:

The Sound system

0 byte O | bytel | byte2 | byte 3 | byte 4 | byte5 | byte 6 | byte 7
chanl|chanl|chanl|chanl|chanl1l|chanl|chanl|chanl
+8 | byte 8 | byte 9 |byte 10 | byte 11 | byte 12 | byte 13| etc...
chan1l|chan1l|chan1l|chanl1l|chanl|chanl
Output rate = 20 kHz
Image registers 0 - 7 programmed identically
Two channel format:
0 byte 0 | byteO | bytel1 | byte1 | byte 2 | byte 2 | byte 3 | byte 3
chanl | chan2|chanl|chan2 |chanl1l|chan2 |chanl1 | chan2
+8 | byte 4 | byte4 | byte5 | byte5 | byte 6 | byte 6 | etc...
chan1l | chan?2 | chan1|chan2 |chan1 | chan 2
Output rate = 40 kHz
Image registers 0+2+4+8 and 1+3+5+7 programmed per channel
Four channel format:
0 byte O | byteO | byteO | byte O | byte1 | byte 1 | byte 1 | byte 1
chanl | chan2 | chan3|chan4 |chan1|chan2 | chan 3 | chan 4
+8 | byte 2 | byte2 | byte2 | byte2 | byte3 | byte 3 | etc...
chan1 | chan?2 | chan3 | chan4 | chan1 | chan 2

Output rate = 80 kHz
Image registers 0+4, 1+5, 2+6 and 3+7 programmed per channel

4-9

Channel Handler

Eight channel format:

0 byte 0 | byte O | byte 0 | byte O | byte O | byte O | byte O | byte O

chanl | chan2 | chan3 | chan4 | chan5 | chan6 | chan7 | chan 8

+8 | byte 1 | bytel | bytel | bytel | bytel | bytel | etc...

chanl | chan2 | chan3 | chan4 | chan5 | chan 6

Output rate = 160 kHz
Image registers programmed individualy.

The Channel Handler manages the interleaving for you by passing the correct start
address and increment to the Voice Generator attached to each channel.

Channel Handler

The Channel Handler registersitself with the DMA Handler by passing its address using
Sound_Configure. At this address there must be a standard header:

Channel Handler

4-10

Offset Value

0 pointer to fill code

4 pointer to overrun fixup code
8 pointer to linear-to-log table
12 pointer to log-scale table

Thefill code handles fill requests from the DMA Handler. The Channel Handler
translates thefill request to a series of callsto the Voice Generators, passing the required
buffer offsets so that data from all channels correctly interleaves. Any unused channels
within the buffer are set to zero by the Channel Handler so they are silent.

The overrun fixup code deals with channels that are not successfully filled within a
single buffer period and hence repeat the same DMA buffer. This feature is no longer
supported in RISC OS and the fixup code is never called. (In the Arthur OS the
offending channel was marked as overrun, the previous Channel Handler was aborted,
and anew buffer fill initiated.)

The pointer to the linear-to-log table holds the address of the base of an 8 Kbyte table
which maps 32-bit signed integers directly to 8-bit signed volume-scaled logarithmsin a
suitable format for output to the VIDC chip.

The Sound system

The pointer to the log-scal e table holds the address of a 256-byte table which scales the
amplitude of VIDC-format 8-bit signed logarithms from their maximum range down to
avalue scaled to the volume setting. Voice Generators should use this table to adjust
their overall volume.

Sound Channel Control Block (SCCB)

The Channel Handler maintains a 256 byte Sound Channel Control Block (SCCB) for
each channel. An SCCB contains parameters and flags used by Voice Generators, and an
extension areafor programmers to pass any essentia further data. Such an extension
must be well documented, and used with care, asit will lead to Voice Generatorsthat are
no longer wholly compatible with each other.

The 9initial words hold values that are normally stored in RO - R8 inclusive. They are
loaded from the SCCB using the instruction LDMIA R9,{ RO-R8}

Offsat Value

0 gate bit + channel amplitude (7-bit log)
1 index to voicetable

2 instance number for attached voice

3 control/status bit flags

4 phase accumulator pitch oscillator

8 phase accumul ator timbre oscillator

12 number of buffer fills left to do (counter)
16 (normally working R4)

20 (normally working R5)

24 (normally working R6)

28 (normally working R7)

32 (normally working R8)

36 - 63 reserved for use by Acorn (28 bytes)
64 - 255 availablefor users

Theflag byteindicatesthe state of the voice attached to the channel, and may be used for
alocating voices in a polyphonic manner. Each time a Voice Generator completes a
buffer fill and returns to the Channel Handler it returns an updated value for the Flags
fieldin RO.

It isthe responsibility of the Channel Handler to store the returned flag byte, and to
update the other fields of each SCCB as necessary.

Note— In the Arthur OS, the flag byte was also used to detect channels that had overrun.
If any were found then a call was made indirected through the fix up pointer (see above).

4-11

Scheduler

Voice Table

The Channel Handler uses avoice tabl e recording the names of voicesinstalled in the 32
available voice dots. It is aways accessed through the SWI calls provided, and so its
format is not defined.

Scheduler
Header
The Scheduler registersitself with the DMA Handler by passing its address using
Sound_Configure. At this address there must be a pointer to the code for the Scheduler.
Use

Although the Scheduler is principally designed for queuing sound commands it can be
used to issue other SWIs. Thusit could be used to control, for example, an external
instrument interface (such asaMusical Instrument Digita Interface (MIDI) expansion
podule), or a screen-based music editor with real-time score replay.

Extreme care must be used with the Scheduler, asit has limitations. R2 - R7 are aways

cleared when the SWI is issued, and the error-returning form (X’ form) of the SWI is
forced. Return parameters are discarded. If pointers are to be passed in RO or R1 then the
data they addressust be preserved until the SWI is called. If a SWI will not work

within these limitations it must not be called by the Scheduler.

The Scheduler implements the queue as a circular chain of records. A stack listing the
free slots is also kept. The number of free slots varies not only according to how many
events are queued, but also to how the events are ‘clustered’.

The queue is always accessed through the SWI calls provided, and so its precise format
is not defined.

Event dispatcher

Every centisecond the beat counter is advanced according to the tempo value, and any
events that fall within the period are activated in strict queuing order. Voice and
parameter change events are processed and the SCCB for each Voice Generator updated
as necessary by the Channel Handler, before fill requests are issued to the relevant Voice
Generators.

4-12

The Sound system

Voice Generators

A Voice Generator is added to the Sound system by issuing a Sound_Install\Voice call,
which passesits address to the Channel Handler. At this address there must be a standard

header:
Header
Offset Contents
0 B Fill Code
4 B Updat eCode
8 B Gat eOnCode
12 B Gat e f Code
16 B Instantiate
20 B Free
24 LDVMFD R13!, {pc}
28 Offset from start of header to voice name

TheFill, Update, GateOn and GateOff entries provide servicesto fill the DMA buffer at
different stages of anote, as detailed in the section entitled Entry points for buffer filling
on page 4-15.

The Instantiate and Free entries provide facilities to attach or detach the Voice Generator
to or from a channel, as detailed in the section entitled \Voice instantiation on page 4-16.

The Install entry was originally to be called when a Voice Generator was initialised.
Since Voice Generators are now implemented as Rel ocatable M odules, which offer
exactly this servicein theform of the Initialisation entry point, thisfield is not supported
and simply returns to the caller (LDMFD R13!, { pc} above).

The voice name is used by the Channel Handler voice table. It should be both concise
and descriptive. The offset must be positive relative — that is, the voice name must be
after the header.

Buffer filling: entry conditions

A fill request to a Voice Generator is made by the Channel Handler using one of the four
buffer fill entry points. The registers are allocated as follows:

Register Function

R6 negative if configuration of Channel Handler changed
R7 channel number

R8 sample period ips

R9 pointer to SCCB (Sound Channel Control Block)

R10 pointer to end of DMA buffer

R11 increment to use when writing to DMA buffer

4-13

Voice Generators

4-14

Buffer

Buffer

R12 pointer to (start of DMA buffer + interleaf offset)
R13 stack (Return addressis on top of stack)
R14 do not use

Further parameters are available in the SCCB for that channel, which is addressed by
R9. See the section entitled Channel Handler on page 4-10 for details. The usage of the
parameters depends on which of the four entry pointsis called.

The ARM isin IRQ mode with interrupts enabled.

filling: routine conditions

The routine must fill the buffer with 8 bit signed logarithmsin the correct format for
direct output to the VIDC chip:

The ARM isin IRQ mode with interrupts enabled. They must remain enabled to ensure
that system devices do not have a lengthy wait to be serviced. The code for a Voice
Generator must therefore be re-entrant, and R14 must not be used as a subroutine link
register, since an interrupt will corrupt it. Sufficient IRQ stack depth must be maintained
for system IRQ handling. You can enter SVC mode if you wish.

filling: exit conditions

When a Voice Generator has completed a buffer fill it sets aflag bytein RO, and returns
to the Channel Handler using LDMFD R13!,{ PC}. The flag byte shows the status of
each channel, and is used to prioritise fill requests to the Voice Generators.

7 0
Q|K|I'|F|A]|V|F2|F1

Bit Meaning

Q Quiet (GateOff flag)

K Kill pending (GateOn flag)

I Initialise pending (Update flag)

F Fill pending

A Active (normal Fill in progress)

\% oVerrun flag (no longer supported)

F2, F1 2-hit Flush pending counter

The Sound system

Entry points for buffer filling

There are four different entry points for buffer filling, which are used at the different
stages of anote. It isthe responsibility of the Channel Handler to determine which Voice
Generator to call, which entry should be used, and to update the SCCB as necessary
when these calls return.

GateOn entry

The GateOn entry is used whenever a sound command isissued that requires a new
envelope. Normally any previous synthesisis aborted and the algorithm restarted.

On exit athe A hit (bit 3) of the flag byte is set.

Update entry

The Update entry is used whenever a sound command is issued that requires a smooth
change, without a new envelope (using extended amplitudes & 180 to & 1FF in the
*Sound command for example). Normally the previous algorithm is continued, with
only the amplitude, pitch and duration parameters supplied by the SCCB updated.

On exit the A bit (bit 3) of the flag byte is returned unless the voice is to stop sounding;
for example if the envelope has decayed to zero amplitude. In these cases the F2 hit
(bit 1) is set, and the Channel Handler will automatically flush out the next two DMA
buffers, before becoming dormant.

Fill entry

The Fill entry is used when the current sound is to continue, and no new command has
been issued.

On exit it isnormal to return the same flags as for the Update entry.

GateOff entry

The GateOff entry is used to finish synthesising a sound. Simple voices may stop
immediately, which is liable to cause an audible ‘click’; more refined algorithms might
gradually release the note over a number of buffer periods. A GateOff entry may be
immediately followed by a GateOn entry.

On exit the F2 bit (bit 1) is set if the voice is to stop sounding, or the A bit (bit 3) is set if
the voice is still being released.

4-15

Voice instantiation

Voice instantiation

Two entry points are provided to attach or detach avoice generator and a sound channel.
On entry the ARM isin Supervisor mode, and the registers are alocated as follows:

Register Function
RO physical Channel number —1 (0 to 7)
R14 usable

The return address is on top of the stack. All other registers must be preserved by the
routines, which must exit using LDMFD R13!,{pc}

RO is preserved if the call was successful, else it is altered.

Instantiate entry

The Instantiate entry is called to inform the Voice Generator of a request to attach a
channel to it. Each channel attached is likely to need some private workspace. A Voice
Generator should ideally be able to support eight channels. The request can either be
accepted (RO preserved on exit), or rejected (RO altered on exit).

The usual reason for rejection is that an algorithm is slow and is already filling as many
channels as it can within each buffer period: for example very complex algorithms, or
ones that read long samples off disc.

Free entry

4-16

The Free entry is called to inform the Voice Generator of a request to detach a channel
from it. The callmust release the channel and preserve all registers.

The Sound system

Service Calls

Service_Sound
(Service Call &54)

Parts of the Sound system are starting or dying

On entry

RO = DMA Handler starting
DMA Handler dying
Channel Handler starting
Channel Handler dying
Scheduler starting

Scheduler dying
R1 = &54 (reason code)

gabhwNDEFE O

On exit
RO, R1 preserved

Use
This call ismadeto signal that a part of the Sound system is about to start up or finish.

4-17

SWi calls

SWI calls

Sound_Configure
(swi &40140)

Configures the Sound system

On entry

RO = number of channels, rounded upto 1,2,4 or 8

R1 = sample length (in bytes per channel — default 208)

R2 = sample period (ips per channel — default 48)

R3 = pointer to Channel Handler (normally O to preserve system Handler)
R4 = pointer to Scheduler (normally O to preserve system Scheduler)

On exit

RO - R4 = previous values

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This software interrupt is used to configure the number of sound channels, the sample
period and the sample length. It can also be used by specialised applications to replace
the default Channel Handler and Scheduler.

All current settings may be read by using zero input parameters.

The actual values programmed are subject to the limitations outlined earlier.

4-18

The Sound system

Related SWis
None

Related vectors
None

4-19

Sound_Enable (SWI &40141)

Sound_Enable
(swi &40141)

Enables or disables the Sound system

On entry

RO = new state:
0 for no change (read state)
1for OFF
2for ON

On exit

RO = previous state
1for OFF
2 for ON

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This software interrupt is used to enable or disable all Sound interrupts and DMA
activity. This guarantees to inhibit all Sound system bandwidth consumption once a
successful disable has been completed.

Related SWIs
Sound_Speaker (page 4-24), Sound_Volume (page 4-26)

4-20

The Sound system

Related vectors
None

4-21

Sound_Stereo (SWI &40142)

4-22

Sound_Stereo
(swi &40142)

Sets the stereo position of a channel

On entry

RO = channdl (C) to program
R1 = image position:
Oiscentre
127 for maximum right
—127 for maximum left
—128 for no change (read state)

On exit

RO preserved
R1 = previous image position, or —128 if R@ on entry

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Not defined

Use

For N physical channels enabled, this call will program stereo registers C, C+N,
C+2N... up to stereo register 8. For example, if two channels are currently in use, and
channel 1 is programmed, channels 3, 5 and 7 are also programmed; if channel 3 is
programmed, channels 5 and 7 are also programmed, but not channel 1.

This Software call only updates RAM copies of the stereo image registers and the new
positions, in fact, take effect on the next sound buffer interrupt.

IRQ code can call this SWI directly for scheduled image movement.

The Sound system

Related SWis
None

Related vectors
None

4-23

Sound_Speaker (SWI &40143)

Enables or disables the speaker(s)
On entry
RO = new state:
0 for no change (read state)
1for OFF
2for ON
On exit
RO = previous state
1for OFF
2for ON

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

Sound_Speaker
(swi &40143)

This software interrupt enables/disables the monophonic or stereophonic mixed
signal(s) to the internal loudspeaker amplifier(s). It has no effect on the external stereo

headphone/amplifier output.

This SWI disables the speaker(s) by muting the signal; you may still be able to hear a

very low level of sound.

Related SWis

Sound_Enable (page 4-20), Sound_Volume (page 4-26)

4-24

The Sound system

Related vectors
None

4-25

Sound_Volume (SWI &40180)

Sound_Volume
(swi &40180)

Sets the overall volume of the Sound system

On entry
RO = sound volume (1 - 127) (0 to inspect last setting)

On exit

RO = previous volume

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call sets the maximum overall volume of the Sound system. A change of 16 in the
volume will halve or double the volume. The command scal es the internal ookup tables
that Voice Generators use to set their volume; some custom Voice Generators may
ignore these tables and so will be unaffected.

A large amount of calculation isinvolved in thisapparently trivial call. It should be used
sparingly to limit the overall volume; the volume of each channel should then be set
individually.

Related SWIs
Sound_Enable (page 4-20), Sound_Speaker (page 4-24)

Related vectors
None

4-26

The Sound system

Sound_SoundLog
(swi &40181)

Converts a signed integer to a signed logarithm, scaling it by volume

On entry
RO = 32-hit signed integer

On exit
RO = 8-bit signed volume-scaled logarithm

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call maps a 32-bit signed integer to an 8 bit signed logarithm in VIDC format. The
result is scaled according to the current volume setting. Table lookup is used for
efficiency.

Related SWis
Sound_LogScale (page 4-28)

Related vectors
None

4-27

Sound_LogScale (SWI &40182)

Sound_LogScale
(swi &40182)

Scales asigned logarithm by the current volume setting

On entry
RO = 8-hit signed logarithm

On exit
RO = 8-hit signed volume-scaled logarithm

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This software interrupt maps an 8-bit signed logarithm in VIDC format to one scaled
according to the current volume setting. Table lookup is used for efficiency.

Related SWiIs
Sound_SoundL og (page 4-27)

Related vectors
None

4-28

The Sound system

Sound_ InstallVoice
(swi &40183)

Adds a voiceto the Sound system

On entry

RO = pointer to Voice Generator
R1 =voicedot (Otoinstal in next freeslot, else 1 - 32)

On exit

RO = pointer to name of previous voice, or null terminated error string if R1 =0
R1 = voice number allocated, or O if unable to install

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This software interrupt is used by Voice Modules or Libraries to add a \Voice Generator
to the table of available voices. If an error occurs, this SWI does not set V in the usual
manner. Instead R1 is zero on exit, and RO points directly to a null-terminated error
string.

4-29

Sound_InstallVoice (SWI &40183)

4-30

If ROisintherangeO - 3, thiscall takes other action as follows:

RO Action

0 Reads the name of the voice installed in the specified slot

1 Adds avoiceto the Sound system, specifying its name in the
local language

2 Reads the name of the voiceinstalled inthe specified slot, and its
local name

3 Changes thelocal name of the voiceinstalled in the specified slot

Related SWis

Sound_RemoveVoice (page 4-35)

Related vectors
None

Page
4-29
4-29
4-29

4-29

The Sound system

Sound_ InstallVoice O
(swi &40183)

Reads the name of the voice installed in the specified slot

On entry

RO=0
R1 = voice dot

On exit

RO = pointer to name of installed voice
R1 preserved

Use

This call reads the name of the voice installed in the specified dlot. If the slot is unused
RISC OS gives a null pointer. (The Arthur OS gave a pointer to the string *** No

\oice'.)

4-31

Sound_InstallVoice 1 (SWI &40183)

4-32

Sound_InstallVoice 1
(swi &40183)

Adds avoiceto the Sound system, specifying its name in the local language

On entry

RO=1

R1 =voicedot (Otoinstal in next freeslot, else 1 - 32)

R2 = pointer to Voice Generator

R3 = pointer to voice name in local language, or 0 if no local name

On exit

Use

RO preserved

R1 = voice number alocated, or 0 if unable to install

R2 = pointer to name of previous voice, or null terminated error string if R1 =0
R3 preserved

This software interrupt is used by Voice Modules or Libraries to add a Voice Generator
to the table of available voices, specifying its name in the local language. If an error
occurs, this SWI does not set V in the usual manner. Instead R1 is zero on exit, and RO
points directly to a null-terminated error string.

Thisreason code is not available in RISC OS 2.

The Sound system

Sound_ InstallVoice 2
(swi &40183)

Reads the name of the voice installed in the specified slot, and its local name

On entry

RO=2
R1 = voice dot

On exit

RO, R1 preserved
R2 = pointer to name of installed voice
R3 = pointer to name of installed voice in local language

Use

This call reads the name of the voiceinstalled in the specified slot, and itslocal name. If
the slot is unused RISC OS gives anull pointer. (The Arthur OS gave a pointer to the
string “*** No Voice’.) The local name is otherwise guaranteed to be non-null and valid.

This reason code is not available in RISC OS 2.

4-33

Sound_InstallVoice 3 (SWI &40183)

Sound_ InstallVoice 3
(swi &40183)

Changes the local name of the voice installed in the specified slot

On entry

RO=3

R1 = voice slot

R2=0

R3 = pointer to new voice name in local language

On exit
RO - R3 preserved

Use

This call changes the local name of the voiceinstalled in the specified slot. The local
name s set to the new name given, even if it had no local name before this call was
made.

Thisreason code is not available in RISC OS 2.

4-34

The Sound system

Sound_RemoveVoice
(swi &40184)

Removes a voice from the Sound system

On entry

R1 = voice ot to remove (1 - 32)

On exit

RO = pointer to name of previous voice (or error message)
R1 isvoice number de-allocated (O for FAIL)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy

Not defined

Use
This software interrupt is used when Voice Modules or Libraries are to be removed from
the system. It notifies the Channel Handler that a RAM-resident Voice Generator is
being removed. If an error occurs, this SWI does not set V in the usual manner. Instead
R1iszero on exit, and RO points directly to a null-terminated error string.
This call must also be issued before the Relocatable Module Areaiis Tidied, since the
modul e contains absol ute pointers to Voice Generators that are likely to exist in the
RMA.

Related SWis

Sound_InstallVoice (page 4-29)

4-35

Sound_RemoveVoice (SWI &40184)

Related vectors
None

4-36

The Sound system

Sound_AttachVoice
(swi &40185)

Attaches a voice to a channel

On entry

RO = channel number (1 - 8)
R1 = voice dot to attach (0 to detach and mute channel)

On exit

RO preserved (or O if illegal channel number)
R1 = previous voice number (or O if not previously attached)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call attaches a voice with a given slot number to achannel. The previous voiceis
shut down and the new voice is reset.

Different algorithms have different internal state representations so it is not possible to
swap Voice Generators in mid-sound.

Related SWIs
Sound_AttachNamedVoice (page 4-43)

Related vectors
None

4-37

Sound_ControlPacked (SWI &40186)

4-38

Sound_ControlPacked
(swi &40186)

Makes an immediate sound

On entry

RO isAAAACCCC Amp/Channel
R1is DDDDPPPP Duration/Pitch

On exit
RO,R1 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

Thiscall isidentical to Sound_Control (page 4-41), but the parameters are packed 16-bit
at atimeinto low RO, high RO, low R1, high R1 respectively. It is provided for BBC
compatibility and for the use of the Scheduler. The Sound_Control call should beused in
preference where possible.

Related SWiIs
Sound_Control (page 4-41)

Related vectors
None

The Sound system

Sound_Tuning
(swi &40187)

Sets the tuning for the Sound system

On entry
RO = new tuning value (or O for no change)

On exit
RO = previous tuning value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use
This call sets the tuning for the Sound system in units of 1/4096 of an octave.
The command * Tuning O may be used to restore the default tuning.

Related SWis
None

Related vectors
None

4-39

Sound_Pitch (SWI &40188)

4-40

Sound_Pitch
(swi &40188)

Converts a pitch to internal format (a phase accumulator value)

On entry

RO = 15-bit pitch value:
bits 14 - 12 are a 3-bit octave humber
bits 11 - 0 are a 12-bit fraction of an octave (in units of 1/4096 octave)

On exit
RO = 32-bit phase accumulator value, or preserved if RO = & 8000 on entry

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy

Not defined

Use
This software interrupt maps a 15-bit pitch to an internal format pitch value (suitable for
the standard voice phase accumulator oscillator).

Related SWis

None

Related vectors
None

The Sound system

Sound_Control
(swi &40189)

Makes an immediate sound

On entry
RO = channel number (1 - 8)
R1 = amplitude:
& FFF1 - & FFFF and O for BBC emulation amplitude (O to -15)
& 0001 - &000F BBC envelope not emulated
& 0100 - & 01FF for full amplitude/gate control:
bit 7is 0 for gate ON/OFF
1 for smooth update (gate not retriggered)
bits 6 - 0 are 7-bit logarithm of amplitude
R2 = pitch

& 0000 - &00FF for BBC emulation pitch
& 0100 - & 7FFF for enhanced pitch control:
bits 14 - 12 = 3-hit octave
bits 11 - 0 = 12-hit fractional part of octave
(&4000 is nominally Middle C)
&8000 +n ‘n’ (in range O - &7FFF) is phase accumulator increment
R3 = duration
&0001 - &00FE for BBC emulation in 5 centisecond periods
&O00FF for BBC emulation ‘infinite’ time (converted to &F0000000)
> &00FF for duration in 5 centisecond periods.

On exit
RO - R3 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

4-41

Sound_Control (SWI &40189)

Re-entrancy
Not defined

Use

This call allows real-time control of a specified Sound Channel. The parameters are
immediately updated and take effect on the next buffer fill.

Gate on and off correspond to the start and end of a note and of its envelope (if
implemented). ‘Smooth’ update occurs when note parameters are changed without

restarting the note or its envelope — for example when the pitch is changed to achieve a
glissando effect.

If any of the parameters are invalid the call does not generate an error; instead it returns
without performing any operation.

Related SWis
Sound_ControlPacked (page 4-38)

Related vectors
None

4-42

The Sound system

Sound_AttachNamedVoice
(swi &4018A)

Attaches a named voice to a channel

On entry

RO = channel number (1 - 8)
R1 = pointer to voice name (ASCII string, null terminated)

On exit

RO is preserved, or O for fail
R1is preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy
Not defined

Use

This call attaches a named voice to a channel. If no exact match for the name is found
then an error is generated and the old voice (if any) remains attached. If amatch isfound
then the previous voice is shut down and the new voice is reset.

Different algorithms have different internal state representations so it is not possible to
swap Voice Generators in mid-sound.

Related SWIs
Sound_AttachVoice (page 4-37)

Related vectors
None

4-43

Sound_ReadControlBlock (SWI &4018B)

4-44

Sound_ReadControlBlock
(swi &4018B)

Reads a value from the Sound Channel Control Block

On entry

RO = channel number (1 - 8)
R1 = offset to read from (0 - 255)

On exit

RO preserved (or 0 if fail, invalid channel, or invalid read offset)
R1 preserved
R2 = 32-bit word read (if RO non-zero on exit)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

Thiscall reads 32-bit data val ues from the Sound Channel Control Block (SCCB) for the
designated channel. This call can be used to read parameters not catered for in the
Sound_Control calls returned by Voice Generators, using an area of the SCCB reserved
for the programmer.

Related SWIs
Sound_WriteControl Block (page 4-45)

Related vectors
None

The Sound system

Sound_WriteControlBlock
(swi &4018C)

Writes a value to the Sound Channel Control Block

On entry

RO = channel number (1 - 8)
R1 = offset to write to (0 - 255)
R2 = 32-bit word to write

On exit

RO preserved (or O if fail, invalid channel, or invalid write offset)
R1 preserved
R2 = previous 32-bit word (if RO non-zero on exit)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call writes 32-bit data values to the Sound Channel Control Block (SCCB) for the
designated channel. This call can be used to pass parameters not catered for in the
Sound_Control callsto Voice Generators, using an area of the SCCB reserved for the
programmer.

Related SWIs
Sound_ReadControlBlock (page 4-44)

4-45

Sound_WriteControlBlock (SWI &4018C)

Related vectors
None

4-46

The Sound system

Sound_QlInit
(swi &401CO0)

Initialises the Scheduler’s event queue

On entry
No parameters passed in registers

On exit
RO = 0, indicating success

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Not defined

Use

This call flushes out all events currently scheduled and re-initialises the event queue.
The tempo is set to the default, the beat counter is reset and disabled, and the bar length
set to zero.

Related SWis
None

Related vectors
None

4-47

Sound_QSchedule (SWI &401C1)

Sound_QSchedule
(swi &401C1)

Schedules a sound SWI on the event queue

On entry

RO = schedule period
—1 to synchronise with the previously scheduled event
-2 for immediate scheduling
R1 = 0 to schedule a Sound_ControlPacked call, or SWI code to schedule (of the form
&xF000000 + SWI number)
R2 = SWI parameter to be passed in RO
R3 = SWI parameter to be passed in R1

On exit

RO = 0 for successfully queued
RO < O for failure (queue full)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Not defined

Use

This call schedules a sound SWI call. If the beat counter is enabled the schedule period
is measured from the last start of a bar, otherwise it is measured from the time the call is
made.

A schedule time of —1 forces the new event to be queued for activation concurrently with
the previously scheduled one.

4-48

The Sound system

The event istypically a Sound_Control Packed type call, although any other sound SWI
may be scheduled. There are limitations. R2 - R7 are always cleared, and any return
parameters are discarded. If pointers are to be passed in RO or R1 then any associated
datamust still remain when the SWI is called (the workspace involved must not have
been reused, the Window Manager must not have paged it out, and so on).

Related SWis
Sound_QFree (page 4-51)

Related vectors
None

4-49

Sound_QRemove (SWI &401C2)

Sound_QRemove
(swi &401C2)

This SWI call isfor use by the Scheduler only. You must not useit in your own code.

4-50

The Sound system

Sound_QFree
(swi &401C3)

Returns minimum number of free slotsin the event queue

On entry
No parameters passed in registers

On exit

RO = number of guaranteed slots free
RO < O indicates over worst case limit, but may still be free dots

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy

Not defined

Use
This call returns the minimum number of slots guaranteed free. The cal culation assumes
the worst case of data structure overheads that could occur, so it islikely that more slots
canin fact be used. If this guaranteed free slot count is exceeded this call will return
negative values, and the return status of Sound_QSchedule must be carefully monitored
to observe when overflow occurs.

Related SWis

Sound_QSchedule (page 4-48)

Related vectors
None

4-51

Sound_QSDispatch (SWI &401C4)

Sound_QSDispatch
(swi &401C4)

This SWI call isfor use by the Scheduler only. You must not useit in your own code.

4-52

Sets the tempo for the Scheduler

On entry

RO = new tempo (or O for no change)

On exit

RO = previous tempo value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

The Sound system

Sound_QTempo
(swi &401C5)

This command sets the tempo for the Scheduler. The default tempo is & 1000, which
corresponds to one beat per centisecond; doubling the value doubles the tempo (ie
& 2000 gives two beats per centisecond), while halving the value halves the tempo (ie

& 800 gives half abeat per centisecond).

The parameter can be thought of as a hexadecimal fractional number, where the three

least significant digits are the fractional part.

Related SWis
Sound_QBeat (page 4-54)

Related vectors
None

4-53

Sound_QBeat (SWI &401C6)

4-54

Sound_QBeat
(swi &401C6)

Sets or reads the beat counter or bar length

On entry

RO = 0 to return current beat number

RO = -1 to return current bar length

RO < -1 to disable beat counter and set bar length 0

RO = +N to enable beat counter with bar length N (counts 0 to N-1)

On exit
RO = current beat number (RO = 0 on entry), otherwise the previous bar length.

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Not defined

Use

The simplest use of this call is to read either the current value of the beat counter or the
current bar length.

When the beat counter is disabled both it and the bar length are reset to zero. All
scheduling occurs relative to the time the scheduling call is issued.

When the beat counter is enabled it is reset to zero. It then increments, resetting every
time it reaches the programmed bar length (N-1). Scheduling using Sound_QSchedule
then occurs relative to the last bar reset; however, scheduling using *QSound is still
relative to the time the command is issued.

The Sound system

Related SWis
Sound_QTempo (page 4-53)

Related vectors
None

4-55

Sound_QiInterface (SWI &401C7)

Sound_QiInterface
(swi &401C7)

This SWI call isfor use by the Scheduler only. You must not useit in your own code.

4-56

The Sound system

* Commands
*Audio

Turns the Sound system on or off

Syntax
*Audi o On| OF f

Parameters
Onor O f

Use

* Audio turns the Sound system on or off. Turning the Sound system off silencesit
completely, stopping al Sound interrupts and DMA activity. Turning the Sound system
back on restores the Sound DMA and interrupt system to the state it was in immediately
prior to being turned off.

All Channel Handler and Scheduler activity is effectively frozen during the time the
Audio system is off, but software interrupts are still permitted, even if no sound results.

Example
*Audi o On

Related commands
* Speaker, *Volume

Related SWIs
Sound_Enable (page 4-20)

Related vectors
None

4-57

*ChannelVoice

4-58

Syntax

*ChannelVoice

Assigns avoice to a channel

*Channel Voi ce channel voi ce_nunber| voi ce_nane

Parameters
channel 1to8
voi ce_nunber 1to 16, as given by *Voices; or 0 to mute the channel
voi ce_nane name, as given by *Voices

Use

* Channel Voice assigns a voice (sound) to one of the eight independent channel s used for
sound output. It is better to specify the voice by name rather than by number, since the

name is independent of the order in which the voices are loaded. Note that the nameis

case sensitive. Alternatively, you can mute a channel by assigning it avoice slot of 0.

By default, only the first of the eight voiceswill be available. To make others available,
use the SWI Sound_Configure, or enter BASIC and type

>VA CES n

wherenis 2, 4 or 8 (the number of sound channels to enabl€e). Do not, however, confuse
the VOICES command in BASIC with *Voi ces, the command described in this manual.

Example

*Channel Voice 1 StringLi b-Pl uck

Related commands

* Stereo, *Voices

Related SWis

Sound_Configure (page 4-18), Sound_AttachVoice (page 4-37),
Sound_AttachNamedVoice (page 4-43)

Related vectors

None

The Sound system

*Configure SoundDefault

Sets the configured speaker setting, volume and voice

Syntax
*Configure SoundDefault speaker vol une voi ce_nunber

Parameters
speaker 0 to disable the internal loudspeaker(s) — although the
headphones remain enabled
1 to enable the internal loudspeaker(s)
vol une 0 (quietest) to 7 (loudest)
voi ce_nunber 1to 16, as given by *\Voices
Use

*Configure SoundDefault sets the configured speaker setting, volume and voice. The
voice number is assigned to channel 1 only (the default system Bell channel).

Example
*Configure SoundDefault 1 7 1

Related commands
None

Related SWis
None

Related vectors
None

4-59

*QSound

*QSound

Generates a sound after a given delay

Syntax
*@Sound channel anplitude pitch duration beats

Parameters
channel 1to8
anpl it ude 0 (silent) and & FFFF (almost silent) down to & FFF1 (loud)

for a linear scale — or
&100 (silent) to &17F (loud) for a logarithmic scale, where a
change of 16 will halve or double the amplitude
pitch 0 to 255, where each unit represents a quarter of a semitone,
with a value of 53 producing middle C — or
256 (&100) to 32767 (&7FFF), where the bottom 12 bits
give the fraction of an octave, and the top three bits the
octave, with a value of 16384 (&4000) producing middle C
duration 0to 32767 (&7FFF), giving the duration of the note in
twentieths of a second — but a value of 255 (&FF) gives a
note of infinite duration (limited by the envelope, if present)
beat s beats delay before the sound is generated, occurring at the
rate set by *Tempo

Use
*QSound generates a sound after a given delay. It is identical in effect to issuing a
*Sound command after the specified number of beats have occurred. The channel will
only sound if at least that number of channels have been selected, and the channel has a
voice attached.

Example

*QSound 1 &FFF2 &5800 10 50

Related commands
*Sound, *Tempo

4-60

The Sound system

Related SWis
Sound_QSchedule (page 4-48)

Related vectors
None

4-61

*Sound

4-62

Syntax

Parameters
channel
anpl it ude
pitch
duration

Use

*Sound

Generates an immediate sound

*Sound channel anplitude pitch duration

1to8

0 (silent) and & FFFF (almost silent) down to & FFF1 (loud)

for a linear scale — or

&100 (silent) to &17F (loud) for a logarithmic scale, where a
change of 16 will halve or double the amplitude

0 to 255, where each unit represents a quarter of a semitone,
with a value of 53 producing middle C — or

256 (&100) to 32767 (&7FFF), where the bottom 12 bits
give the fraction of an octave, and the top three bits the
octave, with a value of 16384 (&4000) producing middle C
0to 32767 (&7FFF), giving the duration of the note in
twentieths of a second — but a value of 255 (&FF) gives a
note of infinite duration (limited by the envelope, if present)

*Sound generates an immediate sound. The channel will only sound if at least that
number of channels have been selected, and the channel has a voice attached.

Example
*Sound 1 &FFF2 &5800 10

Related commands

*QSound

Related SWIs
Sound_ControlPacked (page 4-38), Sound_Control (page 4-41)

The Sound system

Related vectors
None

4-63

*Speaker

*Speaker

Turns the internal speaker(s) on or off

Syntax
*Speaker On| OF f

Parameters
Onor O f

Use

* Speaker turnsthe internal speaker(s) on or off. It does not affect the 3.5 mm stereo jack
socket, which you can still use to play the sound through headphones or an amplifier.

You may still be able to hear avery low level of sound, as this command mutes the
speaker(s) rather than totally disabling them.

Example
*Speaker O f

Related commands
* Audio, *Volume

Related SWIs
Sound_Speaker (page 4-24)

Related vectors
None

4-64

The Sound system

*Stereo
Sets the position in the stereo image of a sound channel
Syntax
*Stereo channel position
Parameters
channel 1to8
position —127(full left) to +127(full right)
Use
*Stereo sets the position in the stereo image of a sound channel.
Example
*Stereo 2 100 set channel 2 output to come predominantly from the right

Related commands
*ChannelVoice, *Voices

Related SWis
Sound_Stereo (page 4-22)

Related vectors
None

4-65

*Tempo

*Tempo
Sets the tempo for the Scheduler

Syntax
*Tenpo tenpo

Parameters
t enpo 0 to & FFFF (default & 1000)

Use

*Tempo setsthe Sound system tempo (the rate of the beat counter). The default tempois
& 1000, which corresponds to one beat per centisecond; doubling the value doubles the
tempo (so & 2000 gives two beats per centisecond), while halving the value halves the
tempo (so & 800 gives a beat every two centiseconds).

Example
*Tenpo &1200

Related commands
*QSound

Related SWiIs
Sound_QTempo (page 4-53)

Related vectors
None

4-66

The Sound system

*Tuning
Altersthe overall tuning of the Sound system

Syntax
*Tuni ng rel ati ve_change

Parameters
rel ati ve_change —-16383to 16383 (0 resets the default tuning)

Use
*Tuning alters the overall tuning of the Sound system. A value of zero resets the default
tuning. Otherwise, the tuning is changed relative to its current value in units of 1/4096 of
an octave.

Example
*Tuni ng 64

Related commands
None

Related SWis
Sound_Tuning (page 4-39)

Related vectors
None

4-67

*\oices

*\oices

Displaysalist of theinstalled voices

Syntax
*\Voi ces

Parameters
None

Use

*Voices displays alist of the installed voices by name and number, and shows which
voiceisassigned to each of the eight channels. A voice can be attached to a channel even
if that channel is not currently in use.

Example

*\Voi ces

Voi ce Nane
WaveSynt h- Beep
Stri ngLi b- Sof t
StringLi b- Pl uck
StringLi b- St eel
StringLi b-Hard
Per cussi on- Sof t
Per cussi on- Medi um
Per cussi on- Snar e
Per cussi on- Noi se
ANNANANN - Channel Al l ocation Map

12
34

56

78

O©CoOoO~NOOOTA,WNPE

Related commands
* Channel Voice, * Stereo

Related SWis
Sound_InstallVoice (page 4-29)

Related vectors
None

4-68

The Sound system

*\/olume

Sets the maximum overall volume of the Sound system

Syntax

*Vol une vol une

Parameters
vol une 1 (quietest) to 127 (loudest)

Use

*Volume sets the maximum overall volume of the Sound system. A change of 16 in the
volume parameter will halve or double the actual volume.

The command scales the internal ookup tables that Voice Generators use to set their
volume (Some custom Voice Generators may ignore these tables and so will be
unaffected.) A large amount of calculation isinvolved in this. You should therefore use
this command sparingly, and only to limit the overall volume of al channels; if asingle
channel is too loud or soft, you should alter just that channel’s volume.

Example
*Vol ume 127

Related commands

*Audio, *Configure SoundDefault, *Speaker

Related SWis
Sound_Volume (page 4-26)

Related vectors
None

4-69

Application notes

Application notes

The most likely change to the Sound system is to add Voice Generators, thus providing
an extrarange of sounds. Each Voice Generator must conform to the specifications given
earlier in the section entitled Voice Generators on page 4-13, and those given below. The
speed and efficiency of Voice Generator algorithms is paramount, and requires careful
attention to coding; some suggested code fragments are given to help you.

Codewill not run fast enough in ROM, so ROM templates or user code templates must
be copied into the Relocatable Module Area where they will execute in fast sequential
RAM. If the RMA isto betidied, al installed voices must be removed using the
Sound_RemoveVoice cal, then reinstalled using the Sound_InstallVoice call.

Voice libraries are an efficient way of sharing common code and data areas; these must
be built as Relocatable Modules which install sets of voices, preferably with some form
of library name prefix.

Buffer filling algorithms

The Channel Handler sets up three registers (R12,11,10) which give the start address,
increment and end address for correct filling with interleaved sound samples. The
interleave increment hasthevalue 1, 2, 4 or 8, and is equal to the number of channels.
This codeis an example of how these registers should be used:

.l oop

; e.g. formVIDC format 8 bit signed log in Rs
STRB Rs,[R12],R11 ; store, and bunp ptr

CWPS R12, R10 ; check for end

BLT | oop ; and loop until fill conplete

The DMA buffer is always amultiple of 4 words (16 bytes) long, and word aigned.

L oop overheads can therefore be cut down by using two byte store operations. A further
improvement is possible if R11, the increment, is one; thisimplies that values are to be
stored sequentially, so word stores may be used.

Example code fragments

4-70

The fundamental operations performed by nearly all voice generatorsinvolve
Oscillators, Table lookup and Amplitude modulation. In addition, some a gorithms
(plucked string and drum in particular) require random bit generators. Simple in-line
code fragments are briefly outlined for each of these.

The Sound system

In all cases the aim isto produce the most efficient, and wherever possible highly
sequential, ARM machine code. In most algorithms the aim must be to get as many
working variables into registers as possible, and then adapt the synthesis algorithms
wherever possible to use the high-speed barrel shifter to effect.

Oscillator coding

The accumulator-divider is the most useful type of oscillator for most voices. A
frequency increment is added to a phase accumulator register and the high-order bits of
the resulting phase provide the index to awavetable. Alternatively, the top byte can be
directly used as a sawtooth waveform.

The frequency of the oscillator islinearly related to the frequency increment. Vibrato
effects can be obtained by modul ating the frequency increment

Sixteen-bit registers provide good audible frequency resolution, and are used in many
digital hardware synthesizer products. The 32-hit register width of the ARM isidedlly
split 16/16 hits for phase/increment.

Schematically

frequency increment

Sawtooth/
ADD > Index

phase accumulator

16

Figure 72.1 Schematic of accumulator/divisor oscillator

Coding
Register field assignment: Rp
31 1615 0

Phase Accumulator Increment

ADD Rp, Rp, Rp, LSL #16 ; phase accunul ate

4-71

Wavetable access coding

Changing parameters or the voice table being used is best done at or close to
Zero-crossing points, to avoid noise generation. If wavetables are arranged with
zero-crossing aligned to the start and end of the table then it is simpleto add abranch to
appropriate code.

ADDS Rp, Rp, Rp, LSL #16 ; phase accumnul at e
BCS Update ; only take branch if past zero crossing

Wavetable access coding

Normally fixed-length (256-byte or alarger power of two) wavetables are used by most
voice generator modules. The high bits of the phase accumulator are added to a
wavetable base pointer to access the sample byte within the table:

Schematically
For a 256-byte table:

8
phase accumulator 74>
ADD 32 [Table]
(byte fetch)
32
wavetable base pointer 74>

Figure 72.2 Schematic of wavetable access code

Coding
LDRB Rs, [Rt, Rp, LSR #24]

where the most significant 8 bits of Rp contain the Phase index, Rt isthe Table base
pointer, and Rsis the register used to store the sample.

Amplitude modulation coding

The amplitude of the resultant byte may be altered for three reasons: firstly to scale for
the overall volume setting, secondly to scale for the channel’s volume setting, and lastly
to provide enveloping.

4-72

The Sound system

Overall volume

If the overall volume setting changes, then your Update entry point will be called. You
can cope with the change in two ways. Thefirst isto re-scale al the valuesin the
wavetable, using the SWI calls Sound_SoundL og or Sound_L ogScale. This hasthe
advantage that buffer filling is faster as the values are aready scaled, but has the
disadvantage that the wavetables might be stored to alower resolution resulting in
increased noise levels.

The aternative is to re-scale the val ues between reading them from the wavetable and
outputting them, as in the example voice given later. The reverse then applies: buffer
filling is slower, but noise is reduced. This method is preferred, so long as the algorithm
is still ableto fill the buffer within the required period.

Channel volume

The channel’s volume setting should be used by all well-behaved Voice Generators. The
volume is passed to the Voice Generator by the Channel Handler in the SCCB, as a
signed 8 bit logarithm, but in a different format to that used by the VIDC chip:

Amplitude Byte Data Format:

7 6 5 4 3 2 1 0
0 Logarithm

VIDC 8-bit sample format:

7 6 5 4 3 2 1 0
Logarithm S

Sign
bit

Coding
The coding is easiest if the values are treated as fractional quantities, and is then reduced
to subtracting logarithms and checking for underflow:

Ra contains amplitude in range 0 to 127
Rs contains sample data in range —127 to +127 [sign bit LSB]

4-73

Envelope coding

; do this each tine Voice Generator is entered
RSB Ra, Ra, #127 ; make attenuation factor

; do this inside |oop, before each wite to buffer
SUBS Rs, Rs, Ra, LSL #1 ; note shift to convert to VIDC fornat
MOVM Rs, #0 ; correct for underflow

Note — The example voice shows how this can be combined with use of the
volume-scaled lookup table to scale for both the overall and channel volume on each fill.

Envelope coding

Envelopes (if used) must be coded within the Voice Generator. A lookup table must be
defined giving the envelope shape. Thisisthen accessed in a similar manner to a
wavetable, using the timbre phase accumulator passed in the SCCB. The sample byteis
then scaled using this value, as shown above.

If you continue after a gate off, you must store your own copy of the volume, as any
value in the SCCB will be overwritten.

Linear to logarithmic conversion

Algorithms which work with linear integer arithmetic may use the Channel Handler
linear-log table directly to fill buffers efficiently. Thetableis 8 Kbytein length, to allow
the full dynamic range of the VIDC sound digital to analogue converter to be utilised.
The format is chosen to alow direct indexing using barrel-shifted 32-bit integer values.
The valuesin the table are scaled according to the current volume setting.

Coding

4-74

; to access the | ookup table pointer during initialisation:

MoV RO, #0
MoV R1, #0
MoV R2, #0
MoV R3, #0 ; get Channel Handl er base
MoV R4, #0
SwW " XSound_Confi gure"
BVS error_return
LDR R8,[R3,#8] ; lin-to-1og pointer

; inline buffer filling code:

; linear 32-bit value in RO
LDRB RO, [R8, RO, LSR #19] ; lin -> log
STRB RO, [R12], R11 ; output to DVA buffer

The Sound system

Random bit generator code

An efficient pseudo-random hit generator can be implemented using two internal
registers. This provides noise which is necessary for some sounds, percussion in
particular. Oneregister is used as amulti-tap shift register, loaded with a seed value; the
second isloaded with an XOR bit mask constant (& 1D872B41). The sequence produced
has a length of 4294967295. The random carry bit setting by the simple code fragment
outlined below allows conditional execution on carry set (or cleared):

Coding

MOVS R8,R8,LSL #1 ; set randomcarry
EORCS R8, R8, R9

XXXCC ; do this...

yyyCS ; ...or alternately this

4-75

Example program

Example program

This program shows a complete Voice Generator. It builds awavetable containing asine
wave at maximum amplitude. Scaling is performed when the table is read:

REM - > WaveVoi ce

DI M WaveTabl e% 255
DI M Code% 4095

SYS " Sound_Vol une", 127 TO User Vol une
FOR s%0 TO 255
SYS " Sound_SoundLog", & FFFFFFF* SI N(2* Pl *s% 256) TO WaveTabl e%®s%
NEXT s% : REM build sanples at full volunme
SYS " Sound_Vol une", User Vol ume TO User Vol une
REM and restore volume to value on entry

FOR C=0 TO 2 STEP 2
PY%=Code%
[OPT C

ckkkkkkkhhkkkhhhhhhhhhhhhhkhkkkk Ak kA kk k&
’

x VO CE CO- ROUTI NE CODE SEGVENT *

IR SRR R RS EE RS SRR SR EEEEEREREEEEEEEEEEEESEESESE]

; On installation, point Channel Handl er voice
; pointers to this voice control block

; (return address always on top of stack)

. Voi ceBase
B Fill
B Fill ; update entry
B Gat eOn
B Gat eOf f
B I nstance ; Instantiate entry
LDMFD R13!, { PC} ; Free entry
LDMFD R13!, {PC} ; Initialise

EQUD Voi ceNane - Voi ceBase

. Voi ceNanme EQUS "WaveVoi ce"
EQUB 0
ALI GN
:**********'}r***************************
. LogAmpPtr EQUD O
.WaveBase EQUD WaveTabl e%

Ckkkkkhkkkhkkhh Kk hhhhhhhkhhkhhkhkhkk Ak kkkk k%
’

.Instance ; any instance nust use volune scaled |og anp table

STM-D R13!, { RO- R4} ; save registers

MoV RO, #0

MoV R1, #0

MoV R2, #0

MoV R3, #0

MoV R4, #0

SW " XSound_Conf i gure"

LDRVC RO, [R3, #12] ; get address of volune scaled |l og anp table
STRVC RO, LogAnpPt r ; and store

4-76

The Sound system

STRVS RO, [R13] ; return error pointer
LDVFD R13!, { RO- R4, PC} ; restore registers and return

Ckk kR KRR KR AR Ak Kk hkkkhkhkhkkhhhkkhkkkkhkkkkkk
’

-k

VO CE BUFFER FI LL ROUTI NES *

B R
’

. Fi

on entry:
ro0-r8 avail abl e
r9 is SoundChannel Control Bl ock pointer
r10 DVA buffer limt (+1)
r1l1 DVA buffer interleave increnent
r12 DVA buffer base pointer
r13 Sound system Stack with return address and fl ags
on top (nust LDMFD R13!,{...,pc}
NOr14 - IRQ are enabled and r14 is not usable

. GateOn
LDR RO, WaveBase . wavet abl e base
STR RO, [R9, #16] ; set up in SCCB as working register 5
LDR RO, LogAnpPt r ; volume scaled log anp table
STR RO, [R9, #20] ; set up as working register 6
;*-k-k**-k**-k-k***'}r************************
CFi Ll
LDM A R9, {Rl- R6} ; pick up working registers from SCCB
AND R1, R1, #&7F ; mask R1 so only channel anplitude renains
Rl is amp (0-127) R2 is pitch phase acc
R3 is tinbre phase acc R4 is duration
R5 is wavetabl e base R6 is anp table base
; nmove sign bit -> VIDC format | og
LDRB R1,[R6, RLl, LSL #1] ; and | ookup anp scal ed to overall vol une
MoV R1, R1, LSR #1 ; move sign bit back again
RSB R1, R1, #127 ; make attenuation factor
i1l Loop
ADD R2, R2, R2, LSL #16 ; advance waveform phase
LDRB RO, [R5, R2, LSR #24] ; get wave sanple
SUBS RO, RO, R1, LSL #1 ; scale anplitude for overall & channel vol unes
MOVM RO, #0 ; and correct underfl ow
STRB RO, [R12], R11 ; generate output sanple
ADD R2, R2, R2, LSL #16 ; repeated in line four tines...
LDRB RO, [R5, R2, LSR #24]
SUBS RO, RO, R1, LSL #1
MOVM RO, #0
STRB RO, [R12], R11
ADD R2, R2, R2, LSL #16
LDRB RO, [R5, R2, LSR #24]
SUBS RO, RO, R1, LSL #1
MOVM RO, #0
STRB RO, [R12], R11
ADD R2, R2, R2, LSL #16
LDRB RO, [R5, R2, LSR #24]
SUBS RO, RO, R1, LSL #1
MOVM RO, #0
STRB RO, [R12], R11 ; end of repeats...
CWVP R12, R10 ; check for end of buffer fill
BLT Fi Il Loop ; loop if not
check for end of note
SUBS R4, R4, #1 ; decrenent centisec count

4-77

Example program

STM B R9, { R2- R5} ; save registers to SCCB
MOVPL RO, #%0001000 ; voice active if still duration left
MOVM RO, #40©0000010 ; else force flush
LDMFD R13!, {PC} ; return to level 1
;**************************************
.GateOr f
MoV RO, #0
. Fl ushLoop
STRB RO, [R12], R11 ; fill buffer with zeroes
STRB RO, [R12], R11
STRB RO, [R12], R11
STRB RO, [R12], R11
cwP R12, R10
BLT Fl ushLoop
; CAUSE level 1 TO FLUSH once nore
MOV RO, #%4©0000001 ; set flag to flush one nore buffer
LDMFD R13!, {PC} ; return to level 1
]

NEXT C

DI M O dVoi ce% 8)
SYS " Sound_I nstal | Voi ce", Voi ceBase, 0 TO a% Voi ce%
FOR v%1 TO 8
SYS " Sound_AttachVoice",v% 0 TO z% O dVoi ce% v%
VA CE v% "WaveVoi ce"
NEXT

ON ERROR PROCRest oreSound : END

VO CES 8

*voi ces

SOUND 1, &17F, 53,10 : REM activate channel 1!
PRINT™any key to make a noise, <ESCAPE> to finish"

C%=1
REPEAT
K%=INKEY(1)
IF K%>0 THEN
SOUND C%,&17F,K%,100
C%+=1: IF C%>8 THEN C%=1
ENDIF
UNTIL O

DEF PROCRestoreSound
ON ERROR OFF
REPORT:PRINT ERL
SYS "Sound_RemoveVoice",0,Voice%
FOR v%=1TO 8
SYS "Sound_AttachVoice",v%,0ldVoice%(v%)
NEXT
VOICES 1
*voices
PRINT”
ENDPROC

4-78

73 WaveSynth

Introduction

WaveSynth is a module that provides a voice generator which is used for the default
system bell.

In RISC OS 2 WaveSynth provided a SWI for its own internal use. This has since been
removed.

For more information about the use of sound in RISC OS, refer to the chapter entitled
The Sound system on page 4-3.

4-79

Example programs

Example programs

You can create new wavetables for use with WaveSynth, for example:

REM > OrganVoi ce

QUTFI LE$="Or ganO1"

QUT=0PENOUT QUTFI LE$

BPUT#QUT, " ! WI': Or gan” +STRI NG5(7, CHR$0) ;
si zept r =PTR#QUT

PROCW(0)

FORI %=1TC08: PROCW(8) : NEXT

PROCW(13) : PROCW(0) : PROCW(0)

PROCHDR

si ze=EXT#OUT

PTR#QUT=si zept r : PROCW(si ze)

CLOSE#QOUT

REM Pass | ocal name Orgel as paraneter on command |ine
*RVREI NI T WAVESYNTH ORGANO1 Or gel

END

DEFPROCW(X%

LOCALI %

FORI 9%=1TO4: BPUT#OUT, X% X%=X%>8: NEXT
ENDPROC

DEFFNW
RESTORE
DATA 1,1, 0.8,2, 0.6,4, 0.4,8, 0.2,16: REM anplitude, frequency
DATA 0,0
M=0
REPEAT
READ A$, H$: A=EVALA$
IF A>0 THEN M+=A
UNTI L A=0
Me&7FFFFFFF/ M
RESTORE
B=0
REPEAT
READ A$, H$: A=EVALA$: H=EVALH$
I F A>0 THEN B+=FNSI N(A*M H)
UNTI L A=0
=B

DEFFNSI N(A, F) =A* SI N(F* 2* Pl *s% 256)

4-80

WaveSynth

DEFPROCHDR
MODEO
ORI G NO, 512
MOVEQ, 0
RESTORE+0
FORI %=1TOL4: READJ$: PROCW EVALJS$) : NEXT
PTR#OQUT=256
FOR s%0 TO 255
BY%=FNW
SYS " Sound_SoundLog", B% TO wave%
DRAW s% 4, B%»>>22
BPUT#QUT, wave%

NEXT
ENDPROC

REM of f set 64 (
REM descri pt or
DATA &0000007F
DATA &00090001
REM descri pt or
DATA &000000FO0
DATA &000A0001
REM descri pt or
DATA &00000080
DATA &000E0001
REM descri pt or
DATA &000000DF
DATA &000A0001
REM descri pt or
DATA &00000000
DATA &000D0002
REM descri pt or
DATA &00000080
DATA &000E0001
REM descri pt or
DATA 0

DATA 0.

index 8)
8 (ATTACK)
+ (1<<9)

9 (DECAY)
+ (31<<9)

10 (SUS a)
+ (500<<9)

11 (SUS b)
+ (25<<9)

12 (SUSTAI N)
+ (&FFFFF<<9)

13 (rel ease)
+ (1<<9)

14 (Dead)

4-81

Example programs

4-82

You can then load the new wavetabl e into WaveSynth as a module initiaisation
parameter, eg:

REM > Source
obj $="<Cbey$Di r >. ! Runl mage"
DI M MC%4.000, L% 1
FOR 1 %8 TO 10 STEP 2
PY%=MC%
[OPTI %
.start

MOV RO, #14

ADR R1, instantiation
SW " XOS_Modul e"

MOV PC, R14

.instantiation

; Pass | ocal name Orgel as parameter on command |ine
EQUS "WaveSynt h%r gan <Obey$Dir>. Organ0l1 Or gel " +CHR$0
] NEXT

OSCLI "Save "+obj $+" "+STR$~start+" " +STR$~P%

OSCLI "Set Type "+obj $+" &FFC'

OSCLI "Stanp "+obj $

The facility shown in the above examples for specifying alocal name was introduced in
RISC OS3.

Part 12 — Utilities

4-83

4-84

74 The Buffer Manager

Introduction and Overview

The buffer manager acts as aglobal buffer managing system, providing aset of callsfor
setting up a buffer, inserting and removing data from a buffer, and removing a buffer.
The buffer manager extends the InsV, RemV and CnpV vector callsto provide accessto
these buffers and to allow block transfers.

The buffer manager is not availablein RISC OS 2.

The buffer manager is used by DeviceFS to provide buffers for the various devices that
can be accessed. A device may be linked to a buffer, and may supply routinesto be
called when data enters the buffer as well as aroutine to be called when a buffer is
removed (or anew device is attached).

When registering or creating a buffer you can force a specific buffer handle, or request
that the buffer manager assign a unique handle. You should note that buffer handles are
no longer stored as eight bit quantities.

Block transfers are signalled by setting bit 31 of the buffer handle. Anything you can do
on abyte by byte basis you can aso do to ablock, such as examining the buffer contents.

A number of vectors, events, service calls and UpCalls have been extended or created to
enable the buffer manager to function efficiently.

See also the chapter entitled Buffers on page 1-163.

Vectors

The SWisfor the buffer manager module allow you to modify the actual buffer itself,
but do not supply away of inserting and removing data from these buffers. Extensions
have been made to the following vectors to handle the inserting and removing of data
from the buffers, and to allow block inserts. For more details of these vector calls see the
chapter entitled Software vectors on page 1-63.

e Insv inserts abyte in a buffer
e RemVv removes a byte from a buffer
e CnpV counts the number of entries or spacesin a buffer, or

purges the contents of a buffer

4-85

Introduction and Overview

4-86

Events

Because of the above changes to vectors, the following events have been extended so
they canindicate that a block transfer occurred. For more details of these events see the
chapter entitled Events on page 1-147.

« Event_OutputEmpty issued when the last character is removed from a buffer

« Event_InputFull generated when a character or block isinserted and it
failed

Servicecalls

The service call Service BufferStarting has been added to allow modul es which wish to
register bufferswith the buffer manager to do so. For more details of this service call see
page 4-87.

UpCalls

UpCalls are used by the buffer manager to communicate with buffer owners. For more
details of these UpCalls see the chapter entitled Communications within RISC OS on
page 1-179.

« OS UpCall 8 issued when data is inserted into the buffer causing the
free space to fall below the specified threshold

« OS UpCal9 issued when the free space in the buffer becomes greater
than the current threshold.

The Buffer Manager

Service Calls

Service_BufferStarting
(Service Call &6F)

Notifies modules that the buffer manager is starting

On entry
R1 = &6F (reason code)

On exit
All registers preserved

Use

Thiscall is passed around modules after the buffer manager has been initialised or reset.
Once modules have received this service call they can then register buffers with the
buffer manager, and use the Buffer_... SWis.

4-87

SWi calls

SWI calls

Buffer Create
(swi &42940)

Claims an area of memory from the RMA and registersit as a buffer

On entry

RO = buffer’s flags word:
bit0: 00O bufferis dormant, and wake up routine should be called
when data enters it
bit1: 10 Event OutputEmpty should be generated for this buffer
bit2: 10 Event_InputFull should be generated for this buffer
bit 3: 10 UpCalls should be issued when this buffer’s free space
threshold is crossed
bits 4 - 31 reserved (should be set to 0 on creation)
R1 = size of buffer to be created
R2 = handle to be assigned to buffer (3-1get buffer manager to generate handle)

On exit
RO = buffer handle

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call claims an area of memory from the RMA and registers it as a buffer. If you
register a buffen bytes long, it can hold at mast- 1 bytes.

4-88

The Buffer Manager

If R2 = -1 the buffer manager will attempt to find a unique handle; else the buffer
manager will assign the specified handle to the buffer, after checking it is unique.

The buffer’s flags word is used to indicate what should happen when data is being
inserted and removed from the buffer:

Bit0 s setif the buffer is not dormant, and its wake up routine (see the section
entitled The wake up routine on page 4-97) has been called.

If this bit is clear then the buffer is dormant; when data is then put into the
buffer this bit is set and its wake up routine (if any) is called.

Bit1 s setif Event_OutputEmpty should be generated for this buffer.
Bit2 s setif Event_InputFull should be generated for this buffer.

Bit3 s setif UpCalls should be issued when this buffer’s free space thresholds
are crossed.

Bit 0 should be clear when calling this SWI. Bits 1 - 3 may have any value. The
remaining bits are reserved, and should be clear when calling this SWI.

On exit RO contains the buffer handle being used.

Related SWis

Buffer_Remove (page 4-90), Buffer_Register (page 4-91),
Buffer_LinkDevice (page 4-96)

Related vectors
None

4-89

Buffer_Remove (SWI &42941)

4-90

Deregisters a buffer and frees its memory

On entry

RO = handle of buffer to be removed

On exit
RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

Buffer Remove
(swi &42941)

This call attempts to deregister the given buffer. If it succeeds, then any data held by the
buffer will be purged, and any future access to the buffer vialnsV, RemV and CnpV will
be ignored; it will then attempt to free the memory that was claimed for that buffer.

You should only use this call for buffers created and registered using Buffer_Create. If
you used Buffer_Register to register the buffer, you should instead call

Buffer_Deregister to deregister it.

Related SWis

Buffer_Create (page 4-88), Buffer_Deregister (page 4-91),

Buffer_LinkDevice (page 4-96)

Related vectors
None

The Buffer Manager

Buffer_Register
(swi &42942)

Registers an area of memory as a buffer

On entry

RO = buffer’s flags word:
bit0: 00O buffer is dormant, and wake up routine should be called
when data enters it
bitl: 10 Event OutputEmpty should be generated for this buffer
bit2: 10 Event_InputFull should be generated for this buffer
bit3: 10 UpcCalls should be issued when this buffer’s free space
threshold is crossed
bits 4 - 31 reserved (should be set to 0 on registration)
R1 = pointer to start of memory for buffer
R2 = pointer to byte following end of buffer
R3 = handle to be assigned to buffer [3-1get buffer manager to generate handle)

On exit
RO = buffer handle

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Not defined

Use

This call registers an area of memory as a buffer. The routine accepts similar parameters
to Buffer_Create, but instead of the call claiming the memory for you, you must already
have done so yourself, and merely pass the buffer’s start and end. If you register a buffer
n bytes long, it can hold at mast- 1 bytes.

4-91

Buffer_Register (SWI &42942)

You should not put buffersin the application workspace, as this area of memory might
be switched out when someone el se tries to access the buffer. However, you can do this
if your task will be the only one using the buffer, and it will only be accessed while your
task ispaged in.

If R3 = -1 the buffer manager will attempt to find a unique handle; else the buffer
manager will assign the specified handle to the buffer, after checking it is unique.

The buffer’s flags word is used to indicate what should happen when data is being
inserted and removed from the buffer:

Bit0 is set if the buffer is not dormant, and its wake up routine (see the section
entitled The wake up routine on page 4-97) has been called.

If this bit is clear then the buffer is dormant; when data is then put into the
buffer this bit is set and its wake up routine (if any) is called.

Bit1 s setif Event_OutputEmpty should be generated for this buffer.
Bit2 is setif Event_InputFull should be generated for this buffer.

Bit3 s set if UpCalls should be issued when this buffer’s free space thresholds
are crossed.

Bit 0 should be clear when calling this SWI. Bits 1 - 3 may have any value. The
remaining bits are reserved, and should be clear when calling this SWI.

On exit RO contains the buffer handle being used.

Related SWis

Buffer_Create (page 4-88), Buffer_Deregister (page 4-93),
Buffer_LinkDevice (page 4-96)

Related vectors
None

4-92

The Buffer Manager

Buffer_Deregister
(swi &42943)
Deregisters a buffer

On entry
RO = handle of buffer to be deregistered

On exit
RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy

Not defined

Use
This call attempts to deregister the given buffer. If it succeeds, then any data held by the
buffer will be purged, and any future accessto the buffer vialnsV, RemV and CnpV will
be ignored.
You should only usethis call for buffers registered using Buffer_Register. If you used
Buffer_Create to create and register the buffer, you should instead call Buffer_Remove
to deregister it.

Related SWis

Buffer_Remove (page 4-90), Buffer_Register (page 4-91),
Buffer_LinkDevice (page 4-96)

Related vectors
None

4-93

Buffer_ModifyFlags (SWI &42944)

Buffer_ModifyFlags
(swi &42944)

Modifies a buffer’s flags word

On entry

RO = handle of buffer to be modified
R1 = EOR mask
R2 = AND mask

On exit

R1 = old value
R2 = new value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call modifies a buffer’s flags word (see page 4-89) by applying an AND mask,
followed by an EOR mask. On exit it returns the old and new values of the flags word.

The new value is worked out as follows:

new = (old AND R2) EOR R1
You should not modify any reserved bits in the flags word when issuing this call (ie bits
4 - 31 should be set in R2 and clear in R1).

Related SWIs
Buffer_LinkDevice (page 4-96)

4-94

The Buffer Manager

Related vectors
None

4-95

Buffer_LinkDevice (SWI &42945)

4-96

Buffer_LinkDevice
(swi &42945)

Links a set of routines to the specified buffer

On entry

RO = buffer handle

R1 = pointer to routine to call when data enters the dormant buffer (0 O none)

R2 = pointer to routine to call when owner of buffer isto change (0 O cannot be
changed)

R3 = private word to be passed to above routines

R4 = pointer to workspace for above routines

On exit
RO - R4 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use
This call links a set of routines to the specified buffer.

The routines are called with the same entry conditions. The processor may be in any
mode and interrupt state. The registers are as follows:

On entry

RO = buffer handle

R8 = private word (as specified in R3)

R12 = pointer to workspace for routine (as specified in R4)

The Buffer Manager

Such routines are typically used to wake up devices attached to a previously dormant
buffer so they can start processing data that has appeared, and to shutdown a device
when another wishes to access its buffer. In particular, DeviceFS uses this mechanism.

Thewake up routine

R1 contains a pointer to aroutine to be called when data enters the buffer and it is

currently marked dormant. Before calling this ‘wake up’ routine, the buffer manager
first sets bit 0 in the buffer’s flags word, marking it as no longer dormant. On exit from
the wake up routine you must preserve the entire state of the processor: ie the register
contents (including the PSR), the mode, and the state of IRQ and FIQ.

If this pointer (ie R1) is zero, the buffer manager does not attempt to call a wake up
routine for the specified buffer.

Theowner changeroutine

R2 contains a pointer to a routine to be called whenever the owner of the buffer is about
to change. This occurs:

« Wwhen an attempt is made to remove or deregister the buffer by calling
Buffer_Remove or Buffer_Deregister respectively

« when an attempt is made to link to the buffer by another call of this SWI for the
same buffer

« when an attempt is made to kill the buffer manager.

On return from this ‘owner change’ routine you can return an error in the usual way (V
set, RO points to an error block) and thus halt the attempt to change the buffer’s owner;
you'll also — coincidentally — halt whatever caused the attempt. For example, this SWI
may sometimes fail because the given buffer may already have an owner that is refusing
to detach itself. If you don’t return an error you must preserve the entire state of the
processor: ie the register contents (including the PSR), the mode, and the state of IRQ
and FIQ.

If this pointer (ie R2) is zero, the buffer manager will always return an error if an attempt
is made to change the buffer’'s owner.

Related SWis

Buffer_Remove (page 4-90), Buffer_Deregister (page 4-93),
Buffer_ModifyFlags (page 4-94), Buffer_UnlinkDevice (page 4-98)

Related vectors
None

4-97

Buffer_UnlinkDevice (SWI &42946)

Buffer_UnlinkDevice
(swi &42946)

Unlinks a set of routines from the specified buffer

On entry
RO = buffer handle

On exit
RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call unlinks all routines that were previously linked to the specified buffer by
calling Buffer_LinkDevice. No warning is given of this (ie the buffer's change owner
routine is not called), and any data that is currently stored within the buffer is purged.

You should only make this call if it was you that initially linked the routines; anyone else
calling this SWI could confuse the system.

Related SWiIs
Buffer_LinkDevice (page 4-96)

Related vectors
None

4-98

The Buffer Manager

Buffer _Getinfo
(swi &42947)

Returns data about the buffer

On entry

RO = buffer handle

On exit

RO = buffer’s flags word

R1 = pointer to start of buffer in memory
R2 = pointer to byte following end of buffer
R3 = offset within buffer of insertion point
R4 = offset within buffer of removal point
R5 = remaining free space in buffer

R6 = number of characters in buffer

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call returns data about the buffer: its flags word, position in memory, the offsets
within the buffer of its insertion and removal points, the amount of free space, and the
number of characters in the buffer.

The insertion and removal points wrap around from the end of the buffer to the start, so
you should not assume that the insertion point’s offset will be greater than that of the
removal point. Furthermore, you should not assume that the sum of R5 and R6 (the free
space in the buffer and the number of characters in the buffer) will be the same as the
size of the buffer.

4-99

Buffer_Getinfo (SWI &42947)

Related SWis
None

Related vectors
None

4-100

The Buffer Manager

Buffer_Threshold
(swi &42948)

Sets or reads the warning threshold of the buffer

On entry

RO = buffer handle
R1 = threshold (0 = none, -1 to read)

On exit
R1 = previous value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Not defined

Use

This call is used to set or read the warning threshold of the buffer. UpCalls are issued if
bit 3 of the buffer’s flags word is set, and the amount of free space in the buffer crosses
this threshold value. For details of the UpCalls see the chapter e@utiedunications

within RISC OSon page 1-179.

Related SWis
Buffer_Create (page 4-88), Buffer_Register (page 4-91)

Related vectors
None

4-101

4-102

75

Squash

Introduction and Overview

This module provides general compression and decompression facilities of alossless
nature through a SWI interface. The algorithm is 12-bit LZW, however, thismay change
in future releases.

Theinterface is designed to be restartable, so that compression or decompression can
occur from avariety of locations. Operationsinvolving file [/O can easily be constructed
from the operations provided.

This moduleis not available in RISC OS 2.

The moduleis used by the Squash application to generate files of type Squash (& FCA).
The format of these files is documented in the section entitled Squash files on
page 4-499.

Errors

The following errors can be returned by the Squash module:

Error number Error text

&921 Bad address for nodul e Squash
&922 Bad i nput for nodul e Squash
&923 Bad wor kspace for nodul e Squash
&924 Bad paraneters for nodul e Squash

4-103

SWi calls

SWI calls

Squash_Compress
(swi &42700)

Provides general compression of alossless nature

On entry

RO = flags:
bit0: 00O start new operation, 1 0 continue existing operation (using
existing workspace contents)
bit1: 00 endof theinput, 1 0 more input after this
bit2: reserved (must be zero)
bit3: 00 noeffect, 1 0 return the work space size required and the
maximum output size in bytes (all other bits must be 0)
bits 4 - 31 reserved (must be zero)
R1 = input size (-1 do not return maximum output size) — if bit 3 of RO is set;
or workspace pointer — if bit 3 of RO is clear
R2 = input pointer — if bit 3 of RO is clear
R3 = number of bytes of input available — if bit 3 of RO is clear
R4 = output pointer — if bit 3 of RO is clear
R5 = number of bytes of output space available — if bit 3 of RO is clear

On exit

RO = required work space size — if bit 3 of RO set on input; else
output status — if bit 3 of RO clear on input:
00O operation completed
10 operation ran out of input data (R3 = 0)
2 [0 operation ran out of output space (R5 < 12)
R1 = maximum output size (—lﬂ don’t know or wasn’t asked) — if bit 3 of RO set
on input; else preserved — if bit 3 of RO clear on input
R2 updated to show first unused input byte — if bit 3 of RO clear on input
R3 updated to show number of input bytes not used — if bit 3 of RO clear on input
R4 updated to show first unused output byte — if bit 3 of RO clear on input
R5 updated to show number of output bytes not used — if bit 3 of RO clear on input

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

4-104

Squash

Processor mode

Processor isin SVC mode

Re-entrancy

SWI isre-entrant

Use

This call provides general compression of alossless nature. It actsas afilter on astream
of data. The call returnsif either the input or the output is exhausted.

Itis recommended that you use the following facility to determine the maximum output
size rather than attempting to calculate it yourself:

Call the SWI first with bit 3 of RO set and the input size placed in R1. The maximum
output size is then calculated and returned on exit in R1. You can use this value to
allocate the required amount of space and call the SWI again setting the registers as
appropriate.

If for any reason the SWI cannot calculate the maximum output size it will return —

lin R1.
The workspace size required is returned in RO.
The algorithm used by this module is 12-bit LZW, as used by the UNIX ‘compress’

command (with —b 12 specified). If future versions of the module use different
algorithms, they will still be able to decompress existing compressed data.

If bits 0 and 1 of RO are clear, and the output is definitely big enough, a fast algorithm

will be used.

The performance of compression on an 8Mhz A420 with ARM2 is approximately as

follows:

Storetostore Fast case
24 Kbytes per second 68 Kbytes per second

whereFast case is store to store, with all input present, and with an output buffer large

enough to hold all output.

Related SWis
Squash_Decompress (page 4-106)

Related vectors
None

4-105

Squash_Decompress (SWI &42701)

Squash_Decompress
(swi &42701)

Provides general decompression of alossess nature

On entry

RO = flags:
bit0: 00O start new operation, 1 0 continue existing operation (using
existing workspace contents)
bitl: 00O endof theinput, 1 0 moreinput after this
bit2z 00 normal, 10 you may assume that the output will al fitin
this buffer (allows afaster algorithm to be used, if bits 0
and 1 are both Q)
bit3: 00 noeffect, 1 0 return the work space size required and the
maximum output size in bytes (all other bits must be 0)
bits 4 - 31 reserved (must be zero)
R1 = input size (—]D do not return maximum output size) — if bit 3 of RO is set;
or workspace pointer — if bit 3 of RO is clear
R2 = input pointer — if bit 3 of RO is clear
R3 = number of bytes of input available — if bit 3 of RO is clear
R4 = output pointer — if bit 3 of RO is clear
R5 = number of bytes of output space available — if bit 3 of RO is clear

On exit

RO = required work space size — if bit 3 of RO set on input; else
output status — if bit 3 of RO clear on input:
00 operation completed
10 operation ran out of input data (R3 < 12)
2 [0 operation ran out of output space (R5 = 0)
R1 = maximum output size (1] don’t know or wasn't asked) — if bit 3 of RO set
on input; else preserved — if bit 3 of RO clear on input
R2 updated to show first unused input byte — if bit 3 of RO clear on input
R3 updated to show number of input bytes not used — if bit 3 of RO clear on input
R4 updated to show first unused output byte — if bit 3 of RO clear on input
R5 updated to show number of output bytes not used — if bit 3 of RO clear on input

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

4-106

Squash

Processor mode
Processor isin SVC mode

Re-entrancy
SWI isre-entrant

Use
This SWI provides general decompression of alossless nature.

Note: The current algorithm cannot predict what the size of the decompressed

output will be. This means that, currently, -1 is always returned on exit in R1. In
future releases this may change; it is therefore recommended that you call the SWI
first with bit 3 of RO set and the input size placed in R1.

If R1 is not equal to —1 then you can use this value to allocate the required amount
of space and call the SWI again, setting the registers as appropriate. If R1 is equal to
—1 you must attempt to calculate the maximum output size yourself.

The workspace size required is returned in RO.
In the case where R3 < 12, the unused input must be resupplied.

The performance of decompression on an 8Mhz A420 with ARM2 is approximately as
follows:

Soretostore Fast case
48 Kbytes per second 280 Kbytes per second

whereFast case is store to store, with all input present, and with an output buffer large
enough to hold all output.

Related SWis
Squash_Compress (page 4-104)

Related vectors
None

4-107

4-108

76 ScreenBlank

Introduction and Overview

The ScreenBlank module provides the facilities needed to support screen blanking.
There are two service calls so that applications can tell when the screen is blanked and
when it is restored.

Thereisaso a* Command with which you can override the default time of inactivity
before the screen blanks. The default time itself is set using the Configure application;
there is no defined programmers’ interface to do so.

The ScreenBlank module also provides a SWI for internal use by the Portable module;
you must not use it in your own code.

This module is not available in RISC OS 2.

4-109

Service Calls

Service Calls

Service _ScreenBlanked
(Service Call &7A)

Screen blanked by screen blanker

On entry
R1 = &7A (reason code)

On exit
All registers must be preserved.

Use

This service call isissued by the screen blanker, after the screen has been blanked This
service call should not be claimed.

4-110

ScreenBlank

Service ScreenRestored
(Service Call &7B)

Screen restored by screen blanker

On entry

RO = 0, or flags passed in R4 to ScreenBlanker_Control 2
R1 = &7B (reason code)

On exit

All registers must be preserved.

Use

This service cal isissued by the screen blanker, after the screen has been restored. This
service call should not be claimed.

RO is normally zero. If however the call results from aflash cycle, then it will be set to
the value of R4 that was passed to ScreenBlanker_Control 2.

4-111

SWi calls

SWI calls

ScreenBlanker_Control
(swi &43100)

This SWI isfor internal use by the Portable module. You must not use it in your own
code.

4-112

ScreenBlank

* Commands

*BlankTime
Sets the time of inactivity before the screen blanks
Syntax
*BlankTime [WQ [ting]
Parameters
w writing to the screen finishes screen blanking
0] writing to the screen does not finish screen blanking
tine time of inactivity before the screen blanks
Use

*BlankTime sets the time in seconds before the screen blanks. If, during thistime, there

is no activity (ie no keyboard or mouse input is received, and — witWopé&on — there

is no writing to the screen) the screen then blanks. This saves ‘burn in’ on the phosphor
of your monitor, which occurs when the monitor consistently displays a particular
image, such as the desktop.

Screen blanking finishes as soon as there is activity (see above).
If no option is specified)is assumed.

The blank time is only retained until the next reset.

