
U
sin

g
 filin

g
 system

s

2-1

2

Part 4 – Using filing systems

2-2

U
sin

g
 filin

g
 system

s

2-3

2

26 Introduction to filing systems

Filing systems
RISC OS uses filing systems to organise and access data held on external storage media.
Several complete filing systems are provided as standard:

● Advanced Disc Filing System (ADFS) for use with both floppy and hard disc drives

● Network Filing System (NetFS) for controlling your access to Econet file servers
(eg Acorn FileStore, SJ MDFS, Acorn Level 4 Fileserver)

● RAM Filing System (RamFS), for making memory appear to be a disc

● NetPrint, for printing using Econet printer servers (eg !Spooler).

Other modules provide extra filing systems:

● the DOSFS filing system provides access to MS-DOS format discs

● the ResourceFS filing system contains resource files needed by the Window
manager and ROM-resident Desktop utilities

● the SystemDevices module and the device filing systems provide various system
devices.

FileSwitch
A module called FileSwitch is at the centre of all filing system operation in RISC OS.

FileSwitch provides a common core of functions used by all filing systems. It only
provides the parts of these services that are device independent.

Obviously, FileSwitch cannot know how to control every single piece of hardware that
gets added to the system. The device dependent services that control hardware are
provided by separate modules, which are the actual filing systems.

Switching between filing systems

One of the main tasks that FileSwitch handles is keeping track of what filing systems are
active, and switching between them as necessary. Much of the housekeeping part of the
task is done for you; you just have to tell FileSwitch what to do.

FileCore

2-4

Accessing hardware

When filing systems initialise, they tell FileSwitch their name, where to find their
routines for controlling the hardware, and any special actions they are capable of.

Some calls you make to FileSwitch don’t need to access hardware, and it deals with
these itself. Other calls do need to access hardware; FileSwitch does the portion of the
work that is independent of this, and calls a filing system module to access the hardware.

Finding out more…

For full details of FileSwitch, see the chapter entitled FileSwitch on page 2-11.

Adding filing systems

You can add filing system modules to the system, just as you can add any other module.
They have to conform to the standards for modules, set out in the chapter entitled
Modules on page 1-201; they also have to meet certain other standards to function
correctly with FileSwitch as a filing system.

Because FileSwitch is already doing a lot of the work for you, you will have less work to
do when you add a filing system than would otherwise be the case. Full details of how to
add a filing system to FileSwitch are set out in the chapter entitled Writing a filing
system on page 2-531.

Data format

FileSwitch does not lay down the format in which data must be laid out on a filing
system, but it does specify what the user interface should look like.

FileCore
One of the filing system modules that RISC OS provides is FileCore. It takes the normal
calls that FileSwitch sends to a filing system module, and converts them to a simpler set
of calls to modules that control the hardware. So, like FileSwitch, it provides a common
core of functions that are device independent, and it communicates with secondary
FileCore modules that access the hardware. Unlike FileSwitch, it creates a fresh
instantiation of itself for each module it supports.

Finding out more…

For full details of FileCore, see the chapter entitled FileCore on page 2-197.

U
sin

g
 filin

g
 system

s

Introduction to filing systems

2-5

Adding FileCore modules

You can, of course, add FileCore modules to the system. Using FileCore to build part of
your filing system imposes a more rigid structure on it, as more of the filing system is
predefined than if you do not use it. The filing system will appear very similar to ADFS
or RamFS, both of which use FileCore. Of course, if you use FileCore to write a filing
system it will be even less work for you, as even more of the system is already written.

For full details of using FileCore to implement a filing system, see the chapter entitled
Writing a FileCore module on page 2-597.

DeviceFS
DeviceFS is another filing system module that takes the normal calls that FileSwitch
sends to a filing system module, and converts them to a simpler set of calls to modules
that control the hardware. It is intended for stream-based I/O. The secondary modules
with which it communicates are known as device drivers: examples of these are the
serial and parallel ports. Only a single instantiation of DeviceFS is needed.

DeviceFS is not included in RISC OS 2, and in RISC OS 3 will only support character
devices. Support for block devices may be added to a future release.

Finding out more…

For full details of DeviceFS, see the chapter entitled DeviceFS on page 2-429.

Adding device drivers

As you’d expect, you can also add device drivers to RISC OS. For full details of using
DeviceFS to implement a device driver, see the chapter entitled Writing a device driver
on page 2-607.

Image filing systems

2-6

Image filing systems
As well as standard filing systems, FileSwitch supports image filing systems. These
provide facilities for RISC OS to handle media in foreign formats, and to support image
files (or partitions) in those formats. They differ from standard filing systems in that they
do not themselves access hardware; instead they rely on standard RISC OS filing
systems to do so. DOSFS is an example of an image filing system, used to handle DOS
format discs.

Image filing systems are not available in RISC OS 2.

There are three parts to an image filing system:

● The image handler manages files held within an image file, using FileSwitch and
standard filing systems to do so.

Image filing systems provide these facilities in a manner that is transparent to the
end user; image files appear to be the same as any other file on the host filing
system. The host filing system need not be aware of image filing systems to support
this functionality.

● The identifier identifies the format of foreign media.

To do so it communicates with a filing system using a service call. The host filing
system needs to be aware of image filing systems (ie must support the service call)
to provide this functionality. Currently FileCore is the only standard filing system
that does so.

● The formatter helps to format media, which is actually done by a standard filing
system.

Again, the host filing system needs to be aware of image filing systems to support
this functionality. Currently ADFS is the only standard filing system that does so.

Finding out more…

For full details of DOSFS (a typical image filing system), see the chapter entitled
DOSFS on page 2-323.

Adding image filing systems

You can add image filing systems to the system. For full details, see the chapter entitled
Writing a filing system on page 2-531.

U
sin

g
 filin

g
 system

s

Introduction to filing systems

2-7

The Filer
The Filer module provides the facilities needed to display files and directories on the
desktop, and to interact with them. It does so for all filing systems.

Finding out more…

For full details of the Filer, see the chapter entitled The Filer on page 2-499.

Filer_Action
Filer_Action performs file manipulation operations for the Filer without the desktop
hanging whilst they are under way.

Finding out more…

For full details of Filer_Action, see the chapter entitled Filer_Action and FilerSWIs on
page 2-513.

Filers
Each filing system that provides an icon on the icon bar has a Filer module to do this,
and to provide any associated services: for example, the ADFSFiler module. A Filer
module can use service calls to interact with image filing systems, and add their formats
to its menu of those it already supports.

Summary

2-8

Summary

U
sin

g
 filin

g
 system

s

Introduction to filing systems

2-9

The diagram below summarises the structure described above:
K

er
ne

l

F
ile

S
w

itc
h

nu
ll

vd
u

ra
w

vd
u

kb
d

ra
w

kb
d

pr
in

te
r

D
ev

ic
eF

S
N

et
P

rin
t

R
es

ou
rc

eF
S

P
ip

eF
S

N
et

F
S

F
ile

C
or

e
D

O
S

F
S

S
er

ia
l

P
ar

al
le

l
R

A
M

F
S

A
D

F
S

S
ys

te
m

D
ev

s

Figure 26.1 Structure of RISC OS 3 printing system

Summary

2-10

U
sin

g
 filin

g
 system

s

2-11

2

27 FileSwitch

Introduction and Overview
FileSwitch provides services common to all filing systems. It communicates with the
filing systems using a defined interface; it uses this to tell the filing systems when they
must do things. It also switches between the different filing systems, keeping track of the
state of each of them.

See also the chapter entitled Introduction to filing systems on page 2-3.

Adding filing systems
You can add filing system modules to the system, just as you can add any other module.
They have to conform to the standards for modules, set out in the chapter entitled
Modules on page 1-201; they also have to meet certain other standards to function
correctly with FileSwitch as a filing system.

Because FileSwitch is already doing a lot of the work for you, you will have less work to
do when you add a filing system than would otherwise be the case. Full details of how to
add a filing system to FileSwitch are set out in the chapter entitled Writing a filing
system on page 2-531.

Data format

FileSwitch does not lay down the format in which data must be laid out on a filing
system, but it does specify what the user interface should look like.

Technical Details

2-12

Technical Details

Terminology
The following terms are used in the rest of this chapter:

● a file is used to store data; it is distinct from a directory

● a directory is used to contain files

● an object may be either a file or a directory

● a pathname gives the location of an object, and may include a filing system name, a
special field, a media name (eg a disc name), directory name(s), and the name of the
object itself; each of these parts of a pathname is known as an element of the
pathname

● a full pathname is a pathname that includes all relevant elements

● a leafname is the last element of a full pathname.

Filenames
Filename elements may be up to ten characters in length on FileCore-based filing
systems (such as ADFS) and on NetFS. These characters may be digits or letters.
FileSwitch makes no distinction between upper and lower case, although filing systems
can do so. As a general rule, you should not use top-bit-set characters in filenames,
although some filing systems (such as FileCore-based ones) support them. You may use
other characters provided they do not have a special significance. Those that do are
listed below:

. Separates directory specifications, eg $.fred

: Introduces a drive or disc specification, eg :0, :welcome. It also marks the
end of a filing system name, eg adfs:

* Acts as a ‘wildcard’ to match zero or more characters, eg prog*

Acts as a ‘wildcard’ to match any single character, eg $.ch##

$ is the name of the root directory of the disc

& is the user root directory (URD)

@ is the currently selected directory (CSD)

^ is the ‘parent’ directory

% is the currently selected library directory (CSL)

\ is the previously selected directory (PSD – available on FileCore-based
filing systems, and any others that choose to do so)

U
sin

g
 filin

g
 system

s

FileSwitch

2-13

There is a subtle difference in wildcard matching between RISC OS 2 and later versions.
Under RISC OS 2, commands acting only on files try to match wildcarded
specifications against files only. However, under later versions these commands try to
match against all objects; the first match found may be a directory, hence causing an
error. (Similarly, a wildcarded specification passed to a command acting only on
directories may get matched to a file.)

Directories
You may group files together into directories; this is particularly useful for grouping
together all files of a particular type. Files in the directory currently selected may be
accessed without reference to the directory name. Filenames must be unique within a
given directory. Directories may contain other directories, leading to a hierarchical file
structure.

The root directory, $, forms the top of the hierarchy of the media which contains the
CSD. Through it you can access all files on that media. $ does not have a parent
directory. Trying to access its parent will just access $. Note also that files have access
permissions associated with them, which may restrict whether you can actually read or
write to them.

Files in directories other than the current directory may be accessed either by making the
desired directory the current directory, or by prefixing the filename by an appropriate
directory specification. This is a sequence of directory names starting from one of the
single-character directory names listed above, or from the current directory if none is
given.

Each directory name is separated by a ‘.’ character. For example:

$.Documents.Memos File Memos in dir Documents in $

BASIC.Games.Adventures File Adventures in dir Games in dir
@.BASIC

%.BCPL File BCPL in the current library

Filing systems
Files may also be accessed on filing systems other than the current one by prefixing the
filename with a filing system specification. A filing system name may appear between
‘–’ characters, or suffixed by a ‘:’. For example:

-net-$.SystemMesg
adfs:%.AAsm

You are strongly advised to use the latter, as the character ‘–’ can also be used to
introduce a parameter on a command line, or as part of a file name.

Special fields

2-14

Special fields
Special fields are used to supply more information to the filing system than you can
using standard path names; for example NetFS and NetPrint use them to specify server
addresses or names. They are introduced by a # character; a variety of syntaxes are
possible:

 net#MJHardy::disc1.mike
 #MJHardy::disc1.mike
-net#MJHardy-:disc1.mike
 -#MJHardy-:disc1.mike

The special fields here are all MJHardy, and give the name of the fileserver to use.

Special fields may use any character except for control characters, double quote ‘"’,
solidus ‘|’ and space. If a special field contains a hyphen you may only use the first two
syntaxes given above.

Special fields are passed to the filing system as null-terminated strings, with the ‘#’ and
trailing ‘:’ or ‘–’ stripped off. If no special field is specified in a pathname, the
appropriate register in the FS routine is set to zero. See below for details of which calls
may take special fields.

The system variable FileSwitch$SpecialField is also used to store the special field.

Current selections
FileSwitch keeps track of which filing system is currently selected. If you don’t
explicitly tell FileSwitch which filing system to use, it will use the current selection.

FileSwitch also keeps a record of each filing system’s current selections, such as its
CSD, CSL, PSD and URD. (Under RISC OS 2, this is independently recorded by
individual filing systems, rather than by FileSwitch.)

System variables
Some of these values are available in system variables under RISC OS 3. These are:

Variable Meaning
FileSwitch$CurrentFilingSystem current filing system
FileSwitch$TemporaryFilingSystem temporary filing system
FileSwitchfsCSD CSD for filing system fs
FileSwitchfsPSD PSD for filing system fs
FileSwitchfsLib library for filing system fs

U
sin

g
 filin

g
 system

s

FileSwitch

2-15

FileSwitchfsURD URD for filing system fs
FileSwitch$SpecialField special field, evaluated as path is

processed

See also the section entitled Using FileSwitch$SpecialField with path variables on
page 2-20.

File attributes
The top 24 bits of the file attributes are filing system dependent, eg NetFS returns the
file server date of creation/modification of the object (see the section entitled File
attributes on page 2-347). The low byte has the following interpretation:

Bit Meaning if set
0 Object has read access for you
1 Object has write access for you
2 Owner execute only (BBC ADFS only), or

Private (SJ Research file servers only)
3 Object is locked against deletion by you
4 Object has read access for others
5 Object has write access for others
6 Undefined
7 Object is locked against deletion for others

FileCore based filing systems (such as ADFS and RamFS) ignore the settings of bits 4
and 5, but you can still set these attributes independently of bits 0, 1 and 3. This is so that
you can freely move files between ADFS, RamFS and NetFS without losing information
on their public read and write access.

You should clear bits 2, 6 and 7 when you create file attributes for a file. They may be
used in the future for expansion, so any routines that update the attributes must not alter
these bits, and any routines that read the attributes must not assume these bits are clear.

Addresses / File types and date stamps
All files have (in addition to their name, length and attributes) two 32-bit fields
describing them. These are set up when the file is created and have two possible
meanings:

Load and execution addresses

In the case of a simple machine code program these are the load and execution addresses
of the program:

Addresses / File types and date stamps

2-16

Load address &XXXLLLLL
Execution address &GGGGGGGG

When a program is *Run, it is loaded at address &XXXLLLLL and execution
commences at address &GGGGGGGG. Note that the execution address must be within
the program or an error is given. That is:

XXXLLLLL ≤ GGGGGGGG < XXXLLLLL + Length of file

Also note that if the top twelve bits of the load address are all set (ie ‘XXX’ is FFF), then
the file is assumed to be date-stamped. This is reasonable because such a load address is
outside the addressing range of the ARM processor.

File types and date stamps

In this case the top 12 bits of the load address are all set. The remaining bits hold the
date/time stamp indicating when the file was created or last modified, and the file type.

The date/time stamp is a five byte unsigned number which is the number of
centi-seconds since 00:00:00 on 1st Jan 1900. The lower four bytes are stored in the
execution address and the most-significant byte is stored in the least-significant byte of
the load address.

The remaining 12 bits in the load address are used to store information about the file
type. Hence the format of the two addresses is as follows:

Load address &FFFtttdd
Execution address &dddddddd

where ‘d’ is part of the date and ‘t’ is part of the type.

The file types are split into three categories:

Value Meaning
&E00 - &FFF Reserved for Acorn use
&800 - &DFF For allocation to software houses
&000 - &7FF Free for the user

For a list of the file types currently defined, see the Table entitled File types.

If you type:

Show File$Type_

you will get a list of the file types your computer currently knows about.

Additional information

Some filing systems may store additional information with each file. This is dependent
on the implementation of the filing system.

U
sin

g
 filin

g
 system

s

FileSwitch

2-17

Load-time and run-time system variables
When a date stamped file of type xxx is *LOADed or *RUN, FileSwitch looks for the
variables Alias$@LoadType_xxx or Alias$@RunType_xxx respectively. If a variable of
string or macro type exists, then it is copied (after macro expansion), and the full
pathname is used to find the file either on File$Path or Run$Path. Any parameters
passed are also appended for *Run commands. The whole string is then passed to the
operating system command line interpreter using XOS_CLI.

An example of LoadType

For example, suppose you type

*LOAD mySprites

when in the directory adfs::HardDisc.$.Sprites, and where the type of the file
mySprites is &FF9. FileSwitch will issue:

*@LoadType_FF9 adfs::HardDisc.$.Sprites.mySprites

The value of the variable Alias$@LoadType_FF9 is SLoad %*0 by default, so the
CLI converts the command via the alias mechanism to:

*SLoad adfs::HardDisc.$.Sprites.mySprites

● Note that RISC OS 2 does not expand file names to full pathnames and so would
only issue:

*@LoadType_FF9 mySprites

which is then converted to:

*SLoad mySprites

An example of RunType

Similarly, if you typed:

*Run BasicProg p1 p2

where BasicProg is in the directory adfs::HardDisc.$.Library, and its file
type is &FFB, FileSwitch would issue:

*@RunType_FFB adfs::HardDisc.$.Library.BasicProg p1 p2

The variable Alias$@LoadType_FFB is Basic -quit |"%0|" %*1 by default,
so the CLI converts the command via the alias mechanism to:

*Basic -quit "adfs::HardDisc.$.Library.BasicProg" p1 p2

File$Path and Run$Path

2-18

Default settings

The filing system manager sets several of these variables up on initialisation, which you
may override by setting new ones.

In the case of BASIC programs the settings are made as follows:

*Set Alias$@LoadType_FFB Basic -load |"%0|" %*1
*Set Alias$@RunType_FFB Basic -quit |"%0|" %*1

You can set up new aliases for any new types of file. For example, you could assign type
&123 to files created by your own wordprocessor. The variables could then take be set
up like this:

*Set Alias$@LoadType_123 WordProc %*0
*Set Alias$@RunType_123 WordProc %*0

File$Path and Run$Path
There are two more important variables used by FileSwitch. These control exactly
where a file will be looked for, according to the operation being performed on it. The
variables are:

File$Path for read operations
Run$Path for execute operations

The contents of each variable should expand to a list of prefixes, separated by commas.

When FileSwitch performs a read operation (eg load a file, open a file for input or
update), then the prefixes in File$Path are used in the order in which they are listed. The
first object that matches is used, whether it be a file or directory.

Similarly, when FileSwitch tries to execute a file (*Run or *filename for example), the
prefixes listed in Run$Path are used in order. If a matching object is a directory then it is
ignored, unless it contains a !Run file. The first file, or directory.!Run file that matches
is used.

Note that the search paths in these two variables are only ever used when the pathname
passed to FileSwitch does not contain an explicit filing system reference. For example,
*RUN file would use Run$Path, but *RUN adfs:file wouldn’t.

Default values

By default, File$Path is set to the null string, and only the current directory is searched.
Run$Path is set to ‘,%.’, so the current directory is searched first, followed by the
library.

U
sin

g
 filin

g
 system

s

FileSwitch

2-19

Specifying filing system names

You can specify filing system names in the search paths. For example, if FileSwitch
can’t locate a file on the ADFS you could make it look on the Econet fileserver using:

Set File$Path ,%.,Net:Lib.,Net:Modules.

This would look for:

@.file, %.file, Net:Lib*.file and Net:Modules.file.

Resulting filenames

If after expansion you get an illegal filename it is not searched for. So if you had set
Run$Path like this:

*Set Run$Path adfs:,,net:,%.,!

then:

*Run $.mike

would search in turn for adfs:$.mike, $.mike and net:$.mike, but not for
%.$.mike or !$.mike as they are illegal.

Path variables may expand to have leading and trailing spaces around elements of the
path, so:

*Set Run$Path adfs:$. , net:%. , !

is perfectly legal. If you attempt to parse path variables, you must be aware of this and
cope with it.

Avoiding using File$Path and Run$Path

Certain SWI calls also allow you to specify alternative path strings, and to perform the
operation with no path look-up at all.

Using other path variables
You can set up other path variables and use them as pseudo filing systems. For example
if you typed:

*Set Basic$Path adfs:$.basic.,net:$.basic.

you could then refer to the pseudo filing system as Basic: or (less preferable) as
-Basic-.

These path variables work in the same way as File$Path and Run$Path.

System devices

2-20

Using FileSwitch$SpecialField with path variables

FileSwitch$SpecialField is often used as part of a macro to define a path variable. For
example, the default definition of Serial$Path is this macro:

devices#<FileSwitch$SpecialField>:$.Serial.

You could change this to set up default values for the serial port as follows:

devices#baud=9600,bits=8,<FileSwitch$SpecialField>:$.Serial.

Any settings passed to FileSwitch as a special field would then override the defaults in
the definition of Serial$Path.

System devices
In addition to the filing systems already mentioned, the module SystemDevices provides
some device-oriented ‘filing systems’. These can be used in redirection specifications in
* Commands, and anywhere else where byte-oriented file operations are possible. The
devices provided are:

kbd: & rawkbd: the keyboard
null: the ‘null device’
printer: the printer
vdu: & rawvdu: the screen

Various other modules also provide system devices:

device: the device filing system
netprint: the network printer
parallel: the parallel port
pipe: the pipe filing system
resource: the resource filing system
serial: the serial port

For full details, see each chapter between NetPrint on page 2-393 and System devices on
page 2-495.

U
sin

g
 filin

g
 system

s

FileSwitch

2-21

Filing system numbers
These are the currently allocated filing system numbers:

File system Number
None 0
RomFS 3
NetFS 5
ADFS 8
NetPrint 12
Null 13
Printer 14
Serial 15
Vdu 17
RawVdu 18
Kbd 19
RawKbd 20
DeskFS 21
Computer Concepts RomFS 22
RamFS 23
RISCiXFS 24
Streamer 25
SCSIFS 26
Digitiser 27
Scanner 28
MultiFS 29
NFS 33
CDFS 37
DOSFS 43
ResourceFS 46
PipeFS 47
DeviceFS 53
Parallel 54

Re-entrancy

2-22

Re-entrancy
FileSwitch can cope fully with recursive calls made to different streams – whether
through the same or different entry points. For example:

● Handle 254 is an output file on a disc that’s been removed.

● Handle 255 is a spool file.

1 You call OS_BPut to put a byte to 254; this fills the buffer and causes a flush to the
filing system.

2 The filing system generates an UpCall to inform that the medium is missing.

3 An UpCall handler prints a message asking the user to supply the medium.

4 This goes through OS_BPut to 255, filling the buffer and causing a flush to the
filing system.

If the filing systems are different then both calls to OS_BPut will work as expected. If
they are the same, then it is dependent on the filing system whether it handles it.
FileCore based systems, for example, do not.

Interrupt code

You must not call the filing systems from interrupt code; FileCore based systems in
particular give an error if you try to do so.

FileSwitch and the kernel
Some of the * Commands and SWI calls listed below are provided by the kernel, and
some by the FileSwitch module; they are grouped together here for ease of reference.

As well as the kernel and FileSwitch, the appropriate filing system module must be
present for these commands to work, as it will carry out the low-level parts of each of the
calls you make.

Further calls
In addition to the calls in this section, there are OS_Bytes to read/write the *Spool and
*Exec file handles. See page 1-528 and page 1-908 respectively for details.

U
sin

g
 filin

g
 system

s

FileSwitch

2-23

Support of calls
Some filing systems do not support all the commands that are detailed in this chapter,
and you should be aware of this when writing code. In general, filing systems for
handling mass-storage media will provide full support, whereas more esoteric filing
systems may have omissions, mostly because a particular function is meaningless to that
filing system. If you call an unsupported command, an error will be returned, and you
should program to handle this.

Service Calls

2-24

Service Calls
Service_StartUpFS

(Service Call &12)

Start up filing system

On entry

R1 = &12 (reason code)
R2 = filing system number (see page 2-21)

On exit

R1 preserved (never claim)
R2 preserved

Use

This is an old way to start up a filing system. It must not be claimed.

U
sin

g
 filin

g
 system

s

FileSwitch

2-25

Service_FSRedeclare
(Service Call &40)

Filing system reinitialise

On entry

R1 = &40 (reason code)

On exit

R1 preserved to pass on (do not claim)

Use

This service is called when the FileSwitch module has been reinitialised (due to a
*RMReInit, for example). If you are in a filing system, you should make yourself known
to FileSwitch by calling OS_FSControl 12 (see page 2-96). You must not claim this call.

Service_CloseFile (Service Call &68)

2-26

Service_CloseFile
(Service Call &68)

Close an object, and any children of that object

On entry

R1 = &68 (reason code)
R2 = pointer to canonical filename (null terminated)
R3 = number of files closed as a result of this service call (initially 0)

On exit

R1, R2 preserved
R3 = number of files closed as a result of this service call (ie incremented

appropriately)

Use

This call requests that the object specified by R2 be closed, and also any other objects
that are beneath it in the directory tree. Your module need not close the file if this may
potentially cause problems.

You must not claim this service call. Before passing this service call on you must
increment R3 by the number of files you closed.

For example, this call might be issued by the PC Emulator to cause a DOSFS partition
file to be closed by FileSwitch. This doesn’t cause problems as the partition would be
spontaneously reopened if needed later.

This call is not issued by RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-27

SWI Calls
OS_Byte 127

(SWI &06)

Tells you whether the end of an open file has been reached

On entry

R0 = 127
R1 = file handle

On exit

R0 preserved
R1 indicates if end of file has been reached
R2 undefined

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call tells you whether the end of an open file has been reached, by checking
whether the sequential pointer is equal to the file extent. It uses OS_Args 5 to do this;
you should do so too in preference to using this call, which has been kept for
compatibility only. See OS_Find (page 2-75) for details of opening a file. The values
returned in R1 are as follows:

Value Meaning
0 End of file has not been reached
Not 0 End of file has been reached

OS_Byte 127 (SWI &06)

2-28

Related SWIs

OS_Args 5 (page 2-56), OS_Find (page 2-75)

Related vectors

ByteV

U
sin

g
 filin

g
 system

s

FileSwitch

2-29

OS_Byte 139
(SWI &06)

Selects file options (as used by *Opt)

On entry

R0 = 139
R1 = option number (first *Opt argument)
R2 = option value (second *Opt argument)

On exit

R0 preserved
R1, R2 undefined

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call selects file options. It uses OS_FSControl 10 to do this. It is equivalent to *Opt,
which is documented in detail on page 2-178.

Related SWIs

OS_FSControl 10 (page 2-94)

Related vectors

ByteV

OS_Byte 255 (SWI &06)

2-30

OS_Byte 255
(SWI &06)

Reads the current auto-boot flag setting, or temporarily changes it

On entry

R0 = 255
R1 = 0 or new value
R2 = &FF or 0

On exit

R0 preserved
R1 = previous value
R2 corrupted

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call reads the current auto-boot flag setting, or changes it until the next hard reset or
hard break. It uses OS_FSControl 10 to do this, which you should use in preference to
this obsolete call. The auto-boot flag defaults to the value configured in the
Boot/NoBoot option. If NoBoot is set, then, when the machine is reset, no auto-boot
action will occur (ie no attempt will be made to access the boot file on the filing system).
If Boot is the configured option, then the boot file will be accessed on reset. Either way,
holding down the Shift key while releasing Reset will have the opposite effect to
usual.

With this OS_Byte you can read the current state. On exit, if bit 3 of R1 is clear, then the
action is Boot. If it is set, then the action is NoBoot.

U
sin

g
 filin

g
 system

s

FileSwitch

2-31

The effect can be changed by writing to bit 3 of the flag, but this only lasts until the next
hard reset or hard break. You should preserve the other bits of the flag.

Related SWIs

OS_FSControl 10 (page 2-94), OS_FSControl 15 (page 2-99)

Related vectors

ByteV

OS_File (SWI &08)

2-32

OS_File
(SWI &08)

Acts on whole files, either loading a file into memory, saving a file from memory, or
reading or writing a file’s attributes

On entry

R0 = reason code
Other registers depend on reason code

On exit

R0 corrupted
Other registers depend on reason code

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

OS_File acts on whole files, either loading a file into memory, saving a file from
memory, or reading or writing a file’s attributes. The call indirects through FileV.

The particular action of OS_File is given by the low byte of the reason code in R0 as
follows:

R0 Action Page
0 Saves a block of memory as a file 2-35

1 Writes catalogue information for a named object 2-36

2 Writes load address only for a named object 2-36

3 Writes execution address only for a named object 2-36

4 Writes attributes only for a named object 2-36

U
sin

g
 filin

g
 system

s

FileSwitch

2-33

For details of each of these reason codes, see below. Reason codes 20 - 24 inclusive are
not supported by RISC OS 2.

FileSwitch will check the leafname for wildcard characters (* and #) before some of
these operations. These are the ones which have a ‘destructive’ effect, eg deleting a file
or saving a file (which might overwrite a file which already exists). If there are
wildcards in the leafname, it returns an error without calling the filing system.

Non-destructive operations, such as loading a file and reading and writing attributes may
have wildcards in the leafname. However, only the first file found will be accessed by
the operation. The order of the search is filing system dependent, but is typically ASCII
order.

5 Reads catalogue information for a named object, using File$Path 2-38

6 Deletes a named object 2-40

7 Creates an empty file 2-41

8 Creates a directory 2-42

9 Writes date/time stamp of a named file 2-36

10 Saves a block of memory as a file, and date/time stamps it 2-35

11 Creates an empty file, and date/time stamps it 2-41

12 Loads a named file, using specified path string 2-43

13 Reads catalogue information for a named object, using specified
path string

2-38

14 Loads a named file, using specified path variable 2-43

15 Reads catalogue information for a named object, using specified
path variable

2-38

16 Loads a named file, using no path 2-43

17 Reads catalogue information for a named object, using no path 2-38

18 Sets file type of a named file 2-36

19 Generates an error message 2-45

20 Reads catalogue information for a named object, using File$Path 2-46

21 Reads catalogue information for a named object, using specified
path string

2-46

22 Reads catalogue information for a named object, using specified
path variable

2-46

23 Reads catalogue information for a named object, using no path 2-46

24 Reads the natural block size of a file 2-48

255 Loads a named file, using File$Path 2-43

R0 Action Page

OS_File (SWI &08)

2-34

Related SWIs

None

Related vectors

FileV

U
sin

g
 filin

g
 system

s

FileSwitch

2-35

OS_File 0 and 10
(SWI &08)

Save a block of memory as a file

On entry

R0 = 0 or 10
R1 = pointer to non-wild-leaf filename
If R0 = 0

R2 = load address
R3 = execution address

If R0 = 10
R2 = file type (bits 0 - 11)

R4 = start address in memory of data (inclusive)
R5 = end address in memory of data (exclusive)

On exit

Registers preserved

Use

These calls save a block of memory as a file, setting either its load and execution
addresses (R0 = 0), or its date/time stamp and file type (R0 = 10).

An error is returned if the object is locked against deletion, or is already open, or is a
directory.

See also OS_File 7 and 11 (page 2-41); these create an empty file, ready to receive data.

OS_File 1, 2, 3, 4, 9, and 18 (SWI &08)

2-36

OS_File 1, 2, 3, 4, 9, and 18
(SWI &08)

Write catalogue information for a named object

On entry

R0 = 1, 2, 3, 4, 9, or 18
R1 = pointer to (wildcarded) object name
If R0 = 1 or 2

R2 = load address
Else if R0 = 18

R2 = file type (bits 0 - 11)
If R0 = 1 or 3

R3 = execution address
If R0 = 1 or 4

R5 = object attributes

On exit

Registers preserved

Use

These calls write catalogue information for a named object to its catalogue entry, as
shown below:

R0 Information written
1 Load address, execution address, object attributes
2 Load address
3 Execution address
4 Object attributes
9 Date/time stamp; file type is set to &FFD if not set already
18 File type, and date/time stamp if not set already

If the object name contains wildcards, only the first object matching the wildcard
specification is altered.

FileCore based filing systems (such as ADFS) can write a directory’s attributes; NetFS
may generates an error if you try to write a directory’s attributes, depending on the
server you are using.

U
sin

g
 filin

g
 system

s

FileSwitch

2-37

Under RISC OS 2 FileCore based filing systems do not generate an error if the object
doesn’t exist, whereas NetFS does so. Later versions of RISC OS always generate an
error in these circumstances.

OS_File 5, 13, 15 and 17 (SWI &08)

2-38

OS_File 5, 13, 15 and 17
(SWI &08)

Read catalogue information for a named object

On entry

R0 = 5, 13, 15 or 17
R1 = pointer to (wildcarded) object name
If R0 = 13

R4 = pointer to control-character terminated comma separated path string
If R0 = 15

R4 = pointer to name of a path variable that contains a control-character
terminated comma separated path string

On exit

R0 = object type
R1 preserved
R2 = load address
R3 = execution address
R4 = object length
R5 = object attributes
(R2 - R5 corrupted if object not found)

Use

The load address, execution address, length and object attributes from the named
object’s catalogue entry are read into registers R2, R3, R4 and R5. The value of R0 on
entry determines what path is used to search for the object:

R0 Path used
5 File$Path system variable
13 path string pointed to by R4
15 path variable, name of which is pointed to by R4
17 none

For a description of the path strings that are held in path variables, see the section
entitled File$Path and Run$Path on page 2-18.

U
sin

g
 filin

g
 system

s

FileSwitch

2-39

On exit, R0 contains the object type:

R0 Type
0 Not found
1 File found
2 Directory found
3 Image file found (ie both file and directory)

If the object name contains wildcards, only the first object matching the wildcard
specification is read.

OS_File 6 (SWI &08)

2-40

OS_File 6
(SWI &08)

Deletes a named object

On entry

R0 = 6
R1 = pointer to non-wildcarded object name

On exit

R0 = object type
R1 preserved
R2 = load address
R3 = execution address
R4 = object length
R5 = object attributes
(R2 - R5 corrupted if object not found)

Use

The information in the named object’s catalogue entry is transferred to the registers and
the object is then deleted from the structure. It is not an error if the object does not exist.

An error is generated if the object is locked against deletion, or if it is a directory which
is not empty, or is already open.

The version of NetFS supplied in RISC OS 2 behaves unusually in two ways:

● it always sets bit 3 of R5 on return (the object is ‘locked’)

● it returns the object’s type as 2 (a directory) if it is successfully deleted.

The version supplied in RISC OS 3 does not behave like this.

U
sin

g
 filin

g
 system

s

FileSwitch

2-41

OS_File 7 and 11
(SWI &08)

Creates an empty file

On entry

R0 = 7 or 11
R1 = pointer to non-wild-leaf file name
If R0 = 7

R2 = reload address
R3 = execution address

If R0 = 11
R2 = file type (bits 0 - 11)

R4 = start address (normally set to 0)
R5 = end address (normally set to length of file)

On exit

Registers preserved

Use

Creates an empty file, setting either its reload and execution addresses (R0 = 7), or its
date/time stamp and file type (R0 = 11).

Note: No data is transferred. The file does not necessarily contain zeros; the contents
may be completely random. Some security-minded systems (such as NetFS/FileStore)
will deliberately overwrite any existing data in the file.

An error is returned if the object is locked against deletion, or is already open, or is a
directory.

See also OS_File 0 and 10 (page 2-35); these save a block of memory as a file.

OS_File 8 (SWI &08)

2-42

OS_File 8
(SWI &08)

Creates a directory

On entry

R0 = 8
R1 = pointer to non-wild-leaf object name
R4 = number of entries (0 for default)

On exit

Registers preserved

Use

R4 indicates a minimum suggested number of entries that the created directory should
contain without having to be extended. Zero is used to set the default number of entries.

Note: ADFS and other FileCore-based filing systems ignore the number of entries
parameter, as this is predetermined by the disc format.

An error is returned if the object is a file which is locked against deletion. It is not an
error if it refers to a directory that already exists, in which case the operation is ignored.

U
sin

g
 filin

g
 system

s

FileSwitch

2-43

OS_File 12, 14, 16 and 255
(SWI &08)

Load a named file

On entry

R0 = 12, 14, 16 or 255
R1 = pointer to (wildcarded) object name
If bottom byte of R3 is zero

R2 = address to load file at
R3 = 0 to load file at address given in R2, else bottom byte must be non-zero
If R0 = 12

R4 = pointer to control-character terminated comma separated path string
If R0 = 14

R4 = pointer to name of a path variable that contains a control-character
terminated comma separated path string

On exit

R0 = object type (bit 0 always set, since object is a file)
R1 preserved
R2 = load address
R3 = execution address
R4 = file length
R5 = file attributes

Use

These calls load a named file into memory. The value of R0 on entry determines what
path is used to search for the file:

R0 Path used
12 path string pointed to by R4
14 path variable, name of which is pointed to by R4
16 none
255 File$Path system variable

For a description of the path strings that are held in path variables, see the section
entitled File$Path and Run$Path on page 2-18.

If the object name contains wildcards, only the first object matching the wildcard
specification is loaded.

OS_File 12, 14, 16 and 255 (SWI &08)

2-44

You must set the bottom byte of R3 to zero for a file that is date-stamped, and supply a
load address in R2.

An error is generated if the object does not exist, or is a directory, or does not have read
access, or it is a date-stamped file for which a load address was not correctly specified.

U
sin

g
 filin

g
 system

s

FileSwitch

2-45

OS_File 19
(SWI &08)

Generates an error message

On entry

R0 = 19
R1 = pointer to object name to report error for
R2 = object type (0, 1, 2 or &100)

On exit

R0 = pointer to error block
V flag set

Use

This call is used to generate a friendlier error message for the specified object, such as:

"File ’xyz’ not found" r2 = 0
"’xyz’ is a file" r2 = 1
"’xyz’ is a directory" r2 = 2 or 3
"Directory ’xyz’ not found" r2 = &100

An example of its use would be:

MOV r0, #OSFile_ReadInfo
SWI XOS_File
BVS flurg
TEQ R0, #object_file
MOVNE r2, r0
MOVNE r0, #OSFile_MakeError ; return error if not a file
SWINE XOS_File
BVS flurg

R2 may only have the values given above; for other values, the call returns with all
registers preserved and V set (ie no error is generated). RISC OS 3.00 does not support
R2 = 3, although it can return an object type of 3 (an image file); you should be cautious
in passing results from other calls directly to this call.

OS_File 20, 21, 22 and 23 (SWI &08)

2-46

OS_File 20, 21, 22 and 23
(SWI &08)

Read catalogue information for a named object

On entry

R0 = 20, 21, 22 or 23
R1 = pointer to (wildcarded) object name
If R0 = 21

R4 = pointer to control-character terminated comma separated path string
If R0 = 22

R4 = pointer to name of a path variable that contains a control-character
terminated comma separated path string

On exit

R0 = object type
R1 preserved
R2 = load address, or high byte of date stamp (top three bytes of R2 are &000000)
R3 = execution address, or low word of date stamp
R4 = object length
R5 = object attributes
R6 = object filetype (bits 0 - 11)

Special values:
–1 untyped (R2, R3 are load and execution address), or

not found (R0 is 0)
&1000 directory
&2000 application directory (directory whose name starts with a ‘!’)

Use

This call reads the load and execution address (or date stamp), length, object attributes
and filetype from the named object’s catalogue entry into registers R2 - R6. The value of
R0 on entry determines what path is used to search for the object:

R0 Path used
20 File$Path system variable
21 path string pointed to by R4
22 path variable, name of which is pointed to by R4
23 none

U
sin

g
 filin

g
 system

s

FileSwitch

2-47

For a description of the path strings that are held in path variables, see the section
entitled File$Path and Run$Path on page 2-18.

On exit, R0 contains the object type:

R0 Type
0 Not found
1 File found
2 Directory found
3 Image file found (ie both file and directory)

If the object name contains wildcards, only the first object matching the wildcard
specification is read.

These calls are not available in RISC OS 2.

OS_File 24 (SWI &08)

2-48

OS_File 24
(SWI &08)

Reads the natural block size of a file

On entry

R0 = 24
R1 = pointer to file name

On exit

R2 = natural block size of the file in bytes

Use

This call reads the natural block size of a file in bytes, returning it in R2. This is the same
as the granularity of file allocation. For an example see the section entitled Allocation
bytes on page 2-205, which gives a description of the granularity of FileCore based
filing systems.

This call is not available in RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-49

OS_Args
(SWI &09)

Reads or writes an open file’s arguments, or returns the filing system type in use

On entry

R0 = reason code
R1 = file handle, or 0
R2 = attribute to write, or not used

On exit

R0 = filing system number (see page 2-21), or preserved
R1 preserved
R2 = attribute that was read, or preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call indirects through ArgsV. The particular action of OS_Args is specified by R0
as follows:

R0 Action Page
0 Read pointer/FS number 2-51

1 Write pointer 2-52

2 Read extent 2-53

3 Write Extent 2-54

4 Read allocated size 2-55

5 Read EOF status 2-56

OS_Args (SWI &09)

2-50

Reason codes 7 and 8 are not available under RISC OS 2.

Related SWIs

None

Related vectors

ArgsV

6 Reserve space 2-57

7 Get canonicalised name 2-58

8 Inform of changed image stamp 2-59

254 Read information on file handle 2-60

255 Ensure file/files 2-62

R0 Action Page

U
sin

g
 filin

g
 system

s

FileSwitch

2-51

OS_Args 0
(SWI &09)

Reads the temporary filing system number, or a file’s sequential file pointer

On entry

R0 = 0
R1 = 0 or file handle

On exit

R0 = temporary filing system number (if R1 = 0 on entry), or preserved
R1 preserved
R2 = sequential file pointer (if R1 ≠ 0 on entry), or preserved

Use

This call reads the temporary filing system number (if R1 = 0 on entry), or a file’s
sequential file pointer (if R1 ≠ 0 on entry, in which case it is treated as a file handle). For
a list of filing system numbers, see page 2-21.

This call indirects through ArgsV.

OS_Args 1 (SWI &09)

2-52

OS_Args 1
(SWI &09)

Writes an open file’s sequential file pointer

On entry

R0 = 1
R1 = file handle
R2 = new sequential file pointer

On exit

R0 - R2 preserved

Use

This call writes an open file’s sequential file pointer.

If the new sequential pointer is greater than the current extent, then more space is
reserved for the file; this is filled with zeros. Writing the sequential pointer clears the
file’s EOF-error-on-next-read flag.

This call indirects through ArgsV.

U
sin

g
 filin

g
 system

s

FileSwitch

2-53

OS_Args 2
(SWI &09)

Reads an open file’s extent

On entry

R0 = 2
R1 = file handle

On exit

R0, R1 preserved
R2 = extent of file

Use

This call reads an open file’s extent. It indirects through ArgsV.

OS_Args 3 (SWI &09)

2-54

OS_Args 3
(SWI &09)

Writes an open file’s extent

On entry

R0 = 3
R1 = file handle
R2 = new extent

On exit

R0 - R2 preserved

Use

This call writes an open file’s extent.

If the new extent is greater than the current extent, then more space is reserved for the
file; this is filled with zeros. If the new extent is less than the current sequential pointer,
then the sequential pointer is set back to the new extent. Writing the extent clears the
file’s EOF-error-on-next-read flag.

This call indirects through ArgsV.

U
sin

g
 filin

g
 system

s

FileSwitch

2-55

OS_Args 4
(SWI &09)

Reads an open file’s allocated size

On entry

R0 = 4
R1 = file handle

On exit

R0, R1 preserved
R2 = allocated size of file

Use

This call reads an open file’s allocated size.

The size allocated to a file will be at least as big as the current file extent; in many cases
it will be larger. This call determines how many more bytes can be written to the file
before the filing system has to be called to extend it. This happens automatically.

This call indirects through ArgsV.

OS_Args 5 (SWI &09)

2-56

OS_Args 5
(SWI &09)

Reads an open file’s end-of-file (EOF) status

On entry

R0 = 5
R1 = file handle

On exit

R0, R1 preserved
R2 = 0 if not EOF, else at EOF

Use

This call reads an open file’s end-of-file (EOF) status.

If the sequential pointer is equal to the extent of the given file, then an end-of-file
indication is given, with R2 set to non-zero on exit. Otherwise R2 is set to zero on exit.

This call indirects through ArgsV.

U
sin

g
 filin

g
 system

s

FileSwitch

2-57

OS_Args 6
(SWI &09)

Ensures an open file’s size

On entry

R0 = 6
R1 = file handle
R2 = size to ensure

On exit

R0, R1 preserved
R2 = bytes reserved for file

Use

This call ensures an open file’s size.

The filing system is instructed to ensure that the size allocated for the given file is at
least that requested. Note that this space thus allocated is not yet part of the file, so the
extent is unaltered, and no data is written. R2 on exit indicates how much space the filing
system actually allocated.

This call indirects through ArgsV.

OS_Args 7 (SWI &09)

2-58

OS_Args 7
(SWI &09)

Converts a file handle to a canonicalised name

On entry

R0 = 7
R1 = file handle
R2 = pointer to buffer to contain null terminated canonicalised name
R5 = size of buffer

On exit

R5 = number of spare bytes in the buffer including the null terminator, ie:

R5 ≥ 1 ⇒ there are (R5 – 1) completely unused bytes in the buffer; so
R5 = 1 ⇒ there are 0 unused bytes in the buffer, and therefore the
terminator just fitted

R5 ≤ 0 ⇒ there are (1 – R5) too many bytes to fit in the buffer, which has
consequently not been filled in; so R5 = 0 ⇒ there is 1 byte too
many – the terminator – to fit in the buffer

Use

This call takes a file handle and returns its canonicalised name. This may be used as a
two-pass process:

Pass 1
On entry, set R1 to the file handle, and R2 and R5 (the pointer to, and size of, the
buffer) to zero. On exit, R5 = –(length of canonicalised name)

Pass 2
Claim a buffer of the right size (1–R5, not just –R5, as a space is needed for the
terminator). On entry, ensure that R1 still contains the file handle, that R2 is set to
point to the buffer, and R5 contains the length of the buffer. On exit the buffer
should be filled in, and R5 should be 1; but check to make sure.

This call indirects through ArgsV.

It is not available in RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-59

OS_Args 8
(SWI &09)

Used by an image filing system to inform of a change to an image stamp

On entry

R0 = 8
R1 = file handle
R2 = new image stamp

On exit

R0 - R2 preserved

Use

This call is made by an image filing system (eg DOSFS) when it has changed a disc’s
image stamp (a unique identification number). It does so to inform a handler of discs (eg
FileCore) of the change, and to pass it the new image stamp. FileSwitch passes the
information on to the disc handler, which typically just stores the new image stamp in
that disc’s record, so that the disc may be identified at a later time.

This call indirects through ArgsV.

It is not available in RISC OS 2.

OS_Args 254 (SWI &09)

2-60

OS_Args 254
(SWI &09)

Reads information on a file handle

On entry

R0 = 254
R1 = file handle (not necessarily allocated)

On exit

R0 = stream status word
R1 preserved
R2 = filing system information word

Use

This call returns information on a file handle, which need not necessarily be allocated.

The stream status word is returned in R0, the bits of which have the following meaning:

Bit Meaning when set
14 Image file busy
13 Data lost on this stream
12 Stream is critical (see below)
11 Stream is unallocated (see below)
10 Stream is unbuffered
9 Already read at EOF (EOF-error-on-next-read flag)
8 Object written to
7 Have write access to object
6 Have read access to object
5 Object is a directory
4 Unbuffered stream directly supports GBPB
3 Stream is interactive (ie prompting for input is appropriate)

If bit 11 is set then no other bits in the stream status word have any significance, and the
value of the filing system information word returned in R2 is undefined.

Any bits not in the above table are undefined, but you must not presume that they are
zero.

U
sin

g
 filin

g
 system

s

FileSwitch

2-61

Bit 12 shows when the stream is critical – in other words, when FileSwitch has made a
call to a filing system to handle an open file, and the filing system has not yet returned.
This is used to protect against accidental recursion on the same file handle only.

Bit 10 shows when the stream is unbuffered; an unbuffered stream is one for which
FileSwitch provides no buffering.

Bit 14 shows when an image file is busy; that is, when it is in the process of being
opened by FileSwitch, but is not yet ready for use.

For a full definition of the filing system information word returned in R2, see the section
entitled Filing system information word on page 2-532.

This call indirects through ArgsV.

OS_Args 255 (SWI &09)

2-62

OS_Args 255
(SWI &09)

Ensure data has been written to a file, or all files on the temporary filing system

On entry

R0 = 255
R1 = file handle, or 0 to ensure all files on the temporary filing system

On exit

R0 - R2 preserved

Use

This call ensures that any buffered data has been written to either all files open on the
temporary filing system (R1 = 0), or to the specified file (R1 ≠ 0, in which case it is
treated as a file handle).

This call indirects through ArgsV.

U
sin

g
 filin

g
 system

s

FileSwitch

2-63

OS_BGet
(SWI &0A)

Reads a byte from an open file

On entry

R1 = file handle

On exit

R0 = byte read if C clear, undefined if C set
R1 preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

OS_BGet returns the byte at the current sequential file pointer position. The call
indirects through BGetV.

If the sequential pointer is equal to the file extent (ie trying to read at end-of-file) then
the EOF-error-on-next-read flag is set, and the call returns with the carry flag set, R0
being undefined. If the EOF-error-on-next-read flag is set on entry, then an End of
file error is given. Otherwise, the sequential file pointer is incremented and the call
returns with the carry flag clear.

This mechanism allows one attempt to read past the end of the file before an error is
generated. Note that various other calls (such as OS_BPut) clear the
EOF-error-on-next-read flag.

An error is generated if the file handle is invalid; also if the file does not have read
access.

OS_BGet (SWI &0A)

2-64

Related SWIs

OS_BPut (page 2-65), OS_GBPB (page 2-66)

Related vectors

BGetV

U
sin

g
 filin

g
 system

s

FileSwitch

2-65

OS_BPut
(SWI &0B)

Writes a byte to an open file

On entry

R0 = byte to be written
R1 = file handle

On exit

Registers preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

OS_BPut writes the byte given in R0 to the specified file at the current sequential file
pointer. The sequential pointer is then incremented, and the EOF-error-on-next-read
flag is cleared. The call indirects through BPutV.

An error is generated if the file handle is invalid; also if the file is a directory, or is
locked against deletion, or does not have write access.

Related SWIs

OS_BGet (page 2-63), OS_GBPB (page 2-66)

Related vectors

BPutV

OS_GBPB (SWI &0C)

2-66

OS_GBPB
(SWI &0C)

Reads or writes a group of bytes from or to an open file

On entry

R0 = reason code
Other registers depend on reason code

On exit

R0 preserved
Other registers depend on reason code

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call reads or writes a group of bytes from or to an open file. It indirects through
GBPBV.

The particular action of OS_GBPB is given by the reason code in R0 as follows:

R0 Action Page
1 Writes bytes to an open file using a specified file pointer 2-68

2 Writes bytes to an open file using the current file pointer 2-68

3 Reads bytes from an open file using a specified file pointer 2-69

4 Reads bytes from an open file using the current file pointer 2-69

5 Reads name and boot (*Opt 4) option of disc 2-70

6 Reads current directory name and privilege byte 2-70

U
sin

g
 filin

g
 system

s

FileSwitch

2-67

Reason code 12 is not available under RISC OS 2.

All OS_GBPB calls either complete successfully, or return an error; they do not partially
transfer the group of bytes.

Related SWIs

OS_BGet (page 2-63), OS_BPut (page 2-65)

Related vectors

GBPBV

7 Reads library directory name and privilege byte 2-70

8 Reads entries from the current directory 2-71

9 Reads entries from a specified directory 2-73

10 Reads entries and file information from a directory 2-73

11 Reads entries and full file information from a directory 2-73

12 Reads entries and file type information from a directory 2-73

R0 Action Page

OS_GBPB 1 and 2 (SWI &0C)

2-68

OS_GBPB 1 and 2
(SWI &0C)

Write bytes to an open file

On entry

R0 = 1 or 2
R1 = file handle
R2 = start address of buffer in memory
R3 = number of bytes to write
If R0 = 1

R4 = sequential file pointer to use for start of block

On exit

R0, R1 preserved
R2 = address of byte after the last one transferred from buffer
R3 = 0 (number of bytes not transferred)
R4 = initial file pointer + number of bytes transferred
C flag is cleared

Use

Data is transferred from memory to the file at either the specified file pointer (R0 = 1) or
the current one (R0 = 2). If the specified pointer is beyond the end of the file, then the
file is filled with zeros between the current file extent and the specified pointer before
the bytes are transferred.

The memory pointer is incremented for each byte written, and the final value is returned
in R2. R3 is decremented for each byte written, and is returned as zero. The sequential
pointer of the file is incremented for each byte written, and the final value is returned in
R4.

 The EOF-error-on-next-read flag is cleared.

An error is generated if the file handle is invalid; also if the file is a directory, or is
locked against deletion, or does not have write access.

U
sin

g
 filin

g
 system

s

FileSwitch

2-69

OS_GBPB 3 and 4
(SWI &0C)

Read bytes from an open file

On entry

R0 = 3 or 4
R1 = file handle
R2 = start address of buffer in memory
R3 = number of bytes to read
If R0 = 3

R4 = sequential file pointer to use for start of block

On exit

R0, R1 preserved
R2 = address of byte after the last one transferred to buffer
R3 = number of bytes not transferred
R4 = initial file pointer + number of bytes transferred
C flag is clear if R3 = 0, else it is set

Use

Data is transferred from the given file to memory using either the specified file pointer
(R0 = 3) or the current one (R0 = 4). If the specified pointer is greater than the current
file extent then no bytes are read, and the sequential file pointer is not updated.
Otherwise the sequential file pointer is set to the specified file location.

The memory pointer is incremented for each byte read, and the final value is returned in
R2. R3 is decremented for each byte read. If it is zero on exit (all the bytes were read),
the carry flag will be clear, otherwise it is set. The sequential pointer of the file is
incremented for each byte read, and the final value is returned in R4.

The EOF-error-on-next-read flag is cleared.

An error is generated if the file handle is invalid; also if the file is a directory, or does not
have read access.

OS_GBPB 5, 6 and 7 (SWI &0C)

2-70

OS_GBPB 5, 6 and 7
(SWI &0C)

Read information on a filing system

On entry

R0 = 5, 6 or 7
R2 = start address of buffer in memory

On exit

R0, R2 preserved
C flag corrupted

Use

These calls read information on the temporary filing system (normally the current one)
to the buffer pointed to by R2. The value you pass in R0 determines the nature and
format of the data, which is always byte-oriented:

● If R0 = 5, the call reads the name of the disc which contains the current directory,
and its boot option. It is returned as:

<name length byte><disc name><boot option byte>

The boot option byte may contain values other than 0 - 3; under RISC OS 3 it
always contains 0.

● If R0 = 6, the call reads the name of the currently selected directory, and privilege
status in relation to that directory. It is returned as:

<zero byte><name length byte><current directory name><privilege byte>

The privilege byte is &00 if you have ‘owner’ status (ie can create and delete
objects in the directory) or &FF if you have ‘public’ status (ie are prevented from
creating and deleting objects in the directory). On ADFS and other FileCore-based
filing systems you always have owner status.

● If R0 = 7, the call reads the name of the library directory, and privilege status in
relation to that directory. It is returned as:

<zero byte><name length byte><library directory name><privilege byte>

The version of NetFS supplied with RISC OS 2 (5.46) pads disc and directory names to
the right with spaces; other filing systems do not, including the version of NetFS
supplied with RISC OS 3 (5.69 or later). None of the names have terminators; so if the
disc name were Mike, the name length byte would be 4.

U
sin

g
 filin

g
 system

s

FileSwitch

2-71

OS_GBPB 8
(SWI &0C)

Reads entries from the current directory

On entry

R0 = 8
R2 = start address of data in memory
R3 = number of object names to read from directory
R4 = offset of first item to read in directory (0 for start)

On exit

R0, R2 preserved
R3 = number of objects asked for but not read
R4 = next offset in directory
C flag is clear if R3=0, else set

Use

This call reads entries from the current directory on the temporary filing system
(normally the current one). You can also do this using OS_GBPB 9.

R3 contains the number of object names to read. R4 is the offset in the directory to start
reading (ie if it is zero, the first item read will be the first file). Filenames are returned in
the area of memory specified in R2. The format of the returned data is:

length of first object name (one byte)
first object name in ASCII (length as specified)

… repeated as specified by R3 …

length of last object name (one byte)
last object name in ASCII (length as specified)

If R3 is zero on exit, the carry flag will be cleared, otherwise it will be set. If R3 has the
same value on exit as on entry then no more entries can be read and you must not call
OS_GBPB 8 again.

OS_GBPB 8 (SWI &0C)

2-72

On exit, R4 contains the value which should be used on the next call (to read more
names), or –1 if there are no more names after the ones read by this call. There is no
guarantee that the number of objects you asked for will be read. This is because of the
external constraints some filing systems may impose. To ensure reading all the entries
you want to, this call should be repeated until R4 = –1.

This call is only provided for compatibility with older programs.

U
sin

g
 filin

g
 system

s

FileSwitch

2-73

OS_GBPB 9, 10, 11 and 12
(SWI &0C)

Read entries and file information from a specified directory

On entry

R0 = 9, 10, 11 or 12
R1 = pointer to directory name (control-character or null terminated)
R2 = pointer to buffer (word aligned if R0 = 10, 11 or 12)
R3 = number of object names to read from directory
R4 = offset of first item to read in directory (0 for start)
R5 = buffer length
R6 = pointer to (wildcarded) name to match

On exit

R0 - R2 preserved
R3 = number of objects read
R4 = offset of last item read (–1 if finished)
R5, R6 preserved
C flag is clear if R3=0, else set

Use

These calls read entries from a specified directory. If R0 = 10, 11 or 12 on entry the call
also reads file information. If the directory name (which may contain wildcards) is null
(ie R1 points to a zero byte), then the currently-selected directory is read.

The names which match the wildcard name pointed to by R6 are returned in the buffer.
If R6 is zero or points to a null string then ‘*’ is used, and all files will be matched. R3
indicates how many were read. R4 contains the value which should be used on the next
call (to read more names), or –1 if there are no more names after the ones read by this
call.

There is no guarantee that the number of objects you asked for will be read. This is
because of the external constraints some filing systems may impose. To ensure reading
all the entries you want to, this call should be repeated until R4 = –1.

If R0 = 9 on entry, the buffer is filled with a list of null-terminated strings consisting of
the matched names.

OS_GBPB 9, 10, 11 and 12 (SWI &0C)

2-74

If R0 = 10 on entry, the buffer is filled with records:

Offset Contents
0 Load address
4 Execution address
8 Length
12 File attributes
16 Object type
20 Object name (null terminated)

Each record is word-aligned.

If R0 = 11 on entry, the buffer is filled with records:

Offset Contents
0 Load address
4 Execution address
8 Length
12 File attributes
16 Object type
20 System internal name – for internal use only
24 Time/Date (cs since 1/1/1900) – 0 if not stamped
29 Object name (null terminated)

Each record is word-aligned.

If R0 = 12 on entry, the buffer is filled with records:

Offset Contents
0 Load address, or high byte of date stamp (top three bytes are

&000000)
4 Execution address, or low byte of date stamp
8 Length
12 File attributes
16 Object type
20 Object file type (as for OS_File 20-23)
24 Object name (null terminated)

Each record is word-aligned.

Note that even if R3 returns with 0, the buffer area may still have been overwritten: for
instance, it may contain filenames which did not match the wildcard name pointed to by
R6.

An error is generated if the directory could not be found.

OS_GBPB 12 is not available in RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-75

OS_Find
(SWI &0D)

Opens and closes files

On entry

R0 = reason code
Other registers depend on reason code

On exit

Depends on reason code

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call opens and closes files.

If the low byte of R0 = 0 on entry, then you can either close a single file, or all files on
the current filing system; see OS_Find 0 on page 2-77.

If the low byte of R0 ≠ 0 on entry then a file is opened for byte access. You can open files
in the following ways:

● open an existing file with read access only

● create a new file with read/write access

● open an existing file with read/write access

OS_Find (SWI &0D)

2-76

When you open a file a unique file handle is returned to you. You need this for any calls
you make to OS_Args (page 2-49), OS_BGet (page 2-63), OS_BPut (page 2-65) and
OS_GBPB (page 2-66), and to eventually close the file using OS_Find 0. For full details
of the reason codes to open files, see OS_Find 64 to 255 on page 2-78.

Related SWIs

None

Related vectors

FindV

U
sin

g
 filin

g
 system

s

FileSwitch

2-77

OS_Find 0
(SWI &0D)

Closes files

On entry

R0 = 0
R1 = file handle, or zero to close all files on current filing system

On exit

Registers preserved

Use

This call closes files. Any modified data held in RAM buffers is first written to the
file(s).

If R1 = 0 on entry, then all files on the current filing system are closed. You should not
use this facility within a program that runs in a multi-tasking environment such as the
desktop, as it may close files being used by other programs.

Otherwise R1 must contain a file handle, that was returned by the earlier call of OS_Find
that opened the file. Regardless of any errors returned, the file will always be closed on
return from this call.

OS_Find 64 to 255 (SWI &0D)

2-78

OS_Find 64 to 255
(SWI &0D)

Open files

On entry

R0 = reason code
R1 = pointer to object name
R2 = optional pointer to path string or path variable

On exit

R0 = file handle, or 0 if object doesn’t exist
R1 and R2 preserved

Use

These calls open files. The way the file is opened is determined by bits 6 and 7 of R0:

R0 Action
&4X open an existing file with read access only
&8X create a new file with read/write access
&CX open an existing file with read/write access

In fact there is no guarantee that you will get the access that you are seeking, and if you
don’t no error is returned at open time. The exact details depend on the filing system
being used, but as a guide this is what any new filing system should do if the object is an
existing file:

R0 Action
&4X Return a handle if it has read access. Generate an error if it has not

got read access.

&8X Generate an error if it is locked, or has neither read nor write
access. Otherwise return a handle, and open the file with its
existing access, and with its extent set to zero.

&CX Generate an error if it is locked and has no read access, or has
neither read nor write access. Otherwise return a handle, and open
the file with its existing access.

The access granted is cached with the stream, and so you cannot change the access
permission on an open file.

Bits 4 and 5 of R0 currently have no effect, and should be cleared.

U
sin

g
 filin

g
 system

s

FileSwitch

2-79

Bit 3 of R0 determines what happens if you try to open an existing file (ie R0 = &4X or
&CX), but it doesn’t exist:

Bit 3 Action
0 R0 is set to zero on exit
1 an error is generated

Bit 2 of R0 determines what happens if you try to open an existing file (ie R0 = &4X or
&CX) but it is a directory:

Bit 2 Action
0 you can open the directory but cannot do any operations on it
1 an error is generated

If you are creating a new file (ie R0 = &8X) then an error is always generated if the
object is a directory.

Bits 1 and 0 of R0 determine what path is used to search for the file:

Bit 1 Bit 0 Path used
0 0 File$Path system variable
0 1 path string pointed to by R2
1 0 path variable, name of which is pointed to

by R2
1 1 none

For a description of the path strings that are held in path variables, see the section
entitled File$Path and Run$Path on page 2-18.

In all cases the file pointer is set to zero. If you are creating a file, then the extent is also
set to zero.

Note that you need the file handle returned in R0 for any calls you make to OS_Args
(page 2-49), OS_BGet (page 2-63), OS_BPut (page 2-65) and OS_GBPB (page 2-66),
and to eventually close the file using OS_Find 0 (page 2-77).

OS_FSControl (SWI &29)

2-80

OS_FSControl
(SWI &29)

Controls the filing system manager and filing systems

On entry

R0 = reason code
Other registers depend on reason code

On exit

R0 preserved
Other registers depend on reason code

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call controls the filing system manager and filing systems. It is indirected through
FSCV.

The particular action of OS_FSControl is given by the reason code in R0 as follows:

R0 Action Page
0 Set the current directory 2-83

1 Set the library directory 2-84

2 Inform of start of new application 2-85

3 Reserved for internal use —

4 Run a file 2-87

5 Catalogue a directory 2-89

U
sin

g
 filin

g
 system

s

FileSwitch

2-81

6 Examine the current directory 2-90

7 Catalogue the library directory 2-91

8 Examine the library directory 2-92

9 Examine objects 2-93

10 Set filing system options 2-94

11 Set the temporary filing system from a named prefix 2-95

12 Add a filing system 2-96

13 Check for the presence of a filing system 2-97

14 Filing system selection 2-98

15 Boot from a filing system 2-99

16 Filing system removal 2-100

17 Add a secondary module 2-101

18 Decode file type into text 2-102

19 Restore the current filing system 2-103

20 Read location of temporary filing system 2-104

21 Return a filing system file handle 2-105

22 Close all open files 2-106

23 Shutdown filing systems 2-107

24 Set the attributes of objects 2-108

25 Rename objects 2-109

26 Copy objects 2-110

27 Wipe objects 2-113

28 Count objects 2-114

29 Reserved for internal use —

30 Read location of secondary module for temporary filing system 2-115

31 Convert a string giving a file type to a number 2-116

32 Output a list of object names and information 2-117

33 Convert a file system number to a file system name 2-118

34 Reserved for future expansion —

35 Add an image filing system 2-119

36 Image filing system removal 2-120

37 Convert a pathname to a canonicalised name 2-121

38 Convert file information to an object’s file type 2-123

39 Set the User Root Directory (URD) 2-124

40 Exchange current and previous directories 2-125

41 Return the defect list for an image 2-126

R0 Action Page

OS_FSControl (SWI &29)

2-82

For details of each of these reason codes (except those reserved for internal use), see the
given pages.

Reason codes 35 upwards are not available under RISC OS 2.

Related SWIs

None

Related vectors

FSCV

42 Map out a defect from an image 2-127

43 Unset the current directory 2-128

44 Unset the User Root Directory (URD) 2-129

45 Unset the library directory (Lib) 2-130

46 Return an image file’s used space map 2-131

47 Read the boot option of the disc or image file that holds a specified
object

2-132

48 Write the boot option of the disc or image file that holds a specified
object

2-133

49 Read the free space on the disc or image file that holds a specified
object

2-134

50 Name the disc or image file that holds a specified object 2-135

51 Request that an image stamp be updated 2-136

52 Find the name and type of object that uses a particular offset 2-137

53 Set a specified directory to a given path without verification 2-138

54 Read the path of a specified directory 2-140

R0 Action Page

U
sin

g
 filin

g
 system

s

FileSwitch

2-83

OS_FSControl 0
(SWI &29)

Set the current directory and (optionally) filing system

On entry

R0 = 0
R1 = pointer to (wildcarded) directory name

On exit

Registers preserved

Use

This call sets the current directory to the named one. If the name specifies a different
filing system, it also selects that as the current filing system. If the name pointed to is
null, the directory is set to the user root directory.

OS_FSControl 1 (SWI &29)

2-84

OS_FSControl 1
(SWI &29)

Set the library directory

On entry

R0 = 1
R1 = pointer to (wildcarded) directory name

On exit

Registers preserved

Use

This call sets the library directory on a filing system. If no filing system is specified, then
the temporary filing system’s library is set. If the name pointed to is null, the library
directory is set to the filing system default (typically $.Library, if present).

Whenever a reference is made to the library on a specific filing system (eg net:%.Link),
that filing system’s library is used; if no filing system is specified (eg (%.Link), the
temporary filing system’s library is used.

If a filing system does not have a library directory set, then it searches in order the
directories &.Library, $.Library and @. Under RISC OS 2, filing systems that are not
FileCore based search % instead.

U
sin

g
 filin

g
 system

s

FileSwitch

2-85

OS_FSControl 2
(SWI &29)

Informs RISC OS and the current application that a new application is starting

On entry

R0 = 2
R1 = pointer to command tail to set
R2 = currently active object pointer to write
R3 = pointer to command name to set

On exit

Registers preserved – may not return

Use

This call enables you to start up an application by hand, setting its environment string to
a particular value; and allows FileSwitch and the kernel to free resources related to the
current thread.

First of all, FileSwitch calls XOS_UpCall 256 (new application starting – see
page 1-197), with R2 set to the currently active object pointer that may be written.

If the UpCall is claimed, this means that someone is refusing to let your new application
be started, so the error ‘Unable to start application’ is returned.

FileSwitch then calls XOS_ServiceCall &2A (Service_NewApplication – see
page 1-266), with R2 set to the currently active object pointer that may be written.

If the Service is claimed, this means that some module is refusing to let your new
application be started; however an error cannot be returned as your calling task has just
been killed, and FileSwitch would be returning to it. So FileSwitch generates the
‘Unable to start application’ error using OS_GenerateError (see page 1-45); this will be
sent to the error handler of your calling task’s parent, since your calling task will have
restored its parent’s handlers on receiving the UpCall 256.

Next, unless the Exit handler is below MemoryLimit, all handlers that are
still set below MemoryLimit are reset to the default handlers (see
OS_ReadDefaultHandler, page 1-326).

The currently active object pointer is then set to the value given and the environment
string set up to be that desired. The current time is read into the environment time
variable (see OS_GetEnv, page 1-301).

OS_FSControl 2 (SWI &29)

2-86

FileSwitch frees any temporary strings and transient blocks it has allocated and sets the
temporary filing system to the current filing system.

If the call returns with V clear, all is set for your task to start up the application:

MOV R0, #FSControl_StartApplication
LDR R1, command_tail_ptr
LDR R2, execution_address
BIC R2, R2, #&FC000003 ; Address with no flags, USR mode
LDR R3, command_name_ptr
SWI XOS_FSControl
BVS return_error

; if in supervisor mode here, need to flatten SVC stack
; LDR R13, InitSVCStack

TEQP PC, #0 ; USR mode, interrupts enabled
MOV R0, R0 ; No op to avoid contention
MOV R12, #&80000000 ; Ensure called appl’n doesn’t
MOV R13, #&80000000 ; assume a stack or workspace
MOV R14, PC ; Form return address
MOV PC, R2 ; Enter appl’n: assumes CAO = exec

SWI OS_Exit ; In case it returns

U
sin

g
 filin

g
 system

s

FileSwitch

2-87

OS_FSControl 4
(SWI &29)

Run a file

On entry

R0 = 4
R1 = pointer to (wildcarded) filename

On exit

Registers preserved

Use

This call runs a file. If a matching object is a directory then it is ignored, unless it
contains a !Run file. The first file, or directory.!Run file that matches is used:

● A file with no type is run as an absolute application, provided its load address is not
below &8000. The environment string is set to the command line, and the current
time is read into the environment time variable – see OS_GetEnv (page 1-301).

● A file of type &FF8 (Absolute code) is run as an absolute application, loaded and
entered at &8000. The environment string is set to the command line, and the
current time is read into the environment time variable – see OS_GetEnv
(page 1-301).

● A file of type &FFC (Transient code modules) is loaded into the RMA and executed
there. The environment string is set to the command line, and the current time is
read into the environment time variable – see OS_GetEnv (page 1-301). Transient
calls are nestable; when a transient returns to the filing system manager the RMA
space is freed. The RMA space is also freed (on the reset service or filing system
manager death) if the transient execution stopped abnormally, eg an exception
occurred or RESET was pressed. See the chapter entitled Program Environment on
page 1-287 for details on writing transient utilities.

● Otherwise, the corresponding Alias$@RunType system variable is looked up to
determine how the file is run.

This call may never return. If it is starting up a new application then the UpCall handler
is notified, so any existing application has a chance to tidy up or to forbid the new
application to start. It is only after this that the new application might be loaded.

OS_FSControl 4 (SWI &29)

2-88

The file is searched for using the variable Run$Path. If this does not exist, a path string
of ‘,%.’ is used (ie the current directory is searched first, followed by the library
directory).

You cannot kill FileSwitch while it is threaded; so if you had an Obey file with the line:

RMKill FileSwitch

this will not work if the file is *Run, but would if you were to use *Obey.

An error is generated if the file is not matched, or does not have read access, or is a
date/time stamped file without a corresponding Alias$@RunType variable.

U
sin

g
 filin

g
 system

s

FileSwitch

2-89

OS_FSControl 5
(SWI &29)

Catalogue a directory

On entry

R0 = 5
R1 = pointer to (wildcarded) directory name

On exit

Registers preserved

Use

This call outputs a catalogue of the named subdirectory, relative to the current directory.
If the name pointed to is null, the current directory is catalogued.

An error is returned if the directory does not exist, or the object is a file.

OS_FSControl 6 (SWI &29)

2-90

OS_FSControl 6
(SWI &29)

Examine a directory

On entry

R0 = 6
R1 = pointer to (wildcarded) directory name

On exit

Registers preserved

Use

This call outputs information on all the objects in the named subdirectory, relative to the
current one. If the name pointed to is null, the current directory is examined.

An error is returned if the directory does not exist, or the object is a file.

U
sin

g
 filin

g
 system

s

FileSwitch

2-91

OS_FSControl 7
(SWI &29)

Catalogue the library directory

On entry

R0 = 7
R1 = pointer to (wildcarded) directory name

On exit

Registers preserved

Use

This call outputs a catalogue of the named subdirectory, relative to the current library
directory. If the name pointed to is null, the current library directory is catalogued.

An error is returned if the directory does not exist, or the object is a file.

OS_FSControl 8 (SWI &29)

2-92

OS_FSControl 8
(SWI &29)

Examine the library directory

On entry

R0 = 8
R1 = pointer to (wildcarded) directory name

On exit

Registers preserved

Use

This call outputs information on all the objects in the named subdirectory, relative to the
current library directory. If the name pointed to is null, the current library directory is
examined.

An error is returned if the directory does not exist, or the object is a file.

U
sin

g
 filin

g
 system

s

FileSwitch

2-93

OS_FSControl 9
(SWI &29)

Examine objects

On entry

R0 = 9
R1 = pointer to (wildcarded) pathname

On exit

R0 preserved

Use

This call outputs information on all objects in the specified directory matching the
wild-leaf-name given.

An error is returned if the pathname pointed to is null.

OS_FSControl 10 (SWI &29)

2-94

OS_FSControl 10
(SWI &29)

Sets filing system options

On entry

R0 = 10
R1 = option (0, 1 or 4)
R2 = parameter

On exit

Registers preserved

Use

This call sets filing system options on the temporary filing system (normally the current
one). An option of 0 means reset all filing system options to their default values. See the
*Opt command (page 2-178) for full details.

U
sin

g
 filin

g
 system

s

FileSwitch

2-95

OS_FSControl 11
(SWI &29)

Set the temporary filing system from a named prefix

On entry

R0 = 11
R1 = pointer to string

On exit

R0 preserved
R1 = pointer to part of name past the filing system specifier if present
R2 = –1 ⇒ no filing system was specified (call has no effect)
R2 ≥ 0 ⇒ old filing system to be reselected
R3 = pointer to special field, or 0 if none present

Use

This call sets the temporary filing system from a filing system prefix at the start of the
string, if one is present. It is used by OS_CLI (page 1-961) to set temporary filing
systems for the duration of a command.

You can restore the temporary filing system to be the current one by calling
OS_FSControl 19 (page 2-103).

OS_FSControl 12 (SWI &29)

2-96

OS_FSControl 12
(SWI &29)

Add a filing system

On entry

R0 = 12
R1 = module base address
R2 = offset of the filing system information block from the module base
R3 = private word pointer

On exit

R0 - R3 preserved

Use

This call informs FileSwitch that a module is a new filing system, to be added to the list
of those it knows about. The module should make this call when it initialises.

R1 and R2 give the location of a filing system information block, which is used by
FileSwitch to communicate with the filing system module. It contains both information
about the filing system, and the location of entry points to the module’s code.

The private word pointer passed in R3 is stored by FileSwitch. When it makes a call to
the filing system module, the private word is passed in R12. Normally, this private word
is the workspace pointer for the module.

For full information on writing a filing system module, see the chapter entitled Writing a
filing system on page 2-531.

U
sin

g
 filin

g
 system

s

FileSwitch

2-97

OS_FSControl 13
(SWI &29)

Check for the presence of a filing system

On entry

R0 = 13
R1 = filing system number (see page 2-21), or pointer to filing system name
R2 = R1 dependent

On exit

R0 preserved
R1 = filing system number (see page 2-21), or preserved if not found
R2 = pointer to filing system control block, or 0 if not found

Use

This call checks for the presence of a filing system.

If R1 < &100 then it is the filing system number (see page 2-21); if, however,
R1 ≥ &100 then it points to the filing system name. The filing system name match is
case-insensitive. If R2 is 0, the filing system name is taken to be terminated with any
control character or the characters: ‘#’, ‘:’ or ‘–’. If R2 is not 0, then the filing system
name is terminated by any control character.

The filing system control block that is pointed to by R2 on exit is for the internal use of
FileSwitch, and you should not use or alter it. You should only test the value of R2 for
equality (or not) with zero.

An error is returned if the filing system name contains bad characters or is badly
terminated.

OS_FSControl 14 (SWI &29)

2-98

OS_FSControl 14
(SWI &29)

Filing system selection

On entry

R0 = 14
R1 = filing system number (see page 2-21), or pointer to filing system name

On exit

Registers preserved

Use

This call switches the current and temporary filing systems to the one specified by R1.

If R1 = 0 then no filing system is selected as the current or temporary one (the settings
are cleared). If R1 is < &100 it is assumed to be a filing system number (see page 2-21).
Otherwise, it must be a pointer to a filing system name, terminated by a
control-character or one of the characters ‘#’, ‘:’ or ‘–’. The filing system name match is
case-insensitive.

This call is issued by filing system modules when they are selected by a * Command,
such as *Net or *ADFS.

An error is returned if the filing system is specified by name and is not present.

U
sin

g
 filin

g
 system

s

FileSwitch

2-99

OS_FSControl 15
(SWI &29)

Boot from a filing system

On entry

R0 = 15

On exit

R0 preserved

Use

This call boots off the currently selected filing system. It is called by the RISC OS kernel
before entering the configured language module when the machine is reset using the
Break key or reset switch, depending on the state of other keys, and on how the
computer is configured.

This call may not return if boot runs an application.

For more details, see *Configure Boot (page 2-149), *Configure NoBoot (page 2-152),
and the *Opt commands (page 2-178).

OS_FSControl 16 (SWI &29)

2-100

OS_FSControl 16
(SWI &29)

Filing system removal

On entry

R0 = 16
R1 = pointer to filing system name

On exit

Registers preserved

Use

This call removes the filing system from the list held by FileSwitch. It calls the filing
system to close open files, flush buffers, and so on (except under RISC OS 2). You
should use it in the finalise entry of a filing system module.

Filing systems must be removed on any type of finalisation call, and added (including
any relevant secondary modules) on any kind of initialisation. The reason for this is that
FileSwitch keeps pointers into the filing system module code, which may be moved as a
result of tidying the module area or other such operations.

R1 must be a pointer to a control-character terminated name – you cannot remove a
filing system by file system number, and if you try to do so an error is returned.

Modules must not complain about errors in filing system removal. Otherwise, it would
be impossible to reinitialise the module after reinitialising the filing system manager.

Under RISC OS 2, if the filing system is the temporary one then the temporary filing
system is set to the current filing system. If the filing system is the current one, then both
the current and temporary filing systems are set to 0 (none currently selected), and the
old filing system number is stored. If it is added again before a new current filing system
is selected then it will be reselected (see OS_FSControl 12 on page 2-96).

U
sin

g
 filin

g
 system

s

FileSwitch

2-101

OS_FSControl 17
(SWI &29)

Add a secondary module

On entry

R0 = 17
R1 = pointer to filing system name
R2 = pointer to secondary system name
R3 = secondary module workspace pointer

On exit

Registers preserved

Use

This call is used to add secondary modules, so that extra filing system commands are
recognised in addition to those provided by the primary filing system module. It is
mainly used by FileCore (a primary module) to add its secondary modules such as
ADFS.

