
Last changed: 21 October, 1999 12:07 pm

Printed: 21 October, 1999 12:09 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Desktop Tools

AMR draft

ii

Copyright © 1999 Acorn Computers Limited. All rights reserved.

Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

The product described in this manual is not intended for use as a critical component in
life support devices or any system in which failure could be expected to result in
personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product and its
use (including the information and particulars in this manual) are given by Acorn
Computers Limited in good faith. However, Acorn Computers Limited cannot accept
any liability for any loss or damage arising from the use of any information or
particulars in this manual.

If you have any comments on this manual, please complete the form at the back of the
manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your supplier
is available to help resolve any queries you might have.

ACORN, the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd.

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN 1 85250 164 2
Part number 0484,230
Issue 1, October 1999

Contents

Contents iii
Introduction 1
About this manual 2
Conventions used 3

Part 1 - Getting started 5

Installing Acorn C/C++ 7
Hardware requirement 7
The Install application 7
Running the Installer application 8
Environment variables and Acorn C/C++ 11

Working with desktop tools 13
Desktop tools 13
Working styles 15
Where to go from here 16

Part 2 - Interactive tools 17

Desktop debugging tool 19
Overview 19
About debuggers 20
Preparing your program 21
Starting a debugging session 23
Specifying program objects 26
Execution control 33
Program examination and modification 40
Options and other commands 45
An example debugging session 49
iii

Contents
Make 57
Invoking Make 57
Using Make 57
Makefile format 67
Programmer interface 68

SrcEdit 71
Starting SrcEdit 71
SrcEdit menus 72
Printing a SrcEdit file 85
Laying out tables – the Tab key 86
Reading in text from another file 87
Bracket Matching 87
Throwback 88
Saving Options 92
The SrcEdit icon bar menu 92
SrcEdit task windows 94
Some guidelines and suggestions for using task windows 95
Keystroke equivalents 96

Part 3 - Non-interactive tools 99

General features 101
The Application menu 102
The Setup box 103
Output 105

AMU 109
Starting AMU 109
The Application menu 111
Example output 111
Command line interface 112

DecAOF 113
The SetUp dialogue box 113
The Application menu 114
Example output 115
Command line interface 115
iv

Contents
Diff 117
The SetUp dialogue box 117
The Application Menu 118
Example output 119
Command line interface 120

Find 121
The SetUp dialogue box 121
The Application menu 126
Example output 126
Command line interface 127

LibFile 129
The SetUp dialogue box 129
Output 131
Command line interface 133

Link 137
The SetUp dialogue box 137
Output 139
Possible errors during a link stage 140
Libraries 141
Generating overlaid programs 141
Relocatable AIF images 145
Relocatable modules 146
Predefined linker symbols 147
Command line interface 148

ObjSize 151
The SetUp dialogue box 151
The Application menu 151
Example output 152
Command line interface 152

Squeeze 153
The SetUp dialogue box 153
The Application menu 154
Example output 154
Command line interface 154
v

Contents
Adding your own desktop tools 157
The FrontEnd module 158
Producing a complete Wimp application 159
The DDEUtils module 170
SrcEdit 171
Make 171

Appendices 173

Makefile syntax 175
Make and AMU 175
Makefile basics 176
Makefile structure 178
Advanced features 181
Makefiles constructed by Make 183
Miscellaneous features 184

FrontEnd protocols 187
Star Commands 187
EBNF Grammar of Description Format 187
WIMP Message returned after a *FrontEnd_SetUp 192

DDEUtils 193
Filename prefixing SWIs 193
Filename prefixing *Commands 193
Long command line SWIs 194
Throwback SWIs 195
Throwback WIMP messages 197

SrcEdit file formats 199
Language File Format 199
Help File Format 199
vi

Contents
Code file formats 201
Terminology 201
Byte Sex or Endian-ness 202
Alignment 202
Undefined fields 202

AOF 203
Chunk file format 203
Object file format 204

ALF 220
Library file format 220
Object Code Libraries 223

AIF 224
Properties of AIF 224
The Layout of AIF 226
Zero-Initialisation Code 230

ASD 233
Order of Debugging Data 233
Endian-ness and the Encoding of Debugging Data 234
Representation of Data Types 235
Representation of Source File Positions 236
Debugging Data Items in Detail 236

ARM procedure call standard 249
The purpose of APCS 249
The ARM Procedure Call Standard 251
APCS variants 259
C Language calling conventions 261
Some examples 268
The APCS in non-user ARM modes 270

Index 273
vii

Contents
viii

1 Introduction

corn C/C++ provides a set of RISC OS desktop applications for programming. These
T tools interact in ways designed to help your productivity and make the desktop a A

high quality environment for creating RISC OS applications and relocatable modules

from compiled languages or assembler.

The Tools directory is where the desktop tools reside:

With the exception of the Desktop Debugging Tool (DDT), all these tools are
multitasking RISC OS applications. DDT has to operate outside RISC OS in order to
stop it dead at any moment for breakpoints etc., so is windowed but not multitasking.
The desktop tools allow you to:

l edit program source and other text files

l search and examine text files mechanically

l examine some types of binary file

l compile and link programs

l assemble assembly language programs

l construct relocatable modules

l construct programs efficiently under the control of makefiles, these being set up
from a simple desktop interface

l squeeze finished program images to occupy less disk space

l construct linkable libraries

l debug RISC OS desktop applications interactively

l construct resource files for Toolbox applications.

The Acorn C compiler, C++ compiler and Assembler are described in the Acorn
Assembler and Acorn C/C++ manuals.
1

About this manual

ey
About this manual
This volume is organised into four parts:

l Part 1 – Getting started

l Part 2 – Interactive tools

l Part 3 – Non-interactive tools

l Part 4 – Appendices

Part 1– Getting started

This part of the manual describes how to install Acorn C/C++ and how to use the
desktop tools.

The chapters are:

l Installing Acorn C/C++

l Working with desktop tools

Part 2 – Interactive tools

This has chapters covering each of the desktop tools which you use with constant
interaction as ‘foreground’ tasks. Each has its own distinctive icon and file type. Th
are the debugger, make and source text editor.

The chapters are:

l Desktop debugging tool

l Make

l SrcEdit

Part 3 – Non-interactive tools

This covers the less interactive desktop tools which all have similar interfaces for setting
options and running, some performing operations which can be controlled by Make. The
first chapter in this part covers the general features common to all the non-interactive
tools. The next eight chapters are ordered alphabetically and each describes an
individual tool. The last chapter describes how to add your own desktop tools.

The chapters are:

l General features

l AMU

l DecAOF

l Diff
2

Introduction

es’
l Find

l LibFile

l Link

l ObjSize

l Squeeze

l Adding your own desktop tools

Part 4 – Appendices

This part of the manual gives technical details of the file formats and protocols used in
Acorn C/C++.

The appendices are:

l Makefile syntax

l FrontEnd protocols

l DDEUtils

l SrcEdit file formats

l Code file formats

l ARM procedure call standard

Conventions used
Throughout this manual, a fixed-width font is used for text that the user should type,
with an italic version representing classes of item that would be replaced in the
command by actual objects of the appropriate type. For example:

link options filenames

This means that you type ‘link’ exactly as shown, and replace ‘options’ and ‘filenam
by specific examples.

A bold version of the same font is used for text that the computer responds with.

Hex integers are given in uppercase, and preceded by 0X, e.g. 0XFE1.
(Not preceded by &, as is the case with those of you more familiar with BBC Basic.)
3

4

5

Part 1 - Getting started

6

2 Installing Acorn C/C++

nstalling Acorn C/C++ means setting up a suitable disc directory structure. You only
Ineed to perform this once to set up a suitable structure. I

To use Acorn C/C++ you will need to install it; booting is performed automatically.

This chapter only describes installation. The chapter Working with desktop tools
explains how to use the desktop tools.

Hardware requirement
The minimum specification of RISC OS system recommended for serious use of Acorn
C/C++ is a 4MB RAM machine with a hard disc drive.

A limited subset of features of Acorn C/C++ can be used on a 2MB RAM machine, but
its use is not recommended.

The Install application
Before installing Acorn C/C++ on your machine with the Install application, it is wise to
take a backup copy of each of the floppy discs supplied with the product.

Acorn C/C++ is supplied with six floppy discs. These are not intended for use other than
with the Install application.
7

Running the Installer application

lled.
Running the Installer application

Take the following steps to run the Install application:

1 Insert Disc 1 (labelled Installation Disc) in your drive and click Select on the drive
icon to open its root directory.

2 Double-click on !Installer in the resulting directory display.

The Installer application then reads your current filing system and disc name, and
displays an options dialogue box:

This dialogue box allows you to specify the filing system and disc name to install to, and
to set various options for the installation arrangement.

The Path field displays the default filing system name and disc name forming the
destination for Installer to copy files to. It is initialised with the current filing system and
disc name. If you want to specify a different destination for AcornC_C++, drag the
directory icon to the required destination. Use the Name writable field to specify a name
other than AcornC_C++.

Warn before overwrites causes Installer to display a warning message before it
overwrites existing files whose names are duplicated by new ones. This gives you the
opportunity to halt the installation if you don’t want an existing file overwritten.

Run Acorn C/C++ introductory demo allows you to specify whether you want the
introductory demonstration application to be run after Acorn C_C++ has been insta
See overleaf for details of this application.

Cancel cancels the Install process.

Install starts the installation process with the options as set.
8

Installing Acorn C/C++
Once you click on Install the following box will be displayed:

From now on !Installer will ask you to insert the installation discs as it installs the new
software. When it asks for a new disc, or displays a warning message, the bar showing
installation progress in the Complete field will change from green to red:

Demonstration program

If you enabled the Run Acorn C/C++ introductory demo option, the following
window will be displayed after the installation is complete:

The demonstration toolbox program allows you to learn more about Acorn C/C++ by
clicking on various icons which open to display further information. The pointer
changes to a pointer attached to an open book if you position it over an icon that can
display additional information.
9

Running the Installer application
AcornC_C++ directory structure

The following directory structure is set up for you on your hard disc. It is created
if not present, or updated if it is already there:

= <System$path> gives the location of your !System directory.

<System$path>

amu
c++
cc
cfront
cmhg
debugaif
decaof
diff
find
libfile
link
objasm
objsize
squeeze
toansi
topcc

ColourDbox
ColourMenu
DCS_Quit
FileInfo
FontDbox
FontMenu
IconBar
Menu
PrintDbox
ProgInfo
SaveAs
Scale
ToolBox
Window

BorderUtil
DDEUtils
ddt
DragAnObj
DragASprit
DrawFile
FilterMgr
FrontEnd
Picker
TinyStubs

LibraryAcornC_C++

!Demo
!Hyper
!MiniApp
!Sort
!TboxCalc
AsmError
AsmHdrs
AsmHello
AsmMacro
AsmModule
C++Error
C++Hello
CError
CHello
CModule
CStatics
Dhrystone
PrintLib
SaveAs
Sieve

C++lib
clib
eventlib
renderlib
toolboxlib
wimplib

aif
alf
aof
apcs
asdtf
DrawFile

!amu
!C++
!cc
!cmhg
!ddt
!decaof
!diff
!find
!libfile
!link
!Make
!objasm
!objsize
!ResEd
!ResTest
!squeeze
!SrcEdit
!toansi
!topcc

!SetPaths ToolsExamplesDocs ModulesLibraries

=

icons
icons22
ThreeTen

310Support toolbox
10

Installing Acorn C/C++
Environment variables and Acorn C/C++

Various Acorn C/C++ operations depend on the correct settings of environment
variables. If you carefully follow the instructions at the begining of this chapter for
installing Acorn C/C++, they should be correctly set and you do not need the following
information. These details are summarised here as an aid for tracking down any
problems you may have.

Each desktop tool, when loaded, defines an environment variable of the sort
<toolname>$Dir. The purpose of these variables is to allow each tool access to its
application directory, for example, to store options. These are not likely to become
incorrectly set and cause problems. SrcEdit can be configured with options from its
desktop interface, and also from options variables, as described in the chapter SrcEdit
later in this manual.

Run$Path

Set by: User constructed !Boot obey file.

Purpose: This specifies a list of directory names which the system searches to find
and execute image files. When the desktop non-interactive tools are run,
they execute command line tools from a library directory.

Problems: If incorrectly set, command line tools may not be found and
non-interactive tools fail to run.

DDE$Path

 Set by: The !Run and !Boot files of the !SetPaths application (set up by
!Installer).

Purpose: This is set to the name of the directory containing the desktop tools, and
is used by Make to start tool interfaces for setting Tool options.

Problems: If DDE$Path is unset, the Make Tool options facility fails with an error
mentioning DDE:.

C$Path

 Set by: The !Run and !Boot files of the !SetPaths application (set up by
!Installer).

Purpose: This specifies a list of directory names for the C compiler to search for
libraries and their headers.
11

12

3 Working with desktop tools

his chapter provides an overview of the most productive way to work with the

desktop tools to produce your programs. The chapter Installing Acorn C/C++ T
describes how to prepare your working environment.
ng
ace

 a

nt of
ted

ng

s.

om

Desktop tools
Acorn C/C++ includes the following tools:

l DDT – A windowed debugger for debugging any executable image file, includi
the !RunImage file of a RISC OS application. DDT presents a windowed interf
with RISC OS style controls.

Note that as DDT has to be capable of stopping RISC OS dead at any point in
program, for breakpoints, single stepping, etc, it cannot multitask under the
RISC OS desktop.

l Make – A desktop application for constructing programs under the manageme
‘recipes’ stored in Makefiles. Various types of Makefile can be rapidly construc
using the desktop controls of Make, as well as being executed. This facility for
constructing Makefiles is known as ‘project management’ on some programmi
systems for other types of computer.

l SrcEdit – A text editor derived from Edit with many features for constructing
program sources and other text files.

l AMU – A compact alternative to Make for using, but not constructing, Makefile

l DecAOF – A utility for examining AOF files output by language compilers or
assemblers.

l Diff – A text file comparison tool.

l Find – A tool for finding text patterns in the names or contents of sets of files.

l Link – A tool for constructing usable relocatable modules, program files, etc., fr
object files produced by language compilers and assemblers.

l LibFile – A utility for constructing linkable library files storing general purpose
routines for re-use in more than one program.

l ObjSize – A utility to measure object file size.

l Squeeze – A tool which compacts finished program images so that they occupy
much less disc space and load faster.
13

Desktop tools

om

. The
urther
hose

ls,
d into

have
e

tive
y

yed

).
Each of the tools listed above is described in more detail in its own chapter later in this
volume. The language specific tools are described in the language user guides
accompanying this manual.

As well as performing individual tasks, several of the desktop tools cooperate in ways
designed to enhance your productivity. An example of this is throwback. When a
language compiler or assembler detects an error in a program source file, it can cause
throwback – opening a SrcEdit window for immediate correction of the offending
program line. Another example of cooperation is the ability to drag an output file fr
one desktop tool to the input of another appropriate desktop tool.

Interactive and non-interactive tools

The desktop tools are divided into two categories – interactive and non-interactive
non-interactive tools are those that have options set and then are run, without any f
interaction with you until the task completes or is halted. The interactive tools are t
that operate with constant interaction with you, such as the source editor SrcEdit.

In the list of tools above, the first three (DDT, Make and SrcEdit) are interactive too
and the rest are all non-interactive. The chapters describing each tool are organise
parts of this manual describing each category of tool. The non-interactive tools all
similar user interfaces, and the features common to all of them are described in th
chapter General features on page 101.

Entering filenames

Many of the desktop tools require you to specify file or directory names. The interac
tools each have file types that they ‘own’, which you can double click on in director
displays to start activities. These are:

l DebugAIF – execution of one starts a DDT session. Files of this type are displa
in directory displays with the icon:

l Makefile – double clicking on one loads it into Make (and may start a Make job
Files of the type Makefile are displayed in directory displays with the icon:

l Text – double clicking on one starts a SrcEdit edit.
14

Working with desktop tools

m
styles

r
 the
th
 tool
eir
None of the non-interactive desktop tools own a file type. Input files are specified to
these tools by dragging them to their icon bar icons from a directory display or by typing
their names into a writable icon in a dialogue box or menu field. When typing filenames
into a writable icon, enter absolute filenames such as:

 adfs::dharris.$.AcornC_C++.Examples.!TboxCalc.o.Main

To reduce the amount of typing required, any writable icon on a dialogue box that
accepts a filename or directory name can be set by dragging a filename from a directory
display to it. For example, dragging a filename from a directory display to the Files
writable icon on the Link SetUp dialogue box adds it to the list of input files already
specified:

Many program source files and Makefiles contain filenames, for example in an
assembler program line such as:

GET ^.h.SWINames

RISC OS provides only one current directory, but many tasks (such as assembly
processes) can be multitasking, running at the same time. Thus the concept of work
directory is used in Acorn C/C++. This can be considered rather like a current directory
for each task, and file searching is performed relative to this. See the section on each tool
to see the way the work directory is set and used by that tool. Most of the simpler tools
do not require a work directory.

Working styles
The desktop tools support two main styles of working – managed and unmanaged
development. These differ only in the way you construct your finished programs fro
sources, not the way you write or debug them, and you can mix and match the two
as you wish.

Managed development makes use of Makefiles to manage the construction of you
finished programs. A Makefile is a ‘recipe’ for processing your sources and linking
object files produced to form the usable program. The tools Make and AMU can bo
execute the commands in a Makefile running other tools to perform a make job. The
Make also constructs Makefiles for you, avoiding the need for you to understand th
15

Where to go from here

ilar
is
syntax, and making it quick and easy to do this. The main advantages of managed
development are: timestamps of files are examined during a make job and no
unnecessary reprocessing of unaltered program sources is performed; programs are
constructed consistently, following the same recipe each time, even when run by
different people. These advantages make managed development the best style for the
development of larger programs with source split into several source files.

Unmanaged development makes use of each individual tool directly to process the files
as required to construct your programs. This can offer the quickest way of constructing
small programs.

When Booting for unmanaged development you have to load each tool that you wish to
use, but when Booting for managed development you only need to load Make (or
AMU).

When working in either style, it is recommended you place each program project in a
separate subdirectory, in the same way that the program examples are arranged. You can
place the source, header and object files in suitable subdirectories of the project
directory. See the accompanying language specific manuals for more details of
subdirectory conventions. Source may be placed elsewhere, but this can make it more
difficult to rename or move whole projects to other directories or filing systems.

Where to go from here
If you have studied this chapter in detail you now understand how to construct a simple
runnable program from text sources. You may now wish to load various desktop tools
and experiment with their use, and there are further chapters that may provide useful
general information.

Each desktop tool, such as the text editor SrcEdit and debugger DDT, has a chapter
describing it, either in this user guide or in one of the accompanying manuals. If you
intend to make much use of any particular tool, its chapter may prove useful reading
next.

A large number of the desktop tools are classified as ‘non-interactive’, and have sim
interfaces. The chapter General features on page 101 covers the interface features of th
class of tool.
16

17

Part 2 - Interactive tools

18

4 Desktop debugging tool

his chapter describes the desktop debugging tool (DDT). DDT is an interactive aid

to debugging desktop or non-desktop programs written in compiled languages such T
as C, Pascal or Fortran. DDT can also be used to debug programs written in ARM
, it
ting as

e

assembler using ObjAsm. It can be used on any of the Archimedes range of computers
running RISC OS 2.00 or later.

Overview
Although DDT can be used to debug desktop programs, and provides a windowed
interface, it is not a true multitasking desktop program. This is because DDT has to be
able to halt the RISC OS desktop at any point for single stepping, breakpoints etc. This
means that its interaction with other RISC OS applications is limited in certain ways:

l When the debugger is active (i.e. when a program is halted under control of the
debugger) all other tasks are halted until execution of the program is resumed.

Note: You can always tell when the debugger is active, because the pointer will
change to a No Entry sign if you move it outside the debugger’s windows:

l Only one application may be running under the debugger at any given time.

The windowed interface of DDT is designed to be easily understood by RISC OS
desktop users, and to facilitate this it duplicates many RISC OS features. However
uses visual details such as unusual colours to act as reminders that it is not opera
a true desktop multitasking program.

Topics covered in this chapter
l the section About debuggers introduces the concept of debuggers in general and

describes the facilities provided by DDT.

l the section Preparing your program describes how to prepare your program for us
with DDT.

l the section Starting a debugging session describes how to invoke the debugger on
your program.
19

About debuggers

 for

e
.

ny
e

se to
s

NSI
 the

tion
the

s

lth of
l section Specifying program objects describes the way in which various objects in
the program you are debugging, such as variable names, procedure names and line
numbers are specified.

l section Execution control describes how to control execution of a program running
under the debugger.

l section Program examination and modification describes the debugger’s facilities
for displaying various objects in the program being debugged and the facilities
changing variable, register and memory contents.

l section Options and other commands describes the options in the options dialogu
box and other commands which are not covered by any of the previous topics

About debuggers
This section is aimed mainly at readers who haven’t used a program debugger of a
sort before. However, others may find it useful reading, as it introduces some of th
facilities provided by DDT.

Anyone who has written a program more than about ten lines long has had recour
debugging techniques: the tracking down and removal of errors. The form this take
depends on many things, not least the language in which the program is written.

Some languages provide primitive debugging facilities of their own. For example A
C provides the assert macro which can be used to ensure a condition is true, as in
following example:

assert(i >= 0); /* Ensure following loop is finite */
while (i--) { ... }

Some language implementations provide additional debugging facilities. A descrip
of the debugging facilities provided by Acorn’s release of ANSI C may be found in
accompanying Acorn C/C++ manual.

Often, however, it is left to the programmer to plant trace information in the program
itself. For example you might trace the value of the index variable in a while loop a
follows:

while (i--) { fprintf(tracefile, "i = %d\n"); ... }

Such additions to the program can be useful, but are tedious to use in compiled
languages, because every time you want to change the debugging statements, the
program has to be recompiled. There is also the possibility that the debugging
statements themselves have undesirable side-effects which contribute to the ill-hea
the program.
20

Desktop debugging tool

ed

nts

ur

ecial

ically
ms
re

e
ers
Planting trace information in assembly language programs is more difficult. For
example, displaying the contents of all ARM registers is a non-trivial code fragment in
ARM assembler.

A debugger enables you to execute your program in a controlled environment where you
can stop execution, examine and alter variables, set breakpoints, single step through a
program and ‘watch’ particular variables for changes.

DDT provides the following debugging facilities:

l Start program execution and continue after program execution has been stopp

l Single step program execution, by source statement or ARM instruction

l Stop program execution at a specified program location

l Stop program execution when a specified variable changes its value

l Stop program execution at any time on request

l Trace program execution continuously

l Trace procedure calls

l Trace changes to a specified variable or memory location

l Display source text, symbolic disassembly, variables, registers, memory conte
and stack backtrace information

l Alter variable values, register contents or memory contents

l Protect sensitive areas of memory against being accidentally overwritten by yo
program.

Preparing your program
This section describes how to prepare your program for use with DDT. DDT uses sp
information in the program being debugged, which provides DDT with information
about the source code that generated the program. This information is not automat
included in the output of the compiler. This is mainly for reasons of efficiency: progra
which contain debugging information are larger, take longer to compile, and run mo
slowly than those with no debugging information.

Compiling

You enable the generation of debugging information with the Debug option on the
compiler SetUp menu. If you are using the compiler from the command line use th-g
flag to enable debugging information with the Acorn ANSI C compiler (other compil
may use different flags, though -g is common across a wide range of compilers.
21

Preparing your program

ing

n is
sh

bled
 an
ror

ive,
ol

er,
Because each module of a program can be compiled with its own debugging
information, you need only specify debugging for suspect modules. Well-proven
modules in which you have complete faith can be compiled with no debugging
information, whereas newer, less reliable code can have debugging information enabled.

Turning on debugging inhibits optimisation, and reduces the speed of execution of your
program even when you are not debugging it. This of course does not matter when you
are using the debugger, but for maximum speed, programs should be compiled without
debugging information, especially for production builds.

Note that if you are using an automated program construction tool, such as the Make
utility, you may have to delete the object files of the modules you wish to compile with
debugging information when you enable the Debug option. This is because the modules
are not recompiled until the object files are either absent, or out of date with respect to
the source files, so you must delete the object files to force recompilation.

Linking

When linking a program to be debugged, you must instruct the linker to include the
debugging information generated by the compiler. To do this, enable the Debug option
on the link menu, or, if you are using the linker from the command line, by using the
-debug flag.

If you are using Acorn’s ANSI C compiler to perform the link stage (i.e. without the
Compile only option enabled on the compiler menu, or without the -c flag from the
command line) the compiler will automatically instruct the linker to include debugg
information if the compiler’s debugging option is enabled.

The linker also generates its own debugging information. This debugging informatio
used by DDT to provide low-level or symbolic debugging facilities. If you do not wi
to use source level debugging facilities, you can enable the Debug option on the linker
without enabling the Debug option on the compiler.

Note that !RunImage files compiled or assembled and then linked with Debug ena
are much larger than those produced without debug information. This may require
increase in the WimpSlot size specified in your !Run file, otherwise the following er
may be produced at run time:

No writable memory at this address

If you are writing in assembler using ObjAsm you may wish to use the KEEP direct
which instructs the assembler to keep information about local symbols in the symb
table. These will be included in the program when linked with debugging enabled.

You might like to try preparing the following small program for use with the debugg
using the methods described above.
22

Desktop debugging tool

an
tion

e
, the
am
ave

I
)

tion.
 1 #include <stdio.h>
 2
 3 int main(void)
 4 {
 5 int world;
 6
 7 for (world = 0; world < 100; world++)
 8 printf("Hello, World %d\n", world);
 9 return 0;
 10 }

Starting a debugging session
You can start a debugging session in one of the following ways:

l Double click on the !DDT application. This will place the debugger’s icon on the
icon bar. Then drag the program to be debugged to the debugger’s icon. You c
drag either a program image or an application directory. If you drag an applica
directory, the program image within that directory must be called either !Run or
!RunImage.

l Choose Debug from the debugger application menu. This will produce a dialogu
box with two writable icons, one for the name of the application to be debugged
second for any arguments the application may take. You can specify the progr
name by dragging an application to the writable icon. When the writable icons h
been filled, clicking the OK button will invoke the debugger.

l Enter the following *Command:

*DebugAIF program [arguments]

where program is the name of the program to be debugged, and arguments
are any command line arguments that program may take. You can enter this
command from the supervisor prompt (outside the desktop), from the Shell CL
prompt (obtained by choosing the *Commands option on the Task Manager menu
or from a task window CLI prompt.

Try invoking the debugger on the sample program shown at the end of the last sec
23

Starting a debugging session

ed.

gging

 in
Once you have started a debugging session in one of the above ways, two debugger
windows will be displayed as follows:

The upper window is the Context window. The title bar contains the name of the
program being debugged. The Context window displays the source text or symbolic
disassembly associated with the current Context or PC location.

When you start a debugging session, the Context window initially displays a symbolic
disassembly, like that shown above. This is a disassembly of the run-time system
initialisation code. The arrow symbol (→) to the left of the window shows the current
PC location. The debugger does not display your source code at this stage because the
program has not started executing your code, it still has to execute the initialisation code.
Once execution reaches your code (i.e. the first instruction of main) your source code
will be displayed.

The lower window is the Status window. The title bar contains the current status of the
program being debugged. The Status window displays error and informational
messages, in addition to any data displayed by the debugger’s display, trace and
watchpoint facilities. The Status display scrolls when any new information is display
You can use the scroll bar to examine earlier contents of the status display.

Some messages that may appear in the Status window at this stage are:

No debugging information available

This means that you are debugging a program which has not been linked with debu
information. No source-level or symbolic debugging facilities are available, and
debugging is limited to machine-level debugging (i.e. everything must be specified
24

Desktop debugging tool

ill
select
terms of machine addresses). If you have forgotten to link the program with debugging
information you should quit the debugging session, relink the program with debugging
enabled and start the debugging session again.

No source level debugging information

This means that you are debugging a program which has been compiled without
debugging enabled. No source-level debugging facilities are available, symbolic
debugging facilities are available (i.e. objects can be specified in terms of link time
symbols). If you have forgotten to compile the program with debugging information,
quit the debugging session and recompile the program with debugging enabled.

RO area limit not on page boundary, last page not protected

This message occurs when memory protection is enabled (as it is by default) and the last
part of the code or read only area is not page aligned. This means that the last page of the
read only area cannot be protected against accidental writes, since writing to data, or a
read/write area which immediately follows the code area, would cause an erroneous data
abort. You can ignore this message. Future versions of the linker may align the areas on
page boundaries when linking with debugging enabled.

Can’t set breakpoint on procedure main

When a debugging session is started the debugger automatically tries to set a breakpoint
on main if the Stop at entry option is enabled (as it is by default). If the address of main
cannot be determined, because, for example, the module containing the procedure main
has not been compiled with debugging information enabled, or, the program is not
written in C, then the above message will be displayed.

Try moving the pointer completely outside the debugger’s windows. The pointer w
change to a No Entry pointer, indicating that the debugger is active and you cannot
anything outside the debugger’s windows. Moving the pointer back inside the
debugger’s windows changes it back to the usual arrow pointer.
25

Specifying program objects
Clicking Menu on either debugger window produces the following menu:

Continue, Single step, Call, Return, Breakpoint and Watchpoint are explained in the
section Execution control on page 33.

Trace, Context, Display and Change are explained in the section Program examination
and modification on page 40.

Log, Find, Options, Help, Quit and *Commands are explained in the section Options
and other commands on page 45.

Specifying program objects
Once the debugger is running, the program can be executed, single stepped, have its
variables examined or altered and so on. All of these facilities are described in the
following sections. However, before you can use these facilities, you must know how to
refer to certain program objects. Variable names, line numbers, procedure names and
memory addresses all have a syntax which must be used if you are to reference the
desired object.

The following notation will be used in describing the syntax:

l An item in square brackets ([]) is an optional item which can be omitted if desired.

l An item in braces ({}) is an optional item which can be repeated as many times as
desired.

l An item in italicised text is a non-terminal item, i.e. an item which must be replaced
by a suitable string of characters.

For example, an optional, comma-separated list of numbers would be denoted by:

[number{,number}]
26

Desktop debugging tool

ure
ame at

re for

ince
 and
Procedure names

Procedure names are used, for example, when setting a breakpoint on entry to a
procedure. The syntax for a procedure name is:

[module:]{procedure:}procedure

where module is the name of a program module and procedure is a procedure name
within that module. Each procedure name in the list of procedure names refers to a
successive procedure in the textual nesting of procedures. The module name is the leaf
filename of the compiled source file. For example, consider the following program
fragment stored in file pas.test.

 program raytrace(input, output);
 var count : integer; ...
 procedure pixel(x, y : integer);
 var colour : integer; ...
 function reflect(x, y : integer; angle : real) :
integer;
 ...
 begin (* body of reflect *) end;
 begin (* body of pixel *) end;
 begin (* body of raytrace *) end;

The full name for function reflect would be:

 test:raytrace:pixel:reflect

that is, procedure reflect contained in procedure pixel contained in procedure
raytrace (the debugger treats the entire Pascal program as one large procedure)
contained in module test (module names do not generally make much sense for
Pascal, since standard Pascal has no facilities for separate compilation, but many Pascal
implementations, including Acorn’s ISO Pascal, have extensions to allow separate
compilation).

Note: Some Pascal implementations on Acorn computers do not represent proced
names in the manner described above. Instead, they generate a new procedure n
the outermost level by concatenating enclosing procedure names to the current
procedure name separated by a dot. Also, they do not generate a pseudo-procedu
the whole program. Thus, with such an implementation, the full name for function
reflect would be test:pixel.reflect.

You do not need to type the full name every time you wish to refer to a procedure: S
the prefixed module name and procedure names are optional they can be omitted,
the procedure referred to by its name alone (e.g. reflect or pixel.reflect in the
above example). Sometimes it will be necessary to enter a longer version of the
procedure if there are two or more procedures with the same name.
27

Specifying program objects
Suppose in the above example there was a procedure:

 test:raytrace:line:reflect

reflect on its own would be ambiguous, so you would have to enter
pixel:reflect or line:reflect to specify which one you meant. Note that it is
still not necessary to enter the test:raytrace prefix, since the line or pixel
prefixes are sufficient to render the procedure name unambiguous.

Similarly, suppose you had two C modules called quickdraw and slowdraw, each
containing a static function circle. In this case you would need to enter either
quickdraw:circle or slowdraw:circle to indicate which circle function you
were referring to.

Even if two procedures have the same name, it may not be necessary to enter more than
the procedure name on its own. When looking at a procedure specification, the debugger
searches back along the dynamic call chain (i.e. the chain of procedures called to reach
this point in the program) to find a procedure name which matches the first name in the
procedure specification. Having found this, it matches the rest of the procedure
specification against textually nested procedures contained within the first procedure
found.

For instance, in the above example with two reflect procedures, if the program was
stopped (at a breakpoint, perhaps) at some point in pixel:reflect, then reflect
on its own would refer to pixel:reflect, since on looking at the dynamic call chain
the debugger would find that it was in a procedure called reflect, and would match
that against the procedure specification reflect.

Variable names

Variable names are used, for example, when setting a watchpoint. The syntax for a
variable name is.

[procedure-specification:][line number:]variable

where procedure-specification is a procedure specification as described in the
section above, line number is a line number in a source file and variable is the
name of a variable.

As in the case of a procedure specification, the debugger tries its best to match a variable
name given to it, by first searching back along the dynamic call chain, and then
searching the global variables, so it is usually not necessary to specify more than the
variable name on its own.

In the raytrace example above, if the program was stopped at some point in the
function reflect then x, y and angle would refer to the arguments in function
reflect, colour on its own would refer to the local variable colour in procedure
28

Desktop debugging tool

to

 case
sy to
pixel (since the debugger searches back the call chain and finds procedure pixel
containing a variable colour). The variable count would refer to the global variable
count in program raytrace.

In some cases, however, it may be necessary to specify more information about the
variable; suppose, for example, you wanted to examine the arguments x and y to the
procedure pixel. Specifying x or y on its own would display the x or y argument in
function reflect so you must specify pixel:x or pixel:y.

There may still be some ambiguity in languages other than Pascal. In Pascal you cannot
declare local variables within a program block (i.e. between a begin...end pair),
however C allows declarations in local blocks. Consider for example the following code
fragment as it would be displayed in the debugger’s source window:

The are two declarations of tmp in logical, so tmp or logical:tmp may be
ambiguous. In this case you must specify a line number before the variable name
remove the ambiguity.

For example, to refer to the tmp variable in the outer scope (i.e. at the function level)
you could enter:

117:tmp

or

logical:117:tmp

To refer to the tmp variable in the inner block, use:

120:tmp

or

logical:120:tmp

The line number should be the line number of the declaration of the variable (in this
117 or 120). The line numbers are displayed in the source window, so it is quite ea
find the line number of the declaration.
29

Specifying program objects

r
er

n the

 of
The syntax described above is sufficient to refer to all textually nested variables.
However, variables in earlier instances of a recursive or mutually recursive procedure
cannot be accessed. For example:

void hanoi(int src, int dest, int via, int n)
{

if (n > 1) {
 hanoi(src, via, dest, n - 1);
 hanoi(src, dest, via, 1);
 hanoi(via, dest, src, n - 1);

} else
printf("Move disc from peg %d to peg %d\n", src,
dest);

}

Suppose this function is called with n = 3 and that it recurses until it hits a breakpoint on
the printf when n = 1. There is no direct way to refer to the variables src, dest and
via in an outer call when n = 2 or 3 since any reference to these variables will refer to
the variables in the call with n = 1. What you can do is, use the Context option on the
debugger’s main menu (described in the section Program examination and modification
on page 40) to change the context to an outer call on the stack. Since the debugge
searches from the current context outwards, you can now specify the variable as p
normal. The debugger will ignore the variables in inner calls and use the variable i
current context.

Expressions

Several DDT commands (for example Display Expression) may take arbitrary
expressions. The syntax for these expressions is based on that found in C.

The following table summarises the operators available along with the precedence
each operator.

