Desktop Tools
AMR draft

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:07 pm
Printed: 21 October, 1999 12:09 pm

Copyright © 1999 Acorn Computers Limited. All rights reserved.
Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

The product described in this manual is not intended for use as a critical component in
life support devices or any system in which failure could be expected to result in
personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product and its
use (including the information and particulars in this manual) are given by Acorn
Computers Limited in good faith. However, Acorn Computers Limited cannot accept
any liability for any loss or damage arising from the use of any information or
particulars in this manual.

If you have any comments on this manual, please complete the form at the back of the
manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your supplier
is available to help resolve any queries you might have.

ACORN, the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd.

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN 1 85250 164 2

Part number 0484,230

Issue 1, October 1999

Contents

Contents iii

Introduction 1
About this manual 2
Conventions used 3

Part 1 - Getting started 5

Installing Acorn C/C++ 7
Hardware requirement 7
The Install application 7
Running the Installer application 8
Environment variables and Acorn C/C++ 11

Working with desktop tools 13
Desktop tools 13
Working styles 15
Where to go from here 16

Part 2 - Interactive tools 17

Desktop debugging tool 19
Overview 19
About debuggers 20
Preparing your program 21
Starting a debugging session 23
Specifying program objects 26
Execution control 33
Program examination and modification 40
Options and other commands 45
An example debugging session 49

Contents

Make 57
Invoking Make 57
Using Make 57
Makefile format 67
Programmer interface 68

SrcEdit 71
Starting SrcEdit 71
SrcEdit menus 72
Printing a SrcEdit file 85
Laying out tables — the Tab key 86
Reading in text from another file 87
Bracket Matching 87
Throwback 88
Saving Options 92
The SrcEdit icon bar menu 92
SrcEdit task windows 94
Some guidelines and suggestions for using task windows 95
Keystroke equivalents 96

Part 3 - Non-interactive tools 99

General features 101
The Application menu 102
The Setup box 103
Output 105

AMU 109
Starting AMU 109
The Application menu 111
Example output 111
Command line interface 112

DecAOF 113
The SetUp dialogue box 113
The Application menu 114
Example output 115
Command line interface 115

Contents

Diff 117
The SetUp dialogue box 117
The Application Menu 118
Example output 119
Command lineinterface 120

Find 121
The SetUp dialogue box 121
The Application menu 126
Example output 126
Command lineinterface 127

LibFile 129
The SetUp dialogue box 129
Output 131
Command lineinterface 133

Link 137
The SetUp dialogue box 137
Output 139
Possible errors during alink stage 140
Libraries 141
Generating overlaid programs 141
Relocatable AIF images 145
Relocatable modules 146
Predefined linker symbols 147
Command lineinterface 148

ObjSize 151
The SetUp dialogue box 151
The Application menu 151
Example output 152
Command lineinterface 152

Squeeze 153
The SetUp dialogue box 153
The Application menu 154
Example output 154
Command lineinterface 154

Contents

Adding your own desktop tools 157
The FrontEnd module 158
Producing a complete Wimp application 159
The DDEUtils module 170
SrcEdit 171
Make 171

Appendices 173

Makefile syntax 175
Make and AMU 175
Makefile basics 176
Makefile structure 178
Advanced features 181
M akefiles constructed by Make 183
Miscellaneous features 184

FrontEnd protocols 187
Star Commands 187
EBNF Grammar of Description Format 187
WIMP Message returned after a* FrontEnd_SetUp 192

DDEUtils 193
Filename prefixing SWis 193
Filename prefixing * Commands 193
Long command line SWIs 194
Throwback SWis 195
Throwback WIMP messages 197

SrcEdit file formats 199
Language File Format 199
Help File Format 199

Vi

Contents

Code file formats 201
Terminology 201
Byte Sex or Endian-ness 202
Alignment 202
Undefined fields 202

AOF 203

Chunk file format 203
Object file format 204

ALF 220
Library file format 220
Object Code Libraries 223

AlF 224

Properties of AIF 224

The Layout of AIF 226
Zero-Initialisation Code 230

ASD 233

Order of Debugging Data 233

Endian-ness and the Encoding of Debugging Data 234
Representation of Data Types 235

Representation of Source File Positions 236
Debugging Data Itemsin Detail 236

ARM procedure call standard 249
The purpose of APCS 249
The ARM Procedure Call Standard 251
APCS variants 259
C Language calling conventions 261
Some examples 268
The APCSin non-user ARM modes 270

Index 273

vii

Contents

viii

Introduction

Acorn C/C++ providesaset of RISC OS desktop applicationsfor programming. These
toolsinteract in ways designed to help your productivity and make the desktop a
high quality environment for creating RISC OS applications and rel ocatable modules
from compiled languages or assembler.

The Tool s directory is where the desktop tools reside:

a0 E BCS| -DHams §AcomD Css Took
Ces c - o=
e
= I| ﬁ o E < -
bl AT oty m [0) |AesEd
:ﬂ ¥t f - 2" -
LT B el B SrcEdi Faleadrs legia T

With the exception of the Desktop Debugging Tool (DDT), all thesetools are
multitasking RISC OS applications. DDT has to operate outside RISC OSin order to
stop it dead at any moment for breakpoints etc., so is windowed but not multitasking.
The desktop tools allow you to:

I edit program source and other text files

I search and examine text files mechanically
| examine some types of binary file

I compile and link programs

| assemble assembly language programs

I construct relocatable modules

I construct programs efficiently under the control of makefiles, these being set up
from a simple desktop interface

I sgueeze finished program images to occupy less disk space
I construct linkable libraries

I debug RISC OS desktop applications interactively

I construct resource files for Toolbox applications.

The Acorn C compiler, C++ compiler and Assembler are described in the Acorn
Assembler and Acorn C/C++ manuals.

About this manual

About this manual
This volumeis organised into four parts:
I Part 1 — Getting started
I Part 2 — Interactive tools
I Part 3 — Non-interactive tools
I Part 4 — Appendices

Part 1- Getting started

This part of the manual describes how to install Acorn C/C++ and how to use the
desktop tools.

The chapters are:
I Installing Acorn C/C++
I Working with desktop tools

Part 2 — Interactive tools

This has chapters covering each of the desktop tools which you use with constant
interaction as ‘foreground’ tasks. Each has its own distinctive icon and file type. They
are the debugger, make and source text editor.

The chapters are:

I Desktop debugging tool
I Make

I SrcEdit

Part 3 — Non-interactive tools

This coversthe lessinteractive desktop toolswhich all have similar interfacesfor setting
options and running, some performing operations which can be controlled by Make. The
first chapter in this part covers the general features common to al the non-interactive
tools. The next eight chapters are ordered al phabetically and each describes an
individual tool. The last chapter describes how to add your own desktop tools.

The chapters are:

I General features
I AMU

I DecAOF

I Diff

Introduction

I Find

| LibFile

I Link

| Objdze

I Sgueeze

I Adding your own desktop tools

Part 4 — Appendices

This part of the manual gives technical details of the file formats and protocols used in
Acorn C/C++.

The appendices are;

I Makefile syntax

I FrontEnd protocols

[DDEUtils

I SrcEdit file formats

I Codefileformats

I ARM procedure call standard

Conventions used

Throughout this manual, a fixed-width font is used for text that the user should type,
with an italic version representing classes of item that would be replaced in the
command by actual objects of the appropriate type. For example:

l'ink options filenanes

This means that you type ‘link’ exactly as shown, and replace ‘options’ and ‘filenames
by specific examples.

A bold version of the same font is used for text that the computer responds with.

Hex integers are given in uppercase, and precedéX by.g.0XFEL.
(Not preceded b¥, as is the case with those of you more familiar with BBC Basic.)

Part 1 - Getting started

2 Installing Acorn C/C++

I nstalling Acorn C/C++ means setting up a suitable disc directory structure. You only
need to perform this once to set up a suitable structure.
To use Acorn C/C++ you will need to install it; booting is performed automatically.

This chapter only describes installation. The chapter Working with desktop tools
explains how to use the desktop tools.

Hardware requirement

The minimum specification of RISC OS system recommended for serious use of Acorn
C/C++ isa4MB RAM machine with ahard disc drive.

A limited subset of features of Acorn C/C++ can be used on a2MB RAM machine, but
its use is not recommended.

The Install application

Before installing Acorn C/C++ on your machine with the Install application, itiswiseto
take a backup copy of each of the floppy discs supplied with the product.

Acorn C/C++ issupplied with six floppy discs. These are not intended for use other than
with the Install application.

Running the Installer application

Running the Installer application

Take the following steps to run the Install application:

1 Insert Disc 1 (labelled Installation Disc) in your drive and click Select on the drive
icon to open its root directory.

2 Double-click on !Installer in the resulting directory display.

The Installer application then reads your current filing system and disc name, and
displays an options dialogue box:

[| Arom LG+ instalar
Deslination

Drag s dlirachong iEon B whars you woukd ke
noomd Ges ACOM CCas bobe instalec

r-nmnl!.ml: I:ul Pat | SCEI-DHarme § AcomT C+4

Opbicris

[1-" ivam before overanies '-..-' Hum Aoorn S s miroductory dermao
Careal || retal

This dialogue box allows you to specify thefiling system and disc nameto install to, and
to set various options for the installation arrangement.

The Path field displays the default filing system name and disc name forming the
destination for Installer to copy filesto. Itisinitialised with the current filing system and
disc name. If you want to specify a different destination for AcornC_C++, drag the
directory icon to the required destination. Use the Name writable field to specify aname
other than AcornC_C++.

Warn before overwrites causes Installer to display awarning message before it
overwrites existing files whose names are duplicated by new ones. This gives you the
opportunity to halt the installation if you don’t want an existing file overwritten.

Run Acorn C/C++ introductory demo allows you to specify whether you want the
introductory demonstration application to be run after Acorn C_C++ has been installed.
See overleaf for details of this application.

Canced cancels the Install process.

Install starts the installation process with the options as set.

Installing Acorn C/C++

Once you click on I nstall the following box will be displayed:

[El Insialirg
Progress
Campiste |
[Syatem is abeat 10 be Lpsted Wi ihe Acom G0+ modules
Aot | | Cominue |

From now on !Installer will ask you to insert the installation discs asiit installs the new
software. When it asks for a new disc, or displays awarning message, the bar showing
installation progress in the Complete field will change from green to red:

[El Insialirg
Progress

[Plei e nper gine 2

Aot || P—

Demonstration program

If you enabled the Run Acorn C/C++ introductory demo option, the following
window will be displayed after the installation is complete;

EIZ] _TonTmm 1
s
About Acom GG
3 =

Tha Teoloa

Moy hopanlr B |
Ssfste cn byan

margian IEadsn

e R

The demonstration toolbox program allows you to learn more about Acorn C/C++ by
clicking on various icons which open to display further information. The pointer
changes to a pointer attached to an open book if you position it over an icon that can
display additional information.

Running the Installer application

AcornC_C++ directory structure

The following directory structure is set up for you on your hard disc. It is created
if not present, or updated if it is aready there:

AcornC_C++ <System$path> | =

\ l \ |
ISetPaths ‘ Docs ‘ ’Examples‘ ’Libraries ‘ ‘ Tools ‘ amu Modules
\ \ \ \ cHt

aif IDemo C++lib lamu cc

alf IHyper clib IC++ cfront

aof IMiniApp eventlib lcc cmhg

apcs ISort renderlib Icmhg debugaif icons BorderUtii ColourDbox

asdtf IThoxCalc toolboxlib !ddt decaof icons22 DDEUtils ColourMenu

DrawFile AsmError wimplib ldecaof diff ThreeTen ddt DCS_Quit
AsmHdrs Idiff find DragAnObj Filelnfo
AsmHello find libfile DragASprit FontDbox
AsmMacro libfile link DrawFile FontMenu
AsmModule tlink objasm FilterMgr IconBar
C++Error IMake objsize FrontEnd Menu
C++Hello lobjasm squeeze Picker PrintDbox
CError lobjsize toansi TinyStubs Proglinfo
CHello IResEd topce SaveAs
CModule IResTest Scale
CStatics Isqueeze ToolBox
Dhrystone ISrcEdit Window
PrintLib ltoansi
SaveAs ltopcc
Sieve

= <System$path> gives the location of your ! System directory.

10

Installing Acorn C/C++

Environment variables and Acorn C/C++

Various Acorn C/C++ operations depend on the correct settings of environment
variables. If you carefully follow the instructions at the begining of this chapter for
installing Acorn C/C++, they should be correctly set and you do not need the following
information. These details are summarised here as an aid for tracking down any
problems you may have.

Each desktop tool, when loaded, defines an environment variable of the sort

<t ool nane>$Di r. The purpose of these variablesis to allow each tool accessto its
application directory, for example, to store options. These are not likely to become
incorrectly set and cause problems. SrcEdit can be configured with options from its
desktop interface, and also from options variables, as described in the chapter SrcEdit
later in this manual .

Run$Path

Set by: User constructed !Boot obey file.

Purpose: This specifiesalist of directory nameswhich the system searchesto find
and execute image files. When the desktop non-interactive toolsarerun,
they execute command line tools from alibrary directory.

Problems: If incorrectly set, command line tools may not be found and
non-interactive tools fail to run.

DDE$Path

Set by: The 'Run and !Boot files of the ! SetPaths application (set up by
lnstaller).

Purpose: Thisis set to the name of the directory containing the desktop tools, and
isused by Make to start tool interfaces for setting Tool options.

Problems: If DDES$Path is unset, the Make Tool options facility failswith an error
mentioning DDE: .

C$Path

Set by: The !Run and !Boot files of the ! SetPaths application (set up by
lnstaller).

Purpose: This specifiesalist of directory names for the C compiler to search for

libraries and their headers.

11

12

Desktop tools

Working with desktop tools

his chapter provides an overview of the most productive way to work with the
desktop tools to produce your programs. The chapter Installing Acorn C/C++
describes how to prepare your working environment.

Acorn C/C++ includes the following tools:

I DDT - A windowed debugger for debugging any executable image file, including
the 'Runimage file of a RISC OS application. DDT presents a windowed interface
with RISC OS style controls.

Note that as DDT has to be capable of stopping RISC OS dead at any point in a
program, for breakpoints, single stepping, etc, it cannot multitask under the
RISC OS desktop.

Make — A desktop application for constructing programs under the management of
‘recipes’ stored in Makefiles. Various types of Makefile can be rapidly constructed
using the desktop controls of Make, as well as being executed. This facility for
constructing Makefiles is known as ‘project management’ on some programming
systems for other types of computer.

SrcEdit — A text editor derived from Edit with many features for constructing
program sources and other text files.

I AMU - A compact alternative to Make for using, but not constructing, Makefiles.

I DecAOF — A utility for examining AOF files output by language compilers or
assemblers.

I Diff — A text file comparison tool.
I Find — A tool for finding text patterns in the names or contents of sets of files.

I Link — Atool for constructing usable relocatable modules, program files, etc., from
object files produced by language compilers and assemblers.

LibFile — A utility for constructing linkable library files storing general purpose
routines for re-use in more than one program.

I ObjSize — A utility to measure object file size.

I Squeeze — A tool which compacts finished program images so that they occupy
much less disc space and load faster.

13

Desktop tools

Each of the tools listed above is described in more detail in its own chapter later in this
volume. The language specific tools are described in the language user guides
accompanying this manual.

Aswell as performing individual tasks, several of the desktop tools cooperate in ways
designed to enhance your productivity. An example of thisis throwback. When a

language compiler or assembler detects an error in a program source file, it can cause
throwback — opening a SrcEdit window for immediate correction of the offending
program line. Another example of cooperation is the ability to drag an output file from
one desktop tool to the input of another appropriate desktop tool.

Interactive and non-interactive tools

The desktop tools are divided into two categories — interactive and non-interactive. The
non-interactive tools are those that have options set and then are run, without any further
interaction with you until the task completes or is halted. The interactive tools are those
that operate with constant interaction with you, such as the source editor SrcEdit.

In the list of tools above, the first three (DDT, Make and SrcEdit) are interactive tools,
and the rest are all non-interactive. The chapters describing each tool are organised into
parts of this manual describing each category of tool. The non-interactive tools all have
similar user interfaces, and the features common to all of them are described in the
chapterGeneral features on page 101.

Entering filenames

14

Many of the desktop tools require you to specify file or directory names. The interactive
tools each have file types that they ‘own’, which you can double click on in directory
displays to start activities. These are:

I DebugAlF — execution of one starts a DDT session. Files of this type are displayed
in directory displays with the icon:

Vi

I Makefile — double clicking on one loads it into Make (and may start a Make job).
Files of the type Makefile are displayed in directory displays with the icon:

I Text — double clicking on one starts a SrcEdit edit.

Working with desktop tools

None of the non-interactive desktop tools own afile type. Input files are specified to
these tools by dragging them to their icon bar icons from adirectory display or by typing
their namesinto awritableicon in adialogue box or menu field. When typing filenames
into awritable icon, enter absolute filenames such as:

adf s: : dharris. $. AcornC_C++. Exanpl es. ! TbhoxCal c. 0. Mai n

To reduce the amount of typing required, any writable icon on a dialogue box that
accepts afilename or directory name can be set by dragging afilename from adirectory
display toit. For example, dragging a filename from a directory display to the Files
writable icon on the Link SetUp dialogue box adds it to the list of input files already

specified:
5 | Linkas
Finz I-l'r! B AasernC Cos Engmples TBoxCak o Mars
Cpdons
w AIF) Falceatabis AF | Detry

J Mndule J Binary O L

Cancal | | Pury

Many program source files and Makefiles contain filenames, for example in an
assembler program line such as:

GET “. h. SW Nanes

RISC OS provides only one current directory, but many tasks (such as assembly
processes) can be multitasking, running at the same time. Thus the concept of work
directory isused in Acorn C/C++. This can be considered rather like a current directory
for each task, and file searching is performed relative to this. See the section on each tool
to see the way the work directory is set and used by that tool. Most of the simpler tools
do not require awork directory.

Working styles

The desktop tools support two main styles of workinmganaged andunmanaged
development. These differ only in the way you construct your finished programs from
sources, not the way you write or debug them, and you can mix and match the two styles
as you wish.

Managed development makes use of Makefiles to manage the construction of your
finished programs. A Makefile is a ‘recipe’ for processing your sources and linking the
object files produced to form the usable program. The tools Make and AMU can both
execute the commands in a Makefile running other tools to perform a make job. The tool
Make also constructs Makefiles for you, avoiding the need for you to understand their

15

Where to go from here

syntax, and making it quick and easy to do this. The main advantages of managed
development are: timestamps of files are examined during a make job and no
unnecessary reprocessing of unaltered program sources is performed; programs are
constructed consistently, following the same recipe each time, even when run by
different people. These advantages make managed development the best style for the
development of larger programs with source split into several source files.

Unmanaged development makes use of each individual tool directly to process the files
as required to construct your programs. This can offer the quickest way of constructing
small programs.

When Booting for unmanaged development you have to load each tool that you wish to
use, but when Booting for managed devel opment you only need to load Make (or
AMU).

When working in either style, it is recommended you place each program project in a
separate subdirectory, in the same way that the program examples are arranged. You can
place the source, header and object files in suitable subdirectories of the project
directory. See the accompanying language specific manuals for more details of
subdirectory conventions. Source may be placed elsewhere, but this can make it more
difficult to rename or move whole projects to other directories or filing systems.

Where to go from here

16

If you have studied this chapter in detail you now understand how to construct asimple
runnable program from text sources. You may now wish to load various desktop tools
and experiment with their use, and there are further chapters that may provide useful
genera information.

Each desktop tool, such as the text editor SrcEdit and debugger DDT, has a chapter
describing it, either in this user guide or in one of the accompanying manuals. If you
intend to make much use of any particular tool, its chapter may prove useful reading
next.

A large number of the desktop tools are classified as ‘non-interactive’, and have similar
interfaces. The chapt&eneral features on page 101 covers the interface features of this
class of tool.

Part 2 - Interactive tools

17

18

4 Desktop debugging tool ®

his chapter describes the desktop debugging tool (DDT). DDT is an interactive aid

to debugging desktop or non-desktop programs written in compiled languages such
as C, Pascal or Fortran. DDT can a'so be used to debug programs written in ARM
assembler using ObjAsm. It can be used on any of the Archimedes range of computers
running RISC OS 2.00 or later.

Overview

Although DDT can be used to debug desktop programs, and provides a windowed

interface, it is not atrue multitasking desktop program. Thisis because DDT hasto be

able to halt the RISC OS desktop at any point for single stepping, breakpoints etc. This

means that its interaction with other RISC OS applicationsis limited in certain ways:

I When the debugger is active (i.e. when a program is halted under control of the
debugger) all other tasks are halted until execution of the program is resumed.

Note: You can alwaystell when the debugger is active, because the pointer will
change to a No Entry sign if you move it outside the debugger’s windows:

—

I Only one application may be running under the debugger at any given time.

The windowed interface of DDT is designed to be easily understood by RISC OS
desktop users, and to facilitate this it duplicates many RISC OS features. However, it
uses visual details such as unusual colours to act as reminders that it is not operating as
a true desktop multitasking program.

Topics covered in this chapter

I the sectiorAbout debuggers introduces the concept of debuggers in general and
describes the facilities provided by DDT.

the sectiorPreparing your program describes how to prepare your program for use
with DDT.

the sectiorfarting a debugging session describes how to invoke the debugger on
your program.

19

About debuggers

I section Specifying program objects describes the way in which various objectsin
the program you are debugging, such as variable names, procedure names and line
numbers are specified.

I section Execution control describes how to control execution of a program running
under the debugger.

I section Program examination and modification describes the debugger’s facilities
for displaying various objects in the program being debugged and the facilities for
changing variable, register and memory contents.

I sectionOptions and other commands describes the options in the options dialogue
box and other commands which are not covered by any of the previous topics.

About debuggers

This section is aimed mainly at readers who haven't used a program debugger of any
sort before. However, others may find it useful reading, as it introduces some of the
facilities provided by DDT.

Anyone who has written a program more than about ten lines long has had recourse to
debugging techniques: the tracking down and removal of errors. The form this takes
depends on many things, not least the language in which the program is written.

Some languages provide primitive debugging facilities of their own. For example ANSI
C provides thassert macro which can be used to ensure a condition is true, as in the
following example:

assert(i >= 0); /* Ensure following loop is finite */
while (i--) { ... }

Some language implementations provide additional debugging facilities. A description
of the debugging facilities provided by Acorn’s release of ANSI C may be found in the
accompanyingicorn C/C++ manual.

Often, however, it is left to the programmer to pkaate information in the program
itself. For example you might trace the value of the index variable in a while loop as
follows:

while (i--) { fprintf(tracefile, "i = 9%\n"); ... }

Such additions to the program can be useful, but are tedious to use in compiled
languages, because every time you want to change the debugging statements, the
program has to be recompiled. There is also the possibility that the debugging
statements themselves have undesirable side-effects which contribute to the ill-health of
the program.

20

Desktop debugging tool

Planting trace information in assembly language programs is more difficult. For
example, displaying the contents of all ARM registersisanon-trivial code fragment in
ARM assembler.

A debugger enables you to execute your program in acontrolled environment where you
can stop execution, examine and alter variables, set breakpoints, single step through a
program and ‘watch’ particular variables for changes.

DDT provides the following debugging facilities:

| Start program execution and continue after program execution has been stopped
I Single step program execution, by source statement or ARM instruction

| Stop program execution at a specified program location

| Stop program execution when a specified variable changes its value

| Stop program execution at any time on request

I Trace program execution continuously

I Trace procedure calls

I Trace changes to a specified variable or memory location

I Display source text, symbolic disassembly, variables, registers, memory contents
and stack backtrace information

I Alter variable values, register contents or memory contents

I Protect sensitive areas of memory against being accidentally overwritten by your
program.

Preparing your program

This section describes how to prepare your program for use with DDT. DDT uses special
information in the program being debugged, which provides DDT with information
about the source code that generated the program. This information is not automatically
included in the output of the compiler. This is mainly for reasons of efficiency: programs
which contain debugging information are larger, take longer to compile, and run more
slowly than those with no debugging information.

Compiling

You enable the generation of debugging information witiDiéug option on the
compiler SetUp menu. If you are using the compiler from the command line usg the
flag to enable debugging information with the Acorn ANSI C compiler (other compilers
may use different flags, thougly is common across a wide range of compilers.

21

Preparing your program

22

Because each module of a program can be compiled with its own debugging
information, you need only specify debugging for suspect modules. Well-proven
modules in which you have complete faith can be compiled with no debugging
information, whereas newer, less reliable code can have debugging information enabled.

Turning on debugging inhibits optimisation, and reduces the speed of execution of your
program even when you are not debugging it. This of course does not matter when you
are using the debugger, but for maximum speed, programs should be compiled without
debugging information, especially for production builds.

Note that if you are using an automated program construction tool, such asthe Make
utility, you may have to delete the object files of the modules you wish to compile with
debugging information when you enable the Debug option. Thisis because the modules
are not recompiled until the object files are either absent, or out of date with respect to
the source files, so you must delete the object files to force recompilation.

Linking

When linking a program to be debugged, you must instruct the linker to include the
debugging information generated by the compiler. To do this, enable the Debug option
on the link menu, or, if you are using the linker from the command line, by using the

- debug flag.

If you are using Acorn’s ANSI C compiler to perform the link stage (i.e. without the
Compile only option enabled on the compiler menu, or without-tbdlag from the
command line) the compiler will automatically instruct the linker to include debugging
information if the compiler’s debugging option is enabled.

The linker also generates its own debugging information. This debugging information is
used by DDT to provide low-level or symbolic debugging facilities. If you do not wish
to use source level debugging facilities, you can enableebeg option on the linker
without enabling th®ebug option on the compiler.

Note that 'Runimage files compiled or assembled and then linked with Debug enabled
are much larger than those produced without debug information. This may require an
increase in the WimpSilot size specified in your 'Run file, otherwise the following error
may be produced at run time:

No writable menory at this address

If you are writing in assembler using ObjAsm you may wish to use the KEEP directive,
which instructs the assembler to keep information about local symbols in the symbol
table. These will be included in the program when linked with debugging enabled.

You might like to try preparing the following small program for use with the debugger,
using the methods described above.

Desktop debugging tool

1 #include <stdio. h>

2

3 int main(void)

4 {

5 int world;

6

7 for (world = 0; world < 100; worl d++)

8 printf("Hello, Wrld %\n", world);
9 return O;

10 }

Starting a debugging session
You can start a debugging session in one of the following ways:

Double click onthe! DDT application. This will place the debugger’s icon on the
icon bar. Then drag the program to be debugged to the debugger’s icon. You can
drag either a program image or an application directory. If you drag an application
directory, the program image within that directory must be called é¢itkem or

I Runl mage.

ChooseDebug from the debugger application menu. This will produce a dialogue
box with two writable icons, one for the name of the application to be debugged, the
second for any arguments the application may take. You can specify the program
name by dragging an application to the writable icon. When the writable icons have
been filled, clicking th®©K button will invoke the debugger.

Enter the following *Command:

*DebugAl F program [ar gunent s]

wherepr ogr am is the name of the program to be debugged aarglinent s

are any command line arguments that program may take. You can enter this
command from the supervisor prompt (outside the desktop), from the Shell CLI
prompt (obtained by choosing th€ ommands option on the Task Manager menu)
or from a task window CLI prompt.

Try invoking the debugger on the sample program shown at the end of the last section.

23

Starting a debugging session

24

Once you have started a debugging session in one of the above ways, two debugger
windows will be displayed as follows:

=]
=0

s i

B

Lp{at
Sl
:.-'
adad] [

RO area limit net on page bowndaru. last page met protected

The upper window is the Context window. The title bar contains the name of the
program being debugged. The Context window displays the source text or symbolic
disassembly associated with the current Context or PC location.

When you start a debugging session, the Context window initially displays a symbolic
disassembly, like that shown above. Thisis a disassembly of the run-time system
initialisation code. The arrow symbol (-) to the left of the window shows the current
PC location. The debugger does not display your source code at this stage because the
program has not started executing your code, it still hasto execute theinitialisation code.
Once execution reaches your code (i.e. the first instruction of mai n) your source code
will be displayed.

The lower window is the Satus window. The title bar contains the current status of the
program being debugged. The Status window displays error and informational

messages, in addition to any data displayed by the debugger’s display, trace and
watchpoint facilities. The Status display scrolls when any new information is displayed.
You can use the scroll bar to examine earlier contents of the status display.

Some messages that may appear in the Status window at this stage are:
No debuggi ng i nformation avail abl e

This means that you are debugging a program which has not been linked with debugging
information. No source-level or symbolic debugging facilities are available, and
debugging is limited to machine-level debugging (i.e. everything must be specified in

Desktop debugging tool

terms of machine addresses). If you have forgotten to link the program with debugging
information you should quit the debugging session, relink the program with debugging
enabled and start the debugging session again.

No source |evel debugging information

This means that you are debugging a program which has been compiled without
debugging enabled. No source-level debugging facilities are available, symbolic
debugging facilities are available (i.e. objects can be specified in terms of link time
symbols). If you have forgotten to compile the program with debugging information,
quit the debugging session and recompile the program with debugging enabled.

RO area limt not on page boundary, |ast page not protected

This message occurs when memory protection is enabled (asit is by default) and the last
part of the code or read only areais not page aligned. This means that the last page of the
read only area cannot be protected against accidental writes, since writing to data, or a
read/write areawhich immediately followsthe code area, would cause an erroneous data
abort. You can ignore this message. Future versions of the linker may align the areas on
page boundaries when linking with debugging enabled.

Can't set breakpoint on procedure main

When a debugging session is started the debugger automatically tries to set a breakpoint
on main if the Sop at entry option isenabled (asit isby default). If the address of main
cannot be determined, because, for example, the modul e contai ning the procedure main
has not been compiled with debugging information enabled, or, the program is not
written in C, then the above message will be displayed.

Try moving the pointer completely outside the debugger’s windows. The pointer will
change to a No Entry pointer, indicating that the debugger is active and you cannot select
anything outside the debugger’s windows. Moving the pointer back inside the
debugger’s windows changes it back to the usual arrow pointer.

25

Specifying program objects

Clicking Menu on either debugger window produces the following menu:

Jingle step "3
Lall
Returs
Breakeaink
Batcheaink
Trace
Conkext
Digpl sy
Change
Log

Find
lptipas
#onnands
Help

Quik L

' .
=]
e ol ol o

e ol b o ol ol

Continue, Singlestep, Call, Return, Breakpoint and Watchpoint are explained in the
section Execution control on page 33.

Trace, Context, Display and Change are explained in the section Program examination
and modification on page 40.

Log, Find, Options, Help, Quit and * Commands are explained in the section Options
and other commands on page 45.

Specifying program objects

26

Once the debugger is running, the program can be executed, single stepped, have its
variables examined or altered and so on. All of these facilities are described in the
following sections. However, before you can use these facilities, you must know how to
refer to certain program objects. Variable names, line numbers, procedure names and
memory addresses all have a syntax which must be used if you are to reference the
desired object.

The following notation will be used in describing the syntax:
I Aniteminsquare brackets ([]) is an optiona item which can be omitted if desired.

I Aniteminbraces ({ }) isan optional item which can be repeated as many times as
desired.

I Aniteminitalicised text isanon-terminal item, i.e. anitem which must be replaced
by a suitable string of characters.

For example, an optional, comma-separated list of numbers would be denoted by:
[nunmber{, nunber}]

Desktop debugging tool

Procedure names

Procedure names are used, for example, when setting a breakpoint on entry to a
procedure. The syntax for a procedure nameis:

[rodul e:] { procedure:} procedure

where nbdul e isthe name of aprogram module and pr ocedur e isaprocedure name
within that module. Each procedure namein the list of procedure names refersto a
successive procedure in the textual nesting of procedures. The module name is the | eaf
filename of the compiled source file. For example, consider the following program
fragment stored infilepas. t est .

program raytrace(i nput, output);

var count : integer;

procedure pixel (x, y : integer);

var colour : integer;

function reflect(x, y : integer; angle : real)
i nteger;

begin (* body of reflect *) end;
begin (* body of pixel *) end;
begin (* body of raytrace *) end;

The full name for functionr ef | ect would be:
test:raytrace: pi xel : refl ect

that is, procedurer ef | ect contained in procedure pi xel contained in procedure

rayt r ace (the debugger treats the entire Pascal program as one large procedure)
contained in modulet est (module names do not generally make much sense for

Pascal, since standard Pascal has no facilities for separate compilation, but many Pascal
implementations, including Acorn’s ISO Pascal, have extensions to allow separate
compilation).

Note: Some Pascal implementations on Acorn computers do not represent procedure
names in the manner described above. Instead, they generate a new procedure name at
the outermost level by concatenating enclosing procedure names to the current
procedure name separated by a dot. Also, they do not generate a pseudo-procedure for
the whole program. Thus, with such an implementation, the full name for function

reflect would be est : pi xel . refl ect.

You do not need to type the full name every time you wish to refer to a procedure: Since
the prefixed module name and procedure names are optional they can be omitted, and
the procedure referred to by its name alone (e§! ect orpi xel . ref |l ect inthe

above example). Sometimes it will be necessary to enter a longer version of the
procedure if there are two or more procedures with the same name.

27

Specifying program objects

28

Suppose in the above example there was a procedure:
test:raytrace:line:reflect

ref | ect onitsown would be ambiguous, so you would have to enter

pi xel :reflect orline: refl ect tospecify which oneyou meant. Notethatitis
still not necessary to enter thet est : rayt r ace prefix, sincethel i ne or pi xel
prefixes are sufficient to render the procedure name unambiguous.

Similarly, suppose you had two C modules called qui ckdr awand sl owdr aw, each
containing a static function ci r cl e. In this case you would need to enter either

qui ckdraw: ci rcl e or sl owdr aw: ci r cl e to indicate which circle function you
were referring to.

Even if two procedures have the same name, it may not be necessary to enter more than
the procedure name on its own. When looking at a procedure specification, the debugger
searches back along the dynamic call chain (i.e. the chain of procedures called to reach
this point in the program) to find a procedure name which matches the first name in the
procedure specification. Having found this, it matches the rest of the procedure
specification against textually nested procedures contained within the first procedure
found.

For instance, in the above example withtwo r ef | ect procedures, if the program was
stopped (at a breakpoint, perhaps) at some pointin pi xel : refl ect ,thenrefl ect

onitsownwouldrefertopi xel : ref | ect , sinceonlooking at the dynamic call chain
the debugger would find that it wasin aprocedure called r ef | ect , and would match

that against the procedure specificationr ef | ect .

Variable names

Variable names are used, for example, when setting a watchpoint. The syntax for a
variable nameis.

[procedure-specification:][line nunber:]variable

where pr ocedur e- speci f i cat i onisaprocedure specification asdescribed in the
section above, [i ne numnber isaline number in asourcefileand vari abl e isthe
name of avariable.

Asinthe case of aprocedure specification, the debugger triesits best to match avariable
name given to it, by first searching back along the dynamic call chain, and then
searching the global variables, so it is usually not necessary to specify more than the
variable name on its own.

Inther ayt r ace example above, if the program was stopped at some point in the
functionr ef | ect thenx,y and angl e would refer to the arguments in function
refl ect, col our onitsownwould refer to the local variable col our in procedure

Desktop debugging tool

pi xel (since the debugger searches back the call chain and finds procedure pi xel
containing avariable col our). Thevariable count would refer to the global variable
count inprogramr aytrace.

In some cases, however, it may be necessary to specify more information about the
variable; suppose, for example, you wanted to examine the arguments x and y to the
procedure pi xel . Specifying X ory on its own would display the x or y argument in
functionr ef | ect so you must specify pi xel : x or pi xel :y.

There may still be some ambiguity in languages other than Pascal. In Pascal you cannot
declare local variables within a program block (i.e. between abegi n. . . end pair),
however C allows declarationsin local blocks. Consider for example the following code
fragment as it would be displayed in the debugger’s source window:

DDT: adfs::HardDiscy.$.ddt.man.eval

HE {int logical{int a, int b, int op)

Hg int tmp; /% tmp used in calculating a op b #/

119 if (op == OP_GT Il op == DP_GE) { AN TR EE V)

i%g int tmp;

122 op = op == OP 6T ? OP_LE : OP_LT; /% Change to {= or { %/

123 tmp = a; a=Db; b = thp; /% and swap arquments */

124 13 &
B

The are two declarations bfip in| ogi cal , sot np orl ogi cal : t np may be
ambiguous. In this case you must specify a line number before the variable name to
remove the ambiguity.

For example, to refer to tharp variable in the outer scope (i.e. at the function level)
you could enter:

117:tnp

or

| ogi cal : 117: tnp

To refer to the np variable in the inner block, use:
120: tnp

or

| ogi cal : 120: t np

The line number should be the line number of the declaration of the variable (in this case
117 or 120). The line numbers are displayed in the source window, so it is quite easy to
find the line number of the declaration.

29

Specifying program objects

The syntax described above is sufficient to refer to all textually nested variables.
However, variablesin earlier instances of arecursive or mutually recursive procedure
cannot be accessed. For example:

voi d hanoi (int src, int dest, int via, int n)

{
if (n>1) {
hanoi (src, via, dest, n - 1);
hanoi (src, dest, via, 1);
hanoi (via, dest, src, n - 1);
} else
printf("Mve disc frompeg %l to peg %@\n", src,
dest);
}

Suppose thisfunction is called with n = 3 and that it recurses until it hits abreakpoint on

thepri nt f whenn=1. Thereisno direct way torefer to thevariables sr ¢, dest and

Vi a inan outer call when n=2 or 3 since any reference to these variables will refer to

the variables in the call with n = 1. What you can dois, use the Context option on the
debugger’s main menu (described in the sed®imgram examination and modification

on page 40) to change the context to an outer call on the stack. Since the debugger
searches from the current context outwards, you can now specify the variable as per
normal. The debugger will ignore the variables in inner calls and use the variable in the
current context.

Expressions

Several DDT commands (for examésplay Expression) may take arbitrary
expressions. The syntax for these expressions is based on that found in C.

The following table summarises the operators available along with the precedence of
each operator.

1 @) grouping, e.ga* (b+c)
[] subscript, e.g.sprinme[n] ,matri x[1] [2]
. record selection, e.gec. field,a. b.c
-> indirect selection, e.g.ec- >next is(*rec). next

2 ! logical not, e.g! fi ni shed
~ bitwise not, e.g-mask
- negation, e.g. -a
* indirection, e.g. *ptr
& address, e.g. &var

30

Desktop debugging tool

3 * multiplication, e.g. a* b
/ division, eg.c/ d
% remainder, e.g. a%b isa- b*(a/ b)
4 + addition, e.g. a+1
- subtraction, e.cb-d
5 >> right shift, e.gk>>2
<< left shift, e.g2<<n
6 < less than, e.qa greater than, e.q>10
<= less than or equal to, eqx=d
>= greater than or equal to, elkgz=5
7 I= not equal to, e.count ! =l i m t
8 & bitwise and, e.g. & mask
9 | bitwise or, e.gml | &0100

The lower the number, the higher the precedence of the operator. Note the syntax for
subscripting and record selection. The object to which subscripting is applied must be a
pointer or array hame. The debugger will check both the number of subscripts and their
bounds in languages which support such checking. A warning will be issued for
out-of-bound array accesses. As in C, the name of an array may be used without
subscripting to yield the address of the first element.

The prefix indirection operatdr is used to dereference pointer values, in the same way
as Pascal’s postfix operatdr Thus ifpt r is a pointer type’; pt r will yield the object
it points to (apt r ~ in Pascal).

To access the fields of a record through a pointer, you can eitheriusep) . fi el d,
or the C ‘shorthand’ notationecp- >fi el d.

If the lefthand operand of a right shift is a signed variable, then the shift will be an
arithmetic one (i.e. the sign bit is preserved). If the operand is unsigned, the shift is a
logical one, and zero is shifted into the most significant bit.

If incompatible types are used during expression evaluation, the debugger will print a
warning message, but evaluation will continue.

31

Specifying program objects

32

Constants may be integers (to the base specified in the Base option), hex integers
(preceded by &) character constants, strings or floating point numbers. The following
show examples of each:

32768 Integer in the currently selected base
&8000 Hex integer

3. 2768e4 Floating point number

A Character constant

"Hel | o, World" String

Addresses & low-level expressions

This section describes the syntax for low-level expressions. It is directed mainly at
assembly language programmers. You can skip thisif you will only be using the high
level language debugging facilities.

The syntax for alow-level expression (as used, for example, when setting a breakpoint
on amemory address or displaying a disassembly or memory dump) is as follows (an
understanding of BNF is assumed):

expr ::= value + expr | value | expr
value ::="& hex-nunber | nunmber | synbol

where hex- nunber isahexadecimal number, number isanumber in the default base
(hexadecimal if no default base specified) which must start with a digit in range 0...9
andsynbol is a low level symbol in the debugging information produced by the linker.

Examples:
mai n Address of functiomai n.
mai n + &14 Five words intarai n.

8000 Start of image (assuming the image has not been relocated and the default base
is hex.)

| mage$$RO$$Base Preferred way of specifying base of program.

Desktop debugging tool

Execution control

This section describes how you can control the way in which the debugger executes your
program.

Continue

Continue starts or restarts execution of the program. Execution continues until one of
the following events occurs:

I awatchpoint changes or is cancelled
I theprogram runs to completion
I anerror or abort condition occurs.

You can interrupt execution of the program at any time by pressing Shift-F12. Note that

if another task is executing when you press Shift-F12 you may need to generate an event

to force execution to return to the program before the Shift-F12 interrupt will be noticed.

The simplest way to do this, usually, is to click on the program’s icon on the icon bar, or
click on one of its windows.

As the debugger sets a breakpoint on proceaare, you can usually uséontinueto

start execution of the program and get to the first line of your source text. You cannot do
this if

I you have disabled th&op at entry option, or

I theCan't set breakpoint on main message appeared when you started
the debugging session.

Note that if you have any watchpoints set, the instructions are single stepped instead of
executed and the watchpoints are checked after each instruction. If any have changed,
the single stepping is stopped at that point. Thiswill be completely transparent, except
that the program runs more slowly than normal.

You can use Ctrl-C as ashort cut for Continue.

33

Execution control

Single step

Single step alowsyou to step execution through one or more source statements or ARM
instructions. Choosing Single step produces the following dial ogue box:

4] bisgle step
[+ Etep inbe procederes
_)Gtep by source stabesent
i Etep by BN instruction

s, of steps: Dlu__l|

No. of stepsallowsyou to enter the number of statements or instructions to be executed.
The Step by sour ce statement and Step by ARM instruction radio icons allow you to
specify whether the contents of No. of steps should be treated as a source statement
count or an ARM instruction count.

The Step into procedur es option icon selects whether procedure calls should be treated
as asingle source statement / ARM instruction or whether single stepping should
continue into the procedure call.

Note that the debugger cannot detect certain types of procedure calls, for example, cals
viafunction variablesin C. In these cases the debugger will continue stepping into the
procedure, regardless of the setting of the Step into procedur es option.

Note for assembly language programmers: The debugger treats BL instructions as
procedure calls, so if some other instruction is used to call a procedure, thiswill not be
detected by the debugger. For instance, consider the following example, which might be
produced by the C compiler when calling via a function variable.

MM r, pc ; Setuplink. PC = current instruction + 8
LDRpc, [sp, #o_fn] ;LoadPC from function variable on stack
; Returns here

You complete the Single step dialogue by clicking on OK or pressing Return. The
specified number of statements or instructions are then executed.

Notethat if you are currently stopped at an ARM instruction for which thereisno source
information, stepping one source statement will step ARM instructions until an
instruction for which source information is available is reached. This can be used when
you initialy start adebugging session, and wish to step to thefirst source statement to be
executed. Thisis usually thefirst instruction of mai n for C programs, but need not
necessarily be so, if, for example, the module containing mai n was not compiled with
debugging information.

34

Desktop debugging tool

You can use Ctrl-S as ashort cut for single stepping 1 instruction or source statement.
The Sep into procedures and Sep by sour ce statement / Sep by ARM instruction
are determined by the current settings in the Single step dialogue box (i.e. the settings
when the dialogue box was |last displayed).

Call

Call alowsyou to call anamed procedure. Choosing Call produces the following
dialogue box:

A |
| | [or]

The writable icon allows you to specify the name of the procedure to be called. You can
specify arguments to the procedure in acomma-separated list in round brackets after the
procedure name.

The arguments must be word-sized objects (e.g. integers or pointers) or floating-point
values. Floating-point arguments occupy the next two adjacent ARM registers or stack
words as described in the Arm Procedure Call Standard (i.e. floating-point arguments
are not passed in floating-point registers).

Completethe dialogue by clicking on OK or pressing Return. The specified procedureis
called with the arguments on the program’s stack, and in ARM registers RO - R3.

Note that the program’s stack pointer must be initialised before attempting to call a
procedure: calling a procedure without a valid stack pointer may result in a Data abort or
Address exception. Therefore, if you are debugging a program written in C, you must
ensure you have executed the run-time system initialisation codeQgitigue or

Single step as described above. If you are debugging a program written in assembiler,
you must ensure that you have executed your own initialisation code, which must
initialise the stack pointer.

Return

Return allows you to return from the current procedure. ChodRigigrn produces the
following dialogue box:

C fetues
Valwe: | | [K]

You can enter a value to be returned from the procedure in the value writable icon. This
may be either an integer or floating-point value. If you do not specify a value, a default
value of O (or 0.0 for floating-point values) is used.

35

Execution control

Note that the Return option returns from the procedure in the current context. If you
used the Context option to change the current context to an outer context on the stack n
on the debugger’s menu, tReturn option will return from the procedure in the
selected context, rather than the currently executing procedure.

Breakpoint

36

Breakpoint is used to add and remove breakpoints. Chodirgkpoint produces the
following dialogue box:

bt
_'

[at Procedure || at Line || at Bédress
| an SHI |[|| King avent It|| Repove |

| List | | Remewe all |

Choosing one of that Procedure, at Line or at Address buttons sets a breakpoint at

the procedure, source line number or memory address entered in the associated writable
icon. The syntax for specifying these objects is described in the s§otaifying

program objects on page 26.

Choosing then SWI button causes the debugger to stop when the named SWI is called
by the debuggee. SWI names are specified as iRIBE OS Programmers Reference

Manual except that a leading ‘X’ is ignored and case is ignored when matching SWI
names.

Choosing then Wimp event leads to the following dialogue box:

— Event selection:
_|Hull __|Eedraw Hindow __|Serall Reguest
_ |Open Windew |Clase Mindow | House Click
_|Pointer Leaving Hindow __|User Drag Bax
_ |Poister Entering Mindou | Key Pressed
_|Lose Caret _ |Gain Caret _ | Herm Selection
_|User Messame |Hessage Recorded |Message ek

Cw

Desktop debugging tool

Select the set of Wimp eventsyou areinterested in and click OK. The debugger will stop
execution of the debuggee when it receives one of the specified events and will display
amessage describing the event received.

For example:
Event = User nessage, action = 0 (Quit)

Choosing Remove removes the breakpoint specified in the associated writableicon. The
breakpoint may be specified as a breakpoint number, as given in the list breakpoints
command, preceded by a hash (#) or it may be specified exactly as specified when
setting the breakpoint.

List displaysalist of al currently set breakpointswith breakpoint numberswhich can be
used when removing individual breakpoints.

Remove all removes al current breakpoints.
You can use Ctrl-B as a short cut to produce the Breakpoint dial ogue box.

Breakpoints may also be set or cleared by clicking on alinein a source or disassembly
display. Clicking on aline sets a breakpoint on the line. The breakpoint is shown by the
breakpoint marker (afilled in circle) to the left of the line. Clicking on aline which
already has a breakpoint removes the breakpoint.

Watchpoint

Choose Watchpoint to detect when a variable or memory location changes its value.
When awatchpoint isin force, instructions in the program are single stepped instead of
being executed and the values of the variables being watched are checked after each
instruction or source statement executed. Watchpoints may be set on simple variables
such as integers or more complex variables such as structs and arrays. Setting a
watchpoint on awhole array can be very useful if, for example, you are debugging a sort
routine; you can track all changesto the array asit is sorted.

Since the debugger is single stepping, execution can be quite slow, typically between 4
and 10 times as slow as normal execution. If thisistoo slow to be practical, the best
approach isto try to isolate the section of code under suspicion, set abreakpoint on entry
to this section of code, and only set the watchpoint(s) when the program stops at the
breakpoint.