OS_FSControl 18 (SWI &29)

2-102

OS_FSControl 18
(SWI &29)

Decode file type into text

On entry

R0 = 18
R2 = file type (bits 0 - 11)

On exit

R0 preserved
R2 = first four characters of textual file type
R3 = second four characters of textual file type

Use

This call issues OS_ServiceCall &42 (see page 1-267). If the service is unclaimed, then
it builds a default file type. For example if the file type is:

Command

the call packs the four bytes representing the characters:

Comm in R2

and the four bytes:

and in R3

The string is padded on the right with spaces to a maximum of 8.

This BASIC code converts the file type in filetype% to a string in filetype$,
terminated by a carriage return:

DIM str% 8
SYS "OS_FSControl", 18,,filetype% TO ,,r2%,r3%
str%!0 = r2%
str%!4 = r3%
str%?8 = 13
filetype$ = $str%

OS_FSControl 31 (see page 2-116) does the opposite conversion – a textual file type to
a file type number.

U
sin

g
 filin

g
 system

s

FileSwitch

2-103

OS_FSControl 19
(SWI &29)

Restore the current filing system

On entry

R0 = 19

On exit

R0 preserved

Use

This call sets the temporary filing system back to the current filing system.

OS_CLI (see page 1-961) uses OS_FSControl 11 (see page 2-95)to set a temporary
filing system before a command; it uses this call to restore the current filing system
afterwards. This command is also called by the kernel before it calls the error handler.

OS_FSControl 20 (SWI &29)

2-104

OS_FSControl 20
(SWI &29)

Read location of primary module for temporary filing system

On entry

R0 = 20

On exit

R0 preserved
R1 = primary module base address of temporary filing system
R2 = pointer to private word of temporary filing system

Use

This call reads the location of the primary module for the temporary filing system, and
its private word. (For example, if ADFS were the temporary filing system, this call
would return FileCore’s address, whereas OS_FSControl 30 would return the address of
ADFS – the secondary module. However, if NetFS were the temporary filing system,
this call would return its address.)

If no temporary filing system is set, then this call reads the values for the current filing
system instead. If there is no current filing system then R1 will be zero on exit, and R2
undefined.

U
sin

g
 filin

g
 system

s

FileSwitch

2-105

OS_FSControl 21
(SWI &29)

Return a filing system file handle

On entry

R0 = 21
R1 = file handle

On exit

R0 preserved
R1 = filing system file handle
R2 = filing system information word

Use

This call takes a file handle used by FileSwitch, and returns the internal file handle used
by the filing system which it belongs to. It also returns a filing system information word.
For a full definition of this, see the section entitled Filing system information word on
page 2-532.

The call returns a filing system file handle of 0 if the FileSwitch file handle is invalid.

You should only use this call to implement a filing system.

OS_FSControl 22 (SWI &29)

2-106

OS_FSControl 22
(SWI &29)

Close all open files

On entry

R0 = 22

On exit

R0 preserved

Use

This call closes all open files on all filing systems. It first ensures that any modified
buffered data remaining in RAM (either in FileSwitch or in filing system buffers) is
written to the appropriate files.

The call does not stop if an error is encountered, but goes on to close all open files. An
error is returned if any individual close failed.

U
sin

g
 filin

g
 system

s

FileSwitch

2-107

OS_FSControl 23
(SWI &29)

Shutdown filing systems

On entry

R0 = 23

On exit

R0 preserved

Use

This call closes all open files on all filing systems. It first ensures that any modified
buffered data remaining in RAM (either in FileSwitch or in filing system buffers) is
written to the appropriate files.

It informs all filing systems of the shutdown; most importantly this implies that it:

● logs off from all NetFS file servers

● dismounts all discs on FileCore-based filing systems

● parks the hard disc heads.

The call does not stop if an error is encountered, but goes on to close all open files. An
error is returned if any individual close failed.

OS_FSControl 24 (SWI &29)

2-108

OS_FSControl 24
(SWI &29)

Set the attributes of objects

On entry

R0 = 24
R1 = pointer to (wildcarded) pathname
R2 = pointer to attribute string

On exit

Registers preserved

Use

This call gives the requested access to all objects in the specified directory whose names
match the specified wild-leaf pattern.

If any of the characters in R2 are valid but inappropriate they are not faulted, but if they
are invalid an error is returned. An error is also returned if the pathname pointed to is
null, or if the pathname is not matched.

U
sin

g
 filin

g
 system

s

FileSwitch

2-109

OS_FSControl 25
(SWI &29)

Rename object

On entry

R0 = 25
R1 = pointer to current pathname
R2 = pointer to desired pathname

On exit

Registers preserved

Use

This call renames an object. It is a ‘simple’ rename, implying that the source and
destination are single objects which must reside on the same physical device, and hence
on the same filing system.

An error is returned if the two objects are on different filing systems (checked by
FileSwitch), or on different devices (checked by the filing system), or in different image
files (checked by FileSwitch).

An error is also returned if the object is locked or is open, or if an object of the desired
pathname exists, or if the directory referenced by the pathname does not already exist.

OS_FSControl 26 (SWI &29)

2-110

OS_FSControl 26
(SWI &29)

Copy objects

On entry

R0 = 26
R1 = pointer to source (wildcarded) pathname
R2 = pointer to destination (wildcarded) pathname
R3 = mask describing the action
R4 = optional inclusive start time (low 4 bytes)
R5 = optional inclusive start time (high byte, in bits 0 - 7)
R6 = optional inclusive end time (low 4 bytes)
R7 = optional inclusive end time (high byte, in bits 0 - 7)
R8 = optional pointer to extra information descriptor:

[R8] + 0 = information address
[R8] + 4 = information length

On exit

Registers preserved

Use

This call copies objects, optionally recursing.

The source leafname may be wildcarded. The only wildcarded destination leafname
allowed is ‘*’, which means to make the leafname the same as the source leafname.

The bits of the action mask have the following meaning when set:

Bit Meaning when set
14 Reads destination object information and applies tests before loading any of the

source object.

13 Uses extra buffer specified using R8.

12 Copies only if source is newer than destination.

11 Copies directory structure(s) recursively, but not files.

10 Restamps datestamped objects – files are given the time at the start of this SWI,
directories the time of their creation.

9 Doesn’t copy over file attributes.

U
sin

g
 filin

g
 system

s

FileSwitch

2-111

8 Allows printing during copy; printing is otherwise disabled. This option also
disables any options that may cause characters to be written (bits 6, 4 and 3 are
treated as cleared), and prevents FileSwitch from installing an UpCall handler
to prompt for media changes.

7 Deletes the source after a successful copy (for renaming files across media).

6 Prompts you every time you might have to change media during the copy
operation. In practise you are unlikely to need to use this option, as this SWI
normally intercepts the UpCall vector and prompts you every time you do have
to change media. (It only prompts if no earlier claimant of the vector has
already tried to handle the UpCall.)

5 Uses application workspace as well as the relocatable module area.

4 Prints maximum information during copy.

3 Displays a prompt of the form ‘Copy <object type> <source name> as
<destination name> (Yes/No/Quiet/Abandon)?’ for each object to be copied,
and uses OS_Confirm to get a response. A separate confirm state is held for
each level of recursion: Yes means to copy the object, No means not to copy the
object, Quiet means to copy the object and to turn off confirmation at this level
and subsequent ones (although if bit 1 is clear you will still be asked if you
want to overwrite an existing file), and Abandon means not to copy the object
and to return to the parent level. Escape abandons the entire copy without
copying the object, and returns an error.

2 Copies only files with a time/date stamp falling between the start and end
time/date specified in R4 - R7. (Unstamped files and directories will also be
copied.) This check is made before any prompts or information is output.

1 Automatically unlocks, sets read and write permission, and overwrites an
existing file. (If this bit is clear then the warning message ‘File <destination
name> already exists [and is locked]. Overwrite (Y/N) ? ’ is given instead. If
you answer Yes to this prompt then the file is similarly overwritten.)

0 Allows recursive copying down directories.

Buffers are considered for use in the following order, if they exist or their use is
permitted:

1 user buffer

2 wimp free memory

3 relocatable module area (RMA)

4 application memory.

If either the Wimp free memory or the RMA buffers are used, they are freed between
each object copied.

OS_FSControl 26 (SWI &29)

2-112

If application memory is used then FileSwitch starts itself up as the current application
to claim application space. If on the start application service a module forbids the
start-up, then the copy is aborted and an error is generated to the Error handler of the
parent of the task that called OS_FSControl 26. The call does not return; it sets the
environment time variable to the time read when the copy started and issues SWI
OS_Exit, setting Sys$ReturnCode to 0.

U
sin

g
 filin

g
 system

s

FileSwitch

2-113

OS_FSControl 27
(SWI &29)

Wipe objects

On entry

R0 = 27
R1 = pointer to wildcarded pathname to delete
R2 = not used
R3 = mask describing the action
R4 = optional start time (low 4 bytes)
R5 = optional start time (high byte, in bits 0 - 7)
R6 = optional end time (low 4 bytes)
R7 = optional end time (high byte, in bits 0 - 7)

On exit

Registers preserved

Use

This call is used to delete objects. You can modify the effect of the call with the action
mask in R3. Only bits 0 - 4 and 8 are relevant to this command. The function of these
bits is as for OS_FSControl 26 (see page 2-110).

OS_FSControl 28 (SWI &29)

2-114

OS_FSControl 28
(SWI &29)

Count objects

On entry

R0 = 28
R1 = pointer to wildcarded pathname to count
R2 = not used
R3 = mask describing the action
R4 = optional start time (low 4 bytes)
R5 = optional start time (high byte, in bits 0 - 7)
R6 = optional end time (low 4 bytes)
R7 = optional end time (high byte, in bits 0 - 7)

On exit

R0, R1 preserved
R2 = total number of bytes of all files that were counted
R3 = number of files counted
R4 - R7 preserved

Use

This call returns information on the number and size of objects. You can modify the
effect of the call with the action mask in R3. Only bits 0, 2 - 4 and 8 are relevant to this
command. The function of these bits is as for OS_FSControl 26 (see page 2-110).

Note that the command returns the amount of data that each object is comprised of,
rather than the amount of disc space the data occupies. Since a file normally has space
allocated to it that is not used for data, and directories are not counted, any estimates of
free disc space should be used with caution.

U
sin

g
 filin

g
 system

s

FileSwitch

2-115

OS_FSControl 30
(SWI &29)

Read location of secondary module for temporary filing system

On entry

R0 = 30

On exit

R0 preserved
R1 = secondary module base address of temporary filing system
R2 = pointer to private word of temporary filing system

Use

This call reads the location of the secondary module for the temporary filing system, and
its private word. (For example, if ADFS were the temporary filing system, this call
would return its address, whereas OS_FSControl 20 would return the address of
FileCore – the primary module.)

If no temporary filing system is set, then this call reads the values for the current filing
system instead. If there is no current filing system, or it does not have a secondary
module, then R1 will be zero on exit, and R2 undefined.

OS_FSControl 31 (SWI &29)

2-116

OS_FSControl 31
(SWI &29)

Converts a string giving a file type to a number

On entry

R0 = 31
R1 = pointer to control-character terminated filetype string

On exit

R0, R1 preserved
R2 = filetype

Use

This call converts the string pointed to by R1 to a file type. Leading and trailing spaces
are skipped. The string may either be a file type name (spaces within which will not be
skipped):

Obey
Text

or represent a file type number (the default base of which is hexadecimal):

FEB Hexadecimal version of Obey file type number
4_333333 Base 4 version of Text file type number

OS_FSControl 18 (see page 2-102) does the opposite conversion – a file type number to
a textual file type.

U
sin

g
 filin

g
 system

s

FileSwitch

2-117

OS_FSControl 32
(SWI &29)

Outputs a list of object names and information

On entry

R0 = 32
R1 = pointer to wildcarded pathname

On exit

Registers preserved

Use

This call outputs a list of object names and information on them. The format is the same
as for the *FileInfo command (see page 2-168).

OS_FSControl 33 (SWI &29)

2-118

OS_FSControl 33
(SWI &29)

Converts a filing system number to a filing system name

On entry

R0 = 33
R1 = filing system number (see page 2-21)
R2 = pointer to buffer
R3 = length of buffer

On exit

Registers preserved

Use

This call converts the filing system number passed in R1 (see page 2-21) to a filing
system name. The name is stored in the buffer pointed to by R2, and is null-terminated.
If FileSwitch does not know of the filing system number you pass it, a null string is
returned.

U
sin

g
 filin

g
 system

s

FileSwitch

2-119

OS_FSControl 35
(SWI &29)

Add an image filing system

On entry

R0 = 35
R1 = module base address
R2 = offset of the image filing system information block from the module base
R3 = private word pointer

On exit

Registers preserved

Use

This call informs FileSwitch that a module is a new image filing system, to be added to
the list of those it knows about. The module should make this call when it initialises.

R1 and R2 give the location of an image filing system information block, which is used
by FileSwitch to communicate with the image filing system module. It contains both
information about the image filing system, and the location of entry points to the
module’s code.

The private word pointer passed in R3 is stored by FileSwitch. When it makes a call to
the image filing system module, the private word is passed in R12. Normally, this
private word is the workspace pointer for the module.

For full information on writing an image filing system module, see the chapter entitled
Writing a filing system on page 2-531.

This call is not available in RISC OS 2.

OS_FSControl 36 (SWI &29)

2-120

OS_FSControl 36
(SWI &29)

Image filing system removal

On entry

R0 = 36
R1 = image filing system’s file type

On exit

Registers preserved

Use

This call removes the image filing system from the list held by FileSwitch. It calls the
image filing system to close open files, flush buffers, and so on. You should use it in the
finalise entry of an image filing system module.

Image filing systems must be removed on any type of finalisation call, and added on any
kind of initialisation. The reason for this is that FileSwitch keeps pointers into the image
filing system module code, which may be moved as a result of tidying the module area
or other such operations.

R1 must be the image filing system’s file type. You cannot remove a filing system by
file system number, and if you try to do so an error is returned.

Modules must not complain about errors in filing system removal. Otherwise, it would
be impossible to reinitialise the module after reinitialising the filing system manager.

This call is not available in RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-121

OS_FSControl 37
(SWI &29)

Converts a pathname to a canonicalised name

On entry

R0 = 37
R1 = pointer to pathname
R2 = pointer to buffer to contain null terminated canonicalised name
R3 = pointer to name of a path variable that contains a control-character

terminated comma separated path string, or 0 if none
R4 = pointer to control-character terminated comma separated path string to use if

variable not specified or non-existent, or 0 if none
R5 = size of buffer

On exit

R5 = number of spare bytes in the buffer including the null terminator, ie:

R5 ≥ 1 ⇒ there are (R5 – 1) completely unused bytes in the buffer; so
R5 = 1 ⇒ there are 0 unused bytes in the buffer, and therefore the
terminator just fitted

R5 ≤ 0 ⇒ there are (1 – R5) too many bytes to fit in the buffer, which has
consequently not been filled in; so R5 = 0 ⇒ there is 1 byte too
many – the terminator – to fit in the buffer

Use

This call takes a pathname and returns its canonicalised name. However, case may
differ, and wildcards may not be sorted out if the wildcarded object doesn’t exist.

For example:

● ‘a’ may be resolved to ‘adfs::HardDisc4.$.current.a’ if the current directory is
‘adfs::HardDisc4.$.current’.

● ‘a*’ may be resolved to the same thing if ‘a’ exists and is the first match for
‘a*’, but, if there is no match for ‘a*’, then ‘adfs::HardDisc4.$.current.a*’ will
be returned.

● ‘A’ may be resolved to ‘adfs::HardDisc4.$.current.A’, which should be
considered the same as ‘adfs::HardDisc4.$.current.a’.

OS_FSControl 37 (SWI &29)

2-122

This may be used as a two-pass process:

Pass 1
On entry, set R1 to point to the pathname, and R2 and R5 (the pointer to, and size of,
the buffer) to zero. On exit, R5 = –(length of canonicalised name)

Pass 2
Claim a buffer of the right size (1–R5, not just –R5, as a space is needed for the
terminator). On entry, ensure that R1 still points to the pathname, that R2 is set to
point to the buffer, and R5 contains the length of the buffer. On exit the buffer
should be filled in, and R5 should be 1; but check to make sure.

This call is not available in RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-123

OS_FSControl 38
(SWI &29)

Converts file information to an object’s file type

On entry

R0 = 38
R1 = pointer to the object’s name
R2 = load address
R3 = execution address
R4 = object length
R5 = object attributes
R6 = object type (file/directory/image file)

On exit

R2 = object filetype
Special values:
–1 untyped (entry R2 and R3 were load and execution address)
&1000 directory
&2000 application directory (directory whose name starts with a ‘!’)

Use

This call converts file information, as returned by various calls – for example OS_File 5
– into the object’s file type.

This call is not available in RISC OS 2.

OS_FSControl 39 (SWI &29)

2-124

OS_FSControl 39
(SWI &29)

Sets the User Root Directory (URD)

On entry

R0 = 39
R1 = pointer to User Root Directory

On exit

—

Use

This call sets the User Root Directory, which is shown as an ‘&’ in pathnames.

This call is not available in RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-125

OS_FSControl 40
(SWI &29)

Exchanges current and previous directories

On entry

R0 = 40

On exit

—

Use

This call swaps the current and previously selected directories.

This call is not available in RISC OS 2.

OS_FSControl 41 (SWI &29)

2-126

OS_FSControl 41
(SWI &29)

Returns the defect list for an image

On entry

R0 = 41
R1 = pointer to name of image (null terminated)
R2 = pointer to buffer
R5 = buffer length

On exit

R0 - R5 preserved

Use

This call fills the given buffer with a defect list, which gives the byte offset to the start of
each defect. The list is terminated by the value &20000000.

This call is not available in RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-127

OS_FSControl 42
(SWI &29)

Maps out a defect from an image

On entry

R0 = 42
R1 = pointer to name of image (null terminated)
R2 = byte offset to start of defect

On exit

R0 - R2 preserved

Use

This call maps out a defect from the given image.

This call is not available in RISC OS 2.

OS_FSControl 43 (SWI &29)

2-128

OS_FSControl 43
(SWI &29)

Unsets the current directory

On entry

R0 = 43

On exit

—

Use

This call unsets the current directory on the temporary filing system.

This call is not available in RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-129

OS_FSControl 44
(SWI &29)

Unsets the User Root Directory (URD)

On entry

R0 = 44

On exit

—

Use

This call unsets the User Root Directory on the temporary filing system.

This call is not available in RISC OS 2.

OS_FSControl 45 (SWI &29)

2-130

OS_FSControl 45
(SWI &29)

Unsets the library directory (Lib)

On entry

R0 = 45

On exit

—

Use

This call unsets the library directory on the temporary filing system.

This call is not available in RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-131

OS_FSControl 46
(SWI &29)

Returns an image file’s used space map

On entry

R0 = 46
R1 = pointer to name of image (null terminated)
R2 = pointer to buffer
R5 = buffer length

On exit

R0 - R5 preserved

Use

This call returns an image file’s used space map, filling the given buffer with 0 bits for
unused blocks, and 1 bits for used blocks. The buffer will be filled to its limit, or to the
file’s limit, whichever is less. The ‘perfect’ size of the buffer can be calculated from the
file’s size and its block size. The correspondence of the buffer to the file is 1 bit to 1
block. The least significant bit (bit 0) in a byte comes before the most significant bit.

The used space is the total space excluding free space and defects.

For non-image files, the buffer will be filled with ones.

This call is not available in RISC OS 2.

OS_FSControl 47 (SWI &29)

2-132

OS_FSControl 47
(SWI &29)

Reads the boot option of the disc or image file that holds a specified object

On entry

R0 = 47
R1 = pointer to name of object (null terminated)

On exit

R0, R1 preserved
R2 = boot option

Use

This call reads the boot option (ie the value n in *Opt 4,n) of the disc or image file that
holds the specified object.

This call is not available in RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-133

OS_FSControl 48
(SWI &29)

Writes the boot option of the disc or image file that holds a specified object

On entry

R0 = 48
R1 = pointer to name of object (null terminated)
R2 = new boot option

On exit

R0 - R2 preserved

Use

This call writes the boot option (ie the value n in *Opt 4,n) of the disc or image file that
holds the specified object.

This call is not available in RISC OS 2.

OS_FSControl 49 (SWI &29)

2-134

OS_FSControl 49
(SWI &29)

Reads the free space on the disc or image file that holds a specified object

On entry

R0 = 49
R1 = pointer to name of object (null terminated)

On exit

R0 = free space
R1 = largest creatable object
R2 = disc size

Use

This call reads the free space on the disc or image file that holds the specified object. It
also returns the size of the largest creatable object, and the size of the disc.

This call is not available in RISC OS 2, and returns incorrect information for NetFS.

U
sin

g
 filin

g
 system

s

FileSwitch

2-135

OS_FSControl 50
(SWI &29)

Names the disc or image file that holds a specified object

On entry

R0 = 50
R1 = pointer to name of object (null terminated)
R2 = new name of disc

On exit

R0 - R2 preserved

Use

This call names the disc or image file that holds the specified object.

This call is not available in RISC OS 2.

OS_FSControl 51 (SWI &29)

2-136

OS_FSControl 51
(SWI &29)

Used by a handler of discs to request that an image stamp be updated

On entry

R0 = 51
R1 = pointer to name of object (null terminated)
R2 = sub-reason code:

0 stamp when updated
1 stamp now

On exit

R0 - R2 preserved

Use

This call is made by a handler of discs (eg FileCore) to inform an image filing system
(eg DOSFS) that it should update the disc’s image stamp (a unique identification
number), either when the disc is next updated (R2=0), or now (R2=1).

See the chapter entitled Writing a filing system on page 2-531 for more details.

This call is not available in RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-137

OS_FSControl 52
(SWI &29)

Finds the name and type of object that uses a particular offset within an image

On entry

R0 = 52
R1 = pointer to name of object (null terminated)
R2 = offset into disc or image
R3 = pointer to buffer to receive object name (if object found)
R4 = buffer length

On exit

R2 = kind of object found at offset:
0 no object found; offset is free/a defect/beyond end of image
1 no object found; offset is allocated, but not {free / a defect / beyond

end of image) – eg the free space map
2 object found; cannot share the offset with other objects
3 object found; can share the offset with other objects

Use

This call finds the name and type of object that uses a particular offset within an image.
On exit, if R2 = 2 or 3 then an object has been found, and the buffer will contain its full
pathname; otherwise the buffer may be corrupted.

The image searched is the deepest image, eg if R1 pointed to:

$.pc.amiga.atari.a.b.c

where pc is a DOS disc image, amiga is an Amiga disc image, and atari an Atari
disc image, then the image searched would be:

$.pc.amiga.atari

This call is not available in RISC OS 2.

OS_FSControl 53 (SWI &29)

2-138

OS_FSControl 53
(SWI &29)

Sets a specified directory to a given path without verification

On entry

R0 = 53
R1 = pointer to rest of path
R2 = directory to set
R3 = pointer to name of filing system (null-terminated)
R6 = pointer to special field (terminated by a null or ‘.’), or 0 if not present

On exit

Registers preserved

Use

This call explicitly tells FileSwitch to set the specified directory to the given path
without it performing any form of verification on the path provided.

The ‘rest of path’ is a string giving the canonical path from the disc (if present) to the
leaf which is the directory. It must not have wildcards in it, nor may it have any
GSTransable bits to it. The string must be null-terminated. It must have a root directory
of some sort (ie $, % or & must be present at the right place). For example:

● *Mount on ADFS may set the library to ‘:HardDisc4.$.Library’

● *Logon on NetFS may set the URD to ‘:FileServer.&’.

If R1 is 0 on entry then the relevant directory will be put into the unset state.

The value in R2 tells FileSwitch which directory to set:

Value Directory
0 @ (currently selected directory)
1 \ (previously selected directory)
2 & (user root directory)
3 % (library)

Other values are illegal.

U
sin

g
 filin

g
 system

s

FileSwitch

2-139

The optional special field pointed to by R6 should consist of the textual part of the
special field, after any # prefix that may have been present. It is terminated by a null byte
or a ‘.’. It must not contain any wildcards or GSTransable bits.

This call is not available in RISC OS 2.

OS_FSControl 54 (SWI &29)

2-140

OS_FSControl 54
(SWI &29)

Reads the path of a specified directory

On entry

R0 = 54
R1 = pointer to buffer
R2 = directory to read
R3 = pointer to name of filing system (null-terminated)
R5 = size of buffer, or 0 to get required size of buffer

On exit

R1 = pointer to rest of path, or 0 if directory unset
R5 = value on entry, decremented by total size of data placed in buffer
R6 = pointer to special field (terminated by a null or ‘.’), or 0 if not present

Use

This call reads the path of a specified directory. It is the reverse of OS_FSControl 53
(see page 2-138). It is expected that this call will be used twice, the first time to get the
buffer length (ie R5 = 0 on entry, on exit is decremented by required length), and the
second time to fill the buffer. The buffer will have the special field and the rest of the
path placed into it. The values in R1 and R6 are suitable for submission to
OS_FSControl 53.

This call is not available in RISC OS 2.

U
sin

g
 filin

g
 system

s

FileSwitch

2-141

* Commands
*Access

Controls who can run, read from, write to and delete specific files

Syntax

*Access object_spec [attributes]

Parameters

object_spec a valid (wildcarded) pathname specifying a file or directory

attributes The following attributes are allowed:

L Lock object against deletion by any user
W Write permission for you
R Read permission for you
/ Separator between your permissions and the public’s W
Write permission for the public (on NetFS)
R Read permission for the public (on NetFS)

Use

*Access changes the attributes of all objects matching the wildcard specification. These
attributes control whether you can run, read from, write to and delete a file.

NetFS uses separate attributes to control other people’s read and write access to your
files: their ‘public access’. By default, files are created without public read and write
permission. If you want others on the network to be able to read files that you have
created, make sure you have explicitly changed the access status to include public read.
If you are willing to have other NetFS users work on your files (ie overwrite them), set
the access status to public write permission. Other NetFS users cannot completely delete
your files though, unless they have owner access.

The public attributes can be set within any FileCore-based filing system, except when
using L-format; but they will be ignored unless the file is transferred to the NetFS. Other
filing systems may work in the same way, or may generate an error if you try to use the
public attributes.

Examples

*access myfile l

*access myfile wr/r

*Access

2-142

Related commands

*Ex, *FileInfo, *Info

U
sin

g
 filin

g
 system

s

FileSwitch

2-143

*Append

Adds data to an existing file

Syntax

*Append filename

Parameters

filename a valid pathname specifying an existing file

Use

*Append opens an existing file so you can add more data to the end of the file. Each line
of input is passed to OS_GSTrans before it is added to the file. Pressing Escape finishes
the input.

Example

*type thisfile
this line is already in thisfile
*append thisfile
 1 some more text
Esc the Esc character terminates the file
*type thisfile
this line is already in thisfile
some more text

Related commands

*Build

*Back

2-144

*Back

Exchanges current and previous directories

Syntax

*Back

Use

*Back swaps the current and previously selected directories on the current filing system.
The command is used for switching between two frequently used directories.

In RISC OS 2 this command is implemented by FileCore.

Related commands

*Dir

U
sin

g
 filin

g
 system

s

FileSwitch

2-145

*Build

Opens a new file (or overwrites an existing one) and directs subsequent input to it

Syntax

*Build filename

Parameters

filename a valid pathname specifying a file

Use

*Build opens a new file (or reopens an existing one with zero extent) and directs
subsequent input to it. Each line of input is passed to OS_GSTrans before it is added to
the file. Pressing Escape finishes the input.

Note that for compatibility with earlier systems the *Build command creates files with
lines terminating in the carriage return character (ASCII &0D). The Edit application
provides a simple way of changing this into a linefeed character, using the CR↔LF
function from the Edit submenu.

Example

*Build testfile
 1 This is the first line of testfile
Esc the Esc character terminates the file
*Type testfile
This is the first line of testfile

Related commands

*Append

*Cat

2-146

*Cat

Lists all the objects in a directory

Syntax

*Cat [directory]

Parameters

directory a valid pathname specifying a directory

Use

*Cat (short for ‘catalogue’) lists all the objects in a directory, showing their access
attributes, and other information on the disc name, options set, etc. If no directory is
specified, the contents of the current directory are shown. *Cat can be abbreviated to ‘*.’
(a full stop), provided that you have not *Set the system variable Alias$. to a different
value from its default.

Examples

*. catalogue of current directory

*cat net#59.254: catalogue of current directory on NetFS file server
59.254

*.ram:$.Mike catalogue of RAM filing system directory $.Mike

*Cat { > printer: } catalogue of current directory redirected to printer

Related commands

*Ex, *FileInfo, *Info, *LCat and *LEx

U
sin

g
 filin

g
 system

s

FileSwitch

2-147

*CDir

Creates a directory

Syntax

*CDir directory [size_in_entries]

Parameters

directory a valid pathname specifying a directory

size_in_entries how many entries the directory should hold before it needs to
be expanded (NetFS is the only built-in filing system to use
this)

Use

*CDir creates a directory with the specified pathname. On the NetFS, and on some
third-party filing systems, you can also give the size of the directory.

Examples

*CDir fred creates a directory called fred on the current filing
system, as a daughter to the current directory

*CDir ram:fred creates a directory called fred on the RAM filing
system, as a daughter to the current RAMFS
directory

Related commands

*Cat

*Close

2-148

*Close

Closes all open files on the current filing system

Syntax

*Close

Parameters

None

Use

*Close closes all open files on the current filing system, and is useful when a program
crashes, leaving files open.

If preceded by the filing system name, *Close can be used to close files on systems other
than the current one. For example:

*adfs:Close

would close all files on ADFS, no matter which filing system is the current one.

You must not use this command within a program that runs in a multi-tasking
environment such as the desktop, as it may close files being used by other programs.

Related commands

*Bye, *Shut, *Shutdown

U
sin

g
 filin

g
 system

s

FileSwitch

2-149

*Configure Boot

Sets the configured boot action so that a power on, reset or Ctrl Break runs a boot file

Syntax

*Configure Boot

Parameters

None

Use

*Configure Boot sets the configured boot action so that a power on, reset or Ctrl Break
runs a boot file, provided that the Shift key is not held down – if it is, then no boot takes
place.

When a boot does take place, the file &.!Boot is looked for, and if found is loaded and
run, as set by the *Opt 4 command. You might use a boot file to load a program
automatically when the computer is switched on. For information on NetFS boot files,
see your network manager.

You can use the *FX 255 command to override the configured boot action at any time; a
typical use is to disable booting at the end of a boot file, so that the computer does not
re-boot on a soft reset.

The Break key always operates as an Escape key after power on.

NoBoot is the default setting.

The change takes effect on the next power-on or hard reset.

Related commands

*Configure NoBoot, *FX 255

*Configure DumpFormat

2-150

*Configure DumpFormat

Sets the configured format used by the *Dump, *List and *Type commands

Syntax

*Configure DumpFormat n

Parameters

n A number in the range 0 to 15. The parameter is treated as a four-bit number.

The bottom two bits define how control characters are displayed, as follows:

Value Meaning
0 GSTrans format is used (eg |A for ASCII 1)
1 Full stop ‘.’ is used
2 <d> is used, where d is a decimal number
3 <&h> is used, where h is a hexadecimal number

If bit 2 is set, characters which have their top bit set are treated as printable
characters; otherwise they are treated as control characters. n=5, for example,
causes ASCII character 247 to be printed as ÷ (Latin fonts only).

If bit 3 is set, characters which have their top bit set are ANDed with &7F
before being processed so the top bit is no longer set; otherwise they are left as
they are.

Use

*Configure DumpFormat sets the configured format used by the *Dump, *List and
*Type commands, and the vdu: output device. The default value is 4 (GSTrans format,
and characters with the top bit set are printed using all 8 bits).

*Dump ignores the setting of the bottom two bits of the parameter, and always prints
control characters as full stops.

The change takes effect immediately.

Example

*Configure DumpFormat 2

Related commands

*Dump, *List, *Type

U
sin

g
 filin

g
 system

s

FileSwitch

2-151

*Configure FileSystem

Sets the configured filing system to be used at power on or hard reset

Syntax

*Configure FileSystem fs_name | fs_number

Parameters

fs_name a filing system name (ADFS, Net or Ram)

fs_number a filing system number (see page 2-21)

Use

*Configure FileSystem sets the configured filing system to be used at power on or hard
reset. The filing system is selected just before any boot action is taken, and a banner is
displayed showing its name. (The banner is also shown on a soft reset.)

To specify the filing system by name (rather than by number), FileSwitch must have that
name registered at the time you use this command. This is because FileSwitch needs to
convert the name to the filing system number that is actually stored.

If the configured filing system is not found on a reset then FileSwitch will return an error
on every subsequent command that tries to use the currently selected filing system, until
a current filing system is successfully selected.

Example

*Configure FileSystem Net

*Configure NoBoot

2-152

*Configure NoBoot

Sets the configured boot action so that a Shift power on, Shift reset or Shift Break runs a
boot file

Syntax

*Configure NoBoot

Parameters

None

Use

*Configure NoBoot sets the configured boot action so that any kind of reset doesn’t run
a boot file – except if the Shift key is held down, when a boot takes place.

When a boot does take place, the file &.!Boot is looked for, and if found is loaded and
run, as set by the *Opt 4 command. You might use a boot file to load a program
automatically when the computer is switched on. For information on NetFS boot files,
see your network manager.

You can use the *FX 255 command to override the configured boot action at any time; a
typical use is to disable booting at the end of a boot file, so that the computer does not
re-boot on a soft reset.

The Break key always operates as an Escape key after power on.

This is the default setting.

The change takes effect on the next power-on or hard reset.

Related commands

*Configure Boot, *FX 255, *Rename

U
sin

g
 filin

g
 system

s

FileSwitch

2-153

*Configure Truncate

Sets the configured value for whether or not filenames are truncated when too long

Syntax

*Configure Truncate On|Off

Parameters

On long filenames are truncated

Off long filenames are not truncated

Use

*Configure Truncate sets the configured value for whether or not filenames are
truncated when too long for a filing system to handle.

If you are writing a filing system that is unable to handle filenames over a certain length,
you should examine the bit of CMOS that this command alters (see the section entitled
Non-volatile memory (CMOS RAM) on page 1-361). If filename truncation is off, you
should generate a ‘Bad name’ error if you are passed too long a filename; otherwise, you
should truncate all filenames.

This command is not available in RISC OS 2.

Example

*Configure Truncate On

Related commands

None

*Copy

2-154

*Copy

Copies files and directories

Syntax

*Copy source_spec destination_spec [[~]options]

Parameters

source_spec a valid (wildcarded) pathname specifying a file or directory

destination_spec a valid (wildcarded, but see below for restrictions) pathname
specifying a file or directory

options upper- or lower-case letters, optionally separated by spaces

A set of default options is read from the system variable Copy$Options, which is set by
the system as shown below. You can change these default preferences using the *Set
command. You are recommended to type:

*Set Copy$Options <Copy$Options> extra_options

so you can see what the original options were before you added your extra ones. The
default options are overruled by any given to the command.

To ensure an option is ON, include it in the list of options; to ensure it is OFF,
immediately precede the option by a ‘~’ (eg ~C~r to turn off the C and R options).

● A(ccess) Force destination access to same as source.
Default ON.

Important when you are copying files from ADFS to NetFS, for example, because it
maintains the access rights on the files copied. You should set this option to be OFF
when you are updating a common release on the network, to maintain the correct
access rights on it.

● C(onfirm) Prompt for confirmation of each copy.
Default ON.

Useful as a check when you have used a wildcard, to ensure that you are copying the
files you want. Possible replies to the prompt for each file are Y(es) (to copy the file
or structure and then proceed to the next item), N(o) (to go on to the next item
without making a copy), Q(uiet) (to copy the item and all subsequent items without
further prompting), A(bandon) (to stop copying at the current level – see the R
option), or Esc (to stop immediately).

U
sin

g
 filin

g
 system

s

FileSwitch

2-155

● D(elete) Delete the source object after copy.
Default OFF.

This is useful for moving a file from one disc or other storage unit to another. The
source object is copied; if the copy is successful, the source object is then deleted. If
you want to move files within the same disc, the *Rename command is quicker, as
it does not have to copy the files.

● F(orce) Force overwriting of existing objects.
Default OFF.

Performs the copy, regardless of whether the destination files exist, or what their
access rights are. The files can be overwritten even if they are locked or have no
write permission.

● L(ook) Look at destination before loading source file.
Default OFF.

Files are normally copied by reading a large amount of data into memory before
attempting to save it as a destination file. The L option checks the destination
medium for accessibility before reading in the data. Thus L often saves time in
copying, except for copies on the same disc.

● N(ewer) Copy only if source is more recent than destination.
Default OFF.

This is useful during backups to prevent copying the same files each time, or for
ensuring that you are copying the latest version of a file.

● P(rompt) Prompt for the disc to be changed as needed in copy.
Default OFF.

This is provided for compatibility with older filing systems and you should not need
to use it. Most RISC OS filing systems will automatically prompt you to change
media.

● Q(uick) Use application workspace as a buffer
Default OFF.

The Q option uses the application workspace, so overwrites whatever is there. It
should not be used if an application is active.

Copying in the Desktop can use the Wimp’s free memory, and so you should not
need to use this option. It’s quicker not to use this option when you are copying
from hard disc to floppy, as these operations are interleaved so well. However, in
other circumstances this option can speed up the copying operation considerably.

● R(ecurse) Copy subdirectories and contents.
Default OFF.

This is useful when copying several levels of directory, since it avoids the need to
copy each of the directories one by one.

*Copy

2-156

● S(tamp) Restamp date-stamped files after copying.
Default OFF.

Useful for recording when the particular copy was made.

● (s)T(ructure) Copy only the directory structure.
Default OFF.

Copies the directory structure but not the files. By using this option as a first stage
in copying a directory tree, access to the files is faster when they are subsequently
copied.

● V(erbose) Print information on each object copied.
Default ON.

This gives full textual commentary on the copy operation.

Use

*Copy makes a copy between directories of any object(s) that match the given wildcard
specification. Objects may be files or directories. The leafname of the destination must
either be a specific filename, or the character ‘*’ in which case the destination will have
the same leafname as the source. For example:

Copy data Dir2.*

will copy all the files in the current directory with names beginning data to Dir2,
preserving their leafnames.

Note that it is dangerous to copy a directory into one of its subsidiary directories. This
results in an infinite loop, which only comes to an end when the disc is full or Esc is
pressed.

If the Copy$Options variable is unset then *Copy behaves as if the variable were set to
its default value.

Examples

*Copy fromfile tofile rfq~c~v

Copy :fred.data :jim.* Copies all files beginning ‘data’ from
the disc called ‘fred’ to the disc called
‘jim’.

Related commands

*Access, *Delete, *Rename, *Wipe, and the system variable Copy$Options.

U
sin

g
 filin

g
 system

s

FileSwitch

2-157

*Count

Adds up the size of data held in file objects, and the number of objects

Syntax

*Count object_spec [[~]options]

Parameters

object_spec a valid (wildcarded) pathname specifying a file or directory

options upper- or lower-case letters, optionally separated by spaces

A set of default options is read from the system variable Count$Options, which is set by
the system as shown below. You can change these default preferences using the *Set
command. You are recommended to type:

*Set Count$Options <Count$Options> extra_options

so you can see what the original options were before you added your extra ones. The
default options are overruled by any given to the command.

To ensure an option is ON, include it in the list of options; to ensure it is OFF, precede
the option by a ‘~’ (eg: ~C~r to turn off the C and R options).

● C(onfirm) Prompt for confirmation of each count.
Default OFF.

● R(ecurse) Count subdirectories and contents.
Default ON.

● V(erbose) Print information on each file counted.
Default OFF.

This gives information on each file counted, rather than just printing the subtotal
counted in directories.

Use

*Count adds up the size of data held in one or more objects that match the given
wildcard specification.

Note that the command returns the amount of data that each object is comprised of,
rather than the amount of disc space the data occupies. Since a file normally has space
allocated to it that is not used for data, and directories are not counted, any estimates of
free disc space should be used with caution.

*Count

2-158

If the Count$Options variable is unset then *Count behaves as if the variable were set to
its default value.

Example

*Count $ r~cv Counts all files on disc, giving full information on each file
object

Related commands

*Ex, *FileInfo, *Info, and the system variable Count$Options

U
sin

g
 filin

g
 system

s

FileSwitch

2-159

*Create

Reserves space for a new file

Syntax

*Create filename [length [exec_addr [load_addr>]]]

Parameters

filename a valid pathname specifying a file

length the number of bytes to reserve (default 0)

exec_addr the address to be jumped to after loading, if a program

load_addr the address at which the file is loaded into RAM when
*Loaded (default 0)

Use

*Create reserves space for a new file, usually a data file. No data is transferred to the
file. You may assign load and execution addresses if you wish. The units of length, load
and execution addresses are in hexadecimal by default.

If both load and execution addresses are omitted, the file is created with type FFD (Data)
and is date and time stamped.

Examples

*Create mydata 1000 0 8000 Creates a file &1000 bytes long, which
will be loaded into address &8000

*Create newfile 10_4096 Creates a file &1000 bytes long which is
date and time stamped

*Create bigfile &10000

Related commands

*Load, *Save

*Defect

2-160

*Defect

Reports what object contains a defect, or (if none) marks the defective part of the disc so
it will no longer be used

Syntax

*Defect disc_spec disc_addr

Parameters

disc_spec the name of the disc or number of the disc drive

disc_addr the hexadecimal disc address where the defect exists, which
must be a multiple of 256 – that is, it must end in ‘00’

Use

*Defect reports what object contains a defect, or (if none) marks the defective part of the
disc so it will no longer be used. *Defect is typically used after a disc error has been
reported, and the *Verify command has confirmed that the disc has a physical defect,
and given its disc address.

If the defect is in an unallocated part of the disc, *Defect will render that part of the disc
inaccessible by altering the ‘map’ of the disc.

If the defect is in an allocated part of the disc, *Defect tells you what object contains the
defect, and the offset of the defect within the object. This may enable you to retrieve
most of the information held within the object, using suitable software. You must then
delete the object from the defective disc. *Defect may also tell you that some other
objects must be moved: you should copy these to another disc, and then delete them
from the defective disc. Once you have removed all the objects that the *Defect
command listed, there is no longer anything allocated to the defective part of the disc; so
you can repeat the *Defect command to make it inaccessible.

Sometimes the disc will be too badly damaged for you to successfully delete objects
listed by the *Defect command. In such cases the damage cannot be repaired, and you
must restore the objects from a recent backup.

In RISC OS 2 this command is implemented by FileCore.

U
sin

g
 filin

g
 system

s

FileSwitch

2-161

Example

*Verify mydisc
Disc error 08 at :0/00010400
*Defect mydisc 10400
$.mydir must be moved
.myfile1 has defect at offset 800
.myfile2 must be moved

Related commands

*CheckMap, *Verify

*Delete

2-162

*Delete

Erases a single file or empty directory

Syntax

*Delete object_spec

Parameters

object_spec a valid (wildcarded) pathname specifying a file or an empty
directory

Use

*Delete erases the single named file or empty directory. An error message is given if the
object does not exist, or is a directory containing files.

You may not use wildcards in the last component of the pathname.

Examples

Delete $.dir.myfile Uses wildcards

*Delete myfile Deletes myfile from the current
directory

Related commands

*Remove, *Wipe

U
sin

g
 filin

g
 system

s

FileSwitch

2-163

*Dir

Selects a directory

Syntax

*Dir [directory]

Parameters

directory a valid pathname specifying a directory

Use

*Dir selects a directory as the currently selected directory (CSD) on a filing system. You
may set the CSD separately on each filing system, and on each server of a multi-server
filing system such as NetFS. If no directory is specified, the user root directory (URD) is
selected.

Examples

*Dir sets the CSD to the URD

*Dir mydir sets the CSD to mydir

A CSD may be set for each filing system, for instance, within NetFS, the command:

*Dir ADFS:… sets the current filing system to ADFS and selects the CSD
there; it does not affect the CSD in NetFS

whereas:

*ADFS:Dir… sets the CSD on ADFS only; NetFS remains the current
filing system

Related commands

*Back, *CDir

*Dump

2-164

*Dump

Displays the contents of a file, in hexadecimal and ASCII codes

Syntax

*Dump filename [file_offset [start_addr]]

Parameters

filename a valid pathname specifying a file

file_offset offset, in hexadecimal by default, from the beginning of the
file from which to dump the data

start_addr display as if the file were in memory starting at this address
(in hexadecimal by default) – defaults to the file’s load
address

Use

*Dump displays the contents of a file as a hexadecimal and (on the righthand side of the
screen) as an ASCII interpretation. An address is given on the lefthand side of:

start_addr + current offset in file

You can set the format used to display the ASCII interpretation using
*Configure DumpFormat. This gives you control over:

● whether the top bit of a byte is stripped first

● how bytes are displayed if their top bits are set.

If a file is time/date stamped, it is treated as having a load address of zero.

Example

*Dump myprog 0 8000 Dumps the file myprog, starting from the beginning
of the file (offset is 0) but numbering the dump from
&8000, as if the file were loaded at that address

Related commands

*Configure DumpFormat, *List, *Type

U
sin

g
 filin

g
 system

s

FileSwitch

2-165

*EnumDir

Creates a file of object leafnames

Syntax

*EnumDir directory output_file [pattern]

Parameters

directory a valid pathname specifying a directory

output_file a valid pathname specifying a file

pattern a wildcard specification for matching against

Use

*EnumDir creates a file of object leafnames from a directory that match the supplied
wildcard specification.

The default pattern is *, which will match any file within a directory. The current
directory can be specified by @.

Examples

EnumDir $.dir myfile data Creates a file myfile, containing a list of
all files beginning data contained in
directory $.dir

*EnumDir @ listall *_doc Creates a file listall, containing a list of
all files in the current directory whose
names end in _doc

Related commands

*Cat, *LCat

*Ex

2-166

*Ex

Lists file information within a directory

Syntax

*Ex [directory]

Parameters

directory a valid pathname specifying a directory

Use

*Ex lists all the objects in a directory together with their corresponding file information.
The default is the current directory.

Most filing systems also display an informative header giving the directory’s name and
other useful information.

Example
*Ex mail

Mail Owner
DS Option 0 (Off)
Dir. MHardy Lib. ArthurLib

Current WR Text 15:54:37 04-Jan-1989 60 bytes
LogFile WR Text 15:54:37 04-Jan-1989 314 bytes

Related commands

*FileInfo, *Info

U
sin

g
 filin

g
 system

s

FileSwitch

2-167

*Exec

Executes a command file

Syntax

*Exec [filename]

Parameters

filename a valid pathname specifying a file

Use

*Exec instructs the operating system to take its input from the specified file, carrying out
the instructions it holds. This command is mainly used for executing a list of operating
system commands contained in a command file. The file, once open, takes priority over
the keyboard or serial input streams.

If no parameter is given, the current exec file is closed.

Example

*Exec !Boot uses the file !Boot as though its contents have been
typed in from the keyboard

Related commands

*Obey

Related SWIs

OS_Byte 198 (page 1-908)

Related vectors

None

*FileInfo

2-168

*FileInfo

Gives full file information about specified objects

Syntax

*FileInfo object_spec

Parameters

object_spec a valid (wildcarded) pathname specifying one or more files
and/or directories

Use

*FileInfo gives file information for the specified object(s); this consists of the filename,
the access permission, the filetype and datestamp or the load and execution addresses (in
hexadecimal), and the length of the file in hexadecimal.

Under RISC OS 2, the information given varies between filing systems, as does the
matching (or not) of wildcards.

Example
*FileInfo current
Current WR/ Text 15:54:37.40 04-Jan-1989 000007F

Related commands

*Ex, *Info

U
sin

g
 filin

g
 system

s

FileSwitch

2-169

*Info

Gives file information about specified objects

Syntax

*Info object_spec

Parameters

object_spec a valid (wildcarded) pathname specifying one or more files
and/or directories

Use

*Info gives file information for the specified object(s); this consists of the filename, the
access permission, the filetype and datestamp or the load and execution addresses (in
hexadecimal), and the length of the file.

If the file is dated, the date and time are displayed using the current Sys$DateFormat. If
it is not dated, the load and exec addresses are displayed in hexadecimal.

Example
*Info myfile

myfile WR Text 15:54:37 04-Jan-1989 60 bytes

Related commands

*Ex, *FileInfo

*LCat

2-170

*LCat

Displays objects in a library

Syntax

*LCat [directory]

Parameters

directory a valid pathname specifying a subdirectory of the current
library

Use

*LCat lists all the objects in the named library subdirectory. If no subdirectory is named,
the objects in the current library are listed. *LCat is equivalent to *Cat %.

Related commands

*Cat, *LEx

U
sin

g
 filin

g
 system

s

FileSwitch

2-171

*LEx

Displays file information for a library

Syntax

*LEx [directory]

Parameters

directory a valid pathname specifying a subdirectory of the current
library

Use

*LEx lists all the objects in the named library subdirectory together with their file
information. If no subdirectory is named, the objects in the current library are listed.
*LEx is the equivalent of *Ex %.

Related commands

*Ex, *LCat

*Lib

2-172

*Lib

Selects a directory as a library

Syntax

*Lib [directory]

Parameters

directory a valid pathname specifying a directory

Use

*Lib selects a directory as the current library on a filing system. You can independently
set libraries on each filing system.

If no other directory is named, the action taken will depend on which filing system is
currently open: in ADFS the default is $.Library; under NetFS there is no default.

Example

*Lib $.mylib Sets the directory $.mylib to be the current library

Related commands

*Configure Lib, *NoLib

U
sin

g
 filin

g
 system

s

FileSwitch

2-173

*List

Displays the contents of a file, numbering each line

Syntax

*List [-File] filename [-TabExpand]

Parameters

-File may optionally precede filename; it has no effect

filename a valid pathname specifying a file

-TabExpand causes Tab characters (ASCII 9) to be expanded to 8 spaces

Use

*List displays the contents of the named file using the configured DumpFormat.
Control F might be displayed as ‘|F’, for instance.

Each line is numbered. For a similar display without line numbers added, use *Type.

Example

*List -file myfile -tabexpand

Related commands

*Configure DumpFormat, *Dump, *Print, *Type

*Load

2-174

*Load

Loads the named file (usually a program file)

Syntax

*Load filename [load_addr]

Parameters

filename a valid pathname specifying a file

load_addr load address (in hexadecimal by default); this overrides the
file’s load address or any load address in the
Alias$@LoadType variable associated with this file

Use

*Load loads the named file at a load address specified (in hexadecimal by default).

The filename which is supplied with the *Load command is searched for in the
directories listed in the system variable File$Path. By default, File$Path is set to ‘ ’. This
means that only the current directory is searched.

If no address is specified, the file’s type (BASIC, Text etc) is looked for:

● If the file has no file type, it is loaded at its own load address.

● If the file does have a file type, the corresponding Alias$@LoadType variable is
looked up to determine how the file is to be loaded. A BASIC file has a file type of
&FFB, so the variable Alias$@LoadType_FFB is looked up, and so on. You are
unlikely to need to change the default values of these variables.

If the corresponding Alias$@LoadType variable does not exist then a suitable error
is generated.

Example

*Load myfile 9000

Related commands

*Create, *Save

U
sin

g
 filin

g
 system

s

FileSwitch

2-175

*NoDir

Unsets the current directory

Syntax

*NoDir

Use

*NoDir unsets the current directory.

In RISC OS 2 this command is implemented by FileCore.

Related commands

*Dir, *NoLib, *NoURD

*NoLib

2-176

*NoLib

Unsets the library directory.

Syntax

*NoLib

Use

*NoLib unsets the library directory.

In RISC OS 2 this command is implemented by FileCore.

Related commands

*Lib, *NoDir, *NoURD

U
sin

g
 filin

g
 system

s

FileSwitch

2-177

*NoURD

Unsets the User Root Directory (URD).

Syntax

*NoURD

Use

*NoURD unsets the User Root Directory (URD). This is shown as an ‘&’ in pathnames.

In RISC OS 2 this command is implemented by FileCore.

Related commands

*NoDir, *NoLib, *URD

*Opt 1

2-178

*Opt 1

*Opt 1 controls filing system messages

Syntax

*Opt 1 [[,]n]

Parameters

n 0 to 3

Use

*Opt 1 sets the filing system message level (for operations involving loading, saving or
creating a file) for the current filing system:

*Opt 1,0 No filing system messages

*Opt 1,1 Filename printed

*Opt 1,2 Filename, hexadecimal addresses and length printed

*Opt 1,3 Filename, and either datestamp and length, or hexadecimal
load and exec addresses printed

*Opt 1 must be set separately for each filing system.

Under RISC OS 3 this command may not work correctly, depending on the operation
(loading is generally worse) and filing system (NetFS is poor).

U
sin

g
 filin

g
 system

s

FileSwitch

2-179

*Opt 4

*Opt 4 sets the filing system boot option

Syntax

*Opt 4 [[,]n]

Parameters

n 0 to 3

Use

*Opt 4 sets the boot option for the current filing system. On filing systems with several
media (eg ADFS using several discs) the boot option is only set for the medium (disc)
containing the currently selected directory.

*Opt 4,0 No boot action

*Opt 4,1 *Load boot file

*Opt 4,2 *Run boot file

*Opt 4,3 *Exec boot file

The boot file is usually named !Boot, although some filing systems may use different
names; for example NetFS calls the file !ArmBoot (to avoid clashes with existing !Boot
files that may contain code specific to BBC and Master series computers).

Note that a *Exec boot file will override the configured language setting. If you want
such a boot file, and want to enter the desktop after executing it, the file should end with
the command *Desktop; similarly for other languages.

Example

*Opt 4,2 sets the boot option to *Run for the current filing system

Related commands

*Configure Boot, *Configure NoBoot

*Print

2-180

*Print

Displays the contents of a file as raw text on the screen

Syntax

*Print filename

Parameters

filename a valid pathname specifying a file

Use

*Print displays the contents of the named file by sending each byte – whether it is a
printable character or not – to the VDU. Unless the file is a simple text file, some
unwanted screen effects may occur, since control characters are not filtered out.

Example

*Print myfile

Related commands

*Dump, *List, *Type

U
sin

g
 filin

g
 system

s

FileSwitch

2-181

*Remove

Erases a single file or empty directory

Syntax

*Remove object_spec

Parameters

object_spec a valid (wildcarded) pathname specifying a file or an empty
directory

Use

*Remove erases the single named file or empty directory. No error message is given if
the object does not exist; this allows a program to remove a file without having to trap
that error. However, an error message is given if the object is a directory containing files.

You may not use wildcards in the last component of the pathname.

Related commands

*Delete, *Wipe

*Rename

2-182

*Rename

Changes the name of an object

Syntax

*Rename object new_name

Parameters

object a valid pathname specifying a file or directory

new_name a valid pathname specifying a file or directory

Use

*Rename changes the name of an object, within the same storage unit. It can also be
used for moving files from one directory to another, or moving directories within the
directory tree.

Locked objects cannot be renamed (unlock them first by using the *Access command
with the Lock option clear).

To move objects between discs or filing systems, use the *Copy command with the
D(elete) option set.

Examples

*Rename fred jim

*Rename $.data.fred $.newdata.fred Moves fred into directory
newdata

Related commands

*Access, *Copy

U
sin

g
 filin

g
 system

s

FileSwitch

2-183

*Run

Loads and executes a file

Syntax

*Run filename [parameters]

Parameters

filename a valid pathname specifying a file

parameters a Command Line tail (see the chapter entitled Program
Environment on page 1-287 for further details)

Use

*Run loads and executes a file, optionally passing a list of parameters to it. The given
pathname is searched for in the directories listed in the system variable Run$Path. If a
matching object is a directory then it is ignored, unless it contains a !Run file.

The first file, or directory.!Run file that matches is used:

● If the file has no file type, it is loaded at its own load address, and execution
commences at its execution address.

● If the file has type &FF8 (Absolute code) it is loaded and run at &8000

● Otherwise the corresponding Alias$@RunType variable is looked up to determine
how the file is to be run. A BASIC file has a file type of &FFB, so the variable
Alias$@RunType_FFB is looked up, and so on. You are unlikely to need to change
the default values of these variables.

If the corresponding Alias$@RunType variable does not exist then a suitable error
is generated.

By default, Run$Path is set to ‘,%.’. This means that the current directory is searched
first, followed by the library. This default order is also used if Run$Path is not set.

Examples

*Run my_prog

*Run my_prog my_data my_data is passed as a parameter to the program
my_prog. The program can then use this filename
to look up the data it needs.

*Run

2-184

Related commands

*SetType

U
sin

g
 filin

g
 system

s

FileSwitch

2-185

*Save

Copies an area of memory to a file

Syntax

*Save filename start_addr end_addr [exec_addr [load_addr]]

or

*Save filename start_addr + length [exec_addr [load_addr]]

Parameters

filename a valid pathname specifying a file

start_addr the address of the first byte to be saved

end_addr the address of the byte after the last one to be saved

length number of bytes to save

exec_addr execution address (default is start_addr)

load_addr load address (default is start_addr)

Use

*Save copies the given area of memory to the named file. Start_addr is the address of the
first byte to be saved; end_addr is the address of the byte after the last one to be saved.
Length is the number of bytes to be saved; exec_addr is the execution address to be
stored with the file (it defaults to start_addr). Load_addr is the reload address (which
also defaults to start_addr).

The length and addresses are in hexadecimal by default.

Examples

*Save myprog 8000 + 3000

*Save myprog 8000 B000 9300 9000

Related commands

*Load, *SetType

*SetType

2-186

*SetType

Sets the file type of a file

Syntax

*SetType filename file_type

Parameters

filename a valid pathname specifying a file

file_type a number (in hexadecimal by default) or text
description of the file type to be set. The command
Show File$Type displays a list of valid file types.

Use

*SetType sets the file type of the named file. If the file does not have a date stamp, then
it is stamped with the current time and date. Examples of file types are Palette, Font,
Sprite and BASIC: for a list, see Table C: File types on page 4-565, or type
Show File$Type at the command line.

Textual names take preference over numbers, so the sequence:

*Set File$Type_123 DFE
*SetType filename DFE

will set the type of filename to &123, not &DFE – the string DFE is treated in the
second command as a file type name, not number. To avoid such ambiguities we
recommend you always precede a file type number by an indication of its base.

Example

Build a small file containing a one-line command, set it to be a command type (&FFE),
and run it from the Command Line; finally, view it from the desktop:

*Build x the file is given the name x
 1 *Echo Hello World the line number is supplied by *Build
Esc the Escape character terminates the
file
*SetType x Command *SetType x &FFE is an alternative
*Run x the text is echoed on the screen

The file has been ascribed the ‘command file’ type, and can be run by double-clicking
on the file icon.

U
sin

g
 filin

g
 system

s

FileSwitch

2-187

*Shut

Closes all open files

Syntax

*Shut

Parameters

None

Use

*Shut closes all open files on all filing systems. The command may be useful to
programmers to ensure that all files are closed if a program crashes without closing files.

You must not use this command within a program running in a multi-tasking
environment such as the desktop, as it may close files being used by other programs.

Related commands

*Bye, *Close, *ShutDown

*ShutDown

2-188

*ShutDown

Closes files, logs off file servers and parks hard disc heads

Syntax

*ShutDown

Parameters

None

Use

*ShutDown closes all open files on all filing systems, and also logs off all NetFS file
servers and parks hard disc heads in a safe state for switching off the computer.

You must not use this command within a program running in a multi-tasking
environment such as the desktop, as it may close files being used by other programs.

Related commands

*Bye, *Close, *Shut

U
sin

g
 filin

g
 system

s

FileSwitch

2-189

*Spool

Sends everything appearing on the screen to the specified file

Syntax

*Spool [filename]

Parameters

filename a valid pathname specifying a file

Use

*Spool opens the specified file for output; if a file of that name already exists, it is
overwritten. All subsequent characters sent to the VDU drivers will be copied to the file,
using OS_BPut. (If OS_BPut returns an error, the spool file is closed – thereby restoring
the spool handle location – and the error is then returned from OS_WriteC.)

This copying continues until either a *Spool or a *SpoolOn command (with or without a
file name) is issued, which then terminates the spooling.

If the pathname is omitted, the current spool file, if any, is closed, and characters are no
longer sent to it. If the pathname is given, then the existing spool file is closed and the
new one opened.

You can temporarily disable the spool file, without closing it, using OS_Byte 3.

Example

*Spool %.Showdump

*Spool

Related commands

*SpoolOn

Related SWIs

OS_Byte 3 (page 1-520), OS_Byte 199 (page 1-528), OS_File (page 2-32),
OS_BPut (page 2-65)

Related vectors

BPutV, ByteV

*SpoolOn

2-190

*SpoolOn

Adds everything appearing on the screen to the end of an existing file

Syntax

*SpoolOn [filename]

Parameters

filename a valid pathname specifying an existing file

Use

*SpoolOn is similar to *Spool, except that it adds data to the end of an existing file. All
subsequent characters sent to the VDU drivers will be copied to the end of the file, using
OS_BPut. (If OS_BPut returns an error, the spool file is closed – thereby restoring the
spool handle location – and the error is then returned from OS_WriteC.)

This copying continues until either a *SpoolOn or a *Spool command (with or without a
filename) is issued, which then terminates the spooling.

If the filename is omitted, the current spool file, if any, is closed, and characters are no
longer sent to it. If the filename is given, then the existing spool file is closed and the
new one opened.

You can temporarily disable the spool file, without closing it, using OS_Byte 3.

Example

*SpoolOn %.Showlist

*SpoolOn

Related commands

*Spool

Related SWIs

OS_Byte 3 (page 1-520), OS_Byte 199 (page 1-528), OS_File (page 2-32),
OS_BPut (page 2-65)

Related vectors

ByteV, BPutV

U
sin

g
 filin

g
 system

s

FileSwitch

2-191

*Stamp

Date stamps a file

Syntax

*Stamp filename

Parameters

filename a valid pathname specifying a file

Use

*Stamp sets the date stamp on a file to the current time and date. If the file has not
previously been date stamped, it is also given file type Data (&FFD).

Example

*Stamp myfile

Related commands

*Info, *SetType

*Type

2-192

*Type

Displays the contents of a file

Syntax

*Type [-File] filename [-TabExpand]

Parameters

-File may optionally precede filename; it has no effect

filename a valid pathname specifying a file

-TabExpand causes Tab characters (ASCII 9) to be expanded to 8 spaces

Use

*Type displays the contents of the named file using the configured DumpFormat.
Control F might be displayed as ‘|F’, for instance.

For a similar display with line numbers added, use *List.

Example

*Type -File myfile -TabExpand

Related commands

*Configure DumpFormat, *Dump, *List, *Print

U
sin

g
 filin

g
 system

s

FileSwitch

2-193

*Up

Moves the current directory up the directory structure

Syntax

*Up [levels]

Parameters

levels a positive number in the range 0 to 128 (in decimal by
default)

Use

*Up moves the current directory up the directory structure by the specified number of
levels. If no number is given, the directory is moved up one level. *Up is equivalent to
*Dir ^.

Note that while NetFS supports this command, some fileservers do not, so you may get
a File ‘up’ not found error.

Example

*Up 3 This is equivalent to *Dir ^.^.^, but note that the parent of $
is $, so you cannot go any further up the directory tree than
this.

Related commands

*Dir

*URD

2-194

*URD

Sets the User Root Directory (URD)

Syntax

*URD [directory]

Parameters

directory a valid pathname specifying a directory

Use

*URD sets the User Root Directory (URD). This is shown as an ‘&’ in pathnames.

If no directory is specified, the URD is set to the root directory.

In RISC OS 2 this command is implemented by FileCore.

Example

*URD adfs::0.$.MyDir

Related commands

*NoURD

U
sin

g
 filin

g
 system

s

FileSwitch

2-195

*Wipe

Deletes one or more objects.

Syntax

*Wipe object_spec [[~]options]

Parameters

object_spec a valid (wildcarded) pathname specifying one or more files
and/or directories

options upper- or lower-case letters, optionally separated by spaces

A set of default options is read from the system variable Wipe$Options, which is set by
the system as shown below. You can change these default preferences using the *Set
command. You are recommended to type:

*Set Wipe$Options <Wipe$Options> extra_options

so you can see what the original options were before you added your extra ones. The
default options are overruled by any given to the command.

To ensure an option is ON, include it in the list of options; to ensure it is OFF, precede
the option by a ‘~’ (eg: ~C~r to turn off the C and R options).

● C(onfirm) Prompt for confirmation of each deletion.
Default ON.

● F(orce) Force deletion of locked objects.
Default OFF.

● R(ecurse) Delete subdirectories and contents.
Default OFF.

● V(erbose) Print information on each object deleted.
Default ON.

Use

*Wipe deletes one or more objects that match the given wildcard specification.

If the Wipe$Options variable is unset then *Wipe behaves as if the variable were set to
its default value.

*Wipe

2-196

Example

Wipe Games. ~R Deletes all files in the directory Games (but not any of its
subdirectories).

U
sin

g
 filin

g
 system

s

2-197

2

28 FileCore

Introduction
FileCore is a filing system that does not itself access any hardware. Instead it provides a
core of services to implement a filing system similar to ADFS in operation. Secondary
modules are used to actually access the hardware.

ADFS and RamFS are both examples of such secondary modules, which provide a
complete filing system when combined with FileSwitch and FileCore.

The main use you may have for FileCore is to use it as the basis for writing a new
ADFS-like filing system. Because it already provides many of the functions, it will
considerably reduce the work you have to do.

See also the chapter entitled Introduction to filing systems on page 2-3.

Overview

2-198

Overview
FileCore is a filing system module. It provides all the entry points for FileSwitch that
any other filing system does. Unlike them, it does not control hardware; instead it issues
calls to secondary modules that do so.

Similarities with FileSwitch
This concept of a parent module providing many of the functions, and a secondary
module accessing the hardware, is very similar to the way that FileSwitch works. There
are further similarities:

● there is a SWI, FileCore_Create, which modules use to register themselves with
FileCore as part of the filing system

● this SWI is passed a pointer to a table giving information about the hardware, and
entry points to low-level routines in the module

● FileCore communicates with the module using these entry points.

When you register a module with FileCore it creates a fresh instantiation of itself, and
returns a pointer to its workspace. Your module then uses this to identify itself on future
calls to FileCore.

Adding a module to FileCore
When you add a new module to FileCore, there is comparatively little work to be done.
It needs:

● low-level routines to access the hardware

● a * Command that can be used to select the filing system

● any additional * Commands you feel necessary – typically very few

● a SWI interface.

The SWI interface is usually very simple. A typical FileCore-based filing system will
have SWIs that functionally are a subset of those that FileCore provides. You implement
these by calling the appropriate FileCore SWIs, making sure that you identify which
filing system you are. RamFS implements all its SWIs like this, ADFS most of its. So
unless you need to provide a lot of extra SWIs, you need do little more than provide the
low-level routines that control the hardware.

For full details, see the chapter entitled Writing a FileCore module on page 2-597.

U
sin

g
 filin

g
 system

s

FileCore

2-199

Technical details
FileCore-based filing systems are very like ADFS in operation and appearance (since
ADFS is itself one). However, there is no reason why you need use FileCore only with
discs; indeed, RamFS is also a FileCore-based filing system. The text that follows
describes FileCore in terms of discs, disc drives, and so on. We felt you would find it
easier to use than if we had used less familiar terminology – but please remember you
can use other media too.

Disc formats

Logical layout

This table shows the logical layout of ‘perfect’ ADFS formats for floppy discs:

Format Map Zones Directories Boot block
L Old — Old No
D Old — New No
E New 1 New No
F New 4 New Yes

(The boot block is needed for F format floppies to specify which zone holds the
map.)

and for hard discs:

Format Map Zones Directories Boot block
D Old — New Yes
E New ≥1 New Yes

For details of the various terms used above see the section entitled Old maps on
page 2-202, the section entitled New maps on page 2-203, the section entitled
Directories on page 2-211, and the section entitled Boot blocks on page 2-215.

Physical layout

This table shows the physical layout of ‘perfect’ ADFS formats:

Format Density Sectors/track Bytes/sector Storage Heads
L Double 16 256 640K 1
D Double 5 1024 800K 2
E Double 5 1024 800K 2
F Quad 10 1024 1.6M 2
Hard — — — ≤512M —

Disc formats

2-200

A head value of 1 means that the sides are sequenced, whereas a head value of 2 means
that they are interleaved:

● On a sequenced disc the logical order of tracks is those on one side of the disc,
followed by those on the other side. For example, with 8 tracks:

● On an interleaved disc the logical order of tracks alternates between sides of the
disc. For example, with 8 tracks:

Track layout

A track is layed out as follows:

Due to mechanical variation in speed the time between the start and end varies, which is
why there are gaps – they ‘absorb’ the speed variations. So, in words:

● gap4b is the gap between the mechanical index pulse and the magnetic index mark

● ID is the magnetic index mark

● gap1 is the gap between the index mark and the first sector

● sector is a sector (see below)

● gap3 is the gap between sectors

● gap4a is the gap between the last sector and the index pulse.

The magnetic index mark and the preceding gap4b are optional. Where they are absent,
gap1 is therefore the gap between the mechanical pulse and the first sector.

You should never rely on the presence or absence of the magnetic mark.

1 2 3 4

5 6 7 8

1 3 5 7

2 4 6 8

gap4b ID gap1 sector gap3 sector gap3 sector gap4a

Index pulse Index pulse

U
sin

g
 filin

g
 system

s

FileCore

2-201

The size of gap1 and gap3 change between formats, whilst the other sizes remain
constant. This table shows those gap sizes that vary (in bytes) and the sector skew (in
sectors) of ‘perfect’ ADFS formats:

Format Gap 1 side 0 Gap 1 side 1 Gap 3 Sector skew
L 42 42 57 0
D 32+271 32+0 90 0
E 32+271 32+0 90 0
F 50 50 90 2

Sector layout

A sector is layed out as follows:

● gap2 is fixed due to hardware limitations; it is there to accommodate variations in
hardware (different spin speeds etc)

● Each of sector ID and sector data have a preamble of null bytes, a synchronisation
pattern, an identification byte (which says what sort of information follows: ID or
Data), and the data itself (ID or data).

The reason the ID is separated from the data is that during sector writing the ID is read
to determine which bit of the disc is currently going under the head, then the drive is
switched to writing – which takes some time – and then a whole section of data is written
(ie the sector data).

Maps
A disc has a section of information, called a map, which controls the allocation of the
disc to the files and directories. There are two types of maps used in RISC OS 3: the old
maps used by L and D formats, and the new maps used by later formats:

Map Information stored Compaction required Recovery story
Old Free space Yes From directories
New Space allocation No Two copies stored

New map discs have the following advantages over old map discs:

● Files need not be stored contiguously, so you don’t need to compact the disc.
(However, FileCore does try to create new map files in one block, and will also try
to merge file fragments back together again if it is compacting a zone of the disc.)

● The disc map has no limit on size or number of entries, so ‘Map full’ errors do not
occur.

sector ID gap2 sector data

Maps

2-202

● The map keeps a record of defects when the disc is formatted, so omits defective
sectors.

● Defects are kept as objects on the disc, so they don’t need to be taken into account
when calculating disc addresses, and can be mapped out without reformatting.

Old maps

Old maps have the following format:

Name Bytes Meaning
FreeStart 82 × 3 Table of free space start sectors
Reserved 1 Reserved – must be zero
OldName0 5 Half disc name (interleaved with OldName1)
OldSize 3 Disc size in (256 byte) sectors
Check0 1 Checksum on first 256 bytes
FreeLen 82 × 3 Table of free space lengths
OldName1 5 Half disc name (interleaved with OldName0)
OldId 2 Disc id
OldBoot 1 Boot option (as in *Opt 4,n)
FreeEnd 1 Pointer to end of free space list
Check1 1 Checksum on second 256 bytes

The 82 three byte entries in the FreeStart and FreeLen tables are in units of 256 bytes.
The entries are sorted low addressed free areas first. Contiguous free areas will have
been merged together.

The full disc name is the joining together of the bytes in OldName0 and OldName1. The
name is interleaved, with OldName0 providing the first character, OldName1 the
second, and so on.

OldId is the disc’s Id to identify when the disc has been modified.

If an old map does not end at a sector boundary, then it is padded with null bytes to the
end of the sector. The sector immediately following the old map always holds the start of
the root directory; see the section entitled Directories on page 2-211.

Calculating Check0 and Check1

These are checksums of the previous bytes in the map. They are calculated using
repeated 8-bit ADCs on the bytes of the relevant map block, starting with a value 0:

If R0 is the accumulated checksum, then it starts at 0, and each byte is added as follows:

ADC r0, r0, r1 r1 is the byte picked up
MOVS r0, r0, LSL #24 Shifts bit 8 into the carry bit
MOV r0, r0, LSR #24 Not MOVS here to preserve the carry
bit

U
sin

g
 filin

g
 system

s

FileCore

2-203

Note that the check byte itself isn’t included in the checksum; its value equals the
checksum of the previous bytes.

New maps

A disc using a new map is divided into a number of zones, each of which is a contiguous
section of the disc. The zones are numbered 0 upwards, so if there are nzones zones on a
disc, the zone numbers are 0, 1, …, nzones – 2 and nzones – 1 (ie zone 0 contains the
lowest numbered sectors on the disc, and zone nzones – 1 the highest numbered sectors).

The map is located at the beginning of zone nzones/2 (rounded down). Hence, the map
will sit at the beginning of the middle zone for discs with an odd number of zones, and
the zone higher than the middle for discs with an even number of zones (examples: if
nzones = 7, the map is at the start of zone 3, which has 3 zones before it and after it; if
nzones = 8 the map is at the start of zone 4, which has 4 zones before it and 3 after it).

The map is nzones sectors long: each sector of the map is known as a map block, and
controls the allocation of a zone of the disc. The first map block controls zone 0, the
second controls zone 1, and so on.

The general format of a map block is as follows:

Header
Disc record (Zone 0 only)
Allocation bytes
Unused

Header

A map block header is as follows:

Offset Name Meaning
0 ZoneCheck Check byte for this zone’s map block
1 FreeLink Link to first free fragment in this zone
3 CrossCheck Cross check byte for complete map

ZoneCheck is used to check that this zone’s map block is valid; see the section entitled
Calculating ZoneCheck… on page 2-208.

FreeLink is a fragment block giving the offset to the first free space fragment block in
the allocation bytes; see page 2-206.

CrossChecks are combined to check that the whole map is self-consistent; see the
section entitled Calculating CrossCheck on page 2-208.

Maps

2-204

Disc record

The format of a disc record is as follows:

Offset Name Meaning
0 log2secsize Log2 (sector size of disc in bytes)
1 secspertrack Number of sectors per track
2 heads Number of disc heads if sides interleaved

Number of disc heads – 1 if sides sequenced
(1 for old directories)

3 density 0 hard disc
1 single density (125Kbps FM)
2 double density (250Kbps FM)
3 double+ density (300Kbps FM)

(ie higher rotation speed double density)
4 quad density (500Kbps FM)
8 octal density (1000Kbps FM)

4 idlen Length of id field of a map fragment, in bits
5 log2bpmb Log2 (number of bytes per map bit)
6 skew Track to track sector skew for random access file

allocation
7 bootoption Boot option (as in *Opt 4,n)
8 lowsector bits 0 - 5: lowest numbered sector id on a track

bit 6: if set, treat sides as sequenced (rather
than interleaved)

bit 7: if set, disc is 40 track
9 nzones Number of zones in the map
10 zone_spare Number of non-allocation bits between zones
12 root Disc address of root directory
16 disc_size Disc size, in bytes
20 disc_id Disc cycle id
22 disc_name Disc name
32 disctype File type given to disc
36 - 59 Reserved – must be zero

Bytes 4 - 11 inclusive must be zero for old map discs.

As an example of how to use the logarithmic values, if the sector size was 1024, this is
210, so at offset 0 you would store 10.

You can use a disc record to specify the size of your media – this is how RamFS is able
to be larger than an ordinary floppy disc.

The lowsector and disctype fields are not stored in the disc record kept on the disc, but
are returned by FileCore_DescribeDisc.

U
sin

g
 filin

g
 system

s

FileCore

2-205

Allocation bytes

The allocation bytes make up the section of the map block which controls the allocation
of a zone. Together, the allocation bytes from all map blocks control the allocation of the
whole disc. Each bit corresponds to an allocation unit on the disc. The size of the
allocation units is defined in the disc record by log2bpmb, and so must be a power of two
bytes. An allocation unit is not necessarily one sector – it may be smaller or larger.

Not only must space be logically mapped in whole allocation units; it must also be
physically allocated in whole sectors. Consequently, the smallest unit by which
allocation may be changed is the larger of the sector size and the allocation unit. This
unit is known as the granularity.

A disc is split into a number of disc objects, each of which consists of one or more
fragments spread over the surface of the disc. Fragments need not be held in the same
zone, and their size can vary by whole units of granularity. Fragments have a minimum
size, which is explained below.

Three disc objects are special, and contain:

● the bad sectors (for a perfect disc, this disc object will not be present)

● the boot block, map and root directory

● the free space.

All other disc objects contain either a directory (optionally with small files held within
that directory), or one or more files that are held in a common disc object. For a
description of how disc objects can contain more than one object, see the section entitled
Internal disc addresses on page 2-211 and the section entitled Directories on
page 2-211.

The allocation bytes are treated as an array of bits, with the lsb of a byte coming before
the msb in the array.

The array is split into a series of fragment blocks, each representing a fragment. The
format of a fragment block is as follows:

(idlen is defined in the disc record.)

Since each bit in the array corresponds with an allocation unit on the disc, the length of
the fragment block (in bits) must be the same as the size of the fragment (in allocation
units). The stream of 0 bits are used to pad the fragment block to the correct length, and
the 1 bit to terminate the fragment block.

1 Fragment id 0 bits 1 Fragment id

idlen bits long 0 or more bits long 1 bit

length of fragment block

Maps

2-206

There are two fragment ids with special meanings:

● A fragment id of 1 represents the object which contains all bad sectors, and the
spare piece of map which hangs over the real end of the disc.

● A fragment id of 2 represents the object which contains the boot block, the map, and
the root directory.

Other fragment ids represent either free space fragments, or allocated fragments:

● A fragment id for a free space fragment is the unsigned offset, in bits, from the
beginning of its fragment block to the beginning of the next free space fragment
block in the same map block (or 0 if there are no more).

The chain hence always runs from the beginning of the map block to the end.

The offset to the first free space fragment block is given by the FreeLink fragment
block in the map block’s header. Because that fragment block is 2 bytes long, and
must have a terminating 1 bit, idlen cannot be greater than 15.

● A fragment id for an allocated fragment is a unique identifier for the disc object to
which that space is allocated. Any other fragments allocated to the same disc object
will have the same fragment id.

The following deductions can be made:

● The smallest fragment size on a disc is:

(idlen+1) × allocation unit rounded up to the nearest unit of
granularity

because a fragment block cannot be smaller than idlen+1 bits (the fragment id, and
the terminating 1 bit).

● idlen must be at least:

log2secsize + 3 ie log2 (sector size in bits)

to ensure that it is large enough to hold the maximum possible bit offset to the next
free fragment block.