1 () grouping, e.g. a*(b+c)
[] subscript, e.g. isprime[n], matrix[1][2]
. record selection, e.g. rec.field, a.b.c
-> indirect selection, e.g. rec->next is (*rec).next

2 ! logical not, e.g. !finished
~ bitwise not, e.g. ~mask
– negation, e.g. -a
* indirection, e.g. *ptr
& address, e.g. &var
30

Desktop debugging tool

for
 be a
 their

ay

 a

t a
3 * multiplication, e.g. a*b
/ division, e.g. c/d
% remainder, e.g. a%b is a-b*(a/b)

4 + addition, e.g. a+1
– subtraction, e.g. b-d

5 >> right shift, e.g. k>>2
<< left shift, e.g. 2<<n

6 < less than, e.g. a greater than, e.g. n>10
<= less than or equal to, e.g. c<=d
>= greater than or equal to, e.g. k>=5

7 != not equal to, e.g. count!=limit

8 & bitwise and, e.g. i & mask

9 | bitwise or, e.g. m1 | &0100

The lower the number, the higher the precedence of the operator. Note the syntax
subscripting and record selection. The object to which subscripting is applied must
pointer or array name. The debugger will check both the number of subscripts and
bounds in languages which support such checking. A warning will be issued for
out-of-bound array accesses. As in C, the name of an array may be used without
subscripting to yield the address of the first element.

The prefix indirection operator * is used to dereference pointer values, in the same w
as Pascal’s postfix operator ^. Thus if ptr is a pointer type, *ptr will yield the object
it points to (as ptr^ in Pascal).

To access the fields of a record through a pointer, you can either use (*recp).field,
or the C ‘shorthand’ notation, recp->field.

If the lefthand operand of a right shift is a signed variable, then the shift will be an
arithmetic one (i.e. the sign bit is preserved). If the operand is unsigned, the shift is
logical one, and zero is shifted into the most significant bit.

If incompatible types are used during expression evaluation, the debugger will prin
warning message, but evaluation will continue.
31

Specifying program objects

9
er.

t base
Constants may be integers (to the base specified in the Base option), hex integers
(preceded by &) character constants, strings or floating point numbers. The following
show examples of each:

32768 Integer in the currently selected base
&8000 Hex integer
3.2768e4 Floating point number
’A’ Character constant
"Hello, World" String

Addresses & low-level expressions

This section describes the syntax for low-level expressions. It is directed mainly at
assembly language programmers. You can skip this if you will only be using the high
level language debugging facilities.

The syntax for a low-level expression (as used, for example, when setting a breakpoint
on a memory address or displaying a disassembly or memory dump) is as follows (an
understanding of BNF is assumed):

expr ::= value + expr | value | expr
value ::= ’&’ hex-number | number | symbol

where hex-number is a hexadecimal number, number is a number in the default base
(hexadecimal if no default base specified) which must start with a digit in range 0…
and symbol is a low level symbol in the debugging information produced by the link

Examples:

main Address of function main.

main + &14 Five words into main.

8000 Start of image (assuming the image has not been relocated and the defaul
is hex.)

Image$$RO$$Base Preferred way of specifying base of program.
32

Desktop debugging tool

r, or

ot do
Execution control
This section describes how you can control the way in which the debugger executes your
program.

Continue

Continue starts or restarts execution of the program. Execution continues until one of
the following events occurs:

l a watchpoint changes or is cancelled

l the program runs to completion

l an error or abort condition occurs.

You can interrupt execution of the program at any time by pressing Shift-F12. Note that
if another task is executing when you press Shift-F12 you may need to generate an event
to force execution to return to the program before the Shift-F12 interrupt will be noticed.
The simplest way to do this, usually, is to click on the program’s icon on the icon ba
click on one of its windows.

As the debugger sets a breakpoint on procedure main, you can usually use Continue to
start execution of the program and get to the first line of your source text. You cann
this if

l you have disabled the Stop at entry option, or

l the Can’t set breakpoint on main message appeared when you started
the debugging session.

Note that if you have any watchpoints set, the instructions are single stepped instead of
executed and the watchpoints are checked after each instruction. If any have changed,
the single stepping is stopped at that point. This will be completely transparent, except
that the program runs more slowly than normal.

You can use Ctrl-C as a short cut for Continue.
33

Execution control
Single step

Single step allows you to step execution through one or more source statements or ARM
instructions. Choosing Single step produces the following dialogue box:

No. of steps allows you to enter the number of statements or instructions to be executed.
The Step by source statement and Step by ARM instruction radio icons allow you to
specify whether the contents of No. of steps should be treated as a source statement
count or an ARM instruction count.

The Step into procedures option icon selects whether procedure calls should be treated
as a single source statement / ARM instruction or whether single stepping should
continue into the procedure call.

Note that the debugger cannot detect certain types of procedure calls, for example, calls
via function variables in C. In these cases the debugger will continue stepping into the
procedure, regardless of the setting of the Step into procedures option.

Note for assembly language programmers: The debugger treats BL instructions as
procedure calls, so if some other instruction is used to call a procedure, this will not be
detected by the debugger. For instance, consider the following example, which might be
produced by the C compiler when calling via a function variable.

MOVlr, pc ; Set up link. PC = current instruction + 8
LDRpc, [sp, #o_fn] ; Load PC from function variable on stack
... ; Returns here

You complete the Single step dialogue by clicking on OK or pressing Return. The
specified number of statements or instructions are then executed.

Note that if you are currently stopped at an ARM instruction for which there is no source
information, stepping one source statement will step ARM instructions until an
instruction for which source information is available is reached. This can be used when
you initially start a debugging session, and wish to step to the first source statement to be
executed. This is usually the first instruction of main for C programs, but need not
necessarily be so, if, for example, the module containing main was not compiled with
debugging information.
34

Desktop debugging tool

ort or
ust

ler,

 This
fault
You can use Ctrl-S as a short cut for single stepping 1 instruction or source statement.
The Step into procedures and Step by source statement / Step by ARM instruction
are determined by the current settings in the Single step dialogue box (i.e. the settings
when the dialogue box was last displayed).

Call

Call allows you to call a named procedure. Choosing Call produces the following
dialogue box:

The writable icon allows you to specify the name of the procedure to be called. You can
specify arguments to the procedure in a comma-separated list in round brackets after the
procedure name.

The arguments must be word-sized objects (e.g. integers or pointers) or floating-point
values. Floating-point arguments occupy the next two adjacent ARM registers or stack
words as described in the Arm Procedure Call Standard (i.e. floating-point arguments
are not passed in floating-point registers).

Complete the dialogue by clicking on OK or pressing Return. The specified procedure is
called with the arguments on the program’s stack, and in ARM registers R0 - R3.

Note that the program’s stack pointer must be initialised before attempting to call a
procedure: calling a procedure without a valid stack pointer may result in a Data ab
Address exception. Therefore, if you are debugging a program written in C, you m
ensure you have executed the run-time system initialisation code using Continue or
Single step as described above. If you are debugging a program written in assemb
you must ensure that you have executed your own initialisation code, which must
initialise the stack pointer.

Return

Return allows you to return from the current procedure. Choosing Return produces the
following dialogue box:

You can enter a value to be returned from the procedure in the value writable icon.
may be either an integer or floating-point value. If you do not specify a value, a de
value of 0 (or 0.0 for floating-point values) is used.
35

Execution control

ritable

lled

I
Note that the Return option returns from the procedure in the current context. If you
used the Context option to change the current context to an outer context on the stack n
on the debugger’s menu, the Return option will return from the procedure in the
selected context, rather than the currently executing procedure.

Breakpoint

Breakpoint is used to add and remove breakpoints. Choosing Breakpoint produces the
following dialogue box:

Choosing one of the at Procedure, at Line or at Address buttons sets a breakpoint at
the procedure, source line number or memory address entered in the associated w
icon. The syntax for specifying these objects is described in the section Specifying
program objects on page 26.

Choosing the on SWI button causes the debugger to stop when the named SWI is ca
by the debuggee. SWI names are specified as in the RISC OS Programmers Reference
Manual except that a leading ‘X’ is ignored and case is ignored when matching SW
names.

Choosing the on Wimp event leads to the following dialogue box:
36

Desktop debugging tool
Select the set of Wimp events you are interested in and click OK. The debugger will stop
execution of the debuggee when it receives one of the specified events and will display
a message describing the event received.

For example:

Event = User message, action = 0 (Quit)

Choosing Remove removes the breakpoint specified in the associated writable icon. The
breakpoint may be specified as a breakpoint number, as given in the list breakpoints
command, preceded by a hash (#) or it may be specified exactly as specified when
setting the breakpoint.

List displays a list of all currently set breakpoints with breakpoint numbers which can be
used when removing individual breakpoints.

Remove all removes all current breakpoints.

You can use Ctrl-B as a short cut to produce the Breakpoint dialogue box.

Breakpoints may also be set or cleared by clicking on a line in a source or disassembly
display. Clicking on a line sets a breakpoint on the line. The breakpoint is shown by the
breakpoint marker (a filled in circle) to the left of the line. Clicking on a line which
already has a breakpoint removes the breakpoint.

Watchpoint

Choose Watchpoint to detect when a variable or memory location changes its value.
When a watchpoint is in force, instructions in the program are single stepped instead of
being executed and the values of the variables being watched are checked after each
instruction or source statement executed. Watchpoints may be set on simple variables
such as integers or more complex variables such as structs and arrays. Setting a
watchpoint on a whole array can be very useful if, for example, you are debugging a sort
routine; you can track all changes to the array as it is sorted.

Since the debugger is single stepping, execution can be quite slow, typically between 4
and 10 times as slow as normal execution. If this is too slow to be practical, the best
approach is to try to isolate the section of code under suspicion, set a breakpoint on entry
to this section of code, and only set the watchpoint(s) when the program stops at the
breakpoint.
37

Execution control

 the C
re.

e
y be

he
but of
Choosing Watchpoint produces the following dialogue box:

Selecting on Variable or on Memory sets a watchpoint on the variable or memory
location specified in the associated writable icon. The syntax for specifying variables or
memory addresses is described in the section Specifying program objects on page 26.

Remove removes the watchpoint specified in the associated writable icon. As with
breakpoints the watchpoint to remove may be specified as a watchpoint number
preceded with a hash (#) or exactly as specified when setting the watchpoint.

List displays a list of watchpoints currently in force. Remove all removes all
watchpoints.

Note that if you are watching a local variable (i.e. a variable stored on the stack) the
watchpoint will become invalid on exit from the procedure containing the variable being
watched. The debugger detects this and stops execution with the message:

Watchpoint watchpoint discarded on exit from procedure

where watchpoint is the name of the variable being watched.

Also note that when you are watching a variable which is stored in a register, the
debugger may erroneously report a change in the variable’s value. This is because
compiler does not allocate registers to variables over the whole range of a procedu
Instead, it allocates the registers over the lifetimes of variables (i.e. the range of th
procedure in which the variable is actually used). Outside this range a register ma
used for other purposes (such as temporary values in calculations). It may even be
allocated to another variable, if the lifetimes of the variables do not overlap. Thus t
debugger may report a change in the variable when it sees the register changing,
course the register is no longer being used to store the variable.

You can use Ctrl-W as a short cut to produce the Watchpoint dialogue box.
38

Desktop debugging tool

 status
here

e
he

 in the

lay
 the

ging
hpoint

ring.

e
.

Trace

Trace allows you to select a set of actions about which you wish to be informed. When
one of these actions occurs a message to this effect is displayed in the debugger’s
window. For certain actions the source / disassembly display is updated to show w
the action occurred.

The actions which you can trace are as follows:

Execution

The source / disassembly display is updated for every ARM instruction or source
statement executed (ARM instruction if Machine-level debugging is enabled, sourc
statements otherwise). The effect is to produce a continuous execution display in t
context window.

Breakpoints

When a breakpoint occurs, instead of stopping execution, a message is displayed
Status window:

Break at breakpoint

where breakpoint is the location of the breakpoint. The source / disassembly disp
is updated to show where the breakpoint occurred. Execution then continues after
breakpoint.

Watchpoints

When a watchpoint changes, a message of the following form is displayed:

Watchpoint watchpoint changed at location

where watchpoint is the name of the variable being watched, and location is the
program location where the watchpoint was changed. If, for example, you are debug
a sort routine and have a watchpoint on the array being sorted, you can select watc
tracing to provide a continuous update of all changes to the array.

Procedures

When procedure tracing is enabled, a message of the following form is displayed:

Entered procedure procedure name

This can be useful if you wish to quickly locate the procedure where a fault is occur

Event breaks

When a Wimp event break occurs execution is not halted. Instead of stopping at th
breakpoint a decoded form of the event data is displayed and execution continues
39

Program examination and modification

ou
ents,
ing
SWI breaks

When a SWI break occurs execution is not halted, a message is displayed:

Break at SWI SWI Name

The SWI is then executed and execution continues after the SWI breakpoint.

Choosing Trace from the debugger’s menu produces the following dialogue box:

Select the set of actions you are interested in tracing and click on OK. A message
confirming your selection will be displayed. You won’t notice the effects of enabling
procedure tracing until execution of the debuggee is resumed.

Program examination and modification

Display

This option allows you to display information about the program being debugged. Y
can examine source text, instruction disassembly, variable contents, memory cont
stack backtrace information, register contents and low-level symbol values. Choos
Display produces the following dialogue box:

You can use Ctrl-D as a short cut to produce this display.
40

Desktop debugging tool
Select the item you want information about. The Source, Expression, Symbols,
Disassembly and Memory icons use the contents of the writable icon to determine what
to display. Each icon is described in turn below.

Source

Displays the specified source file in the debugger Context window. You can specify a
source line number at which to start the display. The syntax for the filename and line
number is:

filename[:line]

(that is, a valid RISC OS filename optionally followed by a colon (:) and a line number).
The line number defaults to 1 if not specified. The filename does not have to be a source
file used to generate the program you are debugging: you can display any file you like.

Expression

The writable icon should contain an expression name. The syntax for entering
expression names is described in the section Specifying program objects on page 26. The
expression is displayed in the debugger Status window.

Complex expressions such as C structs or arrays are displayed in structured format,
nested substructures are indented to indicated the level of nesting. Character pointers
and arrays are displayed as strings if a terminating 0 is found within the first 80
characters and there are no intervening non-graphic characters apart from newline and
carriage return, which are displayed as \n and \r. For example, the following structure:

typedef struct _HotSpot
{
 struct _HotSpot *next;
 BBox box;
 char *command;
 char *name;
 ComponentId id;
} HotSpot;
HotSpot *button;
41

Program examination and modification

ack

n the

 like
would be displayed as:

Arguments

Arguments displays all the arguments to the current procedure. The arguments are
displayed as if each individual argument had been displayed using the Display
Expression facility described above.

If you want to examine the arguments in an outer scope (i.e. in the procedure which
called this procedure or the procedure which called that …) you can use the Context
item on the main menu to change the current context to that of one of the calling
procedures, and then select Arguments to display the arguments of that procedure.

Locals

Locals is very similar to Arguments. It displays all local variables (including the
arguments) in the current procedure.

Backtrace

Backtrace displays a list of procedures in the call chain from the current procedure b
to the program entry point.

Procedures which have been compiled with debugging information are displayed i
following form:

procedure, line line of file

Those which have been compiled or assembled without debugging information look
this:

PC = address (procedure + offset)

Procedures in the Shared C Library will appear as:

PC = address
42

Desktop debugging tool

s

.
ory

A typical backtrace might look something like this:

Symbols

Symbols displays low-level symbols generated by the linker when linking with
debugging enabled. The writable icon gives a comma-separated list of symbols to be
displayed. The symbols and their addresses are displayed in the debugger’s Statu
window.

You can use the following wildcard characters in symbol names:

l A star (*) matches 0 or more characters

l A hash (#) matches any single character.

For example:

kernel* would list all the kernel routines
(e.g. _kernel_swi)

$$$$* would list all the linker generated symbols
(e.g. Image$$RO$$Base and C$$code$$Base).

Disassembly

This displays a symbolic instruction disassembly in the debugger’s Context window
The writable icon should contain a low-level expression which evaluates to a mem
address indicating where the disassembly should start. The syntax for low-level
expressions is described in the section Specifying program objects on page 26.

Memory

This displays a memory dump in the debugger’s Context window. The writable icon
should contain a low-level expression giving the memory address.

Registers

This displays the contents of ARM user registers 0 - 15 and the flags in R15.
43

Program examination and modification
FP Registers

This displays the contents of floating-point registers 0 - 7 and the flags in the
floating-point processor status word.

The Base writable icon gives the numeric base to be used when displaying Variables,
Arguments, Locals, Symbols and ARM registers. If this writable icon is left blank a
default of decimal or hexadecimal is used depending on what is being displayed.

The Update box applies to Variables, Locals, Arguments, Backtrace, Registers and FP
Registers. When Update is selected and one of these items is displayed, the item is
added to a list of items to be displayed whenever the debugger stops execution (for
example, at a breakpoint). There is no way to remove items from this list once they have
been added to it.

Change

Change allows you to alter variable, registers or memory contents. Choosing Change
produces the following dialogue box:

The Variable, Register and Memory radio buttons indicate what is to be changed. The
Name writable icon indicates which variable, register or set of memory locations is to be
changed. The New contents writable icon gives the new contents. Clicking OK makes
the change.

Variable

The Name writable icon should contain a variable name as described in the section
Specifying program objects on page 26. Only simple variables such as integers and
pointers or floating-point variables may be changed. The New Contents writable icon
should contain the new value for the variable, floating-point values are specified in
normal C floating-point format.

Register

The Name writable icon should contain a register name. Valid register names are R0 -
R15, SL, IP, SP, LR, PC and F0 - F7. The New Contents writable icon should contain a
low-level expression or floating-point constant, depending on the type of register being
changed. Low-level expressions are described in the section Specifying program objects
on page 26.
44

Desktop debugging tool

.

Memory contents

The Name writable icon should contain a low-level expression which evaluates to a
memory address. The New Contents writable icon should contain a comma-separated
list of low-level expressions, which are placed in successive memory words starting at
the memory word specified in the name writable icon. The syntax for low-level
expressions is described in the section Specifying program objects on page 26.

Options and other commands
The Options item on the debugger main menu produces the following dialogue box:

Source-level debugging

This option enables the display of source information in the debugger Context window.
If this option is deselected, a disassembly of the ARM instructions corresponding to the
source text will be displayed.

Machine-level debugging

This option enables the tracing of ARM instructions when trace execution is selected.

Memory protection

This option enables or disables protection of sensitive areas of memory. When this
option is enabled zero page (0 - &7fff) is protected against being written to by the
debugee and the debuggee’s code area is protected against writing.

Source line numbers

This option enables or disables the display of line numbers in source text displays
45

Options and other commands

 to
e

 text

 as
as
Stop at entry

When this option is enabled, the debugger automatically tries to set a breakpoint on
procedure main when a debugging session is started. This allows you to use Continue
on the debugger main menu to get rapidly to the start of your source code.

RISC OS bindings / Arthur bindings

This option is provided for backward compatibility.

Command line

This writable icon allows you to change the command line passed to the debuggee. The
existing command line is displayed in the icon and may be edited. Note that the first
word of the command line should be the program name.

Base

The Base writable icon gives the default numeric base when displaying or entering
numbers.

Source tree

Compilers such as Acorn’s ANSI C may put relative filenames in the debugging
information (e.g. c.display or ̂ .mip.c.aetree). The debugger needs to know
where these files can be found. By default it assumes the source files reside in the
directory from which the program image was loaded. This writable icon allows you
change this default. It accepts a comma-separated list of directory names, each on
ending in a full stop (immediately before the comma).

This could be used when debugging a library whose source is held in a directory
different to that of the debugee program source.

Log

Log allows you to record any information output to the debugger Status window to a
file. Choosing Log produces the following dialogue box:

Enter the name of the file into which you wish to log output. The file will be opened
a new log file. Any previous contents of the log file will be overwritten. If a log file w
previously open it will be closed when the new log file is opened.
46

Desktop debugging tool
Find

Find allows you to find a sequence of bytes, words or characters in the application
workspace. Choosing Find produces the following dialogue box:

Word or Byte

The writable icon should contain a comma separated list of low-level expressions giving
the word or byte values to be found.

String

The writable icon should contain the sequence of characters to be found, the sequence
should be entered without quotation marks of any kind.

All occurrences of the byte, word or character sequence in the application space are
reported in the debugger Status window.

*Commands

*Commands allows you to access the RISC OS CLI from within the debugger.
Choosing *Commands will lead to the following dialogue box:

Enter the command you wish to execute in the dialogue box and press Return or click
OK. If you are debugging a Wimp task (i.e. a task which has called Wimp_Initialise)
you should precede the command with the WimpTask command, otherwise the output of
any command executed may be displayed in graphics mode.

If you wish to enter several commands you can enter the Gos command or the
ShellCLI command in the dialogue box.
47

Options and other commands
Help

Help gives interactive help on the debugger. Choosing Help will produce this initial
help window:

Choose the icon corresponding to the topic on which you want help. The help will be
displayed in the Help box above the topic buttons.

Quit

This quits the debugger and returns to the calling environment (generally the RISC OS
desktop).

You can use Ctrl-Q as a short cut for Quit.
48

Desktop debugging tool
An example debugging session
The following example debugging session shows how DDT might be used to fix a rather
bug-ridden file sorting tool written in C. The source is given here with line numbers for
reference later in the chapter. The source, along with the other files to make the
application, can be found in !Sort, which is in the AcornC_C++.Examples
directory.

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <string.h>
 4 #include <stdarg.h>
 5
 6 #include "kernel.h"
 7
 8 #define READATTR 5
 9 #define READFILE 16
 10 #define WRITEFILE 0
 11
 12 #define FILEFOUND 1
 13
 14 static void fail(char *errmsg, ...)
 15 {
 16 va_list ap;
 17
 18 va_start(ap, errmsg);
 19 vfprintf(stderr, errmsg, ap);
 20 va_end(ap);
 21 exit(1);
 22 }
 23
 24 /* See Sedgewick: Algorithms 2nd edition P 108 */
 25 static void sortstrings(char *a[], int n)
 26 {
 27 int h, i, j;
 28 char *v;
 29
 30 h = 1;
 31 do
 32 h = h * 3 + 1;
 33 while (h <= n);
 34 do {
 35 h = h / 3;
 36 for (i = h + 1; i <= n; i++) {
 37 v = a[i];
 38 j = i;
 39 while (j > h && strcmp(a[j-h], v) > 0) {
49

An example debugging session
 40 a[j] = a[j-h];
 41 j -= h;
 42 }
 43 a[j] = v;
 44 }
 45 } while (h > 1);
 46 }
 47
 48 void sortfile(char *infile, char *outfile)
 49 {
 50 _kernel_osfile_block finfo;
 51 int size;
 52 char *finbuff, *foutbuff;
 53 char *cp;
 54 int l, linestart;
 55 char **lbuff;
 56 int i;
 57
 58 if (_kernel_osfile(READATTR, infile, &finfo) !=
 FILEFOUND)
 59 fail("Error opening %s\n", infile);
 60 size = finfo.start;
 61 if (!(finbuff = malloc(size + 1)) || !(foutbuff =
 malloc(size + 1)))
 62 fail("Out of memory\n");
 63 finfo.load = (int) finbuff;
 64 finfo.exec = 0;
 65 if (_kernel_osfile(READFILE, infile, &finfo) < 0)
 66 fail("Error reading %s\n", infile);
 67 l = 0;
 68 cp = finbuff;
 69 linestart = 1;
 70 for (i = 0; i < size; i++) {
 71 if (linestart) {
 72 l++;
 73 linestart = 0;
 74 }
 75 if (!*cp || *cp == ‘\n’) {
 76 *cp = 0;
 77 linestart = 1;
 78 }
 79 cp++;
 80 }
 81 *(finbuff + size) = 0;
 82 if (!(lbuff = malloc(l * sizeof(char *))))
 83 fail("Out of memory\n");
 84 cp = finbuff;
50

Desktop debugging tool
 85 for (i = 0; i < l; i++) {
 86 lbuff[i] = cp;
 87 cp += strlen(cp);
 88 }
 89 sortstrings(lbuff, l);
 90 cp = foutbuff;
 91 for (i = 0; i < l; i++) {
 92 strcpy(cp, lbuff[i]);
 93 cp += strlen(cp);
 94 *cp++ = ‘\n’;
 95 }
 96 finfo.start = (int) foutbuff;
 97 finfo.end = (int) foutbuff + size;
 98 if (_kernel_osfile(WRITEFILE, outfile, &finfo) < 0)
 99 fail("Error writing %s\n", outfile);
 100 free(finbuff);
 101 free(foutbuff);
 102 free(lbuff);
 103 }
 104
 105 int main(int argc, char *argv[])
 106 {
 107 if (argc != 3)
 108 fail("Usage: Sort <infile> <outfile>");
 109 sortfile(argv[1], argv[2]);
 110 return 0;
 111 }

The debugging session

Follow the steps below to debug the example program.

1 Compile and link the program using !Make with the Makefile provided in the
!Sort directory.

Now try running the program:

2 Double click on the !Sort application directory. The Sort tool icon will appear on
the icon bar.
51

An example debugging session

ilar

m.
is

s to

ject
3 Drag the example input file infile on to the Sort tool icon.

This should sort the input file and display a Save as dialogue box, to allow you to
save the sorted result. Unfortunately it doesn’t, instead it produces a display sim
to the following:
Illegal address (e.g. wildly outside array bounds)

Postmortem requested
 Arg2: 0x0000000c 12 -> [0xe59ff110 0xe59ff110 0xe59ff110 0xeae00ce7]
 Arg1: 0x0000ca8c 51852 -> [0x0000cb14 0x0000cb18 0x0000cb18 0x0000cb18]
3984074 in function sortstrings
 Arg2: 0x0000ad70 44400 -> [0x49534353 0x48443a3a 0x69727261 0x2e242e73]
 Arg1: 0x0000ad3f 44351
8348 in function sortfile
 Arg2: 0x0000acf4 44276 -> [0x0000ad10 0x0000ad3f 0x0000ad70 0x00000000]
 Arg1: 0x00000003 3
8430 in function main
39a29c4 in unknown procedure
84b8 in anonymous function

This is called a symbolic backtrace.

The first line gives a general indication of what might be wrong with your progra
In this case it’s an illegal address; the program tried to access memory which
outside the addressing range of your computer.

Each line of the form address in function name represents a procedure
call frame on the stack. The first frame on the stack is function sortstrings;
this is where the illegal address was referenced.

This doesn’t look too promising, so try running it under DDT to get more clues a
what might be wrong:

4 Quit the Sort tool.

5 Construct a debug version of Sort with Make. To do this, first open the Make pro
dialogue box for Sort, click Menu on it and Select on the Link item of the Tool
options submenu. Next, enable the Linker Debug option and click on OK to alter
the Makefile. Use the Make Touch facility to touch all source members by clicking
on All in the Touch option. Finally, click on the Make button to remake Sort.

6 Start the debugger if you haven’t started it already and drag the !Sort application
directory on to the debugger’s icon.

7 Drag the sample input file infile on to the Sort icon on the icon bar. The
debugger’s Context and Status windows should now be displayed.

The program actually crashed in the function sortstrings. Since you want the
program to stop before making the illegal access, you want it to stop at the
beginning of function sortstrings. So:
52

Desktop debugging tool

on

were

e of

ding
8 Set a breakpoint on procedure sortstrings:

Bring up the breakpoint dialogue box. Enter the name sortstrings, and choose
at Procedure.

As a general rule this is the best way to start a debugging session. By placing a
breakpoint just before the section of code you think is wrong (or after the code you
know to be correct) you can examine the program state to ensure it is correct and the
step through the incorrect code to find exactly where the error is occurring.

Tell DDT to start executing your program:

9 Choose the Continue option from the debugger’s menu. The debugger will stop
with the following message:

Break at main, line 107 of c.sort

The debugger always stops on entry to main. However you want it to continue until
it reaches sortstrings, so:

10 Choose Continue from the main menu again.

This time the debugger displays the following message:

Break at sortstrings, line 30 of c.sort

The Source window should contain the source for the start of function
sortstrings, with the execution location indicator (=>) pointing to the first
source line of the function sortstrings.

Now you want to examine the program state to ensure it is correct before
continuing. In this case, the most important state information is the function’s
arguments. You can examine them as follows:

11 Choose Display on the debugger’s menu (or use the short cut Ctrl-D) and click
the Arguments button in the Display dialogue box.

The debugger will display the following in the Status window:

a = 0000ca8c
n = 12

The two arguments to sortstrings are:

n is the number of strings to sort, in this case 12. This is correct, since there
12 names in the input file.

a is a pointer to an array of char *s or strings. The debugger displays the valu
this pointer, i.e. the address of the array.

Note: You may get a different address when you try running this example depen
on the version of the C compiler and library you are using.

Next, examine the individual elements of the array:
53

An example debugging session
12 Enter the array element as it would appear on the left hand side of an assignment in
C in the Display dialogue box, and click on the Expression button.

To examine element 0, enter a[0]. To examine element 1, enter a[1]. The
debugger will display the array elements as follows:

a[0] = string "Noel"
a[1] = 0000cb18

The first element was correct: it contained the string Noel, which is the first name
in the input file. However, the second element is a null string. This is wrong: it
should contain the string Edward. This means that the arguments to
sortstrings were wrong. The error therefore occurred earlier, so you want to
try re-running the program under the debugger and setting the breakpoint earlier:

13 Quit the debugging session and drag the sample input file infile to the Sort icon
to start a new debugging session.

14 Now follow the instructions in step 8 to set the breakpoint at function sortfile
instead of function sortstrings, and continue execution until the program hits
the breakpoint at function sortfile.

The variable lbuff is passed as the first argument (a) to sortstrings. lbuff
is initialised in the loop just before the call to sortstrings. Therefore you want
to set a breakpoint at the start of the initialisation loop:

15 Scroll the Source window up until the initialisation loop comes into view.

From the line numbers in the Source display you can see that the initialisation loop
starts at line 84, with the initialisation of cp. So, set a breakpoint on line 84:

16 Enter 84 in the Breakpoint dialogue box and click on at Line.

17 Now choose Continue from the main menu.

The program will continue executing until it reaches line 84, where it will stop at
the breakpoint. You want to examine each element of the array as it is initialised,
since the array is initialised from the pointer cp. Set a watchpoint on cp:

18 Enter cp in the Watchpoint dialogue box and click on on Variable.

19 Choose Continue again. The debugger will stop with the message:

Watchpoint on cp changed at sortfile, line 85 of c.sort
New contents: string "Noel"

This is correct, so:

20 Choose Continue again. The debugger will respond with:

Watchpoint on cp changed at sortfile, line 87 of c.sort
New contents: 0000cb18

This is wrong: it should contain the string Edward. Look at the line which updated
the value of cp:
54

Desktop debugging tool

try
87 cp += strlen(cp);

This is supposed to update cp to point to the next string in the list of strings to be
sorted. It does this by adding the size of the string pointed to by cp into cp.
Unfortunately, it miscalculates the size of the string by omitting to take into account
the 0 byte at the end of the string. This means that the second and all subsequent
strings are treated as null strings, because they are pointing to the 0 byte at the end
of the previous string instead of the start of the string.

To fix this:

21 Quit the debugger and the Sort tool.

22 Edit the file c.sort and change line 87 to read:

87 cp += strlen(cp) + 1;

23 Recompile c.sort using the Make utility.

Now try re-running the program:

24 Double click on the !Sort application directory and drag the file infile to the
Sort tool icon, then choose Continue twice on the DDT menu to run Sort.

The result is the same as when you first tried running it: you get the same exception,
although this time trapped by DDT rather than generating a backtrace, so obviously
the fix applied to line 87 didn’t fix the problem. So, try running it under the
debugger again:

25 Quit the Sort tool frontend.

26 Drag infile to the Sort tool icon.

27 Set a breakpoint on function sortstrings and choose Continue.

The debugger will stop when it reaches main.

28 Choose Continue again, and the debugger will stop at the start of sortstrings.

Examine the arguments. All being well they should look something like this:

a = 0000ca90
n = 12

29 Display the individual elements of a by entering a[0] etc., in the Display dialogue
box and choosing Expression.

Do the same for a[1] and a[11]. The display should look like this:

a[0] = string "Noel"
a[1] = string "Edward"
a[11] = string "Martin"

They’re correct now, so something must be wrong with the sort algorithm. So,
setting a breakpoint on the inner while loop:
55

An example debugging session
30 Scroll the source display to find the line number; it should be line 39. Enter 39 in
the Breakpoint dialogue box and click on at Line and continue execution. The
debugger should display:

Break at sortstrings, line 39 of c.sort

Examine a few variables:

31 Enter j in the Display dialogue box and choose Expression; then do the same for h.
The debugger should display:

j = 5
h = 4

These are both correct, so look at the contents of a[j-h]:

32 Enter a[1] in the Display dialogue box and choose Expression. The debugger
should display:

a[1] = string "Edward"

The shellsort algorithm should be comparing against the first string (i.e. Noel). It is
not, so this is wrong. Looking closely at the algorithm you can see that it has been
written assuming array indices start at 1, whereas in C they start at 0.

To fix this, you could subtract 1 from each array index. However you just want a
quick fix to see if it works, so:

33 Add the following line at the start of the function after line 29:

30 a--; /* Quick hack to make array 1 origin */

34 Compile the program, this time disabling the Debug option of Link using Make (see
step 5), and try running the result.

All being well, the program should run to completion and produce a Save as dialogue
box for the output. You can just click the OK button to save it, or you may like to drag it
to the editor icon to load it into the editor to check that it has been sorted correctly.
56

5 Make

he Make application aids the programmer in the construction and maintenance of

multiple-file programs, which can be combined to form any number of final targets T
(for example, libraries, modules, and application programs). The set of final targets and

the files from which they are constructed are known as a project (see later for a more
detailed description of this term). The facilities provided for a project include

l automatic construction of Makefiles

l automatic maintenance of Makefiles to track changes made to sources and the
addition/deletion of source and object files to or from a project

l setting options using dialogue boxes for the tools used to convert source files to
object files (e.g. C compiler or ObjAsm options)

l pre-emptive multitasking of the Make process when constructing final targets,
including the ability to pause, continue, or abort it at any time

l display of the output of tools used to make a final target, in a scrollable, saveable
window.

Invoking Make
Make can be invoked in two ways; by double-clicking on the Make icon from a
directory display, or by double-clicking on a file of type Makefile (0XFE1). In the
latter case this will also run the Acorn Make Utility (AMU) tool to make the first target
found in the chosen Makefile.

Clicking Menu on the Make icon gives the menu shown on the left.

Info shows the normal information box about the application.

Options allows the setting of auto-run and display options.

Open is used to open a dialogue box for a given project.

Quit quits Make.

These are described more fully in later sections.

Using Make
To use Make efficiently it is necessary first to understand how to create and maintain a
project.
57

Using Make

ly

r

) and

e

 as a
(

d to
Projects

A project is made up of a collection of source and object files, which combine to form a
number of final targets. The life cycle of a project will typically involve the creation and
maintenance of the project, the production of final results, and finally, if required, the
removal of the project from Make’s control. The details of these steps are more ful
described in later sections, but here we give an overview of their operation.

When a new project is created, you give it a unique name, and save its associated
Makefile to disc. The persistent state of a project is held in a Makefile, which is
automatically maintained by Make, with the option that it can be textually edited fo
customisation to a particular projects requirements. To achieve this automatic
maintenance, the Makefile is divided into sections which are delimited by active
comments (i.e. lines beginning with a (#), which are otherwise ignored by the AMU
program).

The files which make up the project can reside anywhere on disc (or on a network
can be added to, and removed from, the project by dragging their filer icons onto a
dialogue box representing that project.

Final targets for the project are created by clicking on Make in the dialogue box relating
to that project; the targets will be saved in the same directory as the Makefile for th
project.

Under the desktop the concept of current directory has no sensible meaning, Make
therefore uses the work directory in which the Makefile for a project has been saved
prefix for all filenames used in the project. This prefix is denoted by the at symbol @).

Clicking Menu on a project dialogue box gives the menu shown below, which is use
further tailor the project. References to this menu are made in a later section on
maintaining projects.
58

Make

n
is

d

.

sed

he

 the

ed
in
Creating new projects

In order to create a new project, you should click Select on the Make icon on the icon
bar. This will display the New Project dialogue box as shown below, which allows you
to enter information for the new project:

There are three writable icons in the New Project dialogue box which you must fill in
before a new project can be created. These are:

Name you should fill this in with the name of the project. This name will be used to
identify the project in the Open menu as described later.

Target you should fill this in with the name of the main target to be created from this
project. For example, if you were creating an application the target name
would be !RunImage, if you were creating a module the target name would
be the module’s name (e.g. FrontEnd).

Tool you should fill this in with the name of the tool used to construct the mai
target. For an application this could be Link, or in the case of a library th
could be Libfile.