37

Execution control

Choosing Watchpoint produces the following dial ogue box:

[Mafebgaint |
! B
|-:|n l.'iriih]r| | i Fepory -

List | | Renove all |

Selecting on Variable or on Memory sets awatchpoint on the variable or memory
location specified in the associated writable icon. The syntax for specifying variables or
memory addresses is described in the section Specifying program objects on page 26.

Remove removes the watchpoint specified in the associated writable icon. Aswith
breakpoints the watchpoint to remove may be specified as a watchpoint number
preceded with a hash (#) or exactly as specified when setting the watchpoint.

List displaysalist of watchpoints currently in force. Remove all removes all
watchpoints.

Note that if you are watching alocal variable (i.e. avariable stored on the stack) the
watchpoint will becomeinvalid on exit from the procedure containing the variable being
watched. The debugger detects this and stops execution with the message:

Wat chpoi nt wat chpoi nt di scarded on exit from procedure
where nat chpoi nt isthe name of the variable being watched.

Also note that when you are watching a variable which is stored in aregister, the

debugger may erroneously report a change in the variable’s value. This is because the C
compiler does not allocate registers to variables over the whole range of a procedure.
Instead, it allocates the registers over the lifetimes of variables (i.e. the range of the
procedure in which the variable is actually used). Outside this range a register may be
used for other purposes (such as temporary values in calculations). It may even be
allocated to another variable, if the lifetimes of the variables do not overlap. Thus the
debugger may report a change in the variable when it sees the register changing, but of
course the register is no longer being used to store the variable.

You can use Ctrl-W as a short cut to produce the Watchpoint dialogue box.

38

Trace

Desktop debugging tool

Trace alows you to select a set of actions about which you wish to be informed. When

one of these actions occurs a message to this effect is displayed in the debugger’s status
window. For certain actions the source / disassembly display is updated to show where
the action occurred.

The actions which you can trace are as follows:

Execution

The source / disassembly display is updated for every ARM instruction or source
statement executed (ARM instruction if Machine-level debugging is enabled, source
statements otherwise). The effect is to produce a continuous execution display in the
context window.

Breakpoints

When a breakpoint occurs, instead of stopping execution, a message is displayed in the
Status window:

Break at breakpoi nt

wherebr eakpoi nt is the location of the breakpoint. The source / disassembly display
is updated to show where the breakpoint occurred. Execution then continues after the
breakpoint.

Watchpoints
When a watchpoint changes, a message of the following form is displayed:
WAt chpoi nt wat chpoi nt changed at [ocation

whereuat chpoi nt is the name of the variable being watched, landat i on is the
program location where the watchpoint was changed. If, for example, you are debugging
a sort routine and have a watchpoint on the array being sorted, you can select watchpoint
tracing to provide a continuous update of all changes to the array.

Procedures
When procedure tracing is enabled, a message of the following form is displayed:
Ent ered procedure procedure nane

This can be useful if you wish to quickly locate the procedure where a fault is occurring.

Event breaks

When a Wimp event break occurs execution is not halted. Instead of stopping at the
breakpoint a decoded form of the event data is displayed and execution continues.

39

Program examination and modification

SWI breaks

When a SWI break occurs execution is not halted, a message is displayed:
Break at SW SW Nane

The SWI is then executed and execution continues after the SWI breakpoint.

Choosing Trace from the debugger’s menu produces the following dialogue box:

|Execut fan
_|Breakpainks
| Batch#ainis
| Procedaraes
_|Event Breaks
| ST brwaks

[® |

Select the set of actions you are interested in tracing and clioiKo message
confirming your selection will be displayed. You won't notice the effects of enabling
procedure tracing until execution of the debuggee is resumed.

Program examination and modification

Display

This option allows you to display information about the program being debugged. You
can examine source text, instruction disassembly, variable contents, memory contents,
stack backtrace information, register contents and low-level symbol values. Choosing
Display produces the following dialogue box:

L bsplay
|Wedate Base: [|

| Sowee || Expression || Gusbals |
| Bisassenbly || Meory |

| Frqurents || Registers :| Locals |
| EBacktrace |[FF Registers |

You can use Ctrl-D as a short cut to produce this display.

40

Desktop debugging tool

Select the item you want information about. The Source, Expression, Symbols,
Disassembly and M emory icons use the contents of the writableicon to determine what
to display. Each icon is described in turn below.

Source

Displays the specified source file in the debugger Context window. You can specify a
source line number at which to start the display. The syntax for the filename and line
number is:;

filenanme[:1ine]

(that is, avalid RISC OSfilename optionally followed by acolon (:) and aline number).
The line number defaultsto 1 if not specified. The filename does not have to be a source
file used to generate the program you are debugging: you can display any file you like.

Expression

The writable icon should contain an expression name. The syntax for entering
expression names isdescribed in the section Specifying program objects on page 26. The
expression is displayed in the debugger Status window.

Complex expressions such as C structs or arrays are displayed in structured format,
nested substructures are indented to indicated the level of nesting. Character pointers
and arrays are displayed as strings if aterminating O is found within the first 80
characters and there are no intervening non-graphic characters apart from newline and
carriage return, which are displayed as\ n and \ r . For example, the following structure:

typedef struct _Hot Spot

{
struct _Hot Spot *next;
BBox box;
char *command
char *nane;
Conponent 1 d id;

} Hot Spot ;

Hot Spot *butt on;

41

Program examination and modification

42

would be displayed as:
wbuttan = $truck 1 ; ﬂ
next = BEdAA2eE,
bex = shryct {
andn o Q54,
YAlm =
wnax = 6189,
ynax = =]
g
id = -1 |
b Ll
£ (18|
Arguments

Arguments displays al the arguments to the current procedure. The arguments are
displayed as if each individual argument had been displayed using the Display
Expression facility described above.

If you want to examine the argumentsin an outer scope (i.e. in the procedure which
called this procedure or the procedure which called that ...) you can uSerttext
item on the main menu to change the current context to that of one of the calling
procedures, and then seldatguments to display the arguments of that procedure.

Locals

Localsis very similar toArguments. It displays all local variables (including the
arguments) in the current procedure.

Backtrace

Backtrace displays a list of procedures in the call chain from the current procedure back
to the program entry point.

Procedures which have been compiled with debugging information are displayed in the
following form:

procedure, line Iine of file

Those which have been compiled or assembled without debugging information look like
this:

PC = address (procedure + offset)
Procedures in the Shared C Library will appear as:
PC = address

Desktop debugging tool

A typica backtrace might look something like this:

CERETL L

elick Taener. [Jm 386 of b ohsndler]
|l I
E%'g' B2 i L

Ll

Symbols

Symbols displays low-level symbols generated by the linker when linking with

debugging enabled. The writable icon gives a comma-separated list of symbolsto be
displayed. The symbols and their addresses are displayed in the debugger’s Status
window.

You can use the following wildcard characters in symbol names:
I A star (*) matches 0 or more characters
I A hash (#) matches any single character.

For example:

_kernel _* would list all the kernel routines
(e.g._kernel _sw)

$ $$* would list all the linker generated symbols
(e.g.l mage$SROE$Base andCs$code$$Base).

Disassembly

This displays a symbolic instruction disassembly in the debugger’s Context window.
The writable icon should contain a low-level expression which evaluates to a memory
address indicating where the disassembly should start. The syntax for low-level
expressions is described in the sec8pecifying program objects on page 26.

Memory

This displays a memory dump in the debugger’s Context window. The writable icon
should contain a low-level expression giving the memory address.

Registers
This displays the contents of ARM user registers 0 - 15 and the flags in R15.

43

Program examination and modification

44

FP Registers

This displays the contents of floating-point registers 0 - 7 and the flags in the
floating-point processor status word.

The Base writable icon gives the numeric base to be used when displaying Variables,
Arguments, Locals, Symbols and ARM registers. If thiswritable iconis left blank a
default of decimal or hexadecimal is used depending on what is being displayed.

The Update box appliesto Variables, Locals, Arguments, Backtrace, Registers and FP
Registers. When Update is selected and one of these itemsis displayed, theitemis
added to alist of itemsto be displayed whenever the debugger stops execution (for
example, at abreakpoint). Thereisno way to remove items from thislist once they have
been added to it.

Change

Change alows you to ater variable, registers or memory contents. Choosing Change
produces the following dial ogue box:

[[hage
w Variable i Register i Hemary

o | |
Hew cantents: | | o]

The Variable, Register and M emory radio buttonsindicate what isto be changed. The
Namewritableicon indicates which variable, register or set of memory locationsisto be
changed. The New contents writable icon gives the new contents. Clicking OK makes
the change.

Variable

The Name writable icon should contain a variable name as described in the section
Secifying program objects on page 26. Only simple variables such as integers and
pointers or floating-point variables may be changed. The New Contentswritableicon
should contain the new value for the variable, floating-point values are specified in
normal C floating-point format.

Register

The Name writable icon should contain aregister name. Valid register names are RO -
R15, SL, IR, SP, LR, PC and FO - F7. The New Contentswritable icon should contain a
low-level expression or floating-point constant, depending on the type of register being
changed. Low-level expressions are described in the section Specifying program objects
on page 26.

Desktop debugging tool

Memory contents

The Name writable icon should contain alow-level expression which evaluatesto a
memory address. The New Contents writable icon should contain a comma-separated
list of low-level expressions, which are placed in successive memory words starting at
the memory word specified in the name writable icon. The syntax for low-level
expressions is described in the section Specifying program objects on page 26.

Options and other commands
The Options item on the debugger main menu produces the following dialogue box:

[+ Seeran lewel [+ Zaurce line nushers
[+ Machine lewel [« Stap at entry

[« Wemry protectiea [E#+ names

i RIGC &5 bindings _iErthur Bindings
Comnasd Lines S0S1:iibHerris.8.Library, diff |
Soerce tree! (0SD:iDBarris.$.Library

|
Base: |:| |T'-'_!‘_| |_I]_If_|

Sour ce-level debugging

This option enables the display of source information in the debugger Context window.
If this option is deselected, adisassembly of the ARM instructions corresponding to the
source text will be displayed.

Machine-level debugging

This option enables the tracing of ARM instructions when trace execution is sel ected.

Memory protection

This option enables or disables protection of sensitive areas of memory. When this
option is enabled zero page (0 - & 7fff) is protected against being written to by the
debugee and the debuggee’s code area is protected against writing.

Sourceline numbers

This option enables or disables the display of line numbers in source text displays.

45

Options and other commands

Stop at entry

When this option is enabled, the debugger automatically tries to set a breakpoint on
procedure mai n when a debugging session is started. This allows you to use Continue
on the debugger main menu to get rapidly to the start of your source code.

RISC OS bindings/ Arthur bindings

This option is provided for backward compatibility.

Command line

Thiswritableicon allows you to change the command line passed to the debuggee. The
existing command lineis displayed in the icon and may be edited. Note that the first
word of the command line should be the program name.

Base

The Base writable icon gives the default numeric base when displaying or entering
numbers.

Sourcetree

Compilers such as Acorn’s ANSI C may put relative filenames in the debugging
information (e.gc. di spl ay or™. m p. c. aetr ee). The debugger needs to know
where these files can be found. By default it assumes the source files reside in the
directory from which the program image was loaded. This writable icon allows you to
change this default. It accepts a comma-separated list of directory names, each one
ending in a full stop (immediately before the comma).

This could be used when debugging a library whose source is held in a directory
different to that of the debugee program source.

Log

L og allows you to record any information output to the debugger Status window to a text
file. ChoosinglL og produces the following dialogue box:

C______le
Filenane: | | []

Enter the name of the file into which you wish to log output. The file will be opened as
a new log file. Any previous contents of the log file will be overwritten. If a log file was
previously open it will be closed when the new log file is opened.

46

Desktop debugging tool

Find
Find allows you to find a sequence of bytes, words or characters in the application
workspace. Choosing Find produces the following dialogue box:
I T I
! |
| Egte | | Word String |
Word or Byte
The writableicon should contain acomma separated list of low-level expressionsgiving
the word or byte values to be found.
Sring
The writable icon should contain the sequence of charactersto be found, the sequence
should be entered without quotation marks of any kind.
All occurrences of the byte, word or character sequence in the application space are
reported in the debugger Status window.
*Commands

*Commands allows you to access the RISC OS CLI| from within the debugger.
Choosing * Commands will lead to the following dial ogue box:

I | [ox]

Enter the command you wish to execute in the dialogue box and press Return or click
OK. If you are debugging a Wimp task (i.e. atask which has called Wimp_Initialise)
you should precede the command with the WimpTask command, otherwise the output of
any command executed may be displayed in graphics mode.

If you wish to enter several commands you can enter the Gos command or the
Shel | CLI command in the dialogue box.

47

Options and other commands

Help

Help gives interactive help on the debugger. Choosing Help will produce thisinitial
help window:

T the Deskt (T R
“ 1 n m:lu':-u Ilﬁtl’ 1n eae of Lhe
I!IHI! Bays,

l.ilh !n qplinmun uith the -dabug Flag and

as per nornal.

lﬂp En image eata the debugger foon an Ehe

t‘ﬂr‘u a bk IntHT Er tq an Ii.ﬁﬂ"? 'm

— Topie:
[Continue | [Simgle step|[Call |[Retwrn
| Breakpoint || Matchpaint | Trace || Context |

[bisslay |[hange || log [Fisd

Choose the icon corresponding to the topic on which you want help. The help will be
displayed in the Help box above the topic buttons.

Quit
This quits the debugger and returns to the calling environment (generally the RISC OS
desktop).

You can use Ctrl-Q as a short cut for Quit.

48

Desktop debugging tool

An example debugging session

The following example debugging session shows how DDT might be used to fix arather
bug-ridden file sorting tool written in C. The sourceis given here with line numbers for
reference later in the chapter. The source, along with the other files to make the
application, can befound in! Sor t , whichisinthe Acor nC_C++. Exanpl es

directory.
1 #incl ude <stdio. h>
2 #include <stdlib.h>
3 #include <string. h>
4 #include <stdarg. h>
5
6 #include "kernel.h"
7
8 #define READATTR 5
9 #define READFILE 16
10 #define WRI TEFI LE 0O
11
12 #define FILEFOUND 1
13
14 static void fail (char *errmsg, ...)
15 {
16 va_list ap;
17
18 va_start(ap, errnsg);
19 viprintf(stderr, errmsg, ap);
20 va_end(ap);
21 exit(1l);
22 }
23
24 |* See Sedgewi ck: Algorithnms 2nd edition P 108 */
25 static void sortstrings(char *a[], int n)
26 {
27 int h i, j;
28 char *v;
29
30 h =1,
31 do
32 h=h*3+ 1,
33 while (h <= n);
34 do {
35 h=h/ 3;
36 for (i = +1;, 0 <=n; i++) {
37 v =af[i];
38 o=
39 while (j > h & strcnp(a[j-h], v) > 0)

An example debugging session

40 alj] = alj-hl;

41 j -= h;

42 }

43 aljl = v;

44

45 } while (h > 1);

46 }

47

48 void sortfile(char *infile, char *outfile)

49 {

50 _kernel _osfile_block finfo;

51 int size;

52 char *finbuff, *foutbuff;

53 char *cp;

54 int |, linestart;

55 char **| buff;

56 int i;

57

58 if (_kernel _osfil e(READATTR, infile, & info) !=
FI LEFOUND)

59 fail ("Error opening %\n", infile);

60 size = finfo.start;

61 if (!(finbuff = malloc(size + 1)) || !(foutbuff =
mal | oc(size + 1)))

62 fail("CQut of menory\n");

63 finfo.load = (int) finbuff;

64 finfo.exec = 0;

65 if (_kernel _osfil e(READFILE, infile, & info) < 0)

66 fail ("Error reading %\n", infile);

67 I =0;

68 cp = finbuff;

69 linestart = 1;

70 for (i =0; i < size; i++) {

71 if (linestart) {

72 | ++;

73 linestart = O;

74 }

75 if (*cp || *cp == \n") {

76 *cp =0;

77 linestart = 1;

78 }

79 cp++,;

80

}
81 *(finbuff + size) = 0;
82 if (!(Ibuff = malloc(l * sizeof(char *))))
83 fail("Out of memory\n");
84 cp = finbuff;

50

Desktop debugging tool

85 for (i =0; i <|I; i++) {
86 lbuff[i] = cp;

87 cp += strlen(cp);

88 }

89 sortstrings(lbuff, I);
90 cp = foutbuff;

91 for (i =0; i <|I; i++) {
92 strcpy(cp, lbuff[i]);
93 cp += strlen(cp);

94 *cp++ = \n’;

95 }

96 finfo.start = (int) foutbuff;

97 finfo.end = (int) foutbuff + size;

98 if (_kernel_osfile(WRITEFILE, outfile, &finfo) < 0)
99 fail("Error writing %s\n", outfile);

100 free(finbuff);

101 free(foutbuff);

102 free(lbuff);

103}

104

105 int main(int argc, char *argv[])

106 {

107 if (argc I=3)

108 fail("Usage: Sort <infile> <outfile>");

109 sortfile(argv[l], argv[2]);
110 return O;
111}

The debugging session
Follow the steps below to debug the example program.

1 Compile and link the program using !Make with the Makefile provided in the
I Sort directory.

Now try running the program:

2 Doubleclick onthe! Sort application directory. The Sort tool icon will appear on
theicon bar.

51

An example debugging session

52

Drag the example input filei nf i | e on to the Sort tool icon.

This should sort the input file and display a Save as dialogue box, to allow you to
save the sorted result. Unfortunately it doesn't, instead it produces a display similar
to the following:
Illegal address (e.g. wildly outside array bounds)
Post mor t em r equest ed
Arg2: 0x0000000c 12 -> [0xe59ff110 Oxe59ff110 Oxe59ff 110 OxeaeOOce7]
Argl: 0x0000ca8c 51852 -> [0x0000ch14 0x0000ch18 0x0000ch18 0x0000ch18]
3984074 in function sortstrings
Arg2: 0x0000ad70 44400 -> [0x49534353 0x48443a3a 0x69727261 0x2e242e73]
Argl: 0x0000ad3f 44351
8348 in function sortfile
Arg2: 0x0000acf4 44276 -> [0x0000ad10 0x0000ad3f 0x0000ad70 0x00000000]
Argl: 0x00000003 3
8430 in function main
39a29c¢4 i n unknown procedure
84b8 in anonynous function

This is called a symbolic backtrace.

The first line gives a general indication of what might be wrong with your program.
In this case it's an illegal address; the program tried to access memory which is
outside the addressing range of your computer.

Each line of the fornaddress in function nane represents a procedure

call frame on the stack. The first frame on the stack is funstion st ri ngs;

this is where the illegal address was referenced.

This doesn’t look too promising, so try running it under DDT to get more clues as to
what might be wrong:

Quit the Sort tool.

Construct a debug version of Sort with Make. To do this, first open the Make project
dialogue box for Sort, click Menu on it and Select on the Link item of tioe

options submenu. Next, enable the Linker Debug option and clicRkirio alter

the Makefile. Use the Make Touch facility to touch all source mentlyecticking

onAll in theTouch option. Finally, click on théMake button to remake Sort.

Start the debugger if you haven't started it already and drdg3tet application
directory on to the debugger’s icon.

Drag the sample input filenf i | e on to the Sort icon on the icon bar. The
debugger’s Context and Status windows should now be displayed.

The program actually crashed in the functsar t st ri ngs. Since you want the
program to stop before making the illegal access, you want it to stop at the
beginning of functiorsor t st ri ngs. So:

10

1

Desktop debugging tool

Set a breakpoint on procedure sor t stri ngs:

Bring up the breakpoint dialogue box. Enter thename sor t st ri ngs, and choose
at Procedure.

Asageneral rulethisisthe best way to start a debugging session. By placing a
breakpoint just before the section of code you think iswrong (or after the code you
know to be correct) you can examine the program stateto ensureit is correct and the
step through the incorrect code to find exactly where the error is occurring.

Tell DDT to start executing your program:

Choose the Continue option from the debugger’s menu. The debugger will stop
with the following message:

Break at main, line 107 of c.sort

The debugger always stops on entryrid n. However you want it to continue until
it reachesort strings, so:

ChooseContinue from the main menu again.

This time the debugger displays the following message:

Break at sortstrings, line 30 of c.sort

The Source window should contain the source for the start of function
sortstrings, with the execution location indicator (=>) pointing to the first
source line of the functiogor t st ri ngs.

Now you want to examine the program state to ensure it is correct before
continuing. In this case, the most important state information is the function’s
arguments. You can examine them as follows:

ChooseDisplay on the debugger’s menu (or use the short cut Ctrl-D) and click on
the Arguments button in the Display dialogue box.

The debugger will display the following in the Status window:

a = 0000ca8c

n =12

The two arguments t®or t st ri ngs are:

n is the number of strings to sort, in this case 12. This is correct, since there were
12 names in the input file.

a isapointer to an array of char *s or strings. The debugger displays the value of
this pointer, i.e. the address of the array.

Note: You may get a different address when you try running this example depending
on the version of the C compiler and library you are using.

Next, examine the individual elements of the array:

53

An example debugging session

54

12

13

14

15

16
17

18
19

20

Enter the array element as it would appear on the |eft hand side of an assignment in
Cinthe Display dialogue box, and click on the Expression button.

To examine element O, enter a[0] . To examine element 1, enter a[1] . The
debugger will display the array elements as follows:

a[0] string "Noel"

al 1] 0000ch18

The first element was correct: it contained the string Noel , which isthe first name
in the input file. However, the second element isanull string. Thisiswrong: it
should contain the string Edwar d. This means that the arguments to
sortstrings werewrong. The error therefore occurred earlier, so you want to
try re-running the program under the debugger and setting the breakpoint earlier:

Quit the debugging session and drag the sampleinput filei nf i | e to the Sort icon
to start a new debugging session.

Now follow the instructionsin step 8 to set the breakpoint at functionsortfil e
instead of function sor t st ri ngs, and continue execution until the program hits
the breakpoint at functionsortfil e.

Thevariable! buf f ispassed asthe first argument (a) tosort st ri ngs. | buf f
isinitialised in theloop just beforethe call tosor t st ri ngs. Therefore you want
to set a breakpoint at the start of the initialisation loop:

Scroll the Source window up until the initialisation loop comes into view.

From the line numbersin the Source display you can see that the initialisation loop
starts at line 84, with the initialisation of cp. So, set a breakpoint on line 84:

Enter 84 in the Breakpoint dialogue box and click on at Line.

Now choose Continue from the main menu.

The program will continue executing until it reaches line 84, where it will stop at
the breakpoint. You want to examine each element of the array asit isinitialised,
sincethe array isinitialised from the pointer cp. Set awatchpoint on cp:

Enter cp in the Watchpoint dialogue box and click on on Variable.

Choose Continue again. The debugger will stop with the message:

Wat chpoi nt on cp changed at sortfile, line 85 of c.sort
New contents: string "Noel"

Thisis correct, so:

Choose Continue again. The debugger will respond with:

Wat chpoi nt on cp changed at sortfile, line 87 of c.sort
New contents: 0000chl8

Thisiswrong: it should contain the string Edwar d. Look at the line which updated
the value of cp:

21
22

23

24

25
26
27

28

29

Desktop debugging tool

87 cp += strlen(cp);

Thisis supposed to update cp to point to the next string in the list of strings to be

sorted. It does this by adding the size of the string pointed to by cp into cp.

Unfortunately, it miscal culates the size of the string by omitting to take into account
the 0 byte at the end of the string. This means that the second and all subsequent
strings are treated as null strings, because they are pointing to the O byte at the end

of the previous string instead of the start of the string.
To fix this:

Quit the debugger and the Sort tool.

Edit thefilec. sort and changeline 87 to read:
87 cp += strlen(cp) + 1;
Recompilec. sort using the Make utility.
Now try re-running the program:

Doubleclick onthe! Sort application directory and drag thefilei nfi | e tothe

Sort tool icon, then choose Continue twice on the DDT menu to run Sort.

Theresult isthe same aswhen you first tried running it: you get the same exception,
although thistime trapped by DDT rather than generating a backtrace, so obviously
the fix applied to line 87 didn't fix the problem. So, try running it under the

debugger again:
Quit the Sort tool frontend.
Dragi nfi | e to the Sort tool icon.

Set a breakpoint on functi@or t st ri ngs and choos€ontinue.
The debugger will stop when it reaches n.

ChooseContinue again, and the debugger will stop at the stastooft st ri ngs.
Examine the arguments. All being well they should look something like this:

0000ca90
12

a
n

Display the individual elements afby enteringa[0] etc., in the Display dialogue

box and choosingxpression.

Do the same for a[1] and a[11]. The display should look like this:
al 0] string "Noel"

al 1] string "Edward"

a[11] = string "Martin"

They’re correct now, so something must be wrong with the sort algorithm. So, try

setting a breakpoint on the inner while loop:

55

An example debugging session

56

30 Scroll the source display to find the line number; it should be line 39. Enter 39 in
the Breakpoint dialogue box and click on at Line and continue execution. The
debugger should display:

Break at sortstrings, line 39 of c.sort
Examine afew variables:

31 Enterj inthe Display dialogue box and choose Expression; then do the samefor h.

The debugger should display:
j =5
h =4

These are both correct, so look at the contentsof a[j - h] :
32 Enter a[1] inthe Display dialogue box and choose Expression. The debugger
should display:
a[1] = string "Edward"
The shellsort algorithm should be comparing against thefirst string (i.e. Noel). Itis

not, so thisiswrong. Looking closely at the algorithm you can see that it has been
written assuming array indices start at 1, whereasin C they start at 0.

To fix this, you could subtract 1 from each array index. However you just want a
quick fix to seeif it works, so:

33 Add thefollowing line at the start of the function after line 29:
30 a--; /* Quick hack to nmake array 1 origin */

34 Compilethe program, thistime disabling the Debug option of Link using Make (see
step 5), and try running the result.

All being well, the program should run to completion and produce a Save as dialogue
box for the output. You can just click the OK button to saveit, or you may liketo drag it
to the editor icon to load it into the editor to check that it has been sorted correctly.

Invoking Make

Inkn
Opfons F
Opan |
Chuit

Using Make

Make =

he Make application aids the programmer in the construction and maintenance of

multiple-file programs, which can be combined to form any number of final targets
(for example, libraries, modules, and application programs). The set of final targets and
the files from which they are constructed are known as a project (see later for amore
detailed description of this term). The facilities provided for a project include

[automatic construction of Makefiles

I automatic maintenance of Makefilesto track changes made to sources and the
addition/del etion of source and object filesto or from a project

setting options using dialogue boxes for the tools used to convert source filesto
object files (e.g. C compiler or ObjAsm options)

pre-emptive multitasking of the Make process when constructing final targets,
including the ability to pause, continue, or abort it at any time

display of the output of tools used to make afinal target, in a scrollable, saveable
window.

Make can be invoked in two ways; by double-clicking on the Make icon from a
directory display, or by double-clicking on afile of type Makef i | e (OXFEL). Inthe
latter case thiswill aso run the Acorn Make Utility (AMU) tool to make the first target
found in the chosen Makefile.

Clicking Menu on the Make icon gives the menu shown on the | eft.
Info shows the normal information box about the application.
Options alows the setting of auto-run and display options.

Open isused to open a dialogue box for a given project.

Quit quits Make.

These are described more fully in later sections.

To use Make efficiently it is necessary first to understand how to create and maintain a
project.

57

Using Make

58

Projects

A project is made up of acollection of source and object files, which combine to form a
number of final targets. Thelife cycle of aproject will typically involve the creation and
maintenance of the project, the production of final results, and finally, if required, the
removal of the project from Make’s control. The details of these steps are more fully
described in later sections, but here we give an overview of their operation.

When a new project is created, you give it a unigue name, and save its associated
Makefile to disc. The persistent state of a project is held in a Makefile, which is
automatically maintained by Make, with the option that it can be textually edited for
customisation to a particular projects requirements. To achieve this automatic
maintenance, the Makefile is divided into sections which are delimitedtive
comments (i.e. lines beginning with é#), which are otherwise ignored by the AMU
program).

The files which make up the project can reside anywhere on disc (or on a network) and
can be added to, and removed from, the project by dragging their filer icons onto a
dialogue box representing that project.

Final targets for the project are created by clickinyl@ke in the dialogue box relating
to that project; the targets will be saved in the same directory as the Makefile for the
project.

Under the desktop the conceptoofrent directory has no sensible meaning, Make
therefore uses the work directory in which the Makefile for a project has been saved as a
prefix for all filenames used in the project. This prefix is denoted by the at sy@bol (

Clicking Menu on a project dialogue box gives the menu shown below, which is used to
further tailor the project. References to this menu are made in a later section on
maintaining projects.

Exgmpis
Make opdons
Teoaxch
LEst meimbers
Add tamget
Flaimigs langat
Aomaye project
Tl (plicns

Make

Creating new projects

In order to create a new project, you should click Select on the Make icon on the icon
bar. Thiswill display the New Project dialogue box as shown below, which allows you
to enter information for the new project:

EE ha-w Proja
S Mama | Esampls |
| | T.'.|.I'I;E". Funimage |
Makfile | O Toal [LinK |

There are three writable icons in the New Project dialogue box which you must fill in
before a new project can be created. These are:

Name you should fill thisin with the name of the project. This name will be used to
identify the project in the Open menu as described later.

Target you should fill thisin with the name of the main target to be created from this
project. For example, if you were creating an application the target name
would be 'Runlmage, if you were creating a modul e the target name would
be the module’s name (e.g. FrontEnd).

Tool you should fill this in with the name of the tool used to construct the main
target. For an application this could be Link, or in the case of a library this
could be Libfile.

Note: Make requires this tool to be one which takes intermediate files and
creates a final object. Such tools are Link (for a module or application),
LibFile (for a library) or Squeeze (for a squeezed module or application).

Having filled in these three boxes, you must then save the Makefile which will be used
to hold all information for this project. This is accomplished either by dragging the
Makefile icon to a directory viewer (having optionally changed the leafname from the
defaultMakef i | e), or by typing in a full pathname and clicki@K. The directory in
which the Makefile is saved is important. This directory is where the final targets for the
project will be created, since each target will be saved i@t k directory (see the
sectionCreating a final target for a project on page 64 for an explanation of this). The
sources for the project can be stored anywhere, since they will always be referenced
relative to@ If any of the Name, Target or Tool icons have not been correctly filled in
then an error is reported, and the Makefile is not created.

59

Using Make

When this process has been completed, the newly created project becomes one of those
maintained by Make, until it isexplicitly removed (see the section Removing projectson

page 64 for how thisis done). The dialogue box which is used to maintain this project

then appears, with the project’'s name in its title bar. The project can then be maintained
as described below.

Maintaining projects

To maintain a project it is necessary to understand how to open and close projects, and
how to specify the targets for a project.

Opening a project

Make keeps a list of all projects which it is maintaining at any one time. This list is
shown when you enter ti@pen submenu from Make’s application menu. When no
projects are known about, this menu item is unselectable.

Frie s
| Maks
FrontEnd
DOELRlE

The list of project names is shown with the most recently registered project at the
bottom. Clicking on a project name in this list will open a dialogue box for that project,
with the name of the project in its title bar; if the project was already open, then the
dialogue box is brought to the front of the WIMP’s window stack. If the project is being
opened for the first time, then the directory containing the Makefile for this project is
also opened. The dialogue box is shown below:

||'|enau|:| | {ﬂ'i'l
Flern-uuel |E|
Targat | Runlmiaga [

Save kb

This dialogue box can be used to add new members to the project, remove members
which are no longer required, make final targets, and select the current final target to
which these operations refer. These are described in more detail in later sections.

60

Make

Adding and removing members

When you have written anew sourcefile or created a new object file which you wish to
includein aproject, you should drag the filer icon for that fileto theicon marked I nsert

in the project’s dialogue box menu. Typically, the only object files which you will need

to insert in a project are external libraries. Any number of files can be dragged in this
way tolnsert, where their full pathnames are displayed, provided that the number of
characters displayed does not exceed the buffer for the icon (4096 characters by default,
but this can be changed by using a Wimp templates file editor).

Once you are satisfied that this is a list of all the files to be added to the project, click on
OK to the right ofinsert. The insertion will then take place. An asterisk appears in the
title bar of the project dialogue box to indicate that this project has been modified since
its Makefile was last saved.

If you wish to remove members from a project, follow the same procedure as that
described for insertion, but drag file icons to R@nove icon instead, and click dbK

to the right oRemove. Again an asterisk will appear in the project’s title bar, to indicate
that a modification has been made.

Note that insertion and removal applies only to the currently selected target when used in
conjunction with multiple-target projects (see the sedtattipletargets on page 62 for
more details).

Make uses the following rule for dealing with files draggethsart: if the filename

has, as its last but one component, a string (usually just one character) which
corresponds to one of those registered by a translation tool, then it is assumed to be a
program source file and a rule is constructed to make it into an object file; otherwise it is
assumed to be an object file (such as a library) and will just be inserted into the list of
objects which go to make up the current final target.

Listing members

A list of the members which have been added to a project (and not subsequently
removed) can be obtained in a scrolling text window by selectinigithenembers

option from that project’s dialogue box menu. The filenames in this list are expanded to
full pathnames, whereas they will appear relativé@io the Makefile for the project.

61

Using Make

Touching members

You can force amember of the project to be time-stamped using the Touch optionin a
project’s dialogue box menu:

Eanmip
Moo cgrons | [#] Toiich
Files |
L3t maimbears

\ a |
Add targat C
Raimdgess laigat
Anmove projoot
Tl dpticns I=

In the Touch dialogue box, you can type (or drag to it) the filename(s) of the file(s) to be
touched (either relative t@as it appears in the Makefile, or as a full pathname), and
then click onOK. If you wish to touch all source members of the project, then click on
All; in this case any filename Files is ignored.

Multiple targets

When a project is first created, it has just one final target - the one whose name is entered
in the Target icon in the New Project dialogue box. This name will also appear in the
Target icon in a project’s dialogue box when that project has been opened. This target is
referred to as theurrent target, and it is the target which will be made when you click

the Make icon. The current target is also the one to which members are added or
removed when you enter filenames in theert andRemove icons from a project’s

dialogue box.

| Examps |
Maks opiicns
Tewsch

LEst msimbens -,| P target
[Add target |} Tanga | ML ibrany |

Famde 1RNgal -
Romowe projoc Tl | LibiFiks |
Teaal phicns [rw |

In order to add a new target, you should useAtthe tar get option from a project’s
dialogue box. In thé&dd target dialogue box you must enter a name for the new target,
and the name of the tool which is used to construct that targetié.gbr ar y and

Li bFi | e), as shown above.

62

Make

Targets created in this fashion can be removed by choosing Removetarget in the
project menu. Remove tar get always applies to the current target.

When a project has its dialogue box open, thelist of final targets can be traversed using
the up and down arrow icons (next to the Target icon). You will notice that any targets
which you manually insert in the user-editabl e section of the Makefilewill also appear in
the project dialogue box. Thisis so that you can select them as the target to be made
when clicking on the Makeicon.

This can be used to create a ‘squeezed’ image by doing the following:

I When you first create the project use a final target name sudRuad mageU for
the unsqueezed binary. Insert all your sources and library files to this target.

I Then add a target (called, for examplBunl mage) with its ‘tool’ set to Squeeze.
I Insert the@ ! Runl mageU as the only member for this target.

If you used the example names above, and you now make the! tRugdtmage, you
will get a squeezed final binary.

Setting tool options

In order to make final targets and object files which will combine to make those final
targets, a number of tools such as compilers, assemblers, linkers and library constructors
will be used. These tools will typically have a set of options which are normally

specified from a dialogue box when using the tools under the control of the FrontEnd
module. It is possible to set the options for a particular tool's use under Make (for a
given project) by following th&@ool options submenu from the project’s dialogue box
menu.

Exnmpin
Mabks opions P
Touxch
LE3E imeimibads
Add target
e tangal
Apmove project Sebil 0ol
ll Tood optiors SRR
Cad
Lnk
DbjAzm
CMHG
LibFik=
Sopmern

63

Using Make

64

Thiswill show alist of all the toolswhich have registered themselves for use with Make

(for example, Cc, ObjAsm, Link etc). Clicking Select or Adjust on a tool’s name in this
list will result in the options dialogue box for that tool being displayed. This dialogue
box can then be used to set the options for the tool; these will be translated into
command-line options and entered into tlo®/ f | ags section of the Makefile for the
project.

Removing projects

A project can be removed from the list of projects maintained by Make by choosing
Remove project from the project’s dialogue box menu. This simply means that it is
removed from the list of projects which can be opened from Mé&kaees submenu; the
Makefile for the project is still retained.

You will also be asked if you want to remove the files which store the toolflags for the
project. If you intend never to reinstate this project as one maintained by Make, then
answerYes to this query. If you are just temporarily removing this project from the list,
then answeNo, so that the toolflags state for this project is saved.

If you later wish to reinstate a removed project, this can be done by dragging the
Makefile for the project onto the Make icon.

Creating a final target for a project

There are two ways of creating a final target for a project:

I Ifyou click onMake in a project’s dialogue box, Make will make the target which
is currently showing in the Target icon. An alternative target can be selected by
clicking the up and down arrow icons to move through the list of possible final
targets.

I If you double click on a filer icon of type Makefile (0XFE1), and you have enabled
the Auto Run options from Make'©ptions menu, then Make will make the first
target that it finds in the Makefile (which will be the target specified when the
project was created).

In both of the above cases, #reu program is run pre-emptively using the TaskWindow
module to make the chosen target. The space available to load and atantisp
determined by the WimNext slot. If you get errors such as:

No writable nmenory at this address

when you run a Make job, try adjusting tkext slot.

Make

The output from this process appears by default in ascrollable, saveable text window (or
inasummary dialogue box if this option is selected in the Display submenu):

e T Thrmbmk J:ir_'l'mﬁ"f e
r:ruF 1 H!'m t-st.!bH I:Hwn Ewuter-s tdi fﬁwtg 15341 -

EE I O T
erE EEH‘ t uin M tﬁﬂrn Ewu’c;ﬁ tdd [lu;tgl L¥H]
mnF E mt wn E Hwn_gwufm Ltd) flu B L¥H]))

link =c#+ =o 8, 'test §.0.testl B.a, test? 0, p0.festd B." JBaprnl_C4# Librarigs.alib. g, Blubs =

Thiswindow is read-only, you can scroll up and down to view progress, but you cannot
edit the text without exporting it to an editor. To indicate this, clicking Select on the
scrollable part of this window has no effect.

Clicking Adjust on the close icon of the output window switches to the output summary

dialogue box:
#' Runat 155313
Maks T Lings of ot

Thisbox presents areminder of thetool running (Make), the status of the task (Running,
Paused, Completed or Aborted), the time when the task was started and the number of
lines of output that have been generated (i.e. those that are displayed by the output
window). Clicking Adjust on the close icon of the summary box returns to the output
window.

Both the above output displays follow the standard pattern of all the non-interactive
desktop tools. The common features of the non-interactive desktop tools are covered in
more detail in the chapter General features on page 101. Both output displays, and the
menus brought up by clicking Menu on them, offer the standard features allowing you to
abort, pause, or continue execution, save output text to afile, or repeat execution.

Saving a project without Making it

If you have made changes to a project, and wish these to be written back to the project’s
Makefile without actually making a target, then clickSave in the dialogue box.

65

Using Make

66

Setting Make main options

The Options submenu from the Make icon bar menu allows you to set two options:
Auto Run and Display.

| Makg |
Inig P EEumu |

m' # dusin Fur: [plary

open | EE - e

Chumt Summary
L

Selecting Auto Run means that when you double-click on afile of type Makefi | e

(OXFE1) from adirectory display, the AMU program isimmediately invoked to make

the first target found in the Makefile; if you do not select Auto Run, then

double-clicking on a Makefile merely adds the project to Make’s list of maintained
projects (if it is not already there), and opens the dialogue box for that project (bringing
it to the front of the WIMP’s window stack if it is already open).

In theDisplay submenu, you can choose whether the output of all Make processes is
displayed in a scrolling text window or in a summary dialogue box.

Text-editing Makefiles

You can use a text editor to customise a project’s Makefile. There is a section of the
Makefile, following the active commeksser - edi t abl e dependenci es, which

is left untouched by Make. All other sections of the Makefile will be over-written and so
should not be edited using a text editor (unless you are thoroughly familiar with the
operation of Make). The full format of a Makefile is describetakefile format on

page 67.

Note that the actual Makefile is only read in if Make is re-loaded and the project then
opened, just re-opening the project without re-loading Make is not sufficient.

A good example of how this could be used, is to create a rule which removes an
application’s binary image and the object files used to create it, so that the next ‘make’
will remake all objects. This is done by entering in the user-editable section the
following lines:

cl ean:; renmpve ! Runl mage
w pe o.* ~cf

Make

Using conventional Makefiles

If afile of type Makef i | e, which does not comply to the Makefile format, is
double-clicked, or if afile of type Text or Datais dragged onto the Make icon, it is not
registered as a project. Instead Make runs the AMU program with thisfile asits input
Makefile. This allows the use of Makefiles from other systems, and ones which do not
fit into the project-oriented way of working required by Make.

Makefile format

The Makefile which is used to maintain a project is afile of type OXFEL1 (Makefi | e),
and contains normal ASCI| text. Thistext isarranged into a number of sections which
are separated by active comments. For a detailed description of Makefile syntax see
appendix Makefile syntax on page 175.

Below, we describe each of these sections, beginning with their respective active
comments:

Project project_name: Thisgivesanameto be used for the project
in the Open submenu.

Tool f1 ags: This section has a set of default flags for
each of the tools which have registered
themsel ves with Make, for automatic
inclusion in aMakefile. The tool will have
done this by writing lines (described in the
Programmer interface on page 68) into:

<Make$Di r >. choi ces. t ool s.

Each macro in the Makefile will be of the

type:
toolflags =...
eg. ccflags = -c¢
Final targets: This section contains the rules for making

the final targets of the project. For example:
' Runl mage: | i nk $(1i nkfl ags)
Thisinformation is obtained when the

project was created (from the Name and
Tool iconsin the New Project dial ogue box).

67

Programmer interface

User-editable
dependenci es:

Static dependenci es:

Dynami ¢ dependenci es:

Programmer interface

This section is left untouched by Make, and
can freely be edited by the user. Thisallows
rules to be added which are specificto a
particular project; for example, it may copy
sources from afile server to your local
Winchester, before doing a compilation.

This section contains rules for making an
object file from corresponding source. It
does not refer toi ncl ude files etc.
(described in Dynami ¢
dependenci es).

This section contains the rules which are
created by Make by running the relevant
tool on asourcefileto ascertain its
dependencies (e.g. cc - depend).

The following information is given for programmers wishing to add new desktop tools
to be used with the Make application.

If you wish to use atool with Make, which does not come with Acorn C/C++, you can

use either of the following two methods:

Write adescription or Setup file (see appendix FrontEnd protocols on page 187) for
thetool for use by the FrontEnd module and register it with Make as described
below in the section Registering command-line tools with Make.

Writea WIMP frontend for the tool which complieswith the details given below in
the section Message-passing interface for setting tool options.

Registering command-line tools with Make

68

A command-line tool which will be run under the control of the FrontEnd module (for
setting itsoptionsin aMakefile), will need to append lines of the following format to the

file<Make$Di r >. choi ces. t ool s:

t ool nane Name of tool
string Extension
fl ags

rul e

pat hnane

Default flags for use by Make
Rule for converting sources to objects
Full pathname of file containing application description

Make

pat hnane Full pathname of file containing Frontend setup commands

All the above lines should be terminated by the C newline character \ n.

Message-passing interface for setting tool options

When the user selects atool name from the Tool options submenu, Make issues a star
command to get the frontend module to start up a Wimp frontend for the chosen tool
(without an icon appearing on the icon bar). The setup dialogue box for that tool isthen
displayed, with the Run icon replaced by an OK box.

The user can then set options for that tool. A suitable set of command-line optionsis
returned by the generalised frontend, to be used as thatttoall§ | ags entry in the
Makefile.

If the star command fails (presumably because the frontend module is not active or
because there is no description for the chosen tool), then Make broadcasts a WIMP
message (recorded delivery), to see if any application can deal with the request. This is
to allow expansion of the system to incorporate other WIMP-based compilers,
assemblers, etc., which other parties wish to provide for use under the control of Make.

The WIMP message has the format:

Byte offset Contents

+16 DDE_CommandLineRequest (reason code) (&81401)
+20 Make’s internal handle

+24 ... null-terminated application name

If you have written an application which needs to respond to this message, then your
application should:

1 Acknowledge the WIMP message. You must also store the taskhandle of Make.

2 Display a dialogue box to allow the user of your application to set options
appropriately.

3 When the user has chosen the options, send back a WIMP message to Make, with
the following format:

Byte offset Contents

+16 DDE_CommandLineResponse (reason code) (&81400)
+20 Application’s handle

+24 to +36 Application’s name

+36 ... null-terminated command-line options

69

70

6 SrcEdit = g

SrcEdit isatext editor, based on the RISC OS editor (Edit), with extrafeaturesto
make it more suitable to create and edit program sources.

You can control SrcEdit from a menu tree, which is described fully in this chapter.
However, many menu choices are available directly from the keyboard; once you are
familiar with SrcEdit, you may find that you prefer this method. These keystroke
equivalents are listed later in this chapter.

Starting SrcEdit

You can load SrcEdit either by double-clicking on the ! SrcEdit icon from a directory
display, or by double-clicking on afile of type Text (&Of f f). Youwill then seeanicon
similar to that of Edit on the iconbar (a pen and program listing).

Typing in text

When you first open a new SrcEdit window, an I-shaped bar eatlbe— appears at the
top left of the window. This is where text will appear when you start typing. You can
open more SrcEdit windows, but only one of them will have a caret in it: this is called
the current window. It is also identified by the fact that parts of its border appear in
cream rather than grey. You can type only in the current window.

If you type in some text without putting in any carriage returns, and using the system
font (the default font) you will find that the window scrolls sideways. This is because the
default SrcEdit window is not as wide as the screen. You can break your text into lines
by pressing Return. Alternatively, click on the Toggle Size icon to extend the window to
the full screen and avoid having to scroll sideways. There is another way of getting all
your text into the window, using thrmat command; this is described later.

As you type, you will notice that SrcEdit fills the current line and then carries on to the
next line, often breaking words in the middle. Ignore this for the moment, as there is a
menu option \(Vor dwrap) that will take care of it, and this will be described later.

71

SrcEdit menus

Inserting and deleting text

SrcEdit menus

If you need to insert or delete text, position the caret where you want to make the
alteration by moving the pointer there and pressing Select. You can insert text simply by
typing. If you want to delete a character, position the caret immediately after it and press
either Backspace or Delete; hold the key down and the auto-repeat will comeinto effect,
deleting more characters.

The top level menu for text windows contains the following options:

SrcEdE
Rl
Savm Fl P
Sakaci
Eit
Digplay

The Misc menu

[T
Ik 1Nl F
File
Pl i “wiri
+ Columin tab TF3
Chenwng TR
Wdwrap “FS

72

This menu offers six options:
Info tells you about SrcEdit, including the version number of your copy of the program.

File givesinformation about the file you are working on, in particular:
I whether it has been modified since you last saved it;

I what type of fileit is: for example, a Text File or aCommand file (itsicon, if it has
one, is aso shown);

I itsname, including the full directory pathname;
I itssize, in number of characters;

I thetimeand date it was last saved (or if you have not saved it yet, the time and date
when it was first created).

New view opens a second window on the sasmetext. Thisallowsyoutolook at two parts
of the same document, and makes many actions such as copying from one part of a
document to another much easier. Remember that you are looking at one document, not
at two separate copies of it: to illustrate this, try looking at the same part of a document
in two views (not the way you will normally use New view!); enter some changesin the
first view and you will see the same changes appearing in the second view. Thisis
particularly useful with large documents.

SrcEdit

Column tabs switches on adifferent type of tab insertion; for more detail seethe section
Laying out tables — the Tab ke page 86. When this option ison, it isticked in the
Misc menu and Col Tab appearsin the Title bar.

In SrcEdit the default state is to have Column tabs on.

Overwrite, means that each character you type replaces the character at the cursor,
instead of pushing the cursor aside and inserting the new character. When this optionis
on, itisticked in the Misc menu and Over wr i t e appearsin the Title bar.