U
sin

g
 filin

g
 system

s

FileCore

2-207

● The maximum number of fragment ids in a map block (and hence disc objects in a
zone) is:

 allocation bytes × 8 / (idlen + 1) ie allocation bits / minimum fragment size

This value is smaller for Zone 0 than for other zones, because it has a copy of the
disc record, and hence fewer allocation bytes:

The value for zones other than Zone 0 is – for a given disc – always the same, and is
known as the ids per zone. It is easiest to calculate using fields from the disc record:

((1 << (log2secsize + 3)) – zone_spare) / (idlen + 1)

● The allocation unit cannot be so small as to require more than 15 bits to represent all
the fragment ids possible, ie:

(ids per zone × nzones) ≤ 215

since the fragment id cannot be more than 15 bits long.

An object may have a number of fragments allocated to it in several zones. These
fragments must be logically joined together in some way to make the object appear as a
contiguous sequence of bytes. The naïve approach would be to have the first fragment
on the disc be the first fragment of the object. New map discs do not do this. The first
fragment in an object is the first fragment on the disc searching from zone (fragment id /
ids per zone) upwards, wrapping round from the disc’s end to its start. Any subsequent
fragments belonging to the same disc object are joined in the order they are found by this
search.

Object 2, being the object which carries the map with it, is special. It is always at the
beginning of the middle zone, as opposed to being at the beginning of zone 0.

Maximum disc sizes

As observed above, there are a number of limitations placed on discs by new maps,
depending on your choice of various parameters. The table below gives some idea of the
theoretical maximum disc sizes that can be supported, depending on the sizes of the
allocation unit and of the sectors:

Allocation unit 512 byte secs 1024 byte secs
256 up to 124Mb up to 127Mb
512 up to 249Mb up to 255Mb
1024 up to 503Mb up to 511Mb
2048 up to 1007Mb up to 1023Mb

Header
Disc Allocation

record bytes Header
Allocation

bytes Header

zone_spare
bits long

zone_spare
bits long

Zone 0 Zone 1 Zone 2

Maps

2-208

In fact, other limitations in FileCore mean that discs can be no larger than 512Mbytes.

Calculating disc addresses

To translate an allocation bit in the map to a disc address, take the allocation bit’s bit
offset from the beginning of the bit array (ie the concatenation of all allocation bytes)
and multiply this offset by the bytes per map bit (this multiplication is equivalent to
shifting the offset left by log2bpmb, which is why the log2 value is stored in the disc
record).

This result is the byte offset across the disc of the beginning of the section of the disc
which corresponds to the given map bit. This quantity can be passed to FS_DiscOp
SWIs directly.

Calculating CrossCheck

These bytes provide a means to check that the set of zones match each other. To check
the set matches, these bytes are exclusive ORd (EOR) with each other: the answer must
be &FF. They are modified whenever more than one zone map is modified. (The
algorithm is not important, just so long as the bytes of the changed maps change and that
the EOR of all these bytes remains at &FF).

Calculating ZoneCheck…

This, as described previously, is a check byte on a given zone sector. Below are some
code fragments you can use to calculate this value, using either C or assembler:

…using C

unsigned char map_zone_valid_byte
(
 void const * const map,
 disc_record const * const discrec,
 unsigned int zone
)
{
 unsigned char const * const map_base = map;
 unsigned int sum_vector0;
 unsigned int sum_vector1;
 unsigned int sum_vector2;
 unsigned int sum_vector3;
 unsigned int zone_start;
 unsigned int rover;

 sum_vector0 = 0;
 sum_vector1 = 0;
 sum_vector2 = 0;
 sum_vector3 = 0;

U
sin

g
 filin

g
 system

s

FileCore

2-209

 zone_start = zone<<discrec->log2_sector_size;
 for (rover = ((zone+1)<<discrec->log2_sector_size)-4 ;
 rover > zone_start;
 rover-=4)
{
 sum_vector0 += map_base[rover+0] + (sum_vector3>>8);
 sum_vector3 &= 0xff;
 sum_vector1 += map_base[rover+1] + (sum_vector0>>8);
 sum_vector0 &= 0xff;
 sum_vector2 += map_base[rover+2] + (sum_vector1>>8);
 sum_vector1 &= 0xff;
 sum_vector3 += map_base[rover+3] + (sum_vector2>>8);
 sum_vector2 &= 0xff;
}

/*
 Don’t add the check byte when calculating its value
*/
 sum_vector0 += (sum_vector3>>8);
 sum_vector1 += map_base[rover+1] + (sum_vector0>>8);
 sum_vector2 += map_base[rover+2] + (sum_vector1>>8);
 sum_vector3 += map_base[rover+3] + (sum_vector2>>8);

 return (unsigned char)
 ((sum_vector0^sum_vector1^sum_vector2^sum_vector3)
 & 0xff);
}

…using assembler

; ========
; NewCheck
; ========

;entry
; R0 -> start
; R1 length (must be multiple of 32)

;exit
; LR check byte, Z=0 <=> good

NewCheck ROUT
 Push “R1-R9,LR”
 MOV LR, #0
 ADDS R1, R1, R0 ;C=0
05 ;loop optimised as winnies may have many zones
 LDMDB R1!,{R2-R9}
 ADCS LR, LR, R9
 ADCS LR, LR, R8
 ADCS LR, LR, R7
 ADCS LR, LR, R6
 ADCS LR, LR, R5
 ADCS LR, LR, R4

Disc addresses

2-210

 ADCS LR, LR, R3
 ADCS LR, LR, R2
 TEQS R1, R0 ;preserves C
 BNE %BT05
 AND R2, R2, #&FF ;ignore old sum
 SUB LR, LR, R2
 EOR LR, LR, LR, LSR #16
 EOR LR, LR, LR, LSR #8
 AND LR, LR, #&FF
 CMPS R2, LR
 Pull “R1-R9,PC”

Disc addresses
In reading the following description, you should take special care over the difference
between an object (ie a single file or a directory) and a disc object (ie a logical group
of fragments on a new map disc, that may contain one or more objects).

FileCore uses two different types of disc address.

● The first is a normal physical disc address, giving the offset in bytes of data from the
start of the disc.

● The second is an internal format used with new map discs, that specifies an object in
terms of its fragment id, and its offset in sectors within that fragment.

This is how a single disc object can hold many objects. The internal address of each
object within the disc object will have the same fragment id, but a different offset
within that fragment.

Physical disc addresses

The physical disc address of a byte gives the number of bytes it is into the disc, when it
is read in its sequential order from the start. To calculate the physical disc address of a
byte you need to know:

● its head number h

● its track number t

● its sector number s

● the number of bytes into the sector b

● the number of heads on the drive H

● the number of sectors per track S

● the number of bytes per sector B

● the number of defective sectors earlier on the disc x (for old map hard discs only –
use zero for old map floppy discs or new map discs)

U
sin

g
 filin

g
 system

s

FileCore

2-211

You can use this formula for any disc – except an L-format one – to get the values of bits
0 - 28 inclusive:

address = ((t × H + h) × S + s – x) × B + b

Tracks, heads and sectors are all counted from zero.

Bits 29 - 31 contain the drive number.

See also the section entitled Calculating disc addresses on page 2-208, which tells you
how to calculate a physical disc address from the position of an allocation bit in a new
map.

Internal disc addresses

Internal disc addresses are used by new map discs only. An object’s internal disc address
is in the following binary form:

ddd00000 0fffffff ffffffff ssssssss

● ddd is the disc number (not useful outside FileCore)

● fffffffffffffff is the fragment id

● ssssssss is the sector offset within the object.

If the sector offset is 0, then the object does not share its disc object, and is located at the
start of the disc object.

If the sector offset is non-zero (eg is s), then the object shares its disc object, and is
located at the start of the sth sector of the disc object. So disc address:

0x00000233

means that this object (in fact the directory $) starts at the &33th sector in object 2. Note
that the &33th sector starts &32 sectors into the disc object (ie the 1st sector is at the
start of the object).

Directories
There are two types of directories used in RISC OS: the old directories used by
L format, and the new directories used by later formats:

Directories Size (entries) Size (bytes) Top bit set chars
Old 47 1280 No
New 77 2048 Yes

For both formats the directory is arranged as follows:

DirHeader
Entries[n] where n = 47 or 77, as above
DirTail

Directories

2-212

The header and tail contain information about this directory, and the entries are the
directory entries.

DirHeaders

The two directory formats have the same DirHeader:

Name Bytes Meaning
StartMasSeq 1 Update sequence number to check dir start

with dir end
StartName 4 ‘Hugo’ or ‘Nick’

BBC and Master series computers always use ‘Hugo’ for L-format discs; for
compatibility, we suggest you do the same. For other formats you can use either.

Entries

The two directory formats have mostly the same entry format:

Name Bytes Meaning
DirObName 10 Name of object
DirLoad 4 Load address of object
DirExec 4 Exec address of object
DirLen 4 Length of object
DirIndDiscAdd 3 Indirect disc address of object
OldDirObSeq or

NewDirAtts 1

The NewDirAtts are as follows:

Bit Meaning when set
0 Object has owner read access
1 Object has owner write access
2 Object is locked
3 Object is a directory
4 Object is executable †
5 Object has public read access
6 Object has public write access
7 Reserved (must be zero)

† Bit 4 is treated as a second owner read bit; if either this bit or bit 0 are set, the
object is treated as having owner read access.

U
sin

g
 filin

g
 system

s

FileCore

2-213

DirTails

The DirTail formats are, however, quite different:

Old DirTail

Name Bytes Meaning
OldDirLastMark 1 0 to indicate end of entries
OldDirName 10 Directory name
OldDirParent 3 Indirect disc address of parent directory
OldDirTitle 19 Directory title
Reserved 14 Reserved – must be zero
EndMasSeq 1 To match with StartMasSeq
EndName 4 ‘Hugo’ or ‘Nick’, to match with StartName
DirCheckByte 1 Check byte on directory

New DirTail

Name Bytes Meaning
NewDirLastMark 1 0 to indicate end of entries
Reserved 2 Reserved – must be zero
NewDirParent 3 Indirect disc address of parent directory
NewDirTitle 19 Directory title
NewDirName 10 Directory name
EndMasSeq 1 To match with StartMasSeq
EndName 4 ‘Hugo’ or ‘Nick’, to match with StartName
DirCheckByte 1 Check byte on directory

Notes

The last entry is indicated by there being a 0 in the first byte of the next entry’s
DirObName. The xxxDirLastMark entry is there so that when the directory is full, and
hence the last entry is not followed by a null DirObName, it is still followed by a null
byte to indicate the end of the directory.

DirObNames and DirNames are control character terminated, and may be the full length
of the fields they occupy (in which case there is no terminator).

The indirect disc address of an object on an old map disc is the most significant 3 bytes
of its physical disc address. The indirect disc address of an object on a new map disc is
the least significant 3 bytes of its internal disc address. For an explanation, see the
section entitled Disc addresses on page 2-210.

Directories

2-214

Calculating StartMasSeq and EndMasSeq

StartMasSeq and EndMasSeq are there to check whether the directory was completely
written out when it was last written out. For an unbroken directory they are always
equal, and are increased by one (wrapping at 255 back to 0) whenever the directory is
updated. This means that if the writing of the directory was stopped halfway through
then the start and end master sequence numbers will not be the same, and so the
directory will then be identified as broken. Their values should equal each other, but,
apart from that, they can be anything.

Calculating DirCheckByte

This is an accumulation of the used bytes in a directory. The used bytes are all the bytes
excluding the hole between the last directory entry and the beginning of the structure at
the tail of the directory. The generation of the check byte is best described as an
algorithm:

● Starting at 0 an accumulation process is performed on a number of values.
Whatever the sort of the value (byte or word) it is accumulated in the same way.
Assuming r0 is the accumulation register and r1 the value to accumulate this is the
accumulation performed:

EOR r0, r1, r0, ROR #13

● All the whole words at the start of the directory are accumulated. This will leave a
number of bytes (0 to 3) in the last directory entry (or at the end of the start structure
in a directory if it’s empty).

● The last few bytes at the start of the directory are accumulated individually.

● The first few bytes at the beginning of the end structure of the directory are
accumulated. This is done to leave only a whole number of words left in the
directory to be accumulated.

● The last whole words in the directory are accumulated, except the very last word
which is excluded as it contains the check byte.

● The accumulated word has its four bytes exclusive ORd (EOR) together. This value
is the check byte.

U
sin

g
 filin

g
 system

s

FileCore

2-215

Boot blocks
Hard discs contain a 512 byte boot block at disc address &C00, which contains
important information. (On a disc with 256-byte sectors, such as ADFS uses, this
corresponds to sectors 12 and 13 on the disc.) A boot block has the following format:

Offset Contents
&000 upwards Defect list
&1BF downwards Hardware-dependent information
&1C0 - &1FB Disc record (see page 2-204)
&1FC - &1FE Non-ADFS partition descriptor
&1FF Check sum byte

Note that in memory, this information would be stored in the order disc record, then
defect list/hardware parameters. This is to facilitate passing the values to FileCore SWIs.

Defect list

A defect list is a list of words. Each word contains the disc address of the first byte of a
sector which has a defect. This address is an absolute one, and does not take into account
preceding defective sectors. The list is terminated by a word whose value is &200000xx.
The byte xx is a check-byte calculated from the previous words. Assuming this word is
initially set to &20000000, it can be correctly updated using this routine:

On entry
Ra = pointer to start of defect list

On exit
Ra corrupt
Rb check byte
Rc corrupt

MOV Rb,#0 ;init check
loop

LDR Rc,[Ra],#4; get next entry
CMPS Rc,#&20000000 ;all done ?
EORCC Rb,Rc,Rb,ROR #13
BCC loop
EOR Rb,Rb,Rb,LSR #16 ;compress word to byte
EOR Rb,Rb,Rb,LSR #8
AND Rb,Rb,#&FF

Boot blocks

2-216

Hardware-dependent information

There is no guarantee how many bytes the hardware-dependent information may take
up. As an example of use of this space, for the HD63463 controller the hardware
parameters have the following contents:

Offset Contents
&1B0 - &1B2 Unused
&1B3 Step pulse low
&1B4 Gap 2
&1B5 Gap 3
&1B6 Step pulse high
&1B7 Gap 1
&1B8 - &1B9 Low current cylinder
&1BA - &1BB Pre-compensation cylinder
&1BC - &1BF Unadjusted parking disc address

The boot block’s disc record

The purpose of the boot block’s disc record is to give the necessary information to find
the disc’s map. You should not rely on the information it contains for any other purpose,
unless it is unavailable in the disc’s map. Consequently:

● For an old map disc, you should use the boot block’s disc record to find the map. If
information you require is held in the map, you must use that in preference to the
boot block’s disc record.

● For a new map disc, you should use the boot block’s disc record to find the map.
Once you have found the map you should then always use its disc record, rather
than the boot block’s.

For the format of a disc record, see the section entitled Disc record on page 2-204.

The non-ADFS partition descriptor

These 3 bytes are used to describe any non-ADFS partition on the disc. Such a partition
must come at the end of the disc, and is excluded from all descriptions of the ADFS
partition. Currently it is only used to describe a RISCiX partition:

Offset Contents
&1FC format identifier and flags:

bits 0 - 3 partition format identifier (1 ⇒ RISCiX)
bits 4 - 7 flags (reserved – must be zero)

&1FD low byte of start cylinder
&1FE high byte of start cylinder

U
sin

g
 filin

g
 system

s

FileCore

2-217

You can calculate the disc address of the start of the non-ADFS partition as follows:

start cylinder × heads on drive × sectors per track × bytes per sector

Calculating the boot block’s checksum byte

The last byte of the boot block is a checksum byte whose value is calculated as follows:

● Perform an 8 bit add with carry on each of the other bytes in the block, starting with
value 0.

In assembler this might be done as follows:

; entry: R0=start, R1=block length
; exit: R0,R1 preserved, R2=checksum

CheckSum ROUT
 STMFD R13!, {R1, LR}

 ADDS LR, R0, R1 ;->end+1 C=0
 SUB R1, LR, #1 ;->check byte
 MOV R2, #0
 B %FT20
10
 LDRB LR, [R1,#-1] ! ;get next byte
 ADC R2, R2, LR ;add into checksum
 MOVS R2, R2, LSL #24 ;bit 8 = carry
 MOV R2, R2, LSR #24
20
 TEQS R0, R1
 BNE %BT10 ;loop until done

 LDMFD R13!, {R1, LR}

Note that the checksum doesn’t include the last byte.

Data format
Files stored using FileCore are sequences of bytes which always begin at the start of a
sector and extend for the number of sectors necessary to accommodate the data
contained in the file. The last sector used to accommodate the file may have a number of
unused bytes at the end of it. The last ‘data’ byte in the file is derived from the file length
stored in the catalogue entry for the file, or if the file is open, from its extent.

Disc identifiers

2-218

Disc identifiers
Many of the commands described below allow discs to be specified. Generally, you can
refer to a disc by its physical drive number (eg 0 for the built-in floppy), or by its name.

Drive numbers

FileCore supports 8 drives. Drive numbers 0 - 3 are ‘floppy disc drives’, and drive
numbers 4 - 7 are ‘hard disc drives’. You cannot implement a filing system under
FileCore that has more than four drives of the same physical type.

Disc names

The disc name is set using *NameDisc (see page 2-261). When you refer to a disc by
name it will be used if it is in a drive. Otherwise a ‘Disc not present’ error will be given
if the disc has been previously seen, or a ‘Disc not known’ error if the disc has not been
seen.

Machine code programs can trap these errors before they are issued. This allows the user
to be prompted to insert the disc into the drive. See OS_UpCall 1 and 2 (SWI &33) on
page 1-183 for details.

In fact, disc names may be used in any pathname given to the system. When used in a
pathname, the disc name (or number) must be prefixed by a colon. Examples of
pathnames with disc specifiers are:

*Cat :MikeDisc.fonts
Info :4.LIB.*

Note that :drive really means :drive.$.

Disc names can have wildcards in them, so long as the name only matches one of the
discs that FileCore knows about for the filing system. If more than one name matches
FileCore will return an ‘Ambiguous disc name’ error.

You are very strongly recommended to use disc names rather than drive numbers when
you write programs.

Changing discs

FileCore keeps track of eight disc names per filing system, on a first in, first out basis.
When you eject a floppy disc from the drive, FileCore still ‘knows’ about it. This means
that if there are any directories set on that disc (the current directory, user root directory,
or library), they will still be associated with it. Thus any attempt to load or run a file will
result in a ‘Disc not present/known’ error.

U
sin

g
 filin

g
 system

s

FileCore

2-219

However, this means that you can replace the disc and still use it, as if it had never been
ejected. The same applies to open files on the disc; they remain open and associated with
that disc until they are closed.

You can cause the old directories to be overridden by *Mounting a new disc once it has
been inserted. This resets the CSD and so on. Alternatively, if you unset the directories
(using *NoDir, *NoLib and *NoURD), then FileCore will use certain defaults when
operations on these are required.

● If there is no current directory, FileCore will use $ on the default drive. This is the
configured default, or the one set by the last *Drive command.

● If there is no user root directory set, then references to that directory will use $ on
the default drive.

● If there is no library set, then FileCore will try &.Library, $.Library and then the
current directory, in that order.

See also Service_DiscDismounted (Service Call &7D) on page 2-506.

Current selections

The currently selected directory, user root directory and library directory are all stored
independently for each FileCore-based filing system.

Service Calls

2-220

Service Calls
Service_IdentifyDisc

(Service Call &69)

Identify disc format

On entry

R1 = &69 (reason code)
R2 = pointer to buffer
R3 = length of buffer
R5 = pointer to disc record
R6 = sector cache handle
R8 = pointer to FileCore instance private word to use

On exit

If the format has been identified:

R1 = 0 to claim call
R2 = filetype number for given disc format.
R5 = pointer to disc record, which has been modified
R6 = new sector cache handle
R8 preserved

Otherwise:

R1, R5 preserved
R6 = new sector cache handle
R8 preserved

Use

When an image filing system receives this service call it should:

1 Check the sector size, sectors per track, density, heads and lowest numbered sector
id on a track (held in the disc record – see the section entitled Disc record on
page 2-204) to see whether these correspond to a format it understands. However, it
should not do so if any of the sector size, sectors per track, density or heads are 0,
since this means they were not supplied by FileCore_MiscOp 0 (see page 2-240);
this should only occur on hard discs.

U
sin

g
 filin

g
 system

s

FileCore

2-221

2 If it does not recognise the sector scheme, it should pass on the service call,
unclaimed.

3 If it does recognise the sector scheme, it should then update the disc record’s values
for the disc size, sequence sides, double step and heads so they correspond with the
recognised format.

It should only adjust the heads field in line with the sequence sides value: when
clearing the sequence sides bit from being set it should increment the heads field by
one, and when setting the sequence sides bit from being clear it should decrement
the heads field by one – but if the heads field was 0 it must remain so.

4 Check the sector contents to see whether these correspond to a format it
understands. It should read the sectors using FileCore_DiscOp 9 (see page 2-223)
with:

● the options bits in R1 set to 2_01x0 (1 second timeout; ignore escape; scatter
list optional; no alternative defect list)

● the pointer to an alternative disc record in R1 addressing the one supplied in the
service call

● the disc number within the disc address in R2 matching that given in the service
call disc record’s root directory address (which is set to byte 0 on the relevant
disc).

5 If it does not recognise the sector contents, it should pass on the service
call, unclaimed, with, if necessary, the new value for R6 set up by
FileCore_DiscOp 9.

6 If it does recognise the sector contents, it should then update the disc record’s values
for the disc cycle id and disc name, and claim the service call. The returned disc
record will be used in further accesses, and so must have the heads and disc size
correct. The disc cycle id should be one of:

● an id stored on the disc which changes each time the disc is updated‘

● a value (eg CRC) calculated from a proportion of the disc which is likely to
change when the disc is updated, such as the map.

The buffer pointed to by R2 should be filled in with a short description of the disc’s
format suitable for use in the Current format menu entry. You should ensure this
does not overflow the length of the buffer (given in R3).

FileCore itself claims this service call to recognise those discs it knows about.

Service_IdentifyDisc (Service Call &69)

2-222

In summary:

● Check sector size, sectors per track, density, heads and low sector

● Pass on service call if no match

● Update disc size and heads fields and sequence sides and double step bits

● Check sector contents

● Pass on service call if no match

● Update disc cycle id and disc name

● Fill in buffer with description for Current format menu entry

● Claim service.

U
sin

g
 filin

g
 system

s

FileCore

2-223

SWI Calls
FileCore_DiscOp

(SWI &40540)

Performs various operations on a disc

On entry

R1 bits 0 - 3 = reason code
bits 4 - 7 = option bits
bits 8 - 31 = bits 2 - 25 of pointer to alternative disc record, or zero

R2 = disc address
R3 = pointer to buffer
R4 = length in bytes
R6 = cache handle
R8 = pointer to FileCore instance private word

On exit

R1 preserved
R2 = disc address of next byte to be transferred
R3 = pointer to next buffer location to be transferred
R4 = number of bytes not transferred

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

FileCore_DiscOp (SWI &40540)

2-224

Use

This call performs various disc operations as specified by bits 0 - 3 of R1:

Value Meaning Uses Updates

0 Verify R2, R4 R2, R4
1 Read sectors R2, R3, R4 R2, R3, R4
2 Write sectors R2, R3, R4 R2, R3, R4
3 Floppy disc: read track R2, R3

Hard disc: read Id R2, R3
4 Write track R2, R3
5 Seek (used only to park) R2
6 Restore R2
7 Floppy disc: step in †
8 Floppy disc: step out †
9 Read sectors via cache R2, R3, R4, R6 R2, R3, R4, R6
15 Hard disc: specify R2

† These reason codes are only valid with the 1772 disc controller. They are not
supported on 710/711 based machines (such as the A5000) and should be
avoided for future compatibility.

Option bits

The option bits have the following meanings:

Bit 4
This bit is set if an alternate defect list for a hard disc is to be used. This is assumed
to be in RAM 64 bytes after the start of the disc record pointed to by bits 8 - 31 of
R1 shifted left 6 bits (so they form bits 2 - 25 of the pointer).

This bit may only be set for old map discs.

Bit 5
If this bit is set, then the meaning of R3 is altered. It does not point to the area of
RAM to or from which the disc data is to be transferred. Instead, it points to a
word-aligned list of memory address/length pairs. All but the last of these lengths
must be a multiple of the sector size. These word-pairs are used for the transfer until
the total number of bytes given in R4 has been transferred.

On exit, R3 points to the first pair which wasn’t fully used, and this pair is updated
to reflect the new start address/bytes remaining, so that a subsequent call would
continue from where this call has finished.

This bit may only be set for reason codes 0 - 2.

U
sin

g
 filin

g
 system

s

FileCore

2-225

Bit 6
If this bit is set then escape conditions are ignored during the operation, otherwise
they cause it to be aborted.

Bit 7
If this bit is set, then the usual timeout for floppy discs of 1 second is not used.
Instead FileCore will wait (forever if necessary) for the drive to become ready.

Disc address

The disc address must be on a sector boundary for reason codes 0 - 2 and 9, and on a
track boundary for other reason codes. Note that you must make allowances for any
defects, as the disc address is not corrected for them.

For reason code 6 (restore), the disc address is only used for the drive number; the
bottom 29 bits should be set to zero.

The specify disc command (reason code 15) sets up the defective sector list, hardware
information and disc description from the disc record supplied. Note that in memory,
this information must be stored in the order disc record, then defect list/hardware
parameters.

Read Track/ID (reason code 3)

If the alternate defect list option bit (bit 4) is set in R1 on entry when reading a track/ID,
then a whole track’s worth of ID fields is read. This usage is not available under
RISC OS 2.

The call reads 4 bytes of sector ID information into the buffer pointed to by R3 for every
sector on the track. The order of data is:

Cylinder
Head
Sector number
Sector size (0= 128, 1= 256, etc)

The operation is terminated after 200mS (1 revolution).

The first sector ID transferred will normally be that following the index mark (it may be
the second if there is abnormal interrupt latency from the index pulse interrupt). The first
two ID’s read may also be duplicated at the buffer end due to interrupt latency.
Consequently the buffer should be at least 16 bytes longer than the maximum number of
IDs expected (512 bytes at most).

The disc record provided is updated to return the actual number of sectors per track
found (at offset 1). Note to use this option you must provide a valid defect list, which at
a minimum is a word of &20000000 following on after the disc record.

FileCore_DiscOp (SWI &40540)

2-226

Write Track (reason code 4)

If R3 (the buffer pointer) is non-zero on entry, this reason code is used to write a track.
This usage is specific to the 1772 disc controller.

If R3 is zero on entry, this reason code is instead used to format a track; R4 then points
to a disc format structure. This usage is available with all controllers, but is not available
under RISC OS 2.

The disc format structure pointed to by R4 is as follows:

Offset Length Meaning
0 4 Sector size in bytes (which must be a multiple of 128)
4 4 Gap1
8 4 Reserved – must be zero
12 4 Gap3
16 1 Sectors per track
17 1 Density:

1 single density (125Kbps FM)
2 double density (250Kbps FM)
3 double+ density (300Kbps FM)

(ie higher rotation speed double density)
4 quad density (500Kbps FM)
8 octal density (1000Kbps FM)

18 1 Options:
bit 0 1 index mark required
bit 1 1 double step
bits 2-3 0 interleave sides

1 - 3 sequence sides
bits 4-7 reserved – must be 0

19 1 Sector fill value
20 4 Cylinders per drive (normally 80)
24 12 Reserved – must be 0
36 ? Sector ID buffer, 1 word per sector:

bits 0 - 7 Cylinder number mod 256
bits 8 - 15 Head (0 for side 1, 1 for side 2)
bits 16 - 23 Sector number
bits 24 - 31 Log2 (sector size) – 7, eg 1 for 256 byte sector

An error is generated if the specified format is not possible to generate, or if the track
requested is outside the valid range. The tracks are numbered from 0 to (number of
tracks) – 1. The mapping of the address is controlled by the disc structure record.

U
sin

g
 filin

g
 system

s

FileCore

2-227

Read sectors via cache (reason code 9)

This reason code reads sectors via a cache held in the RMA. It is not available under
RISC OS 2.

To start a sequence of these operations, set R6 (the cache handle) to zero on entry. Its
value will be updated on exit, and subsequent calls should use this new value.

Bits 4 - 7 of R1 should be zero, and are ignored if set.

To discard the cache once finished, call FileCore_DiscardReadSectorsCache (see
page 2-235).

Related SWIs

None

Related vectors

None

FileCore_Create (SWI &40541)

2-228

FileCore_Create
(SWI &40541)

Creates a new instantiation of an ADFS-like filing system

On entry

R0 = pointer to descriptor block
R1 = pointer to calling module’s base
R2 = pointer to calling module’s private word
R3 bits 0 - 7 = number of floppies

bits 8 - 15 = number of hard discs
bits 16 - 24 = default drive
bits 25 - 31 = start up options

R4 = suggested size for directory cache
R5 = suggested number of 1072 byte buffers for file cache
R6 = hard disc map sizes

On exit

R0 = pointer to FileCore instance private word
R1 = address to call after completing background floppy op
R2 = address to call after completing background hard disc op
R3 = address to call to release FIQ after low level op

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call creates a new instantiation of an ADFS-like filing system. It must be called on
initialisation by any filing system module that is adding itself to FileCore.

U
sin

g
 filin

g
 system

s

FileCore

2-229

The descriptor block is described in the chapter entitled Writing a FileCore module on
page 2-597.

The only start-up option (passed in bits 25 - 31 of R3) currently supported is No
directory state which is indicated by setting bit 30. All other bits representing start-up
options must be clear.

If the filing system does not support background transfers of data, R5 must be zero.

The hard disc map sizes are given using 1 byte for each disc, with drive 4 in the low
byte, and drive 7 in the high byte. The byte should contain map size/256 (ie 2 for the old
map). This is just a good guess and should not involve starting up the drives to read from
them. You might store this in the CMOS RAM.

You must store the FileCore instance private word returned by this SWI in your module
workspace; it is your module’s means of identifying itself to FileCore.

When your module calls the addresses returned in R1 - R3, it must be in SVC mode with
R12 holding the value of R0 that this SWI returned. Interrupts need not be disabled. R0,
R1, R3 - R11 and R13 will be preserved by FileCore over these calls.

Related SWIs

None

Related vectors

None

FileCore_Drives (SWI &40542)

2-230

FileCore_Drives
(SWI &40542)

Returns information on the filing system’s drives

On entry

R8 = pointer to FileCore instance private word

On exit

R0 = default drive
R1 = number of floppy drives
R2 = number of hard disc drives

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call returns information on the filing system’s drives.

Related SWIs

None

Related vectors

None

U
sin

g
 filin

g
 system

s

FileCore

2-231

FileCore_FreeSpace
(SWI &40543)

Returns information on a disc’s free space

On entry

R0 = pointer to disc specifier (null terminated)
R8 = pointer to FileCore instance private word

On exit

R0 = total free space on disc
R1 = size of largest object that can be created

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call returns the total free space on the given disc, and the largest object that can be
created on it.

Related SWIs

None

Related vectors

None

FileCore_FloppyStructure (SWI &40544)

2-232

FileCore_FloppyStructure
(SWI &40544)

Creates a RAM image of a floppy disc map and root directory entry

On entry

R0 = pointer to buffer (must be ≥ 4K long)
R1 = pointer to disc record describing shape and format
R2 bit 7 set for old directory structure

bit 6 set for old map
R3 = pointer to list of defects

On exit

R3 = total size of structure created

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call creates a RAM image of a floppy disc map and root directory entry.

The pointer to a list of defects is only needed for new map discs. They must be byte
addresses giving the start of defective sectors, and terminated with &20000000.

You do not need to know a FileCore instantiation private word to use this call; instead
the disc record tells FileCore which filing system is involved.

Related SWIs

None

U
sin

g
 filin

g
 system

s

FileCore

2-233

Related vectors

None

FileCore_DescribeDisc (SWI &40545)

2-234

FileCore_DescribeDisc
(SWI &40545)

Returns a disc record describing a disc’s shape and format

On entry

R0 = pointer to disc specifier (null terminated)
R1 = pointer to 64 byte block
R8 = pointer to FileCore instance private word

On exit

—

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call returns a disc record in the 64 byte block passed to it. The record describes the
disc’s shape and format. For a definition of the format of a disc record, see the section
entitled Disc record on page 2-204.

Related SWIs

None

Related vectors

None

U
sin

g
 filin

g
 system

s

FileCore

2-235

FileCore_DiscardReadSectorsCache
(SWI &40546)

Discards the cache of read sectors created by FileCore_DiscOp 9

On entry

R6 = Cache handle

On exit

—

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call discards the cache of read sectors created by FileCore_DiscOp 9 (see
page 2-227).

This call is not available under RISC OS 2.

Related SWIs

None

Related vectors

None

FileCore_DiscFormat (SWI &40547)

2-236

FileCore_DiscFormat
(SWI &40547)

Fills in a disc format structure with parameters for the specified format

On entry

R0 = pointer to disc format structure to be filled in
R1 = SWI number to call to vet disc format (eg ADFS_VetFormat)
R2 = parameter in R1 to use when calling vetting SWI
R3 = format specifier

On exit

R0 - R3 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call fills in the disc format structure pointed to by R0 with the ‘perfect’ parameters
for the specified format, taking no account of the abilities of the available hardware that
will have to perform the format. Once filled in, this SWI calls the vetting SWI to check
the format structure for achievability on the available hardware. The vetting SWI may
generate an error if the format differs widely from what can be achieved; alternatively it
may alter the format structure to the closest match that can be achieved. The vetting SWI
then returns to this SWI, which checks whether the format block – as updated by the
vetting SWI – is still an adequate match for the desired format. If it is, this SWI returns
to its caller; otherwise it generates an error.

U
sin

g
 filin

g
 system

s

FileCore

2-237

The following format specifiers are recognised:

Value Meaning
&80 L format floppy
&81 D format floppy
&82 E format floppy
&83 F format floppy

The returned disc format structure contains the following information:

Offset Length Meaning
0 4 Sector size in bytes (which will be a multiple of 128)
4 4 Gap1 side 0
8 4 Gap1 side 1
12 4 Gap3
16 1 Sectors per track
17 1 Density:

1 single density (125Kbps FM)
2 double density (250Kbps FM)
3 double+ density (300Kbps FM)

(ie higher rotation speed double density)
4 quad density (500Kbps FM)
8 octal density (1000Kbps FM)

18 1 Options:
bit 0 1 index mark required
bit 1 1 double step
bits 2-3 0 interleave sides

1 format side 1 only
2 format side 2 only
3 sequence sides

bits 4-7 reserved – must be 0
19 1 Start sector number on a track
20 1 Sector interleave
21 1 Side/side sector skew (signed)
22 1 Track/track sector skew (signed)
23 1 Sector fill value
24 4 Number of tracks to format (ie cylinders/drive: normally 80)
28 36 Reserved – must be zero

This structure tells you how to format a disc. Note that it differs from that used in
FileCore_DiscOp to actually format a track (see page 2-226). The differences are
because the DiscOp structure only specifies the format of a single track.

This call is not available under RISC OS 2.

FileCore_DiscFormat (SWI &40547)

2-238

Related SWIs

ADFS_VetFormat (page 2-291), DOSFS_DiscFormat (page 2-335)

Related vectors

None

U
sin

g
 filin

g
 system

s

FileCore

2-239

FileCore_LayoutStructure
(SWI &40548)

Lays out into the specified file a set of structures for its format

On entry

R0 = identifier of particular format to lay out
R1 = pointer to bad block list (terminated by –1)
R2 = pointer to null-terminated disc name
R3 = image file handle

On exit

R0 - R3 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call lays out into the specified file a set of structures corresponding to the identified
format. The format identifier is a pointer to a disc record. An error is returned if the
specified format can not map out defects, and there were defects in the defect list.

This call is not available under RISC OS 2.

Related SWIs

None

Related vectors

None

FileCore_MiscOp (SWI &40549)

2-240

FileCore_MiscOp
(SWI &40549)

Perform miscellaneous functions for accessing drives

On entry

R0 = reason code
R1 = drive
R2 - R5 depend on reason code
R8 = pointer to FileCore instance private word

On exit

R0 - R6 depend on reason code

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call performs miscellaneous functions for accessing drives, depending on the
reason code in R0. Valid reason codes are:

Value Meaning Page
0 Mount 2-240
1 Poll changed 2-240
2 Lock drive 2-240
3 Unlock drive 2-240
4 Poll period 2-240
5 Eject disc 2-240

This call is not available under RISC OS 2.

U
sin

g
 filin

g
 system

s

FileCore

2-241

Related SWIs

None

Related vectors

None

FileCore_MiscOp 0 (SWI &40549)

2-242

FileCore_MiscOp 0
(SWI &40549)

Mounts a disc, reading in the data asked for

On entry

R0 = 0
R1 = drive
R2 = disc address to read from
R3 = pointer to buffer
R4 = length to read into buffer
R5 = pointer to disc record to fill in (floppies and floppy-like hard discs only)
R8 = pointer to FileCore instance private word

On exit

R1 - R5 preserved

Use

This call mounts a disc, reading in the data asked for.

Floppy discs, and hard discs that may be mounted like floppies

For a floppy disc, and for hard discs where bit 4 of the descriptor block flags is set, this
call asks the given filing system to first identify the disc’s format. The suggested density
to try first is given in the disc record; if this is not successful, the filing system should
then try other densities. The following order is suggested:

1 Quad density

2 Double density

3 Octal density

4 Single density

5 Double+ density

Once the filing system has identified the disc’s format, it fills in the log2secsize,
secspertrack, heads, density, lowsector and root values in the disc record (see the section
entitled Disc record on page 2-204).

U
sin

g
 filin

g
 system

s

FileCore

2-243

● If log2secsize ≤ 8, then it gives heads the value (actual number of heads–1), and sets
bit 6 of lowsector, so sides are treated as sequenced. Otherwise (ie when
log2secsize > 8) it gives heads the value (actual number of heads), and clears bit 6
of lowsector, so sides are treated as interleaved.

● The filing system clears bit 7 of lowsector; this is used as an initial value, which
FileCore subsequently corrects if necessary.

Having filled in the disc record, the filing system then reads in the data asked for.

Other hard discs

For hard discs where bit 4 of the descriptor block flags is clear (see the section entitled
Descriptor block on page 2-597), this merely asks the given filing systems to read in the
data asked for. This typically necessitates it reading the boot block off the disc; if the
disc doesn’t have one, the filing system generates one itself.

FileCore_MiscOp 1 (SWI &40549)

2-244

FileCore_MiscOp 1
(SWI &40549)

Poll changed

On entry

R0 = 1
R1 = drive
R2 = sequence number
R8 = pointer to FileCore instance private word

On exit

R2 = sequence number
R3 = result flags

Use

The sequence number is to ensure no changes are lost due to reset being pressed. Both
the given filing system and the FileCore incarnation should start with a sequence
number of 0 for each drive. The filing system increments the sequence number with each
change of state. If the filing system finds the entry sequence number does not match its
copy it should return changed/maybe changed, depending on whether the disc changed
line works/doesn’t work.

The bits in the result flags have the following meanings:

Bit Meaning when set
0 not changed
1 maybe changed
2 changed
3 empty
4 ready
5 drive is 40 track
6 empty works
7 changed works
8 disc in drive is high density
9 density sensing works
10 ready works
11 - 31 reserved – must be zero

U
sin

g
 filin

g
 system

s

FileCore

2-245

Exactly one of bits 0 - 3 must be set. Once bit 6 or 7 is returned set for a given drive, they
must always be so.

FileCore_MiscOp 2 (SWI &40549)

2-246

FileCore_MiscOp 2
(SWI &40549)

Locks a disc in a floppy drive

On entry

R0 = 2
R1 = floppy drive
R8 = pointer to FileCore instance private word

On exit

—

Use

This call locks a disc in a drive; you can only use it for a floppy drive. It should at least
ensure that the drive light stays on until unlocked. Note that locks are counted, so each
‘Lock drive’ must be matched by an ‘Unlock drive’.

U
sin

g
 filin

g
 system

s

FileCore

2-247

FileCore_MiscOp 3
(SWI &40549)

Unlocks a disc in a floppy drive

On entry

R0 = 3
R1 = drive
R8 = pointer to FileCore instance private word

On exit

—

Use

This call can only be called for a floppy drive. It reverses a single ‘Lock drive’ MiscOp.
Note that locks are counted, so ‘Unlock drive’ must be called for each ‘Lock drive’.

FileCore_MiscOp 4 (SWI &40549)

2-248

FileCore_MiscOp 4
(SWI &40549)

Informs FileCore of the minimum period between polling for disc insertion

On entry

R0 = 4
R1 = pointer to disc name (may not be terminated if maximum length)
R8 = pointer to FileCore instance private word

On exit

R5 = minimum polling period (in centiseconds), or –1 if disc changed doesn’t work
R6 = pointer to media type string: eg ‘disc’ for ADFS

Use

This call informs FileCore of the minimum period between polling for disc insertion
under the given filing system. This is so that drive lights do not remain continuously
illuminated.

The values are re-exported by FileCore in the UpCalls MediaNotPresent and
MediaNotKnown. The value applies to all drives rather than a particular drive.

U
sin

g
 filin

g
 system

s

FileCore

2-249

FileCore_MiscOp 5
(SWI &40549)

Power-ejects the disc in the specified drive

On entry

R0 = 5
R1 = drive
R8 = pointer to FileCore instance private word

On exit

—

Use

This call power-ejects the disc in the specified drive, provided that the hardware is
capable of it.

This reason code was introduced in RISC OS 3 (version 3.10).

* Commands

2-250

* Commands
*Backup

Copies the used part of a floppy disc.

Syntax

*Backup source_drive dest_drive [Q]

Parameters

source_drive the number of the source floppy drive (0 to 3)

dest_drive the number of the destination floppy drive (0 to 3)

Q speeds up the operation, by using the application work area
as a buffer if extra room is needed to perform the backup, so
fewer disc accesses are done. You must save any work you
have done and quit any applications you are using before
using this option.

Use

*Backup copies the used part of one floppy disc to another; free space is not copied. If
the source drive is the same as the destination (as it is on a single floppy drive system),
you will be prompted to swap the disc, as necessary.

The command only applies to floppy, not hard discs.

Example

*Backup 0 1

Related commands

*Copy

U
sin

g
 filin

g
 system

s

FileCore

2-251

*Bye

Ends a filing system session.

Syntax

*Bye

Use

*Bye ends a filing system session by closing all files, unsetting all directories and
libraries, forgetting all floppy disc names and parking the heads of hard discs to their
‘transit position’ so that the hard disc unit can be moved without risking damage to the
read/write head.

You should check that the correct filing system is the current one before you use this
command, or alternatively precede the command by the filing system name. For
example you could end an ADFS session when another filing system is your current one
by typing:

*adfs:Bye

Related commands

*Close, *Dismount, *Shut, *Shutdown

*CheckMap

2-252

*CheckMap

Checks a disc map for consistency.

Syntax

*CheckMap [disc_spec]

Parameters

disc_spec the name of the disc or number of the disc drive

Use

*CheckMap checks that the map of an E- or F-format disc (whether floppy or hard) has
the correct checksums and is consistent with the directory tree. If only one copy of the
map is good, it allows you to rewrite the bad one with the information in the good one.

In doing so, it closes all files on the disc.

Example

*CheckMap :Mydisc

Related commands

*Defect, *Verify

U
sin

g
 filin

g
 system

s

FileCore

2-253

*Compact

Collects together free space on a disc

Syntax

*Compact [disc_spec]

Parameters

disc_spec the name of the disc or number of the disc drive

Use

*Compact collects together free space on a disc by moving files. If no argument is given,
the *Compact command is carried out on the current disc. *Compact works on either
hard or floppy discs.

You cannot add a file to an old map disc (ie an L or D format disc, or an old map hard
disc) that is larger than the biggest single free space. Because *Compact gathers together
free space, the maximum size of file you can fit on the disc will be as high as is possible
after you use this command.

The maximum size of file you can add to an E or F format disc does not depend on how
fragmented the free space is, so there is not the same need to compact them. This
command is still useful, as it will attempt to gather together any fragmented files, and
generally tidy the disc up.

Example

*Compact :0

Related commands

*CheckMap, *FileInfo, *Map

*Configure Dir

2-254

*Configure Dir

Sets the configured disc mounting so that discs are mounted at power on

Syntax

*Configure Dir

Use

*Configure Dir sets the configured disc mounting so that, for each FileCore-based filing
systems that support mounting:

● a disc gets mounted at power on

● the current directory is set to the root directory of the actual mounted disc (eg
adfs::SystemDisc.$).

NoDir is the default setting.

This command is in fact provided by the kernel; however, since it is FileCore that looks
at the configured value, it is included in this chapter for clarity.

Related commands

*Configure Drive, *Configure NoDir, *Mount

U
sin

g
 filin

g
 system

s

FileCore

2-255

*Configure NoDir

Sets the configured disc mounting so that discs are not mounted at power on.

Syntax

*Configure NoDir

Use

*Configure NoDir sets the configured disc mounting so that for each FileCore-based
filing system that supports mounting:

● nothing gets mounted at power on.

● the current directory is set to the root directory of the configured drive (eg
adfs::0.$).

This is the default setting.

This command is in fact provided by the kernel; however, since it is FileCore that looks
at the configured value, it is included in this chapter for clarity.

Related commands

*Configure NoDir, *Configure Drive, *Mount

*Dismount

2-256

*Dismount

Ensures that it is safe to finish using a disc

Syntax

*Dismount [disc_spec]

Parameters

disc_spec the name of the disc or number of the disc drive

Use

*Dismount ensures that it is safe to finish using a disc by closing all its files, unsetting
all its directories and libraries, forgetting its disc name (if a floppy disc) and parking its
read/write head. If no disc is specified, the current disc is used as the default. *Dismount
is useful before removing a particular floppy disc, and is essential if the disc is to taken
away and modified on another computer. However, the *Shutdown command is usually
to be preferred, especially when switching off the computer.

Example

*Dismount

Related commands

*Mount, *Shutdown

U
sin

g
 filin

g
 system

s

FileCore

2-257

*Drive

Sets the current drive

Syntax

*Drive drive

Parameters

drive the number of the disc drive, from 0 to 7

Use

*Drive sets the current drive if NoDir is set. Otherwise, *Drive has no meaning. The
command is provided for compatibility with early versions of ADFS.

Example

*Drive 3

Related commands

*Dir, *NoDir

*Free

2-258

*Free

Displays the total free space remaining on a disc

Syntax

*Free [disc_spec]

Parameters

disc_spec the name of the disc or number of the disc drive

Use

*Free displays the total free space remaining on a disc. If no disc is specified, the total
free space on the current disc is displayed.

Example

*Free 0
Bytes free &000C1C00= 793600
Bytes used &00006400= 25600

Related commands

*Map

U
sin

g
 filin

g
 system

s

FileCore

2-259

*Map

Displays a disc’s free space map

Syntax

*Map [disc_spec]

Parameters

disc_spec the name of the disc or number of the disc drive

Use

*Map displays a disc’s free space map. If no disc is specified, the map of the current disc
is displayed.

Example

*Map :Mydisc

Related commands

*Compact, *Free

*Mount

2-260

*Mount

Prepares a disc for general use

Syntax

*Mount [disc_spec]

Parameters

disc_spec the name of the disc or number of the disc drive

Use

*Mount prepares a disc for general use by setting the current directory to its root
directory, setting the library directory (if it is currently unset) to $.Library, and unsetting
the User Root Directory (URD). If no disc spec is given, the default drive is used. The
command is preserved for the sake of compatibility with earlier Acorn operating
systems, and ideally you should not use it.

Example

*Mount :mydisc

Related commands

*Dismount

U
sin

g
 filin

g
 system

s

FileCore

2-261

*NameDisc

Changes a disc’s name

Syntax

*NameDisc disc_spec new_name

Parameters

disc_spec the present name of the disc or number of the disc drive

new_name the new name of the disc, which may be up to 10 characters
long

Use

*NameDisc (or alternatively, *NameDisk) changes a disc’s name.

Example

*NameDisc :0 DataDisc

Related commands

None

*Title

2-262

*Title

Sets the title of the current directory

Syntax

*Title [text]

Parameters

text a text string of up to 19 characters

Use

*Title sets the title of the current directory. Titles take no place in pathnames, and should
not be confused with disc names. Spaces are permitted in *Title names.

Titles are output by some * Commands that print headers before the rest of the
information they provide: for example *Ex.

This command is not available after RISC OS 2, and you should no longer use it.

Related commands

*Cat, *Ex

U
sin

g
 filin

g
 system

s

FileCore

2-263

*Verify

Checks a disc for readability

Syntax

*Verify [disc_spec]

Parameters

disc_spec the name of the disc or number of the disc drive

Use

*Verify checks that the whole disc is readable, except for sectors that are already known
to be defective. The default is the current disc.

Use *Verify to check discs which give errors during writing or reading operations. It can
check both floppy discs and hard discs.

*Verify uses a hard disc controller ‘primitive’ routine which does not attempt retries if a
read error occurs. Occasional misreads are not abnormal in hard disc systems, and in
normal operation FileCore corrects these by retrying. *Verify may therefore
occasionally indicate an error which under normal use would not be encountered. Only
if an error is reported consistently at the same sector address should further action be
taken.

Example

*Verify 4

*Verify :Mydisc

Related commands

*Defect

*Verify

2-264

U
sin

g
 filin

g
 system

s

2-265

2

29 ADFS

Introduction
ADFS is the Advanced Disc Filing System. It is a module that, together with FileSwitch
and FileCore, provides a disc-based filing system.

Most of the facilities that you will use with ADFS are in fact provided by FileCore and
FileSwitch, and you should read the chapters on those modules (on page 2-11 and
page 2-197 respectively) in conjunction with this one.

Overview

2-266

Overview
ADFS is a module that provides the hardware-dependent part of a disc-based filing
system. It uses FileCore, and so conforms to the standards for a module that does so; see
the chapter entitled FileCore on page 2-197 for details.

It provides:

● a * Command to select itself (*ADFS)

● a * Command to format discs (*Format)

● various configure options, accessed using *Configure

● SWIs that give access to corresponding FileCore SWIs

● further SWIs to set the address of an alternative hard disc controller, and to set the
number of retries used for various operations

● the entry points and low-level routines that FileCore needs to access the disc
controllers and associated hardware.

Except for the low-level entry points and routines (which are for the use of FileCore
only) all of these are described below.

U
sin

g
 filin

g
 system

s

ADFS

2-267

Technical details

Formats
For a full summary of ‘perfect’ ADFS formats, see from page 2-199 onwards of the
chapter entitled FileCore.

Formatting discs
If you are running a site with a mixture of 1772-equipped ‘old’ machines and
710/711-equipped ‘newer’ machines, we recommend that you format all discs on the
latter.

On old machines, D and E format discs have the sectors offset between sides for speed
optimisation. The 710/711 cannot format discs in this manner, and may run slow when
accessing such discs. By formatting discs on newer machines, they will run at the same
speed on every machine, albeit some 5% slower than discs with offset sectors can run on
older machines.

Likewise, we recommend that any software you ship uses discs that do not offset sectors
between sides (ie the discs are formatted on a newer machine).

Software protection schemes
If you wish to vary the format of a disc to provide software protection, you should
follow the guidelines below. This will ensure that your discs are reliably readable and
quick to load on all RISC OS machines, current or planned.

Disc formats should conform to the specifications in the chapter entitled FileCore on
page 2-197, with some exceptions. You may:

● use different size sectors within any one track

● arbitrarily vary the ID held in the sector ID, within the limits imposed by the 1772
disc controller (but you must then use the altered ID to access that sector – see
below).

Disc Drives

2-268

You may not:

● directly access hardware

● vary the data rate or encoding method within a single track

● rely on the contents or operation of system data areas (eg 0 - &8000) or FIQ
routines

● access sectors specifying a different ID to that physically held in the sector ID.

The last point prohibits such common practices as reading a 1k sector with a 2k read (to
recover inter-sector data), or reading a track with a different head number to that in the
sector ID (which works with a 1772, but fails with the 710/711 used on machines such as
the A5000).

Disc Drives
For the purposes of formatting, the speed stability of disc drives will be assumed to be
1.5%.

Drives which fit into the following specification will never have a data overrunning:

Variation in speed: ±1.5%

Min. Write to read changeover time: 696 µS (2Meg mode) (43 bytes)
1300 µS (1Meg mode) (40 bytes)
(values for one particular drive)

Track length (nominal) 12500 bytes (2Meg mode)
6250 bytes (1Meg mode)

Assuming the drive is always running fast
gives an actual workable track length of: 12312 bytes (2Meg mode)

6156 bytes (1Meg mode)

Fit within track lengths

If evaluating the total byte usage of the given formats gives a number less than the
minimum track length, then that format fits and will be reliable.

U
sin

g
 filin

g
 system

s

ADFS

2-269

Here are the parameters of the parts of a track:

(soft) Index mark 96 bytes

Minimum gap 4 30 bytes (2Meg mode)
40 bytes (1Meg mode)

Sector overhead 62 bytes (includes gap 2 and pre-ambles):

Bytes Use
12 00-bytes (preamble)
3 A1-bytes
1 FE-ID of address field
1 Track
1 Side
1 Sector
1 Length
1 CRC 1
1 CRC 2
22 4e-gap 2
12 00-bytes (preamble)
3 A1-bytes
1 FB-ID of data field
n (data – not included in sector overhead)
1 CRC 1
1 CRC 2

62 Total

Disc Drives

2-270

Plugging the numbers in gives:

L format

Figure 29.1 Byte usage for a track: L format

D and E formats

1772-based system without index mark:

Figure 29.2 Byte usage for a track: D and E formats (no index mark)

96+42+(62+256+57)×16–57+40 = 6121 (min. track length = 6156)

minimum gap 4

remove one duplicate gap 3

number of sectors

gap 3

data bytes in a sector

sector overhead

gap 1

soft index mark (not generated on 1772-based systems)

0 +303+(62+1024+90)×5–90+40 = 6133 (minimum track length = 6156)

minimum gap 4

remove one duplicate gap 3

number of sectors

gap 3

data bytes in a sector

sector overhead

biggest gap 1

soft index mark (not generated on 1772-based systems)

U
sin

g
 filin

g
 system

s

ADFS

2-271

710/711-based system with index mark (gap 1 forced to 50 bytes by the 710/711):

Figure 29.3 Byte usage for a track: D and E formats (index mark)

F format

Figure 29.4 Byte usage for a track: F format

96+50+(62+1024+90)×5–90+40 = 5976 (minimum track length = 6156)

minimum gap 4

remove one duplicate gap 3

number of sectors

gap 3

data bytes in a sector

sector overhead

biggest gap 1

soft index mark (not generated on 1772-based systems)

96+50+(62+1024+90)×10–90+30 = 11846 (min. track length = 12312)

minimum gap 4

remove one duplicate gap 3

number of sectors

gap 3

data bytes in a sector

sector overhead

biggest gap 1

soft index mark (not generated on 1772-based systems)

Disc Drives

2-272

Minimum Gap3 size

In checking the gap 3 value assuming worst case drive speed variation:

● The drive speed variation gives 3% variation total (assuming the drive used for
formatting was 1.5% fast and for writing is 1.5% slow).

● The write-to-read times give the further slack needed which gives the minimum
value for gap3.

● The total variation in bytes is in the section of a sector from gap2 to the end of
CRC2 after the data.

This gives an overhead over the data of 40 bytes.

L format

Figure 29.5 Minimum Gap3 size: L format

D and E formats

Figure 29.6 Minimum Gap3 size: D and E formats

F format

Figure 29.7 Minimum Gap3 size: F format

Min. gap 3 = 9 + 40 = 49 (actually 57)

write-to-read time

data size (256+40) × 3%

Min. gap 3 = 32 + 40 = 72 (actually 90)

write-to-read time

data size (1024+40) × 3%

Min. gap 3 = 32 + 43 = 75 (actually 90)

write-to-read time

data size (1024+40) × 3%

U
sin

g
 filin

g
 system

s

ADFS

2-273

Worst write to read time

Working the calculations the other way round gives the worst case values for the
write-to-read time for a drive whose speed variation is 1.5%:

L format

Figure 29.8 Worst write to read time: L format

D and E formats

Figure 29.9 Worst write to read time: D and E formats

F format

Figure 29.10 Worst write to read time: F format

Worst write-read-time = (57–9)×32 = 1536 µS

µS per byte

data size

gap 3

Worst write-read-time = (90–32)×32 = 1856 µS

µS per byte

data size

gap 3

Worst write-read-time = (90–32)×16 = 928 µS

µS per byte

data size

gap 3

Hardware Limits

2-274

Hardware Limits

Controllers

These are the limit parameters for the two floppy controllers ADFS supports:

Controller 1772 710/711
Sectors per track, low 1 0
Sectors per track, high 240 255
Track, low 0 0
Track, high 240 255
Log2 (sector length), low 7 7
Log2 sector length, high 10 14
Sector number, low (formatting) 0 0
Sector number, high (formatting) 255 255
Format fill values always allowed 00-&F4, &FF 00-&FF
Formatting with ID mark optional forced
Gap3 maximum length (formatting) track length 255

Recommended formats
(These values are extracted from the 1772 data sheet)

Dens gap1 gap3 ~gap4
FM ≥16 ≥10 ≥16
MFM ≥32 ≥24 ≥16

Evaluation of ‘does it fit’ is:

Low track length – gap1 + gap3 – (secsize + SecOvrhead + gap3)×secs ≥ min. gap4

If ‘no’, does it fit using minimum gap1 and minimum gap3?

● If so, divide slack amongst gaps (including gap4); else return error

Does the side/side skew invalidate gap4?

● If so, shorten it to minimum gap4

U
sin

g
 filin

g
 system

s

ADFS

2-275

Floppy drive types supported by 710/711 driver
The range of floppy drives supported by the 82C710/82C711 driver is considerably
wider than that supported by older drivers. In general any PC/XT/AT compatible
31/2"/51/4" 40/80 track drive can be used. The following minimal requirements will
ensure optimal performance:

● Disc changed support should be available on pin 34, and should be resettable with a
step pulse.

● The drive should mask index pulses when selected but without a disc present.

● The drive should not mask index pulses whilst step pulses are being issued.

● The drive should support a ‘density in’ signal (from FDC) that is active high for
high density (≥500Kbps).

● The drive should supply media ID signals that indicate the greatest density
supported by the current drive/media.

● Drives 0/1 should be ready to use within 500mS of motor startup.

● Drives 2/3 should be ready to use within 1000mS of motor startup.

Motor on and drive select signals

The following table illustrates the combination of motor on and drive select signals
supplied for various drive selections:

Drive Selected /DS0 /DS1 /ME0 /ME1
0 L H L H
1 H L H L
2 H H H L
3 H H L L

None H H H H

Drives 2 and 3 do not result in any drive select line being asserted, but can be decoded
by an external decoder.

Drive interface signal description

2-276

Drive interface signal description
To help you understand the floppy disc drive interface, this section discusses further the
function and use of each of the interface signals.

General

All interface signals are open-collector, and therefore require a pull-up resistor of
nominally 1kΩ for 31/2" systems or 150Ω in older 51/4" systems. The pull-up should be
present in one place only – either on the drive furthest from the controller (for outputs),
or on the controller (for inputs).

Due to the nature of open collector signals no damage will occur if several outputs drive
one signal; thus it is safe, for instance, to connect ‘motor on’ to ‘Sel2’ and force motor
on true whenever Sel2 is asserted.

All signals are active (asserted) low, ie active when at 0 Volts. Inputs are only valid when
a drive is selected.

Drive Select 0, 1, 2 and 3 – Output

Used to select the drive; only one should be active at any given time. Most ‘AT’
compatible drives assume only drive select 1 will ever be asserted, since there is a
physical twist in the cable to determine the actual drive number.

Motor On – Output

Asserted to turn the drive motor on (and load the head on 51/4" drives). A period of 0.5
seconds (1 second for drives 2 and 3) is allowed before any data transfer occurs to allow
the drive motor to come up to speed.

Side1 – Output

Asserted to select the under surface of a disc

Step – Output

Asserted to step the head in the direction given by DirIn. Also used to reset
DiscChanged. A period of 15-20 ms is required to allow for head settling after any
movement.

DirIn – Output

Asserted to move the head inwards (to the centre) during head movements.

U
sin

g
 filin

g
 system

s

ADFS

2-277

WriteData – Output

Data from the controller to be written to disc.

WriteGate – Output

Qualifies WriteData. Asserted prior to and after WriteData is true to enable recording of
the data.

Density – Output

Informs the drive of the current data rate. Asserted for 500Kbps and 1Mbps operations
(1.6 and 3.2 Mbyte formats). Normally on pin2, some drives may require an inverted
signal if intended for use with PS/2 systems.

Track00 – Input

Asserted by the drive when the head is on track 0.

WriteProtect – Input

Asserted by the drive when the disc is write protected.

ReadData – Input

Data stream read from the disc.

Index – Input

Index pulses are produced every disc revolution (200mS). The 82C710/82C711 driver
uses the presence of index pulses to detect a disc in. If a drive does not support
‘DiscChanged’ then in order to function with the 82C710 /82C711 driver it must inhibit
index pulses with the drive empty; this is the normal situation. Performance is improved
if index pulses are not masked during seek or motor startup. Index pulses must be
present within 900mS (1400mS for drives 2 and 3) of asserting drive select/motor on,
otherwise the drive will be deemed to be empty.

DiscChanged – Input

This signal is normally available on pin34 or pin2 and when asserted indicates that the
disc in the selected drive has been changed. Neither the 1772 nor the 82C710/82C711
driver require DiscChanged in order to function, but give better performance if
available. The signal must never be asserted if non-functional.

Disc errors

2-278

Dependent upon drive type the disc changed signal may either be reset by issuing a step
pulse (82C710/82C711 driver) and/or by asserting the disc changed reset signal (1772
driver). If DiscChanged is reset by ‘step’, the wimp polling period is set to 1 per second;
otherwise it is set to 10 times per second.

Ready – Input

Often available on 51/4" drives, and available from drives for A440/540 series machines
on pin34. Asserted when the drive is ready for read/write operations. This feature is
required by the 1772 driver. If not present, Ready must be tied low for the driver to
function.

Disc errors
Disc errors are errors returned by the controller. The following sections list the disc error
codes returned for all controllers currently used in RISC OS computers.

1772 (floppy disc) error codes

1772 disc error codes are basically the error codes returned in the status byte of the 1772.
These are the status bits in that status byte:

Bit Name Meaning

7 FdcMotorOnBit
6 WProtBit Write protect (translated to disc write protected error)
5 WFaultBit Write fault
4 RnfBit Record not found
3 CrcBit CRC error
2 LostBit Lost data
1 Track0Bit
0 BusyBit

So, disc error 8 is a CRC error

U
sin

g
 filin

g
 system

s

ADFS

2-279

ST506 (hard disc) error codes

ST506 disc error codes are the error codes returned by the HD63463 (ST506) controller
shifted right by 2 bits, which gives:

Value Name Meaning
&01 ABT Command abort has been accepted

&02 IVC Invalid command

&03 PER Command parameter error

&04 NIN Head positioning, disc access, or drive check command before SPC
has been issued

&05 RTS TST command after SPC command

&06 NUS USELD for a selected drive has not been returned

&07 WFL Write fault (WFLT) has been detected on the ST506 interface

&08 NRY Ready signal has been negated

&09 NSC Seek complete (SCP) wasn’t returned before timeout

&0A ISE SEK, or disc access command issued during a seek

&0B INC Next cylinder address greater than number of cylinders

&0C ISR Invalid step rate: highest-speed seek specified in normal seek mode.

&0D SKE SEK or disc access command issued to drive with seek error

&0E OVR Data overrun (memory slower than drive)

&0F IPH Head address greater than number of heads

&10 DEE Error Correction Code (ECC) detected an error

&11 DCE CRC error in data area

&12 ECR ECC corrected an error

&13 DFE Fatal ECC error in data area

&14 NHT In CMPD command data mismatched from host and disc

&15 ICE CRC error in ID field (not generated for ST506)

&16 TOV ID not found within timeout

&17 NIA ID area started with an improper address mark

&18 NDA Missing address mark

&19 NWR Drive write protected

Disc errors

2-280

IDE error codes

IDE disc errors are, where possible, mapped onto a similar error from an ST506 – in
which case the name of the ST506 error is shown below. Other IDE disc errors are given
error codes outside the range used by the ST506:

Value Name Meaning

&02 IVC command aborted by controller

&07 WFL write fault

&08 NRY drive not ready

&09 NSC track 0 not found

&13 DFE uncorrected data error

&16 TOV sector id field not found

&17 NIA bad block mark detected

&18 NDA no data address mark

&20 no DRQ when expected

&21 drive busy when commanded

&22 drive busy on command completion

&23 controller did not respond within timeout

&24 unknown code in error register

710/711 (floppy disc) error codes

710/711 disc error codes are the error codes returned by the (functionally equivalent)
82C710 and 82C711 controllers, which are:

Value Meaning

&01 Fatal – controller hardware error

&02 Fatal – command timed out, drive problem

&03 Fatal – Track 0 not found, drive problem

&10 Critical – seek fault

&20 Recoverable – non specific command error

&21 Data overrun

&22 Data CRC error

&23 Sector or ID not found

&24 Missing address mark

U
sin

g
 filin

g
 system

s

ADFS

2-281

Service Calls
Service_IdentifyFormat

(Service Call &6B)

Identify disc format name

On entry

R0 = pointer to format specification string (null terminated)
R1 = &6B (reason code)

On exit

All registers preserved (if not claimed)

If claimed:
R0 preserved
R1 = 0
R2 = SWI number to call to obtain raw disc format information
R3 = parameter in R3 to use when calling disc format SWI
R4 = SWI number to call to lay down a disc structure
R5 = parameter in R0 to use when calling disc structure SWI

Use

This call is issued by a handler of discs (such as ADFS) to find how to initialise a disc to
a specified format. The format specification string is the same as the format parameter
specified in the *Format command (see page 2-313).

You should claim this call if your module recognises the format specification string as
one that you support. If you do not recognise the format – or if you don’t support disc
formats at all – you should pass the call on with all registers preserved.

For an example of a call used to obtain raw disc format information, see
DOSFS_DiscFormat (SWI &44B00) on page 2-335. Similarly, for an example of a call
used to lay down a disc structure, see DOSFS_LayoutStructure (SWI &44B01) on
page 2-338.

Service_DisplayFormatHelp (Service Call &6C)

2-282

Service_DisplayFormatHelp
(Service Call &6C)

Display list of available formats

On entry

R0 = 0
R1 = &6C (reason code)

On exit

If no error occurred whilst displaying the help:
R0, R1 preserved to pass on

If an error occurred whilst displaying the help:
R0 = pointer to error block
R1 = 0 to claim

Use

This service call is issued when the user requests help on the available formats (eg types
*Help Format). Your module should list the formats it will recognise in response to
Service_IdentifyFormat. The list should be displayed one format per line in this format:

format – description

Where format is the text as recognised by Service_IdentifyFormat, and description is a
description of the format. For example:

F - 1600K, 77 entry directories, new map, Archimedes ADFS 2.50 and above.

DOS/Q - 1.44M, MS-DOS 3.20, 3.5" high density disc

You should display the list using OS_WriteC or a derivative of that (eg OS_Write0,
OS_WriteS etc).

U
sin

g
 filin

g
 system

s

ADFS

2-283

SWI calls
ADFS_DiscOp

(SWI &40240)

Calls FileCore_DiscOp

On entry

See FileCore_DiscOp (page 2-223)

On exit

See FileCore_DiscOp (page 2-223)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This SWI calls FileCore_DiscOp (page 2-223), after first setting R8 to point to the
FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_DiscOp.

Related SWIs

FileCore_DiscOp (page 2-223)

Related vectors

None

ADFS_HDC (SWI &40241)

2-284

ADFS_HDC
(SWI &40241)

Sets the address of an alternative ST506 hard disc controller

On entry

R2 = address of alternative hard disc controller
R3 = address of poll location for IRQ/DRQ
R4 = bits for IRQ/DRQ
R5 = address to enable IRQ/DRQ
R6 = bits to enable IRQ/DRQ

On exit

—

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call sets up the address of the ST5056 hard disc controller to be used by the ADFS.
For instance, an expansion card can supply an alternative controller to the one normally
used. The controller must be an HD63463 (or compatible).

The polling and interrupt sense is done using:

LDRB Rn, [poll location]
TST Rn, [poll bits]

The IRQ/DRQ must be 1 when active.

U
sin

g
 filin

g
 system

s

ADFS

2-285

Related SWIs

None

Related vectors

None

ADFS_Drives (SWI &40242)

2-286

ADFS_Drives
(SWI &40242)

Calls FileCore_Drives

On entry

See FileCore_Drives (page 2-230)

On exit

See FileCore_Drives (page 2-230)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This SWI calls FileCore_Drives (page 2-230), after first setting R8 to point to the
FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_Drives.

Related SWIs

FileCore_Drives (page 2-230)

Related vectors

None

U
sin

g
 filin

g
 system

s

ADFS

2-287

ADFS_FreeSpace
(SWI &40243)

Calls FileCore_FreeSpace

On entry

See FileCore_FreeSpace (page 2-231)

On exit

See FileCore_FreeSpace (page 2-231)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This SWI calls FileCore_FreeSpace (page 2-231), after first setting R8 to point to the
FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_FreeSpace.

Related SWIs

FileCore_FreeSpace (page 2-231)

Related vectors

None

ADFS_Retries (SWI &40244)

2-288

ADFS_Retries
(SWI &40244)

Sets the number of retries used for various operations

On entry

R0 = mask of bits to change
R1 = new values of bits to change

On exit

R0 preserved
R1 = R0 AND entry value of R1
R2 = old value of retry word
R3 = new value of retry word

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call sets the number of retries used by writing to the retry word. The format of this
word is:

Byte Number of retries for
0 hard disc read/write sector
1 floppy disc read/write sector
2 floppy disc mount (per copy of the disc map)
3 verify after *Format, before sector is considered a defect

The new value is calculated as follows:

(old value AND NOT R0) EOR (R1 AND R0)

U
sin

g
 filin

g
 system

s

ADFS

2-289

Related SWIs

None

Related vectors

None

ADFS_DescribeDisc (SWI &40245)

2-290

ADFS_DescribeDisc
(SWI &40245)

Calls FileCore_DescribeDisc

On entry

See FileCore_DescribeDisc (page 2-234)

On exit

See FileCore_DescribeDisc (page 2-234)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This SWI calls FileCore_DescribeDisc (page 2-234), after first setting R8 to point to the
FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_DescribeDisc.

Related SWIs

FileCore_DescribeDisc (page 2-234)

Related vectors

None

U
sin

g
 filin

g
 system

s

ADFS

2-291

ADFS_VetFormat
(SWI &40246)

Vets a disc format structure for achievability with the available hardware

On entry

R0 = pointer to disc format structure to be vetted
R1 = parameter previously passed by ADFS in R2 to ImageFS_DiscFormat

(ie drive number)

On exit

R0, R1 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call vets the given disc format structure for achievability with the available
hardware. ADFS updates the disc format structure with values that it can actually
achieve with the hardware available. For example the only fill byte value available when
formatting might be 0, but the requested value may be &4E, hence 0 would be filled in
as the fill byte value.

If ADFS cannot sensibly downgrade the parameters given in the disc format structure, it
will generate an error.

This call is typically made by FileCore or by the image filing system ImageFS,
in response to ADFS calling FileCore_DiscFormat (page 2-236) or
ImageFS_DiscFormat (eg DOSFS_DiscFormat (SWI &44B00) on page 2-335)
respectively.

ADFS_VetFormat (SWI &40246)

2-292

This call is not available under RISC OS 2.

The value in R1 is used to pass enough information on the hardware on which the format
is to take place for the disc format structure to be vetted. ADFS uses the drive number
for this; other handlers of discs may pass different information if they implement a
VetFormat SWI.

Related SWIs

None

Related vectors

None

U
sin

g
 filin

g
 system

s

ADFS

2-293

ADFS_FlpProcessDCB
(SWI &40247)

For internal use only

Use

This call is for internal use only. It is not available under RISC OS 2.

ADFS_ControllerType (SWI &40248)

2-294

ADFS_ControllerType
(SWI &40248)

Returns the controller type of a drive

On entry

R0 = drive number (0 - 7)

On exit

R0 = controller type

0 ⇒ disc not present
1 ⇒ 1772
2 ⇒ 710/711
3 ⇒ ST506
4 ⇒ IDE

Flags corrupted

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call returns the controller type of the given drive.

This call is not available under RISC OS 2.

Related SWIs

None

U
sin

g
 filin

g
 system

s

ADFS

2-295

Related vectors

None

ADFS_PowerControl (SWI &40249)

2-296

ADFS_PowerControl
(SWI &40249)

Controls the power-saving features of the ADFS system

On entry

R0 = reason code:
0 ⇒ read drive spin status
1 ⇒ set drive autospindown
2 ⇒ control drive spin directly without affecting autospindown

R1 = drive
R2 = drive autospindown, if R0 = 1:

= 0 ⇒ disable autospindown and spinup drive
≠ 0 ⇒ set autospindown to (R2 × 5) seconds

or action to take, if R0 = 2:
= 0 ⇒ spin down immediately
≠ 0 ⇒ spin up immediately

On exit

R2 = drive spin status, if R0 = 0 on entry:
= 0 ⇒ drive is not spinning
≠ 0 ⇒ drive is spinning

R3 = previous value for drive autospindown, if R0 = 1 on entry

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call controls the power-saving features of the ADFS system.

U
sin

g
 filin

g
 system

s

ADFS

2-297

It can be dangerous to use this call on drives that do not fully support drive spin control.
The controllers on at least two drives tested hang up when autospindown is enabled; a
reset does not recover the situation, although a power-on reset does.

This call is not available under RISC OS 2.

Related SWIs

None

Related vectors

None

ADFS_SetIDEController (SWI &4024A)

2-298

ADFS_SetIDEController
(SWI &4024A)

Gives the IDE driver the details of an alternative controller

On entry

R2 = pointer to IDE controller
R3 = pointer to interrupt status of controller
R4 = AND with status, NE ⇒ IRQ
R5 = pointer to interrupt mask
R6 = OR into mask enables IRQ
R7 = pointer to data read routine (0 for default)
R8 = pointer to data write routine (0 for default)
R12 = pointer to static workspace

On exit

All registers preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call gives the IDE driver the details of an alternative controller.

This call is not available under RISC OS 2.

Related SWIs

None

U
sin

g
 filin

g
 system

s

ADFS

2-299

Related vectors

None

ADFS_IDEUserOp (SWI &4024B)

2-300

ADFS_IDEUserOp
(SWI &4024B)

Direct user interface for low-level IDE commands

On entry

R0 bit 0 set ⇒ reset controller, clear ⇒ process command
bits 24 - 25 = transfer direction:

00 ⇒ no transfer
01 ⇒ read (ie bit 24 set)
10 ⇒ write (ie bit 25 set)
11 reserved

R2 = pointer to parameter block for command and results
R3 = pointer to buffer
R4 = length to transfer
R5 = timeout in centiseconds (0 ⇒ use default)
R12 = pointer to static workspace

On exit

R0 = command status (0 or a disc error number)
R2, R3 preserved
R4 updated
R5 corrupted

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call provides the direct user interface for low-level IDE commands. It must not be
called in background.

U
sin

g
 filin

g
 system

s

ADFS

2-301

This call is not available under RISC OS 2.

Related SWIs

None

Related vectors

None

ADFS_MiscOp (SWI &4024C)

2-302

ADFS_MiscOp
(SWI &4024C)

Calls FileCore_MiscOp

On entry

See FileCore_MiscOp (page 2-240)

On exit

See FileCore_MiscOp (page 2-240)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This SWI calls FileCore_MiscOp (page 2-240), after first setting R8 to point to the
FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_MiscOp.

Related SWIs

FileCore_MiscOp (page 2-240)

Related vectors

None

U
sin

g
 filin

g
 system

s

ADFS

2-303

ADFS_ECCSAndRetries
(SWI &40250)

For internal use only

Use

This call is for internal use only. It is not available under RISC OS 2.

* Commands

2-304

* Commands
*ADFS

Selects the Advanced Disc Filing System as the current filing system

Syntax

*ADFS

Parameters

None

Use

*ADFS selects the Advanced Disc Filing System as the filing system for subsequent
operations. Remember that it is not necessary to switch filing systems if you use the full
pathnames of objects. For example, you can refer to NetFS objects (on a file server, say)
when ADFS is the current filing system.

Example

*ADFS

Related commands

*Net, *RAM, *ResourceFS

U
sin

g
 filin

g
 system

s

ADFS

2-305

*Configure ADFSbuffers

Sets the configured number of ADFS file buffers

Syntax

*Configure ADFSbuffers n

Parameters

n number of buffers

Use

*Configure ADFSbuffers sets the configured number of 1 Kbyte file buffers reserved for
ADFS in order to speed up operations on open files. A value of 1 sets a default value
appropriate to the computer’s RAM size; a value of 0 disables fast buffering on open
files.

Example

*Configure ADFSbuffers 8

*Configure ADFSDirCache

2-306

*Configure ADFSDirCache

Sets the configured amount of memory reserved for the directory cache

Syntax

*Configure ADFSDirCache size[K]

Parameters

size kilobytes of memory reserved

Use

*Configure ADFSDirCache sets the configured amount of memory reserved for the
directory cache. Directories are stored in the cache to save reading them from the disc;
this speeds up disc operations, and reduces disc wear. A value of 0 sets a default value
appropriate to the computer’s RAM size.

Example

*Configure ADFSDirCache 16K

U
sin

g
 filin

g
 system

s

ADFS

2-307

*Configure Drive

Sets the configured number of the drive that is selected at power on

Syntax

*Configure Drive n

Parameters

n drive number

Use

*Configure Drive sets the configured number of the drive that is selected at power on. 0–
3 correspond to floppy disc drives; 4–7 correspond to hard disc drives. Since most Acorn
computers have only one floppy disc drive and no more than one hard disc drive, the
most common values are 0 or 4.

Example

*Configure Drive 0

Related commands

*Configure Floppies, *Configure HardDiscs, *Configure FileSystem

*Configure Floppies

2-308

*Configure Floppies

Sets the configured number of floppy disc drives recognised at power on

Syntax

*Configure Floppies n

Parameters

n 0 to 4

Use

*Configure Floppies sets the configured number of floppy disc drives recognised at
power on. The default value is 1.

Example

*Configure Floppies 0

Related commands

*Configure HardDiscs

U
sin

g
 filin

g
 system

s

ADFS

2-309

*Configure HardDiscs

Sets the configured number of ST506 hard disc drives recognised at power on

Syntax

*Configure HardDiscs n

Parameters

n 0 to 2

Use

*Configure HardDiscs sets the configured number of ST506 hard disc drives recognised
at power on. These disc drives are the standard ones fitted to early models of RISC OS
computers (eg the Archimedes 300, 400 and 500 series, and the A3000). More recent
models (eg the A5000) use IDE discs; for such models, you should set the configured
number of ST506 drives to zero, and use the *Configure IDEDiscs command to set the
number of hard discs.

The default value depends on the model of computer (for example, an Archimedes 305
is not supplied with a hard disc, so the value is 0). Note however that a delete power-on
will not preserve this default value, but will set it to zero.