Note: Make requires this tool to be one which takes intermediate files an
creates a final object. Such tools are Link (for a module or application),
LibFile (for a library) or Squeeze (for a squeezed module or application)

Having filled in these three boxes, you must then save the Makefile which will be u
to hold all information for this project. This is accomplished either by dragging the
Makefile icon to a directory viewer (having optionally changed the leafname from t
default Makefile), or by typing in a full pathname and clicking OK. The directory in
which the Makefile is saved is important. This directory is where the final targets for
project will be created, since each target will be saved in the @ work directory (see the
section Creating a final target for a project on page 64 for an explanation of this). The
sources for the project can be stored anywhere, since they will always be referenc
relative to @. If any of the Name, Target or Tool icons have not been correctly filled
then an error is reported, and the Makefile is not created.
59

Using Make

ained

, and

ct,

ing
is

ers
 to
When this process has been completed, the newly created project becomes one of those
maintained by Make, until it is explicitly removed (see the section Removing projects on
page 64 for how this is done). The dialogue box which is used to maintain this project
then appears, with the project’s name in its title bar. The project can then be maint
as described below.

Maintaining projects

To maintain a project it is necessary to understand how to open and close projects
how to specify the targets for a project.

Opening a project

Make keeps a list of all projects which it is maintaining at any one time. This list is
shown when you enter the Open submenu from Make’s application menu. When no
projects are known about, this menu item is unselectable.

The list of project names is shown with the most recently registered project at the
bottom. Clicking on a project name in this list will open a dialogue box for that proje
with the name of the project in its title bar; if the project was already open, then the
dialogue box is brought to the front of the WIMP’s window stack. If the project is be
opened for the first time, then the directory containing the Makefile for this project
also opened. The dialogue box is shown below:

This dialogue box can be used to add new members to the project, remove memb
which are no longer required, make final targets, and select the current final target
which these operations refer. These are described in more detail in later sections.
60

Make

ed
is
f

efault,

k on
he
ince

te

ed in

be a
 it is

t of

d to
Adding and removing members

When you have written a new source file or created a new object file which you wish to
include in a project, you should drag the filer icon for that file to the icon marked Insert
in the project’s dialogue box menu. Typically, the only object files which you will ne
to insert in a project are external libraries. Any number of files can be dragged in th
way to Insert, where their full pathnames are displayed, provided that the number o
characters displayed does not exceed the buffer for the icon (4096 characters by d
but this can be changed by using a Wimp templates file editor).

Once you are satisfied that this is a list of all the files to be added to the project, clic
OK to the right of Insert. The insertion will then take place. An asterisk appears in t
title bar of the project dialogue box to indicate that this project has been modified s
its Makefile was last saved.

If you wish to remove members from a project, follow the same procedure as that
described for insertion, but drag file icons to the Remove icon instead, and click on OK
to the right of Remove. Again an asterisk will appear in the project’s title bar, to indica
that a modification has been made.

Note that insertion and removal applies only to the currently selected target when us
conjunction with multiple-target projects (see the section Multiple targets on page 62 for
more details).

Make uses the following rule for dealing with files dragged to Insert: if the filename
has, as its last but one component, a string (usually just one character) which
corresponds to one of those registered by a translation tool, then it is assumed to
program source file and a rule is constructed to make it into an object file; otherwise
assumed to be an object file (such as a library) and will just be inserted into the lis
objects which go to make up the current final target.

Listing members

A list of the members which have been added to a project (and not subsequently
removed) can be obtained in a scrolling text window by selecting the List members
option from that project’s dialogue box menu. The filenames in this list are expande
full pathnames, whereas they will appear relative to @ in the Makefile for the project.
61

Using Make

o be

on

ntered
e

get is
k

et,
Touching members

You can force a member of the project to be time-stamped using the Touch option in a
project’s dialogue box menu:

In the Touch dialogue box, you can type (or drag to it) the filename(s) of the file(s) t
touched (either relative to @ as it appears in the Makefile, or as a full pathname), and
then click on OK. If you wish to touch all source members of the project, then click
All; in this case any filename in Files is ignored.

Multiple targets

When a project is first created, it has just one final target - the one whose name is e
in the Target icon in the New Project dialogue box. This name will also appear in th
Target icon in a project’s dialogue box when that project has been opened. This tar
referred to as the current target, and it is the target which will be made when you clic
the Make icon. The current target is also the one to which members are added or
removed when you enter filenames in the Insert and Remove icons from a project’s
dialogue box.

In order to add a new target, you should use the Add target option from a project’s
dialogue box. In the Add target dialogue box you must enter a name for the new targ
and the name of the tool which is used to construct that target (e.g. MyLibrary and
LibFile), as shown above.
62

Make

al
uctors

nd

Targets created in this fashion can be removed by choosing Remove target in the
project menu. Remove target always applies to the current target.

When a project has its dialogue box open, the list of final targets can be traversed using
the up and down arrow icons (next to the Target icon). You will notice that any targets
which you manually insert in the user-editable section of the Makefile will also appear in
the project dialogue box. This is so that you can select them as the target to be made
when clicking on the Make icon.

This can be used to create a ‘squeezed’ image by doing the following:

l When you first create the project use a final target name such as !RunImageU for
the unsqueezed binary. Insert all your sources and library files to this target.

l Then add a target (called, for example, !RunImage) with its ‘tool’ set to Squeeze.

l Insert the @.!RunImageU as the only member for this target.

If you used the example names above, and you now make the target !RunImage, you
will get a squeezed final binary.

Setting tool options

In order to make final targets and object files which will combine to make those fin
targets, a number of tools such as compilers, assemblers, linkers and library constr
will be used. These tools will typically have a set of options which are normally
specified from a dialogue box when using the tools under the control of the FrontE
module. It is possible to set the options for a particular tool’s use under Make (for a
given project) by following the Tool options submenu from the project’s dialogue box
menu.
63

Using Make

his
e

he
n

st,

h
y

led

This will show a list of all the tools which have registered themselves for use with Make
(for example, Cc, ObjAsm, Link etc). Clicking Select or Adjust on a tool’s name in t
list will result in the options dialogue box for that tool being displayed. This dialogu
box can then be used to set the options for the tool; these will be translated into
command-line options and entered into the toolflags section of the Makefile for the
project.

Removing projects

A project can be removed from the list of projects maintained by Make by choosing
Remove project from the project’s dialogue box menu. This simply means that it is
removed from the list of projects which can be opened from Make’s Open submenu; the
Makefile for the project is still retained.

You will also be asked if you want to remove the files which store the toolflags for t
project. If you intend never to reinstate this project as one maintained by Make, the
answer Yes to this query. If you are just temporarily removing this project from the li
then answer No, so that the toolflags state for this project is saved.

If you later wish to reinstate a removed project, this can be done by dragging the
Makefile for the project onto the Make icon.

Creating a final target for a project

There are two ways of creating a final target for a project:

l If you click on Make in a project’s dialogue box, Make will make the target whic
is currently showing in the Target icon. An alternative target can be selected b
clicking the up and down arrow icons to move through the list of possible final
targets.

l If you double click on a filer icon of type Makefile (0XFE1), and you have enab
the Auto Run options from Make’s Options menu, then Make will make the first
target that it finds in the Makefile (which will be the target specified when the
project was created).

In both of the above cases, the amu program is run pre-emptively using the TaskWindow
module to make the chosen target. The space available to load and start up amu is
determined by the Wimp Next slot. If you get errors such as:

No writable memory at this address

when you run a Make job, try adjusting the Next slot.
64

Make

ject’s
The output from this process appears by default in a scrollable, saveable text window (or
in a summary dialogue box if this option is selected in the Display submenu):

This window is read-only, you can scroll up and down to view progress, but you cannot
edit the text without exporting it to an editor. To indicate this, clicking Select on the
scrollable part of this window has no effect.

Clicking Adjust on the close icon of the output window switches to the output summary
dialogue box:

This box presents a reminder of the tool running (Make), the status of the task (Running,
Paused, Completed or Aborted), the time when the task was started and the number of
lines of output that have been generated (i.e. those that are displayed by the output
window). Clicking Adjust on the close icon of the summary box returns to the output
window.

Both the above output displays follow the standard pattern of all the non-interactive
desktop tools. The common features of the non-interactive desktop tools are covered in
more detail in the chapter General features on page 101. Both output displays, and the
menus brought up by clicking Menu on them, offer the standard features allowing you to
abort, pause, or continue execution, save output text to a file, or repeat execution.

Saving a project without Making it

If you have made changes to a project, and wish these to be written back to the pro
Makefile without actually making a target, then click on Save in the dialogue box.
65

Using Make

ging

 is

e

 so

en

ake’
Setting Make main options

The Options submenu from the Make icon bar menu allows you to set two options:
Auto Run and Display.

Selecting Auto Run means that when you double-click on a file of type Makefile
(0XFE1) from a directory display, the AMU program is immediately invoked to make
the first target found in the Makefile; if you do not select Auto Run, then
double-clicking on a Makefile merely adds the project to Make’s list of maintained
projects (if it is not already there), and opens the dialogue box for that project (brin
it to the front of the WIMP’s window stack if it is already open).

In the Display submenu, you can choose whether the output of all Make processes
displayed in a scrolling text window or in a summary dialogue box.

Text-editing Makefiles

You can use a text editor to customise a project’s Makefile. There is a section of th
Makefile, following the active comment User-editable dependencies, which
is left untouched by Make. All other sections of the Makefile will be over-written and
should not be edited using a text editor (unless you are thoroughly familiar with the
operation of Make). The full format of a Makefile is described in Makefile format on
page 67.

Note that the actual Makefile is only read in if Make is re-loaded and the project th
opened, just re-opening the project without re-loading Make is not sufficient.

A good example of how this could be used, is to create a rule which removes an
application’s binary image and the object files used to create it, so that the next ‘m
will remake all objects. This is done by entering in the user-editable section the
following lines:

clean:; remove !RunImage
 wipe o.* ~cf
66

Make
Using conventional Makefiles

If a file of type Makefile, which does not comply to the Makefile format, is
double-clicked, or if a file of type Text or Data is dragged onto the Make icon, it is not
registered as a project. Instead Make runs the AMU program with this file as its input
Makefile. This allows the use of Makefiles from other systems, and ones which do not
fit into the project-oriented way of working required by Make.

Makefile format
The Makefile which is used to maintain a project is a file of type 0XFE1 (Makefile),
and contains normal ASCII text. This text is arranged into a number of sections which
are separated by active comments. For a detailed description of Makefile syntax see
appendix Makefile syntax on page 175.

Below, we describe each of these sections, beginning with their respective active
comments:

Project project_name: This gives a name to be used for the project
in the Open submenu.

Toolflags: This section has a set of default flags for
each of the tools which have registered
themselves with Make, for automatic
inclusion in a Makefile. The tool will have
done this by writing lines (described in the
Programmer interface on page 68) into:

<Make$Dir>.choices.tools.

Each macro in the Makefile will be of the
type:

toolflags = . . .

e.g. ccflags = -c

Final targets: This section contains the rules for making
the final targets of the project. For example:

!RunImage:link $(linkflags)

This information is obtained when the
project was created (from the Name and
Tool icons in the New Project dialogue box).
67

Programmer interface
Programmer interface
The following information is given for programmers wishing to add new desktop tools
to be used with the Make application.

If you wish to use a tool with Make, which does not come with Acorn C/C++, you can
use either of the following two methods:

l Write a description or Setup file (see appendix FrontEnd protocols on page 187) for
the tool for use by the FrontEnd module and register it with Make as described
below in the section Registering command-line tools with Make.

l Write a WIMP frontend for the tool which complies with the details given below in
the section Message-passing interface for setting tool options.

Registering command-line tools with Make

A command-line tool which will be run under the control of the FrontEnd module (for
setting its options in a Makefile), will need to append lines of the following format to the
file <Make$Dir>.choices.tools:

toolname Name of tool

string Extension

flags Default flags for use by Make

rule Rule for converting sources to objects

pathname Full pathname of file containing application description

User-editable
dependencies:

This section is left untouched by Make, and
can freely be edited by the user. This allows
rules to be added which are specific to a
particular project; for example, it may copy
sources from a file server to your local
Winchester, before doing a compilation.

Static dependencies: This section contains rules for making an
object file from corresponding source. It
does not refer to include files etc.
(described in Dynamic
dependencies).

Dynamic dependencies: This section contains the rules which are
created by Make by running the relevant
tool on a source file to ascertain its
dependencies (e.g. cc -depend).
68

Make

r
P
his is

ake.

ur

e.

 with
pathname Full pathname of file containing Frontend setup commands

All the above lines should be terminated by the C newline character \n.

Message-passing interface for setting tool options

When the user selects a tool name from the Tool options submenu, Make issues a star
command to get the frontend module to start up a Wimp frontend for the chosen tool
(without an icon appearing on the icon bar). The setup dialogue box for that tool is then
displayed, with the Run icon replaced by an OK box.

The user can then set options for that tool. A suitable set of command-line options is
returned by the generalised frontend, to be used as that tool’s toolflags entry in the
Makefile.

If the star command fails (presumably because the frontend module is not active o
because there is no description for the chosen tool), then Make broadcasts a WIM
message (recorded delivery), to see if any application can deal with the request. T
to allow expansion of the system to incorporate other WIMP-based compilers,
assemblers, etc., which other parties wish to provide for use under the control of M

The WIMP message has the format:

If you have written an application which needs to respond to this message, then yo
application should:

1 Acknowledge the WIMP message. You must also store the taskhandle of Mak

2 Display a dialogue box to allow the user of your application to set options
appropriately.

3 When the user has chosen the options, send back a WIMP message to Make,
the following format:

Byte offset Contents
+16 DDE_CommandLineRequest (reason code) (&81401)

+20 Make’s internal handle

+24 … null-terminated application name

Byte offset Contents
+16 DDE_CommandLineResponse (reason code) (&81400)

+20 Application’s handle

+24 to +36 Application’s name

+36 … null-terminated command-line options
69

70

6 SrcEdit

rcEdit is a text editor, based on the RISC OS editor (Edit), with extra features to
S make it more suitable to create and edit program sources. S

You can control SrcEdit from a menu tree, which is described fully in this chapter.

ed

m
 the
ines
w to
 all

the
is a
However, many menu choices are available directly from the keyboard; once you are
familiar with SrcEdit, you may find that you prefer this method. These keystroke
equivalents are listed later in this chapter.

Starting SrcEdit
You can load SrcEdit either by double-clicking on the !SrcEdit icon from a directory
display, or by double-clicking on a file of type Text (&0fff). You will then see an icon
similar to that of Edit on the iconbar (a pen and program listing).

Typing in text

When you first open a new SrcEdit window, an I-shaped bar – the caret – appears at the
top left of the window. This is where text will appear when you start typing. You can
open more SrcEdit windows, but only one of them will have a caret in it: this is call
the current window. It is also identified by the fact that parts of its border appear in
cream rather than grey. You can type only in the current window.

If you type in some text without putting in any carriage returns, and using the syste
font (the default font) you will find that the window scrolls sideways. This is because
default SrcEdit window is not as wide as the screen. You can break your text into l
by pressing Return. Alternatively, click on the Toggle Size icon to extend the windo
the full screen and avoid having to scroll sideways. There is another way of getting
your text into the window, using the Format command; this is described later.

As you type, you will notice that SrcEdit fills the current line and then carries on to
next line, often breaking words in the middle. Ignore this for the moment, as there
menu option (Wordwrap) that will take care of it, and this will be described later.
71

SrcEdit menus
Inserting and deleting text

If you need to insert or delete text, position the caret where you want to make the
alteration by moving the pointer there and pressing Select. You can insert text simply by
typing. If you want to delete a character, position the caret immediately after it and press
either Backspace or Delete; hold the key down and the auto-repeat will come into effect,
deleting more characters.

SrcEdit menus
The top level menu for text windows contains the following options:

The Misc menu

This menu offers six options:

Info tells you about SrcEdit, including the version number of your copy of the program.

File gives information about the file you are working on, in particular:

l whether it has been modified since you last saved it;

l what type of file it is: for example, a Text File or a Command file (its icon, if it has
one, is also shown);

l its name, including the full directory pathname;

l its size, in number of characters;

l the time and date it was last saved (or if you have not saved it yet, the time and date
when it was first created).

New view opens a second window on the same text. This allows you to look at two parts
of the same document, and makes many actions such as copying from one part of a
document to another much easier. Remember that you are looking at one document, not
at two separate copies of it: to illustrate this, try looking at the same part of a document
in two views (not the way you will normally use New view!); enter some changes in the
first view and you will see the same changes appearing in the second view. This is
particularly useful with large documents.
72

SrcEdit

l-U)

play

the
he file
the
Column tabs switches on a different type of tab insertion; for more detail see the section
Laying out tables – the Tab key on page 86. When this option is on, it is ticked in the
Misc menu and ColTab appears in the Title bar.

In SrcEdit the default state is to have Column tabs on.

Overwrite, means that each character you type replaces the character at the cursor,
instead of pushing the cursor aside and inserting the new character. When this option is
on, it is ticked in the Misc menu and Overwrite appears in the Title bar.

Wordwrap prevents words being split over line-ends as you type. When this option is
on, it is ticked in the Misc menu and Wordwrap appears in the Title bar. Do not confuse
this option with Wrap, selected from the Display submenu. Wordwrap, unlike Wrap,
inserts a newline character (which is there although you cannot see it on the screen)
when the cursor moves to a new line.

Saving text – the Save menu

The Save menu allows you to save a complete file; you can also save part of a file using
the Select menu.

In order to save a file in the easiest way, you need to have on the screen the directory
display for the directory where you want to save the file.

1 Click Menu over the SrcEdit window, and move to the Save submenu. A dialogue
box appears, containing an icon, the current filename, and an OK button (as a
short-cut you can also display this dialogue box by pressing F3).

2 If the file has not been saved before, SrcEdit offers you a default filename of
‘TextFile’. If you want a different name, use Backspace or Delete (or press Ctr
to delete TextFile, then type in the name you want.

3 Place the pointer on the icon in the box and drag the icon into the directory dis
where you want to keep the new file. An icon for the file then appears in the
directory window.

This action assigns a full pathname to the file, as you will see from the Title bar of
SrcEdit window. When you have made some changes to the text and want to save t
a second time, use the Save option again, but this time, provided you want to use
same filename, you can save the file by clicking the OK box. Saving the file with the
same name overwrites your old file with the new information.
73

SrcEdit menus

k
t a

 few
want

ed) or

open
ent
opied
You can also save part of the text, typically for printing or transferring to another
application, using the Select/Save option, described in the next section.

Manipulating blocks of text – the Select menu

You can select blocks of text, then manipulate them.

The simplest way to select a block is to position the pointer where you want the block to
start, click and hold down the Select button, then drag the pointer to the end of the block
and release the button. The selected block of text is highlighted.

If necessary, you can then use Adjust to ‘adjust’ the ends of the block. Position the
pointer exactly where you want the block to start or finish, click Adjust and the bloc
lengthens or shrinks accordingly. This is particularly useful when you want to selec
block that extends beyond the part of the text you can see in the window. Select a
words or lines at the start of the block, scroll until you can see the point where you
the block to end, place the cursor there and click Adjust.

Here are some other ways of selecting blocks of text:

To Do this
select a single word double-click Select
select a single line triple-click Select
extend block to whole word double-click Adjust
extend block to include current line triple-click Adjust

Once selected, text can then be saved, copied, moved, deleted, de-selected (clear
indented by choosing options from the Select menu:

To Save a selected block, move to Save from the Select menu, and follow the standard
saving procedure. Use this option to copy a selection into another SrcEdit window;
a new window and drag the icon into it. The copied block will appear after the curr
caret position in the destination window. The caret is also moved to the end of the c
text.
74

SrcEdit

n the

ter

To make a Copy of a selected block of text, select (highlight) your block of text and then
position the caret where you want the copy inserted, then call up the Select submenu and
click on Copy. The original block remains selected. Keep clicking on Copy to make as
many copies as you want.

If the caret is already at the position where you want the copied block to appear, press
and hold Ctrl while making the selection in the usual way. Copy the block by pressing
Ctrl-C. This way you can make a selection without moving the caret.

If you copy to a position inside a selected block, both the original and the new copy
remain selected. If you then make multiple copies you will get double the number you
indicate. This may happen accidentally if you position the caret immediately to the right
of a selected block ending in a newline character: because the newline character does not
appear on the screen it is not highlighted, but is still part of the selected block. To undo
an action, choose Undo from the SrcEdit menu.

To Move a selected block of text, select your block of text and place the caret where you
want the text moved to, then click on Move.

If the caret is already where you want the block to end up, press and hold Ctrl while
making the selection in the usual way. Then still holding Ctrl, press V, and the block will
be moved to the caret position. This way you can make a selection without moving the
caret.

To Delete a selected block of text, click on Delete. The marked block then disappears.
(Undo – in the Edit menu – allows you to reverse any changes or deletions made i
Select menu).

To Clear or ‘deselect’ a block of text you have previously selected, click on Clear. The
highlighted block reverts to normal and the block is no longer selected.

Indent allows you to indent a selected block of text. The indent is defined in charac
spaces. You can also use Indent to add a text prefix to the beginning of each line of a
block.

To indent a selected block of text, call up the Indent submenu:
75

SrcEdit menus

r

r at

 will
 of a

 the
uming

the

ed
You can then type in three different types of indent:

l A positive number gives you an indent of the specified width.

l A negative number, –5, for example, deletes the specified number of spaces o
characters from the beginning of the block line; use this to cancel an indent.

l You can also type in text: IGNORE, or Note, for example. This will then appea
the beginning of every line in the selected block. You can remove this text by
indenting with a suitable negative number.

By selecting some text and choosing the Help submenu, some language-specific help
can be given on that selection. This help is supplied by a language package, which
have registered a help file containing typically a list of help messages for keywords
programming language (e.g. the C printf function).

The Load submenu allows you to load a file into the editor, whose name is given by
current selection. The rule used to determine the name of the file to be loaded (ass
the current selection is in a file whose name has the form
DirectoryPath.LanguageExtension.foo) is as follows:

1 Try to load file Selection.

2 If (1) fails try to load file:

DirectoryPath.LanguageExtension.Selection

3 Try to load file DirectoryPath.Selection.

4 If (3) fails try the comma-separated list of directories entered by the user from
Search Path entry in the Options submenu of SrcEdit’s icon bar menu, with
Selection appended as a leafname.

5 If (3) and (4) fail, try the comma-separated list of directories which are register
for the current language (see The SrcEdit icon bar menu on page 92 for details of
how to set the current language).

indent = 4

indent = –4

indent = Note:

no indent
76

SrcEdit

he
For example, you may have a C source file with a line #include "defs.h". By
selecting defs.h and typing Ctrl-L the header file defs.h will be loaded into SrcEdit
(providing it can be found on one of the search paths).

The Edit menu

The first option in the Edit menu is Find. At its simplest, this allows you to locate any
character(s) in your file. You can also use it to replace text with other text. To make sure
that the search is complete, always position the caret at the start of the file before giving
the Find command. In the following description, the text being searched for is referred to
as a ‘string’; it may consist of any sequence of letters, numbers, spaces or other
characters.

Searching for a string of characters

To use Find without doing anything with the found string, choose Find in the Edit
submenu: the Find text dialogue box appears, with the caret in the Find box. Type in the
string you want to locate and press Return. The caret then moves to the Replace with
box.

Since on this occasion you do not want to replace the found strings, either click onGo,
press Return or press F1.

Edit finds the first occurrence after the caret of the word in your file, then displays t
Text found dialogue box, indicating the operations available.

To look for the next occurrence of your string, click on Continue. To abandon the
search, click on Stop or press Escape.
77

SrcEdit menus
Replacing a string of characters with a new string

To use Find for replacing a string with a new string, go to the Find text dialogue box as
before, but this time, insert the new string into the Replace with box. Then press Return,
and the Text found dialogue box appears.

Click on Replace to substitute the new string for the old string; if you do not want to
change this particular occurrence of the old string, click on Continue and SrcEdit moves
on to the next one.

If you click Last Replace, SrcEdit replaces the currently found instance of the string,
but does not search for further occurrences.

If you click on End of file Replace, SrcEdit finds and replaces all occurrences of the
string from the present one forward to the end of the file, without stopping at each one
for instructions.

Clicking on Undo takes you back to the last string replaced and returns it to the original
version; click Redo to change it back again.

The display at the top of the dialogue box keeps you informed of the state of the search;
if SrcEdit cannot find the word you have specified, it displays the message Not Found.

Using keyboard short-cuts

Besides using the Select button, you can control all these options from the keyboard; the
particular keys are indicated by the capital letters in the dialogue box. Press S and the
search Stops, press C and it Continues, D and it will reDo, and so on. Pressing Escape or
Return also stops the search and removes the Text found window.

Other useful facilities

Note that you can use Find to delete strings in a text, by entering nothing in the Replace
with box, and clicking on Replace in the Text found dialogue box, thus replacing the
found string with nothing: deleting it, in effect.

There are several other useful facilities in the Find text dialogue box:

l You can carry out the last Find and Replace operation again, by clicking Previous
(or by pressing F2).
78

SrcEdit

rs –

u

is

ic
l You can specify a string and ask SrcEdit to count the number of times it occurs in
your file (from the caret position to the end of the file) by clicking on Count (or by
pressing F3).

l By default, Find makes no distinction between upper and lower case characte
Hello will match to both HELLO and hello, or for that matter, hElLo – you can
specifically ask it to match case by clicking next to Case sensitive (or by pressing
F4). Hello will then match only Hello. Case sensitivity remains selected until yo
deselect it by clicking again.

Magic characters and their meanings

You can also use the Find facility to search for classes of characters. To activate th
feature, click on Magic characters (or press F5) in the Find dialogue box.

Magic characters are indicated by a \ character, as shown in the lower half of the
dialogue box, which shows you the available characters.

Type these characters in directly as shown in the window.

The magic characters operate as follows:

Character Meaning

* matches any string (including a string consisting of no characters
at all). This is really only useful in the middle of a search string.
For example, jo*n matches jon, john, and johaan.

\a matches any single alphabetic or digit character. So t\ap
matches tip, tap, and top, but not trap.

\d matches any digit (0 to 9).

\. matches any character at all, including spaces and non-alphabet
characters.
79

SrcEdit menus
Wildcarded expressions and their meanings

There is also a facility for specifying wildcarded expressions in search strings. In order
to use this facility, click on Wildcarded Expressions (or press F6) in the Find dialogue
box.

Click on the wildcard character you wish to enter and it is copied into the text box.

\n matches the newline character (remember that to the computer,
this is a character just like any other).

\cX matches Ctrl-X, where X is any character.

\& is used in the Replace with box to represent the found string:
the string matched in the search. This is particularly useful when
you have used magic characters in the Find string. For example,
if you have searched for t\ap, and you want to add an s to the
end of all the strings found, \&s in the Replace with box will
replace tip, tap and top by tips, taps and tops.

\\ enables you to search for a string actually containing the
backslash character \ while using magic characters. To search for
the strings cat\a or cot\a, enter c\at\\a.

\xXX matches characters by their ASCII number, expressed in
hexadecimal. Thus \x61 matches lower-case a. This is
principally useful for finding characters that are not in the normal
printable range.

Character Meaning
80

SrcEdit
The wildcard characters operate as follows:

Character Icon name Meaning

. Any matches any single character.

$ Newline matches linefeeds.

@ Alphanum matches any alphanumeric character. A to Z, a to
z, 0 to 9, and _

Digit matches 0 to 9.

| Ctrl matches any control character. For example, to
search for Ctrl-z, type in |z

\ Normal matches any character following it even if it is a
special character. # would be searched for as \#.

[] Set matches any one of the characters between the
brackets. This is always case sensitive.

– To [a–z] would match any character (in the ASCII
character set) from a to z.

~ Not does not match character. ~C matches any
character apart from C. This can also be applied to
sets.

* 0 or more matches zero or more occurrences of a character
or a set of characters. T*O matches T, TO,TOO,
TOOO etc.

^ 1 or more matches one or more occurrences of a character or
a set of characters. T^O matches TO, TOO,
TOOO etc.

% Most %c is the same as ^c , except when used as the
final element of a search string. In this case the
longest sequence of matching characters is found.

& Found refers to the whole of the ‘Find’ text. It is used in
the Replace with box to represent the ‘found
string’: the string matched in the search. This is
particularly useful when you have used wildcard
characters in the Find string. For example, if you
have searched for t.p, and you want to add an s
to the end of all the strings found, &s in the
Replace with box will replace tip, tap and top
by tips, taps and tops.
81

SrcEdit menus
The full power of the wildcard facility can be illustrated by a few examples.

l To count how many lower case letters appear in a piece of text:

Find: [a-z]

and click on Count.

l To count how many words are in a piece of text:

Find: %@

and Click on Count.

l To surround all words in a piece of text by brackets:

Find: %@
Replace with: (&)

and click on GO, then on End of File Replace in the Found dialogue box

l To change all occurrences of strings like #include "h.foo" into
#include "foo.h":

Find: \#include "h\.%@"
Replace with: #include "?0.h"

and click on GO, then on End of File Replace in the Found dialogue box

? Field If a string was found that matched the search
pattern, then ?n refers to the part of the found
string which matched the nth ambiguous part of
the search pattern, where n is a digit from 0 to 9.
Ambiguous parts are those which could not be
exactly specified in the search string; e.g. in the
search string %#fred*$ there are two ambiguous
parts, %# and *$ – which are ?0 and ?1
respectively. Ambiguous parts are numbered from
left to right. (Only to be used in the Replace with
string).

Hex nn matches the character whose ASCII number
is nn, where nn is a two-digit hex number.

61 matches lower-case a. This is principally
useful for finding characters that are not in the
normal printable range.

Character Icon name Meaning
82

SrcEdit

ne in

de to
e

ur text.

n
 the
l To remove all ASCII characters, other than those between space and ~, and the
newline character, from a file:

Find: ~[-\~$]
Replace with:

and click on GO, then on End of File Replace in the Found dialogue box (i.e. find
all characters outside the set from the space character to the ~ character, and
newline, and replace them with nothing). In fact this could be written without the
\, since ~ would not make sense in this context if it had its special meaning of Not,
ie:

Find: ~[-~$]

Other options on the Edit menu:

To send the caret to a specific line of text, use the Goto option. Call up the Goto
submenu and SrcEdit displays a dialogue box:

Type in the line number you want to move to, then click on OK. The dialogue box
disappears, and the screen displays the caret, positioned at the beginning of the line you
have just specified. Note that this option understands ‘line’ to mean the string of
characters between two presses of Return. If you have not formatted your text, a li
this sense may run over more than one display line.

Undo allows you to step backwards through the most recent changes you have ma
the text. The number of changes you can reverse in this way varies according to th
operations involved.

Redo allows you to remake the changes you reversed with Undo.

CR↔LF allows you to convert the linefeeds in your text to carriage returns (and
carriage returns to linefeeds). Carriage returns appear as the characters [0d] in yo

If you convert from linefeeds to carriage returns, the file will be converted to one
continuous line, with carriage return characters inserted where linefeeds have bee
removed. Though it is possible to edit a file in this state, you may find that updating
screen takes a long time. This facility is useful when importing text from other text
editors, which may use carriage returns where SrcEdit uses line feeds.
83

SrcEdit menus

ank
ly at
he
r

u

ment
 not

t;

yed
e

the

mes
Expand Tabs converts each tab character into eight spaces, since some printers can
interpret spaces more easily than the tab character. If you have imported a file that was
produced on a word processor, you may find it uses tab characters. These appear in the
SrcEdit file as the characters [09] in your text.

Format text allows you to reformat a paragraph of text – from the caret to the next bl
line or line starting with a space – so that the lines fill the screen and break correct
the ends of words. It is useful for tidying up text after editing. Position the caret at t
beginning of the paragraph, choose Format text in the Edit menu and enter the numbe
of characters per line you want your text to have in the Format width dialogue box.
Then move the pointer back over the Edit menu and click on Format text to format the
paragraph.

The setting in the Format width dialogue box also controls the length of lines when yo
are entering text with Wordwrap switched on.

The Display menu

Display allows you to change the way your text looks on the screen: you can experi
with fonts, colours, line spacing and margins. However, the features you select do
form part of the text when you save it.

For example, if you choose New view in the Misc menu, you will have a second window
on your text. If you wish, the Display features in these two windows can be differen
this will not affect the text as such.

Font offers you a choice of fonts (typefaces). System Font is the default style, and has
a fixed character width. For further information on fonts, see the RISC OS User Guide.

You can use Font size to set the point size (height and width) of the characters displa
on the screen. Either select one of the sizes indicated or position the pointer on th
bottom (blank) line of the menu; you can then type in another size.

Font height allows you to set the height of the characters displayed on the screen
leaving their width unchanged.

Line spacing increases or decreases the space between lines. Its units are pixels (
smallest unit the screen uses in its current mode). The selected font size assigns a
suitable line spacing; this option is therefore used only to increase (or if you type a
negative number, to decrease) the given spacing.

Margin sets the left margin, again in pixels.

Invert swaps foreground and background colours, so that black text on white beco
white text on black, and so on.
84

SrcEdit

ve

is
wide
an

 to

ue

d,
in the
By default, SrcEdit assumes a text width of 76 characters, but the default window is not
as wide as the full screen. You can of course change the number of characters per line
(by choosing Format text in the Edit menu) or enlarge the window to the full screen by
clicking on the Toggle Size icon. Alternatively, clicking Window wrap makes your text
fit the size of the window. When Window wrap is on, you can change the window to
any size, and the width of the text will change accordingly. You can revert to the default
by selecting Window wrap again.

Foreground allows you to set the text to any one of the sixteen colours, by clicking on
the selected colour square from the palette displayed.

Background allows you to set the window’s background colour, as above.

Work Area allows you to set the extent of your SrcEdit windows so that you can ha
windows which are wider than the current screen mode. You can specify a wider
window in terms of System Font characters in the Work Area submenu (the size of
System Font characters is used even if the current font used is a fancy font). This
particularly useful if you have sources which, for example, are 80 or 132 characters
and you are viewing them in mode 12. The maximum size of window width which c
be specified in this manner is 192 System Font characters.

Printing a SrcEdit file
There are two ways of printing a SrcEdit file; however, to use either, you first need
load a printer driver.

If the file you want to print is already loaded into SrcEdit, call up the Save as dialog
box and drag the icon onto the printer driver icon on the icon bar. This will print the
current version of the file, whether or not it has been saved.

If the file is not loaded into SrcEdit, you can simply drag the files’s icon from its
directory display onto the printer driver icon. You can also do this if the file is loade
but if you have made any changes to it since you last saved it, they will not appear
printed copy; only what has been saved will be printed by this method.
85

Laying out tables – the Tab key

mns.

lect
le
 to
 not

 as
s
Laying out tables – the Tab key
Tables can be set out in two ways using tabs – as regular columns or irregular colu

Regular columns

If you want your table to have columns regularly spaced eight characters apart, se
Column tabs in the Misc submenu. The word ColTab will appear in the window’s Tit
bar to remind you that you have done this. Pressing Tab will then cause the cursor
jump to the next tab position. This is very useful for creating simple tables that will
display much text:

Column Tabs is selected by default in SrcEdit.

Irregular columns

To set out a table with irregular columns, make sure that Column Tabs in the Misc
submenu is not selected. Type in the first line – the column headings, for example –
you want it to appear, using spaces to separate the text in the columns. Then pres
Return. On the next line, pressing Tab will make the cursor jump to the position
underneath the start of the next word in the line above.
86

SrcEdit

f a
g

ated.
code
 the

ching
So, in the following example of a simple diary, the column headings (Person, File, Task
and Reason) were typed in using spaces, then the following lines were typed in using
tabs (including the dashes used as underlines for the column headings):

Note: Both the table layout methods described above will only work with a fixed width
font (e.g. the System font). If you create a table and subsequently display the screen in
another font, the text in the table will not line up correctly with the column headings.

Reading in text from another file
If you want to add all the text from another file into the file you are currently editing,
position the caret at the point where the inserted text is to appear. Call up the directory
display for the incoming file, and drag its icon into the text window. The entire contents
of the source file are then copied into the destination file at the caret position. The caret
will appear at the end of the text you have inserted.