Example

*Bl ankTi me W 600 blanksthe screen if neither input nor output occur for 10
minutes

Related commands
None

Related SWis

None

4-113

Related vectors
WrchV (claimed by Woption)

4-114

Part 13 — Hardware support

4-115

4-116

77 Expansion Cards and Extension
ROMs

Introduction

Expansion Cards provide you with away to add hardware to your RISC OS compulter.
They plug into slots provided in the computer, typically in the form of abackplane (these
are an optional extraon some models).

Extension ROMs are ROMs fitted in addition to the main ROM set, which provide
software modules which are automatically loaded by RISC OS on power-on. Note that
RISC OS 2 does not support extension ROM . Extension ROMs are provided so that
Acorn can add extra modules to RISC OS, or provide replacement modules for those
already in RISC OS. You must not use them.

This chapter gives details of the software that RISC OS provides to manage and

communi cate with expansion cards. It also gives details of what software and data needs
to be provided by expansion cards for RISC OS to communicate with them; in short, al
you need to know to write their software. For completeness, it gives the same
information for extension ROMSs; but — of course — this is irrelevant to you, as you
shouldn't use extension ROMs.

The two topics are covered together because both use substantially the same layout of
code and data, and the same SWIs. For more details on writing modules, see the chapter
entittedModules on page 1-201.

One thing this chapter does not tell you is how to design expansion card hardware. This
is because:

« the range of hardware that can be added to a RISC OS computer is so large that we
can’'t examine them all

« we don't have the space to describe every RISC OS computer that Acorn makes

Instead, you should see the further sources of information to which we refer you.

4-117

Overview

Overview

Software

4-118

RISC OS computers can support internal slots for expansion cards. If you wish to add
more cards than can be fitted to the supplied slots, you must use one of the slots to
support an expansion card that buffers the signals on the expansion card bus before
passing them on to external expansion cards.

Some RISC OS computers can aso support extension ROMs. The availahility, size and
number of extension ROM sockets depends on which type of RISC OS computer you
are using. For example, the A5000 has a single socket for an 8 bit wide ROM.

Expansion cards

Expansion cards can have some or all of the following software included:

an Expansion Card Identity, to give RISC OS information about the card (see
page 4-120 and page 4-122)

Interrupt Status Pointers, to tell RISC OS whereto look to find out if the card is

generating interrupts (see page 4-127)

a Chunk Directory, that defines what separate parts of the card’s memory space are
used for (see page 4-128)

a Loader, to access paged memory held outside the card’s address space (see
page 4-130)

A wide range of different types of code and data is supported by the Chunk Directories.

The use of the Loader and paged memory has been made as transparent to the end user
as possible.

Extension ROMs

Extension ROMs must include the following software:

an Extension ROM Header, to give RISC OS information about the ROM and to
differentiate it from an expansion card (see page 4-119)

an Extended Expansion Card Identity, to give RISC OS information about the ROM
(see page 4-122)

null Interrupt Status Pointers, because a ROM cannot generate interrupts (see
page 4-127)

a Chunk Directory, that defines what each part of the ROM’s memory space is used
for (see page 4-128).

Expansion Cards and Extension ROMs

Technical Details

In general, RISC OS recognises extension ROMs or ROM setswhich are 8, 16 or 32 hits
wide, provided the ROM adheresto the specification below. 32 bit wide extension ROM
sets are directly executable in place, saving on user RAM. 8 or 16 bit wide sets have to
be copied into RAM to execute.

An extension ROM set must end on a 64K boundary or at the start of another extension
ROM. Thisisnormally not a problem asit is unlikely you would want to use a ROM
smaller than a 27128 (16K), and the normal way of addressing this would mean that the
ROM would be visible in 1 byte out of each word, ie within a64K addressable area.

Extension ROM Headers

Extension ROMs must have a 16 byte Extension ROM Header at the end of the ROM
image, which indicates the presence of a valid extension ROM. The ‘header’ is at the
end because RISC OS scans the ROM area downwards from the top.

For a ROM image of sizebytes, the format of the header at the end is as follows:

Byteaddress Contents

n-16 1-word field containing

n-12 1-word checksum (bottom 32 bits of the sum of all words from
addresses 0 to-16 inclusive)

n-8 2-word id ‘ExtnROMO’ indicating a valid extension ROM, ie:

n-8 &45 ‘E’
n-7 &78 X’
n-6 &74 ‘v

n-5 &6E n’
n-4 &52 ‘R’
n-3 &4F 'O
n-2 &b ‘M
n-1 &30 ‘0

Extension ROM width

Note that this header will not necessarily appear in the memory map in the last 16 bytes
if the ROM set is 8 or 16 bits wide. In the 8-bit case, the header will appear in one of the
four byte positions of the last 16 words, and in the 16-bit case, in one of the two
half-word positions of the last 8 words. However, RISC OS copes with this, and uses the
mapping of the ID field into memory to automatically derive the width of the extension
ROM.

4-119

Introduction to Expansion Card Identities

Introduction to Expansion Card Identities

Expansion cards

Each expansion card must have an Expansion Card Identity (or ECId) so that RISC OS
can tell whether an expansion card isfitted in abackplane slot, and if so, identify it. The
ECId may be:

« asimple ECId of only one byte — the low one of a word (see below)

« an extended ECId of eight bytes, which may be followed by other information (see
page 4-122).

The ECId (whether extended or not) must appear at the bottom of the expansion card
space immediately after a reset. However, it does not have to remain readable at all
times, and so it can be in a paged address space so long as the expansion card is set to the
page containing the ECId on reset.

The ECId is read by a synchronous read of address 0 of the expansion card space. You
may only assume it is valid from immediately after a reset until when the expansion card
driver is installed.

Extension ROMs

As well as the Extension ROM header at the end of the ROM image, Extension ROMs
must also have a header at stert of the ROM image. This header is identical in

format to an Extended Expansion Card Identity, and is present for the use of the
Expansion Card Manager, which handles much of the extension ROM processing. See
page 4-122 onwards, paying particular attention to the section eiitiedhtory

values for extension ROMs.

Simple Expansion Card Identity

4-120

Expansion cards can use a simple ECId, which is one byte long. You should only use one
for the very simplest of expansion cards, or temporarily during development.

« Most expansion cards should instead implement the extended ECId, which
eliminates the possibility of expansion card IDs clashing.

« Extension ROMs must use an extended ECId, rather than a simple ECId.

Expansion Cards and Extension ROMs

Restrictions imposed by a Simple ECId

If you do use asimple ECId, your expansion card must be 8 bits wide. The only
operations that you may perform on its ROM are Podule_RawRead (see page 4-151) or
Podule_RawWrite (see page 4-153).

Format of a simple ECId
A simple ECId shares many of the features of the low byte of an extended ECId, and is

asfollows:
7 6 5 4 3 2 1 0
A ID[3] | ID[2] | ID[1] | ID[O] FIQ 0 IRQ
Bit(s) Value Meaning
A 0 Acorn conformant expansion card
1 non-conformant expansion card
ID[3:0] not O ID field
(0] extended ECId used)
FQ 0 not requesting FIQ
1 requesting FIQ
IRQ 0 not requesting IRQ
1 requesting IRQ

Acor n conformance bit (A)
This bit must be zero for expansion cards that conform to this Acorn specification.
ID field (ID [3:0])

If you are using asimple ECId, the four 1D bits may be used for expansion card
identification. They must be non-zero, as a value of zero shows that you are instead
using an extended ECId.

Interrupt statusbits (IRQ and FIQ)

Theinterrupt status bits are discussed bel ow in the section entitled Generating interrupts
from expansion cards on page 4-126.

Expansion card presence (bit 1)

This must be zero, as shown above. For more information, see the section entitled
Expansion card and extension ROM presence on page 4-125.

4-121

Extended Expansion Card Identity

Extended Expansion Card Identity

4-122

An expansion card’s ECId is extended if the ID field of its ECId low byte is zero. This
means that RISC OS will read the next seven bytes of the ECId. The extended ECId
starts at the bottom of the expansion card space, and consists of the eight bytes defined
below.

Expansion card width

If an expansion card has an extended ECId, the first 16 bytes of its address space are
always assumed to be bytewide. These 16 bytes contain the 8 byte extended ECId itself,
and a further 8 bytes (typically the Interrupt status pointers — see below). If the ECId is
included in a ROM which is 16 or 32 bits wide, then only the lowest byte in each
half-word or word must be used for the first 16 (half) words.

If you use an extended ECId, you may specify the space after this as 8, 16 or 32 bits
wide. When you access this space

« if you are using the 8 bit wide mode, you should use byte load and store instructions

« if you are writing using the 16 bit wide mode, you should use word store
instructions, putting your half word in both the low and high half words of the
register you use

« if you are reading using the 16 bit wide mode, you should use word load
instructions, and ignore the upper half word returned

« if you are using the 32 bit wide mode, you should use word load and store
instructions.

Synchronous cycles are used by the operating system to read and write any locations
within this space (to simplify the design of synchronous expansion cards).

Current restrictions

You should note however that there are currently some restrictions on the widths you can
use. These are imposed both by current hardware and software:
« the I/O data bus is only 16 bits wide

« the current version of the RISC OS Expansion Card Manager only supports the 8 bit
wide mode; future versions may support the wider modes.

Format of an extended ECId

Expansion Cards and Extension ROMs

The format of an extended ECld is as follows:

7 6 5 4 3 2 1 0
cr | cel | csl | c4 | c@ | cl21 | ciy | co | &l
M[15] | M[14] | M[13] | M[12] | M[11] | M[10] | M[9] | M[8] | &18
M7] | M6] | M5B | MM4] | MB3] | M2 | M1 | M0 | &4
P[15] | P[14] | P[13] | P[12] | P[11] | P[10] | P[9] P[8] | &10
P[7] P[6] P[5] P[4] P[3] P[2] P[1] P[O] &0C
R R R R R R R R &08
R R R R W[1] | Wio] IS Ch | &04
A 0 0 0 0 FIQ 0 IRQ | &00
Bit(s) Value Meaning
C[7:Q] Country (see below)
M[15:0] Manufacturer (see below)
P[15:0] Product Type (see below)
R 0 mandatory at present
1 reserved for future use
WI[1:0] 0 8-bit code follows after byte 15 of 1d space
1 16-bit code follows after byte 15 of Id space
2 32-bit code follows after byte 15 of Id space
3 reserved
IS 0 no Interrupt Status Pointers follow ECId
1 Interrupt Status Pointers follow ECId
CD 0 no Chunk Directory follows
1 Chunk Directory follows Interrupt Status
pointers
A 0 Acorn conformant expansion card
1 non-conformant expansion card
FIQ 0 not requesting FIQ (or FIQ relocated)
1 requesting FIQ
IRQ 0 not requesting IRQ (or IRQ relocated)
1 reguesting IRQ

4-123

Extended Expansion Card Identity

4-124

Country code (C[7:0])

Every expansion card should have a code for the country of origin. These match those
used by the International module, savethat the UK has a country code of O for expansion
cards. If you do not already know the correct country code for your country, you should
consult Acorn.

Manufacturer code (M[15:0])

Every expansion card should have a code for manufacturer. If you have not already been
allocated one, you should consult Acorn.

Product type code (P[15:0])

Every expansion card type must have a unique number alocated to it. Consult Acorn if
you need to be allocated a new product type code.

Reserved fields (R)

Reserved fields must be set to zero to cater for future expansion.

Width field (W[L:0])

This field must currently be set to zero (expansion card is 8 bits wide). For more
information, see the earlier section entitled Expansion card width on page 4-122.

Interrupt Status Pointers presence (1S)

See the sections entitled Generating interrupts from expansion cards on page 4-126, and
Interrupt Satus Pointers on page 4-127.

Chunk directory presence (CD)
See the section entitled Chunk directory structure on page 4-128.

Acorn conformance bit (A)

This bit must be zero for expansion cards that conform to this Acorn specification.

ID field (bits 6 - 3 of low byte)

If you are using an extended ECId, these bits must be zero, as shown above. A non-zero
value shows that you are instead using a simple ECId; for more information see
page 4-121.

Interrupt statusbits (IRQ and FIQ)

Theinterrupt status bits are discussed bel ow in the section entitled Generating interrupts
from expansion cards on page 4-126.

Expansion Cards and Extension ROMs

Expansion card presence (bit 1 of low byte)

This must be zero, as shown above. For more information, see the section entitled
Expansion card and extension ROM presence on page 4-125.

Mandatory values for extension ROMs

An extension ROM must include an extended ECId. This starts at the bottom of the
ROM image, and consists of eight bytes as defined above.

For an extension ROM, certain fields within the extended ECld must have particular
values:

The product type code must be & 87 (ie the product type is an extension ROM).

The width field must always be 0 (8 bits wide), irrespective of the ROM’s actual
width, which RISC OS automatically derives (see the section entedsion

ROM width on page 4-119).

Because the width field does not vary, you do not need to change the image of an
extension ROM if you change the width of ROM in which it is placed.

Both the Interrupt Status Pointer field and the Chunk Directory field must be 1,
showing the ECId is followed by Interrupt Status Pointers, then by a Chunk
Directory.

The Acorn conformant field must be 0, to show that the extension ROM is Acorn
conformant.

The interrupt status bits (FIQ and IRQ) must both be clear, to show that the
extension ROM is not requesting an interrupt.

Expansion card and extension ROM presence

All expansion cards and extension ROMsst have bit 1 low in the low byte of an
ECId (whether simple or extended), so that RISC OS can tell if there are any of them
present.

Normally bit 1 of the 1/0O data bus is pulled high by a weak pullup. Therefore:

If no expansion card is present and RISC OS tries to read the ECId low byte, bit 1
will be set.

If an expansion card is present, and the ECId is mapped into memory (which it must
be immediately after a reset), the bit will instead be clear.

4-125

Generating interrupts from expansion cards

Generating interrupts from expansion cards

Expansion cards must provide two status bits to show if the card is requesting IRQ or
FIQ.

with a simple ECId

If an expansion card only has asimple ECId, then the FIQ and IRQ status bits are bits 2
and O respectively in the ECId. If the card does not generate one or both of these
interrupts then the relevant bit(s) must be driven low.

with an extended ECId

If an expansion card has an extended ECId, you must set the IS bit of the ECld and
provide Interrupt Satus Pointers (see below) if either of the following applies:

« you are aso using Chunk Directories (see below)
« you want to relocate the interrupt status bits from the low byte of the ECId.

If neither of the above apply, then you can omit the Interrupt Status Pointers. The
interrupt status bits are located in the low byte of the ECId, and are treated in exactly the
same way as for asimple ECId (see above).

Finding out more

To find out more about generating interrupts from expansion cards under RISC OS, you
can:

see the chapters entitled ARM Hardware on page 1-9 and Interrupts and handling
them on page 1-119.

« consult the Acorn RISC Machine family Data Manual. VLS| Technology Inc.
(1990) Prentice-Hall, Englewood Cliffs, NJ, USA: ISBN 0-13-781618-9.

« consult the datasheets for any components you use
« contact Customer Support and Services for further hardware-specific details.

4-126

Expansion Cards and Extension ROMs

Interrupt Status Pointers

Expansion cards

An Interrupt Status Pointer has two 4 byte numbers, each consisting of a 3 byte address
field and a 1 byte position mask field. These numbers give the locations of the FIQ and

IRQ status hits:

&40
IRQ Status Bit address (24 bits)

&34
IRQ Status Bit position mask

&30
FIQ Status Bit address (24 bits)

&24
IRQ Status Bit position mask

&20

The 24-bit address field must contain a signed 2’s-complement number giving the offset
from &3240000 (the base of the area of memory into which podules are mapped). Hence
the cycle speed to access the status register can be included in the offset (encoded by bits
19 and 20). Bits 14 and 15 (that encode the slot number) should be zero. If the status
register is in module space then the offset should be negative: eg &DC0000, which is —
&240000.

The 8-bit position mask should only have a single bit set, corresponding to the position
of the interrupt status bit at the location given by the address field.

Note that these eight bytes are always assumed to be bytewide. Only the lowest byte in
each word should be used.

The addresses may be the same (ie the status bits are in the same byte), so long as the
position masks differ. An example of this is if you have had to provide an Interrupt
Status Pointer, but do not want to relocate the status bits from the low byte of the ECId;
the address fields will both point to the low byte of the ECId, the IRQ mask will be 1,
and the FIQ mask will be 4.

If the card does not generate FIQ or IRQ

If the card does not generate one or both of these interrupts then you must set to zero:
« the corresponding address field(s) of the Interrupt Status Pointer

« the corresponding position mask field(s) of the Interrupt Status Pointer

« the corresponding status bit(s) in the low byte of the ECId.

4-127

Chunk directory structure

Extension ROMs

Extension ROMs must have a Chunk Directory, hence they must aso provide Interrupt
Status Pointers. However, extension ROM s generate neither FIQ nor |RQ; consequently
their Interrupt Status Pointers always consist of eight zero bytes.

Chunk directory structure

4-128

If the CD bit of an extended ECId is set, then:

« thelShit of the ECId must aso be set

o Interrupt Status Pointers must be defined

« adirectory of Chunksfollow the Interrupt Status Pointers.

The chunks of data and/or code are stored in the expansion card’s ROM, or in the
extension ROM.

The lengths and types of these Chunks and the manner in which they are loaded is
variable, so after the eight bytes of Interrupt Status Pointers there follow a number of
entries in the Chunk Directory. The Chunk Directory entries are eight bytes long and all
follow the same format. There may be any number of these entries. This list of entries is
terminated by a block of four bytes of zeros.

You should note that, from the start of the Chunk Directory onwards, the width of the
expansion card space is as set in the ECId width field. From here on the definition is in
terms of bytes:

n+8
Start address: 4 bytes (32 bits)

n+4
Size in bytes: 3 bytes (24 bits)

n+1
Operating System identity byte

n

The start address is an offset from the base of the expansion card’s address space.

Expansion Cards and Extension ROMs

Operating System ldentity Byte

The Operating System I dentity Byte forms the first byte of the Chunk Directory entry,
and determines the type of data which appears in the Chunk to which the Chunk
Directory refers. It is defined as follows:

7 6 5 4 3 2 1 0
OS[3] | OS[2] | OS[1] | OS[0] | D3] | D[2] | D[] | D[O]
093] 0 reserved
0OS[3] 1 mandatory at present
og20 O Acorn Operating System 0: Arthur/RISC OS
D[30 O L oader
1 Rel ocatable Module
2 BBC ROM
3 Sprite
4-15 reserved
1 reserved
D[3:0] 0-15 reserved
2 Acorn Operating System 2: UNIX
D[30 O L oader
1-15 reserved
3-5 reserved
D[3:0] 0-15 reserved
6 manufacturer defined
D[3:0] 0-15 manufacturer specific
7 device data
D[3:0] O link
(for 0, the object pointed to is another
directory)
1 serial number
2 date of manufacture
3 modification status
4 place of manufacture
5 description
6 part number
(for 1 - 6, the datain the location pointed to
contains the ASCII string of the
information.)
7 Ethernet binary ID (length is always 6 bytes)

4-129

Binding a ROM image

Binding a ROM

Expansion card

8 PCB revision (length is aways 4 bytes,
treated as aword)
9-14 reserved

15 empty chunk

Those Chunks with OS[2:0] = 7, are operating system independent and are mostly
treated as ASCII strings terminated with azero byte. They are not intended to be read by
programs, but rather inspected by users. It is expected that even minimum expansion
cardswill have an entry for D[3:0] = 5 (description), and it isthis string which is printed
out by the command * Podul es.

image

For aROM to be read by the Expansion Card Manager it must conform to the
specification, even if only minimally. The simplest way to generate ROM imagesisto
use a BASIC program to combine the various parts together and to compute the header
and Chunk Directory structure.

An example program used with an expansion card is shown at the end of this chapter. Its
output is afile suitable for programming into a PROM or an EPROM.

Code Space

The above forms the basis of storing software and data in expansion cards. However,
there is an obvious drawback in that the expansion card spaceisonly 4 Kbytes (at word
boundaries), and so its usefulnessislimited asit stands. To alow expansion cards to
accommodate more than this 4 Kbytes an extension of the addressing capability is used.
This extension is called the Code Space.

The Code Space is an abstracted address space that is accessed in an expansion card
independent way via a software interface. It isalarge linear address space that is
randomly addressable to a byte boundary. Thiswill typically be used for driver code for
the expansion card, and will be downloaded into system memory by the operating
system beforeit is used. The manner in which this memory is accessed isvariable and so
it isaccessed via a Loader.

Writing a Loader for an expansion card

4-130

The purpose of the Loader is to present to the Expansion Card Manager asimple
interface that allows the reading (and writing) of the Code Space on a particular
expansion card. The usual caseisaROM paged to appear in 2 Kbyte pages at the bottom
of the expansion card space, with the page address stored in alatch. Thisthen permits

Expansion Cards and Extension ROMs

the Expansion Card Manager to load software (Rel ocatable Modules) or data from an
expansion card without having to know how that particular expansion card’s hardware is
arranged.

The Loader is a simple piece of relocatable code with four entry points and clearly
defined entry and exit conditions. The format of the Loader is optimised for ease of
implementation and small code size rather than anything else.

Registers
The register usage is the same for each of the four entry points.

I nput/Output Comments
RO Write/Read data Treated as a byte
R1 Address Must be preserved
R2-R3 May be used
R4-R9 Must be preserved
R10 May be used
R11 Hardware Combined hardware address: must be
preserved
R12 Private: must be preserved
R13 sp Stack pointer (FD): must be preserved
R14 Return address: use BICS pc, Ir, #V_bit
R15 PC

The exception to this is the CallLoader entry point where RO - R2 are the user’s entry
and exit data.

Entry points
All code must be relocatable and position independent. It can be assumed that the code
will be run in RAM in SVC mode.

Origin + &00 Read a byte

Origin + &04 Write a byte

Origin + &08 Reset to initial state
Origin + &0C SWI Podule_CallLoader

Initialisation

The first call made to the Loader will be to Read address 0, the start of a Chunk directory
for the Code Space.

4-131

Writing a Loader for an expansion card

Errors

Errors are returned in the usual way; V is set and RO points at a word-aligned word

containing the error number, which isfollowed by an optional error string, whichin turn

must be followed by a zero byte. ReadByte and WriteByte may be able to return errors

like ‘Bad address’ if the device is not as big as the address given, or ‘Bad write’ if using
read after write checks on the WriteByte call. If the CallLoader entry is not supported
then don't return an error. If Reset fails then return an error.

Since your device drivers may well be short of space, you can return an error with RO=0.
The Expansion Card Manager will then supply a default message. Note that this is not

encouraged, but is offered

as a suggestion of last resort. Errors are returned to the caller

by using ORRS pc, Ir, #V_bit rather than the usual BICS exit.

Example

Here is an example of a Loader (this example, like all others in this chapter, uses the
ARM assembler rather than the assembler included with BBC BASIC V — there are

subtle syntax differences):

00 LEADR
00 00003000 PageReg *

00 0000000B PageSi ze *

00 EA00000B Origin B

04 EA000019 B

08 EA000001 B

0C E3DEF201 BI CS
10 E59FAOE4 Reset LDR
14 EOOBAOOA AND
18 E28AAA03 ADD
1C E3A02000 MoV
20 E4CA2000 STRB
24 E3DEF201 BI CS
28 E59F40C4 ReadByte LDR
2C E00B4004 AND
30 E284AA03 ADD
34 E3510B3E cwP
38 228F0048 ADRHS
3C 239EF201 ORRHSS
40 E2812B02 ADD
44 E1A025C2 MoV
48 E4ACA2000 STRB
4C E3C12BFE BI C
50 E7D40102 LDRB
54 E3DEF201 BI CS
58 E28F0000 WiteByte ADR
5C E39EF201 ORRS
60 00000580 ErrorNW DCD
64 DCB
92 00 00 ALI GN
94 00000584 Error ATB DCD
98 DCB
AC END

4-132

&FFFFFDOO

&3000

11 H
ReadByt e
WiteByte

Reset

pc, lr, #V_bit
r10, =2_00000011111111111111000000000000

r1o, r11, r10 ; Get hardware address from conmbi ned one
r10, r10, #PageReg

r2, #0

r2, [rio]

pc, lr, #V_bit

r3, =2_00000011111111111111000000000000

r3, ril, r3 ; Get hardware address from conbi ned one
r10, r3, #PageReg
rl, #&F800

r0, ErrorATB

pc, Ir, #V_bit

r2, rl, #1 :SHL: PageSize

r2, r2, ASR #PageSize

r2, [rio]

r2, rl, #&7F :SHL: PageSize

ro, [r3, r2, ASL #2] ; Word addressing
pc, lr, #V_bit

ro, ErrorNwW

pc, Ir, #V_bit

Er ror Nunber _Not Wit eabl e
ErrorString_NotWiteable, 0

Dat a

Bits

Last page

Er r or Nunber _Addr essTooBi g
ErrorString_AddressTooBig, 0

Expansion Cards and Extension ROMs

The bit masks are used to separate the fields of a combined hardware address — see the
description of Podule_HardwareAddress (page 4-155) for details of these.

Loading the Loader

CMOS RAM

ROM sections

If the Expansion Card Manager is ever asked to ‘EnumerateChunk’ a Chunk containing
a Loader, it will automatically load the Loader. Since RISC OS enumerates all Chunks
from all expansion cards at a hard reset this is achieved by default.

If no Loader is loaded then Podule_EnumerateChunks will terminate on the zero at the
end of the Chunk Directory in the expansion card space. If, however, when the end of the
expansion card space Chunk Directory is reached a Loader has been loaded, then a
second Chunk Directory, stored in the Code Space, will appear as a continuation of the
original Chunk Directory. This is transparent to the user.

This second Chunk Directory is in exactly the same format as the original Chunk
Directory. Addresses in the Code Space Chunk Directory refer to addresses in the Code
Space. The Chunk Directory starts at address 0 of the Code Space (rather than address
16 as the one in expansion card Space does).

Each of the four possible internal expansion card slots has four bytes of CMOS RAM
reserved for it. These bytes can be used to store status information, configuration, and so
on.

You can find the base address of these four bytes by calling Podule_HardwareAddress
(page 4-155) or Podule_HardwareAddresses (page 4-159).

Most of the SWIs provided by the Expansion Card Manager take a ROM section as a
parameter. This identifies the expansion card or extension ROM upon which the
command acts. ROM sections used by RISC OS are:

ROM section Meaning

-1 System ROM

0 Expansion card 0

1 Expansion card 1

2 Expansion card 2

3 Expansion card 3

-2 Extension ROM 1 (notin RISC OS 2)
-3 Extension ROM 2 (notin RISC OS 2)
-4 Extension ROM 3 (etc) (notin RISC OS 2)

4-133

‘Podules’

None of the SWIs described in this chapter will act upon the system ROM.

‘Podules’

In the Arthur operating system, expansion cards were known as Podules. The word
‘Podule’ was used in all the names of SWIis and * Commands.

These old nhames have been retained, so that software written to run under Arthur will
still run under RISC OS.

4-134

Expansion Cards and Extension ROMs

Service Calls

Service_PreReset
(Service Call &45)

Pre-reset

On entry
R1 = &45 (reason code)

On exit

R1 preserved to pass on (do not claim)

Use

This call is made just before a software generated reset takes place, when the user
releases Break. This gives a chance for expansion card software to reset its devices, as
this type of reset does not actually cause a hardware reset signal to appear on the
expansion card bus. This call must not be claimed.

4-135

Service_ ADFSPodule (Service Call £10800)

4-136

Service_ ADFSPodule
(service call &10800)

Issued by ADFSto locate an ST506 expansion card

On entry

R1 = & 10800 (reason code)

R2 = address of current ST506 hard disc controller

R3 = address of IRQ status register for current hard disc controller

R4 = mask which, when ANDed with IRQ status register, gives non-zero value if
IRQs are enabled

R5 = address of IRQ mask register for current hard disc controller

R6 = mask which, when ORd with IRQ mask register, enables IRQ

On exit

Use

All registers preserved to pass on, else:

R1=0toclam

R2 = address of new ST506 hard disc controller

R3 = address of IRQ status register for new hard disc controller

R4 = mask which, when ANDed with IRQ status register, gives non-zero value if
IRQs are enabled

R5 = address of IRQ mask register for new hard disc controller

R6 = mask which, when ORd with IRQ mask register, enables IRQ

This cal isissued by ADFSto enable ST506 hard disc expansion cards to intercept
ADFS and use their own hardware rather than the hardware built into the machine. The
expansion card should claim the service call, updating the passed registers to the values
for its own hardware.

Expansion Cards and Extension ROMs

Service_ ADFSPodulelDE
(Service call £10801)

Issued by ADFSto locate an IDE expansion card

On entry

R1 = &10801 (reason code)

R2 = address of current IDE hard disc controller

R3 = address of IRQ status register for current hard disc controller

R4 = mask which, when ANDed with IRQ status register, gives non-zero value if
IRQs are enabled

R5 = address of IRQ mask register for current hard disc controller

R6 = mask which, when ORd with IRQ mask register, enables IRQ

R7= address of data read routine for current hard disc controller (O for default)

R8 = address of data write routine for current hard disc controller (O for default)

On exit

Use

All registers preserved to pass on, else:

R1=0toclam

R2 = address of new IDE hard disc controller

R3 = address of IRQ status register for new hard disc controller

R4 = mask which, when ANDed with IRQ status register, gives non-zero vaue if
IRQs are enabled

R5 = address of |RQ mask register for new hard disc controller

R6 = mask which, when ORd with IRQ mask register, enables IRQ

R7= address of data read routine for new hard disc controller (O for default)

R8 = address of data write routine for new hard disc controller (O for default)

Thiscall isissued by ADFSto enable IDE hard disc expansion cards to intercept ADFS
and use their own hardware rather than the hardware built into the machine. The
expansion card should claim the service call, updating the passed registers to the values
for its own hardware.

4-137

Service_ ADFSPodulelDEDying (Service Call £10802)

Service_ ADFSPodulelDEDying
(Service call &£10802)

IDE expansion card dying

On entry
R1 = &10802 (reason code)

On exit
All registers preserved

Use

This call isissued by an IDE expansion card module to warn ADFS of itsimminent
demise.

4-138

Expansion Cards and Extension ROMs

SWI calls

Podule ReadlD
(swi &40280)

Reads an expansion card or extension ROM’s identity byte

On entry
R3 = ROM section (see page 4-133)

On exit
RO = expansion card identity byte (ECId)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use
This call reads into RO a simple Expansion Card Identity, or the low byte of an extended
Expansion Card Identity. It also resets the Loader — if one is present, and has been
loaded.

Related SWis

Podule_ReadHeader (page 4-140)

Related vectors
None

4-139

Podule_ReadHeader (SWI &40281)

Podule ReadHeader
(swi &40281)

Reads an expansion card or extension ROM's header

On entry

R2 = pointer to buffer of 8 or 16 bytes
R3 = ROM section (see page 4-133)

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use
This call reads an extended Expansion Card Identity into the buffer pointed to by R2. If
the IS bit is set (bit 1 of byte 1) then the expansion card also has Interrupt Status
Pointers, and these are also read into the buffer. This call also resets the Loader — if one
is present, and has been loaded.
If you do not know whether the card has Interrupt Status Pointers, you should use a 16
byte buffer. Extension ROMs always have Interrupt Status Pointers (although they’re
always zero), so you should always use a 16 byte buffer for them.

Related SWis

Podule_ReadID (page 4-139)

4-140

Expansion Cards and Extension ROMs

Related vectors
None

4-141

Podule_EnumerateChunks (SWI &40282)

4-142

Podule EnumerateChunks
(swi &40282)

Reads information about a chunk from the Chunk Directory

On entry

RO = chunk number (zero to start)
R3 = ROM section (see page 4-133)

On exit

RO = next chunk number (zero if final chunk enumerated)

R1 = size (in bytes) if RO # 0 on exit

R2 = operating system identity byteif RO # 0 on exit

R4 = pointer to a copy of the module’s name if the chunk is a relocatable module
(ie if R2 = &81), else preserved

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This call reads information about a chunk from the Chunk Directory. It returns its size
and operating system identity byte. If the chunk is a module it also returns a pointer to a
copy of its name; this is held in the Expansion Card Manager’s private workspace and
will not be valid after you have called the Manager again.

If the chunk is a Loader, then RISC OS also loads it.

To read information on all chunks you should set RO to 0 and R3 to the correct ROM
section. You should then repeatedly call this SWI until RO is set to 0 on exit.

Expansion Cards and Extension ROMs

RISC OS 2 automatically doesthison areset for al expansion cards; if thereisal oader
it will be transparently loaded, and any chunks in the code space will also be
enumerated. Later versions of RISC OS use Podule_EnumerateChunkswithinfo.

Related SWis
Podule_ReadChunk (page 4-144), Podule_EnumerateChunksWithlnfo (page 4-157)

Related vectors
None

4-143

Podule _ReadChunk (SWI &40283)

Podule_ReadChunk
(swi &40283)

Reads a chunk from an expansion card or extension ROM

On entry

RO = chunk number
R2 = pointer to buffer (assumed large enough)
R3 = ROM section (see page 4-133)

On exit

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
This call reads the specified chunk from an expansion card. The buffer must be large
enough to contain the chunk; you can use Podule _EnumerateChunks (see page 4-142) to
find the size of the chunk.

Related SWiIs

Podule_EnumerateChunks (page 4-142)

Related vectors
None

4-144

Expansion Cards and Extension ROMs

Podule ReadBytes
(swi &40284)

Reads bytes from within an expansion card’s code space

On entry

RO = offset from start of code space
R1 = number of bytes to read

R2 = pointer to buffer

R3 = expansion card slot number

On exit

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
This call reads bytes from within an expansion card’s code space. It does so using
repeated calls to offset O (read a byte) of its Loader. RISC OS must already have loaded
the Loader; note that the kernel does this automatically on a reset when it enumerates all
expansion cards’ chunks.
This command returns an error for extension ROMs, because they have neither code
space nor a Loader.

Related SWis

Podule_WriteBytes (page 4-147)

4-145

Podule_ReadBytes (SWI &40284)

Related vectors
None

4-146

Expansion Cards and Extension ROMs

Podule_WriteBytes
(swi &40285)

Writes bytes to within an expansion card’s code space

On entry

RO = offset from start of code space
R1 = number of bytes to write

R2 = pointer to buffer

R3 = expansion card slot number

On exit

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
This call writes bytes to within an expansion card’s code space. It does so using repeated
calls to offset 4 (write a byte) of its Loader. RISC OS must already have loaded the
Loader; note that the kernel does this automatically on a reset when it enumerates all
expansion cards’ chunks.
This command returns an error for extension ROMs, because they have neither code
space nor a Loader.

Related SWis

Podule_ReadBytes (page 4-145)

4-147

Podule _WriteBytes (SWI &40285)

Related vectors
None

4-148

Expansion Cards and Extension ROMs

Podule_CallLoader
(swi &40286)

Calls an expansion card’s Loader

On entry

RO - R2 = user data
R3 = expansion card slot number

On exit
RO - R2 = user data

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Depends on Loader

Use

This call enters an expansion card’s Loader at offset 12. Registers RO - R2 can be used
to pass data.

The action the Loader takes will vary from card to card, and you should consult your
card’s documentation for further details.

If you are developing your own card, you can use this SWI as an entry point to add extra
features to your Loader. You may use RO - R2 to pass any data you like. For example, RO
could be used as a reason code, and R1 and R2 to pass data.

In some hardware designs it may be important to share hardware between the Loader
and the driver. You can do so by using this call to call the Loader, which can do hardware
accesses for the driver and maintain its own state. For example, if your hardware has a

4-149

Podule_CallLoader (SWI &40286)

7 bit page register and a 1 bit output port shared within asingle 8 hit latch, the Loader
could maintain aflag for the state of the port, and write that bit correctly whenever it
writes to the page register.

This command returns an error for extension ROMs, because they have neither code
space nor a L oader.

Related SWis
None

Related vectors
None

4-150

Expansion Cards and Extension ROMs

Podule RawRead
(swi &40287)

Reads bytes directly within an expansion card or extension ROM'’s address space

On entry

RO = offset from base of a podule’s address space (0...&FFF)
R1 = number of bytes to read

R2 = pointer to buffer

R3 = ROM section (see page 4-133)

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This call reads bytes directly within an expansion card or extension ROM’s address
space. Itis typically used to read from the registers of hardware devices on an expansion
card, or to read successive bytes from an extension ROM.

You should use Podule_ReadBytes (page 4-145) to read from within an expansion card’s
code space.

Related SWIs
Podule_RawWrite (page 4-153)

4-151

Podule_RawRead (SWI &40287)

Related vectors
None

4-152

Expansion Cards and Extension ROMs

Podule RawWrite
(swi &40288)

Writes bytes directly within an expansion card’s address space

On entry

RO = offset from base of a podule’s address space (0...&FFF)
R1 = number of bytes to write

R2 = pointer to buffer

R3 = expansion card slot number

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use
This call writes bytes directly within an expansion card’s address space. It is typically
used to write to the registers of hardware devices on an expansion card.
You should use Podule_WriteBytes (see page 4-147) to write within an expansion card’s
code space.
Obviously you cannot write to an extension ROM. You must not use this call to try to
write to the ROM area; if you do so, you risk reprogramming the memory and video
controllers.

Related SWis

Podule_RawRead (page 4-151)

4-153

Podule_RawWrite (SWI &40288)

Related vectors
None

4-154

Expansion Cards and Extension ROMs

Podule HardwareAddress
(swi &40289)

Returns an expansion card or extension ROM’s base address, and the address of an
expansion card’s CMOS RAM

On entry

R3 = ROM section (see page 4-133), or base address of expansion card/extension
ROM

On exit

R3 = combined hardware address

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This call returns an expansion card or extension ROM’s combined hardware address:

Bits M eaning
0-11 base address of CMOS RAM — expansion cards only (4 bytes)
12-25 bits 12 - 25 of base address of expansion card/extension ROM
26-31 reserved

You can use a mask to extract the relevant parts of the returned value. The CMOS
address in the low 12 bits is suitable for passing directly to OS_Byte 161 and 162.

In practice there is little point in finding the combined hardware address of an extension
ROM. The base address of the extension ROM is of little use, as the width of the ROM
can vary; and extension ROMs do not have CMOS RAM reserved for them.

4-155

Podule _HardwareAddress (SWI &40289)

Related SWis

OS Byte 161 (page 1-369), OS Byte 162 (page 1-371),
Podule_HardwareAddresses (page 4-159)

Related vectors
None

4-156

Expansion Cards and Extension ROMs

Podule EnumerateChunksWithInfo
(swi &4028A)

Reads information about a chunk from the Chunk Directory

On entry

RO = chunk number (zero to start)
R3 = ROM section (see page 4-133)

On exit

RO = next chunk number (zero if final chunk enumerated)

R1 = size (in bytes) if RO # 0 on exit

R2 = operating system identity byteif RO # 0 on exit

R4 = pointer to a copy of the module’s name if the chunk is a relocatable module, else
preserved

R5 = pointer to a copy of the module’s help string if the chunk is a relocatable module,
else preserved

R6 = address of module if the chunk is a directly executable relocatable module, or O if
the chunk is a non-directly-executable relocatable module, else preserved

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This call reads information about a chunk from the Chunk Directory. It returns its size
and operating system identity byte. If the chunk is a module it also returns pointers to
copies of its name and its help string, and its address if it is executable. These are held in
the Expansion Card Manager’s private workspace and will not be valid after you have
called the Manager again.

4-157

Podule_EnumerateChunksWithinfo (SWI &4028A)

If the chunk is a Loader, then RISC OS also loadsiit.

To read information on all chunks you should set RO to 0 and R3 to the correct ROM
section. You should then repeatedly call this SWI until RO is set to 0 on exit.

RISC OS automatically does this on areset for all expansion cards; if thereis aLoader
it will be transparently loaded, and any chunks in the code space will also be
enumerated.

This cal isnot available in RISC OS 2, which uses Podule_EnumerateChunks instead.

Related SWis
Podule_EnumerateChunks (page 4-142), Podule ReadChunk (page 4-144)

Related vectors
None

4-158

Expansion Cards and Extension ROMs

Podule HardwareAddresses
(swi &4028B)

Returns an expansion card or extension ROM’s base address, and the address of an
expansion card’s CMOS RAM

On entry
R3 = ROM section (see page 4-133)

On exit
RO = base address of expansion card/extension ROM
R1 = combined hardware address

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns an expansion card or extension ROM’s base address, and its combined
hardware address:

Bits Meaning
0-11 base address of CMOS RAM - expansion cards only (4 bytes)
12-25 bits 12 - 25 of base address of expansion card/extension ROM
26-31 reserved

You can use a mask to extract the relevant parts of the returned value. The CMOS
address in the low 12 bits is suitable for passing directly to OS_Byte 161 and 162.

In practice there is little point in finding the combined hardware address of an extension
ROM. The base address of the extension ROM is of little use, as the width of the ROM
can vary; and extension ROMs do not have CMOS RAM reserved for them.

4-159

Podule _HardwareAddresses (SWI &4028B)

Thiscal isnot availablein RISC OS 2.

Related SWis

OS Byte 161 (page 1-369), OS Byte 162 (page 1-371),
Podule_HardwareAddress (page 4-155)

Related vectors
None

4-160

Expansion Cards and Extension ROMs

Podule ReturnNumber
(swi &4028C)

Returns the number of expansion cards and extension ROMs

On entry

On exit

RO = number of expansion cards
R1 = number of extension ROMs

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This call returns the number of expansion cards and extension ROMs. The number of
expansion cards returned is currently always 4, but you must be prepared to handle any
other value, including O.

This call is used by the *Podules command.
This call is not available in RISC OS 2.

Related SWis
None

Related vectors
None

4-161

* Commands

* Commands
*PoduleLoad

Copies a file into an expansion card’s RAM

Syntax

*Podul eLoad expansi on_card_number filenane [of fset]

Parameters
expansi on_card_nunber the expansion card’s number, as given by *Podules
fil enane a valid pathname, specifying a file
of fset offset (in hexadecimal by default) into the Code
Space
Use
*PoduleLoad copies the contents of a file into an installed expansion card’'s RAM,
starting at the specified offset. If no offset is given, then a default value of 0 is used.
Example

*Podul eLoad 1 $. M di.Data 100

Related commands
*Podules, *PoduleSave

Related SWis
Podule_WriteBytes (page 4-147)

Related vectors
None

4-162

Expansion Cards and Extension ROMs

*Podules

Displays alist of theinstalled expansion cards and extension ROMs

Syntax
*Podul es

Parameters
None

Use

*Podules displays alist of the installed expansion cards and extension ROMs, using the
description that each one holds internally. Some expansion cards and/or extension

ROMSs — such as one that is still being designed — will not have a description; in this

case, an identification number is displayed.

This command still refers to expansion cards as podules, to maintain compatibility with

earlier operating systems. This command does not show extension ROMs under
RISC OS 2.

Example

*Podul es

Podule 0: Mdi and BBC I/ O podul e
Podul e 1: Sinple podul e &8

Podul e 2: No installed podul e
Podule 3: No installed podul e

Related commands
None

Related SWis
Podule_EnumerateChunks (page 4-142)

Related vectors
None

4-163

*PoduleSave

4-164

*PoduleSave

Copies the contents of an expansion card’s ROM into a file

Syntax

*Podul eSave expansi on_card_nunber filenane size [of fset]

Parameters
expansi on_card_nunber the expansion card’s number, as given by *Podules
fil enane a valid pathname, specifying a file
size in bytes
of fset offset (in hexadecimal by default) into the Code

Space

Use
*PoduleSave copies the given number of bytes of an installed expansion card’s ROM
into a file. If no offset is given, then a default value of 0 is used.

Example

*Podul eSave 1 $. Mdi.Data 200 100

Related commands
*Podules, *PoduleLoad

Related SWis
Podule_ReadBytes (page 4-145)

Related vectors
None

Expansion Cards and Extension ROMs

Example program

This program is an example of how to combine the various parts of an expansion card
ROM. It also computes the header and Chunk Directory structure. Thefileit outputsis
suitable for programming into a PROM or EPROM:

4-165

Example program

4-166

10 REM > & arm M di Andl/ O. M di Joi ner
20 REM Aut hor : RISC Cs
30 REM Last edit : 06-Jan-87
40 PRINT"Joiner for expansion card ROMs™""Version 1.05."
50 PRINT"For Midi board.": DIM Buffer% 300, Block% 20
70 INPUTEnter name of output file : "OutName$
75 H%=0OPENOUT(OutName$)
80 IF H%=0 THEN PRINT"Could not create ";OutName$;".":END
90 ONERRORONERROROFF:CLOSE#H%:REPORT:PRINT" at line ";ERL:END
100 Device%=0:L%=TRUE:REPEAT
120 Max%=&800:REM Max% is the size of the normal area
130 Low%=&100:REM Low% is the size of the pseudo directory
140 Base%=0:REM The offset for file address calculations
150 Rom%=&4000:REM Rom% is the size of BBC ROMs
170 PROCBYyte(0):PROCHalf(3):PROCHalf(19):PROCHalf(0):PROCByte(0)
180 PROCBYyte(0):PROC3Byte(0):PROCBYyte(0):PROC3Byte(0)
190 IF PTR#H% <> 16 STOP
200 Bot%=PTR#H%:REM Bot% is where the directory grows from
210 Top%=Max%:REM Top% is where normal files decend from
230 INPUT"Enter filename of loader : "Loader$
240 IF Loader$ <> " THEN K%=FNAddFile(&80, Loader$)
250 IF K% ELSE PRINT"No room for loader.":
PTR#H%=Bot%:PROCBYte(0):CLOSE#H%:END
270 INPUTLINE™Enter product description : "Dat$
280 IF Dat$ <> "" THEN PROCAddString(&F5, Dat$)
300 PRINT:REPEAT
310 INPUT"Enter name of file to add : "File$
320 IF File$ <> " THEN T%=FNType(File$) ELSE T%=0
330 IF T%=0 ELSE K%=FNAddFile(T%, File$)
340 IF K% ELSE PRINT"No more room."
350 UNTIL (File$ = ") OR (K%=FALSE)
360 IF K% ELSE PTR#H%=Bot%:PROCBYte(0):CLOSE#H%:END
370 IF L% PROCChange
390 INPUTLINE"Enter serial number : "Dat$
400 IF Dat$ <> "" THEN PROCAddString(&F1, Dat$)
410 INPUTLINE"Enter modification status : "Dat$
420 IF Dat$ <> "" THEN PROCAddString(&F3, Dat$)
430 INPUTLINE"Enter place of manufacture : "Dat$
440 IF Dat$ <> "" THEN PROCAddString(&F4, Dat$)
450 INPUTLINE"Enter part number : "Dat$
460 IF Dat$ <> "" THEN PROCAddString(&F6, Dat$)
480 Date$=TIME$
490 Date$=MID$(Date$,5,2)+"-"+MID$(Date$,8,3)+"-"+MID$(Date$,14,2)
500 PROCAddString(&F2, Date$)
530 REM PROCHeader(&F0, Z%+W%*Rom%-Base%, 0):REM Link
550 PTR#H%=B0t%:PROCBYte(0)
570 CLOSE#H%: END
590 DEF PROCBYyte(D%):BPUT#H%,D%:ENDPROC
610 DEF PROCHalf(D%):BPUT#H%,D%:BPUT#H%,D%DIV256:ENDPROC
630 DEF PROC3Byte(D%)
640 BPUT#H%,D%:BPUT#H%,D%DIV256:BPUT#H%,D%DIV65535:ENDPROC
660 DEF PROCWord(D%)
670 BPUT#H%,D%:BPUT#H%,D%DIV256:BPUT#H%,D%DIV65535
680 BPUT#H%,D%DIV16777216:ENDPROC
700 DEF PROCAddString(T%, S$)

Expansion Cards and Extension ROMs

710 S$=S$+CHR$0
720 1 F L% THEN PROCAddNor mal String ELSE PROCAddPsuedoString
730 ENDPRCC
750 DEF PROCAddNor mal String
760 | F Top% Bot % < 10+LEN(S$) THEN STOP
770 PROCHeader (T% Top% LEN(S$) - Base% LEN(S$))
780 Top%Top% LEN(S$) : PTR#H%Top% FOR | %1 TO LEN(S$)
790 BPUT#H% ASC(M D$(S$, | % 1)) : NEXTI % ENDPROC
810 DEF PROCAddPsuedoString
820 | F Max%+-Low Bot % < 9 THEN STOP
830 PROCHeader (T% Top% Base% LEN(S$))
840 PTR#HYTop% FOR | %1 TO LEN(S$)
850 BPUT#HY% ASC(M D$(S$, | % 1)) : NEXTI %
860 Top%Top%-LEN(S$) : ENDPROC
880 DEF PROCHeader (Type% Address% Size%)
890 PTR#HY%Bot %
900 PROCByte(Type%)
910 PROC3Byte(Size%)
920 PROCWrd(Address%)
930 Bot %Bot %+8: ENDPRCC
950 DEF FNAddFile(T% N$)
960 F%OPENI N(N$)
970 IF F%=0 THEN PRINT"File ";N$;" not found.":=FALSE
980 S%=EXT#F%
990 IF L% THEN =FNAddNormalFile ELSE =FNAddPsuedoFile
1010 DEF FNAddNormalFile
1020 E%=S%+9-(Top%-Bot%)
1030 IF E%>0 THEN PRINT"Oversize by ";E%;" bytes.":
PROCChange:=FNAddPsuedoFile
1040 PROCHeader(T%, Top%-S%-Base%, S%)
1050 Top%=Top%-S%:PTR#H%=Top%:FOR 1%=1 TO S%
1060 BPUT#H%,BGET#F%:NEXTI%:CLOSE#F%:=TRUE
1080 DEF FNAddPsuedoFile
1090 IF Max%-+Low%-Bot% < 9 THEN =FALSE
1100 PROCHeader(T%, Top%-Base%, S%)
1110 PTR#H%=Top%
1120 FOR 1%=1 TO S%:BPUT#H%,BGET#F%:NEXTI%
1130 Top%=Top%+S%:CLOSE#F%:=TRUE
1150 DEF PROCChange
1160 PRINT"Changing up. Wasting ";Top%-Bot%;" bytes."
1170 PTR#H%=Bot%:PROCBYyte(0):REM Terminate bottom directory
1180 Bot%=Max%:Top%=Max%+Low%:Base%=Max%:L%=FALSE
1190 REM In the pseudo area files grow upward from Top%
1200 ENDPROC
1220 DEF FNType(N$)
1230 $Buffer%=N$:X%=Block%:Y%=X%/256:A%=5:X%!0=Buffer%
1240 B%=USR&FFDD:IF (B%AND255) <> 1 THEN PRINT"Not a file":=0
1250 V%-=(Block%!3)AND&FFFFFF
1260 IFV%=&FFFFFA THEN =&81
1270 IF((Block%!2AND&FFFF)=&8000)AND((Block%!6AND&FFFF)=&8000) THEN=&82
1280 IFV%=&FFFFF9 THEN =&83
1290 =0

4-167

Example program

4-168

/8

Floating point emulator

Introduction

The Acorn RISC machine has a general coprocessor interface. The first coprocessor

available is one which performs floating point calculations to the IEEE standard. To

ensure that programs using floating point arithmetic remain compatible with al

Archimedes machines, a standard ARM floating point instruction set has been defined.

This can be implemented invisibly to the customer program by one of several systems

offering various speed performances at various costs. The current ‘bundled’ floating
point system is the software-only floating point emulator module. Floating point
instructions may be incorporated into any assembler text, provided they are called from
user mode. These instructions are recognised by the Assembler and converted into the
correct coprocessor instructions. However, these instructions are not supported by the
assembler in the BASIC interpreter.

Because this module doesn’t present any SWis or other usual interface to programs
(apart from a SWI to return the version number), this chapter is structured differently
from most others. First, there is a discussion of the programmer’s model of the IEEE 754
floating point system. This is followed by the floating point instruction set. Finally the
SWI is detailed.

Generally, programs do not need to know whether a coprocessor is fitted; the only
effective difference is in the speed of execution. Note that there may be slight variations
in accuracy between hardware and software — refer to the instructions supplied with the
coprocessor for details of these variations.

4-169

Programmer’s model

Programmer’s model

The ARM IEEE floating point system has eight ‘high precisftwéting point registers,

FO to F7. The format in which numbers are stored in these registers is not specified.
Floating point formats only become visible when a number is transferred to memory,
using one of the formats described below.

There is also #oating point status register (FPSR) which, like the ARM’s combined

PC and PSR, holds all the necessary status and control information that an application is
intended to be able to access. It hdldgs which indicate various error conditions, such

as overflow and division by zero. Each flag has a correspotrdipgnable bit, which

can be used to enable or disable a ‘trap’ associated with the error condition. Bits in the
FPSR allow a client to distinguish between different implementations of the floating
point system.

There may also befboating point control register (FPCR); this is used to hold status

and control information that an application is not intended to access. For example, there
are privileged instructions to turn the floating point system on and off, to permit efficient
context changes. Typically, hardware based systems have an FPCR, whereas software
based ones do not.

Available systems

4-170

Floating point systems may be built from software only, hardware only, or some
combination of software and hardware. The following terminology will be used to
differentiate between the various ARM floating point systems already in use or planned:

System name System components

Old FPE Versions of the floating point emulator up to (but not including)
4.00
FPPC Floating Point Protocol Convertor (interface chip between ARM

and WE32206), WE32206 (AT&T Math Acceleration Unit chip),
and support code
FPE 400 Versions of the floating point emulator from 4.00 onwards
FPA ARM Floating Point Accelerator chip, and support code

The results look the same to the programmer. However, if clients are aware of which
system is in use, they may be able to extract better performance.

The old FPE has two different variants. Versions up to (but not including) 3.40 do not
provide any hardware support, whereas versions 3.40 to 3.99 inclusive provide support
for the FPPC hardware — if it is fitted. All versions of the FPE 400 provide support for
the FPA hardware.

Precision

Floating point emulator

All basic floating point instructions operate as though the result were computed to
infinite precision and then rounded to the length, and in the way, specified by the
instruction. The rounding is selectable from:

« Round to nearest

o Round to +infinity (P)
+ Round to —infinity (M)
+ Round to zero (2).

The default is ‘round to nearest’; in the event of a tie, this rounds to ‘nearest even'. If any
of the others are required they must be given in the instruction.

The working precision of the system is 80 bits, comprising a 64 bit mantissa, a 15 bit
exponent and a sign bit. Specific instructions that work only with single precision
operands may provide higher performance in some implementations, particularly the
fully software based ones.

Floating point number formats

Like the ARM instructions, the floating point data processing operations refer to
registers rather than memory locations. Values may be stored into ARM memory in one
of five formats (only four of which are visible at any one time, since P and EP are
mutually exclusive):

4-171

Floating point number formats

4-172

IEEE Single Precision (S)

31 30 2322 0

Sign Exponent msb Fraction Isb

Figure 78.1 Single precision format
If the exponent is 0 and the fraction is O, the number represented is 0.

If the exponent is 0 and the fraction is non-zero, the number represented is
+0.fraction x 27126

If the exponent isin the range 1 to 254, the number represented is
+1 fraction x 28ponent 127

If the exponent is 255 and the fraction is 0, the number represented is +co.

If the exponent is 255 and the fraction is non-zero, aNaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwiseit isatrapping NaN.

IEEE Double Precision (D)

31 30 2019 0
First word | Sign Exponent msb Fraction Isb
Second word | msb Fraction Isb

Figure 78.2 Double precision format
If the exponent is 0 and the fraction is O, the number represented is 0.

If the exponent is 0 and the fraction is non-zero, the number represented is
+0.fraction x 271022

If the exponent isin the range 1 to 2046, the number represented is
+1.fraction x 2&ponent - 1023

If the exponent is 2047 and the fraction is O, the number represented is +co.

If the exponent is 2047 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is anon-trapping
NaN; otherwiseit isatrapping NaN.

Floating point emulator

Double Extended Precision (E)

31 30 1514 0

First word | Sign zeros Exponent
Second word| J msb Fraction Isb
Third word | msb Fraction Isb

Figure 78.3 Double extended precision format
o IftheexponentisO, Jis 0, and the fraction is O, the number represented is +0.

o IftheexponentisO, Jis0, and the fraction is non-zero, the number represented is
+0.fraction x 2716382

« If theexponent isin the range 0 to 32766, Jis 1, and the fraction is non-zero, the
number represented is +1.fraction x 28xPonent - 16383

o If the exponent is 32767, Jis 0, and the fraction is 0, the number represented is +co.

« If theexponent is 32767 and the fraction is non-zero, aNaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it isanon-trapping
NaN; otherwiseit isatrapping NaN.

Other values areillegal and shall not be used (ie the exponent isin the range 1 to 32766
and Jis 0; or the exponent is 32767, Jis 1, and the fraction is 0).

The FPPC system stores the sign bit in bit 15 of the first word, rather than in bit 31.

Storing a floating point register in ‘E’ format is guaranteed to maintain precision when
loaded back by the same floating point system in this format. Note that in the past the
layout of E format has varied between floating point systems, so software should not
have been written to depend on it being readable by other floating point systems. For
example, no software should have been written which saves E format data to disc, to
have then been potentially loaded into another system. In particular, E format in the
FPPC system varies from all other systems in its positioning of the sign bit. However,
for the FPA and the FPE 400, the E format is now defined to be a particular form of
IEEE Double Extended Precision and will not vary in future.

4-173

Floating point number formats

4-174

Packed Decimal (P)
31 0

First word | Sign e3 e2 el el dis d17 d16

Second word| d15 di4 di3 di2 di1 di0 do ds

Third word| d7 dé d5 d4 d3 d2 di do

Figure 78.4 Packed decimal format

The sign nibble contains both the significand’s sign (top bit) and the exponent’s sign
(next bit); the other two bits are zero.

d18 is the most significant digit of the significashdand e3 of the exponeatThe

significand has an assumed decimal point between d18 and d17, and is nhormalised so
that for a normal numberd d18< 9. The guaranteed ranges tbande are 17 and 3

digits respectively; dO, d1 and e3 may always be zero in a particular system. (By
comparison, an S format number has 9 digits of significand and a maximum exponent of
53; a D format number has 17 digits in the significand and a maximum exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation afeo or a NaN (see below).

« If the exponent’s sign is 0, the exponent is 0, and the significand is 0, the number
represented is0.
Zero will always be output as +0, but either +0 or —0 may be input.

« If the exponent is in the range 0 to 9999 and the significand is in the range 1 to
9.999999999999999999, the number represented s1 0+,

« If the exponent is &FFFF (ie all the bits in e3 - e0 are set) and the significand is 0,
the number representedti®.

« Ifthe exponent is &FFFF and dO - d17 are non-zero, a NaN (not-a-number) is
represented. If the most significant bit of d18 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

Floating point emulator

Expanded Packed Decimal (EP)
31 0

First word | Sign eb eb5 ed e3 e2 el e0

Second word | d23 d22 d21 d20 di9 dis di7 die6

Third word| d15 di4 d13 d12 d11 d10 do ds

Fourth word| d7 dé ds d4 d3 d2 di do

Figure 78.5 Expanded packed decimal format

The sign nibble contains both the significand’s sign (top bit) and the exponent’s sign
(next bit); the other two bits are zero.

d23 is the most significant digit of the significathdand e6 of the exponeatThe

significand has an assumed decimal point between d23 and d22, and is normalised so
that for a normal numberd d23< 9. The guaranteed ranges fbande are 21 and 4

digits respectively; dO, d1, d2, e4, e5 and e6 may always be zero in a particular system.
(By comparison, an S format number has 9 digits of significand and a maximum
exponent of 53; a D format number has 17 digits in the significand and a maximum
exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation afco or a NaN (see below).

« If the exponent’s sign is O, the exponent is 0, and the significand is 0, the number
represented is0.

Zero will always be output as +0, but either +0 or -0 may be input.

« If the exponentis in the range 0 to 9999999 and the significand is in the range 1 to
9.99999999999999999999999, the number representeckid 0*€,

« Ifthe exponent is &FFFFFFF (ie all the bits in e6 - €0 are set) and the significand is
0, the number representedtis.

« If the exponent is &FFFFFFF and dO - d22 are non-zero, a NaN (not-a-number) is
represented. If the most significant bit of d23 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

This format is not available in the old FPE or the FPPC. You should only use it if you
can guarantee that the floating point system you are using supports it.

4-175

Floating point status register

Floating point status register

4-176

There is a floating point status register (FPSR) which, like ARM’s combined PC and
PSR, has all the necessary status for the floating point system. The FPSR contains the
IEEE flags but not the result flags — these are only available after floating point compare
operations.

The FPSR consists of a system ID byte, an exception trap enable byte, a system control
byte and a cumulative exception flags byte.

31 2423 1615 87 0

FPSR System ID Trap Enable System Control | Exception Flags

Figure 78.6 Floating point status register byte usage

System ID byte

The System ID byte allows a user or operating system to distinguish which floating
point system is in use. The top bit (bit 31 of the FPSR) is sbfalwar e (ie fast)
systems, and clear feoftware (ie slow) systems. Note that the System ID is read-only.

The following System IDs are currently defined:

System System |D
Old FPE &00
FPPC &80
FPE 400 &01
FPA &81

Exception Trap Enable Byte

Each bit of the exception trap enable byte corresponds to one type of floating point
exception, which are described in the section ent@ledul ative Exception Flags Byte
on page 4-178.

23 22 21 20 19 18 17 16

FPSR Reserved INX UFL OFL Dvz IVO

Figure 78.7 Exception trap enable byte

If a bit in the cumulative exception flags byte is set as a result of executing a floating
point instruction, and the corresponding bit is also set in the exception trap enable byte,
then that exception trap will be taken.

Currently, the reserved bits shall be written as zeros and will return O when read.

Floating point emulator

System Control Byte
These control bits determine which features of the floating point system arein use.

15 14 13 12 11 10 9 8

FPSR Reserved AC EP SO NE ND

Figure 78.8 System control byte

By placing these control bitsin the FPSR, their state will be preserved across context
switches, allowing different processes to use different features if necessary. The
following five control bits are defined for the FPA system and the FPE 400:

ND No Denormalised numbers

NE NaN Exception

SO Select synchronous Operation of FPA

EP Use Expanded Packed decimal format

AC Use Alternative definition for C flag on compare operations

The old FPE and the FPPC system behave asiif all these bits are clear.

Currently, the reserved bits shall be written as zeros and will return O when read. Note
that al bits (including bits 8 - 12) are reserved on FPPC and early FPE systems.

ND — No denormalised numbers bit

If thisbit is set, then the software will force all denormalised numbersto zero to prevent
lengthy execution times when dealing with denormalised numbers. (Also known as
abrupt underflow or flush to zero.) This mode is not |EEE compatible but may be
required by some programs for performance reasons.

If this bit is clear, then denormalised numbers will be handled in the normal
| EEE-conformant way.

NE — NaN exception bit

If thisbit is set, then an attempt to store asignalling NaN that involves a change of
format will cause an exception (for full IEEE compatibility).

If this bit is clear, then an attempt to store a signalling NaN that involves a change of
format will not cause an exception (for compatibility with programs designed to work
with the old FPE).

4-177

Floating point status register

4-178

SO - Select synchronous operation of FPA

If thishit is set, then all floating point instructions will execute synchronously and ARM
will be madeto busy-wait until theinstruction has completed. Thiswill alow the precise
address of an instruction causing an exception to be reported, but at the expense of
increased execution time.

If thishit is clear, then that class of floating point instructions that can execute
asynchronously to ARM will do so. Exceptions that occur as aresult of these
instructions may be raised some time after the instruction has started, by which time the
ARM may have executed a number of instructions following the one that hasfailed. In
such cases the address of the instruction that caused the exception will be imprecise.

The state of this bit isignored by software-only implementations, which always operate
synchronously.

EP — Use expanded packed decimal format

If this bit is set, then the expanded (four word) format will be used for Packed Decimal
numbers. Use of this expanded format allows conversion from extended precision to
packed decimal and back again to be carried out without loss of accuracy.

If this bit is clear, then the standard (three word) format is used for Packed Decimal
numbers.

AC — Use alternative definition for C flag on compare operations

If this bit is set, the ARM C flag, after a compare, is interpreted as ‘Greater Than or
Equal or Unordered’. This interpretation allows more of the IEEE predicates to be tested
by means of single ARM conditional instructions than is possible using the original
interpretation of the C flag (as shown below).

If this bit is clear, the ARM C flag, after a compare, is interpreted as ‘Greater Than or
Equal'.

Cumulative Exception Flags Byte

7 6 5 4 3 2 1 0

FPSR Reserved INX UFL OFL DvZ IVO

Figure 78.9 Cumulative exception flags byte

Whenever an exception condition arises, the appropriate cumulative exception flag in
bits 0 to 4 will be set to 1. If the relevant trap enable bit is set, then an exception is also
delivered to the user’s program in a manner specific to the operating system. (Note that

Floating point emulator

in the case of underflow, the state of the trap enable bit determines under which
conditions the underflow flag will be set.) These flags can only be cleared by aWFS
instruction.

Currently, the reserved hits shall be written as zeros and will return O when read.

IVO — invalid operation

The IVOflagis set when an operand isinvalid for the operation to be performed. Invalid
operations are;

Any operation on atrapping NaN (not-a-number)
Magnitude subtraction of infinities, eg +c + —0
Multiplication of 0 by+e

Division of 0/0 oreo/co

X REM y where x = ory =0
(REM is the ‘remainder after floating point division’ operator.)

Square root of any number < 0 (bift0) = —0)

Conversion to integer or decimal when overflonpr a NaN operand make it
impossible

If overflow makes a conversion to integer impossible, then the largest positive or
negative integer is produced (depending on the sign of the operand) and IVO is
signalled

Comparison with exceptions of Unordered operands
ACS, ASN when argument’s absolute value is > 1
SIN, COS, TAN when argumentiso

LOG, LGN when argument s 0

POW when first operand is < 0 and second operand is not an integer, or first
operand is 0 and second operand &

RPW when first operand is not an integer and second operand is < 0, or first
operand i< 0 and second operand is 0.

DVZ — division by zero

The DVZ flag is set if the divisor is zero and the dividend afinite, non-zero number. A
correctly signed infinity is returned if the trap is disabled.

Theflag isaso set for LOG(0) and for LGN(0). Negative infinity is returned if the trap
is disabled.

4-179

Floating Point Control Register

OFL — overflow

The OFL flag is set whenever the destination format’s largest number is exceeded in
magnitude by what the rounded result would have been were the exponent range
unbounded. As overflow is detected after rounding a result, whether overflow occurs or
not after some operations depends on the rounding mode.

If the trap is disabled either a correctly signed infinity is returned, or the format’s largest
finite number. This depends on the rounding mode and floating point system used.

UFL — underflow

Two correlated events contribute to underflow:

« Tininess — the creation of a tiny non-zero result smaller in magnitude than the
format's smallest normalised number.

o Lossof accuracy — a loss of accuracy due to denormalisation et be greater
than would be caused by rounding alone.

The UFL flag is set in different ways depending on the value of the UFL trap enable bit.

If the trap is enabled, then the UFL flag is set when tininess is detected regardless of loss
of accuracy. If the trap is disabled, then the UFL flag is set when both tininess and loss
of accuracy are detected (in which case the INX flag is also set); otherwise a correctly
signed zero is returned.

As underflow is detected after rounding a result, whether underflow occurs or not after
some operations depends on the rounding mode.

INX — inexact

The INX flag is set if the rounded result of an operation is not exact (different from the
value computable with infinite precision), or overflow has occurred while the OFL trap
was disabled, or underflow has occurred while the UFL trap was disabled. OFL or UFL
traps take precedence over INX.

TheINX flagisalso set when computing SIN or COS, with the exceptions of SIN(0) and
COSs(1).

The old FPE and the FPPC system may differ in their handling of the INX flag. Because
of thisinconsistency we recommend that you do not enable the INX trap.

Floating Point Control Register

4-180

The Floating Point Control register (FPCR) may only be present in some
implementations: it is there to control the hardware in an implementation-specific
manner, for exampl e to disable the floating point system. The user mode of the ARM is
not permitted to use this register (since the right is reserved to alter it between
implementations) and the WFC and RFC instructions will trap if tried in user mode.

Floating point emulator

You are unlikely to need to access the FPCR; thisinformation is principally given for
compl eteness.

The FPPC system
The FPCR hit allocation in the FPPC system is as shown below:

FPCR

31

8 7

6

5

4

3 2 1

PR

SBd

SBn

SBm

DA

PR
SBd
SBn
SBm

AS
EX

Meaning

Reserved — always read as zero

Reserved — always read as zero

DA Disable

Figure 78.10 FPCR bit allocation in the FPPC system

Last RMF instruction produced a partial remainder
Use Supervisor Register Bank ‘d’
Use Supervisor Register Bank ‘n’
Use Supervisor Register Bank ‘m’

Last WE32206 exception was asynchronous
Floating point exception has occurred

Reserved bits are ignored during write operations (but should be zero for future

compatibility.) The reserved bits will return zero when read.

The FPA system

In the FPA, the FPCR will also be used to return status information required by the
support code when an instruction is bounced. You should not alter the register unless
you really know what you're doing. Note that the register will be read sensiiere;
reading the register may change itsvalue, with disastrous conseguences.

The FPCR bit allocation in the FPA systenpiisvisionally as follows:

FPCR

(cont'd)

31 30 29 28 27 26

25 24 23 22 21 20 19 18 17 16

RU| — IE [MO|EO| — OoP — S1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
OP DS SB|AB|RE|EN|PR| RM [OP S2

Figure 78.11 FPCR bit allocation in the FPA system

4-181

Floating Point Control Register

4-182

Bit

31

30

29

28

27

26
25,24
23-20
19
18-16
15
14-12
11

10

9

5

8
7
6
4

3-0

RU

IE
MO
EO

OoP
PR
S1

OP
DS
SB
AB
RE

EN
PR
RM
OoP
S2

Meaning

Rounded Up Bit

Reserved

Reserved

Inexact bit

Mantissa overflow

Exponent overflow

Reserved

AU operation code

AU precision

AU sourceregister 1

AU operation code

AU destination register

Synchronous bounce: decode (R14) to get opcode

Asynchronous bounce: opcode supplied in rest of word

Rounding Exception: Asynchronous bounce occurred during
rounding stage and destination register was written

Enable FPA (default is off)

AU precision

AU rounding mode

AU operation code

AU sourceregister 2 (bit 3 set denotes a constant)

Note that the SB and AB bhits are cleared on aread of the FPCR. Only the EN bit is
writable. All other bits shall be set to zero on awrite.

Floating point emulator

The instruction set

Floating point coprocessor data transfer

op{condi tion}prec Fd, addr

op isLDF for load, STF for store

condi tion isoneof theusua ARM conditions (see Appendix A: ARM assembler
on page 4-363)

prec isone of the usual floating point precisions (eg Sfor single, D for

double, P for packed decimal: see the section entitled Floating point
number formats on page 4-171)

addr is [Rn] {, #offset} or [Rn, #of fset] {!}
({! } if present indicates that writeback is to take place.)

Fd is afloating point register symbol (defined viathe FN directive).

Load (LDF) or store (STF) the high precision value from or to memory, using one of the

five memory formats. On store, the value is rounded using the ‘round to nearest’
rounding method to the destination precision, or is precise if the destination has
sufficient precision. Thus other rounding methods may be used by having previously
applied some suitable floating point data operation; this does not compromise the
requirement of ‘rounding once only’, since the store operation introduces no additional
rounding error.

The offset is in words from the address given by the ARM base register, and is in the
range —1020 to +1020. In pre-indexed mode you must explicitly specify writeback to
add the offset to the base register; but in post-indexed mode the assembler forces
writeback for you, as without write back post-indexing is meaningless.

You should not use R15 as the base register if writeback will take place.

Examples:

LDFS FO, [RO] ; load FO fromaddress held in RO
; (single precision)

STFP F1, [R2] ; store nunber held in F1 at R2

; as a packed deci mal nunber

4-183

Floating point coprocessor multiple data transfer

Floating point literals

LDFSand LDFD can be given literal valuesinstead of aregister relative address, and

the Assembler will automatically place the required value in the next available literal

pool. In the case of LDFS asingle precision value is placed, in the case of LDFD a

double precision value is placed. Because the allowed offset range within a LDFS or

LDFD instruction is less than that for a LDR instruction (—1020 to +1020 instead of —
4095 to +4095), it may be necessary to code LTORG directives more frequently if
floating point literals are being used than would otherwise be necessary.

Syntax;.LDFx Fn, = floating poi nt nunber

Floating point coprocessor multiple data transfer

4-184

The LFM and SFM multiple data transfer instructions are supported by the assemblers,
but are not provided by the FPPC system, or by some versions of the old FPE:

« versions 2.80 - 2.84 do not support them
e versions 2.85 - 3.39 do support them

« version 3.40 — which is effectively a version of 2.80 that also provides FPPC
hardware support — does not support these instructions.

Attempting to execute these instructions on systems that do not provide them will cause
undefined instruction traps, so you should only use these instructions in software
intended for machines you are confident are using an appropriate version of the old FPE,
or the FPE 400, or the FPA system.

The LFM and SFM instructions allow between 1 and 4 floating point registers to be
transferred from or to memory in a single operation; such a transfer otherwise requires
several LDF or STF operations. The multiple transfers are therefore useful for efficient
stacking on procedure entry/exit and context switching. These new instructions are the
preferred way to preserve exactly register contents within a program.

The values transferred to memory by SFM occupy three words for each register, but the
data format used is not defined, and may vary between floating point systems. The only
legal operation that can be performed on this data is to load it back into floating point
registers using the LFM instruction. The data stored in memory by an SFM instruction
should not be used or modified by any user process.

The registers transferred by a LFM or SFM instruction are specified by a base floating
point register and the number of registers to be transferred. This means that a register set
transferred has to have adjacent register numbers, unlike the unconstrained set of ARM
registers that can be loaded or saved using LDM and STM. Floating point registers are
transferred in ascending order, register numbers wrapping round from 7 to O: eg
transferring three registers with F6 as the base register results in registers F6, F7 then FO
being transferred.

Floating point emulator

The assembler supports two alternative forms of syntax, intended for general use or just
stack manipulation:

op{condition} Fd, count, addr
op{condi tion}stacktype Fd, count,[Rn]{!}

op is LFMfor load, SFMfor store.

condi tion is one of the usual ARM conditions.

Fd isthe base floating point register, specified as afloating point register
symbol (defined viathe FN directive).

count isan integer from 1 to 4 specifying the number of registersto be
transferred.

addr is [Rn]{, #of fset} or[Rn, #of fset] {!}

({'} if present indicates that writeback isto take place).

stackt ype isFD or EA, standing for Full Descending or Empty Ascending, the
meanings as for LDM and STM.

The offset (only relevant for the first, general, syntax above) isin words from the

address given by the ARM base register, and is in the range —1020 to +1020. In
pre-indexed mode you must explicitly specify writeback to add the offset to the base
register; but in post-indexed mode the assembler forces writeback for you, as without
write back post-indexing is meaningless.

You should not use R15 as the base register if writeback will take place.

Examples:

SFMNE F6, 4, [RO] ;if NEis true, transfer F6, F7,
; FO and F1 to the address
;contained in RO

LFMD F4,2,[R13]! ;load F4 and F5 from FD stack -

LFM F4,2,[R13], #24 ;equivalent to sane instruction

;in general syntax

4-185

Floating point coprocessor register transfer

Floating point coprocessor register transfer

FLT{condi ti on}prec{round} Fn, Rd
FLT{condi ti on}prec{round} Fn, #val ue

FI X{ condi ti on}{round} Rd, Fn

WES{ condi ti on} Rd

RFS{ condi ti on} Rd

WFC{ condi t i on} Rd

RFC{ condi ti on} Rd

{ round} isthe optional rounding mode: P, M or Z; see below.
Rd isan ARM register symbol.

Fn isafloating point register symbol.

The value may be of the following: 0, 1, 2, 3, 4, 5, 10, 0.5. Note that these values must
be written precisely as shown above, for instance ‘0.5’ is correct but *.5’ is not.

FLT Integer to Floating Point Fn:=Rd
FIX Floating point to integer Rd :=Fm
WFS Write Floating Point Status FPSR :=Rd
RFS Read Floating Point Status Rd := FPSR
WFC Write Floating Point Control FPC =R Supervisor Only
RFC Read Floating Point Control Rd := FPC Supervisor Only
The rounding modes are:
Mode Letter
Nearest (no letter required)

Plus infinity P
Minus infinity M
Zero Z

Floating point coprocessor data operations

4-186

The formats of these instructions are:
bi nop{ condi ti on} prec{round} Fd, Fn, Fm
bi nop{ condi ti on} prec{round} Fd, Fn, #val ue

unop{ condi ti on}prec{round} Fd, Fm
unop{ condi ti on}prec{round} Fd, #val ue
bi nop is one of the binary operations listed below
unop is one of the unary operations listed below
Fd is the FPU destination register

Fn is the FPU source register (binops only)

Floating point emulator

Fm isthe FPU source register
#val ue isaconstant, as an aternative to Fm. It must be 0, 1, 2, 3, 4, 5, 10 or
0.5, as above.

The binops are:

ADF Add Fd:=Fn+Fm

MUF Multiply Fd:=FnxFm

SUF Subtract Fd :=Fn—-Fm

RSF Reverse Subtract Fd:=Fm-Fn

DVF Divide Fd := Fn/Fm

RDF Reverse Divide Fd := Fm/Fn

POW Power Fd := Fn to the power of Fm

RPW Reverse Power Fd := Fm to the power of Fn

RMF Remainder Fd := remainder of Fn / Fm
(Fd := Fn — integer value of (Fn/Fm)Fm)

FML Fast Multiply Fd := Frx Fm

FDV Fast Divide Fd:=Fn/Fm

FRD Fast Reverse Divide Fd:=Fm/Fn

POL Polar angle Fd := polar angle of Fn, Fm

The unops are:

MVF Move Fd :=Fm

MNF Move Negated Fd :=—-Fm

ABS Absolute value Fd := ABS (Fm)

RND Round to integral value Fd := integer value of Fm

SQT Square root Fd := square root of Fm

LOG Logarithm to base 10 Fd :=log Fm

LGN Logarithm to base e Fd:=InFm

EXP Exponent Fd := e to the power of Fm

SIN Sine Fd := sine of Fm

COS Cosine Fd := cosine of Fm

TAN Tangent Fd :=tangent of Fm

ASN Arc Sine Fd := arcsine of Fm

ACS Arc Cosine Fd := arccosine of Fm

ATN Arc Tangent Fd := arctangent of Fm

URD Unnormalised Round Fd := integer value of Fm (may be abnormal)

NRM Normalise Fd := normalised form of Fm

Note that wherever Fm is mentioned, one of the floating point constants 0, 1, 2, 3, 4, 5,
10, or 0.5 can be used instead.

FML, FRD and FDV are only defined to work with single precision operands. These
‘fast’ instructions are likely to be faster than the equivalent MUF, DVF and RDF
instructions, but this is not necessarily so for any particular implementation.

4-187

Floating point coprocessor status transfer

Rounding is done only at the last stage of a SIN, COS etc — the calculations to compute
the value are done with ‘round to nearest’ using the full working precision.