Wor dwrap prevents words being split over line-ends as you type. When this option is
on, itisticked in the Misc menu and Wor dwr ap appearsin the Title bar. Do not confuse
this option with Wrap, selected from the Display submenu. Wor dwr ap, unlike Wrap,
inserts a newline character (which is there although you cannot see it on the screen)
when the cursor movesto anew line.

Saving text — the Save menu

The Save menu allows you to save a complete file; you can also save part of afile using
the Select menu.

In order to save afilein the easiest way, you need to have on the screen the directory
display for the directory where you want to save thefile.

1 Click Menu over the SrcEdit window, and move to the Save submenu. A dialogue
box appears, containing an icon, the current filename, and an OK button (as a
short-cut you can also display this dialogue box by pressing F3).

T SrcEdi |
e RIS
Salac ﬁ
Edi U
Dispday TeatFile || DK

2 If thefile has not been saved before, SrcEdit offers you a default filename of
‘TextFile'. If you want a different name, use Backspace or Delete (or press Ctrl-U)
to delete TextFile, then type in the name you want.

3 Place the pointer on the icon in the box and drag the icon into the directory display
where you want to keep the new file. An icon for the file then appears in the
directory window.

This action assigns a full pathname to the file, as you will see from the Title bar of the
SrcEdit window. When you have made some changes to the text and want to save the file
a second time, use the Save option again, but this time, provided you want to use the
same filename, you can save the file by clicking@e box. Saving the file with the

same name overwrites your old file with the new information.

73

SrcEdit menus

You can also save part of the text, typically for printing or transferring to another
application, using the Select/Save option, described in the next section.

Manipulating blocks of text — the Select menu
You can select blocks of text, then manipulate them.

The simplest way to select ablock isto position the pointer where you want the block to
start, click and hold down the Select button, then drag the pointer to the end of the block
and release the button. The selected block of text is highlighted.

If necessary, you can then use Adjust to ‘adjust’ the ends of the block. Position the
pointer exactly where you want the block to start or finish, click Adjust and the block
lengthens or shrinks accordingly. This is particularly useful when you want to select a
block that extends beyond the part of the text you can see in the window. Select a few
words or lines at the start of the block, scroll until you can see the point where you want
the block to end, place the cursor there and click Adjust.

Here are some other ways of selecting blocks of text:

To Do this
select a single word double-click Select
select a single line triple-click Select
extend block to whole word double-click Adjust
extend block to include current line triple-click Adjust

Once selected, text can then be saved, copied, moved, deleted, de-selected (cleared) or
indented by choosing options from the Select menu:

—SweEa]
Mo
Save F3 i Barn AR
|
?E Copy *C '1!.1?
| Display | Move v [
Dedote *y || Selection || O
Claar *Z
rdat T
Help F1
| Load =

To Save a selected block, move &ave from the Select menu, and follow the standard
saving procedure. Use this option to copy a selection into another SrcEdit window; open
a new window and drag the icon into it. The copied block will appear after the current
caret position in the destination window. The caret is also moved to the end of the copied
text.

74

SrcEdit

To make aCopy of aselected block of text, select (highlight) your block of text and then
position the caret where you want the copy inserted, then call up the Select submenu and
click on Copy. The original block remains selected. Keep clicking on Copy to make as
many copies as you want.

If the caret is already at the position where you want the copied block to appear, press
and hold Ctrl while making the selection in the usual way. Copy the block by pressing
Ctrl-C. Thisway you can make a sel ection without moving the caret.

If you copy to a position inside a selected block, both the original and the new copy
remain selected. If you then make multiple copies you will get double the number you
indicate. This may happen accidentally if you position the caret immediately to theright
of aselected block ending in anewline character: because the newline character does not
appear on the screen it is not highlighted, but is still part of the selected block. To undo
an action, choose Undo from the SrcEdit menu.

To Move aselected block of text, select your block of text and place the caret where you
want the text moved to, then click on Move.

If the caret is aready where you want the block to end up, press and hold Ctrl while
making the selection in the usual way. Then still holding Ctrl, pressV, and the block will
be moved to the caret position. This way you can make a selection without moving the
caret.

To Delete a selected block of text, click on Delete. The marked block then disappears.
(Undo - in the Edit menu — allows you to reverse any changes or deletions made in the
Select menu).

To Clear or ‘deselect’ a block of text you have previously selected, clidklear. The
highlighted block reverts to normal and the block is no longer selected.

Indent allows you to indent a selected block of text. The indent is defined in character
spaces. You can also ugelent to add a text prefix to the beginning of each line of a
block.

To indent a selected block of text, call up thdent submenu:

hic

Srw F] BT I
ESEN| <o
b iy "L
| Doy | e v
[=3
oaw 27 | [|
rumber - ineat Lpacen
rrerma—ll [T T

Loomd ot - et o sach Ene

75

SrcEdit menus

76

You can then type in three different types of indent:
I A positive number gives you an indent of the specified width.

I A negative number, -5, for example, deletes the specified number of spaces or
characters from the beginning of the block line; use this to cancel an indent.

I You can also type in text: IGNORE, or Note, for example. This will then appear at
the beginning of every line in the selected block. You can remove this text by
indenting with a suitable negative number.

uriikeds © |ColTab)

Eebsple line of text

no indent Exasple line of text

. Exanple line af Beaxl
indent = 4 Exanple lime af text
. ple Line &f fext

indent = —4 ple Line of text

indent = Note:

By selecting some text and choosing H&p submenu, some language-specific help

can be given on that selection. This help is supplied by a language package, which will
have registered a help file containing typically a list of help messages for keywords of a
programming language (e.g. thep€i nt f function).

TheLoad submenu allows you to load a file into the editor, whose name is given by the
current selection. The rule used to determine the name of the file to be loaded (assuming
the current selection is in a file whose name has the form

Di rect oryPat h. LanguageExt ensi on.f 00) is as follows:

1 Tryto load fileSel ecti on.
2 If (1) fails try to load file:

Di rect oryPat h. LanguageExt ensi on. Sel ecti on
3 Trytoload fileDi rect or yPat h.Sel ecti on.

If (3) fails try the comma-separated list of directories entered by the user from the
Sear ch Path entry in theOptions submenu of SrcEdit’s icon bar menu, with
Sel ect i on appended as a leafname.

5 If (3) and (4) fail, try the comma-separated list of directories which are registered
for the current language (s&be SrcEdit icon bar menu on page 92 for details of
how to set the current language).

SrcEdit

For example, you may have a C source filewithaline #i ncl ude "defs. h".By
selectingdef s. h and typing Ctrl-L the header filedef s. h will beloaded into SrcEdit
(providing it can be found on one of the search paths).

The Edit menu

Thefirst option in the Edit menu is Find. At its simplest, this allows you to locate any

Find = F4 | Character(s) inyour file. You can also useit to replace text with other text. To make sure
Goito Fs = that the search is complete, always position the caret at the start of the file before giving

Unax F& the Find command. In the foll owing description, thetext being searched for isreferred to
Heao F2 as a 'string’; it may consist of any sequence of letters, numbers, spaces or other
ChaolF*FS characters.

Evpaund tais

Formal e P

Searching for astring of characters

To use Find without doing anything with the found string, chédsd in the Edit
submenu: th&ind text dialogue box appears, with the caret infhed box. Type in the
string you want to locate and press Return. The caret then moveRepthee with

box.
i L
Go| Previous| Count |
Find Find this e |
Fepace 'ﬂhl |
__ | Case sansitve
) Magic characiers) Wildeamed supressions

Since on this occasion you do not want to replace the found strings, either cBck on
press Return or pre$q.

Edit finds the first occurrence after the caret of the word in your file, then displays the
Text found dialogue box, indicating the operations available.

4 | Tawd fowsnd
ion Contre | Fepace |
Laat Repiace | End of fils replace |

Linds | r=0io |

Found

To look for the next occurrence of your string, click@entinue. To abandon the
search, click orf®top or press Escape.

77

SrcEdit menus

78

Replacing a string of characterswith a new string

To use Find for replacing a string with anew string, go to the Find text dialogue box as
before, but thistime, insert the new string into the Replace with box. Then press Return,
and the Text found dial ogue box appears.

Firud faort

ﬂ F'ru-.mu:-l Count

Find | Type T 08l vou want o hind im hera |

Feplaps with Replaoe it with s et |

__ | Case sansitve
) Magic charactens) Wikdganded expressions

Click on Replace to substitute the new string for the old string; if you do not want to
changethis particular occurrence of the old string, click on Continue and SrcEdit moves
on to the next one.

If you click Last Replace, SrcEdit replaces the currently found instance of the string,
but does not search for further occurrences.

If you click on End of file Replace, SrcEdit finds and replaces al occurrences of the
string from the present one forward to the end of the file, without stopping at each one
for instructions.

Clicking on Undo takes you back to the last string replaced and returnsit to the original
version; click Redo to change it back again.

The display at the top of the dial ogue box keeps you informed of the state of the search;
if SrcEdit cannot find the word you have specified, it displays the message Not Found.

Using keyboard short-cuts

Besides using the Select button, you can control all these options from the keyboard; the
particular keys are indicated by the capital |ettersin the dialogue box. Press S and the
search Stops, press C and it Continues, D and it will reDo, and so on. Pressing Escape or
Return also stops the search and removes the Text found window.

Other useful facilities

Note that you can use Find to delete stringsin atext, by entering nothing in the Replace
with box, and clicking on Replace in the Text found dialogue box, thus replacing the
found string with nothing: deleting it, in effect.

There are several other useful facilitiesin the Find text dialogue box:

I You can carry out the last Find and Replace operation again, by clicking Previous
(or by pressing F2).

SrcEdit

You can specify astring and ask SrcEdit to count the number of timesit occursin
your file (from the caret position to the end of thefile) by clicking on Count (or by
pressing F3).

By default, Find makes no distinction between upper and lower case characters —
Hello will match to both HELLO and hello, or for that matter, hElLo — you can
specifically ask it to match case by clicking nexCise sensitive (or by pressing

F4). Hello will then match only Hello. Case sensitivity remains selected until you
deselect it by clicking again.

Magic characters and their meanings

You can also use the Find facility to search for classes of characters. To activate this
feature, click orMagic characters (or press F5) in thEind dialogue box.

Magic characters are indicated by a \ character, as shown in the lower half of the
dialogue box, which shows you the available characters.

Type these characters in directly as shown in the window.

Firud Rt

E| I-‘rl:l-.mu:-l Count
FII'HJ-

Feplapes with |

__|Cass sansitve

W hWago characers o Wildcamed sxpressions
=Bty char a=ary hetinr or digit sy digl
i E=banohar ‘Daniwling i
“gry SFing B SErng =tk X

The magic characters operate as follows:
Character M eaning

* matches any string (including a string consisting of no characters
at all). This is really only useful in the middle of a search string.
For examplej o\ *n matcheg on, j ohn, andj ohaan.

\a matches any single alphabetic or digit character\ 3@
matcheg i p, t ap, andt op, but nott r ap.

\d matches any digit (0 to 9).

\. matches any character at all, including spaces and non-alphabetic
characters.

79

SrcEdit menus

Character M eaning

\n matches the newline character (remember that to the computer,
thisisacharacter just like any other).

\cX matches Ctrl-X, where X is any character.

\& isused in the Replace with box to represent the found string:

the string matched in the search. Thisis particularly useful when
you have used magic charactersin the Find string. For example,
if you have searched for t \ ap, and you want to add an sto the
end of all the strings found, \ &s in the Replace with box will
replaceti p,tapandtop byti ps,taps andt ops.

\\ enables you to search for a string actually containing the
backdlash character \ while using magic characters. To search for
thestringscat\ a orcot\ a, enterc\ at \\ a.

X XX matches characters by their ASCII number, expressed in
hexadecimal. Thus\ x61 matches lower-case a. Thisis
principally useful for finding charactersthat are not in the normal
printable range.

Wildcar ded expressions and their meanings

Thereisalso afacility for specifying wildcarded expressionsin search strings. In order
to use thisfacility, click on Wildcarded Expressions (or press F6) in the Find dialogue

box.
Firad feort
E F'rl-.luu:l Count |
Findg i. ip J
Peplace with | LE |
| Cass sansitve
) Mg characters W Widamed sxpressions
Aity Mewhng § | Alpharum @) gl # |
icxd Mormal i | Gef | |se |
MNal = Oormoe * | 1ofmons = | Mosl % |
[} | Found & | Falge 7 | Hax ¥ |

Click on the wildcard character you wish to enter and it is copied into the text box.

80

SrcEdit

The wildcard characters operate as follows:

Character Icon name Meaning

. Any matches any single character.

$ Newline matches linefeeds.

@ Alphanum matches any alphanumeric character. A to Z, ato
z,0t09,and _

Digit matches 0 to 9.

| Ctrl matches any control character. For example, to
search for Ctrl-z, typein| z

\ Normal matches any character following it evenifitisa
special character. # would be searched for as \#.

[] Set matches any one of the characters between the
brackets. Thisis always case sensitive.

- To [a—z] would match any character (in the ASCII
character set) from ato z.

~ Not does not match character. ~C matches any
character apart from C. This can also be applied to
sets.

* 0 or more matches zero or more occurrences of a character
or aset of characters. T*O matches T, TO,TOO,
TOOO etc.

n 1 or more matches one or more occurrences of acharacter or
aset of characters. T"O matches TO, TOO,
TOOO etc.

% Most %cisthe same as\c , except when used as the

final element of a search string. In this case the
longest sequence of matching charactersis found.

& Found refers to the whole of the ‘Find’ text. It is used in
the Replace with box to represent the ‘found
string’: the string matched in the search. This is
particularly useful when you have used wildcard
characters in the Find string. For example, if you
have searched fdr. p, and you want to add an s
to the end of all the strings foungs in the
Replacewith box will replacd i p,t ap andt op
byti ps,taps andt ops.

81

SrcEdit menus

Character Icon name Meaning

?

Field If a string was found that matched the search
pattern, then ?n refersto the part of the found
string which matched the nth ambiguous part of
the search pattern, where nisadigit from0to 9.
Ambiguous parts are those which could not be
exactly specified in the search string; e.g. in the
search string %#f r ed* $ there are two ambiguous
parts, % and * $ — which are?0 and?1
respectively. Ambiguous parts are numbered from
left to right. (Only to be used in theplace with
string).

Hex {2 nn matches the character whose ASCII number
is nn, where nn is a two-digit hex number.
161 matches lower-case a. This is principally
useful for finding characters that are not in the
normal printable range.

The full power of the wildcard facility can beillustrated by afew examples.

82

To count how many lower case |etters appear in a piece of text:
Find: [a-2z]

and click on Count.

To count how many words are in a piece of text:

Find: %@

and Click on Count.

To surround all wordsin a piece of text by brackets:

Find: %@
Replace with: (&)
and click on GO, then on End of File Replacein the Found dialogue box

To change all occurrences of strings like#i ncl ude "h. f 00" into
#i ncl ude "foo. h":

Fi nd: \#i nclude "h\.%@
Repl ace wi th: #incl ude "?0. h"

and click on GO, then on End of File Replace in the Found dial ogue box

SrcEdit

Toremove all ASCII characters, other than those between space and ~, and the
newline character, from afile:
Find: ~[-\-$]
Repl ace wit h:
and click on GO, then on End of File Replace in the Found dialogue box (i.e. find
all characters outside the set from the space character to the ~ character, and
newline, and replace them with nothing). In fact this could be written without the
\ , since ~ would not make sense in this context if it had its special meaning of Not,
ie
Find: - -~9$]

Other options on the Edit menu:

To send the caret to a specific line of text, use the Goto option. Call up the Goto
submenu and SrcEdit displays a dialogue box:

3010 Wt N

D..l'ﬂ:'l'l‘.'l"l.'lﬂ

mmcl‘n'lEE{I

Type in the line number you want to move to, then click on OK. The dialogue box

disappears, and the screen displays the caret, positioned at the beginning of the line you

have just specified. Note that this option understands ‘line’ to mean the string of
characters between two presses of Return. If you have not formatted your text, a line in
this sense may run over more than one display line.

Undo allows you to step backwards through the most recent changes you have made to
the text. The number of changes you can reverse in this way varies according to the
operations involved.

Redo allows you to remake the changes you reversedWvitto.

CR - LF allows you to convert the linefeeds in your text to carriage returns (and
carriage returns to linefeeds). Carriage returns appear as the characters [0d] in your text.

If you convert from linefeeds to carriage returns, the file will be converted to one
continuous line, with carriage return characters inserted where linefeeds have been
removed. Though it is possible to edit a file in this state, you may find that updating the
screen takes a long time. This facility is useful when importing text from other text
editors, which may use carriage returns where SrcEdit uses line feeds.

83

SrcEdit menus

84

Expand Tabs converts each tab character into eight spaces, since some printers can
interpret spaces more easily than the tab character. If you have imported afile that was
produced on aword processor, you may find it uses tab characters. These appear in the
SrcEdit file as the characters [09] in your text.

Format text allows you to reformat a paragraph of text — from the caret to the next blank
line or line starting with a space — so that the lines fill the screen and break correctly at
the ends of words. It is useful for tidying up text after editing. Position the caret at the
beginning of the paragraph, chods® mat text in the Edit menu and enter the number

of characters per line yomant your text to have in tHeormat width dialogue box.

Then move the pointer back over the Edit menu and clidkoomat text to format the
paragraph.

The setting in th&ormat width dialogue box also controls the length of lines when you
are entering text witkVor dwr ap switched on.

The Display menu

Ll

Fant

Line spacing
Malirigan
It
Wiiraiow wrap
Forsground
Background |

Winrh Araa P

Display allows you to change the way your text looks on the screen: you can experiment
with fonts, colours, line spacing and margins. However, the features you select do not
form part of the text when you save it.

For example, if you choogéew view in the Misc menu, you will have a second window
on your text. If you wish, the Display features in these two windows can be different;
this will not affect the text as such.

Font offers you a choice of fonts (typefaceSystem Font is the default style, and has
a fixed character width. For further information on fonts, se&®tB€ OSUser Guide.

You can usé&ont sizeto set the point size (height and width) of the characters displayed
on the screen. Either select one of the sizes indicated or position the pointer on the
bottom (blank) line of the menu; you can then type in another size.

Font height allows you to set the height of the characters displayed on the screen
leaving their width unchanged.

Line spacing increases or decreases the space between lines. Its units are pixels (the
smallest unit the screen uses in its current mode). The selected font size assigns a
suitable line spacing; this option is therefore used only to increase (or if you type a
negative number, to decrease) the given spacing.

Margin sets the left margin, again in pixels.

Invert swaps foreground and background colours, so that black text on white becomes
white text on black, and so on.

SrcEdit

By default, SrcEdit assumes atext width of 76 characters, but the default window is not
aswide as the full screen. You can of course change the number of characters per line
(by choosing For mat text in the Edit menu) or enlarge the window to the full screen by
clicking on the Toggle Sizeicon. Alternatively, clicking Window wr ap makesyour text
fit the size of the window. When Window wrap is on, you can change the window to
any size, and the width of the text will change accordingly. You can revert to the default
by selecting Window wrap again.

Foreground allows you to set the text to any one of the sixteen colours, by clicking on
the selected colour square from the pal ette displayed.

Background allows you to set the window’s background colour, as above.

Work Area allows you to set the extent of your SrcEdit windows so that you can have
windows which are wider than the current screen mode. You can specify a wider
window in terms of System Font characters inherk Area submenu (the size of

System Font characters is used even if the current font used is a fancy font). This is
particularly useful if you have sources which, for example, are 80 or 132 characters wide
and you are viewing them in mode 12. The maximum size of window width which can
be specified in this manner is 192 System Font characters.

Printing a SrcEdit file

There are two ways of printing a SrcEdit file; however, to use either, you first need to
load a printer driver.

If the file you want to print is already loaded into SrcEdit, call up the Save as dialogue
box and drag the icon onto the printer driver icon on the icon bar. This will print the
current version of the file, whether or not it has been saved.

If the file is not loaded into SrcEdit, you can simply drag the files’s icon from its
directory display onto the printer driver icon. You can also do this if the file is loaded,
but if you have made any changes to it since you last saved it, they will not appear in the
printed copy; only what has been saved will be printed by this method.

85

Laying out tables — the Tab key

Laying out tables — the Tab key
Tables can be set out in two ways using tabs — as regular columns or irregular columns.

Regular columns

If you want your table to have columns regularly spaced eight characters apart, select
Column tabsin the Misc submenu. The word ColTab will appear in the window’s Title
bar to remind you that you have done this. Pressing Tab will then cause the cursor to
jump to the next tab position. This is very useful for creating simple tables that will not
display much text:

I ~ADFE HariDiscd
Ruerige cdapi]atban Kinéd | pecdl

nain.c sWi.c o qui.c
1

{
i
{
{
i
i
i

i et oty sl
Y e ol oD e

Column Tabs is selected by default in SrcEdit.

Irregular columns

To set out a table with irregular columns, make sureGbhtmn Tabs in the Misc
submenu isiot selected. Type in the first line — the column headings, for example — as
you want it to appear, using spaces to separate the text in the columns. Then press
Return. On the next line, pressing Tab will make the cursor jump to the position
underneath the start of the next word in the line above.

86

SrcEdit

So, in the following example of asimple diary, the column headings (Person, File, Task
and Reason) were typed in using spaces, then the following lines were typed in using
tabs (including the dashes used as underlines for the column headings):

— ADF 5 HardDiscd § Monday (ColTas

.lntiu'a gehedule

Persan File Task f23son

stroomp.h Bdd conmenic Lamments ouk of date

texk. dee Hike sgreenduses [urrept ones are old

CTAT Seaonplle Hik la inkge

5wl hi 81d new GHls Beig SHI calls mof imeluded in searce
freemen.c Saak fest Tesking latest release

re—

Note: Both the table layout methods described above will only work with a fixed width
font (e.g. the System font). If you create atable and subsequently display the screenin
another font, the text in the table will not line up correctly with the column headings.

Reading in text from another file

If you want to add all the text from another fileinto the file you are currently editing,
position the caret at the point where the inserted text is to appear. Call up the directory
display for theincoming file, and drag itsicon into the text window. The entire contents
of the sourcefile are then copied into the destination file at the caret position. The caret
will appear at the end of the text you have inserted.

Bracket Matching

SrcEdit has a useful bracket-matching facility. If you place the caret to the left of an

opening bracket — any of the e , or{ —and press F10, the corresponding closing
bracket will become the current selection; similarly by placing the caret to the left of a
closing bracket — any of the 9et] , or} —and pressing F10, the corresponding opening
bracket will be selected. If there is no matching bracket an error message is generated.
This is a particularly useful feature in heavily bracketed expressions and blocks of code
which extend over a large amount of source code, and is useful in conjunction with the
Ctrl-F7 feature (toggle caret and selection), thus moving the selection between matching
brackets.

87

Throwback

Throwback

The purpose of throwback isto allow translators (compilers/assemblers) to signal the
editor when they have detected source errors. On receiving such a signal, SrcEdit
displays awindow which shows the name of the file which was being processed when
the error(s) were found, the name of the file in which the error(s) were found, and the
relevant line number together with the text of the error message. Also displayed isthe
severity level of the error(s): Serious Error, Error, or Warning. The complete list of
errorsis shown in a scrollable window. We shall refer to asingle line of this window as
an error line. You can scroll through these as with any normal text window, using the
vertical and horizontal scroll bars.

scing File: AOFS::HDemch,$. Bcornl C#+, Exaeples., PSork.c

1 T Bescripti
LEI HE;_lng u::r;u "Hm:!l conditlon centext
5l Hzrning wse of "=' im condition comtext
E Harning wie of "="' im condition centext

L —

C—==

Double-clicking Select on an error line opens an edit window on the appropriate file (if
it isnot already open), and highlights the line containing the selected error. The selected
error lineis also highlighted in the scrollable error window. Clicking Adjust on an error
line removes it from the list (presumably you have either corrected the error or have
chosen toignoreit). Notethat error line numbersrefer to the original source when it was
processed. You may, in the course of correcting errors, insert or delete lines; the position
in the source where errors were detected remains correct despite your edits (provided
that the edits are made as a consequence of throwback).

‘Informational’ throwback is also supported for tools like !Find. The functionality of
such a throwback window is the same as for ‘error’ throwback.

C example throwback session

First double click on !SrcEdit and ICC in a directory display to load them as applications
with icons on the icon bar. Next open the subdirectory

Acor nC_C++. Exanpl es. CErr or to show the text filélel | oWcontaining the

source of the program example of that name.

Hel | oWis a trivial C program which when run prittiel | o Wor | d on the screen. It

is written to be compiled with an integral link step by CC to form an executable image
file. Its source contains a simple error which will be detected by CC when you try to
compile it.

88

SrcEdit

Drag the sourcefile Hel | oWto the CC icon to make the CC SetUp dial ogue box appear
with the Sour ce writable icon initialised to the absolute file name. Ensure that the
Throwback option is enabled. The correct dialogue box appearanceis as follows:

= E [+TH]
Source porn_Ces Examples CErmr o Hellow]
Indudul 7 |
Opions
_J Compile only _|Debug
) Pregrocess oy [Threwback
cancel | . FAun |

Click Menu on the setup box and ensure that the Work directory item on the menu

displayed has the default setting of ''. Click on Ben button on the SetUp box to

start compilation. This has the normal effect of removing the setup box and putting the
CC output display on the screen, but almost immediately afterwards the compiler
produces an error and requests SrcEdit to display a Throwback error browser:

[#+,Examples, (Error.c.Hallol

SCEL: :DHarris. & Bearnl

L besoripti
IE! ?::F iu:::E:IL?E' e ',' = inserted ')° before ')

Double click Select on the compiler error message:

expected ')’ or ',’ - inserted ')’ before ’;

89

Throwback

SrcEdit displays the source file with the offending line that caused the error clearly
highlighted:

)0 pristfl® s, argl]13;

Examining this line closely shows that a closing bracket is missing before the ending
semicolon. Insert this bracket in SrcEdit and save thefile. Click Select on the CCicon
bar icon and click on Run to repeat the last compilation. If you have changed the

Hel | oWsource correctly, the compilation should now complete with no errors, hence
without bringing back the SrcEdit browser.

When the CC save dialogue box appears, click on the OK button to save the executable
file produced in the directory Exanpl es. CEr r or. Now double click Select on the
newly created executable image filein a directory display. The image file should run,
printing theHel | o Wor | d messagein a RISC OS run window:

Aun L5 DHaims B ACDITL G4+ Exampks CErm Halkoid |

iwl la Horla |

Press EEECE or ewlick mewse Eo sand i

90

SrcEdit

Assembler example throwback session

First double click on ! SrcEdit, !|ObjAsm and !Link in adirectory display to load them as
applications with icons on the icon bar. Next open adirectory display on the
subdirectory Acor nC_C++. Exanpl es. AsnErr or . s to show thetext fileHel | oW
containing the source of the program example of that name.

Hel | oWis asimple assembly language program which when run printsHel | o

Wor | d on the screen. It is written to be assembled to an object file by ObjAsm then
linked to form an executable image file with Link. Its source contains a simple error
which will be detected by ObjAsm when you try to assemble it. The line containing the
error is:

= "Hello Wrld"13, 10,0

Examining this line shows that a commais missing after the close quote. Correct this
and you will then be able to assemble the program without error.

C++ example throwback session

First double click on !SrcEdit and !C++ in adirectory display to load them as
applications with icons on the icon bar. Next open the subdirectory

Acor nC_C++. Exanpl es. C++Er r or to show thetext file Hel | oWcontaining the
source of the program example of that name.

Hel | oWisatrivia C++ programwhich whenrun printsHel | o Wor | d onthe screen.
It iswritten to be compiled with an integral link step by CC++ to form an executable
image file. Its source contains a simple error which will be detected by C++ when you
try to compileit. The line containing the error is:

cout << "Hello World\n;

Examining thisline closely shows that a closing double quote is missing before the
ending semicolon. Insert this double quote in SrcEdit and save the file. Click Select on
the C++ icon bar icon and click on Run to repeat the last compilation. If you have
changed the Hel | oWsource correctly, the compilation should now complete with no
errors, hence without bringing back the SrcEdit browser.

When the C++ save dialogue box appears, click onthe OK button to save the executable
file produced in the directory Exanpl es. C++Er r or . Now double click Select on the
newly created executable image file in adirectory display. The image file should run,
printing theHel | o Wor | d message in a RISC OS run window.

91

Saving Options

Saving Options

To retain the same set of options whenever you use SrcEdit, set the menu and dialogue
box entriesto the required configuration and then choose Save options from the SrcEdit
icon bar menu. The options you have chosen are then saved in two files:

<Sr cEdi t $Di r >. choi ces. opti ons
<Sr cEdi t $Di r >. choi ces. | i bopti ons

Thesefiles are read when SrcEdit starts up. The options saved are:

Foreground Colour Window work area width
Background Colour Column tab

Font Width Overwrite

Font Height Wordwrap

Left Marginin pixels Warn multiple edits
Extra spacing between lines Current language
Window wrap Search path

Font name

Setting options in a SrcEdit window

If you set the Column tab, Overwrite or Wor dwr ap optionsin the Misc submenu in a
SrcEdit window, they will only apply to that session of SrcEdit in that window.

To change these three options and retain the new settings whenever you use SrcEdit, you
must set them in the Options submenu in the SrcEdit icon bar menu, and then choose
Save options.

The SrcEdit icon bar menu

SrcEda

92

Inig P
Saveall TF3
Save oplions
Options [
Cregns L
e W1 4

Pressing Menu on the SrcEdit icon on theicon bar produces a menu with the following
options:

I nfo gives you some information about the version of SrcEdit you are using.
Save All saves all modified buffers, and closes all open windows.

Save Options saves the current settings of al SrcEdit optionsto file, so that thereisno
need to set the environment variables used to maintain these options.

SrcEdit

The Options submenu allows you to set the following options:

L __Cobonp -]
Columin tak
Chamrvarite
LE T ETH
\Wam multipie sdits | Lanepaaes |
Language NS
Sparch path | Ammembler
Forwanmy T

Column tab, Overwrite and Wordwr ap are similar to the options on the Misc
submenu in the section entitled The Misc menu on page 72. They are used to set the
default options for all windows opened by SrcEdit.

Warn multiple edits, if enabled, will warn you when you attempt to load afile
whichisalready loaded in amodified SrcEdit buffer. Thisreducesthe chance of you
accidentally editing two copies of the samefile, and then saving one over the other.
In such acase you will be presented with a dial ogue box, giving you the choice of
having a read-only copy of the file, anormal editable copy, or to cancel the load of
thefile. If you choose to have aread-only copy, then the SrcEdit window for the
document will have Read- Onl y inits Title bar and you will be prevented from
making any edits to the contents of the document.

The L anguage submenu gives you alist of any language packages which have

registered themselves with SrcEdit. You can select which of these languagesis

current, and this will determine what Help text is available, and also the default

search path used when loading from a selection.

Search path — If you load from a selection (i.e. when you have chased from

the Select submenu), SrcEdit will look in a number of places for the file to be
loaded. You may set a comma-separated list of paths to search by typing them into
the Search path writable icon (described on page 76). Note that each such path
should either be a path variable or be explicitly terminated by a dot.

Createleads to a submenu which enables you to open windows for specific types of file:
Text, Data, Command, Obey and Make files.

In addition, theCreate submenu allows you to set up SrcEdit Task windows, these are
described in the next section.

Finally, Quit stops SrcEdit and removes it from the computer’s memory, first presenting
you with a dialogue box for confirmation if there are any current files you have not
saved.

93

SrcEdit task windows

SrcEdit task windows

94

SrcEdit task windows allow you to use Command Line mode in awindow. To open a
task window, choose Task window from the SrcEdit application menu. You can have
more than one task window open. When you open a task window, you will see a*
prompt. You can now enter commands in the window just asif you were using
Command Line mode.

The major advantages in entering commands in atask window instead of at the
Command Line prompt are that:

I Other applications continueto run in their own windowswhile you run thetask (this
does mean, though, that the task may run more slowly than it would using other
methods of reaching the Command Line).

I Commands that you type, plus the output (if any), appear in a conventional SrcEdit
window, and may therefore easily be examined by scrolling up and down in the
usual way. When you type into the window, or when a command produces output,
the window immediately scrolls to the bottom of the text. Anything you typeinis
passed to the task, and has the same effect as typing whilst in Command Line mode.
You can change this by unlinking the window: in this case, anything you typein
alters the contents of the window in the same way as any other SrcEdit window,
even while atask is running. Any output from the task is appended to the end.

You can also supply input to atask window by selecting some text from another text file
and choosing Tasklnput from the task window menu. The selection may be in any
SrcEdit window.

You cannot use graphicsin atask window. The output of any commands that use
graphics will appear as screen control codes in the task window.

The menu for atask window contains the following options:

Task
Eil

Suspsnd

I s i

Ignare Cil
Edit L

Kill stops and destroys the task running in the window.

Reconnect startsanew task in the window, allocating memory to the task from the Task
Manager’sNext slot.

SrcEdit

Suspend temporarily halts the task running in the window.
Resume restarts a suspended task.

Unlink prevents the sending of typed-in characters to the task. Instead, they are
processed as if the task window were anormal SrcEdit text window.

Link reversesthe effect of Unlink.
Tasklnput reads task input from the currently selected block.

Ignore Ctl, when selected, prevents any control characters generated by the program
from being sent to the screen.

Edit leads to the normal SrcEdit menu. Although this makes available most of SrcEdit’s
features, you cannot use facilities such as the cursor keys or keys such as Page Up and
Home while you are using a Task window.

Some guidelines and suggestions for using task windows

In order to use a task window, you will need to be familiar with Command Line mode.
There are some commands which you will find are more useful in a task window than
they are directly from the Command Line. In particular:

*wi npsl ot min [nax] can be used to adjust the amount of memory available to the
task, which will otherwise start up using tNext space allocation. If you want to

remove all the memory allocated to a task without closing its window or destroying the
task, use the commariavi npsl ot 0 O.

*filer_opendir pathopensanew directory display for the directory with the
given path. The path must start with a filing system name. For example:

adfs::DHarris.$. Research

The command Spool should not be used from a task window. Because its effect is to
write everything that appears on the screen to the spool file,’uSpapl from the
desktop will produce unusable files full of screen control characters. There is, in any
case, no point in usirgSpool , since the output from the task appears in the window,
and can be saved using SrcEdit as normal.

When you run a command in a task window, the computer divides its time between the
task window and other activities running in the desktop. You should note that some
time-consuming commands, for exampl&éCGopy of a large file, may prevent access to
the filing system that they use until the command is complete.

Note that Command Line concepts such as current directory become relevant when you
are using Task Windows.

95

Keystroke equivalents

Keystroke equivalents

On occasions, it can be convenient to use the keyboard instead of the mouse, especially

once you are familiar with SrcEdit through its menus.

When editing

96

P

Shift- —, Shift- -
Shift-1, Shift-1
Ctrl-1

Ctrl-1

Ctrl- —, Ctrl- -
Ctrl-Shift-1, Ctrl-Shift-1
Ctrl-Shift—«
Ctrl-Shift- -

Copy

Shift-Copy
Ctrl-Copy

Home

Insert

Page Up/Page Down

Shift-Page Up/Page Down

Ctrl-Page Up/Page Down
Shift-F3

Shift-F1

Ctrl-F5

Ctrl-F7

Move caret one character left, right, up or down.

Move caret one word left or right.
Move caret one windowful up or down.
Move caret to start of file.

Move caret to end of file.

Move caret to start or end of line.
Scroll file without moving caret.

Scroll al documents up by oneline.
Scroll al documents down by one line.
Delete character to right of caret.
Delete word at current caret position.
Deleteline at caret.

Place caret at top of document.

Insert space to right of caret.

Scroll up or down one windowful.

Move caret up or down one line without scrolling.
Move caret and scroll up or down one line.

Toggle column tabs on or off.
Toggle overwrite mode on or off.
Toggle word wrap on or off.

Make where the caret is the current selection, and
move the caret to where the selection was (i.e. toggle

caret and selection).

Ctrl-Z
Ctrl-X
Ctrl-C
Ctrl-v
F1

Ctrl-L

F4
Ctrl-F4
F5
F6

Shift-F6

F7

Shift-F7

F8

F9

Ctrl-F6
Ctrl-F8
Ctrl-Shift-F1

SrcEdit

Keystroke equivalents in the Select menu

Clear selection.

Delete selection.

Copy selection to caret.

Move selection to caret.

Request language-specific help.

Load file whose leafname is given by selection.

Keystroke equivalents in the Edit menu

Display Find dialogue box.
Indent text block.
Display GoTo dia ogue box.

If no block is selected, select the single character after the
caret. If ablock is selected, and the caret is outside it,
extend the selection up to the caret. If ablock is selected
and the caret isinsideit, cut the block from the caret
position to the nearest end of the block.

Clear the current selection.

Copy the selected block at the current caret position.
Move the current selection to the caret position.
Undo last action.

Redo last action.

Format text block.

Toggle between CR and LF versions of thefile.
Expand tabs.

97

Keystroke equivalents

Keystroke equivalents in the Find menu

Note: these keystroke definitions only come into play once the Find dialogue box has
been displayed (e.g. by typing F4).

T, Find / replace text string.

F1 Display Text found diaogue box.

F2 Use previous find and replace strings.
F3 Count occurrences of find string.

F4 Toggle case sensitive switch.

F5 Toggle magic characters switch.

F6 Toggle wildcarded expressions switch.

Keystroke File options

F2 Open a dialogue box enabling you to load an existing
SrcEdit file into a new window.

Shift-F2 Open a dialogue box enabling you to insert an existing
SrcEdit file at the caret position.

Ctrl-F2 Close window.

F3 Savethefilein the current window. Thisisashort-cut to the
normal Save as dialogue box.

Shift-F9 Save all window edits.

98

Part 3 - Non-interactive tools

99

100

General features

his chapter describes those features common to all the Desktop non-interactive
tools.

As described in the chapter Working with desktop tools on page 13, the Desktop
programming tools can be divided into two categories: interactive and non-interactive.
The non-interactive tools are those which you set options for and then run, not
interacting further until the task completes or is halted. An example of anon-interactive
tool isthe linker Link, whereas the editor SrcEdit is an interactive tool. The chapters
following this each describe an individual non-interactive Desktop tool. Further chapters
in the accompanying language user guides describe non-interactive tools specific to
programming in particular languages; for example, the language compilers and
assemblers themselves.

The non-interactive tools can be further divided into two sub-categories: filters and
non-filters. The filter tools are those that take a set of input files and process them to
produce output files, examples being Link, Libfile, Squeeze and the language
processors. The non-filter tools all perform someimmediate action, such as examining
text files and presenting you with information astext output. Thefilter tools areintended
to be used both managed and unmanaged by Make (an interactive tool described earlier
in this user guide), whereas the non-filter tools are normally just used for unmanaged
work.

To start unmanaged use of any of the non-interactive tools, you first double-click Select
on atool application namein adirectory display. Thisloads the tool, putting its
application icon on the icon bar (just like any other RISC OS application).

When using the filter type of non-interactive tool managed by Make, there is no need to
start each tool and put its icon on the icon bar.

All the non-interactive Desktop tools are implemented as command line programs
provided with RISC OS desktop interfaces by the FrontEnd rel ocatable modul e, but you
do not need to be aware of this when using them, as command lines are automatically
generated from your settings of the desktop interface of each tool, making the tools
appear to be standard RISC OS applications.

101

The Application menu

Interface

The interface of each non-interactive tool can be summarised as follows:

I Clicking Menu on the application icon brings up a standard application main menu
(for unmanaged use only).

I Clicking Select on the application icon displays the SetUp dialogue box. This
allows the user to set options and specify input files etc. A menuis available within
the dialogue box enabling other options to be set. Tool SetUp boxes are displayed
by Make for managed development.

I Messages generated are output to a Text window or a Summary window. You can
toggle between these windows and save the output to afile.

I A processed output file from afilter tool is either saved in awork directory or is
saved by you from a standard Save as dial ogue box which appears when the task
has completed without error (unmanaged use only).

The Application menu

Clicking Menu on the application icon (for example, the Diff tool) gives the following

main menu:;
it
Inkg P
Save opfons
Oplinng [
Help
Chait

I nfo returns information about the application.

Save options causes the options in the SetUp box, and all submenu options
(meta-options) from this main menu, to be saved in afile for later use as defaults when
thetool is restarted.

The Options submenu alows you to set the following options:

Lkt
Inig P
Save opSons Clicns
Halp TR o
Qi Digglay 1

102

The Setup box

General features

Auto Run will cause the command-line command to be run immediately when a
fileis dragged onto the icon on the icon bar, without first displaying the SetUp
dialogue box. Options remain as they are currently set.

Auto Save suppresses the Save as dialogue box of filter toolsif asensible pathname

is available to save the output to. For more details on pathnames see the
METAOPTIONS section on page 164. Note that ‘output’ here is used to describe a
single file which is produced by running the command-line tool.

TheDisplay submenu allows the user to choose whether the tool outputs by default
into a text window or a summary window.

Help displays a help file in a scrollable text window, for example:

al=l Girh
R .
Furpose: File conparer
Setup:] J
Icom HetionMeaning Ilrhull
Pathl } Iams l-f h]es or direckories bo Ii.|.
il tuped ar dragqed)
F
Case insensitive iqggrr n::sr - off i
Expand kabs Ezpand tabs te § spages) off]
Reneue spates “::r all spages befare comparing off
Squash spates Squash sequences of spaces to one o f i
space =
= | |

Quit quits the application.

When working in the unmanaged way, i.e. with the tool application icon on the icon bar,
clicking Select on this icon or dragging the name of an input filkyib Run is off) to

this icon displays the SetUp dialogue box. If the SetUp box was displayed by a filename
drag, this filename is displayed in the relevant writable icon. Options appear with the
previous settings used, making it easy to repeat the last run of a tool.

When working managed by Make, you specify a ‘recipe’ of tasks to be followed to
construct a program from its sources. This recipe is stored as a Makefile, and can be used
later. You specify the recipe in terms of what goes in (source files, libraries, etc.), what
comes out (e.g. an executable 'Runimage file) and the processes followed. The
processes followed include specifying the options to be set for the filter tools when they
are used. To set these options you followTtba options menu item of Make to a list of

103

The Setup box

tools, then Select on the name of the relevant tool. This brings up the SetUp dialogue
box of therelevant tool, whether its application icon ison theicon bar or not. The SetUp
box appears with options set to helpful default states for managed use.

A typical SetUp dialogue box isthat of the application Diff:

F B oF
Path 1 |
Pam2 |
Cpdiong
I8 TS TSy i } ToWE SIS
_|c= _Fe
_ |E=pand imbs _J Squash spaces
L

The SetUp box for each application isdifferent, but for unmanaged use they al offer the
following two action buttons:

Run runs the tool with the options as set, starting a multitasking task performing the
non-interactive job specified. This multitasking depends on the presence of the
TaskWindow relocatable module.

Clicking Select on Run removes the dialogue box, clicking Adjust on Run leaves the
dialogue box on your screen.

Cancel discards any changes made to the options and closes the SetUp box.

The SetUp menu

104

Clicking Menu on the SetUp dialogue box produces a menu with the style of:

Apntlama
Comimand ling

Cihesr options
Chhvr Qpiiang

Command line leads to a dialogue box showing the command line equivalent of the
options set in the SetUp dialogue box. It also shows any extra options set from the Other
options part of the menu.

Other options are a set of options specific to the particular application.

General features

For example:

7]
Comimana Bng b
Diir_ stnucturs
Equata GRLF
Fast
Lange filas
Squsdge
Expand 18 P

other options

Output
Two types of output window are available for generated messages; Text and Summary.

The Text window

If Text has been chosen from the Display submenu then a scrollable, saveable text
window appears when the tool is running. All textual output sent to the screen by the
program appearsin the text window. This window can be closed at any time, thus
aborting the command-line program. The Title bar of thiswindow showsthe name of the
tool and the state of the text running, i.e. Running, Completed, Aborted or Paused. An
example of a Text window using the application Diff is:

[| DT (Completed] I
:H files "SCELz:DHarris.$.Journesdld’ aad SI'.SI (bRarris. 5. JourneyHen” -

"Plrrl .00 0ld, Il.nri-t
T 3t i i S e o o o
= SﬁI '“Tmii ' ?F’f t chasge on o
sy Ha !um. ';'l"ﬂEH‘E 1 S
|MI“3 oot hFlu“u*Hr-h-lM bridge
_I||E 1 h""'”su{h Elmsall wilk ower the brid

— |

Clicking Menu on atext window displays the following menu:

Gl
infe b
Cind Line |
Save b
Aibort

105

Output

I nfo gives information about the program being run.

Cmd L ine shows the command line generated and used to run the tool.
Save allows the textual output to be saved in afile.

Abort aborts arunning program.

Pause pauses a running program.

Continue continues a paused program.

The Summary window

If Summary has been chosen from the Display submenu then asmall summary window,
similar to the following, appears when the tool is running:

ORIt atisi
,EI- Aenal 105638
Ouff | 12 Linas of auigiil

This summary window displays the sprite of the application and the time at which the
command was run. The Title bar is the same asfor the text window. There are two action
buttons, Abort and either Pause or Continue, which allow the program to be aborted,
paused, and continued in an identical fashion to the menu on the Text window.

Clicking Menu on the summary dialogue box displays amenu similar to the following:

Oatt
Infg r-
Cmid Line: I
Save I-

I nfo gives information about the program being run.
Cmd L ine shows the command line generated to be used to run the tool.

Save allows the textual output to be saved in afile.

Toggling between the Text and Summary windows

To toggle between the Text and Summary windows click Adjust on the output window’s
close icon.

106

General features

Processed file output from filter tools

The numbers and types of files output varies between each filter tool, so for more details
see the chapter on the tool in question.

During managed development the saving of processed filesis specified by the Makefile,
which can be constructed for you by Make.

For unmanaged devel opment, processed files are either saved in positions relative to the
work directory, or saved by you from a Save as dialogue box which appears when ajob
has completed without errors. This box does not appear if you have enabled the Auto
save option on the application menu.

107

Output

108

Starting AMU

AMU ot

he Acorn Make Utility (AMU), is atool managing the construction of executable

program images, libraries, and so on using operations specified in a Makefile. All
thefacilities provided by AMU are also provided by Make, which in addition assists you
in constructing your Makefiles. It is therefore recommended that you use Make rather
than AMU, except where extreme memory shortage makes the larger size of Make a
problem and the extra facilities are not needed.

Since use of AMU is deprecated, the description in this chapter is brief. For details of
Makefile syntax, see appendix Makefile syntax on page 175. Some details described in
the chapter Make on page 57 may also be useful references for AMU, as the command
line tool amu, which performs the management of program construction, is the same
tool used by Make.

Each time that AMU isrun, awork directory is set up for that job as the directory
containing the Makefile. For the effect of the work directory on each tool, seethe
chapters on individual tools such as the language processors CC and ObjAsm in thisand
accompanying user guides.

AMU isone of the non-interactive desktop tools, its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter General
features on page 101.

Since AMU is an alternative tool providing construction management like Make, it is
normally used controlled directly from its desktop interface. To start AMU, first double
click on!AMU in adirectory display to put itsicon on the icon bar.

109

Starting AMU

Clicking Select on thisicon or dragging the name of amake file (t ext or Makefil e
filetype) from adirectory display to theicon brings up the AMU SetUp dia ogue box,
from which you control the running of AMU:

EE| AN
Makalia oty -HardDiscd § User Divyatons Makefs|

|:mge:| |
Opfiang
__|Comirue after esrors __|bont esecuts
_J NaeE AT LSS ___|5.In-n':

Cancel | Fun

M akefile contains the name of the Makefile to be used when AMU isrun. If you
brought up the SetUp dialogue box by clicking on the AMU icon bar icon, thiswritable
icon contains the previous Makefile used (if any), otherwise it displays the name of the
file you dragged to the icon. Dragging another file to this writable icon replacesits
contents with the new name.

Tar gets contains a space-separated list of the names of the targets in the Makefile to be
constructed, and macro predefinitions of the type name=st r i ng. If thiswritable icon
is empty (default) the first target in the Makefile will be made.

The Continue after errors option causes the make job to continue after one of the
commandsissued by it hasreturned abad return code (signalling an error). When the job
continues, only those branches of the make job which don’t depend on the failed
command are executed.