Bracket Matching
SrcEdit has a useful bracket-matching facility. If you place the caret to the left of an
opening bracket – any of the set (, [, or { – and press F10, the corresponding closing
bracket will become the current selection; similarly by placing the caret to the left o
closing bracket – any of the set),], or } – and pressing F10, the corresponding openin
bracket will be selected. If there is no matching bracket an error message is gener
This is a particularly useful feature in heavily bracketed expressions and blocks of
which extend over a large amount of source code, and is useful in conjunction with
Ctrl-F7 feature (toggle caret and selection), thus moving the selection between mat
brackets.
87

Throwback

ions

ge
o
Throwback
The purpose of throwback is to allow translators (compilers/assemblers) to signal the
editor when they have detected source errors. On receiving such a signal, SrcEdit
displays a window which shows the name of the file which was being processed when
the error(s) were found, the name of the file in which the error(s) were found, and the
relevant line number together with the text of the error message. Also displayed is the
severity level of the error(s): Serious Error, Error, or Warning. The complete list of
errors is shown in a scrollable window. We shall refer to a single line of this window as
an error line. You can scroll through these as with any normal text window, using the
vertical and horizontal scroll bars.

Double-clicking Select on an error line opens an edit window on the appropriate file (if
it is not already open), and highlights the line containing the selected error. The selected
error line is also highlighted in the scrollable error window. Clicking Adjust on an error
line removes it from the list (presumably you have either corrected the error or have
chosen to ignore it). Note that error line numbers refer to the original source when it was
processed. You may, in the course of correcting errors, insert or delete lines; the position
in the source where errors were detected remains correct despite your edits (provided
that the edits are made as a consequence of throwback).

‘Informational’ throwback is also supported for tools like !Find. The functionality of
such a throwback window is the same as for ‘error’ throwback.

C example throwback session

First double click on !SrcEdit and !CC in a directory display to load them as applicat
with icons on the icon bar. Next open the subdirectory
AcornC_C++.Examples.CError to show the text file HelloW containing the
source of the program example of that name.

HelloW is a trivial C program which when run prints Hello World on the screen. It
is written to be compiled with an integral link step by CC to form an executable ima
file. Its source contains a simple error which will be detected by CC when you try t
compile it.
88

SrcEdit

 the
Drag the source file HelloW to the CC icon to make the CC SetUp dialogue box appear
with the Source writable icon initialised to the absolute file name. Ensure that the
Throwback option is enabled. The correct dialogue box appearance is as follows:

Click Menu on the setup box and ensure that the Work directory item on the menu
displayed has the default setting of ’^’. Click on the Run button on the SetUp box to
start compilation. This has the normal effect of removing the setup box and putting
CC output display on the screen, but almost immediately afterwards the compiler
produces an error and requests SrcEdit to display a Throwback error browser:

Double click Select on the compiler error message:

expected ’)’ or ’,’ - inserted ’)’ before ’;’
89

Throwback
SrcEdit displays the source file with the offending line that caused the error clearly
highlighted:

Examining this line closely shows that a closing bracket is missing before the ending
semicolon. Insert this bracket in SrcEdit and save the file. Click Select on the CC icon
bar icon and click on Run to repeat the last compilation. If you have changed the
HelloW source correctly, the compilation should now complete with no errors, hence
without bringing back the SrcEdit browser.

When the CC save dialogue box appears, click on the OK button to save the executable
file produced in the directory Examples.CError. Now double click Select on the
newly created executable image file in a directory display. The image file should run,
printing the Hello World message in a RISC OS run window:
90

SrcEdit
Assembler example throwback session

First double click on !SrcEdit, !ObjAsm and !Link in a directory display to load them as
applications with icons on the icon bar. Next open a directory display on the
subdirectory AcornC_C++.Examples.AsmError.s to show the text file HelloW
containing the source of the program example of that name.

HelloW is a simple assembly language program which when run prints Hello
World on the screen. It is written to be assembled to an object file by ObjAsm then
linked to form an executable image file with Link. Its source contains a simple error
which will be detected by ObjAsm when you try to assemble it. The line containing the
error is:

= "Hello World"13,10,0

Examining this line shows that a comma is missing after the close quote. Correct this
and you will then be able to assemble the program without error.

C++ example throwback session

First double click on !SrcEdit and !C++ in a directory display to load them as
applications with icons on the icon bar. Next open the subdirectory
AcornC_C++.Examples.C++Error to show the text file HelloW containing the
source of the program example of that name.

HelloW is a trivial C++ program which when run prints Hello World on the screen.
It is written to be compiled with an integral link step by CC++ to form an executable
image file. Its source contains a simple error which will be detected by C++ when you
try to compile it. The line containing the error is:

cout << "Hello World\n;

Examining this line closely shows that a closing double quote is missing before the
ending semicolon. Insert this double quote in SrcEdit and save the file. Click Select on
the C++ icon bar icon and click on Run to repeat the last compilation. If you have
changed the HelloW source correctly, the compilation should now complete with no
errors, hence without bringing back the SrcEdit browser.

When the C++ save dialogue box appears, click on the OK button to save the executable
file produced in the directory Examples.C++Error. Now double click Select on the
newly created executable image file in a directory display. The image file should run,
printing the Hello World message in a RISC OS run window.
91

Saving Options
Saving Options

To retain the same set of options whenever you use SrcEdit, set the menu and dialogue
box entries to the required configuration and then choose Save options from the SrcEdit
icon bar menu. The options you have chosen are then saved in two files:

<SrcEdit$Dir>.choices.options
 <SrcEdit$Dir>.choices.liboptions

These files are read when SrcEdit starts up. The options saved are:

Setting options in a SrcEdit window

If you set the Column tab, Overwrite or Wordwrap options in the Misc submenu in a
SrcEdit window, they will only apply to that session of SrcEdit in that window.
To change these three options and retain the new settings whenever you use SrcEdit, you
must set them in the Options submenu in the SrcEdit icon bar menu, and then choose
Save options.

The SrcEdit icon bar menu

Pressing Menu on the SrcEdit icon on the icon bar produces a menu with the following
options:

Info gives you some information about the version of SrcEdit you are using.

Save All saves all modified buffers, and closes all open windows.

Save Options saves the current settings of all SrcEdit options to file, so that there is no
need to set the environment variables used to maintain these options.

Foreground Colour Window work area width
Background Colour Column tab
Font Width Overwrite
Font Height Wordwrap
Left Margin in pixels Warn multiple edits
Extra spacing between lines Current language
Window wrap Search path
Font name
92

SrcEdit

 into

f file:

re

ting
The Options submenu allows you to set the following options:

Column tab, Overwrite and Wordwrap are similar to the options on the Misc
submenu in the section entitled The Misc menu on page 72. They are used to set the
default options for all windows opened by SrcEdit.

Warn multiple edits, if enabled, will warn you when you attempt to load a file
which is already loaded in a modified SrcEdit buffer. This reduces the chance of you
accidentally editing two copies of the same file, and then saving one over the other.
In such a case you will be presented with a dialogue box, giving you the choice of
having a read-only copy of the file, a normal editable copy, or to cancel the load of
the file. If you choose to have a read-only copy, then the SrcEdit window for the
document will have Read-Only in its Title bar and you will be prevented from
making any edits to the contents of the document.

The Language submenu gives you a list of any language packages which have
registered themselves with SrcEdit. You can select which of these languages is
current, and this will determine what Help text is available, and also the default
search path used when loading from a selection.

Search path – If you load from a selection (i.e. when you have chosen Load from
the Select submenu), SrcEdit will look in a number of places for the file to be
loaded. You may set a comma-separated list of paths to search by typing them
the Search path writable icon (described on page 76). Note that each such path
should either be a path variable or be explicitly terminated by a dot.

Create leads to a submenu which enables you to open windows for specific types o
Text, Data, Command, Obey and Make files.

In addition, the Create submenu allows you to set up SrcEdit Task windows, these a
described in the next section.

Finally, Quit stops SrcEdit and removes it from the computer’s memory, first presen
you with a dialogue box for confirmation if there are any current files you have not
saved.
93

SrcEdit task windows
SrcEdit task windows
SrcEdit task windows allow you to use Command Line mode in a window. To open a
task window, choose Task window from the SrcEdit application menu. You can have
more than one task window open. When you open a task window, you will see a *
prompt. You can now enter commands in the window just as if you were using
Command Line mode.

The major advantages in entering commands in a task window instead of at the
Command Line prompt are that:

l Other applications continue to run in their own windows while you run the task (this
does mean, though, that the task may run more slowly than it would using other
methods of reaching the Command Line).

l Commands that you type, plus the output (if any), appear in a conventional SrcEdit
window, and may therefore easily be examined by scrolling up and down in the
usual way. When you type into the window, or when a command produces output,
the window immediately scrolls to the bottom of the text. Anything you type in is
passed to the task, and has the same effect as typing whilst in Command Line mode.
You can change this by unlinking the window: in this case, anything you type in
alters the contents of the window in the same way as any other SrcEdit window,
even while a task is running. Any output from the task is appended to the end.

You can also supply input to a task window by selecting some text from another text file
and choosing TaskInput from the task window menu. The selection may be in any
SrcEdit window.

You cannot use graphics in a task window. The output of any commands that use
graphics will appear as screen control codes in the task window.

The menu for a task window contains the following options:

Kill stops and destroys the task running in the window.

Reconnect starts a new task in the window, allocating memory to the task from the Task
Manager’s Next slot.
94

SrcEdit

dit’s
p and

e.
an

the

 the

 to

y
,

 the

n you
Suspend temporarily halts the task running in the window.

Resume restarts a suspended task.

Unlink prevents the sending of typed-in characters to the task. Instead, they are
processed as if the task window were a normal SrcEdit text window.

Link reverses the effect of Unlink.

TaskInput reads task input from the currently selected block.

Ignore Ctl, when selected, prevents any control characters generated by the program
from being sent to the screen.

Edit leads to the normal SrcEdit menu. Although this makes available most of SrcE
features, you cannot use facilities such as the cursor keys or keys such as Page U
Home while you are using a Task window.

Some guidelines and suggestions for using task windows

In order to use a task window, you will need to be familiar with Command Line mod
There are some commands which you will find are more useful in a task window th
they are directly from the Command Line. In particular:

*wimpslot min [max] can be used to adjust the amount of memory available to
task, which will otherwise start up using the Next space allocation. If you want to
remove all the memory allocated to a task without closing its window or destroying
task, use the command *wimpslot 0 0.

*filer_opendir path opens a new directory display for the directory with the
given path. The path must start with a filing system name. For example:

adfs::DHarris.$.Research

The command *Spool should not be used from a task window. Because its effect is
write everything that appears on the screen to the spool file, using *Spool from the
desktop will produce unusable files full of screen control characters. There is, in an
case, no point in using *Spool, since the output from the task appears in the window
and can be saved using SrcEdit as normal.

When you run a command in a task window, the computer divides its time between
task window and other activities running in the desktop. You should note that some
time-consuming commands, for example, a *Copy of a large file, may prevent access to
the filing system that they use until the command is complete.

Note that Command Line concepts such as current directory become relevant whe
are using Task Windows.
95

Keystroke equivalents
Keystroke equivalents

On occasions, it can be convenient to use the keyboard instead of the mouse, especially
once you are familiar with SrcEdit through its menus.

When editing

←, →,↑, ↓ Move caret one character left, right, up or down.

Shift-←, Shift-→ Move caret one word left or right.

Shift-↑, Shift-↓ Move caret one windowful up or down.

Ctrl-↑ Move caret to start of file.

Ctrl-↓ Move caret to end of file.

Ctrl-←, Ctrl-→ Move caret to start or end of line.

Ctrl-Shift-↑, Ctrl-Shift-↓ Scroll file without moving caret.

Ctrl-Shift−← Scroll all documents up by one line.

Ctrl-Shift-→ Scroll all documents down by one line.

Copy Delete character to right of caret.

Shift-Copy Delete word at current caret position.

Ctrl-Copy Delete line at caret.

Home Place caret at top of document.

Insert Insert space to right of caret.

Page Up/Page Down Scroll up or down one windowful.

Shift-Page Up/Page Down Move caret up or down one line without scrolling.

Ctrl-Page Up/Page Down Move caret and scroll up or down one line.

Shift-F3 Toggle column tabs on or off.

Shift-F1 Toggle overwrite mode on or off.

Ctrl-F5 Toggle word wrap on or off.

Ctrl-F7 Make where the caret is the current selection, and
move the caret to where the selection was (i.e. toggle
caret and selection).
96

SrcEdit
Keystroke equivalents in the Select menu

Keystroke equivalents in the Edit menu

Ctrl-Z Clear selection.

Ctrl-X Delete selection.

Ctrl-C Copy selection to caret.

Ctrl-V Move selection to caret.

F1 Request language-specific help.

Ctrl-L Load file whose leafname is given by selection.

F4 Display Find dialogue box.

Ctrl-F4 Indent text block.

F5 Display GoTo dialogue box.

F6 If no block is selected, select the single character after the
caret. If a block is selected, and the caret is outside it,
extend the selection up to the caret. If a block is selected
and the caret is inside it, cut the block from the caret
position to the nearest end of the block.

Shift-F6 Clear the current selection.

F7 Copy the selected block at the current caret position.

Shift-F7 Move the current selection to the caret position.

F8 Undo last action.

F9 Redo last action.

Ctrl-F6 Format text block.

Ctrl-F8 Toggle between CR and LF versions of the file.

Ctrl-Shift-F1 Expand tabs.
97

Keystroke equivalents
Keystroke equivalents in the Find menu

Note: these keystroke definitions only come into play once the Find dialogue box has
been displayed (e.g. by typing F4).

Keystroke File options

↑, ↓ Find / replace text string.

F1 Display Text found dialogue box.

F2 Use previous find and replace strings.

F3 Count occurrences of find string.

F4 Toggle case sensitive switch.

F5 Toggle magic characters switch.

F6 Toggle wildcarded expressions switch.

F2 Open a dialogue box enabling you to load an existing
SrcEdit file into a new window.

Shift-F2 Open a dialogue box enabling you to insert an existing
SrcEdit file at the caret position.

Ctrl-F2 Close window.

F3 Save the file in the current window. This is a short-cut to the
normal Save as dialogue box.

Shift-F9 Save all window edits.
98

99

Part 3 - Non-interactive tools

100

7 General features

his chapter describes those features common to all the Desktop non-interactive

tools.T
As described in the chapter Working with desktop tools on page 13, the Desktop

programming tools can be divided into two categories: interactive and non-interactive.
The non-interactive tools are those which you set options for and then run, not
interacting further until the task completes or is halted. An example of a non-interactive
tool is the linker Link, whereas the editor SrcEdit is an interactive tool. The chapters
following this each describe an individual non-interactive Desktop tool. Further chapters
in the accompanying language user guides describe non-interactive tools specific to
programming in particular languages; for example, the language compilers and
assemblers themselves.

The non-interactive tools can be further divided into two sub-categories: filters and
non-filters. The filter tools are those that take a set of input files and process them to
produce output files, examples being Link, Libfile, Squeeze and the language
processors. The non-filter tools all perform some immediate action, such as examining
text files and presenting you with information as text output. The filter tools are intended
to be used both managed and unmanaged by Make (an interactive tool described earlier
in this user guide), whereas the non-filter tools are normally just used for unmanaged
work.

To start unmanaged use of any of the non-interactive tools, you first double-click Select
on a tool application name in a directory display. This loads the tool, putting its
application icon on the icon bar (just like any other RISC OS application).

When using the filter type of non-interactive tool managed by Make, there is no need to
start each tool and put its icon on the icon bar.

All the non-interactive Desktop tools are implemented as command line programs
provided with RISC OS desktop interfaces by the FrontEnd relocatable module, but you
do not need to be aware of this when using them, as command lines are automatically
generated from your settings of the desktop interface of each tool, making the tools
appear to be standard RISC OS applications.
101

The Application menu
Interface

The interface of each non-interactive tool can be summarised as follows:

l Clicking Menu on the application icon brings up a standard application main menu
(for unmanaged use only).

l Clicking Select on the application icon displays the SetUp dialogue box. This
allows the user to set options and specify input files etc. A menu is available within
the dialogue box enabling other options to be set. Tool SetUp boxes are displayed
by Make for managed development.

l Messages generated are output to a Text window or a Summary window. You can
toggle between these windows and save the output to a file.

l A processed output file from a filter tool is either saved in a work directory or is
saved by you from a standard Save as dialogue box which appears when the task
has completed without error (unmanaged use only).

The Application menu
Clicking Menu on the application icon (for example, the Diff tool) gives the following
main menu:

Info returns information about the application.

Save options causes the options in the SetUp box, and all submenu options
(meta-options) from this main menu, to be saved in a file for later use as defaults when
the tool is restarted.

The Options submenu allows you to set the following options:
102

General features

 a

fault

bar,

ame
he

e used
hat

they
Auto Run will cause the command-line command to be run immediately when a
file is dragged onto the icon on the icon bar, without first displaying the SetUp
dialogue box. Options remain as they are currently set.

Auto Save suppresses the Save as dialogue box of filter tools if a sensible pathname
is available to save the output to. For more details on pathnames see the
METAOPTIONS section on page 164. Note that ‘output’ here is used to describe
single file which is produced by running the command-line tool.

The Display submenu allows the user to choose whether the tool outputs by de
into a text window or a summary window.

Help displays a help file in a scrollable text window, for example:

Quit quits the application.

The Setup box
When working in the unmanaged way, i.e. with the tool application icon on the icon
clicking Select on this icon or dragging the name of an input file (if Auto Run is off) to
this icon displays the SetUp dialogue box. If the SetUp box was displayed by a filen
drag, this filename is displayed in the relevant writable icon. Options appear with t
previous settings used, making it easy to repeat the last run of a tool.

When working managed by Make, you specify a ‘recipe’ of tasks to be followed to
construct a program from its sources. This recipe is stored as a Makefile, and can b
later. You specify the recipe in terms of what goes in (source files, libraries, etc.), w
comes out (e.g. an executable !RunImage file) and the processes followed. The
processes followed include specifying the options to be set for the filter tools when
are used. To set these options you follow the Tool options menu item of Make to a list of
103

The Setup box
tools, then Select on the name of the relevant tool. This brings up the SetUp dialogue
box of the relevant tool, whether its application icon is on the icon bar or not. The SetUp
box appears with options set to helpful default states for managed use.

 A typical SetUp dialogue box is that of the application Diff:

The SetUp box for each application is different, but for unmanaged use they all offer the
following two action buttons:

Run runs the tool with the options as set, starting a multitasking task performing the
non-interactive job specified. This multitasking depends on the presence of the
TaskWindow relocatable module.

Clicking Select on Run removes the dialogue box, clicking Adjust on Run leaves the
dialogue box on your screen.

Cancel discards any changes made to the options and closes the SetUp box.

The SetUp menu

Clicking Menu on the SetUp dialogue box produces a menu with the style of:

Command line leads to a dialogue box showing the command line equivalent of the
options set in the SetUp dialogue box. It also shows any extra options set from the Other
options part of the menu.

Other options are a set of options specific to the particular application.
104

General features
For example:

Output
Two types of output window are available for generated messages; Text and Summary.

The Text window

If Text has been chosen from the Display submenu then a scrollable, saveable text
window appears when the tool is running. All textual output sent to the screen by the
program appears in the text window. This window can be closed at any time, thus
aborting the command-line program. The Title bar of this window shows the name of the
tool and the state of the text running, i.e. Running, Completed, Aborted or Paused. An
example of a Text window using the application Diff is:

Clicking Menu on a text window displays the following menu:

other options
105

Output

w’s
Info gives information about the program being run.

Cmd Line shows the command line generated and used to run the tool.

Save allows the textual output to be saved in a file.

Abort aborts a running program.

Pause pauses a running program.

Continue continues a paused program.

The Summary window

If Summary has been chosen from the Display submenu then a small summary window,
similar to the following, appears when the tool is running:

This summary window displays the sprite of the application and the time at which the
command was run. The Title bar is the same as for the text window. There are two action
buttons, Abort and either Pause or Continue, which allow the program to be aborted,
paused, and continued in an identical fashion to the menu on the Text window.

Clicking Menu on the summary dialogue box displays a menu similar to the following:

Info gives information about the program being run.

Cmd Line shows the command line generated to be used to run the tool.

Save allows the textual output to be saved in a file.

Toggling between the Text and Summary windows

To toggle between the Text and Summary windows click Adjust on the output windo
close icon.
106

General features
Processed file output from filter tools

The numbers and types of files output varies between each filter tool, so for more details
see the chapter on the tool in question.

During managed development the saving of processed files is specified by the Makefile,
which can be constructed for you by Make.

For unmanaged development, processed files are either saved in positions relative to the
work directory, or saved by you from a Save as dialogue box which appears when a job
has completed without errors. This box does not appear if you have enabled the Auto
save option on the application menu.
107

Output
108

8 AMU

he Acorn Make Utility (AMU), is a tool managing the construction of executable

program images, libraries, and so on using operations specified in a Makefile. All T
the facilities provided by AMU are also provided by Make, which in addition assists you

in constructing your Makefiles. It is therefore recommended that you use Make rather
than AMU, except where extreme memory shortage makes the larger size of Make a
problem and the extra facilities are not needed.

Since use of AMU is deprecated, the description in this chapter is brief. For details of
Makefile syntax, see appendix Makefile syntax on page 175. Some details described in
the chapter Make on page 57 may also be useful references for AMU, as the command
line tool amu, which performs the management of program construction, is the same
tool used by Make.

Each time that AMU is run, a work directory is set up for that job as the directory
containing the Makefile. For the effect of the work directory on each tool, see the
chapters on individual tools such as the language processors CC and ObjAsm in this and
accompanying user guides.

AMU is one of the non-interactive desktop tools, its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter General
features on page 101.

Starting AMU
Since AMU is an alternative tool providing construction management like Make, it is
normally used controlled directly from its desktop interface. To start AMU, first double
click on !AMU in a directory display to put its icon on the icon bar.
109

Starting AMU

he job
code
Clicking Select on this icon or dragging the name of a make file (text or Makefile
file type) from a directory display to the icon brings up the AMU SetUp dialogue box,
from which you control the running of AMU:

Makefile contains the name of the Makefile to be used when AMU is run. If you
brought up the SetUp dialogue box by clicking on the AMU icon bar icon, this writable
icon contains the previous Makefile used (if any), otherwise it displays the name of the
file you dragged to the icon. Dragging another file to this writable icon replaces its
contents with the new name.

Targets contains a space-separated list of the names of the targets in the Makefile to be
constructed, and macro predefinitions of the type name=string. If this writable icon
is empty (default) the first target in the Makefile will be made.

The Continue after errors option causes the make job to continue after one of the
commands issued by it has returned a bad return code (signalling an error). When the job
continues, only those branches of the make job which don’t depend on the failed
command are executed.

The Ignore return codes option causes the make job to continue after one of the
commands issued by it has returned a bad return code (signalling an error). When t
continues, all subsequent branches of the make job are executed, as if the return
was good.

The Don’t execute option stops any commands being executed, instead just printing
them to the output window with dependency reasons for each one.

The Silent option stops printing of executed commands in the output window.

Clicking Menu on the SetUp dialogue box brings up the AMU SetUp menu, containing
a few additional options:
110

AMU
The Command line option on the above menu has the standard purpose for
non-interactive desktop tools as described in the chapter General features on page 101.

The Stamp option stops construction of the target, instead causing sources and target to
be stamped with current time so that the target appears up to date. This only works if all
sources are present.

The Command file option leads a writable icon where you specify the name of a file to
be written containing commands generated. If you specify a relative filename, this is
used relative to the work directory (the location of the Makefile). The commands are
written to this file but not executed.

The Application menu
Clicking Menu on the AMU application icon on the icon bar gives access to the
following options:

For a description of each option in the application menu see the chapter General features
on page 101.

Example output
Running AMU displays any error messages in the standard text output window for
non-interactive tools. If all goes well this window contains no error messages, for
example:
111

Command line interface
Command line interface
For normal use you do not need to understand the syntax of the AMU command line, as
it is generated automatically for you from the SetUp dialogue box and menu settings
before it is used.

The syntax of the AMU command line is:

amu [options] [target1{ target2...}]

Options

-f makefile Makefile name (defaults to Makefile if omitted)
-i Ignore return codes
-k Continue after errors
-n Don’t execute
-o commandfile Specify Command file as on SetUp menu
-s Silent
-t Equivalent to Stamp on the SetUp menu

target1 {target2} ...

This is a space-separated list of targets to be made or macro pre-definitions of the form
name=string. Targets are made in the order given. If no targets are given, the first
target found in Makefile is used.
112

9 DecAOF

ecAOF decodes one or more object files and returns information about each area

within the files. D
e SetUp dialogue box
Th
Clicking Select on the application icon or dragging the name of a file from a directory
display to the icon brings up the SetUp dialogue box:

The Files writable icon allows you to specify the name of one or more files to be
processed (typed in or dragged from a directory display). These files must be ARM
Object Format (AOF) files.

SetUp options

Only area declarations prints a short summary of details about each area in the object
file. If this option is selected no other details are printed.

The options offered under the heading of Print are all set on by default. Choosing one or
more of them will set the remaining options to off.

Symbol table prints the contents of the symbol table.

String table prints the contents of the string table.

Debug prints the debug areas in a readable format.

Area contents prints the area contents in hex.
113

The Application menu
Area declarations prints the area declarations.

Relocation directives prints linker relocation directives.

Disassemble prints disassembly of code areas.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

For a description of the DecAOF Command line option see the section Command line
interface on page 115

The Application menu
Clicking Menu on the DecAOF application icon gives the following options:

For a description of each option in the application menu see the chapter General features
on page 101.

Note that Auto Save is not available for this application.
114

DecAOF
Example output
The output of DecAOF appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 105.

The following window shows an example of the output from DecAOF:

Command line interface
For normal use you do not need to understand the syntax of the DecAOF command line,
as it is automatically generated for you from the SetUp dialogue box settings. The
Command Line syntax for DecAOF is:

DecAOF [options] filename [filename...]
115

Options

-a print area contents in hex (implies -d)

-b print only the area declarations

-c print disassembly of code area (implies -d)

-d print area declarations

-g print debug areas

-r print relocation directives (implies -d)

-s print symbol table

-t print string table

filename a valid pathname specifying an AOF file
116

10 Diff

iff displays the textual differences between two files on a line-by-line basis. To

compare files more usefully various options allow you to display only those D
differences of specific interest.
The SetUp dialogue box
Clicking Select on the application icon or dragging the name of a file from a directory
display to the icon brings up the SetUp dialogue box:

Path1 and Path2 allow you to specify the names of files to be processed (typed in or
dragged from a directory display).

SetUp options

Case insensitive instructs Diff to ignore the case of letters; for example, Variable
and variable would be considered as identical if this option was chosen.

Expand tabs substitutes tabs by multiples of eight spaces.

Remove spaces removes all spaces before comparing lines. This is useful if you wish to
examine two files you have been editing but are not interested in any extra spaces you
may have introduced.

Squash spaces replaces all instances of two or more spaces by one space.

Note: If you are using Diff to display the differences between two source files where
spaces can be critical, e.g. assembler code, and you want to display lines where spaces
have been deleted or added, it is essential to ensure that neither Remove spaces nor
Squash spaces have been chosen.
117

The Application Menu
The SetUp menu

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

Command line enables you to examine or edit the actual command line. For more
information on this option see the section Command line interface on page 120.

Dir. structure displays only the directory structure of the two files. It does not display
any differences between the files.

Equate CR/LF instructs Diff to treat the linefeed and carriage return characters as
identical. This is especially helpful when analysing files created by different editors
where sometimes linefeeds and sometimes carriage returns are used as end of line
terminators.

Fast performs a speedy analysis of two files. It reports only whether there are
differences between the two files, not what or where the differences are.

Large files is helpful where very large files are being compared. It sometimes happens
that two files differ completely over a large section of text because, for instance, you
may have edited in several paragraphs or even several pages of text. Ordinarily Diff
would not be able to detect this and would report every line from this point forward as
different. However, if Large files has been chosen Diff performs a more detailed
analysis (thereby taking longer) and can detect this situation. It will then pick up where
the two files converge again and display only valid differences from that point onward.

Squidge removes all spaces, except between alphanumerics, where multiple spaces are
replaced by one space.

Expand tabs allows you to replace tabs by multiples of any number of spaces you wish.

The Application Menu
Clicking Menu on the Diff application icon gives the following options:

For a description of each option in the application menu see the chapter General features
on page 101.

Note that Auto Run and Auto Save are not available for this application.
118

Diff
Example output

The output of Diff appears in one of the standard non-interactive tool output windows.
For more details of these see the section Output on page 105.

The following two examples show the use of options within Diff.

Example 1

In this example two text files have been analysed by Diff with no options being set:

Three differences have been found:

l on line 6 of the first file Doncaster has been spelt with a lowercase d.

l on line 7 of the first file stopping has been spelt with only one p.

l on line 9 of the first file there is an extra space before bridge.

Example 2

In the this example the same two files are compared but the Case insensitive and
Remove spaces options have been chosen.

The result is that only the different spelling of the word stopping has been displayed.
119

Command line interface
Command line interface
For normal use you do not need to understand the syntax of the Diff command line, as it
is automatically generated for you from the SetUp dialogue box settings. The Command
Line syntax for Diff is:

Diff [options] filename1 filename2

Options

-d Show only the directory structure, do not display any
differences

-e Equate CR and LF

-f Perform a fast Diff, all options except -d ignored, do not
display any differences

-l Handle large files more effectively (but more slowly)

-n Ignore case sensitivity when comparing letters

-r Remove all spaces before comparing lines

-s Squash sequences of spaces to one space

-t As for -r, but -s when between two alphanumeric
characters

-x Expand tabs to spaces (tab stops at multiples of 8)

-Xn Expand tabs to spaces (tab stops at multiples of n)

filename1
filename2

valid pathnames specifying objects to be ‘diffed’
120

11 Find

ind searches both the names and the contents of one or more files for text patterns. It

includes options allowing you:F
l to control whether the case of letters should be considered;
l to use wildcard expressions to specify several filenames;

l to insert wildcard expressions in the pattern string so that digits, control characters,
alphanumerics and particular sets of characters can be searched for;

l to start SrcEdit displaying found text using Throwback.

The SetUp dialogue box
Clicking Select on the application icon or dragging the name of a file from a directory
display to the icon brings up the SetUp dialogue box:

The Patterns writable icon allows you to type in the patterns to be searched for.

If a single pattern includes spaces, the pattern must be enclosed in double quotes, for
example:

"the text"

Double quote characters in a search pattern must be preceded by a backslash.

The Files writable icon allows you to specify the name of one or more files (typed in or
dragged from a directory display) to do the searching in.
121

The SetUp dialogue box
SetUp options

Line count only prints only a count of the number of lines matching the pattern from the
specified files.

Filenames only lists only the names of files matching the pattern.

Case insensitive will ignore the case of letters; for example, normal and Normal
would be considered as identical if this option was chosen.

Verbose lists the name of each file before searching it for pattern matches.

Throwback enables SrcEdit throwback when text selections are found.

Clicking on Wildcards displays a further set of options:
122

Find

.

Pattern wildcards

The options listed under Pattern Wildcards allow you to specify wildcarded
expressions in your search string. Clicking on one of these options will insert a special
character into the Patterns writable icon immediately before the caret.

Wildcard Meaning

Any . Matches any single character. For example:

Fr.d will match Fred and Fr1d, but not Fried

Newline $ Matches the newline character (LineFeed).

Alphanum @ Matches any alphanumeric character a-z, A-z, 0-9 or _.

Digit # Matches any digit 0-9.

Ctrl | Matches Ctrl-c, where c is any character between @ and _.
For example:

|x matches Ctrl-x

Note: There are two special cases:

|? matches the Delete character

|!c matches Ctrl-c’ where c’ is the character c
with its top bit set

Normal \ Matches the following character even if that character is a
special character. For example:

\. matches the dot character (not any single
character)

\c matches lowercase c

Set [Inserts a left square bracket immediately before the caret.

] Set Inserts a right square bracket immediately before the caret.

The preceding two options insert opening and closing square
brackets into the Patterns writable icon. You can then manually
insert one or more characters between these brackets and Find
will match any one of the characters you put inside the brackets
For example:

t[aei]n matches tan, ten and tin, but not ton

Note that a set is always case-sensitive.

Not ~ Matches any character other than the following character, where
the following character is any of the simple character patterns
listed above. For example:

la~ne matches late, lace and lake, but not
lane
123

The SetUp dialogue box
File wildcards

The options offered under File Wildcards insert special characters into the Files
writable icon which allow you to specify files in a variety of ways. Several of these
options require you to manually insert additional text next to or inside these special
characters:

Filename ch. # inserts a hash character immediately before the caret. This character will
match any single filename character except .

For example:

Find adfs::HDisc4.$.Fred# will search files Fred1 and Freda, but not
Fred13, Frederick etc.

Find adfs::HDisc4.$.Fr#d will search files Fred and Fr2d, but not
Fre1d, Freed etc.

0orMore filename chs. * inserts an asterisk immediately before the caret. This
character will match any sequence of filename characters except ., {, and }.

For example:

Find adfs::HDisc4.$.Fred* will search files Fred1 and Freda, and also
Fred13, Frederick etc.

Find adfs::HDisc4.$.Fr*d will search files Fred and Fr2d, and also
Frd, Freed, Fr123d etc.

Sub-directories ... inserts three dots immediately before the caret. It must be positioned
immediately after a directory name. Find will then search all nominated files in that
directory and in any subdirectories in that structure.

For example:

Find adfs::Amy.$.Receipts...monthly

will search all files called monthly in the directory Receipts and also in any
subdirectories of Receipts.

0 or more * Matches 0 or more occurrences of the following character, where
the following character is any of the simple character patterns
listed above. For example:

ca*n matches can, cannot and cat

1 or more ^ Matches 1 or more occurrences of the following character, where
the following character is any of the simple character patterns
listed above. For example:

ca^n matches can and cannot, but not cat

Wildcard Meaning
124

Find

s
Or { inserts a left brace immediately before the caret.

Or } inserts a right brace immediately before the caret.

The preceding two options insert opening and closing braces into the Files writable icon.
You can then manually insert one or more filename characters between these braces,
separating each filename with a comma. Find will then search all filenames inside the
braces.

For example:

Find adfs::HDisc4.$.W.rel.{atype,btype,ctype}

would search all three files inside the braces, i.e. atype, btype and ctype.

0 or More (inserts a left bracket immediately before the caret.

) 0 or More inserts a right bracket immediately before the caret.

The preceding two options insert opening and closing brackets into the Files writable
icon. You can then manually insert one or more filename characters between these
brackets and Find will search any files with none, one or more occurrences of the
characters you put inside the brackets.

For example:

Find adfs::HDisc4.$.Fr(e)d will search files Frd, Fred and Freed,
but not Frid.

Find adfs::HDisc4.$.Fr(ie)d will search files Frd, Fried and
Frieied, but not Frid, Frieed or
Fred.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

Command line option – see Command line interface on page 127.

The Allow ‘–’ option enables you to specify another pattern which will be matched even
if it begins with a –. This pattern will be searched for in conjunction with the pattern
you have inserted into the Patterns writable icon.

If you need to match two or more patterns beginning with a –, then you must precede
each additional pattern with -e

For example:

-pattern -e -pattern -e -pattern

Grep style enables you to specify patterns using the syntax of the UNIX grep tool.
This option is provided for users familiar with UNIX.
125

The Application menu
The Application menu
Clicking Menu on the Find application icon gives the following options:

For a description of each option in the application menu see the chapter General features
on page 101.

Note that Auto Run and Auto Save are not available for this application.

Example output
The output of Find appears in one of the standard non-interactive tool output windows.
For more details of these see the section Output on page 105.

The following window shows an example of the output from Find:

In the above example the pattern MOV[CV] was specified in the Patterns writable icon
in order to list only those instructions beginning with MOVV or MOVC in an assembler
source file. Instructions where the fourth letter was not a C or V, such as MOVS, MOVNE
and MOVEQS, were, therefore, not listed. The Throwback option was not enabled in the
above example. With Throwback enabled, a SrcEdit Throwback browser would also
have appeared allowing the file Util to be edited, starting at the found lines.
126

Find
Command line interface
For normal use you do not need to understand the syntax of the Find command line, as it
is automatically generated for you from the SetUp dialogue box settings. The Command
Line syntax for Find is:

Find [options] [pattern{ pattern}] -f filepattern{ filepattern}

Options

-c list only a count of the number of lines matching from each file.
-n ignore the case of letters when making comparisons.
-l list only the names of files matching patterns.
-v list the name of each file before searching it for matches.
-u accept UNIX grep/egrep-style patterns.
-e allow the following pattern arguments to begin with a –.