Example

*Configure HardDiscs 2

Related commands

*Configure Floppies, *Configure IDEDiscs

*Configure IDEDiscs

2-310

*Configure IDEDiscs

Sets the configured number of IDE hard disc drives recognised at power on

Syntax

*Configure IDEDiscs n

Parameters

n 0 to 2

Use

*Configure IDEDiscs sets the configured number of IDE hard disc drives recognised at
power on. These disc drives are the standard ones fitted to more recent models of
RISC OS computers (eg the A5000). Early models (eg the Archimedes 300, 400 and 500
series, and the A3000) use ST506 discs; for such models, you should set the configured
number of IDE drives to zero, and use the *Configure HardDiscs command to set the
number of hard discs.

The default value depends on the model of computer. Note however that a delete
power-on will not preserve this default value, but will set it to zero.

Example

*Configure IDEDiscs 2

Related commands

*Configure Floppies, *Configure HardDiscs

U
sin

g
 filin

g
 system

s

ADFS

2-311

*Configure Step

Sets the configured step rate of one or all floppy disc drives.

Syntax

*Configure Step n [drive]

Parameters

n step time in milliseconds

drive drive number (0 to 3)

Use

*Configure Step sets the configured step rate of one or all floppy disc drives to n, the
step time in milliseconds. If the drive parameter is omitted, the step rate is set for all
floppy disc drives. This command should only be used with non-Acorn disc drives.

The setting of this value affects disc performance. The optimum setting will vary, and is
not necessarily the shortest step time. The default value is 3 milliseconds. It is possible
to set values of 2, 3, 6 and 12 milliseconds: if other numbers are supplied, the request
will be rounded up to the nearest step available.

Limitations of 710/711 controllers

Due to limitations in the 710/711 controllers it is not always possible to set exactly the
step rate configured. The following table shows the configured and actual rates used for
various densities:

Actual 710/711 step rate (ms)
Configured step rate Single Double Double+ Quad Octal

2 2 2 1.7 2 2
3 4 4 3.3 3 3
6 6 6 6.7 6 6

12 26 26 25.0 12 8

In single and double density modes, selection of the 12mS step rate actually results in a
26mS rate being used; this is intentional to support older 40/80 track 51/4" discs. At octal
density it is not possible to step at 12mS; this is a limitation of the hardware, but should
not cause problems since drives capable of supporting octal density can normally be
stepped at 2 or 3 ms rates.

*Configure Step

2-312

The limitations are because the step rates provided by the 710/711 controllers depend on
the data clock rate selected. Before every command ADFS calls a routine to check the
selected clock rate against the selected data rate and the configured step rate, and hence
to determine whether the step rate needs first to be altered.

Example

*Configure Step 3

U
sin

g
 filin

g
 system

s

ADFS

2-313

*Format

Prepares a new floppy disc for use, or erases a used disc for re-use

Syntax

*Format drive [format [disc_name]] [Y]

Parameters

drive the number of the disc drive, from 0 to 3

format the type of format required, selected from:

F 1.6M RISC OS 3 77-entry directories, new map
E 800K RISC OS 77-entry directories, new map
D 800K Arthur 1.2 77-entry directories, old map
L 640K all ADFS 47-entry directories, old map

DOS/Q 1.44M MS-DOS 3.20 double sided HD 31/2" disc
DOS/M 720K MS-DOS 3.20 double sided 31/2" disc
DOS/H 1.2M MS-DOS 3 double sided HD 51/4" disc
DOS/N 360K MS-DOS 2, 3 double sided 31/2", 51/4" disc
DOS/P 180K MS-DOS 2, 3 single sided 51/4" disc
DOS/T 320K MS-DOS 1, 2, 3 double sided 51/4" disc
DOS/U 160K MS-DOS 1, 2, 3 single sided 51/4" disc

Atari/M 720K Atari ST double sided 31/2" disc
Atari/N 360K Atari ST single sided 31/2" disc

disc_name the name to be given to the disc

Y no prompt for confirmation

Use

*Format prepares a new floppy disc for use, or erases a used disc for re-use.

Early models of RISC OS computers (eg the Archimedes 300, 400 and 500 series, and
the A3000) do not have the disc drives and controllers necessary to use DOS/H, DOS/Q
and F formats. RISC OS 2 only supports L, D and E formats. Newer models of
RISC OS 3 computers (eg the A5000) can use all the above formats.

The default is to use F format if possible; otherwise E format is used. These formats
offer improved handling of file fragmentation on the disc and therefore do not need to be
periodically compacted (see the *Compact command).

*Format

2-314

Examples

*Format 0 Formats to default format

*Format 0 L Formats the disc in drive 0 for use with ADFS on
the BBC Master range of computers

Related commands

*Compact

U
sin

g
 filin

g
 system

s

2-315

2

30 RamFS

Introduction
RamFS is the RAM Filing System. It is a module that, together with FileSwitch and
FileCore, provides a RAM-based filing system.

Most of the facilities that you will use with RamFS are in fact provided by FileCore and
FileSwitch, and you should read the chapters on those modules (on page 2-11 and
page 2-197 respectively) in conjunction with this one.

Overview

2-316

Overview
RamFS is a module that provides the hardware-dependent part of a RAM-based filing
system. It uses FileCore, and so conforms to the standards for a module that does so; see
the chapter entitled FileCore on page 2-197 for details.

It provides:

● a * Command to select itself (*RamFS)

● SWIs that give access to corresponding FileCore SWIs

● the entry points and low-level routines that FileCore needs to access the
RAM-based filing system.

Except for the low-level entry points and routines (which are for the use of FileCore
only) all of these are described below.

U
sin

g
 filin

g
 system

s

RamFS

2-317

SWI calls
RamFS_DiscOp

(SWI &40780)

Calls FileCore_DiscOp

On entry

See FileCore_DiscOp (page 2-223)

On exit

See FileCore_DiscOp (page 2-223)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This SWI calls FileCore_DiscOp (page 2-223), after first setting R8 to point to the
FileCore instantiation private word for RamFS.

This call is functionally identical to FileCore_DiscOp.

Related SWIs

FileCore_DiscOp (page 2-223)

Related vectors

None

RamFS_Drives (SWI &40782)

2-318

RamFS_Drives
(SWI &40782)

Calls FileCore_Drives

On entry

See FileCore_Drives (page 2-230)

On exit

See FileCore_Drives (page 2-230)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This SWI calls FileCore_Drives (page 2-230), after first setting R8 to point to the
FileCore instantiation private word for RamFS.

This call is functionally identical to FileCore_Drives.

Related SWIs

FileCore_Drives (page 2-230)

Related vectors

None

U
sin

g
 filin

g
 system

s

RamFS

2-319

RamFS_FreeSpace
(SWI &40783)

Calls FileCore_FreeSpace

On entry

See FileCore_FreeSpace (page 2-231)

On exit

See FileCore_FreeSpace (page 2-231)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This SWI calls FileCore_FreeSpace (page 2-231), after first setting R8 to point to the
FileCore instantiation private word for RamFS.

This call is functionally identical to FileCore_FreeSpace.

Related SWIs

FileCore_FreeSpace (page 2-231)

Related vectors

None

RamFS_DescribeDisc (SWI &40785)

2-320

RamFS_DescribeDisc
(SWI &40785)

Calls FileCore_DescribeDisc

On entry

See FileCore_DescribeDisc (page 2-234)

On exit

See FileCore_DescribeDisc (page 2-231)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This SWI calls FileCore_DescribeDisc (page 2-231), after first setting R8 to point to the
FileCore instantiation private word for RamFS.

This call is functionally identical to FileCore_DescribeDisc.

Related SWIs

FileCore_DescribeDisc (page 2-231)

Related vectors

None

U
sin

g
 filin

g
 system

s

RamFS

2-321

* Commands
*Configure RamFsSize

Sets the configured amount of memory reserved for the RAM filing system

Syntax

*Configure RamFSSize mK|n

Parameters

mK number of kilobytes of memory reserved

n number of pages of memory reserved; n ≤ 127

Use

*Configure RamFsSize sets the configured amount of memory reserved for the RAM
Filing System to use (when the RAMFS module is present) after the next hard reset. The
default value is 0, which disables the RAM filing system.

Example

*Configure RamFSSize 128K

Related commands

None

Related SWIs

OS_ChangeDynamicArea (page 1-384), OS_ReadRAMFsLimits (page 1-390)

Related vectors

None

*Ram

2-322

*Ram

Selects the RAM Filing System as the current filing system

Syntax

*Ram

Parameters

None

Use

*Ram selects the RAM Filing System as the filing system for subsequent operations.
Remember that it is not necessary to switch filing systems if you use the full pathnames
of objects. For example, you can refer to NetFS objects (on a file server, say) when
RamFS is the current filing system.

Memory must have previously been reserved for the RAM filing system; the simplest
ways to do so are to use the command *Configure RamFSSize, or to use the Task
Manager from the desktop.

Example

*Ram

Related commands

*ADFS, *Configure RamFSSize, *Net, *ResourceFS

U
sin

g
 filin

g
 system

s

2-323

2

31 DOSFS

Introduction
DOSFS is an image filing system used to provide DOS disc access from RISC OS.

The description that follows both describes how image filing systems work, and how
DOSFS itself works.

DOSFS is not available in RISC OS 2.

Overview

2-324

Overview
The diagram below shows how DOSFS communicates with other modules in
RISC OS 3 to provide the full functionality of an image filing system:

Figure 31.1 Interactions of DOSFS with other filing systems

The names identify the component parts. The lines identify links between them:

● Link a is the standard link from FileSwitch to FileCore.

● Link b is the standard link between FileCore and ADFS.

● Link c is a link from FileSwitch to an image filing system – in this case DOSFS.

● Link d is a link between a host filing system – in this case FileCore – and an image
filing system – in this case DOSFS.

● Link e is a link between an image filing system – in this case DOSFS – and a
handler of discs – in this case ADFS.

Components of an image filing system
There are three links to DOSFS shown in the diagram above. An image filing system can
be considered as having three parts, each of which handles one of the links:

● the Image Handler (uses link c)

● the Identifier (uses link d)

● the Formatter (uses link e)

In practice it is best to have these parts in one module as this ensures a complete,
working, system is loaded, rather than a partial system. Also, having the parts in one
module saves a small quantity of space, due to the sharing of the module overhead, and,
possibly, of code.

FileSwitch

FileCore DOSFS (an image filing system)

ADFS (a handler of discs)

a c

d

b e

U
sin

g
 filin

g
 system

s

DOSFS

2-325

The Image Handler

This is the most complex component of an image filing system. Its job is to manage files
held within an image file (or partition).

The image filing system’s image handler communicates only with FileSwitch, accessing
images as files. FileSwitch tells the image handler when it has found an image file which
is relevant to the image handler. FileSwitch makes requests to the image handler for it to
access files and directories held within the image file. The image handler then translates
these requests into file access requests which it makes to FileSwitch, which then passes
these requests on to the relevant filing system using standard calls. Thus a filing system
need not provide any special support for image filing systems to be able to hold image
files.

Any image handler must identify itself to FileSwitch as such. This process is similar to
that done by a native filing system, but the number of calls the image handler needs to
support is fewer, the rest of the work being handled by FileSwitch.

The Identifier

This part of an image filing system is used to identify the format of a disc. It does so by
checking an image’s format and contents against all the formats of which it knows.

The request to check an image is made by issuing a service call. If the image filing
system’s identifier recognises the image, it claims the service call; if not it passes it on.
The issuer of the service call waits for its return. An unclaimed service call indicates the
image wasn’t recognised, and so the issuer can complain about the disc being
unreadable.

The Formatter

This part of an image filing system is used to help format a disc, which is done by other
sections of the system.

Before a disc can be formatted, the user has to specify a format. The image filing
system’s formatter responds to service calls to help this process. The service calls – one
for desktop menu format selection, and one for * Command format selection – are used
to identify parameters defining a format. These parameters are in the form of two SWI
numbers – both provided by the formatter – with parameters to be passed to them.

The first of these SWIs is called by the disc handler to negotiate a physical format that is
both achievable by the disc handler, and acceptable to the image filing system. Once the
disc handler has formatted the disc it then calls the second SWI, with which the
formatter lays out the structure of an empty disc.

Points to note

2-326

Points to note
Each module involved in the system only needs to know how to handle a small part of
the whole system. For example, the DOSFS image handler doesn’t need to know how to
identify or format a disc for itself, nor does it need to know how to drive the ADFS disc
driver – all it needs to know is how to access a file. Similarly, FileSwitch need make no
distinction between discs in a foreign format and image files – they are both presented to
FileSwitch as files of a given type.

Once one image filing system is in place, other image filing systems may easily be
added to the system by soft loading them.

There is no reason why a single filing system cannot host image filing systems by
providing the combined functionality that FileCore and ADFS provide to image filing
systems. In such a case, the structure would appear:

Figure 31.2 Interactions of complete image filing system with other filing systems

Writing image filing systems and host filing systems
If you are writing either an image filing system or a host filing system, you may use this
chapter as an example of how an image filing system must behave, and the interfaces it
must support; and as pointers to how a host filing system should interact with an image
filing system. You should also see the chapter entitled Writing a filing system on
page 2-531.

FileSwitch

filing system image filing system

a c

d, e

U
sin

g
 filin

g
 system

s

DOSFS

2-327

Technical Details

The Image Handler
Because DOSFS’s image handler only communicates with FileSwitch, it does not offer
any direct interfaces to programmers.

For details of the entry points that an image handler must make available, see the chapter
entitled Writing a filing system on page 2-531.

The Identifier
Perhaps the best way to see how the identifier works is an example. This follows through
what happens when a user clicks on ADFS’s floppy disc icon with a DOS disc in the
drive.

1 The user clicks on the floppy disc icon.

2 ADFSFiler (the module running the floppy disc icon) sends the Filer (the module
running directory viewers) a Filer_OpenDir message for directory adfs::0.$.

3 The Filer first checks to see whether it has already got adfs::0.$ open, and, if it
hasn’t, it creates an internal structure for it and then calls OS_GBPB 10 (read
directory entries and information).

4 FileSwitch receives the OS_GBPB 10 with the name ‘adfs::0.$’ and does an
FSEntry_File 5 on ‘:0.$’ to adfs:

5 adfs: uses the FileCore module to process requests from FileSwitch. FileCore,
which knows about which discs are in which drives, does not yet know what sort of
disc is in drive :0 and so makes a request to the ADFS module to mount the disc.

6 ADFS identifies what physical format the disc has (density, sectors per track, sector
numbering etc) and returns to FileCore.

7 FileCore, having had the physical format identified by ADFS, makes a
Service_IdentifyDisc quoting the disc record as filled in by ADFS.

8 DOSFS receives the Service_IdentifyDisc, updates the disc record and makes
various reads and tries to match the answers with valid DOS disc formats. If a valid
format is found it claims the service, if no valid format is found it passes the service
on. In this example the service will be claimed and DOSFS will pass back the disc
record (which includes the disc name and disc cycle id) and a file type to associate
with the disc’s contents.

9 FileCore receives the claimed service and records in its own internal drive record
that the disc in that drive has the given name and file type. FileCore then returns
back to FileSwitch that :0.$ is a file of the type returned to FileCore by DOSFS.

Disc cycle ids

2-328

10 FileSwitch notices that :0.$ is a file of a given type and looks up that type in its table
of registered image filing systems. FileSwitch opens adfs::0.$ as a file and notifies
DOSFS that it has a new image to handle.

(If the file type isn’t found because DOSFS hasn’t registered itself with FileSwitch,
FileSwitch returns a ‘Disc not understood – has it been formatted?’ error.)

11 DOSFS receives the notification of an image it has to handle, records internally the
FileSwitch handle it was quoted and returns its own handle back at FileSwitch.

12 FileSwitch records against adfs::0.$ the DOSFS handle DOSFS gave it.

13 FileSwitch calls the DOSFS entry point ImageEntry_Func 15 (read directory entries
and information), quoting the DOSFS handle for adfs::0.$ and the name of the
directory of ‘’.

14 DOSFS enumerates ‘’ (the root directory of the image) and returns to FileSwitch.

15 FileSwitch filters out any unwanted entries and returns to ADFSFiler.

16 ADFSFiler displays the directory viewer.

Points to note
● The host filing system (ie FileCore) issues the service call Service_IdentifyDisc

(see page 2-220) to request that image filing systems identify a disc.

● When an image filing system (eg DOSFS) identifies the disc, it fills in the disc
name, disc cycle id and other details in the disc record, and then claims the service
call, returning to the host filing system.

● Each image filing system has one (or more) filetypes allocated to it which identifies
how the contents of a file of that type should be interpreted as a directory tree with
files as leaves.

Disc cycle ids
The host filing system (eg FileCore) keeps two pieces of information about a disc which
it uses to identify the same disc at a later time. These are the disc’s name and its disc
cycle id. The name is the public bit of the identification and is what the user sees; the
disc cycle id is used to distinguish between different discs with the same name. Clearly
the host filing system needs to be kept abreast of any changes made to the disc’s name or
disc cycle id.

The only way the disc name can be changed is the FileSwitch call OS_FSControl 50 (see
page 2-135), in which case FileSwitch calls an entry point in the host filing system to
inform it of the change.

The host filing system can request image filing systems, where appropriate, to update a
disc cycle id when the disc is next altered. It does so by calling OS_FSControl 51 (see
page 2-136). This is so that another machine isn’t misled into believing that an altered

U
sin

g
 filin

g
 system

s

DOSFS

2-329

disc is unchanged, and – for instance – using invalid cached data. It is the responsibility
of all image filing systems to flush new disc cycle ids to media by calling OS_Args 255
(see page 2-62), and to inform their host filing system whenever a disc cycle id has
changed for whatever reason using OS_Args 8 (see page 2-59).

If there is a change to the disc cycle id and the host filing system is not informed, then it
will refuse to match that disc with its internal record, resulting in continuous ‘Please
insert disc discname’ messages whenever the user tries to access files on the disc. This is
clearly undesirable. So, to summarise:

For a host filing system

● Store away the disc name and disc cycle id to rematch ‘new’ discs against old ones.

● Respond to the FSEntry_Func 31 and FSEntry_Args 10 entry points to keep the
disc name and disc cycle id up to date.

● Call OS_FSControl 51 when a disc might have been removed from the drive since
it was last accessed.

For an image filing system

● Call OS_Args 8 whenever you update a disc cycle id.

● Respond to the ImageEntry_Func 32 entry point to keep the disc cycle id up to date.

Storing disc cycle ids

Depending on an image filing system’s disc format, there may or may not be room to fit
in an explicit disc cycle id somewhere on the disc. For discs where there is room the disc
cycle id should simply be incremented with each update. For discs where there isn’t
room, a disc cycle id may be some derivative of the structures on the disc, such as a
checksum of the free space map. Clearly there’s not much that can be done in this
situation to update the disc cycle id when requested to, but since it is likely to change
anyway with each update, this should not be a problem.

The formatter
The formatter is best explained by following through the process. In this example, the
host filing system is FileCore/ADFS; other host filing systems should use exactly the
same method.

Selecting a format

There are two ways of selecting a format in RISC OS:

1 Specifying the format from the command line.

2 Choosing it from an icon bar menu.

The formatter

2-330

Specifying the format from the command line

Clearly it would be useful for the user to know which formats are available. If the user
types *Help Format, ADFS displays help on its own formats, and then issues the
service call Service_DisplayFormatHelp (see page 2-282). This is passed round all
image filing systems, each of which adds its own help text to that already displayed.

To format a disc from the command line, the user calls ADFS’s *Format command:

*Format drive [format [disc_name]] [Y]

ADFS then issues the service call Service_IdentifyFormat (see page 2-281), which
passes the format around image filing systems. If an image filing system recognises
the format, it claims the call. It also returns four values:

● The number of a SWI it provides that will specify the physical format of the disc.
For DOSFS, this SWI is DOSFS_DiscFormat; other image filing systems should
use the same naming scheme.

● A parameter to pass to that SWI, used to specify the format.

● The number of a SWI it provides that will layout the logical structure of an empty
disc onto an image file (which may be an entire disc). For DOSFS, this SWI is
DOSFS_LayoutStructure; other image filing systems should use the same naming
scheme.

● A parameter to pass to that SWI, used to specify the structure.

Choosing the format from an icon bar menu

To format a disc from the desktop, the user chooses a format from the Format submenu
of the ADFSFiler’s floppy disc icon bar menu. The ADFSFiler issues the service call
Service_EnumerateFormats (see page 2-504). This is passed round all image filing
systems, each of which adds its available formats to a linked list of blocks. Each block
specifies a single format, and contains its menu text, its help text, and some flags. These
entries are used to display the menu, and to provide help on it. But each block also
contains the same four values as are returned by Service_IdentifyFormat, thus once a
format has been chosen, ADFSFiler can then make them available to ADFS for the next
stage of the process.

Whichever way the format has been selected, the rest of the process is identical. We
shall assume that a DOSFS format has been selected, but the process ought to be
identical for other image filing systems.

Negotiating a physical format

Once a DOSFS format has been selected, ADFS calls DOSFS_DiscFormat (see
page 2-335), the number of which was obtained from Service_IdentifyFormat, or from
Service_EnumerateFormats. In doing so, it passes DOSFS two values:

U
sin

g
 filin

g
 system

s

DOSFS

2-331

● The number of a SWI it provides that will vet the disc format for achievability with
the available hardware. For ADFS, this SWI is ADFS_VetFormat; other handlers of
discs should use the same naming scheme.

● A parameter to pass to that SWI, typically used to identify the drive.

DOSFS fills in a disc format structure with the ‘perfect’ parameters for the specified
format, taking no account of the abilities of the available hardware that will have to
perform the format. Once filled in, DOSFS calls ADFS_VetFormat (see page 2-291) to
check the format structure for achievability on the available hardware. ADFS may
generate an error if the format differs widely from what can be achieved; alternatively it
may alter the format structure to the closest match that can be achieved.
ADFS_VetFormat then returns to DOSFS, which checks whether the format block – as
updated – is still an adequate match for the desired format. If it is, DOSFS_DiscFormat
finally returns to ADFS; otherwise it generates an error.

We recommend that image filing systems and handlers of discs only go through one
cycle of vetting, as otherwise an infinite loop may ensue.

Formatting the disc

ADFS now has a disc format structure that contains parameters that are both achievable,
and satisfactory to DOSFS.

ADFS physically formats and verifies the disc, either by using the *Format command, or
by the desktop formatter. Both methods use ADFS_DiscOp (see page 2-283) to write
and verify tracks. A bad block list is constructed.

The disc then gets opened as a FileSwitch file by whatever is organising the format
(*Format or the desktop formatter).

Laying out the logical structure

Finally, ADFS calls DOSFS_LayoutStructure to layout the logical structure of an empty
disc onto the image file opened by FileSwitch – which is, in fact, the whole disc.

Notes

You can also use DOSFS_LayoutStructure to layout a partition in an image file that is
only part of a disc.

Much of the information supplied and managed by one module and used by another is
quite long. Because of this, an RMTidy operation is very likely to break the formatting
subsystem.

SWI numbers in the formatting subsystem may be passed in either X or non-X form, and
the receiver should make no assumption about which form it has been given.

Summary of responsibilities

2-332

Summary of responsibilities

FileSwitch is responsible for:
● noticing when an image file needs to be opened

● opening it and redirecting the user’s request to the relevant image filing system.

FileCore is responsible for:
● organising the identification of a disc whose logical structure is, as yet, unidentified

● faking the entire contents of that disc to be a file of the required type – if an image
filing system recognises it – and storing the name of that disc against it

● identifying its own discs and managing the logical structure of them.

ADFS is responsible for:
● identifying the physical format of a disc

● laying down a physical format on a disc

● reading and writing to a disc

● verifying a disc

● organising the formatting and verifying of a disc from the command line.

An image filing system (eg DOSFS) is responsible for:
● managing the logical structure of an image file given its file handle

● identifying a particular disc as being one of its own when requested to do so

● specifying lists of its own formats for the ADFSFiler menu

● identifying a command line format identifier as one of its own

● constructing a physical format description record for one of its own formats

● laying down a logical structure into a file for one of its own formats.

ADFSFiler is responsible for:
● organising the menu selection of a disc format and organising a format to that

specification

● organising the verification of a disc to a given specification.

Filename mapping
Filenames are mapped between RISC OS and DOS filenames as follows:

U
sin

g
 filin

g
 system

s

DOSFS

2-333

From RISC OS to DOS

The RISC OS filename is truncated to 8 characters. Some characters having special
meaning are changed:

RISC OS DOS
?
? #
+ &
= @
; %
< $
> ^

Note that the first mapping shown above is unlikely to occur in practice, since ‘#’ is a
wild card in RISC OS, and ‘?’ a wildcard in DOS. In practice, we recommend that you
use alphanumeric filenames where possible.

Filename extensions

DOSFS provides the *DOSMap command (page 2-342) with which you can set up
mappings between RISC OS filetypes and DOS filename extensions.

When transferring a file to DOS, the RISC OS filetype is checked against any that have
been registered using *DOSMap; if there is a match the DOS file is given the
corresponding filename extension.

From DOS to RISC OS

If the DOS filename has an extension, the separator is changed from ‘.’ to ‘/’. Characters
having special meaning are changed, as above. RISC OS is then passed the filename,
concatenated with the (changed) separator and extension. This may be up to 12
characters in total; the *Configure Truncate command (page 2-153) controls how
RISC OS copes with this. By default, filing systems will typically handle this from the
command line or in program interfaces, but their desktop filers will truncate the names.

Setting file types

When transferring a file to RISC OS, the DOS filename extension is checked against
any that have been registered using *DOSMap; if there is a match the RISC OS file is
given the corresponding file type. Otherwise the file type is set to ‘DOS’ (&FE4).

SWI numbering

2-334

SWI numbering
Under RISC OS 3 (version 3.00) DOSFS had a SWI chunk base number of &41AC0; all
subsequent versions have a SWI chunk base number of &44B00. If you are writing
software that calls DOSFS_DiscFormat or DOSFS_LayoutStructure (the only two SWIs
present in 3.00), and wish it to work under RISC OS 3 (version 3.00), you must either
call the SWIs by name, using OS_SWINumberFromString (page 1-474) to convert the
name at run time; or you must call the SWIs by different numbers depending on which
version of RISC OS you are running under.

An alternative is to refuse to run under RISC OS 3 (version 3.00), giving a suitable error.

Warning: possible data corruption
There is a bug in DOSFS which can cause data corruption under the following
circumstances:

● You write < 256 bytes to the start of a cluster.

(A cluster is a technical term used in MS-DOS for a group of sectors, the number of
which is format dependent. Note that files always start at the start of a cluster.)

● The last write before closing a file is later in the same cluster.

There are two possible workrounds:

1 If writing < 256 bytes that may be at the start of a cluster, use OS_Args 255
(page 2-62) to flush the data to disc before any subsequent writes.

2 Always build data in structures of > 256 bytes before writing it.

U
sin

g
 filin

g
 system

s

DOSFS

2-335

SWI Calls
DOSFS_DiscFormat

(SWI &44B00)

Fills in a disc format structure with parameters for the specified format

On entry

R0 = pointer to disc format structure to be filled in
R1 = SWI number to call to vet disc format (eg ADFS_VetFormat)
R2 = parameter in R1 to use when calling vetting SWI
R3 = format specifier

On exit

R0 - R3 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call fills in the disc format structure pointed to by R0 with the ‘perfect’ parameters
for the specified format, taking no account of the abilities of the available hardware that
will have to perform the format. Once filled in, this SWI calls the vetting SWI to check
the format structure for achievability on the available hardware. The vetting SWI may
generate an error if the format differs widely from what can be achieved; alternatively it
may alter the format structure to the closest match that can be achieved. The vetting SWI
then returns to this SWI, which checks whether the format block – as updated by the
vetting SWI – is still an adequate match for the desired format. If it is, this SWI returns
to its caller; otherwise it generates an error.

DOSFS_DiscFormat (SWI &44B00)

2-336

The following format specifiers are recognised:

Value Meaning
0 DOS/Q 1.44M MS-DOS 3.20 double sided
1 DOS/M 720K MS-DOS 3.20 double sided
2 DOS/H 1.2M MS-DOS 3 double sided
3 DOS/N 360K MS-DOS 2, 3 double sided
4 DOS/P 180K MS-DOS 2, 3 single sided
5 DOS/T 320K MS-DOS 1, 2, 3 double sided
6 DOS/U 160K MS-DOS 1, 2, 3 single sided

7 Atari/M 720K Atari double sided
8 Atari/N 360K Atari single sided

The returned disc format structure contains the following information:

Offset Length Meaning
0 4 Sector size in bytes (which will be a multiple of 128)
4 4 Gap1 side 0
8 4 Gap1 side 1
12 4 Gap3
16 1 Sectors per track
17 1 Density:

1 single density (125Kbps FM)
2 double density (250Kbps FM)
3 double+ density (300Kbps FM)

(ie higher rotation speed double density)
4 quad density (500Kbps FM)
8 octal density (1000Kbps FM)

18 1 Options:
bit 0 1 index mark required
bit 1 1 double step
bits 2-3 0 interleave sides

1 format side 1 only
2 format side 2 only
3 sequence sides

bits 4-7 reserved – must be 0
19 1 Start sector number on a track
20 1 Sector interleave
21 1 Side/side sector skew (signed)
22 1 Track/track sector skew (signed)
23 1 Sector fill value
24 4 Number of tracks to format (ie cylinders/drive: normally 80)
28 36 Reserved – must be zero

U
sin

g
 filin

g
 system

s

DOSFS

2-337

This structure tells you how to format a disc. Note that it differs from that used in
FileCore_DiscOp to actually format a track (see page 2-226). The differences are
because the DiscOp structure only specifies the format of a single track.

Under RISC OS 3 (version 3.00) this SWI had the number &41AC0.

Related SWIs

ADFS_VetFormat (page 2-291), FileCore_DiscFormat (page 2-236)

Related vectors

None

DOSFS_LayoutStructure (SWI &44B01)

2-338

DOSFS_LayoutStructure
(SWI &44B01)

Lays out into the specified image a set of structures for its format

On entry

R0 = structure specifier
R1 = pointer to list of bad blocks (terminated by –1)
R2 = pointer to disc name (null terminated)
R3 = file handle of image

On exit

—

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call lays out in the specified image all necessary structures to have a valid, empty,
disc. It can be used:

● to layout a structure on a blank, formatted disc (in which case the specified image
should be the whole disc image)

● to layout a partition in a file on a disc that has already been formatted (for example
for the PC emulator).

U
sin

g
 filin

g
 system

s

DOSFS

2-339

The following structure specifiers are recognised:

Value Meaning
0 DOS/Q 1.44M MS-DOS 3.20 double sided
1 DOS/M 720K MS-DOS 3.20 double sided
2 DOS/H 1.2M MS-DOS 3 double sided
3 DOS/N 360K MS-DOS 2, 3 double sided
4 DOS/P 180K MS-DOS 2, 3 single sided
5 DOS/T 320K MS-DOS 1, 2, 3 double sided
6 DOS/U 160K MS-DOS 1, 2, 3 single sided

7 Atari/M 720K Atari double sided
8 Atari/N 360K Atari single sided

If the given image format has no option to store a disc name then this parameter should
be ignored.

The bad block list should be presented as an array of bad block addresses. Each address
is four bytes long. The array is terminated by a –1 entry.

It is assumed that R0 gives enough information for the format – it may be that R0
contains many bit fields or points to a block of information – the choice is up to the
image filing system module.

The value in R0 is used to pass enough information to specify the disc structure. DOSFS
uses a simple table index for this; other image filing systems may pass different
information (using a pointer if necessary) for their LayoutStructure SWI.

Under RISC OS 3 (version 3.00) this SWI had the number &41AC1.

Related SWIs

None

Related vectors

None

* Commands

2-340

* Commands
*CopyBoot

Copies the boot block from one MS-DOS floppy disc over the boot block of another

Syntax

*CopyBoot source_drive dest_drive

Parameters

source_drive the number of the source floppy drive (0 to 3)

dest_drive the number of the destination floppy drive (0 to 3)

Use

*CopyBoot copies the boot block from one MS-DOS floppy disc over the boot block of
another.

DOSFS currently writes an MS-DOS 3.30 boot-block onto discs that it formats. If you
wish to use a different boot block you need a floppy disc containing that boot block
(from another system). You can then use this command to overwrite the MS-DOS 3.30
boot-block with your other boot block.

DOSFS does not place the system files on a disc, so it cannot be used to boot-strap an
MS-DOS system or the PC-Emulator. To make a DOSFS disc bootable you need to use
this command to copy a bootable boot block to the disc, and also need to copy a suitable
set of system files to the disc.

Example

*CopyBoot 0 0 Copies the boot block from one MS-DOS floppy disc to
another, using only drive 0. You will be prompted to change
discs when necessary.

Related commands

None

Related SWIs

None

U
sin

g
 filin

g
 system

s

DOSFS

2-341

Related vectors

None

*DOSMap

2-342

*DOSMap

Specifies a mapping between an MS-DOS extension and a RISC OS file type

Syntax

*DOSMap [MS-DOS_extension [file_type]]

Parameters

MS-DOS_extension An MS-DOS file extension of up to three characters

file_type a number (in hexadecimal by default) or text description of
the file type to be mapped. The command *Show
File$Type* displays a list of valid file types.

Use

*DOSMap specifies a mapping between an MS-DOS extension and a RISC OS file
type. Any MS-DOS file with the given extension will be treated by RISC OS as having
the given file type, rather than being of type ‘DOS’.

If the only parameter given is an MS-DOS extension, then the mapping (if any) for that
extension is cancelled. If no parameter is given, then all current mappings are listed.

The mappings are only retained until the next reset.

Example

*DOSMap TXT Text Treat all files with an MS-DOS ‘TXT’ extension as RISC OS
Text files. For example, they will have Text file icons, and
load into a text editor when double-clicked on.

Related commands

None

Related SWIs

None

Related vectors

None

U
sin

g
 filin

g
 system

s

2-343

2

32 NetFS

Introduction
The NetFS is a filing system that allows you to access and use remote file server
machines, using Acorn’s Econet network. In common with other filing systems it uses
the FileSwitch module, and so when you are using the NetFS you can use any of the
commands that FileSwitch provides.

The NetFS module takes the commands that you give to it, either directly or via
FileSwitch, and converts them to file server commands. These commands are then sent
to the file server using the standard protocol of Econet. The file server then acts on the
files or directories that it stores.

Much of the above is transparent to the user, and in general to use file servers you do not
need to know file server protocols, or how data is sent over the Econet. For advanced
work, you can communicate directly with file servers. If you do need to know more
about Econet and file server protocols, you should see:

● the chapter entitled Econet on page 2-619

● the chapter entitled File server protocol interface on page 2-705.

Overview

2-344

Overview
The NetFS software provides a filing system for RISC OS. To do this it communicates
via the Econet with a file server; the file server stores the files and keeps track of them in
its directories, as well as providing authenticated access. The NetFS software translates
the user’s requests that emerge from FileSwitch into one or more file server commands.
These commands are then sent to the file server where they act on the files or directories
stored there.

The NetFS software is designed to hold information about each file server that it is
logged on to and to use this information when communicating with the file server. There
are also some extra commands provided by the NetFS software that communicate
directly with the file server.

All communication with the file server is done using the interfaces provided by Econet.
Basic communication with a file server involves you transmitting a command to it, and
then receiving a reply. Either or both of these may contain your data: for instance when
you create a directory the name you supply is sent to the file server, where as when you
read the name of the current disc that name is sent back to you. Most commands
however send things in both directions. The NetFS software knows all the formats and
requirements of the file server and presents these to the user, via FileSwitch.

The other commands (those that do not involve files or directories directly) are accessed
via star commands. These commands are only available when NetFS is the current filing
system.

There are three commands related to access control: *Logon, *Pass, and *Bye. Three
commands are to do with selecting file servers: *AddFS, *FS, and *ListFS. The *Free
command provides information about the amount of free space remaining on each of the
discs of a file server. The two commands *Mount and *SDisc are identical; the former is
provided for compatibility with ADFS, the latter for compatibility with existing network
software (ANFS and NFS).

U
sin

g
 filin

g
 system

s

NetFS

2-345

Technical Details

Naming
As well as supplying a filing system name as part of a file name (such as ‘Net:&.Fred’),
you can supply as part of the filing system name the name or number of a file server: for
example ‘Net#253:&.Fred’ or ‘Net#Maths:Program’. This will cause the file to be found
(or saved, or whatever) on the given file server. If a name is quoted, you must currently
be logged on to that file server. If a number is given then you must be logged on to the
resulting file server; if only part of the number is given then it will be defaulted against
the current file server number.

File server name binding
NetFS allows you to refer to file servers by name(s); these are the names of the discs on
that particular file server. Inside NetFS a name is always reduced to a station and net
number pair (since this is what the Econet interfaces require). To help NetFS make this
translation (or binding) between names and numbers it keeps a list (or cache) of the
names of the discs on various file servers.

NetFS uses this list when the file server argument for a *Logon command is a name
rather than a number. It is also the list you see when you type *ListFS.

The list is generated by broadcasting a request to all file servers to send back the names
of all their discs. When a name is looked up (or bound) the list is searched; if the name
is present the number is returned, if not a broadcast is issued and the list is searched
again. NetFS expects that every disc on every file server will have a different name; this
is important, because NetFS needs a one-to-one mapping from names to station and net
numbers.

Timeouts
The dynamics of communication are controlled by several timeouts.

The values used by NetFS for the TransmitCount, TransmitDelay, and ReceiveDelay are
more fully explained in the chapter entitled Econet. These are the values used for all
normal communication with the file server.

Before attempting to log on to a file server, NetFS tries the immediate operation
MachinePeek to the file server. This operation uses a second set of values: the
MachinePeekCount and the MachinePeekDelay. If this operation fails, the error

Direct access to file servers

2-346

‘Station not present’ is generated. The reason for this is that stations must respond to
MachinePeek. You can therefore determine quite quickly if the destination machine is
actually present on the network, without having to wait the long time required for a
normal transmission to timeout and report ‘Station not listening’.

The last value used is called the BroadcastDelay; this is the amount of time for which
NetFS will wait for a file server to respond to the broadcast for names of file servers. If
the named file server has not responded within that time the error ‘Station name not
found’ will be returned.

Direct access to file servers
To provide access to those functions not provided as part of the FileSwitch interface, or
as one of the command interfaces provided directly by NetFS, there are a pair of SWI
calls.

The first of these (SWI NetFS_DoFSOp) provides communication with the current file
server, and the second (SWI NetFS_DoFSOpToGivenFS) to any file server to which the
NetFS software is logged on.

● The function (in R0) is an indication to the file server what it should do. You will
find documentation of the file server functions in the chapter entitled File server
protocol interface on page 2-705.

● The buffer contains the data to be sent to the file server. Econet’s five byte header
(Reply port, Function, URD, CSD, CSL) is prepended to the buffer during
transmission. When a reception occurs Econet’s two byte header is stripped off
before the returned data is placed in the buffer.

Differences from FileCore based filing systems
Because NetFS does not use FileCore, there are a number of subtle differences between
it and FileCore based filing systems. For example, because of the file server protocols it
uses (see the chapter entitled File server protocol interface on page 2-705) NetFS can
only update a file’s datestamp if it is passed a filename rather than a file handle.

You must not assume that the behaviour of all filing systems will be identical to ones
that use FileCore.

U
sin

g
 filin

g
 system

s

NetFS

2-347

File attributes

NetFS uses the top 24 bits of to store a file’s creation/modification date in the following
format:

Bits Meaning
8 - 12 Day of month (1 - 31)
13 - 15 High bits of year (offset from 1980, 0 - 127)
16 - 19 Month of year (1 - 12)
20 - 23 Low bits of year (offset from 1980, 0 - 127)

With the addition of three zero bytes, these are in the correct format to use as input to the
SWI NetFS_ConvertDate (page 2-364).

Service Calls

2-348

Service Calls
Service_NetFS
(Service Call &55)

Either a *Logon, a *Bye or a *SDisc/*Mount has occurred

On entry

R1 = &55 (reason code)

On exit

R1 preserved to pass on (do not claim)

Use

This call is issued by NetFS to indicate to the NetFiler that things may have changed.
For example, a user may have logged on to a server, while temporarily outside the
Wimp.

U
sin

g
 filin

g
 system

s

NetFS

2-349

Service_NetFSDying
(Service Call &5F)

NetFS is dying

On entry

R1= &5F (reason code)

On exit

R1 preserved

Use

Issued by NetFS before closedown to allow Broadcast Loader to unhook.

SWI calls

2-350

SWI calls
NetFS_ReadFSNumber

(SWI &40040)

Returns the full station number of your current file server

On entry

—

On exit

R0 = station number
R1 = net number

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns the full station number of your current file server. If your current file
server is not set then this call returns zero for both the net and station number.

Related SWIs

NetFS_SetFSNumber (page 2-351), NetFS_ReadFSName (page 2-352)

Related vectors

None

U
sin

g
 filin

g
 system

s

NetFS

2-351

NetFS_SetFSNumber
(SWI &40041)

Sets the full station number used as the current file server

On entry

R0 = station number
R1 = net number

On exit

R0, R1 corrupted

Interrupts

Interrupts may be enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call sets the full station number used by NetFS as the current file server, restoring
any context (for example its current directory).

This is the same as *FS net.station

Related SWIs

NetFS_ReadFSNumber (page 2-350), NetFS_SetFSName (page 2-353)

Related vectors

None

NetFS_ReadFSName (SWI &40042)

2-352

NetFS_ReadFSName
(SWI &40042)

Reads the name of the your current file server

On entry

R1 = pointer to buffer
R2 = size of buffer in bytes

On exit

R0 = pointer to buffer
R1 = pointer to the terminating null of the string in the buffer
R2 = amount of buffer left, in bytes

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads the name of your current file server if you are logged on, and otherwise
returns a null string.

Related SWIs

NetFS_ReadFSNumber (page 2-350), NetFS_SetFSName (page 2-353)

Related vectors

None

U
sin

g
 filin

g
 system

s

NetFS

2-353

NetFS_SetFSName
(SWI &40043)

Sets by name the file server used as your current one

On entry

R0 = pointer to buffer

On exit

—

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call sets by name the file server used as your current one, restoring any context such
as your current directory. You must be logged on to the file server; if you are not, an
error is generated.

Related SWIs

NetFS_SetFSNumber (page 2-351), NetFS_ReadFSName (page 2-352)

Related vectors

None

NetFS_ReadCurrentContext (SWI &40044)

2-354

NetFS_ReadCurrentContext
(SWI &40044)

Unimplemented

On entry

—

On exit

R0 - R2 corrupted

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is unimplemented, and returns immediately to the caller. It will be removed
from future versions of NetFS, and you must not use it.

Related SWIs

NetFS_SetCurrentContext (page 2-355)

Related vectors

None

U
sin

g
 filin

g
 system

s

NetFS

2-355

NetFS_SetCurrentContext
(SWI &40045)

Unimplemented

On entry

—

On exit

All registers preserved

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is unimplemented, and returns immediately to the caller, with all registers
preserved. It will be removed from future versions of NetFS, and you must not use it.

Related SWIs

NetFS_ReadCurrentContext (page 2-354)

Related vectors

None

NetFS_ReadFSTimeouts (SWI &40046)

2-356

NetFS_ReadFSTimeouts
(SWI &40046)

Reads the current values for timeouts used by NetFS

On entry

—

On exit

R0 = transmit count
R1 = transmit delay in centiseconds
R2 = machine peek count
R3 = machine peek delay in centiseconds
R4 = receive delay in centiseconds
R5 = broadcast delay in centiseconds

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads the current values for timeouts used by NetFS when communicating with
the file server.

Related SWIs

NetFS_SetFSTimeouts (page 2-357)

Related vectors

None

U
sin

g
 filin

g
 system

s

NetFS

2-357

NetFS_SetFSTimeouts
(SWI &40047)

Sets the current values for timeouts used by NetFS

On entry

R0 = transmit count
R1 = transmit delay in centiseconds
R2 = machine peek count
R3 = machine peek delay in centiseconds
R4 = receive delay in centiseconds
R5 = broadcast delay in centiseconds

On exit

All registers preserved

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call sets the current values for timeouts used by NetFS when communicating with
the file server.

Related SWIs

NetFS_ReadFSTimeouts (page 2-356)

Related vectors

None

NetFS_DoFSOp (SWI &40048)

2-358

NetFS_DoFSOp
(SWI &40048)

Commands the current file server to perform an operation

On entry

R0 = file server function
R1 = pointer to buffer
R2 = number of bytes to send to file server from buffer
R3 = size of buffer in bytes

On exit

R0 = return condition given by file server
R3 = number of bytes placed in buffer by file server

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call commands the file server to perform an operation, as specified by the file
server function passed in R0. For further details of these functions, the data they need to
be passed in the buffer, and the data they return in the buffer, you should see the chapter
entitled File server protocol interface on page 2-705, or the documentation for your file
server.

The buffer must be large enough to hold the data that the file server returns.

U
sin

g
 filin

g
 system

s

NetFS

2-359

Errors returned by the file server are copied into NetFS’s workspace and adjusted to be
like a normal RISC OS error – R0 points to the error, and the V bit is set. Any further use
of NetFS may overwrite this error, so you should copy it into your own workspace
before you call NetFS again, either directly or indirectly. (For example, character input
or output may call NetFS, as you may be using an exec or spool file.)

Related SWIs

NetFS_DoFSOpToGivenFS (page 2-366)

Related vectors

None

NetFS_EnumerateFSList (SWI &40049)

2-360

NetFS_EnumerateFSList
(SWI &40049)

Lists all file servers of which the NetFS software currently knows

On entry

R0 = offset of first item to read in file server list
R1 = pointer to buffer
R2 = size of buffer in bytes
R3 = number of file server names to read from list

On exit

R0 = offset of next item to read (–1 if finished)
R3 = number of file server names read

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call lists all the entries in a list of file servers which the NetFS software holds
internally. This list is used by the NetFS software to resolve file server names, and is the
same as the list you would get by using the *ListFS command.

The entries are returned as 20 byte blocks in the buffer:

Offset Contents
0 Station number
1 Net number
2 Drive number
3 Disc name, padded with spaces
19 Zero

U
sin

g
 filin

g
 system

s

NetFS

2-361

They are returned in alphabetical order.

This call disables the event process that updates the list, so that it does not change during
enumeration. After you have completed the enumeration you must restart the event
process by calling NetFS_EnableCache (page 2-375).

Related SWIs

NetFS_EnumerateFS (page 2-362), NetFS_EnableCache (page 2-375)

Related vectors

None

NetFS_EnumerateFS (SWI &4004A)

2-362

NetFS_EnumerateFS
(SWI &4004A)

Lists all file servers to which the NetFS software is currently logged on

On entry

R0 = offset of first item to read in file server list
R1 = pointer to buffer
R2 = size of buffer in bytes
R3 = number of file server names to read from list

On exit

R0 = offset of next item to read (–1 if finished)
R3 = number of file server names read

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call lists all the entries in the list of file servers to which the NetFS software is
currently logged on. This is essentially the same as the list you would get by using the
*FS command with no parameters, except that the user IDs are not returned.

The entries are returned as 20 byte blocks in the buffer:

Offset Contents
0 Station number
1 Net number
2 Zero
3 Disc name, padded with spaces
19 Zero

U
sin

g
 filin

g
 system

s

NetFS

2-363

The order of the list is not significant, save that if you are logged on to your current file
server it will be returned last.

Related SWIs

NetFS_EnumerateFSList (page 2-360), NetFS_EnumerateFSContexts (page 2-370)

Related vectors

None

NetFS_ConvertDate (SWI &4004B)

2-364

NetFS_ConvertDate
(SWI &4004B)

Converts a file server time and date to a RISC OS time and date

On entry

R0 = pointer to file server format time and date (5 bytes)
R1 = pointer to 5 byte buffer

On exit

R1 is preserved

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call converts a file server format time and date to a time and date in the internal
format used by RISC OS (centiseconds since 00:00:00 on 1/1/1900).

The file server format is:

Byte Bits Meaning
0 0 - 4 Day of month (1 - 31)

5 - 7 High bits of year (offset from 1980, 0 - 127)
1 0 - 3 Month of year (1 - 12)

4 - 7 Low bits of year (offset from 1980, 0 - 127)
2 0 - 4 Hours (0 - 23)

5 - 7 Unused
3 0 - 5 Minutes (0 - 59)

U
sin

g
 filin

g
 system

s

NetFS

2-365

6, 7 Unused
4 0 - 5 Seconds (0 - 59)

6, 7 Unused

Related SWIs

OS_ConvertStandardDateAndTime (page 1-447),
OS_ConvertDateAndTime (page 1-449)

Related vectors

None

NetFS_DoFSOpToGivenFS (SWI &4004C)

2-366

NetFS_DoFSOpToGivenFS
(SWI &4004C)

Commands a given file server to perform an operation

On entry

R0 = file server function
R1 = pointer to buffer
R2 = number of bytes to send to file server from buffer
R3 = size of buffer in bytes
R4 = station number
R5 = net number

On exit

R0 = return condition given by file server
R3 = number of bytes placed in buffer by file server

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call commands the given file server to perform an operation, as specified by the file
server function passed in R0. For further details of these functions, the data they need to
be passed in the buffer, and the data they return in the buffer, you should see the chapter
entitled File server protocol interface on page 2-705, or the documentation for your file
server.

The buffer must be large enough to hold the data that the file server returns.

U
sin

g
 filin

g
 system

s

NetFS

2-367

Errors returned by the file server are copied into NetFS’s workspace and adjusted to be
like a normal RISC OS error – R0 points to the error, and the V bit is set. Any further use
of NetFS may overwrite this error, so you should copy it into your own workspace
before you call NetFS again, either directly or indirectly. (For example, character input
or output may call NetFS, as you may be using an exec or spool file.)

Related SWIs

NetFS_DoFSOp (page 2-358)

Related vectors

None

NetFS_UpdateFSList (SWI &4004D)

2-368

NetFS_UpdateFSList
(SWI &4004D)

Adds names of discs to the list of names held by NetFS

On entry

R0 = station number
R1 = net number

On exit

R0 is corrupted
R1 is corrupted

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call will fetch the names of the discs of the given file server, and add these names
to the list of names held internally to NetFS. This call allows software that uses the
NetFS_EnumerateFS call to be sure that information on a particular file server is
up-to-date (as the NetFiler does when it offers a menu of disc names to choose when
opening ‘$’).

If both R0 and R1 are zero then the entire list will be updated.

This call is not available in RISC OS 2.

Related SWIs

NetFS_EnumerateFS (page 2-362), NetFS_EnableCache (page 2-375)

U
sin

g
 filin

g
 system

s

NetFS

2-369

Related vectors

None

NetFS_EnumerateFSContexts (SWI &4004E)

2-370

NetFS_EnumerateFSContexts
(SWI &4004E)

Lists all the entries in the list of file servers to which NetFS is currently logged on

On entry

R0 = entry point to enumerate from
R1 = pointer to buffer
R2 = number of bytes in the buffer
R3 = number of entries to enumerate

On exit

R0 = entry point to use next time (–1 indicates no more left)
R2 = space remaining in buffer
R3 = number of entries enumerated

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call lists all the entries in the list of file servers to which NetFS is currently logged
on, and includes the user ID that NetFS logged on with. This is the same as the list you
would get by using the *FS command with no parameters.

U
sin

g
 filin

g
 system

s

NetFS

2-371

Entries are returned as 44 byte blocks in the buffer:

Offset Contents
0 Station number
1 Net number
2 Reserved
3 Disc name padded to 16 characters with spaces
19 Zero
20 User name padded to 21 characters with spaces
41 Zero
42 Reserved
43 Reserved

This call is not available in RISC OS 2.

Related SWIs

NetFS_EnumerateFSList (page 2-360), NetFS_EnumerateFS (page 2-362)

Related vectors

None

NetFS_ReadUserId (SWI &4004F)

2-372

NetFS_ReadUserId
(SWI &4004F)

Returns the current user ID if logged on to the current file server

On entry

R1 = pointer to buffer
R2 = number of bytes in the buffer

On exit

R0 corrupted
R1 = pointer to terminating zero
R2 = space remaining in buffer (including terminating zero)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns the current user ID if logged on to the current file server. If not logged
on, a null name is written to the buffer (ie a single zero).

This call is not available in RISC OS 2.

Related SWIs

NetFS_ReadFSNumber (page 2-350), NetFS_ReadFSName (page 2-352)

Related vectors

None

U
sin

g
 filin

g
 system

s

NetFS

2-373

NetFS_GetObjectUID
(SWI &40050)

Gets a unique identifier for an object

On entry

R1 = pointer to a canonical object name
R6 = pointer to a canonical special field

On exit

R0 = object type
R1 preserved
R2 = object’s load address
R3 = object’s exec address
R4 = object’s length
R5 = object’s attributes
R6 = least significant word of UID
R7 = most significant word of UID

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call is very similar to FSEntry_File 5 (Read catalogue information: see page 2-558)
except that R6 and R7 form a 64 bit unique identifier (UID) for the object. This UID is
guaranteed to be unique across all file servers on all networks. The UID is composed of
information like the file server’s network address, the file server’s disc on which the
object is held, and the location of the object on that disc. By using this call, stations on
an Econet can compare UIDs to see if they are accessing the same object.

NetFS_GetObjectUID (SWI &40050)

2-374

For information on canonical; file names, see FSEntry_Func 23 (page 2-578).

This call is not available in RISC OS 2.

Related SWIs

OS_File (page 2-32)

Related vectors

None

U
sin

g
 filin

g
 system

s

NetFS

2-375

NetFS_EnableCache
(SWI &40051)

Enables a suspended event task

On entry

—

On exit

—

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

The list of names and numbers of file servers that NetFS keeps internally to resolve file
server names is added to by an event process. These events are caused by reception
packets from file servers of the names of discs. During the enumeration of the list this
event task is effectively suspended so that the list does not change during the
enumeration. Any call to NetFS_EnumerateFS will cause this suspension to take place.
To ensure that the list is being updated it is essential that after a complete enumeration
this call is made to re-enable the suspended event task.

This call is not available in RISC OS 2.

Related SWIs

NetFS_EnumerateFS (page 2-362), NetFS_UpdateFSList (page 2-368)

NetFS_EnableCache (SWI &40051)

2-376

Related vectors

None

U
sin

g
 filin

g
 system

s

NetFS

2-377

* Commands
*AddFS

Adds a remote file server’s disc to the list of known file servers’ discs

Syntax

*AddFS file_server_number [disc_number [:]disc_name]

Parameters

file_server_number the file server number of the file server to add,
which must be a full address including both a net
number and a station number

disc_number the disc number of the disc to add

disc_name the disc name of the disc to add

Use

*AddFS adds a remote file server’s disc to the list of file servers’ discs that are known to
NetFS. If only the file server is specified, then all its discs will be removed from the list.

NetFS updates the list as necessary for file servers to which it can broadcast. This
command is useful for you to add file servers to which NetFS cannot normally
broadcast: for example ones located over a wide area network link.

This command is not available in RISC OS 2, nor is it in RISC OS 3 (version 3.00).

Example

*AddFS 201.254 4 :Server Add disc ‘Server’ on drive 4 of file
server

201.254 to list

*AddFS 202.254 Remove all entries for file server
202.254

from list

Related commands

None

*Bye

2-378

*Bye

Logs the user off a file server

Syntax

*Bye [[:]file_server]

Parameters

file_server the file server name or number – defaults to the current file
server

Use

*Bye terminates the use of a file server, closing all open files and directories. If no file
server is given, you are logged off the current file server.

Example

*Bye 49.254

*Bye :fs

Related commands

*Logon, *Shut, *Shutdown

U
sin

g
 filin

g
 system

s

NetFS

2-379

*Configure FS

Sets the configured default file server for NetFS

Syntax

*Configure FS file_server

Parameters

file_server the file server name or number

Use

*Configure FS sets the configured default file server for NetFS, used where none is
specified. It is preferable to use the station name, as this is less likely to change. The
default value is 0.254.

Example

*Configure FS Server1

Related commands

*Configure FileSystem, *Configure PS, *I Am, *Logon

*Configure Lib

2-380

*Configure Lib

Sets the configured library selected by NetFS after logon

Syntax

*Configure Lib [0 | 1]

Parameters

0 or 1

Use

*Configure Lib sets the configured library selected by NetFS after logon.

When NetFS logs on to a file server, the file server searches for $.Library on drives
0 - maxdrive of the file server, in that order. It passes the first match back to NetFS as the
library to be used. If it does not match this directory then it instead passes back $ on the
lowest numbered physical disc.

● If 0 is used as the parameter, then NetFS uses the library directory returned by the
file server.

● If 1 is used as the parameter, then NetFS searches for $.ArthurLib on drives
0 - maxdrive of the file server, in that order. The first match is used by NetFS as the
library. If it does not find a match, then it uses the library directory returned by the
file server.

Example

*Configure Lib 0

Related commands

None

U
sin

g
 filin

g
 system

s

NetFS

2-381

*Free

Displays file server free space

Syntax

*Free [:file_server] [user_name]

Parameters

file_server the file server name or number – defaults to the current file
server

user_name as issued by the network manager

Use

*Free displays a user’s total free space, as well as the total free space for the disc.

If no file server is given, the current file server is used.

If a user name is given, the free space belonging to that user is displayed. If no user is
given, then the current user’s free space is displayed.

Example

*Free :Business William
Disc name Drive Bytes free
 Bytes used

Business 0 3 438 592
 30 967 808

User free space 185 007

Related commands

None

*FS

2-382

*FS

Restores the file server’s previous context

Syntax

*FS [[:]file_server]

Parameters

file_server the file server name or number

Use

*FS selects the current file server, restoring that file server’s context (for example, its
current directory). If no argument is supplied, your current file server number, file server
name and user name are printed out, followed by the same information for any
non-current servers.

Example

*FS 49.254

*FS :myFS

*FS
 13.224 :Server1 guest
 254 :Server2 mhardy

Related commands

*ListFS

U
sin

g
 filin

g
 system

s

NetFS

2-383

*I am

Selects NetFS and logs you on to a file server

Syntax
*I am [[:]file_server_number|:file_server_name] user_name [[:Return]password]

Parameters

file_server_number the file server number to log on to

file_server_name the file server name to log on to

user_name as issued by the network manager

password as set by the user

Use

*I am selects NetFS and logs you on to a file server. Your user name and password are
checked by the file server against the password file before allowing you access. If you
give neither a file server number nor name, then this command logs you on to the current
file server.

The file server first searches drives 0 – maxdrive for a password file containing a
password/user name pair that match those given; if none is found, access to the file
server is denied.

The file server then searches for a directory matching the given user name. It starts with
the drive where the password match was found, followed by drives 0 – maxdrive. It
passes the first matching directory back to NetFS. If it does not match the user name
then it instead passes back $ on the lowest numbered physical disc. NetFS sets the User
Root Directory to the returned directory, and sets the current directory to the User Root
Directory.

NetFS also sets the library directory, as described in *Configure Lib.

This command is implemented as an alias using the system variable Alias$I. It is
identical to a *Net command (which selects NetFS as the current filing system) followed
by *Logon (see below).

Example

*I am :fs guest

*I am

2-384

Related commands

*Logon, *Net

U
sin

g
 filin

g
 system

s

NetFS

2-385

*ListFS

Lists available file servers

Syntax

*ListFS [-force]

Parameters

-force force the list to be updated before it is displayed

Use

*ListFS displays a list of the file servers which NetFS is able to recognise. The optional
argument forces the list to be updated before it is displayed.

Example

*ListFS
 1.254 :0 Finance1
 1.254 :1 Finance2
 6.246 :0 Production

Related commands

*FS

*Logon

2-386

*Logon

Logs you on to a file server

Syntax
*Logon [[:]file_server_number|:file_server_name] user_name [[:Return]password]

Parameters

file_server_number the file server number to log on to

file_server_name the file server name to log on to

user_name as issued by the network manager

password as set by the user

Use

*Logon logs you on to a file server. Your user name and password are checked by the
file server against the password file before allowing you access. If you give neither a file
server number nor name, then this command logs you on to the current file server.

The file server first searches drives 0 – maxdrive for a password file containing a
password/user name pair that match those given; if none is found, access to the file
server is denied.

The file server then searches for a directory matching the given user name. It starts with
the drive where the password match was found, followed by drives 0 – maxdrive. It
passes the first matching directory back to NetFS. If it does not match the user name
then it instead passes back $ on the lowest numbered physical disc. NetFS sets the User
Root Directory to the returned directory, and sets the current directory to the User Root
Directory.

NetFS also sets the library directory, as described in *Configure Lib.

You must select NetFS before typing *Logon (this is not necessary with the *I am
command).

Example

*Logon :fs guest

Related commands

*I am

U
sin

g
 filin

g
 system

s

NetFS

2-387

*Mount

Selects a disc from the file server

Syntax

*Mount [:]disc_spec

Parameters

disc_spec the name of the disc to be mounted

Use

*Mount selects a disc from the file server by setting the current directory, the library
directory and the User Root Directory.

The file server searches the drive for a directory matching the given user name. It passes
the first matching directory back to NetFS. If it does not match the user name then it
instead passes back $. NetFS then sets the User Root Directory to the returned directory
of the selected disc, and sets the current directory to the User Root Directory.

NetFS also sets the library directory, as described in *Configure Lib.

You cannot dismount a file server’s disc.

*SDisc is a synonym for *Mount.

Example

*Mount fs

Related commands

*SDisc

*Net

2-388

*Net

Selects the Network Filing System as the current filing system

Syntax

*Net

Parameters

None

Use

*Net selects the Network Filing System as the filing system for subsequent operations.
Remember that it is not necessary to switch filing systems if you use the full pathnames
of objects. For example, you can refer to ADFS objects when NetFS is the current filing
system.

Example

*Net

Related commands

*ADFS, *RAM, *ResourceFS

U
sin

g
 filin

g
 system

s

NetFS

2-389

*Pass

Changes your password on your current file server

Syntax

*Pass [old_password [new_password]]

Parameters

old_password your existing password (if any)

new_password the new password (if any) that you wish to assign

Use

*Pass changes your password on your current file server, knowledge of which allows
unrestricted access to your network files on that server. If you enter the command
without parameters, the computer will prompt you to enter your old and new passwords,
reflecting each character you type as a hyphen. If you do not have one, or wish to
remove the one you have without substituting a new one, press Return at the relevant
prompt. The maximum password length is file server dependent: on Level 4 file servers
it is 22 characters, whereas on earlier file servers it is only 6 characters.

Examples

*Pass

Old password: ---- User types pail (existing password)

New password: ------ User types bucket

*Pass bucket User enters command again, this time giving
existing password as parameter

New password: User presses Return, leaving themself with no
password

*SDisc

2-390

*SDisc

Selects a disc from the file server

Syntax

*SDisc [:]disc_spec

Parameters

disc_spec the name of the disc to be mounted

Use

*SDisc selects a disc from the current file server by setting the current directory, the
library directory and the User Root Directory.

The file server searches the drive for a directory matching the given user name. It passes
the first matching directory back to NetFS. If it does not match the user name then it
instead passes back $. NetFS then sets the User Root Directory to the returned directory
of the selected disc, and sets the current directory to the User Root Directory.

NetFS also sets the library directory, as described in *Configure Lib.

You cannot dismount a file server’s disc.

*Mount is a synonym for *SDisc.

Example

*SDisc fs

Related commands

*Mount

U
sin

g
 filin

g
 system

s

NetFS

2-391

Example program
The following program fragments are examples of how you might use file server
operations by calling NetFS_DoFSOp:

ReadFileServerVersion
MOV r0, #25 ; Command
ADR r1, Buffer
MOV r2, #0 ; Nothing to send
MOV r3, #(?Buffer - 1) ; Lots to receive
SWI XNetFS_DoFSOp
BVS Error
MOV r0, #0 ; Terminate string returned
STRB r0, [r1, r3] ; One byte past the return size
MOV r0, r1
SWI XOS_Write0 ; Print it
BVS Error

PrintStationNumberOfUser ; User name pointed to by R0
ADR r1, Buffer
MOV r2, #0 ; Initial value of index

Loop LDRB r3, [r0], #1
CMP r3, #" " ; Check for termination
MOVLT r3, #13 ; Translate to what the FS wants
STRB r3, [r1, r2] ; Copy into transmit buffer
ADD r2, r2, #1 ; Update index, and size to send
BGT Loop
MOV r0, #24 ; Command
MOV r3, #?Buffer
SWI XNetFS_DoFSOp
BVS Error
LDRB r3, [r1, #1] ; Pickup station number
LDRB r4, [r1, #2] ; Pickup net number
STMFD r13!, { r3, r4} ; Deposit in stack frame
MOV r0, r13 ; Pointer to value for conversion
MOV r2, #?Buffer ; Destination size
SWI XOS_ConvertNetStation
ADD r13, r13, #8 ; Dispose stack frame
SWIVC XOS_Write0 ; Display output
SWIVC XOS_NewLine
BVS Error

2-392

U
sin

g
 filin

g
 system

s

2-393

2

33 NetPrint

Introduction and Overview
NetPrint is a filing system that allows you to access and use remote printer server
machines, using Acorn’s Econet network. In common with other filing systems it uses
the FileSwitch module. When you are using NetPrint you can use many of the
commands that FileSwitch provides. Obviously there are some operations (such as those
that read stored data) that are not applicable to network printer servers.

The NetPrint module takes the commands that you give to it, either directly or via
FileSwitch, and converts them to printer server commands. These commands are then
sent to the printer server using the standard protocol of Econet. The printer server then
acts on the commands and files that it is sent. It handles their spooling, and manages its
(locally) connected printer.

Much of the above is transparent to the user, and in general to use printer servers you do
not need to know printer server protocols, or how data is sent over the Econet. If you do
need to know more about Econet protocols, you should see the chapter entitled Econet
on page 2-619.

Technical Details

2-394

Technical Details

Naming
The network printing system is actually a filing system, and as such you can use it by
giving its name as part of a file name. For example:

*Save NetPrint:Fred A000 +14C3

However, with current implementations the file name is ignored, and the ‘NetPrint:’ part
is used to send the data to the network printer. As well as save operations, the NetPrint
filing system can also open files and take data. This means that the operating system can
spool to NetPrint:. This is discussed in more detail in the chapter entitled System
devices.

Selecting a printer server

Whenever you open or save a file with NetPrint the software needs to know which
printer server to send your data to. When you have only a single printer server on the
network you should use *Configure PS to set its station number as the default. Then
when you use the filename NetPrint: your printout will be sent to the correct station.

Some printer servers and spoolers support a naming protocol which allows you to refer
to a particular printer by name rather than by number. Names can be up to six characters
in length and are usually alphanumeric: for example Epson, Art, CDT, Laser1, Gerald,
Draft, and PScrpt. It is sensible to choose a consistent set of names, based on either
location, type, brand or class. Before NetPrint can use a named printer server, it must
resolve the name to a station number; this process is called name binding. Put simply,
the name binder broadcasts the name, and returns the number of the first server that says
it is ready to accept a connection. If no suitable reply occurs within a specified time an
error is returned.

NetPrint has the notion of the ‘current printer server’. This is usually set by the
*Configure PS printer_server command, or with the *PS printer_server command. If
the printer_server is given by name, then name binding occurs; it is the returned number
that is retained as the current setting. Using *PS printer_server will cause the binding to
occur immediately and the result to be known. Once the number is selected, it will be
used whenever you open or save a file with the name NetPrint:.

When your network has more than one printer server (or a spooler that is more than one
server) you may wish to choose which server to use. The easiest is to set the name of the
server as the configured default using *Configure PS printer_server.

U
sin

g
 filin

g
 system

s

NetPrint

2-395

It is always possible to override the current setting by supplying the name or number of
the server you wish to use as part of the filename. For example you might specify a
server by number thus:

NetPrint#233: station number only (on current net)
NetPrint#2.253: full net.station address

or you might specify it by name (which would then be bound) thus:
NetPrint#Daisy:
NetPrint#Epson:

When selecting a particular printer server by this method the ‘current printer server’
remains unaffected.

Operations supported

The NetPrint filing system supports the OS_File Save operation and the OS_Find
OpenOut operation, as well as OS_BPut and OS_GBPB writes (but not backwards).

Linking NetPrint to *FX 5 4 and VDU 2
There are system variables that connect the VDU print streams to files; an example of
this is the default value set up by NetPrint upon its initialisation. This is
PrinterType$4, and its value is NetPrint:. You could change this value to
indicate a particular printer:

NetPrint#Epson:

and set up another variable to contain a different value:

PrinterType$3 = NetPrint#2.235:

so that you can swap between printers with a *FX command. For example:

*FX 5 4
*FX 5 3

Timeouts
The dynamics of communication are controlled by several timeouts.

The values used by NetPrint for the TransmitCount, TransmitDelay, and ReceiveDelay
are more fully explained in the chapter entitled Econet. These are the values used for all
normal communication with the printer server.

Before attempting to connect to a printer server, NetPrint tries the immediate operation
MachinePeek to the printer server. This operation uses a second set of values: the
MachinePeekCount and the MachinePeekDelay. If this operation fails, the error ‘Station

Timeouts

2-396

not present’ is generated. The reason for this is that stations must respond to
MachinePeek. You can therefore determine quite quickly if the destination machine is
actually present on the network, without having to wait the long time required for a
normal transmission to timeout and report ‘Station not listening’.

The last value used is called the BroadcastDelay; this is the amount of time for which
NetPrint will wait for a printer server to respond to the broadcast with the name of the
printer server. If within that time no printer server with that name has responded, or all
those that did were busy, the error ‘No free printer server of this type’ will be returned.

U
sin

g
 filin

g
 system

s

NetPrint

2-397

SWI calls
NetPrint_ReadPSNumber

(SWI &40200)

Returns the full station number of your current printer server

On entry

—

On exit

R0 = station number
R1 = net number

Interrupts

Interrupts status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns the full station number of your current printer server. If the current
printer server is only stored as a name (eg after *SetPS printer_server_name) then zero
is returned for both the net and station numbers.

Related SWIs

NetPrint_SetPSNumber (page 2-398), NetPrint_ReadPSName (page 2-399)

Related vectors

None

NetPrint_SetPSNumber (SWI &40201)

2-398

NetPrint_SetPSNumber
(SWI &40201)

Sets the full station number used as the current printer server

On entry

R0 = station number
R1 = net number

On exit

R0, R1 preserved

Interrupts

Interrupts may be enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call sets the full station number used by NetPrint as your current printer server.

Related SWIs

NetPrint_ReadPSNumber (page 2-397), NetPrint_SetPSName (page 2-401)

Related vectors

None

U
sin

g
 filin

g
 system

s

NetPrint

2-399

NetPrint_ReadPSName
(SWI &40202)

Reads the name of your current printer server

On entry

R1 = pointer to buffer
R2 = size of buffer in bytes

On exit

R0 = pointer to buffer
R1 = pointer to the terminating null of the string in the buffer
R2 = amount of buffer left, in bytes

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads the name of your current printer server. If the current printer server is
only stored as a number (eg after *SetPS printer_server_number) then a null name is
returned.

Versions of the NetPrint module before 5.26 return R1 one greater than it should be, and
hence R2 one less than it should be.

Related SWIs

NetPrint_ReadPSNumber (page 2-397), NetPrint_SetPSName (page 2-401)

NetPrint_ReadPSName (SWI &40202)

2-400

Related vectors

None

U
sin

g
 filin

g
 system

s

NetPrint

2-401

NetPrint_SetPSName
(SWI &40203)

Sets by name the printer server used as your current one

On entry

R0 = pointer to buffer containing null-terminated printer server name

On exit

R0 preserved

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call sets by name the printer server used as your current one.

Related SWIs

NetPrint_SetPSNumber (page 2-398), NetPrint_ReadPSName (page 2-399)

Related vectors

None

NetPrint_ReadPSTimeouts (SWI &40204)

2-402

NetPrint_ReadPSTimeouts
(SWI &40204)

Reads the current values for timeouts used by NetPrint

On entry

—

On exit

R0 = transmit count
R1 = transmit delay in centiseconds
R2 = machine peek count
R3 = machine peek delay in centiseconds
R4 = receive delay in centiseconds
R5 = broadcast delay in centiseconds

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads the current values for timeouts used by NetPrint when communicating
with the printer server.

Related SWIs

NetPrint_SetPSTimeouts (page 2-403)

Related vectors

None

U
sin

g
 filin

g
 system

s

NetPrint

2-403

NetPrint_SetPSTimeouts
(SWI &40205)

Sets the current values for timeouts used by NetPrint

On entry

R0 = transmit count
R1 = transmit delay in centiseconds
R2 = machine peek count
R3 = machine peek delay in centiseconds
R4 = receive delay in centiseconds
R5 = broadcast delay in centiseconds

On exit

—

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call sets the current values for timeouts used by NetPrint when communicating with
the printer server.

Related SWIs

NetPrint_ReadPSTimeouts (page 2-402)

Related vectors

None

NetPrint_BindPSName (SWI &40206)

2-404

NetPrint_BindPSName
(SWI &40206)

Converts a printer server’s name to its address, providing it is free

On entry

R0 = pointer to buffer containing null-terminated printer server name

On exit

R0 = station number
R1 = net number

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call attempts to find a printer server with the specified name that is not busy. If one
is found its address is returned in R0 and R1; otherwise an error is returned.

This call is not available in RISC OS 2.

Related SWIs

None

Related vectors

None

U
sin

g
 filin

g
 system

s

NetPrint

2-405

NetPrint_ListServers
(SWI &40207)

Returns the names of all printer servers

On entry

R0 = format code:
0 names and numbers
1 names only, sorted, no duplicates
2 names, numbers and status

R1 = pointer to buffer
R2 = length of buffer in bytes
R3 = time to take before returning, in centiseconds

On exit

R0 = number of entries returned
R1, R2 preserved
R3 = return code:

0 timed out
1 buffer full

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call returns the names of all printer servers. The format and contents of the returned
buffer are determined by the format code passed in R0:

NetPrint_ListServers (SWI &40207)

2-406

R0 = 0: Names and numbers

Offset Contents
0 station number
1 net number
2 server name, zero terminated

R0 = 1: Names only, sorted by name (case insensitive), no duplicates.

Offset Contents
0 server name, zero terminated

R0 = 2: Names, numbers and status

Offset Contents
0 station number
1 net number
2 status
3 station number for status (optional)
4 net number for status (optional)
5 server name, zero terminated

Status values are as follows:

Value Name English message(s)
0 Status_Ready ‘ready’
1 Status_Busy ‘busy with nnn.sss’

‘busy’
2 Status_Jammed ‘jammed’
6 Status_Offline ‘offline’
7 Status_AlreadyOpen ‘already open’

For Status_Busy, the former message is used when the printer server is busy with a
single known station: its number follows. The latter message is used when the printer
server is busy with an unknown station, or with more than one: in this case the optional
station and net numbers (at offsets 3 and 4) are set to zero.

This call is not available in RISC OS 2.

Related SWIs

NetPrint_ConvertStatusToString (SWI &40208)

Related vectors

None

U
sin

g
 filin

g
 system

s

NetPrint

2-407

NetPrint_ConvertStatusToString
(SWI &40208)

Translates a status value returned from NetPrint_ListServers into the local language

On entry

R0 = pointer to a status value byte, followed by two optional bytes containing the
station and net number associated with the status

R1 = pointer to buffer to hold message
R2 = length of the buffer in bytes

On exit

R0 = value of R1 on entry
R1= pointer to the terminating zero
R2 = bytes remaining in the buffer after the terminating zero

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call translates a status value returned from NetPrint_ListServers into the local
language, copying the resultant message into the specified buffer and terminating it with
a zero.

This call is not available in RISC OS 2.

Related SWIs

NetPrint_ListServers (SWI &40207)

NetPrint_ConvertStatusToString (SWI &40208)

2-408

Related vectors

None

U
sin

g
 filin

g
 system

s

NetPrint

2-409

* Commands
*Configure PS

Sets the configured default network printer server

Syntax

*Configure PS printer_server

Parameters

printer_server the name or station number of the printer server

Use

*Configure PS sets the configured default network printer server.

You do not need to be logged on to a file server to use a printer server.

The stored name or station number is only bound when the default printer is first used (ie
when NetPrint: is first used, without any special fields to specify a server other than the
default).

Example

*Configure PS Laser1

Related commands

*ListPS, *PS, *SetPS

*ListPS

2-410

*ListPS

Lists all the currently available printer servers

Syntax

*ListPS [-full]

Parameters

-full show status of each printer server

Use

*ListPS lists all the currently available printer servers, optionally showing their status as
well. The order in which they are given depends on the order in which the printer servers
reply.

This command is identical to the command:

*Cat NetPrint:

or, with the -full parameter, to the command:

*Ex NetPrint:

Example

*ListPS -full
Umber 46.235 ready
Jade 44.235 ready
Mauve 93.235 ready
White 59.235 ready
Coral 32.235 jammed
Lime 2.235 ready

Related commands

*Configure PS, *PS, *SetPS

U
sin

g
 filin

g
 system

s

NetPrint

2-411

*PS

Changes the current printer server

Syntax

*PS [printer_server]

Parameters

printer_server the name or station number of the printer server

Use

*PS changes the current printer server. The new printer server will be used next time you
print to the default net printer. If the server is specified by name, it is immediately
bound, and the current server set to the returned number; if the server is specified by
number, the current server is set to that number.

If you don’t specify a printer server, then this command returns the current printer server
and its status.

Example

*PS 49.254

*PS myPS

*PS
Printer server myPS (9.235) is ready

Related commands

*Configure PS, *ListPS, *SetPS

*SetPS

2-412

*SetPS

Changes the current printer server

Syntax

*SetPS [printer_server]

Parameters

printer_server the name or station number of the printer server.

Use

*SetPS changes the current printer server. This command only changes the stored name
or number of the default printer server. No check is made that the printer server exists, or
is available, until the next time you print to the default network printer. It is only then
that an error might be generated.

If you don’t specify a printer server, then this command sets the current printer server to
be the default printer server (as set by *Configure PS).

Example

*SetPS 49.254

*SetPS myPS

*SetPS

Related commands

*Configure PS, *ListPS, *PS

U
sin

g
 filin

g
 system

s

2-413

2;

34 PipeFS

Introduction and Overview
PipeFS provides a mechanism for implementing named pipes between tasks, using the
*PipeCopy command to move bytes from one pipe to another.

It calls OS_UpCall 6 (see page 1-191) if a pipe being read becomes empty, or if one
being written to gets full, and thus cooperates with the Task Window.

It calls OS_UpCall 7 (see page 1-192) if an open pipe is closed or deleted. The Task
Window module then traps this and objects (by returning an error) if any of its tasks are
currently waiting for the poll word related to that pipe to become non-zero.

This prevents a *Shut command from deleting the workspace which is being accessed
by the Task Window, which could potentially cause address exceptions. If the task which
called PipeFS is killed by the user, the pipe can be released in a safe manner.

Before attempting to read data from a pipe you must first ensure that it contains data.
The recommended way to do this is to call OS_GBPB 10 (page 2-73).

* Commands

2-414

* Commands
*PipeCopy

Copies a file one byte at a time to one or two output files

Syntax

*PipeCopy source_file destination_file1 [destination_file2]

Parameters

source_file a valid pathname specifying a source file

destination_file1 a valid pathname specifying a first destination file

destination_file2 a valid pathname specifying a second (optional) destination
file

Use

*PipeCopy copies a file one byte at a time to one or two output files.