The URD and NRM operations are only supported by the FPA and the FPE 400.

Floating point coprocessor status transfer

4-188

op{condi tion}prec{round} Fm Fn

op is one of the following:

CMF Compare floating compare Fn with Fm
CNF Compare negated floating compare Fn with —=Fm
CMFE Compare floating with exception compare Fn with Fm
CNFE Compare negated floating with exception compare Fn with —=Fm

{condi tion} an ARM condition.

prec a precision letter

{ round} an optional rounding mode: P, M or Z
Fm A floating point register symbol.

Fn A floating point register symbol.

Compares are provided with and without the exception that could arise if the numbers
are unordered (ie one or both of them is not-a-number). To comply with IEEE 754, the
CMF instruction should be used to test for equality (ie when a BEQ or BNE is used
afterwards) or to test for unorderedness (in the V flag). The CMFE instruction should be
used for all other tests (BGT, BGE, BLT, BLE afterwards).

When the AC bit in the FPSR is clear, the ARM flags N, Z, C, V refer to the following
after compares:

N Less than ie Fn less than Fm (or —Fm)

Z Equal

C Greater than or equal ie Fn greater than or equal to Fm (or —Fm)
\% Unordered

Note that when two numbers are not equal, N and C are not necessarily opposites. If the
result is unordered they will both be clear.

When the AC bit in the FPSR is set, the ARM flags N, Z, C, V refer to the following
after compares:

N Less than

Z Equal

C Greater than or equal or unordered
\% Unordered

Floating point emulator

Inthiscase, N and C are necessarily opposites.

Finding out more...
Further details of the floating point instructions (such as the format of the bitfields
within the instruction) can be found in the Acorn RISC Machine family Data Manual.
VLSl Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ, USA:

ISBN 0-13-781618-9 and in the Acorn Assembler Release 2 manual.

4-189

SWi Calls

SWI Calls

FPEmulator_Version
(swi &40480)

Returns the version number of the floating point emulator

On entry

On exit

RO = BCD version number

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined
Use
This call returns the version number of the floating point emulator as a binary coded
decimal (BCD) number in RO.
This SWI will continue to be supported by the hardware expansion.
Related SWis

None

Related vectors
None

4-190

79

ARM3 Support

Introduction and Overview

The ARM3 Support module provides commands to control the use of the ARM3
processor’s cache, where one is fitted to a machine. The module will immediately Kkill
itself if you try to run it on a machine that only has an ARM2 processor fitted.

Summary of facilities

Notes

Two * Commands are provided: one to configure whether or not the cache is enabled at
a power-on or reset, and the other to independently turn the cache on or off.

There is also a SWI to turn the cache on or off. A further SWI forces the cache to be
flushed. Finally, there is also a set of SWIs that control how various areas of memory
interact with the cache.

The default setup is such that all RISC OS programs should run unchanged with the
ARMS3's cache enabled. Consequently, you are unlikely to need to use the SWis
(beyond, possibly, turning the cache on or off).

A few poorly-written programs may not work correctly with ARM3 processors, because
they make assumptions about processor timing or clock rates.

This module is not available in RISC OS 2.00 (ie was introduced in RISC OS 2.01).

Finding out more

For more details of the ARM3 processor, seefitern RISC Machine family Data
Manual. VLSI Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ, USA:
ISBN 0-13-781618-9.

4-191

SWi Calls

SWI Calls

4-192

Cache_Control
(swi &280)

Turns the cache on or off

On entry

RO = XOR mask
R1 = AND mask

On exit
RO = old state (0 O cacheing was disabled, 1 O cacheing was enabled)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor isin SV C mode

Re-entrancy
Not defined

Use

This call turns the cache on or off. Bit 0 of the ARM3'’s control register 2 is altered by
being masked with R1 and then exclusive ORd with RO: ie new value = ((old value AND
R1) XOR RO). Bit 1 of the control register is also set, so the ARM 3 mlateseparately

cache accesses to the same address for user and non-user modes. (To do so would
degrade cache performance, and potentially cause cache inconsistency). Other bits of the
control register are set to zero.

Related SWiIs
None

ARMS3 Support

Related vectors
None

4-193

Cache_Cacheable (SWI &281)

Cache_Cacheable
(swi &281)

Controls which areas of memory may be cached

On entry

RO = XOR mask
R1 = AND mask

On exit
RO = old value (bit n set 0 2MBytes starting at nx2MBytes are cacheable)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy

Not defined

Use
This call controls which areas of memory may be cached (ie are cacheable). The
ARM3's control register 3 is altered by being masked with R1 and then exclusive ORd
with RO: ie new value = ((old value AND R1) XOR RO). If bibf the control register is
set, the 2MBytes starting ak2MBytes are cacheable.
The default value stored is &FC007CFF, so ROM and logical non-screen RAM are
cacheable, but I/0O space, physical memory, the RAM disc and logical screen memory
are not.

Related SWis

Cache_Updateable (page 4-196), Cache_Disruptive (page 4-198)

4-194

ARMS3 Support

Related vectors
None

4-195

Cache_Updateable (SWI &282)

Cache_Updateable
(swi &282)

Controls which areas of memory will be automatically updated in the cache

On entry

RO = XOR mask
R1 = AND mask

On exit
RO = old value (bit n set 0 2MBytes starting at nx2M Bytes are updateable)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call controls which areas of memory will be automatically updated in the cache

when the processor writes to that area (ie are updateable). The ARM3's control

register 4 is altered by being masked with R1 and then exclusive ORd with RO: ie new
value = ((old value AND R1) XOR RO). If hitof the control register is set, the

2MBytes starting atx2MBytes are updateable.

The default value stored is &00007FFF, so logical non-screen RAM is updateable, but
ROM/CAM/DAG, /O space, physical memory and logical screen memory are not.

Related SWIs
Cache_Cacheable (page 4-194), Cache_Disruptive (page 4-198)

4-196

ARMS3 Support

Related vectors
None

4-197

Cache_Disruptive (SWI &283)

4-198

Cache_Disruptive
(swi &283)

Controls which areas of memory cause automatic flushing of the cache on awrite

On entry

RO = XOR mask
R1 = AND mask

On exit
RO = old value (bit n set 0 2MBytes starting at nx2M Bytes are disruptive)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

This call controls which areas of memory cause automatic flushing of the cache when
the processor writes to that area (ie are disruptive). The ARM3's control register 5 is

altered by being masked with R1 and then exclusive ORd with RO: ie new value = ((old
value AND R1) XOR RO). If bih of the control register is set, the 2MBytes starting at

nx2MBytes are disruptive.

The default value stored is &F0000000, so the CAM map is disruptive, but ROM/DAG,
I/O space, physical memory and logical memory are not. This causes automatic flushing
whenever MEMC'’s page mapping is altered, which allows programs written for the
ARMZ2 (including RISC OS itself) to run unaltered, but at the expense of unnecessary

flushing on page swaps.

ARMS3 Support

Related SWis
Cache_Cacheable (page 4-194), Cache_Updateable (page 4-196)

Related vectors
None

4-199

Cache_Flush (SWI &284)

Cache_Flush
(swi &284)

Flushes the cache

On entry

On exit

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Not defined

Use

This call flushes the cache by writing to the ARM3’s control register 1.

Related SWis
None

Related vectors
None

4-200

ARMS3 Support

* Commands
*Cache

Turns the cache on or off, or gives the cache’s current state

Syntax
*Cache [On] OFf]

Parameters
OnorO f

Use

*Cache turns the cache on or off. With no parameter, it gives the cache’s current state.

Example
*Cache Of

Related commands
*Configure Cache

Related SWis
Cache_Control (page 4-192)

Related vectors
None

4-201

*Configure Cache

*Configure Cache

Sets the configured cache state to be on or off

Syntax
*Configure Cache On| O f

Parameters
Onor O f

Use

*Configure Cache sets the configured cache state to be on or off.

Example
*Configure Cache On

Related commands
*Cache

Related SWiIs
Cache_Control (page 4-192)

Related vectors
None

4-202

ARMS3 Support

Application Note

Games writers may wish to disable the ARM 3 cache so that ARM 3 based machines run

at asimilar speed to older ARM 2 based machines. You must ensure that your code only

tries to call ARM3Support SWIs and * Commands — such as *Cache Off — if the module
is present. A simple way to do so is to call the error-returning form of an ARM3Support
SWI, and see if an error is returned. For example:

SYS " XCache_Control ",0,-1 TO RO; fl ags

IF (flags AND 1) THEN ar nB=FALSE ELSE ar nB=TRUE
IF arm8 THEN *Cache O f

4-203

Application Note

4-204

80 The Portable module

Introduction

This module provides support for portable machines. The SWislisted are not normally
intended to be issued from user programs, they will normally beissued by other modules
in the system.

4-205

Technical details

Technical details

Colour to grey-scale mapping

The Portable module has to convert the users RGB palette settingsinto agrey-scale
value in the range 0 to 14 (since the LCD panel only supports 15 unique grey levels). It
does this using the following agorithm:

Luminance = (4 x Green) + (2 x Red) + Blue

Red, Green and Blue arein therange 0 to 255, so the luminanceisintherange 0to 1785
(255 % 7). It is then mapped down onto the range O to 14 using the following table:

Luminance Grey leve Palette valuesfor R, G and B
0-118 0 &00
119- 237 1 &12
238 - 356 2 &24
357 - 475 3 &37
476 - 594 4 &49
595 - 713 5 &5B
714 - 832 6 &6D
833 - 952 7 &7F
953 - 1071 8 &92
1072 - 1190 9 &A4
1191 - 1309 10 &B6
1310- 1428 u &C8
1429 - 1547 12 &DB
1548 - 1666 13 &ED
1667 - 1785 14 &FF

The mapping table aboveis provided for information only, and may be subject to change
in later versions of the Portable module.

In 256 colour modes the colour mapping is partly determined by the hardware, since the
top 4 bits of the pixel value go directly to particular bits of the three guns, and the LCD
ASIC only takes input from VIDC'’s red output. Thus the grey level will not in general
map correctly from the luminance of the RGB value which would normally be output.

4-206

The Portable module

Service calls
Service_Portable
(Service Call &8A)

Power down or up

On entry

R1 = reason code (& 8A)
R2 = power up or down:
0 = power down
1 = power up
R3 = bit mask of which ports are being powered down (if R2 = 0)
(bit set O port is being powered down)
bit mask of which ports have been powered up (if R2 = 1)
(bit set 00 port has been powered up)

On exit

R1=0if R3=0, else preserved to pass on

R2 preserved

R3 = hit mask of which ports may be powered down or up
(bit set O no objection to change of state)

Use
This call isissued before power is removed or after power is reapplied to the following:

Econet (bit 0)
serial buffer/oscillator (bit 3)
FDC oscillator (bit 14)

If amodule wishes to prevent hardware being powered down, it should clear the
appropriate bit or bitsin R3. In addition, if the resulting value in R3 is now zero, the
module should claim the service by setting R1 to zero. (Thisis to prevent the call being
unnecessarily passed round the rest of the modules). Otherwise the service should be
passed on by preserving R1.

This call should never be claimed.

4-207

SWi Calls

SWI Calls
Controls the processor speed
On entry
RO = EOR mask
R1 = AND mask
On exit
RO = old speed
R1 =new speed (0O fast, 1 0 slow)
Interrupts

4-208

Interrupt status is not defined
Fast interrupts are enabled

Processor mode

Processor isin SV C mode

Re-entrancy

SWI is not re-entrant

Use

Portable Speed
(swi &42FCO0)

This SWI controlsthe processor speed, which isreduced when the systemisidlein order
to save power.

The new speed is calculated as follows:;

new speed = (old speed AND R1) EOR RO

Speed settings currently supported are;

0 fast
1 sSow

The Portable module

Related SWis
Portable_Control (page 4-210)

Related vectors
None

4-209

Portable_Control (SWI &42FC1)

Portable Control
(swi &42FC1)

Controls various power control and miscellaneous bits

On entry

RO = EOR mask
R1 = AND mask

On exit

RO = old control
R1 = new control

Interrupts

Interrupt status is not defined
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI controls various power control and miscellaneous bitsin the portable
machine.

The new control is calculated as follows:
new control = (old control AND R1) EOR RO

4-210

The Portable module

The bitsin control are as follows:
Bit Meaning

Set 0 power to Econet enabled
Set 0 power to LCD display enabled
Set 0 power to external video display enabled
Set O power to seria buffer and oscillator enabled
Set 0 dual panel mode enabled
Video clock control
00 Externa clock input
10 Crystal oscillator, divided by 2
20 Crystal oscillator
30 reserved, do not use
7 Set O invert video clock
Set 0 back-light enabled
9 Clear O 1 extralineon display
Set 00 2 extralines on display
10 Clear 0 1 DRAM used for dual panel
Set 0 2 DRAMsused for dual panel
11-13 Reserved

GO~ wNEFO

»

(o]

14 Set 0 power to FDC oscillator enabled
15 Reserved
16 Set 0 LCD palette set up for inverse video

17-31 Reserved
Reserved bits must not be modified, nor assumed to read any particular value.

Note that the 82C711 has one oscillator which is used by the serial subunit and by the
floppy disc controller (FDC). Power to the oscillator is removed only if bits 3 and 14 are
both clear.

On some computers the power to the oscillator cannot be removed because the same
oscillator drives other parts of the system (eg |OEB).

If this call resultsin bits 0, 3 or 14 changing (ie power being removed or applied to the
serial buffer/oscillator, Econet or FDC oscillator), then Service Portableisissued (see

page 4-207).

Related SWis
Portable Speed (page 4-208)

Related vectors
None

4-211

Portable_ReadBMUVariable (SWI &42FC2)

Portable ReadBMUVariable
(swi &42FC2)

Reads Battery Management Unit variables

On entry
RO = BMU variable number

On exit

RO preserved
R1 = value of variable

Interrupts

Interrupts enabled except if RO = 10
Fast interrupts are enabled

Processor mode

Processor isin SVC mode

Re-entrancy

SWI is not re-entrant

Use
This SWI reads Battery Management Unit variables.

4-212

The Portable module

The BMU variable numbers are:
Variable Read/Write Description

version number and memory map of BMU microcode

nominal battery capacity

measured battery capacity

used battery capacity

usable battery capacity

reserved
W charge estimate

instantaneous voltage

instantaneous current

instantaneous temperature

flags as follows:

Bit Meaning

Set O lidisopen
Set O threshold 2 reached
Set O threshold 1 reached
Set O charging system fault
Set 0 charge state is known
Set O battery present
Set O charger connected
11 R chargerate (bits4to 7)

POoO~NOOOUOTDS WNPEFO
AV OUVOVDHAOD0XHUIOD0AN

0

~NOoO o~ wWNBRE

Reading any variable except the flags (variable 10) will enable IRQs (the flags are read
from a soft copy).

Related SWis
Portable WriteBM UVariable (page 4-214)

Related vectors
None

4-213

Portable_WriteBMUVariable (SWI &42FC3)

4-214

Portable_WriteBMUVariable
(swi &42FC3)

Writes Battery Management Unit variables

On entry

RO = BMU variable number
R1 = new value of variable

On exit
RO, Rlpreserved

Interrupts

Interrupts status is not defined
Fast interrupts are enabled

Processor mode
Processor isin SVC mode

Re-entrancy
SWI is not re-entrant

Use
This SWI writes Battery Management Unit variables.
The variable numbers are as for Portable ReadBM UVariable on page 4-213. Variables
not marked with a ‘W’ should not be written.

Related SWiIs

Portable_ ReadBMUVariable (page 4-212)

Related vectors
None

The Portable module

Portable_ CommandBMU
(swi &42FC4)

I ssues a command to the Battery Management Unit

On entry

RO = reason code

1 = Remove power

2 = Reserved

3 = Reserved

4 = Set autostart (R1 = delay, in minutes, — 1; &g 0 minute delay)
Other registers hold reason-code-dependent parameters

On exit
All registers preserved

Interrupts

Interrupts are not defined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
This SWI issues a command to the Battery Management Unit. The values of variables
after a command may not change immediately this command is issued.

Related SWIs

None

Related vectors
None

4-215

4-216

81 Joystick module

Introduction and Overview

The Joystick module provides a SWI interface for reading the state of ajoystick. When
the moduleinitialisesit tests for the existence of built-in joystick hardware and if it does
not find any then it will not initialise. Third parties can replace this module to provide
different hardware. It is recommended that any such modules have version numbers
greater than 2.00 so that Acorn can upgrade its own module without preventing its
replacement.

4-217

SWi Calls

SWI Calls
Joystick_Read
(SWI &43F40)
Returns the state of ajoystick
On entry
RO = joystick number
On exit
RO = joystick state
Interrupts

Interrupt statusis unaltered
Fast interrupts are enabled

Processor mode

Processor isin SV C mode

Re-entrancy
Not defined

Use

This SWI isused to obtain the state of the requested joystick. The stateisreturnedinthe
following format, which supports both digital and analogue devices:

Byte Value

0 Signed Y value in the range —127 to 127. For a single switch joystick,
—-640 Down, 0O Rest, and 640 Up.

1 Signed Y value in the range —127 to 127. For a single switch joystick,
—640 Left, 00 Rest, and 641 Right.

2 Switches (eg fire buttons) starting in bit O; unimplemented switches
return O.

3 Reserved.

4-218

Joystick module

Applications which are only interested in state (up, down, left, right) should not simply

test the bytes for positive, negative or zero. We recommend that the ‘at rest’ state should
span a middle range, say from —32 to 32, since analogue joysticks cannot be relied upon
to produce 0 when at rest.

Related SWis
None

Related vectors
None

4-219

4-220

Part 14 — Programmer’s support

4-221

4-222

82 Debugger

Introduction

The debugger is a module that allows a program to be stopped at set places called
breakpoints. Whenever the instruction that a breakpoint is set on is reached, acommand

linewill be entered. From here, you can type debug commands and resume the program
when you want.

Other commands may be called at any time to examine or change the values contained at
particular addresses in memory and to list the contents of the registers. You can display
memory as words or bytes.

Thereisalso afacility to disassemble instructions. This means converting the
instruction, stored asaword, into a string representation of its meaning. Thisallowsyou
to examine the code anywhere in readable memory.

4-223

Technical Details

Technical Detalils

The debugger provides one SWI, Debugger_Disassemble (SWI &40380), which will
disassemble one instruction. There are also the following * Commands:

Command Description

*BreakClr Remove breakpoint

*BreakList List currently set breakpoints

*BreakSet Set a breakpoint at a given address
*Continue Start execution from a breakpoint saved state
*Debug Enter the debugger

*nitStore Fill memory with given data

*Memory Display memory between two addresses/register
*MemoryA Display and alter memory

*Memoryl Disassemble ARM instructions

*ShowRegs Display registers caught by traps

When an address is required, it should be given in hexadecimal. A preceding & is
optional; that is, unlike most of the rest of the system, the debugger uses hexadecimal as
adefault base rather than decimal.

*Quit should be used to return from the debugger to the previous environment after a
breakpoint — see page 1-330.

Note that the breakpoints discussed here are separate from those caused by OS_BreakPt.
See page 1-309 for details of this SWI.

When a breakpoint is set, the previous contents of the breakpoint address are replaced
with a branch into the debugger code. This means that breakpoints may only be set in
RAM. If you try to set a breakpoint in ROM, the error ‘Bad breakpoint’ will be given.

When a breakpoint instruction is reached, the debugger is entered, with the prompt
Debug*

from which you can type any * Command. An automatic register dump is also
displayed.

From RISC OS 3 onwards this module supports ARM 3 instructions, and warns of
certain unwise or invalid code sequences fggzendix B: Warnings on the use of ARM
assembler on page 4-385). Some of the output when disassembling has been changed for
greater clarity than that provided by RISC OS 2.

4-224

Debugger

SWI Calls

Debugger Disassemble
(swi &40380)

Disassemble an instruction

On entry

RO = instruction to disassemble
R1 = address to assume the instruction came from

On exit

RO = preserved
R1 = address of buffer containing null-terminated text
R2 = length of disassembled line

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode
Processor isin SVC mode

Re-entrancy
Not defined

Use

RO contains the 32-bit instruction to disassemble. R1 contai ns the address from which to
assume the instruction came, which is needed for instructions such as B, BL,

LDR Rn, [PC...], and so on. On exit, R1 points to a buffer which contains a zero
terminated string. This string consists of the instruction mnemonic, and any operands, in
the format used by the *Memoryl instruction. The length in R2 excludes the zero-byte.

Related SWis
None

4-225

Debugger_Disassemble (SWI &40380)

Related vectors
None

4-226

Debugger

*Commands
*BreakClr

Removes a breakpoint

Syntax
*Breakd r [addr| reg]

Parameters
addr hexadecimal address of breakpoint to clear
reg register containing address of breakpoint to clear
Allowed register names arer0 - r15, sp (equivalent to r13),
Ir (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.
Use

*BreakClr removes the breakpoint at the specified address or register value, putting the
original contents back into that location. You can unset the last hit breakpoint with the
command *Br eakCl r pc

If you give no parameter then you can remove all breakpoints — you will be prompted:
Clear all breakpoints [Y/N?

Example
*BreakClr 816C

Related commands
*BreakSet, *BreakList

Related SWis
None

Related vectors
None

4-227

*BreakList

*BreakList

List all the breakpoints that are currently set

Syntax
*Br eakLi st

Parameters
None

Use
*BreakList lists all the breakpoints that are currently set with * Break Set.

Example

*Br eakLi st
Addr ess add Data
0000816C EF00141C

Related commands
*BreakSet

Related SWis
None

Related vectors
None

4-228

Debugger

*BreakSet
Sets a breakpoint
Syntax
*Br eakSet addr| reg
Parameters
addr hexadecimal address of breakpoint to set
reg register containing address of breakpoint to set
Allowed register names are r0 - r15, sp (equivaent to r13),
Ir (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.
Use

*BreakSet sets a breakpoint at the specified address or register value, so that when the
code is executed and the instruction at that address is reached, execution will be halted.

When a breakpoint is set, the previous contents of the breakpoint address are replaced
with a branch into the debugger code. This means that you may only set breakpointsin
RAM. If you try to set a breakpoint in ROM, the error ‘Bad breakpoint’ is generated.

Example
*Br eakSet 816C

Related commands
*BreakClr, *BreakList, *Continue

Related SWis
None

Related vectors
None

4-229

*Continue

Syntax

*Continue

Resumes execution after a breakpoint

*Cont i nue

Parameters

Use

None

*Continue resumes execution after a breakpoint, using the saved state. If thereisa
breakpoint at the continuation position, then this prompt is given:

Continue from breakpoint set at &0000816C
Execute out of line? [Y/N?

Reply 'Y’ if it is permissible to execute the instruction at a different address (ie it does
not refer to the PC).

If the instruction that was replaced by the breakpoint contains a PC-relative reference
(such ad DR RO, | abel , aB orBL instruction, or a\DR directive), you should not
execute it out of line. Instead you should clear the breakpoint, and then re-issue the
*Continue command. The instruction will then be executed in line, avoiding the wrong
address being referenced.

Related commands

*BreakClr, *BreakList, *BreakSet

Related SWis

None

Related vectors

4-230

None

Debugger

*Debug

Enters the debugger

Syntax
* Debug

Parameters
None

Use

Debug enters the debugger. A prompt of Debug appears. Use Escape to return to the
caller, or *Quit to exit to the caller’s parent.

*Quit is documented on page 1-330.

Related commands
*Quit

Related SWis

None

Related vectors
None

4-231

*InitStore

4-232

*InitStore
Fills user memory with avaue
Syntax
*InitStore [val ue|red]
Parameters
val ue word with which to fill user memory
reg register value with which to fill user memory
Allowed register names arer0 - r15, sp (equivaent to r13),
Ir (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.
Use

*InitStore fills user memory with the specified value or register value, or with the value
&E6000010 (which isanillegal instruction) if no parameter is given. If you give this
command from within an application (eg BASIC) the machine will crash, and will have
to be resat.

RISC OS 2 used the value & E1000090 instead. Thisis no longer an illegal instruction
for all versions of the ARM processor.

Example
*InitStore &381E6677

Related commands
None

Related SWis
None

Related vectors
None

Debugger

*Memory

Displaysthe values in memory

Syntax
*Menory [B] addrl|regl
*Menory [B] addrl|regl [+|-]addr2|reg2
*Menory [B] addrl|regl +|-addr2| reg2 +addr3|reg3

Parameters
B optionally display as bytes
addr 1| regl hexadecimal address, or register containing address for start
of display
addr 2| reg2 hexadecimal offset, or register containing offset
addr 3| reg3 hexadecimal offset, or register containing offset
Allowed register names arer0 - r15, sp (equivalent to r13),
Ir (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.
Use

*Memory displays the values in memory, in bytesif the optional B isgiven, or in words
otherwise.

If only one address is given, 256 bytes are displayed starting from addrl. If two

addresses are given, addr2 specifies the end of the range to be displayed (as an absolute
address or, if '+ or ‘" is present, as an offset from addrl). If three addresses are given,
addr2 specifies an offset for the start from addrl, and addr3 specifies the end of the
range to be displayed (as an offset from the combined address given by addrl and
addr2).

Example
*Menory 1000 -200 +500 Display memory from & EQO to & 12FF

Related commands
*MemoryA, *Memoryl

4-233

*Memory

Related SWis
None

Related vectors
None

4-234

Debugger

*MemoryA

Displays and alters memory

Syntax
*MenmoryA [B] addr|regl [val ue| reg2]

Parameters
B optionally display as bytes
addr 1| regl hexadecimal address, or register containing address for start
of display
val ue value to write into the specified location
reg2 register containing value to write into the specified location
Allowed register names arer0 - r15, sp (equivalent to r13),
Ir (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.
Use

*MemoryA displays and aters memory in bytes, if the optiona B is given, or in words
otherwise.

If you give no further parameters, interactive mode is entered. At each line, something
similar to the following is printed:

*Menor yA 8000
+ 00008000 : xe.. : 00008F78 : ANDEQ R8,R0,R8,ROR PC
Enter new value :

or, for byte mode:

*Menor yA B 8001
+ 00008001 : »: 8F:
Enter new value :

The first character shows the direction in which Return steps (‘+’ for forwards, ‘— for
backwards). Next is the address of the word/byte being altered, then the character(s) in
that word/byte, then the current hexadecimal value of the word/byte, and finally (for
words only) the instruction at that address.

4-235

*MemoryA

You may type any of the following at the prompt:

Return to go to the ‘next’ location

- to step backwards in memory

+ to step forwards in memory

hex digits Return to alter a location and proceed
to exit.

As an alternative to using this command interactively, you can give the new data value
on the line after the address.

Example
*MenmoryA 87A0 12345678

Related commands
*Memory, *Memoryl

Related SWis
None

Related vectors
None

4-236

Debugger

*Memoryl
Disassembles memory into ARM instructions
Syntax
*Menoryl addrl|regl
*Menoryl addrl|regl [+]|-]addr2| reg2
*Menoryl addrl| regl +|-addr2| reg2 +addr3| reg3
Parameters
addr 1| reg1 hexadecimal address, or register containing address for start
of display
addr 2| reg2 hexadecimal offset, or register containing offset
addr 3| reg3 hexadecimal offset, or register containing offset
Allowed register names are r0 - r15, sp (equivaent to r13),
Ir (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.
Use

*Memoryl disassembles memory into ARM instructions.

If only one addressis given, 24 instructions are disassembled starting from addrl. If two
addresses are given, addr2 specifies the end of the range to be disassembled (as an

absolute address or, if ‘+' or ‘~" is present, as an offset from addrl). If three addresses
are given, addr2 specifies an offset for the start from addrl, and addr3 specifies the end
of the range to be disassembled (as an offset from the combined address given by addrl
and addr2).

These options are particularly useful for disassembling modules, which contain offsets,
not addresses.

4-237

*Memoryl

4-238

Example

*nmodul es

No. Position Wrkspace Nane

22 0184D684 018016B4 Debugger

*menoryi 184D684 +

0184D684 :
0184D688
0184D68C :
0184D690 :
0184D694
0184D698 :
0184D69C :
0184D6A0 :

v
(..
>0,
h...

24

00000000 :
0000005C :
00000128 :
00000104 :
00000028
0000003E :
00000168 :

... © 00040380 :
0184D6A4 : (... : 000005FC : MULEQ

*menoryi 184D684 +5FC +20
0184DC80 : .B-é : E92D4200 : STMDB R13!,{R9,R14}
0184DC84 : .Ata : E49CC000 : LDR R12,[R12],#0
0184DC88 : ..;a : E33B0000 : TEQ R11,#0

0184DC8C : : 0A000005 : BEQ &0184DCA8
0184DC90 : ..-4 : E28F0004 : ADR RO0,&0184DC9C
0184DC94 : _..& : EBOOO75F : BL &0184FA18
€7.E8BD8200 : LDMIA R13!{R9,PC}
0184DC9C : : 0000010F : ANDEQ RO,RO,PC,LSL #2

0184DC98 : .

Related commands

*Memory, *MemoryA

Related SWis

Find address of Debugger

ANDEQ RO, RO, RO

ANDEQ RO, RO, R12, ASR RO

ANDEQ RO, RO, R8, LSR #2

ANDEQ RO, RO, R4, LSL #2

ANDEQ RO, RO, R8, LSR #32

ANDEQ RO, RO, R14, LSR RO

ANDEQ RO, RO, R8, ROR #2

ANDEQ RO, R4, RO, LSL #7

RO,R12,R5 ~ Offset of SM handler is &5FC

Disassemble SM handler

Debugger_Disassemble (page 4-225)

Related vectors
None

Displays the register contents for the saved state

Syntax

* ShowRegs

Parameters
None

Use

Debugger

*ShowRegs

* ShowRegs displays the register contents for the saved state, which may be caught on
one of the five following traps:

undefined instruction

address exception
data abort
prefetch abort
break point.

It also prints the addressin memory where the registers are stored, so you can alter them
(for example after a breakpoint) by using * MemoryA on these locations, before using

Regi ster dunp (stored at &01804D2C) is:

*Continue.
Example

* ShowRegs

RO = 0026D2CF R1

R4 = 00000000 R5

R8 = B278A456 R9

R12 = 00004000 R13

Mbde USR fl ags set :

Related commands

None

Related SWis
None

002483C1 R2
52491ACE R6
C2671D37 R10
2538DAF0 R14
nzcvi f

00000000 R3
42538FFD R7
A72B34DC R11
24368000 R15

00000000
263598DE
82637D2F
7629D100

4-239

*ShowRegs

Related vectors
None

4-240

83 The shared C library

Introduction

The shared C library isaRISC OS relocatable module (called SharedCLibrary) which
contains the whole of the ANSI C library. It is used by many programs written in C.
Consequently, it saves both RAM space and disc space.

The shared C library is used by the RISC OS applications Edit, Paint, Draw and
Configure.

Generaly you will use the shared C library by linking your programs with the library
stubs. However, you may aso call it directly from assembly language by means of SWis
provided by the shared C library (you would normally only want to do this if you are
implementing your own library stubs for your own language run-time system).

4-241

Overview

Overview

How to use the C library kernel

C library structure

The C library is organised into three layers:

at the centre is the language-independent library kernel providing basic support
services,

at the next level isa C-specific layer providing compiler support functions;
at the outermost level isthe actual C library.

A full description of al the C library functionsis given in the section entitled C library
functions on page 4-288.

The library kernel

The library kernel is designed to allow run-time libraries for different languages to
co-reside harmonioudly, so that inter-language calling can be smooth. It provides the
following facilities:

ageneric, status-returning, procedural interface to SWis

aprocedural interface to commonly used SWIs, arithmetic functions and
miscellaneous functions

support for manipulating the IRQ state from a rel ocatable module
support for allocating and freeing memory in the RMA area
support for stack-limit checking and stack extension

trap handling, error handling, event handling and escape handling.

A full description of al the library kernel functionsis given in the section entitled
Library kernel functions on page 4-275.

Interfacing a language run-time system to the Acorn library kernel

You can also write your own language Run-Time System to use the shared C library. For
full details, seethe section entitled Interfacing a language run-time system to the Acorn
library kernel on page 4-242.

4-242

The shared C library

How the run-time stack is managed and extended

M anagement

The run-time stack consists of a doubly-linked list of stack chunks. Each stack chunk is
alocated by the storage manager of the master language (in a C program allocating and
freeing stack chunksis accomplished usingmal | oc() andfree()).

Sack extension

Two types of stack extension are provided:
o Pasca/Modula2 style

« C-gyle

Calling other programs from C

The C library procedure syst en() provides the means whereby a program can pass a
command to the host system’s command line interpreter — in this case the RISC OS
command line interpreter. For a full description, see the section etélédg other
programs from C on page 4-243.

Storage management

The storage manager manages the heap in the most ‘efficient’ manner possible. A
rudimentary understanding of it will help you make the best use of it; see the section
entitledSorage management on page 4-243.

Handling host errors

Calls made to RISC OS via a kernel function return a specific value if an operating
system error occurs. A call is provided to then find the associated error number and
string. For full details, see the section entittéahdling host errors on page 4-253.

4-243

Technical details

Technical details

The shared C library module implements a single SWI which is called by code in the
library stubswhen your program linked with the stubs starts running. That SWI call tells
the stubs where the library isin the machine. This allows the vector of library entry
points contained in the stubs to be patched up in order to point at the relevant entry
pointsin the library module.

The stubs also contain your private copy of the library’s static data. When code in the
library executes on your behalf, it does so using your stack and relocates its accesses to
its static data by a value stored in your stack-chunk structure by the stubs initialisation
code and addressed via the stack-limit register. (This is why you must preserve the
stack-limit register everywhere if you use the shared C library and call your own
assembly language sub-routines.) The compiler’s register allocation strategy ensures
that the real dynamic cost of the relocation is almost always low: for example, by doing

it once outside a loop that uses it many times.

Execution time costs

It costs only 4 cycles (O8) per function call and a very small penalty on access to the
library’s static data by the library (the user program’s access to the same data is
unpenalised). In general, the difference in performance between using the shared

C library and linking a program stand-alone with ANSILib is less than 1%. For the
important Dhrystone-2.1 benchmark the performance difference cannot be measured.

How to use the C library kernel

C library structure

4-244

The C library is organised into three separate layers. At the centre is the
language-independent library kernel. This is implemented in assembly language and
provides basic support services, described below, to language run-time systems and,
directly, to client applications.

One level out from the library kernel is a thin, C-specific layer, also implemented in
assembly language. This provides compiler support functions such as structure copy,
interfaces to stack-limit checking and stack extensienj nmp andl ongj np support,

etc. Everything above this level is written in C.

Finally, there is the C library proper. This is implemented in C and, with the exception of
one module which interfaces to the library kernel and the C-specific veneer, is highly
portable.

The shared C library

The library kernel

Thelibrary kernel provides the following facilities:

initialisation functions

stack management functions:

unwinding the stack

finding the current stack chunk

four kinds of stack extension —
small-frame and large-frame extension,
number of actual arguments known (eg Pascal), or unknown (eg C) by
the callee.

program environment functions:

finding the identity of the host system (RISC OS, Arthur, etc)
determining whether the floating point instruction set is available
getting the command string with which the program was invoked
returning the identity of the last OS error

reading an environment variable

setting an environment variable

invoking a sub-application

claiming memory to be managed by a heap manager

finding the name of a function containing a given address
finding the source language associated with code at a given address
determining if IRQs are enabled

enabling IRQs

disabling IRQs.

general utility functions:

generic SWI interface routines
special SWI interfaces for certain commonly used SWis.

memory allocation functions:

allocating a block of memory in the RMA
extending a block of memory in the RMA
freeing a block of memory in the RMA.

language support functions:

unsigned integer division

unsigned integer remainder

unsigned divide by 10 (much faster than general division)
signed integer division

signed integer remainder

signed divide by 10 (much faster than general division).

4-245

How to use the C library kernel

4-246

Interfacing a language run-time system to the Acorn library kernel

In order to use the kernel, alanguage run-time system must provide an area named
RTSK$$DATA, with attributes READONLY. The contents of this area must be a
_kernel _I anguagedescri pti on asfollows:

typedef enum { Not Handl ed, Handled } _kernel _Handl edOr Not

typedef struct {
int regs [16];
} _kernel _registerset;

typedef struct {
int regs [10];
} _kernel _eventregisters;

typedef void (*PROC) (void);
typedef _kernel _Handl edOr Not

(*_kernel _trapproc) (int code, _kernel _registerset *regs);
typedef _kernel _Handl edOr Not

(*_kernel _eventproc) (int code, _kernel_registerset *regs);

typedef struct {
int size;
int codestart, codeend;
char *nane;
PROC (*InitProc)(void); /* that is, InitProc returns a PROC */
PROC Fi nal i seProc;
_kernel _trapproc TrapProc;
_kernel _trapproc Uncaught Tr apProc;
_kernel _eventproc Event Proc;
_kernel _event proc Unhandl edEvent Pr oc;
void (*FastEventProc) (_kernel _eventregisters *);
int (*Unwi ndProc) (_kernel _unwi ndbl ock *inout, char **|anguage);
char * (*NameProc) (int pc);
} _kernel _l anguagedescri ption;

Any of the procedure values may be zero, indicating that an appropriate default action is
to be taken. Procedures whose addresses lie outside [codestart...codeend] aso
cause the default action to be taken.

codestart, codeend

These values describe the range of program counter (PC) values which may be taken
while executing code compiled from the language. The linker ensures that this can be
described with just asingle base and limit pair if all code is compiled into areas with the
same unique name and same attributes (conventionally, Language$$code, CODE,
READONLY. The values required are then accessibl e through the symbols
Language$$code$sBase and Language$ScodeS$Limit).

The shared C library

InitProc

The kernel contains the entrypoint for images containing it. After initialising itself, the
kernel calls(in arandom order) the InitProc for each language RTS present in the image.
They may perform any required (language-library-specific) initialisation: their return
value is a procedure to be called in order to run the main program in the image. If there
isno main program in its language, an RTS should return 0. (An InitProc may not itself
enter the main program, otherwise other language RTSs might not beinitialised. In some
cases, the returned procedure may be the main program itself, but mostly it will be a
piece of language RTS which sets up arguments first.)

Itisan error for all InitProcsin amodule to return 0. What this means depends on the
host operating system; if RISC OS, SWI OS_GenerateError is called (having first taken
careto restore al OS handlers). If the default error handlers are in place, the difference
ismarginal.

FinaliseProc

On return from the entry call, or on call of the kernel's Exit procedure, the FinaliseProc
of each language RTS is called (again in a random order). The kernel then removes its
OS handlers and exits setting any return code which has been specified by a call of

_kernel _setreturncode.

TrapProc, UncaughtTrapProc

On occurrence of a trap, or of a fatal error, all registers are saved in an area of store
belonging to the kernel. These are the registers at the time of the instruction causing the
trap, except that the PC is wound back to address that instruction rather than pointing a
variable amount past it.

The PC at the time of the trap together with the call stack are used to find the
TrapHandler procedure of an appropriate language. If one is found, it is invoked in user
mode. It may return a value (Handled or NotHandled), or may not return at all. If it
returns Handled, execution is resumed using the dumped register set (which should have
been modified, otherwise resumption is likely just to repeat the trap). If it returns
NotHandled, then that handler is marked as failed, and a search for an appropriate
handler continues from the current stack frame.

If the search for a trap handler fails, then the same procedure is gone through to find a
‘uncaught trap’ handler.

If this too fails, it is an error. It is also an error if a further trap occurs while handling a
trap. The procedureker nel _exi ttraphandl er is provided for use in the case
the handler takes care of resumption itself (ed wagj np).

4-247

How to use the C library kernel

4-248

(A language handler is appropriate for a PC value if LanguageCodeBase < PC and PC <
LanguageCodeLimit, and it is not marked as failed. Marking as ‘failed’ is local to a
particular kernel trap handler invocation. The search for an appropriate handler
examines the current PC, then R14, then the link field of successive stack frames. If the
stack is found to be corrupt at any time, the search fails).

EventProc, UnhandledEventProc

The kernel always installs a handler for OS events and for Escape flag change. On
occurrence of one, all registers are saved and an appropriate EventProc, or failing that an
appropriate UnhandledEventProc is found and called. Escape pseudo-events are
processed exactly like Traps. However, for ‘real’ events, the search for a handler
terminates as soon as a handler is found, rather than when a willing handler is found (this
is done to limit the time taken to respond to an event). If no handler is willing to claim
the event, it is handed to the event handler which was in force when the program started.
(The call happens in CallBack, and if it is the result of an Escape, the Escape has already
been acknowledged.)

In the case of escape events, all side effects (such as termination of a keyboard read)
have already happened by the time a language escape handler is called.

FastEventProc

The treatment of events by EventProc isn't too good if what the user level handler wants
to do is to buffer events (eg conceivably for the key up/down event), because there may
be many events to one event handler call. The FastEventProc allows a call at the time of
the event, but this is constrained to obey the rules for writing interrupt code (called in
IRQ mode; must be quick; may not call SWIs or enable interrupts; must not check for
stack overflow). The rules for which handler gets called in this case are rather different
from those of (uncaught) trap and (unhandled) event handlers, partly because the user
PC is not available, and partly because it is hot necessarily quick enough. So the
FastEventProc of each language in the image is called in turn (in some random order).

UnwindProc

UnwindProc unwinds one stack frame (see descriptiolkkef nel _unwi ndpr oc for
details). If no procedure is provided, the default unwind procedure assumes that the
ARM Procedure Call Standard has been used; languages should provide a procedure if
some internal calls do not follow the standard.

NameProc

NameProc returns a pointer to the string naming the procedure in whose body the
argument PC lies, if a name can be found; otherwise, O.

The shared C library

How the run-time stack is managed and extended

The run-time stack consists of adoubly-linked list of stack chunks. Theinitial stack
chunk is created when the run-time kernel isinitialised. Currently, the size of the initial
chunk is 4Kb. Subsequent requests to extend the stack are rounded up to at least this
size, so the granularity of chunking of the stack isfairly coarse. However, clients may
not rely on this.

Each chunk implements a portion of a descending stack. Stack frames are singly linked
viatheir frame pointer fields within (and between) chunks. See Appendix C: ARM
procedure call standard on page 4-399 for more details.

In general, stack chunks are allocated by the storage manager of the master language

(the language in which the root procedure — that containing the language entry point — is
written). Whatever procedures were last registered with

_kernel _register_allocs() will be used (each chunk ‘remembers’ the identity

of the procedure to be called to free it). Thus, in a C program, stack chunks are allocated
and freed usingal | oc() andfree().

In effect, the stack is allocated on the heap, which grows monotonically in increasing
address order.

The use of stack chunks allows multiple threading and supports languages which have
co-routine constructs (such as Modula-2). These constructs can be added to C fairly
easily (provided you can manufacture a stack chunk and modifypttep andsl

fields of aj mp_buf , you can usset j np andl ongj np to do this).

Sack chunk format

A stack chunk is described by &er nel _st ack_chunk data structure located at its
low-address end. It has the following format:

typedef struct stack _chunk {
unsi gned | ong sc_nark; /* == 0Oxf60690ff */
struct stack_chunk *sc_next, *sc_prev;
unsi gned | ong sc_si ze;
int (*sc_deallocate)();
} _kernel _stack_chunk;

sc_nmar k is a magic numbegc_next andsc_pr ev are forward and backward
pointers respectively, in the doubly linked list of churdss; si ze is the size of the
chunk in bytes and includes the size of the stack chunk data structure;

sc_deal | ocat e is a pointer to the procedure to call to free this stack chunk — often
free() from the C library. Note that the chunk lists are terminated by NULL pointers
— the lists are not circular.

The seven words above the stack chunk structure are reserved to Acorn. The stack-limit
register points 512 bytes above this (ie 560 bytes above the base of the stack chunk).

4-249

Calling other programs from C

Sack extension

Support for stack extension is provided in two forms:
« fp,argumentsand sp get moved to the new chunk (Pascal/M odula-2-style)

« fpisleft pointing at argumentsin the old chunk, and s p ismoved to the new chunk
(C-style).

Each form has two variants depending on whether more than 4 arguments are passed
(Pascal/M odula-2-style) or on whether the required new frame is bigger than 256 bytes
or not (C-styl€). See the appendix entitled Appendix C: ARM procedure call standard on
page 4-399 for more details.

_kernel_stkovf_copyargs

Pascal/M odula-2-style stack extension, with some arguments on the stack (ie stack
overflow in a procedure with more than four arguments). On entry, i p must contain the
number of argument words on the stack.

_kernel_stkovf_copyQOargs

Pascal /M odula-2-style stack extension, without arguments on the stack (ie stack
overflow in a procedure with four arguments or fewer).

_kernel_stkovf_gplit_frame

C-style stack extension, where the procedure detecting the overflow needs more than
256 bytes of stack frame. On entry, i p must contain the value of sp —the required frame
size (ie the desired nes\p which would be below the current stack limit).

_kernel_stkovf_split_Oframe

C-style stack extension, where the procedure detecting the overflow needs 256 or fewer
bytes of stack frame.

Stack chunks are deallocated on returning from procedures which caused stack
extension, but with one chunk of latency. That is, one extra stack chunk is kept in hand
beyond the current one, to reduce the expense of repeated call and return when the stack
is near the end of a chunk; others are freed on return from the procedure which caused
the extension.

Calling other programs from C

The C library procedursyst em() provides the means whereby a program can pass a
command to the host system’s command line interpreter. The semantics of this are
undefined by the draft ANSI standard.

4-250

The shared C library

RISC OS distinguishes two kinds of commands, which we term built-in commands and
applications. These have different effects. The former always return to their calers, and
usually make no use of application workspace; the latter return to the previously set-up

‘exit handler’, and may use the currently-available application workspace. Because of
these differencesyst en() exhibits three kinds of behaviour. This is explained
below.

Applications in RISC OS are loaded at a fixed address specified by the application
image. Normally, this is the base of application workspace, &8000. While executing,
applications are free to use store between the base and end of application workspace.
The end is the value returned by SWI OS_GetEnv. They terminate with a call of SWI
OS_Exit, which transfers control to the current exit handler.

When a C program makes the aalist en{ " command") several things are done:

« The calling program and its data are copied to the top end of application workspace
and all its handlers are removed.

« The current end of application workspace is set to just below the copied program
and an exit handler is installed in cdsonmand" is another application.

e« "comand" is invoked using SWI OS_CLI.

When" conmmand” returns, either directly (if it is a built-in command) or via the exit
handler (if it is an application), the caller is copied back to its original location, its
handlers are re-installed and it continues, oblivious of the interruption.

The value returned byyst em() indicates
« whether the command or application was successfully invoked

« ifthe command is an application which obeys certain conventions, whether or not it
ran successfully.

The value returned byy st em(with a non-NULL command string) is as follows:
< 0 - couldn’t invoke the command or application (eg command not found);
>=0 — invoked OK and set Sys$ReturnCode to the returned value.

By convention, applications set the environmental variable Sys$ReturnCode to O to
indicate success and to something non-0 to indicate some degree of failure. Applications
written in C do this for you, using the value passed as an argumengtoi thé)

function or returned from theri n() function.

If it is necessary to replace the current application by another, use:
systen(" CHAI N: cormand") ;

4-251

Storage management (malloc, calloc, free)

If thefirst characters of the string passedtosyst em() are" CHAI N. " or"chai n: ",
the caller is not copied to the top end of application workspace, no exit handler is
installed, and there can be no return (return from a built-in command is caught by the
C library and turned into a SWI OS_Exit).

Typically, CHAI N: is used to give more memory to the called application when no
return from it isrequired. The C compiler invokes the linker thisway if alink stepis
regquired. On the other hand, the Acorn Make Utility (AMU) calls each command to be
executed. Such commands include the C compiler (as both use the shared C library, the
additional use of memory is minimised). Of course, a called application can call other
applicationsusing syst en{) . A callee can even CHAI N: to another application and
till, eventually, return to the caller. For example, AMU might execute:

system("cc hello.c");
to call the C compiler. In turn, cc executes:

system("CHAIN: link -o hello o.hello $.CLib.o. Stubs");
to transfer control to the linker, giving link all the memory cc had.

However, when Link terminates (callsexi t (), returnsfrom mai n() or aborts) it
returns to AMU, which continues (providing Sys$ReturnCode is good).

Storage management (malloc, calloc, free)

4-252

The aim of the storage manager is to manage the heap in as ‘efficient’ a manner as
possible. However, ‘efficient’ does not mean the same to all programs and since most
programs differ in their storage requirements, certain compromises have to be made.

You should always try to keep the peak amount of heap used to a minimum so that, for
example, a C program may invoke another C program leaving it the maximum amount
of memory. This implementation has been tuned to hold the overhead due to
fragmentation to less than 50%, with a fast turnover of small blocks.

The heap can be used in many different ways. For example it may be used to hold data
with a long life (persistent data structures) or as temporary work space; it may be used to
hold many small blocks of data or a few large ones or even a combination of all of these
allocated in a disorderly manner. The storage manager attempts to address all of these
problems but like any storage manager, it cannot succeed with all storage
allocation/deallocation patterns. If your program is unexpectedly running out of storage,
see the section entitl€slidelines on using memory efficiently on page 1-346. This

gives you information on the storage manager’s strategy for managing the heap, and
may help you to remedy the problem.

Note the following:

The shared C library

« Theword heap refers to the section of memory currently under the control of the
storage manager.

o All block sizes arein bytes and are rounded up to a multiple of four bytes.
o All blocks returned to the user are word-aligned.

« All blocks have an overhead of eight bytes (two words). One word is used to hold
the block’s length and status, the other contains a guard constant which is used to
detect heap corruptions. The guard word may not be present in future releases of the
ANSI C library.

Handling host errors

Calls to RISC OS can be made via one of the kernel functions, (such as

_kernel _osfind(64, "...")).Ifthe call causes an operating system error, the
function will return the value2. To find out what the error was, a call to
_kernel_last_oserror should be made. Thiswill return a pointer to a
_kernel_oserror block containing the error number and any associated error

string. If there has been no error since _kernel_last_oserror waslast called, the
function returns the NULL pointer. Some functionsin the C library call _kernel

functions, soif an C library function (such asfopen("...", "r")) fails, try calling
_kernel_last_oserror to find out what the error was.

4-253

SWi Calls

SWI Calls

SharedCLibrary LibInitAPCS_A
(SWI &80680)

This SWI interfaces an application which uses the old ‘A’ variant (SP=R12) of the
Procedure Call Standard to the shared C library. Its use is deprecated and it should not be
called in any programs. Use SharedCLibrary_LibInitAPCS_R instead.

4-254

The shared C library

SharedCLibrary LibInitAPCS R
(SWI &80681)

Interfaces an application with the shared C library

On entry

RO = pointer to list of stub descriptions each having the following format:
+00: library chunk id (1 or 2)
+04: entry vector base
+08: entry vector limit
+12: static data base
+16: static data limit
The list is terminated by an entry with a library chunk id of -1

R1 = pointer to workspace start
R2 = pointer to workspace limit

R3=-1
R4=0
R5=-1

R6= Bits0-15=0
Bits 16 - 31 = Root stack size in Kilobytes

On exit

Entry vectors specified by the stubs descriptions are patched to contain branches to
routines in the library.

If R5 > R4 on entry the users statics are copied to the bottom of the workspace specified
in R1 and the Client static data offset (at byte offset +24 from the stack base) is
initialised.

For each library chunk the library statics are copied either into the workspace specified

in R1 if R5 > R4 on entry or to the static data area specified in the chunks stub
description if R==< R4.

The Library static data offset (at byte offset +20 from the stack base) is initialised.

Space for the root stack chunk is claimed from the workspace specified in R1.

4-255

SharedClLibrary LibInitAPCS_R (SWI &80681)

4-256

RO = value of R2 on entry

R1 = stack base

R2 = limit of space claimed from workspace passed in R1. This value should be
used as the SP for the root stack chunk

R6 = library version number (currently = 5)

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor isin SV C mode

Re-entrancy

Use

SWI is re-entrant

This SWI alows you to interface an application with the shared C library without using
the shared C library stubs.

LibInitAPCS R is used by applications which use APCS_R (see Appendix C: ARM
procedure call standard on page 4-399 for more details).

Two library chunks are currently defined.

Chunk Id 1 - The Kernel module

The Kernel module defines 48 entries, these are described in the section entitled Library
kernel functions on page 4-275. You must reserve 48 wordsin your branch vector table.
Thewords at offsets +04 and +08 of the Kernel stub description must beinitialised to the
start and limit (end + 1) of your vector table.

The Kernel module requires & 31C bytes of static data space. You must reserve this
amount of storage. The words at offsets +12 and +16 must be initialised to the start and
limit (end + 1) of this storage.

Chunk Id 2- The C library module

If you wish to use the C library module you must include the Kernel stub description
before the C library stub description in the list of stubs descriptions.

The C library module defines 183 entries, these are described in the section entitled
C library functions on page 4-288. You must reserve 183 words in your branch vector
table.

The shared C library

Thewords at offsets +04 and +08 of the Kernel stub description must beinitialised to the
start and limit (end + 1) of your vector table.

The C library module requires & B48 bytes of static data space. You must reserve this
amount of storage. Thewords at offsets +12 and +16 must be initialised to the start and
limit (end + 1) of this storage. This storage must be contiguous with that for the Kernel
module.

Calling library functions

Before calling any library functionsyou must call the kernel function _kernel_init (entry
no. 0). For details on how to call these functions refer to their entriesin the section
entitled Library kernel functions on page 4-275.

these for the root stack chunk passed to it.

If you wish to call C library functions you must pass a suitable kernel language
description block to _kernel_init. For details on the format of a kernel language
description block refer to the section entitled Interfacing a language run-time systemto
the Acorn library kernel on page 4-242.

To call C library functions the fiel ds of the kernel language description block must be as
follows:

size The size of this structure in bytes (24 - 52 depending on the number of
entries in this block).

codestart, These two words should be set to the start and limit of an area

codelimit which isto be treated as C code with respect to trap and event

handling. Both these values may be set to 0 in which case no traps or
events will be passed to the trap or event handler described in this
language description block.

name This must contain a pointer to the O terminated string "C".

InitProc Pointer to your initialisation procedure. Your initialisation procedure
must call _clib_initialise (entry no. 20). For details on how to call
_clib_initialise refer to its entry in the section entitled C library
functions on page 4-288. It should then load RO with the address at
which execution isto continue at the end of initialisation.

FinaliseProc Pointer to your finalisation procedure. This may contain O.

The remainder of the entries are optional and may omitted. You must set the size field
correctly if omitting entries. If all optional entries are omitted the size field should be set
to 24.

4-257

SharedClLibrary LibInitAPCS_R (SWI &80681)

Related SWis
SharedCLibrary_LibInitAPCS A (SWI &80680)

Related vectors
None

4-258

The shared C library

SharedCLibrary_LibInitModule
(SWI &80682)

Interfaces a modul e with the shared C library

On entry

RO = pointer to list of stub descriptions each having the following format:
+00: library chunk id (1 or 2)
+04: entry vector base
+08: entry vector limit
+12: static data base
+16: static data limit
The list is terminated by an entry with a library chunk id of -1

R1 = pointer to workspace start
R2 = pointer to workspace limit
R3 = base of area to be zero-initialised
R4 = pointer to start of static data
R5 = pointer to limit of static data
R6= Bits0-15=0
Bits 16 - 31 = Root stack size in Kilobytes

On exit

Entry vectors specified by the stubs descriptions are patched to contain branches to

routines in the library.

If R5 > R4 on entry the users statics are copied to the bottom of the workspace specified

in R1 and the Client static data offset (at byte offset +24 from the stack base) is
initialised.

For each library chunk the library statics are copied either into the workspace specified

in R1 if R5 > R4 on entry or to the static data area specified in the chunks stub
description if R==< R4.

The Library static data offset (at byte offset +20 from the stack base) is initialised.
Space for the root stack chunk is claimed from the SVC stack.

RO = value of R2 on entry

R1 = stack base

R2 = limit of space claimed from workspace passed in R1
R6 = library version number (currently = 5)

4-259

SharedClLibrary_LibinitModule (SWI &80682)

4-260

Note: You must save the words at offsets +20 and +24 from the returned stack base.
You must do this before exiting your module initialisation code. These words
contain the shared libraries static data offset and the client static data offset (the
offset you must use when accessing your static data). These must be restored in the
static data offset locations at offsets +00 and +04 from the base of the SV C stack
when you are re-entering the module in SV C mode (e.g. in a SWI handler). When
restoring the static data offsets you must save the previous static data offsets around
the module entry.

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor isin SV C mode

Re-entrancy

Use

SWI is re-entrant

This SWI alows you to interface a module with the shared C library without using the
shared C library stubs.

SharedCLibrary_LiblnitModule is used by modules, which must use APCS R, and
must be called in the module Initialisation code.

Two library chunks are currently defined.

Chunk Id 1 - The Kernel module

The Kernel module defines 48 entries, these are described in the section entitled Library
kernel functions on page 4-275. You must reserve 48 wordsin your branch vector table.
Thewords at offsets +04 and +08 of the Kernel stub description must beinitialised to the
start and limit (end + 1) of your vector table.

The Kernel module requires & 31C bytes of static data space. You must reserve this
amount of storage. The words at offsets +12 and +16 must be initialised to the start and
limit (end + 1) of this storage.

Chunk Id 2 - The C library module

If you wish to use the C library module you must include the Kernel stub description
before the C library stub description in the list of stubs descriptions.

The shared C library

The C library module defines 183 entries, these are described in the section entitled
C library functions on page 4-288. You must reserve 183 words in your branch vector
table.

Thewords at offsets +04 and +08 of the Kernel stub description must beinitialised to the
start and limit (end + 1) of your vector table.

The C library module requires & B48 bytes of static data space. You must reserve this
amount of storage. Thewords at offsets +12 and +16 must be initialised to the start and
limit (end + 1) of this storage. This storage must be contiguous with that for the Kernel
module.

Calling library functions

Before calling any library functions you must call the kernel function
_kernel_moduleinit (entry no. 38). For details on how to call these functions refer to
their entriesin the section entitled Library kernel functions on page 4-275.

these for the root stack chunk passed to it.

If you wish to call C library functions you must pass a suitable kernel language
description block to _kernel_init. For details on the format of a kernel language
description block refer to the section entitled Interfacing a language run-time systemto
the Acorn library kernel on page 4-242.

To call C library functions the fiel ds of the kernel language description block must be as
follows:

size The size of this structure in bytes (24 - 52 depending on the number of
entries in this block).

codestart, These two words should be set to the start and limit of an area

codelimit which isto be treated as C code with respect to trap and event

handling. Both these values may be set to O in which case no traps or
events will be passed to the trap or event handler described in this
language description block.

name This must contain a pointer to the O terminated string "C".

InitProc Pointer to your initialisation procedure. Your initialisation procedure
must call _clib_initialise (entry no. 20). For details on how to call
_clib_initialise refer to its entry in the section entitled C library
functions on page 4-288. It should then load RO with the address at
which execution isto continue at the end of initialisation.

FinaliseProc Pointer to your finalisation procedure. This may contain O.

4-261

SharedClLibrary_LibinitModule (SWI &80682)

The remainder of the entries are optional and may omitted. You must set the size field
correctly if omitting entries. If al optional entries are omitted the sizefield should be set
to 24.

Accessing shared library data

The following items of data are exported from the shared library data and may be used
in your programs.

Name Offset Notes

erno &0000 Thevariableerrnoisset whenever certain error conditions ariseinthe
Clibrary.
These error conditions are described in the section ‘errno’ on
page 4-307.

stdin &0004 These three variables contain the standard C library FILE

stdout &002C structures stdin, stdout and stderr. The address of these variables

stderr &0054 may be passed to any C library function which accept a FILE *
argument. For an example of their use see the call to ‘fputs’ in the
module example.

ctype &0290 Thisis a 256 byte array containing an 8 bit mask for each character in
the range 0 to 255. Each bit defines some aspect of the character as
follows:

bit0 character is a whitespace character

bit1 character is a punctuation character

bit2 character is a blank (* ")

bit3 character is a lowercase letter

bit4 character is an uppercase letter

bit5 character is a decimal digit

bit6 character is a control character

bit 7 character is one of the characters A, B, C, D, E, F or
a,b,cdef

This table is initialised for the C locale; it may be changed by calls to

the ‘setlocale’ function.

Note: The offsets given above are offsets into the C library statics. These must be
preceded immediately by the kernel statics, which are 800 (&31C) bytes long. To
convert offsets in the C library statics to offsets in the library statics add 800 (&31C).

If you are accessing static data within a program (i.e. code which uses
SharedCLibrary_LibInitAPCS_R) you can access the static data directly in your own
static data area definition. If, however, however you are accessing static data from
within a module (using SharedCLibrary_LiblnitModule) you must use the add the client
static data relocation to the address in your own static data area definition to obtain the

4-262

The shared C library

true address of the static data. If you wish your module to be multiply instantiable or
rommable you must add this relocation when accessing your own static data, not just
when accessing the libraries static data.

The client static datarelocation is stored at offset -536 (-& 218) from the SL register
(R10).

For an example of how to use the static data relocation see the call to ‘fputs’ in the
module example.

Related SWis
None

Related vectors
None

4-263

Example programs

Example programs

Calling the shared C library

; This exanpl e denpnstates how to call the shared Clibrary.
; It is witten for the Qbj Asm assenbl er supplied with the Software
; Devel opers Tool kit (SDT) and the Desktop Devel opment Environment (DDE).

pc

| _kernel _init]|

RN
RN
RN
RN
RN
RN
RN
RN
RN
RN

| _clib_initialise|

f open
fprintf
fcl ose

OS_Gener at eError

0S_Exit

0

1

2

3

4

5

6

13

14

15

EQU 0* 4 ; Ofsets in kernel vector table
EQU 20 * 4 ; Offsets in C vector table
EQU 87 * 4

EQU 92 * 4

EQU 85 * 4

EQU &b

EQU &11

Shar edCLi brary_Li bl ni t APCS_R EQU &80681

4-264

I MPORT | | mage$$ROB$Base| ; Linker defined symbol giving
; start of image.
AREA printf, CODE, READONLY
ENTRY
ADR ro, stubs
ADRL r1l, workspace
ADD r2, rl, #32 * 1024 ; 32K workspace. A real program
MoV r3, #-1 ; woul d use OS_ChangeEnvironnent
MOV r4, #0 ; to find the menorylimt.
MoV r5 #-1
MoV ré, #&00080000
SW Shar edCLi brary_Li bl ni t APCS_R
MoV r4, r0
ADR r0, kernel _init_block
MoV r3, #0
B kernel _vectors + | _kernel _init]| ; Continues at c_init bel ow

st ubs

kernel _init_bl ock
DCD
DCD
DCD

rts_bl ock

rts_bl ock_end

c_str DCB

c_init MoV

c_run ADR

SW EQ

BL
BL
ADRNE

SW NE
SW

The shared C library

1

kernel _vectors

ker nel _vectors_end

kernel _statics

kernel _statics_end DCD 2
clib_vectors
clib_vectors_end
clib_statics
clib_statics_end

-1

| I mage$$SRCE$Base|
rts_bl ock
rts_bl ock_end

rts_block_end - rts_bl ock

0

0

c_str

c_init

0

"C', 0 ; Must be "C'" for CLib to finalise
; properly.

ro, sp

rl, #0

r2, #0

sp!, {Ir}

clib_vectors + | _clib_initialise|

r0, c_run ; Continue at c_run bel ow

sp!, {pc}”

r0, outfile

rl, access

clib_vectors + fopen

ro, #0

r0, Err_Open ; WIIl actually say

OS_Cener at eError ; Uncaught trap: Error opening ...

r4, r0

rl, format

clib_vectors + fprintf

ro, r4

clib_vectors + fclose

ro, #0

r0, Err_d ose

OS_Cener at eError ; Uncaught trap: Error witing ...

OS_Exit

4-265

Calling the shared C library from a module

0

outfile DCB "QutFile", O
access DCB "w', 0
f or mat DCB "Sanple string printed fromasmusing fprintf!", 10,
ALI GN
Err_QOpen DCD &1000
DCB "Error opening QutFile", 0O
ALl GN
Err_C ose DCD &1001
DCB "Error witing QutFile", O
ALl GN
kernel _vectors % 48 * 4
kernel _vectors_end
clib_vectors % 183 * 4
clib_vectors_end
kernel _statics % &31c
kernel _statics_end
clib_statics % &b48
clib_statics_end
wor kspace ; Start of workspace at end of app.

END

Calling the shared C library from a module

; This exanpl e denpbnstates how to call the shared Clibrary froma nodul e.
; It is witten for the Cbj Asm assenbl er supplied with the Software

4-266

; Devel opers Tool kit (SDT) and the Desktop Devel opnent
ro RN 0

rl RN 1

r2 RN 2

r3 RN 3

ra RN 4

r5 RN 5

ré RN 6

r7 RN 7

r8 RN 8

r9 RN 9

r1o RN 10

ril RN 11

rl2 RN 12

sl RN 10

fp RN 11

sp RN 13

I'r RN 14

pc RN 15

swi base EQU &88000
V_Bit EQU 1: SHL: 28

Envi ronment (DDE)

The shared C library

Modul e_C ai m EQU 6

Service_Error EQU &06

Service_Hel p EQU &09

XOS_Modul e EQU &2001e

XShar edCLi brary_Li bl ni t Modul e EQU &80682

S _WiteS EQU 1

OS_Exit EQU &11

n 0 ; Offsets in nodul e workspace

si ze # 4 ; Size of this block

l'ibrel oc # 4 ; OFfset for accessing librarys statics

clientrel oc # 4 ; Offset for accessing our statics

ws_si ze # 0

Li b_O fset EQU 20 ; Offset of library relocation offset
; from base of stack.

SL_Lib_Ofset EQU 540 ; Negative offset of library relocation
; offset from SL register

Cient_Ofset EQU 24 ; OFfset of client relocation offset

SL_Cient_Ofset EQU 536 ; Negative offset of client relocation
; offset from SL register

| _kernel _command_string| EQU 7* 4

| _kernel _nodul einit| EQU 38 * 4

| _kernel _ent er nodul e| EQU 42 * 4

| _mai n| EQU 18 * 4

| _clib_initialise| EQU 20 * 4

atexit EQU 71 * 4

printf EQU 91 * 4

fputs EQU 104 * 4

put char EQU 111 * 4

| _clib_finalisenodul e| EQU 179 * 4
| MPORT | __Rel ocCode| ; Linker supplied relocation routine
| MPORT | | mage$$RO6$Base| ; Linker defined base / linit symbols
| MPORT | | mage$$RW$Base|
I MPORT | | mage$$SRWBSLI mit |
| MPORT | | mage$$ZI $$Base|
AREA nodul e_code, CODE, READONLY

nodul e_base

DCD start -
DCD init -
DCD termnate -
DCD service -
DCD title -
DCD help -
DCD cmdt bl -
DCD swi base
DCD swi code -
DCD swithl -

nodul e_base

nodul e_base
nodul e_base

nodul e_base
nodul e_base

nodul e_base

nodul e_base

nodul e_base
nodul e_base

4-267

Calling the shared C library from a module

DCB
DCB
ALI GN

title
hel p

base DCD
limt DCD
zi _base DCD
crdt bl

Swi t bl

ALI GN

init STVDB

LDM A
STVDB
BL

LDR
LDR
SuB
ADD
SwW

STR

STR
ADR
ADD
ADD
LDR

SW
ADD
LDM A
STM B
ADR
BL
STVDB
BL
LDM A

4-268

"SLdient", 0

"SLdient", 9, "1.00 (11-Dec-91)", O

| I mge$$RWs$Base|
| I mage$SRWBSLI mi t |
| I mage$$ZI $$Base|

"SLA i ent _Command", O

crmdcode -
0

&f f

255

0

0 ;
0 ;

nodul e_base

No syntax nmessage
No hel p message

"SLdient", O
"SW", 0 ;
0

SLC i ent _SW

{r7-r11, Ir} ;
sl, sp, LSR #20 ;
sl, sl, LSL #20

sl, {r4, r5} ;
sp!, {r4, r5} ;
| __Rel ocCode| ;
r0, #Modul e_C aim
r4, base

r5, limt

r3, r5, r4

r3, r3, #ws_size
XOS_Modul e

r9, ri2

r2, [rl2] ;
rl2, r2

r3, [rl2] ;
r0, stubs

rl, rl2, #ws_size
r2, rl2, r3

r3, zi_base

ré6, #4 :SHL: 16
XShar edCLi br ary_Li bl ni t Modul e

r8, rl, #Lib_Ofset

r8, {r7, r8} ; Get Lib and dient
r12, {r7, r8} ; Save in work area
r0, kernel _init_block

cal | _nodul ei ni t

sp!,

Rel ocat e nodul e

Set private word

sp!, {r9} ; Save wor kspace pointer
clib_vectors + |_clib_initialise|
sp!, {r2}

Save only regs that need saving
Get base of SVC stack in sl.

Save old relocation nodifiers
from base of SVC stack

First word of block is size of block

ADD
LDM A
BL
MOV
MOV
LDM A
STM A
LDM A
CVPS
Bl CEQS
ORRS

The shared C library

r0, sp, #(10-7+2)*4 ; Point to RLO on stack

ro, {r0, ri1}
user_init
sl, sp, LSR #20 ; Get base of SVC stack in sl

sl, sl, LSL #20
sp!, {r4, r5}

sl, {r4, r5}
sp!, {r7-r11, Ir}
ro, #0

pc, Ir, #V_Bit
pc, Ir, #V Bit

; _kernel _nodul einit expects the return address to be in the first word on the
; stack rather than in LR This function sets up the return address correctly

call _nodul einit

STMVDB
B

term nate

start

c_init

c_run

STMDB
MoV
MoV
LDM A
MoV

LDR
LDM B
STM A
ADD
MoV

BL
MoV
MoV
STM A
LDM A

LDM A

sp!, {Ir}
kernel _vectors + | _kernel _nodul einit

sp!, {r7-r11, Ir} ; Save only regs that need saving

sl, sp, LSR #20 ; Get base of SVC stack in sl
sl, sl, LSL #20
sl, {r4, r5} ; Save old relocation nodifiers
ro, ri2 ; Set up private word pointer for
; _clib_finalisenodul e
r12, [r12] ; Pointer to static data
r12, {r11, r12}
sl, {rl11, r12} ; Set up relocation nodifiers
sl, sl, #SL_Lib_Of fset
fp, #0 ;. FP = 0 => end of |inked stack franes

; so backtrace stops here
clib_vectors + | _clib_finalisenondule
sl, sp, LSR #20
sl, sl, LSL #20
sl, {r4, r5} ; Restore old relocation nodifiers
sp!, {r7-r11, pc}”®

r0, kernel _init_block

r8, rl2

ri2, #-1

r6, #4 * 1024

kernel _vectors + | _kernel _enternodul e

sp!, {Ir}

clib_vectors + | _clib_initialise

r0, c_run ; Continue at c_run bel ow
sp!, {pc}

kernel _vectors + | _kernel _command_stri ng
rl, user_run ; Continue at user_run bel ow
clib_vectors + | _main

4-269

Calling the shared C library from a module

4-270

cndcode STMDB
MoV
MoV
LDM A
LDR
LDM B
STM A
ADD

BL

STM A
LDM A
WP

Bl CEQS

swi code STMVDB

LDM B
STM A

service TEQ

sp!, {r10, r11, Ir}
sl, sp, LSR #20 ;
sl, sl, ASL #20

sl, {r4, r5} ;
ri12, [r12]

r12, {r11, r12} ;
sl, {r11, r12}

Get base of SVC stack
Save old relocation nodifiers in R4, RS

Set up our relocation nodifiers

sl, sl, #SL_Lib_Ofset ; Set up stack limt for SVC stack

fp, #0 ;
user_cnd ;
sl, sp, LSR #20

sl, sl, ASL #20)
sl, {r4, r5} ;
sp!, {r10, r11, Ir}
ro, #0 ;
pc, |Ir, #V_Bit

pc, Ir, #V_Bit

sp!, {r0-r9, Ir} ;
sl, sp, LSR #20 ;
sl, sl, ASL #20

sl, {r8, r9} ;
ro, ri11

rl, sp ;
r2, ril2

r12, [rl12]

r12, {r11, r12} ;
sl, {r11, r12}

St op backtrace here
Cal |l APCS user_cnd routine

Get base of SVC stack again
Restore old relocation nodifiers

Set V bit on RO and return

Set up regset on SVC stack
Get base of SVC stack

Save old relocation nodifiers in R8, RO

Poi nter to regs on stack

Set up relocation nodifiers

sl, sl, #SL_Lib_Ofset ; Set up stack limt for SVC stack

fp, #0 ;
user _swi ;
sl, sp, LSR #20 ;
sl, sl, ASL #20

sl, {r8, r9} ;
r0, #0 ;
10, [sp] ;
sp!, {r0-r9, Ir}
pc, |Ir, #V_Bit ;
pc, Ir, #V_Bit

rl, #Service_Help ;
rl, #Service_Error
pc, Ir

sp!, {r0-r9, sl, fp,
ro, ri

rl, sp ;
r6, pc ;
lr, r6, #3 ;
lr, #3

ro, r0 ;
fp, #0 ;
r7, Ir :
sl, sp, LSR #20 ;
sl, sl, ASL #20

sl, {r8, r9} ;

St op backtrace here
Cal | APCS user_sw routine
CGet base of SVC stack again

Restore old relocation nodifiers
Set RO on stack to error pointer

if error on return.

Set V bit on RO and return.

Check service nos. first for speed

Ir} ; Set up regset on SVC/ I RQ stack

Poi nter to regs on stack
Save ol d node
To SVC node from SVC/ | RQ node

NOP after npde change

St op backtrace

Save SVC Ir if entered in | RQ node
Get base of SVC stack

Save old relocation nodifiers in R8, RO

The shared C library

MOV r2, ril2
LDR ri2, [ri2]
LDM B r12, {r11, r12} ; Set up relocation nodifiers
STMA s, {rl1, r12}
ADD sl, sl, #SL_Lib_Offset ; Set up stack limt for SVC stack
BL user_service ; Call APCS user_service routine
MoV Ir, r7 ; Restore SVC Ir
TEQP re6, #0 ; Back to entry node
MoV ro, ro0 ; NOP after npde change
MoV sl, sp, LSR #20 ; Get base of SVC stack
MoV sl, sl, ASL #20
STMA sl, {r8, r9} ; Restore old relocation nodifiers
LDMA sp!, {r0-r9, sl, fp, pc}”
; _kernel _oserror *user_init(char *cnd_tail, int base, void *pw);
user_init
STVDB sp!, {r4, r9, Ir}
LDR r9, [sl, #-SL_Cient_Ofset] ; Get Client relocation
MOV r4, r0
ADR r0, format
ADR rl, init_str
BL clib_vectors + printf
ADR r0, cnd_fornmat
LDR rl, stdout ; Address stdout in library statics
ADD rl, r1, r9 ; Add client relocation
BL clib_vectors + fputs
10 LDRB ro, [r4], #1
CwvP r0, #32
MOVCC rO, #10
BL clib_vectors + putchar
BCS %810
ADR r0, user_exit ; Set up atexit handler
BL clib_vectors + atexit
MoV ro, #0
LDMA sp!, {r4, r9, pci”
stdout DCD clib_statics + &2c
; void user_exit(void);
user_exit
STNVDB sp!, {Ir}
ADR r0, format
ADR rl, exit_str
BL clib_vectors + printf
LDM A sp!, {pc}”

4-271

Calling the shared C library from a module

; int user_run(int argc, char **argv);

user_run
STNVDB sp!, {r4, r5, r6, Ir}
MOV r4, r0
MoV r5, rl
ADR r0, format
ADR rl, run_str
BL clib_vectors + printf
ADR r0, argc_format
MoV rl, r4
BL clib_vectors + printf
MoV re, #0

10 CcwP r6, r4

ADRCC r0, argv_format

MOVCC rl, r6

LDRCC r2, [r5, r6, LSL #2]
BLCC clib_vectors + printf
ADDCC r6, r6, #1

BCC %B10

MoV ro, #0

LDMA sp!, {r4, r5, r6, pc}i”

; _kernel _oserror *user_cnd(char *args, int argc);

user _cnd
STNVDB sp!, {r4, r5, Ir}
MOV r4, r0
MOV r5 ri1
ADR r0, format
ADR rl, cmd_str
BL clib_vectors + printf
ADR r0, args_format
MoV rl, r5
BL clib_vectors + printf
10 LDRB ro, [r4], #1
CcwP r0, #32
MOVCC r0, #10
BL clib_vectors + putchar
BCS 9B10
MoV ro, #0

LDM A sp!, {r4, r5, pc}”

; _kernel _oserror *user_swi (int swi_no, _kernel_sw _regs *r, void *pw);

user _sw
STVMDB sp!, {Ir}
ADR r0, fornat
ADR rl, swi_str
BL clib_vectors + printf
MoV ro, #0

LDM A sp!, {pc}”

4-272

; void user_service(int service_no, _kernel_sw _regs *r,

user_service
STMDB sp!, {Ir}
CwP r0, #Service_Help
ADR r0, format
ADREQ r1l, help_str
ADRNE rl, error_str
BL clib_vectors + printf
LDM A sp!, {pc}”

f or mat DCB "I'n % code", 10,
ALI GN
ar gc_f or mat DCB "argc = 9%d", 10,
ALI GN
ar gv_f or mat DCB "argv[%] = %",
ALI GN
ar gs_f or mat DCB "argc = %, args
ALI GN
cnd_f or mat DCB "Command tail ="
ALI GN
init_str DCB "initialisation",
ALI GN
exit_str DCB "exit", O
ALI GN
run_str DCB "run", O
ALI GN
cmd_str DCB "comand", 0
ALI GN
SWi _str DCB "swi", O
ALI GN
hel p_str DCB "hel p", 0
ALI GN
error_str DCB "error", O
ALI GN
st ubs
DCD 1
DCD kernel _vectors
DCD ker nel _vectors_end
DCD kernel _statics
DCD kernel _statics_end
DCD 2
DCD clib_vectors
DCD clib_vectors_end
DCD clib_statics
DCD clib_statics_end
DCD -1
kernel _i nit_bl ock
DCD | I mage$$ROB$Base|
DCD rts_bl ock
DCD rts_bl ock_end

The shared C library

void *pw);

4-273

Calling the shared C library from a module

4-274

rts_bl ock
DCD rts_block_end - rts_bl ock
DCD 0
DCD 0
DCD c_str
DCD c_init
DCD 0
rts_bl ock_end
c_str DCB "C', 0
ALI GN
kernel _vectors % 48 * 4

kernel _vectors_end

clib_vectors % 183 * 4
clib_vectors_end

; Unlike the application exanple the kernel statics and clib statics nust be
in

; a data area otherw se the data size cal cul ati on above (using | mage$$RWs$Base
;& I mage$$SRWBSLI it does not work.