Pattern

. matches any single character.
$ matches the newline character (LineFeed).
@ matches any alphanumeric character.
matches any digit.
| |c matches Ctrl-c, where c is any character between @ and _.
\ matches the following character even if that character is a special character.
[] matches any character inside the square brackets.
~ matches any character other than the following character.
* matches 0 or more occurrences of the following character.
^ matches 1 or more occurrences of the following character.

-f marks the end of multiple patterns and the start of filepatterns.

Filepattern

matches any filename character except .
* matches 0 or more filename characters other than .
... searches files in that directory and any subdirectories in that directory.
{,} searches files contained within braces (filenames separated by

commas).
() search any file with none, one or more occurrences of the characters inside

the brackets.
127

128

12 LibFile

ibFile creates and maintains library archives. It can be used to create archives of files

for backup and distribution purposes, for example. A special form of library archive L
containing AOF files can be created for use with Link. The format of library archive

files is described in appendix Code file formats on page 201.

The SetUp dialogue box
Click Select on the application icon. This displays the SetUp dialogue box:

The SetUp options

Library is the name of the library to be processed. If a library is being created this will
be shaded. A Save as dialogue box will be presented when the library is created.

File List, when used with Create or Insert, contains the list of files to be placed in the
library. When used with Delete or Extract it contains a list of files in the library which
are to be extracted or deleted. You can use wildcard characters in the File List (* to
match zero or more characters, and # to match a single character).

Create creates a new library containing the files in File List. This is the default option.

Delete removes the files in File List from the specified library.

Insert adds the files in File List to the specified library. Files of the same name in the
library will be replaced.

Extract copies the files in File List from the specified library to disc. The files are not
deleted from the library.

List library lists the files contained in the specified library. By default, this option is off.
129

The SetUp dialogue box
The SetUp menu

Click Menu on the SetUp dialogue box. This displays the LibFile SetUp menu.

Command line allows you to specify the command line to be presented to the
underlying LibFile command line tool. You should take care when modifying the
command line. The effect of certain arguments depends on the order in which they
appear in the command line. Changing this order may have unanticipated effects. Refer
to the section Command line interface on page 133.

Symbol table adds an external symbol table, as used by Link, to the library. External
symbols in any object files in the library are placed in the symbol table. Non object files
are ignored. By default, this option is on.

List symbol table lists the symbols in the external symbol table along with the name of
the AOF file which generated each symbol. This option is off by default.

Via file allows you to set up a list of files to be used in one file called a Via file. When
creating or maintaining libraries with a large number of files it may become tedious
having to drag all the files to the File List every time, especially if they are in different
directories. Enter the name of the Via file in the submenu and press Return.
130

LibFile
Output
The Output window displays the list of files in the library and/or the list of external
symbols when the List library or List symbol table options are selected. The following
windows show examples of each.

Notes:

1 Any directories in the File List to be archived will be recursively archived (i.e. all
files in the specified directory will be archived and any directories in the specified
directory will themselves be recursively archived). This can be useful if, for
example, you are backing up an entire source tree on which you are currently
working.

2 When extracting files, LibFile places absolute filenames from the libraries index in
their corresponding absolute filenames on disc. Relative filenames (i.e. those not
containing a colon (:) a dollar ($) or an at sign (@)) are placed in a temporary
directory and, when the extraction is finished, a Save as dialogue box is presented.
This allows you to drag the extracted files to a suitable place on your disc. The
temporary directory is then renamed to the correct place on your disc, or copied and
subsequently deleted if you drag to a different device or filing system.
131

Output
3 When creating libraries for distribution purposes, you should not use absolute
filenames in the File List. If, for example, you created a library with a File List of
adfs::Edward.$.PDUtils, it would not be very useful to someone called Ian
or to someone using an Econet network. Instead, set your current directory (from
the command line with the *Dir command) to adfs::Edward.$ and use the File
List PDUtils.

4 When creating libraries for backup purposes, you can use absolute filenames, since
you will always be restoring to your own disc. You should not, however, mix
absolute and relative filenames in the same library. LibFile will handle this as
described in the note on extracting files above, but the behaviour may be confusing
to anyone trying to extract files.

5 When creating a library, LibFile builds the library in memory. This means that you
cannot create a library bigger than the available memory on your machine. When
altering an existing library (using Insert or Delete) Libfile requires memory space
for the new and old libraries. If there is not enough memory for this you can get
around the problem by extracting all the files and recreating the library including
the files to be inserted, or omitting the files to be deleted.

6 When the Symbol table option is selected, LibFile always updates the external
symbol table regardless of the operation being performed. This is correct for
Create, Insert and Delete. For Extract this is usually not very useful, so you
should generally ensure the Symbol table option is deselected when using Extract.

7 If the Symbol table option is not selected, LibFile deletes the external symbol table
when used with Insert or Delete. This prevents a potential problem whereby the
external symbol table could become out of date with respect to the object modules
in the library.

8 Convergence testing is a testing method whereby a binary file (such as an object
library) is rebuilt using itself, and the new and old binaries are compared to ensure
that they are the same. This can be difficult with tools (such as LibFile) which
timestamp files placed in the library, because the new and old libraries will be built
at different times, and will always differ.

LibFile provides the Null timestamps option to circumvent this problem. The Null
timestamps option uses timestamps of all bits 0, which corresponds to a date of
00:00:00 01-Jan-1900. Thus, libraries built at different times can be
compared using a binary comparison utility, without the timestamps causing
extraneous differences to appear.

9 Wildcard matching, when applied to library members (when using Extract or
Delete) applies the wildcard across the complete filename. When applied to files
(Create or Insert) wildcards apply to single components of the filename. Thus, the
wildcard specification a#c would match a.b and abc when using Extract or
Delete, but would only match abc when using Create or Insert.
132

LibFile

t

 of a
e
Command line interface
For normal use you do not need to understand the syntax of the LibFile command line,
as it is automatically generated for you from the SetUp dialogue box settings.

The format of the LibFile command is:

Libfile options library [file_list]

Wildcards * and # may be used in file_list.

Options

Notes:

1 Multiple options may be specified in a single options argument. For example,
-clso is equivalent to -c -l -s -o.

2 Most of the above options should be familiar from the description of the desktop
interface. One possible exception to this is the -q option. This option means
‘behave as though the directory specified after the -q option were the current
working directory (as set by the dir command)’.

When extracting files with relative pathnames, LibFile creates this directory if i
does not already exist and prefixes the relative pathnames with the specified
directory. Note, that you should not add a full stop (.) to the end of the directory
specification, LibFile adds this itself.

3 The -q option is used by the desktop interface (since the desktop has no notion
current working directory) to tell LibFile where to put files with relative pathnam
(generally <Wimp$ScrapDir>Tmp_name where Tmp_name is a name invented
by the desktop interface). This directory is then renamed, or copied to a
user-specified directory.

-h Display a screen of help text

-c Create a new library containing files in file_list

-i Insert files in file_list, replace existing members

-d Delete the members in file_list

-e Extract members in file_list placing in files of the same name

-o Add an external symbol table to an object library

-l List library, may be specified with any other option

-s List symbol table, may be specified with any other option

-t Use Null timestamps when creating or updating library

-v file Take additional arguments from file

-q dir Place relative filenames in dir when extracting file
133

Command line interface
4 For compatibility with previous versions of LibFile, specifying -c with -o with a
null file list does not create an empty library. Instead, it ignores the -c option and
adds a symbol table to an existing library.

Examples

LibFile -c srclib *

Create a library called srclib in the current directory from all the files in the current
directory (including the files contained in any directories in the current directory).

LibFile -co adfs::Edward.$.clib.o.AnsiLib o

Create the object library AnsiLib from the object files contained in directory o in the
current directory.

Libfile -e -q :Ian.$.PDUtils :0.PDLib *

Extract all the files from :0.PDLib and put them in the directory :Ian.$.PDUtils.

Assembler example

The programming example PrintLib, which you can find in Examples.PrintLib,
consists of three potentially useful procedures written in assembler which are intended
to be assembled to object files using ObjAsm and then formed into a library with
LibFile. They illustrate various programming points as well as how to construct a
library.

If you examine the assembler source files in Examples.PrintLib.s you will see
that the procedure exported by each file obeys the ARM Procedure Call Standard. This
ensures that they, and hence the PrintLib library, can be linked with other languages such
as C. It is essential that procedures placed in a library have consistent register
conventions, so that they can be re-used later without consulting their source text.

The PrintLib example is provided with both its assembly language source and the
finished library. The facilities provided by this library are used in other programming
examples. The procedures it exports are:

print_string Print a null terminated string pointed to by r0.

print_hex Print in hexadecimal an integer contained in r0.

print_double Print in scientific format a double precision floating point
number contained in r0,r1.
134

LibFile
To reconstruct PrintLib from its sources, first double click on !ObjAsm and !LibFile in a
directory display to load them as applications with icons on the icon bar. Then assemble
s.PrintStr, s.PrintHex and s.PrintDble to corresponding object files by
dragging each source file to the ObjAsm icon and saving the output object files in the
default places, i.e. o.PrintStr, o.PrintHex and o.PrintDble.

Next drag o.PrintStr to the LibFile icon to make the LibFile SetUp dialogue box
appear:

Ensure that the Create option is chosen as above. Drag the other two object files to File
List, then click on Run. Finally save the library file produced: it is now ready to use.

The assembly language source file Examples.PrintLib.s.ATestPrLib is an
example program making use of the procedures exported by PrintLib. To use it:

1 Double click on the !Link application to load it.

2 Assemble s.ATestPrLib to o.ATestPrLib with ObjAsm.

3 Link o.ATestPrLib with the finished PrintLib library to produce an executable
AIF image file.

Running the test program by double clicking on it should result in text output into a
RISC OS output window:
135

136

13 Link

he purpose of Link is to combine the contents of one or more object files (the output

of a compiler or Assembler) with selected parts of one or more library files to T
produce an executable program.
Load the Link application by double-clicking on the !Link icon.

The SetUp dialogue box
Click Select on the application icon. This displays the SetUp dialogue box:

This allows you to set the following options:

The Files writable icon allows you to enter the list of object and library files to be linked.
You can do this in two ways:

l Type in a space-separated list of the files to be linked. You can use wildcards (* to
match zero or more characters, and # to match a single character).

l Drag the icons of the files to be linked onto the Files writable icon. Dragging a
directory to the icon (e.g. an o directory) links all the files in that directory.

Note: When linking libraries, you must take care to link them in the correct order. See
the section Libraries on page 141.

AIF generates ARM Image Format (AIF) output. This is the default image used for
building an application. You should only choose other image types if AIF is not suitable
for some reason. The format of AIF files is described in Appendix E.

Module generates Relocatable Module Format (RMF) output. Refer to Relocatable
modules on page 146 in the Acorn C/C++ manual for more details on relocatable
modules.
137

The SetUp dialogue box

 AIF

 in

apter
ith
n is

ault.

ation

g to

tion
Relocatable AIF links an image so that it can be run at any address, usually specified in
conjunction with the Workspace option on the SetUp menu. See the section Relocatable
AIF images on page 145 for more details.

Binary generates a plain binary image (without an image header or any specific image
format). The default load address for a binary image is 0. Any other address can be
specified using the Base option from Link’s SetUp menu. If AIF is also enabled in
Link’s SetUp dialogue box, then a plain binary image is generated, preceded by an
header which describes it.

AOF generates partially linked output in ARM Object Format, suitable for inclusion
a subsequent link step.

Debug allows you to debug a program with the desktop debugger DDT. See the ch
Desktop debugging tool on page 19 for more details on preparing a program for use w
the debugger. This option is not suitable for use with the module option. This optio
switched off by default.

Verbose gives progress reports in the Output window while linking. See the section
Output on page 139 for an example of this output. This option is switched off by def

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

Command line allows you to specify the command line to be presented to the
underlying Link command line tool. Refer to the section Command line interface on
page 148 for more details.

Link map displays the base address and size of every code, data and debugging
information area, and displays total sizes for the code, data and debugging inform
in the output window. See the section Link map option on page 144 for more
information. For details on linker areas, see the section AOF on page 203.

X-Ref displays a list of inter-area references. This option is most useful when tryin
reduce dependencies between library elements, so that you only need include the
minimum set of library elements. It is also useful when using overlays. See the sec
X-Ref option on page 144 for more details.

Errors to file allows you to specify the name of a file to which all errors should be
written.

Map to file will write a link map to the given filename (if the Link map option is
enabled).

Symbols to file will write all symbols found to a file with the given name.
138

Link

is is
able

. You
you
h are

bol.

Overlay generates an overlaid image using the specified overlay description file. For
details of overlay description files, see the section Overlay description files on page 143.
This option is not suitable for use when generating Module or Binary output.

Workspace, when used in conjunction with the Relocatable AIF option, generates an
auto-relocatable image which will relocate itself to the top of its application space. This
leaves the specified amount of workspace above the image free for the use of the
program being linked. The effect of this option is not currently defined when generating
image types other than relocatable AIF.

Entry specifies the entry point of an image if none of the object files themselves specify
an entry point. Generally, you should only use it when writing completely in assembler
without using the assembler’s ENTRY directive.

Base specifies the base address at which the image should be linked. By default th
&8000 for AIF images and 0 for binary images. You should always load non-relocat
AIF images at their base address.

No case causes a case insensitive comparison to be used when comparing symbols
will not generally want to use this option with C (which is case sensitive). However,
may need to use it with other language systems (such as Pascal and Fortran) whic
case insensitive, especially if you are trying to interwork with C and one of these
languages.

Via file allows you to set up a list of object files to be linked in one file called a Via file.
Instead of having to drag all the files to the Files list on the SetUp dialogue box, just
enter the name of the Via file in the submenu.

Map unresolved refs causes all unresolved references to be resolved to a given sym

C++ naming will report C++ symbol names using C++ notation.
Note that you must enable this option when linking C++ compiled code.

Others allows you to specify other options allowed by the underlying command line
link tool.

Note: The Base, Workspace and Entry options require a numeric argument to be
entered in the associated submenu. You can prefix this argument by & or 0X to specify a
hexadecimal value. You can postfix it by k for 210 and m for 220.

Output
The Output window displays information printed when you have selected the Verbose,
Link map or X-Ref options. It also displays any error messages generated while
linking.

The following windows show examples of the Verbose and Link map output. You will
find an example of the X-Ref output in the section X-Ref option on page 144.
139

Possible errors during a link stage
Verbose output:

Link map output:

Possible errors during a link stage
Two common errors which can occur during a link stage are caused by unresolved and
multiple references.

In the case of unresolved references, a symbol has been referenced from an object file,
but there is no corresponding definition for the symbol. Link will generate an error
message giving the name of the undefined symbol. This is usually caused by the
omission of a required object or library file from the file list, or the misspelling of an
external identifier in the original source program.
140

Link
Multiple references are caused by a clash of names. For example, a procedure might
have been defined with the same name as a library procedure, or as a procedure in
another object file.

Libraries
Libraries differ from object files in the way Link uses them. First, all the object files are
linked together. Then, for each library in turn, Link searches for symbol definitions
which match unsatisfied symbol references. When such a symbol definition is found, the
module defining that symbol is loaded.

When a library module is loaded, new unsatisfied symbol references may be created, so
the library is re-searched until no more members are loaded from it. Note that each
library is processed in turn, so references between libraries must be ordered.

A reference from a member of a library later in the file list to a member earlier in the file
list will not be resolved. Therefore you must drag libraries to the file list in the correct
order.

Usually, at least one library file will be specified in the list of files to be linked. This will
typically be the run-time library for the language you are using. When writing in C, you
can use either the shared library (in which case you will need to link with the shared
library stubs, C:o.stubs) or the unshared library, C:o.ansilib. Use the unshared
library when linking a program for use with the desktop debugger, or when linking a
program which you intend to distribute to people who may not have the shared C library.

You can call the procedures in the library for one language from programs written in
another, provided:

l both libraries conform to the ARM Procedure Call Standard (APCS) described in
appendix ARM procedure call standard on page 249

l the library’s initialisation routines have been called.

Refer to the chapter The Shared C library in Volume 4 of the RISC OS 3 Programmer’s
Reference Manual for details on how to initialise the common run-time kernel
distributed with the C library.

Generating overlaid programs
An introduction to overlays is given in the Acorn C/C++ manual. If you are not familiar
with the concept of overlays, you should read the chapter on overlays in that manual
first. This section only describes how to use Link to create an overlaid application.

A simple, 2-dimensional, static overlay scheme is supported. There is one root segment,
and as many memory partitions as you specify (called 1_N, 2_N, etc). Within each
partition, some number of overlay segments (called 1_1, 1_2, etc) share the same area of
141

Generating overlaid programs

gful
memory. You specify the contents of each overlay segment and Link calculates the size
of each partition, allowing sufficient space for the largest segment in it. All addresses are
calculated at link time: overlaid programs are not relocatable.

A hypothetical example of the memory map for an overlaid program might be:

Segments 1_1, 1_2, 1_3 and 1_4 share the same area of application workspace. Only one
of these segments can be in memory at any given instant; the remainder must be on disc.

Similarly segments 2_1, 2_2 and 2_3 share the 2_N area of memory, which is entirely
separate from the 1_N partition.

Link assigns AOF AREAs to overlay segments under user control. Usually, a compiler
produces one code AREA and one data AREA for each source file (called C$$code
and C$$data when generated by the C compiler). The C compiler option -zo
(described in the Acorn C/C++ manual) allows each separate function to be compiled
into a separate code AREA. This gives finer control of the assignment of functions to
overlay segments (but at the cost of slightly enlarged code and enlarged object files).
You control the overlay structure by describing the assignment of certain AREAs to
overlay segments.

For all remaining code AREAs, Link will act as follows:

If all references to the AREA are from the same overlay segment, the AREA is
included in that segment; otherwise, the AREA is included in the root segment.

This strategy can never make an overlaid program use more memory than if Link put all
remaining AREAs in the root segment, but it can sometimes reduce it.

By default, only code AREAs are included in overlay segments. Data AREAs can be
forcibly included, but it is the user’s responsibility to ensure that doing so is meanin
and safe.

2_1 2_2 2_3

1_41_31_21_1

root segment

high

low

2_N

1_N

address

address
142

Link
On disc, an overlaid program is organised as a RISC OS application. The components of
the application (the !RunImage and the various overlay segments) must reside in the
application directory. Link creates the following components in the application
directory:

!RunImage The root segment, an AIF image (which may be squeezed).

1_1 Overlay segments, which are plain binary images, linked at absolute
1_2 addresses. Overlay segments may not be squeezed.

...

2_1
...

Overlay description files

The overlay description file, specified in the overlay submenu, describes the required
overlay structure. It is a sequence of logical lines:

l A backslash (\) immediately before the end of a physical line continues the logical
line on the next physical line.

l Any text from a semicolon (;) to the end of the logical line inclusive is a comment
(for documentation purposes) which is ignored by Link.

Each logical line has the following structure:

segment_name module_name [(list_of_AREA_names)] module_name ...

For example:

1_1 edit1 edit2 editdata(C$$code,C$$data) sort

The list_of_AREA_names is a comma-separated list of names as they appear when
displayed by the DecAOF tool. If omitted, all code AREAs are included.

A module_name is either the name of an object file (with all leading pathname
segments removed) or the name of a library member (again, with all leading pathname
segments removed).
143

Generating overlaid programs
X-Ref option

To help the user-partition between overlay segments, Link can generate a list of
inter-AREA references. To do this, choose the X-Ref option on the SetUp menu. The
following window shows an example of the output from X-Ref:

In general, if area A references area B (for example because x in area A calls y in area B)
then A and B should not share the same area of memory. Otherwise, every time x calls y
or y returns to x, there will be an overlay swap.

Link map option

The Link map option displays the base address and size of every area in the output
program. It is useful for determining how AREAs might be packed most efficiently into
overlay segments.

Linking with the overlay manager

The overlay manager is responsible for loading overlay segments when:

l an inter-segment reference occurs to a segment which is not loaded, or

l a procedure return occurs to a segment which is no longer loaded.

In general, referencing a datum cannot cause an overlay segment to be loaded. One
exception to this is an indirect procedure call via a function pointer which will cause an
overlay segment to be loaded (Link cannot distinguish this from a normal procedure call,
since Link just sees a word relocation to an overlaid procedure). Note that the pointer
itself must not be overlaid.
144

Link
If Link detects a data reference to a non co-resident or potentially non co-resident
segment it will issue one of the following messages:

Non co-resident data reference in module_name(area_name)

Possible non co-resident data reference in
module_name(area_name)

Certain types of data reference cannot be detected by Link. This happens when
read-only data is placed in a code segment. The C compiler places string literals in code
areas. This will cause problems if you have external string literals, since Link cannot
distinguish between a string literal and a procedure in the code segment. Hence it
indirects the string through the Procedure Call Indirection Table (PCIT). So, when your
program reads the contents of the string, it will in fact end up reading the contents of the
PCIT.

The C compiler option -fw (described in the Acorn C/C++ manual) causes the
compiler to place string literals in data areas. You should use this option on modules
which may contain external string literals.

The overlay manager must be included in the link stage. You will find the overlay
manager in the object file C:o.overmgr. You should drag this object file to the Files
icon when linking an overlaid program.

Note: The overlay manager is also contained in the non-shared library ANSILib, so, if
you are using ANSILib, you do not need to drag the overlay manager to the Files icon.
The shared C library does not contain a copy of the overlay manager.

Relocatable AIF images
Usually, when an image file is produced, it will execute correctly only at the specified
base address (or the default of &8000 if a base is not specified). This is because the
program will contain references to absolute addresses within itself. However if you tell
Link to generate a relocatable AIF image, you can load and execute the program at any
address. Link also inserts a branch in the image header, so that the relocation code is
automatically called when you run the program.

This is achieved by adding the following to the end of the image:

l a relocation table

l a small routine to perform the relocation.

The relocation table is a list of offsets from the start of the program to words which need
relocating. These words are adjusted by the difference between the base address of the
program and the address where it was loaded. Once the relocation has been performed,
the program proper starts executing.
145

Relocatable modules

However, although this can be used to make a program statically relocatable, it does not
confer true position-independence on the program. That is, the program cannot be
moved in memory once it has started, and still be expected to work.

If a Workspace value is specified on the SetUp menu, Link inserts the value in the
image header. The relocation code examines this value and, if the value is non-zero,
relocates the application to the top of application space, leaving the specified amount of
workspace between the end of the application and the top of application space for stack
and heap usage.

Utilities

Utility or transient programs (filetype FFC) can be linked as relocatable AIF images.
Use the SetType command to set the filetype correctly after linking:

*SetType image Utility

Notes: The C library cannot be used when linking a utility. Utility programs must not be
squeezed. For more details on utilities, refer to the RISC OS 3 Programmer’s Reference
Manual.

Relocatable modules
When linking a relocatable module, Link performs a similar task as when linking a
relocatable AIF image, adding a relocation table and a relocation routine to the end of
the module image.

However, the mechanism by which the relocation routine is called is different in a
relocatable module: A module must be multiply relocatable, since it may move about in
the Relocatable Module Area (RMA) when, for example, the RMA is tidied with the
*RMTidy command. The module must call the relocation routine in its initialisation (or
re-initialisation) code.

When using the C Module Header Generator (CMHG) tool you need not worry about
this, since CMHG automatically generates a module header which includes a call to the
relocation routine in its initialisation code.

If you are constructing the module header in assembler, you must make this call
yourself. Use the IMPORT directive to import the external symbol __RelocCode and
place a BL to this symbol in your initialisation code.

IMPORT |__RelocCode|
init

...
BL |__RelocCode|
...
146

Link
Note: any code executed before the call to the relocation routine must be
position-independent.

When creating a module header in assembler, the AREA containing the header should
have the attributes CODE and READONLY. The AREA name should be chosen so that
the AREA will be the first AREA in the module. Link sorts AREAs first by attribute,
then by AREA name, so you should choose an AREA name which is lexicographically
less than all other AREA names in your module. The CMHG tool uses an AREA name
of !!!Module$$Header, but this is not obligatory.

Predefined linker symbols
All symbols containing the substring $$ are reserved by Acorn for use by Link.

For each AREA in the output file formed by coalescing one or more areas of the same
name (e.g. C$$code) Link generates two symbols:

In addition, Link creates four conceptual areas in the output, and defines Base and Limit
symbols for them.

Although it will often be the case, there is no guarantee that the end of the read-only area
corresponds to the start of the read/write area. You should not therefore rely on this
being true.

The read/write (data) area may contain code, as programs are sometimes self-modifying.
Similarly, the read-only (code) area may contain read-only data (e.g. strings,
floating-point constants etc).

area_name$$Base Address of the start of the area.

area_name$$Limit Address of the byte beyond the end of the area.

area_name The name of the area in the output file. You can use
these symbols in your programs to refer to the Base and
Limit of areas in your programs.

Image$$RO$$Base Address of the start of the read-only (code) area.

Image$$RO$$Limit Address of the byte beyond the end of the code area.

Image$$RW$$Base Address of the start of the read/write (data) area.

Image$$RW$$Limit Address of the byte beyond the end of the data area.

Image$$ZI$$Base Address of the start of the zero-initialised (bss) area.

Image$$ZI$$Limit Address of the byte beyond the end of the bss area.
147

Command line interface
Command line interface
The format of the Link command is:

Link options file_list

Options

Abbreviations are shown capitalised.

General options

-Output file Put final output in file

-Debug Include debugging information in image

-ERRORS file Put diagnostics to file, not stderr

-LIST file Put Map and Xref listing to file, not stdout

-VIA file Take more object file names from file

-Verbose Give informational message while linking

-MAP Print an area map to the standard output

-Xref Print an area cross-reference list

-Symbols file List symbol definitions to file

Output options

-AIF Absolute AIF (the default)

-AIF -Relocatable Relocatable AIF

-AIF -R -Workspace n Self-moving AIF

-AOF Partially linked AOF

-BIN Plain binary

-BIN -AIF Plain binary described by a prepended AIF header

-IHF Intellec Hex Format (readable text)

-SPLIT Output RO and RW sections to separate files (-BIN,
-IHF)

-RMF RISC OS Module

-OVerlay file Overlaid image as described in file
148

Link
Special options

-RO-base n

-Base n Specify base of image

-RW-base n

-DATA n Specify separate base for image’s data

-Entry n Specify entry address

-Entry n+obj(area) Specify entry as offset n within area found in
object file obj (prefix n with & or 0x for hex;
postfix with K for *210, M for *220)

-Case Ignore case when symbol matching

-MATCH n Set last-gasp symbol matching options

-FIRST obj(area) Place area from object obj first in the output
image

-LAST obj(area) Place area from object obj last...

-NOUNUSEDareas Don’t eliminate AREAs unreachable from the
AREA containing the entry point (AIF images only)

-Unresolved sym Make all unresolved references refer to sym

-C++ Support C++ external naming conventions
149

150

14 ObjSize

bjSize analyses one or more object or library files and returns the code-size,

data-size and debug-size of each file.O
The SetUp dialogue box
Clicking Select on the application icon or dragging the name of a file (if Auto Run is
off) from a directory display to the icon brings up the SetUp dialogue box:

The Files field allows you to specify the name of one or more files to be processed
(typed in or dragged from a directory display). These files must be ALF or AOF files.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

For a description of the ObjSize Command line option see the section Command line
interface on page 152.

The Application menu
Clicking Menu on the ObjSize application icon gives the following options:

For a description of each option in the application menu see the chapter General features
on page 101.
151

Example output
Note that Auto Save is not available for this application, and that Auto Run is enabled
by default.

Example output
The output of ObjSize appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 105.

The following window shows an example of the output from ObjSize:

The three object sizes displayed by ObjSize are:

code-size The size of the object code.

data-size The total size of all areas in the AOF file which have the attribute
data or zero-Init.

debug-size The total size of all areas in the AOF file (compiled with the debug
option set) which have the attribute debug.

If a library file is being analysed ObjSize displays the above three object sizes for each
individual member of the library file and then displays the overall totals of these to
provide a set of totals for the entire library.

Command line interface
For normal use you do not need to understand the syntax of the ObjSize command line,
as it is automatically generated for you from the SetUp dialogue box settings. The
Command Line syntax for ObjSize is:

ObjSize filename [filename...]

filename a valid pathname specifying an ALF or AOF file.
152

15 Squeeze

queeze compresses an executable ARM-code program, saving disc space and often

making the program load faster.S
Relocatable modules can be squeezed but must be run rather than RMLoaded.

Squeeze converts a module to a program, which installs the module in the RMA when
run. This program contains a binary image of the module within itself. Squeeze
compresses this program.

The SetUp dialogue box
Clicking Select on the application icon or dragging the name of a file (if Auto Run is
off) from a directory display to the icon brings up the SetUp dialogue box:

The Input writable icon allows you to specify the name of a file to be processed (typed
in or dragged from a directory display). This file must be an AIF file.

Try harder will force Squeeze to compress the file even if the file is considered by
Squeeze to be too small to warrant compression.

Verbose outputs messages and compression statistics.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the screen:

For a description of the Squeeze Command line option see the section Command line
interface on page 154.
153

The Application menu
The Application menu
Clicking Menu on the Squeeze application icon gives the following options:

When Auto save is enabled, squeezing overwrites the input file with the squeezed
version automatically without producing a save dialogue box for you to drag the file
from. Auto save is off by default, whereas Auto Run is on by default.

For a description of each option in the application menu see the chapter General features
on page 101.

Example output
The output of Squeeze appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 105.

The following window shows an example of the output from Squeeze, together with a
standard save dialogue box (which appears if Auto Save is not enabled):

Command line interface
For normal use you do not need to understand the syntax of the Squeeze command line,
as it is automatically generated for you from the SetUp dialogue box settings. The
command line syntax for Squeeze is:

Squeeze [options] unsqueezed-file [squeezed-file]
154

Squeeze
Options

-f compress file regardless of size

-v output messages and compression statistics

unsqueezed-file a valid pathname specifying an input AIF file

squeezed-file a valid pathname specifying an output AIF file
155

156

16 Adding your own desktop tools

he underlying technologies used in Acorn C/C++ have been designed in a way

which allows third parties to add tools and applications, provided that they follow a T
number of rules and conventions which are given in this section. Unless you are a

feel
e
s

 and
software developer, intending to use these technologies in your products, or intending to
add further desktop tools, then you can skip this section. (Of course you may just be
interested in how it all works, in which case read on!).

The FrontEnd module will act as a generic application, as described in the chapter
General features on page 101. It is assumed here that you are familiar with this chapter,
and that you have a feel for how the non-interactive tools operate.

The extensions you can make fall roughly into the following categories:

l Adding a compiler for another language – this will require all of the information
given below.

l Adding a utility that you wish to run under the desktop, with the same look and
as the other desktop non-interactive tools. For instance you may like to port th
UNIX sed stream editor to RISC OS, with a Wimp front end – this only require
knowledge of how to describe an application to the FrontEnd module.

l Creating your own project management tool, similar to Make – this will require
knowledge of the message-passing protocols used with the FrontEnd module,
also the format of a makefile used to maintain a project.

In this chapter you will find further technical information on the following:

l the FrontEnd module

l the DDEUtils module

l the SrcEdit editor

l the Make project management tool.
157

The FrontEnd module

ool,
star

he
p

s a

k
, the

tes
 the

 the
lled
ol

The FrontEnd module

Overview

The purpose of the FrontEnd module is to ease the job of putting consistent Wimp
frontends onto a number of simple tools which are normally driven from the command
line (e.g. Link, CC, ObjAsm etc). A Wimp application can then be made by supplying a
formal description of the mapping between the Wimp interface and command line
options, a templates file, !Run, !Sprites and !Boot files, a message file, and a !Help file
(also a !SetUp file if this is to be used by Make – see Make on page 171 for more
details).

To give you a feel for how the FrontEnd module interacts with your command line t
here is a brief description of how it works. The FrontEnd module understands two
commands:

*FrontEnd_Start

*FrontEnd_SetUp

The former of these is used to invoke a Wimp front end for a tool, with an icon on t
icon bar; the latter is used to allow Make options for the tool to be set using a Wim
interface.

*FrontEnd_Start

When the FrontEnd module gets a *FrontEnd_Start command it creates a new
instantiation of itself called FrontEnd%toolname where toolname is the name of
the tool invoked; it then enters that instantiation as the current application, and doe
SWI WimpInitialise to become a Wimp task. Because this task stops the Wimp from
mapping out its application workspace, by responding to service call 0X11, the tas
appears in the applications task list of the Task Manager display. From this point on
behaviour of the Wimp task is governed by the formal description file which was
initially passed to the *FrontEnd_Start command.

*FrontEnd_SetUp

The *FrontEnd_SetUp command is similar, except it calls its new instantiation
FrontEnd%Mtoolname, and does not produce an icon on the icon bar. The templa
for windows used by the application must be provided by you, and they must follow
conventions laid down later in the section Template files on page 161.

When the user causes the command line tool to be run (for example by clicking on
Run icon in the application’s dialogue box), the FrontEnd module starts up a task ca
toolname_task running under the control of the task window module; thus the to
is pre-emptively multitasked, and any output the tool produces is stored and will be
158

Adding your own desktop tools
displayed in a window, if this is what the user wishes. When the user quits the
application, the FrontEnd module ensures that the relevant instantiation is also removed
from the RISC OS module list.

Example

To be suitable, your command line program has to be non-interactive. This means it
should start with a command line, then run to error or completion without any further
user interaction, outputting reports as screen text. A compiler such as CC fits this
description, but an editor such as SrcEdit does not.

The tool ToANSI is a simple example of the non-interactive desktop tools. You may find
it instructive to examine the file Desc in AcornC_C++.Tools.!toansi.

Producing a complete Wimp application

In order to produce a complete Wimp application you will need to provide the following:

l !Run, !Boot and (possibly) !SetUp files

l a !Sprites file

l a Templates file

l a Description file

l a Messages file (optional)

l a !Help file (optional).

These are described in more detail below.

!Run, !Boot and !SetUp files

Your !Boot file will be the same as for normal applications, including doing things like
setting file types, and performing *IconSprites commands on your sprites.

A typical !Run file will look like any of those supplied with the desktop non-interactive
tools, such as !Link, !Find, or !Diff. The size of Wimpslot does not depend in any way
on the size of the command-line tool which is running under the FrontEnd module, but
instead refers to the application workspace used by the module, when starting up as a
Wimp task (currently a minimum of 16k). You should ensure that you have a command
of the following form:

*Set toolname$Dir <Obey$Dir>
159

Producing a complete Wimp application
so that your resource files can be found. Having made sure that the FrontEnd and Task
Window modules are loaded (by using *RMEnsure) you then issue the *FrontEnd_Start
command with application name and full pathname of the description file as parameters.
You may need the facilities provided by the DDEUtils module, in which case you should
*RMEnsure it in your !Run file

For example for !Diff, the !Run file is:

*If "<System$Path>" = "" Then Error 0 System resources cannot be found
*WimpSlot -Min 128k -Max 128k
*IconSprites <Obey$Dir>.!Sprites
*Set Diff$Dir <Obey$Dir>
*RMEnsure UtilityModule 3.10 Error This application only runs on RISC OS 3 (version
3.10) or later
*RMEnsure SharedCLibrary 3.99 Error This application requires the Shared C Library
module (is it unplugged?)
*RMEnsure FPEmulator 2.87 Error This application requires the FP Emulator module
(is it unplugged?)
*RMEnsure TaskWindow 0.47 Error This application requires the Task Window module
(is it unplugged?)
*RMEnsure FrontEnd 0 System:modules.frontend
*RMEnsure Frontend 1.15 Error You need version 1.15 of the FrontEnd module to run
!Diff
*RMEnsure DDEUtils 0 System:modules.ddeutils
*RMEnsure DDEUtils 1.52 Error You need version 1.52 of the DDEUtils module to run
!Diff
*WimpSlot -Min 32k -Max 32k
*FrontEnd_Start -app Diff -desc <Diff$Dir>.desc

A typical !SetUp file is very similar to a !Run file, but will be used when the FrontEnd
module gets a request from Make to start up the Wimp front end for a tool, to allow the
user to set options from a dialogue box. This file should only need to do the following:

l *Wimpslot -min 16K -max 16K

l *Set toolname$Dir <Obey$Dir>

l *RMEnsure FrontEnd

l *FrontEnd_SetUp -app %0 -desc %1 -task %2 -handle %3

Again, examples of a !SetUp file can be found in the set of non-interactive desktop tools.