Example

*PipeCopy Pipe:Input Pipe:Output1 Pipe:Output2

Related commands

*Copy

Related SWIs

None

Related vectors

None

U
sin

g
 filin

g
 system

s

2-415

2

35 ResourceFS

Introduction and Overview
This chapter describes the interface to the ResourceFS module, which provides the
hooks necessary for modules to include files in the Resources: filing system.

This facility is useful because it allows the resource files associated with a particular
module to be included in the same file as the binary image, which helps with release
control.

It also has an important application for expansion card modules, since it allows them to
*IconSprites a sprite file which they put into Resources:. This is important as there
is no other way to introduce a sprite into the Wimp’s sprite pool other than from a file.

Another application is for certain resource files to be replaced on a selective basis, which
is an additional technique to the path mechanism already in use (e.g. Wimp$Path can be
set up to reference a resource directory).

ResourceFS is not available in RISC OS 2.

Technical Details

2-416

Technical Details

Directory structure
In order to avoid possible name clashes, it is important that a well-defined directory
structure is adhered to by all concerned. This is:

$.Apps.!appname ; the ROM-resident applications
$.Fonts ; the ROM-resident fonts
$.Resources.modulename ; resources for system modules
$.Resources.appname ; resources for applications

where appname is the name of the application concerned, without the ‘!’ on the front
(e.g. Draw, Paint, Edit).

The above all indicate directories, which normally contain files called !Sprites,
Templates, Messages and so on.

Where third party software is involved, the actual appname used must be registered
with Acorn, to avoid clashes. See Appendix H: Registering names on page 4-551.

Path variables
The Fonts directory contains the ROM-based fonts, and are accessed by the ROMFonts
module setting up Font$Path as follows:

*SetMacro Font$Path <Font$Prefix>.,Resources:$.Fonts.

(It only does this if Font$Path was previously set to ‘<Font$Prefix>.’.)

All the Desktop Filer modules (ADFSFiler, NetFiler etc) access their resource files
(Messages and Templates) via path variables, eg: ‘NetFiler:Messages’. On initialisation,
they check for the existence of the relevant path variable and set up the appropriate
default if it is not defined, eg:

*Set NetFiler$Path Resources:$.Resources.NetFiler.

You can set up any or all of these path variables to point to your own message files.

U
sin

g
 filin

g
 system

s

ResourceFS

2-417

Note that the Wimp uses ‘WindowManager$Path’ rather than ‘Wimp$Path’, to allow
Wimp$Path to remain separate. Its resources are:

Resources:$.Resources.Wimp.Messages
Resources:$.Resources.Wimp.Sprites
Resources:$.Resources.Wimp.Templates
Resources:$.Resources.Wimp.Tools

The Sprites files contain the Wimp’s ROM sprite pool, and cannot be redirected (since
the Wimp needs direct access to their ROM addresses).

Auto-starting applications
The Apps directory contains the ROM applications, which each have a !App directory,
and can be started up by ‘/Resources:$.Apps.!App’. The Desktop module will
automatically start the applications using such commands, if the corresponding bits in
CMOS RAM are set (see the section entitled Non-volatile memory (CMOS RAM) on
page 1-361), by issuing *Filer_Run commands as appropriate. It does this on *Desktop
after the normal modules have been started, and before any parameters to the *Desktop
command have been decoded.

By default, no applications are auto-started.

Note that !Chars is not auto-started, since it has no iconbar icon of its own; instead it is
put onto the iconbar using the *AddTinyDir command.

Note that this auto-starting procedure does not occur if the *Desktop command has a
filename parameter, since in this case it is assumed that the Desktop Boot file will start
any applications that are required. The configuration options are provided to allow
discless operation of the machine.

Internationalisation
The ROM applications do not contain the entire application, but simply the !Boot, !Help
and !Run files. The !Run file then sets up a path variable, consisting of the current value
of <Obey$Dir> (ie the application directory itself) and another directory in Resources:$
(eg Resources:$.Resources.Alarm).

Because each application uses a path variable to access its resource files, you can copy it
to disc and add an updated copy of the ‘Messages’ file to the application directory. This
will take precedence over the version in the ROM directory, which is accessed via the
second path element.

Software interface

2-418

Software interface
In order to register a group of files with ResourceFS, a module must have the files
included in their image, with appropriate header information, and then call the SWIs
ResourceFS_RegisterFiles and ResourceFS_DeregisterFiles to register and deregister
this area as appropriate.

Resource file data

The format of the (word-aligned) resource file data is as follows:

Offset Size Meaning
0 4 offset from here to the next file (contiguous),

or 0 for end of list (no data follows)
4 4 load address of file 
8 4 exec address of file  as returned by OS_File 5
12 4 size of file 
16 4 attributes of file 
20 n full filename, excluding ‘$.’, null terminated
20+n 0 - 3 padded with 0s until word-aligned

4 size of file + 4
s file data
0 - 3 padded with 0s until word-aligned, followed by more data in

the same format

The resource file data is terminated by a single 0 word.

The resource file data should be contiguous. If this is not possible, then
ResourceFS_RegisterFiles must be called once for each of the areas of resource file data
to be used (and an equivalent set of ResourceFS_DeRegisterFiles’s later on). Note that
each area of resource file data must be terminated by a single word containing 0.

There are no directory objects, since the directory structure can be determined from the
full filenames supplied.

Note that where name clashes occur, the first occurrence of the filename in the most
recently registered area will be used.

U
sin

g
 filin

g
 system

s

ResourceFS

2-419

Service Calls
Service_ResourceFSStarted

(Service Call &59)

The file structure inside ResourceFS has changed

On entry

R1 = &59 (Reason code)

On exit

All registers preserved (do not claim the service)

Use

This service call is issued by ResourceFS to tell any programs relying on ResourceFS
files that the structure has changed.

Applications making use of ResourceFS should note that they have to look again to see
if things have changed. For example, the Wimp responds to this service call by looking
for its default sprite pool again.

Service_ResourceFSDying (Service Call &5A)

2-420

Service_ResourceFSDying
(Service Call &5A)

ResourceFS is killed

On entry

R1 = &5A (reason code)

On exit

All registers preserved (do not claim the service)

Use

This call is issued by ResourceFS just before it removes itself as a filing system. The
expected uses are similar to Service_ResourceFSStarted.

U
sin

g
 filin

g
 system

s

ResourceFS

2-421

Service_ResourceFSStarting
(Service Call &60)

ResourceFS module is reloaded or reinitialised

On entry

R1 = &60 (reason code)
R2 = code address to call
R3 = workspace pointer for ResourceFS module

On exit

All registers preserved (do not claim the service)

Use

When the ResourceFS module is reloaded or reinitialised, it issues this service call so
that modules that provide ResourceFS files can put them back into the structure.

Unfortunately the ResourceFS module is not linked into the module chain at this point,
so it is not possible to call ResourceFS_RegisterFiles. Instead, the application should
execute the following code:

STMFD SP!, {R0, LR}
ADR R0, ResourceFSfiles ; R0 -> ResourceFS file structure(page 2-418)
MOV LR, PC ; LR -> return address
MOV PC, R2 ; call ResourceFS routine
LDMFD SP!, {R0, PC}^

Note that the value of R3 passed in the service call must be given to the ResourceFS
routine intact, so it can find its workspace.

This call is subtly different from SWI ResourceFS_RegisterFiles,in that it will not cause
a Service_ResourceFSStarted to be issued. This is because the ResourceFS module
waits until all modules have received the Service_ResourceFSStarting before issuing a
Service_ResourceFSStarted to let the ‘clients’ of ResourceFS know about it.

SWI Calls

2-422

SWI Calls
ResourceFS_RegisterFiles

(SWI &41B40)

Add file(s) to the ResourceFS structure

On entry

R0 = pointer to resource file data (see page 2-418 for format)

On exit

R0 corrupted

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call should be made by a module adding files to the ResourceFS structure when the
module is initialised.

ResourceFS will link the file(s) into its structure, and issue Service_ResourceFSStarted
(not to be confused with Service_ResourceFSStarting), which tells any programs relying
on ResourceFS files that the structure has changed.

Related SWIs

ResourceFS_DeregisterFiles (page 2-423)

Related vectors

None

U
sin

g
 filin

g
 system

s

ResourceFS

2-423

ResourceFS_DeregisterFiles
(SWI &41B41)

Remove file(s) from the ResourceFS structure

On entry

R0 = pointer to resource file data (see page 2-418 for format)

On exit

R0 corrupted

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call should be made when the area of memory containing the files is about to be
deallocated (e.g. when the module containing them is killed).

ResourceFS will unlink the file(s) from its structure, and issue
Service_ResourceFSStarted (not to be confused with Service_ResourceFSStarting),
which tells any programs relying on ResourceFS files that the structure has changed.

Note that it is not necessary to call this SWI on receipt of a Service_ResourceFSDying,
since the ResourceFS module ‘loses’ all
references to ResourceFS files when it dies anyway.

Related SWIs

ResourceFS_RegisterFiles (page 2-422)

ResourceFS_DeregisterFiles (SWI &41B41)

2-424

Related vectors

None

U
sin

g
 filin

g
 system

s

ResourceFS

2-425

* Commands
*ResourceFS

Selects the Resource Filing System as the current filing system

Syntax

*ResourceFS

Parameters

None

Use

*ResourceFS selects the Resource Filing System as the filing system for subsequent
operations. Remember that it is not necessary to switch filing systems if you use the full
pathnames of objects. For example, you can refer to ADFS objects when ResourceFS is
the current filing system.

Example

*ResourceFS

Related commands

*ADFS, *Net, *RAM

Related SWIs

None

Related vectors

None

2-426

U
sin

g
 filin

g
 system

s

2-427

2

36 DeskFS

Introduction
DeskFS is a ROM based filing system that provided system resources for the Desktop in
RISC OS 2. It is not available in later versions of RISC OS, and you should not use it.

The Desktop used the system variable Wimp$Path to find these system resources; by
default its value was DeskFS: . You could change where the Desktop looked for these
system resources by changing the value of Wimp$Path.

DeskFS provided a single * Command to select the filing system, described overleaf for
reference.

* Commands

2-428

* Commands
*DeskFS

Selects the Desktop Filing System as the current filing system

Syntax

*DeskFS

Parameters

None

Use

*DeskFS selects the Desktop Filing System as the filing system for subsequent
operations. This is a ROM based filing system used to store system resources for the
Desktop module, including some useful window template files used by system utilities.

DeskFS files can be catalogued, loaded and opened for input. They are usually accessed
through the DeskFS: file system prefix. The system variable Wimp$Path defaults to
DeskFS:

This command is not available after RISC OS 2, and you should no longer use it.

Example

*DeskFS

Related commands

*Ram, *ADFS, *Net

Related SWIs

Wimp_OpenTemplate, Wimp_LoadTemplate, Wimp_CloseTemplate

Related vectors

None

U
sin

g
 filin

g
 system

s

2-429

2

37 DeviceFS

Introduction and Overview
DeviceFS provides a standardised interface to device drivers within the RISC OS
environment. Devices are declared within the system, and are seen as objects within the
‘devices:’ filing system.

Streams can be opened for input or output (as supported) onto these objects within the
directory structure. A device is given the device file type of &FCC. A device adopts the
access rights relevant to its input or output capabilities.

A device driver is simply a set of routines that handle the input or output of data. The
device can specify if it would like to be buffered, but it will never know if this is the
case. Devices have access to the special field passed on opening a stream, this can be
used to pass extra information about opening streams and configuration required, for
instance a serial device may contain its setup within the special field string.

DeviceFS provides a way of calling devices (DeviceFS_CallDevice) with a reason code
and control registers. All devices have to support a set of system specific calls, but have
a range of reason codes available for their own use. This could, for example, be used for
controlling a scanner.

DeviceFS currently only supports character devices; block devices have yet to be
implemented.

Most filing system operations can be performed on objects: for example data transfer
operations. However, it is not possible to create objects within the directory structure
which are not devices, nor is it possible to delete objects.

DeviceFS is not available in RISC OS 2.

Technical Details

2-430

Technical Details

Special fields
Special fields within DeviceFS are commonly used to specify parameters to the device,
ie what buffers to be used, if the device should be flushing when a stream is closed and
so on.

The device can specify a validation string which is used to parse the special field when
the stream is being opened. If this is present then DeviceFS will parse the string and
return a block of data relating to the strings contents. This data will remain intact until
the stream is closed. If no validation string is specified then it is up to the device to take
and manage a copy, also to filter out any unwanted information.

The syntax for validation strings is very simple:

keyword[,keyword]/escape_seq[/escape_seq]…

Keywords are used to associate each command with an escape sequence, there can be
more than one keyword associated with a particular escape field, this is provided for two
reasons, the first is when a different word has the same meaning, eg. Colour or Color.
And secondly when defining the various states for a switch.

The escape sequence describes how the preceding data should be treated and also that to
do with the rest of the special field string (up to the next separator).

The following characters are valid in escape sequences:

/N number

/S switch

Within the special field string each parameter is separated by a comma or a character
which is out of place, ie a non-numeric in a numerical field. Each keyword within the
special field string is separated by a semi-colon.

The buffer passed to the device contains 1 word per escape character, set to
&DEADDEAD if the corresponding keyword is not present in the special field string.

Numbers are simply stored into the word; they are decoded using OS_ReadUnsigned
and stored away. Switches store the state of the keywords placed, ie:

mike,dennis/S

This yields 0 if ‘mike’ is present within the string, 1 if ‘dennis’ is present within the
string.

The order of commands within the validation string and the special field string need not
match; the commands within the validation string control how the values are returned
back to the caller.

U
sin

g
 filin

g
 system

s

DeviceFS

2-431

Service Calls
Service_DeviceFSStarting

(Service Call &70)

DeviceFS is starting

On entry

R1 = &70 (reason code)

On exit

All registers preserved

Use

This call is issued when the module wants the device drivers to re-register with
DeviceFS; it is issued during the module initialisation. In this case it is actually issued on
a callback to ensure that the module has been correctly linked into the module chain.

Service_DeviceFSDying (Service Call &71)

2-432

Service_DeviceFSDying
(Service Call &71)

DeviceFS is dying

On entry

R0 = 0
R1 = &71 (reason code)

On exit

All registers preserved

Use

This is issued when DeviceFS is about to be killed, the device driver will already have
had all of its streams closed and will have received the DeviceFS_DeviceDead service.

U
sin

g
 filin

g
 system

s

DeviceFS

2-433

Service_DeviceDead
(Service Call &79)

Device has been killed by DeviceFS

On entry

R0 = 0
R1 = &79 (reason code)
R2 = handle of device driver
R3 = pointer to device name (if an individual device is being deregistered),

or 0 (if the device driver as a whole is being deregistered)

On exit

All registers must be preserved

Use

This is issued to inform a device driver that a specified device has been killed. This is
usually caused by another device of the same name being registered, when the original
one is therefore killed to stop duplicates.

If a device driver is being deregistered, this service call is issued once for each device
using that driver (with R3 pointing to the device name), and is then issued a last time
with R3 set to 0.

Service_DeviceFSCloseRequest (Service Call &81)

2-434

Service_DeviceFSCloseRequest
(Service Call &81)

Opening a device which already has the maximum number of streams open

On entry

R1 = &81 (reason code)
R2 = file handle of an open stream on that device

On exit

R1 = 0 if the file was closed; otherwise all registers preserved

Use

This service call is issued whenever an attempt is made to open a device for input or
output and one of the following applies:

● the device already has the maximum number of streams open for input or output
respectively; one such stream must be closed before the new one can be opened

● the device is not full duplex, and already has one or more streams open for output or
input respectively; all such streams must be closed before the new one can be
opened.

The service call is offered in the hope that one or more ‘blocking’ streams need no
longer be kept open and can be closed, allowing the new stream to be opened.

If your application opened the stream specified by R2, and you no longer need to keep it
open, you should close it and then claim the service call to inform DeviceFS that you
have done so. Otherwise you should pass on the service call with all registers preserved.

The kernel responds to this service call, because it implicitly opens streams such as the
printer and the serial device, which need only be open when actually sending data.

DeviceFS issues this service call for each blocking stream, stopping if sufficient
blocking streams have been closed for it to open the new stream, or if this is clearly
impossible (eg the service call is not claimed for an output stream that is blocking input
to a half-duplex device).

U
sin

g
 filin

g
 system

s

DeviceFS

2-435

SWI Calls
DeviceFS_Register

(SWI &42740)

Registers a device driver and its associated devices with DeviceFS

On entry

R0 = global flags for devices:
bit 0 clear ⇒ character device, set ⇒ block device
bit 1 clear ⇒ device is not full duplex, set ⇒ device is full duplex
all other bits reserved (must be zero)

R1 = pointer to list of devices to be installed
R2 = pointer to device driver entry point
R3 = private word
R4 = workspace pointer
R5 = pointer to validation string for special fields (0 ⇒ none)
R6 = maximum number of RX devices (0 ⇒ none, –1 ⇒ unlimited)
R7 = maximum number of TX devices (0 ⇒ none, –1 ⇒ unlimited)

On exit

R0 = device driver’s handle

Use

This call registers a device driver and its associated devices with DeviceFS. The device
driver is the actual interfacing code with the hardware, and the device acts as a port into
the driver. A device driver may have many devices within it; for instance you may have
devices to support both buffered and unbuffered transfer.

Flags word

R0 contains a global flags word which describes all the driver’s devices. It contains the
following bit fields:

● Bit 0 is used to indicate if the devices are character or block devices.

An example of a block device is a floppy disc drive, where data is transferred in
blocks (sectors) to the caller. Examples of character devices are a parallel port or
serial port.

Block devices are not supported under the RISC OS 3 implementation of
DeviceFS.

DeviceFS_Register (SWI &42740)

2-436

● Bit 1 is used to indicate if the device is full duplex or not

A full duplex device can handle both input and output streams at the same time.

List of devices

R1 contains a pointer to a list of devices to be associated with this device driver. The list
is terminated by a null word, and can be empty as you can use the SWI
DeviceFS_RegisterObjects to register devices later. The format of each entry in the list
is as follows:

Offset Meaning
0 offset to device name
4 flags:

bit 0 set ⇒ device is buffered
bit 1 set ⇒ create path variable for use as pseudo filing system

8 default flags for the device’s RX buffer
12 default size of RX buffers
16 default flags for the device’s TX buffer
20 default size of TX buffers
24 reserved (must be zero)

Device names should be registered with Acorn; see Appendix H: Registering names on
page 4-551. They are used for several things:

● The device name is used in the DeviceFS directory structure.

● The device name is used to create an option variable (initially null) named
DeviceFS$Device$Options, so long as one does not already exist.

This is used for storing device setup options, and is concatenated with the special
field strings when streams are opened.

If the options variable already exists, it is preserved, thus preserving the last setup
used for the same device.

● The device name is used to create – if specified in the flags word – a path variable
named Device$Path which points to the driver’s entry point. The device can
then be accessed via the pseudo filing system device:.

The device’s buffers are not created until a stream is opened onto it. The flags are passed
to the buffer manager; see page 4-88.

If for any reason a device in the list should fail to register than all devices specified will
be removed.

Device driver entry point

R2 contains the pointer to the device driver entry point, which is called with various
reason codes to access the routines available in the driver. See the chapter entitled
Writing a device driver on page 2-607.

U
sin

g
 filin

g
 system

s

DeviceFS

2-437

Parameters passed to driver: private word, and workspace pointer

R3 and R4 contain parameters which are passed to the device driver whenever its entry
point is called. The parameter in R3 is passed to the device driver in R8, and might be
used as a private word to indicate which hardware platform is being used; the parameter
in R4 is used as a workspace pointer and is passed to the device in R12.

Validation string

On entry R5 contains the pointer to a validation string used to decode special fields
within the device. For a full explanation, see the section entitled Special fields on
page 2-430.

This value can be 0 which means that the string will be passed to the device unparsed; in
these cases any unknown keywords should be ignored, as some keywords used by
DeviceFS will still be present.

Number of output streams

R6 and R7 contain the maximum number of input and output streams on a device. If a
register is zero then the device does not support that operation; if a register is –1 then the
device has unlimited support for that type of transfer, and will be called to open streams.

DeviceFS uses these values to range check the number of streams being opened, so the
device driver need not worry about this.

Device driver’s handle

You will need to use the returned handle of the device driver to refer to it in any further
SWI calls you make to DeviceFS.

Related SWIs

DeviceFS_Deregister (page 2-438), DeviceFS_RegisterObjects (page 2-439)

Related vectors

None

DeviceFS_Deregister (SWI &42741)

2-438

DeviceFS_Deregister
(SWI &42741)

Deregisters all devices and their device driver from DeviceFS

On entry

R0 = device driver’s handle

On exit

R0 preserved

Use

This call deregisters all devices and their device driver from DeviceFS. This causes all
streams to be closed and any system variables set up for the device to be unset. The
exception to this is the DeviceFS$Device$Options variable, which is left intact
so that when the device is reloaded it can assume its original setup.

Related SWIs

DeviceFS_Register (page 2-435), DeviceFS_DeregisterObjects (page 2-440)

Related vectors

None

U
sin

g
 filin

g
 system

s

DeviceFS

2-439

DeviceFS_RegisterObjects
(SWI &42742)

Registers a list of additional devices with a device driver

On entry

R0 = device driver’s handle
R1 = pointer to list of devices to be registered with device driver

On exit

—

Use

This call registers a list of additional devices with a device driver. This is an extension to
the DeviceFS_Register SWI which itself allows devices to be registered at the same time
as their device driver.

The list of devices pointed to by R1 has the same format as that used in
DeviceFS_Register (see page 2-435).

Related SWIs

DeviceFS_DeregisterObjects (page 2-440)

Related vectors

None

DeviceFS_DeregisterObjects (SWI &42743)

2-440

DeviceFS_DeregisterObjects
(SWI &42743)

Deregisters a device related to a particular device driver

On entry

R0 = device driver’s handle
R1 = pointer to device name of the device to remove

On exit

—

Use

This call deregisters a device related to a particular device driver, tidying up as required.

Related SWIs

DeviceFS_RegisterObjects (page 2-439)

Related vectors

None

U
sin

g
 filin

g
 system

s

DeviceFS

2-441

DeviceFS_CallDevice
(SWI &42744)

Makes a call to a device with a specified register set

On entry

R0 = reason code
R1 = device driver’s handle, or pointer to path, or 0 to broadcast to all devices
R2 - R7 = parameters passed to device driver
R12 = pointer to workspace

On exit

Register values returned by device (ie device/call-dependent)

Use

This call is used to make a call to a device with the specified register set. You can direct
the call at a specific device or at all devices. When directing a call at a specific device
you can specify this either by its device driver’s handle, or by its filename within the
directory structure (which can include ‘$’).

Related SWIs

None

Related vectors

None

DeviceFS_Threshold (SWI &42745)

2-442

DeviceFS_Threshold
(SWI &42745)

Informs DeviceFS of the threshold value to use on buffered devices

On entry

R1 = DeviceFS stream handle, as passed to device driver on initialisation
R2 = threshold value to be used, or –1 to read

On exit

R1, R2 preserved

Use

This call is made by a device driver to set the threshold value used on buffered devices.
DeviceFS will call the device drivers ‘Halt’ and ‘Resume’ entry points appropriately
when the buffer levels cross the specified threshold.

An error is generated if the device is not buffered.

Related SWIs

None

Related vectors

None

U
sin

g
 filin

g
 system

s

DeviceFS

2-443

DeviceFS_ReceivedCharacter
(SWI &42746)

Informs DeviceFS that a device driver has received a character

On entry

R0 = byte received
R1 = DeviceFS stream handle, as passed to device driver on initialisation

On exit

C set ⇒ byte not transferred, else C clear

Use

This call is made by a device driver when it receives a character. DeviceFS then attempts
to process the character as required, unblocking any streams that may be waiting for the
character or simply inserting it into a buffer.

For speed, DeviceFS_TransmitCharacter and DeviceFS_ReceivedCharacter do not
validate the external handle passed; be warned that some strange effects can occur by
passing in bad handles.

The C flag is cleared if the transfer was successful.

Related SWIs

DeviceFS_TransmitCharacter (page 2-444)

Related vectors

None

DeviceFS_TransmitCharacter (SWI &42747)

2-444

DeviceFS_TransmitCharacter
(SWI &42747)

Informs DeviceFS that a device driver wants to transmit a character

On entry

R1 = DeviceFS stream handle, as passed to device driver on initialisation

On exit

R0 = character to transmit (8 bits) if C clear

C set ⇒ unable to read character to be transmitted

Use

This call is made by a device driver when it wants to transmit a character. DeviceFS then
attempts to obtain the character to be sent, either by extracting from a buffer or reading
it from a waiting stream.

For speed, DeviceFS_TransmitCharacter and DeviceFS_ReceivedCharacter do not
validate the external handle passed; be warned that some strange effects can occur by
passing in bad handles.

The C flag is cleared if the transfer was successful.

Related SWIs

DeviceFS_ReceivedCharacter (page 2-443)

Related vectors

None

U
sin

g
 filin

g
 system

s

2-445

2

38 Serial device

The serial device is provided as a DeviceFS (Device Filing System) device. For full
details, see the chapter entitled DeviceFS on page 2-429.

OS_SerialOp

For your convenience, we’ve also documented the kernel’s OS_SerialOp SWI here,
even though it properly belongs in Part 2 – The kernel. This SWI provides routines to
access the serial device driver directly. It is like OS_Byte in that it contains a number of
operations, determined by the reason code passed in R0. The advantages of using this
approach are the speed of not going through several routines in the stream system, and
no possibility of confusion about where the data is going.

OS_Byte calls

There are also a number of OS_Byte commands for controlling the serial port, that are in
RISC OS mainly for compatibility with earlier Acorn operating systems. Again, we’ve
documented them here rather than with the kernel documentation. We strongly
recommended that you use the OS_SerialOp commands in preference to the
OS_Bytes because they are more complete and consistent.

Note that the serial device’s input and output sides may be controlled independently. For
example, you can transmit at a different baud rate from the one which is being used to
receive – although hardware restrictions mean that this is not possible on machines fitted
with the 82C710 or 82C711 controller, such as the A5000.

Technical details

2-446

Technical details

Serial Device
The serial device driver provides facilities to send and receive a byte, control the
handshake lines and alter the protocol of the data. RISC OS provides a number of SWIs
that allow access to these facilities.

Summary of commands

OS_SerialOp

Here is a summary of the OS_SerialOp commands:

● OS_SerialOp 0 reads and writes the handshaking status.

● OS_SerialOp 1 reads and writes the data format.

● OS_SerialOp 2 sends a break.

● OS_SerialOp 3 sends a byte.

● OS_SerialOp 4 gets a byte.

● OS_SerialOp 5 reads and writes the receive baud rate.

● OS_SerialOp 6 reads and writes the transmit baud rate.

OS_Byte

Below is a summary of the OS_Byte commands in this chapter:

● OS_Byte 7 sets the receive baud rate.

● OS_Byte 8 sets the transmit baud rate.

● OS_Byte 156 reads/writes various state information from/to a control byte.

● OS_Byte 181 makes the data that comes in from a serial port appear to RISC OS as
if it had been typed at the keyboard.

● OS_Byte 191 reads and writes the busy flag (an obsolete BBC usage)

● OS_Byte 192 reads from the above control byte.

● OS_Byte 203 reads/writes the serial input buffer threshold.

● OS_Byte 204 stops any incoming data being buffered by the serial driver. The port
is still active, and serial errors can still occur, but the data is discarded.

● OS_Byte 242 reads both baud rates.

U
sin

g
 filin

g
 system

s

Serial device

2-447

Remember, where possible you should use OS_SerialOp calls in preference to OS_Byte
calls.

Streams

RISC OS uses streams for character input, character output, and printer output. There
are OS_Byte calls to set the source and destination(s) of these streams. As an innate part
of the character input/output system, they are described in full in the chapters entitled
Character Input and Character Output, but we summarise them below.

Of course, you can also use OS_SerialOp calls to independently send and receive
characters via the serial port; generally this is preferable.

OS_Byte 2

This call selects the device from which all subsequent input is taken by OS_ReadC. This
is determined by the value of R1 passed as follows:

Value of R1 Source of input
0 Keyboard, with serial input buffer disabled
1 Serial port
2 Keyboard, with serial input buffer enabled

The difference between the 0 and 2 values is that the latter allows characters to be
received into the serial input buffer under interrupts at the same time as the keyboard is
being used as the primary input. If the input stream is subsequently switched to the serial
device, then those characters can then be read.

For full details of OS_Byte 2, see page 1-882.

OS_Byte 3

This call selects which output stream(s) are active, and will hence receive all subsequent
output from OS_WriteC and its derivatives. A bit mask in R1 determines this:

Bit Effect if set
0 Enables serial driver
1 Disables VDU drivers
2 Disables VDU printer stream
3 Enables printer (independently of the VDU)
4 Disables spooled output
5 Calls VDUXV instead of VDU drivers (see the chapter on VDU)
6 Disables printer, apart from VDU 1,n
7 Not used

Serial buffers

2-448

Thus to start sending characters to the serial output stream, call OS_Byte 3 with bit 0 of
R1 set. Such characters sent are inserted into the serial output buffer (buffer number 2),
where they remain until removed by the interrupt routine dealing with serial
transmission.

For full details of OS_Byte 3, see page 1-520.

OS_Byte 5

This call sets which printer driver type (and hence printer port) is used for subsequent
printer output. The value of R1 on entry determines this. For RISC OS 2, this works as
follows:

Value of R1 Printer driver type
0 Printer sink
1 Parallel (Centronics) printer driver
2 Serial output
3 - 255 Files in system variables PrinterType$n (eg the NetPrint

module sets up PrinterType$4 to NetPrint:)

Whereas for later versions of RISC OS:

Value of R1 Printer driver type
0 - 255 Files in system variables PrinterType$n

Note that appropriate values are set up for backwards
compatibility: eg the serial device driver sets PrinterType$2 to
use the serial device.

Thus to send printer output to the serial port, call OS_Byte 5 with R1 = 2.

For full details of OS_Byte 5, see page 1-522.

Serial buffers

Input buffer

The serial driver will attempt to stop the sender transmitting when the amount of free
space in the serial input buffer falls below a set threshold. The idea is that this space
gives enough time for the sender to recognise the command and stop without
overflowing the buffer. OS_Byte 203 can change the setting of this level.

U
sin

g
 filin

g
 system

s

Serial device

2-449

Output buffer

If the output buffer is already full and there is nothing communicating with the serial
port, when you insert another character the machine temporarily halts while it waits for
a character to be removed to make space for the new character. An escape condition
abandons this wait.

Handshaking and protocol
When trying to get communications working with an external device using the serial
device, there are several important factors to remember:

● The receiver must be electrically compatible with RS423 or RS232.

● The handshaking lines must be connected between the sender and receiver in
exactly the right way.

● The sender must match baud rates with the receiver.

● They must also match the transmission protocol. Each byte sent is packaged up in
some variation of the following sequence:

1 A start bit synchronises the receiver with the sender.

2 The number of bits of actual data sent is variable from 5 to 8.

3 There can be an optional parity bit, which is used to check that no errors have
taken place during transmission.

4 It ends with a stop bit, either 1, 1.5 or 2 bits long.

Note that the default setup of the serial protocol (configured in CMOS RAM) is different
from some earlier Acorn machines. For example, the setup for RISC OS machines is the
same as the Master series (8 data bits, no parity, 2 stop bits), but different from the
original BBC series (8 data bits, no parity, 1 stop bit).

Serial line names
Coming out of the serial connector are many lines. This is a list of their names and
common abbreviations:

● data receive (RxD)

● data transmit (TxD)

● ground (0V)

● request to send (RTS)

● clear to send (CTS)

● data carrier detect (DCD)

Serial line names

2-450

● data terminal ready (DTR)

● data set ready (DSR)

● ring indicator (RI)

Refer to the documentation accompanying your particular communications device for
information on how to wire these lines correctly with the serial port. For further
information, contact Acorn Customer Support.

U
sin

g
 filin

g
 system

s

Serial device

2-451

SWI Calls
OS_Byte 7

(SWI &06)

Sets the receive baud rate for the serial port

On entry

R0 = 8
R1 = baud rate code

On exit

R0 preserved
R1, R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call sets the receive baud rate for the serial port. It is provided for compatibility
with older operating systems, and you should use OS_SerialOp 5 instead; see
page 2-479.

(This call uses the same baud rate codes as OS_SerialOp 5.)

Related SWIs

OS_Byte 8 (page 2-453), OS_SerialOp 5 (page 2-479), OS_SerialOp 6 (page 2-481)

OS_Byte 7 (SWI &06)

2-452

Related vectors

ByteV

U
sin

g
 filin

g
 system

s

Serial device

2-453

OS_Byte 8
(SWI &06)

 Sets the transmit baud rate for the serial port

On entry

R0 = 8
R1 = baud rate code

On exit

R0 preserved
R1, R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call sets the transmit baud rate for the serial port. It is provided for compatibility
with older operating systems, and you should use OS_SerialOp 6 instead; see
page 2-481.

(This call uses the same baud rate codes as OS_SerialOp 6.)

Related SWIs

OS_Byte 7 (page 2-451), OS_SerialOp 5 (page 2-479), OS_SerialOp 6 (page 2-481)

Related vectors

ByteV

OS_Byte 156 (SWI &06)

2-454

OS_Byte 156
(SWI &06)

Reads/writes serial port state

On entry

R0 = 156
R1 = 0 or new value
R2 = 255 or 0

On exit

R0 preserved
R1 = value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

The value stored is changed by being masked with R2 and then exclusive ORd with R1:
ie ((value AND R2) EOR R1). This means that R2 controls which bits are changed and
R1 supplies the new bits.

This call accesses the control byte of the serial port. In addition to updating the status
byte in RAM, it also updates the hardware register which controls the serial port
characteristics.

The call enables the current settings of the transmitter, receiver, interrupts and the serial
handshake line Request To Send (RTS) to be read or altered.

U
sin

g
 filin

g
 system

s

Serial device

2-455

When writing, the effect depends on the bits in R1:

Bit 1 Bit 0 Effect
0 0 No effect
0 1 No effect
1 0 No effect
1 1 Reset transmit, receive and control registers

Bit 4 Bit 3 Bit 2 Word length Parity Stop bits
0 0 0 7 even 2
0 0 1 7 odd 2
0 1 0 7 even 1
0 1 1 7 odd 1
1 0 0 8 none 2
1 0 1 8 none 1
1 1 0 8 even 1
1 1 1 8 odd 1

Bit 6 Bit 5 Transmission control
0 0 RTS low, transmit interrupt disabled
0 1 RTS low, transmit interrupt enabled
1 0 RTS high, transmit interrupt disabled
1 1 RTS low, transmit break level on transmit data, transmit

interrupt disabled

The above bits should not be modified as they are controlled by the OS. Use the
OS_SerialOp SWIs instead to control transmission.

Bit 7 Receive interrupt
0 Disabled
1 Enabled

The default setting for bits 2 - 4 comes from the *Configure Data value, shifted left by
two bits. The current value of this byte may be read (but not set) using OS_Byte 192
(page 2-460).

OS_SerialOps 0 and 1 provide all of these facilities and more, with the exception of the
interrupt control bit. The receive interrupt/control bit can be set/cleared via OS_Byte 2
(page 1-882). You should not change the RTS/transmit IRQ bits; RISC OS handles this
function.

This call is provided for compatibility only and should not be used. In all cases you
should use OS_SerialOp (page 2-468) to provide these functions.

Related SWIs

OS_Byte 192 (page 2-460), OS_SerialOp (page 2-468)

OS_Byte 156 (SWI &06)

2-456

Related vectors

ByteV

U
sin

g
 filin

g
 system

s

Serial device

2-457

OS_Byte 181
(SWI &06)

Read/write serial input interpretation status

On entry

R0 = 181
R1 = 0 to read or new state to write
R2 = 255 to read or 0 to write

On exit

R0 preserved
R1 = state before being overwritten
R2 = NoIgnore state (see OS_Byte 182 on page 1-526)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

The state stored is changed by being masked with R2 and then exclusive ORd with R1:
ie ((state AND R2) EOR R1). This means that R2 controls which bits are changed and
R1 supplies the new bits.

Usually, top-bit-set characters read from the serial input buffer are not treated specially.
For example, if the remote device sends the code &85, when this is read, using
OS_ReadC for example, that ASCII code will be returned to the caller immediately. It is
sometimes useful to be able to treat serial input characters in exactly the same way as
keyboard characters. OS_Byte 181 allows this.

OS_Byte 181 (SWI &06)

2-458

The state value passed to this call has two values:

0 In this state the keyboard interpretation is placed on characters read from
the serial input buffer.

1 This is the default state in which no keyboard interpretation is done This
means that:

● the current escape character is ignored

● the function key codes are not expanded

● ‘Escape’ events and ‘character entering input buffer’ events are not
generated.

Related SWIs

None

Related vectors

ByteV

U
sin

g
 filin

g
 system

s

Serial device

2-459

OS_Byte 191
(SWI &06)

Read/write serial busy flag

On entry

R0 = 191
R1 = 0 or new value
R2 = 255 or 0

On exit

R0 preserved
R1 = state before being overwritten
R2 = value of serial port control byte (see OS_Byte 192 on page 2-460)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call is provided for compatibility reasons only; the cassette interface and RS423
serial port shared the same hardware on the BBC/Master 128 machines. It performs no
useful function under RISC OS.

Related SWIs

None

Related vectors

ByteV

OS_Byte 192 (SWI &06)

2-460

OS_Byte 192
(SWI &06)

Reads the serial port state

On entry

R0 = 192 (reason code)
R1 = 0
R2 = 255

On exit

R0 preserved
R1 = value of communications state
R2 = value of flash counter (see OS_Byte 193 on page 1-678)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call reads the control byte of the serial port. It is equivalent to a read operation with
OS_Byte 156.

This call should not be used to write the value back, as to do so would make the
RISC OS copy of the register inconsistent with the actual register in the serial hardware.

Related SWIs

OS_Byte 156 (page 2-454), OS_SerialOp (page 2-468)

U
sin

g
 filin

g
 system

s

Serial device

2-461

Related vectors

ByteV

OS_Byte 203 (SWI &06)

2-462

OS_Byte 203
(SWI &06)

Read/write serial input buffer threshold value

On entry

R0 = 203
R1 = 0 to read or new value to write
R2 = 255 to read or 0 to write

On exit

R0 preserved
R1 = value before being overwritten
R2 = serial ignore flag (see OS_Byte 204 on page 2-464)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

The value stored is changed by being masked with R2 and then exclusive ORd with R1:
ie ((value AND R2) EOR R1). This means that R2 controls which bits are changed and
R1 supplies the new bits.

The serial input routine attempts to halt input when the amount of free space left in the
input buffer falls below a certain level. This call allows the value at which input is halted
to be read or changed.

OS_SerialOp 0 can be used to examine or change the handshaking method.

The default value is 9 characters.

U
sin

g
 filin

g
 system

s

Serial device

2-463

Related SWIs

None

Related vectors

ByteV

OS_Byte 204 (SWI &06)

2-464

OS_Byte 204
(SWI &06)

Read/write serial ignore flag

On entry

R0 = 204
R1 = 0 to read or new flag to write
R2 = 255 to read or 0 to write

On exit

R0 preserved
R1 = value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

The flag stored is changed by being masked with R2 and then exclusive ORd with R1: ie
((flag AND R2) EOR R1). This means that R2 controls which bits are changed and R1
supplies the new bits.

This call is used to read or change the flag which indicates whether serial input is to be
buffered or not. Although this call can stop data being placed in the serial input buffer,
data is still received by the serial driver. Errors will still generate events unless they have
been disabled by OS_Byte 13.

If the flag is zero, then serial input buffering is enabled. Any non-zero value disables it.

U
sin

g
 filin

g
 system

s

Serial device

2-465

Related SWIs

OS_Byte 13 (page 1-150)

Related vectors

ByteV

OS_Byte 242 (SWI &06)

2-466

OS_Byte 242
(SWI &06)

Read serial baud rates

On entry

R0 = 242 (&F2) (reason code)
R1 = 0
R2 = 255

On exit

R0 preserved
R1 = baud rates
R2 = timer switch state (see OS_Byte 243 on page 1-417)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

R1 returns an encoded value which gives the baud rate for serial receive and transmit.
Originally, in the BBC/Master operating systems, only eight baud rates were available.
These could be encoded in three bits each for receive and transmit. Under RISC OS, 15
are available, which require four bits to encode. For compatibility with this earlier
format, the layout of this byte looks unusual:

Bit Meaning
0 Transmit bit 0
1 Transmit bit 1
2 Transmit bit 2
3 Receive bit 0

U
sin

g
 filin

g
 system

s

Serial device

2-467

4 Receive bit 1
5 Receive bit 2
6 Receive bit 3
7 Transmit bit 3

These four bit groups are encoded with baud rates. Note that this order is not the same as
the order used by any other baud rate setting SWI. This order is based on the original
hardware:

Value Baud Rate
0 19200
1 1200
2 4800
3 150
4 9600
5 300
6 2400
7 75
8 7200
9 134.5
10 1800
11 50
12 3600
13 110
14 600
15 undefined

The value stored must not be changed by making R1 and R2 other than the values stated
above.

This call is provided for backwards compatibility with the BBC and Master operating
systems. You should in preference use OS_SerialOps 5 and 6 to read and write baud
rates.

Related SWIs

OS_Byte 7 (page 2-451), OS_Byte 8 (page 2-453), OS_SerialOp (page 2-468)

Related vectors

ByteV

OS_SerialOp (SWI &57)

2-468

OS_SerialOp
(SWI &57)

Low level serial operations

On entry

R0 = reason code
other input registers as determined by reason code

On exit

R0 preserved
other registers may return values, as determined by the reason code passed.

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call is like OS_Byte in that it is a single call with many operations within it. The
operation required, or reason code, is passed in R0. It can have the following meanings:

R0 Meaning Page
0 Read/write serial states 2-470

1 Read/write data format 2-473

2 Send break 2-475

3 Send byte 2-476

4 Get byte 2-477

5 Read/write receive baud rate 2-479

6 Read/write transmit baud rate 2-481

U
sin

g
 filin

g
 system

s

Serial device

2-469

For a detailed explanation of each reason code, see the relevant page.

Related SWIs

None

Related vectors

SerialV

OS_SerialOp 0 (SWI &57)

2-470

OS_SerialOp 0
(SWI &57)

Read/write serial status

On entry

R0 = 0 (reason code)
R1 = EOR mask
R2 = AND mask

On exit

R0 preserved
R1 = old value of state
R2 = new value of state

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

The structure of this call is very similar to that of OS_Bytes between SWI &A6 and
SWI &FF. The new state is determined by:

New state = (Old state AND R2) EOR R1

This call is used to read and write various states of the serial system. These states are
presented as a 32-bit word. The bits in this word represent the following states:

U
sin

g
 filin

g
 system

s

Serial device

2-471

Read/Write or
Bit Read Only Value Meaning
0 R/W 0 No software control. Use RTS handshaking if bit 5

is clear.
1 Use XON/XOFF protocol. Bit 5 is ignored. The

hardware will still do CTS handshaking (ie if CTS
goes low, then transmission will stop), but RTS is
not forced to go low.

1 R/W 0 Use the ~DCD bit. If the ~DCD bit in the status
register goes high, then cause a serial event. Also, if
a character is received when ~DCD is high, then
cause a serial event, and do not enter the character
into the buffer.

1 Ignore the ~DCD bit. Note that some serial chips
(GTE and CMD) have reception and transmission
problems when this bit is high.

2 R/W 0 Use the ~DSR bit. If the ~DSR bit in the status
register is high, then do not transmit characters.

1 Ignore the state of the ~DSR bit.

3 R/W 0 DTR on (normal operation).
1 DTR off (on 6551 serial chips, cannot use serial port

in this state).

4 R/W 0 Use the ~CTS bit. If the ~CTS bit in the status
register is high, then do not transmit characters.

1 Ignore the ~CTS bit (not supported by 6551 serial
chips).

5 R/W This bit is ignored if bit 0 is set. If bit 0 is clear:
0 Use RTS handshaking.
1 Do not use RTS handshaking.

6 R/W 0 Input is not suppressed.
1 Input is suppressed.

7 R/W Users should only modify this bit if RTS
handshaking is not in use:

0 RTS controlled by handshaking system (low if no
RTS handshaking).

1 RTS high.

8 - 15 RO These bits are reserved for future expansion; do not
modify them.

16 RO 0 XOFF not received.
1 XOFF has been received. Transmission is stopped

by this occurrence.

OS_SerialOp 0 (SWI &57)

2-472

17 RO 0 The other end is intended to be in XON state.
1 The other end is intended to be in XOFF state.

When this bit is set, then it means that an XOFF
character has been sent and it will be cleared when
an XON is sent by the buffering software. Note that
the fact that this bit is set does not imply that the
other end has received an XOFF yet.

18 RO 0 The ~DCD bit is low, ie carrier present.
1 The ~DCD bit is high, ie no carrier.

19 RO 0 The ~DSR bit is low, ie ‘ready’ state.
1 The ~DSR bit is high, ie ‘not-ready’ state.

20 RO 0 The ring indicator bit is low.
1 The ring indicator bit is high.

21 RO 0 CTS low (clear to send)
1 CTS high (not clear to send)

22 RO 0 User has not manually sent an XOFF.
1 User has manually sent an XOFF.

23 RO 0 Space in receive buffer above threshold.
1 Space in receive buffer below threshold.

24 - 31 RO These bits are reserved for future expansion; do not
modify them.

Note that if XON/XOFF handshaking is used, then OS_Byte 2,1 or 2,2 must be called
beforehand.

RISC OS 2 does not support bits 4-7 and 21-23 inclusive.

Related SWIs

OS_Byte 156 (page 2-454)

Related vectors

SerialV

U
sin

g
 filin

g
 system

s

Serial device

2-473

OS_SerialOp 1
(SWI &57)

Read/write data format

On entry

R0 = 1 (reason code)
R1 = –1 to read, or new format value

On exit

R0 preserved
R1 = old format value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call sets the encoding of characters when sent and received on the serial line. The
bits in this word represent the following formats:

OS_SerialOp 1 (SWI &57)

2-474

Read/Write or
Bit Read Only Value Meaning
0,1 R/W 0 8 bit word.

1 7 bit word.
2 6 bit word.
3 5 bit word.

2 R/W 0 1 stop bit.
1 2 stop bits in most cases. 1 stop bit if 8 bit word with

parity. 1.5 stop bits if 5 bit word without parity.

3 R/W 0 parity disabled.
1 parity enabled.

4,5 R/W 0 odd parity.
1 even parity.
2 parity always 1 on TX and ignored on RX.
3 parity always 0 on TX and ignored on RX.

6 - 31 reserved – must be set to zero.

Related SWIs

OS_Byte 156 (page 2-454)

Related vectors

SerialV

U
sin

g
 filin

g
 system

s

Serial device

2-475

OS_SerialOp 2
(SWI &57)

Send break

On entry

R0 = 2 (reason code)
R1 = length of break in centiseconds

On exit

R0, R1 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call sets the ACIA to transmit a break, then waits R1 centiseconds before resetting
it to normal. Any character being transmitted at the time the call is made may be garbled.
After sending the break the transmit process is either awakened if the buffer is not
empty, or made dormant if the buffer is empty.

Related SWIs

None

Related vectors

SerialV

OS_SerialOp 3 (SWI &57)

2-476

OS_SerialOp 3
(SWI &57)

Send byte

On entry

R0 = 3 (reason code)
R1 = character to be sent

On exit

R0, R1 preserved
C flag clear if character was sent, or set if character was not sent (ie the buffer

was full)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call puts a character in the serial output buffer, and re-enables the transmit interrupt
if it had been disabled by RISC OS.

If the serial output buffer is full, the call returns immediately with the C flag set.

Related SWIs

None

Related vectors

SerialV

U
sin

g
 filin

g
 system

s

Serial device

2-477

OS_SerialOp 4
(SWI &57)

Get a byte from the serial buffer

On entry

R0 = 4

On exit

R0 preserved
R1 = character received (if C flag clear), or preserved (if C flag set – ie no character

available in buffer to read)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call removes a character from the serial input buffer if one is present. If removing a
character leaves the input buffer with more free spaces than are specified by
OS_Byte 203, then the transmitting device is re-enabled in the way specified by the
serial port state (as set by OS_SerialOp 0).

Note that reception must have been enabled using OS_Byte 2 before this call will have
any effect.

Related SWIs

OS_Byte 2 (SWI &06), OS_Byte 203 (SWI &06)

OS_SerialOp 4 (SWI &57)

2-478

Related vectors

SerialV

U
sin

g
 filin

g
 system

s

Serial device

2-479

OS_SerialOp 5
(SWI &57)

Read/write RX baud rate

On entry

R0 = 5 (reason code)
R1 = –1 to read, or 0 - 15 to set to a value

On exit

R0 preserved
R1 = old receive baud rate

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

The baud rate codes are as follows:

Value of R1 Baud rate
0 9600
1 75
2 150
3 300
4 1200
5 2400
6 4800
7 9600
8 19200
9 50

OS_SerialOp 5 (SWI &57)

2-480

10 110
11 134.5
12 600
13 1800
14 3600
15 7200

The settings from 0 to 8 are in an order compatible with earlier operating systems. The
other speeds from 9 to 15 provide all the other standard baud rates.

The default rate is set by *Configure Baud.

This call has the same effect as an OS_Byte 7 for writing.

Related SWIs

OS_Byte 7 (SWI &06)

Related vectors

SerialV

U
sin

g
 filin

g
 system

s

Serial device

2-481

OS_SerialOp 6
(SWI &57)

Read/write TX baud rate

On entry

R0 = 6 (reason code)
R1 = –1 to read, or 0 - 15 to set to a value

On exit

R0 preserved
R1 = old transmit baud rate

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

The baud rate codes are as follows:

Value of R1 Baud rate
0 9600
1 75
2 150
3 300
4 1200
5 2400
6 4800
7 9600
8 19200
9 50

OS_SerialOp 6 (SWI &57)

2-482

10 110
11 134.5
12 600
13 1800
14 3600
15 7200

The settings from 0 to 8 are in an order compatible with earlier operating systems. The
other speeds from 9 to 15 provide all the other standard baud rates.

The default rate is set by *Configure Baud.

This call has the same effect as an OS_Byte 8 for writing.

Related SWIs

OS_Byte 8 (page 2-453)

Related vectors

SerialV

U
sin

g
 filin

g
 system

s

Serial device

2-483

*Commands
*Configure Baud

Sets the configured baud rate for the serial port

Syntax

*Configure Baud n

Parameters

n 0 to 8

Use

*Configure Baud sets the configured receive and transmit baud rates for the serial port.
The values of n correspond to the following baud rates:

n Baud rate
0 9600
1 75
2 150
3 300
4 1200
5 2400
6 4800
7 9600
8 19200

The default value is 4 (1200 baud).

The change takes effect on the next reset.

Example

*Configure Baud 7 sets the configured baud rate to 9600

Related commands

None

*Configure Baud

2-484

Related SWIs

OS_Byte 7 (page 2-451), OS_Byte 8 (page 2-453), OS_SerialOp 5 (page 2-479),
OS_SerialOp 6 (page 2-481)

Related vectors

None

U
sin

g
 filin

g
 system

s

Serial device

2-485

*Configure Data

Sets the configured data word format for the serial port.

Syntax

*Configure Data n

Parameters

n 0 to 7

Use

*Configure Data sets the configured data word format for the serial port. The values of
n correspond to the following formats:

n Word length Parity Stop bits
0 7 even 2
1 7 odd 2
2 7 even 1
3 7 odd 1
4 8 none 2
5 8 none 1
6 8 even 1
7 8 odd 1

The default value is 4 (8 bits, no parity, 2 stop bits).

The change takes effect on the next reset.

Example

*Configure Data 0 (7 bits, even parity, 2 stop bits)

Related commands

None

Related SWIs

OS_Byte 156 (page 2-454), OS_SerialOp 1 (page 2-473)

2-486

Related vectors

None

U
sin

g
 filin

g
 system

s

2-487

2

39 Parallel device

Introduction and Overview
This module provides parallel device support. It is not available in RISC OS 2. The
module is a client of DeviceFS and can be accessed via that system.

It will setup PrinterType$1 to point at its DeviceFS object, ie:

PrinterType$1 ⇒ devices#buffer3:$.Parallel

The module supports SWIs to allow the 82C710 or 82C711 chip driving the parallel port
to be directly accessed (if present – some machines use other chips).

The ‘parallel:’ device can be opened for output (eg to a printer) or input but not for both.
The input stream is only available on machines which use an 710/711 controller.

The output stream uses standard parallel printer handshaking, and can send data to many
types of printer. In the absence of any standard parallel input protocol the input stream
has been provided mainly as a means of passing data between one machine and another
(eg downloading data from a portable to a master machine). The input device driver
behaves like a printer, and can therefore accept data from another machine which is
‘printing’ from its parallel port. To enable such data transfer a twisted cable must be
made with the following connections:

Pin Signal Direction Pin Signal Direction
1 /STROBE O 10 /ACK I
2 DATA 0 I/O 2 DATA 0 I/O
3 DATA 1 I/O 3 DATA 1 I/O
4 DATA 2 I/O 4 DATA 2 I/O
5 DATA 3 I/O 5 DATA 3 I/O
6 DATA 4 I/O 6 DATA 4 I/O
7 DATA 5 I/O 7 DATA 5 I/O
8 DATA 6 I/O 8 DATA 6 I/O
9 DATA 7 I/O 9 DATA 7 I/O
10 /ACK I 1 /STROBE O
11 BUSY I 17 /SLCTIN O
17 /SLCTIN O 11 BUSY I

Either end of such a cable can be connected to a sending or receiving machine. Note that
sending (ie ‘printing’) machines do not need to be Acorn products, so you can use the
parallel input device to transfer data from, for example, a PC.

Introduction and Overview

2-488

To send data, the ‘parallel:’ device should be opened for output as if it were a file. Data
can then be written to the open device which should be closed when no more data is to
be sent (*Copy file printer#parallel: does this). At the receiving end the
‘parallel:’ device should be opened for input, the bytes should be read, and then the
device should be closed.

U
sin

g
 filin

g
 system

s

Parallel device

2-489

SWI calls
Parallel_HardwareAddress

(SWI &42EC0)

This call is for internal use only. Do not use it; use the SWI Parallel_Op instead.

Parallel_Op (SWI &42EC1)

2-490

Parallel_Op
(SWI &42EC1)

Provides low level parallel operations

On entry

R0 = reason code
other registers are reason code dependent

On exit

R0 preserved
other registers are reason code dependent

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call provides low level parallel operations, which are only available with newer
hardware that uses the 710/711 family of controllers (such as the A5000). The SWI
returns an error for (older) machines on which a 710/711 is not present.

The action of the call depends on the reason code passed in R0:

This call is not available in RISC OS 2, or in RISC OS 3.00.

R0 Action Page
0 read data and status registers 2-492

1 write data register 2-493

2 read/write control register 2-494

U
sin

g
 filin

g
 system

s

Parallel device

2-491

The call is provided to allow you to drive the 82C710/82C711 for yourself. If you intend
to drive the hardware directly then you should open the parallel: device. For
example:

lock =OPENOUT("parallel:")
… play around with hardware …
CLOSE#lock

This stops any other application altering the values that you have setup, preventing any
possible confusion.

Related SWIs

OS_ClaimDeviceVector (page 1-123), OS_ReleaseDeviceVector (page 1-125)

Related vectors

None

Parallel_Op 0 (SWI &42EC1)

2-492

Parallel_Op 0
(SWI &42EC1)

Reads the parallel data and status registers

On entry

R0 = 0

On exit

R0 preserved
R1 = contents of the parallel data register
R2 = contents of the parallel status register

Use

This call is used to obtain the current state of the parallel data lines and status register.
The bits in the read only parallel status register correspond to the following inputs:

Figure 39.1 Parallel status register

Bits 8 to 31 of R2 are undefined. See the 82C710/82C711 data sheet for a description of
these bits. If the DIR bit in the parallel control register (see page 2-494) is 0 (ie output)
then the contents of the data register will be the same as the last data value written. The
data register is read after the status register.

BUSY

7

ACK

6

PE

5

SLCT

4

ERROR

3

rsvd

2

rsvd

1

rsvd

0

U
sin

g
 filin

g
 system

s

Parallel device

2-493

Parallel_Op 1
(SWI &42EC1)

Writes the parallel data register

On entry

R0 = 1
R1 = data

On exit

R0, R1 preserved

Use

This call is used to write a byte to the parallel data lines. This will only have an effect if
the DIR bit in the parallel control register (see page 2-494) is 0 (ie output).

Parallel_Op 2 (SWI &42EC1)

2-494

Parallel_Op 2
(SWI &42EC1)

Reads/writes the parallel control register

On entry

R0 = 2
R1 = EOR mask
R2 = AND mask

On exit

R0 preserved
R1 = old contents of the parallel control register
R2 = new contents of the parallel control register

Use

This call is used to read or write the current state of the parallel control register. The new
state is determined by:

new state = (old state AND R2) EOR R1

The bits in this value correspond to the following outputs:

Figure 39.2 Parallel control register

Bits 8 to 31 are undefined and must not be modified. See the 82C710/82C711 data sheet
for a description of these bits. These lines are output only, but their current state can be
read without changing them by setting R1 = 0 and R2 = &FFFFFFFF. The interrupt
enable bit, IRQEN, should normally be 1 and interrupt disabling should be done in IOC.

rsvd

7

rsvd

6

DIR

5

IRQEN

4

SLCTIN

3

INIT

2

AUTOFD

1

STROBE

0

U
sin

g
 filin

g
 system

s

2-495

2

40 System devices

System devices
The SystemDevices module provides a number of system devices, which behave like
files in some ways. You can use them anywhere you would normally use a file name as
a source of input, or as a destination for output. They include:

System devices suitable for input

kbd: the keyboard, reading a line at a time using OS_ReadLine (this allows
editing using Delete, Ctrl-U, and other keys)

rawkbd: the keyboard, reading a character at a time using OS_ReadC

null: the ‘null device’, which effectively gives no input

System devices suitable for output

vdu: the screen, using GSRead format passed to OS_WriteC

rawvdu: the screen, via the VDU drivers and OS_WriteC

printer: the currently configured printer

netprint: the currently configured network printer driver (provided by the
NetPrint module)

null: the ‘null device’, which swallows all output

An error is given if the specified system device is not present; for example, if the
SystemDevices module is not present.

Other devices
There are also two devices provided as a part of the DeviceFS system:

serial: serial port; see the chapter entitled Serial device on page 2-445

parallel: parallel port; see the chapter entitled Parallel device on page 2-487

Redirection

2-496

Redirection
These system devices can be useful with commands such as *Copy, and the redirection
operators (> and <):

*Copy myfile printer: Send myfile to the printer

*Cat { > printer: } List the files in the current directory to the printer

Suppressing output using null:
You can use the system device null: to suppress unwanted output from a command
script or program:

*myprogram { > null: } Run myprogram with no output

Input devices
You can only open one file for input on kbd: at once as it has buffered input; normal
line editing facilities are available. If you try to open kbd: a second time whilst the first
file is open, you will get returned a handle of 0, or an error if the appropriate bit is set in
the open mode passed to FileSwitch. Ctrl-D in the input line will yield EOF when it is
read from the buffer.

You can open rawkbd: as many times as you like, even if a file is open on kbd:. It
uses XOS_ReadC (without echoing to the screen) to read characters. No EOF condition
exists on rawkbd:; the program reading it must detect an input value/pattern and stop
on that.

No files exist on any of these devices. If you call OS_File 5 on the devices it will always
return object type 0, so you cannot use them for input to programs that need to load an
entire file at once for processing.

netprint:
The netprint: system device is more sophisticated than other ones. As well as using
it in place of file names, you can also use it with certain commands that normally use the
name of a filing system.

U
sin

g
 filin

g
 system

s

System devices

2-497

printer:
The printer: device allows various special fields, to refer to the different types of
printers. These are:

● printer#sink: and printer#null:, which are synonyms

● printer#parallel: and printer#centronics:, which are synonyms

● printer#serial: and printer#rs423:, which are synonyms

● printer#user:, which refers to printer type 3

● printer#n:, which refers to printer type n, where n is in the range 0 - 255.

You can open multiple files on printer:, provided they are on different devices and
using different buffers.

Other output devices
You can open as many files as you wish on the other output devices, which are:

null:, vdu:, and rawvdu:

For example:

H% = OPENOUT "rawvdu:"
SYS"OS_Byte",199,H%,0
type here…
*Spool

When you type everything is sent to the vdu, which outputs it and then uses XOS_BPut
to send it to the spool file handle. This in turn sends it (through another mechanism,
OS_PrintChar) to the screen again! The *Spool at the end clears up.

In addition to byte-oriented operations, you are allowed to perform file save operations
on the output devices.

The difference between vdu: and rawvdu: is that the former is filtered using the
configured DumpFormat, whereas the latter sends its characters straight to the VDU
drivers.

The RISC OS 2 serial device
RISC OS 2 provided its serial port device as a part of the SystemDevices module. It has
since been reimplemented as a device; see the chapter entitled Serial device on
page 2-445.

The RISC OS 2 serial device (serial:) is bidirectional, has no EOF condition, and
allows multiple files to be opened.

2-498

U
sin

g
 filin

g
 system

s

2-499

2

41 The Filer

Introduction and Overview
The Filer is responsible for providing a graphical representation of the filing system
structure. It uses standard filing system calls to do its work, and so will work with any
filing system.

The filing-system-specific desktop filers – such as ADFSFiler – cooperate with the Filer
by issuing the command *Filer_OpenDir when their icon is clicked on, so that the Filer
can open the appropriate directory display. They also provide other operations which are
not sufficiently generic to be provided by the Filer: for example the Format and Verify
operations provided by the ADFSFiler.

See the section entitled Filer messages on page 3-231 for full details on messages used
by the Filer.

Service Calls

2-500

Service Calls
Service_StartFiler

(Service Call &4B)

Request to filing-system-specific desktop filers to start up

On entry

R0 = Filer’s task handle
R1 = &4B (reason code)

On exit

R1 = 0 to claim call
R0 = pointer to * Command to start module

Use

In order to ensure that filing-system-specific desktop filers are not started up without the
Filer module, they are started by a different mechanism. Rather than responding to the
Service_StartWimp service call, they wait for the Filer module to start them up, using
Service_StartFiler. The Filer behaves in a similar way to the Desktop, issuing the
Service_StartFiler service call, followed by Wimp_StartTask, if the service call is
claimed.

The Filer will try to start up any resident filing-system-specific desktop filer tasks when
it is started (by responding to Service_StartWimp). It does this by issuing a service call
Service_StartFiler (&4B).

If this call is claimed, the Filer starts the task by passing to Wimp_StartTask the
* Command returned by the module. It then issues the service again, and repeats this
until no-one claims it.

U
sin

g
 filin

g
 system

s

The Filer

2-501

A module’s service call handler should deal with this reason code as follows:

serviceCode
LDR R12, [R12] ;Load workspace pointer
STMFD SP!, {LR} ;Save link and make R14 available
TEQ R1, #Service_StartFiler ;Is it service &4B?
BEQ startFiler ;Yes
... ;Otherwise try other services
LDMFD SP!, {PC} ;Return

startFiler
LDR R14, taskHandle ;Get task handle from workspace
TEQ R14, #0 ;Am I already active?
MOVEQ R14, #–1 ;No, so init handle to –1
STREQ R14, taskHandle ;R12 relative
ADREQ R0, myCommand ;Point R0 at command to start task
MOVEQ R1, #0 ;(see earlier) and claim the service
LDMFD SP!, {PC} ;Return

Note that the taskHandle word of the module’s workspace must be zero before the
task has been started. This word should therefore be cleared in the module’s initialisation
code. If the task is not already running, the StartFiler code should set the handle to –1,
load the address of a command that can be used to start the module, and claim the call.
Otherwise (if taskHandle is non-zero) it should ignore the call.

The automatic start-up process is made slightly more complex by the necessity to deal
elegantly with errors that occur while a module is trying to start up. If the appropriate
code is not executed, the Desktop can get into an infinite loop of trying to initialise
unsuccessful modules.

This is avoided by the task setting its handle to –1 when it claims the StartFiler service.
If the task fails to start, this will still be –1 the next time the Filer issues a
Service_StartFiler, and so it will not claim the service.

Note that the Filer passes its own taskHandle to the module in R0 in the service call,
to make it easier for the task to send it Message_FilerOpenDir messages later.

Service_StartedFiler (Service Call &4C)

2-502

Service_StartedFiler
(Service Call &4C)

Service_Reset
(Service Call &27)

Request to filing-system-specific desktop filers to set taskHandle variable to zero

On entry

R1 = &4C or &27 (reason code)

On exit

Module’s taskHandle variable set to zero

Use

A task which failed to initialise would have its taskHandle variable stuck at the value –
1, which would prevent it from ever starting again (as Service_StartFiler would never be
claimed). In order to avoid this, the two service calls should be recognised by the
filing-system-specific desktop filers. On either of them, the task handle should be set to
zero:

serviceCode
...

TEQ R1, #Service_StartedFiler ;Service &4C?
BNE tryServiceReset ;No
LDR R14, taskHandle ;taskHandle = –1?
CMN R14, #1
MOVEQ R14, #0 ;Yes, so zero it
STREQ R14, taskHandle
LDMFD SP!, {PC} ;Return

tryServiceReset
TEQ R1, #Service_Reset ;Reset reason code?
MOVEQ R14, #0 ;Yes, so zero handle
STREQ R14, taskHandle
LDMFD SP!, {PC} ;Return

...

Service_StartedFiler is issued when the last of the resident filing system task modules
has been started, and Service_Reset is issued whenever the computer is soft reset.

U
sin

g
 filin

g
 system

s

The Filer

2-503

Service_FilerDying
(Service Call &4F)

Notification that the Filer module is about to close down

On entry

R1 = &4F (reason code)

On exit

Module’s taskHandle variable set to zero

Use

If the Filer module task is closed down (e.g. if the module is *RMKilled, or the Filer task
is quitted from the TaskManager window) the Filer module tries to ensure that all the
other filing-system-specific desktop filers are also closed down, by issuing this service
call.

On receipt of this service call, a filing-system-specific desktop filers should check to see
if it is active and if it is, it should close itself down by calling Wimp_CloseDown as
follows:

serviceCode
...

TEQ R1, #Service_FilerDying
BNE try next
STMFD SP!, {R0-R1, R14}
LDR R0, taskHandle ;in workspace
CMP R0, #0
MOVNE R14, #0
STRNE R14, taskHandle
LDRGT R1, taskid
SWIGT XWimp_CloseDown
LDMFD SP!, {R0-R1, PC}^ ;can’t return errors from service call

trynext
...
taskid DCB "TASK" ;word-aligned

Service_EnumerateFormats (Service Call &6A)

2-504

Service_EnumerateFormats
(Service Call &6A)

Enumerate available disc formats

On entry

R1 = &6A (reason code)
R2 = pointer to list of format specifications suitable for a menu (initially 0)

On exit

R1 preserved to pass on (do not claim)
R2 = pointer to extended list of format specifications suitable for a menu

Use

This service call is issued to get information about the available formats, and to support
!Help for those formats.

● This service call should be issued when the information is required, as formats can
be dynamically added and removed by soft-loading or removing modules. If this
service call is only issued once, it is likely many formats would not be available
(they may finish initialising later, or be soft-loaded later); consequently it is not
recommended.

Each image filing system responds by adding entries to a linked list of blocks held in the
RMA, each of which describes a format:

Offset Meaning
0 Pointer to next of these blocks, or 0 to indicate end of list
4 Pointer to RMA block containing text suitable for inclusion in the

Format submenu
8 Pointer to RMA block containing text which is a suitable response for

!Help for this entry in the Format submenu
12 SWI number to call to obtain raw disc format information
16 Parameter in R3 to use when calling disc format SWI
20 SWI number to call to lay down disc structure
24 Parameter in R0 to use when calling disc structure SWI
28 Flags:

Bit Meaning when set
0 ’This is a native (ADFS) format’
1-31 Reserved – must be zero

U
sin

g
 filin

g
 system

s

The Filer

2-505

The image filing system must fill in each block in this order:

1 Allocate a data block in the RMA to link into the linked list

2 Fill in 0 in the fields of the data block holding pointers to text

3 Link the data block to the list by filling in the pointer at offset 0

4 Allocate the RMA block to hold the text for the submenu entry

5 Attach that RMA block to the data block by filling in the pointer at offset 4

6 Allocate the RMA block to hold the help text for the submenu entry

7 Attach that RMA block to the data block by filling in the pointer at offset 8

8 Copy the text for the submenu entry into its RMA block

9 Copy the help text for the submenu entry into its RMA block

10 Fill in the rest of the data block

The image filing system must not set the pointers at offsets 4 and 8 to point at text
embedded inside its code, but must instead copy the text into individually allocated
RMA blocks.

Once it has filled in each block, it must pass on the service call for other image filing
systems to attach their own formats.

This sequence of actions has been carefully constructed such that any error can be
returned by claiming the service and returning both the error and an intact list. It is then
the responsibility of the issuer of the service call to free the list.

The client must also free the list when the user has chosen a format, and must then
initiate the format using the given parameters.

Service_DiscDismounted (Service Call &7D)

2-506

Service_DiscDismounted
(Service Call &7D)

Disc dismounted

On entry

R1 = &7D (reason code)
R2 = pointer to description of disc which has been dismounted

On exit

All registers are preserved

Use

This call informs modules that a disc has just been dismounted so they can take
appropriate action. For example the Filer might close any open directory displays for
that disc.

The value in R2 should be a pointer to a null-terminated string of the following form:

filing_system::disc

where filing_system is the name of the filing system, and disc is the name of the disc. If
the disc has no name then the drive number should be filled in instead. For example,
ADFS would issue the service call with these parameters:

R1 = &7D, R2 = ‘ADFS::MyFloppy’

or, for an unnamed disc:

R1 = &7D, R2 = ‘ADFS::0’.

This service call should not be claimed.

U
sin

g
 filin

g
 system

s

The Filer

2-507

* Commands
*Filer_Boot

Boots a desktop application

Syntax

*Filer_Boot application

Parameters

application a valid pathname specifying an application, the !Boot file of
which is to be run

Use

*Filer_Boot boots the specified desktop application by running its !Boot file. This
command is most useful in Desktop boot files.

You can only use this command from within the desktop environment, or within a
Desktop boot file.

Example

*Filer_Boot adfs::mhardy.$.Apps.!PrinterPS

Related commands

*Filer_Run

Related SWIs

None

Related vectors

None

*Filer_CloseDir

2-508

*Filer_CloseDir

Closes a directory display on the Desktop

Syntax

*Filer_CloseDir directory

Parameter

directory the pathname of a directory whose directory display is to be
closed

Use

*Filer_CloseDir closes a directory display on the Desktop, and any of its sub-directories.
The directory display will typically have been opened by an earlier *Filer_OpenDir
command, but it could equally well have been opened some other way.

Under RISC OS 2 the directory pathname must exactly match a leading sub-string of the
title of a directory display for it to be closed. To avoid problems, your directory
pathname should always include the filing system, the drive name and a full path from $.
The case of letters is not significant, but the Filer uses lower case for filing system
names.

This call will close all directory displays that match the specified sub-string. Under
RISC OS 2 the minimum substring you can pass is the filing system only, whereas under
RISC OS 3 you must also specify the drive name.

You can only use this command from within the desktop environment, or within a
Desktop boot file.

Example

*Filer_CloseDir adfs::applDisc.$.progs.basic

Related commands

*Filer_OpenDir

Related SWIs

None

U
sin

g
 filin

g
 system

s

The Filer

2-509

Related vectors

None

*Filer_OpenDir

2-510

*Filer_OpenDir

Opens a directory display on the Desktop

Syntax

*Filer_OpenDir directory [x y [width height]] [switches]

Parameters

directory the pathname of a directory whose directory display is to be
opened

x the x-coordinate of the top left of the directory display, in OS
units

y the y-coordinate of the top left of the directory display, in OS
units

width the width of the directory display, in OS units

height the height of the directory display, in OS units

switches switches to control the display type of the directory display;
there are alternatives; the case of the letters is not significant:

-SmallIcons -si display small icons
-LargeIcons -li display large icons
-FullInfo -fi display full information
-SortByName -sn display sorted by name
-SortByType -st display sorted by type
-SortByDate -sd display sorted by date
-SortBySize -ss display sorted by size

Use

*Filer_OpenDir opens a directory display on the Desktop.

Under RISC OS 2, if the directory pathname exactly matches the title of a directory
display that is already open, it simply stays open; no new display appears. However, if
the pathname is even slightly different from a display’s title (eg you omit the $. after the
drive name), it will be treated as a different directory. This can result in two displays
looking at the same directory.

To avoid such problems, your directory pathname should always include the filing
system, the drive name and a full path from $. The case of letters is not significant, but
the Filer uses lower case for filing system names. This also ensures that applications run
correctly, since they use their pathnames to reference files within themselves.

U
sin

g
 filin

g
 system

s

The Filer

2-511

RISC OS always ensures that the opened directory display is entirely visible on the
desktop, and that its size is within the normal limits imposed by the Filer. Invalid
parameters are rounded up/down until valid.

Each parameter – except for the switches – can be preceded by a keyword for the sake of
clarity. This is especially useful when writing scripts. There are variants on the
keywords; again, the case of the letters is not significant. Valid keywords are:

Keyword Alternative Precedes parameter
-dir -directory directory
-x0 -topleftx x
-y1 -toplefty y
-width -w width
-height -h height

You can only use this command from within the desktop environment, or within a
Desktop boot file.

Example

*Filer_OpenDir adfs::applDisc.$.progs.basic

Related commands

*Filer_CloseDir

Related SWIs

None

Related vectors

None

*Filer_Run

2-512

*Filer_Run

Performs the equivalent of double-clicking on an object in a directory display

Syntax

*Filer_Run object

Parameters

object a valid pathname specifying an object to be treated as if
double-clicked on

Use

*Filer_Run performs the equivalent of double-clicking on an object in a directory
display. For example an application would be run, a directory would be opened, and a
file might be loaded into the relevant application. This command is most useful in
Desktop boot files.

You can only use this command from within the desktop environment, or within a
Desktop boot file.

Example

*Filer_Run adfs::mhardy.$.Apps.!PrinterPS

Related commands

*Filer_Boot

Related SWIs

None

Related vectors

None

U
sin

g
 filin

g
 system

s

2-513

2

42 Filer_Action and FilerSWIs

Introduction and Overview
The Filer_Action module performs file manipulation operations for the Filer without the
desktop hanging whilst they are under way. See the section entitled Filer Action Window
on page 3-233 for details of how the Filer Action window operates.

The FilerSWIs module provides SWIs to help make starting Filer_Action easier.

SWI calls

2-514

SWI calls
FilerAction_SendSelectedDirectory

(SWI &40F80)

Sends message specifying the selected directory

On entry

R0 = task handle to which to send the message
R1 = pointer to null terminated directory name

On exit

—

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call sends the Wimp message Message_FilerSelectionDirectory (see page 3-233).

For a description of how messages within the Wimp environment are generated see
Wimp_SendMessage (SWI &400E7) on page 3-193.

Related SWIs

FilerAction_SendSelectedFile (page 2-515),
FilerAction_SendStartOperation (page 2-517)

Related vectors

None

U
sin

g
 filin

g
 system

s

Filer_Action and FilerSWIs

2-515

FilerAction_SendSelectedFile
(SWI &40F81)

Sends message specifying the selected files within a directory

On entry

R0 = task handle to which to send the message
R1 = pointer to null terminated selection name

On exit

—

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call accumulates the names of selected files that you pass to it. When it has received
sufficient filenames to fill a Wimp message block it sends those names using the Wimp
message Message_FilerAddSelection (see page 3-234). The same message is used to
send any unsent filenames if you subsequently call FilerAction_SendStartOperation.

For a description of how messages within the Wimp environment are generated see
Wimp_SendMessage (SWI &400E7) on page 3-193.

Related SWIs

FilerAction_SendSelectedDirectory (page 2-514),
FilerAction_SendStartOperation (page 2-517)

FilerAction_SendSelectedFile (SWI &40F81)

2-516

Related vectors

None

U
sin

g
 filin

g
 system

s

Filer_Action and FilerSWIs

2-517

FilerAction_SendStartOperation
(SWI &40F82)

Sends message containing information to start operation

On entry

R0 = task handle to which to send the message
R1 = reason code:

0 Copy
1 Move (rename)
2 Delete
3 Set access
4 Set type
5 Count
6 Move (by copying and deleting afterwards)
7 Copy local (within directory)
8 Stamp files
9 Find file

R2 = option bits:
bit meaning when set
0 Verbose
1 Confirm
2 Force
3 Newer (as opposed to just Look)
4 Recurse (only applies to access)

R3 = pointer to operation specific data
R4 = length of operation specific data:

Copy:
R3 pointer to name of destination directory (null terminated)
R4 length of name of destination directory (including null

terminator)
Move:

R3 pointer to name of destination directory (null terminated)
R4 length of name of destination directory (including null

terminator)
Delete:

R3 unused
R4 0

FilerAction_SendStartOperation (SWI &40F82)

2-518

Set access:
R3 pointer to word containing required new access:

bottom two bytes indicate the values to set
top two bytes flag which bits are to be left alone

R4 4
Set type:

R3 pointer to word containing new type in bits 0-11
R4 4

Count:
R3 unused
R4 0

Copy Move:
R3 pointer to name of destination directory (null terminated)
R4 length of name of destination directory (including null

terminator)
Copy Local:

R3 pointer to destination name (null terminated)
R4 length of name of destination name (including null terminator)

Stamp:
R3 unused
R4 0

Find:
R3 pointer to name of object to find (null terminated)
R4 length of name of object to find (including null terminator)

On exit

—

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

U
sin

g
 filin

g
 system

s

Filer_Action and FilerSWIs

2-519

Use

This call sends the Wimp message Message_FilerAction (see page 3-234). Before doing
so, it uses Message_FilerAddSelection to send any filenames passed to Filer_Action
using FilerAction_SendSelectedFile that have not already been sent.

For a description of how messages within the Wimp environment are generated see
Wimp_SendMessage (SWI &400E7) on page 3-193.

Related SWIs

FilerAction_SendSelectedDirectory (page 2-514),
FilerAction_SendSelectedFile (page 2-515)

Related vectors

None

* Commands

2-520

* Commands
*Filer_Action

Used to start a Filer_Action task running under the desktop

Syntax

*Filer_Action

Parameters

None

Use

*Filer_Action is used to start a Filer_Action task running under the desktop. The task
automatically sets its own slot size to an appropriate value. If it does not receive a ‘start
operation’ message before the next null event, it kills itself.

This command is only useful to programmers writing applications to run under the
desktop. To issue the command, you should call Wimp_StartTask (page 3-174) with R0
pointing to the string ‘Filer_Action’. The reason why this command has to be provided
is that it is only possible to start a new Wimp task using a * Command.

If you do try to use this command outside the desktop, the error ‘Wimp is currently
active’ is generated.

Related commands

None

Related SWIs

Wimp_StartTask (page 3-174)

Related vectors

None

2-521

2

43 Free

Introduction and Overview
This module enables an interactive free space display from the desktop.

Any filing system that wishes to display an interactive free space display should register
with this module. In doing so, the filing system provides the address of a routine that
accepts a variety of reason codes, each of which provides support for this module.