; ldeally this would be a zero init area of appropriate size but the assenbler
; doesn’t support zero init areas.
AREA nodul e_dat a

kernel _statics % &31c
kernel _statics_end

clib_statics % &h48
clib_statics_end

END

The shared C library

Library kernel functions

Thelibrary kernel functions are grouped under the following headings:
« initialisation functions

o stack management functions

e program environment functions

o genera utility functions

« memory allocation functions

« language support functions.

Index of library kernel functions by entry number

entry no. Name on page
0 _kernel_init page 4-278
1 _kernel_exit page 4-281
2 _kernel_setreturncode page 4-281
3 _kernel_exittraphandler page 4-282
4 _kernel_unwind page 4-281
5 _kernel_procname page 4-281
6 _kernel_language page 4-281
7 _kernel_command_string page 4-281
8 _kernel_hostos page 4-282
9 _kernel_swi page 4-283
10 _kernel_oshyte page 4-284
11 _kernel_osrdch page 4-284
12 _kernel_oswrch page 4-284
13 _kernel_oshget page 4-284
14 _kernel_osbput page 4-284
15 _kernel_osgbpb page 4-284
16 _kernel_osword page 4-284
17 _kernel_osfind page 4-285
18 _kernel_osfile page 4-285
19 _kernel_osargs page 4-285
20 _kernel_oscli page 4-285
21 _kernel_last_oserror page 4-282
22 _kernel_system page 4-285
23 _kernel_getenv page 4-282
24 _kernel_setenv page 4-282
25 _kernel_register_allocs page 4-286
26 _kernel_alloc page 4-286
27 _kernel_stkovf_split_Oframe page 4-280

4-275

Library kernel functions

4-276

entry no. Name
28 _kernel_stkovf_split
29 _kernel_stkovf_copyargs
30 _kernel _stkovf_copyQOargs
31 _kernel_udiv
32 _kernel_urem
33 _kernel_udiv10
34 _kernel_sdiv
35 _kernel_srem
36 _kernel_sdiv10
37 _kernel_fpavailable
38 _kernel_moduleinit
39 _kernel_irgs _on
40 _kernel_irgs_off
411 _kernel_irgs_disabled
42 _kernel_entermodule
43 _kernel_escape_seen
44 _kernel _current_stack_chunk
45 _kernel_swi_c
46 _kernel_register_dotextend
47 _kernel_raise_error

Index of library kernel functions by function name

Name

_kernel_alloc
_kernel_command_string
_kernel_current_stack _chunk
_kernel_entermodule
_kernel_escape _seen
_kernel_exit
_kernel_exittraphandler
_kernel_fpavailable
_kernel_getenv
_kernel_hostos
_kernel_init
_kernel_irgs_disabled
_kernel_irgs_off
_kernel_irgs_on
_kernel_language
_kernel_last_oserror
_kernel_moduleinit

_kernel_osargs

entry no.
26

on page

page 4-280
page 4-280
page 4-280
page 4-286
page 4-287
page 4-287
page 4-287
page 4-287
page 4-287
page 4-282
page 4-279
page 4-283
page 4-283
page 4-283
page 4-279
page 4-282
page 4-280
page 4-283
page 4-286
page 4-282

on page
page 4-286
page 4-281
page 4-280
page 4-279
page 4-282
page 4-281
page 4-282
page 4-282
page 4-282
page 4-282
page 4-278
page 4-283
page 4-283
page 4-283
page 4-281
page 4-282
page 4-279

page 4-285

The shared C library

Name entry no. on page

_kernel_oshget 13 page 4-284
_kernel_osbput 14 page 4-284
_kerndl_oshyte 10 page 4-284
_kernel_oscli 20 page 4-285
_kernel_osfile 18 page 4-285
_kernel_osfind 17 page 4-285
_kernel_osgbpb 15 page 4-284
_kernel_osrdch 1 page 4-284
_kernel_osword 16 page 4-284
_kernel_oswrch 12 page 4-284
_kernel_procname 5 page 4-281
_kerndl_raise_error 47 page 4-282
_kernel_register_allocs 25 page 4-286
_kernel_register_slotextend 46 page 4-286
_kernel_sdiv 34 page 4-287
_kernel_sdiv10 36 page 4-287
_kernel_setenv 24 page 4-282
_kernel_setreturncode 2 page 4-281
_kernel_srem 35 page 4-287
_kernel_stkovf_copyOargs 30 page 4-280
_kernel_stkovf_copyargs 29 page 4-280
_kernel_stkovf_split 28 page 4-280
_kernel _stkovf_split Oframe 27 page 4-280
_kernel_swi 9 page 4-283
_kernel_swi_c 45 page 4-283
_kernel_system 22 page 4-285
_kernel_udiv 31 page 4-286
_kernel_udiv10 33 page 4-287
_kernel_unwind 4 page 4-281
_kernel_urem 32 page 4-287

The following structure is common to all library kernel functions:

typedef struct {

int errnum /* error nunber */

char errmess[252];/* error nmessage (zero term nated) */
} _kernel _oserror;

4-277

Initialisation functions

Initialisation functions

Entry no. 0: _kernel_init

4-278

On entry

RO = Pointer to kernel init block having the following format
+00: Image base (e.g. the value of the linker symbol Image$$RO$$Base)
+04: pointer to start of language description blocks
+08: pointer to end of language description blocks

R1 = base of root stack chunk (value returned in R1 from LiblnitAPCS_A or

LibInitAPCS_R)

R2 = top of root stack chunk (value returned in R2 from LibInitAPCS_A or
LibInitAPCS_R)

R3= Ofor application
1 for module

R4 = end of workspace

On exit

Doesnot return. Control isregained through the procedure pointer returned in RO by one
of the language initialisation procedures (i.e. control is passed to the run code of the

language).
Thiscall does not obey the APCS. All registersare altered. The APCS R SL, FP and SP

(R10, R11 and R13) are set up. LR does not contain avalid return address when control
is passed to the run entry.

This function must be called by any client which calls LibInitAPCS_A or
LibInitAPCS_R. Modules should cal this entry in their run entry.

The words at offsets +04 and +08 from RO describe an area containing at least one
language description block. Any number of language description blocks may be present.
The sizefield of each block must be the offset to the next language description block.

The command line is copied to an internal buffer at the top of the root stack chunk. To
set acommand line call SWI OS_WriteEnv. RISC OS sets up acommand line before
running your application or entering your module.

Exit, Error, CallBack, Escape, Event, UpCall, Illegal Instruction, Prefetch Abort, Data
Abort and Address Exception handlers are set up.

Initial default alloc and free procsfor use during stack extension are set up. These should
be replaced with your own alloc and free procs as soon as possible.

The kernel’'s workspace pointers are initialised to the values contained in R1 and R4.
Note that it is assumed the root stack chunk resides at the base of the workspace area.

The shared C library

A small stack (159 words) for use during stack extension is claimed from the workspace
following R2 (i.e. 159 words are claimed from R2 upwards).

Note: _kernel_init does not check that there is sufficient space in the workspace to
claim thisarea. You must ensure there is sufficient space before calling _kernel _init.

The availability of floating point is determined (by calling SWI FPE_Version).

If executing under the desktop the initial wimpslot size is determined by reading the
Application Space handler.

Theinitialisation for each language is called, then the run codeif any iscalled. If norun
codeispresent theerror No nmai n pr ogr amis generated.

Entry no. 38: _kernel_moduleinit

On entry

RO = pointer to kernel init block as described in _kernel_init on page 4-278
R1 = pointer to base of SV C stack (as returned by SWI LiblnitModule)

On exit

This call does not obey the APCS.

It assumesthat LR has already been pushed on the stack, and so returnsto the address on
top of the stack (ie the address pointed to by SP), rather than to the address contained in
LR on entry. The stack pointer isincremented by 4. See the section entitled Calling the
shared C library from a modul e on page 4-266 for an example.

On exit SL pointsto R1 on entry + 560.

RO, R1, R2 and R12 are indeterminate.

The kernel init block is copied for later use. The Image baseisignored.

The functions _kernel_ RMAalloc and _kernel RMAfree are established as the default
aloc and free procs for use during stack extension.

You should cal this function after calling SWI LiblnitModule.

Entry no. 42: _kernel_entermodule

On entry

RO = pointer to kernel init block as described in _kernel_init on page 4-278
R6 = requested root stack size

R8 = modules private word pointer

R12=-1

4-279

Stack management functions

On exit

Does not return.
Control isregained through the procedure pointer returned in RO by one of the language
initialisation procedures.

The private word must point to the module workspace word which must contain the
application base, the shared library static offset, and the client static offset in words 0, 1
and 2 (the application base is ignored for modules).

After claiming workspace from the application space and claiming aroot stack from this
_kernel_entermodule calls _kernel_init.

Stack management functions

Entry no. 27: _kernel_stkovf_split_Oframe

Thisfunction is described in the section entitled How the run-time stack is managed and
extended on page 4-243.

Entry no. 28: _kernel_stkovf_split

Thisfunction isdescribed in the section entitled How the run-time stack is managed and
extended on page 4-243.

Entry no. 29: kernel_stkovf _copyargs

Thisfunction is described in the section entitled How the run-time stack is managed and
extended on page 4-243.

Entry no. 30: _kernel_stkovf _copyOargs

Thisfunction isdescribed in the section entitled How the run-time stack is managed and
extended on page 4-243.

typedef struct stack_chunk {
unsi gned | ong sc_mark; [* == Oxf60690ff */
struct stack_chunk *sc_next, *sc_prev;
unsi gned | ong sc_si ze;
int (*sc_deallocate)()
} _kernel _stack_chunk;

Entry no. 44: _kernel_stack_chunk *_kernel_current_stack_chunk(void)
Returns a pointer to the current stack chunk.

4-280

The shared C library

typedef struct {
int r4, r5, r6, r7, r8, r9;
int fp, sp, pc, sl;
int f4[3], f5[3], f6[3], f7[3];
} _kernel _unwi ndbl ock;

Entry no. 4: int _kernel_unwind(_kernel_unwindblock *inout,
char **language)

Unwinds the call stack one level. Returns:

>0 if it succeeds

0 if it faills becauseit has reached the stack end or
<0 if it failsfor any other reason (e.g. stack corrupt)

Input valuesfor f p, s/ and pc must be correct. r4-r9 and f4-f7 are updated if the frame
addressed by theinput value of f p contains saved valuesfor the corresponding registers.

fp, sp, sl and pc are always updated, the word pointed to by language is updated to
point to a string naming the language corresponding to the returned value of pc.

Program environment functions

Entry no. 5: char *_kernel_procname(int pc)

Returns a string naming the procedure containing the address pc (or 0 if no name for it
can be found).

Entry no. 6: char *_kernel_language(int pc)

Returns a string naming the language in whose code the address pc lies (or Oif itisinno
known language).

Entry no. 7: char *_kernel_command_string(void)

Returns a pointer to a copy of the command string used to run the program.

Entry no. 2: void _kernel_setreturncode(unsigned code)
Setsthe return codeto be used by _kernel _exit.

Entry no. 1: void _kernel_exit(void)

Calls OS_Exit with the return code specified by a previous call to
_kernel_setreturncode.

4-281

Program environment functions

4-282

Entry no. 47: void _kernel_raise_error(_kernel_oserror *)

Generates an external error.

Entry no. 3: void _kernel_exittraphandler(void)

Resets the InTrapHandler flag which prevents recursive traps. Used in trap handlers
which do not return directly but continue execution. For example, the longjmp function
inthe Clibrary calls _kernel_exittraphandler if called from within asignal handler.

Entry no. 8: int _kernel_hostos(void)

Returns 6 for RISC OS.
(Returns the result of calling OS BytewithRO=0and R1=1.)

Entry no. 37: int _kernel_fpavailable(void)
Returns non-zero if floating point is available.

Entry no. 21: _kernel_oserror *_kernel_last_oserror(void)

Returns a pointer to an error block describing the last OS error since
_kernel_last_oserror was last called (or since the program started if there has been no
such call). If there has been no OS error it returns 0. Note that occurrence of afurther
error may overwrite the contents of the block. This can be used, for example, to
determine the error which caused fopen to fail. If _kernel_swi caused the last OS error,
the error already returned by that call gets returned by this too.

Entry no. 23: _kernel_oserror *_kernel _getenv(const char *name, char
*buffer, unsigned size)

Reads the value of a system variable, placing the value string in the buffer (of size size).

Entry no. 24: kernel_oserror *_kernel_setenv(const char *name,const
char *value)

Updates the value of a system variable to be string valued, with the given value (value =
0 deletesthe variable).

Entry no. 43: int _kernel_escape_seen(void)

Returns 1 if there has been an escape since the previous call of _kernel _escape seen (or
since the program start if there has been no previous call). Escapes are never ignored
with this mechanism, whereas they may be with the language EventProc mechanism
since there may be no stack to call the EventProc on.

The shared C library

Entry no. 39: void _kernel_irgs_on(void)

Enable interrupts. You should not disable interrupts unless absolutely necessary. If you
disable interrupts you should re-enable them as soon as possible (preferably within
10uS).

This function can only be used from code running in SVC mode.

Entry no. 40: void _kernel_irgs_off(void)

Disable IRQ interrupts. You should not disable interrupts unless absolutely necessary. If
you disable interrupts you should re-enable them as soon as possible (preferably within
10uS).

This function can only be used from code running in SV C mode.

Entry no. 41: int _kernel_irgs_disabled(void)
Returns non-zero if IRQ interrupts are disabled.

General utility functions

typedef struct {
int r[10]; /* only rO - r9 matter for swi's */
} _kernel_swi_regs;

Entry no. 9: _kernel_oserror *_kernel_swi(int no, _kernel_swi_regs *in,
_kernel_swi_regs *out)

Call the SWI specified by no. The X bit isset by _kernel_swi unless bit 31 of the SWI
no (inno)isset.in andout are pointersto blocksfor RO - R9 on entry to and exit from
the SWI.

Returns a pointer to an error block if an error occurred, otherwise 0.

Entry no. 45: kernel _oserror *_kernel_swi_c(int no, _kernel_swi_regs *in,
_kernel_swi_regs *out, int *carry)

Similar to _kernel_swi but returnsthe status of the carry flag on exit from the SW1 in the
word pointed to by carry .

4-283

General utility functions

Entry no. 10: int _kernel_osbyte(int op, int X, int y)

Performs an OS_Byte operation. If there is no error, the result contains:
the return value of R1 (x) in its bottom byte

the return value of R2 (y) inits second byte

linthethird byteif carry is set on return, otherwise O

Oinitstop byte

Note that some OS_Byte calls return values too great too fit in asingle byte.

Entry no. 11: int _kernel_osrdch(void)
Returns a character read from the currently selected OS input stream.

Entry no. 12: int _kernel_oswrch(int ch)

Writesabyteto al currently selected OS output streams. The return value just indicates
success or failure.

Entry no. 13: int _kernel_osbget(unsigned handle);
Returns the next byte from the file identified by hand! e. (-10 EOF)

Entry no. 14: int _kernel_osbput(int ch, unsigned handle)

Writes a byte to the file identified Byand/ e. The return value just indicates success or
failure.

typedef struct {
void * dataptr; /* nenory address of data */
int nbytes, fileptr;
int buf _len; /* these fields for RISC OS gpbp extensions */
char * wild_fld; /* points to wildcarded filename to match */
} _kernel _osgbpb_bl ock;

Entry no. 15: int _kernel _osgbpb(int op, unsigned handle,
_kernel_osgbpb_block *inout);
Reads or writes a number of bytes from a filing system. The return value just indicates
success or failure. Note that for some operations, the return value of C is significant, and

for others it isn't. In all cases, therefore, a return value of —1 is possible, but for some
operations it should be ignored.

Entry no. 16: int _kernel _osword(int op, int *data)

Performs an OS_Word operation. The size and format of the block pointed/&d by
depends on the particular OS_Word being used; it may be updated.

4-284

The shared C library

Entry no. 17: int _kernel_osfind(int op, char *name)

Opens or closes afile. Open returns afile handle (0 O open failed without error). For
close the return value just indicates success or failure.

typedef struct {

int load, exec; /* |oad, exec addresses */

int start, end; /* start address/length, end address/attributes */
} _kernel _osfil e_bl ock;

Entry no. 18: int _kernel_osfile(int op, const char *name,
_kernel_osfile_block *inout)

Performs an OS_File operation, with values of R2 - R5 taken from the osfile block. The
block is updated with the return values of these registers, and the result is the return
value of RO (or an error indication).

Entry no. 19: int _kernel _osargs(int op, unsigned handle, int arg)

Performs an OS_Args operation. The result is the current filing system number (if op =
0) otherwise the value returned in R2 by the OS_Args operation.

Entry no. 20: int _kernel_oscli(char *s)

Calls OS_CLI with the specified string. If used to run another application the current
application will be closed down. If you wish to return to the current application use
_kernel_system. Any return value indicates an error in _kernel_oscli itself.

Entry no. 22: int _kernel_system(char *string, int chain)

CalsOS_CLI with the specified string. If chainis 0, the current application is copied to
the top of memory first, then handlers are installed so that if the command string causes
an application to be invoked, control returnsto _kernel _system, which then copies the
calling application back into its proper place. Hence the command is executed as a
sub-program. If chainis 1, all handlers are removed before calling the CLI, and if it
returns (the command is built-in) _kernel _system exits. Any return value indicates an
error in _kernel_system itself.

4-285

Memory allocation functions

Memory allocation functions

Entry no. 26: unsigned _kernel_alloc(unsigned words, void **block)

Triesto allocate a block of size = wor ds words. Failing that, it allocates the largest
possible block (may be size zero). If wor ds is< 2048 it is rounded up to 2048. Returns
apointer to the allocated block in the word pointed to by bl ock. Thereturn value gives
the size of the allocated block.

typedef void freeproc(void *);
typedef void * all ocproc(unsigned);

Entry no. 25: void _kernel_register_allocs(allocproc *malloc, freeproc
*free)

Registers procedures to be used by the kernel when it requiresto free or allocate storage.
Currently thisisonly used to allocate and free stack chunks. Since allocproc and
freeproc are called during stack extension, they must not check for stack overflow
themselves or call any procedure which does stack checking and must guarantee to
require no more than 41 words of stack.

The kernel provides default alloc and free procedures, however you should replace these
with your own procedures since the default procedures are rather naive.

typedef int _kernel _ExtendProc(int /*n*/, void** [*p*/);

Entry no. 46: _kernel ExtendProc * kernel _register_slotextend
(_kernel_ExtendProc *proc)

When theinitial heap (supplied to _kernel _init) isfull, thekernel is normally capable of
extending it by extending the wimpslot. However, if the heap limit is not the same asthe
application limit, it is assumed that someone el se has acquired the space between, and
the procedure registered hereis called to request n bytes from it.

Its return value is expected to be = n, or 0 to indicate failure. If successful the word
pointed to by p should be set to point to the space allocated.

Language support functions

Entry no. 31: unsigned _kernel_udiv(unsigned divisor, unsigned dividend);
Divide and remainder function, returns the remainder in R1.

4-286

The shared C library

Entry no. 32: unsigned _kernel_urem(unsigned divisor, unsigned
dividend);

Remainder function.

Entry no. 33: unsigned _kernel_udiv10(unsigned dividend);
Divide and remainder function, returns the remainder in R1.

Entry no. 34: int _kernel_sdiv(int divisor, int dividend);
Signed divide and remainder function, returns the remainder in R1.

Entry no. 35: int _kernel_srem(int divisor, int dividend);
Signed remainder function.

Entry no. 36: int _kernel_sdiv10(int dividend);
Signed divide and remainder function, returns the remainder in R1.

4-287

C library functions

C library functions

The C library functions are grouped under the following headings:

« Language support functions
Provides functions for trap and event handling, initialisation and finalisation, and
mathematical routines such as number conversion and multiplication.

e assert
The assert modul e provides one function which is useful during program testing.

« ctype
The ct ype module provides several functions useful for testing and mapping
characters.

e €rno

Theword variable __errno at offset 800 in the library staticsis set whenever certain
error conditions arises.
o« locale

This module handles national characteristics, such as the different orderings
month-day-year (USA) and day-month-year (UK).

. math
This module contains the prototypes for 22 mathematical functions. All return the
typedoubl e.

e Setjmp

This module provides two functions for bypassing the normal function call and
return discipline.

e« signal

Si gnal providestwo functions.
e ddio

st di o provides many functions for performing input and output.
o sdlib

st dl i b provides several genera purpose functions.
e string

st ri ng provides several functions useful for manipulating character arrays and
other objects treated as character arrays.

. time
t i me provides several functions for manipulating time.

4-288

The shared C library

Index of C library functions by entry number

entry no. name on page

0 trapHandler page 4-298

1 uncaughtTrapHandler page 4-298

2 eventHandler page 4-299

3 unhandledEventHandler page 4-299

4 x$stack_overflow page 4-300

5 x$stack_overflow_1 page 4-300

6 x$udivide page 4-300

7 x$uremainder page 4-300

8 x$divide page 4-300

9 x$divtest page 4-300
10 x$remainder page 4-300
1 x$multiply page 4-300
12 _rdichk page 4-301
13 _rd2chk page 4-301
14 _rd4chk page 4-301
15 _wrlchk page 4-301
16 _wr2chk page 4-301
17 _wrd4chk page 4-301
18 _man page 4-301
19 _exit page 4-302
20 _clib_initialise page 4-302
21 _backtrace page 4-303
22 _count page 4-303
23 _countl page 4-303
24 _stfp page 4-303
25 _ldfp page 4-303
26 _printf page 4-319
27 _fprintf page 4-319
28 _sprintf page 4-319
29 clock page 4-341
30 difftime page 4-341
31 mktime page 4-341
32 time page 4-342
33 asctime page 4-342
34 ctime page 4-342
35 gmtime page 4-342
36 localtime page 4-342
37 stritime page 4-342
38 memcpy page 4-336
39 memmove page 4-336

4-289

C library functions

4-290

entry no.

41

SHERED

47

49
50
51
52
53

55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

name

strepy
strncpy
strcat
strncat
memcmp
stremp
strncmp
memchr
strchr
strespn
strpbrk
strrchr
strspn
strstr
strtok
memset
strerror
strlen
atof
atoi

atol
strtod
strtol
strtoul
rand
srand
calloc
free
malloc
realloc
abort
atexit
exit
getenv
system
bsearch
gsort
abs

div

labs

on page
page 4-336
page 4-336
page 4-337
page 4-337
page 4-337
page 4-337
page 4-337
page 4-338
page 4-338
page 4-338
page 4-339
page 4-339
page 4-339
page 4-339
page 4-339
page 4-340
page 4-340
page 4-340
page 4-327
page 4-327
page 4-327
page 4-327
page 4-328
page 4-328
page 4-329
page 4-329
page 4-329
page 4-330
page 4-330
page 4-330
page 4-330
page 4-330
page 4-331
page 4-331
page 4-331
page 4-332
page 4-332
page 4-332
page 4-332
page 4-333

The shared C library

entry no. name on page
80 Idiv page 4-333
8l remove page 4-314
82 rename page 4-314
83 tmpfile page 4-314
84 _old_tmpnam page 4-315
85 fclose page 4-315
86 fflush page 4-315
87 fopen page 4-315
88 freopen page 4-316
89 setbuf page 4-317
90 setvbuf page 4-317
91 printf page 4-318
92 fprintf page 4-317
93 sprintf page 4-319
94 scanf page 4-320
95 fscanf page 4-320
96 sscanf page 4-320
97 vprintf page 4-321
98 viprintf page 4-321
99 vsprintf page 4-321
100 _vprintf page 4-319
101 fgetc page 4-321
102 fgets page 4-321
103 fputc page 4-322
104 fputs page 4-322
105 __ filbuf page 4-326
106 getc page 4-322
107 getchar page 4-322
108 gets page 4-322
109 __flsbuf page 4-327
110 putc page 4-323
111 putchar page 4-323
112 puts page 4-323
113 ungetc page 4-323
114 fread page 4-324
115 fwrite page 4-324
116 fgetpos page 4-324
117 fseek page 4-325
118 fsetpos page 4-325
119 ftell page 4-325
120 rewind page 4-326
121 clearerr page 4-326

4-291

C library functions

4-292

entry no.

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

name

feof
ferror
perror
__ignore_signal_handler
__error_signal_marker
__default_signal_handler
signa
raise
setjmp
longjmp
acos
asin
atan
atan2
cos

sin

tan

cosh
sinh
tanh
exp
frexp
Idexp
log
log10
modf
pow
sort

ceil

fabs
floor
fmod
setlocale
isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace

on page
page 4-326
page 4-326
page 4-326
page 4-313
page 4-313
page 4-313
page 4-311
page 4-312
page 4-311
page 4-311
page 4-309
page 4-309
page 4-309
page 4-309
page 4-309
page 4-309
page 4-309
page 4-309
page 4-309
page 4-309
page 4-309
page 4-310
page 4-310
page 4-310
page 4-310
page 4-310
page 4-310
page 4-310
page 4-310
page 4-310
page 4-310
page 4-310
page 4-308
page 4-305
page 4-305
page 4-305
page 4-305
page 4-305
page 4-305
page 4-306
page 4-306
page 4-306

entry no.
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
error condition
error condition
error condition

name
isupper
isxdigit
tolower
toupper
__assert
_memcpy
_memset
localeconv
mblen
mbtowc
wctomb
mbstowcs
wcstombs
strxfrm

strcoll
_clib_finalisemodule
_clib_version
finalise
tmpnam
EDOM
ERANGE
ESIGNUM

Index of C library functions by function name

name

abort
abs
acos
asctime
asin
__assert
atan
atan2
atexit
atof

atoi

atol
_backtrace
bsearch
calloc
ceil

entry no.
70
77
132
33
133
168
134
135
71
58
59
60
21
75
66
150

The shared C library

on page
page 4-306
page 4-306
page 4-306
page 4-306
page 4-305
page 4-304
page 4-304
page 4-308
page 4-333
page 4-334
page 4-334
page 4-334
page 4-335
page 4-338
page 4-337
page 4-304
page 4-304
page 4-304
page 4-314
page 4-307
page 4-307
page 4-307

on page
page 4-330
page 4-332
page 4-309
page 4-342
page 4-309
page 4-305
page 4-309
page 4-309
page 4-330
page 4-327
page 4-327
page 4-327
page 4-303
page 4-332
page 4-329
page 4-310

4-293

C library functions

4-294

name

clearerr
_clib_finalisemodule
_clib_initialise
_clib_version
clock

cos

cosh

_count
_countl
ctime
__default_signal_handler
difftime

div
__error_signal_marker
eventHandler
exit

_exit

exp

fabs

fclose

feof

ferror

fflush

fgetc

fgetpos

fgets

__filbuf
finalise

floor

__flsbuf
fmod

fopen

fprintf
_fprintf

fputc

fputs

fread

free

freopen

frexp

fscanf

fseek

entry no.

121
179
20
180
29
136
139
22
23

127
30
78

126

72
19
142
151
85
122
123
86
101
116
102
105
181
152
109
153
87
92
27
103
104
114
67
88
143
95
117

on page
page 4-326
page 4-304
page 4-302
page 4-304
page 4-341
page 4-309
page 4-309
page 4-303
page 4-303
page 4-342
page 4-313
page 4-341
page 4-332
page 4-313
page 4-299
page 4-331
page 4-302
page 4-309
page 4-310
page 4-315
page 4-326
page 4-326
page 4-315
page 4-321
page 4-324
page 4-321
page 4-326
page 4-304
page 4-310
page 4-327
page 4-310
page 4-315
page 4-317
page 4-319
page 4-322
page 4-322
page 4-324
page 4-330
page 4-316
page 4-310
page 4-320
page 4-325

The shared C library

name entry no. on page

fsetpos 118 page 4-325
ftell 119 page 4-325
fwrite 115 page 4-324
getc 106 page 4-322
getchar 107 page 4-322
getenv 73 page 4-331
gets 108 page 4-322
gmtime 35 page 4-342
__ignore_signal_handler 125 page 4-313
isalnum 155 page 4-305
isalpha 156 page 4-305
iscntrl 157 page 4-305
isdigit 158 page 4-305
isgraph 159 page 4-305
islower 160 page 4-305
isprint 161 page 4-306
ispunct 162 page 4-306
isspace 163 page 4-306
isupper 164 page 4-306
isxdigit 165 page 4-306
labs 79 page 4-333
localeconv 171 page 4-308
Idexp 144 page 4-310
_ldfp 25 page 4-303
[div 80 page 4-333
localtime 36 page 4-342
log 145 page 4-310
logl0 146 page 4-310
longjmp 131 page 4-311
_main 18 page 4-301
malloc 68 page 4-330
mblen 172 page 4-333
mbstowcs 175 page 4-334
mbtowc 173 page 4-334
memchr 47 page 4-338
memcmp 44 page 4-337
memcpy 38 page 4-336
_memcpy 169 page 4-304
memmove 39 page 4-336
memset 55 page 4-340
_memset 170 page 4-304
mktime 31 page 4-341

4-295

C library functions

4-296

name

modf
_old_tmpnam
perror
pow
printf
_printf
putc
putchar
puts
gsort
raise
rand
_rdichk
_rd2chk
_rd4chk
realloc
remove
rename
rewind
scanf
setbuf
setjmp
setlocale
setvbuf
signa
sin

sinh
sprintf
_sprintf
sqrt
srand
sscanf
_stfp
strcat
strchr
stremp
strcoll
strcpy
strespn
strerror
strftime
strlen

entry no.
147

124
148
91
26
110
111
112
76
129

12
13
14
69
81
82
120

89
130
154

90
128
137
140

93

28
149

65

96

24

42

45
178
40

56
37
57

on page
page 4-310
page 4-315
page 4-326
page 4-310
page 4-318
page 4-319
page 4-323
page 4-323
page 4-323
page 4-332
page 4-312
page 4-329
page 4-301
page 4-301
page 4-301
page 4-330
page 4-314
page 4-314
page 4-326
page 4-320
page 4-317
page 4-311
page 4-308
page 4-317
page 4-311
page 4-309
page 4-309
page 4-319
page 4-319
page 4-310
page 4-329
page 4-320
page 4-303
page 4-337
page 4-338
page 4-337
page 4-337
page 4-336
page 4-338
page 4-340
page 4-342
page 4-340

The shared C library

name entry no. on page

strncat 43 page 4-337
strncmp 46 page 4-337
strncpy 41 page 4-336
strpbrk 50 page 4-339
strrchr 51 page 4-339
strspn 52 page 4-339
strstr 53 page 4-339
strtod 61 page 4-327
strtok 54 page 4-339
strtol 62 page 4-328
strtoul 63 page 4-328
strxfrm 177 page 4-338
system 74 page 4-331
tan 138 page 4-309
tanh 141 page 4-309
time 32 page 4-342
tmpfile 83 page 4-314
tmpnam 182 page 4-314
tolower 166 page 4-306
toupper 167 page 4-306
trapHandler 0 page 4-298
uncaughtTrapHandler 1 page 4-298
ungetc 113 page 4-323
unhandledEventHandler 3 page 4-299
vfprintf 98 page 4-321
vprintf 97 page 4-321
_vprintf 100 page 4-319
vsprintf 99 page 4-321
wcstombs 176 page 4-335
wctomb 174 page 4-334
_wrlchk 15 page 4-301
_wr2chk 16 page 4-301
_wr4chk 17 page 4-301
x$divide 8 page 4-300
x$divtest 9 page 4-300
x$multiply 1 page 4-300
x$remainder 10 page 4-300
x$stack _overflow 4 page 4-300
x$stack_overflow_1 5 page 4-300
x$udivide 6 page 4-300
x$uremainder 7 page 4-300

4-297

Language support functions

Language support functions

4-298

Entry no. O: TrapHandler

Entry no. 1: UncaughtTrapHandler

On entry:

RO = error code

R1 = pointer to register dump

On exit:

Only exitsif the trap was not handled

RO = 0 (indicating that the trap was not handled).

These are the default TrapProc and UncaughtTrapProc handlers used by the C library in
its kernel language description (see the section entitled I nterfacing a language run-time
system to the Acorn library kernel on page 4-242).

You may use these entries in your own kernel language description if you wish to have
trap handling similar to that provided by the C library, or you may call these entries
directly from your own trap handler if you wish to perform some pre-processing before

passing the trap on.
The error code on entry is converted to asignal number as follows:
Signal no. Error codes
2 (SIGFPE) & 80000020 (Error_DivideByZero),
&80000200 (Error_FPBase) — &800002FF (Error_FPLimit — 1)
3 (SIGILL) &80000000 (Error_Illegallnstruction),

&80000001 (Error_PrefetchAbort),
&80000005 (Error_BranchThroughZero)

5 (SIGSEGV) &80000002 (Error_DataAbort),
&80000003 (Error_AddressException),
&80800EAOQ (Error_ReadFail),
&80800EAL (Error_WriteFail)

7 (SIGSTAK) &80000021 (Error_StackOverflow)

10 (SIGOSERROR) All other errors

It then determines whether a signal handler has been set up for the converted signal
handler; if no such handler has been set up (ie the signal handler is setto __ SIG_DFL) it
returns with RO = 0.

The shared C library

Otherwiseit calls the C library function r ai se with the derived signal number. If the
raise function returns (ie the signal handler returns) a postmortem stack backtraceis
generated.

Entry no. 2: EventHandler

Entry no. 3: UnhandledEventHandler

On entry:

RO = event code
R1 = pointer to register dump

On exit:
RO = 1 if the event was handled, else 0

These are the default EventProc and UnhandledEventProc handlers used by the
C library inits kernel language description (see the section entitled Interfacing a
language run-time system to the Acorn library kernel on page 4-242).

You may use these entriesin your own kernel language description if you wish to have
event handling similar to that provided by the C library or you may call these entries
directly from your own event handler if you wish to perform some pre-processing before
passing the event on.

The event code on entry is either a RISC OS event number as described in the chapter
entitled Events on page 1-147, or —1 to indicate an escape event.

All events codes except —1 are currently ignored. The handler simply returns with RO =
0 if RO# -1 on entry.

EventHandler then determines whether a SIGINT signal handler has been set up. If no
handler is set up (ie the signal handler is set to __SIG_DFL) EventHandler returns with
RO =0.

The C library functiorr ai se is then called with the signal number SIGINT. Note:
rai se is always called by UnhandledEventHandler even if the signal handler is set to
__SIG_DFL.

If the signal handler returns the event handler returns with RO = 1.

Certain sections of the C library are non-reentrant. When these sections are entered they
set the variable _interrupts_off at offset 964 in the library statics to 1.

EventHandler and UnhandledEventHandler check this variable and, if it is set, they set
the variable _saved_interrupt at offset 968 in the library statics to SIGINT and return
immediately with RO = 1 and without callimgi se.

4-299

Language support functions

4-300

When the non-reentrant sections of code finish they reset the variable _interrupts_off
and check the variable _saved interrupts. If _saved_interruptsis non-zero it is reset to
zero and the signal number stored in _saved_interrupts (before it wasreset to 0) is
raised.

Entry no. 4: x$stack_overflow

Thisentry branches directly to _kernel_stkovf_split_Oframe which is described in the
section entitled How the run-time stack is managed and extended on page 4-243.

Entry no. 5: x$stack_overflow_1

This entry branches directly to _kernel _stkovf_split which is described in the section
entitled How the run-time stack is managed and extended on page 4-243.

Entry no. 6: x$udivide
This entry branches directly to _kernel _udiv described on page 4-286.

Entry no. 7: x$uremainder
This entry branches directly to _kernel_urem described on page 4-287.

Entry no. 8: x$divide
This entry branches directly to _kernel_sdiv described on page 4-287.

Entry no. 9: x$divtest
Thisfunction isused by the C compiler to test for division by zero when the result of the
division is discarded.
If RO is non-zero the function simply returns. Otherwise it generatesaDi vi de by
zer o error.

Entry no. 10: x$remainder
This entry branches directly to _kernel _srem described on page 4-287.

Entry no. 11: x$multiply

On entry:

RO = multiplicand
R1 = multiplier

The shared C library

On exit:

RO=R0O x R1
R1, R2 scrambled.

Entry no. 12: _rd1chk

Entry no. 13: _rd2chk

Entry no. 14: _rd4chk

Thefunctions_r dlchk, rd2chk and_r d4chk check that the value of RO passed to
themisavalid addressin the application space (& 8000 < RO < & 1000000). _rd2chk and
_rd4chk also check that the value is properly aligned for a half-word / word access
respectively.

If the value of RO is avalid address the function just returns, otherwise it generates an
Il egal read error.

These calls are used by the C compiler when compiling with memory checking enabled.

Entry no. 15: _wrlchk

Entry no. 16: _wr2chk

Entry no. 17: _wrdchk

Thefunctions_wr 1chk, _wr 2chk and _wr 4chk check that the value of RO passed to
themisavalid addressin the application space (& 8000 < RO < & 1000000). _rd2chk and
_rd4chk also check that the value is properly aligned for a half-word / word access
respectively.

If the value of RO isavalid address the function just returns, otherwise it generates an
Illegal write error.

These calls are used by the C compiler when compiling with memory checking enabled.

Entry no. 18: _main

On entry:

RO = pointer to copy of command line (the command line pointed to by RO on return
from OS_GetEnv should be copied to another buffer before calling _main; this
can be doneusing _kernel_command_string, detailed on page 4-281).

R1 = address of routine at which execution will continue when _main has finished.

4-301

Language support functions

The following entry and exit conditions apply for this routine:

On entry:

RO = count of argument wor ds.

R1 = pointer to block containing RO + n words, each word of which
points to a zero terminated string which is the nth word in the
command line passed to _main. The last word in the block
contains 0.

On exit:
RO = exit condition (0 = success, €lse failure)

For C programs this argument will generally point at mai n.

On exit:
Does not return. Control is regained through the R1 argument on entry.

This function parses the command line pointed to by RO and then calls the function
pointed to by R1.

For C programsthisfunction is called by the C library as aprecursor to calling mai n to
provide the C entry / exit requirements.

Entry no. 19: void _exit(void)

Thisfunction isidentical in behaviour to the C library function exi t described on
page 4-331.

Entry no. 20: void _clib_initialise(void)

Performs initialisation required by the C library before other C library functions can be
called. You may call kernel library functions without first making this call. You should
call thisfunction in your initialisation entry for amodule and in your InitProc procedure
for applications or modules that have arun entry. For a description of InitProc
procedures, see page 4-257. The two programming examples on page 4-264 and

page 4-266 show how _clib_initialise should be called for an application and a module
respectively.

4-302

The shared C library

Entry no. 21: void _backtrace(int why, int *address, _kernel_unwindblock
*uwb)

Displays a stack backtrace and exits with the exit code 1.

The _kernel_unwindblock structure is described with the _kernel_unwind function on
page 4-281. The argument why isan error code, if why isError_ReadFail (& 80800ea0)
or Error_WriteFail (&80800eal) the address given by the addr ess argument is
displayed at the top of the backtrace, otherwise the message post nort em

r equest ed isdisplayed.

Entry no. 22: _count

Entry no. 23. _countl
These entries are used by the C compiler when generating profile code.

Both _count and _count1 increment the word pointed to by R14 (after stripping the
status bits); thiswill generally be the word immediately following a BL instruction to
the relevant routine. _count then returns to the word immediately following the
incremented word, _count1 returnsto the word after that (the second word is used by the
C compiler to record the position in a source file that this count-point refers to).

BL _count
DCD 0 ; Thisword incremented each time _count is called
; Control returns here
BL _countl
DCD 0 ; Thisword incremented each time _countl is called
DCD filepos ; Offset into sourcefile

; Control returns here

Entry no. 24: void _stfp(double d, void *x)

This function converts the double FP no. d to packed decimal and storesit at address x.
Note that the double d is passed in RO, R1 (RO containing the first word when a double
is stored in memory, R1 containing the second word), the argument x is passed in R2.
Three words should be reserved at x for the packed decimal number.

Entry no. 25: double _|dfp(void *x)

This function converts the packed decimal number stored at x to a double FP no. and
returns thisin FO.

4-303

Language support functions

4-304

Entry no. 169: void _memcpy(int *dest, int *source, int n)

This function performs a similar function to memcpy except that dest and sour ce
must be word aligned and the byte count n must be a multiple of 4.

It is used by the C compiler when copying structures.

Entry no. 170: void _memset(int *dest, int w, int n)

This function performs a similar function to memset except that dest must be word
aligned, the byte value to be set must be copied into each of the four bytes of w (i.e. to
initialise memory to & 01 you must use & 01010101 in w) and the byte count n must be a
multiple of 4.

It is used by the C compiler when initialising structures.

Entry no. 179: _clib_finalisemodule

On entry:

RO = private word pointer

On exit:
Block pointed to by private word is freed

This entry must be called in the finalisation code of a module which uses the shared

C library. Before calling it you must set up the static data relocation pointers on the base
of the SVC stack and initialise the SL register to point to the base of the SV C stack +
512. The old static data relocation pointers on the base of the SV C stack must be saved
around this call.

Entry no. 180: char *_clib_version(void)

This function returns a string giving version information on the shared C library.

Entry no. 181: Finalise

This function calls al the registered atexit functions and then performs some internal
finalisation of the alloc and io subsystems.

Thisentry is called automatically by the C library on finalisation; you should not call it
in your code.

assert

ctype

The shared C library

The assert modul e provides one function which is useful during program testing.

Entry no. 168: void __assert(char *reason, char *file, int line)
Displays the message:
*** gssertion failed: 'reason’, file ‘file’, line 'line’
and raises SIGABRT.

This function is generally used within amacro which calls__assert if a specified
condition isfalse.

Thectype module provides several functions useful for testing and mapping
characters. In al cases the argument is an int, the value of which is representable as an
unsigned char or equal to the value —1. If the argument has any other value, the
behaviour is undefined.

Entry no. 155: int isalnum(int c)
Returns true if ¢ is alphabetic or numeric

Entry no. 156: int isalpha(int c)
Returns true if ¢ is alphabetic

Entry no. 157: int iscntrl(int c¢)
Returns true if ¢ is a control character (in the ASCII locale)

Entry no. 158: int isdigit(int ¢)
Returns true if ¢ is a decimal digit

Entry no. 159: int isgraph(int c)
Returns true if ¢ is any printable character other than space

Entry no. 160: int islower(int c)
Returns true if c is a lower-case letter

4-305

ctype

4-306

Entry no. 161: int isprint(int c)

Returnstrueif cisaprintable character (in the ASCII local e this means & 20 (space) —
& 7E (tilde) inclusive).

Entry no. 162: int ispunct(int c)
Returns trueif ¢ isa printable character other than a space or alphanumeric character

Entry no. 163: int isspace(int c)

Returnstrueif c is awhite space character viz: space, newline, return, linefeed, tab or
vertical tab

Entry no. 164: int isupper(int c)
Returns trueif ¢ is an upper-case letter

Entry no. 165: int isxdigit(int c)
Returns true if ¢ is a hexadecimal digit, ie in 0...9, a...f, or A...F

Entry no. 166: int tolower(int c)
Forces c to lower case if it is an upper-case letter, otherwise returns the original value

Entry no. 167: int toupper(int c)
Forces c to upper case if it is a lower-case letter, otherwise returns the original value

The shared C library

errno

The word variable errno at offset 800 in the library statics is set whenever one of the
error conditions listed below arises.

EDOM (errno=1)

If adomain error occurs (an input argument is outside the domain over which the
mathematical function is defined) the integer expression er r no acquires the value of
the macro EDOM and HUGE VAL is returned. EDOMmay be used by non-mathematical
functions.

ERANGE (errno=2)

A range error occursif the result of afunction cannot be represented as a double value.
If the result overflows (the magnitude of the result is so large that it cannot be
represented in an object of the specified type), the function returns the value of the
macro HUGE_ VAL, with the same sign as the correct value of the function; the integer
expression er r no acquires the value of the macro ERANGE. If the result underflows
(the magnitude of the result is so small that it cannot be represented in an object of the
specified type), the function returns zero; the integer expression er r no acquires the
value of the macro ERANGE. ERANGE may be used by non-mathematical functions.

ESIGNUM (errno=3)

If an unrecognised signal is caught by the default signal handler, er r no is set to
ESI GNUM

4-307

locale

locale

math

4-308

This module handles national characteristics, such as the different orderings
month-day-year (USA) and day-month-year (UK).

Entry no. 154: char *setlocale(int category, const char *locale)

Selects the appropriate part of the program'’s locale as specified bgttbgor y and

| ocal e arguments. Theet | ocal e function may be used to change or query the
program’s entire current locale or portions thereof. Locale information is divided into
the following types:

Type Value Description

LC COLLATE (1) string collation

LC CTYPE (2) character type

LC MONETARY (4) monetary formatting

LC NUMERI C (8) numeric string formatting
LC TIME (16) time formatting

LC ALL (31 entire locale

The locale string specifies which locale set of information is to be used. For example,
set| ocal e(LC_MONETARY, "uk")

would insert monetary information into theonv structure. To query the current locale
information, set théocal e string to null and read the string returned.

Entry no. 171: struct Iconv *localeconv(void)

Sets the components of an object with type stracinv with values appropriate for the
formatting of numeric quantities (monetary and otherwise) according to the rules of the
current locale. The members of the structure with tfper * are strings, any of which
(exceptdeci mal _poi nt) can pointtd' ", to indicate that the value is not available in
the current locale or is of zero length. The members withdjpe are non-negative
numbers, any of which can AR _MAX to indicate that the value is not available in

the current locale. The members included are described above.

| ocal econv returns a pointer to the filled in object. The structure pointed to by the
return value will not be modified by the program, but may be overwritten by a
subsequent call to tHeocal econv function. In addition, calls to theet | ocal e
function with categoriesC_ALL, LC_MONETARY, orLC_NUMERI C may overwrite

the contents of the structure.

This module contains 22 mathematical functions. All return thedgpbl e.

The shared C library

Entry no. 132: double acos(double x)
Returns arc cosine of x. A domain error occurs for arguments not in the range -1 to 1

Entry no. 133: double asin(double x)
Returns arc sine of A domain error occurs for arguments not in the range -1 to 1

Entry no. 134: double atan(double x)
Returns arc tangent &f

Entry no. 135: double atan2(double x, double y)
Returns arc tangent afy

Entry no. 136: double cos(double x)
Returns cosine of (measured in radians)

Entry no. 137: double sin(double x)
Returns sine ot (measured in radians)

Entry no. 138: double tan(double x)
Returns tangent of (measured in radians)

Entry no. 139: double cosh(double x)
Returns hyperbolic cosine af

Entry no. 140: double sinh(double x)
Returns hyperbolic sine af

Entry no. 141: double tanh(double x)
Returns hyperbolic tangent »f

Entry no. 142: double exp(double x)
Returns exponential function gf

4-309

math

4-310

Entry no. 143: double frexp(double x, int *exp)

Returns the value x, such that x is a double with magnitude in the interval 0.5to 1.0 or
zero, and value equals x times 2 raised to the power *exp

Entry no. 144: double Idexp(double x, int exp)
Returns x times 2 raised to the power of exp

Entry no. 145: double log(double x)
Returns natural logarithm of x

Entry no. 146: double log10(double x)
Returns log to the base 10 of x

Entry no. 147: double modf(double x, double *iptr)
Returns signed fractional part of x. Stores integer part of x in object pointed to by iptr.

Entry no. 148: double pow(double x, double y)
Returns x raised to the power of y

Entry no. 149: double sqgrt(double x)
Returns positive sgquare root of x

Entry no. 150: double ceil(double x)
Returns smallest integer not less than x (ie rounding up)

Entry no. 151: double fabs(double x)
Returns absol ute value of x

Entry no. 152: double floor(double x)
Returns largest integer not greater than x (ie rounding down)

Entry no. 153: double fmod(double x, double y)
Returns floating-point remainder of x/y

setimp

signal

The shared C library

This module provides two functions for bypassing the normal function call and return
discipline (useful for dealing with unusual conditions encountered in alow-level
function of a program).

Entry no. 130: int setimp(jmp_buf env)

The calling environment is saved in env, for later use by the | ongj np function. If the
return is from a direct invocation, the set j np function returns the value zero. If the
returnisfromacall tothel ongj np function, the set j np function returns anon-zero
value.

Entry no. 131: void longjmp(jmp_buf env, int val)

The environment saved in env by the most recent call to set j np isrestored. If there
has been no such call, or if the function containing thecall toset j np has terminated
execution (eg with areturn statement) in the interim, the behaviour is undefined. All
accessible objects have values as at thetime | ongj np was called, except that the
values of objects of automatic storage duration that do not have volatile type and that
have been changed betweentheset j np and | ongj np calls are indeterminate.

Asit bypasses the usual function call and return mechanism, thel ongj np function
executes correctly in contexts of interrupts, signals and any of their associated functions.
However, if thel ongj np function isinvoked from a nested signal handler (that is,
from afunction invoked as a result of a signal raised during the handling of another
signal), the behaviour is undefined.

After | ongj np is completed, program execution continues as if the corresponding call
toset j np had just returned the value specified by val . Thel ongj np function
cannot cause set j np to return the value O; if val isO, set j np returnsthe value 1.

Si gnal providestwo functions.
typedef void Handler(int);

Entry no. 128: Handler *signal(int, Handler *);

The following signal handlers are defined:

Type value description

SIG DFL (Handler*)-1 default routine
SIGIGN (Handler*)-2 ignore signal routine
SIG ERR (Handler*)-3 dummy routine to flag error return from signal

4-311

signal

The following signals are defined:

Signal value description

S| GABRT 1 abort (ie call to abort())
S| GFPE 2 arithmetic exception
SIG LL 3 illegal instruction

SI G NT 4 attention request from user
S| GSEGV 5 bad memory access

S| GTERM 6 termination request

SI GSTAK 7 stack overflow

SI GUSR1 8 user definable

SI GUSR2 9 user definable

S| GOSERROR 10 operating system error

The ‘signal’ function chooses one of three ways in which receipt of the signal number
si g is to be subsequently handled. If the valuewfc isSI G_DFL, default handling

for that signal will occur. If the value éfunc is SI G_I G\, the signal will be ignored.
Otherwisef unc points to a function to be called when that signal occurs.

When a signal occurs, fifunc points to a function, first the equivalent of

si gnal (si g, SI G DFL) is executed. (If the value ef g isSI G LL, whether the

reset taSI G_DFL occurs is implementation-defined (under RISC OS the reset does
occur)). Next, the equivalent ¢t f unc) (si g) ; is executed. The function may

terminate by calling thabor t ,exi t orl ongj np function. Iff unc executes a return
statement and the valuesifg wasSI G-PE or any other implementation-defined value
corresponding to a computational exception, the behaviour is undefined. Otherwise, the
program will resume execution at the point it was interrupted.

If the signal occurs other than as a result of callingather t orr ai se function, the
behaviour is undefined if the signal handler calls any function in the standard library
other than the signal function itself or refers to any object with static storage duration
other than by assigning a value to a volatile static variable oktygeat om c_t . At
program start-up, the equivalentgifgnal (si g, Sl G_| GN) may be executed for
some signals selected in an implementation defined manner (under RISC OS this does
not occur); the equivalent sfi gnal (si g, SI G _DFL) is executed for all other

signals defined by the implementation.

If the request can be honoured, shiggnal function returns the value bfinc for most
recent call tsi gnal for the specified signali g. Otherwise, a value @l G_ERRIs
returned and the integer expresséom no is set to indicate the error.

Entry no. 129: int raise(int siQ)

Sends the signal sig to the executing program. Returns zero if successful, non-zero if
unsuccessful.

4-312

stdio

The shared C library

Entry no. 125: void __ignore_signal_handler(int sig)

This function is for compatibility with older versions of the shared C library stubs and
should not be called in your code.

Entry no. 126: void __error_signal_marker(int sig)

This function is for compatibility with older versions of the shared C library stubs and
should not be called in your code.

Entry no. 127: void __default_signal_handler(int sig)

This function is for compatibility with older versions of the shared C library stubs and
should not be called in your code.

st di o provides many functions for performing input and output. For a discussion on
Streams and Files refer to sections 4.9.2 and 4.9.3 in the ANSI standard.

The following two types are used by the stdio module:
typedef int fpos_t;

f pos_t isan object capable of recording all information needed to specify
uniquely every position within afile.

typedef struct FILE

unsi gned char *_ptr; /[* pointer to 10O buffer */
int _icnt; /* character count for input */
int _ocnt; /* character count for output */
int flag; /* flags, see bel ow */
int internal[6];

} FI LE;

The following flags are defined in the flags field above:

Flag Bit mask Description

_ | OEOF &040 end-of-file reached

_I CERR &080 error occurred on stream

_| OFBF &100 fully buffered 10

_I OLBF &200 line buffered 10

_| ONBF &400 unbuffered 10

4-313

stdio

4-314

FI LE isan object capable of recording all information needed to control a stream, such
asitsfile position indicator, a pointer to its associated buffer, an error indicator that
records whether aread/write error has occurred and an end-of-file indicator that records
whether the end-of-file has been reached.

Entry no. 81: int remove(const char *filename)

Causes the file whose name is the string pointed to by f i | enane to be removed.
Subsequent attemptsto open thefilewill fail, unlessit is created anew. If thefileis open,
the behaviour of ther enpove function isimplementation-defined (under RISC OS the
operation fails).

Returns: zero if the operation succeeds, non-zero if it fails.

Entry no. 82: int rename(const char *ol/d, const char *new)

Causes the file whose name is the string pointed to by o/ d to be henceforth known by
the name given by the string pointed to by new The file named o/ d is effectively
removed. If afile named by the string pointed to by new exists prior to the call of the
r ename function, the behaviour isimplementation-defined (under RISC OS, the
operation fails).

Returns: zero if the operation succeeds, non-zero if it fails, in which case if thefile
existed previoudly it is still known by its original hame.

Entry no. 83: FILE *tmpfile(void)

Creates atemporary binary file that will be automatically removed when it is closed or
at program termination. The fileis opened for update.

Returns: a pointer to the stream of thefile that it created. If the file cannot be created, a
null pointer is returned.

Entry no. 182: char *tmpnam(char *s)

Generates a string that is not the same as the name of an existing file. Thet npnam
function generates a different string each timeitiscaled, up to TMP_MAX times. If it is
called more than TMP_MAX times, the behaviour isimplementation-defined (under
RISC OS the algorithm for the name generation works just as well after t npnamhas
been called more than TMP_MAX times as before; a name clash isimpossible in any
single half year period).

The shared C library

Returns; If the argument isanull pointer, thet mpnamfunction leavesits result in an
internal static object and returns a pointer to that object. Subsequent callstothet npnam
function may modify the same object. If the argument is not anull pointer, it is assumed
to point to an array of at least L_t mpnamcharacters; the t npnamfunction writesits
result in that array and returns the argument asits value.

Entry no. 84: char *__old_tmpnam(char *s)

This function isincluded for backwards compatibility for binaries linked with older
library stubs. You should not call thisfunctionin your code, call tmpnam (Entry no. 182)
instead.

Entry no. 85: int fclose(FILE *stream)

Causes the stream pointed to by st r eamto be flushed and the associated file to be
closed. Any unwritten buffered datafor the stream are delivered to the host environment
to be written to the file; any unread buffered data are discarded. The stream is
disassociated from thefile. If the associated buffer was automatically allocated, it is
deall ocated.

Returns: zero if the stream was successfully closed, or EOF if any errors were detected
or if the stream was aready closed.

Entry no. 86: int fflush(FILE *stream)
If the stream points to an output or update stream in which the most recent operation was
output, thef f I ush function causes any unwritten datafor that stream to be delivered to
the host environment to be written to the file. If the stream points to an input or update
stream, thef f | ush function undoes the effect of any preceding unget c operation on
the stream.

Returns; EOF if awrite error occurs.

Entry no. 87: FILE *fopen(const char *filename, const char *mode)

Opens the file whose name is the string pointed to by f/ | ename, and associates a
stream with it. The argument node points to a string beginning with one of the
following sequences:

r open text file for reading

w create text file for writing, or truncate to zero length

a append; open text file or create for writing at eof

rb open binary file for reading

wb create binary file for writing, or truncate to zero length
ab append; open binary file or create for writing at eof

r+ open text file for update (reading and writing)

4-315

stdio

4-316

WH create text file for update, or truncate to zero length

a+ append; open text file or create for update, writing at eof

r+borrb+ open binary file for update (reading and writing)

w+b or wh+ create binary file for update, or truncate to zero length

a+b or ab+ append; open binary file or create for update, writing at
eof

« Opening afilewith read mode (r asthefirst character in the node argument) fails
if the file does not exist or cannot be read.

« Opening afilewith append mode (a as the first character in the node argument)
causes all subsequent writes to be forced to the current end of file, regardless of
intervening callsto thef seek function.

« Insomeimplementations, opening abinary file with append mode (b as the second
or third character in the node argument) may initialy position the file position
indicator beyond the last data written, because of null padding (but not under
RISC OS).

« When afileis opened with update mode (+ as the second or third character in the
nmode argument), both input and output may be performed on the associated stream.
However, output may not be directly followed by input without an intervening call
tothef f | ush function or to afile positioning function (f seek, f set pos, or
r ewi nd), nor may input be directly followed by output without an intervening call
tothef f I ush function or to afile positioning function, unless the input operation
encounters end-of-file.

« Opening afile with update mode may open or create a binary stream in some
implementations (but not under RISC OS). When opened, astream isfully buffered
if and only if it does not refer to an interactive device. The error and end-of-file
indicators for the stream are cleared.

Returns: a pointer to the object controlling the stream. If the open operation fails,
f open returns anull pointer.

Entry no. 88: FILE *freopen(const char *filename, const char *mode,
FILE *stream)

Opens the file whose name is the string pointed to by f/ | ename and associates the
stream pointed to by st r eamwith it. The nbde argument isused just asinthef open
function. Thef r eopen function first attempts to close any file that is associated with
the specified stream. Failure to close the file successfully isignored. The error and
end-of-file indicators for the stream are cleared.

Returns: anull pointer if the operation fails. Otherwise, f r eopen returnsthe value of
the stream.

The shared C library

Entry no. 89: void setbuf(FILE *stream, char *buf)

Except that it returns no value, the set buf function is equivalent to the set vbuf
function invoked with the values_|OFBF for node and BUFSIZ for si ze, or if buf is
anull pointer, with the value _|ONBF for node.

Returns; no value.

Entry no. 90: int setvbuf(FILE *stream, char *buf, int mode, size_t size)

This may be used after the stream pointed to by st r eamhas been associated with an
open file but before it is read or written. The argument node determines how st r eam
will be buffered, as follows:

o _|OFBF causes input/output to be fully buffered.

o _IOLBF causes output to be line buffered (the buffer will be flushed when a
newline character is written, when the buffer isfull, or when interactiveinput is
reguested).

o _IONBF causes input/output to be completely unbuffered.

If buf isnot the null pointer, the array it points to may be used instead of an
automatically allocated buffer (the buffer must have alifetime at least as great as the
open stream, so the stream should be closed before a buffer that has automatic storage
duration is deallocated upon block exit). The argument s/ ze specifies the size of the
array. The contents of the array at any time are indeterminate.

Returns: zero on success, or non-zero if an invalid value is given for mode or size, or if
the request cannot be honoured.

Entry no. 92: int fprintf(FILE *stream, const char *format, ...)

Writes output to the stream pointed to by st r eam under control of the string pointed to
by f or mat that specifies how subseguent arguments are converted for output. If there
are insufficient arguments for the format, the behaviour is undefined. If the format is
exhausted while arguments remain, the excess arguments are evaluated but otherwise
ignored. Thef pri nt f function returns when the end of the format string is reached.
The format must be a multibyte character sequence, beginning and ending in itsinitial
shift state. The format is composed of zero or more directives: ordinary multibyte
characters (not %), which are copied unchanged to the output stream; and conversion
specifiers, each of which results in fetching zero or more subsequent arguments. Each
conversion specification isintroduced by the character %. For a compl ete description of
the available conversion specifiers refer to section 4.9.6.1 in the ANSI standard. The
minimum value for the maximum number of characters that can be produced by any
single conversion is at least 509.

4-317

stdio

4-318

A brief and incompl ete description of conversion specificationsis:
[flags][field width][.precision]specifier-char

fl ags ismost commonly - , indicating left justification of the output item
within the field. If omitted, the item will be right justified.

field w dt h istheminimum width of field to use. If the formatted item islonger, a
bigger field will be used; otherwise, the item will beright (left)
justified in the field.

preci sion is the minimum number of digitsto print for ad, i, o, u, X or X
conversion, the number of digits to appear after the decimal digit for
e, E and f conversions, the maximum number of significant digitsfor
g and G conversions, or the maximum number of charactersto be
written from stringsin an s conversion.

Either of bothof fi e/ d wi dt hand preci si on may be* , indicating that the value
isanargumenttoprintf.

Thespeci fi er chars are:

d, i int printed as signed decimal

0, u, X, X unsignedintvalue printed asunsigned octal, decimal or
hexadecimal

f doublevalue printed inthe style[-] ddd. ddd

e, E double value printed in the style [-]d.ddd...e+dd

g,G double printed in f or e format, whichever is more
appropriate

C int value printed as unsigned char

S char * value printed as a string of characters

p void * argument printed as a hexadecimal address

% write aliteral %

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

Entry no. 91: int printf(const char *format, ...)

Equivalenttof pri nt f withtheargument st dout interposed before the argumentsto
printf.

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

The shared C library

Entry no. 93: int sprintf(char *s, const char *format, ...)

Equivalenttof pri nt f , except that the argument s specifies an array into which the
generated output isto bewritten, rather than to astream. A null character iswritten at the
end of the characters written; it is not counted as part of the returned sum.

Returns: the number of characters written to the array, not counting the terminating null
character.

Entry no. 26: int _printf(const char *format, ...)

This function isidentical in function to printf except that it does not handle floating
point arguments.

Itisused for space optimisation by the C compiler when using the non shared library and
when aliteral format string does not contain any floating point conversions.

It isincluded in the shared library for compatibility with the non shared library.

Entry no. 27: int _fprintf(FILE *stream, const char *format, ...)

This function isidentical in function to fprintf except that it does not handle floating
point arguments.

It isused for space optimisation by the C compiler when using the non shared library and
when aliteral format string does not contain any floating point conversions.

Itisincluded in the shared library for compatibility with the non shared library.

Entry no. 28: int _sprintf(char *s, const char *format, ...)

This function isidentical in function to sprintf except that it does not handle floating
point arguments.

Itisused for space optimisation by the C compiler when using the non shared library and
when aliteral format string does not contain any floating point conversions.

It isincluded in the shared library for compatibility with the non shared library.

Entry no. 100: int _vfprintf(FILE *stream, const char *format, va_list arg)

This function isidentical in function to vfprintf except that it does not handle floating
point arguments.

It isused for space optimisation by the C compiler when using the non shared library and
when aliteral format string does not contain any floating point conversions.

Itisincluded in the shared library for compatibility with the non shared library.

4-319

stdio

4-320

Entry no. 95: int fscanf(FILE *stream, const char *format, ...)

Reads input from the stream pointed to by st r eam under control of the string pointed
toby for mat that specifies the admissible input sequences and how they are to be
converted for assignment, using subsequent arguments as pointers to the objects to
receive the converted input. If there are insufficient arguments for the format, the
behaviour is undefined. If the format is exhausted while arguments remain, the excess
arguments are eval uated but otherwise ignored. The format is composed of zero or more
directives, one or more white-space characters, an ordinary character (not %), or a
conversion specification. Each conversion specification is introduced by the character
%. For a description of the available conversion specifiers refer to section 4.9.6.2 in the
ANSI standard, or to any of the references listed in the chapter entitled Introduction on
page 1 of the Acorn Desktop C Manual. A brief list is given above, under the entry for
fprintf.

If end-of-fileis encountered during input, conversion isterminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an
input failure; otherwise, unless execution of the current directive is terminated with a
matching failure, execution of thefollowing directive (if any) isterminated with an input
failure.

If conversionsterminate on aconflicting input character, the offending input character is
left unread in theinput stream. Trailing white space (including newline characters) isleft
unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than viathe %n directive.

Returns: the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, thef scanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early conflict between an
input character and the format.

Entry no. 94: int scanf(const char *format, ...)

Equivalent to f scanf with theargument st di n interposed before the arguments to
scanf.

Returns: the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, the scanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early matching failure.

Entry no. 96: int sscanf(const char *s, const char *format, ...)

Equivalent tof scanf except that the argument s specifies a string from which the
input is to be obtained, rather than from a stream. Reaching the end of the string is
equivalent to encountering end-of-file for the f scanf function.

The shared C library

Returns: the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, the scanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early matching failure.

Entry no. 97: int vprintf(const char *format, va_list arg)

Equivalenttopri nt f , with the variable argument list replaced by ar g, which has been
initialised by theva_st art macro (and possibly subsequent va_ar g cals). The
vpri nt f function does not invoke the va_end function.

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

Entry no. 98: int vfprintf(FILE *stream, const char *format, va_list arg)

Equivalent tof pri nt f , with the variable argument list replaced by ar g, which has
beeninitialised by theva_st art macro (and possibly subsequent va_ar g cals). The
vf pri nt f function does not invoke theva_end function.

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

Entry no. 99: int vsprintf(char *s, const char *format, va_list arg)

Equivalenttospri nt f , with the variable argument list replaced by ar g, which has
beeninitialised by theva_st art macro (and possibly subsequent va_ar g calls). The
vspri nt f function does not invoke theva_end function.

Returns: the number of characters written in the array, not counting the terminating null
character.

Entry no. 101: int fgetc(FILE *stream)

Obtains the next character (if present) as an unsigned char converted to an int, from the
input stream pointed to by st r eam and advances the associated file position indicator
(if defined).

Returns: the next character from the input stream pointed to by st r eam If the streamis
at end-of-file, the end-of-file indicator is set and f get ¢ returns EOF. If aread error
occurs, the error indicator is set and f get ¢ returns EOF.

Entry no. 102: char *fgets(char *s, int n, FILE *stream)

Reads at most one less than the number of characters specified by n from the stream
pointed to by st r eaminto the array pointed to by s. No additional characters are read
after a newline character (which isretained) or after end-of-file. A null character is
written immediately after the last character read into the array.

4-321

stdio

4-322

Returns: s if successful. If end-of-file is encountered and no characters have been read
into the array, the contents of the array remain unchanged and a null pointer is returned.
If aread error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

Entry no. 103: int fputc(int ¢, FILE *stream)

Writes the character specified by ¢ (converted to an unsigned char) to the output stream
pointed to by st r eam at the position indicated by the associated file position indicator
(if defined), and advances the indicator appropriately. If the file cannot support
positioning requests, or if the stream was opened with append mode, the character is
appended to the output stream.

Returns: the character written. If awrite error occurs, the error indicator is set and
f put ¢ returns EOF.

Entry no. 104: int fputs(const char *s, FILE *stream)

Writes the string pointed to by s to the stream pointed to by st r eam The terminating
null character is not written.

Returns: EOF if awrite error occurs; otherwise it returns a non-negative val ue.

Entry no. 106: int getc(FILE *stream)

Equivalent to f get ¢ except that it may be (and is under RISC OS) implemented as a
macro. st r eammay be evaluated more than once, so the argument should never be an
expression with side effects.

Returns: the next character from the input stream pointed to by st r eam If the streamis
at end-of-file, the end-of-file indicator is set and get ¢ returns EOF. If aread error
occurs, the error indicator is set and get ¢ returns EOF.

Entry no. 107: int getchar(void)
Equivalent to get ¢ with theargument st di n.

Returns: the next character from the input stream pointed to by st di n. If the stream is
at end-of-file, the end-of-fileindicator is set and get char returns EOF. If aread error
occurs, the error indicator is set and get char returns EOF.

Entry no. 108: char *gets(char *s)

Reads characters from theinput stream pointed to by st di n into the array pointed to by
s, until end-of-fileis encountered or a newline character isread. Any newline character
isdiscarded, and anull character iswritten immediately after the last character read into
the array.

The shared C library

Returns: s if successful. If end-of-fileis encountered and no characters have been read
into the array, the contents of the array remain unchanged and a null pointer is returned.
If aread error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

Entry no. 110: int putc(int ¢, FILE *stream)

Equivalent to f put ¢ except that it may be (and is under RISC OS) implemented asa
macro. st r eammay be evaluated more than once, so the argument should never be an
expression with side effects.

Returns: the character written. If awrite error occurs, the error indicator is set and put ¢
returns ECF.

Entry no. 111: int putchar(int ¢)
Equivalent to put ¢ with the second argument st dout .

Returns: the character written. If awrite error occurs, the error indicator isset and put ¢
returns ECF.

Entry no. 112: int puts(const char *s)

Writes the string pointed to by s to the stream pointed to by st dout , and appends a
newline character to the output. The terminating null character is not written.

Returns. EOF if awrite error occurs; otherwise it returns a non-negative value.

Entry no. 113: int ungetc(int ¢, FILE *stream)

Pushes the character specified by ¢ (converted to an unsigned char) back onto the input
stream pointed to by st r eam The character will be returned by the next read on that
stream. Anintervening call tothef f | ush function or to afile positioning function

(f seek, f set pos, r ewi nd) discards any pushed-back characters. The external
storage corresponding to the stream is unchanged. One character pushback is
guaranteed. If theunget functionis called too many times on the same stream without
anintervening read or file positioning operation on that stream, the operation may fail. If
the value of ¢ equalsthat of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to theunget ¢ function clears the end-of-file indicator. The value of
thefile position indicator after reading or discarding al pushed-back characters will be
the same as it was before the characters were pushed back. For atext stream, the value
of the file position indicator after a successful call to theunget c functionis

4-323

stdio

4-324

unspecified until all pushed-back characters are read or discarded. For abinary stream,
the file position indicator is decremented by each successful call to the unget ¢
function; if its value was zero before a call, it isindeterminate after the call.

Returns: the character pushed back after conversion, or EOF if the operation fails.

Entry no. 114: size_t fread(void *ptr, size_t size, size_t nmemb, FILE

*Stream)

Reads into the array pointed to by pt r, up to nmenb members whose size is specified
by si ze, from the stream pointed to by st r eam Thefile positionindicator (if defined)
is advanced by the number of characters successfully read. If an error occurs, the
resulting value of thefile position indicator isindeterminate. If apartial member isread,
itsvaueisindeterminate. Thef er r or or f eof function shall be used to distinguish
between aread error and end-of-file.

Returns: the number of members successfully read, which may be lessthan nmenb if a
read error or end-of-fileisencountered. If si ze or nmenb is zero, f r ead returns zero
and the contents of the array and the state of the stream remain unchanged.

Entry no. 115: size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE

*Stream)

Writes, from the array pointed to by pt r up to nrmenmb members whose sizeis specified
by si ze, tothe stream pointed to by st r eam Thefile position indicator (if defined) is
advanced by the number of characters successfully written. If an error occurs, the
resulting value of the file position indicator is indeterminate.

Returns. the number of members successfully written, which will be less than nnmenb
only if awrite error is encountered.

Entry no. 116: int fgetpos(FILE *stream, fpos_t *pos)

Stores the current value of the file position indicator for the stream pointed to by

st r eamin the object pointed to by pos. The value stored contains unspecified
information usable by thef set pos function for repositioning the stream to its position
at the time of the call to the f get pos function.

Returns: zero, if successful. Otherwise non-zero is returned and the integer expression
er r no is set to an implementation-defined non-zero value (under RISC OSf get pos
cannot fail).

The shared C library

Entry no. 117: int fseek(FILE *stream, long int offset, int whence)

Sets thefile position indicator for the stream pointed to by st r eam For a binary
stream, the new position is at the signed number of characters specified by of f set
away from the point specified by whence. The specified point is the beginning of the
filefor SEEK_SET, the current position in the file for SEEK_CUR, or end-of-file for
SEEK_END. A binary stream need not meaningfully support f seek callswith a
whence value of SEEK END, though the Acorn implementation does. For atext
stream, of f set iseither zero or avauereturned by an earlier call totheft el |
function on the same stream; whence isthen SEEK _SET. The Acorn implementation
also alows atext stream to be positioned in exactly the same manner as abinary stream,
but thisis not portable. Thef seek function clears the end-of-file indicator and undoes
any effects of the unget c¢ function on the same stream. After an f seek call, the next
operation on an update stream may be either input or output.

Returns. non-zero only for arequest that cannot be satisfied.

Entry no. 118: int fsetpos(FILE *stream, const fpos_t *pos)

Sets the file position indicator for the stream pointed to by st r eamaccording to the
value of the object pointed to by pos, which isavalue returned by an earlier cal to the
f get pos function on the same stream. The f set pos function clears the end-of-file
indicator and undoes any effects of the unget ¢ function on the same stream. After an
f set pos call, the next operation on an update stream may be either input or output.

Returns; zero, if successful. Otherwise non-zero is returned and the integer expression
er r no isset to an implementation-defined non-zero value (under RISC OSthevaueis
that of EDOM in mat h. h).

Entry no. 119: long int ftell(FILE *stream)

Obtains the current value of the file position indicator for the stream pointed to by

st r eam For abinary stream, the value is the number of characters from the beginning
of thefile. For atext stream, thefile position indicator contains unspecified information,
usable by the f seek function for returning the file position indicator to its position at
thetimeof thef t el | cal; the difference between two such return valuesis not
necessarily ameaningful measure of the number of characterswritten or read. However,
for the Acorn implementation, the value returned is merely the byte offset into thefile,
whether the stream istext or binary.

Returns: if successful, the current value of the file position indicator. On failure, the
ftell function returns —1L and sets the integer expressiomo to an
implementation-defined non-zero value (under RISCF®8I | cannot fail).

4-325

stdio

4-326

Entry no. 120: void rewind(FILE *stream)

Setsthe file position indicator for the stream pointed to by st r eamto the beginning of
thefile. Itisequivalentto (voi d) f seek(stream OL, SEEK SET) except that
the error indicator for the stream is also cleared.

Returns; no value.

Entry no. 121: void clearerr(FILE *stream)

Clears the end-of-file and error indicators for the stream pointed to by st r eam These
indicators are cleared only when the file is opened or by an explicit call to the
cl ear err function or to the r ewi nd function.

Returns: no value.

Entry no. 122: int feof(FILE *stream)
Tests the end-of-file indicator for the stream pointed to by st r eam

Returns: non-zero if the end-of-file indicator is set for st r eam

Entry no. 123: int ferror(FILE *stream)
Tests the error indicator for the stream pointed to by st r eam

Returns: non-zero if the error indicator is set for st r eam

Entry no. 124: void perror(const char *s)

Maps the error number in the integer expression er r no to an error message. It writesa
sequence of characters to the standard error stream thus: first (if s is not anull pointer
and the character pointed to by s isnot the null character), the string pointed to by s
followed by a colon and a space; then an appropriate error message string followed by a
newline character. The contents of the error message strings are the same as those
returned by the st r er r or function with argument er r no, which are
implementation-defined.

Returns; no value.

Entry no. 105: int __ filbuf(FILE *stream)

This function is used by the C library to implement the ‘getc’ macro. The definition of
the ‘getc’ macro is as follows:

#define getc(p) \
(--((p)->__icnt) >= 0 ? *((p)->__ptr)++ : _ filbuf(p))

where p is a pointer to a FILE structure.

The shared C library

__fil buf fillsthe buffer associated with p from afile stream and returns the first
character of the buffer incrementing the buffer pointer and decrementing the input
character count.

Entry no. 109: int __ flsbuf(int ch, FILE *stream)

This function is used by the C library to implement the put ¢ macro. The definition of
the put ¢ macroisasfollows:

#define putc(ch, p) \
(--((p)->__ocnt) >= 0 ? (*((p)->__ptr)++ = (ch)) : __flsbuf(ch,p))

where p is a pointer to a FILE structure.

__f1 sbuf flushesthe buffer associated with p to afile stream and writes the character
ch to thefile stream. The buffer pointer and output character count are reset.

stdlib

st dl i b provides several general purpose functions

Entry no. 58: double atof(const char *nptr)
Convertstheinitial part of the string pointed to by npt r to double * representation.

Returns; the converted value.

Entry no. 59: int atoi(const char *nptr)
Convertstheinitia part of the string pointed to by npt r to int representation.

Returns: the converted value.

Entry no. 60: long int atol(const char *nptr)
Convertstheinitial part of the string pointed to by npt r to long int representation.

Returns; the converted value.

Entry no. 61: double strtod(const char *nptr, char **endptr)

Convertstheinitial part of the string pointed to by npt r to double representation. First
it decomposes the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by thei sspace function), a subject sequence
resembling a floating point constant, and a final string of one or more unrecognised
characters, including theterminating null character of theinput string. It then attemptsto

4-327

stdlib

4-328

convert the subject sequence to afloating point number, and returnsthe result. A pointer
tothefinal string isstored in the object pointed to by endpt r, provided that endpt r is
not anull pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, plus or minus
HUGE_VAL isreturned (according to the sign of the value), and the value of the macro
ERANCE is stored in er r no. If the correct value would cause underflow, zero is
returned and the value of the macro ERANGE is stored iner r no.

Entry no. 62: long int strtol(const char *nptr, char *endptr, int base)

Convertstheinitial part of the string pointed to by npt r to long int representation. First
it decomposes the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by thei sspace function), a subject sequence
resembling an integer represented in some radix determined by the value of base, and a
final string of one or more unrecognised characters, including the terminating null
character of the input string.

It then attempts to convert the subject sequence to an integer, and returns the result. If
the value of base is 0, the expected form of the subject sequence is that of an integer
constant (described precisely inthe ANS| standard, section 3.1.3.2), optionally preceded
by a+ or - sign, but not including an integer suffix. If the value of base is between 2 and
36, the expected form of the subject sequence is a sequence of letters and digits
representing an integer with the radix specified by base, optionally preceded by aplus
or minus sign, but not including an integer suffix. The lettersfrom a (or A) through z (or
Z) are ascribed the values 10 to 35; only letters whose ascribed values are less than that
of the base are permitted. If the value of base is 16, the characters Ox or OX may
optionally precede the sequence of letters and digits following the sign if present. A
pointer to the final string is stored in the object pointed to by endpt r, provided that
endpt r isnot anull pointer.

Returns: the converted valueif any. If no conversion could be performed, zero is
returned. If the correct valueis outside the range of representable values, LONG_MAX or
LONG_M Nisreturned (according to the sign of the value), and the value of the macro
ERANCE isstored iner r no.

Entry no. 63: unsigned long int strtoul(const char *nptr, char *endptr,

int base)

Convertstheinitial part of the string pointed to by npt r to unsigned long int
representation. First it decomposes the input string into three parts: an initial, possibly
empty, sequence of white space characters (as determined by thei sspace function), a

The shared C library

subject sequence resembling an unsigned integer represented in some radix determined
by the value of base, and afinal string of one or more unrecognised characters,
including the terminating null character of the input string.

It then attempts to convert the subject sequence to an unsigned integer, and returns the
result. If the value of base is zero, the expected form of the subject sequenceis that of
an integer constant (described precisely in the ANSI Standard, section 3.1.3.2),
optionally preceded by a+ or - sign, but not including an integer suffix. If the value of
base is between 2 and 36, the expected form of the subject sequence is a sequence of
letters and digits representing an integer with the radix specified by base, optionally
preceded by a+ or - sign, but not including an integer suffix. The letters from a (or A)
through z (or Z) stand for the values 10 to 35; only letters whose ascribed values are less
than that of the base are permitted. If the value of base is 16, the characters Ox or 0X
may optionally precede the sequence of letters and digits following the sign, if present.
A pointer to the final string is stored in the object pointed to by endpt r, provided that
endpt r isnot anull pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, ULONG_MAX
is returned, and the value of the * macro ERANGE is stored in er r no.