!Sprites file

The !Sprites file will contain the sprite for the application icon on the icon bar, and also
optionally a small sprite, both of which should comply with RISC OS style. The name of
the large sprite should be the same as the application (e.g. !Link, !Find etc).
160

Adding your own desktop tools
Template files

The set of window templates which you should supply in a file called Templates is as
follows:

Window name Status Details

progInfo Mandatory Should be as standard Acorn applications
information boxes.

Icon #1 must be indirected text, with a
buffer size large enough to accept the
application name.

Icon #4 must be indirected text, with a
buffer size large enough to accept the
version string.

SetUp Mandatory This dialogue box is used to set the most
common options for the command line tool.
Rarer options can be set from a menu by the
user pressing the Menu button on this
dialogue box. The title bar must be
indirected text, and have a buffer size large
enough to accept the application name.

Icon #0 must be indirected text (buffer size
12 bytes), and have a button type of Click,
and should contain the text Run. It is used to
invoke the command line tool with the
chosen options.

Icon #1 must be text, and have a button type
of Click, and should contain the text
Cancel. It is used to close the Options
dialogue box, and revert to the options
settings as they were when the dialogue box
was last opened.

Other icons are of your choice, and can be
used to map to command line options. You
must, however, follow the conventions
described in the section Writing an
application description on page 163.
161

Producing a complete Wimp application

CmdLine Mandatory This dialogue box is used to show the
command line equivalent of the options
which the user has chosen. The title bar
should contain some explanatory text like
Command Line.

Icon #0 must be indirected text with buffer
size 12 bytes, with button type Click, and
containing the text Run. It is used to invoke
the command line tool with the shown
command line.

Icon #1 must be indirected text with buffer
size typically at least 256 bytes, and with a
button type of Writeable.

Help Optional Used to display help text when the user
selects Help from the application’s main
menu. The title bar should contain some
appropriate text. The window should not
have its Auto-redraw flag set.

query Mandatory Used to ask the user if they really want to
kill off a task which is running.

Icon #0 must be text, button type Click,
and is used to reply Yes.

Icon #1 must be indirected text, buffer size
256 bytes.

Icon #2 must be text, button type Click,
and is used to reply No.

Output Optional Used to display in a scrolling window, the
textual output of the command line tool. The
window’s Auto-redraw flag must not be
set.

The title bar must be indirected text, and
have a buffer size large enough to accept the
application name, plus a space and the string
(Completed).

Window name Status Details
162

Adding your own desktop tools
Writing an application description

As previously mentioned, your application running under the FrontEnd module is driven
by a formal description written in a language whose EBNF (Extended Backus Naur
Form) grammar is given in appendix FrontEnd protocols on page 187. This section
gives an explanation of the semantics of the language, and hence explains how to write
your own description.

As can be seen from the EBNF rule in appendix FrontEnd protocols for an application,
the description file consists of 10 sections, with only the first section being mandatory
(TOOLDETAILS). Each of these sections is described separately below.

TOOLDETAILS section

The tool details section is the only section which you must have in the description. The
section starts with the name of the tool, which must be the same as the string passed as
the -app parameter to *FrontEnd_Start. This name will be used in window and menu
title bars to identify the application.

Summary Optional Used to give a summary of the textual
output produced by the command line tool.

Icon #2 must be text, with button type
Click, containing the text Abort. It is
used to abort the task.

Icon #3 must be indirected text, with a
buffer size large enough to hold strings
Pause and Continue, button type
Click. It is used to pause and continue the
task.

xfer_send Mandatory if
the Tool
produces
output that the
user is able to
save

Used as a save dialogue box for the textual
output of a tool.

Icon #0 must be text, with button type
Click, containing the text OK.

Icon #2 must be indirected text, with a
buffer size of 256, and button type
writeable.

Icon #3 must be indirected text.

save Mandatory if
user is able to
save anything

As for xfer_send, but is used to save the
result file generated by running the tool. It
should also have a close icon.

Window name Status Details
163

Producing a complete Wimp application

,
ue

n
 tool

d be

st
Normally the tool will reside in your current library directory, and hence the command
will be invoked using only the tool name. If you wish to change this you can specify a
command_is entry, which gives a pathname for the tool. For example if you have an
application called example, but the executable image for this application is held in
!RunImage in the application directory, then you should have a line in the description
file saying:

command_is "<example$Dir>.!RunImage";

The version entry will typically be a version number and optional date for the tool.
These will be used in the Program Information dialogue box (progInfo).

If your tool understands a particular file-type, then this can be entered using the keyword
filetype. This is used when the user double-clicks on a file of this type in a directory
display. The effect is as if the user has dragged the file icon to your icon on the icon bar.

By default the tool is run in a Wimpslot of 640k, under the Task Window module. If you
want this value to be different, then use the Wimpslot command in the description.

Since the limit on RISC OS command lines is 256 characters, you may find this to be an
unnecessarily strict limit when passing a potentially large list of full pathnames to a tool
on its command line. If you use the has_extended_cmdline keyword in the
description, then the FrontEnd module will request space from the DDEUtils module to
place the command line arguments in. If the tool is written in C (or runs under any other
run-time environment which cooperates with DDEUtils) the tool will pick up the
arguments from DDEUtils. Using this option, your command line is limited only by the
size of the writable icons in your dialogue boxes. If written in C, the tool must have been
linked with the stubs or ANSILib to use this feature.

METAOPTIONS section

The METAOPTIONS section refers to non-application-specific options.

If the has_auto_run keyword is used, the application’s main menu option Auto Run
will not be greyed out. In addition, if you include the keyword on, then this option will
be enabled by default. Auto Run means that if a file is dragged to the application icon
then the tool will immediately be run, rather than first displaying the Options dialog
box.

The has_auto_save keyword refers to the Auto Save option in the application’s
main menu, and the keyword on turns this option on by default. If this option is on, the
rather than producing a Save as dialogue box to save the file output of the tool, the
is run to directly write to the desired output place. The location where output shoul
sent is given following the has_auto_save keyword; in order to specify this
location, you must first give an icon number in the Options dialogue box, whose fir
entry will be used to determine the directory where the output will go (using the from
icn <integer> keywords).
164

Adding your own desktop tools

ault

ich is
tory

st on
s a

d

s on

nged
 turn
For example, if you have the line:

has_auto_save ^."!RunImage" from icn 3;

and icon 3 of the options dialogue box contains the text:

adfs::4.$.objects.file1 adfs::4.$.objects.file2

then the filename adfs::4.$.objects.file1 will be used to form the output
filename. First the leafname file1 is stripped off to leave the directory name
adfs::4.$.objects which will form the stub of the output filename. This stub is
then manipulated by the string which is specified between the keyword
has_auto_save and the keyword from. You can indicate parent directories using
any (reasonable) number of ^.s and can refer to the original leafname using the keyword
leafname (in this example leafname would map to file1). This leafname can have
literal strings prepended or appended to it.

If the application is to have textual output, then you can specify that you want text and/or
summary window(s) by using the keywords has_text_window and
has_summary_window. Beware that if you don’t have any output windows at all,
then the user has no way of pausing/aborting/examining the running task. The def
display mode is text, but this can be explicitly stated as text or summary using the
keyword display_dft_is.

FILEOUTPUT section

The FILEOUTPUT section deals with the production and saving of a single output
object. To enable the user to then save this output, it is sent to a temporary file, wh
then copied to a permanent file when the corresponding icon is dragged to a direc
display – the icon can also be dragged to another application.

By default it is assumed that the output filename for a tool is that which appears la
the command line with no special preceding flag. If your command line tool require
flag such as -o to go before the output filename, then this is specified using the
output_option_is keyword.

Also by default, the name which appears in the Save as dialogue box is the string
Output, assuming that no Auto Save string has been specified. This can be change
using the output_dft_string keyword.

Certain tools produce an output file, or not, depending on the combination of option
their command line. By using the output_dft_is keyword, you can specify whether
the default mode of operation is to produce output or not. This state will then be cha
as the user chooses options from the options dialogue box and menu which either
output production on or off (see the DBOX section and the MENU section).
165

Producing a complete Wimp application
DBOX section

The DBOX section describes the properties of the main dialogue box used to set options
for the command line tool.

The purpose of the icon definitions is to show how icon clicks and drags etc. map onto
command line option strings, and how these affect the state of other icons and menu
entries. Essentially, icon numbers correspond to those numbers used in the template for
the dialogue box.

There are four types of icon definition:

1 those that map directly onto command line strings

2 those that increase or decrease the numeric value of another icon

3 those that cause a string to be inserted in a writable icon

4 those that extend and contract the dialogue box.

The most complex of these is the icon which maps to a command line string. Such an
icon can be of two Wimp types:

l a writable indirected text icon

l a click icon.

The former of these contributes to the command line, if it contains any text, and is
generally used for specifying filenames to the command line tool. The latter is generally
used to turn flags on and off, and contributes to the command line if it is selected. The
mapping onto the command line is given after the keyword maps_to; this may begin
with an optional string literal (e.g. -f), optionally followed by keywords string or
number. These latter keywords are used for writable indirected text icons, and refer to
their contents. If you want each item in the writable text icon to be preceded by a
particular string, this can be specified using the prefix_by keyword.

You can also specify that selecting this icon causes the values of other icons to be used
in the command line, by using the followed_by keyword. These items will be
separated by the entry given after the separator_is keyword. As discussed in the
FILEOUTPUT section, it is possible to specify whether a tool produces output by
default; each icon can be made to toggle this state using the keywords
produces_no_output and produces_output. The not_saved keyword
should be used if the value of the particular icon should not be saved when the user picks
the Save options entry from the application’s main menu.

Some examples should make this clearer:

icn 3 maps_to "-c";

This would be used for a click icon, which when selected will result in -c being inserted
into the command line.
166

Adding your own desktop tools
icn 6 maps_to "-f " string not_saved;

This would be used for a writable indirected text icon, whose string contents should
follow the literal -f on the command line. It would typically be used for specifying
input filename(s). The contents of icon 6 would not be saved when the user chose the
Save options menu entry.

Using the increases or decreases keyword is typically used for arrow icons, used
to increase and decrease the numeric value of another icon. The default amount by
which the increase or decrease is made is 1, but this can be changed using the keyword
by. Minimum and maximum values can also be specified. The button type of such an
arrow icon should be click or auto-repeat.

If an icon should just be used to insert a useful string in another writable indirected text
icon, then this is specified using the keyword inserts. Whenever such an icon is
clicked, the given string literal is inserted into the keyboard buffer, if the options
dialogue box currently has the input focus. Its button type should be Click.

The extends keyword is used for an icon which is used to toggle the options dialogue
box, from large to small and vice versa. The from icon number is the icon which is used
to mark the bottom of the dialogue box when small; the to icon number is the icon
which is used to mark the bottom of the dialogue box when large.

The list of icon definitions can optionally be followed by a list of icon default values,
using the keyword defaults. Each icon can be listed with the keywords on and off
for click icons, or a string or numeric literal value for writable indirected text icons.
These defaults refer to those used when the tool is invoked via *FrontEnd_Start; if the
tool has different options by default when invoked from Make, these are listed using the
make_defaults keyword.

Following this in the description is an optional specification of what happens when
drags occur, from the filer or from other applications. After the keyword
imports_start, which begins this part of the description, you can optionally specify
a wild_card_is string, which is used whenever a directory is dragged to your
application. Typically this wildcard will be *. Hence a directory adfs::4.$.foo
dragged onto the application will expand to adfs::4.$.foo.*. There then follows a
list of drag_to specifications, each of which gives either a specific icon number in the
dialogue box, or the keywords any or iconbar; the icon list following the word
inserts is where the filenames of the dragged files will be inserted, with an optional
separator string. If no separator string is given then a drag will overwrite the previous
contents of the writable indirected text icon. Here are some examples:

drag_to icn 3 inserts icn 3;

This means that a drag onto icon 3, will insert the filename into icon 3, and subsequent
drags to this icon will overwrite it.

drag_to icn 6 inserts icn 6 separator_is " ";
167

Producing a complete Wimp application
drag_to any inserts icn 6 separator_is " ";

drag_to iconbar inserts icn 6;

These means that a drag to icon 6, or anywhere else on the dialogue box, or to the icon
bar will insert the filename of the dragged icon in icon number 6. In the case of the
iconbar, the contents of icon 6 will be overwritten.

MENU section

The MENU section is similar to the DBOX section, except that it is used to specify the
way that menu entries on the menu attached to the options dialogue box map to
command line option strings. This menu is typically for less commonly used options.

Each entry in the menu entry list begins with a literal string, which is used to give the
text that will appear in that menu entry. This is followed, after the keyword maps_to,
by string literal (which may be null) to which that menu entry maps in the command
line. This is optionally followed by the keyword sub_menu, in which case this menu
entry will be given a writable submenu with the given string literal as its title, and with a
buffer size given by the supplied integer value. If you want each item in the submenu
buffer to be preceded by a particular string, this can be specified using the prefix_by
keyword. The produces_output, produces_no_output and not_saved
keywords are as described above for the DBOX section.

Menu default values can be set in a similar manner to those for the dialogue box icons.
This is done using the defaults keyword, and then following each menu entry with
the keyword on or off depending on the desired default state of that entry. If the entry
has a writable submenu, this can also be given a default string or integer value. Also a
separate set of option defaults can be set for when the FrontEnd module is invoked from
Make. Menu entries are numbered from 1 (ignoring the command line equivalent entry).

For example:

 menu_start
 "First option" maps_to "-a";
 "Second option" maps_to "-b " sub_menu "Value: " 8;

 defaults
 menu 1 off,
 menu 2 on sub_menu "42";
 menu_end

will result in a menu with two entries (other than the command line equivalent, which is
always the first entry). By default First option will not be ticked, but Second option
will be ticked and its writable submenu will contain the value 42.
168

Adding your own desktop tools
DESELECTIONS section

The DESELECTIONS section allows you to state which Options when enabled should
disable other options. This can be done for both icons in the main options dialogue box
and for entries in its attached menu. For example:

icn 3 deselects icn 4, icn 5, menu 3;

means that if icon 3 is selected, then icons 4 and 5 and menu entry 3 will be deselected.

EXCLUSIONS section

The EXCLUSIONS section is similar to the DESELECTIONS section, except that the
listed icons and menu entries are made unselectable (greyed out). When the icon or
menu which caused this exclusion is deselected, then the excluded items become
selectable again.

MAKE_EXCLUSIONS section

Certain tools require that some options are made unselectable when the FrontEnd
module is invoked from Make. The MAKE_EXCLUSIONS section allows these icons
and menu entries to be listed.

ORDER section

By default the command line for the tool is constructed in the following order:

1 the dialogue box icons in the order given in the DBOX section

2 the menu entries in the order given in the MENU section

3 the output option if appropriate.

If this ordering is not satisfactory, you can give another ordering by using the
order_is keyword followed by a list of icon numbers, menu entries and string literals.
This mechanism can be used to insert string literals which always appear on the
command line.

MAKE_ORDER section

The MAKE_ORDER section is similar to the ORDER section, except that it gives a way
of specifying an alternative command line ordering, when invoked from Make.

Messages files

There are a number of textual messages (warnings and errors and the like), which the
FrontEnd module issues. The purpose of the messages file for an application is to allow
internationalisation of the messages. A messages file is supplied with each of the
169

The DDEUtils module

ch of
l. In

 is not
h the

3 of
non-interactive tools, which you can use for your application; it should be in a file called
<toolname$Dir>.Messages. If no such file is present, then FrontEnd’s internal
default English messages are used.

Providing interactive help

Responses to interactive help requests are handled by the FrontEnd module. In ea
the desktop non-interactive tools directories you will find a Messages file for the too
this file are help messages for the various dialogue boxes of the tools. In general a
message whose tag field is the name of the dialogue box, is used when the pointer
over an icon; when the pointer is over an icon, the icon number is used to distinguis
help message.

For example, an entry in the messages file of:

SETUP3:This is where you specify the input filenames

will result in the message

This is where you specify the input filenames

appearing in !Help’s interactive help window, when the pointer is over icon number
the SetUp dialogue box.

!Choices file

When the user selects Save choices from the application’s main menu, the current
setting of options is saved in a file <toolname$Dir>.!choices.

The DDEUtils module
The DDEUtils module is intended for three purposes:

l to relax the 256 byte command line limit

l to solve the problem of ‘current directory’ under the desktop

l to provide throwback to the editor on finding source errors.

Further details are given in appendix DDEUtils on page 193.
170

Adding your own desktop tools
SrcEdit

Resource files

A language compiler needs to supply three lines of information about itself to SrcEdit
when it is installed. It does this by appending these three lines to the file
<SrcEdit$Dir>.choices.languages of the form shown in appendix SrcEdit
file formats on page 199.

The language help file is used when the user selects a portion of his text and requests
language help on this. The format of entries in the help file is shown in appendix SrcEdit
file formats.

Make
You will have noticed that when the user selects Menu on a project in Make, it is
possible to select options for a tool, by picking the name of that tool from the Tool
options menu. This is done by Make issuing the star command *FrontEnd_SetUp; the
FrontEnd module then replies with a Wimp message (details of which are given in
appendix FrontEnd protocols on page 187) containing the desired command line.

In order to achieve this, a tool which is being added must append six lines to the file
<Make$Dir>.choices.tools of the form:

tool_name

extension the string used to identify a source written in this
language; e.g. c for the C language

make_defaults the default options for this tool when in a makefile

conversion_rule i.e. how to convert source files to object files

description_file full pathname of file containing application
description

setup_file full pathname of file containing SetUp actions for
when tool is invoked via Make
171

172

173

Appendices

174

Appendix A: Makefile syntax

his appendix covers the syntax of Makefiles understood by amu, and the way they

are arranged by Make. If all you need to do is construct and use simple Makefiles T
with Make, you do not need to study this information. It is included for those wishing to
.

ill
ent
value

d a
t, you
study, modify or construct Makefiles manually.

Make and AMU
Makefiles may be constructed by hand, using a text editor such as SrcEdit, or
semi-automatically using Make. For more details of operating Make, see the chapter
Make on page 57. Makefiles may be used to run a make job using either Make or AMU.
In both cases, make jobs operate by the command line tool amu interpreting the
Makefile text and issuing command lines to other tools. The command line tool amu is
installed in your library directory.

Command execution

Amu executes commands by calling the C library function system, once for each
command to be executed. In turn, system issues an OS_CLI SWI to execute the
command. Before calling OS_CLI, system copies its caller to the top end of
application workspace and sets the workspace limit just below the copied program. Any
command executed by amu therefore has less memory to execute in than amu had
initially (the difference being the size of amu plus the size of amu’s working space)

When the command returns, amu will be copied back to its original location and w
continue, unless, of course, the command set a bad (non-0) value in the environm
variable Sys$ReturnCode (the C library automatically sets Sys$ReturnCode to the
returned by main() or passed to exit()). If you have limited memory on your
computer, or you are trying to run amu in a limited Wimpslot under the desktop, an
program (such as the C compiler) to be run by amu needs more memory than is lef
can instruct amu not to execute commands directly, but to write them to an output
window to be saved and executed later (see the Don’t execute option of Make and
AMU). Of course, in this case, execution is not terminated or modified by a non-0 return
code from a command.

Finally, note that there is a RISC OS command length limit of 255 characters. The
desktop tools such as the linker and C compiler cooperate with the DDEUtils module to
allow much longer command lines, but care must be taken to avoid generating long
command lines for other operations, such as wipe, etc.
175

Makefile basics

lf:

y
f

r

Makefile basics
In its simplest form, a Makefile consists of a sequence of entries which describe

l what each component of a system depends on;

l what commands to execute to make an up-to-date version of that component.

Everything else that you can express in a Makefile is designed to make the job of
description easier for you.

Amu performs two functions for you. Firstly, it expands your description into the simple
form just described: a sequence of explicit rules about how to make each component of
a system. Then it decides which rules need to be applied to make a completely
up-to-date, consistent system. This it does by deciding which components are older than
any of the files they depend on. It then executes the commands associated with those
entries, in an appropriate order.

An example will make all this clear, so let’s look at part of the Makefile for amu itse

amu: o.amu $.301.clx.o.clxlib
link -o amu o.amu $.CLib.o.Stubs
squeeze amu

o.amu: c.amu $.301.clx.o.clxlib
cc -I$.301.clx c.amu

install:

copy amu %.amu ~cfq
remove amu
remove o.amu

Each entry consists of

l a target, followed by a colon character, followed by

l a list of files on which the target depends, followed by

l a list of commands to execute to make the target up to date.

Each command line begins with some white space (if you want your Makefile to be
portable to UNIX systems you should begin these lines with a Tab character). For
example, amu itself is made from o.amu, the compiled amu program, and a proprietar
library called $.301.clx.o.clxlib. If either of these files is newer than amu, or i
amu does not yet exist, then the commands link -o amu … followed by squeeze
amu, should be executed.

But what if o.amu doesn’t yet exist or is not itself up to date? Amu will check this fo
you and will not use o.amu without first making it up to date. To do this it will execute
the command(s) associated with the o.amu entry.
176

Makefile syntax

loping
ose

st
e.

s
as

n is

 way
Thus amu might well execute for you:

cc -I$.301.clx c.amu
link -o amu o.amu $.CLib.o.Stubs
squeeze amu

As you can see, if you do this more than once – for example, because you are deve
the program being managed by amu – it will save you many keystrokes. Now supp
you don’t have $.301.clx.o.clxlib. What then? Well, the Makefile doesn’t
instruct amu how to make this so it can do no more than tell you so. Either you mu
modify the Makefile to say how to make it or, more likely, obtain a copy ready-mad

File name truncation

Machines that have file name truncation configured off can result in error message
being displayed where a Makefile contains a rule where a (non-file) target name h
more than 10 characters.

For example, in the following Makefile extract:

 install_rom: ${TARGET}
 ${CP} ${TARGET} ${DESTINATION}.${TARGET} ${CPFLAGS}
 @echo install_rom complete

typing in:

 *amu install_rom

would result in the following error message:

 AMU: failed to read time stamp for ’install_rom’

If you are going to use long target names you must ensure that file name truncatio
configured on.

Macros as targets

The first target in a Makefile cannot be a macro. If you need to use a macro in this
then you should insert an ‘extra’ target.

For example:

 all: ${PROG}

 ${PROG}: myprog.o
 @echo ${PROG} rebuilt
177

Makefile structure

f it
Makefile structure
Makefiles contain normal ASCII text, and are of type 0XFE1 (Makefile). For
backwards compatibility they may also be used with text (0XFFF) file type, though
these cannot be adjusted automatically by Make.

A Makefile consists of a sequence of logical lines. A logical line may be continued over
several physical lines provided each but the last line ends with a \. For example:

This is a comment line \
continued on the next physical line \

 and on the next, but not thereafter.

A comment is introduced by a hash character # and runs to the end of the logical line.
The active comment line:

Dynamic dependencies:

is interpreted by amu as a marker for the start of dependencies to be kept up to date
during a make job (see Makefiles constructed by Make on page 183). All other comment
lines are ignored by amu.

Otherwise there are four kinds of non-empty logical lines in a Makefile:

l dependency lines

l command lines

l macro definition lines

l rule and other special lines.

Dependency lines have the form:

space-separated-list-of-targets COLON space-separated-list-of-prerequisites

For example:

amu : o.amu $.301.clx.o.clxlib
o.d35 o.d36 o.d37: h.util

A dependency line cannot begin with white space. Spaces before the colon are optional,
but some white space must follow to distinguish a colon separating targets and
prerequisites from a colon as part of a RISC OS filename.

For example:

adfs::4.$.library.amu: o.amu ...

(Although a space after the colon is not required by UNIX’s make utility, omission o
is rare in UNIX Makefiles).
178

Makefile syntax
A line with multiple targets is shorthand for several lines, each with one target and the
same right-hand side (and the same associated commands, if any). Multiple dependency
lines referring to the same target accumulate, though only one such line may have
commands associated with it (amu would not know in what order to execute the
commands otherwise). For example:

amu: o.amu
amu: $.301.clx.o.clxlib

is exactly equivalent to the single line form given earlier. In general, the single line form
is easier for you to write whereas the multi-line form is more readily generated by a
program (for example, Make will generate a list of lines of the form o.foo:
h.thing, one for each #include thing.h in c.foo). Command lines
immediately follow a dependency line and begin with white space.

For maximum compatibility with UNIX Makefiles ensure that the first character of
every command line is a Tab. Otherwise one or more spaces will do. A semi-colon may
be used instead of a new line to introduce commands. This is often used when there are
no prerequisites and only a single command associated with a target. For example:

clean:; wipe o.* ~cfq

Note that, in this case, no white space need follow the colon.

Macro definition lines are lines of the form:

macro-name = some text to the end of the logical line

For example:

CC = ncc
CFLAGS = -fah -c -I$.clib
LD = link
LIB = $.CLib.o.clxlib $.CLib.o.Stubs
CLX = $.301.clx

The = can be surrounded with white space, or not, to taste. Thereafter, wherever
${name} or $(name) is encountered, if name is the name of a macro then the whole
of ${name} is replaced by its definition. A reference to an undefined macro simply
vanishes. An example which uses the above macro definitions, and which is taken from
the Makefile for amu itself, is:

amu: amu.o $(CLX).o.clxlib
$(LD) -o amu ${LFLAGS} o.amu ${LIB}

which expands to

amu: amu.o $.301.clx.o.clxlib
link -o amu o.amu $.CLib.o.clxlib $.CLib.o.Stubs
179

Makefile structure
Note that ${LFLAGS} expands to nothing.

By using macros intelligently, you can minimise the effort needed to move Makefiles
from computer to computer; for example, dealing with varying locations for
prerequisites, or centralising what would otherwise be distributed through many lines of
text. It is obviously much easier to add -g to a CFLAGS= line to make a debuggable
version of the compiler than it is to add -g to 28 separate cc commands. Similarly, using
$(CC) and CC=cc, rather than just cc, makes it very easy to use a different version of
cc; just change the definition of the macro. Whilst this may not seem very useful in a
small Makefile, it is common practice when describing larger systems such as the C
compiler. Macros are used extensively in Makefiles constructed by Make.
180

Makefile syntax

s

NIX

most
ferent
ok
r
Advanced features

File naming

To help you move MS-DOS and UNIX Makefiles to RISC OS, or to develop Makefiles
under RISC OS for export to MS-DOS or UNIX, both amu and the C compiler accept
three styles of file naming:

RISC OS native: $.301.cfe.c.pp ^.include.h.defs

UNIX-like: /301/cfe/pp.c ../include/defs.h

MS-DOS-like: \301\cfe\pp.c ..\include\defs.h

(All three of these examples refer to the same two RISC OS files.)

The linker offers more limited support; in essence, it recognises thing.o and
o.thing as referring to the same RISC OS file (o.thing). In practice, object files
almost always live locally (that’s the only place the RISC OS and UNIX C compiler
will put one) so this support is fairly complete.

Amu will even accept a mixture of naming styles, though this practice should be
discouraged.

The mapping between different naming styles cannot be complete (consider the U
analogue of adfs::0.$.Library or net#1.251:src.amu). However, it is
usually sufficient to take much of the hard work out of moving reasonably portable
Makefiles.

VPATH

Usually, amu looks for files relative to the work directory or in places implicit in the
filename. The example given earlier contains the line:

amu: amu.o $.301.clx.o.clxlib

which refers to:

 @.o.amu (in @.o) and $.301.clx.o.clxlib (in $.301.clx.o)

Sometimes, particularly when dealing with multiple versions of large systems, it is
convenient to have a complete set of object files locally, a few sources locally, but
sources in a central place shared between versions. For example, we can build dif
versions of the C compiler this way. If the macro VPATH is defined, then amu will lo
in the list of places defined in it for any files it can’t find in the places implicit in thei
names. For example, we might have compiler sources in somewhere.arm,
somewhere.mip, somewhere.cfe and put the compiler Makefile in
somewhere.ccriscos. It might contain the following VPATH definition:
181

Advanced features
VPATH=^.arm ^.mip ^.cfe # note that UNIX VPATHs
separate path elements
with colons, not spaces

and then dependency lines like:

o.pp: c.pp # ^.cfe.c.pp, via VPATH
 cc $(ccflags) -o o.pp $?

o.cg: c.cg # ^.mip.c.cg, via VPATH
 cc $(ccflags) -o o.cg $?

Rule patterns, .SUFFIXES, $@, $*, $< and $?

All the examples given so far have been written out longhand, with explicit rules for
making targets. In fact, amu can make inferences if you supply the appropriate rule
patterns. These are specified using special target names consisting of the concatenation
of two suffixes from the pseudo-dependency .SUFFIXES. This sounds very
complicated, but is actually quite simple. For example:

.SUFFIXES: .o .c
amu: o.amu ...
.c.o:; $(CC) $(CFLAGS) -o $@ c.$*

(Note the order here: .c.o makes a .o-like thing from a .c-like thing).

The rule pattern .c.o describes how to make .o-like things from .c-like things. If, as
in the above fragment, there is no explicit entry describing how to make a .o-like thing
(o.amu, in the above example) amu will apply the first rule it has for making .o-like
things. Here, order is determined by order in the .SUFFIXES pseudo-dependency. For
example, suppose .SUFFIXES were defined as .o .c .f and that there were two
rules, .c.o:... and .f.o:... Then amu would choose the .c.o rule because .c
precedes .f in the .SUFFIXES dependency. In applying the .c.o rule, amu infers a
dependence on the corresponding .c-like thing - here c.amu. So, in effect, it infers:

o.amu: c.amu
$(CC) $(CFLAGS) -o o.amu c.amu

Note that, in the commands, $@ is replaced by the name of the target and $* by the name
of the target with the ‘extension’ deleted from it. In a similar fashion, $< refers to the list
of inferred prerequisites. So the above example could be rewritten using the rule:

.c.o:; $(CC) $(CFLAGS) -o $@ $<

However, if a VPATH were being used, this second form is obligatory. Consider, for
example, the fragment:
182

Makefile syntax
VPATH=^.arm ^.mip ^.cfe
cc: o.pp
.c.o:; $(CC) $(CFLAGS) -o $@ $<

There is no explicit rule for making o.pp, so amu will apply the rule pattern .c.o:?.
This might expand to:

o.pp: ^.cfe.c.pp
$(CC) $(CFLAGS) -o o.pp ^.cfe.c.pp

which has a much more useful effect than:

$(CC) $(CFLAGS) -o o.pp c.pp

Finally, $? can be used in any command to stand for the list of prerequisites with respect
to which the target is out of date (which may be only some of the prerequisites).

Use of ::

If you use :: to separate targets from prerequisites, rather than :, the right-hand sides of
dependencies which refer to the same targets are not merged. Furthermore, each such
dependency can have separate commands associated with it. Consider, for example:

o.t1:: c.t1 h.t1
cc -g -c c.t1 # executed if o.t1 is out of

date wrt c.t1 or h.t1
o.t1:: c.t1 h.t2

cc -c c.t1 # executed if o.t1 is out of
date wrt c.t1 or h.t2

These features are used extensively by Make in the construction of Makefiles.

Prefix$Dir

The DDEUtils module provides an environment variable Prefix$Dir set to the work
directory. This is provided to allow you to execute binaries placed in the work directory.

Makefiles constructed by Make
A Makefile constructed by Make, i.e. used to maintain a project, is a file of type 0XFE1
(Makefile). This text is arranged into a number of sections which are separated by
active comments.

When maintaining a project the meta-symbol @ is used to stand for the pathname of the
work directory. This overcomes the problem of a current directory not being appropriate
under the RISC OS desktop. If the absolute filename of a Makefile is:

adfs::4.$.any.thing.makefile
183

Miscellaneous features
then all filenames for the project can use @ to replace adfs::4.$.any.thing.

For example:

adfs::4.$.any.thing.c.foo

becomes denoted by

@.c.foo

Amu is invoked with the -desktop flag to indicate that @ should be expanded.

Tools like cc and objasm which must produce dependency information are invoked with
a flag -depend !Depend.

Below, we describe each of the Makefile sections, beginning with their corresponding
active comments:

Miscellaneous features
The special pseudo-target .SILENT tells amu not to echo commands to be executed to
your screen. Its effect is as if you used the Make or AMU option Silent.

Project:
project_name

This gives a name to be used for the project in the Open
submenu.

Toolflags: This section has a set of default flags for each of the tools
which have registered themselves with !Make, for
automatic inclusion in a Makefile. Each rule would be of
the type:

toolFLAGS =

Final targets: This section contains the rules for making the final targets
of the project. For example:
!RunImage: link $(linkflags) -o !RunImage -via objects

User-editable
dependencies:

This section is left untouched by !Make, and can freely be
edited by the user using a text editor.

Static
dependencies:

This section contains rules for making an object file from
its corresponding source. It does not refer to include
files and the like (described below in the section
Dynamic dependencies).

Dynamic
dependencies:

This section contains the rules which are created by
!Make by running the relevant tool on a source file to
ascertain its dependencies (e.g. cc -depend).
184

Makefile syntax
The special pseudo-target .IGNORE tells amu to ignore the return code from the
commands it executes. Its effect is as if you used the Make or AMU option Ignore
return codes.

A command line in a Makefile, the first non-white-space character of which is @, is
locally silent; just that command is not echoed. This is only rarely useful.

A command line, the first non-white-space character of which is - has its return code
ignored when it is executed. This is extremely useful in Makefiles which use commands
such as diff which cannot set the return code conventionally.

The special macro MFLAGS is given the value of the command line arguments passed to
amu. This is most useful when a Makefile itself contains amu commands (for example,
when a system consists of a collection of subsystems, each described by its own
Makefile). MFLAGS allows the same command line arguments to be passed to every
invocation of amu, even the recursive ones. For example, you might invoke amu like
this:

* amu -k LIB=$.experiment.new.lib.grafix

and the Makefile might contain entries like:

subsys_1: $(COMMON) $(HDRS1) ...
dir subsys1
amu $(MFLAGS)
back
185

186

Appendix B: FrontEnd protocols

Star Commands

Two star commands are supported:

*FrontEnd_Start -app <application name>
 -desc <description_filename>

*FrontEnd_SetUp -app <application_name>
-desc <description_filename>
-task <task-id_of_caller>
-handle <app-specific_handle>
-toolflags <filename>

The application specific handle can be used by the caller to identify return messages, if
many *FrontEnd_SetUp commands have been made.

EBNF Grammar of Description Format
The following is an EBNF grammar for an application description:

Note: Blank lines and characters following # (up to newline) are ignored.