Thelgnorereturn codes option causes the make job to continue after one of the
commands issued by it has returned a bad return code (signalling an error). When the job
continues, all subsequent branches of the make job are executed, as if the return code
was good.

TheDon'’t executeoption stops any commands being executed, instead just printing
them to the output window with dependency reasons for each one.

The Silent option stops printing of executed commands in the output window.

Clicking Menu on the SetUp dialogue box brings up the AMU SetUp menu, containing
afew additional options:

BT
Commeand ling &
Stamp
Comimand fla -

110

AMU

The Command line option on the above menu has the standard purpose for
non-interactive desktop tools as described in the chapter General features on page 101.

The Stamp option stops construction of the target, instead causing sources and target to
be stamped with current time so that the target appears up to date. This only worksif all
sources are present.

The Command file option leads awritable icon where you specify the name of afileto
be written containing commands generated. If you specify arelative filename, thisis
used relative to the work directory (the location of the Makefile). The commands are
written to this file but not executed.

The Application menu

Clicking Menu on the AMU application icon on the icon bar gives accessto the
following options:

1L
Inkn P
Save optons ([OpinE |
(Cpons — AREIEERD
Heip Ao Sav Dizphay

Summary

For adescription of each optionin the application menu see the chapter General features
on page 101.

Example output

Running AMU displays any error messages in the standard text output window for
non-interactive tools. If al goes well this window contains no error messages, for
example:

-

? 4 ?.Llﬂm'! uh 18 1941

r
Cu ﬁ orn Campulers
n; stitlt 'tDIlIULH!ﬂt]rﬂ ut not wsed
I I'Ii 11]5“ ld"l..ﬂ'ﬂlﬂi 'FE lll't I.IIiH
J.I1I' I ning: stakie 'operator_event” ut nat
line £23: iamng stakic "nunber_pvent' ut mit usH

htﬂl hur-n s, B arrors
I“ E ELE -mEug ing=1 -a B, p.Main B.2. Hain
nﬂqu EE IS FIH [wsp 3. ild iBzorn [amputers Lbdd {a]mlt!rﬂ [Rug 18 1534]

ink 'ﬂ e I!l.lliluil' " I in I'.l Cale Cro,stebs Cietoolbsalib Cro,ewintlib

111

Command line interface

Command line interface

For normal use you do not need to understand the syntax of the AMU command line, as
it is generated automatically for you from the SetUp dialogue box and menu settings
beforeit is used.

The syntax of the AMU command lineis:

anmu [options] [targetl{ target2...}]

Options
-f makefile M akefile name (defaults to Makef i | e if omitted)
- Ignore return codes
-k Continue after errors
-n Don’t execute
-0 comandfile Specify Command file as on SetUp menu
-s Silent
-t Equivalent to Stamp on the SetUp menu

targetl {target2} ...

Thisis a space-separated list of targets to be made or macro pre-definitions of the form
nane=st ri ng. Targets are made in the order given. If no targets are given, thefirst
target found in Makefileis used.

112

9 DecAOF "¢

ecA OF decodes one or more object files and returnsinformation about each area
within the files.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of afile from a directory
display to the icon brings up the SetUp dialogue box:

= E| DacALIF
Fios |
Opaons
| Only area declaraions
Print

[¢ Symbol tabde [Sting tanke [Debug
[¢ Areacontents [Ama deckrations
|+ Petcaton diectives [Dizassambis

B

The Files writable icon allows you to specify the name of one or more files to be
processed (typed in or dragged from a directory display). These files must be ARM
Object Format (AOF) files.

SetUp options

Only area declarations prints a short summary of details about each area in the object
file. If this option is selected no other details are printed.

The options offered under the heading of Print are all set on by default. Choosing one or
more of them will set the remaining options to off.

Symbol table prints the contents of the symbol table.
Sring table prints the contents of the string table.
Debug prints the debug areas in a readable format.

Area contents prints the area contents in hex.

113

The Application menu

Area declarations prints the area declarations.
Relocation directives prints linker relocation directives.

Disassemble prints disassembly of code areas.

The SetUp menu

DechiE Clicking Menu on the SetUp dialogue box displays the menu shown on the | eft.

=l
Comimand ling -

For a description of the DecAOF Command line option see the section Command line
interface on page 115

The Application menu
Clicking Menu on the DecAOF application icon gives the following options:

DacA D
Inin P

Save cpsons | iR]
Coron: — SRETIERD

Help

For adescription of each option in the application menu see the chapter General features
on page 101.

Note that Auto Saveis not available for this application.

114

DecAOF

Example output
The output of DecAOF appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 105.

The following window shows an example of the output from DecAOF:

a2 DecAOF [Com plssd) B
w# String Table (file SCSI::08arris.% Acoral_Ct++.Examples. | ThexCale.e.Cale):-

OFfz2t Etring-nass

1 Eesors
; resher_gwent
b oeperal or_#wint

2
!
e
% setl

Lpdran
Lperan

2

Command line interface

For normal use you do not need to understand the syntax of the DecAOF command line,

asit isautomatically generated for you from the SetUp dialogue box settings. The
Command Line syntax for DecAOF is:

DecACF [options] filenane [filenane...]

115

116

Options

-a
-b
-C
-d
-g
-r
-s
-t
fil enane

print area contents in hex (implies - d)
print only the area declarations

print disassembly of code area (implies - d)
print area declarations

print debug areas

print relocation directives (implies - d)
print symbol table

print string table

avalid pathname specifying an AOF file

10 Diff I

Diff displaysthe textua differences between two files on aline-by-line basis. To
compare files more usefully various options alow you to display only those
differences of specific interest.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of afile from a directory
display to the icon brings up the SetUp dialogue box:

= B L
Pih 1 |
Pam 2 |
Optiong
__|Case insensitne _) Femowe spaoes
_|Epand tabs _) Squagh spaces
Cainiced Fun

Path1 and Path2 allow you to specify the names of filesto be processed (typed in or
dragged from adirectory display).

SetUp options
Case insensitive instructs Diff to ignore the case of letters; for example, Vari abl e
and var i abl e would be considered asidentical if this option was chosen.
Expand tabs substitutes tabs by multiples of eight spaces.

Remove spaces removes all spaces before comparing lines. Thisisuseful if youwish to
examine two files you have been editing but are not interested in any extra spaces you
may have introduced.

Squash spaces replaces all instances of two or more spaces by one space.

Note: If you are using Diff to display the differences between two source files where
spaces can be critical, e.g. assembler code, and you want to display lines where spaces
have been deleted or added, it is essential to ensure that neither Remove spaces nor
Squash spaces have been chosen.

117

The Application Menu

The SetUp menu

O Clicking Menu on the SetUp dialogue box displays the menu shown on the | eft.
Fommanaing H command line enables you to examine or edit the actual command line. For more
Dir. structuns L
Equate CRAF information on this option see the section Command line interface on page 120.
TV Dir. structure displays only the directory structure of the two files. It does not display
Lange fles any differences between the files.
Squedge
Exqund st Equate CR/LF instructs Diff to treat the linefeed and carriage return characters as

identical. Thisis especially helpful when analysing files created by different editors
where sometimes linefeeds and sometimes carriage returns are used as end of line
terminators.

Fast performs a speedy analysis of two files. It reports only whether there are
differences between the two files, not what or where the differences are.

Largefilesis helpful where very large files are being compared. It sometimes happens
that two files differ completely over alarge section of text because, for instance, you
may have edited in several paragraphs or even several pages of text. Ordinarily Diff
would not be able to detect this and would report every line from this point forward as
different. However, if L ar ge files has been chosen Diff performs amore detailed
analysis (thereby taking longer) and can detect this situation. It will then pick up where
the two files converge again and display only valid differences from that point onward.

Squidge removes all spaces, except between alphanumerics, where multiple spaces are
replaced by one space.

Expand tabsallows you to replace tabs by multiples of any number of spaces you wish.

The Application Menu

Clicking Menu on the Diff application icon gives the following options:

e
Inio [

Save opSons E |
Help i Desplary

Summary

For adescription of each option in the application menu see the chapter General features
on page 101.

Note that Auto Run and Auto Save are not available for this application.

118

Diff

Example output

The output of Diff appearsin one of the standard non-interactive tool output windows.
For more details of these see the section Output on page 105.

The following two examples show the use of options within Diff.

Example 1
In this exampl e two text files have been analysed by Diff with no options being set:

Flf—l [V (Compioted] B
f
h

f Flﬁi'EEiI'rEHI;;ég !IlHrHILﬂ'FH 'ﬁ I;Hi'rls.itluumﬂgu' B
hr‘HEI I'IirIFE'I= L t F'T“ EE:%IEH Y i T
i

s Ve ﬂ" e chuse on t
u'!!! Hﬂlrrls rlsnﬂgﬁh Flu! L‘*H "H i i
ti

_ line 9: Rlighti Ellfh Elmsall walk ower Bhe brid

-— — —— ——— ———

Three differences have been found:

I online6 of thefirst file Doncast er has been spelt with alowercase d.
I online7 of thefirst file st oppi ng has been spelt with only one p.

I online 9 of thefirst file there is an extra space before br i dge.

Example 2

In the this example the same two files are compared but the Case insensitive and
Remove spaces options have been chosen.

el Ditf [Complatad) H|
:H hles 'EIZEI s0Hareis. §. Journewdld' ead 'SCEL::DHareis.$. JournegHew' -
:g Juuruﬂld lin E ;
HE 1tuﬁlu tE 4-:" l.
1t rrls ourneyled,
line T: khe I a8 stopping il: Saukh Elmsall. |
= :

Theresult isthat only the different spelling of the word st oppi ng has been displayed.

119

Command line interface

Command line interface

For normal use you do not need to understand the syntax of the Diff command line, asit
isautomatically generated for you from the SetUp dial ogue box settings. The Command
Line syntax for Diff is:

Diff [options] filenanel filenane2

Options

-d Show only the directory structure, do not display any
differences

-e Equate CRand LF

-f Perform afast Diff, all options except - d ignored, do not
display any differences

-1 Handle large files more effectively (but more slowly)

-n Ignore case sensitivity when comparing letters

-r Remove all spaces before comparing lines

-s Squash sequences of spaces to one space

-t Asfor - r, but - s when between two al phanumeric
characters

- X Expand tabs to spaces (tab stops at multiples of 8)

-Xn Expand tabs to spaces (tab stops at multiples of n)

fil enanel valid pathnames specifying objects to be ‘diffed’

filenane2

120

11

Find

Fi nd searches both the names and the contents of one or more filesfor text patterns. It

includes options allowing you:

to control whether the case of |etters should be considered,;
to use wildcard expressions to specify several filenames,

to insert wildcard expressionsin the pattern string so that digits, control characters,
alphanumerics and particular sets of characters can be searched for;

to start SrcEdit displaying found text using Throwback.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of afile from adirectory
display to the icon brings up the SetUp dialogue box:

@ |

Findd

Paisrns|

Files |

Cptiong

_J Line count anky

_J Flanamag onky

| Wikt

| Coee inspnsive
_|verose [Throwback

__ Camcel | | Fun |

The Patter ns writable icon allows you to type in the patterns to be searched for.

If asingle pattern includes spaces, the pattern must be enclosed in double quotes, for

example:
"the text"

Double quote characters in a search pattern must be preceded by a backsl ash.

The Fileswritable icon allows you to specify the name of one or more files (typed in or
dragged from adirectory display) to do the searching in.

121

The SetUp dialogue box

SetUp options
Linecount only prints only a count of the number of lines matching the pattern from the
specified files.

Filenames only lists only the names of files matching the pattern.

Caseinsensitive will ignore the case of letters; for example, nor mal and Nor nal

would be considered as identical if this option was chosen.

Verbose lists the name of each file before searching it for pattern matches.

Throwback enables SrcEdit throwback when text selections are found.

Clicking on Wildcar ds displays a further set of options:

122

BE

ey

Pattarms |

F|h:-|

Cpsong

_J Line courtt only

. Flanamag onk

| Came neensiive
 |Werbose [Thowback

[wikscanss
Cancel || Aun |
Fike wildcands
Fiename ch. g {1 or more Slename ches.
Subdmscies. | oy | jor |
(o e | | | (o rmges |
Pattern wildcards
Any. | mewine$ | aphatium @ |
Digk® [Cw) Mormal
satf | | Set Mo -
i} o e J 1 oF Fcne |

Pattern wildcards

Find

The options listed under Pattern Wildcards alow you to specify wildcarded
expressions in your search string. Clicking on one of these options will insert a special
character into the Patter ns writable icon immediately before the caret.

Wildcard
Any .

Newline $
Alphanum @
Digit #

Ctrl |

Normal \

Set |
] Set

Not ~

Meaning
Matches any single character. For example:

Fr.d will match Fr ed and Fr 1d, but not Fri ed
Matches the newline character (LineFeed).
Matches any alphanumeric character a- z, A-z,0-9 or _.
Matches any digit 0- 9.
Matches Ctrl-c, where c is any character between @and _.

For example:
| x matches Ctrl-x
Note: There are two special cases:
| ? matches the Delete character
|'c matches Ctrl-c’ where ¢’ is the character ¢

with its top bit set

Matches the following character even if that character is a
special character. For example:

\. matches the dot character (not any single
character)
\c matches lowercase

Inserts a left square bracket immediately before the caret.

Inserts a right square bracket immediately before the caret.
The preceding two options insert opening and closing square
brackets into th@atternswritable icon. You can then manually
insert one or more characters between these brackets and Find
will match any one of the characters you put inside the brackets.
For example:

t[aei] n matcheg an,t en andti n, but nott on
Note that a set is always case-sensitive.
Matches any character other than the following character, where

the following character is any of the simple character patterns
listed above. For example:

| a~ne matched at e, | ace and| ake, but not
| ane

123

The SetUp dialogue box

124

Wildcard Meaning

Oor more* Matches 0 or more occurrences of the following character, where
the following character is any of the simple character patterns
listed above. For example:

ca*n matches can, cannot and cat

1lor more” Matches 1 or more occurrences of the following character, where
the following character is any of the simple character patterns
listed above. For example:

ca’™n matches can and cannot , but not cat

Filewildcards

The options offered under File Wildcar ds insert special charactersinto the Files
writable icon which allow you to specify filesin avariety of ways. Several of these
options require you to manually insert additional text next to or inside these special
characters:

Filename ch. # inserts a hash character immediately before the caret. This character will
match any single filename character except .

For example:

Fi nd adfs:: HD sc4. $. Fr ed# will search files Fr ed1 and Fr eda, but not
Fred13, Frederi ck etc.

Fi nd adfs:: HD sc4.$. Fr#d will search files Fr ed and Fr 2d, but not
Fr eld, Fr eed etc.

OorMorefilename chs. * inserts an asterisk immediately before the caret. This
character will match any sequence of filename characters except . ,{,and} .

For example:

Fi nd adfs:: HDi sc4. $. Fr ed* will search files Fr ed1 and Fr eda, and aso
Fred13, Frederi ck etc.

Fi nd adfs:: HD sc4.$. Fr*d will search files Fr ed and Fr 2d, and also
Frd, Freed, Fr123d etc.

Sub-directories... insertsthree dotsimmediately before the caret. It must be positioned
immediately after adirectory name. Find will then search all nominated filesin that
directory and in any subdirectoriesin that structure.

For example:
Find adfs::Amy. $. Receipts...nonthly

will search al filescalled mont hl y in the directory Recei pt s and alsoin any
subdirectories of Recei pt s.

Find

Or { inserts aleft brace immediately before the caret.
Or } inserts aright brace immediately before the caret.

The preceding two optionsinsert opening and closing bracesinto the Fileswritable icon.
You can then manually insert one or more filename characters between these braces,
separating each filename with acomma. Find will then search al filenames inside the
braces.

For example:

Find adfs::HDisc4.$. Wrel.{atype, btype, ctype}
would search al three files inside the braces, i.e. at ype, bt ype and ct ype.
Oor More (inserts aleft bracket immediately before the caret.

) O or More insertsaright bracket immediately before the caret.

The preceding two options insert opening and closing brackets into the Files writable
icon. You can then manually insert one or more filename characters between these
brackets and Find will search any files with none, one or more occurrences of the
characters you put inside the brackets.

For example:

Find adfs::HDi sc4.%. Fr(e)d will searchfilesFrd, Fred and Fr eed,
but not Fri d.

Find adfs::HDisc4.$. Fr(ie)d will searchfilesFrd, Friedand
Frieied,butnotFrid,Frieedor
Fred.

The SetUp menu

Fird

Command ling P
Alaw -
rap alyla

Clicking Menu on the SetUp dialogue box displays the menu shown on the | eft.
Command line option — se€ommand line interface on page 127.

TheAllow ‘—' option enables you to specify another pattern which will be matched even
if it begins with a —. This pattern will be searched for in conjunction with the patterns
you have inserted into theatter ns writable icon.

If you need to match two or more patterns beginning withtlaen you must precede
each additional pattern with - e

For example:
-pattern -e -pattern -e -pattern

Grep style enables you to specify patterns using the syntax of the UNIX gr ep tool.
Thisoption is provided for users familiar with UNIX.

125

The Application menu

The Application menu

Clicking Menu on the Find application icon gives the following options:

Find

Inio [
Save opsons ([Ok |
Help Ay Sav Diplay

For adescription of each option in the application menu see the chapter General features
on page 101.

Note that Auto Run and Auto Save are not available for this application.

Example output

The output of Find appearsin one of the standard non-interactive tool output windows.
For more details of these see the section Output on page 105.

The following window shows an example of the output from Find:

PETEETE TEE. [
RS S) B

P e e

Ll ST LR

In the above example the pattern MOV[CV] was specified in the Patter ns writableicon
in order to list only those instructions beginning with MOVV or MOVC in an assembler
sourcefile. Instructions where the fourth letter was not a C or V, such as MOVS, MOVNE
and MOVEQS, were, therefore, not listed. The Throwback option was not enabled in the
above example. With Throwback enabled, a SrcEdit Throwback browser would also
have appeared alowing thefile Ut i | to be edited, starting at the found lines.

126

Find

Command line interface

For normal use you do not need to understand the syntax of the Find command line, asit
isautomatically generated for you from the SetUp dial ogue box settings. The Command
Line syntax for Find is:

Find [options] [pattern{ pattern}] -f filepattern{ filepattern}

Options

-C
-n
-1

-V
-u
-e

Pattern

> % l'_‘/_:ﬂ:®69'

1
—

Filepattern
#

!
()

list only a count of the number of lines matching from each file.
ignore the case of letters when making comparisons.

list only the names of files matching patterns.

list the name of each file before searching it for matches.
accept UNIX grep/egrep-style patterns.

allow the following pattern arguments to begin with a —.

matches any single character.

matches the newline character (LineFeed).

matches any alphanumeric character.

matches any digit.

| ¢ matches Ctrt, wherec is any character betweéand_.

matches the following character even if that character is a special character.
matches any character inside the square brackets.

matches any character other than the following character.

matches 0 or more occurrences of the following character.

matches 1 or more occurrences of the following character.

marks the end of multiple patterns and the start of filepatterns.

matches any filename character except

matches 0 or more filename characters other than

searches files in that directory and any subdirectories in that directory.
searches files contained within braces (filenames separated by

commas).

search any file with none, one or more occurrences of the characters inside
the brackets.

127

128

12 LibFile kg

Li bFile creates and maintainslibrary archives. It can be used to create archives of files
for backup and distribution purposes, for example. A special form of library archive
containing AOF files can be created for use with Link. The format of library archive
filesis described in appendix Code file formats on page 201.

The SetUp dialogue box
Click Select on the application icon. This displays the SetUp dia ogue box:

B LiFik
LEariry
File List |
Dpsians
% Create) Oelese |Listlibrar

Weert) Esiract

Gancet | | Aun |

The SetUp options

Library isthe name of the library to be processed. If alibrary is being created this will
be shaded. A Save as dialogue box will be presented when the library is created.

File List, when used with Create or I nsert, contains the list of files to be placed in the
library. When used with Delete or Extract it containsalist of filesin the library which
areto be extracted or deleted. You can use wildcard charactersin the File List (* to
match zero or more characters, and # to match a single character).

Create creates anew library containing the filesin File List. Thisis the default option.
Delete removes thefilesin File List from the specified library.

Insert addsthefilesin File List to the specified library. Files of the same namein the
library will be replaced.

Extract copiesthefilesin File List from the specified library to disc. The files are not
deleted from the library.

List library liststhe files contained in the specified library. By default, this option is off.

129

The SetUp dialogue box

The SetUp menu

LibFilks

Command ling

« Symibol able
List syl tabka
Wi Fle

P

130

Click Menu on the SetUp dialogue box. This displays the LibFile SetUp menu.

Command line allows you to specify the command line to be presented to the
underlying Li bFi | e command line tool. You should take care when modifying the
command line. The effect of certain arguments depends on the order in which they
appear in the command line. Changing this order may have unanticipated effects. Refer
to the section Command line interface on page 133.

Symbol table adds an external symbol table, as used by Link, to the library. External
symbolsin any object filesin the library are placed in the symbol table. Non object files
areignored. By default, this option is on.

List symbol table lists the symbolsin the external symbol table along with the name of
the AOF file which generated each symbol. This option is off by default.

Viafilealowsyou to set up alist of filesto be used in onefile called a Viafile. When
creating or maintaining libraries with alarge number of filesit may become tedious
having to drag all the filesto the File List every time, especially if they are in different
directories. Enter the name of the Viafile in the submenu and press Return.

Output

LibFile

The Output window displaysthelist of filesin the library and/or the list of external
symbolswhentheList library or List symbol table options are selected. Thefollowing
windows show examples of each.

I | Ll {Completad)]

Lontents
BetionBett . o.petelicksh il? Fon Baw 2B 11:56:
SEE N W
lJ on x:n:mu icksh mn Baw I.:
iy 4 BEAD
ll*un-qeﬂr“ 15 mnlw I.:
batton.e. '!Eh'-iII.: Ja4 I:IH m 28 1l
Bettonee: ::{r - U Fon w18 11!
batton.e.sekf 472 Fon Bew 2B L1

JLn L O Sqy (b M

S 7]
L1 i i
itl‘t'n ton_get_click_show fron chianButt.o.getelicksh 4
etin an_gel fron ﬂ fan l.IE «0: 9 FIEI
#tin on_get_Rext ron <0, 9E
#tionbwtton_set_click_show FOR al srttlmksl :
:IJ [on_§ ,EIHH ron Ell-l'l l.IE o H
o] et Fn buttan, 0.6t “
m ﬂl‘l_ﬂLﬁ'liﬁll:ill ronm BUE I'I'Iul:hm'ﬂ
Fon u
batio nn_:l.': rgl but I'I1 u et
m hn-l'l_:-ﬂ:_l.lillﬂllhl Fon B E ; m“]
T . - i . i
Notes:
1 Anydirectoriesin the File List to be archived will be recursively archived (i.e. al

filesin the specified directory will be archived and any directoriesin the specified
directory will themselves be recursively archived). This can be useful if, for
example, you are backing up an entire source tree on which you are currently
working.

When extracting files, LibFile places absolute filenames from the librariesindex in
their corresponding absolute filenames on disc. Relative filenames (i.e. those not
containing acolon (:) adollar ($) or an at sign (@) are placed in atemporary
directory and, when the extraction is finished, a Save as dialogue box is presented.
This allows you to drag the extracted files to a suitable place on your disc. The
temporary directory isthen renamed to the correct place on your disc, or copied and
subsequently deleted if you drag to a different device or filing system.

131

Output

132

When creating libraries for distribution purposes, you should not use absolute
filenamesin the File List. If, for example, you created alibrary with aFile List of
adfs:: Edward. $. PDUt i | s, it would not be very useful to someone called lan
or to someone using an Econet network. Instead, set your current directory (from
the command line with the * Dir command) to adf s: : Edwar d. $ and usetheFile
Liss PDUti | s.

When creating libraries for backup purposes, you can use absolute filenames, since
you will always be restoring to your own disc. You should not, however, mix
absolute and relative filenames in the same library. LibFile will handle this as
described in the note on extracting files above, but the behaviour may be confusing
to anyone trying to extract files.

When creating alibrary, LibFile builds the library in memory. This means that you
cannot create a library bigger than the available memory on your machine. When
altering an existing library (using Insert or Delete) Libfile requires memory space
for the new and old libraries. If thereis not enough memory for thisyou can get
around the problem by extracting all the files and recreating the library including
the files to be inserted, or omitting the files to be deleted.

When the Symbol table option is selected, LibFile always updates the external
symbol table regardless of the operation being performed. Thisis correct for
Create, Insert and Delete. For Extract thisis usually not very useful, so you
should generally ensure the Symbol table option is desel ected when using Extr act.

If the Symbol table option is not selected, LibFile deletes the external symbol table
when used with Insert or Delete. This prevents a potential problem whereby the
external symbol table could become out of date with respect to the object modules
inthe library.

Convergence testing is a testing method whereby a binary file (such as an object
library) isrebuilt using itself, and the new and old binaries are compared to ensure
that they are the same. This can be difficult with tools (such as LibFile) which
timestamp files placed in the library, because the new and old libraries will be built
at different times, and will always differ.

LibFile providesthe Null timestamps option to circumvent this problem. The Null
timestamps option uses timestamps of all bits 0, which corresponds to a date of
00: 00: 00 01-Jan-1900. Thus, libraries built at different times can be
compared using a binary comparison utility, without the timestamps causing
extraneous differences to appear.

Wildcard matching, when applied to library members (when using Extract or
Delete) applies the wildcard across the complete filename. When applied to files
(Create or Insert) wildcards apply to single components of the filename. Thus, the
wildcard specification a#c would match a. b and abc when using Extract or
Delete, but would only match abc when using Create or I nsert.

LibFile

Command line interface

For normal use you do not need to understand the syntax of the LibFile command line,
asit isautomatically generated for you from the SetUp dial ogue box settings.

The format of the LibFile command is:
Libfile options library [file Iist]
Wildcards* and # may beusedinfile_I i st.

Options
-h Display a screen of help text
-C Create a new library containing files ihi / e_I i st
-1 Insert filesinfile_Iist, replace existing members
-d Deletethe members iii [e | i st
-e Extract membersirfi/ e_I i st placing in files of the same name
-0 Add an externatymbol table to an object library
-1 List library, may be specified with any other option
-S List symbol table, may be specified with any other option
-t UseNull timestamps when creating or updating library
-v file Take additional arguments frofri / e
-q dir Place relative filenames ol r when extracting file
Notes:

1 Multiple options may be specified in a single options argument. For example,
-cl soisequivalentto-c -1 -s -o.

2 Most of the above options should be familiar from the description of the desktop
interface. One possible exception to thisisthe - g option. This option means
‘behave as though the directory specified after thh@ption were the current
working directory (as set by the dir command)’.

When extracting files with relative pathnames, LibFile creates this directory if it
does not already exist and prefixes the relative pathnames with the specified
directory. Note, that you should not add a full stop (.) to the end of the directory
specification, LibFile adds this itself.

3 The- q option is used by the desktop interface (since the desktop has no notion of a
current working directory) to tell LibFile where to put files with relative pathname
(generally<W np$Scr apDi r >Tnp_name whereTnp_nane is a name invented
by the desktop interface). This directory is then renamed, or copied to a
user-specified directory.

133

Command line interface

134

4 For compatibility with previous versions of LibFile, specifying - ¢ with - o witha
null filelist does not create an empty library. Instead, it ignores the - ¢ option and
adds a symbol table to an existing library.

Examples

LibFile -c srclib *

Create alibrary called sr cl i b inthe current directory from all the filesin the current
directory (including the files contained in any directories in the current directory).

LibFile -co adfs::Edward. $.clib.o.AnsiLib o

Create the object library AnsiLib from the object files contained in directory o in the
current directory.

Libfile -e -q :lan.$.PDUils :0.PDLib *
Extract al thefilesfrom: 0. PDLi b and puttheminthedirectory: | an. $. PDUt i | s.

Assembler example

The programming example PrintLib, which you can find in Exanpl es. Pri nt Li b,
consists of three potentially useful procedures written in assembler which are intended
to be assembled to object files using ObjAsm and then formed into alibrary with
LibFile. They illustrate various programming points as well as how to construct a
library.

If you examine the assembler source filesin Exanpl es. Pri nt Li b. s you will see
that the procedure exported by each file obeys the ARM Procedure Call Standard. This
ensuresthat they, and hence the PrintLib library, can be linked with other languages such
as C. It isessential that procedures placed in alibrary have consistent register
conventions, so that they can be re-used later without consulting their source text.

The PrintLib exampleis provided with both its assembly language source and the
finished library. The facilities provided by thislibrary are used in other programming
examples. The procedures it exports are;

print_string Print anull terminated string pointed to by r0.
print_hex Print in hexadecimal an integer contained in rO.

print _doubl e Print in scientific format a double precision floating point
number contained in rO,r1.

LibFile

To reconstruct PrintLib from its sources, first doubleclick on!ObjAsmand !LibFileina
directory display to load them as applications with icons on the icon bar. Then assemble
s.PrintStr,s. PrintHex ands. Pri nt Dbl e to corresponding object files by
dragging each source file to the ObjAsm icon and saving the output object filesin the
default places,i.e.0. Print Str, 0. Pri nt Hex ando. Pri nt Dbl e.

Next drag 0. Pri nt St r to the LibFile icon to make the LibFile SetUp dialogue box
appear:

= | LibFiks
Liriry
File List |_Co+ Examples PriniLib.o ProSt
Cpfions

o Create) Delete |Listlibrary
e) Exiract

_ Gancel || Fun |

Ensure that the Create option is chosen as above. Drag the other two object filesto File
List, then click on Run. Finally savethe library file produced: it is now ready to use.

The assembly language source file Exanpl es. Print Li b. s. ATest PrLi bisan
example program making use of the procedures exported by PrintLib. To useit:

1 Doubleclick onthe!Link application to load it.
2 Assembles. ATest PrLi b too. ATest Pr Li b with ObjAsm.

3 Linko. ATest Pr Li b withthefinished PrintLib library to produce an executable
AlF imagefile.

Running the test program by double clicking on it should result in text output into a
RISC OS output window:

[Fam SCAL DHams b Acom G4+ Esampls PriniLb \Aunimags

BE ety

Fress HFRECE ar sliokh seedse §o asanl e

135

136

13 Link

he purpose of Link isto combine the contents of one or more object files (the output
of acompiler or Assembler) with selected parts of one or more library filesto
produce an executable program.

Load the Link application by double-clicking on the ILink icon.

The SetUp dialogue box
Click Select on the application icon. This displays the SetUp dia ogue box:

(A E| Lin bsosr
Flas |
Cpdons
_JAIF _) Relocaiable AF | Chedonay

) Maduls J Binary JACE | Verbosa

GCancal | | Run

This allows you to set the following options:

The Fileswritableicon alowsyou to enter thelist of object and library filesto belinked.
You can do thisin two ways:

I Typein aspace-separated list of the files to be linked. You can use wildcards (* to
match zero or more characters, and # to match a single character).

Drag theicons of the files to be linked onto the Files writable icon. Dragging a
directory to the icon (e.g. an o directory) links all the filesin that directory.

Note: When linking libraries, you must take care to link them in the correct order. See
the section Libraries on page 141.

AlF generates ARM Image Format (AlF) output. Thisis the default image used for
building an application. You should only choose other image typesif AlF isnot suitable
for some reason. The format of AlF filesis described in Appendix E.

M odule generates Relocatable Module Format (RMF) output. Refer to Relocatable
modules on page 146 in the Acorn C/C++ manual for more details on rel ocatable
modules.

137

The SetUp dialogue box

Relocatable Al F links an image so that it can be run at any address, usually specifiedin
conjunction with the Wor kspace option on the SetUp menu. See the section Relocatable
AIF images on page 145 for more details.

Binary generates a plain binary image (without an image header or any specific image

format). The default load address for a binary imageis 0. Any other address can be

specified using the Base option from Link's SetUp menu. If AIF is also enabled in
Link’s SetUp dialogue box, then a plain binary image is generated, preceded by an AlF
header which describes it.

AOF generates partially linked output in ARM Object Format, suitable for inclusion in
a subsequent link step.

Debug allows you to debug a program with the desktop debugger DDT. See the chapter
Desktop debugging tool on page 19 for more details on preparing a program for use with
the debugger. This option is not suitable for use with the module option. This option is
switched off by default.

Verbose gives progress reports in the Output window while linking. See the section
Output on page 139 for an example of this output. This option is switched off by default.

The SetUp menu

Link

'.-.-I'll"l".i'l?ﬂﬁ r

Lk map

X -Fad

Emoirs o hie

Mol Iy Fika

Symibols fo e

Chrariay

W e i

Entry

Baics

Mo Case

Wig fila P

Map unresohved refs |
o Cets MUBITang

(s F

S —

138

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

Command line allows you to specify the command line to be presented to the
underlyingLi nk command line tool. Refer to the sectidommand line interface on
page 148 for more details.

Link map displays the base address and size of every code, data and debugging
information area, and displays total sizes for the code, data and debugging information
in the output window. See the sectiamk map option on page 144 for more

information. For details on linker areas, see the seéfigfh on page 203.

X-Ref displays a list of inter-area references. This option is most useful when trying to
reduce dependencies between library elements, so that you only need include the
minimum set of library elements. It is also useful when using overlays. See the section
X-Ref option on page 144 for more detalils.

Errorstofile allows you to specify the name of a file to which all errors should be
written.

Map to file will write a link map to the given filename (if thenk map option is
enabled).

Symbolsto file will write all symbols found to a file with the given name.

Output

Link

Overlay generates an overlaid image using the specified overlay description file. For
details of overlay description files, see the section Overlay description files on page 143.
This option is not suitable for use when generating Module or Binary output.

Workspace, when used in conjunction with the Relocatable Al F option, generates an
auto-rel ocatable image which will relocate itself to the top of its application space. This
leaves the specified amount of workspace above the image free for the use of the
program being linked. The effect of this option is not currently defined when generating
image types other than relocatable AIF.

Entry specifiesthe entry point of an imageif none of the object files themsel ves specify
an entry point. Generally, you should only use it when writing completely in assembler
without using the assembler’s ENTRY directive.

Base specifies the base address at which the image should be linked. By default this is
&8000 for AIF images and 0 for binary images. You should always load non-relocatable
AlIF images at their base address.

No case causes a case insensitive comparison to be used when comparing symbols. You
will not generally want to use this option with C (which is case sensitive). However, you
may need to use it with other language systems (such as Pascal and Fortran) which are
case insensitive, especially if you are trying to interwork with C and one of these
languages.

Viafileallows you to set up a list of object files to be linked in one file cal\éidéile.
Instead of having to drag all the files to figes list on the SetUp dialogue box, just
enter the name of the Via file in the submenu.

Map unresolved refs causes all unresolved references to be resolved to a given symbol.

C++ naming will report C++ symbol names using C++ notation.
Note that younust enable this option when linking C++ compiled code.

Others allows you to specify other options allowed by the underlying command line
link tool.

Note: TheBase, Wor kspace andEntry options require a numeric argument to be
entered in the associated submenu. You can prefix this argum&matr By to specify a
hexadecimal value. You can postfix it kyfor 21° andmfor 2%,

The Output window displays information printed when you have selectathese,
Link map or X-Ref options. It also displays any error messages generated while
linking.

The following windows show examples of tiierbose andLink map output. You will
find an example of th¥-Ref output in the sectioR-Ref option on page 144.

139

Possible errors during a link stage

Verbose output:
R Lins. |
H3 eri Loadieg ebyect Eple ti[¥arr1s. 5. Hea +4 . Erameles, [Hyper.0.buttoa, |o
AR Lisker: Loadimg sbpect £1le 2ifdarrys. 5.0 ++.Exang s, | mr.n,:m
eri Loadimy sbject fule sibdarris. 5.He +4,Exane|es, iHuser, 0. dras,
M Linker: Losdirg shject file SC31::i08arris. $.Aca Cvd Evamples, "Huper.o.file,
i losdivg shject £ile 2iPBarris E-Aca +4 Evameles; Huper .o.handler.
i5 ert Loadied shyect £1]e 21 [®are)s. 5. A ++ Exame|es, \Huper.0.hel.
er: Loadie) sbject file 2ifdarris. 5. Hea ++, Exangl s, IHuper . o.maln, L
M Lisker: Laosding shjest §ile S[51:iD@arris. f.Aearal_C+d.Exongles, Huper.o.medis. |
wri loading ehyect Eile sif¥arris. fAca +4 . Evangles. "Huper .o.prink . [
il eri Loadimy ebject #1le 2ifdarrys. 5. 0ce +.Exang s, | mr.u.uE
eri Loadimy sbject file sibdarris, 5.0 ++,Exaneles, iHyser,0.v188, i
M Lisker: Losdiedg sh ml: ile oia.stubs, i
E lh:l hEr:’l E glt.hu mlE: ;:E. :‘fTEE' ndulll“ A |
iu: t III'I :ﬁn m F |
H Linker! L.ullng uinhu u utut-nt ba resslve ulnhuﬂ_ut-nt |
akpr) ading uindaw.o.setextent to reselve '"rﬂ]'ﬂﬂ" ' |
1K B afing fanlhoz,p.9 4 rese|ve taojbor_ mile.

!
I
|
|
|
q
{
|
{
|
7]
1]

[| Link (lompisted| I=
BB} e
1] I En uE::g : mtr:r

Possible errors during a link stage
Two common errors which can occur during alink stage are caused by unresolved and

140

multiple referenc

€S.

I:m:-l-dr iran nlint

I:Hbldl II'IH ﬂl tH

S

:'- H iﬂn o lll:-t

In the case of unresolved references, a symbol has been referenced from an object file,

but there is no corresponding definition for the symbol. Link will generate an error
message giving the name of the undefined symbol. Thisisusualy caused by the

omission of arequired object or library file from the filelist, or the misspelling of an
external identifier in the origina source program.

Libraries

Link

Multiple references are caused by a clash of names. For example, a procedure might
have been defined with the same name as alibrary procedure, or as a procedurein
another object file.

Libraries differ from object filesin the way Link usesthem. First, all the object files are
linked together. Then, for each library in turn, Link searches for symbol definitions
which match unsatisfied symbol references. When such asymbol definitionisfound, the
module defining that symbol isloaded.

When alibrary module isloaded, new unsatisfied symbol references may be created, so
thelibrary is re-searched until no more members are |oaded from it. Note that each
library is processed in turn, so references between libraries must be ordered.

A reference from amember of alibrary later in thefilelist to amember earlier in thefile
list will not be resolved. Therefore you must drag libraries to thefile list in the correct
order.

Usually, at least one library filewill be specified inthelist of filesto be linked. Thiswill
typically be the run-timelibrary for the language you are using. When writing in C, you
can use either the shared library (in which case you will need to link with the shared
library stubs, C: 0. st ubs) or the unshared library, C. 0. ansi | i b. Usethe unshared
library when linking a program for use with the desktop debugger, or when linking a
program which you intend to distribute to people who may not have the shared C library.

You can cal the procedures in the library for one language from programs written in

another, provided:

I both libraries conform to the ARM Procedure Call Standard (APCS) described in
appendix ARM procedure call standard on page 249

I the library’s initialisation routines have been called.

Refer to the chaptdre Shared C library in Volume 4 of theRISC OS 3 Programmer’s

Reference Manudbr details on how to initialise the common run-time kernel
distributed with the C library.

Generating overlaid programs

Anintroduction to overlaysisgiveninthe Acorn C/C++manual. If you are not familiar
with the concept of overlays, you should read the chapter on overlaysin that manual
first. This section only describes how to use Link to create an overlaid application.

A simple, 2-dimensional, static overlay schemeis supported. Thereis one root segment,
and as many memory partitions as you specify (called 1 N, 2_N, etc). Within each
partition, some number of overlay segments(called1 1,1 2, etc) share the same areaof

141

Generating overlaid programs

memory. You specify the contents of each overlay segment and Link calculates the size
of each partition, allowing sufficient spacefor the largest sesgment init. All addressesare
calculated at link time: overlaid programs are not rel ocatable.

A hypothetical example of the memory map for an overlaid program might be:

high
address
21 22 23
2 N
11 12 13 14
1N
root segment

low
address

Segments1 1,1 2,1 3and1 4 sharethe sameareaof application workspace. Only one
of these segments can be in memory at any given instant; the remainder must be on disc.

Similarly segments2_1, 2 2 and 2_3 sharethe 2_N area of memory, which is entirely
separate fromthe 1_N partition.

Link assigns AOF AREASs to overlay segments under user control. Usually, a compiler
produces one code AREA and one data AREA for each sourcefile (called C3code
and C$$dat a when generated by the C compiler). The C compiler option - zo
(described in the Acorn C/C++ manual) allows each separate function to be compiled
into a separate code AREA. This gives finer control of the assignment of functions to
overlay segments (but at the cost of slightly enlarged code and enlarged object files).
You control the overlay structure by describing the assignment of certain AREAsto
overlay segments.

For all remaining code AREAS, Link will act as follows:

If all references to the AREA are from the same overlay segment, the AREA is
included in that segment; otherwise, the AREA isincluded in the root segment.

This strategy can never make an overlaid program use more memory than if Link put al
remaining AREASs in the root segment, but it can sometimes reduce it.

By default, only code AREASs are included in overlay segments. Data AREAS can be
forcibly included, but it is the user’s responsibility to ensure that doing so is meaningful
and safe.

142

Link

On disc, an overlaid program is organised asa RISC OS application. The components of
the application (the !Runlmage and the various overlay segments) must reside in the
application directory. Link creates the following components in the application
directory:

I Runl mage The root segment, an AlF image (which may be squeezed).

11 Overlay segments, which are plain binary images, linked at absolute
1 2 addresses. Overlay segments may not be squeezed.

Overlay description files

The overlay description file, specified in the overlay submenu, describes the required
overlay structure. It is a sequence of logical lines:

I A backslash (\) immediately before the end of aphysical line continues the logical
line on the next physical line.

Any text from asemicolon (;) to the end of the logical line inclusiveis acomment
(for documentation purposes) which isignored by Link.

Each logical line has the following structure:

segnent _nanme nodul e_nane [(/ist_of _AREA nanes)] nodul e_nane ...
For example:

1.1 editl edit2 editdata(C$$code, C$$data) sort

Thel i st_of _AREA nanes isacomma-separated list of names as they appear when
displayed by the DecAOF tool. If omitted, all code AREAS are included.

A nmodul e_nane is either the name of an object file (with all leading pathname
segments removed) or the name of alibrary member (again, with all leading pathname
segments removed).

143

Generating overlaid programs

X-Ref option

To help the user-partition between overlay segments, Link can generate alist of
inter-AREA references. To do this, choose the X-Ref option on the SetUp menu. The
following window shows an example of the output from X-Ref:

utt::E Sﬁi :} :rflrs L] EH Etgzdrl
iy ¥IH1E aﬂ‘ refers }I- l.IHT lﬁ&cu de)

i refers ta re

"H'"asfmaanﬁf irPtE":tmt%gmm

refers to comsands
vasandsiCEscode) r! Er-'.: u ul:lls{IIH-udE]l

rnEEm' F I ulnﬂ 5‘1‘”

i) i 1 Mt

filtllﬂunlﬂ th trutmﬂt? i

Ingenerd, if area A references areaB (for example because x in area A callsy in areaB)
then A and B should not share the same area of memory. Otherwise, every timex callsy
or y returnsto x, there will be an overlay swap.

Link map option

The Link map option displays the base address and size of every areain the output
program. It is useful for determining how AREAs might be packed most efficiently into
overlay segments.

Linking with the overlay manager

The overlay manager is responsible for loading overlay segments when:
I aninter-segment reference occurs to a segment which is not loaded, or
I aprocedure return occurs to a segment which is no longer loaded.

In general, referencing a datum cannot cause an overlay segment to be loaded. One
exception to thisis an indirect procedure call viaa function pointer which will cause an
overlay segment to beloaded (Link cannot distinguish thisfrom anormal procedure call,
since Link just sees aword relocation to an overlaid procedure). Note that the pointer
itself must not be overlaid.

144

Link

If Link detects a data reference to a non co-resident or potentially non co-resident
segment it will issue one of the following messages:

Non co-resident data reference in nodul e nane(area _nane)

Possi bl e non co-resident data reference in
modul e_nane(area_nane)

Certain types of data reference cannot be detected by Link. This happens when
read-only datais placed in acode segment. The C compiler places string literalsin code
areas. Thiswill cause problems if you have external string literals, since Link cannot
distinguish between astring literal and a procedure in the code segment. Hence it
indirects the string through the Procedure Call Indirection Table (PCIT). So, when your
program reads the contents of the string, it will in fact end up reading the contents of the
PCIT.

The C compiler option - f w (described in the Acorn C/C++ manual) causes the
compiler to place string literals in data areas. You should use this option on modules
which may contain external string literals.

The overlay manager must be included in the link stage. You will find the overlay
manager in the object file C. 0. over ngr . You should drag this object file to the Files
icon when linking an overlaid program.

Note: The overlay manager is also contained in the non-shared library ANSILib, so, if
you are using ANSILib, you do not need to drag the overlay manager to the Filesicon.
The shared C library does not contain a copy of the overlay manager.

Relocatable AIF images

Usually, when an image file is produced, it will execute correctly only at the specified
base address (or the default of &8000 if abase is not specified). Thisis because the
program will contain references to absolute addresses within itself. However if you tell
Link to generate arelocatable AIF image, you can load and execute the program at any
address. Link also inserts a branch in the image header, so that the relocation codeis
automatically called when you run the program.

Thisis achieved by adding the following to the end of the image:
| arelocation table
I asmall routine to perform the relocation.

Therelocation tableisalist of offsets from the start of the program to words which need
relocating. These words are adjusted by the difference between the base address of the
program and the address where it was loaded. Once the rel ocation has been performed,
the program proper starts executing.

145

Relocatable modules

However, athough this can be used to make a program statically rel ocatable, it does not
confer true position-independence on the program. That is, the program cannot be
moved in memory once it has started, and still be expected to work.

If aWorkspace value is specified on the SetUp menu, Link inserts the value in the
image header. The relocation code examines this value and, if the value is non-zero,
relocates the application to the top of application space, leaving the specified amount of
workspace between the end of the application and the top of application space for stack

and heap usage.
Utilities

Utility or transient programs (filetype FFC) can be linked as relocatable Al F images.
Use the SetType command to set the filetype correctly after linking:

*Set Type image Uility

Notes: The C library cannot be used when linking a utility. Utility programs must not be
sgqueezed. For more details on utilities, refer to the RISC OS 3 Programmer’s Reference
Manual

Relocatable modules

When linking a relocatable module, Link performs a similar task as when linking a
relocatable AIF image, adding a rel ocation table and a relocation routine to the end of
the module image.

However, the mechanism by which the relocation routineis called is different in a
relocatable module: A module must be multiply relocatable, since it may move about in
the Relocatable Module Area (RMA) when, for example, the RMA istidied with the
*RMTidy command. The module must call the relocation routineinitsinitialisation (or
re-initialisation) code.

When using the C Module Header Generator (CMHG) tool you need not worry about
this, since CMHG automatically generates amodule header which includes a call to the
relocation routinein itsinitialisation code.

If you are constructing the module header in assembler, you must make this call
yourself. Use the IMPORT directive to import the external symbol __ Rel ocCode and
place aBL to this symbol in your initialisation code.

| MPORT | __ Rel ocCode|
init

BL | __Rel ocCode|

146

Link

Note: any code executed before the call to the relocation routine must be
position-independent.

When creating a module header in assembler, the AREA containing the header should
have the attributes CODE and READONLY. The AREA name should be chosen so that
the AREA will bethefirst AREA inthe module. Link sorts AREAS first by attribute,
then by AREA name, so you should choose an AREA name which is lexicographically
less than all other AREA namesin your module. The CMHG tool uses an AREA name
of I I'l Modul e$$Header, but thisis not obligatory.

Predefined linker symbols
All symbols containing the substring $$ are reserved by Acorn for use by Link.

For each AREA in the output file formed by coalescing one or more areas of the same
name (e.g. C$$code) Link generates two symbols:

ar ea_name$$Base Address of the start of the area.
area_nanme$$Li m t Address of the byte beyond the end of the area.
area_nanme The name of the areain the output file. You can use

these symbolsin your programsto refer to the Base and
Limit of areasin your programs.