Entry no. 64: int rand(void)

Computes a sequence of pseudo-random integersin the range 0 to RAND_MAX, where
RAND MAX = Ox7fffffff.

Returns: a pseudo-random integer.

Entry no. 65: void srand(unsigned int seed)

Usesits argument as a seed for a new sequence of pseudo-random numbersto be
returned by subsequent callstor and. If sr and isthen called with the same seed val ue,
the sequence of pseudo-random numbers will be repeated. If r and is called before any
calsto sr and have been made, the same sequence is generated aswhen sr and isfirst
called with a seed value of 1.

Entry no. 66: void *calloc(size_t nmemb, size_t size)

Allocates space for an array of nmenb objects, each of whose sizeis si ze. The space
isinitialised to all bits zero.

Returns: either a null pointer or a pointer to the allocated space.

4-329

stdlib

Entry no. 67: void free(void *ptr)

Causes the space pointed to by pt r to be deallocated (made available for further
alocation). If pt r isanull pointer, no action occurs. Otherwise, if pt r does not match
apointer earlier returned by cal | oc, mal | oc or r eal | oc or if the space has been
deallocated by acall tof r ee orr eal | oc, the behaviour is undefined.

Entry no. 68: void *malloc(size_t size)

Allocates space for an object whose size is specified by si ze and whose valueis
indeterminate.

Returns: either anull pointer or a pointer to the allocated space.

Entry no. 69: void *realloc(void *ptr, size_t size)

Changes the size of the object pointed to by pt r to the size specified by si ze. The
contents of the object is unchanged up to the lesser of the new and old sizes. If the new
sizeislarger, the value of the newly allocated portion of the object isindeterminate. If
pt r isanull pointer, ther eal | oc function behaveslikeacall to mal | oc for the
specified size. Otherwise, if pt r does not match a pointer earlier returned by cal | oc,
mal | oc or r eal | oc, or if the space has been deallocated by acal tof r ee or

real | oc, the behaviour is undefined. If the space cannot be allocated, the object
pointed to by pt r isunchanged. If sizeiszero and pt r isnot anull pointer, the object
it pointstoisfreed.

Returns: either anull pointer or a pointer to the possibly moved allocated space.

Entry no. 70: void abort(void)

Causes abnormal program termination to occur, unless the signal SI GABRT is being

caught and the signal handler does not return. Whether open output streams are flushed

or open streams are closed or temporary files removed isimplementati on-defined (under

RISC OS all these occur). An implementation-defined form of the status ‘unsuccessful
termination’ (1 under RISC OS) is returned to the host environment by means of a call
tor ai se(S| GABRT) .

Entry no. 71: int atexit(void (*func)(void))

Registers the function pointed to bunc, to be called without its arguments at normal
program termination. It is possible to register at least 32 functions.

Returns: zero if the registration succeeds, non-zero if it fails.

4-330

The shared C library

Entry no. 72: void exit(int status)

Causes hormal program termination to occur. If morethan one call totheexi t function
is executed by a program (for example, by afunction registered with at exi t), the
behaviour is undefined. First, al functions registered by the at exi t function are
called, in the reverse order of their registration. Next, all open output streams are
flushed, all open streams are closed, and all files created by thet npf i | e function are
removed. Finally, control isreturned to the host environment. If thevalue of st at us is
zero or EXI T_SUCCESS, an implementation-defined form of the status ‘successful
termination’ (O under RISC OS) is returned. If the valustoét us is

EXI T_FAI LURE, an implementation-defined form of the status ‘unsuccessful
termination’ (1 under RISC OS) is returned. Otherwise the status returned is
implementation-defined (the value of at us is returned under RISC OS).

Entry no. 73: char *getenv(const char *name)

Searches the environment list, provided by the host environment, for a string that
matches the string pointed to bgre. The set of environment names and the method
for altering the environment list are implementation-defined.

Returns: a pointer to a string associated with the matched list member. The array pointed
to is not modified by the program, but may be overwritten by a subsequent call to the
get env function. If the specified name cannot be found, a null pointer is returned.

Entry no. 74: int system(const char *string)

Passes the string pointed to $r i ng to the host environment to be executed by a
command processor in an implementation-defined manner. A null pointer may be used
for st ri ng, to inquire whether a command processor exists. Under RISC OS, care
must be taken, when executing a command, that the command does not overwrite the
calling program. To control this, the strinpai n: orcal | : may immediately

precede the actual command. The effeatafl : is the same asdfal | : were not

present. When a command is called, the caller is first moved to a safe place in
application workspace. When the callee terminates, the caller is restored. This requires
enough memory to hold caller and callee simultaneously. When a command is chained,
the caller may be overwritten. If the caller is not overwritten, the caller exits when the
callee terminates. Thus a transfer of control is effected and memory requirements are
minimised.

Returns: If the argument is a null pointer, #est emfunction returns non-zero only if

a command processor is available. If the argument is not a null pointer, it returns an
implementation-defined value (under RISC OS 0 is returned for success and —2 for
failure to invoke the command; any other value is the return code from the executed
command).

4-331

stdlib

4-332

Entry no. 75: void *bsearch(const void *key, const void *base, size_t

nmemb, size_t size, int (*compar) (const void *, const void *))

Searches an array of nmenb objects, the initial member of which ispointed to by base,
for amember that matches the object pointed to by key. The size of each member of the
array is specified by si ze. The contents of the array must be in ascending sorted order
according to acomparison function pointed to by conpar, which is called with two
arguments that point to the key object and to an array member, in that order. The
function returns an integer less than, equal to, or greater than zero if the key object is
considered, respectively, to be less than, to match, or to be greater than the array
member.

Returns. a pointer to a matching member of the array, or anull pointer if no match is
found. If two members compare as equal, which member is matched is unspecified.

Entry no. 76: void gsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *))

Sorts an array of nnmenb objects, the initial member of which is pointed to by base.
The size of each object is specified by si ze. The contents of the array are sorted in
ascending order according to a comparison function pointed to by conpar, whichis
called with two arguments that point to the objects being compared. The function returns
an integer lessthan, equal to, or greater than zero if the first argument is considered to be
respectively less than, equal to, or greater than the second. If two members compare as
equal, their order in the sorted array is unspecified.

Entry no. 77: int abs(int j)

Computes the absolute value of aninteger j . If the result cannot be represented, the
behaviour is undefined.

Returns: the absolute value.

Entry no. 78: div_t div(int numer, int denom)

Computes the quotient and remainder of the division of the numerator nummer by the
denominator denom If the division isinexact, the resulting quotient is the integer of
lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be
represented, the behaviour isundefined; otherwise, quot * denom+ remequal s
nuner.

Returns: a structure of typedi v_t , comprising both the quotient and the remainder.
The structure contains the following members; i nt quot ;i nt rem You may not
rely on their order.

The shared C library

Entry no. 79: long int labs(long int j)

Computesthe absolute value of anlong integer j . If the result cannot be represented, the
behaviour is undefined.

Returns; the absolute value.

Entry no. 80: Idiv_t Idiv(long int numer, long int denom)

Computes the quotient and remainder of the division of the numerator nurrer by the
denominator denom If the division isinexact, the sign of the resulting quotient is that
of the algebraic quotient, and the magnitude of the resulting quotient is the largest
integer less than the magnitude of the algebraic quotient. If the result cannot be
represented, the behaviour is undefined; otherwise, quot * denom + r emequals
numner.

Returns: a structure of type | di v_t , comprising both the quotient and the remainder.
The structure contains the following members: | ong i nt quot; long int rem
You may not rely on their order.

Multibyte character functions

The behaviour of the multibyte character functionsis affected by the LC_CTYPE
category of the current locale. For a state-dependent encoding, each function is placed
into itsinitial state by acall for which its character pointer argument, s, isanull pointer.
Subsequent calls with s as other than anull pointer cause the internal state of the
function to be altered as necessary. A call with s asanull pointer causes these functions
to return a non-zero value if encoding have state dependency, and a zero otherwise.
After the LC_CTYPE category is changed, the shift state of these functionsis
indeterminate.

Entry no. 172: int mblen(const char *s, size_t n)

If s isnot anull pointer, thembl en function determinesthe number of bytescomprising
the multibyte character pointed to by s. Except that the shift state of the nbt owc
function is not affected, it isequivalent to mbt owc((wchar _t *)0, s, n).

Returns: If s isanull pointer, the mbl en function returns a non-zero or zero value, if
multibyte character encodings, respectively do or do not have state-dependent

encodings. If s isnot anull pointer, the nbl en function either returnsaO (if s pointsto

anull character), or returns the number of bytes that comprise the multibyte character (if

the next n or fewer bytes form a valid multibyte character), or returns —1 (if they do not
form a valid multibyte character).

4-333

stdlib

4-334

Entry no. 173: int mbtowc(wchar_t *pwc, const char *s, size_t n)

If s isnot anull pointer, the mbt owe function determines the number of bytes that
comprise the multibyte character pointed to by s. It then determines the code for value
of typewchar _t that corresponds to that multibyte character. (The value of the code
corresponding to the null character is zero). If the multibyte character isvalid and pue
isnot anull pointer, the mbt owc function stores the code in the object pointed to by
pwe. At most n bytes of the array pointed to by s will be examined.

Returns: If s isanull pointer, the mbt owc function returns a non-zero or zero value, if
multibyte character encodings, respectively do or do not have state-dependent

encodings. If s isnot anull pointer, the nbt owc function either returnsaO (if s points
toanull character), or returns the number of bytes that comprise the converted multibyte
character (if the next n of fewer bytes form a valid multibyte character), or returns -1 (if
they do not form a valid multibyte character).

Entry no. 174: int wctomb(char *s, wchar_t wchar)

Determines the number of bytes need to represent the multibyte character corresponding
to the code whose valueus har (including any change in shift state). It stores the
multibyte character representation in the array object pointed4diby is not a null

pointer). At mosiB_CUR_MAX characters are stored. If the valuawohar is zero, the

wet onb function is left in the initial shift state).

Returns: Ifs is a null pointer, thexct onb function returns a non-zero or zero value, if
multibyte character encodings, respectively do or do not have state-dependent
encodings. Ifs is not a null pointer, thact onb function returns a -1 if the value of
wechar does not correspond to a valid multibyte character, or returns the number of
bytes that comprise the multibyte character corresponding to the vaho#af .

Multibyte string functions

The behaviour of the multibyte string functions is affected by theCTYPE category
of the current locale.

Entry no. 175: size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n)

Converts a sequence of multibyte characters that begins in the initial shift state from the
array pointed to by into a sequence of corresponding codes and stores not more than
codes into the array pointed to pycs. No multibyte character that follows a null
character (which is converted into a code with value zero) will be examined or
converted. Each multibyte character is converted as if by a call iotheac function.

If an invalid multibyte character is founabst owcs returns(si ze_t) - 1.

Otherwise, therbst owcs function returns the number of array elements modified, not
including a terminating zero code, if any.

The shared C library

Entry no. 176: size_t wcstombs(char *s, const wchar_t *pwcs, size_t n)

Converts a sequence of codes that correspond to multibyte characters from the array
pointed to by pwe s into asequence of multibyte charactersthat beginsin theinitial shift
state and stores these multibyte charactersinto the array pointed to by s, stopping if a
multibyte character would exceed the limit of n total bytesor if anull character is stored.
Each codeis converted asif by acall tothewct onb function, except that the shift state
of thewct onb function is not affected. If a code is encountered which does not
correspond to any valid multibyte character, the wcst onbs function returns
(size_t)- 1. Otherwise, thewcst onbs function returns the number of bytes
modified, not including aterminating null character, if any.

4-335

string

string

4-336

st ri ng provides several functions useful for manipulating character arrays and other
objectstreated as character arrays. Various methods are used for determining the lengths
of thearrays, butinall casesachar * orvoi d * argument pointsto theinitial (lowest
addresses) character of the array. If an array is written beyond the end of an object, the
behaviour is undefined.

Entry no. 38: void *memcpy(void *s1, const void *s2, size _t n)

Copies n characters from the object pointed to by s2 into the object pointedto by s 1. If
copying takes place between objects that overlap, the behaviour is undefined.

Returns; the value of s1.

Entry no. 39: void *memmove(void *s1, const void *s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed to by s1.
Copying takes place asif the n characters from the object pointed to by s2 are first
copied into atemporary array of n charactersthat does not overlap the objects pointed to
by s1 and s2, and then the n characters from the temporary array are copied into the
object pointed to by s1.

Returns: the value of s 1.

Entry no. 40: char *strcpy(char *s1, const char *s2)

Copies the string pointed to by s2 (including the terminating null character) into the
array pointed to by s 1. If copying takes place between objects that overlap, the
behaviour is undefined.

Returns; the value of s 1.

Entry no. 41: char *strncpy(char *s1, const char *s2, size_t n)

Copies not more than n characters (characters that follow a null character are not
copied) from the array pointed to by s2 into the array pointed to by s 1. If copying takes
place between objects that overlap, the behaviour is undefined. If terminating nul has
not been copied in chars, noterm nul isplacedins2.

Returns: the value of s 1.

The shared C library

Entry no. 42: char *strcat(char *s1, const char *s2)

Appends acopy of the string pointed to by s2 (including the terminating null character)
to the end of the string pointed to by s1. Theinitial character of s2 overwrites the null
character at theend of s 1.

Returns:; thevalue of s1.

Entry no. 43: char *strncat(char *s1, const char *s2, size t n)

Appends not morethan n characters (anull character and charactersthat follow it are not
appended) from the array pointed to by s2 to the end of the string pointed to by s1. The
initial character of s2 overwrites the null character at the end of s1. A terminating null
character is aways appended to the result.

Returns: thevaueof s1.

The sign of anon-zero value returned by the comparison functionsis determined by the
sign of the difference between the values of thefirst pair of characters (both interpreted
as unsigned char) that differ in the objects being compared.

Entry no. 44: int memcmp(const void *s1, const void *s2, size_t n)

Comparesthefirst n characters of the object pointed to by s1 to thefirst n characters of
the object pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether the
object pointed to by s1 isgreater than, equal to, or less than the object pointed to by s2.

Entry no. 45: int strcmp(const char *s1, const char *s2)
Compares the string pointed to by s 1 to the string pointed to by s2.

Returns; an integer greater than, equal to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

Entry no. 46: int strncmp(const char *s1, const char *s2, size_t n)

Compares not more than n characters (characters that follow a null character are not
compared) from the array pointed to by s1 to the array pointed to by s2.

Returns. an integer greater than, equal to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

Entry no. 178: int strcoll(const char *s1, const char *s2)

Compares the string pointed to by s 1 to the string pointed to by s2, both interpreted as
appropriate to the LC_COLLATE category of the current locale.

4-337

string

4-338

Returns. an integer greater than, egual to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2
when both are interpreted as appropriate to the current locale.

Entry no. 177: size_t strxfrm(char *s1, const char *s2, size_t n)

Transforms the string pointed to by s2 and places the resulting string into the array
pointed to by s1. The transformation function is such that if the st r cnp function is
applied to two transformed strings, it returns a value greater than, equal to or less than
zero, corresponding to the result of the st r col | function applied to the same two
original strings. No more than n characters are placed into the resulting array pointed to
by s1, including the terminating null character. If niszero, s1 is permitted to beanull
pointer. If copying takes place between objects that overlap, the behaviour is undefined.

Under RISC OS 3 (version 3.10) this function only works for the default ANSI locale,
but not for other locales (ie not after a setlocale call).

Returns: The length of the transformed string is returned (not including the terminating
null character). If the valuereturned is n or more, the contents of the array pointed to by
s1 areindeterminate.

Entry no. 47: void *memchr(const void *s, int ¢, size_t n)

Locates the first occurrence of ¢ (converted to an unsigned char) in theinitial n
characters (each interpreted as unsigned char) of the object pointed to by s.

Returns; a pointer to the located character, or anull pointer if the character does not
occur in the object.

Entry no. 48: char *strchr(const char *s, int ¢)

L ocates the first occurrence of ¢ (converted to a char) in the string pointed to by s
(including the terminating null character). The BSD UNIX name for this functionis
i ndex().

Returns: a pointer to the located character, or anull pointer if the character does not
occur in the string.

Entry no. 49: size_t strcspn(const char *s1, const char *s2)

Computes the length of theinitial segment of the string pointed to by s 1 which consists
entirely of characters not from the string pointed to by s2. The terminating null
character is not considered part of s2.

Returns: the length of the segment.

The shared C library

Entry no. 50: char *strpbrk(const char *s1, const char *s2)

Locates the first occurrence in the string pointed to by s 1 of any character from the
string pointed to by s2.

Returns: returns a pointer to the character, or anull pointer if no character form s2
occursin s1.

Entry no. 51: char *strrchr(const char *s, int ¢)

L ocates the last occurrence of ¢ (converted to achar) in the string pointed to by s. The
terminating null character is considered part of the string. The BSD UNIX namefor this
functionisri ndex() .

Returns: a pointer to the character, or anull pointer if ¢ does not occur in the string.

Entry no. 52: size_t strspn(const char *s1, const char *s2)

Computes the length of theinitial segment of the string pointed to by s1 which consists
entirely of characters from the string pointed to by s2.

Returns: the length of the segment.

Entry no. 53: char *strstr(const char *s1, const char *s2)

Locates the first occurrence in the string pointed to by s 1 of the sequence of characters
(excluding the terminating null character) in the string pointed to by s2.

Returns; a pointer to the located string, or anull pointer if the string is not found.

Entry no. 54: char *strtok(char *s1, const char *s2)

A seguence of callsto the st r t ok function breaks the string pointedto by s1 into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by s2. Thefirst call in the sequence has s 1 asitsfirst argument, and is followed by calls
with anull pointer as their first argument. The separator string pointed to by s2 may be
different from call to call. Thefirst call in the sequence searches for the first character
that isnot contained in the current separator string s 2. If no such character isfound, then
there are no tokensin s1 and the st r t ok function returns anull pointer. If such a
character isfound, it isthe start of thefirst token. The st r t ok function then searches
from there for a character that is contained in the current separator string. If no such
character is found, the current token extends to the end of the string pointed to by s1,
and subsequent searches for atoken will fail. If such acharacter isfound, itis
overwritten by a null character, which terminates the current token. The st r t ok
function saves a pointer to the following character, from which the next search for a
token will start. Each subsequent call, with anull pointer as the value for the first
argument, starts searching from the saved pointer and behaves as described above.

4-339

time

Returns:. pointer to the first character of atoken, or anull pointer if there isno token.

Entry no. 55: void *memset(void *s, int ¢, size_t n)

Copies the value of ¢ (converted to an unsigned char) into each of the first n characters
of the object pointed to by s.

Returns; thevalue of s.

Entry no. 56: char *strerror(int errnum)
Maps the error number in er r numto an error message string.

Returns. a pointer to the string, the contents of which are implementation-defined.
Under RISC OS and Arthur the strings for the given er r nuns are as follows:

« O No error (errno = 0)

« EDOM EDOM- function argument out of range

« ERANGE ERANGE - function result not representable

« ESI GNUM ESI GNUM- illegal signal number tei gnal () or
rai se()

« oOthers Error code (errno) has no associated message.

The array pointed to may not be modified by the program, but may be overwritten by a
subsequent call to thet r er r or function.

Entry no. 57: size_t strlen(const char *s)
Computes the length of the string pointed tasby

Returns: the number of characters that precede the terminating null character.

time
t i me provides several functions for manipulating time. Many functions deal with a
calendar time that represents the current date (according to the Gregorian calendar) and
time. Some functions deal with local time, which is the calendar time expressed for

some specific time zone, and with Daylight Saving Time, which is a temporary change
in the algorithm for determining local time.

struct t mholds the components of a calendar time called the broken-down time. The
value oft m i sdst is positive if Daylight Saving Time is in effect, zero if Daylight
Saving Time is not in effect, and negative if the information is not available.

4-340

The shared C library

struct tm{

nt tm wday /* days since Sunday, 0 to 6 */
nt tmyday /* days since January 1, 0 to 365 */
nt tm.i sdst /* Daylight Saving Tinme flag */

int tmsec; /* seconds after the mnute, 0 to 60
(0-60 allows for the occasional |eap
second) */

int tmmn /[* minutes after the hour, 0 to 59 */

int tm hour /* hours since mdnight, 0 to 23 */

int tm nday /* day of the nonth, 0 to 31 */

int tmnon /* months since January, 0 to 11 */

int tmyear /* years since 1900 */

i

i

i

s

Entry no. 29: clock_t clock(void)
Determines the processor time used.

Returns: the implementation’s best approximation to the processor time used by the
program since program invocation. The time in seconds is the value returned, divided by
the value of the macrGLOCKS_PER_SEC. The valug cl ock_t) -1 is returned if

the processor time used is not available. In the desktapck () returns all processor

time, not just that of the program.

Entry no. 30: double difftime(time_t timel, time_t time0)

Computes the difference between two calendar titnesel - ti nme0. Returns: the
difference expressed in seconds as a double.

Entry no. 31: time_t mktime(struct tm *timeptr)

Converts the broken-down time, expressed as local time, in the structure pointed to by
ti meptr into a calendar time value with the same encoding as that of the values
returned by the i e function. The original values of then wday andt m yday
components of the structure are ignored, and the original values of the other components
are not restricted to the ranges indicated above. On successful completion, the values of
thet m wday andt m yday structure components are set appropriately, and the other
components are set to represent the specified calendar time, but with their values forced
to the ranges indicated above; the final valuerafnday is not set untit m non and

t m year are determined.

Returns: the specified calendar time encoded as a value dfityge t . If the calendar
time cannot be represented, the function returns the yaliuee_t) - 1.

4-341

time

4-342

Entry no. 32: time_t time(time_t *timer)
Determines the current calendar time. The encoding of the value is unspecified.

Returns: the implementation’s best approximation to the current calendar time. The
value(time_t)- 1 isreturned if the calendar time is not availablé.ilfrer is not a
null pointer, the return value is also assigned to the object it points to.

Entry no. 33: char *asctime(const struct tm *timeptr)

Converts the broken-down time in the structure pointed thilmept r into a string in
the styleSun Sep 16 01:03:52 1973\ n\0.

Returns: a pointer to the string containing the date and time.

Entry no. 34: char *ctime(const time_t *timer)

Converts the calendar time pointed tothyner to local time in the form of a string. It
is equivalent tasct i me(l ocal tine(timer)).

Returns: the pointer returned by thect i me function with that broken-down time as
argument.

Entry no. 35: struct tm *gmtime(const time_t *timer)

Converts the calendar time pointed tothyrer into a broken-down time, expressed as
Greenwich Mean Time (GMT).

Returns: a pointer to that object or a null pointer if GMT is not available.

Entry no. 36: struct tm *localtime(const time_t *timer)

Converts the calendar time pointed tothyrer into a broken-down time, expressed a
local time.

Returns: a pointer to that object.

Entry no. 37: size_t strftime(char *s, size_t maxsize, const char *format,
const struct tm *timeptr)

Places characters into the array pointed tg bg controlled by the string pointed to by

f or mat . The format string consists of zero or more directives and ordinary characters.
A directive consists of character followed by a character that determines the
directive’s behaviour. All ordinary characters (including the terminating null character)
are copied unchanged into the array. No more ttieeqsi ze characters are placed into

The shared C library

the array. Each directive is replaced by appropriate characters as described in the
following list. The appropriate characters are determined by the LC_TI ME category of
the current locale and by the values contained in the structure pointedto by t i mept r.

Directive Replaced by

%a the locale’s abbreviated weekday name

%A the locale’s full weekday name

% the locale’s abbreviated month name

B the locale’s full month name

% the locale’s appropriate date and time representation

%l the day of the month as a decimal humber (01 - 31)

9% the hour (24-hour clock) as a decimal number (00 - 23)

% the hour (12-hour clock) as a decimal nhumber (01 - 12)

% the day of the year as a decimal number (001 - 366)

%m the month as a decimal number (01 - 12)

9 the minute as a decimal number (00 - 61)

%p the locale’s equivalent of either AM or PM designation
associated with a 12-hour clock

%S the second as a decimal number (00 - 61)

%J the week number of the year (Sunday as the first day of
week 1) as a decimal number (00 - 53)

% the weekday as a decimal nhumber (0 (Sunday) - 6)

%N the week number of the year (Monday as the first day of
week 1) as a decimal number (00 - 53)

U the locale’s appropriate date representation

%X the locale’s appropriate time representation

%y the year without century as a decimal number (00 - 99)

%y the year with century as a decimal number

% the time zone name or abbreviation, or by no character

if no time zone is determinable
) %

If a directive is not one of the above, the behaviour is undefined.

Returns: If the total number of resulting characters including the terminating null
character is not more thamaxsi ze, thest r f t i ne function returns the number of
characters placed into the array pointed ts ot including the terminating null
character. Otherwise, zero is returned and the contents of the array are indeterminate.

4-343

time

4-344

84 BASIC and BASICTrans

Introduction and Overview

Facilities were added to BASIC (and to BASIC64) in RISC OS 3 so that its messages
can be translated for use in another territory. The BASIC interpreter issues callsto the

BASICTrans module, which is responsible for providing messages appropriate to a
particular territory. By replacing one BASICTrans module with another, you can change

the language used by BASIC for its messages.

Both BASIC and BASIC64 issue the same calls to the same BASICTrans module, thus
code and messages are shared between the two modules.

If you write a BASICTrans module, you can alocate memory for the trandation from
the RMA:

o Memory inside the SWI call isinvulnerable to the task swapping problem found
when BASIC itself attempts to use RMA memory. ‘Task manager’ swapping
between two BASIC programs does not occur when in SWI mode.

Using BBC BASIC

For the sake of completeness, this chapter documents the *BASIC and *BASIC64
commands used to enter BBC BASIC. For full details of using BBC BASIC, see the
BBC BAS C Reference Manual, available from your Acorn supplier.

4-345

SWi Calls

SWI Calls

BASICTrans_HELP
(swi &42C80)

Interpret, trandlate if required, and print HEL P messages

On entry

RO = pointer to lexically analysed HEL P text (terminated by &0D)
R1 = pointer to program’s name (BASIC or BASIC64)
R2 = pointer to the lexical analyser’s tables

On exit
RO - R2 corrupted

Use

This call is made by BASIC to request that a BASICTrans module print a help message.
BASIC lexically analyses the HELP text, converting keywords to tokens, before making
this call. The currently loaded BASICTrans module then prints appropriate help text.

On entry R1 points to the program’s name, and so is non-zero; if it is still non-zero on
exit BASIC will print its own (short, English) Help text. Consequently, a BASICTrans
module will normally set R1 to zero on exit — but the English version of BASICTrans
sometimes preserves R1 so that its own help is followed by the default help.

In order to share the entirety of the HELP text between BASIC and BASIC64, this call
is implemented for English, and both BASIC and BASIC64 are assembled without their
own HELP text. About 15Kbytes are shared like this.

4-346

BASIC and BASICTrans

BASICTrans_Error
(swi &42C81)

Copy translated error string to buffer

On entry

RO = unique error number (0 - 112)
R1 = pointer to buffer in which to place the error

On exit
RO - R3 corrupted

Use

This call is made by BASIC to request that a BASICTrans module provide an error
message. The currently loaded BASICTrans modul e places anull terminated error string
for the given error number in the buffer pointed to by R1. The error string is null
terminated. BASIC then prints the error message, and performs other actions necessary
to smoothly integrate the error message with BASIC’s normal provisions for error
handling.

An error is generated if the BASICTrans module is not present (ie the SWI is not found),

or if BASICTrans does not perform the translation. BASIC then prints a default
(English) message explaining this.

In order to share the entirety of the error string text between BASIC and BASIC64, this
call is implemented for English, and both BASIC and BASIC64 are assembled without
their error messages. About 6Kbytes are shared like this. Correct error numbers are vital
to the functioning of the interpreter, and so — rather than being shared — these are held in

BASIC or BASIC64.

4-347

BASICTrans_Message (SWI &42C82)

4-348

BASICTrans_Message
(swi &42C82)

Translate and print miscellaneous message

On entry

RO = unique message number (0 - 25)
R1 - R3 = message dependent values

On exit

Use

RO, R1 corrupted

This call is made by BASIC to request that the BASICTrans module print a
‘miscellaneous’ message. Further parameters are passed that depend on the message you
require to be printed.

An error is generated if the BASICTrans module is not present (ie the SWI is not found),
or if BASICTrans does not perform the translation. BASIC then prints the full (English)
version of the message that it holds internally.

The English BASICTrans module behaves as if this call does not exist, so that the
default messages get printed. There are not many ‘miscellaneous’ messages, so no great
saving is to be had in providing RISC OS 3 with a shared implementation.

The classic problem of the error handler’s ‘ at line ’ can now be handled as follows:

TRACE OFF
I F QU T=TRUE THEN
ERRCOR EXT, ERR, REPORT$
ELSE
RESTORE: ! (H MEM 4) =@
SYS"BASI CTrans_Message", 21, ERL, REPORT$ TO ; @6
IF (@b AND 1)<>0 THEN
REPORT: @6-8&900: | F ERL<>0 THEN PRI NT" at |ine "ERL ELSE PRI NT
ENDI F
@&! (H MEM 4)
ENDI F
END

This allows the BASICTrans_Message code to print the string and optional * at line’
ERL information in any order it likes.

BASIC and BASICTrans

* Commands

*BASIC
*BASIC64

Startsthe ARM BBC BASIC interpreter

Syntax
*BASI C [opti ons]

Parameters

options see below

Use
*BASIC startsthe ARM BBC BASIC V interpreter.

*BASIC64 starts the ARM BBC BASIC VI interpreter — provided its module has
already been loaded, or is in the library or some other directory on the run path.

For full details of BBC BASIC, see tHBBC BAS C Reference Manual, available from
your Acorn supplier.

Theopt i ons control how the interpreter will behave when it starts, and when any
program that it executes terminates. If no option is given, BASIC simply starts with a
message of the form:

ARM BBC BASIC V version 1.05 (C) Acorn 1989
Starting with 643324 bytes free

The number of bytes free in the above message will depend on the amount of free RAM
on your computer. The first line is also used for the default REPORT message, before
any errors occur.

One of three options may follow the *BASIC command to cause a program to be loaded,
and, optionally, executed automatically. Alternatively, you can use a program that is
already loaded into memory by passing its address to the interpreter. Each of these
possibilities is described in turn below.

In all cases where a program is specified, this may be a tokenised BASIC program, as
created by a SAVE command, or a textual program, which will be tokenised (and
possibly renumbered) automatically.

4-349

*BASIC *BASIC64

4-350

*BASI C - hel p

This command causes BASIC to print some help information describing the options
documented here. Then BASIC starts as usual .

*BASIC [-chain] filenane

If you giveafi | enane after the *BASIC command, optionally preceded by the
keyword - chai n, then the named fileisloaded and executed. When the program stops,
BASIC enters immediate mode, as usual.

*BASIC -quit filenane

This behavesin a similar way to the previous option. However, when the program
terminates, BASIC quits automatically, returning to the environment from which the
interpreter was originally called. It also perfformsa CRUNCH %4111 on the program
(for further details see the description of the CRUNCH command in the BBC BASIC
Reference Manual). Thisisthe default action used by BASIC programs that are
executed as* commands. In addition, the function QUIT returns TRUE if BASIC is
called in this fashion.

*BASI C -| oad filenane

This option causes the file to be loaded automatically, but not executed. BASIC remains
in immediate mode, from where the program can be edited or executed as required.

*BASI C @tart, end

Thisactsin asimilar way to the - | oad form of the command. However, the program

that is ‘loaded’ automatically is not in a file, but already in memory. Followingere

two addresses. These give, in hexadecimal, the address of the start of the in-core
program, and the address of the byte after the last one. The program is copied to PAGE
and tokenised if necessary. This form of the command is used by Twin when returning to
BASIC.

Note that the in-core address description is fixed format. It should be in the form:
@XXXXXXXX, XXXXXXXX

wherex means a hexadecimal digit. Leading zeros must be supplied. The command line
terminator character must come immediately after the last digit. No spaces are allowed.

*BASI C -chain @tart, end

This behaves like the previous option, but the program is executed as well. When the
program terminates, BASIC enters immediate mode.

BASIC and BASICTrans

*BASIC -quit @start, end

This option behaves as the previous one, but when the BASIC program terminates,
BASIC automatically quits. The function QUIT will return TRUE during the execution
of the program.

Examples

*BASI C

*BASIC -quit shell Prog
*BASI C @OO0ADFOC, 000AE345
*BASI C -chain fred

Related commands
None

Related SWis
None

Related vectors
None

4-351

4-352

85

Command scripts

Introduction

Command scripts are files of commands that you would normally typein at the
Command Line prompt. There are two common reasons for using such afile;

o To set up the computer to the state you want, either when you switch on or when
you start an application.

o« Tosavetyping in aset of commands you find yourself frequently using.
In thefirst case the file of commands is commonly known as a boot file.

You may find using an Alias$... variable to be better in some cases. The main advantage
of these variables is that they are held in memory and so are quicker in execution;
however, they are only really suitable for short commands. Even if you use these
variables you are still likely to need to use a command file to set them up initially.

There are two types of file available for writing command scripts: Command files, and
Obey files. The differences between these two file types are:

« An Obey file is read directly, whereas a Command file is treated as if it were typed
at the keyboard (and hence usually appears on the screen).

« An Obey file sets the system variable Obey$Dir to the directory it is in.
« An Obey file can be passed parameters

« An Obey file stops when an error is returned to the Obey module (or when an error
is generated and the exit handler is the Obey module — an untrapped error, not in an
application).

4-353

Overview and Technical Details

Overview and Technical Detalils

Creating a command script

A command script can be created using any text or word processor. With Edit you can
set the type of the file to Command or Obey, except under RISC OS 2, where you then
have to use the command * SetType .

You should saveit in one of the following:

« thedirectory from which the command script will be run (typically your root
directory, or an application directory)

o thelibrary (typicaly $.Library, but may be $.ArthurLib on a network; see
*Configure Lib on page 2-380).

Running the script

Provided that you have set the file to have afiletype of Command or Obey it can then be
run in the same ways as any other file:

o Typeitsname at the* prompt.

« Typeitsname preceded by a* at any other prompt (some applications may not
support this).

« Double-click on itsicon from the desktop.

The same restrictions apply as with any other file. If thefileis not in either your current
directory or the library, it will not be found if you just give the filename; you must give
its full pathname. (This assumes you have not changed the value of the system variable
Run$Path.)

You can force any text file to be treated as an obey file by using the command * Obey.
This overrides the current file type, such as Text or Command. Obviously, thiswill only
have meaning if the text in the file is valid to treat as an obey file.

Similarly, any file can be forced to be acommand file by using * Exec. Thisis described
on page 2-167.

Obey$Dir

When an obey fileis run, by using any of the above techniques, the system variable
Obey$Dir is set to the parent directory part of the pathname used. For example, if you
weretotype* Ghey a. b. ¢, thena. b isthe parent directory of the pathname.

4-354

Command scripts

Notethat it is not set to the full parent name, only the part of the string passed to the
command as the pathname. So if you change the current directory or filing system
during the obey file, then it would not be valid any more.

Ideally, you should invoke Obey files (and applications, which are started by an Obey
file named 'Run) by using their full pathname, and preceding that by either aforward
slash / ortheword Run, for example:

/ adfs::MikeWinnie.$.0Odds’nSods.MyConfig
Run adfs::MikeWinnie.$.0dds’nSods.MyConfig
This ensures that Obey$Dir is set to the full pathname of the Obey file.

Run$Path

The variable Run$Path also influences how this parent name is decoded. If you were to
type:

*Set Run$Path adfs::Winnie.Flagstaff.
*obeyfile parl par2

Then it would be interpreted as:
*Run adfs::Winnie.Flagstaff.obeyfile parl par2

If the filetype of obeyfile was & FEB, an obey file, then the command would be
interpreted as:

*Obey adfs::Winnie.Flagstaff.obeyfile parl par2
This can also apply to application directories, as follows:

*Set Alias$@RunType_FEB Obey %*0
*Set File$Type_FEB Obey

*Set Run$Path adfs::Winnie.Flagstaff.
*IAppDir parl par2

In this case, RISC OS would look for the 'Run file within the application directory and
run it. Note that in most cases, the first two lines above are already defined in your
system. If !Runisan obey file, then it would be interpreted as:

*Obey adfs::Winnie.Flagstaff.!AppDir.!Run parl par2

Note that Obey files can aso be nested, calling other files to Obey; however, Command
files cannot be nested. Thisis one of the reasons why it is better to set up your file asan
Obey file rather than a Command file.

4-355

Making a script run automatically

Making a script run automatically
You can make scripts run automatically:

« From the network when you first log on.

The file must be called ! ArmBoot. (Thisisto distinguish a boot file for amachine
running Arthur or RISC OS from an existing !Boot file already on the network for
the use of BBC model A, model B or Master series computers.)

« Fromadisc when you first switch the computer on.
Thefile must be called !Boot.

« From an application directory when you first display the directory’s icon under the
desktop.

The file must be called 'Boot. Itis run if RISC OS does not already know of a sprite
having the same name as the directory, and is intended to load sprites for
applications when they first need to be displayed. For further details see the section
entitled Application resource files on page 3-56.

« From an application directory when the application is run.

The file must be called 'Run. For further details see the section e/ijbbidation
resource files on page 3-56.

In the first two cases you will need to use the *Opt command as well (see page 2-179).

For an example of the latter two cases, you can look in any of the application directories
in the Applications Suite. If you are using the desktop, you will need to hold down the
Shift key while you open the application directory, otherwise the application will run.

Using parameters

An Obey file can have parameters passed to it, which can then be used by the command
script. A Command file cannot have parameters passed to it. The first parameter is
referred to as %0, the second as %1, and so on. You can refer to all the parameters after
a particular one by putting a * after the %, so %*1 would refer to the all parameters from
the second one onwards.

These parameters are substituted before the line is passed to the Command Line
interpreter. Thus if an Obey file called Display contained:

Filelnfo %
Type %

then the commantiDi spl ay MyFi | e would do this:

Filelnfo MFile
Type MyFile

4-356

Command scripts

Sometimes you do not want parameter substitution. For example, suppose you wish to
include a *Set Alias$... command in your file, such as:

Set Ali as$Mbde echo | <22>| <%0> Desired command

The effect of this is to create a new command ‘Mode’. If you include the *Set Alias
command in an Obey file, when you run the file the %0 will be replaced by the first
parameter passed to the file. To prevent the substitution you need to change the % to
%%:

Set Alias$Mbde echo | <22>| <%RO> Command needed in file

Now when the file is run, the ‘%%0’ is changed to ‘%0’. No other substitution occurs at
this stage, and the desired command is issuedt S&een page 1-331.

Abbreviations

You must not use abbreviations for * Commands in scripts and programs, as these may
vary between releases of RISC OS. For example, in RISC OS 2 *Te.” was the minimum
abbreviation for *Tempo, whereas in RISC OS 3 this abbreviation instead runs the
*Territories command.

4-357

*Commands

*Commands

4-358

*Obey

Executes afile of * commands

Syntax

*Obey [[-v][-c] [filenane [paraneters]]]

Parameters
-V echo each line before execution
-C cache f i | enane, and execute it from memory
fil enane avalid pathname, specifying afile
par anet ers strings separated by spaces
Use

*Obey executes afile of * commands. Argument substitution is performed on each line,
using parameters passed in the command.

With the - v option, each lineis displayed before execution. With the - ¢ option, thefile
is cached and executed from memory. These options are not available in RISC OS 2.

Example
*Cbey !conmmands nyfilel 12

Related commands
*Exec, *Run

Related SWis
None

Related vectors
None

Command scripts

Application Notes

These examplefilesillustrate several of the important differences between Command
and Obey files:
*BASI C
AUTO
FORI =1 TO 10
PRI NT "Hel | 0"

NEXT |
END

If this were acommand file, it would enter the BASIC interpreter, and input the file
shown. The command script will end with the BASIC interpreter waiting for another
line of input. You can then press Esc to get aprompt, type RUN to run the program, and
then type QUIT to leave BASIC. This script shows how a command fileis passed to the
input, and can change what is accepting itsinput (in this case to the BASIC interpreter).

In contrast, if this were an Obey file it would be passed to the Command Line
interpreter, and an attempt would be made to run these commands:

*BASI C

*AUTO

*FOR1 =1 TO 10
* PRINT "Hello"
* NEXT

*END

Only thefirst command isvalid, and so as an Obey file al thisdoesisto leave you inthe
BASIC interpreter. Type QUIT to leave BASIC; you will then get an error message
saying File ‘AUTO’ not found, generated by the second line in the file.

The next example illustrates how control characters are handled in both Command and
Obey files:

echo <7>
echo | <7>

The control characters are represented in GSTrans format (see the chapter entitled

Conversions on page 1-453). These are not interpreted until the echo command is run,
and are only interpreted then because echo expects GSTrans format.

The first line sends an ASCII 7 to the VDU drivers, sounding a beep¥é& on
page 1-575 for more information. In the second line, the | preceding the < changes it
from the start of a GSTrans sequence to just representing the character <, so the overall

effect is:
echo <7> Send ASCII 7 to VDU drivers — beeps
echo | <7> Send <7> to VDU drivers — displays’> on the screen

The last examples are a Command file:

4-359

Application Notes

*Set Alias$more %echo |<14>|m %type —tabexpand %*0|m %echo |<15>
and an Obey file that has the same effect:
Set Alias$more %echo |<14>|m %type —tabexpand %%*0|m %echo |<15>

The only differences between the two examples are that the Command file hasa
preceding * added, to ensure that the command is passed to the Command Line
interpreter; and that the Obey file has the %* 0 changed to %%* 0 to delay the
substitution of parameters.

The file creates a new command called ‘more’ — taking its name from the UNIX ‘more’
command — by setting the variable Alias$more:

« The%characters that precedeho andt ype ensure that the actual commands are
used, rather than an aliased version of them.

« The sequenckmrepresents a carriage return in GSTrans format and is used to
separate the commands, just as Return would if you were typing the commands.

« The two echo commands turn paged mode on, then off, by sending the control
characters ASCII 14 and 15 respectively to the VDU drivers (see page 1-582
onwards of the chapter entitl®U Drivers for more information).

« The| before eack prevents the control characters from being interpreted until the
aliased command ‘more’ is run.

The command turns paged mode on, types a file to the screen expanding tabs as it does
so, and then turns paged mode off.

4-360

Appendixes and tables

4-361

4-362

86 Appendix A: ARM assembler

Introduction

Assembly language is a programming language in which each statement translates
directly into a single machine code instruction or piece of data. An assembler is apiece
of software which converts these statements into their machine code counterparts.

Writing in assembly language has its disadvantages. The code is more verbose than the
equivalent high-level language statements, more difficult to understand and therefore
harder to debug. High-level languages were invented so that programs could be written
to look more like English so we could talk to computers in our language rather than
directly in their own.

There are two reasons why, in certain circumstances, assembly languageis used in
preference to high-level languages. The first reason is that the machine code program
produced by it executes more quickly than its high-level counterparts, particularly those
in languages such as BASIC which are interpreted. The second reason is that assembly
language offers greater flexihility. It allows certain operating system routines to be
called or replaced by new pieces of code, and it allows greater access to the hardware
devices and controllers.

Available assemblers

The BASIC assembler

The BBC BASIC interpreter, supplied as astandard part of RISC OS, includesan ARM
assembler. This supports the full instruction set of the ARM 2 processor. At present it
neither supports extrainstructions that were first implemented by the ARM 3 processor,
nor does it support coprocessor instructions.

Itisthe BASIC assembler that isdescribed below, serving asan introduction to ARM
assembler.

4-363

Available assemblers

The Acorn Desktop Assembler

The Acorn Desktop Assembler is a separate product that provides much more powerful
facilities than the BASIC assembler. With it you can develop assembler programs under
the desktop, in an environment common to all Acorn desktop languages. It contains two
different assemblers:

« AAsm isan assembler that produces binary image files which can be executed
immediately.

« ObjAsm isan assembler that creates object files that cannot be executed directly,
but must first be linked to other object files. Object files linked with those produced
by ObjAsm may be produced from some programming language other than
assembler, for example C.

These assemblers are not described in this appendix, but use abroadly similar syntax to
the BASIC assembler described below. For full details, see the Acorn Assembler

Release 2 manual, which is supplied with Acorn Desktop Assembler, or is separately
available.

4-364

Appendix A: ARM assembler

The BASIC assembler

Using the BASIC assembler

The assembiler is part of the BBC BASIC language. Square brackets ‘[and ‘]’ are used
to enclose all the assembly language instructions and directives and hence to inform
BASIC that the enclosed instructions are intended for its assembler. However, there are
several operations which must be performed from BASIC itself to ensure that a
subsequent assembly language routine is assembled correctly.

Initialising external variables

The assembler allows the use of BASIC variables as addresses or data in instructions
and assembler directives. For example variables can be set up in BASIC giving the
numbers of any SWI routines which will be called:

Os Witel = &100

SWI OS_Writel+ASC">"

Reserving memory space for the machine code

The machine code generated by the assembler is stored in memory. However, the
assembler does not automatically set memory aside for this purpose. You must reserve
sufficient memory to hold your assembled machine code by using the DIM statement.
For example:

1000 DIM code% 100

The start address of the memory area reserved is assigned to the variable code%. The
address of the last memory location is code%+100. Hence, this example reserves atotal
of 101 bytes of memory. In future examples, the size of memory reserved is shown as
required_size, to emphasise that you must substitute a value appropriate to the size of
your code.

4-365

Using the BASIC assembler

4-366

Memory pointers

You need to tell the assembler the start address of the area of memory you have reserved.
The simplest way to do thisis to assign P% to point to the start of this area. For example:

DI M code% requi red_si ze

P% = code%

P% is then used as the program counter. The assembler places the first assembler
instruction at the address P% and automatically increments the value of P% by four so
that it points to the next free location. When the assembler has finished assembling the
code, P% points to the byte following the final location used. Therefore, the number of
bytes of machine code generated is given by:

P% - code%

This method assumes that you wish subsequently to execute the code at the same
location.

The position in memory at which you load a machine code program may be significant.

For example, it might refer directly to data embedded within itself, or expect to find

routines at fixed addresses. Such a program only worksif it isloaded in the correct place

in memory. However, it is often inconvenient to assemble the program directly into the

place where it will eventually be executed. This memory may well be used for

something else whilst you are assembling the program. The solution to thisproblemisto

use a technique called ‘offset assembly’ where code is assembled as if it is to run at a
certain address but is actually placed at another.

To do this, set 0% to point to the place where the first machine code instruction is to be
placed and P% to point to the address where the code is to be run.

To notify the assembler that this method of generating code is to be used, the directive
OPT, which is described in more detail below, must have bit 2 set.

It is usually easy, and always preferable, to write ARM code that is position
independent.

Implementing passes

Normally, when the processor is executing a machine code program, it executes one
instruction and then moves on automatically to the one following it in memory. You can,
however, make the processor move to a different location and start processing from there
instead by using one of the ‘branch’ instructions. For example:

.result_was 0

BEQ result_was_0

Appendix A: ARM assembler

The fullstop in front of the name result_was 0 identifies this string as the name of a
‘label’. This is a directive to the assembler which tells it to assign the current value of the
program counter (P%) to the variable whose name follows the fullstop.

BEQ means ‘branch if the result of the last calculation that updated the PSR was zero’.
The location to be branched to is given by the value previously assigned to the label
result_ was_0.

The label can, however, occur after the branch instruction. This causes a slight problem
for the assembler since when it reaches the branch instruction, it hasn’t yet assigned a
value to the variable, so it doesn't know which value to replace it with.

You can get around this problem by assembling the source code twice. This is known as
two-pass assembly. During the first pass the assembler assigns values to all the label
variables. In the second pass it is able to replace references to these variables by their
values.

It is only when the text contains no forward references of labels that just a single pass is
sufficient.

These two passes may be performed by a FOR...NEXT loop as follows:

DI M code% requi red_si ze
FOR pass% = 0 TO 3 STEP 3
P% = code%
[
OPT pass%
further assembly language statements and assembler directives

]
NEXT pass%

Note that the pointer(s), in this case just P%, must be set at the start of both passes.

The OPT directive
The OPT is an assembler directive whose bits have the following meaning:

Bit Meaning

0 Assembly listing enabled if set

1 Assembler errors enabled

2 Assembled code placed in memory at 0% instead of P%

3 Check that assembled code does not exceed memory limit L%

Bit O controls whether alisting is produced. It is up to you whether or not you wish to
have one or not.

4-367

Saving machine code to file

Bit 1 determines whether or not assembler errors are to be flagged or suppressed. For the

first pass, bit 1 should be zero since otherwise any forward-referenced labelswill cause

the error ‘Unknown or missing variable’ and hence stop the assembly. During the second
pass, this bit should be set to one, since by this stage all the labels defined are known, so
the only errors it catches are ‘real ones’ — such as labels which have been used but not
defined.

Bit 2 allows ‘offset assembly’, ie the program may be assembled into one area of
memory, pointed to by 0%, whilst being set up to run at the address pointed to by P%.

Bit 3 checks that the assembled code does not exceed the area of memory that has been
reserved (ie none of it is held in an address greater than the value held in L%). When
reserving space, L% might be set as follows:

DI M code% requi red_si ze
L% = code% + requi red_size

Saving machine code to file

Once an assembly language routine has been successfully assembled, you can then save
it to file. To do so, you can use the *Save command. In our above exammtEs/o

points to the start of the code; after asseniypoints to the byte after the code. So we

could use this BASIC command:

OSCLI "Save "+outfil e$+" "+STR$~(code¥ +" " +STR$~(P

after the above example to save the code in the file named by outfile$.

Executing a machine code program

4-368

From memory

From memory, the resulting machine code can be executed in a variety of ways:

CALL address
USR address

These may be used from inside BASIC to run the machine code at a given address. See
the BBC BAS C Guide for more details on these statements.

From file

The commands below will load and run the named file, using either its filetype (such as
&FF8 for absolute code) and the associated Alias$@Load¥ypand
Alias$@RunTypexxx system variables, or the load and execution addresses defined
when it was saved.

Appendix A: ARM assembler

* nane
*RUN nane
*[name

We strongly advise you to use file typesin preference to load and execution addresses.

Format of assembly language statements

The assembly language statements and assembler directives should be between the
square brackets.

There are very few rules about the format of assembly language statements; those which
exist are given below:

Each assembly language statement comprises an assembler mnemonic of one or
more letters followed by a varying number of operands.

Instructions should be separated from each other by colons or newlines.
Any text following a full stop ‘.’ is treated as a label name.

Any text following a semicolon ‘;’, or backslash ‘\’, or ‘REM’ is treated as a
comment and so ignored (until the next end of line or *’).

Spaces between the mnemonic and the first operand, and between the operands
themselves are ignored.

The BASIC assembler contains the following directives:

EQUB i nt Define 1 byte of memory from LSB éfnt (DCB, =)

EQUW i nt Define 2 bytes of memory fromnt (DCW)

EQUD i nt Define 4 bytes of memory fromnt (DCD)

EQUS str Define 0 - 255 bytes as required by string expression
str (DCS)

ALl GN Align P% (and O%) to the next word (4 byte) boundary

ADR reg, addr Assemble instruction to loaglddr intor eg

The first four operations initialise the reserved memory to the values specified by
the operand. In the case of EQUS the operand field must be a string expression. In
all other cases it must be a numeric expression. DCB (and =), DCW, DCD and DCS
are synonyms for these directives.

The ALIGN directive ensures that the next P% (and O%) that is used lies on a word
boundary. It is used after, for example, an EQUS to ensure that the next instruction
is word-aligned.

ADR assembles a single instruction — typically but not necessarily an ADD or SUB
— with reg as the destination register. It obtains addr in that register. It does so in a
PC-relative (ie position independent) manner where possible.

4-369

Registers

Registers

4-370

At any particular time there are sixteen 32-hit registers available for use, RO to R15.
However, R15 is special since it contains the program counter and the processor status
register.

R15 issplit up with 24 bits used as the program counter (PC) to hold the word address of
the next instruction. 8 bits are used as the processor status register (PSR) to hold
information about the current values of flags and the current mode/register bank. These
bits are arranged as follows:

Thetop six bits hold the following information:

Bit Flag Meaning

31 N Negative flag

30 4 Zero flag

29 C Carry flag

28 \% Overflow flag

27 I Interrupt request disable

26 F Fast interrupt request disable

The bottom two bits can hold one of four different values:
Meaning
User mode

Fast interrupt processing mode (FIQ mode)
Interrupt processing mode (IRQ mode)
Supervisor mode (SVC mode)

WNRO Z

User mode isthe normal program execution state. SVC modeis a special mode whichis
entered when calls to the supervisor are made using software interrupts (SWIs) or when
an exception occurs. From within SV C mode certain operations can be performed which
are not permitted in user mode, such as writing to hardware devices and peripherals.
SVC mode hasits own private registers R13 and R14. So after changing to SV C mode,
theregisters RO - R12 are the same, but new versions of R13 and R14 are available. The
values contained by these registers in user mode are not overwritten or corrupted.

Similarly, IRQ and FIQ modes havetheir own privateregisters (R13 - R14 and R8 - R14
respectively).

Although only 16 registers are available at any one time, the processor actually contains
atotal of 27 registers.

For amore complete description of the registers, see the chapter entitled ARM Hardware
on page 1-9.

Condition codes

Appendix A: ARM assembler

All the machine code instructions can be performed conditional ly according to the status
of one or more of the following flags: N, Z, C, V. The sixteen available condition codes

are;

AL Always Thisis the default

CcC Carry clear Cclear

CS Carry set C set

EQ Equal Z set

GE Greater than or equal (N set and V set) or
(N clear and V clear)

GT Greater than ((N set and V set) or
(N clear and V clear)) and Z clear

HI Higher (unsigned) Cset and Z clear

LE Less than or equal (N set and V clear) or
(N clear and V set) or Z set

LS Lower or same (unsigned) Cclear or Z set

LT Lessthan (N set and V clear) or
(N clear and V set)

Ml Negative N set

NE Not equal Z clear

NV Never

PL Positive N clear

VC Overflow clear V clear

VS Overflow set V set

Two of these may be given alternative names as follows:
LO L ower unsigned isequivalent to CC
HS Higher / same unsigned isequivalent to CS

You should not use the NV (never) condition code — see page 4-390.

4-371

The instruction set

The instruction set

The available instructions are introduced below in categories indicating the type of
action they perform and their syntax. The description of the syntax obeys the following
standards:

«» indicates that the contents of the brackets are optional (unlike all
other chapters, where we have been using [] instead)

(xly) indicates that either x or y but not both may be given

#exp indicates that a BASIC expression is to be used which evaluates
to an immediate constant. An error is given if the value cannot be
stored in the instruction.

Rn indicates that an expression evaluating to a register number (in
the range 0 - 15) should be used, or just a register name, eg RO.
PC may be used for R15.

shift indicates that one of the following shift options should be used:

ASL (Rn]#exp) Arithmetic shift left by contents of Rn
or expression

LSL (Rn|#exp) Logical shift left

ASR (Rn|#exp) Arithmetic shift right

LSR (Rn|#exp) Logical shift right

ROR (Rn|#exp) Rotate right

RRX Rotate right one bit with extend

In fact ASL and LSL are the same (because the ARM does not
handle overflow for signed arithmetic shifts), and synonyms. LSL
is the preferred form, as it indicates the functionality.

4-372

Appendix A: ARM assembler

Move instructions

Syntax:
opcode«cond»«S» Rd, (#exp|Rm)«,shift»

There are two move instructions. ‘Op2’ means ‘(#exp|Rm)«,shift»’:

Instruction Calculation performed
MOV Move Rd = Op2
MOVN Move NOT Rd = NOT Op2

Each of these instructions produces a result which it places in a destination register (Rd).
The instructions do not affect bytes in memory directly.

Again, all of these instructions can be performed conditionally. In addition, if the ‘'S’ is
present, they can cause the condition codes to be set or cleared. These instructions set N
and Z from the ALU, C from the shifter (but only if it is used), and do not affect V.

Examples:

MOV RO, #10 ; Load RO with the value 10.

Special actions are taken if the source register is R15; the action is as follows:
« If Rm=R15 all 32 bits of R15 are used in the operation ie the PC + PSR.

If the destination register is R15, then the action depends on whether the optional ‘'S’ has
been used:
« If Sis not present only the 24 bits of the PC are set.

« If Sis present the whole result is written to R15, the flags are updated from the
result. (However the mode, | and F bits can only be changed when in non-user
modes.)

4-373

The instruction set

Arithmetic and logical instructions
Syntax:
opcode«cond»«S» Rd, Rn, (#exp|Rm)«,shift»

The instructions available are given below; again, ‘Op2’ means ‘(#exp|Rm)«,shift»’:

Instruction Calculation performed
ADC Add with carry Rd=Rn+0p2+C

ADD Add without carry Rd = Rn + Op2

SBC Subtract with carry Rd=Rn-0p2-(1-0C)
SUB Subtract without carry Rd = Rn — Op2

RSC Reverse subtract with carry Rd=0p2-Rn-(1-C)
RSB Reverse subtract without carry Rd = Op2 - Rn

AND Bitwise AND Rd = Rn AND Op2

BIC Bitwise AND NOT Rd = Rn AND NOT (Op2)
ORR Bitwise OR Rd = Rn OR Op2

EOR Bitwise EOR Rd = Rn EOR Op2

Each of these instructions produces a result which it places in a destination register (Rd).
The instructions do not affect bytes in memory directly.

As was seen above, all of these instructions can be performed conditionally. In addition,
if the ‘S’ is present, they can cause the condition codes to be set or cleared. The
condition codes N, Z, C and V are set by the arithmetic logic unit (ALU) in the
arithmetic operations. The logical (bitwise) operations set N and Z from the ALU, C
from the shifter (but only if it is used), and do not affect V.

Examples:
ADDEQ R1, R1, #7 ; If the zero flag is set then add 7
; to the contents of register RIL.
SBCS R2, R3, R4 ; Subtract with carry the contents of register R4 from

; the contents of register R3 and place the result in
; register R2. The flags will be updated.

AND R3, R1, R2, LSR #2 ; Performa |logical AND on the contents of register Rl
; and the contents of register R2 / 4, and place the
; result in register R3.

Special actions are taken if any of the source registers are R15; the action is as follows:
« If Rm=R15 all 32 bits of R15 are used in the operation ie the PC + PSR.
« If Rn=R15 only the 24 bits of the PC are used in the operation.

If the destination register is R15, then the action depends on whether the optional ‘'S’ has
been used:

« If Sis not present only the 24 bits of the PC are set.

4-374

Appendix A: ARM assembler

o If Sispresent the whole result is written to R15, the flags are updated from the
result. (However the mode, | and F bits can only be changed when in non-user
modes.)

Comparison instructions
Syntax:
opcode«cond»«S|P» Rn, (#exp|Rm)«,shift»

There are four comparison instructions; again, ‘Op2’ means ‘(#exp|Rm)«,shift»":

Instruction Calculation performed
CMN Compare negated Rn + Op2

CMP Compare Rn — Op2

TEQ Test equal Rn EOR Op2

TST Test Rn AND Op2

These are similar to the arithmetic and logical instructions listed above except that they
do not take a destination register since they do not return a result. Also, they
automatically set the condition flags (since they would perform no useful purpose if they
didn’t). Hence, the ‘S’ of the arithmetic instructions is implied. You can put an ‘S’ after
the instruction to make this clearer.

These routines have an additional function which is to set the whole of the PSR to a
given value. This is done by using a ‘P’ after the opcode, for example TEQP.

Normally the flags are set depending on the value of the comparison. The | and F bits
and the mode and register bits are unaltered. The ‘P’ option allows the corresponding
eight bits of the result of the calculation performed by the comparison to overwrite those
in the PSR (or just the flag bits in user mode).

Example

TEQP PC, #&80000000 ; Set N flag, clear all others. Al so enable
; IRQs, FIQs, select User node if privileged

The above example (as well as setting the N flag and clearing the others) will alter the
IRQ, FIQ and mode bits of the PSR — but only if you are in a privileged mode.

4-375

The instruction set

The ‘P’ option is also useful in user mode, for example to collect errors:

STMFD sp!, {r0, r1, r14}

BL routinel

STRVS r0, [sp, #0] ; save error block ptr in return r0
; in stack franme if error
MoV rl, pc ; save psr flags inr1l
BL routine2 ; called even if error fromroutinel
STRVS r0, [sp, #0] ; to do some tidy up action etc.
TEQVCP r1, #0 ; if routine2 didn't give error,
LDMFD sp!, {r0, r1, pc} ; restore error indication from rl
Multiply instructions
Syntax:
MUL«cond»«S» Rd,Rm,Rs
MLA«cond»«S» Rd,Rm,Rs,Rn
There are two multiply instructions:
Instruction Calculation performed
MUL Multiply Rd = Rmx Rs
MLA Multiply-accumulate Rd = Rmx Rs + Rn

The multiply instructions perform integer multiplication, giving the least significant 32
bits of the product of two 32-bit operands.

The destination register must not be R15 or the same as Rm. Any other register
combinations can be used.

If the ‘'S’ is given in the instruction, the N and Z flags are set on the result, and the C and
V flags are undefined.

Examples:
ML RL, R2, R3
M.AEQS R1,R2,R3, R4

4-376

Appendix A: ARM assembler

Branching instructions

Syntax:

B«cond» expression
BL«cond» expression

There are essentially only two branch instructions but in each case the branch can take
place as a result of any of the 15 usable condition codes:

Instruction
B Branch
BL Branch and link

The branch instruction causes the execution of the code to jump to the instruction given
at the address to be branched to. This address is held relative to the current location.

Example:
BEQ |l abel 1 ; branch if zero flag set

BM nminus ; branch if negative flag set

The branch and link instruction performs the additional action of copying the address of
the instruction following the branch, and the current flags, into register R14. R14 is
known as the ‘link register’. This means that the routine branched to can be returned
from by transferring the contents of R14 into the program counter and can restore the
flags from this register on return. Hence instead of being a simple branch the instruction
acts like a subroutine call.

Example:
BLEQ equal
......... ; address of this instruction
......... ; noved to R14 automatically
.equal ; start of subroutine
MOVS R15, R14 ; end of subroutine

4-377

The instruction set

Single register load/save instructions

4-378

Syntax:
opcode«cond»«B»«T» Rd, address

The single register load/save instructions are as follows:

Instruction
LDR Load register
STR Store register

These instructions allow a single register to load a value from memory or save a value to
memory at a given address.

The instruction has two possible forms:
« the address is specified by register(s), whose names are enclosed in square brackets
« the address is specified by an expression

Address given by registers

The simplest form of address is a register number, in which case the contents of the
register are used as the address to load from or save to. There are two other alternatives:

« pre-indexed addressing (with optional write back)
« post-indexed addressing (always with write back)

With pre-indexed addressing the contents of another register, or an immediate value, are
added to the contents of the first register. This sum is then used as the address. It is
known as pre-indexed addressing because the address being used is calculated before the
load/save takes place. The first register (Rn below) can be optionally updated to contain
the address which was actually used by adding a ‘!’ after the closing square bracket.

Address syntax Address

[RN] Contents of Rn

[Rn,#m]«!» Contents of Rn + m
[Rn,«—»Rm]«!» Contents of Rhcontents of Rm

[Rn,«—»Rm,shift #s]«!» Contents of Rn(contents of Rm shifted by s places)

Appendix A: ARM assembler

With post-indexed addressing the address being used is given solely by the contents of
theregister Rn. Therest of theinstruction determines what valueiswritten back into Rn.

This write back is performed automatically; no ‘" is needed. Post-indexing gets its name
from the fact that the address that is written back to Rn is calculated after the load/save
takes place.

Address syntax Value written back
[Rn],#m Contents of Rn + m
[RNn],«—»Rm Contents of Ra contents of Rm

[Rn],«—»Rm,shift #s Contents of Rn(contents of Rm shifted by s places)

Address given asan expression

If the address is given as a simple expression, the assembler will generate a pre-indexed
instruction using R15 (the PC) as the base register. If the address is out of the range of
the instruction (x4095 bytes), an error is given.

Options

If the ‘B’ option is specified after the condition, only a single byte is transferred, instead
of a whole word. The top 3 bytes of the destination register are cleared by an LDRB
instruction.

If the ‘T’ option is specified after the condition, then the TRANS pin on the ARM
processor will be active during the transfer, forcing an address translation. This allows
you to access User mode memory from a privileged mode. This option is invalid for
pre-indexed addressing.

Using the program counter

If you use the program counter (PC, or R15) as one of the registers, a number of special
cases apply:

« the PSR is never modified, even when Rd or Rn is the PC

« the PSR flags are not used when the PC is used as Rn, and (because of pipelining) it
will be advanced by eight bytes from the current instruction

« the PSR flags are used when the PC is used as Rm, the offset register.

4-379

The instruction set

Multiple register load/save instructions

4-380

Syntax:
opcode«cond»type Rn«!», {Rlist}«»

These instructions allow the loading or saving of several registers:

Instruction
LDM Load multiple registers
STM Store multiple registers

The contents of register Rn give the base address from/to which the value(s) are loaded
or saved. This base address is effectively updated during the transfer, but is only written
back to if you follow it with a ‘!

Rlist provides a list of registers which are to be loaded or saved. The order the registers
are given, in the list, is irrelevant since the lowest numbered register is loaded/saved
first, and the highest numbered one last. For example, a list comprising {R5,R3,R1,R8}
is loaded/saved in the order R1, R3, R5, R8, with R1 occupying the lowest address in
memory. You can specify consecutive registers as a range; so {R0-R3} and
{RO,R1,R2,R3} are equivalent.

The type is a two-character mnemonic specifying either how Rn is updated, or what sort
of a stack results:

Mnemonic Meaning

DA Decrement Ri\fter each store/load
DB Decrement RiBefore each store/load
1A Increment Rrfter each store/load
B Increment RiBefore each store/load
EA Empty Ascending stack is used

ED Empty Descending stack is used

FA Full Ascending stack is used

FD Full Descending stack is used

« an empty stack is one in which the stack pointer points to the first free slot in it

« afull stack is one in which the stack pointer points to the last data item written to it
« an ascending stack is one which grows from low memory addresses to high ones

« adescending stack is one which grows from high memory addresses to low ones

In fact these are just different ways of looking at the situation — the way Rn is updated

governs what sort of stack results, and vice versa. So, for each type of instruction in the
first group there is an equivalent in the second:

Appendix A: ARM assembler

LDMEA isthesameas LDMDB
LDMED isthesameas LDMIB
LDMFA isthesameas LDMDA
LDMFD isthesameas LDMIA
STMEA isthesameas STMIA
STMED isthesameas STMDA
STMFA isthesameas STMIB
STMFD isthesameas STMDB

All Acorn software uses an FD (full, descending) stack. If you arewriting code for SVC
mode you should try to use a full descending stack as well — although you can use any
type you like.

A ‘N at the end of the register list has two possible meanings:
o For aload with R15 in the list, the " forces update of the PSR.

« Otherwise the V' forces the load/store to access the User mode registers. The base
is still taken from the current bank though, and if you try to write back the base it
will be put in the User bank — probably not what you would have intended.

Examples:
LDM A R5, {RO,R1, R2} ; where R5 contains the val ue
; &1484
; This will |load RO from &1484
Rl from &1488
R2 from &148C
LDVMDB R5, {RO-R2} ; where R5 contains the val ue
; &1484
; This will load RO from &1478

Rl from &147C
R2 from &1480

If there were a ‘' after R5, so that it were written back to, then this would leave R5
containing &1490 and &1478 after the first and second examples respectively.

The examples below show directly equivalent ways of implementing a full descending
stack. The first uses mnemonics describing how the stack pointer is handled:

STMDB St ackpointer!, {R0-R3} ; push onto stack

LDMIA Stackpointer!, {R0-R3} ; pull from stack
and the second uses mnemonics describing how the stack behaves:

STMFD Stackpointer!, {R0,R1,R2,R3} ; push onto stack

LDMFD Stackpointer!, {R0,R1,R2,R3} ; pull from stack

4-381

The instruction set

Using the base register

« You can aways load the base register without any side effects on the rest of the
LDM operation, because the ARM uses an internal copy of the base, and so will not
be aware that it has been loaded with a new value.

However, you should see Appendix B: Warnings on the use of ARM assembler on
page 4-385 for notes on using writeback when doing so.

« You can store the base register aswell. If you are not using write back then no
problem will occur. If you are, then thisis the order in which the ARM does the
STM:

1 writethe lowest numbered register to memory
2 dothewrite back
3 writethe other registersto memory in ascending order.

So, if the base register is the lowest-numbered onein thelist, its original valueis

stored:

STM A R2!, {R2-R6} ; R2 stored is value before wite back
Otherwise its written back value is stored:

STMA R2!, {Rl-R5} ; R2 stored is value after wite back

Using the program counter

If you use the program counter (PC, or R15) in the list of registers:

« thePSRissaved with the PC; and (because of pipelining) it will be advanced by
twelve bytes from the current position

« the PSR is only loaded if you follow the register list with a ‘“*’; and even then, only
the bits you can modify in the ARM’s current mode are loaded.

It is generally not sensible to use the PC as the base register. If you do:

« the PSR bits are used as part of the address, which will give an address exception
unless all the flags are clear and all interrupts are enabled.

SWI instruction

Syntax:
SWI«cond» expression
SWi«cond» "SWIname" (BBC BASIC assembler)

The SWI mnemonic stands fBoftWarelnterrupt. On encountering a SWI, the ARM
processor changes into SVC mode and stores the address of the next location in R14_svc
— so the User mode value of R14 is not corrupted. The ARM then goes to the SWI
routine handler via the hardware SWI vector containing its address.

4-382

Appendix A: ARM assembler

Thefirst thing that this routine doesisto discover which SWI was requested. It findsthis

out by using the location addressed by (R14_svc — 4) to read the current SWI instruction.
The opcode for a SWI is 32 bits long; 4 bits identify the opcode as being for a SWI, 4
bits hold all the condition codes and the bottom 24 bits identify which SWI it is. Hence
224 different SWI routines can be distinguished.

When it has found which particular SWI it is, the routine executes the appropriate code
to deal with it and then returns by placing the contents of R14_svc back into the PC,
which restores the mode the caller was in.

This means that R14_svc will be corrupted if you execute a SWI in SVC mode — which
can have disastrous consequences unless you take precautions.

The most common way to call this instruction is by using the SWI name, and letting the
assembler translate this to a SWI number. The BBC BASIC assembler can do this
translation directly:

SWNE "OS_WiteC

See the chapter entitlégh introduction to SWIs on page 1-23 for a full description of
how RISC OS handles SWiIs, and the index of SWIs for a full list of the operating
system SWis.

4-383

The instruction set

4-384

87

Introduction

Appendix B: Warnings on the use
of ARM assembler

The ARM processor family uses Reduced Instruction Set (RISC) techniquesto
maximise performance; as such, the instruction set allows some instructions and code
sequences to be constructed that will give rise to unexpected (and potentially erroneous)
results. These cases must be avoided by all machine code writers and generators if
correct program operation across the whole range of ARM processors is to be obtained.

In order to be upwards compatible with future versions of the ARM processor family
never use any of the undefined instruction formats:

o those showninthe Acorn RISC Machine family Data Manual as ‘Undefined’ which
the processor traps;

« those which are not shown in the manual and which don't trap (for example, a
Multiply instruction where bit 5 or 6 of the instruction is set).

In addition the ‘NV’ (never executed) instruction class should not be used (it is
recommended that the instruction ‘MOV RO,R0’ be used as a general purpose no-op).

This chapter lists the instructions and code sequences to be avoidet ot dby
recommended that you take the time to familiarise yourself with these cases because
some will only fail under particular circumstances which may not arise during testing.

For more details on the ARM chip see #keorn RISC Machine family Data Manual.
VLSI Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ, USA: ISBN
0-13-781618-9.

4-385

Restrictions to the ARM instruction set

Restrictions to the ARM instruction set
There are three main reasons for restricting the use of certain parts of the instruction set:

Dangerousinstructions

Such instructions can cause a program to fail unexpectedly, for example:
LDM R15, R/ j st

uses PC+PSR as the base and so can cause an unexpected address exception.

Uselessinstructions
It is better to reserve the instruction space occupied by existing ‘useless’
instructions for instruction expansion in future processors. For example:
MUL R15, Rm Rs
only serves to scramble the PSR.
This category also includes ineffective instructions, such as a PC relative LDC/STC
with writeback; the PC cannot be written back in these instructions, so the
writeback bit is ineffective (and an attempt to use it should be flagged as an error).
Note: LDC/STC are instructions to load/store a coprocessor register from/to
memory; since they are not supported by the BASIC assembler, they were not
described imppendix A: ARM assembler.

Instructionswith undesir able side-effects

It is hard to guarantee the side-effects of instructions across different processors. If,
for example, the following is used:

LDR Rd, [R15, #expressi on] !
the PC writeback will produce different results on different types of processor.

Instructions and code sequences to avoid

The instructions and code sequences are split into a number of categories. Each category
starts with an indication of which of the two main ARM variants (ARM2, ARM3) it

applies to, and is followed by a recommendation or warning. The text then goes on to
explain the conditions in more detail and to supply examples where appropriate.

Unless a program is being targespdcifically for a single version of the ARM
processor family, all of these recommendations should be adhered to.

TSTP/TEQP/CMPP/CMNP: Changing mode
Applicability: ARM2

4-386

When the processor’'s mode is changed by altering the mode bits in the PSR using a
data processing operation, care must be taken not to access a banked register
(R8-R14) in the following instruction. Accesses to the unbanked registers (R0-R7,
R15) are safe.

Appendix B: Warnings on the use of ARM assembler

The following instructions are affected, but note that mode changes can only be made
when the processor isin anon-user mode:

TSTP Rn, Qp2
TEQP Rn, Q2
MPP Rn, Qp2
CM\P Rn, (o2

These are the only operations that change all the bits in the PSR (including the mode
bits) without affecting the PC (thereby forcing a pipeline refill during which time the
register bank select logic settles).

The following examples assume the processor starts in Supervisor mode;
a) TEQP PC, #0

MOV RO, RO Safe: NOP added between mode change and

ADD RO, R1, R13_usr access to a banked register (R13_usr)
b) TEQP PC, #0

ADD RO, R1, R2 Safe: No access made to a banked register

c) TEQP PC, #0
ADD RO, R1, R13_usr Fails: Datanot read from Register R13_ust!

The safest default is alwaysto add aNOP (e.g. MOV RO,R0) after a mode changing
instruction; this will guarantee correct operation regardless of the code sequence
following it.

LDM/STM: Forcing transfer of the user bank (Part 1)

Applicability: ARM2, ARM3
Do not use writeback when forcing user bank transfer in LDM/STM.

For STM instructions the S bit is redundant as the PSR is always stored with the PC
whenever R15isin the transfer list. In user mode programs the S bit isignored, but in
other modes it has a second interpretation; S=1 is used to force transfers to take values
from the user register bank instead of from the current register bank. Thisis useful for
saving the user state on process switches.

Similarly, in LDM instructions the S bit is redundant if R15 isnot in the transfer list. In
user mode programs, the S bit isignored, but in non-usermode programs where R15 is
not in the transfer list, S=1 is used to force loaded values to go to the user registers
instead of the current register bank.

In both cases where the processor isin anon-user mode and transfer to or from the user

bank is forced by setting the S bit, writeback of the base will aso be to the user bank

though the base will be fetched from the current bank. Therefore don't use writeback
when forcing user bank transfer in LDM/STM.

4-387

Instructions and code sequences to avoid

The following examples assume the processor to bein anon-user mode and Rl / st not
toinclude R15:

STMkx Rn!, Rl i st Safe: Storing non-user registers with write
back to the non-user base register

LDWkx Rn!, Rl i st Safe: Loading non-user registers with write
back to the non-user base register

STMkx Rn, RIjst™ Safe: Storing user registers, but no base
write-back

STMkx Rn!, Rl ist? Fails. Base fetched from non-user register,

but written back into user register

LDWkx Rn!, Rl jst™ Fails: Base fetched from non-user register,
but written back into user register

LDM: Forcing transfer of the user bank (Part 2)

Applicability: ARM2, ARM3
When loading user bank registers with an LDM in a non-user mode, care must be
taken not to access a banked register (R8-R14) in the following instruction.
Accesses to the unbanked registers (R0-R7,R15) are safe.

Because the register bank switches from user mode to non-user mode during the first
cycle of theinstruction followingan LDM Rn, R/ i st an attempt to access a banked
register in that cycle may cause the wrong register to be accessed.

The following examples assume the processor to bein anon-user mode and Rl /i st not
toinclude R15:

LDM Rn R jst?

ADD RO, R1, R2 Safe: Access to unbanked registers after
LDM~”

LDM Rn, R j st”

MOV RO, RO Safe: NOP inserted before banked register

ADD RO, R1, R13_svc used following an LDM”

LDM Rn, R j st”

ADD RO, R1, R13_svc Fails: Accessing abanked register
immediately after an LDM” returns the
wrong data

4-388

Appendix B: Warnings on the use of ARM assembler

ADR Rl14_svc, savebl ock

LDM A R14_svc, {RO - R14_usr}”

LDR R14_svc, [Rl14_svc, #15*4] Fails: Banked base register

MOVS PC, R14_svc (R14 svc) used immediately
after the LDM”

ADR R14_svc, savebl ock
LDM A R14_svc, {RO - Rl14_usr}”®

MOV RO, RO Safe: NOP inserted before
LDR Rl14_svc, [R14_svc, #15*4] banked register
MOVS PC, Rl14_svc (R14_svc) used

Note: The ARM2 and ARM 3 processors usually give the expected result, but cannot be
guaranteed to do so under all circumstances, therefore this code sequence should be
avoided in future.

SWIl/Undefined Instruction trap interaction
Applicability: ARM2
Care must be taken when writing an undefined instruction handler to alow for an

unexpected call from a SWI instruction. The erroneous SWI call should be
intercepted and redirected to the software interrupt handler.

The implementation of the CDP instruction on ARM2 may cause — under certain

circumstances — a Software Interrupt (SWI) to take the Undefined Instruction trap if the

SWI was the next instruction after the CDP. For example:

SIN FO
SW &l11 Fails: ARM2 may take the undefined instruction
trap instead of software interrupt trap.

All Undefined Instruction handler code should check the failed instruction to see if it is
a SWI, and if so pass it over to the software interrupt handler by branching to the SWiI

hardware vector at address 8.

Note: CDP is a Coprocessor Data Operation instruction; since it is not
supported by the BASIC assembiler, it was not describAdpendix A: ARM
assembler.

Undefined instruction/Prefetch abort trap interaction
Applicability: ARM2, ARM3

Care must be taken when writing the Prefetch abort trap handler to allow for an

unexpected call due to an undefined instruction.