APPLICATION ::= TOOLDETAILS
[METAOPTIONS]
[FILEOUTPUT]
[DBOX]
[MENU]
[DESELECTIONS]
[EXCLUSIONS]
[MAKE_EXCLUSIONS]
[ORDER]
[MAKE_ORDER]
<EOF>

 TOOLDETAILS ::= tool_details_start
name <string> ";"
[command_is <string>;]

 version <number_and_optional_date>
";"
[filetype &<3digit_hexnumber> ";"]
187

EBNF Grammar of Description Format
[wimpslot <integer>k ";"]
[has_extended_cmdline ";"]

tool_details_end

 METAOPTIONS ::= metaoptions_start
[has_auto_run [on] ";"]
[has_auto_save [on]

{"^."}[<string>][leafname]
[<string>] from icn <integer> ";"]
[has_text_window ";"]
[has_summary_window ";"]
[display_dft_is text|summary ";"]

metaoptions_end

 FILEOUTPUT ::= fileoutput_start
[output_option_is <string> ";"]
[output_dft_string <string> ";"]
[output_dft_is (produces_output|
produces_no_output) ";"]

fileoutput_end

 DBOX ::= dbox_start
 ICONS

[ICONDEFAULTS]
[IMPORTS]

dbox_end

 MENU ::= menu_start
MENULIST
[MENUDEFAULTS]

menu_end

#--

 MENULIST ::= { MENUENTRY }

 MENUENTRY ::= <string> maps_to <string>
[sub_menu <string> <integer>

[prefix_by <string>]]
[produces_no_output|
produces_output]
[not_saved] ";"

 MENUDEFAULTS ::= defaults
menu <integer> on | off [sub_menu

<string>
| <integer>
188

FrontEnd protocols
{ "," menu <integer> on | off [sub_menu
<string>
| <integer>

}
";"
[make_defaults
menu <integer> on | off [sub_menu

<string>
| <integer>

{
","
menu <integer> on | off [sub_menu
<string>

| <integer>
}
";"
]

#--

 ICONLIST ::= icn <integer> { "," icn <integer> }

 ENTRYLIST ::= menu <integer> { "," menu <integer> }

 ICON_ENTRYLIS::= menu|icn <integer> { "," menu|icn
<integer> }

#--

 ICONS ::= icons_start
ICONDEFLIST

icons_end

 ICONDEFLIST ::= { ICONDEF }

 ICONDEF ::= icn <integer> (maps_to ([<string>]
[CONVERSION])

[prefix_by <string>]
[followed_by [spaces] OPTLIST]
[separator_is <string>]
[produces_no_output
|produces_output]
[not_saved])
| (increases|decreases icn

<integer>
[by] <integer> [max <integer>]

 [min <integer>])
189

EBNF Grammar of Description Format
| inserts <string> ";"
| extends from icn <integer>

to icn <integer> ";"

 OPTLIST ::= OPTENTRY { "," OPTENTRY }

 OPTENTRY ::= icn <integer>

 CONVERSION ::= string|number

 ICONDEFAULTS ::= defaults
icn <integer> on | off | <string>
| <integer>
{ "," icn <integer> on | off
<string> | <integer>
}
";"

[make_defaults
icn <integer> on | off | <string>
| <integer>
{ "," icn <integer> on | off
<string> | <integer> }
";"
]

#--

 DESELECTIONS ::= deselections_start
DESELECTIONLIST

deselections_end

 DESELECTIONLIST::={ DESELECT }

 DESELECT ::= icn <integer> deselects
ICON_ENTRYLIST ";"
| menu <integer> deselects
ICON_ENTRYLIST ";"

#--

 EXCLUSIONS ::= exclusions_start
EXCLUSIONLIST

exclusions_end

 EXCLUSIONLIST::= { EXCLUDE }
190

FrontEnd protocols
 EXCLUDE ::= icn <integer> excludes
ICON_ENTRYLIST ";"
| menu <integer> excludes
ICON_ENTRYLIST ";"

#--

 MAKE_EXLUSIONS::=make_excludes ICON_ENTRYLIST ";"

 ORDER ::= order_is
(menu|icn <integer>) | <string> |
output
{ "," (menu|icn <integer>) |
<string> | output}
";"

 MAKE_ORDER ::= make_order_is
(menu|icn <integer>) | <string> |
output
{ "," (menu|icn <integer>) |
<string> | output}
";"

#--

 IMPORTS ::= imports_start
[wild_card_is <string> ";"]
IMPORTLIST

imports_end

 IMPORTLIST ::= { IMPORT }

 IMPORT ::= drag_to
(icn <integer>|any|iconbar)
inserts
ICONLIST
[separator_is <string>] ";"
191

WIMP Message returned after a *FrontEnd_SetUp
WIMP Message returned after a *FrontEnd_SetUp

When an application like Make does a *FrontEnd_SetUp command, the FrontEnd
module replies to that application when the user has chosen his options with a WIMP
message of the format:

 Byte offset Contents
 +16 reason code 0x00081400

 +20 handle which was passed to *FrontEnd_SetUp

 +24 to +36 application name

 +36 ... null-terminated command-line options
192

Appendix C: DDEUtils

he DDEUtils module performs three functions. These functions have been combined

in one module for convenience:T
l Filename prefixing. This allows a unique current working directory to be set for

each task running under RISC OS.

l Long command lines. A mechanism for passing long command lines (> 255
characters) between programs (e.g. between AMU and Link).

l Throwback. Throwback allows a language processor (e.g. CC or ObjAsm) to
inform an editor that an error has occurred while processing a source file. The editor
can then display the source file at the location of the error.

These functions are described individually in the rest of the chapter.

Filename prefixing SWIs
DDEUtils_Prefix (&42580)

Entry: R0 = Pointer to 0 terminated directory name, or R0 = 0

Exit: All registers preserved

Error: None

Use: This sets a directory name to be prefixed to all relative filenames used by
this task. If R0 = 0 this removes any previously set prefix. If you use this
SWI within a program to set a directory prefix you should call it again
with R0 = 0 immediately before exiting your program.

Filename prefixing *Commands
*Prefix [directory]

This sets the specified directory name to be prefixed to all relative filenames used by this
task. *Prefix with no arguments removes any previously set prefix.

The system variable <Prefix$Dir> is set to the prefix used for the currently executing
task. This can be set by you, and this will have the same effect as *Prefix.
193

Long command line SWIs
Long command line SWIs
These SWIs are used to pass long command lines between programs. Typically they will
be called by library veneers. For example, the C run-time library initialisation calls
DDEUtils_GetCLSize and DDEUtils_GetCL to fetch any long command lines
set up by a calling program and calls DDEUtils_SetCLSize and
DDEUtils_SetCL in the system library call.

DDEUtils_SetCLSize (&42581)

 Entry: R0 = Length of command line buffer required

Exit: R0 destroyed

Error: None

Use: This SWI should be called by a program when it has a long command
line which it wishes to pass to another program. The SWI should be
called with the length of the command line in R0. A buffer of suitable
size is allocated in the RMA.

DDEUtils_SetCL (&42582)

Entry: R0 = Pointer to zero terminated command line tail

Exit: All registers preserved

Error: Possible errors are

CLI buffer not set

This error is generated if the program has not previously called
DDEUtils_SetCLSize to establish the size of the command line.

 Use: This should be called after calling DDEUtils_SetCLSize to set the
size of the command line buffer. R0 contains a pointer to the command
tail (i.e. the command line without the name of the program to be run).

DDEUtils_GetCLSize (&42583)

Entry: don’t care

Exit: R0 = Size of command line

Error: None

Use: This is called by a program which may have been run with a long
command line. The size of the command line is returned in R0. 0 is
returned if no command line has been set.

DDEUtils_GetCl (&42584)

Entry: R0 = Pointer to buffer to receive command line
194

DDEUtils
Exit: All registers preserved

Error: None

 Use: This SWI is called to fetch the command line. The command line is
copied into the buffer pointed to by R0.

Throwback SWIs
DDEUtils_ThrowbackRegister (&42585)

Entry: R0 = task handle of caller

Exit: All registers preserved

Error: Possible errors are:

Another task is registered for throwback
Throwback not available outside the desktop

Use: This registers a task which is capable of dealing with throwback
messages, with the throwback module. The task handle will be used in
passing Wimp messages to the caller, when they are generated by an
application.

DDEUtils_ThrowbackUnRegister (&42586)

Entry: R0 = task handle of caller

Exit: All registers preserved

Error: Possible errors are:

Task not registered for throwback
Throwback not available outside the desktop

Use: This call should be made when the Wimp task which registered itself for
throwback is about to exit.

DDEUtils_ThrowbackStart (&42587)

Entry: don’t care

Exit: All registers preserved

Error: Possible errors are:

No task registered for throwback
Throwback not available outside the desktop
195

Throwback SWIs

uld
Use: When a non-desktop tool detects errors in the source(s) it is processing,
and throwback is enabled, the tool should make this SWI to start a
throwback session.

DDEUtils_ThrowbackSend (&42588)

Entry: R0 = reason code
R2-R5= depends on reason code (see below)

If R0 = 0 (Throwback_ReasonProcessing)
R2 = pointer to nul-terminated full pathname of file being

processed

If R0 = 1 (Throwback_ReasonErrorDetails)
R2 = pointer to nul-terminated full pathname of file being

processed
R3 = line number of error
R4 = severity of error

= 0 for warning
= 1 for error
= 2 for serious error

R5 = pointer to nul-terminated description of error

If R0 = 2 (Throwback_ReasonInfoDetails)
R2 = pointer to nul-terminated full pathname of file being

processed
R3 = line number to which ‘informational’ message refers
R4 = must be 0
R5 = pointer to nul-terminated ‘informational’ message

Exit: R0-R4 preserved

Error: Possible errors are:

No task registered for throwback
Throwback not available outside the desktop

Use: This SWI should be called with reason

 Throwback_ReasonProcessing

once, when the first error in processing a file was found. Then it sho
be called once for each error found, with the reason

Throwback_ReasonErrorDetails

or for each informational line that needs displaying with the reason:

Throwback_ReasonInfoDetails
196

DDEUtils

 the
son
DDEUtils_ThrowbackEnd (&42589)

Exit: All registers preserved

Error: Possible errors are:

No task registered for throwback
Throwback not available outside the desktop

Throwback WIMP messages
These messages are sent by the DDEUtils module to an editor that has registered itself
for throwback using the SWI DDEUtils_ThrowbackRegister. You only need to
know about them if you want to write your own editor.

The translator then passes messages giving full information on each error, or each
‘informational’ message, to the editor.

A complete series of messages sent by the translator to the editor is described by
grammar below. Items in <..> are individual Wimp messages, identified by their rea
code.

Byte Offset Contents
+16 DDEUtils_ThrowbackStart (&42580)

ErrorDialogue ::= <DDEUtils_ThrowbackStart>
ErrorsWhileProcessing
{ErrorsWhileProcessing}
<DDEUtils_ThrowbackEnd>

ErrorsWhileProcessing ::= <DDEUtils_ProcessingFile>
ErrorFoundIn {ErrorFoundIn}

ErrorFoundIn ::= <DDEUtils_ErrorIn>
<DDEUtils_ErrorDetails>

InfoDialogue ::= <DDEUtils_ThrowbackStart>
InfoDetails{InfoDetails}
<DDEUtils_ThrowbackEnd>

InfoDetails ::= <DDEUtils_InfoforFile>
<DDEUtils_InfoDetails>
197

Throwback WIMP messages
The format of such Wimp messages is as follows:

Byte Offset Contents
+16 DDEUtils_ProcessingFile (&42581)

+20 Nul-terminated filename

Byte Offset Contents
+16 DDEUtils_ErrorsIn (&42582)

+20 Nul-terminated filename

Byte Offset Contents
+16 DDEUtils_ErrorDetails (&42583)

+20 Line number

+28 Severity
= 0 for warning
= 1 for error
= 2 for serious error

+32 Nul-terminated description

Byte Offset Contents
+16 DDEUtils_ThrowbackEnd (&42584)

Byte Offset Contents
+16 DDEUtils_InfoforFile (&42585)

+20 Nul-terminated filename

Byte Offset Contents
+16 DDEUtils_InfoDetails (&42586)

+20 Line number

+28 must be 0

+32 Nul-terminated ‘informational’ message
198

Appendix D: SrcEdit file formats

Language File Format

language_name

searchpath is a comma-separated list of full pathnames for default search path
when loading from a selection. Note that each item in this list should
either be a path variable (e.g. C:), or be terminated by a dot (this line
can be left blank, though putting @. on the line would be preferable)

 helppath is the full pathname of language help file (this line can be left blank,
though putting @. on the line would be preferable)

Help File Format
 %<keyword>

 <line 1 of help text>

 <line 2 of help text>

 <line 3 of help text>

 <line 4 of help text>

 etc

 There is no limit on the number of help lines for a given keyword.
199

200

Appendix E: Code file formats

his appendix defines three file formats used by the Desktop tools to store processed

code and the format of debugging data used by DDT:T
l AOF – ARM Object Format
code
of
ut,

g bits

west

ficant
he

he

yte
l ALF – Acorn Library Format

l AIF – ARM Image Format

l ASD – ARM Symbolic Debugging Format.

Desktop tools language processors such as CC and ObjAsm generate processed
output as AOF files. An ALF file is a collection of AOF files constructed from a set
AOF files by the LibFile tool. The Link tool accepts a set of AOF and ALF files as inp
and by default produces an executable program file as output in AIF.

Terminology
Throughout this appendix the terms byte, half word, word, and string are used to mean
the following:

Byte: 8 bits, considered unsigned unless otherwise stated, usually used to store fla
or characters.

Half word:16 bits, or 2 bytes, usually unsigned. The least significant byte has the lo
address (DEC/Intel byte sex, sometimes called little endian). The address of a half word
(i.e. of its least significant byte) must be divisible by 2.

Word: 32 bits, or 4 bytes, usually used to store a non-negative value. The least signi
byte has the lowest address (DEC/Intel byte sex, sometimes called little endian). T
address of a word (i.e. of its least significant byte) must be divisible by 4.

String: A sequence of bytes terminated by a NUL (0X00) byte. The NUL is part of t
string but is not counted in the string’s length. Strings may be aligned on any byte
boundary.

Note: a word consists of 32 bits, 4-byte aligned; within a word, the least significant b
has the lowest address. This is DEC/Intel, or little endian, byte sex, not IBM/Motorola
byte sex.
201

Byte Sex or Endian-ness

s the
 the

ed
 of

t any
Byte Sex or Endian-ness
There are two sorts of AOF or ALF: little-endian and big-endian.

In little-endian AOF or ALF, the least significant byte of a word or half-word has the
lowest address of any byte in the (half-)word. This byte sex is used by DEC, Intel and
Acorn, amongst others.

In big-endian AOF or ALF, the most significant byte of a (half-)word has the lowest
address. This byte sex is used by IBM, Motorola and Apple, amongst others.

For data in a file, address means ‘offset from the start of the file’.

There is no guarantee that the endian-ness of an AOF or ALF file will be the same a
endian-ness of the system used to process it (the endian-ness of the file is always
same as the endian-ness of the target ARM system).

The two sorts of AOF or ALF cannot, be mixed (the target system cannot have mix
endian-ness: it must have one or the other). Thus the ARM linker will accept inputs
either sex and produce an output of the same sex, but will reject inputs of mixed
endian-ness.

Alignment
Strings and bytes may be aligned on any byte boundary.

AOF and ALF fields defined in this appendix make no use of half-words and align
words on 4-byte boundaries.

Within the contents of an AOF or ALF file the alignment of words and half-words is
defined by the use to which AOF or ALF is being put.

For all current ARM-based systems, words are aligned on 4-byte boundaries and
half-words on 2-byte boundaries.

Undefined fields
Fields not explicitly defined by this appendix are implicitly reserved to Acorn. It is
required that all such fields be zeroed. Acorn may ascribe meaning to such fields a
time, but will usually do so in a manner which gives no new meaning to zeroes.
202

Code file formats
AOF
ARM object format files are output by language processors such as CC and ObjAsm.

Chunk file format
A chunk is accessed via a header at the start of the file. The header contains the number,
size, location and identity of each chunk in the file. The size of the header may vary
between different chunk files but is fixed for each file. Not all entries in a header need be
used, thus limited expansion of the number of chunks is permitted without a wholesale
copy. A chunk file can be copied without knowledge of the contents of the individual
chunks.

Graphically, the layout of a chunk file is as follows:

ChunkFileId marks the file as a chunk file. Its value is 0xC3CBC6C5. The
endian-ness of the chunk file can be deduced from this value (if, when read as a word, it
appears to be 0xC5C6CBC3 then each word value must be byte-reversed before use).

ChunkFileId

MaxChunks

NumChunks

entry1

entry2

entry "MaxChunks"

chunk 1

chunk "NumChunks"

Fixed part of header

4 words per entry

End of header (3 + 4*MaxChunks) words

Start of data chunks

occupies 3 words and
describes what follows
203

Object file format

 five
The MaxChunks field defines the number of the entries in the header, fixed when the
file is created. The NumChunks field defines how many chunks are currently used in
the file, which can vary from 0 to MaxChunks. The value of NumChunks is redundant
as it can be found by scanning the entries.

Each entry in the header comprises four words in the following order:

The chunkId field provides a conventional way of identifying what type of data a
chunk contains. It is split into two parts. The first four characters contain a unique name
allocated by a central authority (Acorn). The remaining four characters can be used to
identify component chunks within this domain. The 8 characters are stored in ascending
address order, as if they formed part of a NUL-terminated string (which they do not),
independently of endian-ness.

For AOF files, the first part of each chunk’s name is OBJ_; the second components are
defined later in this section.

Object file format
Each piece of an object file is stored in a separate, identifiable, chunk. AOF defines
chunks as follows:

Only the header and areas chunks must be present, but a typical object file will
contain all five of the above chunks.

chunkId is an 8-byte field identifying what data the chunk contains
(note that this is an 8-byte field, not a 2-word field, so it has
the same byte order independent of endian-ness).

fileOffset is a one word field defining the byte offset within the file of the
start of the chunk. All chunks are word-aligned, so it must be
divisible by four. A value of zero indicates that the chunk entry
is unused.

size a one word field defining the exact byte size of the chunk
(which need not be a multiple of four).

Chunk Chunk Name

Header OBJ_HEAD

Areas OBJ_AREA

Identification OBJ_IDFN

Symbol Table OBJ_SYMT

String Table OBJ_STRT
204

Code file formats

uch as

 file,
, so it
eight
ich

 of the
a
EA
Each name in an object file is encoded as an offset into the string table, stored in the
OBJ_STRT chunk (see String table chunk (OBJ_STRT) on page 218). This allows the
variable-length nature of names to be factored out from primary data formats.

A feature of chunk file format is that chunks may appear in any order in the file.
However, language processors which must also generate other object formats – s
Unix’s a.out format – should use this flexibility cautiously.

A language translator or other system utility may add additional chunks to an object
for example a language-specific symbol table or language-specific debugging data
is conventional to allow space in the chunk header for additional chunks; space for
chunks is conventional when the AOF file is produced by a language processor wh
generates all five chunks described here.

The header chunk should not be confused with the chunk file’s header.

Format of the AOF header chunk

The AOF header is logically in two parts, though these appear contiguously in the
header chunk. The first part is of fixed size and describes the contents and nature
object file. The second part is variable in length (specified in the fixed part) and is
sequence of area declarations defining the code and data areas within the OBJ_AR
chunk.

The AOF header chunk (OBJ_HEAD) has the following format:

Object file type

Version Id

Number of areas

Number of Symbols

Entry Area index

1st Area Header

2nd Area Header

nth Area Header

Entry Offset

5 words per area header

(6 + (5*Number of Areas)) words in

6 words in the fixed part

the AOF header
205

Object file format
Object file type

0xC5E2D080 marks the file as being in relocatable object format (the usual output of
compilers and assemblers and the usual input to the linker).

The endian-ness of the object code can be deduced from this value and shall be identical
to the endian-ness of the containing chunk file.

Version ID

Encodes the version of AOF to which the object file complies: version 1.50 is denoted
by decimal 150; version 2.00 by 200; version 3.10 by 310; and this version 3.11 by
decimal 311 (0x137).

Number of areas

The code and data of the object file is presented as a number of separate areas, in the
OBJ_AREA chunk, each with a name and some attributes (see below). Each area is
declared in the (variable-length) part of the header which immediately follows the fixed
part. The value of the Number of Areas field defines the number of areas in the file
and consequently the number of area declarations which follow the fixed part of the
header.

Number of symbols

If the object file contains a symbol table chunk OBJ_SYMT, then this field defines the
number of symbols in the symbol table.

Entry address area/ entry address offset

One of the areas in an object file may be designated as containing the start address of any
program which is linked to include the file. If this is the case, the entry address is
specified as an Entry Area Index, Entry Offset pair. Entry Area
Index, in the range 1 to Number of Areas, gives the 1-origin index in the
following array of area headers of the area containing the entry point. The entry address
is defined to be the base address of this area plus Entry Offset.

A value of 0 for area-index signifies that no program entry address is defined by this
AOF file.
206

Code file formats

 the

unk.
ea

butes
 the
ue

ning

Format of area headers

The area headers follow the fixed part of the AOF header. Each area header has the
following form:

Area name

Each area within an object file must be given a name which is unique amongst all the
areas in the file. Area Name gives the offset of that name in the string table (stored in
the OBJ_STRT chunk – see String table chunk (OBJ_STRT) on page 218).

Area size

This field gives the size of the area in bytes, which must be a multiple of 4. Unless
Uninitialised bit (bit 4) is set in the area attributes (see Attributes and Alignment
on page 207), there must be this number of bytes for this area in the OBJ_AREA ch
If the Uninitialised bit is set, then there shall be no initialising bytes for this ar
in the OBJ_AREA chunk.

Number of relocations

This word specifies the number of relocation directives which apply to this area,
(equivalently: the number of relocation records following the area's contents in the
OBJ_AREA chunk – see Format of the areas chunk on page 212).

Attributes and Alignment

Each area has a set of attributes encoded in the most-significant 24 bits of the Attri
+ Alignment word. The least-significant 8 bits of this word encode the alignment of
start of the area as a power of 2 and shall have a value between 2 and 32 (this val
denotes that the area should start at an address divisible by 2alignment).

The linker orders areas in a generated image first by attributes, then by the
(case-significant) lexicographic order of area names, then by position of the contai
object module in the link list. The position in the link list of an object module loaded
from a library is not predictable.

Area name

Attributes + Alignment

Area size

Number of relocations

Base address or zero

(offset into string variable)

5 words in total
207

Object file format
The precise significance to the linker of area attributes depends on the output being
generated.

Bit 8

Bit 8 encodes the absolute attribute and denotes that the area must be placed at its
Base Address. This bit is not usually set by language processors.

Bit 9

Bit 9 encodes the code attribute: if set the area contains code; otherwise it contains
data.

Bits 10 and 11

Bits 10, 11 encode the common block definition and common block
reference attributes, respectively.

Bit 10 specifies that the area is a common block definition.

Bit 11 defines the area to be a reference to a common block, and precludes the area
having initialising data (see Bit 12, below). In effect, bit 11 implies bit 12.

If both bits 10 and 11 are set, bit 11 is ignored.

Common areas with the same name are overlaid on each other by the linker. The Area
Size field of a common definition area defines the size of a common block. All other
references to this common block must specify a size which is smaller or equal to the
definition size. If, in a link step, there is more than one definition of an area with the
common definition attribute (area of the given name with bit 10 set), then each of these
areas must have exactly the same contents. If there is no definition of a common area, its
size will be the size of the largest common reference to it.

Although common areas conventionally hold data, it is quite legal to use bit 10 in
conjunction with bit 9 to define a common block containing code. This is most useful for
defining a code area which must be generated in several compilation units but which
should be included in the final image only once.

Bit 12

Bit 12 encodes the zero-initialised attribute, specifying that the area has no
initialising data in this object file, and that the area contents are missing from the
OBJ_AREA chunk. Typically, this attribute is given to large uninitialised data areas.
When an uninitialised area is included in an image, the linker either includes a
read-write area of binary zeroes of appropriate size, or maps a read-write area of
appropriate size that will be zeroed at image start-up time. This attribute is incompatible
with the read-only attribute (see Bit 13, below).
208

Code file formats
Whether or not a zero-initialised area is re-zeroed if the image is re-entered is a property
of the relevant image format and/or the system on which it will be executed. The
definition of AOF neither requires nor precludes re-zeroing.

To summarise, bits 10, 11 and 12 interact as follows:

So, an initialised common definition is inferred if bit 10 is set and bit 11 is not, a
Zero-initialised area is inferred if bit 12 is set and both bits 10 and 11 are unset, all other
bit combinations infer an uninitialised reference to common block.

Bit 13

Bit 13 encodes the read only attribute and denotes that the area will not be modified
following relocation by the linker. The linker groups read-only areas together so that
they may be write protected at run-time, hardware permitting. Code areas and debugging
tables should have this bit set. The setting of this bit is incompatible with the setting of
bit 12.

Bit 14

Bit 14 encodes the position independent (PI) attribute, usually only of
significance for code areas. Any reference to a memory address from a PI area must be
in the form of a link-time-fixed offset from a base register (e.g. a PC-relative branch
offset).

Bit 15

Bit 15 encodes the debugging table attribute and denotes that the area contains
symbolic debugging tables. The linker groups these areas together so they can be
accessed as a single continuous chunk at or before run-time (usually, a debugger will
extract its debugging tables from the image file prior to starting the debuggee).

Usually, debugging tables are read-only and, therefore, have bit 13 set also. In
debugging table areas, bit 9 (the code attribute) is ignored.

Bits 16-19 encode additional attributes of code areas and shall be non-0 only if the area
has the code attribute (bit 9 set).

12 11 10 Interaction

0 0 1 Initialised common definition

0 1 1 Initialised common definition

0 1 0 Uninitialised reference to common block

1 0 1 Uninitialised reference to common block

1 1 0 Uninitialised reference to common block

1 1 1 Uninitialised reference to common block

1 0 0 Zero-initialised (bss = unnamed common reference)
209

Object file format

s

s

th a

 area

ve a
ated

ry not
s with

bit 11)

r.
Bit 16

Bit 16 encodes the 32-bit PC attribute, and denotes that code in this area complies with
a 32-bit variant of the ARM Procedure Call Standard (APCS). For details, refer to
‘32-bit PC vs 26-bit PC’. Such code may be incompatible with code which complie
with a 26-bit variant of the APCS.

Bit 17

Bit 17 encodes the reentrant attribute, and denotes that code in this area complie
with a reentrant variant of the ARM Procedure Call Standard.

Bit 18

Bit 18, when set, denotes that code in this area uses the ARM's extended
floating-point instruction set. Specifically, function entry and exit use
the LFM and SFM floating-point save and restore instructions rather than multiple
LDFEs and STFEs. Code with this attribute may not execute on older ARM-based
systems.

Bit 19

Bit 19 encodes the No Software Stack Check attribute, denoting that code in this
area complies with a variant of the ARM Procedure Call Standard without software
stack-limit checking. Such code may be incompatible with code which complies wi
limit-checked variant of the APCS.

Bits 20-27 encode additional attributes of data areas, and shall be non-0 only if the
does not have the code attribute (bit 9) unset.

Bit 20

Bit 20 encodes the based attribute, denoting that the area is addressed via
link-time-fixed offsets from a base register (encoded in bits 24-27). Based areas ha
special role in the construction of shared libraries and ROM-able code, and are tre
specially by the linker.

Bit 21

Bit 21 encodes the Shared Library Stub Data attribute. In a link step involving
layered shared libraries, there may be several copies of the stub data for any libra
at the top level. In other respects, areas with this attribute are treated like data area
the common definition (bit 10) attribute. Areas which also have the zero initialised
attribute (bit 12) are treated much the same as areas with the common reference (
attribute.

This attribute is not usually set by language processors, but is set only by the linke
210

Code file formats
Bits 22-23

Bits 22-23 are reserved and shall be set to 0.

Bits 24-27

Bits 24-27 encode the base register used to address a based area. If the area does
not have the based attribute then these bits shall be set to 0.

Bits 28-31

Bits 28-31 are reserved and shall be set to 0.

Area Attributes Summary

Bit Mask Attribute Description

8 0x00000100 Absolute attribute

9 0x00000200 Code attribute

10 0x00000400 Common block definition

11 0x00000800 Common block reference

12 0x00001000 Uninitialised (0-initialised)

13 0x00002000 Read only

14 0x00004000 Position independent

15 0x00008000 Debugging tables

Code areas only

16 0x00010000 Complies with the 32-bit APCS

17 0x00020000 Reentrant code

18 0x00040000 Uses extended FP inst set

19 0x00080000 No software stack checking

Data areas only

20 0x00100000 Based area

21 0x00200000 Shared library stub data

24-27 0x0F000000 Base register for based area
211

Object file format

 is

 but

rd or

 a
Format of the areas chunk

The areas chunk (ChunkId of OBJ_AREA) contains the actual areas (code, data, zero-
initialised data, debugging data, etc.) plus any associated relocation information.
Graphically, an area’s layout is:

An area is simply a sequence of byte values. The endian-ness of the words and
half-words within it shall agree with that of the containing AOF file.

An area is followed by its associated table of relocation directives (if any). An area
either completely initialised by the values from the file or is initialised to zero, as
specified by bit 12 of its area attributes.

Both the area contents and the table of relocation directives are aligned to 4-byte
boundaries.

Relocation directives

A relocation directive describes a value which is computed at link time or load time,
which cannot be fixed when the object module is created.

In the absence of applicable relocation directives, the value of a byte, halfword, wo
instruction from the preceding area is exactly the value that will appear in the final
image.

A field may be subject to more than one relocation.

Pictorially, a relocation directive looks like:

Offset

Offset is the byte offset in the preceding area of the subject field to be relocated by
value calculated as described below.

Area 1 relocation

Area 1

Area n

Area n relocation

1 B A R FT 24-bit SID

Offset

II
212

Code file formats
SID (Subject Identification)

The interpretation of the 24-bit SID field depends on the A bit.

If A (bit 27) is 1, the subject field is relocated (as further described below) by the value
of the symbol of which SID is the 0-origin index in the symbol table chunk.

If A (bit 27) is 0, the subject field is relocated (as further described below) by the base of
the area of which SID is the 0-origin index in the array of areas, (or, equivalently, in the
array of area headers).

FT (Field Type)

The 2-bit field type FT (bits 25, 24) describes the subject field:

00 the field to be relocated is a byte

01 the field to be relocated is a half-word (2 bytes)

10 the field to be relocated is a word (4 bytes)

11 the field to be relocated is an instruction or instruction sequence

Bytes, halfwords and instructions may only be relocated by values of suitably small size.
Overflow is faulted by the linker.

An ARM branch, or branch-with-link instruction is always a suitable subject for a
relocation directive of field type instruction.

II (Instruction Instruction)

If the subject field is an instruction sequence (FT = 11), then Offset addresses the first
instruction of the sequence and the II field (bits 29 and 30) constrains how many
instructions may be modified by this directive:

00 no constraint (the linker may modify as many contiguous instructions as it
needs to)

01 the linker will modify at most 1 instruction

10 the linker will modify at most 2 instructions

11 the linker will modify at most 3 instructions
213

Object file format
R (relocation type)

The way the relocation value is used to modify the subject field is determined by the R
(PC-relative) bit, modified by the B (based) bit.

R (bit 26) = 1 and B (bit 28) = 0 specifies PC-relative relocation: to the subject field is
added the difference between the relocation value and the base of the area containing the
subject field. In pseudo C:

subject_field = subject_field + (relocation_value -
base_of_area_containing(subject_field))

As a special case, if A is 0, and the relocation value is specified as the base of the area
containing the subject field, then it is not added and:

subject_field = subject_field -
base_of_area_containing(subject_field)

This caters for relocatable PC-relative branches to fixed target addresses.

If R is 1, B is usually 0. If B is 1 this is used to denote that the inter-link-unit value of a
branch destination is to be used, rather than the more usual intra-link-unit value (this
allows compilers to perform the tail-call optimisation on reentrant code).

R (bit 26) = 0 and B (bit 28) = 0, specifies plain additive relocation: the relocation value
is added to the subject field. In pseudo C:

subject_field = subject_field + relocation_value

R (bit 26) = 0 and B (bit 28) = 1, specifies based area relocation. The relocation value
must be an address within a based data area. The subject field is incremented by the
difference between this value and the base address of the consolidated based area group
(the linker consolidates all areas based on the same base register into a single,
contiguous region of the output image). In pseudo C:

subject_field = subject_field + (relocation_value -
base_of_area_group_containing(relocation_value))

For example, when generating reentrant code, the C compiler will place address
constants in an adcon area based on register sb, and load them using sb relative LDRs.
At link time, separate adcon areas will be merged and sb will no longer point where
presumed at compile time. B type relocation of the LDR instructions corrects for this.

Bits 29-31

Bit 31 of the relocation flags word shall be 1, and (unless FT bits are 11) bits 29 and 30
shall be 0.
214

Code file formats
Format of the symbol table chunk

The Number of Symbols field in the fixed part of the AOF header (OBJ_STRT)
defines how many entries there are in the symbol table. Each symbol table entry has the
following format:

Name

This value is an index into the string table (in chunk OBJ_STRT) and thus locates the
character string representing the symbol.

Value

This is only meaningful if the symbol is a defining occurrence (bit 0 of Attributes set), or
a common symbol (bit 6 of Attributes set):

l if the symbol is absolute (bits 0,2 of Attributes set), this field contains the value of
the symbol

l if the symbol is a common symbol (bit 6 of Attributes set), this field contains the
byte-length of the referenced common area

l otherwise, Value is interpreted as an offset from the base address of the area named
by Area Name, which must be an area defined in this object file.

Area Name

is meaningful only if the symbol is a non-absolute defining occurrence (bit 0 of
Attributes set, bit 2 unset). In this case it gives the index into the string table for the name
of the area in which the symbol is defined (which must be an area in this object file).

Name

Value

Area name

Attributes
4 words per entry
215

Object file format
Symbol Attributes

The Symbol Attributes word is interpreted as follows:

l Bit 0 denotes that the symbol is defined in this object file.

l Bit 1 denotes that the symbol has global scope and can be matched by the linker to
a similarly named symbol from another object file.

Specifically:

Bits 1 and 0

Bit 2

Bit 2 encodes the absolute attribute which is meaningful only if the symbol is a defining
occurrence (bit 0 set). If set, it denotes that the symbol has an absolute value, for
example, a constant. If unset, the symbol’s value is relative to the base address of the
area defined by the Area Name field of the symbol.

Bit 3

Bit 3 encodes the case insensitive reference attribute which is meaningful only if bit 0
is unset (that is, if the symbol is an external reference). If set, the linker will ignore the
case of the symbol names it tries to match when attempting to resolve this reference.

01 (bit 1 unset, bit 0 set)
denotes that the symbol is defined in this object file and has scope
limited to this object file (when resolving symbol references, the linker
will only match this symbol to references from within the same object
file).

10 (bit 1 set, bit 0 unset)
denotes that the symbol is a reference to a symbol defined in another
object file. If no defining instance of the symbol is found the linker
attempts to match the name of the symbol to the names of common
blocks. If a match is found it is as if there were defined an
identically-named symbol of global scope, having as its value the base
address of the common area.

11 denotes that the symbol is defined in this object file with global scope
(when attempting to resolve unresolved references, the linker will match
this definition to a reference from another object file).

00 Reserved by Acorn.
216

Code file formats

e
hs.

 are

tion.
Bit 4

Bit 4 encodes the weak attribute which is meaningful only if the symbol is an external
reference, (bits 1,0 = 10). It denotes that it is acceptable for the reference to remain
unsatisfied and for any fields relocated via it to remain unrelocated. The linker ignores
weak references when deciding which members to load from an object library.

Bit 5

Bit 5 encodes the strong attribute which is meaningful only if the symbol is an external
defining occurrence (if bits 1,0 = 11). In turn, this attribute only has meaning if there is a
non-strong, external definition of the same symbol in another object file. In this case,
references to the symbol from outside of the file containing the strong definition, resolve
to the strong definition, while those within the file containing the strong definition
resolve to the non-strong definition.

This attribute allows a kind of link-time indirection to be enforced. Usually, a strong
definition will be absolute, and will be used to implement an operating system’s entry
vector having the forever binary property.

Bit 6

Bit 6 encodes the common attribute, which is meaningful only if the symbol is an
external reference (bits 1,0 = 10). If set, the symbol is a reference to a common area with
the symbol’s name. The length of the common area is given by the symbol’s Value
field (see above). The linker treats common symbols much as it treats areas having
the Common Reference attribute – all symbols with the same name are assigned th
same base address, and the length allocated is the maximum of all specified lengt

If the name of a common symbol matches the name of a common area, then these
merged and the symbol identifies the base of the area.

All common symbols for which there is no matching common area (reference or
definition) are collected into an anonymous, linker-created, pseudo-area.

Bit 7

Bit 7 is reserved and shall be set to 0.

Bit 8-11

Bits 8-11 encode additional attributes of symbols defined in code areas.

Bit 8 encodes the code datum attribute which is meaningful only if this symbol
defines a location within an area having the Code attribute. It denotes that the
symbol identifies a (usually read-only) datum, rather than an executable instruc
217

Object file format
Bit 9 encodes the floating-point arguments in floating-point registers attribute.
This is meaningful only if the symbol identifies a function entry point. A symbolic
reference with this attribute cannot be matched by the linker to a symbol definition
which lacks the attribute.

Bit 10 is reserved and shall be set to 0.

Bit 11 is the simple leaf function attribute which is meaningful only if this symbol
defines the entry point of a sufficiently simple leaf function (a leaf function is one
which calls no other function). For a reentrant leaf function it denotes that the
function’s inter-link-unit entry point is the same as its intra-link-unit entry point.

Bit 12-31

Bits 12-31 are reserved and shall be set to 0.

Symbol Attribute Summary

String table chunk (OBJ_STRT)

The string table chunk contains all the print names referred to from the header and
symbol table chunks. This separation is made to factor out the variable length
characteristic of print names from the key data structures.

A print name is stored in the string table as a sequence of non-control characters (codes
32-126 and 160-255) terminated by a NUL (0) byte, and is identified by an offset from
the start of the table. The first 4 bytes of the string table contain its length (including the
length of its length word), so no valid offset into the table is less than 4, and no table has
length less than 4.