Inaddition, Link creates four conceptual areasin the output, and defines Base and Limit
symbols for them.

| mge$$ROb$Base Address of the start of the read-only (code) area.
| mage$SROBSLI i t Address of the byte beyond the end of the code area.
| mge$$RWE$SBase Address of the start of the read/write (data) area.
| mage$SRWBSLI i t Address of the byte beyond the end of the data area.
| mage3Zl $$Base Address of the start of the zero-initialised (bss) area.

| mage$$Zl $SLi mi t Address of the byte beyond the end of the bss area.

Although it will often bethe case, thereis no guarantee that the end of the read-only area
corresponds to the start of the read/write area. You should not therefore rely on this
being true.

The read/write (data) area may contain code, as programs are sometimes self-modifying.
Similarly, the read-only (code) area may contain read-only data (e.g. strings,
floating-point constants etc).

147

Command line interface

Command line interface

148

The format of the Link command is:

Link options file_list

Options

Abbreviations are shown capitalised.

General options
-Qutput file
- Debug
-ERRORS file
-LIST file
-VIA file

- Ver bose

- MAP

- Xr ef
-Synbol s file

Output options

-AlF

-AlF -Rel ocatabl e
-AlF -R -Wrkspace n
- AOF

-BIN

-BIN -AlF

-1 HF

-SPLIT

- RVF
-Overlay file

Put final output infi I e

Include debugging information in image

Put diagnosticsto f i / e, not stderr

Put Map and Xref listingto f i I e, not stdout
Take more abject file namesfrom fi | e
Give informational message while linking
Print an area map to the standard output

Print an area cross-reference list

List symbol definitionsto fi | e

Absolute AlF (the default)

Relocatable AlF

Self-moving AlF

Partially linked AOF

Plain binary

Plain binary described by a prepended AlF header
Intellec Hex Format (readabl e text)

Output RO and RW sectionsto separatefiles(- Bl N,
-1 HF)

RISC OS Module
Overlaid image as described infi | e

Link

Special options

-RO base n

-Base n Specify base of image

-RWbase n

- DATA n Specify separate base for image's data

-Entry n Specify entry address

-Entry n+obj (area) Specify entry as offset n within ar ea found in
object file obj (prefix n with & or Ox for hex;
postfix with K for *210, M for *2%0)

- Case Ignore case when symbol matching

-MATCH n Set last-gasp symbol matching options

-FI RST obj (area) Place ar ea from object obj first in the output
image

-LAST obj (area) Place ar ea from object obj last...

- NOUNUSEDar eas Don't eliminate AREAS unreachable from the
AREA containing the entry point (AIF images only)

-Unresol ved sym Make all unresolved referencesrefer to sym

- C++ Support C++ external naming conventions

149

150

N,

14 ObjSize

bj Size analyses one or more abject or library files and returns the code-size,
data-size and debug-size of each file.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of afile (if Auto Run is
off) from adirectory display to the icon brings up the SetUp dialogue box:

Files |
Cancel | Fun |

The Filesfield allows you to specify the name of one or more files to be processed
(typed in or dragged from a directory display). These files must be ALF or AOF files.

The SetUp menu

OofEie Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

Comimeand line b

For a description of the ObjSize Command line option see the section Command line
interface on page 152.

The Application menu
Clicking Menu on the ObjSize application icon gives the following options:

EHH
Inig P
I
IR | o o
Help TN / ﬂﬁ
Summary

For adescription of each optionin the application menu see the chapter General features
on page 101.

151

Example output

Note that Auto Saveis not available for this application, and that Auto Run is enabled
by default.

Example output

The output of ObjSize appearsin one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 105.

The following window shows an example of the output from ObjSize:

i | CBfEize [Compioted]

biect File code-size datz-size debeg-size —
v iHbeach, §. 5tubs IEE Fi]

.
jE—

The three object sizes displayed by ObjSize are:
code-size Thesizeof the object code.

dat a-si ze Thetotal size of all areas in the AOF file which have the attribute
dataorzero-Init.

debug- si ze Thetota sizeof al areas in the AOF file (compiled with the debug
option set) which have the attribute debug.

If alibrary fileis being analysed ObjSize displays the above three object sizes for each
individual member of the library file and then displays the overall totals of these to
provide a set of totals for the entire library.

Command line interface

For normal use you do not need to understand the syntax of the ObjSize command line,
asit is automatically generated for you from the SetUp dial ogue box settings. The
Command Line syntax for ObjSizeis:

bj Si ze filenanme [filenane...]

fil enane avalid pathname specifying an ALF or AOF file.

152

15 Sgueeze 7

Squeeze compresses an executable ARM-code program, saving disc space and often
making the program load faster.

Rel ocatable modules can be squeezed but must be run rather than RM L oaded.

Squeeze converts amodule to a program, which installs the module in the RMA when
run. This program contains a binary image of the module within itself. Squeeze
compresses this program.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of afile (if Auto Runis
off) from a directory display to the icon brings up the SetUp dial ogue box:

= B Sguarzs
ot | |
Dpaons
|T'T e |"'Fh¢?!'
Caresl | | Rini |

The Input writable icon allows you to specify the name of afile to be processed (typed
in or dragged from adirectory display). Thisfile must be an AlF file.

Try harder will force Squeeze to compressthe file even if thefileis considered by
Squeeze to be too small to warrant compression.

Ver bose outputs messages and compression statistics.

The SetUp menu
Clicking Menu on the SetUp dialogue box displays the following menu on the screen:

ISER- L R

Comimand line -

For a description of the Squeeze Command line option see the section Command line
interface on page 154.

153

The Application menu

The Application menu

Clicking Menu on the Squeeze application icon gives the following options:

Inio [
Save cpsons [Opins |
[70 o

Halg st Save sy

Summary

When Auto save is enabled, squeezing overwrites the input file with the squeezed
version automatically without producing a save dialogue box for you to drag the file
from. Auto saveis off by default, whereas Auto Run is on by default.

For adescription of each option in the application menu see the chapter General features
on page 101.

Example output

The output of Squeeze appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 105.

The following window shows an example of the output from Squeeze, together with a
standard save dialogue box (which appearsif Auto Save is not enabled):

=TT i
-— B0 El! stats (B

- stat ‘1"1’: 51 5551& ek
- semresitd sz 1) i AL IBY s
ey

Command line interface

For normal use you do not need to understand the syntax of the Squeeze command line,
asit is automatically generated for you from the SetUp dial ogue box settings. The
command line syntax for Squeezeis:

Squeeze [options] unsqueezed-file [squeezed-file]

154

Options
-f
-V
unsqueezed-file

squeezed-file

Squeeze

compress file regardless of size

output messages and compression statistics
avalid pathname specifying an input AlF file
avalid pathname specifying an output AlF file

155

156

16

Adding your own desktop tools

he underlying technologies used in Acorn C/C++ have been designed in away

which allows third parties to add tools and applications, provided that they follow a
number of rules and conventions which are given in this section. Unless you are a
software devel oper, intending to use these technologiesin your products, or intending to
add further desktop tools, then you can skip this section. (Of course you may just be
interested in how it all works, in which case read ont).

The FrontEnd module will act as a generic application, as described in the chapter
General features on page 101. It is assumed here that you are familiar with this chapter,
and that you have afeel for how the non-interactive tools operate.

The extensions you can make fall roughly into the following categories:

I Adding a compiler for another language — this will require all of the information
given below.

Adding a utility that you wish to run under the desktop, with the same look and feel

as the other desktop non-interactive tools. For instance you may like to port the
UNIX sed stream editor to RISC OS, with a Wimp front end — this only requires
knowledge of how to describe an application to the FrontEnd module.

Creating your own project management tool, similar to Make — this will require

knowledge of the message-passing protocols used with the FrontEnd module, and

also the format of a makefile used to maintain a project.
In this chapter you will find further technical information on the following:
[the FrontEnd module
[the DDEULtils module
[the SrcEdit editor
[the Make project management tool.

157

The FrontEnd module

The FrontEnd module

Overview

158

The purpose of the FrontEnd module is to ease the job of putting consistent Wimp
frontends onto a number of simple tools which are normally driven from the command
line (e.g. Link, CC, ObjAsm etc). A Wimp application can then be made by supplying a
formal description of the mapping between the Wimp interface and command line
options, atemplates file, 'Run, ! Sprites and !Boot files, a message file, and a!Help file
(also a !SetUp file if this is to be used by Make —Idake on page 171 for more
details).

To give you a feel for how the FrontEnd module interacts with your command line tool,
here is a brief description of how it works. The FrontEnd module understands two star
commands:

*Front End_St art
*Front End_Set Up

The former of these is used to invoke a Wimp front end for a tool, with an icon on the
icon bar; the latter is used to allow Make options for the tool to be set using a Wimp
interface.

*FrontEnd_Sart

When the FrontEnd module gets a *FrontEnd_Start command it creates a new
instantiation of itself calle#r ont End% ool name wheret ool nane is the name of

the tool invoked; it then enters that instantiation as the current application, and does a
SWI Wimplnitialise to become a Wimp task. Because this task stops the Wimp from
mapping out its application workspace, by responding to service call 0X11, the task
appears in the applications task list of the Task Manager display. From this point on, the
behaviour of the Wimp task is governed by the formal description file which was
initially passed to the *FrontEnd_Start command.

*FrontEnd_SetUp

The *FrontEnd_SetUp command is similar, except it calls its new instantiation

Fr ont End%Vvt ool nane, and does not produce an icon on the icon bar. The templates
for windows used by the application must be provided by you, and they must follow the
conventions laid down later in the sectitamplate files on page 161.

When the user causes the command line tool to be run (for example by clicking on the
Run icon in the application’s dialogue box), the FrontEnd module starts up a task called
t ool nane_t ask running under the control of the task window module; thus the tool
is pre-emptively multitasked, and any output the tool produces is stored and will be

Adding your own desktop tools

displayed in awindow, if thisiswhat the user wishes. When the user quits the
application, the FrontEnd module ensures that the relevant instantiation is also removed
from the RISC OS module list.

Example

To be suitable, your command line program has to be non-interactive. This means it
should start with a command line, then run to error or completion without any further
user interaction, outputting reports as screen text. A compiler such as CC fitsthis
description, but an editor such as SrcEdit does not.

Thetool TOANSI isasimple example of the non-interactive desktop tools. You may find
it instructive to examine the file Desc in Acor nC_C++. Tool s. ! t oansi .

Producing a complete Wimp application

In order to produce a complete Wimp application you will need to provide the following:
I !Run, 'Boot and (possibly) !SetUp files

I alSpritesfile

I aTemplatesfile

I aDescription file

I aMessagesfile (optional)

I al!Helpfile (optional).

These are described in more detail below.

IRun, !Boot and !SetUp files

Your !Boot file will be the same as for normal applications, including doing things like
setting file types, and performing * | conSprites commands on your sprites.

A typical 'Run filewill ook like any of those supplied with the desktop non-interactive
tools, such as!Link, !Find, or ! Diff. The size of Wimpslot does not depend in any way
on the size of the command-line tool which is running under the FrontEnd module, but
instead refers to the application workspace used by the module, when starting up as a
Wimp task (currently aminimum of 16k). You should ensure that you have a command
of the following form:

*Set tool nane$Dir <Cbey$Dir >

159

Producing a complete Wimp application

160

so that your resource files can be found. Having made sure that the FrontEnd and Task
Window modules are loaded (by using * RMEnsure) you then issue the * FrontEnd_Start
command with application name and full pathname of the description file as parameters.
You may need the facilities provided by the DDEULtils module, in which case you should
*RMEnsureit in your !Run file

For example for ! Diff, the IRun fileis:

*|1f "<Systen®Path>" = "" Then Error 0 System resources cannot be found

*WnpSlot -Mn 128k - Max 128k

*| conSprites <Cbhey$Dir>.!Sprites

*Set Diff$Dir <Cbey$Dir>

*RMEnsure UtilityModule 3.10 Error This application only runs on RISC CS 3 (version
3.10) or later

*RMEnsur e SharedCLibrary 3.99 Error This application requires the Shared C Library
nmodul e (is it unplugged?)

*RMEnsure FPEmul ator 2.87 Error This application requires the FP Enul ator nodul e
(is it unplugged?)

*RMEnsure TaskW ndow 0.47 Error This application requires the Task W ndow nodul e
(is it unplugged?)

*RMEnsure Front End 0 System nodul es. frontend

*RMEnsure Frontend 1.15 Error You need version 1.15 of the FrontEnd npdule to run
'Diff

*RMEnsure DDEUtils 0 System nodul es. ddeutils

*RMEnsure DDEUtils 1.52 Error You need version 1.52 of the DDEUtils nmpbdule to run
'Diff

*WnpSlot -Mn 32k - Max 32k

*FrontEnd_Start -app Diff -desc <Diff$Dir>. desc

A typical !SetUp fileis very similar to a!Run file, but will be used when the FrontEnd
module gets arequest from Make to start up the Wimp front end for atool, to allow the
user to set options from a dialogue box. This file should only need to do the following:

I *Wnpslot -nmin 16K -nmax 16K

| *Set tool name$Dir <Cbey$Dir>

I *RMEnsure Front End

I *FrontEnd _SetUp -app % -desc %4 -task 9% -handle 93

Again, examplesof a!SetUp file can be found in the set of non-interactive desktop tools.

ISprites file

The ! Spritesfile will contain the sprite for the application icon on the icon bar, and also
optionally asmall sprite, both of which should comply with RISC OS style. The name of
the large sprite should be the same as the application (e.g. ILink, !Find etc).

Adding your own desktop tools

Template files

The set of window templates which you should supply in afilecaled Tenpl at es isas
follows:

Window name Satus Details

proglnfo Mandatory Should be as standard Acorn applications
information boxes.

Icon #1 must be indirected text, with a
buffer size large enough to accept the
application name.

Icon #4 must be indirected text, with a
buffer size large enough to accept the
version string.

SetUp Mandatory This dialogue box is used to set the most
common options for the command line tool.
Rarer options can be set from amenu by the
user pressing the Menu button on this
dialogue box. Thetitle bar must be
indirected text, and have a buffer size large
enough to accept the application name.

Icon #0 must be indirected text (buffer size
12 bytes), and have abutton typeof Cl i ck,
and should contain thetext Run. Itisused to
invoke the command line tool with the
chosen options.

Icon #1 must be text, and have a button type
of d i ck, and should contain the text
Cancel . It isused to close the Options
dialogue box, and revert to the options
settings as they were when the dial ogue box
was last opened.

Other icons are of your choice, and can be
used to map to command line options. You
must, however, follow the conventions
described in the section Writing an
application description on page 163.

161

Producing a complete Wimp application

Window name Status
CmdLine Mandatory
Help Optional
query Mandatory
Output Optional

162

Details

This dialogue box is used to show the
command line equivalent of the options
which the user has chosen. Thetitle bar
should contain some explanatory text like
Command Li ne.

Icon #0 must be indirected text with buffer
size 12 bytes, with button type Cl i ck, and
containing the text Run. It isused to invoke
the command line tool with the shown
command line.

Icon #1 must be indirected text with buffer
sizetypically at least 256 bytes, and with a
button type of Wi t eabl e.

Used to display help text when the user
selects Help from the application’s main
menu. The title bar should contain some
appropriate text. The window should not
have itsAut o- r edr awflag set.

Used to ask the user if they really want to
kill off a task which is running.

Icon #0 must be text, button ty@ki ck,
and is used to replyes.

Icon #1 must be indirected text, buffer size
256 bytes.

Icon #2 must be text, button ty@ki ck,
and is used to repMo.

Used to display in a scrolling window, the
textual output of the command line tool. The
window’s Aut o- r edr aw flag must not be
set.

The title bar must be indirected text, and
have a buffer size large enough to accept the
application name, plus a space and the string
(Conpl et ed) .

Adding your own desktop tools

Window name Satus Details

Summary Optiona Used to give a summary of the textual
output produced by the command line tool.

[con #2 must be text, with button type
d i ck, containing the text Abor t . Itis
used to abort the task.

Icon #3 must be indirected text, with a
buffer size large enough to hold strings
Pause and Cont i nue, button type

Qi ck. It isused to pause and continue the

task.
xfer_send Mandatory if ~ Used as a save dialogue box for the textual
the Tool output of atool.
produces Icon #0 must be text, with button type

outputthatthe i ck, containing the text OK.
userisableto oon 4 must be indirected text, with a
save buffer size of 256, and button type
writeable.
Icon #3 must be indirected text.

save Mandatory if ~ Asfor xfer_send, but is used to save the
userisableto result file generated by running the tool. It
saveanything should also haveacl ose icon.

Writing an application description

Aspreviously mentioned, your application running under the FrontEnd moduleisdriven
by aformal description written in alanguage whose EBNF (Extended Backus Naur
Form) grammar is given in appendix FrontEnd protocols on page 187. This section
gives an explanation of the semantics of the language, and hence explains how to write
your own description.

As can be seen from the EBNF rule in appendix FrontEnd protocols for an application,
the description file consists of 10 sections, with only the first section being mandatory
(TOOLDETAILS). Each of these sections is described separately below.

TOOLDETAILS section

Thetool details section is the only section which you must have in the description. The
section starts with the name of the tool, which must be the same as the string passed as
the - app parameter to *FrontEnd_Start. This name will be used in window and menu
title bars to identify the application.

163

Producing a complete Wimp application

Normally the tool will reside in your current library directory, and hence the command
will be invoked using only the tool name. If you wish to change this you can specify a
command_i s entry, which gives a pathname for the tool. For example if you have an
application called exanpl e, but the executable image for this applicationisheld in
IRunlmage in the application directory, then you should have aline in the description
file saying:

comand_i s "<exanpl e$Di r>. ! Runl nage";

Thever si on entry will typically be aversion number and optional date for the tool.
These will be used in the Program Information dial ogue box (proglnfo).

If your tool understands a particular file-type, then this can be entered using the keyword
fil etype. Thisisused whenthe user double-clicks on afile of thistypein adirectory
display. The effect isasif the user has dragged the file icon to your icon on the icon bar.

By default the tool isrunin aWimpslot of 640k, under the Task Window module. If you
want this value to be different, then use the Wimpslot command in the description.

Since the limit on RISC OS command lines is 256 characters, you may find thisto be an
unnecessarily strict limit when passing a potentially large list of full pathnamesto atool
on itscommand line. If you usethehas_ext ended_cndl i ne keyword in the
description, then the FrontEnd module will request space from the DDEUtils module to
place the command line argumentsin. If thetool iswritten in C (or runs under any other
run-time environment which cooperates with DDEULils) the tool will pick up the
arguments from DDEULils. Using this option, your command lineis limited only by the
size of thewritableiconsin your dialogue boxes. If writtenin C, the tool must have been
linked with the stubs or ANSILib to use this feature.

METAOPTIONS section
The METAOPTIONS section refers to non-application-specific options.

If thehas_aut o_r un keyword is used, the application’s main menu op#iaho Run

will not be greyed out. In addition, if you include the keyword then this option will

be enabled by defaulAuto Run means that if a file is dragged to the application icon,
then the tool will immediately be run, rather than first displaying the Options dialogue
box.

Thehas_aut o_save keyword refers to thAuto Save option in the application’s

main menu, and the keywooah turns this option on by default. If this option is on, then
rather than producing a Save as dialogue box to save the file output of the tool, the tool
is run to directly write to the desired output place. The location where output should be
sent is given following thas_aut o_save keyword; in order to specify this

location, you must first give an icon number in the Options dialogue box, whose first
entry will be used to determine the directory where the output will go (usirig tha

i cn <i nt eger > keywords).

164

Adding your own desktop tools

For example, if you havetheline:
has_auto_save ~."!Runl mage" fromicn 3;
and icon 3 of the options dialogue box contains the text:
adfs::4.$. objects.filel adfs::4.%.objects.file2

thenthefilenameadf s: : 4. $. obj ects. fi | el will be used to form the output
filename. First the leafnamef i | el is stripped off to leave the directory name

adf s: : 4. $. obj ect s which will form the stub of the output filename. Thisstubis
then manipulated by the string which is specified between the keyword

has_aut o_save andthe keyword f r om You can indicate parent directories using
any (reasonable) number of ~.s and can refer to the original |eafname using the keyword
| eaf name (in this example leafname would map tof i | e1). Thisleafname can have
literal strings prepended or appended to it.

If the application isto havetextual output, then you can specify that you want text and/or
summary window(s) by using the keywordshas_t ext _wi ndowand

has_sunmmary_w ndow. Beware that if you don’t have any output windows at all,
then the user has no way of pausing/aborting/examining the running task. The default
display mode is text, but this can be explicitly stated as text or summary using the
keyworddi spl ay_dft _is.

FILEOUTPUT section

The FILEOUTPUT section deals with the production and saving of a single output
object. To enable the user to then save this output, it is sent to a temporary file, which is
then copied to a permanent file when the corresponding icon is dragged to a directory
display — the icon can also be dragged to another application.

By default it is assumed that the output filename for a tool is that which appears last on
the command line with no special preceding flag. If your command line tool requires a
flag such as o to go before the output filename, then this is specified using the

out put _option_i s keyword.

Also by default, the name which appears in the Save as dialogue box is the string
Qut put , assuming that nAuto Save string has been specified. This can be changed
using theout put _dft _stri ng keyword.

Certain tools produce an output file, or not, depending on the combination of options on
their command line. By using tloait put _dft _i s keyword, you can specify whether

the default mode of operation is to produce output or not. This state will then be changed
as the user chooses options from the options dialogue box and menu which either turn
output production on or off (see the DBOX section and the MENU section).

165

Producing a complete Wimp application

166

DBOX section

The DBOX section describes the properties of the main dial ogue box used to set options
for the command line toal.

The purpose of the icon definitionsisto show how icon clicks and drags etc. map onto
command line option strings, and how these affect the state of other icons and menu
entries. Essentially, icon numbers correspond to those numbers used in the template for
the dialogue box.

There are four types of icon definition:

1 thosethat map directly onto command line strings

2 thosethat increase or decrease the numeric value of another icon
3 thosethat cause a string to be inserted in awritable icon

4 thosethat extend and contract the dial ogue box.

The most complex of these is the icon which maps to a command line string. Such an
icon can be of two Wimp types:

I awritable indirected text icon
I aclick icon.

The former of these contributes to the command line, if it contains any text, and is
generally used for specifying filenames to the command line tool. Thelatter is generally
used to turn flags on and off, and contributes to the command line if it is selected. The
mapping onto the command line is given after the keyword maps_t o; this may begin
with an optional string litera (e.g. - f), optionally followed by keywordsst ri ng or
number . These latter keywords are used for writable indirected text icons, and refer to
their contents. If you want each item in the writable text icon to be preceded by a
particular string, this can be specified using the pr ef i x_by keyword.

You can also specify that selecting thisicon causes the values of other icons to be used
in the command line, by using thef ol | owed_by keyword. These items will be
separated by the entry given after the separ at or _i s keyword. Asdiscussed in the
FILEOUTPUT section, it is possible to specify whether atool produces output by
default; each icon can be made to toggle this state using the keywords
produces_no_out put and pr oduces_out put . Thenot _saved keyword
should be used if the value of the particular icon should not be saved when the user picks
the Save options entry from the application’s main menu.

Some examples should make this clearer:
icn 3 maps_to "-c";

This would be used for a click icon, which when selected will result iheing inserted
into the command line.

Adding your own desktop tools

icn 6 maps_to "-f " string not_saved;

Thiswould be used for awritable indirected text icon, whose string contents should
follow thelitera - f on the command line. It would typically be used for specifying
input filename(s). The contents of icon 6 would not be saved when the user chose the
Save options menu entry.

Usingthei ncr eases or decr eases keyword istypically used for arrow icons, used
to increase and decrease the numeric value of another icon. The default amount by
which the increase or decrease is made is 1, but this can be changed using the keyword
by. Minimum and maximum values can also be specified. The button type of such an
arrow icon should becl i ck or aut o- r epeat .

If anicon should just be used to insert a useful string in another writable indirected text
icon, then thisis specified using the keyword i nser t s. Whenever suchaniconis
clicked, the given string literal isinserted into the keyboard buffer, if the options
dialogue box currently has the input focus. Its button type should be Ol i ck.

The ext ends keyword isused for an icon which is used to toggle the options dialogue
box, from large to small and vice versa. Thef r omicon number istheicon whichisused
to mark the bottom of the dialogue box when small; thet o icon number istheicon
which is used to mark the bottom of the dialogue box when large.

Thelist of icon definitions can optionally be followed by alist of icon default values,
using the keyword def aul t s. Each icon can be listed with the keywords on and of f
for click icons, or astring or numeric literal value for writable indirected text icons.
These defaults refer to those used when the tool isinvoked via* FrontEnd_Start; if the
tool has different options by default when invoked from Make, these are listed using the
make_def aul t s keyword.

Following thisin the description is an optional specification of what happens when
drags occur, from the filer or from other applications. After the keyword

i mports_start,whichbeginsthispart of the description, you can optionally specify
awi | d_card_i s string, which is used whenever adirectory is dragged to your
application. Typically thiswildcard will be* . Hence adirectory adf s: : 4. $. f 00
dragged onto the application will expandtoadf s: : 4. $. f 00. *. Therethen followsa
list of dr ag_t o specifications, each of which gives either a specific icon number in the
dialogue box, or the keywords any or i conbar ; theicon list following the word

i nsert s iswhere the filenames of the dragged files will be inserted, with an optional
separator string. If no separator string is given then adrag will overwrite the previous
contents of the writable indirected text icon. Here are some exampl es:

drag_to icn 3 inserts icn 3;

This means that adrag onto icon 3, will insert the filename into icon 3, and subsequent
dragsto thisicon will overwriteit.

drag_to icn 6 inserts icn 6 separator_is ;

167

Producing a complete Wimp application

drag_to any inserts icn 6 separator_is " ";
drag_to iconbar inserts icn 6;

These means that adrag to icon 6, or anywhere else on the dialogue box, or to theicon
bar will insert the filename of the dragged icon in icon number 6. In the case of the
iconbar, the contents of icon 6 will be overwritten.

MENU section

The MENU section is similar to the DBOX section, except that it is used to specify the
way that menu entries on the menu attached to the options dialogue box map to
command line option strings. This menu is typically for less commonly used options.

Each entry in the menu entry list beginswith aliteral string, which is used to give the
text that will appear in that menu entry. Thisis followed, after the keyword maps_t o,
by string literal (which may be null) to which that menu entry mapsin the command
line. Thisis optionally followed by the keyword sub_rnenu, in which case this menu
entry will be given awritable submenu with the given string literal asitstitle, and with a
buffer size given by the supplied integer value. If you want each item in the submenu
buffer to be preceded by a particular string, this can be specified using thepr ef i x_by
keyword. The pr oduces_out put, produces_no_out put and not _saved
keywords are as described above for the DBOX section.

Menu default values can be set in asimilar manner to those for the dialogue box icons.
Thisisdone using the def aul t s keyword, and then following each menu entry with
the keyword on or of f depending on the desired default state of that entry. If the entry
has awritable submenu, this can aso be given adefault string or integer value. Also a
separate set of option defaults can be set for when the FrontEnd moduleisinvoked from
Make. Menu entries are numbered from 1 (ignoring the command line equivaent entry).

For example:

menu_st art

"First option" maps_to "-a";
"Second option" maps_to "-b " sub_menu "Value: " 8;
defaults
menu 1 off,
menu 2 on sub_menu "42";
menu_end

will result in amenu with two entries (other than the command line equivalent, which is
alwaysthefirst entry). By default Fir st option will not be ticked, but Second option
will beticked and its writable submenu will contain the value 42.

168

Adding your own desktop tools

DESEL ECTIONS section

The DESELECTIONS section allows you to state which Options when enabled should
disable other options. This can be done for both icons in the main options dialogue box
and for entries in its attached menu. For example:

icn 3 deselects icn 4, icn 5, nenu 3;

means that if icon 3 is selected, then icons 4 and 5 and menu entry 3 will be desel ected.

EXCLUSIONS section

The EXCLUSIONS section is similar to the DESEL ECTIONS section, except that the
listed icons and menu entries are made unselectable (greyed out). When the icon or
menu which caused this exclusion is deselected, then the excluded items become
selectable again.

MAKE_EXCLUSIONS section

Certain tools require that some options are made unsel ectable when the FrontEnd
module isinvoked from Make. The MAKE_EXCLUSIONS section alows these icons
and menu entries to be listed.

ORDER section

By default the command line for the tool is constructed in the following order:
1 thedialogue box iconsin the order given in the DBOX section

2 themenu entries in the order given in the MENU section

3 theoutput option if appropriate.

If this ordering is not satisfactory, you can give another ordering by using the

or der _i s keyword followed by alist of icon numbers, menu entriesand string literals.
This mechanism can be used to insert string literals which always appear on the
command line.

MAKE_ORDER section

The MAKE_ORDER section issimilar to the ORDER section, except that it gives away
of specifying an alternative command line ordering, when invoked from Make.

Messages files

There are a number of textual messages (warnings and errors and the like), which the
FrontEnd module issues. The purpose of the messages file for an application isto allow
internationalisation of the messages. A messages file is supplied with each of the

169

The DDEUtils module

non-interactive tools, which you can usefor your application; it should bein afilecalled
<t ool nane$Di r >. Messages. If no such file is present, then FrontEnd’s internal
default English messages are used.

Providing interactive help

Responses to interactive help requests are handled by the FrontEnd module. In each of
the desktop non-interactive tools directories you will find a Messages file for the tool. In
this file are help messages for the various dialogue boxes of the tools. In general a
message whose tag field is the name of the dialogue box, is used when the pointer is not
over an icon; when the pointer is over an icon, the icon number is used to distinguish the
help message.

For example, an entry in the messages file of:

SETUP3: This is where you specify the input filenanes
will result in the message

This is where you specify the input fil enanes

appearing in !Help’s interactive help window, when the pointer is over icon number 3 of
the SetUp dialogue box.

IChoices file

When the user selecB8ave choices from the application’s main menu, the current
setting of options is saved in a fit¢ oo/ nane$Di r >. ! choi ces.

The DDEULtils module
The DDEUtils module is intended for three purposes:
I to relax the 256 byte command line limit
I to solve the problem of ‘current directory’ under the desktop
I to provide throwback to the editor on finding source errors.

Further details are given in appen@®EUtils on page 193.

170

SrcEdit

Make

Adding your own desktop tools

Resource files

A language compiler needs to supply three lines of information about itself to SrcEdit
when it isinstalled. It does this by appending these three lines to the file

<SrcEdi t $Di r >. choi ces. | anguages of the form shown in appendix SrcEdit
file formats on page 199.

The language help file is used when the user selects a portion of histext and requests
language help on this. The format of entriesin the help fileis shown in appendix SrcEdit
file formats.

You will have noticed that when the user selects Menu on aproject in Make, itis
possible to select options for atool, by picking the name of that tool from the Tool
options menu. Thisis done by Make issuing the star command * FrontEnd_SetUp; the
FrontEnd modul e then replies with a Wimp message (details of which are givenin
appendix FrontEnd protocols on page 187) containing the desired command line.

In order to achieve this, atool which is being added must append six linesto thefile
<Make$Di r >. choi ces. t ool s of theform:

t ool _nane

ext ensi on the string used to identify a source written in this
language; e.g. c for the C language

make defaults the default options for this tool when in amakefile

conversion_rul e i.e. how to convert source files to object files

description_file full pathname of file containing application
description

setup file full pathname of file containing SetUp actions for

when tool isinvoked via Make

171

172

Appendices

173

174

Appendix A: Makefile syntax

his appendix covers the syntax of Makefiles understood by amu, and the way they

are arranged by Make. If all you need to do is construct and use simple Makefiles
with Make, you do not need to study thisinformation. It isincluded for those wishing to
study, modify or construct Makefiles manually.

Make and AMU

Makefiles may be constructed by hand, using atext editor such as SrcEdit, or
semi-automatically using Make. For more details of operating Make, see the chapter
Make on page 57. Makefiles may be used to run amake job using either Make or AMU.
In both cases, make jobs operate by the command line tool amu interpreting the
Makefile text and issuing command lines to other tools. The command line tool amu is
installed in your library directory.

Command execution

Amu executes commands by calling the C library function sy st em once for each
command to be executed. Inturn, syst emissues an OS_CLI SWI to execute the
command. Before calling OS _CLI, syst emcopiesits caller to the top end of

application workspace and sets the workspace limit just bel ow the copied program. Any
command executed by amu therefore has less memory to execute in than amu had

initially (the difference being the size of amu plus the size of amu’s working space).

When the command returns, amu will be copied back to its original location and will
continue, unless, of course, the command set a bad (non-0) value in the environment
variable Sys$ReturnCode (the C library automatically sets Sys$ReturnCode to the value
returned byrai n() or passed texi t ()) . If you have limited memory on your
computer, or you are trying to run amu in a limited Wimpslot under the desktop, and a
program (such as the C compiler) to be run by amu needs more memory than is left, you
can instruct amu not to execute commands directly, but to write them to an output
window to be saved and executed later (se®th€t executeoption of Make and

AMU). Of course, inthis case, execution is not terminated or modified by anon-0 return

code from a command.

Finally, note that thereisa RISC OS command length limit of 255 characters. The
desktop tools such as the linker and C compiler cooperate with the DDEUtils module to
allow much longer command lines, but care must be taken to avoid generating long
command lines for other operations, such as wipe, etc.

175

Makefile basics

Makefile basics

176

Inits simplest form, aMakefile consists of a sequence of entries which describe
I what each component of a system depends on;
I what commands to execute to make an up-to-date version of that component.

Everything else that you can express in a Makefile is designed to make the job of
description easier for you.

Amu performstwo functions for you. Firstly, it expands your description into the simple
form just described: a sequence of explicit rules about how to make each component of
asystem. Then it decides which rules need to be applied to make a completely
up-to-date, consistent system. Thisit does by deciding which components are older than
any of the files they depend on. It then executes the commands associated with those
entries, in an appropriate order.

An example will make all this clear, so let’s look at part of the Makefile for amu itself:

anu: o.anmu $.301.clx.o.clxlib
link -o anu o.anmu $. CLi b. 0. St ubs
squeeze anu

0. anu: c.anmu $.301.clx.o.clxlib
cc -1%$.301.clx c.anu

install:

copy anmu % anmu ~cfq
renmove anu
remove o.anu

Each entry consists of

I atarget, followed by a colon character, followed by

I alist of files on which the target depends, followed by

I alist of commands to execute to make the target up to date.

Each command line begins with some white space (if you want your Makefile to be
portable to UNIX systems you should begin these lines with a Tab character). For
example, amu itself is made fram amu, the compiled amu program, and a proprietary
library called$. 301. cl x. o. cl xI i b. If either of these files is newer than amu, or if
amu does not yet exist, then the commdndsk - o amu ... followed bysqueeze
amu, should be executed.

But what ifo. amu doesn’t yet exist or is not itself up to date? Amu will check this for
you and will not us@. anu without first making it up to date. To do this it will execute
the command(s) associated with theanu entry.

Makefile syntax

Thus amu might well execute for you:

cc -1%$.301.clx c.anu
link -0 amu o.anu $. CLi b. 0. St ubs
squeeze anu

As you can see, if you do this more than once — for example, because you are developing
the program being managed by amu — it will save you many keystrokes. Now suppose
you don't haves. 301. cl x. o. ¢l x| i b. What then? Well, the Makefile doesn't

instruct amu how to make this so it can do no more than tell you so. Either you must
modify the Makefile to say how to make it or, more likely, obtain a copy ready-made.

File nametruncation

Machines that have file name truncation configured off can result in error messages
being displayed where a Makefile contains a rule where a (non-file) target name has
more than 10 characters.

For example, in the following Makefile extract:

install _rom ${TARGET}
${CP} ${TARGET} ${DESTI NATI ON}. ${ TARGET} ${CPFLAGS}
@cho install_rom conpl ete

typing in:
*amu install _rom
would result in the following error message:
AMJ; failed to read tinme stanmp for 'install _rom

If you are going to use long target names you must ensure that file name truncation is
configured on.

Macros astargets

The first target in a Makefile cannot be a macro. If you need to use a macro in this way
then you should insert an ‘extra’ target.

For example:
all: ${ PROG

${PROG : mnyprog.o
@cho ${PROG rebuilt

177

Makefile structure

Makefile structure

178

Makefiles contain normal ASCI| text, and are of type OXFEL1 (Makefil e) . For
backwards compatibility they may also be used with text (OXFFF) file type, though
these cannot be adjusted automatically by Make.

A Makefile consists of asequence of logical lines. A logical line may be continued over
several physical lines provided each but the last line ends with a\ . For example:

This is a comment |ine \
continued on the next physical line\
and on the next, but not thereafter.

A comment isintroduced by a hash character # and runs to the end of the logical line.
The active comment line:

Dynani ¢ dependenci es:

isinterpreted by amu as a marker for the start of dependenciesto be kept up to date
during amake job (see Makefiles constructed by Make on page 183). All other comment
lines areignored by amu.

Otherwise there are four kinds of non-empty logical linesin a Makefile:

I dependency lines

I command lines

I macro definition lines

I ruleand other special lines.

Dependency lines have the form:

space-separated-list-of-targets COLON space-separated-1ist-of-prerequisites
For example:

amu : o.amu $.301.clx.o.clxlib
0.d35 0.d36 0.d37: h.util

A dependency line cannot begin with white space. Spaces before the colon are optional,
but some white space must follow to distinguish a colon separating targets and
prerequisites from a colon as part of a RISC OS filename.

For example:
adfs::4.%.library.amu: o.amu ...

(Although a space after the colon is not required by UNIX’s make utility, omission of it
is rare in UNIX Makefiles).

Makefile syntax

A line with multiple targetsis shorthand for several lines, each with one target and the
same right-hand side (and the same associated commands, if any). Multiple dependency
lines referring to the same target accumulate, though only one such line may have
commands associated with it (amu would not know in what order to execute the
commands otherwise). For example:

amu: o.anu
amu: $.301.clx.o.clxlib

isexactly equivalent to the single line form given earlier. In general, the singlelineform
iseasier for you to write whereas the multi-line form is more readily generated by a
program (for example, Make will generate alist of lines of theformo. f oo:

h. t hi ng, onefor each #i ncl ude t hi ng. hinc. f 00). Command lines
immediately follow a dependency line and begin with white space.

For maximum compatibility with UNIX Makefiles ensure that the first character of
every command line is a Tab. Otherwise one or more spaces will do. A semi-colon may
be used instead of a new line to introduce commands. Thisis often used when there are
no prerequisites and only a single command associated with atarget. For example:

clean:; w pe o.* ~cfq
Note that, in this case, no white space need follow the colon.
Macro definition lines are lines of the form:

macro-nane = sone text to the end of the logical Iine

For example:

CC = ncc

CFLAGS = -fah -¢c -1%$.clib

LD = link

LI B $.CLib.o.clxlib $.CLib.o. Stubs

CLX $.301.cl x

The = can be surrounded with white space, or not, to taste. Thereafter, wherever

${ nane} or $(nane) isencountered, if nane isthe name of a macro then the whole
of ${ nane} isreplaced by its definition. A reference to an undefined macro simply
vanishes. An example which uses the above macro definitions, and which is taken from
the Makefile for amu itself, is:

anu: amu.o $(CLX).o.clxlib
$(LD) -0 amu ${LFLAGS} o.amu ${LI B}

which expandsto

anu: amu.o $.301.clx.o.clxlib
link -o amu o.amu $.CLib.o.clxlib $.CLib.o. Stubs

179

Makefile structure

180

Note that ${ LFLAGS} expands to nothing.

By using macros intelligently, you can minimise the effort needed to move Makefiles
from computer to computer; for example, dealing with varying locations for
prerequisites, or centralising what would otherwise be distributed through many lines of
text. It is obviously much easier to add - g to a CFLAGS= line to make a debuggable
version of the compiler thanitisto add - g to 28 separate cc commands. Similarly, using
$(CC) and CC=cc, rather than just cc, makesit very easy to use a different version of
cc; just change the definition of the macro. Whilst this may not seem very useful in a
small Makefile, it is common practice when describing larger systems such asthe C
compiler. Macros are used extensively in Makefiles constructed by Make.

Makefile syntax

Advanced features

File naming

To help you move MS-DOS and UNIX Makefilesto RISC OS, or to develop Makefiles
under RISC OS for export to MS-DOS or UNIX, both amu and the C compiler accept
three styles of file naming:

RISC OS native: $.301.cfe.c.pp AN incl ude. h. defs
UNIX-like: / 301/ cfelpp.c ../linclude/defs.h
MS-DOS-like: \ 301\ cfe\pp.c ..\include\defs.h

(All three of these examples refer to the same two RISC OSfiles.)

The linker offers more limited support; in essence, it recognisest hi ng. o and

0. t hi ng asreferring to the same RISC OSfile (0. t hi ng). In practice, object files
almost always live locally (that's the only place the RISC OS and UNIX C compilers
will put one) so this support is fairly complete.

Amu will even accept a mixture of naming styles, though this practice should be
discouraged.

The mapping between different naming styles cannot be complete (consider the UNIX
analogue ohdf s:: 0. $. Li brary ornet #1. 251: src. anu). However, it is

usually sufficient to take much of the hard work out of moving reasonably portable
Makefiles.

VPATH

Usually, amu looks for files relative to the work directory or in places implicit in the
filename. The example given earlier contains the line:

amu: amu.o $.301.clx.o.clxlib
which refers to:
@o.anmu (in @o) and $.301.clx.o.clxlib (in $.301.clx.0)

Sometimes, particularly when dealing with multiple versions of large systems, it is
convenient to have a complete set of object files locally, a few sources locally, but most
sources in a central place shared between versions. For example, we can build different
versions of the C compiler this way. If the macro VPATH is defined, then amu will look

in the list of places defined in it for any files it can’t find in the places implicit in their
names. For example, we might have compiler sourcesmnewher e. ar m

somewher e. m p, somewher e. cf e and put the compiler Makefile in

somewher e. ccri scos. It might contain the following VPATH definition:

181

Advanced features

VPATH=".arm . m p ".cfe # note that UN X VPATHs
separate path el ements
with colons, not spaces

and then dependency lineslike:

0.pp: Cc.pp # ~.cfe.c.pp, via VPATH
cc $(ccflags) -o o.pp $?

0.cQg: c.cg # ~.mp.c.cg, via VPATH
cc $(ccflags) -o o.cg $?

Rule patterns, .SUFFIXES, $@, $*, $< and $?

182

All the examples given so far have been written out longhand, with explicit rules for
making targets. In fact, amu can make inferences if you supply the appropriate rule
patterns. These are specified using special target names consisting of the concatenation
of two suffixes from the pseudo-dependency . SUFFI XES. This sounds very
complicated, but is actually quite ssmple. For example:

. SUFFI XES: .0 .C
anu: o.anu ...
.C.0:; $(CC $(CFLAGS) -0 $@c. $*

(Notethe order here: . c. 0 makesa. o-likething froma. c-likething).

Therulepattern. c. o describes how to make . o-likethingsfrom. c-like things. If, as
in the above fragment, there is no explicit entry describing how to make a. o-like thing
(0. anmu, in the above example) amu will apply the first rule it has for making . o-like
things. Here, order is determined by order in the. SUFFI XES pseudo-dependency. For
example, suppose . SUFFI XES weredefinedas. o . ¢ . f and that there weretwo
rules,.c.o:... and.f.o:...Thenamuwould choosethe. c. o rulebecause. c
precedes. f inthe. SUFFI XES dependency. In applyingthe. c. o rule, amu infersa
dependence on the corresponding . c-likething - herec. amu. So, in effect, it infers:

0. amu: c. anu
$(CC) $(CFLAGS) -0 0.anmu c.anu

Notethat, in the commands, $@isreplaced by the name of thetarget and $* by the name
of the target with the ‘extension’ deleted from it. In a similar fasi$errefers to the list
of inferred prerequisites. So the above example could be rewritten using the rule:

.C.0:!; $(CC) $(CFLAGS) -0 $@ %<

However, if aVPATH were being used, this second form is obligatory. Consider, for
example, the fragment:

Makefile syntax

VPATH=". arm ~. nip ~.cfe

cc: ... 0.pp

.C.0:; $(CC) $(CFLAGS) -0 3@ %<

Thereis no explicit rule for making o. pp, so amu will apply the rule pattern .c. o: ?.
This might expand to:

0. pp: N cfe.c.pp

$(CC) $(CFLAGS) -0 o.pp ~.cfe.c.pp
which has a much more useful effect than:

$(CC) $(CFLAGS) -0 0.pp C.pp
Finally, $? can be used in any command to stand for thelist of prerequisites with respect
to which thetarget is out of date (which may be only some of the prerequisites).

Useof::

If youuse: : to separatetargetsfrom prerequisites, rather than : , the right-hand sides of
dependencies which refer to the same targets are not merged. Furthermore, each such
dependency can have separate commands associated with it. Consider, for example:

o.t1:: c.tl1 h.tl
cc -g -c c.tl # executed if o.t1 is out of
date wt c.tl1l or h.tl
o.t1:: c.tl1 h.t2
cc -c c.t1l # executed if o.t1 is out of
date wt c.tl1l or h.t2

These features are used extensively by Make in the construction of Makefiles.

Prefix$Dir

The DDEULils module provides an environment variable Pr ef i x$Di r set to the work
directory. Thisis provided to allow you to execute binaries placed in the work directory.

Makefiles constructed by Make

A Makefile constructed by Make, i.e. used to maintain aproject, isafile of type 0 XFE1
(Makefil e) . Thistext isarranged into a number of sections which are separated by
active comments.

When maintaining a project the meta-symbol @is used to stand for the pathname of the
work directory. This overcomes the problem of a current directory not being appropriate
under the RISC OS desktop. If the absol ute filename of a Makefileis:

adfs::4.$. any. t hing. makefile

183

Miscellaneous features

then all filenames for the project can use @ to replace adf s: : 4. $. any. t hi ng.

For example:

adfs::4.%.any. thing.c.foo

becomes denoted by

@c.foo

Amu isinvoked with the - deskt op flag to indicate that @should be expanded.

Toolslike cc and objasm which must produce dependency information are invoked with
aflag - depend ! Depend.

Below, we describe each of the Makefile sections, beginning with their corresponding
active comments:

#

Pr oj ect:
proj ect _nane

Tool f | ags:

Fi nal targets:

User-editabl e
dependenci es:

Static
dependenci es:

Dynam ¢
dependenci es:

Miscellaneous features

This gives a name to be used for the project in the Open
submenu.

This section has a set of default flags for each of the tools
which have registered themselves with IMake, for
automatic inclusion in a Makefile. Each rule would be of
the type:

tool FLAGS =

This section contains the rules for making thefinal targets
of the project. For example:
!'Runl mage: link $(linkflags) -o !Runlmage -via objects

Thissectionisleft untouched by IMake, and can freely be
edited by the user using a text editor.

This section containsrulesfor making an object filefrom
its corresponding source. It does not refer toi ncl ude
files and the like (described below in the section
Dynam ¢ dependenci es).

This section contains the rules which are created by
IMake by running the relevant tool on a sourcefileto
ascertain its dependencies (e.g. cc - depend).

The special pseudo-target . SI LENT tells amu not to echo commands to be executed to
your screen. Its effect isas if you used the Make or AMU option Silent.

184

Makefile syntax

The specia pseudo-target . | GNORE tells amu to ignore the return code from the
commands it executes. Its effect is asif you used the Make or AMU option Ignore
return codes.

A command linein a Makefile, the first non-white-space character of whichis @, is
locally silent; just that command is not echoed. Thisis only rarely useful.

A command line, the first non-white-space character of which is- hasits return code
ignored when it is executed. Thisis extremely useful in Makefiles which use commands
such as diff which cannot set the return code conventionally.

The special macro MFLAGS is given the value of the command line arguments passed to
amu. Thisis most useful when aMakefile itself contains amu commands (for example,
when a system consists of a collection of subsystems, each described by its own
Makefile). M-LAGS allows the same command line arguments to be passed to every
invocation of amu, even the recursive ones. For example, you might invoke amu like
this:

* amu -k LI B=$.experinment.new. lib.grafix

and the M akefile might contain entries like:

subsys_1: $(COMON) $(HDRS1)
dir subsysl
amu $(MFLAGS)
back

185

186

Appendix B: FrontEnd protocols

Star Commands
Two star commands are supported:

*Front End_St art -app <application nane>
-desc <description_fil enane>

*Front End_Set Up -app <application_nanme>
-desc <description_fil ename>
-task <task-id_of caller>
- handl e <app-speci fi c_handl e>
-tool flags <fil enane>

The application specific handle can be used by the caller to identify return messages, if
many * FrontEnd_SetUp commands have been made.