4-389

Instructions and code sequences to avoid

4-390

When an undefined instruction is fetched from the last word of a page, where the next
page is absent from memory, the undefined instruction will cause the undefined
instruction trap to be taken, and the following (aborted) instructionswill cause a prefetch
abort trap. One might expect the undefined instruction trap to be taken first, then the
return to the succeeding code will cause the abort trap. In fact the prefetch abort has a
higher priority than the undefined instruction trap, so the prefetch abort handler is
entered before the undefined instruction trap, indicating a fault at the address of the
undefined instruction (which isin apage which is actually present). A normal return
from the prefetch abort handler (after loading the absent page) will cause the undefined
instruction to execute and take the trap correctly. However the indicated pageis aready
present, so the prefetch abort handler may simply return control, causing an infinite loop
to be entered.

Therefore, the prefetch abort handler should check whether the indicated faultisina
page which is actually present, and if so it should suspect the above condition and pass
control to the undefined instruction handler. This will restore the expected sequential
nature of the execution sequence. A normal return from the undefined instruction
handler will cause the next instruction to be fetched (which will abort), the prefetch
abort handler will be re-entered (with an address pointing to the absent page), and
execution can proceed normally.

Single instructions to avoid

Applicability: ARM2, ARM3
The following single instructions and code sequences should be avoided in writing
any ARM code.

Any instruction that uses the ‘NV’ condition flag

Avoid using the NV (execute never) condition code;
opcodeNV . ..

i.e. any operation where { cond} =NV

By avoiding the use of the ‘NV’ condition codeé®®2nstructions become free for future
expansion.

Note: It is recommended that the instructMV RO, RO be used as a general purpose
NOP.

Data processing

Avoid using R15 in the Rs position of a data processing instruction:
MOV| WN{ cond}{S} Rd, Rm shi ft nane R15
CWP| CWN| TEQ TST{ cond} {P} Rn, Rm shi ft nane R15

Appendix B: Warnings on the use of ARM assembler

ADC| ADD| SBC. .. | ECR{ cond}{S} Rd, Rn, shi ftnane R15
Shifting aregister by an amount dependent upon the code position should be avoided.

Multiply and multiply-accumulate

Do not specify R15 as the destination register as only the PSR will be affected by the
result of the operation:

MUL{ cond}{S} R15, Rm Rs
M.A{ cond} {S} R15, Rm Rs, Rn

Do not use the same register in the Rd and Rm positions, as the result of the operation
will beincorrect:

MUL{ cond}{S} Rd, Rd, Rs
M.A{ cond}{S} Rd, Rd, Rs
Single data transfer

Do not use a PC relative load or store with base writeback as the effects may vary in
future processors:

LDR| STRf{ cond}{B}{T} Rd, [RLl5, #expression]!
LDR| STR{ cond}{B}{T} Rd,[R15, {-}Rny, shift}]!

LDR| STR{ cond}{B}{T} Rd,[R15], #expressi on
LDR| STR{ cond}{B}{T} Rd,[R15],{-}Rny, shift}

Note: It is safe to use pre-indexed PC relative loads and stores without base writeback.

Avoid using R15 asthe register offset (Rm) in single datatransfers as the val ue used will
be PC+PSR which can lead to address exceptions:

LDR| STR{ cond} {B}{T} Rd,[Rn, {-}R15{, shift}]{!}
LDR| STR{ cond} {B}{T} Rd,[Rn], {- }R15{, shift}

A byteload or store operation on R15 must not be specified, asR15 containsthe PC, and
should always be treated as a 32 bit quantity:

LDR| STR{ cond}B{T} R15, Address

A post-indexed LDRI|STR where Rm=Rn must not be used (this instruction is very
difficult for the abort handler to unwind when late aborts are configured — which do not
prevent base writeback):

LDR| STR{ cond} {B}{T} Rd,[Rn], {-}Rn{, shift}

Do not use the same register in the Rd and Rm positions of an LDR which specifies (or
implies) base writeback; such an instruction is ambiguous, as it is not clear whether the
end value in the register should be the loaded data or the updated base:

4-391

Instructions and code sequences to avoid

4-392

LDR{ cond} {B}{T} Rn,[Rn, #expressi on]!
LDR{ cond}{B}{T} Rn,[Rn, {-}RM, shift}]!
LDR{ cond} {B}{T} Rn,[Rn], #expressi on
LDR{ cond} {B}{T} Rn,[Rn],{-}RY, shift}

Block datatransfer

Do not specify base writeback when forcing user mode block data transfer as the
writeback may target the wrong register:

STM cond}<FD| ED. .. | DB> Rn!, Rl i st"
LDM cond}<FD| ED. .. | DB> Rn!, Rl j st"

where Rl i st does not include R15.
Note: Theinstruction:

LDW cond}<FD| ED. .. | DB> Rn!, <Rl i st, R15>"
does not force user mode data transfer, and can be used safely.

Do not perform a PC relative block datatransfer, as the PC+PSR is used to form the base
address which can lead to address exceptions:

LDM STM cond}<FD| ED. .. | DB> R15{!}, Rlist{"}

Single data swap

Do not perform a PC relative swap as its behaviour may changein the future:
SWP{ cond} {B} Rd, Rm [R15]

Avoid specifying R15 as the source or destination register:

SWP{ cond} {B} R15, Rm [Rn]

SWP{ cond} {B} Rd, R15, [Rn]

Note: SWPis a Single Data Swap instruction, typically used to implement

semaphores, and introduced in the ARM3; since it is hot supported by the

BASIC assembler, it was not described in Appendix A: ARM assembler.
Coprocessor datatransfers

When performing a PC relative coprocessor datatransfer, writeback to R15is prevented
so the W bit should not be set:

LDC| STC{ cond}{L} CP#, CRd, [R15]!
LDC| STC{ cond}{L} CP#, CRd, [R1l5, #expressi on]!
LDC| STC{ cond}{L} CP#, CRd, [R15] #expressi on!

Appendix B: Warnings on the use of ARM assembler

Undefined instructions

ARM?2 has two undefined instructions, and ARM3 has only one (the other ARM2
undefined instruction has been defined as the Single data swap operation).

Undefined instructions should not be used in programs, asthey may be defined as a new
operation in future ARM variants.

Register access after an in-line mode change

Care must be taken not to access a banked register (R8-R14) in the cycle following an
in-line mode change. Thus the following code sequences should be avoided:

1 TSTP| TEQP| CMPP| CMNP{ cond} Rn, p2
2 any instruction that uses R8-R14 in itsfirst cycle.

Register access after an LDM that forces user mode data transfer

The banked registers (R8-R14) should not be accessed in the cycleimmediately after an
LDM that forces user mode data transfer. Thus the following code sequence should be
avoided:

1 LDWcond}<FD ED...|DB> Rn, Rlist"
where Rl i st does not include R15

2 any instruction that uses R8-R14 in itsfirst cycle.

Other points to note

This section highlights some obscure cases of ARM operation which should be bornein
mind when writing code.

Useof R15

Applicability: ARM2, ARM3
Warning: When the PC is used as a destination, operand, base or shift register,
different resultswill be obtained depending on theinstruction and the exact usage of
R15.

Full details of the value derived from or written into R15+PSR for each instruction class
is given in the Acorn RISC Machine family Data Manual. Care must be taken when
using R15 because small changes in the instruction can yield significantly different
results. For example, consider data operations of the type:-

opcode{cond}{S} Rd, Rn, Rm
or opcode{cond}{S} Rd, Rn, Rm shi ftnane Rs

4-393

Instructions and code sequences to avoid

4-394

« When R15 isused in the Rm position, it will give the value of the PC together with
the PSR flags.

+« When R15isused in the Rn or Rs positions, it will give the value of the PC without
the PSR flags (PSR bits replaced by zeros).

MOV RO, #0
ORR R1, RO, R15 ; R1:=PC+PSR (bits 31:26,1:0 reflect PSR flags)
ORR R2, R15, RO ; R2:=PC (bits 31:26,1:0 set to zero)

Note: Therelevant instruction description in the ARM Acorn RISC Machinefamily Data
Manual should be consulted for full details of the behaviour of R15.

STM: Inclusion of thebasein theregister list

Applicability: ARM2, ARM3
Warning: In the case of a STM with writeback that includes the base register in the
register list, the value of the base register stored depends upon its position in the
register list.
During an STM, thefirst register is written out at the start of the second cycle of the
instruction. When writeback is specified, the base is written back at the end of the
second cycle. An STM which includes storing the base, with the base asthe first register
to be stored, will therefore store the unchanged value, whereas with the base second or
later in the transfer order, it will store the modified value.

For example:

MOV R5, #&1000
STM A R5!, { R5- R6} ; Stores value of R5=& 1000

MOV R5, #&1000
STM A R5!, { R4- R5} ; Stores value of R5=& 1008

MUL/MLA: Register restrictions
Applicability: ARM2, ARM3

Given MJL Rd, Rm Rs
or M_A Rd, Rm Rs, Rn
Then Rd & Rm must be different registers

Rd must not be R15

Due to the way the Booth’s algorithm has been implemented, certain combinations of
operand registers should be avoided. (The assembler will issue a warning if these
restrictions are overlooked.)

The destination register (Rd) should not be the same as the Rm operand register, as Rd is
used to hold intermediate values and Rm is used repeatedly during the multiply. A MUL
will give a zero result if Rm=Rd, and a MLA will give a meaningless result.

Appendix B: Warnings on the use of ARM assembler

The destination register (Rd) should also not be R15. R15 is protected from modification
by these instructions, so the instruction will have no effect, except that it will put
meaningless values in the PSR flagsif the Shit is set.

All other register combinations will give correct results, and Rd, Rn and Rs may usethe
same register when required.

LDM/STM: Address Exceptions

Applicability: ARM2, ARM3
Warning: Illegal addresses formed during aLDM or STM operation will not cause
an address exception.

Only the address of the first transfer of aLDM or STM is checked for an address
exception; if subsequent addresses over-flow or under-flow into illegal address space
they will be truncated to 26 bits but will not cause an address exception trap.

The following examples assume the processor isin a non-user mode and MEMC is
being accessed:

MOV RO, #&04000000 ; R0=& 04000000
STM A RO, {R1- R2} ; Address exception reported
(base address illegal)

MOV RO, #&04000000
SUB RO, RO, #4 ; RO=& 03FFFFFC
STM A RO, {R1- R2} ; No address exception reported
. (base addresslegal)
; code will overwrite data at address & 00000000

Note: The exact behaviour of the system depends upon the memory manager to which
the processor is attached; in some cases, the wraparound may be detected and the
instruction aborted.

LDC/STC: Address Exceptions

Applicability: ARM2, ARM3
Warning: lllegal addressesformed duringaL DC or STC operation will not cause an
address exception (affects LDF/STF).

The coprocessor data transfer operations act like STM and LDM with the processor
generating the addresses and the coprocessor supplying/reading the data. Aswith
LDM/STM, only the address of the first transfer of aLDC or STC is checked for an
address exception; if subsequent addresses over-flow or under-flow into illegal address
space they will be truncated to 26 bits but will not cause an address exception trap.

Note that the floating point LDF/STF instructions are forms of LDC and STC.

4-395

Instructions and code sequences to avoid

The following examples assume the processor isin anon-user mode and MEMC is
being accessed:

MOV RO, #&04000000 ; RO=& 04000000
STC CP1, CRO, [RO] ; Address exception reported
(base addressiillegal)

MOV RO, #&04000000
SUB RO, RO, #4 ; RO=& 03FFFFFC
STFD FO, [RO] ; No address exception reported
. (base addresslegal)
; code will overwrite data at address & 00000000

Note: The exact behaviour of the system depends upon the memory manager to which
the processor is attached; in some cases, the wraparound may be detected and the
instruction aborted.

LDC: Datatransfersto a coprocessor fetch more data than expected

Applicability: ARM3
Datato be transferred to a coprocessor with the LDC instruction should never be
placed in the last word of an addressable chunk of memory, nor in the word of
memory immediately preceding a read-sensitive memory location.

Due to the pipelining introduced into the ARM 3 coprocessor interface, an LDC
operation will cause one extraword of datato be fetched from the internal cache or
external memory by ARM3 and then discarded; if the extra datais fetched from an area
of external memory marked as cacheable, awholeline of datawill befetched and placed
in the cache.

4-396

Appendix B: Warnings on the use of ARM assembler

A particular casein point isthat an LDC whose data ends at the last word of a memory
page will load and then discard the first word (and hence the first cache line) of the next
page. A minor effect of thisisthat it may occasionally cause an unnecessary page swap
in avirtual memory system. The major effect of it isthat (whether in avirtual memory
system or not), the data for an LDC should never be placed in the last word of an
addressable chunk of memory: the LDC will attempt to read the immediately following
non-existent location and thus produce a memory fault.

The following example assumes the processor isin a non-user mode, FPU hardware is
attached and MEMC is being accessed:

MOV R13, #&03000000 ; R13=Addressof I/O space
STFD FO, [R13, #-8]! ; Store F.P. register O at top of physical memory
. (two words of data transferred)
LDFD F1,[R13], #8 ; Load F.P. register 1 from top of physical
; memory, but three words of dataare
; transferred, and the third access will read
; from 1/O space which may be read sensitive

Static ARM problems

Thestatic ARM isavariant of the ARM processor designed for low power consumption,
that is built using static CMOS technology. (The difference between it and the standard
ARM issimilar to that between SRAM and DRAM.)

The static ARM exhibits different behaviour to ARM2 and ARM 3 when executing a PC
relative LDR with base writeback. This class of instruction has very limited application,
so the discrepancy should not be a problem, but if you wish to use any of the following
instructions in your code you are advised to contact Acorn Computers.

LDR Rd, [PC, #expressi on] !
LDR Rd, [PC], #expressi on
LDR Rd, [PC, {-}RM, shift}]!
LDR Rd, [PC],{-} R, shift}

Note: A PC relative LDR without writeback works exactly as expected.

Provided that thisinstruction classisunused, it islikely that writeback to the PCon LDR
and STR will be disabled completely in the future. The fewer incidental ways there are
to modify the PC the better.

Unexpected Static ARM2 behaviour when executing a PC relative LDR with
writeback

The instructions affected are:-
« LDR Rd, [PC, #expr essi on]!

4-397

4-398

« LDR Rd, [PC], #expressi on

Case 1: LDR Rd,[PC #expression]!

Expected result: Rd ~ (PC+8+expression)
PC — PC+8+expression
...S0 execution continues from PC+8+expression

Actual ARM2 resullt: Rd « Rd {no change}
PC ~ PC+8+expression+4
...S0 execution continues from PC+12+expression

Case 2: LDR Rd,[PC] #expression

Expected result: Rd —~ (PC+8)
PC — PC+8+expression
...S0 execution continues from PC+8+expression

Actual ARM2 resullt: Rd ~ Rd {no change}
PC ~ PC+8+expression+4
...S0 execution continues from PC+12+expression

88 Appendix C: ARM procedure call
standard

This appendix relates to the implementation of compiler code-generators and language
run-time library kernels for the Acorn RISC Machine (ARM) but is also a useful
reference when interworking assembly language with high level language code.

The reader should be familiar with the ARM’s instruction set, floating-point instruction
set and assembler syntax before attempting to use this information to implement a
code-generator. In order to write a run-time kernel for a language implementation,
additional information specific to the relevant ARM operating system will be needed
(some information is given in the sections describing the standard register bindings for
this procedure-call standard).

The main topics covered in this appendix are the procedure call and stack disciplines.
These disciplines are observed by Acorn’s C language implementation for the ARM
and, eventually, will be observed by other high level language compilers too. Because C
is the first-choice implementation language for RISC OS applications and the
implementation language of Acorn’s UNIX product RISC iX, the utility of a new
language implementation for the ARM will be related to its compatibility with Acorn’s
implementation of C.

At the end of this appendix are several examples of the usage of this standard, together
with suggestions for generating effective code for the ARM.

The purpose of APCS

The ARM Procedure Call Standard is a set of rules, designed:

« tofacilitate calls between program fragments compiled from different source
languages (eg to make subroutine libraries accessible to all compiled languages)

« to give compilers a chance to optimise procedure call, procedure entry and
procedure exit (following the reduced instruction set philosophy of the ARM). This
standard defines the use of registers, the passing of arguments at an external
procedure call, and the format of a data structure that can be used by stack
backtracing programs to reconstruct a sequence of outstanding calls. It does so in
terms ofabstract register names. The binding of some register names to register
numbers and the precise meaning of some aspects of the standard are somewhat
dependent on the host operating system and are described in separate sections.

4-399

Design criteria

Formally, this standard only defines what happens when an external procedure call
occurs. Language implementors may choose to use other mechanisms for internal calls
and are not required to follow the register conventions described in this appendix except
at theinstant of an external call or return. However, other system-specific invariants may
have to be maintained if it is required, for example, to deliver reliably an asynchronous
interrupt (eg aSl G NT) or give a stack backtrace upon an abort (eg when dereferencing
an invalid pointer). Moreis said on this subject in later sections.

Design criteria

This procedure cal standard was defined after a great deal of experimentation,
measurement, and study of other architectures. It is believed to be the best compromise
between the following important requirements:

Procedure call must be extremely fast.

The call sequence must be as compact as possible. (In typical compiled code, calls
outnumber entries by afactor in the range 2:1t0 5:1.)

Extensible stacks and multiple stacks must be accommodated. (The standard
permits a stack to be extended in a non-contiguous manner, in stack chunks. The
size of the stack does not have to be fixed when it is created, avoiding afixed
partition of the available data space between stack and heap. The same mechanism
supports multiple stacks for multiple threads of control.)

The standard should encourage the production of re-entrant programs, with writable
data separated from code.

The standard must support variation of the procedure call sequence, other than by
conventional return from procedure (eg in support off ©@sgj np, Pascal’s

got o- out - of - bl ock, Modula-2+'s exceptions, UNIX’s signals, etc) and
tracing of the stack by debuggers and run-time error handlers. Enough is defined
about the stack’s structure to ensure that implementations of these are possible
(within limits discussed later).

The Procedure Call Standard

This section defines the standard.

Register names

The ARM has 16 visible general registers and 8 floating-point registers. In interrupt
modes some general registers are shadowed and not all floating-point operations are
available, depending on how the floating-point operations are implemented.

4-400

Appendix C: ARM procedure call standard

This standard is written in terms of the register names defined in this section. The
binding of certain register names (the call frame registers) to register numbersis
discussed separately. We do this so that:

« Diverseneeds can be more easily accommodated, as can conflicting historical usage
of register numbers, yet the underlying structure of the procedure call standard — on
which compilers depend critically — remains fixed.

« Run-time support code written in assembly language can be made portable between
different register bindings, if it obeys the rules given in the section eriidéaed
bindings of the procedure call standard on page 4-409.

The register names and fixed bindings are given immediately below.

General Registers

First, the four argument registers:

al RN O ; argunment 1/integer result
a2 RN 1 ;oargunment 2

a3 RN 2 ; argunment 3

a4 RN 3 ; argunent 4

Then the six ‘variable’ registers:

vli RN 4 ; register variable
v2 RN 5 ; register variable
v3 RN 6 ; register variable
vi RN 7 ; register variable
vb RN 8 ; register variable
ve RN 9 ; register variable

Then the call-frame registers, the bindings of which vary (see the section entitled
Defined bindings of the procedure call standard on page 4-409 for details):

sl ; stack limt / stack chunk handl e

fp ; frame pointer

ip ; tenporary workspace, used in
procedure entry

sp RN 13 ; lower end of current stack frane

Finally,| r andpc, which are determined by the ARM’s hardware:

Ir RN 14 ; link address on calls/tenporary workspace
pc RN 15 ; program counter and processor status

In the obsolete APCS-A register bindings described bedpvis bound ta 12; in all
other APCS bindingsp is bound ta 13.

4-401

The Procedure Call Standard

Notes

Literal register names are givenin lower case, egv1l, sp, | r. Inthetext that follows,
symbolic values denoting ‘some register’ or ‘'some offset’ are given in upper c&ge, eg
R+N.

References to ‘the stack’ denoteddyyassume a stack that grows from high memory to
low memory, withs p pointing at the top or front (ie lowest addressed word) of the stack.

At the instant of an external procedure call there must be nothing of value to the caller
stored below the current stack pointer, betwserand the (possibly implicit, possibly
explicit) stack (chunk) limit. Whether there is a single stack chunk or multiple chunks,
an explicit stack limit (irs|) or an implicit stack limit, is determined by the register
bindings and conventions of the target operating system.

Here and in the text that follows, for any regifethe phrase ‘iR refers to the
contents oR; the phrase ‘dtR] "or ‘at[R, #N] ' refers to the word pointed at R/or
R+N, in line with ARM assembly language notation.

Floating-point Registers

The floating-point registers are divided into two sets, analogous to the saibsats

and vl-v6 of the general registers. RegistersfO—f3 need not be preserved by acalled
procedure; fO is used as the floating-point result register. In certain restricted
circumstances (noted below), fO—f3 may be used to hold the first four floating-point
arguments. Registersf4—f7 , the so called ‘variable’ registers, must be preserved by
callees.

The floating-point registers are:

fo FN 0 ; floating point result (or 1st FP argunent)

fl FN 1 ; floating point scratch register (or 2nd FP arg)
f2 FN 2 ; floating point scratch register (or 3rd FP arg)
f3 FN 3 ; floating point scratch register (or 4th FP arg)
fa FN 4 ; floating point preserved register

f5 FN 5 ; floating point preserved register

fé FN 6 ; floating point preserved register

f7 FN 7 ; floating point preserved register

Data representation and argument passing

The APCS is defined in terms of N Q) word-sized arguments being passed from the
caller to the callee, and a single word or floating-point result passed back by the callee.
The standard does not describe the layout in store of records, arrays and so forth, used by
ARM-targeted compilers for C, Pascal, Fortran-77, and so on. In other words, the
mapping from language-level objects to APCS words is defined by each language’s

4-402

Appendix C: ARM procedure call standard

implementation, not by APCS, and, indeed, thereis no formal reason why two
implementations of, say, Pascal for the ARM should not use different mappings and,
hence, not be cross-callable.

Obvioudly, it would be very unhelpful for alanguage implementor to stand by this
formal position and implementors are strongly encouraged to adopt not just the letter of
APCS but also the obviously natural mappings of source language objects into argument
words. Strong hints are given about thisin later sections which discuss (some) language
specifics.

Register usage and argument passing to external procedures

Control Arrival

We consider the passing of N (= 0) actual argument words to a procedure which expects
to receive either exactly N argument words or a variable number V (= 1) of argument
words (it is assumed that there is at |east one argument word which indicatesin a
language-implementati on-dependent manner how many actual argument words there
are: for example, by using aformat string argument, a count argument, or an
argument-list terminator).

At the instant when control arrives at the target procedure, the following shall be true
(for any M, if astatement is made about argM, and M > N, the statement can be
ignored):

argl is in al
arg2 is in a2
arg3 is in a3
arg4d is in a4
for all I >=5, argl is at [sp, #4*(1-5)]

f p contains O or points to a stack backtrace structure (as described in the next section).
Thevaluesinsp, sl , f p areal multiples of four.

| r containsthe pc+psw value that should be restored intor 15 on exit from the
procedure. Thisis known asthe return link value for this procedure call.

pc contains the entry address of the target procedure.

Now, let us call the lower limit to which sp may point in this stack chunk SP_LWM
(Stack-Pointer Low Water Mark). Remember, it is unspecified whether thereis one stack
chunk or many, and whether SP_LVWMisimplicit, or explicitly derived from sl ; these
are binding-specific details. Then:

Space between sp and SP_LVWMshall be (or shall be on demand) readable, writable
memory which can be used by the called procedure as temporary workspace and
overwritten with any values before the procedure returns.

4-403

The Procedure Call Standard

4-404

sp >= SP_LWM + 256.

This condition guarantees that a stack extension procedure, if used, will have a
reasonable amount — 256 bytes — of work space available to it, probably sufficient to call
two or three procedure invocations further.

Control Return

At the instant when the return link value for a procedure call is placed pcthgsw,
the following statements shall be true:

fp,sp,sl,vl-v6, andf 4-f 7 shall contain the same values as they did at the instant
of the call. If the procedure returns a word-sized reRulyhich is not a floating-point
value, therR shall be imal. If the procedure returns a floating-point reseRR, then

FPR shall be irf 0.

Notes
The definition of control return means that this is a ‘callee saves’ standard.

The requirement to pass a variable number of arguments to a procedure (as in K&R C)
precludes the passing of floating-point arguments in floating-point registers (as the
ARM'’s fixed point registers are disjoint from its floating-point registers). However, if a
callee is defined to accept a fixed number K of arguments and its interface description
declares it to accept exactly K arguments of matching types, then it is permissible to pass
the first four floating-point arguments in floating-point registeds f 3. However,

Acorn’s C compiler for the ARM does not yet exploit this latitude.

The values 0&2- a4,i p, | r andf 1- f 3 are not defined at the instant of return.

Thez, N, CandV flags are set from the corresponding bits in the return link value on
procedure return. For procedures called usiBl instruction, these flag values will be
preserved across the call.

The flag values fronh r at the instant of entry must be restored; it is not sufficient
merely to preserve the flag values across the call.

(Consider a proceduir oc A which has been ‘tail-call optimised’ and does:

CMPS al, #0
MOVLT a2, #255
MOVGE a2, #0

B ProcB

If Pr ocB merely preserves the flags it sees on entry, rather than restoring those
from| r, the wrong flags may be set wh@noc B returns direct t&r oc As caller).

Appendix C: ARM procedure call standard

This standard does not define the values of f p, sp and sl at arbitrary moments during

a procedure’s execution, but only at the instants of (external) call and return. Further
standards and restrictions may apply under particular operating systems, to aid event
handling or debugging. In general, you are strongly encouraged to prepes and

sl , at all times.

The minimum amount of stack defined to be available is not particularly large, and as a
general rule a language implementation should not expect much more, unless the
conventions of the target operating system indicate otherwise. For example, code
generated by the Arthur/RISC OS C compiler is able, if there is inadequate local
workspace, to allocate more stack space from the C heap before continuing. Any
language unable to do this may have its interaction with C impairedsTtaintains a

stack chunk handle is important in achieving this. (See the section ebDtfiedd

bindings of the procedure call standard on page 4-409 for further details).

The statements abosip andSP_LWMare designed to optimise the testing of the one
against the other. For example, in the RISC OS user-mode binding of APCS,
containsSL_LWw\i+512, allowing a procedure’s entry sequence to include something
like:

CWP sp, sl
BLLT | x$st ack_overfl oy

wherex$st ack_over f | owis a part of the run-time system for the relevant language.
If this test fails, anck$st ack_over f | owis not called, there are at least 512 bytes
free on the stack.

This procedure should only call other procedures vepehas been dropped by 256
bytes or less, guaranteeing that there is enough space for the called procedure’s entry
sequence (and, if needed, the stack extender) to work in.

If 256 bytes are not enough, the entry sequence has te drhogfore comparing it with
sl in order to force stack extension (see later sections on implementation specifics for
details of how the RISC OS C compiler handles this problem).

4-405

The Procedure Call Standard

The stack backtrace data structure

At theinstant of an external procedure call, thevaluein f p is zero or it pointsto a data
structure that gives information about the sequence of outstanding procedure calls. This
structure isin the format shown below:

fp points to here:

Opti ona
val ues

OOoOooOooOoooonodmDd

save mask pointer

return |ink val ue

return sp val ue

fp val ue

saved v6 val ue

saved v5 val ue

saved v4 val ue

saved v3 val ue

saved v2 val ue

saved v1 val ue

saved a4 val ue

saved a3 val ue

saved a2 val ue

saved al val ue

saved f7 val ue

saved f6 val ue

saved f5 val ue

saved f4 val ue

[fp]
[fp,
[fp,
[fp,

three
three
three
three

Figure88.1 Sack backtrace data structure

#- 4]
#- 8]
#-12]

wor ds
wor ds
wor ds
wor ds

This picture shows between four and 26 words of store, with those words higher on the
page being at higher addresses in memory. The presence of any of the optional values
does not imply the presence of any other. The floating-point values are in extended
format and occupy three words each.

4-406

Appendix C: ARM procedure call standard

At theinstant of procedure call, al of the following statements about this structure shall
be true:

Thereturn fp valueis either O or contains a pointer to another stack backtrace data
structure of the same form. Each of these corresponds to an active, outstanding
procedure invocation. The statements listed here are al so true of this next stack
backtrace data structure and, indeed, hold true for each structure in the chain.

The save mask pointer value, when bits 0, 1, 26, 27, 28, 29, 30, 31 have been
cleared, points twelve bytes beyond aword known as the return data save
instruction.

Thereturn data saveinstruction isaword that correspondsto an ARM instruction of
the following form:

STMDB sp!, {[al], [a2], [a3], [a4],

[vi], [v2], [v3], [v4], [v5], [v6],

fp, ip, Ir, pc}
Note the square brackets in the above denote optional parts: thus, there are 12 x
1024 possible values for the return data save instruction, corresponding to the
following bit patterns:

1110 1001 0010 1101 1101 L10XX XXXX XXXX APCS-R, APCS-U
or ! b

1110 1001 0010 1100 1100 11XX XXXX XXXX APCS- A (obsol ete)
Theleast significant 10 bits represent argument and variable registers: if bit N isset,
then register N will be transferred.
Theoptiona partsal, a2, a3, a4,vl,v2,v3,v4,v5 andv6 in thisinstruction
correspond to those optional parts of the stack backtrace data structure that are
present such that: for all M, if vMor aMis present thensoissaved vM val ue or
saved aM val ue, andif vMor aMis absent then soissaved vM val ue or
saved aM val ue. Thisisasif the stack backtrace data structure were formed by
the execution of thisinstruction, following the loading of i p from sp (asisvery
probably the case).

4-407

The Procedure Call Standard

« The sequence of up to four instructions following the return data save instruction

determines whether saved floating-point registers are present in the backtrace
structure. The four optional instructions allowed in this sequence are;

STFE 7, [sp, # 12]! ;
STFE 6, [sp, #-12]! ;
STFE f5, [sp, #-12]! ;
STFE f4, [sp, # 12]! ;

Any or all of theseinstructions may be missing, and any deviation from this order or

1110 1101 0110 1101 0111 0001 0000 0011
1110 1101 0110 1101 0110 0001 0000 0OO11
1110 1101 0110 1101 0101 0001 0000 0O11

1110 1101 0110 1101 0100 0001 0000 0011
!

any other instruction terminates the sequence.
(A historical bug in the C compiler (now fixed) inserted a single arithmetic

instruction between thereturn data save instruction and the first STFE. Some Acorn
software allows for this.)

The bit patterns given are for APCS-R/APCS-U register bindings. In the obsolete

APCS-A bindings, the bit indicated by ! isO.

The optional instructions saving f 4, f 5, f 6 and f 7 correspond to those optional
parts of the stack backtrace data structure that are present such that: for all M, if
STFE f Mispresentthensoissaved f M val ue;if STFE f Misabsent then so

issaved fM val ue.

« Attheinstant when procedure A calls procedure B, the stack backtrace data

structure pointed at by f p contains exactly those elementsv1,v2,v3,v4,v5,v6,
f4,f5,f6,f7,fp,sp andpc which must be restored into the corresponding
ARM registersin order to cause a correct exit from procedure A, albeit with an

incorrect result.

Notes

The following example suggests what the entry and exit sequences for a procedure are
likely to look like (though entry and exit are not defined in terms of these instruction
sequences because that would be too restrictive; a good compiler can often do better

than is suggested here):

entry MoV ip,
STNVDB sp!,
SUB fp,
exit LDVDB fp,

Many apparent idiosyncrasies in the standard may be explained by efforts to make the
entry sequence work smoothly. The example above is neither complete (no stack limit
checking) nor mandatory (making arguments contiguous for C, for instance, requires a

{ar gRegs,

{wor kRegs, fp, sp,

#4
pci”

dightly different entry sequence; and storing ar gRegs on the stack may be

unnecessary).

4-408

wor kRegs, fp, ip, Ir, pc}

Appendix C: ARM procedure call standard

Thewor kRegs registers mentioned above correspond to as many of v1 to v6 asthis
procedure needs in order to work smoothly. At the instant when procedure A calls any

other, those workspace registers not mentioned in As return data save instruction will
contain the values they contained at the insdamas entered. Additionally, the registers

f 4- f 7 not mentioned in the floating-point save sequence following the return data save
instruction will also contain the values they contained at the inAtauais entered.

This standard does not require anything of the values found in the optionalpags

a3, a4 of a stack backtrace data structure. They are likely, if present, to contain the
saved arguments to this procedure call; but this is not required and should not be relied
upon.

Defined bindings of the procedure call standard

APCS-R and APCS-U: The RISC OS and RISC iX PCSs
These bindings of the APCS are used by:
« RISC OS applications running in ARM user-mode
« compiled code for RISC OS modules and handlers running in ARM SVC-mode
o RISC iX applications (which make no usesdf) running in ARM user mode
e RISC iX kernels running in ARM SVC mode.

The call-frame register bindings are:

sl RN 10 ; stack limt / stack chunk handl e
; unused by RISC i X applications

fp RN 11 ; frame pointer

ip RN 12 ; used as tenporary workspace

sp RN 13 ; lower end of current stack frane

Although not formally required by this standard, it is considered good taste for compiled
code to preserve the valuegdf everywhere.

The invariantsp > i p > fp have been preserved, in common with the obsolete
APCS-A (described below), allowing symbolic assembly code (and compiler
code-generators) written in terms of register names to be ported between APCS-R,
APCS-U and APCS-A merely by relabelling the call-frame registers provided:

« When call-frame registers appeaibM LDR, STMandSTR instructions they are
named symbolically, never by register numbers or register ranges.

« No use is made of the ordering of the four call-frame registers (eg in order to
load/savd p orsp from a full register save).

4-409

Defined bindings of the procedure call standard

4-410

APCS-R: Constraintson sl (For RISC OS applications and modules)

In SV C and IRQ modes (collectively called module mode) SL_LWMisimplicitinsp: it
is the next megabyte boundary below sp. Even though the SV C-mode and IRQ-mode
stacks are not extensible, sl still points 512 bytes above a skeleton stack-chunk
descriptor (stored just above the megabyte boundary). Thisis done for compatibility
with use by applications running in ARM user-mode and to facilitate module-mode
stack-overflow detection. In other words:

sl = SL_LWM + 512,

When used in user-mode, the stack is segmented and is extended on demand. Acorn’s
language-independent run-time kernel allows language run-time systems to implement
stack extension in a manner which is compatible with other Acorn langsdgpsints

512 bytes above a full stack-chunk structure and, again:

sl = SL_LWM + 512.

Mode-dependent stack-overflow handling code in the language-independent run-time
kernel faults an overflow in module mode and extends the stack in application mode.
This allows library code, including the run-time kernel, to be shared between all
applications and modules written in C.

In both modes, the value sf must be valid immediately before each externalaral
each return from an external call.

Deallocation of a stack chunk may be performed by intercepting returns from the
procedure that caused it to be allocated. Tail-call optimisation complicates the
relationship, so, in general| is required to be valid immediately before every return
from external call.

APCS-U: Constraintson sl (For RISC iX applications and RISC iX kernels)

In this binding of the APCS the user-mode stack auto-extends on demsindsso
unused and there is no stack-limit checking.

In kernel modesl! is reserved by Acorn.

APCS-A: The obsolete Arthur application PCS

This obsolete binding of the procedure-call standard is used by Arthur applications
running in ARM user-mode. The applicable call-frame register bindings are as follows:

sl RN 13 ; stack Iimt/stack chunk handl e
fp RN 10 ; frame pointer

ip RN 11 ; used as tenporary workspace

sp RN 12 ; lower end of current stack frane

Appendix C: ARM procedure call standard

(Useof r 12 assp, rather than the architecturally more natural r 13, is historical and
predates both Arthur and RISC OS.)

In this binding of the APCS, the stack is segmented and is extended on demand. Acorn’s
language-independent run-time kernel allows language run-time systems to implement
stack extension in a manner which is compatible with other Acorn languages.

The stack limit registegl , points 512 bytes above a stack-chunk descriptor, itself
located at the low-address end of a stack chunk. In other words:

sl = SL_LWM + 512.

The value okl must be valid immediately before each external call and each return
from an external call.

Although not formally required by this standard, it is considered good taste for compiled
code to preserve the valueddf everywhere.

Notes on APCS bindings

Invariantsand APCS-M

In all future supported bindings of APG@$ shall be bound to13. In all supported
bindings of APCS the invariasip > i p > f p shall hold. This means that the only
other possible binding of APCS is APCS-M:

sl RN 12 ; stack limt/stack chunk handl e
fp RN 10 ; franme pointer

ip RN 11 ; used as tenporary workspace

sp RN 13 ; lower end of current stack frame

This binding of APCS is unlikely to be used (by Acorn).

Further Restrictionsin SVC Modeand IRQ Mode

There are some consequences of the ARM’s architecture which, while not formally
acknowledged by the ARM Procedure Call Standard, need to be understood by
implementors of code intended to run in the ARM’s SVC and IRQ modes.

An IRQ corruptg 14_i r g, so IRQ-mode code must run with IRQs off untll4_i r g

has been saved. Acorn’s preferred solution to this problem is to enter and exit IRQ
handlers written in high-level languages via hand-crafted ‘wrappers’ which on entry
saver 14_i r g, change mode to SVC, and enable IRQs and on exit return to the saved
r14_ir g (which also restores IRQ mode and the IRQ-enable state). Thus the handlers
themselves run in SVC mode, avoiding this problem in compiled code.

Both SWiIs and aborts corrupfl4_svc. This means that care has to be taken when
calling SWIs or causing aborts in SVC mode.

4-411

Defined bindings of the procedure call standard

4-412

In high-level languages, SWIs are usually called out of line so it suffices to save and
restorer 14 in the calling veneer around the SWI. If acompiler can generate in-line
SWIs, then it should, of course, also generate code to save and restore r 14 in-line,

around the SWI, unlessit is known that the code will not be executed in SVC mode.

An abort in SVC mode may be symptomatic of afatal error or it may be caused by page
faulting in SV C mode. Acorn expects SV C-mode code to be correct, so these are the
only options. Page faulting can occur because an instruction needs to be fetched from a
missing page (causing a prefetch abort) or because of an attempted data accessto a
missing page (causing adata abort). The latter may occur even if the SVC-mode codeis
not itself paged (consider an unpaged kernel accessing a paged user-space).

A data abort is completely recoverable provided r 14 contains nothing of value at the
instant of the abort. This can be ensured by:

« saving R14 on entry to every procedure and restoring it on exit
« not using R14 as atemporary register in any procedure
« avoiding page faults (stack faults) in procedure entry sequences.

A prefetch abort is harder to recover from and an aborting BL instruction cannot be
recovered, so special action hasto be taken to protect page faulting procedure calls.

For Acorn C, R14 is saved in the second or third instruction of an entry sequence.
Aligning all procedures at addresses which are 0 or 4 modulo 16 ensures that the critical
part of the entry sequence cannot prefetch-abort. A compiler can do this by padding all
code sectionsto amultiple of 16 bytesin length and being careful about the alignment of
procedures within code sections.

Data-aborts early in procedure entry sequences can be avoided by using a software
stack-limit check like that used in APCS-R.

Finally, the recommended way to protect BL instructions from prefetch-abort corruption
isto precedeeach BL by aMOV i p, pc instruction. If the BL faults, the prefetch abort
handler can safely overwriter 14 withi p before resuming execution at the target of the
BL. If the prefetch abort is not caused by a BL then this action is harmless, as R14 has
been corrupted anyway (and, by design, contained nothing of value at any instant a
prefetch abort could occur).

Appendix C: ARM procedure call standard

Examples from Acorn language implementations

Example procedure calls in C
Here is some sample assembly code as it might be produced by the C compiler:

; 0ggg is a function of 2 args that needs one register variable (vl)

9999 MoV ip, sp
STMD sp!, {al, a2, vi, fp, ip, Ir, pc}
SUB fp, ip, #4 ; points at saved PC
CVPS sp, sl
BLLT | x$st ack_over f | ow ; handl er procedure
MoV vi, ... ; use a register variable
BL fiff
MoV ..., vl ; rely onits value after ffff()

Within the body of the procedure, arguments are used from registers, if possible;
otherwise they must be addressed relativetof p. In the two argument case shown above,
arglisat[fp, #-24] andarg2isat[f p, #- 20] . But as discussed below,
arguments are sometimes stacked with positive offsets relative to f p.

Local variables are never addressed offset from f p; they always have positive offsets
relativeto sp. In code that changes sp this means that the offsets used may vary from
place to place in the code. The reason for thisis that it permits the procedure

x$st ack_overf | owto recover by setting sp (and sl) to some new stack segment.
As part of this mechanism, x$st ack_over f | owmay alter memory offset from f p
by negativeamounts, eg [f p, #- 64] and downwards, provided that it adjusts sp to
provide workspace for the called routine.

If the function is going to use more than 256 bytes of stack it must do:

SuB ip, sp, #<ny stack size>
CVPS ip, sl
BLLT | x$st ack_overflow_ 1|

instead of the two-instruction test shown above.

If afunction expects no more than four arguments it can push all of them onto the stack
at the sametime as saving itsold f p and its return address (see the example above);
arguments are then saved contiguously in memory with ar g1 having the lowest
address. A function that expects more than four arguments has code at its head as
follows:

4-413

Examples from Acorn language implementations

4-414

MoV ip, sp

STMFD sp!, {al, a2, a3, a4} ; put argl-4 bel ow stacked args
STMD sp!, {vi1, v2, fp, ip, Ir, pc} ; vl-v6 saved as necessary
SUB fp, ip, #20 ; point at newly created call-franme
CwPS sp, sl

BLLT | x$st ack_over fl ow

LDVMEA fp, {v1, v2, fp, sp, pc}”® ; restore register vars & return

The store of the argument registers shown here is not mandated by APCS and can often
be omitted. It is useful in support of debuggers and run-time trace-back code and
required if the address of an argument is taken.

The entry sequence arranges that arguments (however many there are) lie in consecutive
words of memory and that on return sp is always the lowest address on the stack that
still contains useful data.

The time taken for acall, enter and return, with no arguments and no registers saved, is
about 22 S-cycles.

Although not required by this standard, the valuesin f p, sp and sl are maintained
while executing code produced by the C compiler. This makes it much easier to debug
compiled code.

Multi-word results other than double precision realsin C programs are represented as an
implicit first argument to the call, which points to where the caller would like the result
placed. It isthefirst, rather than the last, so that it works with a C function that is not
given enough arguments.

Procedure calls in other language implementations

Assembler

The procedure call standard is reasonably easy and natural for assembler programmers

to use. The following rules should be followed:

« Call-frame registers should always be referred to explicitly by symbolic name,
never by register number or implicitly as part of aregister range.

« The offsets of the call-frame registers within a register dump should not be wired
into code. Always use a symbolic offset so that you can easily change the register
bindings.

Fortran

The Acorn/TopExpress Arthur/RISC OS Fortran-77 compiler violates the APCSin a
number of ways that preclude inter-working with C, except via assembler veneers. This
may be changed in future releases of the Fortran-77 product.

Appendix C: ARM procedure call standard

Pascal

The Acorn/3L Arthur/RISC OS | SO-Pascal compiler violates the APCS in a number of
ways that preclude inter-working with C, except via assembler veneers. This may be
changed in future releases of the 1SO-Pascal product.

Lisp, BCPL and BASIC

These languages have their own special requirements which make it inappropriate to use
aprocedure call of the form described here. Naturally, all are capable of making external
calls of the given form, through a small amount of assembler ‘glue’ code.

General

Note that there is no requirement specified by the standard concerning the production of
re-entrant code, as this would place an intolerable strain on the conventional
programming practices used in C and Fortran. The behaviour of a procedure in the face
of multiple overlapping invocations is part of the specification of that procedure.

Various lessons

This appendix is not intended as a general guide to the writing of code-generators, but it
is worth highlighting various optimisations that appear particularly relevant to the ARM
and to this standard.

The use of a callee-saving standard, instead of a caller-saving one, reduces the size of
large code images by about 10% (with compilers that do little or no interprocedural
optimisation).

In order to make effective use of the APCS, compilers must compile code a procedure at
a time. Line-at-a-time compilation is insufficient.

The preservation of condition codes over a procedure call is often useful because any
short sequence of instructions (including calls) that forms the body of d $hort
statement can be executed without a branch instruction. For example:

if (a<0) b=foo();
can compile into:

CwP a, #0
BLLT f oo
MOVLT b, al

In the case of keaf orfast procedure — one that calls no other procedures — much of the
standard entry sequence can be omitted. In very small procedures, such as are frequently
used in data abstraction modules, the cost of the procedure can be very small indeed. For
instance, consider:

4-415

Examples from Acorn language implementations

4-416

typedef struct {...; int a;, ...} foo;
int get_a(foo* f) {return(f->a);}

The procedure get _a can compileto just:

LDR al, [al, #aOfset]
MOVS pc, Ir

Thisisalso useful in procedures with a conditiona asthetop level statement, where one
or other arm of the conditional isfast (ie calls no procedures). In this case there is no
need to form a stack frame there. For example, using this, the C program:

int sumiint i)

{
if (i <=1)
return(i);
el se
return(i + sum(i-1));
}

could be compiled into:

sum cowP al, #1 ; try fast case
MOVSLE pc, Ir ; and if appropriate, handl e quickly!
el se, forma stack franme and handle the rest as nornmal code.

MoV ip, sp

STMDB sp!, {vi, fp, ip, Ir, pc}

cawP sp, sl

BLLT overfl ow

MoV vl, al ; register to hold i

SuB al, al, #1 ; set up argunent for call
BL sum ; do the call

ADD al, al, vi ; performthe addition

LDVEA fp, {vl, fp, sp, pc}” ; and return

Thisis only worthwhileif the test can be compiled using only i p, and any spare of
al- a4, as scratch registers. This technique can significantly speed up certain
speed-critical routines, such as read and write character. At the present time, this
optimisation is not performed by the C compiler.

Finaly, it is often worth applying the tail call optimisation, especially to procedures
which need to save no registers. For example, the code fragment:

extern void *mall oc(size_t n)

{

}
is compiled by the C compiler into:

return primtive_all oc(NOTGCABLEBI T, BYTESTOMORDS(n));

Appendix C: ARM procedure call standard

mal | oc ADD al, al, #3 ;1S
MOV a2, al, LSR #2 ; 1S
MOV al, #1073741824 ; 1S
B primtive_alloc i IN+2S = 4S

This avoids saving and restoring the call-frame registers and minimises the cost of
interface ‘sugaring’ procedures. This saves five instructions and, on a 4/8MHz ARM,
reduces the cost of the malloc sugar from 24S to 7S.

4-417

4-418

89

Terminology

Appendix D: Code file formats

This appendix defines three file formats used to store processed code and the format of
debugging data used by debuggers:

e« AOF — Arm Object Format

e ALF - Acorn Library Format

e AIF — RISC OS Application Image Format
e« ASD - ARM Symbolic Debugging Format.

Language processors such as CC and ObjAsm generate processed code output as AOF
files. An ALF file is a collection of AOF files constructed from a set of AOF files by the
LibFile tool. The Link tool accepts a set of AOF and ALF files as input, and by default
produces an executable program file as output in AlF.

Throughout this appendix the terimge, half word, word, andstring are used to mean
the following:

Byte: 8 bits, considered unsigned unless otherwise stated, usually used to store flag bits
or characters.

Half word: 16 bits, or 2 bytes, usually unsigned. The least significant byte has the lowest
address (DEC/Intddyte sex, sometimes callelittle endian). The address of a half word
(ie of its least significant byte) must be divisible by 2.

Word: 32 bits, or 4 bytes, usually used to store a non-negative value. The least significant
byte has the lowest address (DEC/Intel byte sex, sometimes called little endian). The
address of a word (ie of its least significant byte) must be divisible by 4.

Sring: A sequence of bytes terminated by a NUL (0X00) byte. The NUL is part of the
string but is not counted in the string’s length. Strings may be aligned on any byte
boundary.

For emphasis: a word consists of 32 bits, 4-byte aligned; within a word, the least
significant byte has the lowest address. This is DEC/Intel, or little endian, bytesex,
IBM/Motorola byte sex.

4-419

Undefined Fields

Undefined Fields

Fields not explicitly defined by this appendix are implicitly reserved to Acorn. Itis
required that all such fields be zeroed. Acorn may ascribe meaning to such fields at any
time, but will usually do so in a manner which gives no new meaning to zeroes.

Overall structure of AOF and ALF files

An object or library file contains anumber of separate but related pieces of data. In order
to simplify access to these data, and to provide for a degree of extensibility, the object
and library file formats are themselves layered on another format called Chunk File
Format, which provides asimple and efficient means of accessing and updating distinct
chunks of datawithin asinglefile. The object file format defines five chunks:

o header

e« areas

o identification
« symbol table
e dtring table.

The library file format defines four chunks:
o directory

o time-stamp

e version

o data

There may be many data chunksin alibrary.

The minimum size of a piece of datain both formatsis four bytes or one word. Each
word is stored in afilein little-endian format; that is the least significant byte of the
word is stored first.

Chunk file format

A chunk is accessed viaaheader at the start of the file. The header contains the number,
size, location and identity of each chunk in the file. The size of the header may vary
between different chunk files but isfixed for each file. Not al entriesin aheader need be
used, thus limited expansion of the number of chunksis permitted without a wholesale
copy. A chunk file can be copied without knowledge of the contents of the individual
chunks.

4-420

Appendix D: Code file formats

Graphically, the layout of achunk fileis asfollows:

ChunkFileld

maxChunks

numChunks

entryl

entry2

entry "maxChunks"

chunk 1

chunk "numChunks"

3 words

4 words per entry

End of header (3 + 4*MaxChunks) words
Start of data chunks

ChunkFi I el d marksthefile asachunk file. Its value is C3CBC6C5 hex. The

max Chunks field defines the number of the entriesin the header, fixed when thefileis
created. The nunChunks field defines how many chunks are currently used in thefile,
which can vary from 0 to max Chunks. Thevalue of nuntChunks isredundant asit can

be found by scanning the entries.

Each entry in the header comprises four words in the following order:

chunkl d atwo word field identifying what data the chunk file contains

O fset aone word field defining the byte offset within the file of the chunk
(which must be divisible by four); an entry of zero indicates that the
corresponding chunk is unused

si ze aoneword field defining the exact byte size of the chunk (which need
not be amultiple of four).

Thechunkl d field provides a conventional way of identifying what type of dataa
chunk contains. It is split into two parts. The first four characters (in the first word)
contain a universally unique name allocated by a central authority (Acorn). The

4-421

Chunk file format

remaining four characters (in the second word) can be used to identify component
chunks within this universal domain. In each part, the first character of the nameis
stored first in thefile, and so on.

For AOF files, the first part of each chunk’s nam@s _; the second components are
defined later. For ALF files, the first partli$ B_.

4-422

Appendix D: Code file formats

AOF

ARM object format files are output by language processors such as CC and ObjAsm.

Object file format

Each piece of an object fileis stored in a separate, identifiable, chunk. AOF definesfive
chunks as follows:

Chunk Chunk Name
Header OBJ HEAD
Areas OBJ AREA
Identification OBJ IDFN
Symbol Table OBJ SYMT
String Table OBJ STRT

Only theheader and ar eas chunks must be present, but atypical object file will
contain al five of the above chunks.

A feature of chunk file format isthat chunks may appear in any order in the file.
However, language processors which must also generate other object formats — such as
UNIX’s a. out format — should use this flexibility cautiously.

A language translator or other system utility may add additional chunks to an object file,
for example a language-specific symbol table or language-specific debugging data, so it
is conventional to allow space in the chunk header for additional chunks; space for eight
chunks is conventional when the AOF file is produced by a language processor which
generates all five chunks described here.

Theheader chunk should not be confused with the chunk file's header.

Format of the AOF header chunk

The AOF header is logically in two parts, though these appear contiguously in the
header chunk. The first part is of fixed size and describes the contents and nature of the
object file. The second part is variable in length (specified in the fixed part) and is a
sequence dr ea declarations defining the code and data areas within the OBJ_AREA
chunk.

4-423

Object file format

The AOF header chunk has the following format:

Object file type

Version Id

Number of areas

Number of Symbols

Entry Address area

Entry Address Offset 6 words in the fixed part

1st Area Header 5 words per area header

2nd Area Header

(6 + 5*Number of Areas) words in
nth Area Header the AOF header

Object file type
CBE2D080 (hex) marks an object file as being in rel ocatable object format

Version ID

This word encodes the version of AOF to which the object file complies: AOF 1.xx is
denoted by 150 decimal; AOF 2.xx by 200 decimal.

Number of areas

The code and data of the object fileis presented as a number of separate areas, in the
OBJ_AREA chunk, each with a name and some attributes (see below). Each areais
declared in the (variable-length) part of the header which immediately follows the fixed
part. Thevalue of the Nunber of Ar eas field definesthe number of areasin thefile
and conseguently the number of area declarations which follow the fixed part of the
header.

Number of symbols

If the object file contains a symbol table chunk OBJ_SY MT, then thisfield defines the
number of symbolsin the symbol table.

4-424

Appendix D: Code file formats

Entry address area/ entry address offset

One of the areas in an object file may be designated as containing the start address for
any program which islinked to includethisfile. If so, the entry addressis specified asan
<ar ea-i ndex, offset> pair, wherear ea-i ndex isintherange1to Nunber
of Areas, specifying the nth area declared in the area declarations part of the header.
The entry address is defined to be the base address of this area plus of f set .

A vaueof Ofor ar ea- i ndex signifiesthat no program entry addressis defined by this
AOF file.

Format of area headers

The area headers follow the fixed part of the AOF header. Each area header has the
following form:

Area name (offset into string variable)

Zeros AT AL

Area size

Number of relocations

Unused - must be zero 5 words in total

Area name

Each name in an object file is encoded as an offset into the string table, which stored in
the OBJ_STRT chunk. This allows the variable-length characteristics of namesto be
factored out from primary data formats. Each area within an object file must be given a
name which is unique amongst all the areas in that object file.

AL

This byte must be set to 2; all other values are reserved to Acorn.

AT (Area attributes)

Each area has a set of attributes encoded in the AT byte. The least-significant bit of AT
is numbered 0.

Link orders areas in a generated image first by attributes, then by the (case-significant)

lexicographic order of area names, then by position of the containing object modulein

thelink-list. The position in the link-list of an object module loaded from alibrary is not
predictable.

4-425

Object file format

4-426

When ordered by attributes, Read-Only areas precede Read-Write areas which precede
Debug areas; within Read-Only and Read-Write Areas, Code precedes Data which
precedes Zero-Initialised data. Zero-Initialised data may not have the Read-Only
attribute.

Bit 0

This bit must be set to 0.

Bit 1

If this bit is set, the area contains code, otherwise it contains data
Bit 2

Bit 2 specifies that the areais a common block definition.

Bit 3

Bit 3 defines the areato be a (reference to @) common block and precludes the area
having initialising data (see Bit 4, below). In effect, the setting of Bit 3 impliesthe
setting of Bit 4.

Common areas with the same name are overlaid on each other by Link. The Si ze field
of a common definition defines the size of acommon block. All other referencesto this
common block must specify asize which is smaller or equal to the definition size. In a
link step there may be at most one area of the given name with bit 2 set. If none of these
have bit 2 set, the actual size of the common areawill be size of the largest common
block reference (see also the section entitled Linker defined symbols on page 4-433).

Bit 4

This bit specifies that the area has no initialising datain this object file and that the area
contents are missing from the OBJ_AREA chunk. This bit is typically used to denote
large uninitialised data areas. When an uninitialised areaiis included in an image, Link
either includes a read-write area of binary zeroes of appropriate size or maps a
read-write area of appropriate size that will be zeroed at image start-up time. This
attribute is incompatible with the read-only attribute (see the section on Bit 5, below).

Note: Whether or not a zero-initialised areais re-zeroed if the imageisre-enteredisa
property of Link and the relevant image format. The definition of AOF neither requires
nor precludes re-zeroing.

Appendix D: Code file formats

Bit5

This bit specifiesthat the areais read-only. Link groups read-only areas together so that
they may be write protected at run-time, hardware permitting. Code areas and debugging
tables should have this bit set. The setting of this bit isincompatible with the setting of
bit 4.

Bit 6
This bit must be set to 0.
Bit 7

This bit specifies that the area contains symbolic debugging tables. Link groups these
areas together so they can be accessed as a single contiguous chunk at run-time. It is
usual for debugging tablesto be read-only and, therefore, to have bit 5 set too. If bit 7 is
s, bit 1 isignored.

Area size

This field specifies the size of the area in bytes, which must be a multiple of 4. Unless
theNot Initialised bit(bit 4) issetinthe area attributes, there must be this
number of bytes for thisareain the OBJ_AREA chunk.

Number of relocations

This specifies the number of relocation directives which apply to this area.

Format of the areas chunk

The areas chunk (OBJ_AREA) contains the actual areas (code, data, zero- initialised

data, debugging data, etc.) plus any associated relocation information. Its chunkld is
OBJ_AREA. Both an area’s contents and its relocation data must be word-aligned.
Graphically, the layout of the areas chunk is:

Area l

Area 1 relocation

Arean

Area n relocation

4-427

Object file format

An areais simply a sequence of byte values, the order following that of the addressing
rules of the ARM, that isthe least significant byte of aword isfirst. An areaisfollowed
by its associated relocation table (if any). An areais either completely initialised by the
values from the file or not initialised at all (ieitisinitialised to zero in any loaded
program image, as specified by bit 4 of the area attributes).

Relocation directives

4-428

If no relocation is specified, the value of a byte/half word/word in the preceding areais
exactly the value that will appear in the final image.

Bytes and half words may only be relocated by constant values of suitably small size.
They may not be relocated by an area’s base address.

A field may be subject to more than one relocation.

There are 2 types of relocation directive, termed here type-1 and type-2. Type-2
relocation directives occur only in AOF versions 1.50 and later.

Relocation can take two basic formstditive andPCRel ative.

Additive relocation specifies the modification of a byte/half word/word, typically
containing a data value (ie constant or address).

PCRelative relocation always specifies the modification of a branch (or branch with
link) instruction and involves the generation of a program- counter-relative, signed,
24-bit word-displacement.

Additive relocation directives and type-2 PC-relative relocation directives have two
variants:l nt er nal andSynbol .

Additive internal relocation involves adding the allocated base address of an area to the
field to be relocated. With Type-1 internal relocation directives, the value by which a
location is relocated is always the base of the area with which the relocation directive is
associated (the Symbol IDentification field (SID) is ignored). In a type-2 relocation
directive, the SID field specifies the index of the area relative to which relocation is to be
performed. These relocation directives are analogous to the TEXT-, DATA- and
BSS-relative relocation directives found in the a.out object format.

Symbol relocation involves adding the value of the symbol quoted.

A type-1 PCRelative relocation directive always references a symbol. The relocation
offset added to any pre-existing in the instruction is the offset of the target symbol from
the PC current at the instruction making the PCRelative reference. Link takes into
account the fact that the PC is eight bytes beyond that instruction.

In a type-2 PC-relative relocation directive (only in AOF version 1.50 and later) the
offset bits of the instruction are initialised to the offset from the base of the area of the
PC value current at the instruction making the reference — thus the language translator,

Appendix D: Code file formats

not Link, compensates for the difference between the address of the instruction and the
PC value current at it. This variant isintroduced in direct support of compilers that must
also generate UNIX's.aout format.

For a type-2 PC-relative symbol-type relocation directive, the offset added into the
instruction making the PC-relative reference is the offset of the target symbol from the
base of the area containing the instruction. For a type-2, PC-relative, internal relocation
directive, the offset added into the instruction is the offset of the base of the area
identified by the SID field from the base of the area containing the instruction.

Link itself may generate type-2, PC-relative, internal relocation directives during the
process of partially linking a set of object modules.

Format of Type 1 relocation directives
Diagrammatically:

Offset
O |[A|R| FT SID

Offset
Offset is the byte offset in the preceding area of the field to be relocated.

SID

If a symbol is involved in the relocation, this 16-bit field specifies the index within the
symbol table (see below) of the symbol in question.

FT (Field Type)
This 2-bit field (bits 16 — 17) specifies the size of the field to be relocated:

00 byte

01 half word
10 word

11 illegal value

R (relocation type)
This field (bit 18) has the following interpretation:

0 Additive relocation
1 PC-Relative relocation

4-429

Object file format

A (Additive type)

In atype-1 relocation directive, this 1-bit field (bit 19) isonly interpreted if bit 18 isa
zero.

A=0 specifies Internal relocation, meaning that the base address of the area (with which
this relocation directive is associated) is added into the field to be relocated. A=1
specifies Symbol relocation, meaning that the value of the given symbol is added to the
field being relocated.

Bits20- 31

Bits 20-31 are reserved by Acorn and should be written as zeroes.

Format of Type 2 relocation directives

These are available from AOF 1.50 onwards.

Offset
1000 A| R FT 24-bit SID

The interpretation of Offset, FT and SID is exactly the same as for type-1 relocation
directives except that SID is increased from 16 to 24 bits and has a different meaning —
described below — if A=0).

The second word of a type-2 relocation directive contains 1 in its most significant bit;
bits 28 - 30 must be written as 0, as shown.

The different interpretation of the R bit in type-2 directives has already been described in
the section entitle®elocation directives on page 4-428.

If A=0 (internal relocation type) then SID is the index of the area, in the OBJ_AREA
chunk, relative to which the value at Offset in the current area is to be relocated. Areas
are indexed from 0.

Format of the symbol table chunk

4-430

TheNunmber of Synbol s field in the header defines how many entries there are in
the symbol table. Each symbol table entry has the following format:

Name

AT

Value

Area hame

Appendix D: Code file formats

Name

Thisvalueisan index into the string table (in chunk OBJ_STRT) and thus locates the
character string representing the symbol.

AT

Thisisa7 bit field specifying the attributes of a symbol as follows:

Bitsland O
(210 means bit 1 set, bit O unset).

01 The symbol isdefined in this object file and has scope limited to this object file
(when resolving symbol references, Link will only match this symbol to
references from other areas within the same object file).

10 The symbol isareference to asymbol defined in another area or another object
file. If no defining instance of the symbol isfound then Link attemptsto match
the name of the symbol to the names of common blocks. If amatch isfound it
isasif there were defined an identically-named symbol of global scope, having
as value the base address of the common area.

1 The symbol is defined in this object file and has global scope (ie when
attempting to resolve unresolved references, Link will match this symbol to
references from other object files).

00 Reserved by Acorn.
Bit 2

This attribute is only meaningful if the symbol is a defining occurrence (bit O set). It
specifies that the symbol has an absolute value, for example, a constant. Otherwise its
value isrelative to the base address of the area defined by the Ar ea Nane field of the
symbol table entry.

Bit 3

Thisbit is only meaningful if bit Ois unset (that is, the symbol is an external reference).
Bit 3 denotes that the reference is case-insensitive. When attempting to resolve such an
external reference, Link will ignore character case when performing the match.

Bit 4

This bit isonly meaningful if the symbol is an external reference (bits 1,0 = 10). It
denotesthat the referenceisweak, that isthat it is acceptable for the reference to remain
unsatisfied and for any fields relocated viait to remain unrelocated.

Note: A weak reference still causes alibrary module satisfying that reference to be
auto-loaded.

4-431

Object file format

4-432

Bit 5

Thisbit isonly meaningful if the symbol is adefining, external occurrence (ieif bits
1,0 = 11). It denotes that the definition is strong and, in turn, thisis only meaningful if
there is a non-strong, external definition of the same symbol in another object file. In
this scenario, al references to the symbol from outside of the file containing the strong
definition are resolved to the strong definition. Within the file containing the strong
definition, references to the symbol resolve to the non-strong definition.

This attribute allows akind of link-time indirection to be enforced. Usually, strong
definitions will be absolute and will be used to implement an operating system’s entry
vector which must have tHerever binary property.

Bit 6

This bit is only meaningful if bits 1,0 = 10. Bit 6 denotes that the symbol is a common
symbol — in effect, a reference to a common area with the symbol’'s name. The length of
the common area is given by the symbol’s value field (see below). Link treats common
symbols much as it treats areas having the common reference bit set — all symbols with
the same name are assigned the same base address and the length allocated is the
maximum of all specified lengths.

If the name of a common symbol matches the name of a common area then these are
merged and symbol identifies the base of the area.

All common symbols for which there is no matching common area (reference or
definition) are collected into an anonymous linker pseudo-area.

Value

This field is only meaningful if the symbol is a defining occurrence (ie bit 0 of AT set)
or a common symbol (ie bit 6 of AT set). If the symbol is absolute (bit 2 of AT set), this
field contains the value of the symbol. Otherwise, it is interpreted as an offset from the
base address of the area defined\bga Namne, which must be an area defined in this
object file.

Area name

This field is only meaningful if the symbol is not absolute (ie if bit 2 of AT is unset) and
the symbol is a defining occurrence (ie bit 0 of AT is set). In this case it gives the index
into the string table of the character string name of the (logical) area relative to which the
symbol is defined.

Appendix D: Code file formats

String table chunk (OBJ_STRT)

The string table chunk contains all the print names referred to within the areas and

symbol table chunks. The separation is made to factor out the variable length

characteristic of print names. A print name is stored in the string table as a sequence of

1 SO8859 non-control characters terminated by a NUL (0) byte and isidentified by an

offset from the table’s beginning. The first 4 bytes of the string table contain its length
(including the length word — so no valid offset into the table is less than 4 and no table
has length less than 4). The length stored at the start of the string table itself is identically
the length stored in the OBJ_STRT chunk header.

Identification chunk (OBJ_IDFN)

This chunk should contain a printable character string (characters in the range
[32 - 126]), terminated by a NUL (0) byte, giving information about the name and
version of the language translator which generated the object file.

Linker defined symbols

Though not part of the definition of AOF, the definitions of symbols which the AOF
linker defines during the generation of an image file are collected here. These may be
referenced from AOF object files, but must not be redefined.

Linker pre-defined symbols

The pre-defined symbols occur in Base/Limit pairs. A Base value gives the address of
the first byte in a region and the corresponding Limit value gives the address of the first
byte beyond the end of the region. All pre-defined symbols Heghge$$ and the

space of all such names is reserved by Acorn.

None of these symbols may be redefined. The pre-defined symbols are:
| mmge$$ROB$Base Address and limit of the Read-Only section
| mage$$ROSSLI mit of the image.

| mmge$$RW$Base Address and limit of the Read-Write section
| mage$$SRWSSLI mit of the image.

Image$$Zl $$Base Address and limit of the Zero-initialised data

| rage$$Zl $$Li m t section of the image (created from areas having
bit 4 of their area attributes set and from
common symbols which match no area name).

If a section is absent, the Base and Limit values are equal but unpredictable.

| mage$$RO$$Base includes any image header prepended by Link.

4-433

Obsolescent and obsolete features

| mage$SRWBSLI mi t includes (at the end of the RW section) any zero-initialised
data created at run-time.

The | mage$$xx$${ Base, Li mi t} values are intended to be used by language
run-time systems. Other values which are needed by a debugger or by part of the
pre-run-time code associated with a particular image format are deposited into the
relevant image header by Link.

Common area symbols

For each common area, Link defines aglobal symbol having the same name as the area,
except where thiswould clash with the name of an existing global symbol definition
(thus a symbol reference may match a common area).

Obsolescent and obsolete features

The following subsections describe features that were part of revision 1.xx of AOF
and/or that were supported by the 59x rel eases of the AOF linker, which are no longer
supported. In each case, abrief rationale for the change is given.

Object file type

AOF used to define three image types as well as arelocatable object file type. Image
types 2 and 3 were never used under Arthur/RISC OS and are now obsol ete. Image type
1 is used only by the obsolete Dbug (DDT has Dbug’s functionality and uses
Application Image Format).

AOF Image type 1 C5E2D081 hex (obsolescent)
AOF Image type 2 C5E2D083 hex (obsolete)
AOF Image type 3 C5E2D087 hex (obsolete)

AL (Area alignment)

AOF used to allow the alignment of an area to be any specified power of 2 between 2
and 16. By convention, relocatable object code areas always used minimal alignment
(AL=2) and only the obsolete image formats, types 2 and 3, specified values other than
2. From now on, all values other than 2 are reserved by Acorn.

AT (Area attributes)

Two attributes have been withdrawn: the Absolute attribute (bit O of AT) and the
Position Independent attribute (bit 6 of AT).

The Absolute attribute was not supported by the RISC OS linker and therefore had no
utility. Link in any case allows the effect of the Absolute attribute to be simulated.

4-434

Appendix D: Code file formats

The Position Independent bit used to specify that a code area was position independent,
meaning that its base address could change at run-time without any change being
required to its contents. Such an area could only contain internal, PC-rel ative relocations
and must make al external references through registers. Thus only code and pure data
(containing no address values) could be position-independent.

Few language processors generated the PI bit which was only significant to the

generation of the obsolete image types 2 and 3 (in which it affected AREA placement).
Accordingly, its definition has been withdrawn.

Fragmented areas

The concept of fragmented areas was introduced in release 0.04 of AOF, tentatively in
support of Fortran compilers. To the best of our knowledge, fragmented areas were

never used. (Two warnings against use were given with the origina definition on the
grounds of: structural incompatibility with UNIX&. out format; and likely inefficient
handling by Link. And use was hedged around with curious restrictions). Accordingly,
the definition of fragmented areas is withdrawn.

4-435

ALF

ALF

ALF isthe format of linkable libraries (such asthe C RISC OS library RISC_OSLib).

Library file format types

There are two library file formats described here, termed new-style and old-style. Link
can read both formats, though no tool will actually generate an old-style library.

Currently, only the Acorn/Topexpress Fortran-77 compiler generates old-style libraries
(which it does instead of generating AOF object files). Link handles these libraries
specialy, including every member in the output image unless explicitly instructed
otherwise.

Old-style libraries are obsolescent and should no longer be generated.

Library file chunks

LIB_DIRY

4-436

Each piece of alibrary file is stored in a separate, identifiable, chunk, named as follows:
Chunk Chunk Name

Directory LI B_DI RY

Time-stamp LI B_TI ME

Version LI B_VSRN — new-style libraries only
Data LI B_DATA

Symbol table OFL_SYMr — object code libraries only
Time-stamp OFL_TI ME — object code libraries only

There may be many LIB_DATA chunks in a library, one for each library member.

The LIB_DIRY chunk contains a directory of all modules in the library each of which is
stored in a LIB_DATA chunk. The directory size is fixed when the library is created. The
directory consists of a sequence of variable length entries, each an integral number of
words long. The number of directory entries is determined by the size of the LIB_DIRY
chunk.

Thisis shown pictorially in the following diagram:

Appendix D: Code file formats

Chunkindex
EntryLength
Integral
number Datalength
of words
: Data
|
Padding

N

ChunklIndex

In old-style library,
may be an odd
number of bytes

The Chunkindex is a0 origin index within the chunk file header of the corresponding
LIB_DATA chunk. The LIB_DATA chunk entry gives the offset and size of the library
module in thelibrary file. A Chunkindex of O means the directory entry is not in use.

EntryLength

The number of bytesin thisLIB_DIRY entry, always a multiple of 4.

DataLength

The number of bytes used in the Data section of thisLIB_DIRY entry. This need not be
amultiple of 4, though it alwaysisin new-style libraries.

Data

The data section consists of a0 terminated string followed by any other information
relevant to the library module. Strings should contain only 1SO-8859 non-control
characters (ie codes [0-31], 127 and 128+[0-31] are excluded). The string is the name
used by thelibrary management toolsto identify thislibrary module. Typicaly thisisthe
name of the file from which the library member was created.

In new-style libraries, an 8-byte, word-aligned time-stamp foll ows the member name.
The format of this time-stamp is described in the section entitled LIB_TIME on

page 4-438. Its valueis (an encoded version of) the time-stamp (ie the last modified
time) of the file from which the library member was created.

4-437

LIB_TIME

LIB_TIME

LIB_VSRN

LIB_DATA

4-438

Applications which create libraries or library members should ensure that the
LIB_DIRY entriesthey create contain valid time-stamps. Applications which read
LIB_DIRY entries should not rely on any data beyond the end of the name-string being
present unless the difference between the Datal ength field and the name-string length
alowsfor it. Even then, the contents of atime-stamp should be treated cautiously and
not assumed to be sensible.

Applicationswhichwrite LIB_DIRY or OFL_SYMT entries should ensure that padding
isdone with NUL (0) bytes; applicationswhich read LIB_DIRY or OFL_SYMT entries
should make no assumptions about the values of padding bytes beyond the first,
string-terminating NUL byte.

The LIB_TIME chunk contains a 64 bit time-stamp recording when the library was last
modified, in the following format:

High-address byte Low-address byte

1 1
TimeStamp

L 2 byte microsecond count, usually O

6 bytes of centi-seconds since
1/1/1900 00:00 GMT

In new-style libraries, this chunk contains a 4-byte version number. The current version
number is 1. Old-style libraries do not contain this chunk.

A LIB_DATA chunk contains one of the library membersindexed by the LIB_DIRY
chunk. No interpretation is placed on the contents of a member by the library
management tools. A member could itself be afile in chunk file format or even another
library.

Appendix D: Code file formats

Object code libraries

Anobject code library isalibrary file whose members arefilesin AOF. All librariesyou
are likely to use with the DDE are object code libraries.

Additional information is stored in two extra chunks, OFL_SYMT and OFL_TIME.

OFL_SYMT contains an entry for each external symbol defined by members of the
library, together with the index of the chunk containing the member defining that
symbol.

The OFL_SYMT chunk has exactly the same format asthe LIB_DIRY chunk except
that the Data section of each entry contains only astring, the name of an external symbol
(and between 1 and 4 bytes of NUL padding). OFL_SYMT entries do not contain
time-stamps.

The OFL_TIME chunk records when the OFL_SYMT chunk was last modified and has
the same format asthe LIB_TIME chunk (see above).

4-439

AlF

AlF

Properties of AlIF

4-440

AlF isthe format of executable program files produced by linking AOF files. Example
AlF files are 'Runimage files of applications coded in C or assembler.

An AlFimageisloaded into memory at itsload address and entered at itsfirst word
(compatible with old-style Arthur/Brazil ADFS images).

An AlF image may be compressed and can be self-decompressing (to support faster
loading from floppy discs, and better use of floppy-disc space).

If created with suitablelinker options, an AIF image may relocateitself at |oad time.
Self-relocation is supported in two, distinct senses:

« One-time Position-Independence: A relocatable image can be loaded at any
address (not just its load address) and will execute there (compatible with
version 0.03 of AlF).

« Specified Working Space Relocation: A suitably created relocatableimage will
copy itself from where it is loaded to the high address end of applications
memory, leaving space above the copied image as noted in the AlF header (see
bel ow).

In addition, similar relocation code and similar linker options support many-time

position independence of RISC OS Relocatable Modules.

AlF images support being debugged by the Desktop Debugging Tool (DDT), for C,
assembler and other languages. Version 0.04 of AlF (and later) supports debugging
a the symbolic assembler level (hitherto done by Dbug). Low-level and
source-level debugging support are orthogonal (capabilities of debuggers
notwithstanding, both, either, or neither kind of debugging support may be present
inan AlIF image).

Debugging tables have the property that al references from them to code and data
(if any) are in the form of relocatable addresses. After loading an image at its load
addressthese values are effectively absolute. All references between debugger table
entries are in the form of offsets from the beginning of the debugging data area.
Thus, following relocation of awhole image, the debugging data areaitself is
position independent and can be copied by the debugger.

Appendix D: Code file formats

Layout of an AIF image
Thelayout of an AlF imageis as follows:

Header

Compressed image

Decompression data This data is position-independent

Decompression code This code is position-independent

The header is small, fixed in size, and described below. In acompressed AlF image, the
header isNOT compressed.

Once an image has been decompressed — or if it is uncompressed in the first place — it
has the following layout:

Header

Read-only area

Read-write area

Debugging data (optional)
Self-relocation code Must be position-independent
Relocation list List of words to relocate, terminated by -1

Debugging data are absent unless the image has been linked appropriately and, in the
case of source-level debugging, unless the constituent components of the image have

been compiled appropriately.

The relocation list is a list of byte offsets from the beginning of the AIF header, of words
to be relocated, followed by a word containing —1. The relocation of hon-word values is

not supported.

4-441

AIF header layout

After the execution of the self-relocation code — or if the image is not self-relocating —

the image has the following layout:

Header

Read-only area

Read-write area

Debugging data

(optional)

At this stage a debugger is expected to copy the debugging data (if present) somewhere
safe, otherwise they will be overwritten by the zero-initialised data and/or the heap/stack
data of the program. A debugger can seize control at the appropriate moment by
copying, then modifying, the third word of the AlIF header (see below).

AlIF header layout

4-442

BL DecompressedCode

BL SelfRelocCode

BL ZerolnitCode

BL ImageEntryPoint

SWI 0OS_Exit

Image ReadOnly size

Image ReadWrite size

Image Debug size

Image zero-init size

Image debug type

Image base

Work space

Four reserved words (0)

Zero-init code (16 words)

BLNV 0 if the image is not compressed
BLNV 0 if the image is not self-relocating
BLNV 0 if the image has none

BL to make header addressable via R14

Just in case silly enough to return

Includes header size and any padding
Exact size - a multiple of 4 bytes

Exact size - a multiple of 4 bytes
Exact size - a multiple of 4 bytes
Exact size - a multiple of 4 bytes
0,1,2 or 3 (see below)

Address of the AIF header - set by link

Min work space - in bytes - to be reserved by
a self-moving relocatable image

Header is 32 words long

Appendix D: Code file formats

BL is used everywhere to make the header addressable via R14 (but beware the PSR
bits) in a position-independent manner and to ensure that the header will be
position-independent.

It isrequired that an image be re-enterable at itsfirst instruction. Therefore, after
decompression, the decompression code must reset thefirst word of the header to BLNV

0. Similarly, following self-relocation, the second word of the header must be reset to

BLNV 0. This causes no additional problems with the read-only nature of the code

segment — both decompression and relocation code must write to it anyway. So, on
systems with memory protection, both the decompression code and the self-relocation
code must be bracketed by system calls to change the access status of the read-only
section (first to writable, then back to read-only).

The image debug type has the following meaning:
0: No debugging data are present.
1 Low-level debugging data are present.
2: Source level (ASD) debugging data are present.
3 1 and 2 are present together.

All other values are reserved by Acorn.

Zero-initialisation code
The Zero-initialisation code is as follows:

Bl C R11, LR, #&FCO00003 ; clear status bits -> header + &C
ADD R11, R11, #8 ; -> Il mage ReadOnly size
LDM A R11, {RO, R1, R2, R3} ; various sizes
CWPS R3, #0
MOVLES PC, LR ; nothing to do
SUB R11, R11, #8&14 ; image base
ADD R11, R11, RO ; + RO size
ADD R11, R11, R1 ; + RWsize = base of 0-init area
MoV RO, #0
MoV R1, #0
MoV R2, #0
MoV R4, #0
Zer oLoop
STM A R11!, {RO, R1, R2, R4}
SUBS R3, R3, #16
BGT Zer oLoop
MOVS PC, LR ; 16 words in total.