When the Free entry is selected from the filing system’s menu, its desktop filer should
issue the command:

*ShowFree -fs fs_name device

This module will then display the free space left.

The Free module is not available in RISC OS 2.

SWI calls

2-522

SWI calls
Free_Register
(SWI &444C0)

Provides an interactive free space display for a filing system

On entry

R0 = filing system number
R1 = address of routine to call to get free space info
R2 = R12 on entry to the above routine

On exit

Registers preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call adds the filing system to the list of filing systems known by the Free module.
The Free module automatically deals with the following filing systems: ADFS, RamFS,
NetFS, NFS, SCSIFS.

R1 contains the address of the entry point for a set of support routines, which the Free
module uses to help it to provide an interactive free space display for the filing system.
The entry point is called in User mode, with the Free module’s private stack, the top of
which contains the return address. You cannot assume the depth of this stack, and should
not use it save to pull the return address. Alternatives are:

● Construct a new stack.

Free

2-523

● Call the SWI OS_EnterOS to get the SVC mode stack, do the work and then return
to User mode before returning.

● Use a SWI to do all the work: for example, you might use OS_FSControl 49 (get
free space) for reason code 2.

The routine should exit using the instruction:

LDMIA R13,{PC}

The entry point may be called with the following reason codes:

Reason code 0 – NoOp

On entry

—

On exit

—

Details

This entry point is a No Op, and you should just return with all registers preserved.

Reason code 1 – Get device name

On entry

R0 = 1
R1 = filing system number
R2 = pointer to buffer
R3 = pointer to device name / ID

On exit

R0 = length of name
R1-R3 preserved

Details

This entry point is called to get the name of a device. You should place the device name
in the buffer pointed to by R2, and the length of the name in R0.

Free_Register (SWI &444C0)

2-524

Reason code 2 – Get free space for device

On entry

R0 = 2
R1 = filing system number
R2 = pointer to 3 word buffer
R3 = pointer to device name / ID

On exit

R0 - R3 preserved

Details

This entry point is called to get the free space for a device. You should fill in the buffer
pointed to by R2 with the following information:

Offset Meaning
0 total size of device (0 if unchanged from last time read)
4 free space on device
8 used space on device

Reason code 3 – Compare device

On entry

R0 = 3
R1 = filing system number
R2 = pointer to filename
R3 = pointer to device ID
R6 = pointer to special field

On exit

R0 - R3, R6 preserved
Z set if R2 & R6 result in a file on the device pointed to by R3

Details

This entry point is called to compare a device ID with a filename and special field. This
call can simply return with Z set if the filing system is a fast filing system (eg RAMFS).

Related SWIs

Free_DeRegister (page 2-526)

Free

2-525

Related vectors

None

Free_DeRegister (SWI &444C1)

2-526

Free_DeRegister
(SWI &444C1)

Removes the filing system from the list of filing systems known by the Free module

On entry

R0 = filing system number
R1 = address of routine (as passed to Free_Register)
R2 = R12 value (as passed to Free_Register)

On exit

R0 preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call removes the filing system from the list of filing systems known by the Free
module.

Related SWIs

Free_Register (page 2-522)

Related vectors

None

Free

2-527

* Commands
*ShowFree

Shows within a desktop window the amount of free space on a device

Syntax

*ShowFree -fs fs_name device

Parameters

fs_name name of the filing system used to access the device

device name of the device for which to show free space

Use

*ShowFree shows within a desktop window the amount of free space on a device. It is
used by desktop filers such as ADFSFiler

This command will only work on filing systems registered using the SWI Free_Register.

Example

*ShowFree -fs adfs HardDisc4

Related commands

None

Related SWIs

Free_Register (page 2-522), Free_DeRegister (page 2-526)

Related vectors

None

2-528

W
ritin

g
 filin

g
 system

s

2-529

2 Part 5 – Writing filing systems

2-530

W
ritin

g
 filin

g
 system

s

2-531

2

44 Writing a filing system

Writing your own filing system
You can add filing systems to RISC OS. You must write them as relocatable modules.
There are two ways of doing so:

● by adding a module that FileSwitch communicates with directly

● by adding a secondary module to FileCore; FileSwitch communicates with
FileCore, which then communicates with your module.

In both cases, the amount of work you have to do is considerably less than if you were to
write a filing system from scratch, as the FileSwitch and FileCore modules already
provide a core of the functions your filing system must offer. Obviously if you use
FileCore as well as FileSwitch, more is already provided for you, and so you have even
less work to do. The structure of FileCore is then imposed on your filing system; to the
user, it will appear very similar to ADFS, leading to a consistency of design.

Obviously there is no way that FileSwitch can know how to communicate directly with
the entire range of hardware that any filing system might use. Your filing system must
provide these facilities, and declare the entry points to FileSwitch. When FileSwitch
receives a SWI call or * Command, it does its share of the work, and uses these entry
points to get the relevant filing system to do the work that is hardware dependent.

What to read next

The relevance of the rest of this chapter depends on how you intend to write your own
filing system:

● if you are not using FileCore, then you should read this chapter, which tells you how
to add a filing system to FileSwitch

● if you are using FileCore, then you should ignore this chapter and instead read the
chapter entitled Writing a FileCore module on page 2-597.

In both cases you should also see the chapter entitled Modules on page 1-201, for more
information on how to write a module.

Filing systems

2-532

Filing systems

Declaring a filing system

When your module initialises, it must declare itself to be a filing system, so that
FileSwitch knows of its existence. You must call OS_FSControl 12 to do this – see
page 2-96 for details. R1 and R2 tell FileSwitch where to find a filing system
information block. This in turn tells FileSwitch the locations of all the entry points to the
filing system’s low level routines that interface with the hardware.

Filing system information block

This table shows the offsets from the start of the filing system information block, and the
meaning of each word in the block:

Offset Contains
&00 Offset of filing system name (null terminated)
&04 Offset of filing system startup text (null terminated)
&08 Offset of routine to open files (FSEntry_Open)
&0C Offset of routine to get bytes from media (FSEntry_GetBytes)
&10 Offset of routine to put bytes to media (FSEntry_PutBytes)
&14 Offset of routine to control open files (FSEntry_Args)
&18 Offset of routine to close open files (FSEntry_Close)
&1C Offset of routine to do whole file operations (FSEntry_File)
&20 Filing system information word
&24 Offset of routine to do various FS operations (FSEntry_Func)
&28 Offset of routine to do multi-byte operations (FSEntry_GBPB)
&2C Extra filing system information word (optional)

The offsets held in each word are from the base of the filing system module. The GBPB
entry (at offset &28 from the start of the information block) is optional if the filing
system supports non buffered I/O, and not required otherwise.

The block need not exist for long, as FileSwitch takes a copy of it and converts the entry
points to absolute addresses. So you could set up the block as an area in a stack frame,
for example.

Filing system information word

The filing system information word (at offset &20) tells FileSwitch various things about
the filing system:

Bit Meaning if set
31 Special fields are supported
30 Streams are interactive (ie prompting for input is appropriate)
29 Filing system supports null length filenames

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-533

28 Filing system should be called to open a file whether or not it exists
27 Tell the filing system when flushing by calling FSEntry_Args 255
26 Filing system supports FSEntry_File 9
25 Filing system supports FSEntry_Func 20
24 Reserved – must be zero
23 Filing system supports image filing system extensions
22 Pass & and % in paths when appropriate
21 Need not store directories for this filing system
20 Use Open/GetBytes/Close entry points rather than File 255
19 Use Open/GetBytes/Close entry points rather than File 0
18 Use FSEntry_Func 9 in preference to FSEntry_File entry points
17 Extra filing system information word is present
16 Filing system is read-only
15 - 8 Maximum number of files that may be open (see below)
7 - 0 Filing system number (see below)

Bits 16 - 23 are ignored by RISC OS 2. File systems that were written for RISC OS 2
should have these bits clear, which may cause problems: for example, RISC OS 2
read-only filing systems will incorrectly have bit 16 clear.

Bits 8 - 15 tell FileSwitch the maximum number of files that can be easily opened on the
filing system (per server, if appropriate). A value of 0 means that there is no definite
limiting factor – DMA failure does not count as such a factor. These bits may be used by
system extension modules such as the Font Manager to decide whether a file may be left
open or should be opened and closed as needed, to avoid the main application running
out of file handles.

Bits 0 - 7 contain the filing system identification number. Currently allocated ones are
listed in the chapter entitled Filing system numbers on page 2-21. For your own
allocation, contact Acorn Computers in writing: see Appendix H: Registering names on
page 4-551.

Extra filing system information word

The extra filing system information word is present if bit 17 of the filing system
information word is set. If absent, it is assumed by FileSwitch to have value zero. The
meaning of the bits in the word is as follows:

Bit Meaning if set
0 Filing system supports FSEntry_Func 34
1 Filing system should be called to do Cat
2 Filing system should be called to do Ex
3 - 31 Reserved – must be zero

You should only set bits 1 and 2 if your filing system provides a non-standard format for
Cat and Ex respectively.

Filing systems

2-534

Service Call handler

Your filing system must have a Service Call handler. It must respond to
Service_FSRedeclare (see page 2-25) by redeclaring the filing system. For some filing
systems, it may be appropriate to respond to Service_CloseFile (page 2-26). Disc based
filing systems should also support Service_IdentifyDisc (page 2-220),
Service_EnumerateFormats (page 2-504), Service_IdentifyFormat (page 2-281), and
Service_DisplayFormatHelp (page 2-282).

Selecting your filing system

If your filing system has associated file storage, it must provide a * Command to select
itself, such as *ADFS or *Net. This must call OS_FSControl 14 to direct FileSwitch to
make the named filing system current, thus:

StarFilingSystemCommand
STMFD R13!, {R14} ; In a * Command so R0-R6 may be corrupted
MOV R0, #FSControl_SelectFS ; 14
ADR R1, FilingSystemName
SWI XOS_FSControl
LDMFD R13!, {PC}

For full details of OS_FSControl 14, see page 2-98.

Other * Commands

There are no other * Commands that your filing system must provide, but it obviously
should provide more than just a way to select itself. Look through the previous chapters
in this part of the manual to see what other filing systems offer.

If the list of * Commands you want to provide closely matches those in the chapter
entitled FileCore on page 2-197, you ought to investigate adding your filing system to
FileCore rather than to FileSwitch; this will be less work for you.

Removing your filing system

The finalise entry of your module must call OS_FSControl 16 (for both soft and hard
deaths), so that FileSwitch knows that your filing system is being removed:

MOV R0, #FSControl_RemoveFS ; 16
ADR R1, FilingSystemName
SWI XOS_FSControl
CMP PC, #0 ; Clears V (also clears N,Z, sets C)

For full details of OS_FSControl 16, see page 2-100.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-535

Image filing systems
For a description of image filing systems, and their relationship to other filing systems,
see the chapter entitled DOSFS on page 2-323. Image filing systems are not supported
by RISC OS 2.

Declaring an image filing system

When your module initialises, it must declare itself to be an image filing system, so that
FileSwitch knows of its existence. You must call OS_FSControl 35 to do this – see
page 2-119 for details. R1 and R2 tell FileSwitch where to find an image filing system
information block. This in turn tells FileSwitch the locations of all the entry points to the
image filing system’s low level routines that interface with the hardware.

Image filing system information block

This table shows the offsets from the start of the image filing system information block,
and the meaning of each word in the block:

Offset Contains
&00 Image filing system information word
&04 Image filing system file type
&08 Offset of routine to open files (ImageEntry_Open)
&0C Offset of routine to get bytes from media (ImageEntry_GetBytes)
&10 Offset of routine to put bytes to media (ImageEntry_PutBytes)
&14 Offset of routine to control open files (ImageEntry_Args)
&18 Offset of routine to close open files (ImageEntry_Close)
&1C Offset of routine to do whole file operations (ImageEntry_File)
&24 Offset of routine to do various FS operations (ImageEntry_Func)

The offsets held in each word are from the base of the image filing system module.

The block need not exist for long, as FileSwitch takes a copy of it and converts the entry
points to absolute addresses. So you could set up the block as an area in a stack frame,
for example.

The image filing system file type gives the numerical file type of files which contain
images understood by the image filing system.

Image filing systems

2-536

Image filing system information word

The image filing system information word (at offset 0) tells FileSwitch various things
about the image filing system:

Bit Meaning if set
27 Tell the image filing system when flushing by calling

ImageEntry_Args 255

All other bits are reserved and should be set to zero.

Service Call handler

Your image filing system must have a Service Call handler. It must respond to the same
service calls as any other filing system; see the section entitled Service Call handler on
page 2-534.

* Commands

There are no * Commands that your image filing system must provide, but most should
provide some. See the chapter entitled DOSFS on page 2-323 for an example of what
other image filing systems offer.

Removing your image filing system

The finalise entry of your module must call OS_FSControl 36 (for both soft and hard
deaths), so that FileSwitch knows that your image filing system is being removed:

MOV R0, #FSControl_DeRegisterImageFS ; 36
ADR R1, ImageFileType
SWI XOS_FSControl
CMP PC, #0 ; Clears V (also clears N,Z, sets C)

For full details of OS_FSControl 36, see page 2-120.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-537

Filing system interfaces: introduction

Calling conventions
The principal part of a filing system (or of an image filing system) is the set of low-level
routines that control the filing system’s hardware. There are certain conventions that
apply to them.

Processor mode

Routines called by FileSwitch are always entered in SVC mode, with both IRQs and
FIQs enabled. This means you do not have to change mode to access hardware devices
directly, and are able to change to FIQ mode to set up FIQ registers if necessary.

Using the stack

R13 in supervisor mode is used as the system stack pointer. The filing system (or image
filing system) may use this full descending stack. When the filing system (or image
filing system) is entered you should take care not to push too much onto the stack, as it
is only guaranteed to be 1024 bytes deep; however most of the time it is substantially
greater. The stack base is on a 1Mbyte boundary. Hence, to determine how much stack
space there is left for your use, use the following code:

MOV R0, R13, LSR #20 ; Get Mbyte value of SP
SUB R0, R13, R0, LSL #20 ; Sub it from actual value

You may move the stack pointer downwards by a given amount and use that amount of
memory as temporary workspace. However, interrupt processes are allowed to use the
supervisor stack so you must leave enough room for these to operate. Similarly, if you
call any operating system routines, you must give them enough stack space.

Calling conventions

2-538

Using file buffers

If a read or write operation occurs that requires a file buffer to be claimed for a file, and
this memory claim fails, then FileSwitch will look to steal a file buffer from some other
file. Victims are looked for in the order:

1 an unmodified buffer of the same size

2 an unmodified buffer of a larger size

3 a modified buffer of the same size

4 a modified buffer of a larger size.

In the last two cases, FileSwitch obviously calls the filing system (or image filing
system) to write out the buffer first, before giving it to the new owner. If an error occurs
in writing out the buffer under RISC OS 2, the stream that owned the data in the buffer
(not the stream that needed to get the buffer) is marked as having ‘data lost’; any further
operations will return the ‘Data lost’ error. FileSwitch is always capable of having one
file buffered at any time, although it won’t work very well under such conditions.

Workspace

R12 on entry to the filing system (or image filing system) is set to the value of R3 it
passed to FileSwitch when initialising by calling OS_FSControl 12 or 35.
Conventionally, this is used as a pointer to your private word. In this case, module
entries should contain the following:

LDR R12, [R12]

to load the actual private word into the register.

Returning errors

The error numbers your filing system returns should take this format:

&0001nnee

where nn is the filing system number, as passed in the information word (see the section
entitled Filing system information word on page 2-532); and ee is one of the error
numbers used by FileCore based filing systems (see the table on page 2-600), or – if
none is relevant – a number that does not appear in that table.

Supporting unbuffered streams

Filing systems may support both buffered and unbuffered streams. Unbuffered streams
must maintain their own sequential pointers, file extents and allocated sizes. File Switch
will maintain the EOF-error-on-next-read flag for them.

Image filing system streams are always buffered; consequently they should not support
unbuffered streams.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-539

Dealing with access

Generally FileSwitch does not make calls to filing systems (or to image filing systems)
unless the access on objects is correct for the requested operation.

Note that if a file is opened for buffered output and has only write access, FileSwitch
may still attempt to read from it to perform its file buffering. You must not fault this.

Other conventions

Filing system (or image filing system) routines do not need to preserve any registers
other than R13.

If a routine wishes to return an error, it should return to FileSwitch with V set and R0
pointing to a standard format error block.

You may assume that:

● all names are null terminated

● all pathnames are non-null, unless the filing system allows them (for example
printer:)

● all pathnames have correct syntax.

All pathnames should be treated as read-only If you do need to make changes to a
pathname, you must copy it to your local workspace and modify that copy.

Using canonical names
All filing system interfaces, with the exception of FSEntry_Func 23, are always passed
names in the canonical form. This canonical form is defined by the designer of a
particular filing system and is fixed. Canonical form is used to ensure that dissimilar
references to the same object reduce to identical strings, and thus the filing system can
easily determine that two object references are to the same object. For example after:

*Mount 0 *Dir A.z

references to $.a.b.c and to ^.b.c will reduce to the same canonical form:

adfs::MyDisc.$.a.b.c

The use of canonical form also helps the filing system to run faster. Because all filing
system interfaces only receive canonical names, the parsing can be fast and efficient.
Remember that canonicalisation happens once for several calls to the filing system
itself.

The chosen canonical form should be a subset of the acceptable name styles, and hence
the canonical name should be acceptable to the canonicaliser as input. For example the
input syntax for the NetFS canonicaliser is:

Using canonical names

2-540

Net[#(name|number]:[:discname.]$|&

The output format is:

Net::name.$|&

It is also worthwhile optimising the canonicalisation code so that an already canonical
name is processed very fast.

Canonical names are not used by RISC OS 2.

ImageEntry entry points

In the following descriptions a pathname will always be relative to the root directory of
the image, and will never have any ‘^’, ‘$’, ‘@’, ‘%’, ‘\’ or ‘&’ characters in it. When a
wildcarded pathname is specified, the operation should be applied to all matching
leafnames; but earlier wildcarded elements in the path should use the first match. A null
pathname indicates the root directory of the image.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-541

Interfaces
These are the interfaces that your filing system (or image filing system) must provide.
Their entry points must be declared to FileSwitch by calling OS_FSControl 12 when
your filing system module is initialised, or by calling OS_FSControl 35 when your
image filing system module is initialised.

FSEntry_Open and ImageEntry_Open

Open a file

On entry (FSEntry_Open)

R0 = reason code
R1 = pointer to filename
R3 = FileSwitch handle for the file
R6 = pointer to special field if present, otherwise 0

On exit (FSEntry_Open)

R0 = file information word (not the same as the filing system information word)
R1 = your filing system’s handle for the file (0 if not found)
R2 = buffer size for FileSwitch to use (0 if file unbuffered, else must be a power of 2

between 64 and 1024)
R3 = file extent (buffered files only)
R4 = space currently allocated to file (buffered files only: must be a multiple of

buffer size)

On entry (ImageEntry_Open)

R1 = pointer to filename
R3 = FileSwitch handle for the file
R6 = image filing system’s handle for image that contains file

On exit (ImageEntry_Open)

R0 = image file information word (not the same as the image filing system
information word)

R1 = your image filing system’s handle for the file (0 if not found)
R2 = buffer size for FileSwitch to use (must be a power of 2 between 64 and 1024)
R3 = file extent
R4 = space allocated to file (must be a multiple of buffer size)

FSEntry_Open and ImageEntry_Open

2-542

Use

FileSwitch calls this entry point to open a file for read or write, and to create it if
necessary.

General details

On entry, R3 contains the handle that FileSwitch will use for the file if your filing system
successfully opens it. This is a small integer (typically going downwards from 255), but
must be treated as a 32-bit word for future compatibility. Your filing system may want to
make a note of it when the file is opened, in case it needs to refer to files by their
FileSwitch handles (for example, it must close all open files on a *Dismount). It is the
FileSwitch handle that the user sees.

On exit, your filing system must return a 32-bit file handle that it uses internally to
FileSwitch. FileSwitch will then use this file handle for any further calls to your filing
system. You may use any value, apart from a handle of 0 which means that no file is
open.

The value returned in R2 is the natural block size of the file; for disc oriented filing
systems, this should be the same as the natural sector size. FileSwitch – when calling the
filing system – will tend to use multiple of this value, aligned on a boundary which is
also a multiple of this value.

If your memory allocation fails, this is not an error, and you should indicate it to
FileSwitch by setting R1 to 0 on exit.

Details specific to FSEntry_Open

The reason code given in R0 has the following meaning:

Value Meaning
0 Open for read
1 Create and open for update (only used by RISC OS 2)
2 Open for update

For both reason codes 0 and 2 FileSwitch will already have checked that the object
exists (unless you have overridden this by setting bit 28 of the filing system information
word) and, for reason code 2 only, that it is not a directory. These reason codes must not
alter a file’s datestamp.

If a directory is opened for reading, then bytes will not be requested from it. The use of
this is for compatibility with existing programs which use this as a method of testing the
existence of an object.

For reason code 1 FileSwitch will already have checked that the leafname is not
wildcarded, and that the object is not an existing directory. Your filing system should
return an extent of zero. If the file already exists you should return an allocated space the

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-543

same as that of the file; otherwise you should return a sensible default that allows space
for the file to grow. Your filing system should also give a new file a filetype of &FFD
(Data), datestamp it, and give it sensible access attributes (WR/ is recommended).

The file information word returned in R0 uses the following bits:

Bit Meaning if set
31 Write permitted to this file
30 Read permitted from this file
29 Object is a directory
28 Unbuffered OS_GBPB supported (stream-type devices only)
27 Stream is interactive

All other bits are reserved and should be set to 0.

An interactive stream is one on which prompting for input is appropriate, such as kbd:.

Details specific to ImageEntry_Open

FileSwitch will already have checked that the object exists and that it is not a directory.
You must not alter a file’s datestamp.

The image file information word returned in R0 uses the following bits:

Bit Meaning if set
31 Write permitted to this file
30 Read permitted from this file

All other bits are reserved and should be set to 0.

FSEntry_GetBytes (from a buffered file), and ImageEntry_GetBytes (all cases)

2-544

FSEntry_GetBytes (from a buffered file), and ImageEntry_GetBytes (all cases)

Get bytes from a buffered file

On entry

R1 = file handle used by your filing system/image filing system
R2 = pointer to buffer
R3 = number of bytes to read into buffer
R4 = file offset from which to get data

On exit

—

Details

This entry point is used by FileSwitch to request that you read a number of bytes from an
open file, and place them in memory.

The file handle is guaranteed by FileSwitch not to be a directory, but not necessarily to
have had read access granted at the time of the open – see the last case given below.

The memory address is not guaranteed to be of any particular alignment. You should if
possible optimise your filing system’s transfers to word-aligned locations in particular,
as FileSwitch’s and most clients do tend to be word-aligned. The speed of your transfer
routine is vital to filing system performance. An optimised example (similar to that used
in RISC OS) is given in the section entitled Example program on page 2-591.

The number of bytes to read, and the file offset from which to read data are guaranteed
to be a multiple of the buffer size for this file. The file offset will be within the file’s
extent.

This call is made by FileSwitch for several purposes:

● A client has called OS_BGet at a file offset where FileSwitch has no buffered data,
and so FileSwitch needs to read the appropriate block of data into one of its buffers,
from where data is returned to the client.

● A client has called OS_GBPB to read a whole number of the buffer size at a file
offset that is a multiple of the buffer size. FileSwitch requests that the filing system
transfer this data directly to the client’s memory. This is often the case where
language libraries are being used for file access. If FileSwitch has any buffered data
in the transfer range that has been modified but not yet flushed out to the filing
system, then this data is copied to the client’s memory after the GetBytes call to the
filing system.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-545

● A client has called OS_GBPB to perform a more general read. FileSwitch will work
out an appropriate set of data transfers. You may be called to fill FileSwitch’s
buffers as needed and/or to transfer data directly to the client’s memory. You should
make no assumptions about the exact number and sequence of such calls; as far as
possible RISC OS tries to keep the calls in ascending order of file address, to
increase efficiency by reducing seek times, and so on.

● A client has called OS_GBPB to perform a more general write. FileSwitch will
work out an appropriate set of data transfers. You may be called to fill FileSwitch’s
buffers as needed, so that the data at the start and/or end of the requested transfer
can be put in the right place in FileSwitch’s buffers, ready for whole buffer transfer
to the filing system as necessary.

Note that FileSwitch holds no buffered data immediately after a file has been opened.

FSEntry_GetBytes (from an unbuffered file)

Get a byte from an unbuffered file

On entry

R1 = file handle used by your filing system

On exit

R0 = byte read, C clear
R0 = undefined, C set if attempting to read at end of file

Details

This entry point is called by FileSwitch to get a single byte from an unbuffered file from
the position given by the file’s sequential pointer. The sequential pointer must be
incremented by one, unless the end of the file has been reached.

The file handle is guaranteed by FileSwitch not to be a directory and to have had read
access granted at the time of the open.

Your filing system must not try to keep its own EOF-error-on-next-read flag – instead it
must return with C set whenever the file’s sequential pointer is equal to its extent before
a byte is read. It is FileSwitch’s responsibility to keep the EOF-error-on-next-read flag.

If your filing system does not support unbuffered GBPB directly, then FileSwitch will
call this entry the necessary number of times to complete its client’s request, stopping if
you return with the C flag set (EOF).

FSEntry_PutBytes (to a buffered file), and ImageEntry_PutBytes (all cases)

2-546

FSEntry_PutBytes (to a buffered file), and ImageEntry_PutBytes (all cases)

Put bytes to a buffered file

On entry

R1 = file handle used by your filing system/image filing system
R2 = pointer to buffer from which to read data
R3 = number of bytes of data to read from buffer and put to file
R4 = file offset at which to put data

On exit

—

Details

This entry point is called by FileSwitch to request that you take a number of bytes, and
place them in the file at the specified file offset.

The file handle is guaranteed by FileSwitch not to be a directory, and to have had write
access granted at the time of the open.

The memory address is not guaranteed to be of any particular alignment. You should if
possible optimise your filing system’s transfers to word-aligned locations in particular,
as FileSwitch’s and most clients do tend to be word-aligned. The speed of your transfer
routine is vital to filing system performance. An optimised example (similar to that used
in FileSwitch) is given in the section entitled Example program on page 2-591.

The number of bytes to write, and the file offset at which to write data are guaranteed to
be a multiple of the buffer size for this file. The final write will be within the file’s
extent, so it will not need extending.

This call is made by FileSwitch for several purposes:

● A client has called OS_GBPB to write a whole number of the buffer size at a file
offset that is a multiple of the buffer size. FileSwitch requests that the filing system
transfer this data directly from the client’s memory. This is often the case where
language libraries are being used for file access. If FileSwitch has any buffered data
in the transfer range that has been modified but not yet flushed out to the filing
system, then this data is discarded (as it has obviously been invalidated by this
operation).

● A client has called OS_BGet/BPut/GBPB at a file offset where FileSwitch has no
buffered data, and the current buffer held by FileSwitch has been modified and so
must be written to the filing system. (The current FileSwitch implementation does

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-547

not maintain multiple buffers on each file. It is likely that this will remain the case,
as individual filing systems have better knowledge about how to do disc-caching,
and intelligent readahead and writebehind for given devices.)

● A client has called OS_GBPB to perform a more general write. FileSwitch will
work out an appropriate set of data transfers. You may be called to empty
FileSwitch’s buffers as needed and/or to transfer data directly from the client’s
memory. You should make no assumptions about the exact number and sequence of
such calls; as far as possible RISC OS tries to keep the calls in ascending order of
file address, to increase efficiency by reducing seek times, and so on.

Note that FileSwitch holds no buffered data immediately after a file has been opened.

FSEntry_PutBytes (to an unbuffered file)

Put a byte to an unbuffered file

On entry

R0 = byte to put to file (top 24 bits zero)
R1 = file handle used by your filing system

On exit

—

Details

This entry point is called by FileSwitch to request that you put a single byte to an
unbuffered file at the position given by the file’s sequential file pointer. You must
advance the sequential pointer by one. If the sequential pointer is equal to the file extent
when this call is made, you must increase the allocated space of the file by at least one
byte to accommodate the data – although it will be more efficient to increase the
allocated space in larger chunks (256 bytes/1k is common).

The file handle is guaranteed by FileSwitch not to be a directory, and to have had write
access granted at the time of the open.

If your filing system does not support unbuffered GBPB directly, then FileSwitch will
call this entry the necessary number of times to complete its client’s request.

FSEntry_Args and ImageEntry_Args
Various calls are made by FileSwitch through these entry points to deal with controlling
open files. The actions are specified by R0 as follows:

FSEntry_Args 0

2-548

FSEntry_Args 0

Read sequential file pointer

On entry

R0 = 0
R1 = file handle used by your filing system

On exit

R2 = sequential file pointer

Details

This entry point is called by FileSwitch to read the sequential file pointer for the given
file. You should only support this call if your filing system uses unbuffered files.

If your filing system does not support a pointer as the concept is meaningless (kbd: for
example) then it must return a pointer of 0, and not return an error.

FSEntry_Args 1

Write sequential file pointer

On entry

R0 = 1
R1 = file handle used by your filing system
R2 = new sequential file pointer

On exit

—

Details

This entry point is called by FileSwitch to request that you alter the sequential file
pointer for a given file. You should only support this call if your filing system uses
unbuffered files.

If the new pointer is greater than the current file extent then:

● if the file was opened only for reading, or only read permission was granted, then
return the error ‘Outside file’

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-549

● otherwise extend the file with zeros and set the new extent to the new sequential
pointer.

If you cannot extend the file you should return an error as soon as possible, and in any
case before you update the extent.

If your filing system does not support a pointer as the concept is meaningless (kbd: for
example) then it must ignore the call, and not return an error.

FSEntry_Args 2

Read file extent

On entry

R0 =2
R1 = file handle used by your filing system

On exit

R2 = file extent

Details

This entry point is called by FileSwitch to read the extent of a given file. You should
only support this call if your filing system uses unbuffered files.

If your filing system does not support file extents as the concept is meaningless (kbd: for
example) then it must return an extent of 0, and not return an error.

FSEntry_Args 3 and ImageEntry_Args 3

Write file extent

On entry

R0 = 3
R1 = file handle used by your filing system/image filing system
R2 = new file extent

On exit

—

FSEntry_Args 4 and ImageEntry_Args 4

2-550

Details

This entry point is called by FileSwitch to request that you change the extent of a file.

The file handle is guaranteed by FileSwitch not to be a directory, and to have had write
access granted at the time of the open.

If the filing system does not support file extents as the concept is meaningless (kbd: for
example) then it must ignore the call, and not return an error.

Buffered files

For buffered files, FileSwitch only calls this entry point to set the real file extent just
prior to closing an open file. Your filing system should store the value of R2 in the file’s
catalogue information as its new length.

Unbuffered files

For unbuffered files, FileSwitch calls this entry point whenever requested to by its
client.

If the new extent is less than the current sequential pointer (the file is shrinking and the
pointer would lie outside the file), then you must set the pointer to the new extent.

If the new extent is greater than the current one then you must extend the file with zeros.
If you cannot extend the file you should return an error as soon as possible, and in any
case before you update the extent.

FSEntry_Args 4 and ImageEntry_Args 4

Read size allocated to file

On entry

R0 = 4
R1 = file handle used by your filing system/image filing system

On exit

R2 = size allocated to file by filing system

Details

This entry point is called by FileSwitch to read the size allocated to a given file. All
filing systems must support this call.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-551

FSEntry_Args 5

EOF check

On entry

R0 = 5
R1 = file handle used by your filing system/image filing system

On exit

R2 = –1 if (sequential pointer is equal to current extent), otherwise R2 = 0

Details

This entry point is called by FileSwitch to determine whether the sequential pointer for
a given file is at the end of the file or not. You should only support this call if your filing
system uses unbuffered files.

If a filing system does not support a pointer and/or a file extent as the concept(s) are
meaningless (kbd: for example) then the treatment of the C bit is dependent on that filing
system. For example, kbd: gives EOF when Ctrl-D is read from the keyboard; null:
always gives EOF; and vdu: never gives EOF.

FSEntry_Args 6 and ImageEntry_Args 6

Notify of a flush

On entry

R0 = 6
R1 = file handle used by your filing system/image filing system

On exit

R2 = load address of file (or 0)
R3 = execution address of file (or 0)

FSEntry_Args 7 and ImageEntry_Args 7

2-552

Details

General details

This entry point is called by FileSwitch to request that your filing system flushes any
modified data that it is holding in buffers. You should only support this call if your filing
system does its own buffering in addition to that done by FileSwitch. For example,
ADFS does its own buffering when doing readahead/writebehind, and so needs to use
this call.

Details specific to FSEntry_Args 6

The modified data should be flushed to its storage media.

This entry point is only called if your filing system is buffered, and you set bit 27 of your
filing system information word when you initialised your filing system.

Details specific to ImageEntry_Args 6

The modified data should be flushed to its image. The image should subsequently be
flushed to its storage media to ensure the data’s integrity.

This entry point is only called if you set bit 27 of your image filing system information
word when you initialised your image filing system.

FSEntry_Args 7 and ImageEntry_Args 7

Ensure file size

On entry

R0 = 7
R1 = file handle used by your filing system/image filing system
R2 = size of file to ensure

On exit

R2 = size of file actually ensured

Details

This entry point is called by FileSwitch to ensure that a file is of at least the given size.
Your file system should do just this, but need not ensure that any extra space is zeroed.
All filing systems must support this call.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-553

FSEntry_Args 8 and ImageEntry_Args 8

Write zeros to file

On entry

R0 = 8
R1 = file handle used by your filing system
R2 = file offset at which to write
R3 = number of zero bytes to write

On exit

—

Details

This entry point is called by FileSwitch to request that your filing system writes a given
number of zero bytes to a given offset within a file. You should only support this call if
your filing system uses buffered files.

The file handle is guaranteed by FileSwitch not to be a directory, and to have had write
access granted at the time of the open.

The number of bytes to write, and the file offset at which to write data are guaranteed to
be a multiple of the buffer size for this file.

FSEntry_Args 9 and ImageEntry_Args 9

Read file datestamp

On entry

R0 = 9
R1 = file handle used by your filing system/image filing system

On exit

R2 = load address of file (or 0)
R3 = execution address of file (or 0)

FSEntry_Args 10

2-554

Details

This entry point is called by FileSwitch to read the date/time stamp for a given file. The
bottom four bytes of the date/time stamp are stored in the execution address of the file.
The most significant byte is stored in the least significant byte of the load address. All
filing systems must support this call. If your filing system cannot stamp an open file
given its handle, then it should return R2 and R3 set to zero.

FSEntry_Args 10

Inform of new image stamp

On entry

R0 = 10
R1 = file handle used by your filing system/image filing system
R2 = new image stamp of image

On exit

All registers preserved

Details

This entry point is called by FileSwitch when an image filing system has changed an
image’s image stamp (a unique identification number). The purpose of the call is to
inform your filing system of the change, and to pass it the new image stamp. If your
filing system does not support the root object being an image, then it should ignore this
call. Otherwise – as for example in the case of FileCore – you should update your filing
system’s internal note of the image stamp, as you may need to use it to identify the disc
at a later time.

This call is for information only, and should not require any further action. It is not
called by RISC OS 2, which does not support image filing systems.

FSEntry_Close and ImageEntry_Close

Close an open file

On entry

R1 = file handle used by your filing system/image filing system
R2 = new load address to associate with file
R3 = new execution address to associate with file

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-555

On exit

—

Details

This entry point is called by FileSwitch to request that your filing system close an open
file, and put a new date/time stamp on it. For ImageEntry_Close, you should then call
OS_Args 255 (page 2-62) on the image after updating the structure for the closed file;
this ensures that all data is flushed to the disc.

If your filing system returned from the FSEntry_Args 9 (or ImageEntry_Args 9) call
with R2 and R3 both zero, then they will also have that value here, and you should not
try to restamp the file. Restamping takes place if the file has been modified and
FSEntry_Args 9 (or ImageEntry_Args 9) returned a non-zero value in R2.

Note that *Close and *Shut (ie close all open files) are performed by FileSwitch which
passes the handles, one at a time, to the relevant filing system for closing. Filing systems
should not try to support this themselves.

FSEntry_File and ImageEntry_File
Various calls are made by FileSwitch through these entry points to perform operations
on whole files. The actions are specified by R0 as follows:

FSEntry_File 0 and ImageEntry_File 0

Save file

On entry

R0 = 0
R1 = pointer to filename
R2 = load address to associate with file
R3 = execution address to associate with file
R4 = pointer to start of buffer
R5 = pointer to byte after end of buffer
R6 = pointer to special field if present, otherwise 0 (FSEntry_File 0); or image filing

system’s handle for image that contains file (ImageEntry_File 0)

On exit

R6 = pointer to a leafname for printing *OPT 1 info

FSEntry_File 1 and ImageEntry_File 1

2-556

Details

This entry point is called by FileSwitch to request that your filing system saves data
from a buffer held in memory to a file. FileSwitch has already validated the buffer, and
ensured that the leafname is not wildcarded. If the file currently exists and is not locked,
the old file is first discarded. The new file should have the same access attributes as the
one it is replacing, or some default access if the file doesn’t already exist. You should
return an error such as File locked if you could not save the specified file.

FileSwitch immediately copies the leafname returned in R6, so it need not have a long
lifetime. You could hold it in a small static buffer, for example.

FSEntry_File 1 and ImageEntry_File 1

Write catalogue information

On entry

R0 = 1
R1 = pointer to wildcarded filename
R2 = new load address to associate with file
R3 = new execution address to associate with file
R5 = new attributes for file
R6 = pointer to special field if present, otherwise 0 (FSEntry_File 1); or image filing

system’s handle for image that contains file (ImageEntry_File 1)

On exit

—

Details

This entry point is called by FileSwitch to request that your filing system updates the
catalogue information for an object. If the object is a directory you must either write the
information (FileCore-based filing systems do) or return an error. You must not return an
error if the object does not exist.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-557

FSEntry_File 2

Write load address

On entry

R0 = 2
R1 = pointer to wildcarded filename
R2 = new load address to associate with file
R6 = pointer to special field if present, otherwise 0

On exit

—

Details

This entry point is called by FileSwitch to request that your filing system alters the load
address for a file. If the object is a directory you must either write the information
(FileCore-based filing systems do) or return an error. You must not return an error if the
object does not exist.

FSEntry_File 3

Write execution address

On entry

R0 = 3
R1 = pointer to wildcarded filename
R3 = execution address to associate with file
R6 = pointer to special field if present, otherwise 0

On exit

—

Details

This entry point is called by FileSwitch to request that your filing system alters the
execution address for a file. If the object is a directory you must either write the
information (FileCore-based filing systems do) or return an error. You must not return an
error if the object does not exist.

FSEntry_File 4

2-558

FSEntry_File 4

Write attributes

On entry

R0 = 4
R1 = pointer to wildcarded pathname
R5 = new attributes to associate with file
R6 = pointer to special field if present, otherwise 0

On exit

—

Details

This entry point is called by FileSwitch to request that your filing system alters the
attributes of an object. You must not return an error if the object does not exist.

FSEntry_File 5 and ImageEntry_File 5

Read catalogue information

On entry

R0 = 5
R1 = pointer to pathname
R6 = pointer to special field if present, otherwise 0 (FSEntry_File 5); or image filing

system’s handle for image that contains file (ImageEntry_File 5)

On exit

R0 = object type:
0 not found
1 file
2 directory

R2 = load address
R3 = execution address
R4 = file length
R5 = file attributes
R6 preserved (ImageEntry_File 5)

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-559

Details

This entry point is called by FileSwitch to request that your filing system returns the
catalogue information for an object. You should return an error if:

● the pathname specifies a drive that is unknown

● the pathname specifies a media name that is unknown and not made available after
any UpCall

● the special field specifies an unknown server or subsystem.

You should return type 0 if:

● the place specified by the pathname exists, but the leafname does not match any
object there

● the place specified by the pathname does not exist.

FSEntry_File 6 and ImageEntry_File 6

Delete object

On entry

R0 = 6
R1 = pointer to filename
R6 = pointer to special field if present, otherwise 0 (FSEntry_File 6); or image filing

system’s handle for image that contains file (ImageEntry_File 6)

On exit

R0 = object type
R2 = load address
R3 = execution address
R4 = file length
R5 = file attributes

Details

This entry point is called by FileSwitch to request that your filing system deletes an
object. FileSwitch will already have ensured that the leafname is not wildcarded. No
data need be transferred to the file. You should return an error if the object is locked
against deletion, but not if the object does not exist. The results refer to the object that
was deleted.

FSEntry_File 7 and ImageEntry_File 7

2-560

FSEntry_File 7 and ImageEntry_File 7

Create file

On entry

R0 = 7
R1 = pointer to filename
R2 = load address to associate with file
R3 = execution address to associate with file
R4 = start address in memory of data
R5 = end address in memory plus one
R6 = pointer to special field if present, otherwise 0 (FSEntry_File 7); or image filing

system’s handle for image that contains file (ImageEntry_File 7)

On exit

R6 = pointer to a filename for printing *Opt 1 info (FSEntry_File 7 only)

Details

This entry point is called by FileSwitch to request that your filing system creates a file
with a given name. R4 and R5 are used only to calculate the length of the file to be
created. If the file currently exists and is not locked, the old file is first discarded. The
new file should have the same access attributes as the one it is replacing, or some default
access if the file doesn’t already exist. You should return an error if you couldn’t create
the file.

FSEntry_File 8 and ImageEntry_File 8

Create directory

On entry

R0 = 8
R1 = pointer to directory name
R2 = load address (ignored by RISC OS 2)
R3 = execute address (ignored by RISC OS 2)
R4 = number of entries (0 for default)
R6 = pointer to special field if present, otherwise 0 (FSEntry_File 8); or image filing

system’s handle for image that contains file (ImageEntry_File 8)

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-561

On exit

—

Details

This entry point is called by FileSwitch to request that your filing system creates a
directory. If the directory already exists then your filing system can do one of these:

● return without any modification to the existing directory

● attempt to rename the directory – you must not return an error if this fails.

If directories don’t support load and execute addresses (which will only be of the
directory type/datestamp form) then no error should be returned. Note that RISC OS 2
will ignore the load and execute addresses in R2 and R3.

FileSwitch will already have ensured that the leafname is not wildcarded. You should
return an error if you couldn’t create the directory.

FSEntry_File 9

Read catalogue information (no length)

On entry

R0 = 9
R1 = pointer to filename
R6 = pointer to special field if present, otherwise 0

On exit

R0 = object type
R2 = load address
R3 = execution address
R5 = file attributes

Details

This entry point is called by FileSwitch to read the catalogue information for an object,
save for the object length. It is useful for NetFS with fileservers, as the length is not
stored in a directory. You must not return an error if the object does not exist.

It is only ever called by *Copy under RISC OS 2; bit 26 of your filing system
information word must have been set when the filing system was initialised. Otherwise
FileSwitch calls FSEntry_File 5, and the length returned in R4 is ignored.

FSEntry_File 10 and ImageEntry_File 10

2-562

FSEntry_File 10 and ImageEntry_File 10

Read block size

On entry

R0 = 10
R1 = pointer to filename
R6 = pointer to special field if present, otherwise 0 (FSEntry_File 10); or image

filing system’s handle for image that contains file (ImageEntry_File 10)

On exit

R2 = natural block size of the file (in bytes)

Details

This entry point is called by FileSwitch to read the natural block size for a file (see
FSEntry_Open and ImageEntry_Open on page 2-541). It is not called by RISC OS 2.

FSEntry_File 255

Load file

On entry

R0 = 255
R1 = pointer to wildcarded filename
R2 = address to load file
R6 = pointer to special file if present; otherwise 0

On exit

R0 corrupted
R2 = load address
R3 = execution address
R4 = file length
R5 = file attributes
R6 = pointer to a filename for printing *OPT 1 info

Details

This entry point is called by FileSwitch to request that your filing system loads a file.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-563

FileSwitch will already have called FSEntry_File 5 and validated the client’s load
request. If FSEntry_File 5 returned with object type 0 then the user will have been
returned the ‘File 'xyz' not found’ error; type 2 will have returned the ‘'xyz' is a
directory’ error; types 1 with corresponding load actions will have had them executed
(which may recurse back down to load again), those with no read access will have
returned ‘Access violation’, and those being partially or wholly loaded into invalid
memory will have returned ‘No writeable memory at this address’.

Therefore unless the filing system is accessing data stored on a multi-user server such as
NetFS/FileStore, the object will still be the one whose info was read earlier.

The filename pointed to by R6 on exit should be the non-wildcarded ‘leaf’ name of the
file. That is, if the filename given on entry was $.!b*, and the file accessed was the
boot file, R6 should point to the string !Boot.

FSEntry_Func and ImageEntry_Func
Various calls are made through these entry points to deal with assorted filing system (or
image filing system) control. Many of these output information. You should do this in
two stages:

● amass the information into a dynamic buffer

● print from the buffer and dispose of it.

This avoids problems caused by the write character process being in the middle of
spooling, or by an active task swapper.

If you add a header to output (cf *Info, *Cat and *Ex on ADFS) you must follow it
with a blank line. You should always try to format your output to the printable width of
the current window. You can read this using XOS_ReadVduVariables (page 1-730) to
read the WindowWidth variable (&100), which copes with most eventualities. Don’t
cache the value, but read it before each output.

The actions are specified by R0 as given below.

FSEntry_Func 0

Set current directory

On entry

R0 = 0
R1 = pointer to wildcarded directory name
R6 = pointer to special field if present, otherwise 0

FSEntry_Func 1

2-564

On exit

—

Details

This entry point is called by FileSwitch to set the current directory to the one specified
by the directory name and context given. If the directory name is null, you should
assume it to be the user root directory.

You should not also make the context current, but instead provide an independent means
of doing so, such as *FS on the NetFS.

This entry point is called by RISC OS 2; otherwise it is only called to perform a *Opt 1
command when bit 23 of the filing system information word is clear.

FSEntry_Func 1

Set library directory

On entry

R0 = 1
R1 = pointer to wildcarded directory name
R6 = pointer to special field if present, otherwise 0

On exit

—

Details

This entry point is called by FileSwitch to set the current library directory to the one
identified by the directory name and context given. If the directory name is null, you
should assume it to be the filing system default (which is dependent on your
implementation).

You should not also make the context current, but instead provide an independent means
of doing so, such as *FS on the NetFS.

This entry point is only called by RISC OS 2.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-565

FSEntry_Func 2

Catalogue directory

On entry

R0 = 2
R1 = pointer to wildcarded directory name
R6 = pointer to special field if present, otherwise 0

On exit

—

Details

This entry point is called by FileSwitch to catalogue the directory identified by the
directory name and context given. If the directory name is null, you should assume it to
be the current directory. (This corresponds to the *Cat command.)

This entry point is called by RISC OS 2; otherwise it is only called if bit 1 of the extra
filing system information word is set.

FSEntry_Func 3

Examine directory

On entry

R0 = 3
R1 = pointer to wildcarded directory name
R6 = pointer to special field if present, otherwise 0

On exit

—

Details

This entry point is called by FileSwitch to print information on all the objects in the
directory identified by the directory name and context given. If the directory name is
null, you should assume it to be the current directory. (This corresponds to the *Ex
command.)

FSEntry_Func 4

2-566

This entry point is called by RISC OS 2; otherwise it is only called if bit2 of the extra
filing system information word is set.

FSEntry_Func 4

Catalogue library directory

On entry

R0 = 4
R1 = pointer to wildcarded directory name
R6 = pointer to special field if present, otherwise 0

On exit

—

Details

This entry point is called by FileSwitch to catalogue the specified subdirectory relative
to the current library directory. If the directory name is null, you should assume it to be
the current library directory. (This corresponds to the *LCat command.)

This entry point is called by RISC OS 2; otherwise it is only called if bit 1 of the extra
filing system information word is set.

FSEntry_Func 5

Examine library directory

On entry

R0 = 5
R1 = pointer to wildcarded directory name
R6 = pointer to special field if present, otherwise 0

On exit

—

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-567

Details

This entry point is called by FileSwitch to print information on all the objects in the
specified subdirectory relative to the current library directory. If the directory name is
null, you should assume it to be the current library directory. (This corresponds to the
*LEx command.)

This entry point is called by RISC OS 2; otherwise it is only called if bit 2 of the extra
filing system information word is set.

FSEntry_Func 6

Examine object(s)

On entry

R0 = 6
R1 = pointer to wildcarded pathname
R6 = pointer to special field if present, otherwise 0.

On exit

—

Details

This entry point is called by FileSwitch to print information on all the objects matching
the wildcarded pathname and context given, in the same format as for FSEntry_Func 3.
(This corresponds to the *Info command.)

This entry point is called by RISC OS 2; otherwise it is only called if bit 2 of the extra
filing system information word is set.

FSEntry_Func 7

Set filing system options

On entry

R0 = 7
R1 = new option (or 0)
R2 = new parameter
R6 = 0 (cannot specify a context)

FSEntry_Func 8 and ImageEntry_Func 8

2-568

On exit

—

Details

This entry point is called by FileSwitch to set filing system options.

An option of 0 means reset all filing system options to their default values. An option of
1 is never passed to you, as FileSwitch maintains these settings. An option of 4 is used
to set the boot file action. You may use other option numbers for your own purposes;
please contact Acorn for an allocation.

(This corresponds to the *Opt command.)

You should return an error for bad combinations of options and parameters.

FSEntry_Func 8 and ImageEntry_Func 8

Rename object

On entry

R0 = 8
R1 = pointer to pathname of object to be renamed
R2 = pointer to new pathname for object
R6 = pointer to first special field if present, otherwise 0 (FSEntry_Func 8); or image

filing system’s handle for image that contains file (ImageEntry_Func 8)
R7 = pointer to second special field if present, else 0 (FSEntry_Func 8 only)

On exit

R1 = 0 if rename performed (≠0 otherwise)

Details

This entry point is called by FileSwitch to attempt to rename an object. If the rename is
not ‘simple’ – ie just changing the file’s catalogue entry – R1 should be returned with a
value other than zero. (For example, the files may be on different images.) In such cases,
FileSwitch will return a ‘Bad rename’ error.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-569

FSEntry_Func 9

Access object(s)

On entry

R0 = 9
R1 = pointer to wildcarded pathname
R2 = pointer to access string (null, space or control-character terminated)
R6 = pointer to special field if present, otherwise 0.

On exit

—

Details

This entry point is called by FileSwitch to give the requested access to all objects
matching the wildcarded name given. (This corresponds to the *Access command.)

You should ignore inappropriate owner access bits, and try to store public access bits.

This entry point is called by RISC OS 2; otherwise it is only called if bit 18 of the filing
system information word is set.

FSEntry_Func 10

Boot filing system

On entry

R0 = 10

On exit

—

Details

This entry point is called by FileSwitch to request that your filing system performs its
boot action.

For example, ADFS examines the boot option – as set by *Opt 4 – of the disc in the
configured drive and acts accordingly (so, if boot option 2 is set, it will *Run
&.!Boot); whereas NetFS attempts to logon as the boot user to the configured file
server.

FSEntry_Func 11

2-570

This call may not return if it runs an application.

FSEntry_Func 11

Read name and boot (*OPT 4) option of disc

On entry

R0 = 11
R2 = pointer to buffer in which to put data
R6 = 0 (cannot specify a context)

On exit

—

Details

This entry point is called by FileSwitch to obtain the name of the disc that the CSD is on
in the temporary filing system, and its boot option. This data should be returned in the
area of memory pointed to by R2, in the following format:

<name length byte><disc name><boot option byte>

If there is no CSD, this call should return the string ‘Unset’ for the disc name, and the
boot action should be set to zero.

The buffer pointed to by R2 will not have been validated with OS_ValidateAddress,
because FileSwitch doesn’t know how big the buffer has to be. It is the filing system’s
responsibility to validate any buffer that it uses, and to return an error if the memory
required is not valid. Under RISC OS 2 it should use the error text ‘No writable memory
at this address’; under later versions it should instead look up the token BadWrt.

The buffer pointed to by R2 will not have been validated and so you should be prepared
for faulting when you write to the memory. You must not put an interlock on when you
are doing so.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-571

FSEntry_Func 12

Read current directory name and privilege byte

On entry

R0 = 12
R2 = pointer to buffer in which to put data
R6 = 0 (cannot specify a context)

On exit

—

Details

This entry point is called by FileSwitch to obtain the name of the CSD on the temporary
filing system, and privilege status in relation to that directory. This data should be
returned in the area of memory pointed to by R2, in the following format:

<zero byte><name length byte><current directory name><privilege byte>

If there is no CSD, this call should return the string ‘Unset’ for the directory name.

The privilege byte is &00 if you have ‘owner’ status (ie you can create and delete
objects in the directory) or &FF if you have ‘public’ status (ie are prevented from
creating and deleting objects in the directory). On FileCore-based filing systems, you
always have owner status.

The buffer pointed to by R2 will not have been validated with OS_ValidateAddress,
because FileSwitch doesn’t know how big the buffer has to be. It is the filing system’s
responsibility to validate any buffer that it uses, and to return the error ‘No writable
memory at this address’ if the memory required is not valid.

This entry point is only called by RISC OS 2.

FSEntry_Func 13

Read library directory name and privilege byte

On entry

R0 = 13
R2 = pointer to buffer in which to put data
R6 = 0 (cannot specify a context)

FSEntry_Func 14 and ImageEntry_Func 14

2-572

On exit

—

Details

This entry point is called by FileSwitch to obtain the name of the library directory on the
temporary filing system, and privilege status in relation to that directory. This data
should be returned in the area of memory pointed to by R2, in the following format:

<zero byte><name length byte><library directory name><privilege byte>

If no library is selected, this call should return the string ‘Unset’ for the library directory
name.

The buffer pointed to by R2 will not have been validated with OS_ValidateAddress,
because FileSwitch doesn’t know how big the buffer has to be. It is the filing system’s
responsibility to validate any buffer that it uses, and to return the error ‘No writable
memory at this address’ if the memory required is not valid.

This entry point is only called by RISC OS 2.

FSEntry_Func 14 and ImageEntry_Func 14

Read directory entries

On entry

R0 = 14
R1 = pointer to wildcarded directory name
R2 = pointer to buffer in which to put data
R3 = number of object names to read
R4 = offset of first item to read in directory (0 for start of directory)
R5 = length of buffer
R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 14); or image

filing system’s handle for image that contains file (ImageEntry_Func 14)

On exit

R3 = number of names read
R4 = offset of next item to read in directory (–1 if end)

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-573

Details

This entry point is called by FileSwitch to read the leaf names of entries in a directory
into an area of memory pointed to by R2. If the directory name is null, then for filing
systems the currently-selected directory should be read; for image filing systems the root
directory should be read. The names are returned in the buffer as a list of null terminated
strings. You must not overflow the end of the buffer, and you must only count names that
you have completely inserted.

The length of buffer that FileSwitch will have validated depends on the call that was
made to it:

● if it was OS_GBPB 8, then enough space will have been validated to hold [R3]
10-character long directory entries (plus their terminators)

● if it was OS_GBPB 9, then the entire buffer specified by R2 and R5 will have been
validated.

Unfortunately there is no way you can tell which was used. RISC OS programmers are
encouraged to use the latter.

You should return an error if the object being catalogued is not found or is a file. The
following are, however, all valid return values:

● R3 = 0, R4 ≠ –1 (the buffer overflowed)

● R3 ≠ 0, R4 ≠ –1 (there are more names to read)

● R3 = 0, R4 = –1 (the previous read filled the buffer with the last name, but didn’t
detect the end; now there no more names to read).

FSEntry_Func 15 and ImageEntry_Func 15

Read directory entries and information

On entry

R0 = 15
R1 = pointer to wildcarded directory name
R2 = pointer to buffer in which to put data
R3 = number of object names to read
R4 = offset of first item to read in directory (0 for start of directory)
R5 = length of buffer
R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 15); or image

filing system’s handle for image that contains file (ImageEntry_Func 15)

FSEntry_Func 16

2-574

On exit

R3 = number of records read
R4 = offset of next item to read in directory (–1 if end)

Details

This entry point is called by FileSwitch to read the leaf names of entries (and their file
information) in the given directory into a buffer pointed to by R2. If the directory name
is null, then the currently-selected directory should be read. The names and information
are returned in records, with the following format:

Offset Contents
&00 Load address
&04 Execution address
&08 Length
&0C Attributes
&10 Object type
&14 Object name

FileSwitch will have validated the buffer. You must not overflow the end of the buffer,
and you must only count names that you have completely inserted. You should assume
that the buffer is word-aligned, and your records should be so too. You may find this
code fragment useful to do so:

ADD R2, R2, #p2-1 ; p2 is a power-of-two, in this case 4
BIC R2, R2, #p2-1

You should return an error if the object being catalogued is not found or is a file.

FSEntry_Func 16

Shut down

On entry

R0 = 16

On exit

—

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-575

Details

This entry point is called by FileSwitch to request that your filing system go into as
dormant a state as possible. For example, it should place hard drives in their transit
positions, etc. All files will have been closed by FileSwitch before this call is issued.

FSEntry_Func 17

Print start up banner

On entry

R0 = 17
R6 = 0 (cannot specify a context)

On exit

—

Details

This entry point is called by FileSwitch to print out a filing system banner that shows
which filing system is selected. FileSwitch calls it if it receives a reset service call and
the text offset value (in the filing system information block) is –1. This is to allow filing
systems to print a message that may vary, such as Acorn Econet or Acorn Econet
no clock.

You should print the string using XOS_… SWIs, and if there is an error return with V set
and R0 pointing to an error block. This is not likely to happen.

FSEntry_Func 18

Set directory contexts

Details

This entry point is never called by FileSwitch.

FSEntry_Func 19

2-576

FSEntry_Func 19

Read directory entries and information

On entry

R0 = 19
R1 = pointer to wildcarded directory name
R2 = pointer to buffer in which to put data
R3 = number of object names to read
R4 = offset of first item to read in directory
R5 = length of buffer
R6 = pointer to special field if present, otherwise 0

On exit

R3 = number of records read
R4 = offset of next item to read in directory (–1 if end)

Details

This entry point is called by FileSwitch to read the names of entries (and their file
information) in the given directory into a buffer pointed to by R2. If the directory name
is null, then the currently-selected directory should be read. The names and information
are returned in records, with the following format:

Offset Contents
0 Load address
4 Execution address
8 Length
12 File attributes
16 Object type
20 System internal name – for internal use only
24 Time/Date (cs since 1/1/1900) – 0 if not stamped
29 Object name

Each record is word-aligned.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-577

FSEntry_Func 20

Output full information on object(s)

On entry

R0 = 20
R1 = pointer to pathname (may be wildcarded under RISC OS 2 only)
R6 = pointer to special field if present, otherwise 0

On exit

—

Details

This entry point is called by FileSwitch to request that your filing system outputs full
information on the given object (or, under RISC OS 2, on all the objects matching the
wildcarded pathname). The format must be the same as for the *FileInfo command.

It is only called by FileSwitch if bit 25 of the filing system information word was set
when the filing system was initialised. Otherwise FileSwitch will use calls to
FSEntry_Func 6 to implement *FileInfo.

ImageEntry_Func 21

Notification of new image

On entry

R0 = 21
R1 = FileSwitch handle to the file
R2 = buffer size for file if known, otherwise 0

On exit

R1 = image filing system’s handle for image

Details

This entry point is called by FileSwitch to notify your image filing system that
FileSwitch would like it to handle a new image. This entry gives the image filing system
a chance to set up internal structures so that data could be cached or buffered from the
image. All future requests FileSwitch makes of the image filing system will quote the
returned image filing system’s handle for the image when appropriate.

ImageEntry_Func 22

2-578

The image should be flagged internally as ‘stamp image on next update’, and when it is
updated its unique identification number should be updated. Whenever this number is
updated the host filing system should be informed of its new value using OS_Args 8 –
this is important, because otherwise the host filing system will lose track of which disc
is which.

The buffer size (if given) should be treated as a hint to the sector size.

This entry point is not called by RISC OS 2.

ImageEntry_Func 22

Notification that image is about to be closed

On entry

R0 = 22
R1 = image filing system’s handle for image

On exit

—

Details

This entry point is called by FileSwitch to notify your image filing system that an image
is about to be closed. All files will have been closed for you before this call is made. You
should save any buffered data for this image before returning, and discard any cached
data.

This entry point is not called by RISC OS 2.

FSEntry_Func 23

Canonicalise special field and disc name

On entry

R0 = 23
R1 = pointer to special field if present, otherwise 0
R2 = pointer to disc name if present, otherwise 0
R3 = pointer to buffer to hold canonical special field, or 0 to return required length
R4 = pointer to buffer to hold canonical disc name, or 0 to return required length
R5 = length of buffer to hold canonical special field
R6 = length of buffer to hold canonical disc name

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-579

On exit

R1 = pointer to canonical special field if present, otherwise 0
R2 = pointer to canonical disc name if present, otherwise 0
R3 = bytes overflow from special field buffer (ie required length if R3 = 0 on entry)
R4 = bytes overflow from special field buffer (ie required length if R4 = 0 on entry)
R5, R6 preserved

Details

This entry point is called by FileSwitch to convert the given special field and disc name
to canonical (unique) forms. If no buffers are passed to hold the results, this call instead
returns their required lengths, which gives FileSwitch a means of finding out this
information.

FileSwitch uses this call to convert user-specified special field and disc names into a
canonical (unique) form. Typically this call is used in two stages: the first to find out
how much space is required in the buffers, and the second to do the conversion. For
example, if a user specifies a file as NetFS#Arf:&.thing.whatsit, FileSwitch uses this
call as follows:

R1 = pointer to the string ‘Arf’
R2 = 0
R3 = 0
R4 = 0
R5 = any value (since R3 = 0)
R6 = any value (since R4 = 0)

NetFS returns these values:

R1 = any non-zero value
R2 = any non-zero value
R3 = required length of buffer to hold canonical special field (excluding any

terminating null)
R4 = required length of buffer to hold canonical disc name (excluding any

terminating null)
R5, R6 preserved

FileSwitch now allocates memory for two buffers of the lengths specified by NetFS in
the R3 and R4 return values, then call NetFS again as follows:

R1 = pointer to the string ‘Arf’
R2 = 0
R3 = pointer to a buffer of length R5 bytes
R4 = pointer to a buffer of length R6 bytes
R5 = length of buffer pointed to by R3
R6 = length of buffer pointed to by R4

FSEntry_Func 24

2-580

NetFS now fills in the buffers: (R3,R5) with the special field, and (R4,R6) with the disc
name. It returns:

R1 = R3 on entry (and the buffer is filled with ‘49.254’)
R2 = R4 on entry (and the buffer is filled in with ‘Arf’)
R3, R4 = 0 (no overflows over the end of the buffers)
R5, R6 preserved

This entry point is not called by RISC OS 2, and is only otherwise called if bit 23 of the
filing system information word is set.

FSEntry_Func 24

Resolve wildcard

On entry

R1 = pointer to directory pathname
R2 = pointer to buffer to hold resolved name, or 0 if none
R3 = pointer to wildcarded object name
R5 = length of buffer
R6 = pointer to special field if present, otherwise 0

On exit

R1 preserved
R2 = –1 if not found, else preserved
R3 preserved
R4 = –1 if FileSwitch should resolve this wildcard itself, else bytes overflow from

buffer
R5 preserved

Details

This entry point is called by FileSwitch to find which object in the given directory
matches the name given. If the filing system can not do a more efficient job than
FileSwitch would if it were to use FSEntry_Func 14 and then to find which was the first
match, then the filing system should just return with R4 = –1.

This entry point is not called by RISC OS 2, and is only otherwise called if bit 23 of the
filing system information word is set.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-581

FSEntry_Func 25 and ImageEntry_Func 25

Read defect list

On entry

R0 = 25
R1 = pointer to name of image (FSEntry_Func 25 only)
R2 = pointer to buffer
R5 = length of buffer
R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 25); or image

filing system’s handle for image (ImageEntry_Func 25)

On exit

R0 - R6 preserved

Details

This entry point is called by FileSwitch to request that your filing system fills the given
buffer with the byte offsets to the start of any defects in the specified image. The list
must be terminated by the value &20000000.

It is an error if the specified image is not the root object in an image (eg it is an error to
map out a defect from adfs::HardDisc4.$.fred, but not an error to map it out from
adfs::HardDisc4.$).

This entry point is not called by RISC OS 2.

FSEntry_Func 26 and ImageEntry_Func 26

Add a defect

On entry

R0 = 26
R1 = pointer to name of image (FSEntry_Func 26 only)
R2 = byte offset to start of defect
R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 26); or image

filing system’s handle for image (ImageEntry_Func 26)

On exit

R0 - R2, R6 preserved

FSEntry_Func 27 and ImageEntry_Func 27

2-582

Details

This entry point is called by FileSwitch to request that your filing system maps out the
given defect from the specified image.

It is an error if the specified image is not the root object in an image (eg it is an error to
map out a defect from adfs::HardDisc4.$.fred, but not an error to map it out from
adfs::HardDisc4.$). If the defect cannot be mapped out because it is not free, then you
should return an error.

This entry point is not called by RISC OS 2.

FSEntry_Func 27 and ImageEntry_Func 27

Read boot option

On entry

R0 = 27
R1 = pointer to pathname of any object on image (FSEntry_Func 27 only)
R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 27); or image

filing system’s handle for image (ImageEntry_Func 27)

On exit

R0, R1, R6 preserved
R2 = boot option (as in *Opt 4,n)

Details

This entry point is called by FileSwitch to read the boot option (ie the value n in *Opt
4,n) of the image that holds the object specified by R1 (FSEntry_Func 27), or that is
specified by the handle in R6 (ImageEntry_Func 27).

This entry point is not called by RISC OS 2.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-583

FSEntry_Func 28 and ImageEntry_Func 28

Write boot option

On entry

R0 = 28
R1 = pointer to pathname of any object on image (FSEntry_Func 28 only)
R2 = new boot option
R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 28); or image

filing system’s handle for image (ImageEntry_Func 28)

On exit

R0 - R2, R6 preserved

Details

This entry point is called by FileSwitch to request that your filing system writes the boot
option (ie the value n in *Opt 4,n) of the image that holds the object specified by R1
(FSEntry_Func 28), or that is specified by the handle in R6 (ImageEntry_Func 28).

This entry point is not called by RISC OS 2.

FSEntry_Func 29 and ImageEntry_Func 29

Read used space map

On entry

R0 = 29
R1 = pointer to pathname of any object on image (FSEntry_Func 29 only)
R2 = pointer to buffer for map (pre-filled with 0s)
R5 = size of buffer
R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 29); or image

filing system’s handle for image (ImageEntry_Func 29)

On exit

R0 - R2, R5, R6 preserved

FSEntry_Func 30 and ImageEntry_Func 30

2-584

Details

This entry point is called by FileSwitch to read the used space map for the image that
holds the object specified by R1 (FSEntry_Func 29), or that is specified by the handle in
R6 (ImageEntry_Func 29). It is used by the *Backup command to decide which sectors
to copy.

Your filing system should fill the given buffer with 0 bits for unused blocks, and 1 bits
for used blocks. The buffer must be filled to its limit, or to the image’s limit, whichever
is less. The ‘perfect’ size of the buffer can be calculated from the image’s size and its
block size (as returned from FSEntry_Open or ImageEntry_Open: see page 2-541). The
correspondence of the buffer to the file is 1 bit to 1 block. The least significant bit (bit 0)
in a byte comes before the most significant bit.

This entry point is not called by RISC OS 2.

FSEntry_Func 30 and ImageEntry_Func 30

Read free space

On entry

R0 = 30
R1 = pointer to pathname of any object on image (FSEntry_Func 30 only)
R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 30); or image

filing system’s handle for image (ImageEntry_Func 30)

On exit

R0 = free space
R1 = biggest object creatable
R2 = disc size

Details

This entry point is called by FileSwitch to read the free space for the image that holds the
object specified by R1 (FSEntry_Func 30), or that is specified by the handle in R6
(ImageEntry_Func 30).

This entry point is not called by RISC OS 2.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-585

FSEntry_Func 31 and ImageEntry_Func 31

Name image

On entry

R0 = 31
R1 = pointer to pathname of any object on image (FSEntry_Func 31 only)
R2 = pointer to new name of image
R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 31); or image

filing system’s handle for image (ImageEntry_Func 31)

On exit

Registers preserved

Details

This entry point is called by FileSwitch to request that your filing system name the
image that holds the object specified by R1 (FSEntry_Func 31), or that is specified by
the handle in R6 (ImageEntry_Func 31).

This refers to the image’s name (eg a disc name), rather than the name of the file
containing that image.

This entry point is not called by RISC OS 2.

FSEntry_Func 32 and ImageEntry_Func 32

Stamp image

On entry

R0 = 32
R1 = pointer to pathname of any object on image (FSEntry_Func 32 only)
R2 = reason code
R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 32); or image

filing system’s handle for image (ImageEntry_Func 32)

On exit

Registers preserved

FSEntry_Func 32 and ImageEntry_Func 32

2-586

Details

This entry point is called by FileSwitch to request that your filing system stamp the
image that holds the object specified by R1 (FSEntry_Func 32), or that is specified by
the handle in R6 (ImageEntry_Func 32). It is used for FileCore to communicate with an
image filing system for the control and management of the disc Id of a given image.
Valid values for R2 on entry are:

Value Meaning
0 stamp image on next update
1 stamp image now

To stamp an image the image’s unique identification number should be updated to a
different value. This value is used to distinguish between different images with the same
name, and to determine when a given image has been updated. It should be filled in the
disc record disc id field when the disc is originally identified. The kind of uses expected
for these calls are:

● When a Backup program wishes to cause a backup of the original to be
distinguishable from the original it may use the ‘stamp image now’ form.

and, for ImageEntry_Func 32 only, the following two uses:

● When FileCore notices that a given disc may have been removed from the drive it
will call the image filing system (via FileSwitch) with the ‘stamp image on next
update’ call. This informs the image filing system that when it next changes
something in that image that it should also explicitly change the unique Id number
(if possible). This so that if another machine saw the disc whilst it was removed,
then the changed that other machine will be given a clue that the disc has since been
changed by the Id number changing – the other machine will probably discard any
cached data it has as none of it could be trusted to still be accurate. Once the Id has
been updated once there is no further need to update it on an update unless, of
course, a further ‘stamp image on next update’ occurs.

● When FileCore is explicitly requested to stamp a disc it will use the ‘stamp image
now’ call to get the message through to the relevant image filing system.

This entry point is not called by RISC OS 2.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-587

FSEntry_Func 33

Get usage of offset

On entry

R0 = 33
R1 = pointer to pathname of any object on image (FSEntry_Func 33 only)
R2 = byte offset into image
R3 = pointer to buffer to receive object name (if object found)
R4 = length of buffer
R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 33); or image

filing system’s handle for image (ImageEntry_Func 33)

On exit

R2 = kind of object found at offset:
0 no object found; offset is free/a defect/beyond end of image
1 no object found; offset is allocated, but not free/a defect/beyond end

of image
2 object found; cannot share the offset with other objects
3 object found; can share the offset with other objects

Details

This entry point is called by FileSwitch to find the usage of the given offset within the
image that holds the object specified by R1 (FSEntry_Func 33), or that is specified by
the handle in R6 (ImageEntry_Func 33). If the offset is free, a defect or outside the
image then you should return with R2 = 0. If the offset is used, but has no object name
which corresponds to it (for example the free space map, FAT tables, boot block and the
such), then return with R2 = 1. If the given offset is associated with only one object
(such that deleting that object would definitely free the given offset), then you should
return with R2 = 2. If the offset is associated with several objects (files/directories), but
cannot be said to be associated with one only (for example, the disc may have one large
section allocated which is used by several files within one directory), then return with
R2 = 3.

You may corrupt the buffer during the search and, if you find an object (ie R2 = 2 or 3),
you should return its pathname in the buffer. The pathname should not have a ‘$’ prefix,
but the first path element should have a ‘.’ prefix, eg:

.a.b.c.d

rather than:

a.b.c.d

FSEntry_Func 34

2-588

This entry point is not called by RISC OS 2.

FSEntry_Func 34

Notification of changed directory

On entry

R1 = pointer to null-terminated directory name
R2 = changed directory (0 ⇒ CSD, 1 ⇒ PSD, 2 ⇒ URD, 3 ⇒ Lib)
R6 = pointer to special field if present, otherwise 0

On exit

R1, R2, R6 preserved

Details

This entry point is provided so that filing systems can optimise their handling of
directory caches. It is called when FileSwitch has successfully changed a directory, as
indicated by R2.There is no reason for a filing system to have these directories stored,
but even if it does it should not change its record of the directory; instead it should use
this information to help it decide which directories to cache, and which not to.

FSEntry_GBPB

Get/put bytes from/to an unbuffered file

This entry point is used to implement multiple get byte and put byte operations on
unbuffered files. It is only ever called if you set bit 28 of the file information word on
return from FSEntry_Open, and you need not otherwise provide it. FileSwitch will
instead use multiple calls to FSEntry_PutBytes and FSEntry_GetBytes to implement
these operations.

FSEntry_GBPB 1 and 2

Put multiple bytes to an unbuffered file

On entry

R0 = 1 or 2
R1 = file handle used by your filing system
R2 = pointer to buffer

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-589

R3 = number of bytes to put to file
If R0 = 1

R4 = sequential file pointer to use for start of block

On exit

R0, R1 preserved
R2 = address of byte after the last one transferred from buffer
R3 = number of bytes not transferred
R4 = initial file pointer + number of bytes transferred

Details

This entry point is called by FileSwitch to request that your filing system transfer data
from memory to the file at either the specified file pointer (R0 = 1), or the current one
(R0 = 2). If the specified pointer is beyond the end of the file, then you must fill the file
with zeros between the current file extent and the specified pointer before the bytes are
transferred.

The file handle is guaranteed by FileSwitch not to be a directory, and to have had write
access granted at the time of the open.

FSEntry_GBPB 3 and 4

Read bytes from an open file

On entry

R0 = 3 or 4
R1 = file handle used by your filing system
R2 = pointer to buffer
R3 = number of bytes to get from file
If R0 = 3

R4 = sequential file pointer to use for start of block

On exit

R0, R1 preserved
R2 = address of byte after the last one transferred to buffer
R3 = number of bytes not transferred
R4 = initial file pointer + number of bytes transferred

FSEntry_GBPB 3 and 4

2-590

Details

This entry point is called by FileSwitch to request that your filing system transfer data
from a file to memory, either from the specified file pointer (R0 = 3), or from the current
one (R0 = 4).

If the specified pointer is greater than or equal to the current file extent then you must
not update the sequential file pointer, nor must you return an error.

The file handle is guaranteed by FileSwitch not to be a directory and to have had read
access granted at the time of the open.

Your filing system must not try to keep its own EOF-error-on-next-read flag – instead it
is FileSwitch’s responsibility to keep the EOF-error-on-next-read flag. Unlike
FSEntry_GetBytes, FileSwitch will set the C bit before it returns to its caller if your
filing system returns a non-zero value in R3 – so your filing system need not handle this
either.

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-591

Example program
This code fragment is an optimised routine for moving blocks of memory. It could be
further enhanced to take advantage of the higher speed of memory access given by the
MEMC chip if LDM and STM instructions are quad-word aligned. You should find this
useful when writing your own filing systems, as efficient transfer code is crucial to the
performance of a filing system.

; ++
;
; MoveBytes(source, dest, size in bytes) - fast data copier from RCM
; =========

; SKS Reordered registers and order of copying to suit FileSwitch

; **Not yet optimised to do transfers to make most of 1N,3S feature of MEMC**

; extern void MoveBytes(void *source, void *destination, size_t count);

; In: r1 = src^ (byte address)
; r2 = dst^ (byte address)
; r3 = count (byte count - never zero!)