EBNF Grammar of Description Format
The following is an EBNF grammar for an application description:
Note: Blank lines and characters following # (up to newline) are ignored.

APPLI CATION ::= TOOLDETAILS
[METACPTI ONS]
[FI LEOUTPUT]
[DBOX]
[MENU|
[DESELECTI ONS]
[EXCLUSI ONS]
[MAKE_EXCLUSI ONS]
[ORDER]
[MAKE_ORDER]
<EOF>

TOOLDETAILS ::= tool _details_start
name <string>";"
[comand_i s <string>;]
versi on <nunber _and_opti onal _dat e>

[filetype &<3digit_hexnunber> ";"]

187

EBNF Grammar of Description Format

[wi npsl ot <integer>k ";"]
[has_extended_cndline ";"]
t ool _detail s_end

METAOPTI ONS ::= netaoptions_start
[has_auto run [on] ";"]
[has_aut o_save [on]
{"~."}[<string>][I| eaf nane]
[<string>] fromicn <integer>";"]
[has_text_w ndow ";"]
[has_summary_wi ndow "; "]
[display _dft _is text|sunmary ";"]
nmet aopti ons_end

FI LEQUTPUT ::= fileoutput_start
[output _option_is <string>";"]
[output _dft _string <string>";"]
[output _dft _is (produces_out put|
produces _no_output) ";"]
fileoutput_end

DBOX .= dbox_start
| CONS
[| CONDEFAULTS]
[1 MPORTS]
dbox_end

MENU ©:= menu_start
MENULI ST
[MENUDEFAULTS]
menu_end

MENULI ST ;= { MENUENTRY }

MENUENTRY i:= <string> maps_to <string>
[sub_menu <string> <integer>
[prefix_by <string>]]
[produces_no_out put |
produces_out put]

[not _saved] ";

MENUDEFAULTS : : defaults
menu <i nteger> on | off [sub_nenu
<string>

| <integer>

188

FrontEnd protocols

{ "," nmenu <integer>on | off [sub_nmenu
<string>
| <integer>

}

[mke_defaults
nmenu <integer> on | off [sub_menu

<string>
| <integer>
{
nmenu <integer> on | off [sub_menu
<string>
| <integer>
}
]
| CONLI ST ::= icn <integer>{ "," icn <integer>}
ENTRYLI ST ::= menu <integer>{ "," menu <integer>}
| CON_ENTRYLI S:: = nenulicn <integer>{ "," menu|icn

<i nteger>}

| CONS ::= icons_start
| CONDEFLI ST
i cons_end
| CONDEFLI ST ::= { | CONDEF }
| CONDEF c:= icn <integer> (maps_to ([<string>]

[CONVERSI ON])
[prefix_by <string>]
[foll onwed by [spaces] OPTLI ST]
[separator _is <string>]
[produces_no_out put
| produces_out put]
[not _saved])
| (increases|decreases icn
<i nt eger >
[by] <integer>[max <integer>]
[mMn <integer>])

189

EBNF Grammar of Description Format

| inserts <string>";
| extends fromicn <integer>

toicn <integer>";

OPTLI ST ;1= OPTENTRY { "," OPTENTRY }

OPTENTRY ::= icn <integer>

CONVERSI ON ::= string| nunber

| CONDEFAULTS : : = defaults
icn <integer>on | off | <string>
| <integer>
{ "," icn <integer>on | off
<string>| <integer>
}

[make_defaul ts
icn <integer>on | off | <string>
| <integer>
{ "," icn <integer>on | off
<string> | <integer>}

DESELECTI ONS : : = desel ections_start
DESELECTI ONLI ST
desel ecti ons_end

DESELECTI ONLI ST: : ={ DESELECT }

DESELECT ::= icn <integer> desel ects
| CON_ENTRYLI ST ;"
| menu <integer> desel ects
| CON_ENTRYLI ST ;"

EXCLUSIONS ::= exclusions_start
EXCLUSI ONLI ST
excl usi ons_end

EXCLUSI ONLI ST: : = { EXCLUDE }

190

FrontEnd protocols

EXCLUDE .= icn <integer> excl udes
| CON_ENTRYLI ST ;"
| menu <integer> excl udes
| CON_ENTRYLI ST ;"

MAKE_EXLUSI ONS: : =make_excl udes | CON_ENTRYLI ST " ;"

ORDER = order_is
(menu|icn <integer>) | <string>
out put
{ "," (menulicn <integer>) |

<string> | output}

MAKE_ORDER

make _order _is
(menu|icn <integer>) | <string>
out put
{ "," (menu|icn <integer>) |
<string> | output}

| MPORTS ;.= inports_start
[Wild_card_is <string>";"]
| MPORTLI ST
i mports_end

{ | MPORT }

drag_to
(icn <integer>| any|iconbar)
inserts
| CONLI ST
[separator is <string>] ";"

| MPORTLI ST
| MPORT

191

WIMP Message returned after a *FrontEnd_SetUp

WIMP Message returned after a *FrontEnd_SetUp

192

When an application like Make does a* FrontEnd_SetUp command, the FrontEnd
module replies to that application when the user has chosen his options with a WIMP
message of the format:

Byte offset
+16

+20

+24 to +36
+36 ...

Contents

reason code 0x00081400

handle which was passed to * FrontEnd_SetUp
application name

null-terminated command-line options

Appendix C: DDEUtiIls

he DDEULtils module performsthree functions. These functions have been combined
in one module for convenience:

I Filename prefixing. This allows a unique current working directory to be set for
each task running under RISC OS.

Long command lines. A mechanism for passing long command lines (> 255
characters) between programs (e.g. between AMU and Link).

Throwback. Throwback allows alanguage processor (e.g. CC or ObjAsm) to
inform an editor that an error has occurred while processing asourcefile. The editor
can then display the source file at the location of the error.

These functions are described individually in the rest of the chapter.

Filename prefixing SWIs
DDEUt i | s_Prefix (&42580)
Entry: RO = Pointer to 0 terminated directory name, or RO =0

Exit: All registers preserved
Error: None
Use Thissetsadirectory nameto be prefixed to al relative filenames used by

thistask. If RO = 0thisremovesany previously set prefix. If you usethis
SWI within a program to set a directory prefix you should call it again
with RO = 0 immediately before exiting your program.

Filename prefixing *Commands
*Prefix [directory]

This setsthe specified directory nameto be prefixed to al relativefilenames used by this
task. *Prefix with no arguments removes any previously set prefix.

The system variable <Prefix$Dir> is set to the prefix used for the currently executing
task. This can be set by you, and thiswill have the same effect as * Prefix.

193

Long command line SWis

Long command line SWIs

These SWIs are used to pass|ong command lines between programs. Typically they will
be called by library veneers. For example, the C run-time library initialisation calls
DDEUt i | s_Get CLSi ze and DDEUt i | s_Cet CL to fetch any long command lines
set up by acalling program and callsDDEUt i | s_Set CLSi ze and

DDEUt i | s_Set CL inthe system library call.

DDEUti | s_Set CLSi ze (&42581)
Entry: RO = Length of command line buffer required

Exit: RO destroyed
Error: None
Use This SWI should be called by a program when it has along command

line which it wishes to pass to another program. The SWI should be
called with the length of the command linein RO. A buffer of suitable
sizeisadlocated in the RMA.

DDEUt i | s_Set CL (&42582)

Entry: RO = Pointer to zero terminated command line tail
Exit: All registers preserved
Error: Possible errors are

CLI buffer not set

Thiserror is generated if the program has not previously called
DDEU i | s_Set CLSi ze to establish the size of the command line.

Use This should be called after calling DDEUt i | s_Set CLSi ze to set the
size of the command line buffer. RO contains a pointer to the command
tail (i.e. the command line without the name of the program to be run).

DDEUt i | s_Cet CLSi ze (&42583)

Entry: don't care

Exit: RO = Size of command line

Error: None

Use: This is called by a program which may have been run with a long

command line. The size of the command line is returned in RO. O is
returned if no command line has been set.

DDEUt i |'s_Get O (&42584)

Entry: RO = Pointer to buffer to receive command line

194

Error:

Use:

Throwback SWIs

DDEUtils

All registers preserved
None

This SWI is cdled to fetch the command line. The command lineis
copied into the buffer pointed to by RO.

DDEUt i | s_Thr owbackRegi st er (&42585)

Entry:
Exit:

Error:

Use:

RO = task handle of caler
All registers preserved
Possible errors are:

Anot her task is registered for throwback
Thr owback not avail abl e outside the desktop

Thisregisters atask which is capable of dealing with throwback
messages, with the throwback module. The task handle will be used in
passing Wimp messages to the caller, when they are generated by an
application.

DDEUt i | s_Thr owbackUnRegi ster (&42586)

Entry:
Exit:

Error:

Use:

RO = task handle of caler
All registers preserved
Possible errors are:

Task not registered for throwback
Thr owback not avail abl e outside the desktop

Thiscall should be made when the Wimp task which registered itself for
throwback is about to exit.

DDEUt i | s_ThrowbackStart (&42587)

Entry:
Exit:

Error:

don't care
All registers preserved
Possible errors are:

No task registered for throwback
Thr owback not avail abl e outside the desktop

195

Throwback SWis

Use: When a non-desktop tool detects errorsin the source(s) it is processing,
and throwback is enabled, the tool should make this SWI to start a
throwback session.

DDEUti | s_ThrowbackSend (&42588)

Entry: RO = reason code
R2-R5= depends on reason code (see below)

If RO = 0 (Throwback_ReasonProcessing)
R2 = pointer to nul-terminated full pathname of file being
processed

If RO = 1 (Throwback_ReasonErrorDetails)

R2 = pointer to nul-terminated full pathname of file being
processed

R3 = line number of error

R4 = severity of error
=0for warning
=1for error
= 2 for serious error

R5 = pointer to nul-terminated description of error

If RO = 2 (Throwback_ReasonInfoDetails)
R2 = pointer to nul-terminated full pathname of file being
processed
R3 = line number to which ‘informational’ message refers
R4 = mustbe 0
R5 = pointer to nul-terminated ‘informational’ message

Exit: RO-R4 preserved
Error: Possible errors are:

No task registered for throwback
Thr owback not avail abl e outside the desktop

Use: This SWI should be called with reason
Thr owback_ReasonPr ocessi ng

once, when the first error in processing a file was found. Then it should
be called once for each error found, with the reason

Thr owback_ReasonErrorDetail s
or for each informational line that needs displaying with the reason:
Thr owback_Reasonl nf oDet ai | s

196

DDEUtils

DDEUt i | s_Thr owbackEnd (&42589)
Exit: All registers preserved
Error: Possible errors are:

No task registered for throwback
Thr owback not avail abl e outside the desktop

Throwback WIMP messages

These messages are sent by the DDEUtils modul e to an editor that has registered itself
for throwback using the SWI DDEUt i | s_Thr owbackRegi st er. You only need to
know about them if you want to write your own editor.

Byte Offset Contents
+16 DDEUtils_ThrowbackStart (&42580)

The tranglator then passes messages giving full information on each error, or each
‘informational’ message, to the editor.

A complete series of messages sent by the translator to the editor is described by the
grammar below. ltems in <..> are individual Wimp messages, identified by their reason

code.

ErrorDi al ogue ::= <DDEUt i | s_Thr owbackSt art >
Er r or sWhi | eProcessi ng
{ErrorsWi |l eProcessi ng}
<DDEU i | s_Thr owbackEnd>

ErrorsWi |l eProcessing ::= <DDEUt i | s_Processi ngFi | e>

Er r or Foundl n { Error Foundl n}

<DDEUti I s_Errorln>
<DDEU i | s_ErrorDetail s>

<DDEUt i | s_Thr owbackSt art >
I nf oDet ai | s{I nfoDet ail s}
<DDEUt i | s_Thr owbackEnd>

InfoDetails ::= <DDEUti I s_I nfoforFil e>
<DDEU i | s_I nf oDet ai | s>

Error Foundl n ::

I nf oDi al ogue ::

197

Throwback WIMP messages

The format of such Wimp messagesis as follows:
Byte Offset Contents

+16 DDEULtils ProcessingFile (&42581)
+20 Nul-terminated filename

Byte Offset Contents
+16 DDEUtils_Errorsin (&42582)
+20 Nul-terminated filename

Byte Offset Contents

+16 DDEULtils_ErrorDetails (& 42583)
+20 Line number
+28 Severity

=0 for warning

=1for error

= 2 for serious error
+32 Nul-terminated description
Byte Offset Contents
+16 DDEULtils ThrowbackEnd (& 42584)
Byte Offset Contents
+16 DDEULtils_InfoforFile (& 42585)
+20 Nul-terminated filename

Byte Offset Contents

+16 DDEUtils_InfoDetails (& 42586)

+20 Line number

+28 must be 0

+32 Nul-terminated ‘informational’ message

198

Appendix D: SrcEdit file formats

Language File Format

| anguage_nane

searchpat h

hel ppat h

Help File Format

%<keywor d>

<line
<line
<line
<line

etc

1 of
2 of
3 of
4 of

isacomma-separated list of full pathnames for default search path

when loading from a selection. Note that each item in this list should
either be a path variable (e.g. C:), or be terminated by a dot (thisline
can be left blank, though putting @ on the line would be preferable)

isthe full pathname of language help file (this line can be left blank,
though putting @ on the line would be preferable)

hel p text>
hel p text>
hel p text>
hel p text>

Thereisno limit on the number of help lines for a given keyword.

199

200

Appendix E: Code file formats

Terminology

his appendix defines three file formats used by the Desktop tools to store processed
code and the format of debugging data used by DDT:

I AOF — ARM Object Format

I ALF — Acorn Library Format

I AlIF — ARM Image Format

I ASD — ARM Symbolic Debugging Format.

Desktop tools language processors such as CC and ObjAsm generate processed code
output as AOF files. An ALF file is a collection of AOF files constructed from a set of
AOF files by the LibFile tool. The Link tool accepts a set of AOF and ALF files as input,
and by default produces an executable program file as output in AlF.

Throughout this appendix the terimge, half word, word, andstring are used to mean
the following:

Byte: 8 bits, considered unsigned unless otherwise stated, usually used to store flag bits
or characters.

Half word:16 bits, or 2 bytes, usually unsigned. The least significant byte has the lowest
address (DEC/Intddyte sex, sometimes calleldttle endian). The address of a half word
(i.e. of its least significant byte) must be divisible by 2.

Word: 32 bits, or 4 bytes, usually used to store a non-negative value. The least significant
byte has the lowest address (DEC/Intel byte sex, sometimes called little endian). The
address of a word (i.e. of its least significant byte) must be divisible by 4.

Sring: A sequence of bytes terminated by a NUL (0X00) byte. The NUL is part of the
string but is not counted in the string’s length. Strings may be aligned on any byte
boundary.

Note: a word consists of 32 bits, 4-byte aligned; within a word, the least significant byte
has the lowest address. This is DEC/Intel, or little endian, bytaseilM/Motorola
byte sex.

201

Byte Sex or Endian-ness

Byte Sex or Endian-ness

Alignment

There are two sorts of AOF or ALF: little-endian and big-endian.

In little-endian AOF or ALF, the least significant byte of aword or half-word has the
lowest address of any bytein the (half-)word. This byte sex isused by DEC, Intel and
Acorn, amongst others.

In big-endian AOF or ALF, the most significant byte of a (half-)word has the lowest
address. This byte sex is used by IBM, Motorola and Apple, amongst others.

For datain afile, address means ‘offset from the start of the file’.

There is no guarantee that the endian-ness of an AOF or ALF file will be the same as the
endian-ness of the system used to process it (the endian-ness of the file is always the
same as the endian-ness of the target ARM system).

The two sorts of AOF or ALF cannot, be mixed (the target system cannot have mixed
endian-ness: it must have one or the other). Thus the ARM linker will accept inputs of
either sex and produce an output of the same sex, but will reject inputs of mixed
endian-ness.

Strings and bytes may be aligned on any byte boundary.

AOF and ALF fields defined in this appendix make no use of half-words and align
words on 4-byte boundaries.

Within the contents of an AOF or ALF file the alignment of words and half-words is
defined by the use to which AOF or ALF is being put.

For all current ARM-based systems, words are aligned on 4-byte boundaries and
half-words on 2-byte boundaries.

Undefined fields

202

Fields not explicitly defined by this appendix are implicitly reserved to Acorn. It is
required that all such fields be zeroed. Acorn may ascribe meaning to such fields at any
time, but will usually do so in a manner which gives no new meaning to zeroes.

AOF

Code file formats

ARM object format files are output by language processors such as CC and ObjAsm.

Chunk file format

A chunk isaccessed via a header at the start of thefile. The header contains the number,
size, location and identity of each chunk in the file. The size of the header may vary
between different chunk files but isfixed for each file. Not all entriesin aheader need be
used, thus limited expansion of the number of chunksis permitted without a wholesale
copy. A chunk file can be copied without knowledge of the contents of the individual

chunks.

Graphically, the layout of a chunk fileis asfollows:

ChunkFileld

MaxChunks

NumChunks

entryl

entry2

entry "MaxChunks"

chunk 1

chunk "NumChunks"

Fixed part of header
occupies 3 words and
describes what follows

4 words per entry

End of header (3 + 4*MaxChunks) words

Start of data chunks

ChunkFi | el d marksthefile asachunk file. Its value is OXC3CBC6C5. The
endian-ness of the chunk file can be deduced from this value (if, when read asaword, it
appears to be 0xC5C6CBC3 then each word value must be byte-reversed before use).

203

Object file format

The MaxChunks field defines the number of the entries in the header, fixed when the
fileis created. The NunChunks field defines how many chunks are currently used in
thefile, which can vary from 0 to Max Chunks. The value of NumChunks isredundant
asit can be found by scanning the entries.

Each entry in the header comprises four words in the following order:

chunkl d is an 8-byte field identifying what data the chunk contains
(note that this is an 8-byte fieldot a 2-word field, so it has
the same byte order independent of endian-ness).

fileOfset isaoneword field defining the byte offset within the file of the
start of the chunk. All chunks are word-aligned, so it must be
divisible by four. A value of zero indicates that the chunk entry
is unused.

si ze a one word field defining the exact byte size of the chunk
(which need not be a multiple of four).

The chunkl d field provides a conventional way of identifying what type of dataa
chunk contains. It is split into two parts. The first four characters contain a unique name
allocated by a central authority (Acorn). The remaining four characters can be used to
identify component chunks within this domain. The 8 characters are stored in ascending
address order, asif they formed part of a NUL-terminated string (which they do not),
independently of endian-ness.

For AOF files, the first part of each chunk’s naméis _; the second components are
defined later in this section.

Object file format

Each piece of an object file is stored in a separate, identifiable, chunk. AOF defines five
chunks as follows:

Chunk Chunk Name
Header OBJ_HEAD
Areas OBJ_AREA
Identification OBJ_IDFN

Symbol Table OBJ_SYMT
String Table OBJ_STRT

Only theheader andar eas chunks must be present, but a typical object file will
contain all five of the above chunks.

204

Code file formats

Each name in an object file is encoded as an offset into the string table, stored in the
OBJ_STRT chunk (see Sring table chunk (OBJ_STRT) on page 218). This allows the
variable-length nature of names to be factored out from primary data formats.

A feature of chunk file format isthat chunks may appear in any order in the file.
However, language processors which must also generate other object formats — such as
Unix’s a. out format — should use this flexibility cautiously.

A language translator or other system utility may add additional chunks to an object file,
for example a language-specific symbol table or language-specific debugging data, so it
is conventional to allow space in the chunk header for additional chunks; space for eight
chunks is conventional when the AOF file is produced by a language processor which
generates all five chunks described here.

Theheader chunk should not be confused with the chunk file's header.

Format of the AOF header chunk

The AOF header is logically in two parts, though these appear contiguously in the
header chunk. The first part is of fixed size and describes the contents and nature of the
object file. The second part is variable in length (specified in the fixed part) and is a
sequence ddr ea declarations defining the code and data areas within the OBJ_AREA
chunk.

The AOF header chunk (OBJ_HEAD) has the following format:

Object file type

Version Id

Number of areas

6 words in the fixed part
Number of Symbols

Entry Area index

Entry Offset

1st Area Header 5 words per area header

2nd Area Header

(6 + (5*Number of Areas)) words in

nth Area Header the AOF header

205

Object file format

206

Object filetype

0xC5E2D080 marks the file as being in rel ocatabl e object format (the usual output of
compilers and assemblers and the usual input to the linker).

The endian-ness of the object code can be deduced from thisvalue and shall be identical
to the endian-ness of the containing chunk file.

Version ID

Encodes the version of AOF to which the object file complies: version 1.50 is denoted
by decimal 150; version 2.00 by 200; version 3.10 by 310; and this version 3.11 by
decimal 311 (0x137).

Number of areas

The code and data of the object file is presented as anumber of separate areas, in the
OBJ_AREA chunk, each with a name and some attributes (see below). Each areais
declared in the (variable-length) part of the header which immediately follows the fixed
part. Thevalue of theNurmber of Ar eas field definesthe number of areasin thefile
and consequently the number of area declarations which follow the fixed part of the
header.

Number of symbols

If the object file contains a symbol table chunk OBJ_SY MT, then this field defines the
number of symbolsin the symbal table.

Entry address area/ entry address offset

One of the areasin an object file may be designated as containing the start address of any
program which is linked to include the file. If thisisthe case, the entry addressis
specifiedasanEntry Area Index,Entry O fset par.Entry Area

I ndex, intherange1to Nunber of Areas, givesthe 1- originindex in the
following array of area headers of the area containing the entry point. The entry address
is defined to be the base address of thisareaplusEntry O f set .

A vaueof Ofor ar ea- i ndex signifiesthat no program entry addressis defined by this
AOFfile.

Code file formats

Format of area headers

The area headers follow the fixed part of the AOF header. Each area header has the
following form:

Area name (offset into string variable)

Attributes + Alignment

Area size

Number of relocations

Base address or zero 5 words in total

Area name

Each area within an object file must be given a name which is unique amongst al the
areasinthefile. Ar ea Nane givesthe offset of that name in the string table (stored in
the OBJ_STRT chunk — s&ing table chunk (OBJ_STRT) on page 218).

Areasize

This field gives the size of the area in bytes, which must be a multiple of 4. Unless the

Uninitialised bit(bit4)is setin the area attributes (#¢teibutes and Alignment

on page 207), there must be this number of bytes for this area in the OBJ_AREA chunk.
Ifthe Uni nitialised bitis set, then there shall be no initialising bytes for this area

in the OBJ_AREA chunk.

Number of relocations

This word specifies the number of relocation directives which apply to this area,
(equivalently: the number of relocation records following the area's contents in the
OBJ_AREA chunk — seormat of the areas chunk on page 212).

Attributes and Alignment

Each area has a set of attributes encoded in the most-significant 24 bits of the Attributes
+ Alignment word. The least-significant 8 bits of this word encode the alignment of the
start of the area as a power of 2 and shall have a value between 2 and 32 (this value

denotes that the area should start at an address divisibiéPBiF?).

The linker orders areas in a generated image first by attributes, then by the

(case-significant) lexicographic order of area names, then by position of the containing
object module in the link list. The position in the link list of an object module loaded

from a library is not predictable.

207

Object file format

208

The precise significance to the linker of area attributes depends on the output being
generated.

Bit 8

Bit 8 encodes the absol ut e attribute and denotes that the area must be placed at its
Base Address. Thisbit is not usually set by language processors.

Bit 9

Bit 9 encodes the code attribute: if set the area contains code; otherwise it contains
data.

Bits10and 11

Bits 10, 11 encode thecormon bl ock defi niti onandcommon bl ock
r ef er ence attributes, respectively.

Bit 10 specifiesthat the areaisaconmon bl ock definiti on.

Bit 11 defines the area to be a reference to a common block, and precludes the area
having initialising data (see Bit 12, below). In effect, bit 11 implies bit 12.

If both bits 10 and 11 are set, bit 11 isignored.

Common areas with the same name are overlaid on each other by the linker. The Ar ea
Si ze field of acommon definition area defines the size of acommon block. All other
references to this common block must specify a size which is smaller or equal to the
definition size. If, in alink step, there is more than one definition of an areawith the
common definition attribute (area of the given name with bit 10 set), then each of these
areas must have exactly the same contents. If there is no definition of acommon areg, its
size will be the size of the largest common referenceto it.

Although common areas conventionally hold data, it is quite legal to use bit 10in
conjunction with bit 9 to define acommon block containing code. Thisismost useful for
defining a code area which must be generated in several compilation units but which
should be included in the final image only once.

Bit 12

Bit 12 encodesthezer o-i ni ti al i sed attribute, specifying that the area has no
initialising datain this object file, and that the area contents are missing from the
OBJ_AREA chunk. Typically, this attribute is given to large uninitialised data areas.
When an uninitialised areaisincluded in an image, the linker either includes a
read-write area of binary zeroes of appropriate size, or maps a read-write area of
appropriate size that will be zeroed at image start-up time. This attribute isincompatible
with the read-only attribute (see Bit 13, below).

Code file formats

Whether or not azero-initialised areaisre-zeroed if the image isre-entered is a property
of the relevant image format and/or the system on which it will be executed. The
definition of AOF neither requires nor precludes re-zeroing.

To summarise, bits 10, 11 and 12 interact as follows:

12 11 10 I nteraction

0 0 1 Initialised common definition

0 1 1 Initialised common definition

0 1 0 Uninitialised reference to common block

1 0 1 Uninitialised reference to common block

1 1 0 Uninitialised reference to common block

1 1 1 Uninitialised reference to common block

1 0 0 Zero-initialised (bss = unnamed common reference)

So, an initialised common definition isinferred if bit 10 is set and bit 11 isnot, a
Zero-initialised areaisinferred if bit 12 is set and both bits 10 and 11 are unset, al other
bit combinations infer an uninitialised reference to common block.

Bit 13

Bit 13 encodesther ead onl y attribute and denotes that the areawill not be modified
following relocation by the linker. The linker groups read-only areas together so that
they may be write protected at run-time, hardware permitting. Code areas and debugging
tables should have this bit set. The setting of this bit isincompatible with the setting of
bit 12.

Bit 14

Bit 14 encodesthe posi ti on i ndependent (PI) attribute, usually only of
significance for code areas. Any reference to a memory address from a Pl area must be
in the form of alink-time-fixed offset from a base register (e.g. a PC-relative branch
offset).

Bit 15

Bit 15 encodes the debuggi ng t abl e attribute and denotes that the area contains
symbolic debugging tables. The linker groups these areas together so they can be
accessed as a single continuous chunk at or before run-time (usually, a debugger will
extract its debugging tables from the image file prior to starting the debuggee).

Usually, debugging tables are read-only and, therefore, have bit 13 set also. In
debugging table areas, bit 9 (the code attribute) isignored.

Bits 16-19 encode additional attributes of code areas and shall be non-0 only if the area
has the code attribute (bit 9 set).

209

Object file format

210

Bit 16

Bit 16 encodes the 32-bit PC attribute, and denotes that code in this area complies with

a 32-bit variant of the ARM Procedure Call Standard (APCS). For details, refer to

‘32-bit PC vs 26-bit PC’. Such code may be incompatible with code which complies
with a 26-bit variant of the APCS.

Bit 17

Bit 17 encodes theeent r ant attribute, and denotes that code in this area complies
with a reentrant variant of the ARM Procedure Call Standard.

Bit 18

Bit 18, when set, denotes that code in this area uses the ARMs1ded
floating-point instruction set. Specifically, function entry and exit use
the LFM and SFM floating-point save and restore instructions rather than multiple
LDFEs and STFEs. Code with this attribute may not execute on older ARM-based
systems.

Bit 19

Bit 19 encodes thido Sof t war e St ack Check attribute, denoting that code in this
area complies with a variant of the ARM Procedure Call Standard without software
stack-limit checking. Such code may be incompatible with code which complies with a
limit-checked variant of the APCS.

Bits 20-27 encode additional attributes of data areas, and shall be non-0 only if the area
does not have theode attribute (bit 9) unset.

Bit 20

Bit 20 encodes thkased attribute, denoting that the area is addressed via
link-time-fixed offsets from a base register (encoded in bits 24-27). Based areas have a
special role in the construction of shared libraries and ROM-able code, and are treated
specially by the linker.

Bit 21

Bit 21 encodes th8har ed Li brary Stub Dat a attribute. In a link step involving
layered shared libraries, there may be several copies of the stub data for any library not
at the top level. In other respects, areas with this attribute are treated like data areas with
the common definition (bit 10) attribute. Areas which also have the zero initialised
attribute (bit 12) are treated much the same as areas with the common reference (bit 11)
attribute.

This attribute is not usually set by language processors, but is set only by the linker.

Code file formats

Bits 22-23
Bits 22-23 are reserved and shall be set to 0.

Bits 24-27

Bits24-27 encodethebase r egi st er usedto addressabased area. If the areadoes
not have the based attribute then these bits shall be set to 0.

Bits 28-31
Bits 28-31 are reserved and shall be set to 0.

Area Attributes Summary

Bit Mask Attribute Description

8 0x00000100 Absolute attribute

9 0x00000200 Code attribute

10 0x00000400 Common block definition
1 0x00000800 Common block reference
12 0x00001000 Uninitialised (O-initialised)
13 0x00002000 Read only

14 0x00004000 Position independent

15 0x00008000 Debugging tables

Code areas only

16 0x00010000 Complies with the 32-bit APCS
17 0x00020000 Reentrant code

18 0x00040000 Uses extended FP inst set
19 0x00080000 No software stack checking
Data areas only

20 0x00100000 Based area

21 0x00200000 Shared library stub data
24-27 0x0F000000 Base register for based area

211

Object file format

Format of the areas chunk

The areas chunk (Chunkld of OBJ_AREA) contains the actua areas (code, data, zero-
initialised data, debugging data, etc.) plus any associated rel ocation information.
Graphically, an area’s layout is:

Area 1

Area 1 relocation

Arean

Area n relocation

An area is simply a sequence of byte values. The endian-ness of the words and
half-words within it shall agree with that of the containing AOF file.

An area is followed by its associated table of relocation directives (if any). An area is
either completely initialised by the values from the file or is initialised to zero, as
specified by bit 12 of its area attributes.

Both the area contents and the table of relocation directives are aligned to 4-byte
boundaries.

Relocation directives

A relocation directive describes a value which is computed at link time or load time, but
which cannot be fixed when the object module is created.

In the absence of applicable relocation directives, the value of a byte, halfword, word or
instruction from the preceding area is exactly the value that will appear in the final
image.

A field may be subject to more than one relocation.

Pictorially, a relocation directive looks like:

Offset

111 B|A|R|FT 24-bit SID

Offsat

Offset is the byte offset in the preceding area of the subject field to be relocated by a
value calculated as described below.

212

Code file formats

SID (Subject Identification)
The interpretation of the 24-bit SID field depends on the A bit.

If A (bit 27) is 1, the subject field is relocated (as further described below) by the value
of the symbol of which SID isthe O-origin index in the symbol table chunk.

If A (bit 27) is0, the subject field isrel ocated (as further described below) by the base of
the area of which SID isthe O-origin index in the array of areas, (or, equivaently, in the
array of area headers).

FT (Field Type)
The 2-bit field type FT (bits 25, 24) describes the subject field:
00 thefieldto berelocated isabyte
01 thefield to berelocated isahalf-word (2 bytes)
10 thefield to berelocated isaword (4 bytes)
11 thefield to berelocated is an instruction or instruction sequence

Bytes, halfwords and instructions may only be relocated by values of suitably small size.
Overflow isfaulted by the linker.

An ARM branch, or branch-with-link instruction is always a suitable subject for a
relocation directive of field type instruction.

[l (Instruction Instruction)

If the subject field is an instruction sequence (FT = 11), then Offset addresses the first
instruction of the sequence and the Il field (bits 29 and 30) constrains how many
instructions may be modified by this directive:

00 no congtraint (the linker may modify as many contiguous instructionsas it
needs to)

01 thelinker will modify at most 1 instruction
10 thelinker will modify at most 2 instructions

11 thelinker will modify at most 3 instructions

213

Object file format

214

R (relocation type)

The way the relocation value is used to modify the subject field is determined by the R
(PC-relative) bit, modified by the B (based) bit.

R (bit 26) = 1 and B (bit 28) = 0 specifies PC-relative relocation: to the subject field is
added the difference between the rel ocation val ue and the base of the area containing the
subject field. In pseudo C:

subject _field = subject_field + (relocation_val ue -
base_of _area_contai ni ng(subject_field))

Asasgpecia case, if A is0, and the relocation value is specified as the base of the area
containing the subject field, then it is not added and:

subject _field = subject_field -
base_of _area_cont ai ni ng(subj ect _fi el d)

This caters for relocatable PC-relative branches to fixed target addresses.

If Ris1, Bisusualy 0. If B is1thisis used to denote that the inter-link-unit value of a
branch destination isto be used, rather than the more usual intra-link-unit value (this
allows compilers to perform the tail-call optimisation on reentrant code).

R (bit 26) = 0 and B (bit 28) = 0, specifies plain additive rel ocation: the relocation value
is added to the subject field. In pseudo C:

subject _field = subject_field + rel ocation_val ue

R (bit 26) = 0 and B (bit 28) = 1, specifies based area relocation. The relocation value
must be an address within a based data area. The subject field isincremented by the
difference between this value and the base address of the consolidated based area group
(the linker consolidates all areas based on the same base register into asingle,
contiguous region of the output image). In pseudo C:

subject _field = subject_field + (relocation_val ue -
base_of _area_group_contai ni ng(rel ocati on_val ue))

For example, when generating reentrant code, the C compiler will place address
constants in an adcon area based on register sb, and load them using sb relative LDRs.
At link time, separate adcon areas will be merged and sb will no longer point where
presumed at compile time. B type relocation of the LDR instructions corrects for this.

Bits 29-31

Bit 31 of the relocation flags word shall be 1, and (unless FT bits are 11) bits 29 and 30
shall be 0.

Code file formats

Format of the symbol table chunk

TheNunber of Synbol s field inthe fixed part of the AOF header (OBJ_STRT)
defines how many entries there are in the symbol table. Each symbol table entry has the
following format:

Name

Attributes

4 words per entry
Value

Area name

Name

Thisvalueis an index into the string table (in chunk OBJ_STRT) and thus locates the
character string representing the symbol.

Value

Thisisonly meaningful if the symbol isadefining occurrence (bit O of Attributes set), or
acommon symbol (bit 6 of Attributes set):

I if the symbol is absolute (bits 0,2 of Attributes set), this field contains the value of
the symbol

if the symbol is acommon symbol (bit 6 of Attributes set), thisfield contains the
byte-length of the referenced common area

otherwise, Valueisinterpreted as an offset from the base address of the area named
by Area Name, which must be an area defined in this object file.

Area Name

is meaningful only if the symbol is a non-absolute defining occurrence (bit O of
Attributes set, bit 2 unset). In thiscaseit givestheindex into the string table for the name
of the areain which the symbol is defined (which must be an areain this object file).

215

Object file format

Symbol Attributes

216

The Symbol Attributesword is interpreted as follows:
I Bit 0 denotes that the symbol is defined in this object file.

I Bit 1 denotes that the symbol has global scope and can be matched by the linker to
asimilarly named symbol from another object file.

Specifically:
Bitsland O

01 (bit 1 unset, bit O set)
denotes that the symbol is defined in this object file and has scope
limited to this object file (when resolving symbol references, the linker
will only match this symbol to references from within the same object
file).

10 (bit 1 set, bit 0 unset)
denotes that the symbol is areference to a symbol defined in another
object file. If no defining instance of the symbol isfound the linker
attempts to match the name of the symbol to the names of common
blocks. If amatch isfound itisasif there were defined an
identically-named symbol of global scope, having as its value the base
address of the common area.

1 denotes that the symbol is defined in this object file with global scope
(when attempting to resolve unresolved references, the linker will match
this definition to areference from another object file).

00 Reserved by Acorn.

Bit 2

Bit 2 encodes the absolute attribute which is meaningful only if the symbol isadefining
occurrence (bit O set). If set, it denotes that the symbol has an absolute value, for
example, aconstant. If unset, the symbol’s value is relative to the base address of the
area defined by the Ar ea Nane field of the symbol.

Bit 3

Bit 3 encodes the case insensitive reference attribute which is meaningful only if bit O
isunset (that is, if the symbol is an externa reference). If set, the linker will ignore the
case of the symbol names it tries to match when attempting to resolve this reference.

Code file formats

Bit 4

Bit 4 encodes the weak attribute which is meaningful only if the symbol is an externa
reference, (bits 1,0 = 10). It denotes that it is acceptable for the reference to remain
unsatisfied and for any fields relocated viait to remain unrelocated. The linker ignores
weak references when deciding which members to load from an object library.

Bit 5

Bit 5 encodes the strong attribute which is meaningful only if the symbol is an externa
defining occurrence (if bits 1,0 = 11). In turn, this attribute only has meaning if thereisa
non-strong, external definition of the same symbol in another object file. In this case,
referencesto the symbol from outside of the file containing the strong definition, resolve
to the strong definition, while those within the file containing the strong definition
resolve to the non-strong definition.

This attribute allows a kind of link-time indirection to be enforced. Usually, a strong
definition will be absolute, and will be used to implement an operating system’s entry
vector having the forever binary property.

Bit 6

Bit 6 encodes the common attribute, which is meaningful only if the symbol isan

external reference (bits 1,0 = 10). If set, the symbol is areference to acommon areawith

the symbol’s name. The length of the common areais given by the symbol’s Val ue

fi el d (seeabove). The linker treats common symbols much asiit treats areas having

the Common Reference attribute — all symbols with the same name are assigned the
same base address, and the length allocated is the maximum of all specified lengths.

If the name of a common symbol matches the name of a common area, then these are
merged and the symbol identifies the base of the area.

All common symbols for which there is no matching common area (reference or
definition) are collected into an anonymous, linker-created, pseudo-area.

Bit 7
Bit 7 is reserved and shall be set to 0.
Bit 8-11
Bits 8-11 encode additional attributes of symbols defined in code areas.

Bit 8 encodes theode datum attribute which is meaningful only if this symbol
defines a location within an area having @ale attribute. It denotes that the
symbol identifies a (usually read-only) datum, rather than an executable instruction.

217

Object file format

218

Bit 9 encodes the floating-point argumentsin floating-point registers attribute.
Thisis meaningful only if the symbol identifies a function entry point. A symbolic
reference with this attribute cannot be matched by the linker to a symbol definition

which lacks the attribute.

Bit 10 is reserved and shall be set to 0.

Bit 11 isthe simpleleaf function attribute which is meaningful only if this symbol
defines the entry point of a sufficiently simple leaf function (aleaf functionis one
which calls no other function). For areentrant leaf function it denotes that the
function’'sinter-link-unit entry point is the same asits intra-link-unit entry point.

Bit 12-31

Bits 12-31 are reserved and shall be set to 0.

Symbol Attribute Summary

Bit Mask

0 (0x00000001
1 (0x00000002
2 0x00000004
3 0x00000008
4 0x00000010
5 0x00000020
6 (0x00000040
Code symbols only

8 (0x00000100
9 0x00000200

11 0x00000800

Attribute Description
Symbol is defined in thisfile
Symbol has global scope
Absolute attribute
Case-insensitive attribute
Weak attribute

Strong attribute

Common attribute

Code area datum attribute
FP argsin FP regs attribute
Simple leaf function attribute

String table chunk (OBJ_STRT)

The string table chunk contains all the print names referred to from the header and
symbol table chunks. This separation is made to factor out the variable length
characteristic of print names from the key data structures.

A print nameis stored in the string table as a sequence of non-control characters (codes
32-126 and 160-255) terminated by a NUL (0O) byte, and isidentified by an offset from

the start of the table. The first 4 bytes of the string table contain its length (including the
length of itslength word), so no valid offset into the table isless than 4, and no table has

length less than 4.

Code file formats

The endian-ness of the length word shall be identical to the endian-ness of the AOF and
chunk files containing it.

Identification chunk (OBJ_IDFN)

This chunk should contain a string of printable characters (codes 10-13 and 32-126)
terminated by aNUL (0) byte, which gives information about the name and version of
the tool which generated the object file. Use of codesin the range 128-255 is
discouraged, as the interpretation of these valuesis host dependent.

219

ALF

ALF

ALF isthe format of linkable libraries (such asthe C RISC OS Toolbox library
toolboxlib).

Library file format

For library files, the first part of each chunk’'s name is ‘LIB_’; for object libraries, the
names of the additional two chunks begin with ‘OFL_".

Each piece of a library file is stored in a separate, identifiable chunk, named as follows:

Chunk Chunk Name

Directory LI B_DI RY

Time-stamp LI B TI ME

Version LI B_VSRN

Data LI B_DATA

Symbol table OFL_SYMT — object code libraries only
Time-stamp OFL_TI ME — object code libraries only

There may be many LIB_DATA chunks in a library, one for each library member. In all
chunks, word values are stored with the same byte order as the target system; strings are
stored in ascending address order, which is independent of target byte order.

LIB_DIRY

The LIB_DIRY chunk contains a directory of the modules in the library, each of which

is stored in a LIB_DATA chunk. The directory size is fixed when the library is created.
The directory consists of a sequence of variable length entries, each an integral number
of words long. The number of directory entries is determined by the size of the
LIB_DIRY chunk.

This is shown pictorially in the following diagram:

ChunkIndex
the size of this LIB_DIRY chunk
EntryLength (an integral number of words)
Datalength the size of the Data
d (an integral number of words)
Data

220

Code file formats

ChunkIndex

ChunklIndex is aword containing the O-origin index within the chunk file header of the
corresponding L1B_DATA chunk. Conventionally, the first 3 chunks of an OFL file are
LIB_DIRY, LIB_TIME and LIB_VSRN, so Chunkindex is at least 3. A ChunklIndex of
0 means the directory entry is unused.

The corresponding LIB_DATA chunk entry gives the offset and size of the library
modulein thelibrary file.

EntryLength

EntryLength isaword containing the number of bytesinthisLIB_DIRY entry, alwaysa
multiple of 4.

DataLength

Data

Datal_ength is aword containing the number of bytes used in the data section of this
LIB_DIRY entry, aso amultiple of 4.

The Data section consists of, in order:

I aO-terminated string (the name of the library member)

I any other information relevant to the library module (often empty)
I a2-word, word-aligned time stamp.

Strings should contain only 1SO-8859 non-control characters (codes [0-31], 127 and
128+[0-31] are excluded).

The string field is the name used to identify thislibrary module. Typically it isthe name
of the file from which the library member was created.

The format of the time stamp is described in Time Samps on page 222. Itsvalueisan
encoded version of the last-modified time of the file from which the library member was
created.

To ensure maximum robustness with respect to earlier, now obsolete, versions of the
ARM object library format:

I Applications which create libraries or library members should ensure that the
LIB_DIRY entriesthey create contain valid time stamps.

Applicationswhich read LIB_DIRY entries should not rely on any data beyond the
end of the name string being present, unless the difference between the Datalength
field and the name-string length allows for it. Even then, the contents of atime
stamp should be treated cautiously and not assumed to be sensible.

221

Library file format

Applicationswhich write LIB_DIRY or OFL_SYMT entries should ensure that padding
isdone with NUL (0) bytes; applicationswhich read LIB_DIRY or OFL_SYMT entries

should make no assumptions about the values of padding bytes beyond the first,
string-terminating NUL byte.

Time Stamps

A library time stamp is a pair of words encoding the following:
I a6-byte count of centi-seconds since the start of the 20th century
I a2-byte count of microseconds since the last centi-second (usualy 0).

centiseconds since 00:00:00 first (most significant) word
1st January

1900 u-seconds | second (least significant) word

The first word stores the most significant 4 bytes of the 6-byte count; the least
significant 2 bytes of the count are in the most significant half of the second word.

The least significant half of the second word contains the microsecond count and is
usually 0.

Time stamp words are stored in target system byte order: they must have the same
endian-ness as the containing chunk file.

LIB_TIME

TheLIB_TIME chunk contains a2-word time stamp recording when the library was last
modified. It is, hence, 8 byteslong.

LIB_VSRN

The version chunk contains a single word whose valueis 1.

LIB_DATA

222

A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY
chunk. The endian-ness or byte order of thisdatais, by assumption, the same as the byte
order of the containing library/chunk file.

No other interpretation is placed on the contents of amember by the library management
tools. A member could itself be afile in chunk file format or even another library.

Object Code Libraries

Code file formats

An object code library is alibrary file whose members are filesin ARM Object Format
(see section AOF on page 203 for details).

An object code library contains two additional chunks: an external symbol table chunk
named OFL_SYMT,; and atime stamp chunk named OFL_TIME.

OFL_SYMT

The external symbol table contains an entry for each external symbol defined by
members of the library, together with the index of the chunk containing the member

defining that symbol.

The OFL_SYMT chunk has exactly the same format asthe LIB_DIRY chunk except
that the Data section of each entry contains only a string, the name of an external
symbol, and between 1 and 4 bytes of NUL padding, as follows:

Chunkindex

EntryLength

DatalLength

External Symbol Name

Padding

the size of this OFL_SYMT chunk
(an integral number of words)

the size of the External Symbol Name and
Padding (an integral number of words)

OFL_SYMT entries do not contain time stamps.

OFL_TIME

The OFL_TIME chunk records when the OFL_SYMT chunk was last modified and has
the same format asthe LIB_TIME chunk (see Time Samps on page 222).

223

AlF

AlF

ARM Image Format (AlF) isasimple format for ARM executable images, which
consists of a 128 byte header followed by the image’s code, followed by the image's
initialised static data.

Properties of AIF

224

Two variants of AlF exist:

I Executable Al F (in which the header is part of theimage itself) canbe executed
by entering the header at its first word. Code in the header ensures the imageis
properly prepared for execution before being entered at its entry address.

I Non-executable Al F (in which the header is not part of the image, but merely
describesit) isintended to be loaded by a program which interprets the header, and
prepares the following image for execution.

The two flavours of AIF are distinguished as follows:

I Thefourth word of an executable AIF header isBL ent r ypoi nt . The most
significant byte of thisword (in the target byte order) is OXEB.

I Thefourth word of a non-executable AIF imageis the offset of its entry point from
its base address. The most significant nibble of thisword (in the target byte order) is
0xO0.

The base address of an executable AlF imageisthe address at which its header should be
loaded; its code starts at base + 0x80. The base address of a non-executable AIF image
is the address at which its code should be |oaded.

Executable AlIF

The following remarks about executable AIF apply also to non-executable AlF, except
that loader code must interpret the Al F header and perform any required decompression,
relocation, and creation of zero-initialised data. Compression and relocation are, of
course, optional: AlF is often used to describe very simple absolute images.

It is assumed that on entry to a program in ARM Image Format (AlF), the general
registers contain nothing of value to the program (the program is expected to
communicate with its operating environment using SWI instructions or by calling
functions at known, fixed addresses).

A program imagein ARM Image Format is loaded into memory at itsload address, and
entered at its first word. The load address may be:

1 animplicit property of the type of the file containing the image (asis usua with
UNIX executable file types, Acorn Absolute file types, etc.)

Code file formats

I read by the program loader from offset 0x28 in the file containing the AIF image

I given by some other means, e.g. by instructing an operating system or debugger to
load the image at a specified address in memory.

An AlF image may be compressed and can be self-decompressing (to support faster
loading from slow peripherals, and better use of spacein ROMs and delivery mediasuch
as floppy discs). An AlF image is compressed by a separate utility which adds
self-decompression code and datatablesto it.

If created with appropriate linker options, an AlF image may relocate itself at load time.
Two kinds of self-relocation are supported:

I relocate to load address (the image can be loaded anywhere and will execute where
loaded)

self-move up memory, leaving a fixed amount of workspace above, and relocate to
this address (the image is loaded at alow address and will move to the highest
address which leaves the required workspace free before executing there).

The second kind of self-relocation can only be used if the target system supports an
operating system or monitor call which returns the address of the top of available
memory. The ARM linker provides a simple mechanism for using amodified version of
the self-move code illustrated in Self-Move and Self-Relocation Code on page 230,
allowing AlF to be easily tailored to new environments.

AlF images support being debugged by the Desktop debugging tool (DDT). Low-level
and source-level support are orthogonal, and both, either, or neither kind of debugging
support need be present in an AIF image.