4-443

Self relocation

Relationship between header sizes and linker pre-defined symbols

Self relocation

4-444

Al FHeader . | nageBase = | mage$$RO$$Base
Al FHeader . | nageBase +
Al FHeader . RCSi ze = | mage$$RW$Base

Al FHeader . | nageBase +
Al FHeader . RCSi ze +

Al FHeader . R\Gi ze

| mage$$Zl $$Base

Al FHeader . | nageBase +

Al FHeader . RCSi ze +
Al FHeader . R\Bi ze +
Al FHeader . Zerol ni t Si ze

| mage$SRWBSLI i t

Two kinds of self-relocation are supported by AlF and one by AMF; for completeness,
all three are described here.

One-time position independence is supported by relocatable AlF images. Many-time
position independenceis required for AMF Relocatable Modules. And only AlF images
can self-move to alocation which leaves a requested amount of workspace.

Why are there three different kinds of self-rel ocation?

Therules for constructing RISC OS applications do not forbid acquired
position-dependence. Once an application has begun to run, it isnot, in general,

possible to move it, as it isn't possible to find all the data locations which are being
used as position-dependent pointers. So, AlF images can be relocated only once.
Afterwards, the relocation table is over-written by the application’s zero-initialised
data, heap, or stack.

In contrast, the rules for constructing a RISC OS Relocatable Modules (RM)
require that it be prepared to shut itself down, be moved in memory, and start itself
up again. Shut-down and start-up are notified to a RM by special service calls to it.
Clearly, a RM must be relocatable many times so its relocation table is not
overwritten after first use.

Relocatable Modules are loaded under the control of a Relocatable Module Area
(RMA) manager which decides where to load a module initially and where to move
each module to whenever the RMA is reorganised. In contrast, an application is
loaded at its load address and is then on its own until it exits or faults. An
application can only be moved by itself (and then only once, before it begins
execution proper).

Appendix D: Code file formats

Self-relocation code for relocatable modules

Inthis casethereisno AlF header, the code must be executable many times, and it must
be symbolically addressable from the Relocatable M odul e header. The code below must
be the last area of the RMF image, following the relocation list. Note that it is best
thought of as an additional area.

When the following code is executed, the module image has aready been loaded
at/moved to itstarget address. It only remains to rel ocate | ocation-dependent addresses.
The list of offsets to be relocated, terminated by (-1), immediately follmals Note
that the address values here|(eg Rel ocCode|) will appear in the list of places to be
relocated, allowing the code to be re-executed.

| MPORT | | mage$$RCB$Base| ; where the image is linked at...
EXPORT | __Rel ocCode| ; referenced fromthe RM header
| __Rel ocCode|
LDR R1, Rel ocCode ; value of __Rel ocCode (before rel ocation)
SuB R11, PC, #12 ; value of __Rel ocCode now
SUBS R1, R11, Rl ; relocation offset
MOVEQS PC, LR ; relocate by 0 so nothing to do
LDR R11, | mageBase ; image base prior to relocation...
ADD R11, R11, R1 ; ...where the image really is
ADR R2, End
Rel ocLoop
LDR RO, [R2], #4
CWNS RO, #1 ; got list terminator?
MOVLES PC, LR ; yes => return
LDR R3, [R1l1l, RO] ; word to relocate
ADD R3, R3, R1 ; relocate it
STR R3, [R11, RO] ; store it back
B Rel ocLoop ; and do the next one
Rel ocCode DCD | __Rel ocCode|
| mgeBase DCD | mage$$RCB$Base|
End ; the list of locations to relocate

; starts here (each is an offset fromthe

; base of the npodule) and is term nated

7 by -1,
Note that this code, and the associated list of locations to relocate, is added
automatically to arelocatable module image by Link (as a consequence of using Link
with the SetUp option Module enabled).

Self-move and self-relocation code for AlIF

This code is added to the end of an AIF image by Link, immediately before the list of
relocations (terminated by —1). Note that the code is entered via a BL from the second
word of the AIF header so, on entry, R14 points to AlFHeader + 8.

4-445

Self relocation

4-446

Rel ocCode ROUT

BI C R11,
SsuB R11, R11, #8
MoV RO, #&FB000000
STR RO, [R11, #4]
:does the code need to be moved?
LDR RO, [R11, #&2C]
CMPS R9, #0
BEQ RelocateOnly
;calculate the amount to move by...
LDR RO, [R11, #&20]
ADD R9, R9, RO
SWI GetEnv
ADR R2, End
01 LDR RO, [R2], #4
CMNS RO, #1
BNE %B01
SuUB R3, R1, R9
SUBS RO, R3, R2
BLE RelocateOnly
BIC RO, RO, #15
ADD R3, R2, RO
ADR R8, %F01

LR, #&FCO000003 ;clear flag bits; -> AIF header + &08

; -> header address
; BLNV #0
; won't be called again on image re-entry

; min free space requirement
; 0 =>no move, just relocate

; image zero-init size
; space to leave = min free + zero init
; MemLimit -> R1
;> End
;. load relocation offset, increment R2
; terminator?
; No, so loop again
; MemLimit - freeSpace
; amount to move by
; not enough space to move...
; a multiple of 16...
; End + shift
; intermediate limit for copy-up

; copy everything up memory, in descending address order, branching
; to the copied copy loop as soon as it has been copied.

02 LDMDB R2!,

{R4-R7}
STMDB R3!, {R4-R7}
CMP R2, R8
BGT %B02
ADD R4, PC, RO
MOV PC, R4
03 LDMDB R2!, {R4-R7}
STMDB R3|, {R4-R7}
CMP R2, R11
BGT %B03
ADD R11, R11, RO
ADD LR, LR, RO
RelocateOnly
LDR R1, [R11, #&28]
SUBS R1, R11, R1
MOVEQ PC, LR
STR R11, [R11, #&28]
ADR R2, End
RelocLoop
LDR RO, R2], #4
CMNS RO, #1
MOVEQS PC, LR
LDR R3, [R11, RO]
ADD R3, R3, R1
STR R3, [R11, RO]
B RelocLoop
End
relocate

; copied the copy loop?
; not yet

; jump to copied copy code

; copied everything?
; not yet
; load address of code
; relocated return address

; header + &28 = code base set by Link
;. relocation offset
; relocate by 0 so nothing to do
; new image base = actual load address
. start of reloc list

;. offset of word to relocate
; terminator?
; yes =>return

; word to relocate

; relocate it
;. store it back

; and do the next one

;. The list of offsets of locations to

Appendix D: Code file formats

; starts here; terminated by -1.

4-447

ASD

ASD

Acknowledgement: This design is based on work originally done for Acorn Computers
by Topexpress Ltd.

This section describes the format of symbolic debugging data generated by ARM
compilers and assemblers running under RISC OS and used by the desktop debugger
DDT.

For each separate compilation unit (called a section) the compiler produces debugging
datain aspecial AREA of the object code (see the section entitled AOF on page 4-423
for an explanation of AREASs and their attributes). Debugging data are position
independent, containing only relative references to other debugging data within the
same section and rel ocatabl e references to other compiler-generated AREAS.

Debugging data AREAS are combined by the linker into a single contiguous section of a
program image (see the section entitled AlF on page 4-440 for a description of
Application Image Format). Because the debugging section is position-independent, the
debugger can moveit to a safe location before the image starts executing. If theimageis
not executed under debugger control the debugging datais simply overwritten.

The format of debugging data allows for avariable amount of detail. This potentially
allows the user to trade off among memory used, disc space used, execution time, and
debugging detail.

Assembly-language level debugging isalso supported, though in this case the debugging
tables are generated by the linker, not by language processors. These low-level
debugging tables appear in an extra section item, asif generated by an independent
compilation. Low-level and high-level debugging are orthogonal facilities, though DDT
allows the user to move smoothly between levelsif both sets of debugging data are
present in an image.

Order of Debugging Data

4-448

A debug data AREA consists of a series of items. The arrangement of these items
mimics the structure of the high-level language program itself.

For each debug AREA, thefirst item isa section item, giving globa information about
the compilation, including a code identifying the language and flags indicating the
amount of detail included in the debugging tables.

Each data, function, procedure, etc., definition in the source program has a
corresponding debug data item and these items appear in an order corresponding to the
order of definitionsin the source. This means that any nested structure in the source
program is preserved in the debugging data and the debugger can use this structure to
make deductions about the scope of various source-level objects. Of course, for

Representation

Appendix D: Code file formats

procedure definitions, two debug items are needed: a procedureitem to mark the

definition itself and an endproc item to mark the end of the procedure’s body and the
end of any nested definitions. If procedure definitions are nested then the procedure -
endproc brackets are also nested. Variable and type definitions made at the outermost
level, of course, appear outside of all procedure/endproc items.

Information about the relationship between the executable code and source files is
collected together and appears d8eanfo item, which is always the final item in a
debugging AREA. Because of the C language’s #include facility, the executable code
produced from an outer-level source file may be separated into disjoint pieces
interspersed with that produced from the included files. Therefore, source files are
considered to be collections of ‘fragments’, each corresponding to a contiguous area of
executable code and the fileinfo item is a list with an entry for each file, each in turn
containing a list with an entry for each fragment. The fileinfo field in the section item
addresses the fileinfo item itself. In each procedure item there is a ‘file entry’ field which
refers to the file-list entry for the source file containing the procedure’s start; there is a
separate one in the endproc item because it may possibly not be in the same source file.

of Data Types

Several of the debugging data items (eg procedure and variable) tygeansord field

to identify their data type. This field contains, in the most significant 3 bytes, a code to
identify a base type and, in the least significant byte, a pointer count: 0 to denote the type
itself; 1 to denote a pointer to the type; 2 to denote a pointer to a pointer to...; etc.

For simple types the code is a positive integer as follows:

void 0 (all codes are decimal)
signed integers

single byte 10

half-word 11

word 12
unsigned integers

single byte 20

half-word 21

word 22
floating point

float 30

double 31

long double 32

4-449

Representation of Source File Positions

Representation

complex
single complex 41
double complex 42
functions
function 100

For compound types (arrays, structures, etc.) there is a specia kind of debug data item
(array, struct, etc.) to give details of the type such as array bounds and field types. The
type code for such typesis negative being the negation of the (byte) offset of the special
item from the start of the debugging AREA.

If atype has been given anamein asource program, it will give riseto atype debugging
dataitem which contains the name and a type word as defined above. If necessary, there
will aso be adebugging dataitem such as an array or struct to define the type itself. In
that case, the type word will refer to thisitem.

Enumerated typesin C and scalarsin Pascal are treated simply asinteger sub-ranges of
an appropriate size, the name information is not available in the this version of the
debugging format. Set typesin Pascal are not treated in detail: the only information
recorded for them is the total size occupied by the object in bytes.

Fortran character types are supported by a special kind of debugging dataitem the
format of which is yet to be defined.

of Source File Positions

Several of the debugging dataitems have a sourcepos field to identify a position in the
source file. Thisfield contains aline number and character position within the line
packed into a single word. The most significant 10 bits encode the character offset
(0-based) from the start of the line and the least- significant 22 bits give the line number.

Debugging Data Iltems in Detall

4-450

Thefirst word of each debugging dataitem contains the byte length of theitem (encoded
in the most significant 16 bits) and a code identifying the kind of item (in the least
significant 16 bits). The following codes are defined:

section
procedure
endproc
variable
type
Struct

array

NOoO o~ WNBRE

Appendix D: Code file formats

8 subrange
9 set
10 fileinfo

The meaning of the second and subsequent words of each item is defined below.

Where itemsinclude a string field, the string is packed into successive bytes beginning

with alength byte, and padded at the end to a word boundary (the padding valueis
immaterial, but NUL or ‘' is preferred). The length of a string is in the range [0 - 255]
bytes.

Where an item contains a field giving an offset in the debugging data area (usually to
address another item), this means a byte offset from the start of the debugging data for
the whole section (in other words, from the start of the section item).

Section

A section item is the first item of each section of the debugging data. The first five fields
are held in a single word:

language one byte code identifying the source language

debuglines 1 bit: séfl tables contain line numbers

debugvars 1 bit: séf tables contain data about local variables

spare 14 reserved bits (must be zero)

debugversion one byte version number of the debugging data

codeaddr pointer to start of executable code in this section

dataaddr pointer to start of static data for this section

codesize byte size of executable code in this section

datasize byte size of the static data in this section

fileinfo offset in the debugging data of the file information for
this section (or 0 if no fileinfo is present)

debugsize total byte length of debugging data for this section

name or nsyms string or integer

The name field contains the program name for Pascal and Fortran programs. For C
programs it contains a name derived by the compiler from the main file name (notionally
a module name). Its syntax is similar to that for a variable name in the source language.
For a low-level debugging section (language = 0) the field is treated as a 4 byte integer
giving the number of symbols following.

The following language byte codes are defined:

0 Low-level debugging data (notionally, assembler)
1 C

2 Pascal

3 Fortran77

other reserved to Acorn.

4-451

Debugging Data Items in Detail

Thefileinfo field is 0 if no source fileinformation is present.

The debugversion field was defined to be 1; the new debugversion for the extended
debugging data format (encompassing low-level debugging data) is 2. For low-level
debugging data, other fields have the following values:

language 0

codeaddr Image$$ROS$Base

dataaddr Image$$RWSSBase

codesize Image$SROSSLimit - Image$$RO$$Base

datasize ImageSSRWSSLimit - ImageSSRWSSBase

fileinfo 0

nsyms number of symbols within the following debugging data
debugsize total size of the low-level debugging dataincluding the

size of the section item

The section item isimmediately followed by nsyms symbols, each having the following

format:
stridx:24 byte offset in string table of symbol name
flags:8 (see below)
value the value of the symbol

The flags field has the following values:

01 the symbol isalocal/global symbol
+ (there may be many local symbols with the same name)
0/2/4/6 symbol names an absol ute/code/data/zero-init value

Notethat the linker reduces all symbol values to absolute values. The flags field records
the history, or origin, of the symbol in the image.

The string table isin standard AOF format. It consists of alength word followed by the
strings themselves, each terminated by a NUL (0). The length word includes the length
of the length word, so no offset into the string table is less than 4. The end of the string
table is padded to the next word boundary.

Procedure

A procedure item appears once for each procedure or function definition in the source
program. Any definitions with the procedure have their related debugging dataitems
between the procedure item and the matching endproc item. The format of procedure
itemsisasfollows:

type thereturn typeif thisisafunction, else 0

args the number of arguments

sourcepos aword encoding the source position of the start of the
procedure

4-452

Appendix D: Code file formats

startaddr pointer to the first instruction of the procedure

bodyaddr pointer to the first instruction of the procedure body (see
below)

endproc offset of the related endproc item

fileentry offset of thefilelist entry for the sourcefile

name string

The bodyaddr field pointsto the first instruction after the procedure entry sequence, that
isthe first address at which a high-level breakpoint could sensibly be set. The startaddr
field points to the beginning of the entry sequence, that is the address at which control
actually arrives when the procedureis called.

A label in asource program is represented by a special procedureitem with no matching
endproc (the endproc field is 0 to denote this). Pascal and Fortran numerical labels are
converted by the compiler into strings prefixed $y"

For Fortran77, multiple entry points to the same procedure each give rise to a separate
procedure item but they all have the same endproc offset referring to a single endproc
item.

Endproc

This item marks the end of the debugging data items belonging to a particular procedure.
It also contains information relating to the procedure’s return. Its format is as follows:

sourcepos a word encoding the position in the source file of the end
of the procedure

endaddr a pointer to the code byte AFTER the compiled code for
the procedure

filentry offset of the file list entry for the procedure’s end

nreturns number of procedure return points (may be 0)

retaddrs... pointers to the procedure-return code

If the procedure body is an infinite loop, there will be no return point so nreturns will be
0. Otherwise the retaddrs should each point to a suitable location at which a breakpoint
may be set ‘at the exit of the procedure’. When execution reaches this point, the current
stack frame should still be in this procedure.

Variable

This item contains debugging data relating to a source program variable or a formal
argument to a procedure (the first variable items in a procedure always describe its
arguments). Its format is as follows:

4-453

Debugging Data Items in Detail

4-454

Type

Struct

type atypeword

sourcepos aword encoding the source position of the variable
class a word encoding the variable’s storage class
location see explanation below

name string

The following codes define the storage classes of variables:

external variables (or Fortran common)
static variables private to one section
automatic variables

register variables

Pascallar arguments

Fortran arguments

Fortran character arguments

NOoO oA~ WN PP

The meaning of the location field of a variable item depends on the storage class: it
contains an absolute address for static and external variables (relocated by the linker); a
stack offset (ie an offset from the frame- pointer) for automatic and var-type arguments;
an offset into the argument list for Fortran arguments; and a register number for register
variables (the 8 floating point registers are numbered 16 - 23).

No account is taken of variables which ought to be addressed by +ve offsets from the
stack-pointer rather than -ve offsets from the frame-pointer.

The sourcepos field is used by the debugger to distinguish between different definitions
having the same name (eg identically named variables in disjoint source-level naming
scopes such as nested block in C).

This item is used to describe a named type in the source language (eg a typedef in C).
The format is as follows:

type a type word (described earlier)
name string

This item is used to describe a structured data type (eg a struct in C or a record in
Pascal). Its format is as follows:

fields the number of fields in the structure
size total byte size of the structure
fieldtable... a table of fields entries in the following format:

Array

Appendix D: Code file formats

offset byte offset of this field within the structure
type atype word (interpretation as described earlier)
name string

Union types are described by struct itemsin which all fields have 0 offsets.

C hit fields are not treated in full detail: abit field is simply represented by an integer
starting on the appropriate word boundary (so that the word contains the whole field).

Thisitem is used to describe a one-dimensional array. Multi-dimensional arrays are
described as arrays of arrays. Which dimension comesfirst is dependent on the source
language (different for C and Fortran). The format is as follows:

size total byte size of each element
arrayflags (see below)

basetype atypeword

lowerbound constant value or stack offset of variable
upperbound constant value or stack offset of variable

If the sizefield is zero, debugger operations affecting the whole array, rather than
individual elements of it, are forbidden.

The following bit numbersin the arrayflags field are defined:

0 lower bound is undefined
1 lower bound is a constant
2 upper bound is undefined
3 upper bound is a constant

If abound is defined and not constant then it is an integer variable on the stack and the
boundvalue field contains the stack offset of the variable (from the frame-pointer).

Subrange

Thisitem is used to describe subrange typed in Pascal. It also serves to describe
enumerated typesin C and scalarsin Pascal (in which case the base typeis understood to
be an unsigned integer of appropriate size). Itsformat is as follows:

size half-word: 1, 2, or 4 to indicate byte size of object
typecode half-word: simple type code

Iwb lower bound of subrange

upb upper bound of subrange

4-455

Debugging Data Items in Detail

4-456

Thisitem is used to describe a Pascal set type. Currently, the description isonly partial.
Theformat is:

size byte size of the object

Fileinfo

This item appears once per section after all other debugging dataitems. The half of the
header word which would usually give theitem length is not required and should be set
to 0.

Each source file is described by a sequence of ‘fragments’, each of which describes a
contiguous region of the file within which the addresses of compiled code increase
monotonically with source-file position. The order in which fragments appear in the
sequence is not necessarily related to the source file positions to which they refer.

Note that for compilations that make no use of the #include facility, the list of fragments
will have only one entry and all line-number information will be contiguous.

The item is a list of entries each with the following format:

length length of this entry in bytes (0 marks the final entry)
date date and time when the file was last modified
filename string (or null if the name is not known)
n number of fragments following
fragments... n fragments with the following structure...
fragmentsize length of this entry in bytes
firstline linenumber
lastline linenumber
codeaddr pointer to the start of the fragment’s executable code
codesize byte size of the code in the fragment
lineinfo... a variable number of line number data

There is one lineinfo half-word for each statement of the source file fragment which

gives rise to executable code. Exactly what constitutes an executable statement may be
defined by the language implementation; the definition may for instance include some
declarations. The half-word can be regarded as 2 bytes: the first contains the number of
bytes of code generated from the statement and cannot be zero; the second contains the
number of source lines occupied by the statement (ie the difference between the line
number of the start of the statement and the line number of the next statement). This may
be zero if there are multiple statements on the same source line.

If the whole half-word is zero, this indicates that one of the quantities is too large to fit
into a byte and that the following 2 half-words contain (in order) the number of lines
followed by the number of bytes of code generated from the statement.

Appendix D: Code file formats

4-457

4-458

90 Appendix E: File formats

Introduction

The file formats described in this appendix are those generated by RISC OS itself and
various applications. Each is shown as a chart giving the size and description of each
element. The elements are sequential and the sizes arein bytes.

This appendix contains information about the following file formats:
o Spritefiles

o Templatefiles

e Drawfiles

o Fontfiles, including IntMetrics, Outlines and bitmap files

e« Musicfiles

e Squashfiles

4-459

Sprite files

Sprite files

A spritefileis saved in the same format as a sprite area is saved in memory, except that
the first word of the sprite areais not saved.

For afull description of sprite areaformats, refer to the section entitled Format of a
sprite area on page 1-777.

4-460

Appendix E: File formats

Template files

The following section describes the Wimp template file format:

Header
The file starts with a header:

Size Description

4 file offset of font data (-1 if none)
4 reserved (must be zero)

4 reserved (must be zero)

4 reserved (must be zero)

Index entries

The header is followed by a series of index entries to data later in the file:

Size Description

4 file offset of data for this entry

4 size of data for this entry

4 entry type (1 = window)

12 identifier (control character terminated)

Terminator
The index entries are terminated by a null word:
Size Description
4 0
Data
Each set of entries referred to earlier in the index contains the following:
Size Description
88 window definition (as in Wimp_CreateWindow — see page 3-87)
ni x 32 icon definitions (as in Wimp_Createlcon — see page 3-93)
? indirected icon data

Any pointers to indirected icon data are offsets from the start of the current entry. Any
references to anti-aliased fonts use internal handles.

4-461

Font data

Font data

The file ends with an optional set of font data (the presence of which isindicated by the
first word of the header):

Size Description

4 X-point-size x 16

4 y-point-size x 16

40 font name (control character terminated)

Thefirst font entry isthat referred to by internal handle 1, the second font entry is that
referred to by internal handle 2, etc.

4-462

Appendix E: File formats

Draw files

The Draw file format provides an object-oriented description of a graphic image. It
represents an object in its editable form, unlike a page-description language such as
PostScript which simply describes an image.

Programmers wishing to define their own object types should contact Acorn; see
Appendix H: Registering names on page 4-551.

Coordinates

All coordinates within aDraw file are signed 32-bit integers that give absolute positions

on alarge image plane. The units are /(180 x 256) inches, or 1/640 of a printer’s point.
When plotting on a standard RISC OS screen, an assumption is made that one OS-unit
on the screen is 1/180 of an inch. This gives an image reaching over half a mile in each
direction from the origin. The actual image size (eg the page format) is not defined by
the file, though the maximum extent of the objects defined is quite easy to calculate.
Positive-x is to the right, positive-y is up. The printed page conventionally has the origin
at its bottom left hand corner. When rendering the image on a raster device, the origin is
at the bottom left hand corner of a device pixel.

Colours
Colours are specified in Draw files as absolute RGB values in a 32-bit word. The format
is:
Byte Description
0 reserved (must be zero)
1 unsigned red value
2 unsigned green value
3 unsigned blue value

For colour values, 0 means none of that colour and 255 means fully saturated in that
colour.

You must always write byte O (the reserved one) as 0, but don’t assume that it always
will be 0 when reading.

The bytes in a word of an Draw file are in little-endian order, eg the least significant byte
appears first in the file.

The special value &FFFFFFFF is used in the filling of areas and outlines to mean
‘transparent’.

4-463

File headers

File headers
The file consists of a header, followed by a sequence of objects.

The file header is of the following form.

Size Description

4 ‘Draw’

4 major format version stamp — currently 201 (decimal)

4 minor format version stamp — currently O

12 identity of the program that produced this file — typically 8 ASCII

characters, padded with spaces

4 x-low []bounding box

4 y-low [lbottom-left (x-low, y-low) is inclusive
4 x-high Dtop-right (x-high, y-high) is exclusive
4 y-high [

When rendering a Draw file, check the major version number. If this is greater than the
latest version you recognise then refuse to render the file (eg generate an error message
for the user), as an incompatible change in the format has occurred.

The entire file is rendered by rendering the objects one by one, as they appear in the file.
The bounding box indicates the intended image size for this drawing.

A Draw file containing a file header but no objects is legal; however, the bounding box
is undefined. In particular the ‘x-low’ value may be greater than the ‘x-high’ value (and
similarly for the y values).

4-464

Appendix E: File formats

Objects

Each object consists of an object header, followed by a variable amount of data
depending on the object type.

Object header
The object header is of the following form:

Size Description

4 object type field

4 object size: number of bytes in the object — always a multiple of 4
4 x-low [Jobject bounding box

4 y-low [lbottom-left (x-low, y-low) is inclusive

4 x-high Dtop-right (x-high, y-high) is exclusive

4 y-high [

The bounding box describes the maximum extent of the rendition of the object: the
object cannot affect the appearance of the display outside this rectangle. The upper
coordinates are an outer bound, in that the device pixel at (x-low, y-low) may be affected
by the object, but the one at (x-high, y-high) may not be. The rendition procedure may
use clipping on these rectangles to abandon obviously invisible objects.

Obijects with no direct effect on the rendition of the file have no bounding box (hence the
header is only two words long). Such objects will be identified explicitly in the object
descriptions that follow. If an unidentified object type field is encountered when
rendering a file, ignore the object and continue.

The rest of the data for an object depends on the object type.

Font table object

Object type number 0

A font table object has no bounding box in its object header, which is followed by a
sequence of font number definitions:

Size Description

1 font number (non-zero)

n n character textual font name, null terminated

0-3 up to 3 zero characters, to pad to a word boundary

This object type is somewhat special in that only one instance of it ever appears in a
Draw file. It has no direct effect on the appearance of the image, but maps font numbers
(used in text objects) to textual names of fonts. It must precede all text objects.
Comparison of font names is case-insensitive.

4-465

Objects

4-466

Text object

Object type number 1

Size Description

text colour

text background colour hint

text style

unsigned nominal x size of the font (in 1/640 point)
unsigned nominal y size of the font (in 1/640 point)
X, Y coordinates of the start of the text base line

n n charactersin the string, null terminated

0-3 up to 3 zero characters, to pad to a word boundary

(o T S N

The character string consists of printing ANSI characters with codes within the ranges
32 - 126 and 128 - 255. This need not be checked during rendering, but other codes may
produce undefined or system-dependent results.

The text style word consists of the following:

Bit(s) Description
0-7 one byte font number
8-31 reserved (must be zero)

Italic, bold variants etc are assumed to be distinct fonts.

The font number is related to the textual name of afont by a preceding font table object
within thefile (see above). The exception to thisisfont number 0, whichisasystem font
that is sure to be present. When rendering a Draw file, if afont is not recognised, the
system font should be used instead. The system font is monospaced, with the gap
between letters equal to the nominal x size of the font.

The background colour hint can be used by font rendition code when performing

anti-aliasing. It isreferred to as a hint because it has no effect on the rendition of the

object on a ‘perfect’ printer; nevertheless for screen rendition it can improve the
appearance of text on coloured backgrounds. The font rendition code can assume that
the text appears on a background that matches the background colour hint.

Appendix E: File formats

Path object

Object type number 2

Size Description

fill colour (<10 do not fill)
outline colour (-II no outline)
outline width (unsigned)

path style description

optional dash pattern definition
sequence of path components

NN A DD

An outline width of 0 means draw the thinnest possible outline that the device can
represent. A path component consists of:

Size Description
4 1-wordtag identifier:
bits 0 - 7 = tag identifier byte:
00 end of path: no arguments
2 [0 move to absolute position: followed by
one x, y pair
50 close current sub-path: no arguments
80 draw to absolute position: followed by one
X, Y pair
6 0 Bezier curve through two control points,
to absolute position: followed by three
X, Y pairs
bits 8 - 31 reserved (must be zero)
nx8 sequence af 2-word (X, y) coordinate pairs (whanés zero, one
or three, as determined by the value oftgeidentifier)

The tag values match the arguments required by the Draw module. This block of
memory can be passed directly to the Draw module for rendition; see the chapter entitled
Draw module on page 3-533 for precise rules concerning the appearance of paths. See
also manuals on PostScript. (ReferefustScript Language Reference Manual. Adobe
Systems Incorporated (1990) 2nd ed. Addison-Wesley, Reading, Mass, USA).

The possible set of legal path components in a path object is described as follows. A path
consists of a sequence of (at least one) subpaths, followed by an ‘end of path’ path
component. A subpath consists of a ‘move to’ path component, followed by a sequence
of (at least one) ‘draw to’ and/or ‘Bezier to’ path components, followed (optionally) by

a ‘close sub-path’ path component.

4-467

Objects

The path style description word is as follows:

Bit(s) Description
0-1 joinstyle:
0 = mitred joins
1=round joins
2 = bevelled joins
2-3 end cap style:
0 = butt caps
1 =round caps
2 = projecting square caps
3 =triangular caps

4-5 start cap style (same possible values as end cap style)
6 winding rule:

0 = non-zero

1 =even-odd
7 dash pattern:

0 = dash pattern missing
1 = dash pattern present

8-15 reserved (must be zero)

16-23 triangle cap width:
avauewithin 0 - 255, measured in sixteenths of theline
width

24-31 triangle cap length:
avauewithin 0 - 255, measured in sixteenths of theline
width

The mitre cut-off value is the PostScript default (eg 10). If the dash pattern is present
then it isin the following format:

Size Description
4 offset distance into the dash pattern to start
4 number of elementsin the dash pattern

followed by, for each element of the dash pattern:

Size Description
4 length of the dash pattern element

The dash pattern is reused cyclically along the length of the path, with the first element
being filled, the next a gap, and so on.

4-468

Appendix E: File formats

Sprite object
Object type number 5

Thisisfollowed by asprite. Seethe section entitled Format of a sprite on page 1-777 for
details.

This contains a pixelmap image. Theimage is scaled to entirely fill the bounding box.

If the sprite has a palette then this gives absolute values for the various possible pixels.
If the sprite has no palette then colours are defined locally. Within RISC OS the
available ‘Wimp colours’ are used — for further details see the chapter eftitlesb on
page 1-773 and the chapter entitlée Window Manager on page 3-3.

Group object

Object type number 6

Size Description
12 group object name, padded with spaces

This is followed by a sequence of other objects.

The objects contained within the group will have rectangles contained entirely within
the rectangle of the group. Nested grouped objects are allowed.

The object name has no effect on the rendition of the object. It should consist entirely of
printing characters. It may have meaning to specific editors or programs. It should be
preserved when copying objects. If no name is intended, twelve space characters should
be used.

Tagged object

Object type number 7

Size Description
4 tag identifier

This is followed by an object and optional word-aligned data.

To render a Tagged object, simply render the enclosed object. The identifier and
additional data have no effect on the rendition of the object. This allows specific
programs to attach meaning to certain objects, while keeping the image renderable.

Programmers wishing to define their own object tags should contact Acorn; see
Appendix H: Registering names on page 4-551.

4-469

Objects

Text area object

Object type number 9

Size Description

? 1 or more text column objects (object type 10, no data — see
below)

zero, to mark the end of the text columns
reserved (must be zero)

reserved (must be zero)

initial text foreground colour

initial text background colour hint

the body of the text column (ASCII characters, terminated by a
null character)

0-3 up to 3 zero characters, to pad to a word boundary

N A A DM DM D

A text area contains a number of text columns. The text area has a body of text
associated with it, which is partitioned between the columns. If there is just one text
column object then its bounding box must be exactly coincident with that of the text
area.

The body of the text is paginated in the columns. Effects such as font settings and colour
changes are controlled by escape sequences within the body of the text. All escape
sequences start with a backslash character (\); the escape code is case sensitive, though
any arguments it has are not.

Arguments of variable length are terminated by a '/’ or <newline>. Arguments of fixed
length are terminated by an optional ‘/'.

Values with range limits mean that if a value falls outside the range, then the value is
truncated to this limit.

Escape sequence Description

« \l <version><newline or />
Must appear at the start of the text, and only there.
<version> must be 1.

« \A<code><optional />
Set alignment. <code> is one of L (left = default),
R (right), C (centre), D (double). A change in alignment
forces a line break.

« \B<R><spaces><G><spaces><newline or />
Set text background colour hint to the given RGB
intensity (or the best available approximation). Each
value is limited to O - 255.

4-470

Appendix E: File formats

\C<R><spaces><G><spaces><newline or />
Set text foreground colour to the given RGB intensity
(or the best available approximation). Each valueis
limited to O - 255.

\D<number><newline or />
Indicates that the text areaisto contain <number>
columns. Must appear before any printing text.

\F<digit* ><name><spaces><si ze>[<spaces><width>]<newline or />
Defines afont reference number. <name> isthe name of
the font, and <size> its height. <width> may be omitted,
in which case the font width and height are the same.
Font reference numbers may be reassigned. <digit*> is
one or two digits. <size> and <width> are in points.

\<digit*><optional />
Selects afont, using the font reference number

\L<leading><newline or />
Define the leading in points from the end of the (output)
line in which the \L appears — ie the vertical separation
between the bases of characters on separate lines.
Default, 10 points.

\M<leftmargin><spaces><rightmargin><newline or />
Defines margins that will be left on either size of the
text, from the start of the output line in which the
sequence appears. The margins are given in points, and
are limited to values > 0. If the sum of the margins is
greater than the width of the column, the effects are
undefined. Both values default to 1 point.

\P<leading><newline or />
Define the paragraph leading in points, ie the vertical
separation between the end of one paragraph and the
beginning of a new paragraph. Default, 10 points.

\U<position><spaces><thickness><newline or />
Switch on underlining, at <position> units relative to the
character base, and of <thickness> units, where a unit is
1/256 of the current font size. <position> is limited to —
128...+127, and <thickness> to 0...255. To turn the
underlining off, either give a thickness of 0, or use the
command \U.’

\V[-]<digit><optional />
Vertical move by the specified number of points.

4-471

Objects

« - Soft hyphen: if a line cannot be split at a space, a hyphen
may be inserted at this point instead; otherwise, it has no
printing effect.

« \<newline> Force line break.
o \\ appears as \ on the screen
o« \;<text><newline> Comment: ignored.

Other escape sequences are flagged as errors during verification.

Lines within a paragraph are split either at a space, or at a soft hyphen, or (if a single
word is longer than a line) at any character.

A few other characters have a special interpretation:
« Control characters are ignored, except for tab, which is replaced by a space.

« Newlines (that are not part of an escape sequence) are interpreted as follows:
Occurring before any printing text: a paragraph leading is inserted for each
newline.
In the body of the text: a single newline is replaced by a space, except when it is
already followed or preceded by a space or tab. A sequence of n newlines inserts a
space of (n—1) times the paragraph leading, except that paragraph leading at the top
of a new text column is ignored.

Lines which protrude beyond the limits of the box vertically, eg because the leading is
too small, are not displayed; however, any font changes, colour changes, etc. in the text
are applied. Characters should not protrude horizontally beyond the limits of the text
column, eg owing to italic overhang for this font being greater than the margin setting.

Restrictions

If a chunk of text contains more than 16 colour change sequences, only the last 16 will
be rendered correctly. This is a consequence of the size of the colour cache used within
the font manager. A chunk in this case means a block of text up to anything that forces a
line break, eg the end of a paragraph or a change on the alignment.

Text column object

Object type number 10
No further data, ie just an object header.

A text column object may only occur within a text area object. Its use is described in the
section on text area objects.

4-472

Options object

Appendix E: File formats

Object type number 11

The object header for an options object has space alocated for a bounding box, but since
one would be meaningless, the space is unused. You must treat the 4 words normally
used for the bounding box as reserved, and set them to zero.

Size
4
4

B R L R S S R S ST S SN]

N

Description
(paper size+ 1) x &100 (ie &500 for A4)
paper limits options:
bit 0 set O paper limits shown
bits 1 - 3 reserved (must be zero)
bit 4 set 0 landscape orientation (else portrait)
bits 5 - 7 reserved (must be zero)
bit 8 set 0 printer limits are default
bits 9 - 31 reserved (must be zero)

grid spacing (floating point)

grid division

grid type (zero O rectangular, non-zero O isometric)
grid auto-adjustment (zero O off, non-zero O on)
grid shown (zero O no, non-zero O yes)

grid locking (zero O off, non-zero O on)

grid units (zero O inches, non-zero O centimetres)
zoom multiplier (1 - 8)

zoom divider (1 - 8)

zoom locking (zero O none, non-zero O locked to powers of
two)

toolbox presence (zero [0 no, non-zero [yes)

initial entry mode: one of
bit0set O line
bit 1 set O closed line
bit 2 set 00 curve
bit 3 set 0 closed curve
bit 4 set O rectangle
bit5set O ellipse
bit 6 set [0 text line
bit 7 set 0 select

undo buffer size, in bytes

4-473

Objects

When Draw reads a draw file, only the first options object is taken into account — any
others are discarded. When it saves a diagram to file, the options in force for that
diagram are saved with it.

The Draw application supplied with RISC OS 2 does not use this object type.

Transformed text object

Object type number 12

Size Description
24 transformation matrix
4 font flags:

bit 0 setl] text should be kerned
bit 1 setd text written from right to left
bits 2 - 31 reserved (must be zero)

text colour

text background colour hint

text style

unsigned nominal x size of the font (in 1/640 point)
unsigned nominal y size of the font (in 1/640 point)
X, y coordinates of the start of the text base line

n n characters in the string, null terminated

0-3 up to 3 zero characters, to pad to a word boundary

0o A~ DS~

The transformation matrix is as described in Font_Paint (see page 3-437), in the same
format used elsewhere in the Draw module.

The remaining fields are exactly as specified for Text objects (see page 4-466).

The Draw application supplied with RISC OS 2 does not use this object type.

4-474

Appendix E: File formats

Transformed sprite object

Object type number 13

Size Description
24 Transformation matrix

Thisisfollowed by asprite. Seethe section entitled Format of a sprite on page 1-777 for
details.

This contains a pixelmap image. The image is transformed from its own coordinates (ie
the bottom-left at (0, 0) and the top-right at (w x X_eig, h x y_eig), where (w, h) arethe
width and height of the spritein pixels, and (x_eig, y_eig) are the eigen factors for the
mode in which it was defined) by the transformation held in the matrix.

If the sprite has a pal ette then this gives absolute values for the various possible pixels.
If the sprite has no palette then colours are defined locally. Within RISC OS the
available ‘Wimp colours’ are used — for further details see the chapter eftitiess on
page 1-773 and the chapter entitlée Window Manager on page 3-3.

The Draw application supplied with RISC OS 2 does not use this object type.

4-475

Font files

Font files

In al the formats described below, 2-byte quantities are little-endian: that is, the least
significant byte comes first, followed by the most-significant. The values are unsigned
unless otherwise stated.

Fonts are described in:

« IntMetrics and IntMetn files

o X90y45 files (old style 4-bpp bitmaps)
« New font file formats.

IntMetrics / IntMetn files

Header

Size Description

name of font, padded with Return characters

16

16

nlo = low byte of nhumber of characters that may be defined

version number of file format:
0 flags and nhi must be zero
1 not supported
2 flags supported; n can be > 255

PR s s s

1 flags:
bit 0 set O thereisno bbox data (use Outlines)
bit 1 set O thereisno x-offset data
bit 2 set O thereisno y-offset data
bit 3 set O thereis more data after the metrics
bit 4 reserved (must be zero)
bit 5 set (0 character map size precedes map
bit 6 set [0 kern characters are 16-bit, else 8-bit
bit 7 reserved (must be zero)

1 nhi = high byte of number of characters that may be defined:
n=nhi x 256 + nlo
If flagsbit 5is set:

2 m = character map size
00 nomap

4-476

Appendix E: File formats

Some of the n character definitions can be blank; the number defines the number of slots
available — though not necessarily used — in the character definition tables.

Character mapping
Size Description
m character mapping (ie indices into following tables)

For example, if the 40th byte in this mapping has the
value 4, then the fourth entry in each of the following
arrays refers to character 40. A zero entry means that
character is not defined in this font.

If flags bit 5 is clear, 256 characters are mapped (ie
m= 256).

If there is no map (see above), the character code is used to index into the tables.

Note that since the mapping table is 8-bit, there cannot be nne266.

Table of bounding boxes
If flags bit O is clear:

Size Description

2n x0 [Jbounding box for each character (16-bit signed)
2n y0 Ubottom-left (x0, y0) is inclusive

2n x1 Utop-right (x1, y1) is exclusive

2n yl Ucoordinates are in 1/1000th em

Coordinates are relative to the ‘origin point'.

Tables of character widths
If flags bit 1 is clear:

Size Description
2n x-offset after printing each character, in 1/1000th em
(16-bit signed)

If flags bit 2 is clear:

Size Description
2n y-offset after printing each character, in 1/1000th em
(16-bit signed)

4-477

IntMetrics / IntMetn files

4-478

To calculate the offset to this point in the file, let:

nlo = byte at offset 48 in file

version number = byte at offset 49in file

flags = byte at offset 50 in file

nhi = byte at offset 51 infile

If version number < 2 then flags = 0 (which it should be anyway!)
n=nhi x 256 + nlo

Then:
offset = 52

if (flags bit 5 clear) then offset += 256

else offset += 2 + byte(52) + 256 x byte(53)
if (flags bit O clear) then offset +=8n

if (flagsbit 1 clear) then offset += 2n

if (flags bit 2 clear) then offset += 2n

Offsets to extra data areas

If flags bit 3is set:
Size
2
2
2
2

Description

offset to ‘miscellaneous’ data area
offset to kern pair data area

offset to reserved data area #1
offset to reserved data area #2

The offsets are relative to the start of the table. The entries must be consecutive in the
file, so the end of one area coincides with the beginning of the next. The areas are not
necessarily word-aligned, and the space at the end of each area is reserved (ie there must
not be any ‘dead’ space at the end of an area).

Appendix E: File formats

Miscellaneous data area

Size

N NDNDNDN

N

A NMNDNNDNEFEPENDN

Kern pair data

Description

x0 [[]maximum bounding box for font (16-bit signed)
yO0 Ubottom-left (x0, y0) isinclusive

x1 Ultop-right (x1, y1) is exclusive

yl Uall coordinates are in 1/1000ths em

default x-offset per char (if flags bit 1 is set), in 1/1000th em
(16-hit signed)

default y-offset per char (if flags bit 2 is set), in 1/1000th em
(16-hit signed)

italic h-offset per em (1009 TAN (italic angle)) (16-bit signed)
underline position, in 1/256th em (signed)

underline thickness, in 1/256th em (unsigned)
CapHeight in 1/1000th em (16-bit signed)

XHeight in 1/1000th em (16-bit signed)

Descender in 1/1000th em (16-bit signed)

Ascender in 1/1000th em (16-bit signed)

reserved (must be zero)

If flags bit 6 is clear, character codes are 8-bittafis bit 6 is set, character codes are

16-bit (lo, hi).
Size
lor2

lor2
2

lor2
lor2

Description

left-hand character code []
right-hand character code []]
x-kern amount (iflags bit 1 is clear) H 0

in 1/1000ths em (16-bit signed) Urepeat Urepeat
y-kern amount (iflags bit 2 is clear) [J]

in 1/1000ths em (16-bit signed) U] U]

00 end of list for this letter [

00 end of kern pair data

Reserved data areas #1 and #2

These must be null.

4-479

x90y45 font files

x90y45 font files

If the length of ax90y45 file is less than 256 bytes, then the contents are the name of the
f9999x9999 file to use as master bit maps.

Index entries

Each font file starts with a series of 4-word (ie 16 byte) index entries, corresponding to
the sizes defined:

Size Description

point size, not multiplied by 16
bits per pixel (4)

pixels per inch in the x-direction
pixels per inch in the y-direction
reserved (must be zero)

offset of pixel datain file

4 size of pixel data

AR PRP R PR PR

Thelist isterminated by:
1 0

Pixel data

Pixel datais limited to 64K Bytes per block. Each block starts word-aligned relative to
the start of thefile:

Size Description

X-size, in 1/16ths point x x pixels per inch
y-size, in 1/16ths point x y pixels per inch
pixels per inch in the x-direction

pixels per inch in the y-direction

x0 [Jmaximum bounding box for font
yO0 [bottom-left (x0, y0) isinclusive
x1 Utop-right (x1, y1) is exclusive
yl [lall coordinates are in pixels

512 2-byte offsets from table start of character data.
A zero value means the character is not defined.

PP P PFPM>NMNADNA

4-480

Appendix E: File formats

Character data

Size Description

1 x0 [Joounding box for character

1 yO0 Ubottom-left (x0, y0) isinclusive

1 x1—-x0=X Utop-right (x1, y1) is exclusive

1 yl-y0=Y Uall coordinates are in pixels

XxY/2 4-bits per pixel (bpp), consecutive rows bottom to top: not
aligned until the end

0-35 alignment

Other font file formats
The new font file formats includes definitions for the following types of font files:
o f9999x9999 (new style 4-bpp anti-aliased fonts)
o b9999x9999 (1-bpp bitmaps)
o Outlines (outline font format, for all sizes)

‘9999’ = pixel size (ie point size 16 x dpi / 72) zero-suppressed decimal number.

If the length of an outlines file is less than 256 bytes, then the contents are the name of
another font whose glyphs are to be used instead (with this font's metrics).

4-481

Other font file formats

File header
The file header is of the following form:

Size Description
4 ‘FONT’ — identification word
1 bpp (bits per pixel):

00O outlines

10 1 bpp

40 4 bpp

1 version number of file format (changes are cumulative):
4 no ‘don’t draw skeleton lines unless smaller
than this’ byte present
5 byte at [table+512] = maximum pixel size for
skeleton lines (see below)
6 byte at [chunk + indexsize] = dependency mask
(see below)
7 flag word precedes index in chunk (offsets are
relative to index, not chunk)
8 file offset array is in a different place
2 If bpp = 0: design size of font
If bpp > O: flags:
bit 0 setd horizontal subpixel placement
bit 1 setd vertical subpixel placement
bits 2-5 reserved (must be zero)
bit 6 setd flag word precedes index in chunk (must be
set ifversion number = 7, else clear).
bit 7 reserved (must be zero)

Outline files derive the value of bit 6 from
version number.

2 x0 [Jmaximum bounding box for font (16-bit signed)

2 yO0 [bottom-left (x0, y0) is inclusive

2 x1 —x0 [top-right (x1, y1) is exclusive

2 yl-y0 [Jall coordinates are in pixels or design units
If version number < 8, the number of chunkghunks = 8, and these bytes end the
header:

Size Description

4 file offset of 0...31 chunk (word-aligned)

4 file offset of 32...63 chunk (word-aligned)

20 file offsets of further chunks, in order (word-aligned)

4 file offset of 224...255 chunk (word-aligned)

4-482

Appendix E: File formats

file offset of end (ie size of file)
If offset(n+1)=offset(n), then chunk nisnull.

If version number = 8, these bytes end the header:

Size

O L)

Table start

Table data

Bitmaps

Description

file offset of area containing file offsets of chunks

nchunks = number of defined chunks

ns = number of scaffold index entries (including entry[0] = size)

scaffold flags:
bit 0 set O all scaffold base chars are 16-bit
bit 1 set O these outlines should not be anti-aliased (eg
System.Fixed)
bits 2 - 31 reserved (must be zero)

al reserved (must be zero)

Description
n = size of table/scaffold data

If bpp > 0, the file defines a bitmap, and only the following 8 bytes of table data are
used. For such afile, n=10 — other values are reserved.

Size

N NDNDN

Description

x-size (1/16th point)
x-resolution (dpi)
y-size (1/16th point)
y-resolution (dpi)

4-483

Other font file formats

Outlines

If bpp = 0, the file defines outlines, and the following table datais used. (Files with
version number < 8 behave asif ns = 256 and scaffold flags = 0.)

Size Description
nsx2—2 offsets to scaffold data (16-bit):
If scaffold flags bit O is clear:
bits 0 - 14 = offset of scaffold data from table start
bit 15 set] base character code is 2 bytes, else 1 byte

If scaffold flags bit O is set:
bits 0 - 15 = offset of scaffold data from table start
base character code is always 2 bytes
00 no scaffold data for char
1 skeleton threshold pixel size \rsion number = 5)
When rastering the outlines, skeleton lines will only be
drawn if either the x- or the y- pixel size is less than this
value (except if value = 0, which means ‘always draw
skeleton lines’).
? ... sets of scaffold data follow, each set of which can include
many scaffold lines (see descriptions below)

Scaffold data

Size Description
1 character code of ‘base’ scaffold entry’{Onone)
1 bit n setd x-scaffold linen is defined in base character
1 bitn setd y-scaffold linen is defined in base character
1 bit n setd x-scaffold linen is defined locally
1 bit n setd y-scaffold linen is defined locally
... local scaffold lines follow (see description below)
Scaffold lines
Size Description
2 bits 0 - 11 = coordinate in 1/1000ths em (signed)
bits 12 - 14 = scaffold link index (@ none)
bit 15 set] ‘linear’ scaffold line
1 width (2540 L-tangent, 2551 R-tangent)

4-484

Appendix E: File formats

Table end

Size Description

? description of contents of file:
Font name, 0, ‘Outlines’, 0,
‘999x999 point at 999x999 dpi’, 0

... word-aligned chunk data follows (see description below)

If version number > 8:

Size Description
4 file offset of chunk O (word-aligned)
4 file offset of chunk 1 (word-aligned)
4 x (nchunks-3) file offset of further chunks in order (word-aligned)
4 file offset of chunkrichunks — 1) (word-aligned)
4 file offset of end (ie size of file)
Chunk data
If version number = 7:
Size Description
4 flag word:

bit 0 setd horizontal subpixel placement

bit 1 setd vertical subpixel placement

bits 2 - 6 reserved (must be zero)

bit 7 sett] dependency byte(s) present (see below)
bits 8 - 30 reserved (must be zero)

bit 31 reserved (must be one)

4-485

Other font file formats

For al versions there follow nchunks of chunk datain this format:

Size Description
32 offset within chunk to character data
00 character is not defined
Sizeis x 4 if vertical placement isused, and x 4 if horizontal
placement is used (because the character datais repeated for each
of four possible sub-placements). Character index is moretightly
bound than vertical placement, which is more tightly bound than
horizontal placement.
? dependency bytes (if outline file, and version number = 6)
One bit required for each chunk infile.
Bit nset 0 chunk n must be loaded in order to rasterise
this chunk. Thisis required for composite characters
which include characters from other chunks (see below).

...character data follows, word-aligned at end of chunk (see
description below)

Note: All character definitions must follow the index in the order in which they are
specified in the index. This is to allow the font editor to easily determine the size of each
character.

Character data

Size Description
1 character flags:
bit 0 setl] coordinates are 12-bit, else 8-bit
bit 1 setl] data is 1-bpp, else 4-bpp
bit 2 setO initial pixel is black, else white
bit 3 setl] data is outline, else bitmap
If character flags bit 3 is clear:
bits 4 - 7 = f’ value for char (@ not encoded)
If character flags bit 3 is set:
bit 4 setl] composite character
bit 5 setl] with an accent as well
bit 6 setl] character codes within this character are
16-bit, else 8-bit (not yet implemented — must
be zero)
bit 7 reserved (must be zero)

4-486

Appendix E: File formats

if character flags bits 3 and 4 are set:

Size Description
lor2 character code of base character

if character flags bits 3 and 5 are set:

Size Description
lor2 character code of accent
20r3 X, Yy offset of accent character

if character flags bits 3 or 4 are clear:

Size Description

lorl5 x0 [Jbounding box for character (8- or 12-bit signed)
lorl5 y0 Ubottom-left (x0, y0) isinclusive

lorls x1 — x0 Utop-right (x1, y1) is exclusive

lorlb y1 — yo[lall coordinates are in pixels or design units
? data: (depends on type of file)

1-bpp uncrunched: rows from bottom to top
4-bpp uncrunched: rows from bottom to top
1-bpp crunched: list of (packed) run-lengths
outlines: list of move/line/curve segments

Word-aligned at the end of the character data.

Outline character format

Here the ‘pixel bounding box’ is actually the bounding box of the outline in terms of the
design size of the font (in the file header). The data following the bounding box consists
of a series of move/line/curve segments followed by a terminator and an optional extra
set of line segments followed by another terminator. When constructing the bitmap from
the outlines, the font manager will fill the first set of line segments to half-way through
the boundary using an even-odd fill, and will thin-stroke the second set of line segments
(if present). For further details see the chapter enfidiedv module on page 3-533.

4-487

Other font file formats

Each line segment consists of:

Size Description
1 bits 0 - 1 = segment type:
0 terminator (see description below)
1 moveto X, y
2 linetox,y
3 curvetoxl, yl, x2,y2, x3,y3

bits 2 - 4 = x-scaffold link
bits 5 - 7 = y-scaffold link

? coordinates in design units
Terminator:
Size Description
1 bit 2 set O stroke paths follow (same format, but paths are not
closed)

bit 3 set 0 composite character inclusions follow:

Composite character inclusions:
lor2 character code of character to include (0 O finished)
2/3 X, y offset of thisinclusion (design units)

The coordinates are either 8- or 12-bit sign-extended, depending on bit O of the
character flags (see above), including the composite character inclusions.

The scaffold links associated with each line segment relate to the last point specified in
the definition of that move/line/curve, and the control points of a Bezier curve have the
same links as their nearest endpoint.

Note that if a character includes another, the appropriate bit in the parent character’s
chunk dependency flags must be set. This byte tells the Font Manager which extra
chunk(s) must be loaded in order to rasterise the parent character’s chunk.

1-bpp uncompacted format

1 bit per pixel, bit sefl paint in foreground colour, in rows from bottom-left to
top-right, not aligned until word-aligned at the end of the character.

1-bpp compacted format

The whole character is initially treated as a stream of bits, as for the uncompacted form.

The bit stream is then scanned row by row: consecutive duplicate rows are replaced by a
‘repeat count’, and alternate runs of black and white pixels are noted. The repeat counts
and run counts are then themselves encoded in a set of 4-bit entries.

4-488

Encoding files

Appendix E: File formats

Bit 2 of the character flags determines whether the initial pixel isblack or white (black

= foreground), and bits 4 - 7 are the valuefofsee below). The character is then
represented as a series of packed numbers, which represent the length of the next run of
pixels. These runs can span more than one row, and after each run the pixel colour is
changed over. Special values are used to denote row repeats.

File Meaning
n nibbles, value 0 run length =

next_n+1 nibbles+ (13—f)x 16 + f+1 — 16
1 nibble, value 1.f. run length =this nibble

1 nibble, valudg+1...13 run length =
next_nibble + (this_nibble-f—1) x 16 + f+1

1 nibble, value 14 row repeat counhext_packed number
1 nibble, value 15 row repeat count = 1
where:

« this nibbleis the actual value (1f,.orf+1...13) of the nibble
« hnext_nibbleis the actual value (0...15) of the nibble followitgs _nibble

« next_n+1 nibblesis the actual value (0.2 — 1) of the nexb+1 nibbles
after then zero nibbles

o next_packed number is the value of the packed number following the nibble of
value 14.

The optimal value of lies between 1 and 12, and must be computed individually for
each character, by scanning the data and calculating the length of the output for each
possible value. The value yielding the shortest result is then used, unless that is larger
than the bitmap itself, in which case the bitmap is used.

Repeat counts operate on the current row, as understood by the unpacking algorithm, ie
at the end of the row the repeat count is used to duplicate the row as many times as
necessary. This effectively means that the repeat count applies to the row containing the
first pixel of the next run to start up.

Note that rows consisting of entirely white or entirely black pixels cannot always be
represented by using repeat counts, since the run may span more than one row, so a long
run count is used instead.

An encoding file is a text file which contains a set of identifiers which indicate which
characters appear in which positions in a font. Each identifier is preceded by a /', and
the characters are numbered from 0, increasing by 1 with each identifier found.

Comments are introduced by ‘%’, and continue until the next control character.

4-489

Encoding files

4-490

The following special comment lines are understood by the font manager:

%Rl SCOS BasedOn base_encodi ng
%/&RI SCOS_Al phabet al phabet

where base_encoding and al phabet denote positive decimal integers.

Both lines are optional, and they indicate respectively the number of the base encoding
and the alphabet number of this encoding.

If the %0%RISCOS_BasedOn lineis not present, then the Font Manager assumesthat the
target encoding describes the actual positions of the glyphsin an existing file, the data
for whichisin:

font_directory.|lntMetricsal phabet
font_directory.Qutlinesal phabet

where alphabet is null if the %%RISCOS_Alphabet lineis omitted.

(Infact the leafnames are shortened to fit in 10 characters, by removing characters from
just before the alphabet suffix).

Inthis case the IntMetrics and Outlinesfiles are used directly, since there is aone-to-one
correspondence between the positions of the characters in the datafiles and the positions
required in the font.

If the %%RISCOS_BasedOn lineis present, then the Font Manager accesses the
following datafiles:

font_directorylntMetricsbase_encodi ng
font _directory.Qutlinesbase_encodi ng

and assumes that the positions of the glyphsin the datafiles are as given by the contents
of the base encoding file.

The base encoding is called ‘/Baseand lives in the Encodings directory under
Font$Path, along with all the other encodings. Because it is preceded by a ‘/’, the Font
Manager does not return it in the list of encodings returned by Font_ListFonts.

Note that only one encoding file with a given name can apply to all the fonts known to
the system. Because of this, a given encoding can only be either a direct encoding, where
the alphabet number is used to reference the datafiles, or an indirect encoding, where the
base encoding number specifies the datafile names.

Here is the start of a sample base encoding (‘/Base0’):
% / Base0 encodi ng
99 SCOS_Al phabet 0

/. notdef /. NotDef /.NotDef /.NotDef
/zero /one /two /three /four /five /six /seven /eight

Appendix E: File formats

Here is the start of a sample encoding file (‘Latinl’):

% Latin 1 encoding

%Rl SCOS_BasedOn 0
9%/l SCOS_Al phabet 101

/. notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/. notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/. notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/. notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef

/ space /excl am /quotedbl /nunbersign
/dol lar /percent /anpersand /quotesingle

(Note that the sample /Base0 file is not the same as the released one).

These illustrate several points:
« The %% lines must appear before the first identifier.
« Character 0 in any encoding must be called ‘.notdef’, and represent a null character.

« Other null characters in the base encoding must be called ‘.NotDef’, to distinguish
them from character O.

« Non-base encoding files wanting to refer to the null character should use ‘.notdef’
in all cases.

« The other character names should follow the Adobe PostScript names wherever
possible. (SePostcript Language Reference Manual. Adobe Systems
Incorporated (1990) 2nd ed. Addison-Wesley, Reading, Mass, USA.) This is to
enable the encoding to refer to Adobe character names when included as part of a
print job by the PostScript printer driver.

« The number of characters described by the base encoding can be anything from 0 to
768, and should refer to distinct characters (apart from the ‘.NotDef’s). Other
encodings, however, must contain exactly 256 characters, which need not be
distinct.

Font Messages files

The format of font Messages files is the same as that of ordinary message files, as
documented in the chapter entitlggssageTrans on page 3-745, with those exceptions
detailed below.

The valid tokens are:

Encoding_ encoding (based on a base encoding)

BEncoding_ base encoding (eg BaseO)

Font_ font which doesn’t vary with alphabet (eg Symbol font)
LFont_ font which does vary with alphabet (a ‘language’ font)

4-491

Font Messages files

4-492

The tokens are of the form ‘Font_’ followed by the identifier of the font in the font
directory, and their values are the names of those fonts. If the value is null, then the font
name is taken to be the same as the identifier.

The values of the encoding tokens should normally be null, butnystidefine them

for all encodings within the directory holding the Messages file if you want to use a font
that references them. Also, you must not prefix the base encoding id with /" even
though its filename is ‘/Basé This is because the ‘/’ in the filename is only used by
Font_ListFonts when it is scanning a font directory to determine base encodings from
encodings.

Identifiers should use characters in the range &20 - &7E, to aid in international
portability. However, the font names should use the alphabet of the relevant territory, as
determined by the country number on the end of the message file name.

Within a font name, the following characters are special:

The first dot encountered causes the font to be split over two menu levels.
Subsequent dots do not cause further submenu splitting.

* An asterisk as the last character of a font name is not treated as part of the
name, but marks this font as being the default for that family. Clicking on the
menu entry for the font family will select the default weight and/or style for the
family, even though the font weights and styles are in a subdirectory. This is
normally fontfamily.Medium, but there are other examples (eg Selwyn).

Note that if a font name is given as *’ alone, then the name is the same as the identifier
and it is also made the default for that family.

Appendix E: File formats

For example, a ‘Messages1’ file for the ROM fonts might be:

BEncodi ng_BaseO:

Encodi ng_Lati nl:

Encodi ng_Lati n2:

Encodi ng_Lati n3:

Encodi ng_Lat i n4:

LFont _Cor pus. Bol d:

LFont _Cor pus. Bol d. Obl i que:

LFont _Cor pus. Medi um *

LFont _Cor pus. Medi um ol i que:

LFont _Honerton. Bol d: Hel vetica bol d

LFont _Honerton. Bol d. bl i que: Hel veti ca bol d oblique
LFont _Honerton. Medi um Hel veti ca*

LFont _Honerton. Medi um bl i que: Hel veti ca obl i que
LFont _Trinity. Bol d:

LFont _Trinity.Bold.Italic:

LFont _Trinity. Medi um *

LFont _Trinity. Mediumiltalic:

This aliases the Homerton font family so that users see it named ‘Helvetica’, and sets the
default font in each family to the one of ‘Medium’ weight.

4-493

Music files

Music files
Header
Size
8
1

Description
‘Maestro’ followed by linefeed (&0A)
2 (type 2 music file)

This is followed by zero or more of the following blocks in any order. It is terminated by
the end of the file. Note that types 7 to 9 are not implemented in Maestro, but are
described for any extensions or other music programs that may be written.

Music data
Size

>0g1...08

Stave data
Size
1
1
1

4-494

Description
1 indicates Music data follows

n = number of bytes in the ‘Gates’ array (stored as a BASIC
integer — ie &40 followed by four bytes of data, most significant
first).

gl...g8 = number of bytes in queue of notes and rests for each of
the 8 channels 1...8 (stored as BASIC integers — ie &40 followed
by four bytes of data, most significant first).

gate data (se@ates on page 4-496)

For c= 1to 8 (iefor each channel in turn)
data for all notes or rests in channéseeNotes and
rests on page 4-498)

Next ¢

Description

2 indicates Stave data follows
number of music staves — 1 (0 - 3)
number of percussion staves (0 - 1)

Appendix E: File formats

Which channels are used by which staves depends on the number of music staves and
the number of percussion staves as follows:

Music Percussion

staves staves
0

A DN WWDNNDRPRP
P OFRr OFR O PR

Instrument data

Savel Save?2 Save3 Saved Percussion

1-8

1-7 8
1-4 5-8

1-4 5-7 8
1 2-5 6-8

1 2-5 6,7 8
1,2 3,4 5,6 7,8

12 3,4 5,6 7 8

Instrument names are not recorded; only channel numbers.

Size
1

Description
3indicates Instrument data follows

Thisisfollowed by 8 blocks of 2 bytes each:

Size
1
1

Volume data
Size
1
1x8

Stereo position data
Size
1
1x8

Description

channel number (always consecutive 1 - 8)
voice number: 0 O no voice attached

Description
4 indicates Volume data follows

volume on each channel (0 - 7 = ppp - fff); one byte for each
channel

Description
5 indicates Stereo datafollows

stereo position of channel (0 - 6 = full left - full right); one byte
for each channel

4-495

Gates

Tempo data
Size
1
1

Description
6 indicates Tempo datafollows

0 - 14, which corresponds to one of: 40, 50, 60, 65, 70, 80, 90,
100, 115, 130, 145, 160, 175, 190, or 210beats per minute

To convert to values to program into SWI Sound_QTempo, use the formula:
Sound_QTempo value = beats per minute x 128 x 4096 / 6000

Title string
Size
1
n

Instrument names
Size
1
2nl...n8

MIDI channels
Size
1
1x8

Gates

Description
7 indicates title string follows
null terminated string of n characterstotal length

Description
8 indicates Instrument names follow

8 null terminated strings for eaafice number used in
ascending order in command 3 above.

Description
9 indicates MIDI channel numbers follow

MIDI channel number on this stave[{0 not transmitted over
MIDI, else 1 - 16); one byte for each channel

A Gate is a point in the music where something is interpreted: eg a note, time signature,
key signature, bar line or clef can each occupy a gate. The gate data is one byte for a note
or rest, or 2 bytes for an attribute such as a time signature, key signature, bar line, clef,

etc.

Note or rest

A note or rest is represented by a single non-zero byte.

Bit()
0-7

4-496

Description
Gate mask: bit set] gate 1 note or rest from quene

Attribute

Appendix E: File formats

An attribute is represented by a null byte (so that it can be distinguished from a note or
rest), followed by a byte describing the attribute.

Byte
0
1

Timesignature
Bit(s)

[N]

-4
-7

Key signature
Bit(s)
0-1
2
3-5
6-7

Clef

Slur

Bit(s)
0-3
4

5
6-7
Octave shift

Bit(s)
0-4
5
6-7

Description
0
one of the following forms:

Description

1

number of beats per bar — 1 (0 - 15)

beat type (0 = breve, to 7 = hemidemisemiquaver)

Description

10 binary (ie bit 1 set)

type of accidental (0 = sharp, 1 = flat)
number of accidentals in key signature (0 - 7)
reserved (must be zero)

Description

100 binary (ie bit 2 set)

0 =treble, 1 = alto, 2 = tenor, 3 = bass
reserved (must be zero)

stave —1 (0 - 3)

Description

1000 binary (ie bit 3 set)
1=on, 0= off

reserved (must be zero)
stave —1 (0 - 3)

Description

10000 binary (ie bit 4 set)
0 =up, 1 =down

stave —1 (0 - 3)

4-497

Notes and rests

Bar
Bit(s) Description
0-5 100000 binary (ie bit 5 set)
6-7 reserved (must be zero)

Reserved for future expansion

Bit(s) Description
0-6 1000000 binary (ie bit 6 set)
0-7 10000000 binary (ie bit 7 set)

Notes and rests
Notes and rests are each stored in a 2 byte block that has some common elements.

Notes
Bit(s) Description
0 stem orientation (0 = up, 1 = down)
1 10 join beams (barbs) to next note
2 10 tiewith next note
3-7 stave line position (1 - 31, 16 = centre line)
8-10 accidenta:
0= no accidental
1= natura
2 = sharp
3=flat
4 = double-sharp
5 = double-flat
6 = natural sharp
7 = natural flat
11-12 number of dots (0 - 3)
13-15 type (0 = breve, to 7 = hemidemisemiquaver)
Rests
Bits Description
0-10 reserved (set to zero)
11-12 number of dots (0 - 3)
13-15 type (0 = breve, to 7 = hemidemisemiquaver)

If arest coincides with anote, its position is determined by the following note on the
same channel.

4-498

Appendix E: File formats

Squash files

Squash files are generated by the ! Squash application, which in turn uses the Squash
module, as documented in the chapter entitled Squash on page 4-103.

Squash files consist of a small fixed size header put in by ! Squash, followed by
compressed data produced by the Squash module. The header has the following format:

t ypedef struct
{
char id[4]; /* Should be “SQSH" */
unsigned int length;
unsigned int load;
unsigned int exec;
int reserved,; /* Should be zero */
} squash_header;

The length, load and exec are the file length, |oad address and execution address of the
original file before it was compressed (although the load and exec typically hold the
filetype and date/time stamp). If theid isnot SQSH, then the rest of thefileisnot in the
same format.

4-499

4-500

91 Appendix F: System variables

This appendix details standard variables used in RISC OS, and gives important
guidelines on the names you should use for any system variables you create for your
applications to use.

Application variables

The following section gives standard names used for variables that are bound to a

particular application. An application should not need to set al these variables, but

where one of the variables below matches your needs, you should use it and follow the

given guidelines. Where you need a system variable and can't find a relevant one below,
you should use your own, namingA\pp$...

In the descriptions below you should replagp with your application’s name. You
must first register this name with Acorn, to avoid any possibility of your system
variables clashing with those used by other programmers’ applicatiogmeeix H:
Registering names on page 4-551.

App$Dir

An App$Dir variable gives the full pathname of the directory that holds the application
App. This is typically set in the application’s IRun file by the line:

Set App$Dir <Cbey$Dir>

App$Path and App$Path_Message

An App$Path variable gives the full pathname of the directory that holds the application
App. An App$Path variable differs from akpp$Dir variable in two important respects:

e The pathname includes a trailing ‘.’
« The variable may hold a set of pathnames, separated by commas.

An App$Path_Message variable gives an alternative error message to be used if the path
App: cannot be found. This message is then used instead of the default one provided by
RISC OsS.

It's common to use aApp$Dir variable rather than akpp$Path variable, but there may
be times when you need the latter.

4-501

Application variables

An App$Path variable might, for example, be set in the application’s Run file by the
line:

Set App$Path <Cbey$Dir>., % App.

if the application held further resources in the subdirecipgy of the library.

App$Options

An App$Options variable holds the start-up options of the applicaippn

« An option that can be either on or off should consist of a single character, followed
by the character ‘+" or *-’ (edt or S-).

« Other options should consist of a single character, followed by a numiie4 @@g
F54).

« Options should be separated by spaces; so a complete string might be
F54 M+ P4 S-.

This variable is typically used to save the state of an application to a desktop boot file,
upon receipt of a desktop save message. A typical line output to the boot file might be:

Set App$Options F54 M+ P4 S-

You should only save those options that differ from the default, and hence not output a
line at all if the application is in its default state. You should however be prepared to read
options that set the default values, in case users explicitly add such options.

AppS$PrintFile

An App$PrintFile variable holds the name of the file or system device to which the
applicationApp prints. Typically this will bepr i nt er : , and would be set in your
application’s 'Run file as follows:

Set App$PrintFile printer:

App$Resources

4-502

An App$Resources variable gives the full pathname of the directory that holds the
applicationApp’s resources. This might be set in the application’s !Run file by the line:

Set App$Resour ces App: Resour ces
Note the use ofipp: to make use ohpp$Path.

Appendix F: System variables

App$Running

An App$Running variable shows that the application App is running. It should have the
value ‘Yes'’ if the application is running. This might be used in the application’s !Run file
as follows:

I f "App$Running" <> "" then Error App is already running
Set App$Runni ng Yes

When the application stops running, you should use *Unset to delete the variable.

Changing and adding commands

Alias$Command

An Alias$Command variable is used to define a new command na@Guwdmand. For
example:

Set Ali as$Mbde echo | <22>| <%0>

By using the name of an existing command, you can change how it works.

FileSwitch variables

FileSwitch$...

FileSwitch$CurrentFilingSystem contains the name of the current filing system, and
FileSwitch$TemporaryFilingSystem contains the name of the temporary filing system.
FileSwitch$Special Field contains the last special field to have been evaluated as a path
was processed. See also the section entitled Using FileSwitch$Special Field with path
variables on page 2-20.

FileSwitch$ FilingSystem$...

Most filing systems provide system variables used to store their currently selected
directory, previously selected directory, library directory, and user root directory. For a
filing system fs, these are respectively FileSwitchfsCSD, FileSwitchfsPSD,
FileSwitchfsLib and FileSwitch$fsSURD.

4-503

Using file types

Using file types

File$Type_XXX

A File$Type XXX variable holds the textual name for afile having the hexadecimal file
type XXX. Itistypically set in the !Boot file of an application that provides and edits that
file type. For example:

Set Fil e$Type_ XXX TypeNane

The reason the !Boot file is used rather than the !Run file is so that the file type can be
converted to text from the moment its ‘parent’ application is first seen, rather than only
from when it is run.

Alias$@LoadType_ XXX, Alias$@PrintType_XXX and
Alias$@RunType_XXX

Absent filing sy

These variables set the commands used to respectively load, print and run a file of
hexadecimal typ&XX. They are typically set in the !Boot file of an application that
provides and edits that file type. For example:

Set Alias$@rint Type_ XXX [/ <Cbey$Dir> -Print
Set Alias$@unType_ XXX / <Cbey$Dir >

Note that the above liné®th have a trailing space (invisible in print!).

The reason the !Boot file is used rather than the !Run file is so that files of the given type
can be loaded, printed and run from the moment their ‘parent’ application is first seen,
rather than only from when it is run.

For more information see the section entitledd-time and run-time system variables
on page 2-17.

stems

FilingSystem$Path_Message

4-504

A FilingSystem$Path_Message variable gives an alternative error message to be used if
the FilingSystem cannot be found. This message is then used instead of the default one
provided by RISC OS.

Appendix F: System variables

Setting the command line prompt

CLI$Prompt

The CLI$Prompt variable sets the command line interpreter prompt. By default thisis
“*’_One common way to change this is so that the system time is displayed as a prompt.
For example:

Set Macro CLI $Pronpt <Sys$Ti ne> *

This is set as a macro so that the system time is evaluated each time the prompt is
displayed.

Configuring RISC OS commands

Copy$Options, Count$Options and Wipe$Options

These variables set the behaviour of the *Copy, *Count and *Wipe commands. For a full
description, see page 2-154, page 2-157 and page 2-195 respectively.

System path variables

File$Path and Run$Path

These variables control where files are searched for during, respectively, read operations
or execute operations. They are both path variables, which means that — in common with
other path variables — they consist of a comma separated list of full pathnames, each of
which has a trailing *.".

If you wish to add a pathname to one of these variables, you must ensure that you
append it once, and once only. For example, to add the ‘bin’ subdirectory of an
application to Run$Path, you could use the following lines in the application’s !|Boot
file:

If "<App$Path>" = "" then Set Run$Path <Run$Pat h>, <Cbey$Di r>. bi n.
Set App$Pat h <Obey$Dir >.

For more information see the section entiffelé$Path and Run$Path on page 2-18.

4-505

Obey files

Obey files

Obey$Dir

The Obey$Dir variable is set to the directory from which an Obey file is being run, and
may be used by commands within that Obey file. For examples, see various other
sections of this chapter. For more detailed i nformation, see the section entitled Obey$Dir
on page 4-354.

Time and date

Sys$Time, Sys$Date and Sys$Year

These variables are code variables that are evaluated at the time of their useto give,
respectively, the current system time, date and year.

For an example of the use of Sys$Time, see the section entitled CLI$Prompt on
page 4-505.
Sys$DateFormat

The Sys$DateFormat variable sets the format in which the date is presented by the SWI
OS_ConvertStandardDateAndTime (see page 1-447). For details of the format used by
this variable, see the section entitled Format field names on page 1-412.

Return codes

Sys$ReturnCode, Sys$RCLimit

The Sys$ReturnCode variable contains the last return value given by the SWI OS_Exit,
and the Sys3RCLimit variable sets the maximum return value that will not generate an
error. For more details, see page 1-303.

ISystem and !Scrap

System$Dir and System$Path

These variables give the full pathname of the System application. They have the same

value, save that System$Path has a trailing ‘., whereas System$Dir does not. You must
not change their values.

(There are two versions of this pathname for reasons of backward compatibility.)

4-506

Appendix F: System variables

Wimp$Scrap

The Wimp$Scrap variable gives the full pathname of the Wimp scrap file used by the
file transfer protocol. You must not use this variable for any other purpose, nor change
itsvalue.

Wimp$ScrapDir

The Wimp$ScrapDir variable gives the full pathname of a scrap directory within the
Scrap application, which you may use to store temporary files. You must not use this
variable for any other purpose, nor change its value.

The desktop

Desktop$File
The Desktop$File variable shows the desktop boot file that was used to start the desktop.

Wimp$State

The Wimp$State variable shows the current state of the Wimp. If the desktop is running,
it has the value ‘desktop’; otherwise it has the value ‘commands’.

The Task Window

TaskWindow$Server

The TaskWindow$Server variable gives the pathname of the application used to start up
task windows.

Setting default options for devices

DeviceFS$Device$Options

The DeviceFSBevice$Options variable holds default options for a DeviceFS device.
For more details see the chapter entibdesliceFS on page 2-429.

4-507

Setting paths for printing

Setting paths for printing

PrinterType$n
A PrinterType$n variable contains the path used to print to printer type n. For example:

*Show Print er Type$0
PrinterType$0 : null:

4-508

92 Appendix G: The Acorn Terminal
Interface Protocol

Introduction

This appendix describes version 1.00 of the Acorn Terminal | nterface Protocol (or
Acorn TIP) used to communicate between aterminal emulator and a protocol module.
By using this protocol you can integrate your own terminal emulators and protocol
modules with those provided by the TCPF/IP Protocol Suite.

Although this chapter only talks about the Acorn TIP in the context of terminal
emulators and protocol modules, there’s no reason why you shouldn'’t use it for other
applications that involve input and output.

Protocol modules

A protocol module converts one of the many different protocols computers use for input
and output to the Acorn TIP. For example in the case of the VT220 application and the
protocol modules supplied as part of the TCP/IP Protocol Suite, we have:

Serial 1/0 Serial
-—p protocol
(serial cable) module \
Telnet VT220
Telnet /O protocol B Acoi terminal
(Internet) module TIP emulator
Ftp
<Ft—p|/0> protocol 4_,/
(Internet) module

Figure 92.1 Sructure of the VT220 module and protocol modules

« Data passing between a terminal emulator and a protocol module uses the
Acorn TIP, and passes ovetagical link. These are grey in the drawing above.

4-509

Writing a protocol module

« Datapassing between a protocol module and a remote machine or process uses
whatever protocol the moduleis designed to support, and passes over a connection.
These are black in the drawing above.

Using the Acorn TIP

If you decide to write other protocol modules and/or terminal emulators, you should use
the Acorn TIP. Since this provides a standard interface between protocol modules and
termina emulators, users will be able to use your modules and emul ators with the
TCP/IP ones, and with ones that other programmers write too. If your software is
compatible, we think it's more likely users will buy it.

Writing a protocol module

If you're writing a protocol module, you must first familiarise yourself with how a

RISC OS relocatable module works. You'll find full details of this in the chapter entitled
Modules on page 1-201. Your protocol module must conform to the standards laid out in
that chapter.

Service calls
You must support the service calls detailed in this chapter.

SWis

You must also support various SWIs from the set detailed in this chapter. These must be
at the defined offsets from your module’s SWI base number, which is allocated by
Acorn. To support many of these SWIs you will need to send suitable commands over
the physical connection to the remote host.