; Out: r0-r3, lr corrupt. Flags preserved

mbsrc1 RN 0
mbsrcptr RN 1
mbdstptr RN 2
mbcnt RN 3
mbsrc2 RN 14 ; Note deviancy, so care in LDM/STM
mbsrc3 RN 4
mbsrc4 RN 5
mbsrc5 RN 6
mbsrc6 RN 7
mbsrc7 RN 8
mbsrc8 RN 9
mbsrc9 RN 10
mbshftL RN 11 ; These two go at end to save a word
mbshftR RN 12 ; and an extra Pull lr!
sp RN 13
lr RN 14
pc RN 15

MoveBytes ROUT

STMDB sp!, {lr}

TST mbdstptr, #3
BNE MovByt100 ; [dst^ not word aligned]

MovByt20 ; dst^ now word aligned.
; branched back to from below

Example program

2-592

TST mbsrcptr, #3
BNE MovByt200 ; [src^ not word aligned]

; src^ & dst^ are now both word aligned
; count is a byte value (may not be a whole number of words)

; Quick sort out of what we’ve got left to do

SUBS mbcnt, mbcnt, #4*4 ; Four whole words to do (or more) ?
BLT MovByt40 ; [no]

SUBS mbcnt, mbcnt, #8*4-4*4 ; Eight whole words to do (or more) ?
BLT MovByt30 ; [no]

STMDB sp!, {mbsrc3-mbsrc8} ; Push some more registers

MovByt25
LDMIA mbsrcptr!, {mbsrc1, mbsrc3-mbsrc8, mbsrc2} ; NB. Order!
STMIA mbdstptr!, {mbsrc1, mbsrc3-mbsrc8, mbsrc2}

SUBS mbcnt, mbcnt, #8*4
BGE MovByt25; [do another 8 words]

CMP mbcnt, #-8*4 ; Quick test rather than chaining down
LDMEQDB sp!, {mbsrc3-mbsrc8, pc}^ ; [finished]
LDMDB sp!, {mbsrc3-mbsrc8}

MovByt30
ADDS mbcnt, mbcnt, #8*4-4*4 ; Four whole words to do ?
BLT MovByt40

STMDB sp!, {mbsrc3-mbsrc4} ; Push some more registers

LDMIA mbsrcptr!, {mbsrc1, mbsrc3-mbsrc4, mbsrc2} ; NB. Order!
STMIA mbdstptr!, {mbsrc1, mbsrc3-mbsrc4, mbsrc2}

LDMEQDB sp!, {mbsrc3-mbsrc4, pc}^ ; [finished]
LDMDB sp!, {mbsrc3-mbsrc4}

SUB mbcnt, mbcnt, #4*4

MovByt40
ADDS mbcnt, mbcnt, #4*4-2*4 ; Two whole words to do ?
BLT MovByt50

LDMIA mbsrcptr!, {mbsrc1, mbsrc2}
STMIA mbdstptr!, {mbsrc1, mbsrc2}

LDMEQDB sp!, {pc}^ ; [finished]

SUB mbcnt, mbcnt, #2*4

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-593

MovByt50
ADDS mbcnt, mbcnt, #2*4-1*4 ; One whole word to do ?
BLT MovByt60

LDR mbsrc1, [mbsrcptr], #4
STR mbsrc1, [mbdstptr], #4

LDMEQDB sp!, {pc}^ ; [finished]

SUB mbcnt, mbcnt, #1*4

MovByt60
ADDS mbcnt, mbcnt, #1*4-0*4 ; No more to do ?
LDMEQDB sp!, {pc}^ ; [finished]

LDR mbsrc1, [mbsrcptr] ; Store remaining 1, 2 or 3 bytes
MovByt70

STRB mbsrc1, [mbdstptr], #1
MOV mbsrc1, mbsrc1, LSR #8
SUBS mbcnt, mbcnt, #1
BGT MovByt70

LDMDB sp!, {pc}^ ; [finished]

; Initial dest^ not word aligned. Loop doing bytes (1,2 or 3) until it is

MovByt100
LDRB mbsrc1, [mbsrcptr], #1
STRB mbsrc1, [mbdstptr], #1
SUBS mbcnt, mbcnt, #1
LDMEQDB sp!, {pc}^ ; [finished after 1..3 bytes]

TST mbdstptr, #3
BNE MovByt100

B MovByt20 ; Back to mainline code

MovByt200 ; dst^ now word aligned, but src^ isn’t. just lr stacked here

STMDB sp!, {mbshftL, mbshftR}; Need more registers this section

AND mbshftR, mbsrcptr, #3 ; Offset
BIC mbsrcptr, mbsrcptr, #3 ; Align src^

MOV mbshftR, mbshftR, LSL #3 ; rshft = 0, 8, 16 or 24 only
RSB mbshftL, mbshftR, #32 ; lshft = 32, 24, 16 or 8 only

LDR mbsrc1, [mbsrcptr], #4
MOV mbsrc1, mbsrc1, LSR mbshftR ; Always have mbsrc1 prepared

Example program

2-594

; Quick sort out of what we’ve got left to do

SUBS mbcnt, mbcnt, #4*4 ; Four whole words to do (or more) ?
BLT MovByt240 ; [no]

SUBS mbcnt, mbcnt, #8*4-4*4 ; Eight whole words to do (or more) ?
BLT MovByt230 ; [no]

STMDB sp!, {mbsrc3-mbsrc9} ; Push some more registers

MovByt225
LDMIA mbsrcptr!, {mbsrc3-mbsrc9, mbsrc2} ; NB. Order!
ORR mbsrc1, mbsrc1, mbsrc3, LSL mbshftL

MOV mbsrc3, mbsrc3, LSR mbshftR
ORR mbsrc3, mbsrc3, mbsrc4, LSL mbshftL

MOV mbsrc4, mbsrc4, LSR mbshftR
ORR mbsrc4, mbsrc4, mbsrc5, LSL mbshftL

MOV mbsrc5, mbsrc5, LSR mbshftR
ORR mbsrc5, mbsrc5, mbsrc6, LSL mbshftL

MOV mbsrc6, mbsrc6, LSR mbshftR
ORR mbsrc6, mbsrc6, mbsrc7, LSL mbshftL

MOV mbsrc7, mbsrc7, LSR mbshftR
ORR mbsrc7, mbsrc7, mbsrc8, LSL mbshftL

MOV mbsrc8, mbsrc8, LSR mbshftR
ORR mbsrc8, mbsrc8, mbsrc9, LSL mbshftL

MOV mbsrc9, mbsrc9, LSR mbshftR
ORR mbsrc9, mbsrc9, mbsrc2, LSL mbshftL

STMIA mbdstptr!, {mbsrc1, mbsrc3-mbsrc9}

MOV mbsrc1, mbsrc2, LSR mbshftR ; Keep mbsrc1 prepared

SUBS mbcnt, mbcnt, #8*4
BGE MovByt225 ; [do another 8 words]

CMP mbcnt, #-8*4 ; Quick test rather than chaining down
LDMEQDB sp!, {mbsrc3-mbsrc9, mbshftL, mbshftR, pc}^ ; [finished]
LDMDB sp!, {mbsrc3-mbsrc9}

MovByt230
ADDS mbcnt, mbcnt, #8*4-4*4 ; Four whole words to do ?
BLT MovByt240

STMDB sp!, {mbsrc3-mbsrc5}; Push some more registers

LDMIA mbsrcptr!, {mbsrc3-mbsrc5, mbsrc2} ; NB. Order!
ORR mbsrc1, mbsrc1, mbsrc3, LSL mbshftL

W
ritin

g
 filin

g
 system

s

Writing a filing system

2-595

MOV mbsrc3, mbsrc3, LSR mbshftR
ORR mbsrc3, mbsrc3, mbsrc4, LSL mbshftL

MOV mbsrc4, mbsrc4, LSR mbshftR
ORR mbsrc4, mbsrc4, mbsrc5, LSL mbshftL

MOV mbsrc5, mbsrc5, LSR mbshftR
ORR mbsrc5, mbsrc5, mbsrc2, LSL mbshftL

STMIA mbdstptr!, {mbsrc1, mbsrc3-mbsrc5}

LDMEQDB sp!, {mbsrc3-mbsrc5, mbshftL, mbshftR, pc}^ ; [finished]
LDMDB sp!, {mbsrc3-mbsrc5}

SUB mbcnt, mbcnt, #4*4
MOV mbsrc1, mbsrc2, LSR mbshftR ; Keep mbsrc1 prepared

MovByt240
ADDS mbcnt, mbcnt, #2*4 ; Two whole words to do ?
BLT MovByt250

STMDB sp!, {mbsrc3}; Push another register

LDMIA mbsrcptr!, {mbsrc3, mbsrc2} ; NB. Order!
ORR mbsrc1, mbsrc1, mbsrc3, LSL mbshftL

MOV mbsrc3, mbsrc3, LSR mbshftR
ORR mbsrc3, mbsrc3, mbsrc2, LSL mbshftL

STMIA mbdstptr!, {mbsrc1, mbsrc3}

LDMEQDB sp!, {mbsrc3, mbshftL, mbshftR, pc}^ ; [finished]
LDMDB sp!, {mbsrc3}

SUB mbcnt, mbcnt, #2*4
MOV mbsrc1, mbsrc2, LSR mbshftR ; Keep mbsrc1 prepared

MovByt250
ADDS mbcnt, mbcnt, #2*4-1*4; One whole word to do ?
BLT MovByt260

LDR mbsrc2, [mbsrcptr], #4
ORR mbsrc1, mbsrc1, mbsrc2, LSL mbshftL
STR mbsrc1, [mbdstptr], #4

LDMEQDB sp!, {mbshftL, mbshftR, pc}^ ; [finished]

SUB mbcnt, mbcnt, #1*4
MOV mbsrc1, mbsrc2, LSR mbshftR ; Keep mbsrc1 prepared

MovByt260

Example program

2-596

ADDS mbcnt, mbcnt, #1*4-0*4
LDMEQDB sp!, {mbshftL, mbshftR, pc}^ ; [finished]

LDR mbsrc2, [mbsrcptr] ; Store remaining 1, 2 or 3 bytes
ORR mbsrc1, mbsrc1, mbsrc2, LSL mbshftL

MovByt270
STRB mbsrc1, [mbdstptr], #1
MOV mbsrc1, mbsrc1, LSR #8
SUBS mbcnt, mbcnt, #1
BGT MovByt270

LDMDB sp!, {mbshftL, mbshftR, pc}^

; ++

END

W
ritin

g
 filin

g
 system

s

2-597

2

45 Writing a FileCore module

Adding your own module to FileCore
FileCore does not know how to communicate directly with the hardware that your filing
system uses. Your module must provide these facilities, and declare the entry points to
FileCore.

This chapter describes how to add a filing system to FileCore. You should also see the
chapter entitled Modules on page 1-201 for more information on how to write a module.

Declaring your module
When your module initialises, it must inform FileCore of its existence. You must call
FileCore_Create to do this – see page 2-228 for details. R0 tells FileCore where to find
a descriptor block. This in turn tells FileCore the locations of all the entry points to your
module’s low level routines that interface with the hardware:

Descriptor block

This table shows the offsets from the start of the descriptor block, and the meaning of
each word in the block:

Offset Contains
0 Bit flags
3 Filing system number (see the chapter entitled FileSwitch)
4 Offset of filing system title from module base
8 Offset of boot text from module base
12 Offset of low-level disc op entry from module base
16 Offset of low-level miscellaneous entry from module base

Declaring your module

2-598

The flag bits in the descriptor block have the following meanings:

Bit Meaning when set
0 Hard discs need FIQ
1 Floppy discs need FIQ
2 Reserved – must be zero
3 Use only scratch space when a temporary buffer is needed
4 Hard discs support mount like floppies do

(ie they fill in sector size, heads, sectors per track and density)
5 Hard discs support poll change

(ie the poll change call works for hard discs and returns a sensible
value; also locking them gives a sensible result)

6 Floppy discs support power-eject
7 Hard discs support power-eject

RISC OS 2 only uses bits 0 - 3; it ignores other bits.

FileCore_Create starts a new instantiation of FileCore, and, on return to your module,
R0 points to the workspace that has been reserved for that new instantiation of FileCore.
You must store this pointer in your module’s workspace for future calls to FileCore; it is
this value that tells FileCore which filing system you are (as well as enabling it to find its
workspace!).

Unlike filing systems that are added under FileSwitch, the boot text offset cannot be –1
to call a routine.

Temporary buffers
The table below shows areas which may be used for temporary buffers when bit 3 of the
flag word is not set:

Scratch Spare Wimp RMA System Applic- Directory
space screen free heap heap ation cache

area pool area

FSEntry_Func 8 3 3 3 3 3 7 7
FSEntry_Close 3 3 3 3 3 7 7
FSEntry_Args 7 3 3 3 3 3 7 7
AllocCompact 3 3 3 3 3 7 7
Compact 3 3 3 3 3 7 7
*Backup X X 7 7 3 3 3 7 3
*Backup X Y 3 3 3 3 3 7 7
*Backup X X q 7 7 3 3 3 3 3
*Backup X Yq 3 3 3 3 3 3 7
*Compact 3 3 3 3 3 7 7

W
ritin

g
 filin

g
 system

s

Writing a FileCore module

2-599

where AllocCompact is the auto-compact triggered when allocating space for a file, and
Compact is a normal auto-compact.

Selecting your filing system
Your filing system should provide a * Command to select itself, such as *ADFS or *Net.
This must call OS_FSControl 14 to inform FileSwitch that the module has been
selected, thus:

StarFilingSystemCommand
STMFD R13!, {R14}
MOV R0, #FSControl_SelectFS
ADR R1, FilingSystemName
SWI XOS_FSControl
LDMFD R13!, {R15}

For full details of OS_FSControl 14, see page 2-98.

Other * Commands
There are no other * Commands that your filing system must provide. For many
FileCore-based systems the range it provides will be enough, and your module need add
no more.

Implementing SWI calls
SWI calls in a FileCore module are usually implemented by simply:

● loading R8 with the pointer to the FileCore instance private word for your module

● calling the corresponding FileCore SWI.

For example, here is how a module might implement a DiscOp SWI:

STMFD R13!, {R8, R14} ; R12 points to module workspace
LDR R8, [R12, #offset] ; R8 <- pointer to FileCore private word
SWI XFileCore_DiscOp
LDMFD R13!, {R8, R15}

Usually DiscOp, Drives, FreeSpace and DescribeDisc are implemented like this. Of
course you can add any extra SWI calls that are necessary.

Removing your filing system
The finalise entry of your module must remove its instantiation of FileCore. For full
details of how to do so, see the section entitled Finalisation Code on page 1-212.

Returning errors

2-600

Returning errors
Your module has to return errors through FileCore as follows:

The V flag must be set, and R0 is used to indicate the error:

● If bit 30 of R0 is set then, after clearing bit 30 of R0, it is a pointer to an error block.

● If bit 31 of R0 is set and bit 30 is clear, then R0 is a disc error:

bits 0 - 20 are the disc byte address / 256
bits 21 - 23 are the drive number
bits 24 - 29 are the disc error number

● Else bits 30 - 31 are clear, and R0 is an error number:

bits 0 - 7 are an error number (see list below)
bits 8 - 29 are clear

In the latter two cases FileCore will generate a suitable error block.

The error numbers that may be returned are:

Error Token Default text
11 ExtEscape Escape
94 Defect Can’t map defect out
95 TooManyDefects Too many defects
96 CantDelCsd Can’t delete current directory
97 CantDelLib Can’t delete library
98 CompactReq Compaction required
99 MapFull Free space map full
9A BadDisc Disc not formatted (not ADFS format)
9B TooManyDiscs Too many discs
9D BadUp Illegal use of ^
9E AmbigDisc Ambiguous disc name
9F NotRefDisc Not same disc
A0 InUse FileCore in use
A1 BadParms Bad parameters
A2 CantDelUrd Can’t delete user root directory
A5 Buffer No room for buffer
A6 Workspace FileCore Workspace corrupt
A7 MultipleClose Multiple file closing errors
A8 BrokenDir Broken directory
A9 BadFsMap Bad free space map
AA OneBadFsMap One copy of map corrupt (use *CheckMap)
AB BadDefectList Bad defect list
AC BadDrive Bad drive
AD Size Sizes don’t match (backups)
AF DestDefects Destination disc has defects (backups)

W
ritin

g
 filin

g
 system

s

Writing a FileCore module

2-601

B0 BadRename Bad RENAME
B3 DirFull Directory full
B4 DirNotEmpty Directory not empty
BD Access Access violation
C0 TooManyOpen Too many open files
C2 Open File open
C3 Locked Locked
C4 Exists Already exists
C5 Types Types don’t match
C6 DiscFull Disc full
C7 Disc Disc error
C9 WriteProt Protected disc
CA DataLost Data lost
CC BadName Bad name
CF BadAtt Bad attribute
D3 DriveEmpty Drive empty
D4 DiscNotFound Disc not found
D5 DiscNotPresent Disc not present
D6 NotFound Not found
D7 DiscNotFileCore FileCore does not understand this disc
D8 NotToAnImageYouDont Operation inapplicable to disc images
DE Channel Channel
FD WildCards Wild cards
FE BadCom Bad command

Module interfaces
The next section describes the interfaces to FileCore that your module must provide.

Module interfaces

2-602

Module interfaces
Your module must provide two interfaces to FileCore: one for DiscOps, and one for
other miscellaneous functions.

DiscOp entry
The entry for DiscOps does much of the work for a DiscOp SWI. It is passed the same
values as FileCore_DiscOp (see page 2-223), except:

● an extra reason code is added to R1 allow background processing

● consequently R1 is no longer used to point to an alternative disc record instead R5
always points to a disc record

● R6 points to a boot block (for hard disc operations only), with the special value
&80000000 indicating that none is available.

These are the reason codes that may be passed in R1:

Value Meaning Uses Updates

0 Verify R2, R4 R2, R4
1 Read sectors R2, R3, R4 R2, R3, R4
2 Write sectors R2, R3, R4 R2, R3, R4
3 Floppy disc: read track R2, R3

Hard disc: read Id R2, R3
4 Write track R2, R3
5 Seek (used only to park) R2
6 Restore R2
7 Floppy disc: step in
8 Floppy disc: step out
15 Hard disc: specify R2

The reason codes you must support are 0, 1, 2, 5 and 6. You must complete the entire
operation requested, or give an error if you are unable to do so.

Your routine must preserve R1 - R13 inclusive, except where noted otherwise above, ie:

● R2 must be incremented by the amount transferred for Ops 0, 1 and 2

● R3 must be incremented appropriately for Ops 1 and 2

● R4 must be decremented by the amount transferred for Ops 0, 1 and 2

You must also preserve the N, Z and C flags.

W
ritin

g
 filin

g
 system

s

Writing a FileCore module

2-603

Returning errors

If there is no error then R0 must be zero on exit and the V flag clear. If there is an error
then V must be set and R0 must be one of the following:

Value Meaning
R0 < &100 internal FileCore error number
&100 ≤ R0 < 231 pointer to error block
R0 ≥ 231 disc error bits:

bits 0 - 20 = disc byte address / 256
bits 21 - 23 = drive
bits 24 - 29 = disc error number
bit 30 = 0

For a list of internal FileCore error numbers, see the section entitled Disc errors on
page 2-278.

Background transfer

If bit 8 of R1 is set, then transfer may be wholly or partially in the background. This is
an optional extension to improve performance. To reduce rotational latency the protocol
also provides for transfers of indeterminate length.

R3 points to a list of address/length word pairs, specifying an exact number of sectors.
The length given in R4 is treated as the length of the foreground part of the transfer. R5
is a pointer to the disc record.

Your module should return to the caller when the foreground part is complete, leaving a
background process scheduled by interrupts from the controller. This process should
terminate when it finds an address/length pair with a zero length field.

The foreground process can add pairs to the list at any time. To get the maximum
decoupling between the processes your module should update the list after each sector.
This updating must be atomic (use the STMIA instruction). Your module must be able to
retry in the background.

MiscOp entry

2-604

The list is extended as below:

Offset Contents
–8 Process error
–4 Process status
0 1st address
4 1st length
8 2nd address
12 2nd length
16 3rd address
20 3rd length

etc

n Loop back marker –n (where n is a multiple of 8)
n+4 Length of zero

Process error is set by the caller to 0; on an error your module should set this to describe
the error in the format described above.

The bits in process status are:

Bit Meaning when set
31 process active
30 process can be extended
0 - 29 pointer to block giving position of any error

Bits 31 and 30 are set by the caller and cleared by your module. Your module must have
IRQs disabled from updating the final pair in the list to clearing the active bit.

A negative address of –n indicates that your module has reached the end of the table, and
should get the next address/length pair from the start of the scatter list n bytes earlier.

Your module may be called with the scatter pointer (R3) not pointing to the first
(address/length) pair. So, to find the addresses of Process error and Process status, you
must search for the end of list. From this you may then calculate the start of the scatter
block.

MiscOp entry
The entry for MiscOps does much of the work for a MiscOp SWI. It is passed the same
values as FileCore_MiscOp (see page 2-240) – save for one reason code, noted below,
which can be passed extra parameters.

● Although FileCore_MiscOp is not available in RISC OS 2, you must still provide
this entry point, as other SWIs also use it. (The MiscOp SWI merely provides a
convenient way of directly calling this entry point.)

W
ritin

g
 filin

g
 system

s

Writing a FileCore module

2-605

These are the reason codes that may be passed in R0:

Value Meaning
0 Mount
1 Poll changed
2 Lock drive
3 Unlock drive
4 Poll period
5 Eject disc

The reason codes you must support are 0, 2 and 3; for floppy drives, you must also
support reason codes 1 and 4.

Your routine must preserve registers, and the N, Z and C flags – except where
specifically stated otherwise.

You may only return an error from reason code 0 (Mount). This must be done in the
same way as for the DiscOp entry; see the section entitled Returning errors on
page 2-603.

For drives with disc sensing, reason code 1 (Poll changed) must always return changed
in the spun-down state. If the drive is spun-up, you must return maybe changed if the
drive has been permanently spun-up since the last ‘Poll changed’; other wise you must
return changed:

Figure 45.1 ‘Poll changed’ returns for drives with disc sensing

Under RISC OS 2, the values returned from MiscOp 1 (Poll changed) in bits 4, 5, and
8 - 10 of R3 are ignored by FileCore.

Reason codes 2 and 3 (Lock/Unlock drive) must always perform that action. You must
not try to track the state of the drive locking; FileCore does this for you.

spun-down

spun-up

DiscOp spins
up drive

Changed Changed Changed Maybe
changed(Disc is

spun down)
(Disc has
become
spun up)

(Disc remains
spun up)

MiscOp entry

2-606

Reason code 5 (Eject disc) will never be called if bits 6 and 7 of the descriptor block are
clear, since this indicates that no drives support power-ejection. Otherwise it may get
called in a variety of situations: for example, after dismounting all discs as part of
shutting down all filing systems.

Reason code 5 is also called whenever FileCore issues an UpCall 1 (medium not
present), or an UpCall 2 (medium not known). In this case, the top bit of the drive
number is set, indicating that a disc should be ejected from the drive considered to be
most appropriate. The values passed to the UpCall in R4 (the iteration count) and in R5
(the minimum timeout period) are also passed on in the same registers to the MiscOp
entry point. The filing system may treat these as appropriate; for example, it may choose
to eject only on iteration 0 for an auto-insert detect drive, as doing further ejects may
make it hard to get a new disc into the drive.

For more details of OS_UpCall 1 and 2, see page 1-183.

W
ritin

g
 filin

g
 system

s

2-607

2

46 Writing a device driver

Adding your own device driver to DeviceFS
DeviceFS does not know how to communicate directly with the hardware that your
device driver uses. Your module must provide these facilities, and declare the entry
points to DeviceFS.

This section describes how to add a device driver to DeviceFS. You should also see the
chapter entitled Modules on page 1-201 for more information on how to write a module.

Registering your device driver
When your module initialises, it must register itself and its devices with DeviceFS. You
must call DeviceFS_Register (see page 2-435) to register your device driver and any
associated devices. Note that modules can hold more than one driver; in such cases you
must call DeviceFS_Register for each one.

When you register your device driver with DeviceFS you pass it the location of an entry
point to your driver’s low level routines that interface with the hardware. A reason code
is used to determine which of your driver’s routines has been called.

● Reason codes with bit 31 clear are reserved for use by Acorn.

● Reason codes with bit 31 set are reserved for specific drivers. You do not need to
register these with Acorn, although we suggest that you maintain some consistency
between devices.

Registering and deregistering additional devices

You may later register additional devices by calling DeviceFS_RegisterObject (see
page 2-439). This is most commonly needed for devices on a network.

You may deregister devices by calling DeviceFS_DeregisterObject (see page 2-440).

Deregistering your device driver
The finalise entry of your module must deregister all registered drivers and devices by
calling DeviceFS_Deregister (see page 2-438). It must make this call for each device
driver it registered.

Device driver interfaces

2-608

Device driver interfaces

Calling conventions
The principal part of a device driver is the set of low-level routines that control the
device’s hardware. There are certain conventions that apply to them.

Private word

R8 on entry to the device driver is set to the value of R3 it passed to DeviceFS when
registering by calling DeviceFS_Register. Conventionally, this is used as a private word
to indicate which hardware platform is being used.

Workspace

R12 on entry to the device driver is set to the value of R4 it passed to DeviceFS when
registering by calling DeviceFS_Register. Conventionally, this is used as a pointer to its
workspace.

Returning errors

If a routine wishes to return an error, it should return to DeviceFS with V set and R0
pointing to a standard format error block.

Other conventions

Device driver routines must preserve R0, R1, and all other undocumented registers.

W
ritin

g
 filin

g
 system

s

Writing a device driver

2-609

Interfaces
These are the interfaces that your device driver must provide. The entry point must be
declared to DeviceFS by calling DeviceFS_Register when your device driver module is
initialised.

DeviceDriver_Entry
Various calls are made by DeviceFS through this entry point when files are being opened
and closed, streams halted etc. The actions are specified by R0 as follows:

DeviceDriver_Entry 0

Initialise

On entry

R0 = 0
R2 = DeviceFS stream handle
R3 = flags for opening the stream:

bit 0 clear ⇒ stream opened for RX, set ⇒ stream opened for TX
all others bits reserved, and should be ignored

R6 = pointer to special field control block

On exit

R2 = device driver stream handle

Details

This entry point is called as a stream is being opened onto the device driver by
DeviceFS. The stream handle passed in must be stored, as you need to quote it when
calling DeviceFS SWIs such as DeviceFS_Threshold, DeviceFS_ReceivedCharacter,
and DeviceFS_TransmitCharacter.

The stream handle returned will be passed by DeviceFS when calling the device driver’s
other entry routines. It must not be zero, which is a reserved value.

The device driver is also passed a pointer to the special field string: see the section
entitled Special fields on page 2-430.

You can be assumed that the special field block will remain intact until the stream has
been closed.

DeviceDriver_Entry 1

2-610

DeviceDriver_Entry 1

Finalise

On entry

R0 = 1
R2 = device driver stream handle, or 0 for all streams

On exit

—

Details

This entry point is called when a stream is being closed. Your device driver must tidy up
and ensure that all vectors have been released. This entry point is also called when a
device driver is being removed, although in this case R2 is set to contain 0 indicating
that all streams should be closed.

DeviceDriver_Entry 2

Wake up for TX

On entry

R0 = 2
R2 = device driver stream handle

On exit

R0 = 0 if the device driver wishes to remain dormant, else preserved

Details

This entry point is called when data is ready to be transmitted. Your device driver should
set R0 to 0 if it wishes to remain dormant, or else start passing data to the physical
device, calling DeviceFS_TransmitCharacter to obtain the data to be transmitted.

W
ritin

g
 filin

g
 system

s

Writing a device driver

2-611

DeviceDriver_Entry 3

Wake up for RX

On entry

R0 = 3
R2 = device driver stream handle

On exit

—

Details

This entry point is called when data is being requested from the device driver. It is really
issued to wake up any dormant device drivers, although you will always receive it when
data is going to be read.

The device driver should return any data it receives from the physical device by calling
DeviceFS_ReceivedCharacter. This will unblock any task waiting on data being
returned.

This call is not applicable to all device drivers; most interrupt-driven buffered device
drivers would be ready to receive data at any time.

DeviceDriver_Entry 4

Sleep RX

On entry

R0 = 4
R2 = device driver stream handle

On exit

—

Details

This entry point is called when data is no longer being requested from the device driver.
If appropriate, the device driver can then wait to be woken up again using the ‘Wake up
for RX’ entry point.

DeviceDriver_Entry 5

2-612

This call is not applicable to all device drivers; most interrupt-driven buffered device
drivers would continue to receive and buffer data even after this call.

DeviceDriver_Entry 5

EnumDir

On entry

R0 = 5
R2 = pointer to path being enumerated

On exit

—

Details

This entry point is called as a broadcast to all device drivers when the directory structure
for DeviceFS is about to be read. This allows them to add and remove non-permanent
devices (such as net connections) as required.

The path supplied will be full (eg $.foo.poo) and null terminated.

DeviceDriver_Entry 6 and 7

Create buffer for TX (6), and Create buffer for RX (7)

On entry

R0 = 6 or 7
R2 = device driver stream handle
R3 = suggested flags for buffer being created
R4 = suggested size for buffer
R5 = suggested buffer handle (–1 for unique generated one)
R6 = suggested threshold for buffer

On exit

R3 - R6 modified as the device driver requires

W
ritin

g
 filin

g
 system

s

Writing a device driver

2-613

Details

This entry point is called just before the buffer for a stream is going to be created; it
allows the device driver to modify the parameters as required.

● R3 contains the buffer flags as specified when the device was registered; see the
chapter entitled The Buffer Manager on page 4-85.

● R4 contains the suggested buffer size; this should be non-zero.

● R5 contains a suggested buffer handle. This is by default set to –1, which indicates
that the buffer manager must attempt to generate a free handle.

If you specify the handle of an existing buffer, then it will be used and not removed
when finished with. For compatibility, the kernel devices use this feature to link up
to buffers 1,2 or 3.

● R6 contains the threshold at which a halt event is received. This usually only applies
to receive streams which want to halt the receive process, although it can be
supplied on either. You may change this value by calling DeviceFS_Threshold.

DeviceDriver_Entry 8

Halt

On entry

R0 = 8
R2 = device driver stream handle

On exit

—

Details

This entry point is called when the free space has dropped below the specified threshold
(set on creation, or by DeviceFS_Threshold). It is called so the device driver can – if
necessary – try to stop its device from receiving more data (eg a serial device driver
might perform handshaking by sending an XOff character, or asserting the RTS line)
until the Resume entry point is called.

DeviceDriver_Entry 9

2-614

DeviceDriver_Entry 9

Resume

On entry

R0 = 9
R2 = device driver stream handle

On exit

—

Details

This entry point is called when the free space has risen above the specified threshold (set
on creation, or by DeviceFS_Threshold). It is called so the device driver can – if
necessary – try to resume its device receiving more data (eg a serial device driver might
perform handshaking by sending an XOn character, or de-asserting the RTS line) until
the Halt entry point is again called.

DeviceDriver_Entry 10

End of data

On entry

R0 = 10
R2 = device driver stream handle
R3 = –1

On exit

R3 = 0 if more data coming eventually, else –1 (ie no more data coming)

Details

This entry point is called as a result of FileSwitch calling DeviceFS to check on EOF,
and DeviceFS believing that there is no more data to come. In more detail:

DeviceFS informs FileSwitch that more data is coming eventually – without calling this
entry point – if:

● the stream is buffered, and its buffer still holds data

● the stream is unbuffered, and its RX/TX word is not empty

W
ritin

g
 filin

g
 system

s

Writing a device driver

2-615

Otherwise it calls this entry point. In most cases a device driver should ignore this, and
return with all registers preserved (so R3 = –1, thus there is no more data coming). In
some cases, such as a scanner, you may be able to give an accurate return.

DeviceDriver_Entry 11

Stream created

On entry

R0 = 11
R2 = device driver stream handle
R3 = buffer handle (–1 if none)

On exit

—

Details

This entry point is called after a stream has finally been generated. Your device driver
can then perform any important interrupt handling, set itself up and start receiving or
transmitting.

2-616

N
etw

o
rkin

g

2-617

2 Part 6 – Networking

2-618

N
etw

o
rkin

g

2-619

2;

47 Econet

Introduction
The Econet module provides the software needed to use Acorn’s own Econet
networking system. The software allows you to send and receive data over the network.

It is used by RISC OS modules such as NetFS and NetPrint, which provide network
filing and printing facilities respectively. It is also used by various other Acorn products
that use Econet, such as FileStores, Econet bridges, and so on.

Note that to use the Econet you must have an Econet expansion module fitted to your
RISC OS computer. If you do not already have one, they are available from your Acorn
supplier.

Overview

2-620

Overview
Econet is Acorn’s own networking system, and the Econet module provides the
necessary software to use it.

The main purpose of any networking system is to transfer data from one machine to
another. Econet breaks up the data it sends into small parts which are sent using a well
defined protocol.

Econet does not use buffers in the same way as most other input and output facilities that
RISC OS provides. Instead the data is moved directly between the Econet hardware and
memory. This means that each time data is transmitted or received, there has to be a
block of memory available for the Econet software to use immediately, either to read
data from or place data in.

These blocks of memory are administered by the Econet software, which uses control
blocks to do so. Many of the SWIs interact with these control blocks, so you can set
them up, read the status of an Econet transmission or reception, and release the control
blocks memory when you have finished using them.

In the same way as files under the filing system use file handles, these control blocks
also use handles. Just like file handles, your software must keep a record of them while
you need to use them.

The Econet also provides a range of immediate operations, which allow you to exercise
some control over the hardware of remote machines, assuming you get their
co-operation. Some of these will work across the entire range of Acorn computers,
whereas others are more hardware-dependent and so may only be possible on RISC OS
machines.

N
etw

o
rkin

g

Econet

2-621

Technical Details

Packets and frames
A single transmission of data on an Econet is called a packet. Packets travel across the
network from the transmitting station to the receiving station. The most common form
of packet is called a ‘four way handshake’. A ‘four way handshake’ consists of four
frames. Each of these four frames starts with the following four bytes:

● the station number of the destination station

● the net number of the destination station

● the station number of the source station

● the net number of the source station.

These four bytes are sent in this order to facilitate decoding by the software in the
receiving station.

The first frame is sent by the transmitting station; it contains the usual first four bytes,
the port byte (described later), and the flag byte (also described later). This first frame is
called the scout. The receiving station then replies with the scout acknowledge, which
consists of just the usual first four bytes. The third frame is the data frame; this frame
has the usual first four bytes, followed by all the data to be transferred. Lastly there is a
final acknowledge frame which is identical to the scout acknowledge frame.

This exchange of frames can be seen with the NetMonitor and is displayed something
like this.

FE0012008099 1200FE00 FE00120048454C500D 1200FE00

● the transmitting station is &12 (18 in decimal)

● the receiving station is &FE (254 in decimal)

● both stations are on net zero

● the flag byte is &80

● the port byte is &99

● the data that is transmitted is &48, &45, &4C, &50, &0D.

Receiving data and using RxCBs

2-622

Receiving data and using RxCBs
Successful transmission of data requires co-operation from the receiving station. A
station shows that it is ready to receive by setting up a receive control block (or RxCB).
All RxCBs are kept by the Econet software and don’t need to concern you. To create an
RxCB all you need to do is call a single SWI (Econet_CreateReceive: see page 2-657),
telling the Econet software all the required information. The Econet software will return
to you a handle which you then use to refer to this particular RxCB in any further
dealings with the Econet software.

The information required by the Econet software is:

● which station(s) to accept data from

● which port number(s) to accept data on

● where to put the data when it arrives.

It is important you note that when the data arrives from the transmitting station it is not
buffered at all – it is taken directly from the hardware and placed in memory at the
address you specify. This area of memory is referred to as a buffer (in this case a receive
buffer). A consequence of this is that memory used for receiving Econet packets must be
available at all times whilst the relevant RxCB is open. You must not use memory in
application space if your program is to run within the Desktop environment.

The Econet software keeps a list of all the open RxCBs. When a scout frame comes in it
is checked to see if it matches any of the currently open RxCBs:

● if it doesn’t then the receiving software indicates this to the transmitting software by
not sending a scout acknowledge frame

● if it does then the receiving software sends out a scout acknowledge, and then
copies the data frame into the corresponding buffer

● if the data frame overruns the buffer then the receiving software does not send the
final acknowledge frame.

Status of RxCB’s

All RxCBs have a status value. These values are tabulated below.

7 Status_RxReady
8 Status_Receiving
9 Status_Received

The status of a particular RxCB can be read using the Econet_ExamineReceive call
(page 2-659); this takes the receive handle of an RxCB and returns its status.

N
etw

o
rkin

g

Econet

2-623

When an RxCB has been received into, its status will change from RxReady to
Received; usually, you will then call Econet_ReadReceive (page 2-661). This returns
information about the reception; most importantly it tells you how much data was
received – which can be anything from zero to the size of the buffer. It also returns the
value of the flag byte.

The port, station, and net are also returned; these are useful because you can open an
RxCB that allows reception on any port or from any station.

Abandoning RxCB’s

It is very important that when RxCBs are no longer required, either because they have
been received into, or because they have not been received into within a certain time,
that they are removed from the system. You do so by calling the SWI
Econet_AbandonReceive (page 2-663). The major function of this call is to return to the
RMA the memory that the Econet software used to hold the RxCB; obviously if RxCBs
are not abandoned, they will consume memory which will not automatically be
recovered by the system.

Receiving data using a single SWI
The usual sequence of operations required for software to receive data is as follows:
First call SWI Econet_CreateReceive, then make numerous calls to SWI
Econet_ExamineReceive until either a reception occurs, a time out occurs, or the user
interferes (by pressing Escape for instance). Then read the RxCB
(Econet_ReadReceive) if it has been received into. Finally, abandon the RxCB
(Econet_AbandonReceive).

To make this task easier the Econet software provides a single SWI
(Econet_WaitForReception: see page 2-664) which does the polling, the reading, and
the abandoning for you. To call SWI Econet_WaitForReception you must pass in:

● the receive handle

● the amount of time you are prepared to wait

● a flag which indicates whether you wish the call to return if the user presses the
Escape key.

Econet_WaitForReception returns one of four status values:

8 Status_Receiving
9 Status_Received
10 Status_NoReply
11 Status_Escape

Transmitting data and using TxCB’s

2-624

The call will return as soon as a reception occurs; when this happens the status is
Received. If the time limit expires then the status is usually NoReply, but if reception had
started just after the timeout, and so was then abandoned, the status will be Receiving.
This is not a very likely case. If the escapable flag is set then pressing the Escape key
causes the call to return with the Escape status.

Transmitting data and using TxCB’s
Transmission is roughly similar to reception; a single SWI (Econet_StartTransmit –
page 2-667) is all that is required to get things started. This call requires the following
information:

● the destination station (and net)

● the port number to transmit on

● the flag byte to send

● the address and length of the data to send.

SWI Econet_StartTransmit returns a handle. These handles are distinct from the handles
used by the receive SWIs.

Various transport types may impose a limit on the amount of data you can send in a
single packet. You can find out the limit for the transport you are using by calling
Econet_PacketSize (page 2-700).

Status of TxCB’s

To check the progress of your transmission you can call Econet_PollTransmit
(page 2-669). This returns the status of the particular TxCB, which will be one of seven
possible values:

0 Status_Transmitted
1 Status_LineJammed
2 Status_NetError
3 Status_NotListening
4 Status_NoClock
5 Status_TxReady
6 Status_Transmitting

Status_Transmitted means that your transmission has completed OK and that the data
has been received by the destination machine. Status_TxReady means that your
transmission is waiting to start, either because the Econet is busy receiving or
transmitting something else, or your transmission is queued (see later for more details of
this). Status_Transmitting is obvious; so too is Status_NoClock, which means that the
Econet is not being clocked, or more likely your station is not plugged into the Econet.
Status_LineJammed means that the Econet software was unable to gain access to the

N
etw

o
rkin

g

Econet

2-625

Econet; this may be because other stations were transmitting, but it is more likely that
there is a fault in the Econet cabling somewhere. Status_NotListening is returned when
the destination station doesn’t send back a scout acknowledge frame; this is usually
because the destination station doesn’t have a suitable open receive block.
Status_NetError will be returned if some part of the four way handshake is missing or
damaged; the usual cause of this status is the sender sending more data than the receiver
has buffer space for, so the receiver doesn’t send back the final acknowledge frame.

Retrying transmissions

Status returns like NotListening and NetError can also be caused by transient problems
with the Econet such as electrical noise, or by the receiving station using its floppy disc
or being otherwise too busy to accept data. Because of this it is usual to try more than
once to send a packet if these status returns occur. To make this easier for you the Econet
software can automatically perform these extra attempts for you. These retries are
controlled by passing two further values in to the Econet_StartTransmit SWI:

● the number of times to try, referred to as the Count

● the amount of time to wait between tries, referred to as the Delay.

If the Count is either zero or one then only one attempt to transmit will take place. If the
Count is two or more then retries will occur, at the specified interval (given in
centiseconds). To give an example as it would be written in BASIC V:

10 DIM Buf% 20
20 Port%=99: Station%=7: Net%=0
50 SYS "Econet_StartTransmit",0,Port%,Station%,Net%,Buf%,20,3,100 TO Tx%
60 END

When this partial program was RUN it would try to transmit immediately, probably
before the program reached the END statement. If this transmission failed with either
Status_NotListening or Status_NetError, then the Econet software would wait for one
second (100 centiseconds) and try again. If this also failed then the software would wait
a further second and try for a third time. The status of the final (in this case third)
transmission would be the status finally stored in the TxCB; this could be read using
SWI Econet_PollTransmit. To see this we could add some extra lines to the example
program:

 30 TxReady%=5
 40 Transmitting%=6
 60 REPEAT
 70 SYS "Econet_PollTransmit", Tx% TO Status%
 80 PRINT Status%
 90 UNTIL NOT ((Status%=TxReady%) OR (Status%=Transmitting%))
100 END

Transmitting data using a single SWI

2-626

Now the program will show us the status of the TxCB. We would be very unlikely to see
the status value ever be Status_Transmitting since it will only have this value for about
90µs during the two seconds it is retrying for. But it is most important that your software
should be able to handle such a situation without error.

For retries to be effective you must try for at least 5 seconds. Recommended values for
the Count and Delay are:

Broadcasts: Count = 5, Delay = 5
Machine peeks: Count = 40, Delay = 5
All other transmissions: Delay × (Count – 1) ≥ 500

Abandoning TxCB’s

As with receptions it is most important that memory used for transmitting Econet
packets must be available at all times whilst the relevant TxCB is open. You must not
use memory in application space if your program is to run within the Desktop
environment. This is because like receptions, transmissions move data directly from
memory at the address you specify to the hardware. Also, as with receptions, it is
important to inform the Econet software that you have finished with your transmission
and that memory required for the internal TxCB may be returned to the RMA. You do
this by calling Econet_AbandonTransmit (page 2-671) with the appropriate TxHandle:

100 SYS "Econet_AbandonTransmit", Tx% TO FinalStatus%
110 PRINT "The final status was ";FinalStatus%

Transmitting data using a single SWI
To make this start, poll, and abandon sequence easier for you the Econet software
provides it all as a single call (Econet_DoTransmit: see page 2-672). This call has the
same inputs as SWI Econet_StartTransmit, but instead of returning a handle it returns
the final status. Using this call our program would look like this:

10 DIM Buf% 20
20 Port%=99: Station%=7: Net%=0
40 SYS"Econet_DoTransmit",0,Port%,Station%,Net%,Buf%,20,6,100 TO Status%
50 PRINT "The final status was ";Status%

Converting a status to an error
As you can see this makes things a lot easier. As an aid to presenting these status values
to the user there are two SWI calls to convert status values to a textual form, the most
frequently used of which is the call Econet_ConvertStatusToError (page 2-677). This
call takes the status and returns an error with the appropriate error number and an
appropriate string describing the error.

N
etw

o
rkin

g

Econet

2-627

For instance we could add an extra line to our final program:

80 SYS "Econet_ConvertStatusToError", Status%

Note that the SYS command sets unused registers to zero.

Copying the error to RAM

Our program will now RUN and always have an error, in this case the error ‘Network
station not listening at line 80’. This error message is actually held in the RMA, in one
of a number of error blocks used by the MessageTrans module, and so you cannot
directly add to it. Furthermore, the error message will have a ‘limited lifetime’ before
MessageTrans reuses the error block. Consequently, if you wish to process the error
message or to preserve it, you should copy it into a buffer. To do so you can specify the
location and size of such a buffer when calling Econet_ConvertStatusToError:

70 DIM Error% 50
80 SYS "Econet_ConvertStatusToError", Status%, Error%, 50

This new program will function in the same manner as the previous program except that
the error block will have been copied from the Econet messages file (in the ROM) into
RAM (at the address given in R1). The main reason for this is to allow the Econet
software to customise the error for you.

Adding station and net numbers

If the station and net numbers are added as inputs to the call, the Econet software will
add them to the output string:

80 SYS "Econet_ConvertStatusToError",Status%,Error%,50,Station%,Net%

Now the error reported will be of the form ‘Network station 7 not listening at line 80’. It
is important to stress that this is a general purpose conversion. It will convert
Status_Transmitted just as well as Status_NotListening, so usually you would test the
returned status from Econet_DoTransmit, and only convert status values other than
Status_Transmitted into errors:

30 Transmitted%=0
60 IF Status%=Transmitted% THEN PRINT "OK": END

Converting a status to an error

2-628

The same program fragment could be written in assembler (this example, like all others
in this chapter, uses the ARM assembler rather than the assembler included with BBC
BASIC V – there are subtle syntax differences):

Tx MOV r0, #0 ; Flag
MOV r1, #99 ; Port
MOV r2, #7 ; Station
MOV r3, #0 ; Net
ADR r4, Buffer
MOV r5, #20 ; Buffer length
MOV r6, #6 ; Count
MOV r7, #100 ; Delay (in centiseconds)
SWI Econet_DoTransmit
BEQ r0, #Status_Transmitted
LDRNE r1, ErrorBuffer
MOVNE r2, #50
SWINE Econet_ConvertStatusToError
MOV pc, lr

Notice here in the assembler version how the return values from Econet_DoTransmit fall
naturally into the input values required for Econet_ConvertStatusToError. This code
fragment is not really satisfactory since no code written as either a module or a transient
command should ever call the non-X form of SWIs. If the routine Tx is treated as a
subroutine then it should look more like this:

Tx STMFD sp!, {lr}
MOV r0, #0 ; Flag
MOV r1, #99 ; Port
MOV r2, #7 ; Station
MOV r3, #0 ; Net
ADR r4, Buffer
MOV r5, #20 ; Buffer length
MOV r6, #6 ; Count
MOV r7, #100 ; Delay (in centiseconds)
SWI XEconet_DoTransmit
BVS TxExit
TEQ r0, #Status_Transmitted
ADRNE r1, ErrorBuffer
MOVNE r2, #50
SWINE XEconet_ConvertStatusToError

TxExit LDMFD sp!, {pc}

This routine returns with V clear if all went well; if V is set, then on return R0 will
contain the address of a standard error block.

RISC OS 2

RISC OS 2 differs from later versions in that it doesn't use the MessageTrans module,
but instead has the full text of the English error messages in ROM. When converting
messages with added station numbers you must convert into your own buffer. If you give
no buffer, or its length is insufficient, then the station and net numbers are ignored and
RISC OS 2 returns a pointer to the normal ROM copy of the message.

N
etw

o
rkin

g

Econet

2-629

Converting a status to a string

The second error conversion call is Econet_ConvertStatusToString (page 2-675), which
does exactly what its name suggests. The input requirements are very similar to the
string conversion SWIs supported by RISC OS. In this case you pass the status value, a
buffer address, and the length of the buffer. As with Econet_ConvertStatusToError you
can also pass the station and net numbers, which will be included in the output string. To
illustrate this the assembler routine shown above is changed to print the status on the
screen:

Tx STMFD sp!, {lr}
MOV r0, #0 ; Flag
MOV r1, #99 ; Port
MOV r2, #7 ; Station
MOV r3, #0 ; Net
ADR r4, Buffer
MOV r5, #20 ; Buffer length
MOV r6, #6 ; Count
MOV r7, #100 ; Delay (in centiseconds)
SWI XEconet_DoTransmit
BVS TxExit
TEQ r0, #Status_Transmitted
BEQ TxExit ; Everything is OK
ADR r1, TextBuffer
MOV r2, #50 ; Text buffer length
MOV r5, r0 ; Save the status value
SWI XOS_ConvertCardinal1 ; Convert the status number
MOVVC r0, r5 ; Recall status if no error
SWIVC XEconet_ConvertStatusToString
ADRVC r0, TextBuffer
SWIVC XOS_Write0 ; Print the resultant string

TxExit LDMFD sp!, {pc}

MessageTrans tokens

Both Econet_ConvertStatusToError and Econet_ConvertErrorToString use
MessageTrans to produce the error message or string. The message tokens for each of
the status values are tabulated below. Where two tokens are listed, as for
Status_NotListening, the first is for the error message – or string – without a station
number inserted, and the second is for the version with the station number inserted. The
files supplied with RISC OS that the Econet software
uses are ‘Resources:$.Resources.Econet.Messages’ and
‘Resources:$.Resources.Global.Messages’ (used solely
for the status message for Escape).

Error Status Token(s)
0 Status_Transmitted TxOK
1 Status_LineJammed LineJam
2 Status_NetError NetErr

Flag bytes

2-630

3 Status_NotListening NotLstn StnNLsn
4 Status_NoClock NoClk
5 Status_TxReady TxReady
6 Status_Transmitting Txing
7 Status_RxReady RxReady
8 Status_Receiving Rxing
9 Status_Received Rxd
10 Status_NoReply NoReply StnNRpy
11 Status_Escape Escape
12 Status_NotPresent NotPres StnNPrs

Flag bytes
The flag byte is sent from the transmitting station to the receiving station and can be
treated as an extra seven bits of data. By convention, it is used as a simple way of
distinguishing different types of packet sent to the same port, and it is worth you doing
the same.

This is most useful in server type applications where it is often the case that similar data
can be sent for different purposes, or some sorts of data are outside the normal scope. An
example is a server that takes requests for teletext pages, but can also return the time. A
different value for the flag byte allows the server to differentiate time requests from
normal traffic. Another example is the printer server protocol, which uses the flag byte
to indicate the packet that is the last in the print job, without having to change the data
part of the packet.

Port bytes
The port byte is used in the receiving station to distinguish traffic destined for particular
applications or services.

For instance the printer server protocol uses port &D1 for all its connect, data transfer,
and termination traffic, whereas the file server uses port &99 for all its incoming
commands. This use of separate ports for separate tasks is also exploited further by the
file server protocol in that every single request for service by the user can use a different
port for its reply. This prevents traffic getting confused.

The Econet software provides some support for you to use ports by providing an
allocation service for port numbers. Port numbers should, if possible, be allocated for all
incoming data.

N
etw

o
rkin

g

Econet

2-631

Software that requires the use of fixed port numbers, like NetFS and NetPrint, can claim
these fixed ports by calling Econet_ClaimPort (page 2-690). This call takes a port
number as its only argument. When these claimed ports are no longer required (when the
module dies for instance) it can be ‘returned’ by calling SWI Econet_ReleasePort
(page 2-687).

Other software that would like a port number allocated to it can call
Econet_AllocatePort (page 2-688), which will return a port number. While this port
number is allocated no other calls to Econet_AllocatePort will return that number, until
it is ‘released’ by calling Econet_DeAllocatePort (page 2-689) with the port number as
an input. The NetFS software uses this method of allocation and deallocation to get ports
to use as reply ports in the file server protocol. The Econet software keeps a table in
which it records the state of each port number: this can be either free, claimed or
allocated.

Freeing ports

Ports that have been claimed will not be allocated, and can only be freed by calling SWI
Econet_ReleasePort. Calling SWI Econet_DeAllocatePort will return an error if the port
is claimed rather than allocated. Ports that have been allocated can not be claimed, and
in fact an attempt to claim an allocated port will return an error. You should be careful
with software that uses allocated ports to make sure that all ports are deallocated when
they are no longer required, especially after an error. The claiming and releasing of ports
should likewise be carefully checked.

An example of use of the port allocator

A typical example of the use of the port allocator would be a multi-player adventure
game server. The server would claim one port (eg port &1F). This port number would
then be the only fixed port number in the entire protocol. When a player wished to join
the game she should ask for a port to be allocated in her machine and send this port,
along with all the information required to enter the game, to the game server on port
&1F. If the server can’t be contacted or doesn’t reply within the required time the port
should be deallocated and an error returned. When the server receives this packet it
should check the user’s entry data; if this is OK it should then allocate a port for that user
and return it, along with any other information required to start the game off. When the
user wants to quit the game the server should deallocate its user’s port, then send the last
reply to the user. The user should deallocate the port when the reply arrives or if the
server doesn’t reply soon enough.

To illustrate this example the user entry routine is shown below; note that this routine is
coded for clarity rather than size or efficiency.

Entry STMFD sp!, {r0-r8,lr} ; R0 points to the text string
SWI XEconet_AllocatePort
BVS Exit

Port bytes

2-632

STRB r0, Server_ReplyPort
LDR r1, Server_Station
LDR r2, Server_Net
ADR r3, Buffer
MOV r4, #?Buffer ; Length of buffer
SWI XEconet_CreateReceive
BVS DeAllocateExit
MOV r8, r0 ; Preserve the RxHandle

LDR r1, [sp, #0] ; Address of text string to copy
ADR r4, Buffer ; Get buffer to copy into
MOV r5, #0 ; Index into Tx Buffer
LDRB r0, Server_ReplyPort
STRB r0, [r4, r5] ; Send the port for the server

CopyLoop
ADD r5, r5, #1
CMP r5, #?Buffer ; Have we run out of buffer?
BHS BufferOverflow
LDRB r0, [r1], #1 ; Pick up byte and move to next one
CMP r0, #" " ; Is this a control character?
MOVLT r0, #CR ; Terminate as the server expects
STRB r0, [r4, r5]
BGE CopyLoop ; Loop back for the next byte
ADD r5, r5, #1 ; Set entry conditions for Tx

MOV r0, #0
MOV r1, #EntryPort ; A constant
LDR r2, Server_Station
LDR r3, Server_Net
LDR r6, Server_TxDelay
LDR r7, Server_TxCount
SWI XEconet_DoTransmit
BVS DeAllocateExit
TEQ r0, #Status_Transmitted
BEQ WaitForReply

ConvertEconetError
ADR r1, Buffer ; Convert status and exit
MOV r2, #?Buffer
SWI XEconet_ConvertStatusToError
B DeAllocateExit

WaitForReply
MOV r0, r8 ; Receive handle
LDR r1, Server_RxDelay
MOV r2, #0 ; Don’t allow ESCape
SWI XEconet_WaitForReception
BVS DeAllocateExit
TEQ r0, #Status_Received
BNE ConvertEconetError

LDR r0, Buffer ; Get server return code
CMP r0, #0 ; Has there been an error?
ADR r0, Buffer ; Get address of reply
BNE DeAllocateExit ; Yes, process error
LDRB r1, [r0, #4] ; Load server’s port
STRB r1, Server_CommandPort

N
etw

o
rkin

g

Econet

2-633

Exit
STRVS r0, [sp, #0] ; Poke error into return regs
LDMFD sp!, {r0-r8,pc} ; Return to caller

BufferOverflowError
DCD ErrorNumber_BufferOverflow
DCB Command too long for buffer", 0
ALIGN

BufferOverflow
ADR r0, BufferOverflowError

DeAllocateExit
MOV r1, r0 ; Preserve the original error
LDRB r0, Server_ReplyPort
SWI XEconet_DeAllocatePort
MOV r0, r1 ; Ignore deallocation errors
CMP pc, #&80000000 ; Set V
B Exit ; Exit through common point

Points to notice in the example are:

● the careful use of a single exit point

● the consistent return of errors (no matter what type)

● the opening of the receive block before doing the transmit

● the use of the ‘X’ form of SWIs.

It should be noted that the routine uses and manipulates global state as well as taking
specific input and returning specific output.

Econet events
To allow Econet based programs to be kinder to other applications within the machine, it
is possible for your program to be ‘notified’ when either a reception occurs or a
transmission completes. This means that other applications can be using the time that
your program would have spent polling, either inside Econet_DoTransmit or inside
Econet_WaitForReception. This ‘notification’ is carried by an event. There are separate
events for reception and for completion of transmission. These two events are:

14 Event_Econet_Rx
15 Event_Econet_Tx

On entry to the event vector:

● R0 will contain the event number, either Event_Econet_Rx or Event_Econet_Tx

● R1 will contain the receive or transmit handle as appropriate

● R2 will contain the status of the completed operation

● R3 will contain the port of the completed operation, except under RISC OS 2.

Econet events

2-634

The status for receive will always be Status_Received, but for transmit it will indicate
how the transmission completed:

0 Status_Transmitted
1 Status_LineJammed
2 Status_NetError
3 Status_NotListening
4 Status_NoClock
9 Status_Received

These events can be enabled and disabled in the normal way using OS_Byte calls.

Using events from the Wimp

If your program is a client of the Wimp then all your event routine need do is set the
Wimp poll word non-zero when the event happens; see the section entitled
PollWord_NonZero 13 on page 3-122.

Event TEQ r0, #Event_Econet_Rx
TEQNE r0, #Event_Econet_Tx
MOVNE pc, lr ; If not, exit as fast as possible

STMFD sp!, {lr} ; Must preserve all regs for others
ADR r14, WimpPollWord
STR pc, [r14] ; Set flag with non-zero value
LDMFD sp!, {pc} ; Return, without claiming vector

Setting up background tasks

Since the interfaces required for reception and transmission can be called from within
event routines, you can set up background tasks that make full use of the facilities
offered by Econet. Note that it is important to check that the handle offered in the event
belongs to your program, since there may well be many programs using this facility. The
example given below is of a simple background server for sending out the time. Not all
of the code needed is shown, just the event routine:

Start STMFD sp!, {r0-r4,lr}
MOV r0, #EventV ; The vector we want is EventV
ADR r1, Event ; Where to goto when it happens
MOV r2, #0 ; Required so that we can release
SWI XOS_Claim

MOVVC r0, #14 ; Enable event
MOV r1, #Event_Econet_Rx
SWIVC XOS_Byte
MOVVC r0, #14 ; Enable event
MOV r1, #Event_Econet_Tx
SWIVC XOS_Byte

N
etw

o
rkin

g

Econet

2-635

MOVVC r0, #CommandPort ; First open the reception
MOV r1, #0 ; From any station
MOV r2, #0 ; From any net
ADR r3, Buffer
MOV r4, #?Buffer
SWIVC XEconet_CreateReceive
STRVC r0, RxHandle
STRVS r0, [sp]
LDMFD sp!, {r0-r4,pc}

Event TEQ r0, #Event_Econet_Rx
BNE LookForTx
LDR r0, RxHandle ; Get our global state
TEQ r0, r1 ; Is it for us?
MOVNE r0, #Event_Econet_Rx
MOVNE pc, lr ; If not, exit as fast as possible
STMFD sp!, {r3-r7} ; Only R0, R1 and R2 are free for use
MOV r0, r1 ; Receive handle
SWI XEconet_ReadReceive ; R4.R3 is the reply address
BVS Exit

MOV r6, r3 ; Save the station number for later
MOV r0, #Module_Claim
MOV r3, #8 + 5 ; Two words and five bytes required
SWI XOS_Module ; Memory MUST come from RMA
BVS Exit

ADD r1, r2, #8 ; Get the address of the 5 bytes
MOV r0, #3 ; Set OS_Word reason code
STRB r0, [r1] ; Read as a five byte time
MOV r0, #14 ; Read from the real time clock
SWI XOS_Word
BVS Exit

MOV r0, #0 ; Flag byte
MOV r3, r4 ; Net number
MOV r4, r1 ; Get the address of the 5 bytes
LDRB r1, [r5] ; The reply port the client sent
MOV r2, r6 ; Station number
MOV r5, #5 ; Number of bytes to send
MOV r6, #ReplyCount
MOV r7, #ReplyDelay
SWI XEconet_StartTransmit
BVS Exit

SUB r4, r2, #8 ; R4 now in R2
STR r0, [r4, #4] ; Save TxHandle in record
ADR r1, TxList ; Address of the head of the list
LDR r2, [r1, #0] ; Head of the list
STR r2, [r4, #0] ; Add the list to new record
STR r4, [r1, #0] ; Make this record the list head

Econet events

2-636

MOV r0, #CommandPort ; Now re-open the reception
MOV r1, #0 ; From any station
MOV r2, #0 ; From any net
ADR r3, Buffer
MOV r4, #?Buffer
SWI XEconet_CreateReceive
STRVC r0, RxHandle

Exit
LDMFD sp!, {r3-r7, pc} ; Return claiming vector

LookForTx
TEQ r0, #Event_Econet_Tx
MOVNE pc, lr
STMFD sp!, {r3, lr} ; Get two extra registers
ADR r3, TxList ; The address of the head of list
LDR r14, [r3] ; The first record in the list
B StartLooking

NextTx
MOV r3, r14 ; Search the next list entry
LDR r14, [r3] ; Get the link address

StartLooking
CMP r14, #0 ; Is this the end of the list?
MOVLE r0, #Event_Econet_Tx ; Restore entry conditions
LDMLEFD sp!, {r3, pc} ; Return, continuing to next owner
LDR r0, [r14, #4] ; Get the handle for this record
TEQ r0, r1 ; Is this event one of ours?
BNE NextTx ; No, try next record in list

LDR r2, [r14] ; Get the remainder of the list
STR r2, [r3] ; Remove this record from list
MOV r2, r14 ; The record address for later
SWI XEconet_AbandonTransmit
MOV r0, #Module_Free
SWI XOS_Module ; Return memory to RMA, ignore error
LDMFD sp!, {r3, lr, pc} ; Return, claiming vector

This program also illustrates some of the more advanced features of Econet. In
particular; it shows the ability to specify reception control blocks that can accept
messages from more than one machine, or on more than one port. Receive control
blocks like this are referred to as wild, as in wild card matching used in file name look
up. Specifying either the station or net number (usually both) as zero means ‘match any’.
The same is true of the port number, although this facility is much less useful! This wild
facility does not mean that more than one packet can be received, but rather that more
than one particular packet will be acceptable. Once a packet has been received, the
RxCB has Status_Received and is no longer open.

It is worth noting an implementation detail here. Receive control blocks are kept by the
Econet software in a list, when an incoming scout has been received the list is scanned to
find the first RxCB that matches it. To ensure that things go as one would expect the
Econet software that implements the SWI Econet_CreateReceive always adds wild
RxCBs to the tail of the list, and normal RxCBs to the middle of the list (between the

N
etw

o
rkin

g

Econet

2-637

normal and the wild ones). This ensures that when packets arrive they will be checked
for exact matches before wild matches, and that if there is more than one acceptable
RxCB then the one used will be the one that was opened first, ie first in first served.

Broadcast transmissions
As a complement to this concept of wild receive control blocks there are broadcast
transmissions. A broadcast has both its destination station and net set to &FF, it can then
be received by more than one machine. To achieve this it does not use the normal four
way handshake, it is in fact a single packet. On the NetMonitor it would look something
like this:

FFFF1200809F5052494E54200100

The broadcast address at the beginning (&FF, &FF), the source station and net (&12,
&00), the control byte (&80), and the port (&9F) are the same as a normal scout frame,
but then the data follows, in this case eight bytes.

Although the Econet software within RISC OS can transmit and receive broadcast
messages of up to 1020 bytes (RISC OS 2) or 1024 bytes (later versions), other
machines on Econet can’t cope with messages of more than eight bytes without getting
confused; this confusion causes them to corrupt such broadcasts. These other machines
include things like FileStores and bridges, so beware! It is possible to transmit and/or
receive zero to eight bytes without them being corrupted, but only broadcasts of exactly
eight bytes can be received by BBC or Master computers, as well as being transported
from net to net by bridges.

Transmitting a broadcast is exactly the same as transmitting a normal packet, all you
need to do is set the destination station and net to &FF (not to –1).

Versions of RISC OS after 2.00 support a wider range of broadcasts, allowing local
broadcasts (which are only seen on the local net) and long broadcasts (broadcasts of
more than eight bytes, which new bridges will recognise and correctly propagate). To
use these, set the station number to &FF, and the net number as follows:

Net Range Size
&FF Global Small (8 bytes maximum)
&FE Global Long (1020/1024 bytes maximum)
&FD Local Long (1020/1024 bytes maximum)
&FC reserved reserved

Note that local long broadcasts (ie net = &FD) are ignored by existing machines and
bridges, and will always work.

Broadcasts don’t return the status Status_NotListening, since there is no way for the
transmitting station to determine whether or not its broadcast was received. Broadcasts
are basically designed for locating resources, ie to transmit your desire to know about a

Local loopback

2-638

particular class of thing. Anything recognising the broadcast will reply, so you know
what’s what and where it is. NetFS uses broadcast to find file servers by name, and
NetPrint uses broadcast to find printer servers. The example broadcast packet shown
above contains the ASCII text ‘PRINT ’ and is, not surprisingly, a request for all printer
servers to respond.

Local loopback
When transmissions take place, the destination address is checked to see if it is the local
machine (ie a transmission to your own machine). If this is the case then no access to the
Econet network will take place, and if a suitable receive control block exists the data is
transferred directly from the transmit buffer to the receive buffer. Local loopback is most
important for Wimp-based server programs, as it allows them to offer their services to
the local station as easily as to all other stations on the Econet.

Broadcasts are also subject to local loopback, but differ slightly in that even if local
loopback takes place access to the Econet network will still occur. This is to ensure the
semantics of broadcasts. This does however cause a slight problem, in that a broadcast
can be initiated to the local station via local loopback and succeed, but still fail
externally with – for example – Status_NoClock. This is a slight semantic deviation that
you must bear in mind when writing software that may communicate with itself or other
software running on your machine by using broadcasts.

The other problem that can occur with local loopback is premature reception, caused by
transmission and reception using the same port (whether by accident, or as a feature of
the protocol‘s design), and the length of the transmission being less than or equal to the
length of the receive buffer. For example to communicate with an Econet Bridge to find
out if a particular net exists code like this will generally work:

10 SYS "Econet_AllocatePort" TO port%
 20 SYS "Econet_CreateReceive", port%, 0, 0, RxBuffer%, 10 TO handle%
 30 $TxBuffer% = "Bridge"
 40 TxBuffer%?6 = port%
 50 TxBuffer%?7 = NetToTestFor%
 60 SYS "Econet_DoTransmit", &83, &9C, &FF, &FF, TxBuffer%, 8, 5, 5
 80 SYS "Econet_WaitForReception", handle%, 10, 0 TO status%
 90 IF status% = 9 THEN
100 PRINT "Net number ";STR$(NetToTestFor%);" exists."
110 ENDIF
120 SYS "Econet_DeAllocatePort",port%

However, when the port allocator returns port &9C the program will be subject to
unexpected local loopback, and the broadcast will be received internally as well as
transmitted externally. This will cause the program to incorrectly report a reception from
the bridge, and to interpret it as a reply indicating the existence of the desired net. The
most effective way to prevent this is to only create the receive control block after the

N
etw

o
rkin

g

Econet

2-639

transmission has completed. In the case above you could simply change line 20 to be
line 70. In general it is not acceptable to transmit a request before opening the receive
control block for the reply; however, some pre-existing protocols force the issue.

It is worth noting that the use of local loopback in the Wimp environment does require
that the polling of receptions and transmissions be interleaved with calls to Wimp_Poll.
If this is not done, although the data will be transferred, no notice will be taken because
control will not be transferred to the receiving program.

Local loopback with zero length packets will cause the machine to lock up.

Immediate operations are not subject to local loopback.

Local loopback is not supported by RISC OS 2.

Immediate operations
There is a second class of network operations called immediate operations. These
operations don’t require the explicit co-operation of the destination machine; instead the
co-operation is provided by the Econet software in that machine. Immediate operations
are similar semantically to normal transmissions but, because they have no need for a
port number, have a type instead of a flag; and most also require an extra input value.
They have a separate pair of SWI calls to cause them to happen: Econet_StartImmediate
(page 2-691) and Econet_DoImmediate (page 2-693).

The call Econet_StartImmediate returns a transmit handle in exactly the same way as
Econet_StartTransmit and that handle should be polled and abandoned in the same way.
The call Econet_DoImmediate returns a status just as Econet_DoTransmit does.

There are nine types of immediate operations:

1 Econet_Peek Copy memory from the destination machine

2 Econet_Poke Copy memory to the destination machine

3 Econet_JSR Cause JSR/BL on the destination machine

4 Econet_UserProcedureCall Execute User remote procedure call

5 Econet_OSProcedureCall Execute OS remote procedure call

6 Econet_Halt Halt the destination machine

7 Econet_Continue Continue the destination machine

8 Econet_MachinePeek Machine peek of the destination machine

9 Econet_GetRegisters Return registers from the destination machine

The last one, Econet_GetRegisters, can only be transmitted by or received on RISC OS
based machines, whereas all the others can be transmitted or received by BBC or Master
series computers. The reason for this is that Econet_GetRegisters is specific to the ARM
processor.

Immediate operations

2-640

As noted earlier, Immediate operations are not subject to local loopback.

Econet_Peek and Poke

The poke operation is very similar to a transmit, in that data is moved from the
transmitting station to the receiving station. The difference is that the address at which
the data is received is supplied by the transmitting station. Peek is the inverse of poke;
data is moved from the receiving station into the transmitting station.

Before the receiving station allows the data to be transferred (in or out), it validates the
address range supplied by the transmitting station. This validation – done using the SWI
XOS_ValidateAddress – takes place in an IRQ process, so having IRQs disabled will
affect a machine’s ability to be peeked or poked.

This validation does not take place under RISC OS 2.

Econet_JSR, UserProcedureCall and OSProcedureCall

JSR, UserProcedureCall, and OSProcedureCall are all very similar. They send a small
quantity of data, referred to as the argument buffer or arguments, to the destination
machine; they then force it to execute a particular section of code. When received a JSR
actually does a BL to the address given in R1, whereas UserProcedureCall and
OSProcedureCall cause events to occur. These events are:

8 Event_Econet_UserRPC
16 Event_Econet_OSProc

After reception the arguments are buffered so that they may be used by the code that is
called, either directly by a BL or indirectly via an event. The format of the arguments
buffer is as follows: word 0 is the length (in bytes) of the arguments, then the arguments
follow this first word and may be null (ie the length may be zero).

Conditions on entry to event code

The conditions on entry to the event code are:

R0 = Event number (either Event_Econet_UserRPC or Event_Econet_OSProc)
R1 = Address of the argument buffer
R2 = RPC number (passed in R1 on the transmitting station)
R3 = Station that sent the RPC
R4 = Net that sent the RPC

Conditions on entry to JSR code

The conditions on entry to code that is BL’d to for a JSR are:

N
etw

o
rkin

g

Econet

2-641

R1 = Address of the argument buffer
R2 = Address of the code being executed
R3 = Station that sent the JSR
R4 = Net that sent the JSR

Format of the argument buffer

The format of the argument buffer is exactly the same in all cases. If, in the case of a
JSR, the call address transmitted from the remote station is –1 (&FFFFFFFF) then the
execution address will be the argument buffer itself; this means that relocatable ARM
code can be sent as a JSR. Registers R0 to R4 can be used as they are preserved by the
Econet software, and R13 can also be used as a full descending stack.

The transmission of Econet_OSProcedureCall is intended for use solely by system
software, and is only documented here for completeness. The transmission of
Econet_JSR is only provided as a compatibility feature to allow interworking with BBC
and Master computers.

Econet_UserProcedure calls

The Econet_UserProcedureCall is the best method for this style of communications. It
does however have some restrictions. The first of these is the most important – it is
executed in the destination machine as an event caused by an interrupt, and so it has all
the normal restrictions applied to interrupt code. This means that code directly executed
as a result of Event_Econet_UserRPC must be fast and clean, and must not call any of
the normal input or output SWI routines nor call the filing system, either directly or
indirectly. This is paramount if the integrity of the destination machine is to be ensured.
However, you can copy away the arguments passed and signal to a foreground task (by
altering a flag) that the procedure call has arrived. It is most important that you copy the
arguments away, because the buffer that they are in is only valid for the duration of the
event call. This means that R1 will point to the arguments whilst you are processing the
event, but afterwards the argument buffer may be overwritten. If the requirements for the
processing of the call are small then it is possible to do it all within the event. An
example of this is a modification of the program presented earlier that returned the time.
This new program sends the time in response to a User RPC, rather than a normal
packet:

Start MOV r0, #EventV ; The vector we want is EventV
ADR r1, Event ; Where to goto when it happens
MOV r2, #0 ; Required so that we can release
SWI XOS_Claim

Immediate operations

2-642

MOVVC r0, #14 ; Enable event
STRVC r0, ClaimedFlag ; Set it to a non-zero value
MOV r1, #Event_Econet_UserRPC
SWIVC XOS_Byte
MOVVC r0, #14 ; Enable event
MOV r1, #Event_Econet_Tx
SWIVC XOS_Byte
MOV pc, lr

Event TEQ r0, #Event_Econet_UserRPC
BNE LookForTx
TEQ r2, #RPC_SendTime ; Is it for us?
MOVNE pc, lr ; If not, exit as fast as possible
LDR r0, [r1, #0] ; Get size of arguments
TEQ r0, #1 ; Check that it is right
MOVNE r0, #Event_Econet_UserRPC; Restore exit registers
MOVNE pc, lr ; If not, exit as fast as possible

STMFD sp!, {r5-r7} ; Only R1 to R4 are free for use
; R4.R3 is the reply address

MOV r6, r3 ; Save the station number for later
MOV r5, r1 ; Preserve arguments pointer
MOV r0, #Module_Claim
MOV r3, #8 + 5 ; Two words and five bytes required
SWI XOS_Module ; Memory MUST come from RMA
BVS Exit

ADD r1, r2, #8 ; Get the address of the 5 bytes
MOV r0, #3 ; Set OS_Word reason code
STRB r0, [r1] ; Read as a five byte time
MOV r0, #14 ; Read from the real time clock
SWI XOS_Word
BVS Exit

MOV r0, #0 ; Flag byte
MOV r3, r4 ; Net number
MOV r4, r1 ; Get the address of the 5 bytes
LDRB r1, [r5, #4] ; The reply port the client sent
MOV r2, r6 ; Station number
MOV r5, #5 ; Number of bytes to send
MOV r6, #ReplyCount
MOV r7, #ReplyDelay
SWI XEconet_StartTransmit
BVS Exit

SUB r4, r2, #8 ; R4 now in R2
STR r0, [r4, #4] ; Save TxHandle in record
ADR r1, TxList ; Address of the head of the list
LDR r2, [r1, #0] ; Head of the list
STR r2, [r4, #0] ; Add the list to new record
STR r4, [r1, #0] ; Make this record the list head

Exit
LDMFD sp!, {r5-r7, pc} ; Return claiming vector

N
etw

o
rkin

g

Econet

2-643

LookForTx
TEQ r0, #Event_Econet_Tx
MOVNE pc, lr ; This event has only R0 to R2
STMFD sp!, {r3, lr} ; Get two extra registers
ADR r3, TxList ; The address of the head of list
LDR r14, [r3] ; The first record in the list
B StartLooking

NextTx
MOV r3, r14 ; Search the next list entry
LDR r14, [r3] ; Get the link address

StartLooking
CMP r14, #0 ; Is this the end of the list?
MOVLE r0, #Event_Econet_Tx ; Restore entry conditions
LDMLEFD sp!, {r3, pc} ; Return, continuing to next owner
LDR r0, [r14, #4] ; Get the handle for this record
TEQ r0, r1 ; Is this event one of ours?
BNE NextTx ; No, try next record in list

LDR r2, [r14] ; Get the remainder of the list
STR r2, [r3] ; Remove this record from list
SWI XEconet_AbandonTransmit
MOV r0, #Module_Free
MOV r2, r14 ; The record address
SWI XOS_Module ; Return memory to RMA, ignore error
LDMFD sp!, {r3, lr, pc} ; Return, claiming vector

You will notice how much simpler this program is when compared to the program
shown earlier.

Econet_OSProcedure calls

There are five defined OS procedure calls for which only two have implementations
under RISC OS. The five are:

0 Econet_OSCharacterFromNotify
1 Econet_OSInitialiseRemote
2 Econet_OSGetViewParameters
3 Econet_OSCauseFatalError
4 Econet_OSCharacterFromRemote

OSCharacterFromNotify

Econet_OSCharacterFromNotify causes the character received to be inserted into the
keyboard buffer; the code that does so looks like this:

InsertCharacter ; R1 points at the argument buffer
MOV r0, #138 ; Insert into buffer OS_Byte
LDRB r2, [r1, #4] ; Get character from buffer
MOV r1, #0 ; Buffer is keyboard
SWI XOS_Byte

Immediate operations

2-644

Whilst the desktop is running the NetFiler module provides a different handler for
characters from notify. It bundles them up by station, and when none have been received
for a while sends them as a Wimp message, displaying them using Wimp_ReportError.
For more information see the documentation of Message_Notify on page 3-236.

OSCauseFatalError

Econet_OSCauseFatalError does exactly what its name implies. In fact it calls SWI
OS_GenerateError directly from the event routine; normally this would be illegal, but
since this is what the RPC is for, that is what it does. It should be observed that this can
have a disastrous effect on the integrity of the machine and is not a recommended action;
it is provided only for compatibility reasons.

Econet_Halt and Continue

Halt and continue are only acted upon by BBC and Master series machines; there is no
implementation for receiving halt or continue on RISC OS machines or RISC iX
machines.

Econet_MachinePeek

Machine peek is similar to peek, except that it is not possible to specify the address to be
peeked, but rather four bytes are returned that identify the machine that is being machine
peeked. Machine peek is used by some of the system software in RISC OS to quickly
decide if a particular machine is present or not. The four bytes returned by machine peek
are as follows:

Byte(s) Value
1 and 2 Machine type number
3 Software version number
4 Software release number

Machine type numbers

Machine type numbers are as follows:

&0000 Reserved
&0001 Acorn BBC Micro Computer (OS 1 or OS 2)
&0002 Acorn Atom
&0003 Acorn System 3 or System 4
&0004 Acorn System 5
&0005 Acorn Master 128 (OS 3)
&0006 Acorn Electron (OS 0)
&0007 Acorn Archimedes (OS 6)
&0008 Reserved for Acorn
&0009 Acorn Communicator

N
etw

o
rkin

g

Econet

2-645

&000A Acorn Master 128 Econet Terminal
&000B Acorn FileStore
&000C Acorn Master 128 Compact (OS 5)
&000D Acorn Ecolink card for Personal Computers
&000E Acorn UNIX workstation
&000F to &FFF9 Reserved
&FFFA SCSI Interface
&FFFB SJ Research IBM PC Econet interface
&FFFC Nascom 2
&FFFD Research Machines 480Z
&FFFE SJ Research File Server
&FFFF Z80 CP/M

Software version and release number

The software version and release numbers are stored in two bytes. These two bytes are
encoded in packed BCD (Binary Coded Decimal) and represent a number between 0 and
99. The easiest way to display packed BCD is to print it as if it was hexadecimal data:

ReportStationVersion
MOV r2, r0 ; Station number in R0
MOV r3, r1 ; Net number in R1
MOV r0, #Econet_MachinePeek
ADR r4, Buffer
MOV r5, #?Buffer
MOV r6, #40 ; Count
MOV r7, #5 ; Delay
SWI XEconet_DoImmediate
MOVVS pc, lr
TEQ r0, #Status_Transmitted
BEQ PrintVersion
TEQ r0, #Status_NotListening ; from Machine peek
MOVEQ r0, #Status_NotPresent ; return as "Not present"
ADR r1, Buffer
MOV r2, #?Buffer
SWI XEconet_ConvertStatusToError
MOV pc, lr

Protection against immediate operations

2-646

PrintVersion
LDR r3, [r2] ; Buffer address on exit from SWI
MOV r0, r3, ASR #24 ; Get top byte
ADR r1, Buffer
MOV r2, #?Buffer
SWI XOS_ConvertHex2 ; Print BCD as hex
SWIVC XOS_Write0 ; Display output
SWIVC XOS_WriteI+"." ; Divide release from version number
MOVVC r0, r3, ASR #16 ; Get version number in place
ANDVC r0, r0, #&FF ; Only the version number
ADRVC r1, Buffer
MOVVC r2, #?Buffer
SWIVC XOS_ConvertHex2 ; Print BCD as hex
SWIVC XOS_Write0 ; Display output
MOV pc, lr

We recommend that when using Econet_MachinePeek you use a Count of 40 and a
Delay of 5.

Econet_GetRegisters

Econet_GetRegisters is similar to machine peek, in that a fixed amount of information is
returned from the destination machine; in this case it is 80 bytes (20 words). The
registers are returned in the following order: R0 to R14, PC plus PSR, R13_irq, R14_irq,
R13_svc, and R14_svc. The FIQ registers are not returned because they are used by the
Econet software, and so would always be the same, and of no interest since they would
reflect the state of the part of the Econet software that transmits data. It is worthwhile
aligning the receive buffer for a machine peek so that each of the 20 words is on a word
boundary; this makes loading them easier.

Protection against immediate operations
Because these immediate operations can be quite intrusive it is possible to prevent their
reception by manipulating an internal variable of the Econet software. There is one bit in
this internal variable for each operation, and you can set or clear each bit. There is also a
default value for each bit which is held in CMOS RAM. The SWI that allows you to
manipulate this internal variable is Econet_SetProtection (page 2-681). These bits are
held in a single word; the bit assignments are as follows:

Bit Immediate operation protected against
0 Peek
1 Poke
2 Remote JSR
3 User procedure call
4 OS procedure call
5 Halt
6 Continue – must be zero on RISC OS computers

N
etw

o
rkin

g

Econet

2-647

7 Machine peek – must be zero on RISC OS computers
8 Get registers
9 - 30 Reserved – must be zero.
31 Write new value to the CMOS RAM

To protect against or disable the reception of a particular immediate operation, the
appropriate bit should be set in the internal variable. The SWI Econet_SetProtection call
replaces the OldValue with the NewValue, The NewValue is calculated like this:

NewValue = (OldValue AND R1) EOR R0.

Altering the protection held in CMOS RAM

When the Econet software is started up (as a result of Ctrl-Break, or *RMReInit) then
the value held in CMOS RAM will be used to initialise the internal variable. To alter the
value held in CMOS RAM the entry value of R0 to SWI Econet_SetProtection should
have bit 31 set, which causes the resultant value to be written not only to the internal
variable, but also to the CMOS RAM. To read the current value you should use SWI
Econet_SetProtection with R0=0, and R1=&FFFFFFFF.

Reading your station and net numbers
To establish what your station number is and which net you are connected to (if you have
more than one), the Econet software provides a call to return these two values:
Econet_ReadLocalStationAndNet (page 2-674). If you don’t have more than one net
then the net number (returned in R1) will be zero.