For details of the format of the debugging tables see ASD on page 233.

References from debugging tables to code and data are in the form of rel ocatable
addresses. After loading an image at its |oad address these values are effectively
absolute. References between debugger table entries are in the form of offsets from the
beginning of the debugging data area. Thus, following relocation of a whole image, the
debugging data areaitself is position independent and may be copied or moved by the
debugger.

225

The Layout of AIF

The Layout of AIF
The layout of acompressed AlF imageis as follows:

Header

Compressed image

Decompression data This data is position-independent

Decompression code This code is position-independent

The header is small, fixed in size, and described below. In acompressed AlF image, the
header is not compressed.

An uncompressed image has the following layout:

Header

Read-only area

Read-write area

Debugging data (optional)
Self-relocation code Position-independent
Relocation list List of words to relocate, terminated by -1

Debugging data is absent unless the image has been linked using the linker’s - d option
and, in the case of source-level debugging, unless the components of the image have
been compiled using the compiler’s - g option.

Therelocation list isalist of byte offsets from the beginning of the AIF header, of words
to be relocated, followed by aword containing - 1. The relocation of non-word valuesis
not supported.

226

Code file formats

After the execution of the self-relocation code — or if the image is not self-relocating —

the image has the following layout:

Header

Read-only area

Read-write area

Debugging data

(optional)

At this stage a debugger is expected to copy any debugging data to somewhere safe,
otherwise it will be overwritten by the zero-initialised data and/or the heap/stack data of
the program. A debugger can seize control at the appropriate moment by copying, then
modifying, the third word of the AlIF header (s8¢ Header Layout on page 228).

227

The Layout of AIF

AlF Header Layout

00 BL DecompressCode NOP 0 if the image is not compressed

04 BL SelfRelocCode NOP 0 if the image is not self-relocating
08 BL DBGInit/Zerolnit NOP 0 if the image has none

oC BL ImageEntryPoint BL to make header addressable via R14 ...

or
EntryPoint offset

... but the application shall not return ...
Non-executable AIF uses an offset, not BL

10 <Program Exit Instr> ...last ditch in case of return

14 Image ReadOnly size Includes header size if executable AlF;
excludes header size if non-executable AIF

18 Image ReadWrite size Exact size - a multiple of 4 bytes

1C Image Debug size Exact size - a multiple of 4 bytes

20 Image zero-init size Exact size - a multiple of 4 bytes

24 Image debug type 0,1,2 or 3 (see below)

28 Image base Address the image (code) was linked at

2C Work space Min work space - in bytes - to be reserved
a self-moving relocatable image

30 Address mode: 26/32 LS byte contains 26 or 32

+3 flag bytes

bit 8 set when using a separate data base

34 Data base Address the image data was linked at
38 Two reserved words
... initially O ...
40 <Debug Init Instr> NOP if unused
44 Zero-init code Header is 32 words long

(14 words as below)

Notes
NOP is encoded as MQV r0, r0.

BL isused to make the header addressable viarl4 in a position-independent manner,
and to ensure that the header will be position-independent. Careis taken to ensure that
the instruction sequences which compute addresses from these r14 values work in both
26-bit and 32-bit ARM modes.

228

Code file formats

Program Exit I nstruction will usually be a SWI causing program termination. On
systems which lack this, a branch-to-self is recommended. Applications are expected to
exit directly and not to return to the AlF header, so this instruction should never be
executed. The ARM linker setsthisfield to SWI 0x11 by default, but it may be set to any
desired value by providing atemplate for the AIF header in an areacaled AIF_ HDR in
the first object filein theinput list to Link.

Image ReadOnly Size includes the size of the AIF header only if the AIF typeis
executable (that is, if the header itself is part of the image).

An AlFimageisre-startableif, and only if, the program it containsis re-startable (note:
an AlF image is not reentrant). If an AIF image isto be re-started then, following its
decompression, the first word of the header must be set to NOP. Similarly, following
self-relocation, the second word of the header must be reset to NOP. This causes no
additional problemswith the read-only nature of the code segment: both decompression
and relocation code must write to it. On systems with memory protection, both the
decompression code and the self-relocation code must be bracketed by system callsto
change the access status of the read-only section (first to writable, then back to
read-only).

The image debug type has the following meaning:
0: No debugging data are present.
1. Low-level debugging data are present.
2. Source level (ASD) debugging data are present.
3: land 2 are present together.
All other values of image debug type are reserved to ARM Ltd.

Debug Initialisation Instruction (if used) is expected to be a SWI instruction which
alertsaresident debugger that a debuggabl e image is commencing execution. Of course,
there are other possibilitieswithin the AIF framework. The linker setsthisfield to NOP
by default, but it can be customised by providing your own template for the AlF header
inan areacalled AIF_HDR in the first object filein theinput list to Link.

The Address mode word (at offset 0x30) is 0, or containsin its least significant byte
(using the byte order appropriate to the target):

I thevalue 26, indicating the image was linked for a 26-bit ARM mode, and may not
execute correctly in a 32-bit mode

the value 32, indicating the image was linked for a 32-bit ARM mode, and may not
execute correctly in a 26-bit mode.

A value of 0 indicates an old-style 26-bit AlF header.

229

Zero-Initialisation Code

If the Address mode word has bit 8 set ((address_ mode & 0x100) != 0), then the image
was linked with separate code and data bases (usually the data is placed immediately
after the code). In this case, the word at offset 0x34 contains the base address of the
image's data.

Zero-Initialisation Code

230

The Zero-initidisation code is as follows:

Zerolnit
NOP ; or <Debug Init Instruction>
SUB ip, Ir, pc ; base+12+[PSR] - (Zerol ni t +12+PSR])
; = base-Zerolnit
ADD ip, pc, ip . base-Zerol nit+Zerolnit+16
; = base+16
LDMB ip, {r0,r1,r2,r3} ; various sizes
SuB ip, ip, #16 ; inmage base
LDR r2, [ip, #48] ; flags
TST r2, #256 ; separate data area?
LDRNE ip, [ip, #52] ; Yes, so get it...
ADDEQ ip, ip, r0 ; No, so add + RO size
ADD ip, ip, rl ; + RWsize = base of 0-init area
MoV ro, #0
CWPS r3, #0
00 MOVLE pc, Ir ; nothing left to do
STR ro, [ip],#4
SUBS r3, r3, #4
B %800

Self-Move and Self-Relocation Code

This codeis added to the end of an AIF image by the linker, immediately before the list
of relocations (which isterminated by - 1). Note that the code is entered viaa BL from
the second word of the AIF header so, on entry, r14 points to AlFHeader + 8. In 26-bit
ARM modes, r14 also contains a copy of the PSR flags.

On entry, the relocation code cal cul ates the address of the AIF header (in a
CPU-independent fashion) and decides whether the image needs to be moved. If the
image doesn't need to be moved, the code branches to R(el ocateOnly).

Code file formats

Rel ocCode
NOP ; required by ensure_byte_order()
; and used bel ow.
SuB ip, Ir, pc ; base+8+[PSR] - (Rel ocCode+12+[PSR])
; = base- 4- Rel ocCode
ADD ip, pc, ip ; base-4- Rel ocCode+Rel ocCode+16 = base+12
SuB ip, ip, #12 ; -> header address
LDR r0, RelocCode ; NOP
STR ro, [ip, #4] ; won't be called again on inmage re-entry
LDR r9, [ip, #&C ; mn free space requirenent
CWPS 19, #0 ; 0 => no nove, just relocate
BEQ Rel ocat eOnl y

If the image needs to be moved up memory, then the top of memory has to be found.
Here, asystem service (SWI 0x10) is called to return the address of the top of memory
inrl. Thisis, of course, system specific and should be replaced by whatever code
seguence is appropriate to the environment.

LDR ro, [ip, #&20] ; inmage zero-init size
ADD r9, r9, r0 ; space to leave = min free + zero init
SwW #&10 ; return top of menmory in rl.

The following code calculates the length of the image inclusive of its relocation data,
and decides whether amove up storeis possible.

ADR r2, End ;. -> End
01 LDR ro, [r2], #4 ; load relocation offset, increment r2
CWS r0, #1 ; term nator?
BNE %801 ; No, so |oop again
SuB r3, rl, r9 ; MenLimt - freeSpace
SUBS ro, r3, r2 ; amount to nove by
BLE Rel ocat eOnly ; not enough space to nove...
Bl C ro, r0, #15 ; amltiple of 16...
ADD r3, r2, r0 ; End + shift
ADR r8, %02 ; internmediate limt for copy-up

Finally, the image copiesitself four words at atime, being careful about the direction of
copy, and jumping to the copied copy code as soon as it has copied itself.

02 LDVOB r2!, {r4-r7}
STMDB r3!, {r4-r7}
CWPS r2, r8 ; copied the copy | oop?
BGT 9802 ; not yet
ADD r4, pc, r0
MOV pc, r4 ; junp to copied copy code
03 LDVDB r2!, {r4-r7}
STMDB 3!, {r4-r7}
CWPS 2, ip ; copied everything?
BGT 9803 ; not yet
ADD ip, ip, ro0 ; load address of code
ADD lr, Ir, r0 ; relocated return address

231

Zero-Initialisation Code

232

Whether the image has moved itself or not, control eventually arrives here, wherethelist
of locations to be relocated is processed. Each location isword sized and isrelocated by
the difference between the address the image was loaded at (the address of the AIF
header) and the address the image was linked at (stored at offset 0x28 in the AIF

header).

Rel ocat eOnly
LDR ri,
SUBS ri,
MOVEQ pc,
STR ip,
ADR r2,

04 LDR ro,
CWS rO,
MOVEQ pc,
LDR r3,
ADD r3,
STR r3,
B B804

End

[ip,
ip,
Ir
[ip
End
[r2]
#1
Ir
[ip
r3,
[ip,

#8&28]
rl

#828]
, #4
r 0]

rl
r0]

header + 0x28 = code base set by Link
relocation of fset

rel ocate by 0 so nothing to do

new i mage base = actual |oad address
start of reloc Iist

of fset of word to relocate

term nator?

yes => return

word to relocate

relocate it

store it back

and do the next one

The list of offsets of locations to
relocate starts here, ternmnated by -1

You can customise the self-rel ocation and self-moving code generated by Link by
providing your version of it in an areacalled AIF_RELOC in the first object filein

Link'sinput list.

ASD

Code file formats

Acknowledgement: This design is based on work originally done for Acorn Computers
by Topexpress Ltd.

This section specifies the format of symbolic debugging data generated by ARM
compilers, which is used by the Desktop debugging tool (DDT) to support high level
language oriented, interactive debugging.

For each separate compilation unit (called a section) the compiler produces debugging
data, and a specia areain the object code (see section AOF on page 203 for an
explanation of ARM Object Format, including areas and their attributes). Debugging
data are position independent, containing only relative references to other debugging
data within the same section, and rel ocatable references to other compiler-generated
aress.

Debugging data areas are combined by the linker into a single contiguous section of a
program image. For adescription of the linker's principal output format see section AlF
on page 224.

Since the debugging section is position-independent, the debugger can move it to a safe
location before the image starts executing. If the imageis not executed under debugger
control, the debugging data are simply overwritten.

The format of debugging data allows for avariable amount of detail. This potentialy
allows the user to trade off among memory used, disc space used, execution time, and
debugging detail.

Assembly-language level debugging isalso supported, though in this case the debugging
tables are generated by the linker. If required, the assembler can generate debugging
table entries relating code addresses to source lines. Low-level debugging tables appear
in an extra section item, asif generated by an independent compilation (see Debugging
Data Itemsin Detail on page 236). Low-level and high-level debugging are orthogonal
facilities, though DDT allows the user to move smoothly between levelsif both sets of
debugging data are present in an image.

Order of Debugging Data

A debug data area consists of a series of items. The arrangement of these items mimics
the structure of the high-level language program itself.

For each debug area, the first item is a section item, giving global information about the
compilation, including a code identifying the language, and flags indicating the amount
of detail included in the debugging tables.

233

Endian-ness and the Encoding of Debugging Data

Each datum, function, procedure, etc., definition in the source program has a
corresponding debug data item; these items appear in an order corresponding to the
order of definitionsin the source. This means that any nested structure in the source
program is preserved in the debugging data, and the debugger can use this structure to
make deductions about the scope of various source-level objects. Of course, for
procedure definitions, two debug items are needed: a procedur e item to mark the
definition itself, and an endproc item to mark the end of the procedure’s body and the
end of any nested definitions. If procedure definitions are nested then the
procedure-endproc brackets are nested too. Variable and type definitions made at the
outermost level, of course, appear outside of all procedure/endproc items.

Information about the relationship between the executable code and sourcefilesis

collected together and appears as afileinfo item, which is always the final itemina

debugging area. Because of the C language's#i ncl ude facility, the executable code

produced from an outer-level source file may be separated into disjoint pieces

interspersed with that produced from the included files. Therefore, source files are

considered to be collections of ‘fragments’, each corresponding to a contiguous area of
executable code, and the fileinfo item is a list with an entry for each file, each in turn
containing a list with an entry for each fragment. The fileinfo field in the section item
addresses the fileinfo item itself. In each procedure item there is a ‘fileentry’ field,
which refers to the file-list entry for the source file containing the procedure's start; there
is a separate one in the endproc item because it may possibly not be in the same source
file.

Endian-ness and the Encoding of Debugging Data

234

The ARM can be configured to use either a little-endian memory system (the least
significant byte of each 4-byte word has the lowest address), or a big-endian memory
system (the most significant byte of each 4-byte word has the lowest address).

In general, the code to be generated varies according to the endian-ness (or byte-sex) of
the target. The linker has insufficient information to change an object file’s byte sex, so
object files are encoded using the byte order of the intended target, independently of the
byte order of the host system on which the compiler or assembler runs. The linker
accepts inputs having either byte order, but rejects mixed sex inputs, and generates its
output using the same byte order.

This means that producers of debugging tables must be prepared to generate them in
either byte order, as required. In turn, this requires definitions to be very clear about
when a 4-byte word is being used (which will require reversal on output or input when
cross-sex compiling or debugging), and when a sequence of bytes is being used (which
requires no special treatment provided it is written and read as a sequence of bytes in
address order).

Code file formats

Representation of Data Types

Several of the debugging dataitems (e.g. procedure and variable) have atypeword field
to identify their datatype. Thisfield contains, in the most significant 24 bits, a code to
identify abase type, and in the least significant 8 bits, a pointer count:

0 todenctethetypeitself

1 todenoteapointer to the type

2 todenote a pointer to a pointer to...
etc.

For simple types the code is a positive integer as follows, (all codes are decimal):

void 0
signed integers

single byte 10

half-word 11

word 12
unsigned integers

single byte 20

half-word 21

word 22
floating point

float 30

double 31

long double 3R2
complex

single complex 411

double complex 42
functions

function 100

For compound types (arrays, structures, etc.) there is a specia kind of debug data item
(array, struct, etc.) to give details such as array bounds and field types. The type code for
compound typesis negative, the negation of the (byte) offset of the debug item from the
start of the debugging area.

If atype has been given anamein asource program, it will give riseto atype debugging
data item which contains the name and atype word as defined above. If necessary, there
will also be adebugging dataitem, such asan array or struct item, to define the type
itself. In that case, the type word will refer to thisitem.

Set typesin Pascal are not treated in detail: the only information recorded for themisthe
total size occupied by the object in bytes. Neither are Pascal file variables supported by
the debugger, since their behaviour under debugger control is unlikely to be helpful to
the user.

235

Representation of Source File Positions

FORTRAN character types are supported by special kinds of debugging dataitem, the
format of which is specific to each FORTRAN compiler.

Representation of Source File Positions

Several of the debugging dataitems have a sour cepos field to identify a position in the
source file. Thisfield contains aline number and character position within the line
packed into a single word. The most significant 10 bits encode the character offset
(O-based) from the start of the line and the least-significant 22 bits give the line number.

Debugging Data Items in Detail

The Code and Length Field

Thefirst word of each debugging dataitem contains the byte length of theitem (encoded
in the most significant 16 bits), and a code identifying the kind of item (in the least
significant 16 bits). The defined codes are:

1 section

2 procedure/function definition
3 endproc

4 variable

5 type

6 struct

7 array

8 subrange

9 set

10 fileinfo

11 contiguous enumeration

12 discontiguous enumeration
13 procedure/function declaration
14 begin naming scope

15 end naming scope

The meaning of the second and subsequent words of each item is defined below.

If adebugger encounters a code it does not recognise, it should use the length field to
skip theitem entirely. This discipline allows the debugging tablesto be extended without
invalidating existing debuggers.

236

Code file formats

Text Names in Items

Whereitemsinclude a string field, the string is packed into successive bytes beginning
with alength byte, and padded at the end to aword boundary with 0 bytes. The length of
astring isin the range [0..255] bytes.

Offsets in File and Addresses in Memory

Where an item contains afield giving an offset in the debugging data area (usually to
address another item), this means a byte offset from the start of the debugging data for
the whole section (in other words, from the start of the section item).

When the same structure is used to map debugging datain memory, an offset field may
be used to hold a pointer to another debug item in memory, rather than the offset of itin
the debug area.

Section Items

A section item isthe first item of each section of the debugging data. After its code and
length word it contains the fields listed below. First there are 4 flag bytes:

lang abyte identifying the source language

flags a byte describing the level of detail

unused

asdversion a byte version number of the debugging data

The following language byte codes are defined:

LANG_NONE 0 Low-level debugging data only

LANG C 1 C source level debugging data
LANG_PASCAL 2 Pascal source level debugging data
LANG_FORTRA 3 FORTRAN-77 source level debugging data
N

LANG_ASM 4 ARM Assembler line number data

All other codes are reserved to ARM.

The flags byte uses the following mask values:

1 debugging data contains line-number information
2 debugging data contains information about top-level variables
3 both of the above

The asdversion byte should be set to 3, the version of this definition.

237

Debugging Data Items in Detail

The flag bytes are followed by the following word-sized fields:

codestart
datastart

codesize
datasize

fileinfo

debugsize
name or nsyms

address of first instruction in this section
address of start of static datafor this section
byte size of executable code in this section
byte size of the static datain this section

offset in the debugging area of the fileinfo item for this
section (0 if no fileinfo item present)

total byte length of debug data for this section

string or integer

(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

codestart and datastart are addresses, relocated by the linker. The fileinfo field,
nominally an offset, is also used as a pointer when this structure is mapped in memory.
Thefileinfo field is O if no sourcefile information is present.

The name field contains the program name for Pascal and FORTRAN programs. For C
programsit contains a name derived by the compiler from the root file name (notionally
amodule name). In each case, the name is similar to a variable name in the source
language. For alow-level debugging section (language = 0), thefield istreated asa 4
byte integer giving the number of symbols following.

For linker-generated low-level debugging data, the fields have the following values:

language
codestart
datastart
codesize
datasize
fileinfo
nsyms
debugsize

0

Image$$RO$SBase

Image$$RW$$Base

ImageSROSLIMIt - Image$SRO$$Base
Image$$SRWSSLImIt - Image$$SRWS$Base

0

number of symbols in the following debugging data

total size of the low-level debugging data including the size
of this section item

For linker-generated low-level debugging data, the section item is followed by
nsyms symnbol items, each consisting of 2 words:

sym
value

238

flags + byte offset in string table of symbol name
the value of the symbol

Code file formats

sy mencodes an index into the string table in the 24 |east significant bits, and the
following flag values in the 8 most significant bits:
ASD_GLOBSYM 0 if the symbol is absolute
ASD_ABSSYM 0x01000000L if the symbol is global
ASD_TEXTSYM 0x02000000L if the symbol names code
ASD_DATASYM 0x04000000L if the symbol names data
ASD_ZINITSYM 0x06000000L if the symbol names O-initialised data

Note that the linker reduces all symbol values to absolute values, so that the flag values
record the history, or origin, of the symbol in the image.

Immediately following the symbol table is the string table, in standard AOF format. It
consists of:

I alength word
I thestrings themselves, each terminated by a NUL (0).
The length word includes the size of the length word, so no offset into the string table is

less than 4. The end of the string table is padded with NUL s to the next word boundary
(so thelength isamultiple of 4).

Procedure Items

A procedure item appears once for each procedure or function definition in the source
program. Any definitions within the procedure have their related debugging data items
between the procedure item and its matching endproc item. After its code and length
field, a procedure item contains the following word-sized fields:

type thereturn typeif thisisafunction, else 0
(see Representation of Data Types on page 235)
args the number of arguments
sourcepos the source position of the procedure’s start
(see Representation of Data Types on page 235)
startaddr address of 1st instruction of procedure prologue
entry address of 1st instruction of the procedure body
(see note below)
endproc offset of the related endproc item (in file) or pointer to related

endproc item (in memory)

239

Debugging Data Items in Detail

type the return type if this is a function, else 0
(seeRepresentation of Data Types on page 235)

fileentry offset of the file list entry for the source file (in file) or a
pointer to it (in memory)

name string

(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

The entry field addresses the first instruction following the procedure prologue. That is,
the first address at which a high-level breakpoint could sensibly be set. The startaddr
field addresses the start of the prologue. That is, the instruction at which control arrives
when the procedureis called.

Label Items

A label in asource program is represented by a special procedure item with no matching
endproc, (the endproc field is O to denote this). Pascal and FORTRAN numerical |abels
are converted by their respective compilersinto strings prefixed by $n.

For FORTRANT77, multiple entry points to the same procedure each giveriseto a
separate procedure item, all of which have the same endproc offset referring to the
unique, matching endproc item.

Endproc Items

An endproc item marks the end of the debugging data items belonging to a particular
procedure. It also contains information relating to the procedure’s return. After its code
and length field, an endproc item contains the following word-sized fields:

sourcepos position in the source file of the procedure's end
(seeRepresentation of Source File Positions on page 236)

endpoint address of the code bgtter the compiled code for the
procedure

fileentry offset of the file-list entry for the procedure's end (in file) or a
pointer to it (in memory)

nreturns number of procedure return points (may be 0)

retaddrs array of addresses of procedure return code

If the procedure body isan infinite loop, there will be no return point, so nreturnswill be

0. Otherwise each member of retaddrs should point to a suitable location at which a
breakpoint may be set ‘at the exit of the procedure’. When execution reaches this point,
the current stack frame should still be for this procedure.

240

Code file formats

Variable Iltems

A variable item contains debugging data relating to a source program variable, or a
formal argument to a procedure (the first variable items in a procedure always describe
its arguments). After its code and length field, a variable item contains the following
word-sized fields:

type type of thisvariable

(see Representation of Data Types on page 235)
sourcepos the source position of the variable

(see Representation of Source File Positions on page 236)
storageclass aword encoding the variabl€e's storage class
location see explanation below
name string

(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

The following codes define the storage classes of variables:

1 external variables (or FORTRAN common)
static variables private to one section
automatic variables

register variables

Pascal 'var' arguments

FORTRAN arguments

FORTRAN character arguments

N o 0o~ 0N

The meaning of the location field of avariableitem depends on the storage class; it
contains:

I an absolute address for static and external variables (relocated by the linker)

I astack offset (an offset from the frame pointer) for automatic and var-type
arguments

I an offset into the argument list for FORTRAN arguments

I aregister number for register variables, (the 8 floating point registers are numbered
16..23).

No account is taken of variables which ought to be addressed by +ve offsets from the
stack-pointer rather than - ve offsets from the frame-pointer.

241

Debugging Data Items in Detail

242

The sourcepos field is used by the debugger to distinguish between different definitions
having the same name (e.g. identically named variables in disjoint source-level naming
scopes such as nested blocksin C).

Type Items

A typeitem isused to describe a named type in the source language (e.g. atypedef in C).
After its code and length field, a type item contains two word-sized fields:

type atype word (see Representation of Data Types on page 235)

name string
(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

Struct Iltems

A struct item is used to describe a structured data type (e.g. astruct in C or arecord in
Pascal). After its code and length field, a struct item contains the following word-sized
fields:

fields the number of fields in the structure
size total byte size of the structure
fieldtable... an array of fields struct field items

Each struct field item has the following word-sized fields:

offset byte offset of this field within the structure
type a type word (selRepresentation of Data Types on page 235)
name string

(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

Union types are described by struct itemsin which al fields have O offsets.

C bit fields are not treated in full detail: a bit field is simply represented by an integer
starting on the appropriate word boundary (so that the word contains the whole field).

Code file formats

Array Items

An array item is used to describe aone-dimensional array. Multi-dimensional arrays are
described as ‘arrays of arrays’. Which dimension comes first is dependent on the source
language (which is different for C and FORTRAN). After its code and length field, an
array item contains the following word-sized fields:

size total byte size of the array

flags see below

basetype a type word (sBepresentation of Data Types on page 235)
lowerbound constant value or location of variable

upperbound constant value or location of variable

If the size field is zero, debugger operations affecting the whole array, rather than
individual elements of it, are forbidden.

The following mask values are defined for the flags field:

ARRAY_UNDEF_LBOUND 1 lower bound is undefined
ARRAY_CONST_LBOUND 2 lower bound is a constant
ARRAY_UNDEF_UBOUND 4 upper bound is undefined
ARRAY_CONST_UBOUND 8 upper bound is a constant
ARRAY_VAR_LBOUND 16 lower bound is a variable
ARRAY_VAR_UBOUND 32 upper bound is a variable

A bound is described as undefined when no information about it is available.

A bound is described as constant when its value is known at compile time. In this case,
the corresponding bound field gives its value.

If a bound is described as variable, the offset field identifies a variable debug item
describing the location containing the bound. In a debug area in an object file, the offset
field contains the offset from the start of the debug area to the variable item; in memory
it contains a pointer to the corresponding variable item. Note that a variable item may be
used to describe a location known to the compiler, which need not correspond to a
source language variable.

243

Debugging Data Items in Detail

Subrange Items

A subrangeitem is used to describe a subrange typed in Pascal. It also servesto describe
enumerated typesin C, and scalarsin Pascal (in which case the base type is understood
to be an unsigned integer of appropriate size). After its code and length field, asubrange
item contains the following word-sized fields:

sizeandtype see below
Ib low bound of subrange
hb high bound of subrange

The sizeandtype field encodes the byte size of container for the subrange (1, 2 or 4) inits
least significant 16 bits, and a simple type code (see Representation of Data Types on
page 235) inits most significant 16 bits. The type code refers to the base type of the
subrange.

For example, a subrange 256..511 of unsigned short might be held in 1 byte.

Set Items

A set item isused to describe a Pascal set type. Currently, the description isonly partial.
After its code and length field, a set item consists of a single word:

size byte size of the object

Enumeration Items

An enumeration item describes a Pascal or C enumerated type. After its code and length
word, the description of a ‘contiguous enumeration’ contains the following word-sized

fields
type a type word describing the type of the container for the
enumeration (seRepresentation of Data Types on page 235)
count the cardinality of the enumeration
base the first (lowest) value (may bee)
nametable a character array containing ‘count’ names

(seeText Namesin Items on page 237)

(the first byte of name is the name’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

244

Code file formats

The description of a discontiguous enumeration (such as the C enumeration enum bits
{bit0=1, bit1=2, bit2=4, bit3=8, bit4=16}) contains the following fields after its code
and length word:

type as above
count as above
nametable atable of count (value, name) pairs

Each nametable entry has the following format (which is variable in length):

val aword describing the enumerated value (1/2/4/8/16 in the
example)

name the name of the enumerated element (may be several words
long)

(the first byte of name is the name’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

Function Declaration Items

After its code and length word, a function declaration item contains the following fields:

type a type word (seleepresentation of Data Types on page 235)
describing the return type of the function or procedure

argcount the number of arguments to the function

args a sequence of argcount argument description items

Each argument description item contains the following:

type a type word (selRepresentation of Data Types on page 235)
describing the type of the argument
name the name of the argument (may be several words)

(the first byte of name is the name’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

An argument descriptor need not be named; in this case the length of the name is zero,
and the name field is a single zero word.

Begin and End Naming Scope Items

These debug items are used to mark the beginning and end of a naming scope. They
must be properly nested in the debug area.

245

Debugging Data Items in Detail

In each case, after the code and length word, there is one word-sized field:

codeaddress address of the start/end of scope (determined by the code
word)

Fileinfo Items

A fileinfo item appears once per section, after all other debugging dataitems. If the
fileinfo item istoo large for its length to be encoded in 16 bits, its length field must be
written as O (since thisis the last item in a section and the section header contains the
length of the whole section, the length field is strictly redundant.

Each source file is described by a sequence of fragments. Each fragment describes a
contiguous region of the file, within which the addresses of compiled code increase

monotonically with source file position. The order in which fragments appear in the
sequence is not necessarily related to the source file positions to which they refer.

Note that for compilations which make no use of the #include facility, the list of
fragments may have only one entry, and al line-number information can be contiguous.

After its code and length word, thefileinfo item is a sequence of file entry itemswith the
following format:

len length of this entry in bytes (including the length of the
following fragments)

date date and time when the file was last modified may be O,
indicating not available, or unused)

filename string (or """ if the name is not known)

(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

fragment data see below

If present, the date field contains the number of seconds since the beginning of 1970 (the
Unix date origin).

Following the final file entry item, isa single 0 word marking the end of the sequence.

The fragment datais aword giving the number of following fragments followed by a
sequence of fragment items:

n number of fragments following
fragments... n fragment items

246

Code file formats

Each fragment item consists of 5 words, followed by a sequence of byte pairs and half
word pairs, formatted as follows:

size length of this fragment in bytes (including length of
following lineinfo items)

firstline linenumber

lastline linenumber

codestart pointer to the start of the fragment’s executable code

codesize byte size of the code in the fragment

lineinfo... avariable number of bytes matching line numbersto code
addresses

Each lineinfo item describes a source statement and consists of a pair of (unsigned)
bytes, possibly followed by atwo or three (unsigned) half words, (each half word hasthe
byte ordering appropriate to the target memory system’s endian-ness or byte sex).

The short form (pair of bytes) lineinfo item is asfollows:

codeinc # bytes of code generated by this statement
lineinc # source space occupied by this statement

lineinc describes how to calculate the source position (line, column) of the next
statement from the source position of this one:

If lineinc isin therange O < and < 64, the new position is (linetlineinc,1).
If lineinc = 64, the new position is (line, column+lineinc - 64).

The number of bytes of code generated for a statement may be zero, provided the line
increment is non-zero (such an item may describe a block end or block start, for
example).

It is not possible to describe a statement which generates no code and no line number
increment, as that encoding is used as an escape to the long form lineinfo items
described below.

If codeinc is greater than 255, or lineinc is required to describe a line number change
greater than 63 or a column change greater than 191, then both bytes are written to
describe 0 increments, and the real values are given in the following two or three
(unsigned) hdf words. (Note that there are two ways to describe O increments: O lines

247

Debugging Data Items in Detail

248

and 0 columns, which serves to discriminate between the two half word and three half
word forms). If the starting column for the next statement is 1, the two half word formiis
used, which in effect isatriple of half words as follows:

zero 2 zero bytes
lineinc # source lines occupied by this statement
codeinc # bytes of code generated by this statement

Note that the order of the lineinc and codeinc half words is the reverse of the
corresponding bytes.

If the starting column for the next statement is not 1, the three half word form is used,
which in effect is a quadruple of half words, as follows:

codeinc =0, lineinc = 64

lineinc # source lines occupied by this statement
codeinc # bytes of code generated by this statement
newcol starting column for the next statement

Note as above that the order of the lineinc and codeinc half wordsis the reverse of the
corresponding bytes. Note also that the column item hereis the absol ute column number
for the next statement, and not an increment as in the two byte form.

(Thisencoding of lineinfo itemsis an incompatible change from the previous format
(version 2): in that format, lineinc in atwo byte lineinfo item always describes aline
increment, and accordingly, thereis no four half word form. Programs interpreting asd
tables should interpret lineinfo items differently according to the table format in the
section item.)

Appendix F: ARM procedure call standard

his Appendix relates to the implementation of compiler code-generators and

language run-time library kernels for the Advanced RISC Machine (ARM) but is
also a useful reference when interworking assembly language with high level language
code.

The reader should be familiar with the ARM’s instruction set, floating-point instruction
set and assembler syntax before attempting to use this information to implement a
code-generator. In order to write a run-time kernel for a language implementation,
additional information specific to the relevant ARM operating system will be needed
(some information is given in the sections describing the standard register bindings for
this procedure-call standard).

The main topics covered in this Appendix are the procedure call and stack disciplines.
These disciplines are observed by Acorn’s C language implementation for the ARM
and, eventually, will be observed by other high level language compilers too. Because C
is the first-choice implementation language for RISC OS applications, the utility of a
new language implementation for the ARM will be related to its compatibility with
Acorn’s implementation of C.

At the end of this document are several examples of the usage of this standard, together
with suggestions for generating effective code for the ARM.

The purpose of APCS

The ARM Procedure Call Standard (APCS) is a set of rules which regulate and facilitate
calls between separately compiled or assembled program fragments.

The APCS defines:
I constraints on the use of registers
I stack conventions

I the format of a stack-based data structure, used by stack tracing programs to
reconstruct the sequence of outstanding calls (i.e. nested function calls awaiting
completion)

the passing of machine-level arguments, and the return of machine-level results at
externally visible function/procedure calls

249

The purpose of APCS

I support for the ARM shared library mechanism; a standard way for shared
(reentrant) code to address the static data of its clients.

Since the ARM CPU isused in awide variety of systems, the APCSisnot asingle
standard, but a consistent family of standards. See APCS variants on page 259 for
details of the variants in the family. Implementors of run-time systems, operating
systems, embedded control monitors, etc., must choose the variant(s) most appropriate
to their requirements.

Naturally, there can be no binary compatibility between program fragments which
conform to different members of the APCS family. Those concerned with long-term
binary compatibility must choose their options carefully.

Note: ‘function’ is used to mean function, procedure or subroutine.

Design criteria

Throughout its history, the APCS has compromised between fastest, smallest and easiest
to use.

The criteria considered to be important are:

I Function call should be fast and it should be easy for compilers to optimise function
entry sequences.

I The function call sequence should be as compact as possible.
I Extensible stacks and multiple stacks should be accommodated.

I The standard should encourage the production of reentrant code, with writable data
separated from code.

I The standard should be simple enough to be used by assembly language
programmers, and should support simple approaches to link editing, debugging and
run-time error diagnosis.

Overall, compact code and a clear definition have been ranked most highly, with
simplicity and ease of use ahead of performance in matters of fine detail where the
impact on performance is small.

250

ARM procedure call standard

The ARM Procedure Call Standard
This section defines the ARM Procedure Call Standard.

A program fragment which conforms to the APCS while making a call to an external
function (one which is visible between compilation units) is said to be conforming. A
program which conforms to the APCS at all instants of execution is said to be ‘strictly
conforming’ or to ‘conform strictly’.

Note: In general, compiled code is expected to be strictly conforming; hand-written code
merely conforming.

Whether or not (and when) program fragments for a particular ARM-based environment
are required to conform strictly to the APCS is part of the definition of that environment.

In the following sections, clauses following ‘shall’ and ‘shall not’ are obligations which
must be met in order to conform to the APCS.

Register names

The ARM has 15 visible general registers, a program counter register and 8
floating-point registers.

In non-user machine modes, some general registers are shadowed. In all modes, the
availability of the floating-point instruction set depends on the processor model,
hardware and operating system.

251

The ARM Procedure Call Standard

252

General registers
Name Number APCSRole

al 0 argument 1/ integer result / scratch register
a2 1 argument 2 / scratch register

a3 2 argument 3/ scratch register

a4 3 argument 4 / scratch register

vl 4 register variable

v2 5 register variable

v3 6 register variable

v4 7 register variable

v5 8 register variable

sh/v6 9 static base / register variable

siv7 10 stack limit / stack chunk handle/ reg. variable
fp 1 frame pointer

ip 12 scratch register / new-sb in inter-link-unit calls
p 13 lower end of current stack frame

Ir 14 link address / scratch register

pc 15 program counter

The 16 integer registers are divided into 3 sets:

I argument registers which can also be used as scratch registersor as caller-saved
register variables;

I callee-saved registers, conventionally used as register variables;

I registers which have a dedicated role, at least some of the time, in at least one
variant of APCS-3 (see APCSvariants on page 259).

The 5 frame registers fp, ip, sp, Ir and pc have dedicated rolesin al variants of the
APCS.

Theip register has adedicated role only during function call; at other times it may be
used as a scratch register.

Note: Conventionally, ip is used by compiler code generators as the/alocal code
generator temporary register.

There are dedicated roles for sb and sl in some variants of the APCS; in other variants
they may be used as callee-saved registers.

The APCS permits Ir to be used as aregister variable when not in use during afunction
call. It further permits an ARM system specification to forbid such usein some, or all,
non-user ARM processor modes.

ARM procedure call standard

Floating point registers

Each ARM floating-point (FP) register holds one FP value of single, double, extended or
internal precision. A single-precision value occupies 1 machine word; a
double-precision value 2 words; an extended precision value occupies 3 words, as does
aninternal precision value.

Name Number APCSRole

fo 0 FP argument 1/ FP result / FP scratch register
fl 1 FP argument 2 / FP scratch register

f2 2 FP argument 3 / FP scratch register

f3 3 FP argument 4 / FP scratch register

f4 4 floating point register variable

5 5 floating point register variable

f6 6 floating point register variable

f7 7 floating point register variable

The floating-point (FP) registers are divided into two sets, analogous to the subsets
al-a4 and v1-v5/v7 of the general registers:

I registersfO-f3 need not be preserved by called functions; fO is the FP result register
and f0-f3 may hold the first four FP arguments (see Data representation and
argument passing on page 257 and APCS variants on page 259)

registers f4-f7, the so called ‘variable’ registers, preserved by callees.

The Stack

The stack is a singly-linked list of ‘activation records’, linked through a ‘stack backtrace
data structure’ (see below), stored at the high-address end of each activation record.

The stack shall be readable and writable by the executing program.

Each contiguous chunk of the stack shall be allocated to activation records in descending
address order. At all instants of execution, sp shall point to the lowest used address of the
most recently allocated activation record.

There may be multiple stack chunks, and there are no constraints on the ordering of
these chunks in the address space.

Associated with sp is a possibly-implicit stack chunk limit, below which sp shall not be
decremented (se&PCSvariants on page 259).

At all instants of execution, the memory between sp and the stack chunk limit shall
contain nothing of value to the executing program: it may be modified unpredictably by
the execution environment.

253

The ARM Procedure Call Standard

254

The stack chunk limit is said to beimplicit if chunk overflow is detected and handled by
the execution environment. Otherwise it is explicit.

If the stack chunk limit isimplicit, sl may be used asv7, an additional callee-saved
variable register.

If the conditions of the remainder of this subsection hold at all instants of execution, then
the program conforms strictly to the APCS; otherwise, if they hold at and during
externa (inter-compilation-unit-visible) function calls, the program merely conformsto
the APCS.

If the stack chunk limit is explicit, then:

I d shall point at |east 256 bytes above it

I dl shall identify the current stack chunk in a system-defined manner
I atal times, d shall identify the same chunk as sp points into.

Note: g = stack chunk limit + 256 allows the most common limit checks to be made very
cheaply during function entry.

Thisfinal requirement implies that on changing stack chunks, sl and sp must be loaded
simultaneously by means of an:

Lbm ..., {..., sl, sp}.

In general, this means that return from a function executing on an extension chunk, to
one executing on an earlier-allocated chunk, should be via an intermediate function
invocation, specialy fabricated when the stack was extended.

The values of g, fp and sp shall be multiples of 4.

Thestack backtrace data structure

The value in fp shall be zero or shall point to alist of stack backtrace data structures
which partialy describe the sequence of outstanding function calls.

If this constraint holds when external functions are called, the program is conforming; if
it holds at all instants of execution, the program is strictly conforming).

ARM procedure call standard

The stack backtrace data structure has the format shown below:

fp points to here: | save code pointer

[fp]

return link value

[fp, #-4]

return sp value

[fp, #-8]

return fp value

[fp, #-12]

saved v6 value

saved v5 value

saved v4 value

saved v3 value

saved v2 value

saved vl value

Optional saved a4 value

values saved a3 value

saved a2 value

saved al value

saved f7 value

three words

saved f6 value

three words

saved f5 value

three words

saved f4 value

three words

The above picture shows between four and twenty-six words, with those words higher
on the page being at higher addresses in memory. The values shown inside the large
brackets are optional, and their presence need not imply the presence of any other. The
floating point values are stored in an internal format, and occupy three words each.

Function invocations and backtr ace structures

If function invocation A callsfunction B, then A is called a direct ancestor of the
invocation of B. If invocation A[1] callsinvocation A[2] calls... calls B, then each of the

A[i] is an ancestor of B and invocation A[i] is ‘more recent’ than invocation A[j] if i > j.

Thereturn fp value shall be 0, or shall be a pointer to a stack backtrace data structure
created by an ancestor of the function invocation which created the backtrace structure
pointed to by fp. No more recent ancestor shall have created a backtrace structure.

Note: There may be any number of tail-called invocations between invocations which

create backtrace structures.

Thereturn link value, return sp valueandreturn fp value are, respectively, the values

to restore to pc, sp and fp at function exit.

255

The ARM Procedure Call Standard

256

In the 32-hit PC variant of the APCS, the save code pointer shall point twelve bytes
beyond the start of the sequence of instructions that created the stack backtrace data
structure.

In the 26-bit PC variant of the APCS, the save code pointer, when cleared of PSR and
mode hits, shall point twelve bytes beyond the start of the sequence of instructions that
created the stack backtrace data structure.

Control arrival

At the instant when control arrives at the target function:

I pccontains the address of an entry point to the target function
(reentrant functions may have two entry points).

I Ir shall contain the value to restore to pc on exit from the function (the return link
value — se€The stack backtrace data structure on page 254)
Note: In 26-bit variants of the APCS, Ir contains the PC + PSR value to restore to pc
on exit from the function (se®PCSvariants on page 259)

I sp shall point at or above the current stack chunk limit; if the limit is explicit, it shall
point at least 256 bytes above it (e Sack on page 253)

1 fp shall contain 0 or shall point to the most recently created stack backtrace
structure (se@he stack backtrace data structure on page 254)

I the space between sp and the stack chunk limit shall be readable, writable
memory which can be used by the called function as temporary workspace, and
overwritten with any values before the function returns {deetack on page 253)

I arguments shall have been marshalled as described below.

If the target function is reentrant (SHee Sack on page 253) then it has two entry points
and control arrives:

I at the ‘intra-link-unit entry point’ if the caller has been directly linked with the
callee

I at the ‘inter-link-unit entry point’ if the caller has been separately linked with a
‘stub’ of the callee.

Note: Sometimes the two entry points are at the same address; usually they will be
separated by a single instruction.

On arrival at the intra-link-unit entry point, sb shall identify the static data of the link
unit which contains both the caller and the callee.

On arrival at the inter-link-unit entry point, ip shall identify the static data of the link unit
containing the target function, or the target function shall make neither direct nor
indirect use of static data.

ARM procedure call standard

In practice this usually means the callee must be aleaf function making no direct use of
static data

The way in which sb ‘identifies’ the static data of a link unit is not specified by the
APCS.

If the call is by tail continuation, ‘calling function’ means that which would be returned
to, were the tail continuation converted to a return).

If code is not required to be reentrant or sharable then sb may be used as v6, an
additional variable register.

Data representation and argument passing

Argument passing in the APCS is defined in terms of an ordered list of machine-level
values passed from the caller to the callee, and a single word or floating point result
passed back from the callee to the caller. Each value in the argument list shall be:

| aword-sized, integer value
I afloating point value (of size 1, 2 or 3 words).

A callee may corrupt any of its arguments, howsoever passed.

Note: The APCS does not define the layout in store of records, arrays and so forth, used
by ARM-targeted compilers for C, Pascal, Fortran-77, etc.; nor does it prescribe the
order in which language-level arguments are mapped into their machine-level
representations. In other words, the mapping from language-level data types, and
arguments to APCS words is defined by each language implementation, not by the
APCS. Indeed, there is no formal reason why two ARM-targeted implementations of the
same language should not use different mappings and, hence, not support cross-calling.
Obviously, it would be very unhelpful to stand by this formal position so implementors
are encouraged to adopt not just the letter of the APCS but also the natural mappings of
source language objects into argument words. Guidance about this is gbsen in

Language calling conventions on page 261.

At the instant control arrives at the target function, the argument list shall be allocated as
follows:

I In APCS variants which support the passing of floating-point arguments in
floating-point registers (se®PCSvariants on page 259), the first four
floating-point arguments (or fewer if the number of floating-point arguments is less
than four) shall be in machine registéfsf 3.

The first four remaining argument words (or fewer if there are fewer than four
argument words remaining in the argument list) shall be in machine registers
al-a4.

The remainder of the argument list (if any) shall be in memory, at the location
addressed byp and higher-addressed words thereafter.

257

The ARM Procedure Call Standard

258

A floating-point value not passed in afloating-point register istreated as 1, 2 or 3 integer
values, as appropriate to its precision.

Control return

When the return link value for afunction call is placed in the pc:

I sp,fp,sl v7,sb/iv6,v1-v5, andf 4-f 7 shall contain the same values as they
did at the instant of control arrival

I if the function returns a simple value of size one word or less, then that value shall
beinal

Note: alanguage implementation is not obliged to consider all single-word values
simple. See C Language calling conventions on page 261)

I if thefunction returns asimple floating point value then that value shall beinf 0.
Thevaluesofi p, 1 r,a2-a4,f 1-f 3 and any stacked arguments are undefined.
The definition of control return means that this is a ‘callee saves’ standard.

Note: In 32-bit ARM modes, the caller’s PSR flags are not preserved across a function
call. In 26-bit ARM modes, the caller’'s PSR flags are naturally reinstated when the
return link pointer is placed ipc. Note that thé\, Z, CandV flags from Ir at the instant

of entry must be reinstated; it is not sufficient merely to preserve the PSR across the call.
Consider, a functioPr oc A which tail continues t®r ocB as follows:

CMPS al, #0
MOVLT a2, #255
MOVGE a2, #0

B ProcB

If Pr ocB merely preserves the flags it sees on entry, rather than restoring those from
the wrong flags may be set whEnocB returns direct t&r oc As caller. SeeAPCS
variants on page 259).

APCS variants

ARM procedure call standard

There are, currently, 2 x 2 x 2x 2 =16 APCS variants, derived from four independent
choices.

The first choice — 32-bit PC vs 26-bit PC — is fixed by your ARM CPU.

The second choice — implicit vs explicit stack-limit checking — is fixed by a combination
of memory-management hardware and operating system software: if your ARM-based
environment supports implicit stack-limit checking then use it; otherwise use explicit
stack-limit checking.

The third choice — of how to pass floating-point arguments — supports efficient argument
passing in both of the following circumstances:

I the floating point instruction set is emulated by software and floating point
operations are dynamically very rare
the floating point instruction set is supported by hardware or floating point
operations are dynamically common.

In each case, code conforming to one variant is not compatible with code conforming to
the other.

Only the choice between reentrant and non-reentrant variants is a true user level choice.
Further, as the alternatives are compatible, each may be used where appropriate.
32-bit PC vs 26-bit PC

Older ARM CPUs and the 26-bit compatibility mode of newer CPUs use a 24-bit,
word-address program counter, and pack the 4 status NAGs) and 2
interrupt-enable flags (IF) into the top 6 bitsrdf5, and the 2 mode bits), ml) into
the least-significant bits af15. Thusr 15 implements a combined PC + PSR.

Newer ARM CPUs use a 32-bit program counter (in r15) and a separate PSR.

In 26-bit CPU modes, the PC + PSR is written to r14 by an ARM branch with link
instruction, so it is natural for the APCS to require the reinstatement of the caller’s PSR
at function exit (a caller's PSR is preserved across a function call).

In 32-bit CPU modes this reinstatement would be unacceptably expensive in comparison
to the gain from it, so the APCS does not require it and a caller's PSR flags may be
corrupted by a function call.

Implicit vs explicit stack-limit checking

ARM-based systems vary widely in the sophistication of their memory management
hardware. Some can easily support multiple, auto-extending stacks, while others have
no memory management hardware at all.

Safe programming practices demand that stack overflow be detected.

259

APCS variants

260

The APCS defines conventions for software stack-limit checking sufficient to support
efficiently most requirements (including those of multiple threads and chunked stacks).