« You must support:
Offset SWI name

Protocol_OpenLogicalLink
Protocol_CloselLogicalLink
Protocol_GetProtocolMenu
Protocol_OpenConnection
Protocol_CloseConnection
Protocol_MenultemSelected
Protocol_UnknownEvent
Protocol_GetLinkState

0 Protocol_Break

P OoO~NPWNEO

4-510

Appendix G: The Acorn Terminal Interface Protocol

If your protocol module supports the sending of data over a connection to aremote
machine (or process) you must also support:

Offset SWI Name

5 Protocol_TransmitData

If you have chosen to support file transfer SWIs you must furthermore support:
Offset SWI Name

11 Protocol_SendFile
12 Protocol _SendFileData
13 Protocol _AbortTansfer

If your protocol module supports the receipt of data over a connection from a
remote machine (or process) you must also support:

Offset SWI Name

6 Protocol _DataRequest

If you have chosen to support file transfer SWIs you must furthermore support:
Offset SWI Name

13 Protocol_AbortTransfer
14 Protocol _GetFilelnfo
15 Protocol_GetFileData
17 Protocol_GetFile

You may also choose to support:

Offset SWI Name

18 Protocol_DirOp

Data structures

Your protocol module must keep two different types of data structure constantly
updated, asterminal emulators may directly access these any time they need to. These

are:

A single protocol information block which contains the following information:

Offset I nformation

0 pointer to protocol name string

4 pointer to protocol version string

8 pointer to protocol copyright string

12 maximum number of connections allowed by module
16 current number of open connections

The three strings are al null-terminated, and have a maximum length of 30
characters. For more details see Protocol _OpenLogicalLink (Offset 0) on
page 4-520.

4-511

Writing a terminal emulator

« A poll word for each logical link that shows the status of that link by the state of
various bit flags:

Bit Meaning when set

0 datais pending

1 fileis pending

2 paused operation isto continue

For more details see Protocol_OpenConnection (Offset 3) on page 4-524.

Multiple links and connections

All protocol modules must (if physically possible) support multiple logical links, and
multiple connections.

Writing a terminal emulator

4-512

If you’re writing a terminal emulator there are various functions that it’s likely you'll
want it to support. This section tells you which SWIs you'll need to use for many such
functions, and outlines how to use them. The later section that details each SWI will give
you the detailed information you need.

Finding available and compatible protocols

To find what protocols are available and compatible with the needs of your emulator,
you must repeatedly issue Service_FindProtocols (page 4-516) until it is not claimed.
Then you must issue Service_FindProtocolsEnd (page 4-518).

Choosing a protocol and opening a link

For your user to choose a protocol, you'll probably want to give them a menu of the ones
you found to be available. Once they’'ve made the choice, you can then issue
Service_ProtocolNameToNumber (page 4-519) to find the base SWI number of their
chosen protocol module. You can then use this base number to call the SWI
Protocol_OpenLogicalLink (page 4-520), since its offset from the base number you just
found is zero.

You can also use the facilities outlined in the section enfittetbcol modules and the
Wmp on page 4-514 to provide menus so that your user can set up the way the protocol
and connection will work.

Appendix G: The Acorn Terminal Interface Protocol

Opening a connection

To open a connection, call Protocol _OpenConnection (page 4-524). Sometimes the

protocol module won't immediately be able to open the connection; you'll need to use
Protocol_GetLinkState (page 4-535) to find out whether the connection eventually
makes or fails.

Closing a connection and a link

To close a connection, call Protocol_CloseConnection (page 4-527). To close a logical
link, call Protocol_CloseLogicalLink (page 4-522); this also closes any associated
connections.

Examining the poll word

When you open a connection, you set the address of a poll word. The protocol module
sets bits in this word when it needs attention. It's vital that your emulator regularly
examines this word so that the protocol module gets adequate service. We suggest you
do so each time you get a null event from Wimp_Poll.

Sending data
To send data, call Protocol_TransmitData (page 4-528).

Receiving data

When the protocol module receives data over a connection, it will notify your emulator
by setting a bit in the poll word. To get the data forwarded to your emulator, call
Protocol_DataRequest (page 4-530).

Sending files

To send a file, call Protocol_SendFile (page 4-539) to give details of the file to the
protocol module. When the protocol module shows it is ready for you to send the file (by
using the poll word), send the file in one or more data packets by repeatedly calling
Protocol_SendFileData (page 4-541). Finally, call Protocol_SendFileData (page 4-541)
a last time to mark the end of the file transfer.

You can use this call to send multiple files.

Wherever possible you should make sure that the data packets are small enough that
they can be quickly sent, so your emulator doesn’t hog the computer for long periods.

4-513

Writing a terminal emulator

Receiving files

When the protocol module receives afile over aconnection, it will notify your emulator

by setting a bit in the poll word. To get the file forwarded to your emulator, call
Protocol_GetFilelnfo (page 4-544) to get details of the file. When the protocol module
showsiit isready to forward the file (again by using the poll word), call

Protocol_GetFileData (page 4-545) until you've received all the data packets making up
the file.

Explicitly getting a file

To explicitly get a file, call Protocol_GetFile (page 4-548). You'll actually receive it just
as we outlined above.

Aborting file operations

To abort any file operation, call Protocol_AbortTransfer (page 4-543).

Directory operations

There are no SWis specified in the Acorn TIP to send, receive or get entire directories in
one call. Instead we provide a single SWI call — Protocol_DirOp (page 4-549) — with
which you can create a directory, move into a directory, and move one level up a
directory tree. You can combine this SWI with the ones outlined above to move around
a remote file system, creating directories, and sending and getting files at will (subject,
of course, to your having access rights).

Protocol modules and the Wimp

The Acorn TIP provides several calls which help interaction between the Wimp and
protocol menus. These are necessary because the ‘pick and mix’ nature of protocol
modules and terminal emulators means you'll have to combine menus from each; and
because protocol modules are not foreground tasks, and so don't receive notice of menu
selections and Wimp events.

To get a protocol’s menu tree, call Protocol_GetProtocolMenu (page 4-523); you can
then combine it with your emulator’s menu tree. If a user clicks on the protocol module’s
part of the menu tree, call Protocol_MenultemSelected (page 4-532) to pass this on. To
pass on a Wimp event to a protocol module, call Protocol_UnknownEvent (page 4-534);
you should do this for every event your emulator can’'t deal with, as the protocol module
may be able to.

Generating a break

Finally, you can generate a Break over the connection by calling Protocol_Break
(page 4-537).

4-514

Appendix G: The Acorn Terminal Interface Protocol

Documentation of Service Calls and SWIls

Therest of this chapter detailsin turn each Service Call and SWI used to communicate
between a protocol module and aterminal emulator. It looks at each in three stages:

1 What your terminal emulator should do before calling the Service Call or SWI.
2 What aprotocol module should do when it receives the Service Call or SWI.
3 What your terminal emulator should do when the call returnsto it.

We've followed the same viewpoint throughout as we have above: we assume that
you're writing a terminal emulator to work with someone else’s protocol module. So we
talk aboutyour terminal emulator, buhe protocol module. If, in fact, you're writing a
protocol module, you should find it easy enough to make the necessary shift of
viewpoint.

4-515

Service Calls

Service Calls

Service_ FindProtocols
(Service call &41580)

Finds all available compatible protocols

On entry
R1 = &41580 (reason code)
R2 = lowest TIP version supported x 100 (first public version was 1.00)
R3 = last TIP version known x 100 (current version is 1.00)

R4 = emulator flags

On exit

R1 = 0to claim, else registers preserved to pass on
R2 = pointer to protocol name string (null terminated)
R3 = base SWI number of protocol module

R4 = pointer to protocol information block

R5 = protocol flags

Use

Usethisservicecall inyour terminal emulator to find all available compatible protocol
modules. (For full details of OS_ServiceCall see page 1-254.) You should:

1 Repeatedly issue this service call until it is not claimed — without polling the Wimp

in the meantime.
2 Issue Service_FindProtocolsEnd (see page 4-518).

The emulator flags have the following meanings:

Bits Value Meaning

0 0 emulator doesn’t support file transfer calls
1 emulator supports file transfer calls

1-2 00 direction of link immaterial
01 one-way link wanted — protocol to emulator
10 one-way link wanted — emulator to protocol
11 two-way link needed

3 0 bits 1-2 are minimum requirement
1 bits 1-2 are exact requirement

4-516

Appendix G: The Acorn Terminal Interface Protocol

All other bits are reserved and must be zero.

The protocol module checksto seeif:
o itusesaversion of the Acorn TIP in the range supported by the terminal emulator
o itsupportslinksin the direction required by the terminal emulator.

If one of the above isn't true, the protocol module must not claim the call — that is, it
must return with registers preserved.

If both the above are true it must claim the call — that is, it must return with the values
shown above in the section entitléd exit. It must then set an internal flag so it doesn’t
claim this call again until it receives a Service_FindProtocolsEnd.

The protocol information block it returns contains the following information:

Offset Information

0 pointer to protocol name string

4 pointer to protocol version string

8 pointer to protocol copyright string

12 maximum number of connections allowed by module
16 current number of open connections

The three strings are all null-terminated, and have a maximum length of 30 characters.
The protocol module must always keep this block updated so terminal emulators can
directly access it.

The protocol flags it returns have the following meanings:

Bits Value M eaning

0 0 can open new link
1 can’t open new link, or not useful (see

below)

1 0 protocol doesn't support file transfer SWis
1 protocol supports file transfer SWis

2 0 protocol doesn't support Protocol_DirOp
1 protocol supports Protocol_DirOp

If the protocol is mainly for file transfer (such as Ftp) and the terminal emulator doesn't
support file transfer calls (bit 0 of R3 was clear on entry) the protocol module should set
bit 0 to show it’s ‘not useful'.

All other bits are reserved and must be zero.

Related Service Calls

Service_FindProtocolsEnd (page 4-518),
Service_ProtocolNameToNumber (page 4-519)

4-517

Service_FindProtocolsEnd (Service Call &41581)

Service FindProtocolsEnd
(Service Call &41581)

Indicates that protocol modules must again respond to Service FindProtocols

On entry
R1 = &41581 (reason code)

On exit
R1 = 0to claim, else preserved to pass on

Use

Use this service call in your terminal emulator to indicate the end of your search for
available protocols.

Protocol modules must change their internal flag so they respond again to
Service_FindProtocols calls — from whatever terminal emulator the calls originate. They
must not claim this call.

Related Service Calls

Service_FindProtocols (page 4-516),
Service_ProtocolNameToNumber (page 4-519)

4-518

Appendix G: The Acorn Terminal Interface Protocol

Service ProtocolNameToNumber
(Service Call &41582)

Requests the conversion of a protocol name to a base SWI number

On entry

R1 = &41582
R2 = pointer to protocol name (null-terminated)

On exit

R1 = 0to claim, else registers preserved to pass on
R2 = base SWI number for protocol

Use

Use this service call in your terminal emulator to request the conversion of a protocol
name to a base SWI number.

If aprotocol module recognises the protocol name it must claim the call and return the
base SWI number of the protocol. Otherwise it must pass the call on.

Related Service Calls

Service FindProtocols (page 4-516),
Service_FindProtocolsEnd (page 4-518)

4-519

SWi calls

SWI calls

Protocol _OpenLogicalLink
(Offset 0)

Opensalogical link to a protocol module

On entry

RO = terminal emulator’s link handle
R1 = pointer to terminal identifier string (null terminated)

On exit

RO = protocol module’s link handle

R1 = protocol module’s Wimp_Poll mask
R2 = pointer to protocol information block
R3 = protocol information flags

Use

Use this call in youterminal emulator to open a logical link to a protocol module. The
handle you pass on entry will be returned to you by future SWI calls you make to the
protocol module — we suggest you use a pointer to your data structures that are specific
to this link.

You may use the terminal identifier string for such things as setting the ‘type’ of your
terminal emulator on the remote machine.

Theprotocol module returns its own handle for the link — again this is typically a
pointer to its own data that is specific to the link. The Wimp_Poll mask it returns
specifies those Wimp events that it doesn’'t need.

The protocol information block contains the following information:

Offset Information

0 pointer to protocol name string

4 pointer to protocol version string

8 pointer to protocol copyright string

12 maximum number of connections allowed by module
16 current number of open connections

4-520

Appendix G: The Acorn Terminal Interface Protocol

The three strings are al null-terminated, and have a maximum length of 30 characters.
The protocol module must always keep this block updated so terminal emulators can
directly accessiit.

The protocol information flags have the following meanings.

Bit Meaning when set

0 protocol needs more information to open a connection
1 protocol supports file transfer SWis

2 protocol supports Protocol _DirOp

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you should examine bit O of the

protocol information flags. If it is clear then you should immediately call
Protocol_OpenConnection; if it is set you will have to wait until the user shows they are

ready to supply the information the protocol module needs (by, for instance, moving the

pointer over the arrow that shows an ‘open connection’ menu item to have a submenu).

Also, you should AND the protocol module’s Wimp_Poll mask with your terminal
emulator’'s own one. Use the resultant mask whenever you call Wimp_Poll.

Related SWis

Protocol_CloselLogicalLink (page 4-522), Protocol_OpenConnection (page 4-524),
Protocol_CloseConnection (page 4-527), Protocol_GetLinkState (page 4-535)

4-521

Protocol_CloseLogicalLink (Offset 1)

Protocol_CloseLogicallLink
(Offset 1)

Closesalogical link to a protocol module

On entry

RO = protocol module’s link handle

On exit

RO preserved

Use
Use this call in youterminal emulator to close a logical link to a protocol module.
Theprotocol module closes any connections that are associated with the logical link.
Related SWis

Protocol_OpenLogicalLink (page 4-520), Protocol_OpenConnection (page 4-524),
Protocol_CloseConnection (page 4-527), Protocol_GetLinkState (page 4-535)

4-522

Appendix G: The Acorn Terminal Interface Protocol

Protocol _GetProtocolMenu
(Offset 2)

Gets a protocol’s menu tree

On entry
RO = protocol module’s link handle

On exit

RO = terminal emulator’s link handle
R1 = pointer to protocol and link specific Wimp menu block
(as used by Wimp_CreateMenu)

Use

Use this call in youter minal emulator to get a protocol’s menu tree. You must use this

call each time you want to open the protocol’s menu, as it may change depending on the
state of the logical link. For example items may become unavailable and so be greyed
out, or the user may change the contents of a writable entry.

Theprotocol module returns a pointer to a menu block that is the same as that used by
Wimp_CreateMenu. (See page 3-153 for details of this call.) This menu block must
accurately reflect the current state of the logical link between the terminal emulator and
the protocol module.

Related SWIs
Protocol_MenultemSelected (page 4-532), Protocol_UnknownEvent (page 4-534)

4-523

Protocol_OpenConnection (Offset 3)

Protocol_OpenConnection
(Offset 3)

Opens a connection from a protocol module

On entry

RO = protocol module’s link handle

R1 = pointer to poll word for this connection

R3 = pointer to protocol specific string (null-terminated), or 0
R4 = x coordinate of top-left corner of dialogue box

R5 =y coordinate of top-left corner of dialogue box

On exit

RO = terminal emulator’s link handle

R1 = pointer to connection name (null-terminated)
R2 = pointer to protocol specific information, or 0
R3 = protocol status flags

Use

Use this call in youterminal emulator to open a connection from a protocol module.

At the same time you pass the protocol module the address of a poll word in your
workspace, which your terminal emulator must regularly check to review the state of the
logical link to the protocol module. We suggest you do so each time you get a null event
from Wimp_Poll.

When a bit is set in the poll word, something needs attention. The table below shows the
meaning of each bit, and th@tial SWI call you have to make to handle the situation.
See the relevant pages for details of what to do, and of any further calls you may need to

make.
Bit M eaning when set Call needed
0 data is pending Protocol_DataRequest
1 file is pending Protocol_GetFilelnfo
2 paused operation is to continue Protocol_GetFileData or

Protocol_SendFileData or
Protocol_DirOp

The poll word must be in RMA space, so the protocol module can update it whether or
not your terminal emulator is the foreground task.

4-524

Appendix G: The Acorn Terminal Interface Protocol

The values you need to passin R3, R4 and R5 depend on circumstances:

« If the protocol module needs no further information to open the connection these
values are ignored.

o If the user has shown they are ready to supply the information the protocol module
needs (typically by moving the pointer over the arrow that shows an ‘open
connection’ menu item to have a submenu), you must set R3 to zero, and R4 and R5
to the coordinates where you want the protocol module to open a dialogue box. You
can get these coordinates by making your terminal emulator’s menu issue
Message_MenuWarning when the submenu is to be activated (see
Wimp_CreateMenu on page 3-153 and Wimp_SendMessage on page 3-193).

« If the user has already supplied you with the information that the protocol module
needs (say in a script) you should pass that in R3. The values of R4 and R5 are
ignored.

Theprotocol module opens the connection after first (if necessary) using a dialogue
box to get any information it needs.

The documentation of a protocol moduoiest state the format of information it expects

to find in R3 (if it needs any). Wherever possible, this format should consist of the same
fields that the protocol module provides in its dialogue box, in the same order, and
comma-separated.

The protocol module returns a connection name suitable for the terminal emulator to use
as a window title (if the connection is open or pending). The protocol specific
information it returns may be used for error messages. The protocol status flags it returns
have the following meanings:

Bits Value Meaning

0-1 00 no connection opened
01 connection pending
10 connection open
11 connection failed

2 0 no data pending
1 data pending

All other bits are reserved and must be zero. The protocol module should select
‘connection failed’ in preference to ‘no connection opened’.

When this call returns to yoter minal emulator you must examine the state of these
flags:

« If the connection failed (bits 0 and 1 are set) and no data is pending (bit 2 is clear)
you must attempt to close the connection by calling Protocol_CloseConnection.

4-525

Protocol_OpenConnection (Offset 3)

« If the connection is pending you must wait until bit O of the logical link’s poll word
is set. Then you should call Protocol_GetLinkState to find if the connection was

opened, or if it failed.

« Bit 2 (‘'data pending’) has exactly the same meaning as bit O of a logical link’s poll
word, and is provided to reduce the amount of polling that needs to be done. Ifit is
set you should initiate the data transfer by calling Protocol_DataRequest.

Related SWis

Protocol_OpenLogicalLink (page 4-520), Protocol_CloseLogicalLink (page 4-522),
Protocol_CloseConnection (page 4-527), Protocol_GetLinkState (page 4-535)

4-526

Appendix G: The Acorn Terminal Interface Protocol

Protocol_CloseConnection
(offset 4)

Closes a link’s connection from a protocol module

On entry
RO = protocol module’s link handle

On exit

RO = pointer to protocol specific information, or O

Use
Use this call in youterminal emulator to close a link’s connection from a protocol
module.
Theprotocol module closes the connection associated with the given link.
Related SWis

Protocol_OpenLogicalLink (page 4-520), Protocol_CloselLogicalLink (page 4-522),
Protocol_OpenConnection (page 4-524), Protocol_GetLinkState (page 4-535)

4-527

Protocol_TransmitData (Offset 5)

4-528

Protocol_TransmitData
(Offset 5)

Transmits data over a connection via a protocol module

On entry

RO = protocol module’s link handle

R1 = pointer to receive buffer

R2 = length of receive buffer (in bytes)
R3 = pointer to transmit buffer

R4 = length of transmit buffer (in bytes)
R5 = emulator transmit flags

On exit

Use

RO = terminal emulator’s link handle

R2 = number of bytes of data placed in receive buffer
R3 = protocol status flags

R4 = pointer to protocol specific information

Use this call in youterminal emulator to transmit data over a connection via a
protocol module. You'll also receive any pending data that the protocol module has been
holding for you.

The emulator transmit flags have the following meanings:

Bit Value Meaning
3 0 transmitted data is in bytes
1 transmitted data is in words

All other bits are reserved and must be zero. If the transmitted data is in words, each
word contains one character in the least significant byte.

Theprotocol module transmits the data over the connection. Also, if it has any pending
data for the terminal emulator it forwards as much as it is able to place in the emulator’s
receive buffer.

The protocol specific information it returns may be used for error messages.

Appendix G: The Acorn Terminal Interface Protocol

The protocol status flags it returns have the following meanings:

Bits Value Meaning

0-1 00 no connection opened
01 connection pending
10 connection open
11 connection failed

2 0 no data pending
1 more data pending

3 0 dataisin bytes
1 dataisin words

All other bits are reserved and must be zero.

When this call returnsto your ter minal emulator you must check R2 to seeif you have
received any data, and processit if necessary. You must also examine the protocol status
flagsin R3:

« If the connection failed (bits 0 and 1 are set) and no dataiis pending (bit 2 is clear)
you must attempt to close the connection by calling Protocol _CloseConnection.

« If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

« Bit2 ('more data pending’) has exactly the same meaning as bit O of a logical link’s
poll word, and is provided to reduce the amount of polling that needs to be done. If
it is set you should initiate the data transfer by calling Protocol_DataRequest.

« Ifthe data you've received is in words, each word contains one character in the least
significant byte.

Related SWis
Protocol_SendFile (page 4-539), Protocol_SendFileData (page 4-541)

4-529

Protocol_DataRequest (Offset 6)

4-530

Protocol DataRequest
(Offset 6)

Requests that a protocol module forwards any pending data

On entry

RO = protocol module’s link handle
R1 = pointer to receive buffer
R2 = length of receive buffer (in bytes)

On exit

Use

RO = terminal emulator’s link handle

R1 preserved

R2 = number of bytes of data placed in receive buffer
R3 = protocol status flags

R4 = pointer to protocol specific information

Use this call in youter minal emulator to request that a protocol module forwards any
pending data. You should do so in either of these cases:

« if bit O (‘data pending’) of the link’s poll word is set

« ifthe ‘data pending’ bit (commonly bit 2) of the protocol status flags (commonly in
R3) is set on return from a Protocol... SWI call.

Theprotocol module forwards as much of the pending data as it is able to place in the
emulator’s receive buffer.

The protocol specific information it returns may be used for error messages. The
protocol status flags it returns have the following meanings:

Bits Value Meaning

0-1 00 no connection opened
01 connection pending
10 connection open
11 connection failed

2 0 no data pending
1 more data pending

3 0 data is in bytes
1 data is in words

Appendix G: The Acorn Terminal Interface Protocol

All other bits are reserved and must be zero.
When this call returnsto your terminal emulator you must examine the state of these
flags:

« If the connection failed (bits 0 and 1 are set) and no dataiis pending (bit 2 is clear)
you must attempt to close the connection by calling Protocol _CloseConnection.

« If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

« Bit 2 (‘data pending’) has exactly the same meaning as bit 0 of a logical link’s poll
word, and is provided to reduce the amount of polling that needs to be done. Ifitis
set you should continue the data transfer by calling Protocol_DataRequest.

« Ifthe datais in words, each word contains one character in the least significant byte.

Related SWis

Protocol_GetFilelnfo (page 4-544), Protocol_GetFileData (page 4-545),
Protocol_GetFile (page 4-548)

4-531

Protocol_MenultemSelected (Offset 7)

Protocol MenultemSelected
(Offset 7)

Requests that a protocol module services a menu selection

On entry

RO = protocol module’s link handle
R1 = pointer to menu selection block
R2 = x coordinate of mouse

R3 =y coordinate of mouse

R4 = emulator menu flags

On exit
RO - R4 preserved

Use

Use this call in youterminal emulator to request that a protocol module services a
selection made within its own menu. You should call this if you:

« get notice of a mouse click within the protocol's menu, via a Menu_Selection
reason code from Wimp_Poll

« get notice of the pointer moving over a right arrow to activate one of the protocol’s
submenus, via a MenuWarning message

(See the descriptions of Wimp_Poll on page 3-112 and Wimp_SendMessage on
page 3-193 for more details.)

The menu selection block contains:

R1 item in protocol menu that was selected (starting with 1)
R1+1 item in first protocol submenu that was selected
R1+2 item in second protocol submenu that was selected

terminated by O byte

4-532

Appendix G: The Acorn Terminal Interface Protocol

Note: There are severa important differences between this menu selection block and
that returned by Wimp_Poll with aMenu_Selection reason code:

Wimp menu selection block Protocol menu selection block

Menu items start from O Menu items start from 1

Each number isaword Each number is abyte

List is terminated by —1 List is terminated by O

R1 gives item in main menu R1 gives item at root of protocol menu

The emulator menu flags show why you have made this call:

Bit Value Meaning
0 0 called because of a mouse click
1 called because of a MenuWarning message

All other bits are reserved and must be zero.

Theprotocol module services the menu selection, either doing what the user clicked
over, or displaying the necessary submenu.

Related SWis
Protocol_GetProtocolMenu (page 4-523), Protocol_UnknownEvent (page 4-534)

4-533

Protocol_UnknownEvent (Offset 8)

4-534

Protocol _UnknownEvent
(Offset 8)

Passes on Wimp events to a protocol module

On entry
RO = pointer to Wimp event block (as returned by Wimp_Poll)

On exit
RO preserved

Use

Usethiscall inyour terminal emulator to pass on Wimp events you can’t deal with to
the protocol module you're using. You should also pass on idle events if the protocol
module’s Wimp_Poll mask (see Protocol_OpenLogicalLink) doesn’t mask them out —
even if your terminal emulator uses them.

Theprotocol module processes the Wimp event if it is one in which it is interested.

Related SWis
Protocol_GetProtocolMenu (page 4-523), Protocol _MenultemSelected (page 4-532)

Appendix G: The Acorn Terminal Interface Protocol

Protocol_GetLinkState
(Offset 9)

Getsthe state of alogical link

On entry
RO = protocol module’s link handle

On exit

RO = terminal emulator’s link handle

R1 = pointer to connection name (null-terminated)
R2 = pointer to protocol specific information, or O
R3 = protocol status flags

Use
Use this call in youterminal emulator to get the state of a logical link.

One time you should do so is if an attempt you've made to open a connection has
resulted in a pending connection. You should then wait for bit O of the logical link’s poll
word (‘data pending’) to be set before making this call to find if the connection was
opened, or if it failed.

Theprotocol module returns a connection name suitable for the terminal emulator to
use as a window title (if the connection is open or pending). The protocol specific
information it returns may be used for error messages. The protocol status flags it returns
have the following meanings:

Bits Value Meaning

0-1 00 no connection opened
01 connection pending
10 connection open
11 connection failed

2 0 no data pending
1 data pending

All other bits are reserved and must be zero.

When this call returns to yoter minal emulator you must examine the state of these
flags:

« If the connection failed (bits 0 and 1 are set) and no data is pending (bit 2 is clear)
you must attempt to close the connection by calling Protocol_CloseConnection.

4-535

Protocol_GetLinkState (Offset 9)

« If the connection is pending you must wait until bit O of the logical link’s poll word
is set. Then you should call either Protocol_DataRequest or Protocol_GetLinkState
to find if the connection was opened, or if it failed.

« Bit 2 (‘'data pending’) has exactly the same meaning as bit O of a logical link’s poll
word, and is provided to reduce the amount of polling that needs to be done. Ifit is
set you should initiate the data transfer by calling Protocol_DataRequest.

Related SWis

Protocol_OpenLogicalLink (page 4-520), Protocol_CloseLogicalLink (page 4-522),
Protocol_OpenConnection (page 4-524), Protocol_CloseConnection (page 4-527)

4-536

Appendix G: The Acorn Terminal Interface Protocol

Protocol Break
(offset 10)

Forces aprotocol module to generate a Break

On entry
RO = protocol module’s link handle

On exit

RO = terminal emulator’s link handle
R3 = protocol status flags

Use
Use this call in youter minal emulator to force a protocol module to generate a Break.

Theprotocol module generates a Break. The precise interpretation of this varies from
module to module.

The documentation of a protocol moduteist state how it interprets this call.

The protocol status flags it returns have the following meanings:

Bits Value Meaning

0-1 00 no connection opened
01 connection pending
10 connection open
11 connection failed

2 0 no data pending
1 data pending

All other bits are reserved and must be zero.

When this call returns to yoter minal emulator you must examine the state of these
flags:

« If the connection failed (bits 0 and 1 are set) and no data is pending (bit 2 is clear)
you must attempt to close the connection by calling Protocol_CloseConnection.

« Ifthe connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

4-537

Protocol_Break (Offset 10)

« Bit 2 (‘data pending’) has exactly the same meaning as bit 0 of a logical link’s poll
word, and is provided to reduce the amount of polling that needs to be done. If it is
set you should initiate the data transfer by calling Protocol _DataRequest.

Related SWis
None

4-538

Appendix G: The Acorn Terminal Interface Protocol

Protocol_SendFile
(Offset 11)

Initiates sending a file over a protocol module’s connection

On entry

RO = protocol module’s link handle

R1 = RISC OS file type

R2 = pointer to file name (null terminated)
R3 = estimated size of file (in bytes)

R4 = emulator send flags

On exit

RO = terminal emulator’s link handle
R1 = protocol status flags

Use

Use this call in youterminal emulator to initiate sending a file over a protocol
module’s connection.

The emulator send flags have the following meanings:

Bit Meaning when set
0 transfer cannot be safely paused (ie is a RAM transfer)
1 transfer is part of a multiple file transfer

All other bits are reserved and must be zero.

Theprotocol module must ready itself to accept the file over the terminal emulator’s
logical link, and to send it over the connection that is associated with the link. When it is
ready it must show this by setting bit 2 of the link’s poll word.

If bit 1 of the emulator send flags is set (a multiple file transfer) and the protocol module
uses dialogue box(es) to show the state of the transfer, it must use the same box(es) for
each file in turn, rather than using a new one for each file.

4-539

Protocol_SendFile (Offset 11)

4-540

The protocol status flags it returns have the following meanings.

Bits Value Meaning

0-1 00 no connection opened
01 connection pending
10 connection open
11 connection failed

All other bits are reserved and must be zero.

When this call returnsto your terminal emulator you must examine the state of these
flags:
« If the connection failed (bits 0 and 1 are set) and no datais pending (bit 2 of the

link’s poll word is clear) you must attempt to close the connection by calling
Protocol_CloseConnection.

« If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

When you start a file transfer with this call the link is in a paused state. You should wait
for bit 2 of the link’s poll word to be set before you try to resume the transfer by calling
Protocol_SendFileData (see the next page).

Related SWiIs

Protocol_TransmitData (page 4-528), Protocol_SendFileData (page 4-541),
Protocol_AbortTransfer (page 4-543), Protocol_DirOp (page 4-549)

Appendix G: The Acorn Terminal Interface Protocol

Protocol_SendFileData
(Offset 12)

Sends the data in a file over a protocol module’s connection

On entry

RO = protocol module’s link handle

R1 = pointer to transmit buffer

R2 = length of transmit buffer (in bytes)
R3 = emulator send data flags

On exit

Use

RO = terminal emulator’s link handle
R1 = protocol status flags

Use this call in youterminal emulator to send the data in a file over a protocol
module’s connection. You can (if necessary) split the file into separate data packets and
repeatedly use this call to transmit each packet.

The emulator send data flags have the following meanings:

Bit Meaning when set
0 last data packet of a file (ie EOF)
1 no data is included — end of file transfer

All other bits are reserved and must be zero.

You must not set both these bits at once, so a file transfer must end with two calls of this
SWI: the first with bit 0 set (EOF), the second with bit 1 set (end of file transfer).

Theprotocol module sends the file over the connection that is associated with the link.
If it has to pause the transfer it must show when it is ready to resume by setting bit 2 of
the link’s poll word.

4-541

Protocol_SendFileData (Offset 12)

The protocol status flags it returns have the following meanings.

Bits Value Meaning
0-1 00 no connection opened
01 connection pending
10 connection open
11 connection failed
2-3 00 transfer not started
01 transfer paused
10 transfer completed
1 transfer failed or aborted

All other bits are reserved and must be zero.

When this call returnsto your terminal emulator you must examine the state of these

flags:

« |f the connection failed (bits 0 and 1 are set) and the transfer is not paused (bits 2-3
do not have the vaue 01) you must attempt to close the connection by calling
Protocol_CloseConnection.

« If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

o If thetransfer is paused (bits 2-3 have the value 01) you must wait for bit 2 of the
link’s poll word to be set before making this call again to continue the transfer.

Related SWiIs

Protocol_TransmitData (page 4-528), Protocol_SendFile (page 4-539),
Protocol_AbortTransfer (page 4-543), Protocol_DirOp (page 4-549)

4-542

Appendix G: The Acorn Terminal Interface Protocol

Protocol_AbortTransfer
(Offset 13)

Aborts afile transfer

On entry
RO = protocol module’s link handle

On exit
RO preserved

Use
Use this call in youterminal emulator to abort a file transfer.
Theprotocol module aborts the transfer and makes sure that the connection associated
with the link is ready for other use.

Related SWis

Protocol_SendFile (page 4-539), Protocol_SendFileData (page 4-541),
Protocol_GetFilelnfo (page 4-544), Protocol_GetFileData (page 4-545),
Protocol_GetFile (page 4-548)

4-543

Protocol_GetFilelnfo (Offset 14)

Protocol_GetFilelnfo
(Offset 14)

Requests that a protocol module initiates forwarding a pending file

On entry
RO = protocol module’s link handle

On exit

RO = terminal emulator’s link handle

R1 = RISC OS file type

R2 = pointer to file name (null terminated)

R3 =0, or estimated size of file if available (in bytes)

Use
Use this call in youterminal emulator to request that a protocol module initiates
forwarding a pending file. You should do so:
« if bit 1 (‘file pending’) of the link’s poll word is set.
This will usually be as a result of your calling Protocol_GetFile to request that the
file be sent.
Theprotocol module returns details of the file to the terminal emulator.
When this call returns to yoter minal emulator you must use these details to get ready
to receive the file, before calling Protocol_GetFileData to actually get the data.
Related SWis

Protocol_DataRequest (page 4-530), Protocol_AbortTransfer (page 4-543),
Protocol_GetFileData (page 4-545), Protocol_GetFile (page 4-548),
Protocol_DirOp (page 4-549)

4-544

Appendix G: The Acorn Terminal Interface Protocol

Protocol_GetFileData
(Offset 15)

Requests that a protocol module forwards the datain afile

On entry

RO = protocol module’s link handle
R1 = pointer to receive buffer
R2 = length of receive buffer (in bytes)

On exit

RO = terminal emulator’s link handle

R1 preserved

R2 = number of bytes of data placed in receive buffer
R3 = protocol status flags

Use

Use this call in youterminal emulator to request that a protocol module forwards the
data in a file.

Theprotocol module must forward the file data to the terminal emulator. It can (if
necessary) split the file into separate data packets, pausing the transfer after each packet.
If so, it must show when it is ready to forward the next packet by setting bit 2 of the

link’s poll word.

The protocol status flags it returns have the following meanings:

Bits Value M eaning
0-1 00 no connection opened
01 connection pending
10 connection open
11 connection failed
2-3 00 transfer not started
01 transfer paused
10 transfer completed
11 transfer failed or aborted

All other bits are reserved and must be zero.

4-545

Protocol_GetFileData (Offset 15)

When this call returnsto your terminal emulator you must examine the state of these

flags:

« If the connection failed (bits 0 and 1 are set) and the transfer is not paused (bits 2-3
do not have the vaue 01) you must attempt to close the connection by calling
Protocol_CloseConnection.

« If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

o If thetransfer is paused (bits 2-3 have the value 01) you must wait for bit 2 of the
link’s poll word to be set before making this call again to continue the transfer.

Related SWis

Protocol_DataRequest (page 4-530), Protocol_AbortTransfer (page 4-543),
Protocol_GetFilelnfo (page 4-544), Protocol_GetFile (page 4-548),
Protocol_DirOp (page 4-549)

4-546

Appendix G: The Acorn Terminal Interface Protocol

Protocol _MenuHelp
(Offset 16)
Requests that a protocol module sends its interactive help message for a menu entry
On entry
RO = protocol module’s link handle

R1 = pointer to menu selection array, relative to protocol-specific menu tree

On exit
RO, R1 preserved

Use
Use this call in youterminal emulator to request that a protocol module sends its
interactive help message for the menu entry. The menu selection array you send must be
terminated by a null.
Theprotocol module must send the appropriate help message.

Related SWis

Protocol_GetProtocolMenu (page 4-523), Protocol_MenultemSelected (page 4-532)

4-547

Protocol_GetFile (Offset 17)

4-548

Protocol_GetFile
(offset 17)

Requests that a protocol module gets a file over a connection

On entry

RO = protocol module’s link handle
R1 = pointer to file name (null terminated)

On exit
RO, R1 preserved

Use
Use this call in yourer minal emulator to request that a protocol module gets a file over
a connection.
Theprotocol module gets the necessary information to respond to a
Protocol_GetFilelnfo call, and the first packet of the file to respond to a
Protocol_GetFileData call, before showing that it is ready by setting bit 1 (‘file
pending’) of the link’s poll word.

Related SWis

Protocol_DataRequest (page 4-530), Protocol_AbortTransfer (page 4-543),
Protocol_GetFilelnfo (page 4-544), Protocol_GetFileData (page 4-545),
Protocol_DirOp (page 4-549)

Appendix G: The Acorn Terminal Interface Protocol

Protocol_DirOp
(Offset 18)

Performs various directory operations over a connection

On entry

RO = protocol module’s link handle
R1 = reason code
R2 = pointer to directory name — reason codes 1 & 2 only (null terminated)

On exit

Use

RO = terminal emulator’s link handle
R1, R2 preserved
R3 = protocol status flags

Use this call in youterminal emulator to perform various directory operations over a
connection. The type of operation is set by a reason code in R1:

Reason code Type of operation

0 null — see below

1 create directory

2 move into directory

3 move up one level in directory tree

Theprotocol module performs the specified operation. The protocol status flags it
returns have the following meanings:

Bits Value M eaning
0-1 00 no connection opened
01 connection pending
10 connection open
11 connection failed
2-3 00 invalid context
01 operation in progress — paused
10 operation completed
11 operation failed or aborted

All other bits are reserved and must be zero.

4-549

Protocol_DirOp (Offset 18)

When this call returnsto your terminal emulator you must examine the state of these

flags:

« |f the connection failed (bits 0 and 1 are set) and there is no operation in progress
(bits 2-3 do not have the value 01) you must attempt to close the connection by
calling Protocol _CloseConnection.

« If the connection is pending you have made an error in your programming by trying
to use the connection before it has been properly opened.

o Iftheoperationisstill in progress (bits 2-3 have the value 01) you must wait for bit
2 of the link’s poll word to be set. You can then make this call again with a null
reason code to read the flags for the completed operation.

Related SWiIs

Protocol_SendFile (page 4-539), Protocol_SendFileData (page 4-541),
Protocol_AbortTransfer (page 4-543), Protocol_GetFilelnfo (page 4-544),
Protocol_GetFileData (page 4-545), Protocol_GetFile (page 4-548)

4-550

93 Appendix H: Registering names

Introduction

Various hames and numbers that appear in RISC OS must be registered with Acorn to
ensure that they don't clash with those used by other programmers. This appendix tells
you what those names and numbers are, and how to register them with Acorn.

Generally, you can propose the name(s) that you would like to use, and will be allocated
them if they are previously unused. However, numbers are normally allocated
consecutively, so you are unlikely to have any choice as to which ones you are allocated.

Acorn keeps a single central set of header files that record all such names and numbers.
Your request will be checked against the relevant file. Finally, your allocation will be
recorded in the file, and you will be informed of it.

Things requiring registration

Filetypes
If you need to use a new filetype, you must register it with Acorn.

You should give a proposed textual equivalent for the filetype (8 characters maximum,
as used by the ‘Full info’ Filer displays), and a more complete description of the
filetype’'s functionality and/or conformance to any standards. Acorn will then inform
you whether your name is unique, and — if it is unique — which filetype number you have
been allocated.

For a list of currently defined filetypes, s&ble C: File types on page 4-565.

Associated sprites

Registering filetypes is necessary to prevent any clashes in the Wimp’s sprite pool
between different ‘fileXXX' and ‘small XXX’ sprites (whereXXX is a hexadecimal
filetype) used by the Filer to display the filetype. Once you have registered a filetype,
you may consider such sprites as also registered.

4-551

Things requiring registration

4-552

Associated system variables

Registering filetypesis also necessary to prevent any clashes between File$Type XXX,
Alias$@L oadType XXX, Alias$@PrintType_XXX and Alias$@RunType_ XXX system
variables (where XXX is a hexadecimal filetype). Once you have registered a filetype,
you may consider such variables as al so registered.

SWI chunk numbers and names

If you need to supply your own SWIs, you must ask Acorn for an allocation of a SWI
chunk number, the use of the SWIs within which you can then determine yourself.

You should give a proposed name for the SWI chunk. Acorn will then inform you
whether your name is unique, and — if it is unique — which SWI chunk number you have
been allocated.

SWIs are named &hunkName_FunctionName (so in Wimp_Initialise, Wimp is the

chunk name, and Initialise is the function name). The chunk name is normally the name
of the application or module providing the SWI, which will itself need registration — see
below.

For more information on SWI numbers and names, see the chapter éutitled
introduction to SMis on page 1-23.

Wimp message numbers

Wimp message numbers are allocated by Acorn from the same number space as SWI
numbers. If you need to use a new Wimp message and have a SWI chunk allocated, you
may use as Wimp message numbers the same 64 numbers that are held in that SWI
chunk. Otherwise you must ask Acorn for an allocation of a range of Wimp message
numbers, the use of which you can then determine yourself.

For more information on Wimp messages, 8&mp_SendMessage (SWM &400E7) on
page 3-193.

Error numbers

If you need to generate your own errors, you must ask Acorn for an allocation of a range
of error numbers, the use of which you can then determine yourself.

For more information on error numbers, see the section erfitled numbers on
page 1-42.

Appendix H: Registering names

Filing system numbers and names
If you create your own filing system, you must register it with Acorn.

You should give aproposed name for the filing system, and a more compl ete description

of its functionality and/or conformance to any standards. Acorn will then inform you
whether your name is unique, and — if it is unique — which filing system number you
have been allocated.

For a list of currently defined filing system numbers, see the section eFtiilegl
system information word on page 2-532.

Expansion cards: manufacturer codes and product type codes

If you create an expansion card, you must ask Acorn for an allocation of a manufacturer
code and a product type code.

You should give a brief description of its functionality and/or conformance to any
standards. Acorn will then inform you which codes you have been allocated.

For more information on these codes, see the section efiiieatied Expansion Card
Identity on page 4-122.

CMOS RAM bytes

There are 4 bytes of CMOS RAM reserved for each expansion card slot, which your
expansion cards may freely use; see the section erititiedolatile memory (CMOS

RAM) on page 1-361. For all other purposes you should remember state in some other
manner (for example using &pp$Options system variable in a desktop boot file, or
using a Choices file within your application). It is only in very exceptional
circumstances that Acorn may allocate CMOS RAM bytes to other parties.

Territory, country and alphabet numbers and names
If you need to use a new territory, country, or alphabet, you must register it with Acorn.

You should give a proposed name for the territory, country, or alphabet, and (for
alphabets) a more complete description of its functionality and/or conformance to any
standards. Acorn will then inform you whether your name is unique, and — if it is unique
— which territory, country, or alphabet number you have been allocated.

For a list of currently defined country and alphabet numbers, see the section entitled
Names and numbers on page 3-768.

DrawFile object types and tagged object types

If you need to use a new object type or tagged object type in a Draw file, you must
register it with Acorn.

4-553

Things requiring registration

4-554

For an object type you should givefull details of itsfile format. For atagged object type
you should give abrief description of the purpose of the tag. Acorn will then inform you
which type numbers you have been allocated.

For alist of currently defined object types and tagged object types, see the section
entitled Draw files on page 4-463.

Module names

If you create anew module, you must register it with Acorn, since only one module of a
given name can be loaded at once.

You should give a proposed name for the module and a brief description of its
functionality. Acorn will then inform you whether your nameis unique, and henceif you
may useit.

Associated system variables

Registering module names is also necessary to prevent any clashes between system
variables used by modules, such as Module$Options. Once you have registered the
module nameModul€e, you may consider all variables beginning withddule$' as
also registered.

To ensure there are no clashes withp$' or ‘Resource$’ system variables, Acorn will
also check that your module name does not matclotéiey programmers’ registered

application or shared resource names. However, you may register identical module,
application and /or shared resource names; it is then your responsibility to prevent any

clashes between yoown system variables.

Application names
If you create a new application, you must register it with Acorn.

You should give a proposed name for the application and a brief description of its

functionality. Acorn will then inform you whether your name is unique, and hence if you

may use it.

Associated sprites

Registering application names is necessary to prevent any clashes in the Wimp’s sprite

pool between different application'safdp’ and ‘smlapp’ sprites, used by the Filer to

display the application directory’s icon. Once you have registered an application name,

you may consider such sprites as also registered.

Appendix H: Registering names

Associated system variables

Registering application names is also necessary to prevent any clashes between system
variables used by applications, such as App$Dir or App$Options. Once you have
registered the application nanfpp’, you may consider all variables beginning with
‘App$’ as also registered.

To ensure there are no clashes wittodule$’ or ‘Resource$’ system variables, Acorn
will also check that your application name does not matclotdney programmers’
registered module or shared resource names. However, you may register identical
module, application and /or shared resource names; it is then your responsibility to
prevent any clashes between yown system variables.

Shared resources
If you create a new shared resource directory, you must register it with Acorn.

You should give a proposed name for the shared resource and a brief description of its
functionality. Acorn will then inform you whether your name is unique, and hence if you
may use it.

Associated sprites

Registering shared resource names is necessary to prevent any clashes in the Wimp’s
sprite pool between different shared resourceésource’ and ‘smresource’ sprites

(used by the Filer to display the shared resource directory’s icon). Once you have
registered an shared resource name, you may consider such sprites as also registered.

Associated system variables

Registering shared resource names is also necessary to prevent any clashes between
system variables used by shared resources, siRds@gce$Dir. Once you have

registered the shared resource naResdurce, you may consider all variables

beginning with Resource$’ as also registered.

To ensure there are no clashes wilodule$’ or ‘App$’ system variables, Acorn will

also check that your shared resource name does not matocthanprogrammers’
registered module or application names. However, you may register identical module,
application and /or shared resource names; it is then your responsibility to prevent any
clashes between yoawn system variables.

* Commands
If you create a new * Command, you must register it with Acorn.

You should give a proposed name for the command, and a brief description of its
functionality. Acorn will then inform you whether your name is unique, and hence if you
may use it.

4-555

Things requiring registration

Sprite names

If you add a sprite to the Wimp sprite pool — for example using *IconSprites — you must
register it with Acorn.

You should give a proposed name for the sprite. Acorn will then inform you whether
your name is unique, and hence if you may use it.

Provided you have registered a filetype, application or shared resource, you need not
register the associated sprites that the Filer uses to display them. See page 4-551,
page 4-554 and page 4-555 respectively.

You should not register the names of sprites that are held in your applications’ own
sprite areas. Desktop applications must not use the system sprite pool.

Font names
If you create a new font, you must register it with Acorn.

You should give a proposed name for the font. Acorn will then inform you whether your
name is unique, and hence if you may use it.

Device numbers
If you need to add a new device, you must ask Acorn for an allocation of a major and a
minor device number.

You should give a brief description of the device’s functionality. Acorn will then inform
you which device numbers you have been allocated.

Printer driver and printer dumper numbers

If you create a new printer driver or dumper module, you must ask Acorn for an
allocation of a printer driver or dumper number.

You should give a brief description of the printer driver or dumper’s functionality. Acorn
will then inform you which ID number you have been allocated.

4-556

94

List of VDU codes

Table A: VDU codes

A list of the VDU codesis given in the table below. Some VDU codes require extra
bytes to be sent as parameters; for example, VDU 22 (select screen mode) needs one
extra byte to specify the mode. The number of extra bytes needed is also givenin the

table:

VDU
code

© 0o ~NO Ul h~ WNPEFE O

[S S
w N R O

14
15
16
17
18
19
20
21
22

Ctrl
plus

T CrRCTIO@TMOO®T>Q

< C-HwxovmO TVOZ

Extr
a
bytes
0

(el elNelNolNolNolNoloNolololol 5

R OO0 NPEFE OO0OO

Meaning

Does nothing

Sends next character to printer only

Enables printer

Disables printer

Writes text at text cursor
Writes text at graphics cursor
Enables VDU driver

Generates bell sound

Moves cursor back one character
Moves cursor on one space
Moves cursor down one line
Moves cursor up oneline
Clears text window

Moves cursor to start of current
line

Turns on paged mode

Turns off paged mode

Clears graphics window
Defines text colour

Defines graphics colour
Defineslogical colour

Restores default logical colours
Disables VDU drivers

Selects screen mode

Page

1-568
1-569
1-570
1-571
1-572
1-573
1-574
1-575
1-576
1-577
1-578
1-579
1-580
1-581

1-582
1-583
1-584
1-585
1-586
1-588
1-592
1-593
1-594

4-557

List of VDU codes

4-558

VDU Ctrl
code plus

23 W
23,0

231
23,2-5
23,6
23,7
23,8
239
23,10
2311
23,12-15

23,16

23,17,0-3
23174
23,17,5

23,17,6
23,17,7
23,18-24
23,25-26
23,27
23,28-31

23,32-255
24
25
26
27
28
29
30

>— —— N < X

Extr

bytes

o~ O OO

Meaning

Multi-purpose command:

Sets the interlace and controls
CUrsor appearance

Controls text cursor appearance
Defines ECF pattern and colours
Sets dot-dash line style

Scrolls text window or screen
Clearsablock of the text window
Setsfirst flash time

Sets second flash time

Sets default patterns

Defines simple ECF patterns and
colours

Controls cursor movement after
printing

Sets the tint for a colour
Chooses ECF patterns

Exchanges text foreground and
background colours

Sets ECF origin

Sets character size/spacing
Reserved for future expansion
Private Font Manager calls
Private Sprite Manager calls
Reserved for use by application
programs

Redefines printable characters
Defines graphics window
PLOT command

Restores default windows
Does nothing

Defines text window

Defines graphics origin
Homes text cursor

Page

1-599
1-600

1-601
1-602
1-603
1-604
1-606
1-608
1-609
1-610
1-612

1-614

1-616
1-617
1-618

1-619
1-620
1-621
1-622
1-623
1-624

1-625
1-627
1-628
1-631
1-632
1-633
1-634
1-635

Table A: VDU codes

VDU Ctrl Extr M eaning Page
code plus a

bytes
31 _ 2 Moves text cursor 1-636
127 0 Delete 1-637

4-559

List of VDU codes

4-560

95

Table B: Modes

The modes available in RISC OS depend on the configured monitor type (see
*Configure MonitorType on page 1-759) and the model of computer. Below isatable of
all modes provided by RISC OS, which shows:

the mode number
the text resolution in columns x rows

the graphics resolution in pixels, which corresponds to the clarity of the mode’s
display

the resolution in OS units, which corresponds to the area of workspace shown by
the mode

the number of logical colours available
the memory used to display the screen (to the nearest 0.1Kbyte)

the vertical refresh rate to the nearest Hz (invalid for monitor type 5), which
indicates the degree of flickering that you may perceive

the bandwidth used to display the screen (to the nearest 0.1Mbyte/second), which
corresponds to the load the mode places on the computer
the monitor types that support that mode:
Type Monitor
50Hz TV standard colour or monochrome monitor

1 Multi-frequency monitor

2 64Hz high-resolution monochrome monitor

3 60Hz VGA-type monitor

4 Super-VGA-type monitor (not available in RISC OS 2)
5 LCD (liquid crystal display) (not available in RISC OS 2)

the notes on the following page that are relevant to the mode.

4-561

Mode Text

resolution
0 80 x 32
1 40x 32
2 20x 32
3 80x 25
4 40x 32
5 20x 32
6 40x 25
7 40x 25
8 80x 32
9 40x 32
10 20x 32
11 80x 25
12 80x 32
13 40%x 32
14 80x 25
15 80x 32
16 132x 32
17 132x 25
18 80x 64
19 80x 64
20 80x 64
21 80x 64
22 96x 36
23 144% 56
24 132x 32
25 80x 60
26 80x 60
27 80x 60
28 80x 60
29 100x 75
30 100x 75
31 100x 75
33 96x 36
34 96x 36
35 96x 36
36 96x 36
37 112x 44
38 112x 44
39 112x 44
40 112x 44
41 80x 44
42 80x 44
43 80x 44
44 80x 25
45 80x 25
46 80x 25

4-562

Pixel
resolution
640 x 256
320x 256
160x 256
Text only
320x% 256
160x 256
Text only
Teletext
640x% 256
320x 256
160x 256
640x 250
640x% 256
320x 256
640x% 250
640x% 256
1056x 256
1056x% 250
640%x 512
640x 512
640x 512
640%x 512
768x% 288
1152x 896
1056x 256
640x% 480
640x% 480
640x% 480
640x% 480
800x 600
800x 600
800x 600
768x% 288
768x% 288
768x% 288
768x% 288
896x 352
896x 352
896x 352
896x 352
640x% 352
640x 352
640x 352
640x% 200
640x% 200
640x 200

OSunits
resolution

1280 x 1024
1280x 1024
1280x 1024
Text only
1280x 1024
1280x 1024
Text only
Teletext
1280x 1024
1280x 1024
1280x 1024
1280x 1000
1280x 1024
1280x 1024
1280x 1000
1280x 1024
2112x 1024
2112x 1000
1280x 1024
1280x 1024
1280x 1024
1280x 1024
768x 576
2304x 1792
2112x 1024
1280%x 960
1280%x 960
1280x 960
1280x 960
1600x 1200
1600x 1200
1600x 1200
1536x 1152
1536x 1152
1536x 1152
1536x 1152
1792x 1408
1792x 1408
1792x 1408
1792x 1408
1280x 1408
1280x 1408
1280x 1408
1280x 800
1280x 800
1280x 800

Logical
colours

N
AHNLNNSL

256

16
256
16
256
16
16

16
256
16
256

16
256

256

256

16

Mem
used

20K
20K
40K
40K
20K
20K
20K
80K
40K
40K
80K
40K
80K
80K
80K
160K
132K
132K
40K
80K
160K
320K
108K
126K
264K
37.5K
75K
150K
300K
58.6K
117.2K
234.4K
27K
54K
108K
216K
38.5K
77K
154K
308K
27.5K
55K
110K
15.7K
31.3K
62.5K

Refresh Band-
rate width
50Hz 1IM/s
50Hz 1M/s
50Hz 2M/s
50Hz 2M/s
50Hz 1M/s
50Hz 1M/s
50Hz 1M/s
50Hz 4M/s
50Hz 2M/s
50Hz 2M/s
50Hz 4M/s
50Hz 2M/s
50Hz 4M/s
50Hz 4M/s
50Hz 3.9M/s
50Hz 8M/s
50Hz 6.6M/s
50Hz 6.5M/s
50Hz 2M/s
50Hz 4M/s
50Hz 8M/s
50Hz 16M/s
50Hz 5.4M/s
64Hz 8.1M/s
50Hz 13.2M/s
60Hz 2.3M/s
60Hz 4.5M/s
60Hz 9M/s
60Hz 18M/s
56Hz 3.3M/s
56Hz 6.6M/s
56Hz 13.2M/s
50Hz 1.4M/s
50Hz 2.7M/s
50Hz 5.4M/s
50Hz 10.8M/s
60Hz 2.3M/s
60Hz 4.6M/s
60Hz 9.2M/s
60Hz 18.5M/s
60Hz 1.7M/s
60Hz 3.3M/s
60Hz 6.6M/s
60Hz 0.9M/s
60Hz 1.9M/s
60Hz 3.8M/s

Monitor Notes

types

0,1345 -
0,1,345 =
0,1,345 =
0,134,5 =fy
0,1,345 =
0,1,345 =
0,1,3,45 =fy
0,1,3,45 -f
0,1,345 =
0,1,345 =
0,1,3,45 =
0,1,3,45 -«
0,1,345 =
0,1,3,45 =
0,1,3,45 -«
0,1,3,45 -
0,1 Y
0,1 Y«
1
1
1
1
0,1 ¥
2
0,1 Y
1,3,4,5
1,3,4,5
1,3,4,5
1,3,4,5
1,4 o
1,4 PA
1,4 i
0,1 é
0,1 é
0,1 é
0,1 é
1 é
1 ¢
1 é
1 e
1,345 ¢-b
1,345 ¢-b
1,345 ¢-b
1,3,4,5 ¢
1,3,4,5 ¢
1,345 ¢-

Table B: Modes

Notes on display modes

1

These modes are not available in RISC OS 2.00, nor (except for mode 31) are they
availablein RISC OS 2.01.

These modes are not available on early models of RISC OS computers (ie the
Archimedes 300, 400 and 400/1 series, and the A3000), because they are unable to
clock VIDC at the necessary rate.

These modes are handled differently with aV GA or Super-V GA-type monitor. | f
you are using such a monitor:

e RISC OS 2.00 does not implement these modes.

e These modes are all displayed on a screen having 352 raster lines. Where a
mode has fewer than 352 vertical pixels, it is centred on the screen with blank
rasters at the top and bottom. Because of their appearance these modes are
known as letterbox modes.

e Therefreshrateis 70Hz.

o The bandwidths shown in the table for these modes are lower than these
monitor types consume, because no alowance has been made for the blank
rasters.

o Early models of RISC OS computers (ie the Archimedes 300, 400 and 400/1
series, and the A3000) scan these modes some 4.7% slow. Again thisisbecause
they are unableto clock VIDC at the necessary rate. Most VGA and
Super-V GA-type monitors can still successfully lock onto this signal, but some
may not. Furthermore, these modelsdo not provide a Sync Polarity signal. This
makes the effect of letterbox modes (see above) more severe.

Early models of RISC OS computers (ie the Archimedes 300, 400 and 400/1 series,
and the A3000) also scan these modes some 4.7% slow with multi-frequency
monitors. Again thisis because they are unable to clock VIDC at the necessary rate.
These modes do not display graphics, and are provided for compatibility with
BBC/Master series computers.

In these modes circles, arcs, sectors and segments do not look circular. Thisis
because the aspect ratio of the pixelsisnotinal:2, 1:1 or 2:1 ratio.

These are gap modes, where the colour of the gapsis not necessarily the same asthe
text background.

These modes are not a multiple of eight pixels high. By default, in these modes the
bottom of the screen corresponds to the bottom line of ECF patterns, but the top line
will not correspond to the top line of ECF patterns.

This mode is not availablein RISC OS 3 (version 3.00). It provides a double-sized

display suitable for use by visually impaired people. Unfortunately some
applications may not provide correct displays when used with this mode.

4-563

4-564

Other notes
Mode 32 has not been defined.

If an attempt is made to select a mode which is not appropriate to the current monitor
type (or OS version), a suitable mode for that monitor is used. For example, an attempt
to select mode 23 on atype 0 monitor will result in mode 0 being used.

In 256 colour modes, there are some restrictions on the control of the colours. Only 64
base colours may be selected; 4 levels of tinting turn the base colours into 256 shades.

Also, the selection from the colour palette of 4096 shadesis only possible in groups of
16.

96

List of file types

Table C: File types

File types are three-digit hexadecimal numbers. They are divided into ranges:

EO0O - FFF allocated by Acorn for generic data types

BOO - DFF alocated by Acorn to software houses for applications
AQ00 - AFF reserved for use by Acorn applications

400 - 9FF allocated by Acorn to software houses for applications
100 - 3FF allocated by Acorn to public domain applications

000 - OFF freefor users

For information about the allocation of file types, see Appendix H: Registering nameson
page 4-551.

For each type, there may be a default action on loading and running the file. These
actions may change, depending on whether the desktop isin use, and which applications
have been seen. The system variables Aliast@L oadType XXX and
Alias$@RunType XXX give the actions (XXX =file type).

Some types have atextual equivalent set at start-up, which may be used in most

commands (but not in the above system variables) instead of the hexadecimal code.

These are indicated in the table below by a double dagger ‘t’, or by a single dagger ‘t
if not available in RISC OS 2. For example, file type &FFF is set at start-up to have the
textual equivalentext. Other textual equivalents may be set as an application is first
‘seen’ by the Filer, or as it starts — for example, Acorn Desktop Publisher sets up file
type &AF9 to beDtpDaoc, and file type &AFA to bdtpSyle. These textual equivalents

are set using the system variables File$Type_XXX, where XXX is the hexadecimal file

type.
You should use the hexadecimal file type in command scripts and in programs,

otherwise you will find that your files will give an error if you try to run them on a
machine that uses a territory with different textual equivalents.

The following types are currently used or reserved by Acorn. Most file types used by
other software houses are not shown. This list may be extended from time to time:

4-565

List of file types

Acorn file types

4-566

Type

FFF
FFE
FFD
FFC
FFB
FFA
FF9
FF8
FF7
FF6
FF5
FF4
FF3
FF2
FF1
FFO
FED
FEC
FEB
FEA
FE9
FES
FE7
FE6
FE4
FE3
FE2
FE1
FDF
FDE
FDD
FDC
FDB
FDA
FD9
FD8
FD7
FD6
FD5
FD4

Description

Plain ASCII text

Command (Exec) file

Data

Position independent code

Tokenised BASIC program

Relocatable module

Sprite or saved screen

Absolute application loaded at &8000
BBC font file (sequence of VDU operations)
Font (4 bpp bitmap only)

PostScript

Dot Matrix data file

LaserJet data file

Configuration (CMOS RAM)

Raw unprocessed data (eg terminal streams)
Tagged Image File Format

Palette data

Template file

Obey file

Desktop

ViewWord

ViewPS

ViewSheet

UNIX executable

DOS file

Atari file

Commodore Amiga file

Make data

TCP/IP suite: VT220 script

TCP/IP suite: VT220 setup

Master utilities

TCP/IP suite: unresolvable UNIX soft link
Text using CR and LF for line ends

PC Emulator: DOS batch file

PC Emulator: DOS executable file

PC Emulator: DOS command file

Obey file in a task window

Exec file in a task window

DOS Pict

International MIDI Assoc. MIDlfiles standard

Textual equivalent

Text
Command
Data
Utility
BASIC
Module
Sprite
Absolute
BBC font
Font
PoScript
Printout
LaserJet
Config
RawData
TIFF
Palette
Template
Obey
Desktop
ViewWord
ViewPS
ViewSht
UNIX Ex
DOS
Atari
Amiga
Make
VTScript
VTSetup
MasterUtl
SoftLink
TextCRLF
MSDOSbat
MSDOSexe
MSDOScom
TaskObey
TaskExec
Pict
MIDI

+

+

t
+
+

+
+
T

+
t
+

FD3
FD1
FDO
FCF
FCE
FCD
FCC
FCA
FC9
FC8
FC7
FC6
FC3
FC2

Acorn DDE: debuggable image
BASIC stored as text

PC Emulator: configuration
Font cache

FileCore floppy disc image
FileCore hard disc image
Device object within DeviceFS
Single compressed file

Sun raster file

DOS MultiFS disc image
Macintosh format Type 1 font
IPrinters printer definition file
IPatch patch definition file
Audio Interchange file format

Industry standard file types

Type

DFE
DEA
DB4
DB3
DB2
DB1
DBO
CES5
CB6
CAF
CAE
C85

C35

Description

Comma separated variables

Data exchange format (AutoCAD etc)
SuperCalc lll file

DBase Il file

DBase I

DBase index file

Lotus 123 WK1 format

TeX file

Amiga Sound Tracker

IGIS graphics

Hewlett-Packard graphics language
JPEG (Joint Photographic Experts Group) file
Corel Draw file

BBC ROM file type

Type
BBC

Description
BBC ROM file (ROMFS)

Acornsoft file types

Type

AFF
AFE
AFA

Description

Draw file
Mouse event record
DTP style file

Table C: File types

Deblmage
BASICTxt
PCEmConf
FontCache T
FileCoreFloppyDisc
FileCoreHardDisc
Device T
Squash
SunRastr
DOSDisc ¥
MacTypel
PrintDfn
Patch
AIFF

Textual equivalent

Ccsv
DXF
SuperCalc
DBaselll
DBasell
DBaselndex
WK1
TeX
AmigaSTM
IGIS
HPGLPIot
JPEG
CorlDraw

Textual equivalent
BBC ROM ¥

Textual equivalent

DrawFile T
Mouse
DtpStyle

4-567

List of file types

4-568

AF9
AF8
AF7
AF1
AFO
AE9
ADB

DTP documents
First Word Plusfile
Helpfile

Maestro file
ArcWriter file
Alarm file

Outline font

DtpDoc
1stWord+
Helplnfo
Music
ARCWriter
Alarms
New Font

o7 Table D: Character sets

Introduction

This chapter includes tables of all the alphabet sets available on your Acorn computer.
Most are based on the International Standards Organisation SO 8859 document.

Loading alphabets

When you load an alphabet it overlays the previous a phabet. Most alphabets have a
number of undefined characters, shown in the tables below by alight grey square. In
such cases, the previous character definition for that code remainsin effect.

The character codes 0 - 31 and 127 are not printable characters; they have special
meaning to the VDU drivers, as described in the chapter entitled VDU Drivers on
page 1-547. They are represented in the tables below by a dark grey square.

You can load aphabets using OS_Byte 71 (page 3-780) or * Alphabet (page 3-783).

How alphabets are initially set up

The default alphabet
When the kernel is booted it sets up a default a phabet.

The kernel’s default alphabet always contains all characters that are defined in the
Latinl alphabet for the release of RISC OS in use (see page 4-571). Note that this
definition has been gradually extended by the addition of extra characters in the range
&80 - &9F (128 - 159).

The kernel’s representation of characters that are neither defined in the Latinl alphabet
nor used by the VDU drivers varies. In RISC OS 2 they are represented by the
underlined string ‘These-characters-are-not-defined’, and in RISC OS 3 by the
hexadecimal value of their character code. In the future some of these undefined
characters may be used to further extend the Latin1 alphabet, or their representation may
change. Furthermore, it is these characters that users are most likely to redefine if
necessary. Consequently, you must not rely upon their initial representation.

4-569

Keyboard shortcuts

The configured alphabet

The default alphabet is then overlaid by the alphabet that is correct for the computer’s
configured territory, as set by *Configure Territory (page 3-854). Under RISC OS 2, the
alphabet used is instead determined by the computer’s configured country; see
*Configure Country on page 3-786.

The window manager

When the window manager starts, it redefines some characters. In RISC OS 2 these
were used to draw windows’ borders, and so have to be present for the desktop to have
the correct appearance. Later versions of RISC OS still redefine some of these
characters for backwards compatibility, but do not themselves use them. You must not
rely on the presence of these characters unless your program is running under the
desktop in RISC OS 2.

Keyboard shortcuts

4-570

The description of the *Country command on page 3-789 explains the relationship
betweercountry, alphabet andkeyboard. There are some useful keyboard shortcuts
which you can use to access various characters and alphabets while you are working.
You can use these wherever you can use the keyboard: for example, in the Command
Line, in Edit, or when entering a filename to save a file. The first two keystroke
combinations allow you to switch easily between keyboard layouts:

Alt Ctrl F1 Selects the keyboard layout appropriate to the country UK.
Alt Ctrl F2 Selects the keyboard layout appropriate to the country for which
the computer is configured (if available).
and the other allows you to access top bit set characters without using the Chars
application:
Alt <decimal character code typed on numeric keypad>
Enters the character corresponding to the character code typed.

The following sequence also switches the keyboard layout:
Press and hold Alt and Ctrl together.

2 Press F12.
3 Release Citrl.
4 Still holding Alt, type on the numeric keypad the international telephone dialling

code for the country you want (eg 49 for Germany, 39 for Italy, 33 for France).
5 Release Alt.

Table D: Character sets

Latinl alphabet (ISO 8859/1)
Thisisthe default alphabet used by Acorn computers.

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

+0 0@ P P : AlPblaldfo
+1 l'1/A/Qla gW '"|il+x/A/N &a/fAl:
+2 "|2|B|R|b|r|Ww|<|¢ AlOlalol>2
+3 #/3/C|S|c|s > £13|AOa 63
+4 $/4 D T|dt “la| " |AlO|a|06]a4
% 5/ E/Ule u/Y " ¥ nuA O a&al|6|s
&I 6|F|V flv|yg ,|! 1T &£ O e 6ls
"1 7TIGIW i glw -8 - |CIx|¢c|+|7
(/8/H X|h x — ", /E|@|é g|s
Y9I Y|ily -©|*E/U|é o
* JIZ|jlz E a ° E U ée a|a
+| 5 K[k]|{ el«|» | E|U|é OB
<LVt =% T 00 afc
- =M1 m } ™t -|% T Y ily]|pD
>IN N T (% fi [®|% T P71 plE
/120 o6 " eliRli y]|F
0O 1 2 3 4 5 6 7 8 9 A B C D E F

In RISC OS 2 characters &80 - & 9F (128 - 159) are undefined.
In RISC OS 3 (version 3.00) characters &80 - &8B (128 - 139) are undefined.

4-571

Latin2 alphabet (ISO 8859/2)

Latin2 alphabet (ISO 8859/2)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0

© N~ 0 o < m 0O O W w

o
F

+1

+2

+3

+4

V| C S| OO || 0| I || [\D[¥D| 3| >N +n -
W= M| «B [T | B — [O OO | D | W D | D | — | — DT
QANZpPZ [O|OPO 0| XPpE D | DD | D > |2
< | <L <L O OO || W L v — | — pAO
o | ©| o =~ — || AN | Unp+= | N N | -N
<> || apd D] P WP |N| 1+ PN |-N
- v Als |= = __EmwT.I.ﬁﬂ
JNE
pO.rstUVWXV,Z{|}~.
© QO O T O+ OL| —| =X —|E/ O
AoV D> X > N — —|—|c _
Q« O AWW O I — X a1=20
O A N M T OO M~ 0 O SV AN
—: #H AR G- |~~~ | +]| - -

+5

+6
+7
+8
+9
+10
+11
+12
+13
+14
+15

A B C D E F

In RISC OS 2 characters &80 - & 9F (128 - 159) are undefined.

4-572

Table D: Character sets

Latin3 alphabet (ISO 8859/3)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
+0 0 @ P P ‘ ° A a 0
+1 l11/AQla q "H|h AN &A1
+2 "12/B/R b|r <"]2]AlOlalo]|>2
+3 #/3/C|S|c|s > | £]3 o) O3
+4 $/4 D T|dt “la| " |AO|a 0|4

%| 5 E| U|le u " HICIGl e lgls
& |6 | F |V flv , Hh ClO ¢t o]|s
"7 G|W | g|w - 8 Cilx|¢c|+|7
(I8 HIX h x| |— IE|Gle g]|s
Y19/ 1Y iy -1 1EJU|é u]o
* JIZ|jlz E S s/ EU e a|a
+ K [k|| e Gl glEUe&|als
co<ILiN Lt 3T o e
=M] m} ™t - iU it|po
>IN In |7 %ol fi T'S/7/8]|E
/120 o .fizziRli |F

0O 1 2 3 4 5 6 7 8 9 A B C D E F

In RISC OS 2 characters &80 - & 9F (128 - 159) are undefined.

4-573

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Latin4 alphabet (ISO 8859/4)

Latin4 alphabet (ISO 8859/4)

O d N M ¥ 1 © N~ 0o o < o 0O 0O W ow
T oo X 0|00 | 8 S| S| DS Is
| \@© | «@ || @ |o@| B| —|0| O O :©|-O|—|—]I=
QA 20 X\ O 0:0| x| Q| DD O|DD|ID| e
I < o | Y| —DO | kel ol = = |l =
o | @ o = = | —|> Son oo w | QN O
<| X| | at—|] an | M- be| + PN
‘,<>“"”___Emw+|._+ﬁﬂ
AR
pO.rstUVWXV,Z{|}~.
sl oo T+~ DL —|—Xx — E|lc|O
OO N F D> X >IN — — —| _
Q«moOoAaWL O —n X 4320
Ol N M T | O M~ oo o SV A
- #H| AR G- |~ ~[x|+ -] -

O «+< N MM < W
O «€ N M < 1O © N~ 00 O
PYYTT LY R IT G

A B C D E F

In RISC OS 2 characters &80 - & 9F (128 - 159) are undefined.

4-574

Table D: Character sets

Cyrillic alphabet (ISO 8859/5)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

O +H N ™M < 1 © ~ 0o o < o O O W ow
I

Cl O | O @l = < m| Q| N == |\N| N
Y| n| O S| mm| |10 o O| T =|X| > > -
ToOZuUWCYw=s <m0 AN = |0MN
Livia>Ddrnomomoloc X >>no
+ .
D.QFstUVWXV,Z{|}~.
C|lOol 0ol T| V|l DL —| - X —|E|lc|O
Ao N kFH D> X > N|— — —| _
QO OjW WL O I — X d=2Z0
Ol N M T | O M~ o0 o SV Al
| #H| AR |- |~ x |+ o]~
TYYPTILETROTTYRYT

9 A B C D E

8

4-575

Greek alphabet (ISO 8859/7)

Greek alphabet (ISO 8859/7)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

O d N M ¥ 1 © N~ 0o o < o 0O 0O W ow
Ela v b|lr| 2 & <3 3| —=| >0 o3
Do @ > win| oo - X < 3> w0
Cla Wi > 8 X3 Ci—:> o5 w - —
— 0L QUNTIO - X< =210
o | H| & ™ |- -< -W-T|-—| a-O| X|->|-C
- - @ - W © v| | o _
pO.rstUVWXV..Z{|}~.
adee...Ighl.Jklmno
OO N F D> X >IN — — —| _
Qo oWL O I — X d=32Z20
Old N ™M < OO~ o o SV A e
- | #H AR Q|- |~ ~x |+ - -

+0

+1

+2

+3

+4

+5

+6

+7

+8
+9

o
—
+

+11

+12

+13

+14

+15

A B C D E F

4-576

Hebrew alphabet (ISO 8859/8)

+0
+1
+2
+3

+4

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Table D: Character sets

]
2|0
3|y
il
15
1y
VX
n P
A
Yo
1.n
n)
17
D
R

H 1
0o 1 2 3 45 6 7 8 9 A B C D E F

mT m O O W »>» © 0o N o o N~ w N ko

4-577

Cyrillic2 alphabet (DOS code page 866)

Cyrillic2 alphabet (DOS code page 866)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

O d N M ¥ 1 © N~ 0o o < o 0O 0O W ow
Cl O C| O |l =| x| m| Q| 0| == [\|N
Y| n| | S|mm| | 10 o O T| = X| > > 1= D
ToZuWUCY=Exm O AN = |0MN
WL VvV aDdrF nnoonoe XY >>mo
pO.rstUVWXV..Z{|}~.

© o O|T| O+ DL - X —| El C|O
OO N F D> X >IN — — —| _
Q«moOoAaWL O —n X 4320
Old| N M I IO O M~ oo SV A e

—: #H AR G- |~~~ | +]| - -

+0

+1

+2

+3

+4

+5

© ~ o o & d
=
+ + + + 9 ¢

N ® < 0
— — — —
+ o+ o+ o+

A B C D E F

4-578

Table D: Character sets

BFont characters

This character set isused in the BBC Master microcompulter. It isretained for the sake of

compatibility, but should not be used for new applications.

o e ACEEEREEERELEE

injo

E E e

Back
spage
delete

Hl1|A a|q H|S] |y A Fede

HIFC|Se|s|Cic| i Ty
HATIdEE S| | &8 W

|G| g =) 3 |y H By

NIV jyiol D F LIV

—|=|M| Xiw F&] | - (M]

a2 BRbrHae - B E O

a2 |EUleuidon |1 E$ £

s < | SH[X[h[=[+[T[" [T[600w

= EEMEARELEEEELEE
- CA AN EEARMI NG HEEE
o I RS MIHE =l e Ed 1T =

o I L o O o = e BT S (T £ P

text f 'I? e
r - an

R O & |F |V F | O — i £

— = 9 8
.] =9 =
% .m. ES .WS MS £ .m.
25| 8 2L 8¢ g - [c £
© 3 < S 5 o 5 > 0 S) 1% 5.2
2o | 52 | 0| =2 o & = s 0 o .= 9
= 3| @ cS | 379 S ® = £ © 6 3
) c = 8 O c L5 c
8 = 5] © xS <] b =
D a] o = |3
a = =
m _ . » c © [} o
e] 2 L I} o I £ K 3
s £ £ T = o — x 5 c 5 = £ =3
S = = = O 5 3 S] s a 2 5 £
g | 5| 5 |g¢) 3 8 §| 5|8 |°| 5 |83
£ = o 25 c o S (=] I & g <}
= 3 S g3 £ L o pis = G
2 7] n S [8) « o a
—“ N o T 0 ~ oo o < m O Ao W w

4-579

Teletext characters (used only in mode 7)

Teletext characters (used only in mode 7)

4-580

Teletext alphanumeric

0 1 2 3 4 5 6 7
0| Nothing | Nothing . E @ F' £ I:I
1 %ﬁ’,ﬁtté? Nothing n E E E
2 p?itrelitgr Nothing E E E E E
3 p?itnotgr Nothing E E E E E E
4| Nothing Nothing E
5| Nothing D{?St&le E E m E
o« 3 v BEEEEE
7o W iDERER
8 Back Nothing E E E E
9| Forward Nothing E E E E
A| Down Nothing E ' E E ﬂ E
B Up Nothing n E E E
C SC(::Iree%rn Nothing ! E E m
D Sﬁ?r:te()f Nothing = E m m E
e e s ERE R EE
Fowe b EEEEE

Table D: Character sets

4-581

Teletext characters (used only in mode 7)

4-582

8 9 A B C D E F
s | e [B
Alpha Graphic

w w HHREEE
Alpha Graphic
s s HBEREE
Alpha Graphic "=
e s EEREREE
Alpha Graphic .
SR FH D T o +
Alpha Graphic
e | B LY =
Alpha Graphic = n
o cone RS L
Alpha Graphic
white * white

Conceal
o AE R
Contiguous | .
— o T
. Separated
Nothing | graphics
Y | [
Normal Black *
e v A B
Double New =
i R o LA LD o
. Hold =
woona | oz | R o
. Release
Nothing | graphics *

* every line starts with these options set

Table D: Character sets

4-583

Teletext characters (used only in mode 7)

Teletext graphics

0 1

(6]

F|

0| Nothing Nothing

Next to .
1| printer Nothing

Start .
2| printer Nothing

Sto .
3 printgr Nothing

4| Nothing Nothing

. Disable
5] Nothing VDU
Enable Select
6| VDU mode
Reprogram
7 Bell characters
8 Back Nothing

9| Forward Nothing

A| Down Nothing

I3 B) 54 A = 6 = 1)))

LI ESNR RN I
A YN S N -

HE
- |FI
w |E:
= [E
1=
1 |E
N |F|
u[E
o= H
w1
LE
= [
L
=i
|
X

il ol ol |l o "™ W e | S

B Up Nothing
Clear
C| screen Nothing
Start of .
D line Nothing
Paged |Move cursor -
E| mode to (0,0) T
Scroll Move
F mOde cursor delete

4-584

Table D: Character sets

4-585

Teletext characters (used only in mode 7)

4-586

8 9 A B C D E F
s | e [S O
Alpha Graphic

CC A [|7
Alpha Graphic n
R | |E1F] mlem
Alpha Graphic
SRR | |
Alpha Graphic

R (m O T
. s] QB
magenta | magenta
Alpha Graphic
o conr ol
Alpha Graphic
white * white

Conceal
kA " H | nl
Contiguous
s 0" i I
) Separated
Nothing | graphics
s v [[R
Normal Black *
PR e | W |
Double New =
) W 1 -+ By
. Hold =
s 25 o i
. Release
ot | S | i ||

* every line starts with these options set

Table D: Character sets

4-587