The local net number is in fact obtained from a bridge whenever the Econet module is
initialised (eg when the machine is turned on). If this fails, say because there is no clock
or the bridge is not switched on, then the local net number is reported as zero.

These values are the same as those reported by *Help Station (in fact *Help Station calls
SWI Econet_ReadLocalStationAndNet to get the values).

Extracting station numbers from a string
To ensure that all Econet oriented software presents a consistent user interface there is a
SWI call to read a station and/or net number from a supplied string. This call,
Econet_ReadStationNumber (page 2-683), is used by both NetFS and NetPrint for all
their command line processing. In the case of software that has a concept of a current
station (and net) number the return value of –1 should mean ‘use the existing value’ –
this is how *FS works, for example. Where there isn’t a current value, as would be
expected in a transient command such as *Notify, the return of –1 for the station number

Converting station and net to a string

2-648

should be treated as an error and the return of –1 as a net number should imply the use of
zero as a net number. The following is the beginning (and some of the end) of a transient
command:

CommandStart
LDRB r0, [r1] ; Check the first argument exists
TEQ r0, #0 ; Zero means no arguments
BEQ SyntaxError ; Exit with error

SWI XEconet_ReadStationNumber
MOVVS pc, lr ; Must be able to cope
CMP r2, #-1 ; No station number given
BEQ NoStationNumberError
CMP r3, #-1 ; No net number given
MOVEQ r3, #0 ; Means use zero

MOV pc, lr

SyntaxError
ADR r0, ErrorGetRegsSyntax
ORRS pc, lr, #VFlag

ErrorGetRegsSyntax
DCD ErrorNumber_Syntax
DCB "Syntax: *Command <Station number>"
DCB 0
ALIGN

NoStationNumberError
ADR r0, ErrorUnableToDefault
ORRS pc, lr, #VFlag

ErrorUnableToDefault
DCD ErrorNumber_UnableToDefault
DCB "Either a station number or a full"
DCB " network address is required"
DCB 0
ALIGN

Converting station and net to a string
The kernel provides two inverse functions that convert a station and net number pair into
a string. See OS_ConvertFixedNetStation (SWI &E9) on page 1-486 and
OS_ConvertNetStation (SWI &EA) on page 1-488 for exact details.

N
etw

o
rkin

g

Econet

2-649

Conventions and values
The following conventions apply to the various values that the Econet uses:

Station numbers

Station numbers are normally in the range 1 to 254. The station number zero is used in
SWI Econet_CreateReceive to indicate that reception may occur from any station. The
station number 255 is used in SWI Econet_StartTransmit and in SWI
Econet_DoTransmit to indicate that a broadcast is to take place. Station number 255 is
also used in SWI Econet_CreateReceive to indicate that reception may occur from any
station; you may also use station number zero for this purpose, but its use is deprecated,
and may be withdrawn in the future.

Net numbers

Net numbers are normally in the range 1 to 251. The value zero means the local Econet
net; in a SWI Econet_CreateReceive it is taken to indicate that reception may occur from
any net. The net numbers 255, 254 and 253 are used in SWI Econet_StartTransmit and
in SWI Econet_DoTransmit to indicate that a broadcast is to take place. Net number 255
is also used in SWI Econet_CreateReceive to indicate that reception may occur from any
station; the use of zero to indicate wild reception is deprecated.

Although RISC OS fully supports top-bit-set net numbers (ie 128 - 251), certain Econet
devices – such as bridges – will not propagate them, leading to problems. You should
beware of this.

Port numbers

Port numbers are normally in the range 1 to 254, although some values are reserved – as
shown in the table below:

Port Allocation
&54 DigitalServicesTapeStore

&99 FileServerCommand
&9C Bridge
&9E PrinterServerInquiryReply
&9F PrinterServerInquiry

&B0 FindServer
&B1 FindServerReply
&B2 TeletextServerCommand
&B3 TeletextServerPage

&D0 OldPrinterServerData
&D1 PrinterServerData
&D2 TCPIPProtocolSuite

Transmission semantics

2-650

&D3 SIDFrameSlave
&D4 Scrollarama
&D5 Phone
&D6 BroadcastControl
&D7 BroadcastData
&D8 ImpressionLicenceChecker
&D9 DigitalServicesSquirrel
&DA SIDSecondary
&DB DigitalServicesSquirrel2
&DC DataDistributionControl
&DD DataDistributionData
&DE ClassROM
&DF PrinterSpoolerCommand

Port numbers zero and 255 currently have a special meaning: they may be used as
arguments to SWI Econet_CreateReceive to indicate that reception may occur
regardless of the port number on the incoming packet. This use of zero to indicate wild
reception is deprecated, and will be withdrawn in the future.

For an allocation of a port number you must contact Acorn.

Flag bytes

Flag byte values are in the range 0 to 127 (&7F). When passed in a word to a SWI, bits
8 - 31 inclusive must be zero. Bit 7 is ignored by RISC OS, to maintain compatibility
with some older software that used this bit. To clarify, flag bytes &87 and &07 are
acceptable as input to a transmission SWI (and both represent the value &07), but &107
is not acceptable. Reception SWIs all return values with bit 7 clear (ie &00 to &7F).

Transmission semantics
The transmission semantics are simple. When a transmission is started the client’s
control information (passed in registers) is stored in a record in a linked list within
Econet workspace. At regular intervals the list is scanned, and those records that should
be actually transmitted at that moment are passed to the FIQ software. When that
particular transmission attempt completes the status of the record is changed
accordingly. This means that if two transmissions are started at the same time, they will
interleave their transmission retries.

When a transmission has completed but failed:

● if the count is non-zero the delay is added to the predicted start time to give the next
start time

● otherwise the status is set to Status_NotListening (or Status_NetError).

N
etw

o
rkin

g

Econet

2-651

This means that as far as possible the time out time will be the Delay multiplied by the
(Count – 1).

Local loopback

Versions of RISC OS after RISC OS 2 have added support for local loopback.
Transmissions directed at your own station number will be ‘received’ if there is an
acceptable receive block open by directly copying the data. This applies to broadcast
transmissions and wild receptions as well as to calls that explicitly address your
machine.

Service Calls

2-652

Service Calls
Service_ReAllocatePorts

(Service Call &48)

Econet restarting

On entry

R1 = &48 (reason code)

On exit

R1 preserved to pass on (do not claim)

Use

This call is made whenever Econet restarts. It is then up to the Econet software to
allocate ports, set up TxCBs and RxCBs, etc.

N
etw

o
rkin

g

Econet

2-653

Service_EconetDying
(Service Call &56)

Econet is about to leave

On entry

R1 = &56 (reason code)

On exit

R1 preserved to pass on (do not claim)

Use

This call is made whenever Econet is about to leave. It is then up to the Econet software
to release ports, delete RxCBs and TxCBs etc.

Service_ProtocolDying (Service Call &83)

2-654

Service_ProtocolDying
(Service Call &83)

Part of the AUN Driver Control Interface

Use

This service call is part of the AUN Driver Control Interface, used to interface a network
interface’s driver module to a protocol module. Third parties wishing to develop
network interfaces for use with AUN may obtain further details on request from Acorn.

N
etw

o
rkin

g

Econet

2-655

Service_FindNetworkDriver
(Service Call &84)

Part of the AUN Driver Control Interface

Use

This service call is part of the AUN Driver Control Interface, used to interface a network
interface’s driver module to a protocol module. Third parties wishing to develop
network interfaces for use with AUN may obtain further details on request from Acorn.

Service_NetworkDriverStatus (Service Call &8B)

2-656

Service_NetworkDriverStatus
(Service Call &8B)

Part of the AUN Driver Control Interface

Use

This service call is part of the AUN Driver Control Interface, used to interface a network
interface’s driver module to a protocol module. Third parties wishing to develop
network interfaces for use with AUN may obtain further details on request from Acorn.

N
etw

o
rkin

g

Econet

2-657

SWI Calls
Econet_CreateReceive

(SWI &40000)

Creates a Receive Control Block

On entry

R0 = port number
R1 = station number
R2 = net number
R3 = buffer address
R4 = buffer size in bytes

On exit

R0 = handle
R2 = 0 if R2 on entry is the local net number

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call creates a Receive Control Block (RxCB) to control the reception of an Econet
packet. It returns a handle to the RxCB.

The buffer must remain available all the time that the RxCB is open, as data received
over the Econet is read directly from hardware to the buffer. You must not use memory
in application space if your program is to run under the Desktop. Instead, you should use

Econet_CreateReceive (SWI &40000)

2-658

memory from the RMA. To do so, claim the memory using OS_Module 6 (see
page 1-237), and – after abandoning the receive control block – return the space to the
RMA using OS_Module 7 (see page 1-238).

Related SWIs

Econet_ExamineReceive (page 2-659), Econet_WaitForReception (page 2-664),
Econet_AbandonAndReadReceive (page 2-695)

Related vectors

None

N
etw

o
rkin

g

Econet

2-659

Econet_ExamineReceive
(SWI &40001)

Reads the status of an RxCB

On entry

R0 = handle

On exit

R0 = status

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads the status of an RxCB, which may be one of the following:

7 Status_RxReady
8 Status_Receiving
9 Status_Received

It returns less information than Econet_ReadReceive, so is faster and corrupts fewer
registers. You should use it to poll a reception when not using
Econet_WaitForReception.

Related SWIs

Econet_CreateReceive (page 2-657), Econet_WaitForReception (page 2-664),
Econet_ConvertStatusToString (page 2-675),
Econet_ConvertStatusToError (page 2-677)

Econet_ExamineReceive (SWI &40001)

2-660

Related vectors

None

N
etw

o
rkin

g

Econet

2-661

Econet_ReadReceive
(SWI &40002)

Returns information about a reception, including the size of data

On entry

R0 = handle

On exit

R0 = status
R1 = 0, or flag byte if R0 = 9 (Status_Received) on exit
R2 = port number
R3 = station number
R4 = net number
R5 = buffer address
R6 = buffer size in bytes, or amount of data received if R0 = 9 on exit

(Status_Received)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns information about a reception; most importantly, it tells you how much
data was received, if any, and the address of the buffer in which it was placed. The buffer
address is the same as that passed to Econet_CreateReceive (page 2-657). You can call
this SWI before a reception has occurred.

Econet_ReadReceive (SWI &40002)

2-662

The status of the RxCB may be one of the following:

7 Status_RxReady
8 Status_Receiving
9 Status_Received

The returned values in R3 and R4 (the net and station numbers) are those of the
transmitting station if the status is Status_Received; otherwise they are the same values
that were passed in to Econet_CreateReceive.

Related SWIs

Econet_CreateReceive (page 2-657), Econet_WaitForReception (page 2-664),
Econet_AbandonAndReadReceive (page 2-695)

Related vectors

None

N
etw

o
rkin

g

Econet

2-663

Econet_AbandonReceive
(SWI &40003)

Abandons an RxCB

On entry

R0 = handle

On exit

R0 = status

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call abandons an RxCB, returning its memory to the RMA. The reception may have
completed (R0 = 9 – Status_Received – on exit), in which case the information in the
RxCB (such as the sending station number, and the amount of data sent) will be lost. The
data in the receive buffer remains unaffected. If the reception is in progress when this
SWI is called, then information in the RxCB is lost, as above.

Related SWIs

Econet_CreateReceive (page 2-657), Econet_WaitForReception (page 2-664),
Econet_AbandonAndReadReceive (page 2-695)

Related vectors

None

Econet_WaitForReception (SWI &40004)

2-664

Econet_WaitForReception
(SWI &40004)

Polls an RxCB, reads its status, and abandons it

On entry

R0 = handle
R1 = delay in centiseconds
R2 = 0 to ignore Escape; else Escape ends waiting

On exit

R0 = status
R1 = 0, or flag byte if R0 = 9 (Status_Received) on exit
R2 = port number
R3 = station number
R4 = net number
R5 = buffer address
R6 = buffer size in bytes, or amount of data received if R0 = 9 on exit

(Status_Received)

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode and in USR mode

Re-entrancy

SWI is not re-entrant

Use

This call repeatedly polls an RxCB (that you have already set up with
Econet_CreateReceive) until a reception occurs, or a timeout occurs, or the user
interferes (say by pressing Escape). It then reads the status of the RxCB before
abandoning it.

N
etw

o
rkin

g

Econet

2-665

The status of the RxCB may be one of the following:

8 Status_Receiving
9 Status_Received
10 Status_NoReply
11 Status_Escape

The returned values in R3 and R4 (the net and station numbers) are those of the
transmitting station if the status is Status_Received; otherwise they are the same values
that were passed in to SWI Econet_CreateReceive.

Note that because this interface enables interrupts it should not be called from within
either interrupt service code or event routines.

During the loop when the polling of the RxCB and of Escape takes place, the processor
is put in USR mode with IRQs enabled; this allows callbacks to occur.

Related SWIs

Econet_ExamineReceive (page 2-659), Econet_ReadReceive (page 2-661),
Econet_AbandonReceive (page 2-663),
Econet_AbandonAndReadReceive (page 2-695)

Related vectors

None

Econet_EnumerateReceive (SWI &40005)

2-666

Econet_EnumerateReceive
(SWI &40005)

Returns the handles of open RxCBs

On entry

R0 = index (1 to start with first receive block)

On exit

R0 = handle (0 if no more receive blocks)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call returns the handles of open RxCBs. On entry R0 is the number of the RxCB
being asked for (1, 2, 3…). If the value of R0 is greater than the number of open RxCBs,
then the value returned as the handle will be 0, which is an invalid handle.

This call should not be made from an IRQ or event routine as, although it will not fail,
errors and omissions are likely to occur in the returned information.

Related SWIs

Econet_CreateReceive (page 2-657),
Econet_ReadReceive (page 2-661), Econet_AbandonReceive (page 2-663)

Related vectors

None

N
etw

o
rkin

g

Econet

2-667

Econet_StartTransmit
(SWI &40006)

Creates a Transmit Control Block and starts a transmission

On entry

R0 = flag byte
R1 = port number
R2 = station number
R3 = net number
R4 = buffer address
R5 = buffer size in bytes
R6 = count
R7 = delay in centiseconds

On exit

R0 = handle
R1 corrupted
R2 = buffer address
R3 = station number
R4 = net number

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call creates a Transmit Control Block (TxCB) to control the transmission of an
Econet packet. It then starts the transmission.

Econet_StartTransmit (SWI &40006)

2-668

The buffer must remain available all the time that the TxCB is open, as data transmitted
over the Econet is read directly from the buffer to hardware. You must not use memory
in application space if your program is to run under the Desktop. Instead, you should use
memory from the RMA. To do so, claim the memory using OS_Module 6 (see
page 1-237), and – after abandoning the transmit control block – return the space to the
RMA using OS_Module 7 (see page 1-238).

The value returned in R4 (the net number) will be the same as that passed in R3 unless
that number is equal to the local net number; in that case the net number will be returned
as zero.

Related SWIs

Econet_PollTransmit (page 2-669), Econet_AbandonTransmit (page 2-671),
Econet_DoTransmit (page 2-672)

Related vectors

None

N
etw

o
rkin

g

Econet

2-669

Econet_PollTransmit
(SWI &40007)

Reads the status of a TxCB

On entry

R0 = handle

On exit

R0 = status

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads the status of a TxCB, which may be one of the following:

0 Status_Transmitted
1 Status_LineJammed
2 Status_NetError
3 Status_NotListening
4 Status_NoClock
5 Status_TxReady
6 Status_Transmitting

Related SWIs

Econet_StartTransmit (page 2-667), Econet_AbandonTransmit (page 2-671)

Econet_PollTransmit (SWI &40007)

2-670

Related vectors

None

N
etw

o
rkin

g

Econet

2-671

Econet_AbandonTransmit
(SWI &40008)

Abandons a TxCB

On entry

R0 = handle

On exit

R0 = status

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call abandons a TxCB, returning its memory to the RMA. The returned status is the
same as for Econet_PollTransmit.

Related SWIs

Econet_StartTransmit (page 2-667), Econet_PollTransmit (page 2-669)

Related vectors

None

Econet_DoTransmit (SWI &40009)

2-672

Econet_DoTransmit
(SWI &40009)

Creates a TxCB, polls it, reads its status, and abandons it

On entry

R0 = flag byte
R1 = port number
R2 = station number
R3 = net number
R4 = buffer address
R5 = buffer size in bytes
R6 = count
R7 = delay in centiseconds

On exit

R0 = status
R1 corrupted
R2 = buffer address
R3 = station number
R4 = net number

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode and in USR mode

Re-entrancy

SWI is not re-entrant

Use

This call creates a TxCB and repeatedly polls it until it finishes transmission, or it
exceeds the count of retries. It then reads the final status of the TxCB before abandoning
it.

N
etw

o
rkin

g

Econet

2-673

The status of the TxCB may be one of the following:

0 Status_Transmitted
1 Status_LineJammed
2 Status_NetError
3 Status_NotListening
4 Status_NoClock

The value returned in R4 (the net number) will be the same as that passed in R3 unless
that number is equal to the local net number; in that case the net number will be returned
as zero.

Note that because this interface enables interrupts it should not be called from within
either interrupt service code or event routines.

During the loop when the polling of the TxCB and of Escape takes place, the processor
is put in USR mode with IRQs enabled; this allows callbacks to occur.

Related SWIs

Econet_StartTransmit (page 2-667), Econet_PollTransmit (page 2-669),
and Econet_AbandonTransmit (page 2-671)

Related vectors

None

Econet_ReadLocalStationAndNet (SWI &4000A)

2-674

Econet_ReadLocalStationAndNet
(SWI &4000A)

Returns a computer’s station number and net number

On entry

No parameters passed in registers

On exit

R0 = station number
R1 = net number

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call returns a computer’s station number and Econet net number. The net number
will be zero if there are no Econet bridges present on the network.

For more information, see the section entitled Reading your station and net numbers on
page 2-647.

Related SWIs

None

Related vectors

None

N
etw

o
rkin

g

Econet

2-675

Econet_ConvertStatusToString
(SWI &4000B)

Converts a status to a string

On entry

R0 = status
R1 = pointer to buffer
R2 = buffer size in bytes
R3 = station number
R4 = net number

On exit

R0 = buffer
R1 = updated buffer address
R2 = updated buffer size in bytes

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call converts a status to a string found in the messages file. This is then copied into
RAM, including the station and net numbers, giving a string such as:

Network station 59.254 not listening

If the status given in R0 is invalid (ie not in the range 0 - 14), this will cause a data abort
or an address exception. If the station/net number given in R3/R4 is invalid, no station
information is given.

Econet_ConvertStatusToString (SWI &4000B)

2-676

Under RISC OS 2 the string is not read from the messages file, but is instead read direct
from the ROM.

Related SWIs

Econet_ConvertStatusToError (page 2-677)

Related vectors

None

N
etw

o
rkin

g

Econet

2-677

Econet_ConvertStatusToError
(SWI &4000C)

Converts a status to a string, and then generates an error

On entry

R0 = status
R1 = pointer to error buffer
R2 = error buffer size in bytes
R3 = station number
R4 = net number

On exit

R0 = pointer to error block
V flag is set

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call converts a status to a string found in the messages file. This is then copied into
RAM, including the station and net numbers, giving a string such as:

Network station 59.254 not listening

If the station/net number given in R3/R4 is invalid, no station information is given.

Finally this call returns an error by setting the V flag, with R0 pointing to the error block.

If you use a buffer address of zero, then the string is left in a buffer in the MessageTrans
workspace.

Econet_ConvertStatusToError (SWI &4000C)

2-678

Under RISC OS 2 the string is not read from the messages file, but is instead read direct
from the ROM.

Related SWIs

Econet_ConvertStatusToString (page 2-675)

Related vectors

None

N
etw

o
rkin

g

Econet

2-679

Econet_ReadProtection
(SWI &4000D)

Reads the current protection word for immediate operations

On entry

No parameters passed in registers

On exit

R0 = current protection value

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads the current protection word for immediate operations. Various bits in the
word, when set, disable corresponding immediate operations:

Bit Immediate operation
0 Peek
1 Poke
2 Remote JSR
3 User procedure call
4 OS procedure call
5 Halt
6 Continue – always zero on RISC OS computers
7 Machine peek – always zero on RISC OS computers
8 Get registers
9 - 31 Reserved – must be zero

Econet_ReadProtection (SWI &4000D)

2-680

Note – This call is deprecated. You should preferably use the call
Econet_SetProtection (page 2-681) to read the protection word instead of this call.

Related SWIs

Econet_SetProtection (page 2-681)

Related vectors

None

N
etw

o
rkin

g

Econet

2-681

Econet_SetProtection
(SWI &4000E)

Sets or reads the protection word for immediate operations

On entry

R0 = EOR mask word
R1 = AND mask word

On exit

R0 = old value

Interrupts

Interrupts are enabled on write-through to CMOS, preserved otherwise
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call sets the protection word for immediate operations as follows:

New value = (old value AND R1) EOR R0

Various bits in the word, when set, disable corresponding immediate operations:

Bit Immediate operation
0 Peek
1 Poke
2 Remote JSR
3 User procedure call
4 OS procedure call
5 Halt
6 Continue – must be zero on RISC OS computers
7 Machine peek – must be zero on RISC OS computers

Econet_SetProtection (SWI &4000E)

2-682

8 Get registers
9 - 30 Reserved – must be zero
31 Write new value to the CMOS RAM

Normally this call sets or reads the current value of the word. A default value for this
word is held in CMOS RAM.

The most useful values of R0 and R1 are:

Action R0 R1
Set current value new value (0 - &1FF) 0
Read current value 0 &FFFFFFFF
Set new default value &80000000 + new value 0

You should use this call to read the value of the protection word, rather than
Econet_ReadProtection (page 2-679).

Using this call to read is also the preferred method for detecting the presence of the
Econet drivers, since doing so can never return an unexpected error. Detecting the error
‘No such SWI’ allows software dependent upon Econet to report its absence. Example
code is given in the section entitled Application notes on page 2-704.

Related SWIs

None

Related vectors

None

N
etw

o
rkin

g

Econet

2-683

Econet_ReadStationNumber
(SWI &4000F)

Extracts a station and/or net number from a supplied string

On entry

R1 = address of string to read

On exit

R1 = address of terminating space or control character
R2 = station number (–1 for not found)
R3 = net number (–1 for not found)

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call extracts a station and/or net number from a supplied string. For an example of
its use, see the section entitled Extracting station numbers from a string on page 2-647.

Related SWIs

None

Related vectors

None

Econet_PrintBanner (SWI &40010)

2-684

Econet_PrintBanner
(SWI &40010)

Prints the string ‘Acorn Econet’ followed by a newline

On entry

—

On exit

—

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call prints the string ‘Acorn Econet’ followed by a newline. The string is fetched
from a message file with the token ‘AcrnEco’. If the Econet network data clock is not
present then this call instead prints the string ‘Acorn Econet, no clock’ followed by a
newline. In this case, the token used is ‘EcoNClk’.

This call uses OS_Write0 and OS_NewLine, and so cannot be called from within either
interrupt service code or event routines.

Related SWIs

None

Related vectors

None

N
etw

o
rkin

g

Econet

2-685

Econet_ReadTransportType
(SWI &40011)

Returns the underlying transport type to a given station

On entry

R0 = station number
R1 = net number
R2 = 2

On exit

R0, R1 preserved
R2 = transport type (0 ⇒ not known, 1 ⇒ Internet, 2 ⇒ Econet, 3 ⇒ Nexus)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is used by clients to determine the underlying transport type to a given station.
They can then use this information to determine the optimum transmission strategy to
use, based on prior empirical knowledge of the different transport types.

This call is unnamed – but still available by number – in both RISC OS 2 and RISC OS
3 (version 3.00).

Related SWIs

None

Econet_ReadTransportType (SWI &40011)

2-686

Related vectors

None

N
etw

o
rkin

g

Econet

2-687

Econet_ReleasePort
(SWI &40012)

Releases a port number that was previously claimed

On entry

R0 = port number

On exit

—

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call releases a port number that was previously claimed by calling
Econet_ClaimPort (page 2-690).

You must not use this call for port numbers that have been previously claimed using
Econet_AllocatePort (page 2-688); instead, you must call Econet_DeAllocatePort
(page 2-689).

Related SWIs

Econet_ClaimPort (page 2-690)

Related vectors

None

Econet_AllocatePort (SWI &40013)

2-688

Econet_AllocatePort
(SWI &40013)

Allocates a unique port number

On entry

No parameters passed in registers

On exit

R0 = port number

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call allocates a unique port number that has not already been claimed or allocated.

When you have finished using the port number, you should call Econet_DeAllocatePort
(page 2-689) to make it available for use again.

Related SWIs

Econet_DeAllocatePort (page 2-689)

Related vectors

None

N
etw

o
rkin

g

Econet

2-689

Econet_DeAllocatePort
(SWI &40014)

Deallocates a port number that was previously allocated

On entry

R0 = port number

On exit

—

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call deallocates a port number that was previously allocated by calling
Econet_AllocatePort (page 2-688).

You must not use this call for port numbers that have been previously claimed using
Econet_ClaimPort (page 2-690); instead, you must call Econet_ReleasePort
(page 2-687).

Related SWIs

Econet_AllocatePort (page 2-688)

Related vectors

None

Econet_ClaimPort (SWI &40015)

2-690

Econet_ClaimPort
(SWI &40015)

Claims a specific port number

On entry

R0 = port number

On exit

—

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call claims a specific port number. If it has already been claimed or allocated, an
error is generated.

When you have finished using the port number, you should call Econet_ReleasePort
(page 2-687) to make it available for use again.

Related SWIs

Econet_ReleasePort (page 2-687)

Related vectors

None

N
etw

o
rkin

g

Econet

2-691

Econet_StartImmediate
(SWI &40016)

Creates a TxCB and starts an immediate operation

On entry

R0 = operation type
R1 = remote address or Procedure number
R2 = station number
R3 = net number
R4 = buffer address
R5 = buffer size in bytes
R6 = count
R7 = delay in centiseconds

On exit

R0 = handle
R1 corrupted
R2 = buffer address
R3 = station number
R4 = net number

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call creates a TxCB and starts an immediate operation. For full details see the
section entitled Immediate operations on page 2-639.

Econet_StartImmediate (SWI &40016)

2-692

The buffer must remain available all the time that the TxCB is open, as data transmitted
over the Econet is read directly from the buffer to hardware. You must not use memory
in application space if your program is to run under the Desktop. Instead, you should use
memory from the RMA. To do so, claim the memory using OS_Module 6 (see
page 1-237), and – after abandoning the transmit control block – return the space to the
RMA using OS_Module 7 (see page 1-238).

The value returned in R4 (the net number) will be the same as that passed in R3 unless
that number is equal to the local net number; in that case the net number will be returned
as zero.

Related SWIs

Econet_DoImmediate (page 2-693)

Related vectors

None

N
etw

o
rkin

g

Econet

2-693

Econet_DoImmediate
(SWI &40017)

Creates a TxCB for an immediate operation, polls it, reads its status, and abandons it

On entry

R0 = operation type
R1 = remote address or procedure number
R2 = station number
R3 = net number
R4 = buffer address
R5 = buffer size in bytes
R6 = count
R7 = delay in centiseconds

On exit

R0 = status
R1 corrupted
R2 = buffer address
R3 = station number
R4 = net number

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode and in USR mode

Re-entrancy

SWI is re-entrant

Use

This call creates a TxCB for an immediate operation, and repeatedly polls it until it
finishes transmission or it exceeds the count of retries. It then reads the final status of the
TxCB before abandoning it. For full details see the section entitled Immediate
operations on page 2-639.

Econet_DoImmediate (SWI &40017)

2-694

The value returned in R4 (the net number) will be the same as that passed in R3 unless
that number is equal to the local net number; in that case the net number will be returned
as zero.

Note that because this interface enables interrupts it should not be called from within
either interrupt service code or event routines.

During the loop when the polling of the TxCB and of Escape takes place, the processor
is put in USR mode with IRQs enabled; this allows callbacks to occur.

Related SWIs

Econet_StartImmediate (page 2-691)

Related vectors

None

N
etw

o
rkin

g

Econet

2-695

Econet_AbandonAndReadReceive
(SWI &40018)

Abandons a reception and returns information about it, including the size of data

On entry

R0 = handle

On exit

R0 = status
R1 = 0, or flag byte if R0 = 9 (Status_Received) on exit
R2 = port number
R3 = station number
R4 = net number
R5 = buffer address
R6 = buffer size in bytes, or amount of data received if R0 = 9 on exit

(Status_Received)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call abandons an RxCB, returning its memory to the RMA. It also returns
information about the reception; most importantly, it tells you how much data was
received, if any, and the address of the buffer in which it was placed. The buffer address
is the same as that passed to Econet_CreateReceive (page 2-657). You can call this SWI
before a reception has occurred.

Econet_AbandonAndReadReceive (SWI &40018)

2-696

The status of the RxCB may be one of the following:

7 Status_RxReady
9 Status_Received

The returned values in R3 and R4 (the net and station numbers) are those of the
transmitting station if the status is Status_Received; otherwise they are the same values
that were passed in to Econet_CreateReceive.

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00).

Related SWIs

Econet_CreateReceive (page 2-657), Econet_ReadReceive (page 2-661),
Econet_AbandonReceive (page 2-663)

Related vectors

None

N
etw

o
rkin

g

Econet

2-697

Econet_Version
(SWI &40019)

Returns the version of software for the underlying transport to a given station

On entry

R0 = station number
R1 = net number

On exit

R0, R1 preserved
R2 = version number × 100 (eg 547 for version 5.47)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is used by clients to determine the version of software that handles the
underlying transport to a given station. If both R0 and R1 are set to zero on entry, this
call instead returns the version number of the top-level software to which RISC OS
passes the Econet SWIs.

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00).

Related SWIs

None

Related vectors

None

Econet_NetworkState (SWI &4001A)

2-698

Econet_NetworkState
(SWI &4001A)

Returns the state of the underlying transport to a given station

On entry

R0 = station number
R1 = net number

On exit

R0, R1 preserved
R2 = transport state (0 ⇒ fully functional, 1 ⇒ no clock signal)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns the state of the underlying transport to a given station. The state
returned is transport type dependent, but you may always assume that a value of zero
means that the transport is fully functional.

You should only use the returned value as a hint to the exact state; in other words, it is
suitable for display but not for decision making. Using this call is no substitute for
proper error handling; to determine if a particular transmit will fail, you must do the
transmit and be prepared for it to fail.

Related SWIs

Econet_PrintBanner (page 2-684)

N
etw

o
rkin

g

Econet

2-699

Related vectors

None

Econet_PacketSize (SWI &4001B)

2-700

Econet_PacketSize
(SWI &4001B)

Returns the maximum packet size recommended on the underlying transport to a given
station

On entry

R0 = station number
R1 = net number

On exit

R0, R1 preserved
R2 = maximum permitted packet size, in bytes

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns the maximum recommended packet size on the underlying transport to
a given station. Larger packets will not necessarily be rejected, but their use is not
recommended. The size returned is transport type dependent.

This call is intended for use by modules supplying protocols; you do not need to use it in
application software. For maximum efficiency the protocol module should negotiate the
packet size once. Since the recommended packet size may differ between the stations at
either end of a transmission, the protocol module should interrogate both stations and
take the lower value returned.

N
etw

o
rkin

g

Econet

2-701

Related SWIs

None

Related vectors

None

Econet_ReadTransportName (SWI &4001C)

2-702

Econet_ReadTransportName
(SWI &4001C)

Returns the name of the underlying transport to a given station

On entry

R0 = station number
R1 = net number

On exit

R0, R1 preserved
R2 = pointer to null terminated name of transport

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns the name of the underlying transport to a given station. You can use this
to insert the transport name into (for example) a status conversion.

Related SWIs

None

Related vectors

None

N
etw

o
rkin

g

Econet

2-703

* Commands
The only * Command the Econet module responds to is *Help Station, which displays
the current net and station numbers of the machine. It also displays a ‘No clock’ message
if applicable. For more details of the *Help command, see page 1-980.

Application notes

2-704

Application notes
The following code is the preferred way of testing for the presence of the Econet drivers.
It calls the SWI Econet_SetProtection with R0 and R1 set such that the call attempts to
read the Econet protection word; doing so can never return an unexpected error.
Detecting the error ‘No such SWI’ allows software dependent upon Econet to report its
absence by generating an error; note the use of MessageTrans to do so:

STMFD sp!, {r0-r7,lr}
MOV r0, #0
MVN r1, #0
SWI XEconet_SetProtection
BVC ExitFindEconet
LDR r2, ErrorNumber_NoSuchSWI
LDR r0, [r0]
TEQ r0, r2
BNE ExitFindEconet
ADR r0, Error_NoEconet
MOV r1, #0 ; No message file - use global
MOV r2, #0 ; No buffer - use internal one
MOV r3, #0
MOV r4, #0 ; No parameters
MOV r5, #0
MOV r6, #0
MOV r7, #0
SWI XMessageTrans_ErrorLookup

ExitFindEconet
STRVS r0, [sp,#0]
LDMFD sp!, {r0-r7,pc}

ErrorNumber_NoSuchSWI
DCD &000001E6

Error_NoEconet
DCD &00000312
DCB "NoEco", 0

N
etw

o
rkin

g

2-705

2

48 File server protocol interface

The user environment

Handles

A client is identified and authenticated to the file server by its station number and three
handles. When a user logs on the file server creates these handles by opening directories;
the handles identify to the file server the environment in which to interpret commands
and to look up filenames presented by the client. The file server closes the handles when
the user logs off again. The three handles which comprise the user environment are the
currently selected directory or CSD (see page 2-12 and page 2-163), the user root
directory or URD (see page 2-12 and page 2-194), and the library directory or Lib (see
page 2-12 and page 2-172). Incidentally, the handles passed to the client are only used
for the client/server communication, and are not the file server’s own file handles for the
directories.

Usually the client machine’s software deals with the manipulation of these handles, but
you can define your own environment by opening several directories and declaring a set
of these handles as representing the current environment. Thus you can execute
commands in a number of different environments.

Protocol Block Formats

Standard Tx Header

The initial protocol blocks that the client sends to the file server take a standard form.
This form is known as the standard Tx header:

Byte Meaning
1 reply port
2 function code
3 handle for user root directory (URD)
4 handle for currently selected directory (CSD)
5 handle for library directory (Lib)

The reply port is the Econet port on which the client station is prepared to receive a
response from the file server. The function code indicates to the file server which
operation to perform; for a list of available function codes, see the section entitled File

The user environment

2-706

Server Function Codes on page 2-708. The three handles define the environment for the
command, as described above. The command is sent to the file server on port &99,
which is known as the command port.

Standard Rx Header

The responses that the file server returns to the client also take a standard form, known
as the standard Rx header:

Byte Meaning
1 command code
2 return code

The command code indicates to the client what action (if any) the client should take
upon receiving this response. The command code is principally used when responding to
a ‘Decode command line’ function (see page 2-710). The return code gives the status of
the command passed to the file server:

● Zero indicates that the command step completed successfully

● Non-zero values are an error number indicating what error has occurred; the
remainder of the message contains an ASCII string describing the error, which is
terminated by a carriage return.

Standard Data Types

The file server protocols use standard data types for most operations.

Multi-byte values

In all cases multi-byte values are stored low byte first.

Object and user names

All specifications of object and user names may be 8-bit values, save that &80 is
reserved since it is used to indicate the end of data in some file server protocols.

File size

File servers only support files up to 16 Megabytes, so all pointer operations and file
length indications use 24 bit quantities (stored low byte first, of course). Econet
protocols do not support larger files.

N
etw

o
rkin

g

File server protocol interface

2-707

Attributes

The attributes for an object are stored in a single byte with the bit set to ’1’ meaning as
follows:

Bit Meaning if set
0 object has public read access
1 object has public write access
2 object has owner read access
3 object has owner write access
4 object is locked against owner deletion
5 object is a directory
6 object is a protected directory

Note that public lock is always implicitly set.

Date

The date is stored in two bytes thus:

Figure 48.1 File server protocol date format

As you can see, the year is encoded as a seven bit number (ie 0 - 127); this is used to
specify the offset from 1981.

Access rights

The access rights to a directory are encoded in a single byte:

Value Meaning
0 owner access
&FF public access

Object type

The object type is encoded in a single byte:

Value Meaning
0 object not found
1 object is a file
2 object is a directory
3 object is an image file (ie both file and directory)

67 5 4 3 2 1 0

0

1

Bit

Byte

Day of month (in range 1 - 31)

Month (in range 1 - 12)Year (bits 0 - 3)

Year (bits 4 - 6)

The user environment

2-708

Privilege

A client may have different levels of privilege. The values for each privilege level are as
follows:

Value Meaning Character equivalent
&00 locked L
&40 fixed F
&80 normal
&FF system manager S

The character equivalents are used by some command line interfaces.

Object names

Object names are currently limited by the filing system, usually 10 characters. They may
contain 8 bit values and are not case sensitive.

User identifiers

User identifiers are normally 10 characters with a provision for group identifiers ie:
group.name, each of 10 characters.

Disc titles

The disc title is the name that the server exports to network clients. The length is
determined by the host file system however it must start with a letter and consists of
alphanumeric characters (ie: A-Z, a-z, 0-9), “-” and “_”.

Passwords

The password file associated with the server holds encrypted passwords, privilege
levels, boot options and space allocation information for each user.

File Server Function Codes

A summary of the file server function codes is given below. Function is the function
code number, Privilege shows whether the client has to have privilege, and Logged-on
shows whether the client has to be logged-on:

N
etw

o
rkin

g

File server protocol interface

2-709

Function Privilege Logged-on Description
0 no yes † Decode command line
1 no yes Save file
2 no yes Load file
3 no yes Examine
4 no yes Catalogue header
5 no yes Load as
6 no yes Open object
7 no yes Close object
8 no yes Get byte
9 no yes Put byte
10 no yes Get bytes
11 no yes Put bytes
12 no yes Read random access arguments
13 no yes Set random access arguments
14 no no Read disc information
15 no yes Read current users’ information
16 no no Read file server date and time
17 no yes Read ‘End-of-file’ status
18 no yes Read object information
19 no yes Set object attributes
20 no yes Delete object
21 no yes Read user environment
22 no yes Set user boot option
23 no yes Log off
24 no yes Read user’s information
25 no no Read file server version number
26 no yes Read disc free space information
27 no yes Create directory, specifying size
28 yes yes Set file server date and time
29 no yes Create file
30 no yes Read user free space
31 yes yes Set user free space
32 no yes Read client UserId
33 no yes Read current users’ info (extended)
34 no yes Read user’s information (extended)
35 reserved
36 yes yes Manager interface
37 reserved

† There is no need to be logged-on to decode the *I Am command.

Interfaces

2-710

Interfaces
This section deals individually with each of the commands and functions available to
client software. The exchange of packets is detailed and the format of requests and
responses is given.

Decode command line

A number of the operations performed by the file server are initiated by the sending of a
command line.

The command line syntaxes which the Acorn File Server will accept are as follows
(commands in bold are new Level 4 commands):

*Access object_spec [attributes]
*Bye
*CDir directory
*Delete object
*Dir [directory]
*I am user_name [password]
*Info object_spec
*Lib [directory]
*Logon user_name [password]
*Pass old_password new_password
*Rename object new_name
*SDisc [:]disc_spec

Management specific commands:

*FSShutdown
*Logoff user_name|user_number
*NewUser user_name
*Priv user_name [new_privilege]
*RemUser user_name

The syntax of some of the above commands differ from the equivalent RISC OS
commands, because the command line will already have been processed before the
command is issued to the file server.

N
etw

o
rkin

g

File server protocol interface

2-711

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 0)
6… command line, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3… command dependent results

The possible command codes in the standard Rx header that the file server may return
are:

Code Meaning
0 no further action needed (ie command complete)
1 reserved
2 reserved
3 reserved
4 *Info
5 *I Am
6 *SDisc
7 *Dir
8 unrecognised command
9 *Lib
10 disc information, function code 14 called
11 users information, function code 15 called

Some commands require further action by the client, in which case the file server will
also return (in byte 3 onwards) any decoded parameters or data which the client will
need to complete the command:

Interfaces

2-712

Return from *Info

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header (command code = 4)
3 - 12 object name, padded with spaces
13 space
14 - 21 load address, padded with zeros
22 space
23 - 30 execution address, padded with zeros
31 - 33 spaces
34 - 39 length padded with zeros
40 - 42 spaces
43 - 48 access details (eg LWR/WR), padded with spaces
49 - 53 spaces
54 - 61 date (DD:MM:YY)
62 space
63 - 68 System Internal Name (SIN), padded with zeros
69 terminating negative byte (&80)

‘Spaces’ are ASCII spaces (&20). ‘Zeros’ are ASCII zeros (&30), not null bytes (&00).

Return from *I Am

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header (command code = 5)
3 new URD handle
4 new CSD handle
5 new Lib handle
6 boot option (bits 0 - 3 significant)

Return from *SDisc

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header (command code = 6)
3 new URD handle
4 new CSD handle
5 new Lib handle

N
etw

o
rkin

g

File server protocol interface

2-713

Return from *Dir

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header (command code = 7)
3 new CSD handle

Return from unrecognised command

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header (command code = 8)
3… command string, terminated by CR

Return from *Lib

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header (command code = 9)
3 new Lib handle

Save file

This is the actual save operation. This protocol is used after the command line has been
decoded, either by the file server or the local operating system.

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 reply port
2 1 (function code)
3 acknowledge port
4 CSD handle
5 Lib handle
6 - 9 file load address
10 - 13 file execute address
14 - 16 file size
17… file name, terminated by CR

Interfaces

2-714

The file server’s reply is sent to the client’s reply port, as specified in the client’s initial
packet (see above):

Byte Meaning
1 - 2 standard Rx header (command code = 3 if leaf name is returned,

otherwise = 0)
3 data port
4 - 5 maximum data block size
6… leaf name, terminated by CR (if returned)

The client and file server now enter the ‘data transfer’ phase of the protocol where the
file server acknowledges the receipt of each data packet. If there is no data to be sent (eg
a zero length file) then this phase is omitted. If the file server detects an error during the
data transfer phase (eg a disc error) then the phase is allowed to complete, but the Save
file operation is aborted, and the error status is given in the return code of the ‘final
acknowledge' (see below).

The client sends each block of data to the file server’s data port, as specified in the file
server’s initial reply (see above):

Byte Meaning
1… a block of data, up to the maximum data block size

The file server acknowledges the receipt of each block by sending to the client’s
acknowledge port, as specified by the client in its initial transmission (see above):

Byte Meaning
1 a single byte of undefined value

When the file server receives the final data block it instead acknowledges it with the
‘final acknowledge’, which is the terminating packet of the protocol. It sends this to the
client’s reply port, which – again – was specified in the client’s initial packet:

Byte Meaning
1 - 2 standard Rx header
3 attributes
4 - 5 date

N
etw

o
rkin

g

File server protocol interface

2-715

Load file

This is the actual load operation. This protocol is used after the command line has been
decoded, either by the file server or the local operating system.

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 reply port
2 2 (function code)
3 data port
4 CSD handle
5 Lib handle
6… file name, terminated by CR – may be wildcarded

The file server’s reply is sent to the client’s reply port, as specified in the client’s initial
packet (see above):

Byte Meaning
1 - 2 standard Rx header (command code = 14 if leaf name is resolved,

otherwise = 0)
3 - 6 file load address
7 - 10 file execute address
11 - 13 file size
14 file access
15 - 16 file creation date
17… leaf name, terminated by CR, with wild-cards resolved (if returned)

The client and file server now enter the ‘data transfer’ phase of the protocol. If the file is
of zero length then this phase is omitted. If the file server detects an error (eg a disc
error) then the required amount of data will be sent, but its data content is undefined.

The file server sends each block of data to the client’s data port, as specified in the
client’s initial packet:

Byte Meaning
1… data blocks of undefined size repeated until ‘file size' data has been

sent (maximum data block size is currently 4k)

The client does not acknowledge these packets.

When the file server has sent the final data block it then sends the terminating packet of
the protocol to the client’s reply port, which – again – was specified in the client’s initial
packet:

Byte Meaning
1 - 2 standard Rx header

Interfaces

2-716

Examine

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 3)
6 argument to examine function:

0 ⇒ return all information, in machine readable format
1 ⇒ return all information, in character string format
2 ⇒ return file title only, in machine readable format
3 ⇒ return file title and access, in character string format

7 directory entry point (0 - 255)
8 number of entries to examine (1 - 255, or 0 for all)
9… name of directory to be examined, terminated by CR

The argument passed in byte 6 specifies the format and amount of information to be
returned by the file server.

The directory entry point gives the entry number within the directory from which to
examine. Conventionally the first entry in a directory is entry number zero.

The number of entries to examine specifies how many entries are to be examined, so is
usually determined by the buffer space available to the client. A parameter of zero in this
case conventionally demands that all entries in the directory from the entry point to the
end of the directory be examined.

Information may be returned in two ways: as a character string, or in a machine readable
format:

● Information that is returned in character string format is in a fixed format –
including separators – that is suitable for direct output. Carriage returns may occur
within such strings. Individual directory entries are delimited by zero bytes (&00),
the final entry being terminated by a negative byte (&80).

● Information that is returned in machine readable format consists of a defined
number of bytes, and so there are no delimiters between entries, although the final
entry is still terminated by a negative byte (&80).

The file server’s reply is sent to the client’s reply port, as specified in the client’s initial
packet (see above):

Byte Meaning
1 - 2 standard Rx header
3 number of entries actually examined
4 number of entries in directory
5… argument dependent information

The different formats of byte 5 onwards are given below.

N
etw

o
rkin

g

File server protocol interface

2-717

Return for all information in machine readable format (argument = 0)

Byte Meaning
5 - 14 object name padded to 10 characters with spaces
15 - 18 load address
19 - 22 execute address
23 attributes
24 - 25 date
26 - 28 System Internal Name (SIN)
29 - 31 object length

Return for all information in character string format (argument = 1)

Byte Meaning
5… character string of all information data (see above for character string

format/separators)

Return for file title only, in machine readable format (argument = 2)

Byte Meaning
5 10 (object name length for BBC MOS)
6… object name padded with spaces

Return for file title and access, in character string format (argument = 3)

Byte Meaning
5… character string giving object name and formatted access string (see

above for character string format/separators)

Catalogue Header

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 4)
6… directory name, terminated by CR (null name ⇒ catalogue CSD)

The file server’s reply is sent to the client’s reply port, as specified in the client’s initial
packet (see above):

Byte Meaning
1 - 2 standard Rx header
3 - 13 last component of directory name padded with spaces
14 character indicating ownership of directory (‘O’ or ‘P’)

Interfaces

2-718

15 - 17 three space characters (&20)
18 - 33 current disc name padded with spaces, terminated by CR, negative

byte (&80)

Load as

This is exactly the same as Load file (Function code = 2), except that the file name is
looked up in the CSD and then in the Lib. The error returned if the file name is not found
in either directory is ‘Bad command'.

The protocol is identical, save that the client’s initial packet has a function code of 5 (for
‘Load as’) rather than 2 (for ‘Load file’).

Open object

This function code creates a handle for the object specified with the access type
requested. Such handles are used for performing random access operations, and also for
manipulating the user's environment. An object will be opened only if the client has the
necessary access rights to the object. When opening directories these must be specified
as already existing. A file can be opened several times for reading, but only once for
update. A file will be created with default size of &400 bytes if it does not already exist,
and is opened for update, and the client specifies a new file (byte 6 = 0).
Machine-dependent limits are imposed on the number of handles a client is allowed to
have open at any one time. BBC machines support 8, Master series and Archimedes
clients are allowed 16. These values include 3 handles which are automatically allocated
when the client logs on, therefore a BBC machine will be able to open a further 5
objects.

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 6)
6 zero ⇒ create a new file, deleting existing data

non-zero ⇒ object must already exist
7 zero ⇒ open object for update

non-zero ⇒ open object for reading only
8… object name, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header (command code = 1 if leafname is returned,

otherwise = 0)
3 object’s handle
4… leaf name, terminated by CR (if returned)

N
etw

o
rkin

g

File server protocol interface

2-719

Close object

This function indicates to the file server that the handle passed as argument is no longer
needed and that all of the updated data in the file should be written out to the disc. A
handle of zero indicates to the file server that all handles to open files are to be closed.
This call does not close handles to directories if the handle given is zero.

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 7)
6 handle

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

Get byte

The next four function codes deal with the facilities that the file server provides to
enable the user to perform random access operations on open files.

These operations have an additional protocol to ensure the integrity of the data
exchanged, provided by a sequence number. The sequence number is a single bit held in
both client and file server which differentiates between:

● successive reads of a file using the pointer held in the file server

● repeated reads of the same byte, because the operation failed at the previous
attempt.

The client sends the sequence number in the least significant bit of the flag byte of the
Econet control block. The file server returns its copy of the sequence number with the
data to allow the client to detect data sequencing errors. The client should invert its copy
of the sequence number after every successful transaction with the file server. If the
client detects a data packet with the incorrect sequence number, then the client should be
prepared to repeat the request.

The Get byte function code reads a single byte from the file at the position specified by
the file server's internal file pointer. The client initiates the exchange by sending to the
file server’s command port:

Byte Meaning
1 reply port
2 8 (function code)
3 file handle

Interfaces

2-720

The file server’s reply is sent to the client’s reply port, as specified in the client’s initial
packet (see above):

Byte Meaning
1 - 2 standard Rx header
3 byte read (&FE if reading first byte after file end)
4 &00 ⇒ normal read operation

&80 ⇒ last byte in the file
&C0 ⇒ first byte after file end

Put byte

This function code writes a single byte to the file at the position specified by the file
server's internal file pointer. The client initiates the exchange by sending to the file
server’s command port:

Byte Meaning
1 reply port
2 9 (function code)
3 file handle
4 byte to be written

The file server’s reply is sent to the client’s reply port, as specified in the client’s initial
packet (see above):

Byte Meaning
1 - 2 standard Rx header

Get bytes

This operation allows the client to read blocks of data. The client may supply an offset
within the file at which to start the operation, or may use the sequential file pointer
maintained by the file server. The protocol includes a sequence number as described for
Get byte and Put byte. The client initiates the exchange by sending to the file server’s
command port:

N
etw

o
rkin

g

File server protocol interface

2-721

Byte Meaning
1 reply port
2 10 (function code)
3 data port
4 CSD handle
5 Lib handle
6 file handle
7 zero ⇒ use supplied offset

non-zero ⇒ use file server sequential pointer
8 - 10 number of bytes to transfer
11 - 13 file offset (ignored if byte 7 non-zero)

The file server’s reply is sent to the client’s reply port, as specified in the client’s initial
packet (see above):

Byte Meaning
1 - 2 standard Rx header

The client and file server now enter the ‘data transfer’ phase of the protocol. If the
transfer is of zero length then this phase is omitted. If the file server detects an error (eg
a disc error) then the required amount of data will be sent, but its data content is
undefined. If a read extends over the end of the file then the requested amount of data
will be returned, but the data content of the bytes beyond the end of the file is undefined.

The file server sends each block of data to the client’s data port, as specified in the
client’s initial packet:

Byte Meaning
1… data blocks of undefined size repeated until ‘transfer size' data has

been sent (maximum data block size is currently 4k)

The client does not acknowledge these packets.

When the file server has sent the final data block it then sends the terminating packet of
the protocol to the client’s reply port, which – again – was specified in the client’s initial
packet:

Byte Meaning
1 - 2 standard Rx header
3 &00 ⇒ all OK

&80 ⇒ read includes last byte in file
4 - 6 number of valid data bytes transferred

Interfaces

2-722

Put bytes

This operation allows the client to write blocks of data. The client may supply an offset
within the file at which to start the operation, or may use the sequential file pointer
maintained by the file server. The protocol includes a sequence number as described for
Get byte and Put byte. The client initiates the exchange by sending to the file server’s
command port:

Byte Meaning
1 reply port
2 11 (function code)
3 acknowledge port
4 CSD handle
5 Lib handle
6 file handle
7 zero ⇒ use supplied offset

non-zero ⇒ use file server sequential pointer
8 - 10 number of bytes to transfer
11 - 13 file offset (if supplied)

The file server’s reply is sent to the client’s reply port, as specified in the client’s initial
packet (see above):

Byte Meaning
1 - 2 standard Rx header
3 data port
4 - 5 maximum data block size

The client and file server now enter the ‘data transfer’ phase of the protocol where the
file server acknowledges the receipt of each data packet. If there is no data to be sent
then this phase is omitted. If the file server detects an error during the data transfer phase
(eg a disc error) then the phase is allowed to complete, but the operation is aborted, and
the error status is returned in the return code of the ‘final acknowledge' (see below).

The client sends each block of data to the file server’s data port, as specified in the file
server’s initial reply (see above):

Byte Meaning
1… a block of data, up to the maximum data block size

The file server acknowledges the receipt of each block by sending to the client’s
acknowledge port, as specified by the client in its initial transmission (see above):

Byte Meaning
1 a single byte of undefined value

N
etw

o
rkin

g

File server protocol interface

2-723

When the file server receives the final data block it instead acknowledges it with the
‘final acknowledge’, which is the terminating packet of the protocol. It sends this to the
client’s reply port, which – again – was specified in the client’s initial packet:

Byte Meaning
1 - 2 standard Rx header
3 undefined
4 - 6 number of valid data bytes transferred

Read random access information

This function code allows the client to discover information about files for which he
currently has handles. The client initiates the exchange by sending to the file server’s
command port:

Byte Meaning
1 - 5 standard Tx header (function code = 12)
6 file handle
7 0 ⇒ read sequential file pointer

1 ⇒ read file extent (the amount of valid data)
2 ⇒ read file size (the space allocated for the file)

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 - 5 information requested

Set random access information

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 13)
6 file handle
7 0 ⇒ set sequential file pointer

1 ⇒ set file extent
8 - 10 value to set

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

Interfaces

2-724

Read disc information

This function returns the disc configuration of the file server. Conventionally the file
server’s drives are logically numbered from zero upwards. However, this number is not
the same as the drive number returned, which is the physical drive number. The client
initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 14)
6 first logical drive number to interrogate
7 number of drives to interrogate (0 for all drives)

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 number of drives found
4 physical drive number of first drive requested
5 - 20 disc name of first drive requested, padded with spaces
21… further 17-byte entries in same format

Read current users’ information

This function returns the currently logged on users of the file server, their station
numbers and associated privileges. Conventionally the logged on user entries are
numbered from zero. The client initiates the exchange by sending to the file server’s
command port:

Byte Meaning
1 - 5 standard Tx header (function code = 15)
6 first entry for which to get information
7 number of entries for which to get information (0 for all)

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 number of entries returned
4 station number of first user 
5 network number of first user  repeated for each
6… name of first user, terminated by CR  entry returned
n privilege of first user 

N
etw

o
rkin

g

File server protocol interface

2-725

Read file server date and time

It is not necessary to be logged on to the file server to use this function code. The client
initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 16)

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 - 4 date
5 hours (0 - 23)
6 minutes (0 - 59)
7 seconds (0 - 59)

Read ‘End-of-file’ status

This function is valid for file handles only. The client initiates the exchange by sending
to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 17)
6 file handle

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 zero ⇒ pointer within file

non-zero ⇒ pointer outside file

Interfaces

2-726

Read object information

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 18)
6 1 ⇒ read object creation date

2 ⇒ read load and execute address
3 ⇒ read object length
4 ⇒ read object attributes and access rights
5 ⇒ read all object information
6 ⇒ read access rights and cycle number of directory
7 ⇒ read unique identifier

7… object name, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705). The reply’s contents depend on the argument
passed with the call:

Reply to arguments 1 - 5

Byte Meaning
1 - 2 standard Rx header
3 object type
4… requested results only, returned in the following order:

load address (4 bytes), execute address (4 bytes),
length (3 bytes), attributes (1 byte), date (2 bytes),
access rights (1 byte)

Reply to argument 6

Byte Meaning
1 - 2 standard Rx header
3 undefined
4 0
5 10 (length of directory name)
6 - 15 directory name padded with spaces
16 access rights
17 number of entries in directory

N
etw

o
rkin

g

File server protocol interface

2-727

Reply to argument 7

Byte Meaning
1 - 2 standard Rx header
3 object type
4 - 9 unique identifier for that object on that server (SIN + disc number):

bits 0 - 23 file system System Identification Number (SIN)
bits 24 - 31 file server disc number
bits 32 - 47 filing system number

Set object attributes

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 19)
6 1 ⇒ set load address, execute address, and attributes

2 ⇒ set load address
3 ⇒ set execute address
4 ⇒ set attributes
5 ⇒ set creation date

7… parameters to set (depend on byte 6)
n… file name, terminated by CR

The lengths of the parameters to set are the same as the lengths of the parameters
returned by Read object information: see page 2-726.

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

Interfaces

2-728

Delete object

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 20)
6… object name, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 - 6 load address
7 - 10 execute address
11 - 13 file length
14 file attributes

Read user environment

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 21)

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 16 (length of disc name)
4 - 19 name of currently selected disc, padded with spaces
20 - 29 name of CSD, padded with spaces
30 - 39 name of Lib, padded with spaces

Set user boot option

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 22)
6 new boot option (bits 0 - 3 significant)

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

N
etw

o
rkin

g

File server protocol interface

2-729

Log off

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 23)

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

Read single user’s information

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 24)
6… user name, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 user’s privilege
4 user’s station number
5 user’s network number

Read file server version number

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 25)

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 - 11 a text string describing the file server type
12 a space character (ASCII &20)
13 - 16 a text string of the form n.xy which is the version

Interfaces

2-730

Read disc free space

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 26)
6… disc name, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 - 5 free space on disc (in sectors of &100 bytes)
6 - 8 disc size (in sectors of &100 bytes)

Create directory, specifying size

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 27)
6 maximum number of sectors to allocate
7… name of directory, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

Set file server date and time

It is necessary to be logged on to the file server, with privilege, to set the date and time
parameters.

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 28)
6 - 7 date
8 hours (0 - 23)
9 minutes (0 - 59)
10 seconds (0 - 59)

N
etw

o
rkin

g

File server protocol interface

2-731

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

Create file

This function creates a file of the size and type specified. The contents will
automatically be set to zeros for security reasons.

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 29)
6 - 9 new file’s load address
10 - 13 new file’s execute address
14 - 16 new file’s length
17… new file’s name, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 new file’s attributes
4 - 5 new file’s creation date

Read user free space

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 30)
6… UserId for free space reading, terminated by CR;

CR alone means return the free space of the client

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 - 6 available space for UserId, in bytes

Interfaces

2-732

Set user free space

This function code is only legal for privileged users. The UserId specified is that of the
client whose space allocation is to be amended.

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 31)
6 - 9 new value for available space, in bytes
10… UserId, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

Read client UserId

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 32)

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3… UserId of client, terminated by CR

Read current users’ information (extended)

This function returns the currently logged on users of the file server, their station
numbers and associated privileges. Conventionally the logged on user entries are
numbered from zero. The client initiates the exchange by sending to the file server’s
command port:

Byte Meaning
1 - 5 standard Tx header (function code = 33)
6 first entry for which to get information
7 number of entries for which to get information (0 for all)

N
etw

o
rkin

g

File server protocol interface

2-733

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 number of entries returned
4 station number of first user 
5 network number of first user 
6 task number of first user  repeated for each
7… name of first user, terminated by CR  entry returned
n privilege of first user 

Read single user’s information (extended)

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header (function code = 34)
6… user name, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 user’s privilege
4 user’s station number
5 user’s network number
6 user’s task number

Interfaces

2-734

Manager Interface

This function allows the system manager to manipulate all the details concerning the
users of the system. The password file will then be updated accordingly.

You must be a privileged user to use this function.

The client initiates the exchange by sending to the file server’s command port:

Byte Meaning
1 - 5 standard Tx header, Function code = 36 (&24)
6 argument:

0 ⇒ read number of entries in password file
1 ⇒ read entry from password file
2 ⇒ write user profile in password file
3 ⇒ add new user
4 ⇒ remove user
5 ⇒ set privilege
6 ⇒ logoff user
7 ⇒ shutdown server

7… argument dependent parameters (see below)

The argument passed in byte 6 specifies the function to be performed by the file server.
Some of these functions require further parameters, which are given in byte 7 onwards
of this initial protocol block. These are detailed below.

Read number of entries in password file (argument = 0)

No argument dependent parameters are passed with the initial protocol block.

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 - 6 number of users

Read entry from password file (argument = 1)

The argument dependent parameters passed with the initial protocol block are:

Byte Meaning
7 - 8 user number for which to get information

N
etw

o
rkin

g

File server protocol interface

2-735

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header
3 - 6 user profile index
7 privilege
8 boot option (bits 0 - 3 significant)
9 - 12 spaces
13 station (if client logged on)
14 net (if client logged on)
15 allowed to log on flag (bit 1 significant)
16 - 37 user name, terminated by CR
38 - 60 password, terminated by CR
61… URD name, terminated by CR

Write user profile in password file (argument = 2)

The argument dependent parameters passed with the initial protocol block are:

Byte Meaning
7 - 10 reserved (must be zero)
11 privilege
12 boot option (bits 0 - 3 significant)
13 - 18 spaces
19 allowed to log on flag (bit 1 significant)
20 - 41 user name, terminated by CR
42 - 64 password, terminated by CR
65… URD name, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

Add new user (argument = 3)

The argument dependent parameters passed with the initial protocol block are:

Byte Meaning
7 user name, terminated by CR

Interfaces

2-736

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

Remove user (argument = 4)

The argument dependent parameters passed with the initial protocol block are:

Byte Meaning
7 user name, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

Set privilege (argument = 5)

The argument dependent parameters passed with the initial protocol block are:

Byte Meaning
7 user name, terminated by CR
n… new privilege (‘S’, ‘L’ or ‘F’; or null for normal), terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

Logoff user (argument = 6)

The argument dependent parameters passed with the initial protocol block are:

Byte Meaning
7 user name, terminated by CR

The file server’s reply is sent to the client’s reply port, as specified by the client in its
standard Tx header (see page 2-705):

Byte Meaning
1 - 2 standard Rx header

Shutdown server (argument = 7)

No argument dependent parameters are passed with the initial protocol block.

N
etw

o
rkin

g

File server protocol interface

2-737

Error messages
The server responds with errors under certain circumstances. The errors generated are as
follows:

Network reported errors

Error string Error Number
Insufficient space &5C
Too much data &83
Bad privilege letter &8C
Bad user name &AC
Bad rename &B0
Already a user &B1
Directory full &B3
Is a directory &B5
Too many users &B8
Password must be between 6 and 22 characters &B9
Insufficient privilege &BA
Wrong password &BB
User not known &BC
Access violation &BD
Insufficient access &BD
Is a file &BD
Who are you? &BF
Too many open files &C0
Already open &C2
Disc full &C6
Bad name &CC
Bad directory name &CC
Bad drive &CD
Invalid access string &CF
Not found &D6
File not found &D6
Channel &DE
Sorry, not supported &FD
Bad command &FE
Server not available &FF
Server has shut down &FF
No more receive buffers &FF
Failed to create user profile &FF
Server internal error, please report to system manager &FF

Errors in bold are new Level 4 errors.

Error messages

2-738

Internal errors
Password file not found
Unable to open password file
No devices found, unable to start …
Unable to open/find choices file
Unable to find floppy disc
Unable to mount …
Unable to execute …
Error in exports file, unable to start
Unable to find exports file

N
etw

o
rkin

g

2-739

2

49 The Broadcast Loader

Introduction and Overview
The Broadcast Loader enables files to be effectively broadcast to multiple clients,
effectively increasing Econet transport throughput. It works in the following way:

When a client requests a file from a file server, it first broadcasts a request onto the
network to ask if any other clients are loading the same file. If no other client is loading
it, then it proceeds to load the file itself from the file server as normal. If during the
loading process other clients ask for the same file, then they are acknowledged by the
first client, and they wait for the first client to finish loading the file after which it then
broadcasts the file to all the waiting clients.

This module is not supplied as a standard part of RISC OS 2, but will run under it, and is
available as a separate product.

Performance

The Broadcast Loader greatly reduces the time taken to load the same file or application
to a number of users. To a first approximation, the performance of a system using the
Broadcast Loader to load a long file to n Clients will be 2 × (time to load single copy) as
opposed to n × (time to load single copy).

FileSwitch call interception

The Broadcast Loader works by intercepting some FileSwitch calls to NetFSEntry_File
and dealing with them as appropriate. This is done using the SWI OS_FSControl (13) to
return a pointer to the FileSwitch copy of the NetFS filing system control block, that has
been modified to be non-relocatable. The Broadcast Loader then modifies the data
pointed to so that when FileSwitch despatches calls to NetFSEntry_File they are in fact
despatched to the Broadcast Loader first.

File servers supported

All of the Acorn file servers – Level 2, Level 3, FileStore and Level 4 – as well as the SJ
Research MDFS products, are compatible with the Broadcast Loader.

Introduction and Overview

2-740

Retransmission and errors

Files are transmitted from the broadcast server to clients in chunks of approximately one
thousand bytes with sequence numbers. If a client enters the transaction during the file
transfer, or misses a packet due to transmission errors or other reasons, then requests for
missing blocks are made and retransmissions made to complete the transaction. A
system of timeouts and error messages is provided to ensure no lock-up or erroneous
condition can occur.

N
etw

o
rkin

g

2-741

2

50 BBC Econet

Introduction and Overview
The BBC Econet module provides emulation of certain obsolete OSBYTE and
OSWORD calls used by old 6502-based BBC computers, thus making it easier for you
to port code that uses these calls.

This module is provided solely to support old programs. You should not use these calls
in any new programs you write.

Technical details

2-742

Technical details

Summary of calls
The following calls are provided, which emulate the corresponding obsolete OSBYTE
and OSWORD calls:

Call Notes
OS_Byte 50

OS_Byte 51

OS_Byte 52

OS_Word 16 All 8 sub-reason codes are emulated (Transmit, Peek, Poke, JSR,
User Procedure Call, Machine type, Halt and Continue)

OS_Word 17 Both sub-reason codes are emulated (OpenRx and ReadRx)

OS_Word 19 Only these function codes are supported:
0 read file server number
1 write file server number
2 read printer server number
3 write printer server number
4 read protection mask
5 write protection mask
8 read local station number
12 read printer server name
13 set printer server name
15 read file server retry delay
16 set file server retry delay
17 translate net number

OS_Word 20 All 3 sub-reason codes are supported (Do File Server Operation,
Notify, and Cause Remote Error)

Correspondence between old and new calls

All the above calls use exactly the same parameters as the corresponding obsolete
OSBYTE and OSWORD calls. The table below shows the correspondence between the
register used on the 6502 to pass a parameter, and the register used on the ARM to pass
the same parameter:

6502 register ARM register
A R0 (bits 0-7)
X R1 (bits 0-7)
Y R2 (bits 0-7)

N
etw

o
rkin

g

BBC Econet

2-743

Bits 8-31 of the ARM registers are ignored.

For more information on any of the obsolete OSBYTE and OSWORD calls, see the
Econet Advanced User Guide.

Implementation
The BBC Econet module claims the ByteV and WordV vectors. If it recognises an
OS_Byte or OS_Word as one that it supports, it first checks the presence of the
module(s) that it needs to emulate the call. (These are Econet, NetFS and/or NetPrint.) It
then translates the OS_Byte or OS_Word call to appropriate SWI call(s) to these
modules.

Restrictions

OS_Byte 50 (poll transmission) and OS_Byte 51 (poll receive block) may enable
interrupts and hence should not be called from within interrupt handlers, service code or
event routines. During these calls the processor may be put in USR mode with interrupts
enabled; this allows CallBacks to occur.

2-744

N
etw

o
rkin

g

2-745

2

51 Hourglass

Introduction and Overview
The Hourglass module will change the pointer shape to that of an hourglass. You can
optionally also display:

● a percentage figure

● two ‘LED’ indicators for status information (one above the hourglass, and one
below).

Note that cursor shapes 3 and 4 are used (and hence corrupted) by the hourglass. You
should not use these shapes in your programs.

Normally the Hourglass module is used to display an hourglass on the screen whenever
there is prolonged activity on the Econet. The calls to do so are made by the NetStatus
module, which claims the EconetV vector. See the chapter entitled Software vectors on
page 1-63 and the chapter entitled NetStatus on page 2-759 for further details.

The hourglass should also be used by any software that may take some time to do a
particular job, especially when:

● there is no other indication of activity

● the processing time is file size dependent (some users may have files much bigger
than you expect)

● the processing time is processor speed dependent (some users may be in a screen
mode that is hungry for memory bandwidth).

Software using the hourglass should, whenever possible, use the percentage feature; see
the section entitled Example programs on page 2-757 for an example of this.

The rest of this chapter details the SWIs used to control the hourglass.

SWI Calls

2-746

SWI Calls
Hourglass_On
(SWI &406C0)

Turns on the hourglass

On entry

—

On exit

—

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This turns on the hourglass. Although control returns immediately there is a delay of 1/3
of a second before the hourglass becomes visible. Thus you can bracket an operation by
Hourglass_On/Hourglass_Off so that the hourglass will only be displayed if the
operation takes longer than 1/3 of a second.

You can set a different delay using Hourglass_Start (page 2-751).

Hourglass_On’s are nestable. If the hourglass is already visible then a count is
incremented and the hourglass will remain visible until an equivalent number of
Hourglass_Off’s are done. The LEDs and percentage indicators remain unchanged.

N
etw

o
rkin

g

Hourglass

2-747

The example below illustrates the use of bracketing calls to Hourglass_On /
Hourglass_Off:

DoLoadAndProcess
 STMFD sp!, { r0-r5, lr }
 MOV r0, #OSFile_Load
 ADR r2, Buffer
 MOV r3, #0
 SWI XOS_File
 BVS ExitLoadAndProcess
 CMP r4, #0
 BEQ ExitLoadAndProcess
 SWI XHourglass_On
 BVS ExitLoadAndProcess
 ADR r1, Buffer
ProcessLoop
 LDRB r0, [r1], #1
 BL ProcessByte
 BVS FinishProcess
 SUBS r4, r4, #1
 BNE ProcessLoop
FinishProcess
 SWI XHourglass_Off
ExitLoadAndProcess
 STRVS r0, [sp, #0]
 LDMFD sp!, { r0-r5, pc }

Related SWIs

Hourglass_Off (page 2-748), Hourglass_Start (page 2-751)

Related vectors

None

Hourglass_Off (SWI &406C1)

2-748

Hourglass_Off
(SWI &406C1)

Turns off the hourglass

On entry

—

On exit

—

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call decreases the count of the number of times that the hourglass has been turned
on. If this makes the count zero, it turns off the hourglass.

When the hourglass is removed the pointer number and colours are restored to those in
use at the first Hourglass_On.

From RISC OS 3 onwards, the system also turns the percentage display off if leaving the
level that turned it on, even if the hourglass itself is not turned off. See page 2-753 for an
example of this.

Related SWIs

Hourglass_On (page 2-746), Hourglass_Smash (page 2-750)

N
etw

o
rkin

g

Hourglass

2-749

Related vectors

None

Hourglass_Smash (SWI &406C2)

2-750

Hourglass_Smash
(SWI &406C2)

Turns off the hourglass immediately

On entry

—

On exit

—

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call turns off the hourglass immediately, taking no notice of the count of nested
Hourglass_On’s. If you use this call you must be sure neither you, nor anyone else,
should be displaying an hourglass.

When the hourglass is removed the pointer number and colours are restored to those in
use at the first Hourglass_On, except under RISC OS 2.

Related SWIs

Hourglass_Off (page 2-748)

Related vectors

None

N
etw

o
rkin

g

Hourglass

2-751

Hourglass_Start
(SWI &406C3)

Turns on the hourglass after a given delay

On entry

R0 = delay before start-up (in centiseconds), or 0 to suppress the hourglass

On exit

—

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call works in the same way as Hourglass_On, except you can specify your own
start-up delay.

If you specify a delay of zero and the hourglass is currently off, then future
Hourglass_On and Hourglass_Start calls have no effect. The condition is terminated by
the matching Hourglass_Off, or by an Hourglass_Smash.

Related SWIs

Hourglass_On (page 2-746), Hourglass_Off (page 2-748)

Related vectors

None

Hourglass_Percentage (SWI &406C4)

2-752

Hourglass_Percentage
(SWI &406C4)

Displays a percentage below the hourglass

On entry

R0 = percentage to display (if in range 0 - 99), else turns off percentage

On exit

—

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call controls the display of a percentage below the hourglass. If R0 is in the range
0 - 99 the value is displayed; if it is outside this range, the percentage display is turned
off.

The default condition of an hourglass is not to display percentages.

For a full example of the use of Hourglass_Percentage, see the section entitled Example
programs on page 2-757.

From RISC OS 3 onwards, lower levels of calls cannot alter the hourglass percentage
once a higher level call is using it. Furthermore, Hourglass_Off automatically turns the
percentage display off when leaving the level that turned it on, even if the hourglass
itself is not turned off. For example:

N
etw

o
rkin

g

Hourglass

2-753

SYS "Hourglass_On"
 SYS "Hourglass_On"
 SYS "Hourglass_Percentage",10 :REM sets to 10%
 SYS "Hourglass_Percentage",20 :REM sets to 20%
 SYS "Hourglass_On"
 SYS "Hourglass_Percentage",50 :REM DOESN’T set to 50%
 SYS "Hourglass_Off"
 SYS "Hourglass_Percentage",30 :REM sets to 30%
 SYS "Hourglass_Off" :REM turns off percentages
SYS "Hourglass_Off" :REM turns off hourglass

Related SWIs

None

Related vectors

None

Hourglass_LEDs (SWI &406C5)

2-754

Hourglass_LEDs
(SWI &406C5)

Controls the display indicators above and below the hourglass

On entry

R0, R1 = values used to set LEDs’ word

On exit

R0 = old value of LEDs’ word

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call controls the two display indicators above and below the hourglass, which can
be used to display status information. These are controlled by bits 0 and 1 respectively of
the LEDs’ word. The indicator is on if the bit is set, and off if the bit is clear. The new
value of the word is set as follows:

New value = (Old value AND R1) EOR R0

The default condition is all indicators off.

Related SWIs

None

Related vectors

None

N
etw

o
rkin

g

Hourglass

2-755

Hourglass_Colours
(SWI &406C6)

Sets the colours used to display the hourglass

On entry

R0 = new colour to use as colour 1 (&00BBGGRR, or –1 for no change)
R1 = new colour to use as colour 3 (&00BBGGRR, or –1 for no change)

On exit

R0 = old colour being used as colour 1
R1 = old colour being used as colour 3

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call sets the colours used to display the hourglass. Alternatively you can use this
call to read the current hourglass colours by passing parameters of –1.

The default colours are:

Colour 1 cyan
Colour 3 blue

This call is not available in RISC OS 2.

Related SWIs

None

Hourglass_Colours (SWI &406C6)

2-756

Related vectors

None

N
etw

o
rkin

g

Hourglass

2-757

Example programs
The examples below illustrate the use of Hourglass_Percentage.

DoLoadAndProcess
 STMFD sp!, { r0-r5, lr }
 MOV r0, #OSFile_Load
 ADR r2, Buffer
 MOV r3, #0
 SWI XOS_File
 BVS ExitLoadAndProcess
 CMP r4, #0
 BEQ ExitLoadAndProcess
 SWI XHourglass_On
 BVS ExitLoadAndProcess
 ADR r1, Buffer
 MOV r2, #0
 ; Compute a constant, in R3, such that as the index
 ; in R2 goes from 0 to the maximum value, in R4, the
 ; result of (R2 * R3) DIV 2^24 goes from 0 to 100.
 ; R3 = (100 * 2^24) DIV R4.
 MOV r5, #100 :SHL: 24 ; So we get a percentage
 MOV r14, r4 ; R3 := R5 DIV R4
 CMP r14, r5, LSR #1
DivisionLoop1
 MOVLS r14, r14, LSL #1
 CMPLS r14, r5, LSR #1
 BLS DivisionLoop1
 MOV r3, #0
DivisionLoop2
 CMP r5, r14
 SUBCS r5, r5, r14
 ADC r3, r3, r3
 MOV r14, r14, LSR #1
 CMP r14, r4
 BCS DivisionLoop2
 ; R3 is now a simple constant
ProcessLoop
 MUL r0, r2, r3
 MOV r0, r0, ASR #24
 SWI XHourglass_Percentage ; Call with result
 LDRVCB r0, [r1], #1
 BLVC ProcessByte ; May also return V set
 BVS InternalError
 ADD r2, r2, #1 ; Move the index
 TEQ r2, r4
 BNE ProcessLoop
FinishProcess

Example programs

2-758

 SWI XHourglass_Off
ExitLoadAndProcess
 STRVS r0, [sp, #0]
 LDMFD sp!, { r0-r5, pc }

InternalError
 MOV r1, r0 ; Preserve the actual error
 SWI XHourglass_Off ; Ignore possible error
 MOV r0, r1 ; Retore real error
 CMP pc, #&80000000 ; Set V, to indicate an error
 B ExitLoadAndProcess

Or in BBC BASIC V:

DEF PROCLoadAndProcess(Name$)
 LOCAL Length%, Index%: LOCAL ERROR
 SYS "OS_File", 255, Name$, Buffer%, 0 TO ,,,, Length%
 IF Length%<>0 THEN
 SYS "Hourglass_On"
 ON ERROR LOCAL: RESTORE ERROR: SYS "Hourglass_Off": ERROR ERR, REPORT$
 FOR Index% = 0 TO Length%
 SYS "Hourglass_Percentage", (100 * Index%) DIV Length%
 PROCProcessByte(Buffer%?Index%)
 NEXT Index%
 SYS "Hourglass_Off"
 ENDIF
ENDPROC

N
etw

o
rkin

g

2-759

2

52 NetStatus

Introduction and Overview
The NetStatus module controls the display of an hourglass on the screen whenever there
is prolonged activity on the Econet.

It claims EconetV, and examines the reason for each call that is made to the vector. It in
turn makes an appropriate call to the Hourglass module, so that the appearance of the
Hourglass indicates the status of the net. The Hourglass has two ‘LEDs’, one on top and
one on the bottom:

● if only the top LED is on, then your station is trying to receive

● if only the bottom LED is on, then your station is trying to transmit

● if both LEDs are on, then your station is waiting for a broadcast reply.

It also displays percentage figures (when it is able to do so meaningfully) which show
the percentage of a transfer that has completed.

Technical Details

2-760

Technical Details
This table shows how NetStatus converts the reason codes for calls to EconetV (listed in
the chapter entitled Software vectors) into the SWI calls that it makes to the Hourglass
module:

Reason code SWI call
NetFS_Start… Hourglass_On
NetFS_Part… Hourglass_Percentage
NetFS_Finish… Hourglass_Off
NetFS_StartWait Hourglass_LEDs (both on)
Econet_StartTransmission Hourglass_LEDs (only top one on)
Econet_StartReception Hourglass_LEDs (only bottom one on)
NetFS_FinishWait Hourglass_LEDs (both off)
Econet_FinishTransmission Hourglass_LEDs (both off)
Econet_FinishReception Hourglass_LEDs (both off)

Versions of RISC OS after 2.0 also change the colour of the hourglass for Broadcast
Load and Save calls (as made by the Broadcast Loader). The colours used are:

Type of call Colours
Broadcast Load Green/blue
Broadcast Save Red/blue