The majority of ARM-based systems are expected to require software stack-limit
checking.
Floating-point argumentsin floating-point registers

Historically, many ARM-based systems have made no use of the floating point
instruction set, or they used a software emulation of it.

On systems using a slow software emulation and making little use of floating-point,
thereis a small disadvantage to passing floating-point arguments in floating-point
registers: all variadic functions (such as printf) become slower, while only function calls
which actually take floating-point arguments become faster.

If your system has no floating-point hardware and is expected to make little use of
floating point, then it is better not to pass floating-point arguments in floating-point
registers. Otherwise, the opposite choice is best.

Reentrant vs non-reentrant code

The reentrant variant of the APCS supports the generation of code free of relocation
directives (position independent and addressing all data (indirectly) viaa static base
register). Such codeisideal for placement in ROM and can be multiply threaded (shared
between several client processes).

In general, code to be placed in ROM or loaded into a shared library is expected to be
reentrant, while applications are expected not to be.

See also C Language calling conventions on page 261.

APCS-2 compatibility

APCS-2 — the second definition of The ARM Procedure Call Standard — is described in
theRISC OS 3 Programmer’s Reference Manual

APCS-R (APCS-2 for Acorn’s RISC OS) is the following variant of APCS-3:
I 26-bit PC

I explicit stack-limit checking

I no passing of floating-point arguments in floating-point registers

I non-reentrant code

with the Acorn-specific constraints on the usslofnoted in APCS-2.

APCS-U (APCS-2 for Acorn’s RISCiX) is the following variant of APCS-3:
I 26-bit PC

ARM procedure call standard

I implicit stack-limit checking (with sl reserved to Acorn)
I no passing of floating-point arguments in floating-point registers
I non-reentrant code.

The (in APCS-2) obsolescent APCS-A has no equivalent in APCS-3.

C Language calling conventions

Argument representation

A floating point value occupies 1, 2, or 3words, as appropriate to itstype. Floating point
values are encoded in |EEE 754 format, with the most significant word of adouble
having the lowest address.

The C compiler widens arguments of type float to type double to support inter-working
between ANSI C and classic C.

Char, short, pointer and other integral values occupy 1 word in an argument list. Char
and short values are widened by the C compiler during argument marshalling.

Onthe ARM, characters are naturally unsigned. In -pcc mode, the C compiler treats a
plain char as signed, widening its value appropriately when used as an argument,
(classic C lacks the signed char type, so plain chars are considered signed; ANSI C has
signed, unsigned and plain chars, the third, conventionally reflecting the natural
signedness of characters).

A structured value occupies an integral number of integer words (eveniif it containsonly
floating point values).

Argument list marshalling
Argument values are marshalled in the order written in the source program.

If passing floating-point (FP) argumentsin FP registers, the first 4 FP arguments are
loaded into FP registers.

Thefirst 4 of the remaining argument words are loaded into al-a4, and the remainder are
pushed on to the stack in reverse order (so that arguments later in the argument list have
higher addresses than those earlier in the argument list). As a consequence, a FP value

can be passed in integer registers, or even split between an integer register and the stack.

This follows from the need to support variadic functions, (functions having a variable
number of arguments, such as printf, scanf, etc.). Alternatives which avoid the passing
of FP valuesin integer registers require that a caller know that avariadic function is
being called, and use different argument marshalling conventions for variadic and
non-variadic functions.

261

C Language calling conventions

262

Non-simple valuereturn

A non-simple type is any non-floating-point type of size greater than 1 word (including
structures containing only floating-point fields), and certain 1 word structured types.

A structureis called integer-like if its size is less than or equal to one word, and the
offset of each of its addressable sub-fieldsis zero. An integer-like structured result is
considered smpleandisreturnedin al.

struct {int a:8, b:8, ¢:8, d:8;} and
union {int i; char *p;} arebothinteger-like;

struct {char a; char b; char c; char d;} isnot.

A multi-word or non-integer-like result is returned to an address passed as an additional
first argument to the function call. At the machine level:

TT tt = f(x, ...);
isimplemented as:
TT tt; f(&tt, x, ...);

Function entry

A complete discussion of function entry is complex; afew of the most important issues
and special cases are discussed here.

The important issues for function entry are:

I establishing the static base (if the function is to be reentrant)

I creating the stack backtrace data structure (if needed)

I saving thefloating point variable registers (if required)

I checking for stack overflow (if the stack chunk limit is explicit).
A function is called leaf if its body contains no function calls.

If function F calls function G immediately before an exit from F, the call- exit sequence
can often be replaced instead by areturn to G. After thistransformation, thereturnto G
iscalled atail call or tail continuation.

There are many subtle difficulties with tail continuations. Suppose stacked arguments

are unstacked by callers (almost mandatory for variadic callees), then G cannot be

directly tail-called if G itself takes stacked arguments. Thisis because thereis no return

to F to unstack them. Of course, if thiscall to G takes fewer arguments than the current

call to F, then some of F’s stacked arguments can be replaced by G’s stacked arguments.
However, this can be hard to assert if F is variadic. More straightforwardly, there may be
no tail-call of G if the address of any of F's arguments or local variables has ‘leaked out’

ARM procedure call standard

of F. Thisisbecause on return to G, the address may be invalidated by adjustment of the
stack pointer. In general, this precludestail callsif any local variable or argument hasits
address taken.

If afunctionisaleaf function, or al function calls fromits body aretail calls and, in
both cases, the function uses no v-registers (v 1- v7) then the function need create no
stack backtrace structure (such functions will also be termed ‘frameless’).

A leaf function which makes no use of static data need not establish a static base.

Function entry - establishing the static base

The ARM shared library mechanism supports both the direct linking together of
functions into dink unit, and the indirect linking of functions with the stubs of other

link units. Thus a reentrant function can be entered directly via a call from the same link
unit (an intra-link-unit call), or indirectly via a function pointer or direct call from
another link unit (an inter-link-unit call).

The general scheme for establishing the static base in reentrant code is:

intra MV ip, sb ; intralink unit (LU calls target here
inter ; inter-LU calls target here, having | oaded
; ipvia an inter-LU or fn-pointer veneer.

<create backtrace structure, saving sb>
MOV sb, ip ; establish sb for this LU

<rest of entry>
Code which is not required to be reentrant need not use a static base. Code which is
reentrant is marked as such, which allows the linker to create the inter-LU veneers

needed between independent reentrant link units, and between reentrant and
non-reentrant code.

Function entry - creating the stack backtrace structure

For non-reentrant, non-variadic functions the stack backtrace structure can be created in
just 3 instructions, as follows:

MoV ip, sp ; save current sp, ready to save as old sp
STMD sp!, {al-a4, v1-v5, sb, fp, ip, Ir, pc} ; as needed
SUB fp, ip, #4

Each argument register al-a4 need only be saved if a memory location is needed for the
corresponding parameter (because it has been spilled by the register allocator or because
its address has been taken).

Each of the registers v1-v7 need only be saved if it used by the called function. The
minimum set of registers to be saved is {fp, old-sp, Ir, pc}.

A reentrant function must avoid using ip in its entry sequence:

263

C Language calling conventions

264

STMFD sp!, {sp, Ir, pc}
STMD sp!, {al-a4, vl1-v5, sb, fp} ; as needed
ADD fp, sp, #8+4*|{al-a4, vi1-v5, sb, fp}| ; as used above

sb (aka v6) must be saved by areentrant function if it calls any function from another
link unit (which would alter the value in sb). This means that, in general, sb must be
saved on entry to al non-leaf, reentrant functions.

For variadic functions the entry sequence is more complicated again. Usually, it will be
desired or required to make a contiguous argument list on the stack. For non-reentrant
variadic functions this can be done by:

MoV ip, sp ; save current sp, ready to save as old sp
STMFD sp!, {al-a4} ; push argunments on stack

SFMFD 0, 4, [sp] ; push FP argunents on stack...

STMD sp!, {vi1-v6, fp, ip, Ir, pc} ; as needed

SUB fp, ip, #20 ; if all of al-a4 pushed...

It is not necessary to push arguments corresponding to fixed parameters (though saving
al-a4 islittle more expensive than just saving, say, a3-a4).

If floating point arguments are not being passed in floating point registers then thereis
no need for the SFMFD. SFM is not supported by the issue-1 floating-point instruction
set and must be simulated by 4 STFEs. See Function entry - saving and restoring
floating point registers below.

For reentrant variadic functions, the requirements are yet more complicated and the
sequence becomes less elegant.

Function entry - saving and restoring floating point registers

The issue-2 floating-point instruction set defines two new instructions, Store Floating

Multiple (SFM) and L oad Floating M ultiple (LFM), for saving and restoring the

floating-point registers, as follows:

I SFM and LFM are exact inverses,

I aSFM will never trap, whatever the |EEE trap mode and the value transferred
(unlike a STFE which can trap on storing asignalling NaN);

I SFM and LFM transfer 3-word internal representations of floating point values
which vary from implementation to implementation, and which, in general, are
unrelated to any of the supported | EEE representations;

I any 1-4, cyclically contiguous floating-point registers can be transferred by
SFM/LFM (e.g. {f4-f7}, {f6, {7, fO}, {f7, fO}, {f1}).
On function entry, atypical use of SFM might be as follows:

SFMFD f4, 4, [sp]! ; save f4-f7 on a Full Descending stack,
adj usting sp as val ues are pushed.

ARM procedure call standard

On function exit, the corresponding sequence might be as follows:

LFMEA f4, 4, [fp, #N ; restore f4-f7; fp-N points just
above the floating point save area.

On function exit, sp-relative addressing may be unavailable if the stack has been
discontiguously extended.

Inissue-1 instruction set compatibility modes, SFM and LFM have to be simulated
using segquences of STFEs and LDFEs.

Function entry - checking for stack limit violations

In some environments, stack overflow detection will be implicit: an off stack reference
will cause an address error or memory fault which may, in turn, cause stack extension or
program termination.

In other environments, the validity of the stack must be checked on function entry and,
perhaps at other times. There are three cases:

I thefunction uses 256 bytes or less of stack space

I thefunction uses more than 256 bytes of stack space, but the amount is known
and bounded at compile time

I thefunction uses an amount of stack space unknown until run time.

The third case does not arise in C, save with stack-based implementations of the
non-standard, BSD-Unix aloca() function. The APCS does not support aloca() in a
straightforward manner.

In Modula-2, Pascal and other languages there may be arrays created on block entry or

passed as open array arguments, the size of which is unknown until run time. These

are located in the callee’s stack frame, so impact stack limit checking. In practice, this
adds little complication, as discussediack limit checking - vari-sized frames on

page 266.

The check for stack limit violation is made at the end of the function entry sequence, by
which time ip is available as a work register. If the check fails, a standard run-time
support function (*__rt_stkovf split_ small’ or*__rt_stkovf split_big’) is called. Each
environment which supports explicit stack limit checking must provide these functions,
which can do one of the following:

I terminate execution
I extend the existing stack chunk, decrementing sl

I allocate a new stack chunk, resetting sp and sl to point into it, and guaranteeing
that an immediate repeat of the limit check will succeed.

265

C Language calling conventions

266

Sack limit checking - small, fixed frames

For frames of 256 bytes or less the limit check is as follows:

<create stack backtrace structure>

CWS sp, sl
BLLT | __rt_stkovf_split_small]|
SUB sp, sp, #<size of local s> ; <= 256, by hypot hesis

This adds 2 instructions and, in general, only 2 cyclesto function entry.

Afteracall to__rt_stkovf_split_small, fp and sp do not, necessarily, point into the same
stack chunk. Arguments passed on the stack must be addressed by offsetsfrom fp, not by
offsets from sp.

Sack limit checking - large, fixed frames

For frames bigger than 256 bytes, the limit check proceeds as follows:

SUB ip, sp, #FraneSi zeBound ; can be done in 1 instr
CWwS ip, sl

BLLT | __rt_stkovf_split_big|

SUB sp, sp, #lnitFraneSize ; may take nore than 1 instr

FrameSizeBound can be any convenient constant at |east as big as the largest frame the
function will use. Note that functions containing nested blocks may use different
amounts of stack at different instants during their execution.

InitFrameSizeisthe initial stack frame size: subsequent adjustments within the called
function require no limit check.

Afteracall to__rt_stkovf_split_big, fp and sp do not, necessarily, point into the same
stack chunk. Arguments passed on the stack must be addressed by offsetsfrom fp, not by
offsets from sp.

Stack limit checking - vari-sized frames

(For Pascal-like languages).

The handling of frames the size of which isunknown at compiletime, isidentical to the
handling of large frames, save that:

I the computation of the proposed new stack pointer is more complicated,
involving arguments to the function itself

I the addressing of the vari-sized objectsis more complicated than the addressing
of fixed size objects need be

I thevari-sized objects have to beinitialised by the called function.

ARM procedure call standard

The general scheme for stack layout in this caseis asfollows:

Stack-based arguments

Stack backtrace data structure fp points here
... reg save area...

Area for vari-sized objects,
passed by value or created on
block entry

Fixed size remainder of frame sp points here

Objects notionally passed by value are actually passed by reference and copied by the
calee.

The callee addresses the copied objects via pointers located in the fixed size part of the
stack frame, immediately above sp. These can be addressed relative to sp. The original
arguments are all addressable relative to fp.

Afteracal to__rt stkovf split_big, fp and sp do not, necessarily, point into the same
stack chunk. Arguments passed on the stack must be addressed by offsetsfrom fp, not by
offsets from sp.

If a nested block extends the stack by an amount which can’t be known until run time
then the block entry must include a stack limit check.

Function exit

A great deal of design effort has been devoted to ensuring that function exit can usually
be implemented in a single instruction (this is not the case if floating-point registers have
to be restored). Typically, there are at least as many function exits as entries, so it is
always advantageous to move an instruction from an exit sequence to an entry sequence,
(Fortran may violate this rule by virtue of multiple entries, but on average the rule still
holds true). If exit is a single instruction then, in multi-exit functions, further instructions
can be saved by replacing branches to a single exit by the exit instructions themselves.

Exit from functions which use no stack and save no floating point registers is
particularly simple:

MoV pc, Ir

267

Some examples

Some examples

268

(26-bit compatibility demands MOVS pc, Ir to reinstate the caller’'s PSR flags, but this
must not be used in 32-bit modes).

Exit from other functions which save no floating-point registers is by:
LDMEA fp, {vl-v5, sh, fp, sp, pc} ; as saved

Here, it is crucial that fp points just below tsa¥e code pointer, as this value is not
restored, (LDMEA is a pre-decrement multiple load).(26-bit compatibility demands
LDMEA fp, {regs}", to reinstate the caller's PSR flags, but this must not be used in
32-bit modes).

The saving and restoring of floating-point registers is discussed above.

This section is not intended to be a general guide to the writing of code generators, but it
seems worthwhile to highlight some of the optimisations that appear particularly
relevant to the ARM and to this standard.

In order to make effective use of the APCS, compilers must compile code a procedure at
atime. Line at a time compilation is insufficient.

In the case of leaf functions, much of the standard entry sequence can be omitted. In very
small functions, such as those that frequently occur implementing data abstractions, the
function-call overhead can be tiny.

Consider:

typedef struct {...; int a; ...} foo;
int foo_get_a(foo* f) {return(f-a);}

The function foo_get_a can compile to just:

LDR al, [al, #aOffset]
MOV pc, Ir ; MOVS in 26-bit nodes

In functions with a conditional as the top level statement, in which one or other arm of
the conditional is leaf (calls no functions), the formation of a stack frame can be delayed.

ARM procedure call standard

For example, the C function:

int get(Stream *s)

{
if (s->cnt > 0)
{ --s;
return *(s-p++);
}
el se
{
}
}

... could be compiled (non-reentrantly) into:

get MOV a3, al
if (s->cnt > 0)
LDR a2, [a3, #cntOfset]
CVPS a2, #0
; try the fast case,franel ess and heavily conditionalized
SUBGT a2, a2, #1
STRGT a2, [a3, #cntOffset]
LDRGT a2, [a3, #pOfset]
LDRBGT al, [a2], #1
STRGT a2, [a3, #pOfset]
MOVGT pc, Ir
; else, forma stack frane and handl e the rest as normal code
MoV ip, sp
STMDB sp!, {vl1-v3, fp, ip, Ir, pc}
CWP sp, sl
BLLT | __rt_stkovf_split_small|

LDVEA fp, {v1-v3, fp, sp, pc}

Thisisonly worthwhile if the test can be compiled using any spare of al-a4 and ip, as
scratch registers. This technique can significantly accelerate certain speed-critical
functions, such as read and write character.

Finally, it is often worth applying the tail call optimisation, especialy to procedures
which need to save no registers.

For example;
extern void *mal |l oc(size_t n)
{
return primtive_all oc(NOTGCABLEBI T, BYTESTOAORDS(n));
}

269

The APCS in non-user ARM modes

... iscompiled (non-reentrantly) by the C compiler into:

mal | oc
ADD al, al, #3 ;1S
MoV a2, al, LSR #2 ; 1S - BYTESTOWMORDS(n)
MoV al, #1073741824 ;1S - NOTGCABLEBI T
B primtive_alloc ;. IN+2S = 4S

In this case, the optimisation avoids saving and restoring the call-frame registers and
saves 5 instructions (and many cycles-17 S cycles on an uncached ARM with N=2S).

The APCS in non-user ARM modes

270

There are some consequences of the ARM'’s architecture which, while not explicit in the
ARM Procedure Call Standard, need to be understood by implementors of code intended
to run in the ARM’s SVC and IRQ modes.

An IRQ corrupts r14_irg, so IRQ-mode code must run with IRQs off until r14_irq has
been saved.

A general solution to this problem is to enter and exit IRQ handlers written in high-level
languages via hand-crafted wrappers, which on entry save r14_irq, change mode to
SVC, and enable IRQs; and on exit restore the saved r14_irq, IRQ mode and the
IRQ-enable state. Thus the handlers themselves run in SVC mode, avoiding the problem
in compiled code.

SWIs corrupt rl4_svc, so care has to be taken when calling SWis in SVC mode.

In high-level languages, SWIs are usually called out of line, so it suffices to save and
restore r14 in the calling veneer around the SWI. If a compiler can generate in-line
SWiIs, then it should, of course, also generate code to save and restore r14 in-line around
the SWI, unless it is known that the code will not be executed in SVC mode.

Abortsand preeARM 6-based ARM s

With pre-ARM6-based ARMs (ARM2, ARM3), aborts corrupt r14_svc. This means that
care has to be taken when causing aborts in SVC mode.

An abort in SVC mode may be symptomatic of a fatal error, or it may be caused by page
faulting in SVC mode. Page faulting can occur because an instruction needs to be
fetched from a missing page (causing a prefetch abort), or because of an attempted data
access to a missing page. The latter may occur even if the SVC-mode code is not itself
paged, (consider an unpaged kernel accessing a paged user-space).

A data abort is recoverable provided r14 contains nothing of value at the instant of the
abort. This can be ensured by:

I saving R14 on entry to every function and restoring it on exit;

ARM procedure call standard

I not using R14 as atemporary register in any function;
I avoiding page faults (stack faults) in function entry sequences.

A prefetch abort is harder to recover from, and an aborting BL instruction cannot be
recovered, so special action hasto be taken to protect page faulting function calls.

In code compiled from C, r14 issaved in the 2nd or 3rd instruction of an entry sequence.
Aligning all functions at addresses which are 0 or 4 modulo 16, ensures the critical part
of the entry sequence cannot prefetch-abort. A compiler can do this by padding code
sections to amultiple of 16 bytes, and being careful about the alignment of functions
within code sections.

Data-aborts early in function entry sequences can be avoided by using a software
stack-limit check.

A possibleway to protect BL instructions from prefetch-aborts, isto precede each BL by
a

MoV ip, pc

instruction. If the BL faults, the prefetch abort handler can safely overwrite r14 with ip
before resuming execution at the target of the BL. If the prefetch abort is not caused by
aBL then thisaction is harmless, as r14 has been corrupted anyway, (and, by design,
contained nothing of value at any instant a prefetch abort could occur).

271

272

Index

Symbols

*DebuglAF 23

*filer_opendir 95

*FrontEnd_SetUp 158, 171

*FrontEnd_Start 158, 160, 167
invoking using command_is 163

*|conSprites 159

*Prefix 193

*RMEnsure 160

*RMTidy 146

*Spool 95

*wimpSlot 95

A

a.out format 205
Acorn C/C++
directory structure 10
Acorn Library Format see ALF
Acorn Make Utility see AMU
AlIF 137,201, 224
debugging 225
executable 224
layout of animage 226
layout of an uncompressed image 226
layout of the header 228
non-executable 224
relocation 225
self-move 230
self-relocation 225, 230
zero-initialisation 230
ALF 201, 220
alignment 202
Chunkindex 221
Data 221

Datal ength 221
EntryLength 221
LIB_DATA 222
LIB_DIRY 220
LIB_TIME 222
LIB_VSRN 222
library file chunks 220
object code libraries 223
OFL_SYMT 223
OFL_TIME 223
Time stamps 222

AMU 109-112

Application menu 111

command line 112

controlling operation 110

SetUp dialogue box 110

SetUp menu 110

specifying makefile to be used 110
specifying targets 110

amu command linetool 109
AOF 201

alignment 202
area attributes 211
areaname 207
areasize 207
AREAs 142
attributes 147
packing 144
attributes and alignment 207
chunk file format 203
entry address areal entry address offset 206
files 129
format of area headers 207
format of the areas chunk 212
format of the symbol table chunk 215
header chunk format 205
identification chunk (OBJ_IDFN) 219

273

Index

number of areas 206
number of relocations 207
relocation directives 212

string table chunk (OBJ_STRT) 218

symbol attributes 216
symbol table 206

APCS 141, 249-271
APCS-2 compatibility 260
argument passing 257

C language calling conventions 261
argument list marshalling 261

argument representation 261
non-simple value return 262
datarepresentation 257
design criteria 250
examples 268
function entry 262
non-user ARM modes 270
purpose 249
registers 251
floating point 253
general 252
stack 253
stack backtrace 254
variants of APCS 259
application description
arrow icons 167
DBOX section 166
FILEOUTPUT section 165
icon default values 167
icon types 166
METAOPTIONS section 164
toggling dialogue box size 167
TOOLDETAILS section 163
applications
adding new ones 157
porting to RISC OS 157
Arm Object Format see AOF

ARM Procedure Call Standard see APCS

arrow icons 167

ASD 233-248
compilation units (sections) 233
dataencoding 234

274

dataitems 236
Array item 243
code and length field 236
Endproc item 240
Enumeration item 244
Fileinfo item 246
Function Declaration item 245
Label item 240
offsets 237
Procedureitem 239
Scopeitems 245
Section item 237
Setitem 244
Struct item 242
Subrange item 244
text names 237
Typeitem 242
Variableitem 241

datatypes 235

debug data areas (items) 233

endian memory systems 234

order of 233

Source file position 236

sourcepos field 236

Auto Run option
enabling 164
Auto Save option
enabling 164

B

IBoot file, for new WIMP application 159
breakpoints
setting 27
on addresses and low-level expressions 32
on procedure names 27
byte
definition 201
sex 201

C

C module header generator (CMHG) 146
chunk file

chunkld 204

format 203

header entries 204

layout 203

offset 204
command line interface 104

DecAOF 115

Diff 120

Find 127

LibFile 133

Link 148

ObjSize 152

Squeeze 154
command lines

passing long command lines see DDEULils

module

compiler

adding anew one 157
compiling a program

with debugging information 21
Context window 24
controlling DDT execution 33

D

DBOX 166
DDEUtils module 157, 170, 193
IDDT 23
DDT 19-56
accessing nested variables 30
breakpoints

on addresses and low-level expressions 32

on procedure names 27
Context window 24
enabling debugging 21
error messages 24
example session 49
execution control 33

Index

limitations 19
linking a program 22
main menu 26
menu options

*Commands 47

Breakpoint 36

Cdl 35

Change 44

Continue 33

Debug 23

Display 40

Find 47

Help 48

Log 46

Options 45

Quit 48

Single step 34

Trace 39

Watchpoint 37
menu shortcuts

Breakpoint 37

Continue 33, 48

Display 40

Single step 35

Watchpoint 38
preparing a program 21
program examination and modification 40
specifying program objects 26
starting a debugging session 23
Status window 24
watchpoints

on variable names 28

debugging

source-level 22

debugging see also DDT (desktop debugging tool)
DecAOF

Application menu 114
command line interface 115
menu options

Command line 114
Output window 115
SetUp

dialogue box 113

275

Index

menu 114
SetUp options
Areacontents 113
Areadeclarations 114
Debug 113
Files 113
Only area declarations 113
Relocation directives 114
String table 113
Symbol table 113
demonstration program 9
desktop utility
adding anew one 157
Diff
Application menu 118
command lineinterface 120
menu options
Command line 118
Dir. structure 118
Equate CR/LF 118
Expand tabs 118
Fast 118
Largefiles 118
Squidge 118
Output window 119
SetUp
dialogue box 117
menu 118
SetUp options
Caseinsensitive 117
Expand tabs 117
Remove spaces 117
Squash spaces 117

directory structure of Acorn C/C++ 10

E

EBNF rule, for application 163
Entry points see Link menu options
environment variables 11

C$Path 11

DDE$Path 11

276

Run$Path 11
error messages

DDT 24
error throwback 195
Errors

linking a program 140
extracting files

LibFile 131

F

file formats
AlF 224-232
ALF 220-223
AOF 203-219
SrcEdit 199
undefined fields 202
file type
Text 73
filename prefixing see DDEULils module
FILEOUTPUT 165
Find
Application menu 126
command lineinterface 127
menu options
Allow 125
Command line 125
Grep style 125
Output window 126
SetUp
dialogue box 121
menu 125
SetUp options
Caseinsensitive 122
Filenamesonly 122
Files 121
Line count only 122
Patterns 121
Throwback 122
Verbose 122
Wildcards 122
SetUp wildcard filenames

OorMore 125
OorMore filename chs. 124
Filename ch. 124
Or 125
Sub-directories 124
SetUp wildcard patterns
O or more 124
1 or more 124
Alphanum 123
Any 123
Ctrl 123
Digit 123
Newline 123
Normal 123
Not 123
Set 123
finding
textinafile 77
fonts see SrcEdit (fonts)
format of AOF area headers 207
FrontEnd
producing new RISC OS applications 158
FrontEnd module 157, 158-170
operation when command linetool isrun 158

H

half word 201
hardware reguirement for Acorn C/C++ 7

icon types 166

IMPORT directive 146

installing Acorn C/C++
configuration options 8, 9
demonstration program 9
hardware requirement 7

invoking a WIMP frontend for atool 158

Index

K

KEEP directive 22

L

language processors — output format 201
LIB_DATA 222
LIB_DIRY 220
LIB_TIME 222
LIB_VSRN 222
LibFile 129-134
command line interface 133
extracting files 131
limitations when creating libraries 132
menu options
Command line 130
List symbol table 130
Null timestamps 132
Via file 130
Output window 131
SetUp
dialogue box 129
menu 130
SetUp options
Create 129
Delete 129
Extract 129
File list 129
Insert 129
Library 129
List library 129
Obiject library 130
libraries
linking 141
symbol references 141
library archives
AOF files 129
Link 137-149
AlF 137
command line interface 138, 148
errors 140

277

Index

IMPORT directive 146
inter-area references 144
libraries 141
linking with the overlay manager 144
loading 137
menu options
Base 139
Command line 138
Debug 138
Entry 139
Link map 138, 140, 144
No case 139
Overlay 139, 143
Relocatable AIF 139
Verbose 140
Viafile 139
Workspace 138, 139, 146
X-Ref 138, 144
Output window 139
overlaying programs 141
predefined symbols 147
relocatable AIF images 145
relocatable module format (RMF) 137
relocatable modules 146
SetUp
dialogue box 137
menu 138
SetUp options
AlF 137
Binary 138
Files 137
Module 137
Relocatable AIF 138
specifying files to be linked 137
utility programs 146
linking
preparing to debug a program 22, 138
little endian 201

M

Make 15,109, 171

278

command execution 175
command line tools 68
invoking 57
Makefiles
conventional Makefiles 67
editing 66
file naming 181
format 67
specifying 110
structure 178
menu options
Info 57
Open 57
Options 57
MFLAGS macro 185
Output window 64
programmer interface 68
projects 58
adding amember 61
adding atarget 62
creating afinal target 64
creating anew project 59
final targets 58
listing members 61
opening aproject 60
removing a member 61
removing a project 64
setting tool options 63
touching members 62
rule patterns 182-183
tool options, message passing 69
VPATH macro 181
WIMP message format 69
Make project management tool 157
METAOPTIONS 164
modul e headers
creating in assembler 147
multi-tasking
pre-emptive multi-tasking 158

N

nested variables
accessingin DDT 30

O

OBJ_
name of AOF files 204
OBJ AREA
areas chunk 212
OBJ IDFN 219
OBJ STRT 218
ObjAsm
KEEP directive 22
object file
format 204
chunk names 204
type 206
ObjSize
Application menu 151
command line interface 152
menu options
Command line 151
Output window 152
SetUp
dialogue box 151
menu 151
SetUp options
Files 151
OFL_SYMT 223
OFL_TIME 223
output formatsin Link 139
AlF 137
binary 138
RMF 137
Output window
DecAOF 115
Diff 119
Find 126
LibFile 131
Link 139

Index

ObjSize 152

Squeeze 154
overlay description files 143
overlay manager

linking 144
overlaying programs 141

P

packing

AREAs 144
parent directories

indicating with ~. 165
porting applications to RISC OS 157
predefined linker symbols 147
Prefix$Dir 183
procedure names

setting breakpointsin DDT 27
program objects

specifying in DDT 26
project management tool

creating 157
projects see MAKE

R

relocatable AIF images 145
relocatable module area (RMA) 146
relocatable module format (RMF) 137
relocatable modules 146
relocating applications on the stack
the Workspace option 146
resource filesin SrcEdit 171
IRun file, for new WIMP application 159

S

saving single output object 165
ISetUp file, for new WIMP application 159
source-level debugging 22

279

Index

Squeeze

Application menu 154
command lineinterface 154
menu options
Command line 153
Output window 154
SetUp
dialogue box 153
menu 153
SetUp options
Input 153
Try harder 153
Verbose 153

SrcEdit 171

Application menu options

Create 93

Options 93

Save All 92

Save Options 92
Backspace 73
block operations 74
bracket-matching 87
carriage return 83
case sensitivity in Find 79
colours 84
ColTab 86
copy aselection 74
copying - Ctrl-C shortcut 75
copying block 75
counting occurrences 79
Ctrl-U 73
Delete 73
deleting block 75
entering text 71
fileformats 199
find a specificline 83
finding text 77-82
fonts 84
Format width 84
formatting text 84
Goto

line 83

option 83

280

indenting 75
inserting/deleting text 72
keyboard shortcuts 78
keystroke equivalents 96
line spacing 84

linefeed 83

Magic characters 79
margin 84

moving block 75

moving -Ctrl-V shortcut 75
printing afile 85

reading text from another file 87
redoing changes 83
replacing text 78

resource files 171
searching for text 77

select ablock 74

selected block - saving a 74
signalling errors viathrowback 88
starting 71

tabs 84, 86

task windows 94

Text found dialogue box 77
text wrap 85

throwback 171

undoing changes 75, 78, 83
wildcarded expressions 80
window 71

string

definition 201

DDEULtils GetCLSize 194
DDEUtils_Prefix 193

DDEUtils SetCL 194

DDEULtils SetCLSize 194
DDEULils_ThrowbackEnd 197
DDEULils_ThrowbackRegister 195
DDEULils_ThrowbackStart 195

DDEULils_ThrowbackUnRegister 195

Throwback_ReasonErrorin 196
Throwback_ReasonProcessing 196
Throwback_Send 196
Wimplnitialise 158

SWIDDEUtils GetCL 194
symbol references

to libraries 141
symbols

predefined linker symbols 147

T

targets
specifying to AMU 110
Templatesfile
CmdLine 162
Output 162
proginfo 161
query 162
save 163
SetUp 161
Summary 163
Window name 161
xfer_send 163
TextFile 73
Throwback
example session 88-90, 91
SWis 195
throwback 14
protocol 195
SrcEdit 88
throwback see also DDEULils module
tool output, specifying default 165
TOOLDETAILS 163
tools
defaults when invoking from Make 167
tools, interactive 14, 101
DDT 19
entering filenames 14
Make 57
SrcEdit 71
tools, non-interactive 14, 101
AMU 109
Application menu 102
DecAOF 113
Diff 117

U

Index

entering filenames 14
file output 107
Find 121
LibFile 129
Link 137
ObjSize 151
Output windows 105
Summary 106
Text 105
toggling between 106
SetUp dialogue box 103
SetUp menu 104
Squeeze 153
starting 101

utility programs 146

V

variable names

setting watchpointsin DDT 28

version ID 206
viafile

W

usein LibFile 130
useinLink 139

watchpoints

setting 28

WIMP

description file 158

frontend, adding to tools 158

invoking frontend for atool 158

producing complete WIMP application 159
setting MAKE options 158

wimpslot

default 164

281

Index

size 159
word
definition 201
work directory 15
writing an application description 163

282

Reader’'s Comment Form

Desktop Tools, Issue 1
0484,230

We would gresatly appreciate your comments about this Manual, which will be taken into account for the next
issue:

Did you find the infor mation you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

How would you classify your experience with computers?

Used computersbefore Experienced User Programmer Experienced Programmer

Cut out (or photocopy) and post to: Your name and address:
Dept RC, Technical Publications
Acorn Computers Limited
Acorn Housg, Vision Park

HIStOI’], Cambrldge CB44AE This information will only be used to get in touch with you in case we wish to explore your
England comments further

	Desktop Tools
	AMR draft

	Contents
	Contents�iii
	Introduction�1
	Part 1 - Getting started�5
	Installing Acorn C/C++�7
	Working with desktop tools�13

	Part 2 - Interactive tools�17
	Desktop debugging tool�19
	Make�57
	SrcEdit�71

	Part 3 - Non-interactive tools�99
	General features�101
	AMU�109
	DecAOF�113
	Diff�117
	Find�121
	LibFile�129
	Link�137
	ObjSize�151
	Squeeze�153
	Adding your own desktop tools�157

	Appendices�173
	Makefile syntax�175
	FrontEnd protocols�187
	DDEUtils�193
	SrcEdit file formats�199
	Code file formats�201
	ARM procedure call standard�249
	Index�273

	1 Introduction
	About this manual
	Part 1– Getting started
	Part 2 – Interactive tools
	Part 3 – Non-interactive tools
	Part 4 – Appendices

	Conventions used
	Part 1 - Getting started

	2 Installing Acorn C/C++
	Hardware requirement
	The Install application
	Running the Installer application
	1 Insert Disc 1 (labelled Installation Disc) in your drive and click Select on the drive icon to ...
	2 Double-click on !Installer in the resulting directory display.
	Demonstration program
	AcornC_C++ directory structure

	Environment variables and Acorn C/C++
	Run$Path
	DDE$Path
	C$Path

	3 Working with desktop tools
	Desktop tools
	Interactive and non-interactive tools
	Entering filenames

	Working styles
	Where to go from here
	Part 2 - Interactive tools

	4 Desktop debugging tool
	Overview
	Topics covered in this chapter

	About debuggers
	Preparing your program
	Compiling
	Linking

	Starting a debugging session
	Specifying program objects
	Procedure names
	Variable names
	Expressions
	Addresses & low-level expressions
	Examples:

	Execution control
	Continue
	Single step
	Call
	Return
	Breakpoint
	Watchpoint
	Trace
	Execution
	Breakpoints
	Watchpoints
	Procedures
	Event breaks
	SWI breaks

	Program examination and modification
	Display
	Source
	Expression
	Arguments
	Locals
	Backtrace
	Symbols
	Disassembly
	Memory
	Registers
	FP Registers

	Change
	Variable
	Register
	Memory contents

	Options and other commands
	Source-level debugging
	Machine-level debugging
	Memory protection
	Source line numbers
	Stop at entry
	RISC�OS bindings / Arthur bindings
	Command line
	Base
	Source tree
	Log
	Find
	Word or Byte
	String

	*Commands
	Help
	Quit

	An example debugging session
	The debugging session
	1 Compile and link the program using !Make with the Makefile provided in the !Sort directory.
	2 Double click on the !Sort application directory. The Sort tool icon will appear on the icon bar.
	3 Drag the example input file infile on to the Sort tool icon.
	4 Quit the Sort tool.
	5 Construct a debug version of Sort with Make. To do this, first open the Make project dialogue b...
	6 Start the debugger if you haven’t started it already and drag the !Sort application directory o...
	7 Drag the sample input file infile on to the Sort icon on the icon bar. The debugger’s Context a...
	8 Set a breakpoint on procedure sortstrings:
	9 Choose the Continue option from the debugger’s menu. The debugger will stop with the following ...
	10 Choose Continue from the main menu again.
	11 Choose Display on the debugger’s menu (or use the short cut Ctrl-D) and click on the Arguments...
	12 Enter the array element as it would appear on the left hand side of an assignment in C in the ...
	13 Quit the debugging session and drag the sample input file infile to the Sort icon to start a n...
	14 Now follow the instructions in step 8 to set the breakpoint at function sortfile instead of fu...
	15 Scroll the Source window up until the initialisation loop comes into view.
	16 Enter 84 in the Breakpoint dialogue box and click on at Line.
	17 Now choose Continue from the main menu.
	18 Enter cp in the Watchpoint dialogue box and click on on Variable.
	19 Choose Continue again. The debugger will stop with the message:
	20 Choose Continue again. The debugger will respond with:
	21 Quit the debugger and the Sort tool.
	22 Edit the file c.sort and change line 87 to read:
	23 Recompile c.sort using the Make utility.
	24 Double click on the !Sort application directory and drag the file infile to the Sort tool icon...
	25 Quit the Sort tool frontend.
	26 Drag infile to the Sort tool icon.
	27 Set a breakpoint on function sortstrings and choose Continue.
	28 Choose Continue again, and the debugger will stop at the start of sortstrings.
	29 Display the individual elements of a by entering a[0] etc., in the Display dialogue box and ch...
	30 Scroll the source display to find the line number; it should be line 39. Enter 39 in the Break...
	31 Enter j in the Display dialogue box and choose Expression; then do the same for h. The debugge...
	32 Enter a[1] in the Display dialogue box and choose Expression. The debugger should display:
	33 Add the following line at the start of the function after line 29:
	34 Compile the program, this time disabling the Debug option of Link using Make (see step 5), and...

	5 Make
	Invoking Make
	Using Make
	Projects
	Creating new projects
	Maintaining projects
	Opening a project
	Adding and removing members
	Listing members
	Touching members
	Multiple targets
	Setting tool options
	Removing projects

	Creating a final target for a project
	Saving a project without Making it
	Setting Make main options
	Text-editing Makefiles
	Using conventional Makefiles

	Makefile format
	Programmer interface
	Registering command-line tools with Make
	Message-passing interface for setting tool options
	1 Acknowledge the WIMP message. You must also store the taskhandle of Make.
	2 Display a dialogue box to allow the user of your application to set options appropriately.
	3 When the user has chosen the options, send back a WIMP message to Make, with the following format:

	6 SrcEdit
	Starting SrcEdit
	Typing in text
	Inserting and deleting text

	SrcEdit menus
	The Misc menu
	Saving text – the Save menu
	1 Click Menu over the SrcEdit window, and move to the Save submenu. A dialogue box appears, conta...
	2 If the file has not been saved before, SrcEdit offers you a default filename of ‘TextFile’. If ...
	3 Place the pointer on the icon in the box and drag the icon into the directory display where you...

	Manipulating blocks of text – the Select menu
	1 Try to load file Selection.
	2 If (1) fails try to load file:
	3 Try to load file DirectoryPath.Selection.
	4 If (3) fails try the comma-separated list of directories entered by the user from the Search Pa...
	5 If (3) and (4) fail, try the comma-separated list of directories which are registered for the c...

	The Edit menu
	Searching for a string of characters
	Replacing a string of characters with a new string
	Using keyboard short-cuts
	Other useful facilities
	Magic characters and their meanings
	Wildcarded expressions and their meanings
	Other options on the Edit menu:

	The Display menu

	Printing a SrcEdit file
	Laying out tables – the Tab key
	Regular columns
	Irregular columns

	Reading in text from another file
	Bracket Matching
	Throwback
	C example throwback session
	Assembler example throwback session
	C++ example throwback session

	Saving Options
	Setting options in a SrcEdit window

	The SrcEdit icon bar menu
	SrcEdit task windows
	Some guidelines and suggestions for using task windows
	Keystroke equivalents
	When editing
	Keystroke equivalents in the Select menu
	Keystroke equivalents in the Edit menu
	Keystroke equivalents in the Find menu
	Keystroke File options
	Part 3 - Non-interactive tools

	7 General features
	Interface
	The Application menu
	The Setup box
	The SetUp menu

	Output
	The Text window
	The Summary window
	Toggling between the Text and Summary windows
	Processed file output from filter tools

	8 AMU
	Starting AMU
	The Application menu
	Example output
	Command line interface
	Options

	9 DecAOF
	The SetUp dialogue box
	SetUp options
	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options

	10 Diff
	The SetUp dialogue box
	SetUp options
	The SetUp menu

	The Application Menu
	Example output
	Example 1
	Example 2

	Command line interface
	Options

	11 Find
	The SetUp dialogue box
	SetUp options
	Pattern wildcards
	File wildcards

	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options
	Pattern
	Filepattern

	12 LibFile
	The SetUp dialogue box
	The SetUp options
	The SetUp menu

	Output
	1 Any directories in the File List to be archived will be recursively archived (i.e. all files in...
	2 When extracting files, LibFile places absolute filenames from the libraries index in their corr...
	3 When creating libraries for distribution purposes, you should not use absolute filenames in the...
	4 When creating libraries for backup purposes, you can use absolute filenames, since you will alw...
	5 When creating a library, LibFile builds the library in memory. This means that you cannot creat...
	6 When the Symbol table option is selected, LibFile always updates the external symbol table rega...
	7 If the Symbol table option is not selected, LibFile deletes the external symbol table when used...
	8 Convergence testing is a testing method whereby a binary file (such as an object library) is re...
	9 Wildcard matching, when applied to library members (when using Extract or Delete) applies the w...

	Command line interface
	Options
	1 Multiple options may be specified in a single options argument. For example, -clso is equivalen...
	2 Most of the above options should be familiar from the description of the desktop interface. One...
	3 The -q option is used by the desktop interface (since the desktop has no notion of a current wo...
	4 For compatibility with previous versions of LibFile, specifying -c with -o with a null file lis...

	Examples
	Assembler example
	1 Double click on the !Link application to load it.
	2 Assemble s.ATestPrLib to o.ATestPrLib with ObjAsm.
	3 Link o.ATestPrLib with the finished PrintLib library to produce an executable AIF image file.

	13 Link
	The SetUp dialogue box
	The SetUp menu

	Output
	Possible errors during a link stage
	Libraries
	Generating overlaid programs
	Overlay description files
	X-Ref option
	Link map option
	Linking with the overlay manager

	Relocatable AIF images
	Utilities

	Relocatable modules
	Predefined linker symbols
	Command line interface
	Options

	14 ObjSize
	The SetUp dialogue box
	The SetUp menu

	The Application menu
	Example output
	Command line interface

	15 Squeeze
	The SetUp dialogue box
	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options

	16 Adding your own desktop tools
	The FrontEnd module
	Overview
	*FrontEnd_Start
	*FrontEnd_SetUp
	Example

	Producing a complete Wimp application
	!Run, !Boot and !SetUp files
	!Sprites file
	Template files
	Writing an application description
	TOOLDETAILS section
	METAOPTIONS section
	FILEOUTPUT section
	DBOX section
	1 those that map directly onto command line strings
	2 those that increase or decrease the numeric value of another icon
	3 those that cause a string to be inserted in a writable icon
	4 those that extend and contract the dialogue box.

	MENU section
	DESELECTIONS section
	EXCLUSIONS section
	MAKE_EXCLUSIONS section
	ORDER section
	1 the dialogue box icons in the order given in the DBOX section
	2 the menu entries in the order given in the MENU section
	3 the output option if appropriate.

	MAKE_ORDER section

	Messages files
	Providing interactive help
	!Choices file

	The DDEUtils module
	SrcEdit
	Resource files

	Make
	Appendices

	Appendix�A: Makefile syntax
	Make and AMU
	Command execution

	Makefile basics
	File name truncation
	Macros as targets

	Makefile structure
	Advanced features
	File naming
	VPATH
	Rule patterns, .SUFFIXES, $@, $*, $< and $?
	Use of ::

	Prefix$Dir

	Makefiles constructed by Make
	Miscellaneous features

	Appendix�B: FrontEnd protocols
	Star Commands
	EBNF Grammar of Description Format
	WIMP Message returned after a *FrontEnd_SetUp

	Appendix�C: DDEUtils
	Filename prefixing SWIs
	Filename prefixing *Commands
	Long command line SWIs
	Throwback SWIs
	Throwback WIMP messages

	Appendix�D: SrcEdit file formats
	Language File Format
	Help File Format

	Appendix�E: Code file formats
	Terminology
	Byte Sex or Endian-ness
	Alignment
	Undefined fields
	AOF
	Chunk file format
	Object file format
	Format of the AOF header chunk
	Object file type
	Version ID
	Number of areas
	Number of symbols
	Entry address area/ entry address offset

	Format of area headers
	Area name
	Area size
	Number of relocations

	Attributes and Alignment
	Bit 8
	Bit 9
	Bits 10 and 11
	Bit 12
	Bit 13
	Bit 14
	Bit 15
	Bit 16
	Bit 17
	Bit 18
	Bit 19
	Bit 20
	Bit 21
	Bits 22-23
	Bits 24-27
	Bits 28-31

	Area Attributes Summary
	Format of the areas chunk
	Relocation directives
	Offset
	SID (Subject Identification)
	FT (Field Type)
	II (Instruction Instruction)
	R (relocation type)
	Bits 29-31

	Format of the symbol table chunk
	Name
	Value
	Area Name

	Symbol Attributes
	Bits 1 and 0
	Bit 2
	Bit 3
	Bit 4
	Bit 5
	Bit 6
	Bit 7
	Bit 8-11
	Bit 12-31

	Symbol Attribute Summary
	String table chunk (OBJ_STRT)
	Identification chunk (OBJ_IDFN)

	ALF
	Library file format
	LIB_DIRY
	ChunkIndex
	EntryLength
	DataLength
	Data
	Time Stamps
	LIB_TIME
	LIB_VSRN
	LIB_DATA

	Object Code Libraries
	OFL_SYMT
	OFL_TIME

	AIF
	Properties of AIF
	Executable AIF

	The Layout of AIF
	AIF Header Layout
	Notes

	Zero-Initialisation Code
	Self-Move and Self-Relocation Code

	ASD
	Order of Debugging Data
	Endian-ness and the Encoding of Debugging Data
	Representation of Data Types
	Representation of Source File Positions
	Debugging Data Items in Detail
	The Code and Length Field
	Text Names in Items
	Offsets in File and Addresses in Memory
	Section Items
	Procedure Items
	Label Items
	Endproc Items
	Variable Items
	Type Items
	Struct Items
	Array Items
	Subrange Items
	Set Items
	Enumeration Items
	Function Declaration Items
	Begin and End Naming Scope Items
	Fileinfo Items

	Appendix�F: ARM procedure call standard
	The purpose of APCS
	Design criteria

	The ARM Procedure Call Standard
	Register names
	General registers
	Floating point registers

	The Stack
	The stack backtrace data structure
	Function invocations and backtrace structures
	Control arrival
	Data representation and argument passing
	Control return

	APCS variants
	32-bit PC vs 26-bit PC
	Implicit vs explicit stack-limit checking
	Floating-point arguments in floating-point registers
	Reentrant vs non-reentrant code
	APCS-2 compatibility

	C Language calling conventions
	Argument representation
	Argument list marshalling
	Non-simple value return
	Function entry
	Function entry - establishing the static base
	Function entry - creating the stack backtrace structure
	Function entry - saving and restoring floating point registers
	Function entry - checking for stack limit violations
	Stack limit checking - small, fixed frames
	Stack limit checking - large, fixed frames
	Stack limit checking - vari-sized frames
	Function exit

	Some examples
	The APCS in non-user ARM modes
	Aborts and pre-ARM6-based ARMs

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