Bit Mask Attribute Description

0 0x00000001 Symbol is defined in this file

1 0x00000002 Symbol has global scope

2 0x00000004 Absolute attribute

3 0x00000008 Case-insensitive attribute

4 0x00000010 Weak attribute

5 0x00000020 Strong attribute

6 0x00000040 Common attribute

Code symbols only

8 0x00000100 Code area datum attribute

9 0x00000200 FP args in FP regs attribute

11 0x00000800 Simple leaf function attribute
218

Code file formats
The endian-ness of the length word shall be identical to the endian-ness of the AOF and
chunk files containing it.

Identification chunk (OBJ_IDFN)

This chunk should contain a string of printable characters (codes 10-13 and 32-126)
terminated by a NUL (0) byte, which gives information about the name and version of
the tool which generated the object file. Use of codes in the range 128-255 is
discouraged, as the interpretation of these values is host dependent.
219

ALF

lows:

 all
gs are

ich
ed.
mber
ALF
ALF is the format of linkable libraries (such as the C RISC OS Toolbox library
toolboxlib).

Library file format
For library files, the first part of each chunk's name is ‘LIB_’; for object libraries, the
names of the additional two chunks begin with ‘OFL_’.

Each piece of a library file is stored in a separate, identifiable chunk, named as fol

There may be many LIB_DATA chunks in a library, one for each library member. In
chunks, word values are stored with the same byte order as the target system; strin
stored in ascending address order, which is independent of target byte order.

LIB_DIRY

The LIB_DIRY chunk contains a directory of the modules in the library, each of wh
is stored in a LIB_DATA chunk. The directory size is fixed when the library is creat
The directory consists of a sequence of variable length entries, each an integral nu
of words long. The number of directory entries is determined by the size of the
LIB_DIRY chunk.

This is shown pictorially in the following diagram:

Chunk Chunk Name

Directory LIB_DIRY

Time-stamp LIB_TIME

Version LIB_VSRN

Data LIB_DATA

Symbol table OFL_SYMT – object code libraries only

Time-stamp OFL_TIME – object code libraries only

ChunkIndex

EntryLength

DataLength

Data

the size of this LIB_DIRY chunk
(an integral number of words)

the size of the Data
(an integral number of words)
220

Code file formats
ChunkIndex

ChunkIndex is a word containing the 0-origin index within the chunk file header of the
corresponding LIB_DATA chunk. Conventionally, the first 3 chunks of an OFL file are
LIB_DIRY, LIB_TIME and LIB_VSRN, so ChunkIndex is at least 3. A ChunkIndex of
0 means the directory entry is unused.

The corresponding LIB_DATA chunk entry gives the offset and size of the library
module in the library file.

EntryLength

EntryLength is a word containing the number of bytes in this LIB_DIRY entry, always a
multiple of 4.

DataLength

DataLength is a word containing the number of bytes used in the data section of this
LIB_DIRY entry, also a multiple of 4.

Data

The Data section consists of, in order:

l a 0-terminated string (the name of the library member)

l any other information relevant to the library module (often empty)

l a 2-word, word-aligned time stamp.

Strings should contain only ISO-8859 non-control characters (codes [0-31], 127 and
128+[0-31] are excluded).

The string field is the name used to identify this library module. Typically it is the name
of the file from which the library member was created.

The format of the time stamp is described in Time Stamps on page 222. Its value is an
encoded version of the last-modified time of the file from which the library member was
created.

To ensure maximum robustness with respect to earlier, now obsolete, versions of the
ARM object library format:

l Applications which create libraries or library members should ensure that the
LIB_DIRY entries they create contain valid time stamps.

l Applications which read LIB_DIRY entries should not rely on any data beyond the
end of the name string being present, unless the difference between the DataLength
field and the name-string length allows for it. Even then, the contents of a time
stamp should be treated cautiously and not assumed to be sensible.
221

Library file format
Applications which write LIB_DIRY or OFL_SYMT entries should ensure that padding
is done with NUL (0) bytes; applications which read LIB_DIRY or OFL_SYMT entries
should make no assumptions about the values of padding bytes beyond the first,
string-terminating NUL byte.

Time Stamps

A library time stamp is a pair of words encoding the following:

l a 6-byte count of centi-seconds since the start of the 20th century

l a 2-byte count of microseconds since the last centi-second (usually 0).

The first word stores the most significant 4 bytes of the 6-byte count; the least
significant 2 bytes of the count are in the most significant half of the second word.

The least significant half of the second word contains the microsecond count and is
usually 0.

Time stamp words are stored in target system byte order: they must have the same
endian-ness as the containing chunk file.

LIB_TIME

The LIB_TIME chunk contains a 2-word time stamp recording when the library was last
modified. It is, hence, 8 bytes long.

LIB_VSRN

The version chunk contains a single word whose value is 1.

LIB_DATA

A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY
chunk. The endian-ness or byte order of this data is, by assumption, the same as the byte
order of the containing library/chunk file.

No other interpretation is placed on the contents of a member by the library management
tools. A member could itself be a file in chunk file format or even another library.

centiseconds since 00:00:00
1st January
1900 u-seconds

first (most significant) word

second (least significant) word
222

Code file formats
Object Code Libraries
An object code library is a library file whose members are files in ARM Object Format
(see section AOF on page 203 for details).

An object code library contains two additional chunks: an external symbol table chunk
named OFL_SYMT; and a time stamp chunk named OFL_TIME.

OFL_SYMT

The external symbol table contains an entry for each external symbol defined by
members of the library, together with the index of the chunk containing the member
defining that symbol.

The OFL_SYMT chunk has exactly the same format as the LIB_DIRY chunk except
that the Data section of each entry contains only a string, the name of an external
symbol, and between 1 and 4 bytes of NUL padding, as follows:

OFL_SYMT entries do not contain time stamps.

OFL_TIME

The OFL_TIME chunk records when the OFL_SYMT chunk was last modified and has
the same format as the LIB_TIME chunk (see Time Stamps on page 222).

ChunkIndex

EntryLength

DataLength

External Symbol Name

Padding

the size of this OFL_SYMT chunk
(an integral number of words)

the size of the External Symbol Name and
Padding (an integral number of words)
223

AIF
AIF
ARM Image Format (AIF) is a simple format for ARM executable images, which
consists of a 128 byte header followed by the image’s code, followed by the image’s
initialised static data.

Properties of AIF
Two variants of AIF exist:

l Executable AIF (in which the header is part of the image itself) can be executed
by entering the header at its first word. Code in the header ensures the image is
properly prepared for execution before being entered at its entry address.

l Non-executable AIF (in which the header is not part of the image, but merely
describes it) is intended to be loaded by a program which interprets the header, and
prepares the following image for execution.

The two flavours of AIF are distinguished as follows:

l The fourth word of an executable AIF header is BL entrypoint. The most
significant byte of this word (in the target byte order) is 0xEB.

l The fourth word of a non-executable AIF image is the offset of its entry point from
its base address. The most significant nibble of this word (in the target byte order) is
0x0.

The base address of an executable AIF image is the address at which its header should be
loaded; its code starts at base + 0x80. The base address of a non-executable AIF image
is the address at which its code should be loaded.

Executable AIF

The following remarks about executable AIF apply also to non-executable AIF, except
that loader code must interpret the AIF header and perform any required decompression,
relocation, and creation of zero-initialised data. Compression and relocation are, of
course, optional: AIF is often used to describe very simple absolute images.

It is assumed that on entry to a program in ARM Image Format (AIF), the general
registers contain nothing of value to the program (the program is expected to
communicate with its operating environment using SWI instructions or by calling
functions at known, fixed addresses).

A program image in ARM Image Format is loaded into memory at its load address, and
entered at its first word. The load address may be:

l an implicit property of the type of the file containing the image (as is usual with
UNIX executable file types, Acorn Absolute file types, etc.)
224

Code file formats
l read by the program loader from offset 0x28 in the file containing the AIF image

l given by some other means, e.g. by instructing an operating system or debugger to
load the image at a specified address in memory.

An AIF image may be compressed and can be self-decompressing (to support faster
loading from slow peripherals, and better use of space in ROMs and delivery media such
as floppy discs). An AIF image is compressed by a separate utility which adds
self-decompression code and data tables to it.

If created with appropriate linker options, an AIF image may relocate itself at load time.
Two kinds of self-relocation are supported:

l relocate to load address (the image can be loaded anywhere and will execute where
loaded)

l self-move up memory, leaving a fixed amount of workspace above, and relocate to
this address (the image is loaded at a low address and will move to the highest
address which leaves the required workspace free before executing there).

The second kind of self-relocation can only be used if the target system supports an
operating system or monitor call which returns the address of the top of available
memory. The ARM linker provides a simple mechanism for using a modified version of
the self-move code illustrated in Self-Move and Self-Relocation Code on page 230,
allowing AIF to be easily tailored to new environments.

AIF images support being debugged by the Desktop debugging tool (DDT). Low-level
and source-level support are orthogonal, and both, either, or neither kind of debugging
support need be present in an AIF image.

For details of the format of the debugging tables see ASD on page 233.

References from debugging tables to code and data are in the form of relocatable
addresses. After loading an image at its load address these values are effectively
absolute. References between debugger table entries are in the form of offsets from the
beginning of the debugging data area. Thus, following relocation of a whole image, the
debugging data area itself is position independent and may be copied or moved by the
debugger.
225

The Layout of AIF
The Layout of AIF
The layout of a compressed AIF image is as follows:

The header is small, fixed in size, and described below. In a compressed AIF image, the
header is not compressed.

An uncompressed image has the following layout:

Debugging data is absent unless the image has been linked using the linker’s -d option
and, in the case of source-level debugging, unless the components of the image have
been compiled using the compiler’s -g option.

The relocation list is a list of byte offsets from the beginning of the AIF header, of words
to be relocated, followed by a word containing -1. The relocation of non-word values is
not supported.

Header

Compressed image

Decompression data

Decompression code

This data is position-independent

This code is position-independent

Header

Read-only area

Read-write area

Debugging data

Self-relocation code

Relocation list

(optional)

Position-independent

List of words to relocate, terminated by -1
226

Code file formats

g –

afe,
ta of
 then
After the execution of the self-relocation code – or if the image is not self-relocatin
the image has the following layout:

At this stage a debugger is expected to copy any debugging data to somewhere s
otherwise it will be overwritten by the zero-initialised data and/or the heap/stack da
the program. A debugger can seize control at the appropriate moment by copying,
modifying, the third word of the AIF header (see AIF Header Layout on page 228).

Header

Read-only area

Read-write area

Debugging data (optional)
227

The Layout of AIF
AIF Header Layout

Notes

NOP is encoded as MOV r0, r0.

BL is used to make the header addressable via r14 in a position-independent manner,
and to ensure that the header will be position-independent. Care is taken to ensure that
the instruction sequences which compute addresses from these r14 values work in both
26-bit and 32-bit ARM modes.

BL DecompressCode

BL SelfRelocCode

BL DBGInit/ZeroInit

BL ImageEntryPoint

<Program Exit Instr>

Image ReadOnly size

Image ReadWrite size

Image Debug size

Image zero-init size

Image debug type

Image base

Work space

Address mode: 26/32

Data base

NOP 0 if the image is not compressed

NOP 0 if the image is not self-relocating

NOP 0 if the image has none

BL to make header addressable via R14 ...

Includes header size if executable AIF;

Exact size - a multiple of 4 bytes

Exact size - a multiple of 4 bytes

Exact size - a multiple of 4 bytes

0,1,2 or 3 (see below)

Address the image (code) was linked at

Header is 32 words long

Min work space - in bytes - to be reserved

excludes header size if non-executable AIF

00

04

08

0C

10

14

18

1C

20

24

28

2C

30

34

38

40

44

or
EntryPoint offset

Two reserved words

<Debug Init Instr>

Zero-init code

+3 flag bytes

... initially 0 ...

(14 words as below)

... but the application shall not return ...
Non-executable AIF uses an offset, not BL

...last ditch in case of return

a self-moving relocatable image

LS byte contains 26 or 32
bit 8 set when using a separate data base

Address the image data was linked at

NOP if unused
228

Code file formats
Program Exit Instruction will usually be a SWI causing program termination. On
systems which lack this, a branch-to-self is recommended. Applications are expected to
exit directly and not to return to the AIF header, so this instruction should never be
executed. The ARM linker sets this field to SWI 0x11 by default, but it may be set to any
desired value by providing a template for the AIF header in an area called AIF_HDR in
the first object file in the input list to Link.

Image ReadOnly Size includes the size of the AIF header only if the AIF type is
executable (that is, if the header itself is part of the image).

An AIF image is re-startable if, and only if, the program it contains is re-startable (note:
an AIF image is not reentrant). If an AIF image is to be re-started then, following its
decompression, the first word of the header must be set to NOP. Similarly, following
self-relocation, the second word of the header must be reset to NOP. This causes no
additional problems with the read-only nature of the code segment: both decompression
and relocation code must write to it. On systems with memory protection, both the
decompression code and the self-relocation code must be bracketed by system calls to
change the access status of the read-only section (first to writable, then back to
read-only).

The image debug type has the following meaning:

0: No debugging data are present.

1: Low-level debugging data are present.

2: Source level (ASD) debugging data are present.

3: 1 and 2 are present together.

All other values of image debug type are reserved to ARM Ltd.

Debug Initialisation Instruction (if used) is expected to be a SWI instruction which
alerts a resident debugger that a debuggable image is commencing execution. Of course,
there are other possibilities within the AIF framework. The linker sets this field to NOP
by default, but it can be customised by providing your own template for the AIF header
in an area called AIF_HDR in the first object file in the input list to Link.

The Address mode word (at offset 0x30) is 0, or contains in its least significant byte
(using the byte order appropriate to the target):

l the value 26, indicating the image was linked for a 26-bit ARM mode, and may not
execute correctly in a 32-bit mode

l the value 32, indicating the image was linked for a 32-bit ARM mode, and may not
execute correctly in a 26-bit mode.

A value of 0 indicates an old-style 26-bit AIF header.
229

Zero-Initialisation Code
If the Address mode word has bit 8 set ((address_mode & 0x100) != 0), then the image
was linked with separate code and data bases (usually the data is placed immediately
after the code). In this case, the word at offset 0x34 contains the base address of the
image’s data.

Zero-Initialisation Code
The Zero-initialisation code is as follows:

 ZeroInit
 NOP ; or <Debug Init Instruction>
 SUB ip, lr, pc ; base+12+[PSR]-(ZeroInit+12+PSR])
 ; = base-ZeroInit
 ADD ip, pc, ip ; base-ZeroInit+ZeroInit+16
 ; = base+16
 LDMIB ip, {r0,r1,r2,r3} ; various sizes
 SUB ip, ip, #16 ; image base
 LDR r2, [ip, #48] ; flags
 TST r2, #256 ; separate data area?
 LDRNE ip, [ip, #52] ; Yes, so get it...
 ADDEQ ip, ip, r0 ; No, so add + RO size
 ADD ip, ip, r1 ; + RW size = base of 0-init area
 MOV r0, #0
 CMPS r3, #0
 00 MOVLE pc, lr ; nothing left to do
 STR r0, [ip],#4
 SUBS r3, r3, #4
 B %B00

Self-Move and Self-Relocation Code

This code is added to the end of an AIF image by the linker, immediately before the list
of relocations (which is terminated by -1). Note that the code is entered via a BL from
the second word of the AIF header so, on entry, r14 points to AIFHeader + 8. In 26-bit
ARM modes, r14 also contains a copy of the PSR flags.

On entry, the relocation code calculates the address of the AIF header (in a
CPU-independent fashion) and decides whether the image needs to be moved. If the
image doesn’t need to be moved, the code branches to R(elocateOnly).
230

Code file formats
 RelocCode
 NOP ; required by ensure_byte_order()
 ; and used below.
 SUB ip, lr, pc ; base+8+[PSR]-(RelocCode+12+[PSR])
 ; = base-4-RelocCode
 ADD ip, pc, ip ; base-4-RelocCode+RelocCode+16 = base+12
 SUB ip, ip, #12 ; -> header address
 LDR r0, RelocCode ; NOP
 STR r0, [ip, #4] ; won’t be called again on image re-entry
 LDR r9, [ip, #&2C] ; min free space requirement
 CMPS r9, #0 ; 0 => no move, just relocate
 BEQ RelocateOnly

If the image needs to be moved up memory, then the top of memory has to be found.
Here, a system service (SWI 0x10) is called to return the address of the top of memory
in r1. This is, of course, system specific and should be replaced by whatever code
sequence is appropriate to the environment.

 LDR r0, [ip, #&20] ; image zero-init size
 ADD r9, r9, r0 ; space to leave = min free + zero init
 SWI #&10 ; return top of memory in r1.

The following code calculates the length of the image inclusive of its relocation data,
and decides whether a move up store is possible.

 ADR r2, End ; -> End
 01 LDR r0, [r2], #4 ; load relocation offset, increment r2
 CMNS r0, #1 ; terminator?
 BNE %B01 ; No, so loop again
 SUB r3, r1, r9 ; MemLimit - freeSpace
 SUBS r0, r3, r2 ; amount to move by
 BLE RelocateOnly ; not enough space to move...
 BIC r0, r0, #15 ; a multiple of 16...
 ADD r3, r2, r0 ; End + shift
 ADR r8, %F02 ; intermediate limit for copy-up

Finally, the image copies itself four words at a time, being careful about the direction of
copy, and jumping to the copied copy code as soon as it has copied itself.

 02 LDMDB r2!, {r4-r7}
 STMDB r3!, {r4-r7}
 CMPS r2, r8 ; copied the copy loop?
 BGT %B02 ; not yet
 ADD r4, pc, r0
 MOV pc, r4 ; jump to copied copy code
 03 LDMDB r2!, {r4-r7}
 STMDB r3!, {r4-r7}
 CMPS r2, ip ; copied everything?
 BGT %B03 ; not yet
 ADD ip, ip, r0 ; load address of code
 ADD lr, lr, r0 ; relocated return address
231

Zero-Initialisation Code
Whether the image has moved itself or not, control eventually arrives here, where the list
of locations to be relocated is processed. Each location is word sized and is relocated by
the difference between the address the image was loaded at (the address of the AIF
header) and the address the image was linked at (stored at offset 0x28 in the AIF
header).

 RelocateOnly
 LDR r1, [ip, #&28] ; header + 0x28 = code base set by Link
 SUBS r1, ip, r1 ; relocation offset
 MOVEQ pc, lr ; relocate by 0 so nothing to do
 STR ip, [ip, #&28] ; new image base = actual load address
 ADR r2, End ; start of reloc list
 04 LDR r0, [r2], #4 ; offset of word to relocate
 CMNS r0, #1 ; terminator?
 MOVEQ pc, lr ; yes => return
 LDR r3, [ip, r0] ; word to relocate
 ADD r3, r3, r1 ; relocate it
 STR r3, [ip, r0] ; store it back
 B %B04 ; and do the next one
 End ; The list of offsets of locations to
 ; relocate starts here, terminated by -1

You can customise the self-relocation and self-moving code generated by Link by
providing your version of it in an area called AIF_RELOC in the first object file in
Link’s input list.
232

Code file formats
ASD
Acknowledgement: This design is based on work originally done for Acorn Computers
by Topexpress Ltd.

This section specifies the format of symbolic debugging data generated by ARM
compilers, which is used by the Desktop debugging tool (DDT) to support high level
language oriented, interactive debugging.

For each separate compilation unit (called a section) the compiler produces debugging
data, and a special area in the object code (see section AOF on page 203 for an
explanation of ARM Object Format, including areas and their attributes). Debugging
data are position independent, containing only relative references to other debugging
data within the same section, and relocatable references to other compiler-generated
areas.

Debugging data areas are combined by the linker into a single contiguous section of a
program image. For a description of the linker’s principal output format see section AIF
on page 224.

Since the debugging section is position-independent, the debugger can move it to a safe
location before the image starts executing. If the image is not executed under debugger
control, the debugging data are simply overwritten.

The format of debugging data allows for a variable amount of detail. This potentially
allows the user to trade off among memory used, disc space used, execution time, and
debugging detail.

Assembly-language level debugging is also supported, though in this case the debugging
tables are generated by the linker. If required, the assembler can generate debugging
table entries relating code addresses to source lines. Low-level debugging tables appear
in an extra section item, as if generated by an independent compilation (see Debugging
Data Items in Detail on page 236). Low-level and high-level debugging are orthogonal
facilities, though DDT allows the user to move smoothly between levels if both sets of
debugging data are present in an image.

Order of Debugging Data
A debug data area consists of a series of items. The arrangement of these items mimics
the structure of the high-level language program itself.

For each debug area, the first item is a section item, giving global information about the
compilation, including a code identifying the language, and flags indicating the amount
of detail included in the debugging tables.
233

Endian-ness and the Encoding of Debugging Data

ea of
rn

here
source

ory

ex) of
, so

of the

s its

 in
t
en

which
s in
Each datum, function, procedure, etc., definition in the source program has a
corresponding debug data item; these items appear in an order corresponding to the
order of definitions in the source. This means that any nested structure in the source
program is preserved in the debugging data, and the debugger can use this structure to
make deductions about the scope of various source-level objects. Of course, for
procedure definitions, two debug items are needed: a procedure item to mark the
definition itself, and an endproc item to mark the end of the procedure’s body and the
end of any nested definitions. If procedure definitions are nested then the
procedure-endproc brackets are nested too. Variable and type definitions made at the
outermost level, of course, appear outside of all procedure/endproc items.

Information about the relationship between the executable code and source files is
collected together and appears as a fileinfo item, which is always the final item in a
debugging area. Because of the C language’s #include facility, the executable code
produced from an outer-level source file may be separated into disjoint pieces
interspersed with that produced from the included files. Therefore, source files are
considered to be collections of ‘fragments’, each corresponding to a contiguous ar
executable code, and the fileinfo item is a list with an entry for each file, each in tu
containing a list with an entry for each fragment. The fileinfo field in the section item
addresses the fileinfo item itself. In each procedure item there is a ‘fileentry’ field,
which refers to the file-list entry for the source file containing the procedure's start; t
is a separate one in the endproc item because it may possibly not be in the same
file.

Endian-ness and the Encoding of Debugging Data
The ARM can be configured to use either a little-endian memory system (the least
significant byte of each 4-byte word has the lowest address), or a big-endian mem
system (the most significant byte of each 4-byte word has the lowest address).

In general, the code to be generated varies according to the endian-ness (or byte-s
the target. The linker has insufficient information to change an object file’s byte sex
object files are encoded using the byte order of the intended target, independently
byte order of the host system on which the compiler or assembler runs. The linker
accepts inputs having either byte order, but rejects mixed sex inputs, and generate
output using the same byte order.

This means that producers of debugging tables must be prepared to generate them
either byte order, as required. In turn, this requires definitions to be very clear abou
when a 4-byte word is being used (which will require reversal on output or input wh
cross-sex compiling or debugging), and when a sequence of bytes is being used (
requires no special treatment provided it is written and read as a sequence of byte
address order).
234

Code file formats
Representation of Data Types
Several of the debugging data items (e.g. procedure and variable) have a type word field
to identify their data type. This field contains, in the most significant 24 bits, a code to
identify a base type, and in the least significant 8 bits, a pointer count:

0 to denote the type itself
1 to denote a pointer to the type
2 to denote a pointer to a pointer to...
etc.

For simple types the code is a positive integer as follows, (all codes are decimal):

 void 0
 signed integers
 single byte 10
 half-word 11
 word 12
 unsigned integers
 single byte 20
 half-word 21
 word 22
 floating point
 float 30
 double 31
 long double 32
 complex
 single complex 41
 double complex 42
 functions
 function 100

For compound types (arrays, structures, etc.) there is a special kind of debug data item
(array, struct, etc.) to give details such as array bounds and field types. The type code for
compound types is negative, the negation of the (byte) offset of the debug item from the
start of the debugging area.

If a type has been given a name in a source program, it will give rise to a type debugging
data item which contains the name and a type word as defined above. If necessary, there
will also be a debugging data item, such as an array or struct item, to define the type
itself. In that case, the type word will refer to this item.

Set types in Pascal are not treated in detail: the only information recorded for them is the
total size occupied by the object in bytes. Neither are Pascal file variables supported by
the debugger, since their behaviour under debugger control is unlikely to be helpful to
the user.
235

Representation of Source File Positions
FORTRAN character types are supported by special kinds of debugging data item, the
format of which is specific to each FORTRAN compiler.

Representation of Source File Positions
Several of the debugging data items have a sourcepos field to identify a position in the
source file. This field contains a line number and character position within the line
packed into a single word. The most significant 10 bits encode the character offset
(0-based) from the start of the line and the least-significant 22 bits give the line number.

Debugging Data Items in Detail

The Code and Length Field

The first word of each debugging data item contains the byte length of the item (encoded
in the most significant 16 bits), and a code identifying the kind of item (in the least
significant 16 bits). The defined codes are:

The meaning of the second and subsequent words of each item is defined below.

If a debugger encounters a code it does not recognise, it should use the length field to
skip the item entirely. This discipline allows the debugging tables to be extended without
invalidating existing debuggers.

1 section

2 procedure/function definition

3 endproc

4 variable

5 type

6 struct

7 array

8 subrange

9 set

10 fileinfo

11 contiguous enumeration

12 discontiguous enumeration

13 procedure/function declaration

14 begin naming scope

15 end naming scope
236

Code file formats
Text Names in Items

Where items include a string field, the string is packed into successive bytes beginning
with a length byte, and padded at the end to a word boundary with 0 bytes. The length of
a string is in the range [0..255] bytes.

Offsets in File and Addresses in Memory

Where an item contains a field giving an offset in the debugging data area (usually to
address another item), this means a byte offset from the start of the debugging data for
the whole section (in other words, from the start of the section item).

When the same structure is used to map debugging data in memory, an offset field may
be used to hold a pointer to another debug item in memory, rather than the offset of it in
the debug area.

Section Items

A section item is the first item of each section of the debugging data. After its code and
length word it contains the fields listed below. First there are 4 flag bytes:

The following language byte codes are defined:

All other codes are reserved to ARM.

The flags byte uses the following mask values:

The asdversion byte should be set to 3, the version of this definition.

lang a byte identifying the source language

flags a byte describing the level of detail

unused

asdversion a byte version number of the debugging data

LANG_NONE 0 Low-level debugging data only

LANG_C 1 C source level debugging data

LANG_PASCAL 2 Pascal source level debugging data

LANG_FORTRA
N

3 FORTRAN-77 source level debugging data

LANG_ASM 4 ARM Assembler line number data

1 debugging data contains line-number information

2 debugging data contains information about top-level variables

3 both of the above
237

Debugging Data Items in Detail

The flag bytes are followed by the following word-sized fields:

codestart and datastart are addresses, relocated by the linker. The fileinfo field,
nominally an offset, is also used as a pointer when this structure is mapped in memory.
The fileinfo field is 0 if no source file information is present.

The name field contains the program name for Pascal and FORTRAN programs. For C
programs it contains a name derived by the compiler from the root file name (notionally
a module name). In each case, the name is similar to a variable name in the source
language. For a low-level debugging section (language = 0), the field is treated as a 4
byte integer giving the number of symbols following.

For linker-generated low-level debugging data, the fields have the following values:

For linker-generated low-level debugging data, the section item is followed by
nsyms symbol items, each consisting of 2 words:

codestart address of first instruction in this section

datastart address of start of static data for this section

codesize byte size of executable code in this section

datasize byte size of the static data in this section

fileinfo offset in the debugging area of the fileinfo item for this
section (0 if no fileinfo item present)

debugsize total byte length of debug data for this section

name or nsyms string or integer
(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

language 0

codestart Image$$RO$$Base

datastart Image$$RW$$Base

codesize Image$$RO$$Limit - Image$$RO$$Base

datasize Image$$RW$$Limit - Image$$RW$$Base

fileinfo 0

nsyms number of symbols in the following debugging data

debugsize total size of the low-level debugging data including the size
of this section item

sym flags + byte offset in string table of symbol name

value the value of the symbol
238

Code file formats
sym encodes an index into the string table in the 24 least significant bits, and the
following flag values in the 8 most significant bits:

Note that the linker reduces all symbol values to absolute values, so that the flag values
record the history, or origin, of the symbol in the image.

Immediately following the symbol table is the string table, in standard AOF format. It
consists of:

l a length word

l the strings themselves, each terminated by a NUL (0).

The length word includes the size of the length word, so no offset into the string table is
less than 4. The end of the string table is padded with NULs to the next word boundary
(so the length is a multiple of 4).

Procedure Items

A procedure item appears once for each procedure or function definition in the source
program. Any definitions within the procedure have their related debugging data items
between the procedure item and its matching endproc item. After its code and length
field, a procedure item contains the following word-sized fields:

ASD_GLOBSYM 0 if the symbol is absolute

ASD_ABSSYM 0x01000000L if the symbol is global

ASD_TEXTSYM 0x02000000L if the symbol names code

ASD_DATASYM 0x04000000L if the symbol names data

ASD_ZINITSYM 0x06000000L if the symbol names 0-initialised data

type the return type if this is a function, else 0
(see Representation of Data Types on page 235)

args the number of arguments

sourcepos the source position of the procedure’s start
(see Representation of Data Types on page 235)

startaddr address of 1st instruction of procedure prologue

entry address of 1st instruction of the procedure body
(see note below)

endproc offset of the related endproc item (in file) or pointer to related
endproc item (in memory)
239

Debugging Data Items in Detail

oint,
The entry field addresses the first instruction following the procedure prologue. That is,
the first address at which a high-level breakpoint could sensibly be set. The startaddr
field addresses the start of the prologue. That is, the instruction at which control arrives
when the procedure is called.

Label Items

A label in a source program is represented by a special procedure item with no matching
endproc, (the endproc field is 0 to denote this). Pascal and FORTRAN numerical labels
are converted by their respective compilers into strings prefixed by $n.

For FORTRAN77, multiple entry points to the same procedure each give rise to a
separate procedure item, all of which have the same endproc offset referring to the
unique, matching endproc item.

Endproc Items

An endproc item marks the end of the debugging data items belonging to a particular
procedure. It also contains information relating to the procedure’s return. After its code
and length field, an endproc item contains the following word-sized fields:

If the procedure body is an infinite loop, there will be no return point, so nreturns will be
0. Otherwise each member of retaddrs should point to a suitable location at which a
breakpoint may be set ‘at the exit of the procedure’. When execution reaches this p
the current stack frame should still be for this procedure.

fileentry offset of the file list entry for the source file (in file) or a
pointer to it (in memory)

name string
(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

sourcepos position in the source file of the procedure's end
(see Representation of Source File Positions on page 236)

endpoint address of the code byte after the compiled code for the
procedure

fileentry offset of the file-list entry for the procedure's end (in file) or a
pointer to it (in memory)

nreturns number of procedure return points (may be 0)

retaddrs array of addresses of procedure return code

type the return type if this is a function, else 0
(see Representation of Data Types on page 235)
240

Code file formats
Variable Items

A variable item contains debugging data relating to a source program variable, or a
formal argument to a procedure (the first variable items in a procedure always describe
its arguments). After its code and length field, a variable item contains the following
word-sized fields:

The following codes define the storage classes of variables:

The meaning of the location field of a variable item depends on the storage class; it
contains:

l an absolute address for static and external variables (relocated by the linker)

l a stack offset (an offset from the frame pointer) for automatic and var-type
arguments

l an offset into the argument list for FORTRAN arguments

l a register number for register variables, (the 8 floating point registers are numbered
16..23).

No account is taken of variables which ought to be addressed by +ve offsets from the
stack-pointer rather than -ve offsets from the frame-pointer.

type type of this variable
(see Representation of Data Types on page 235)

sourcepos the source position of the variable
(see Representation of Source File Positions on page 236)

storageclass a word encoding the variable’s storage class

location see explanation below

name string
(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

1 external variables (or FORTRAN common)

2 static variables private to one section

3 automatic variables

4 register variables

5 Pascal 'var' arguments

6 FORTRAN arguments

7 FORTRAN character arguments
241

Debugging Data Items in Detail
The sourcepos field is used by the debugger to distinguish between different definitions
having the same name (e.g. identically named variables in disjoint source-level naming
scopes such as nested blocks in C).

Type Items

A type item is used to describe a named type in the source language (e.g. a typedef in C).
After its code and length field, a type item contains two word-sized fields:

Struct Items

A struct item is used to describe a structured data type (e.g. a struct in C or a record in
Pascal). After its code and length field, a struct item contains the following word-sized
fields:

Each struct field item has the following word-sized fields:

Union types are described by struct items in which all fields have 0 offsets.

C bit fields are not treated in full detail: a bit field is simply represented by an integer
starting on the appropriate word boundary (so that the word contains the whole field).

type a type word (see Representation of Data Types on page 235)

name string
(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

fields the number of fields in the structure

size total byte size of the structure

fieldtable... an array of fields struct field items

offset byte offset of this field within the structure

type a type word (see Representation of Data Types on page 235)

name string
(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)
242

Code file formats

ource
n

ase,

ffset
ory

y be

Array Items

An array item is used to describe a one-dimensional array. Multi-dimensional arrays are
described as ‘arrays of arrays’. Which dimension comes first is dependent on the s
language (which is different for C and FORTRAN). After its code and length field, a
array item contains the following word-sized fields:

If the size field is zero, debugger operations affecting the whole array, rather than
individual elements of it, are forbidden.

The following mask values are defined for the flags field:

A bound is described as undefined when no information about it is available.

A bound is described as constant when its value is known at compile time. In this c
the corresponding bound field gives its value.

If a bound is described as variable, the offset field identifies a variable debug item
describing the location containing the bound. In a debug area in an object file, the o
field contains the offset from the start of the debug area to the variable item; in mem
it contains a pointer to the corresponding variable item. Note that a variable item ma
used to describe a location known to the compiler, which need not correspond to a
source language variable.

size total byte size of the array

flags see below

basetype a type word (see Representation of Data Types on page 235)

lowerbound constant value or location of variable

upperbound constant value or location of variable

ARRAY_UNDEF_LBOUND 1 lower bound is undefined

ARRAY_CONST_LBOUND 2 lower bound is a constant

ARRAY_UNDEF_UBOUND 4 upper bound is undefined

ARRAY_CONST_UBOUND 8 upper bound is a constant

ARRAY_VAR_LBOUND 16 lower bound is a variable

ARRAY_VAR_UBOUND 32 upper bound is a variable
243

Debugging Data Items in Detail

ed
Subrange Items

A subrange item is used to describe a subrange typed in Pascal. It also serves to describe
enumerated types in C, and scalars in Pascal (in which case the base type is understood
to be an unsigned integer of appropriate size). After its code and length field, a subrange
item contains the following word-sized fields:

The sizeandtype field encodes the byte size of container for the subrange (1, 2 or 4) in its
least significant 16 bits, and a simple type code (see Representation of Data Types on
page 235) in its most significant 16 bits. The type code refers to the base type of the
subrange.

For example, a subrange 256..511 of unsigned short might be held in 1 byte.

Set Items

A set item is used to describe a Pascal set type. Currently, the description is only partial.
After its code and length field, a set item consists of a single word:

Enumeration Items

An enumeration item describes a Pascal or C enumerated type. After its code and length
word, the description of a ‘contiguous enumeration’ contains the following word-siz
fields

sizeandtype see below

lb low bound of subrange

hb high bound of subrange

size byte size of the object

type a type word describing the type of the container for the
enumeration (see Representation of Data Types on page 235)

count the cardinality of the enumeration

base the first (lowest) value (may be -ve)

nametable a character array containing ‘count’ names
(see Text Names in Items on page 237)
(the first byte of name is the name’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)
244

Code file formats
The description of a discontiguous enumeration (such as the C enumeration enum bits
{bit0=1, bit1=2, bit2=4, bit3=8, bit4=16}) contains the following fields after its code
and length word:

Each nametable entry has the following format (which is variable in length):

Function Declaration Items

After its code and length word, a function declaration item contains the following fields:

Each argument description item contains the following:

An argument descriptor need not be named; in this case the length of the name is zero,
and the name field is a single zero word.

Begin and End Naming Scope Items

These debug items are used to mark the beginning and end of a naming scope. They
must be properly nested in the debug area.

type as above

count as above

nametable a table of count (value, name) pairs

val a word describing the enumerated value (1/2/4/8/16 in the
example)

name the name of the enumerated element (may be several words
long)
(the first byte of name is the name’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

type a type word (see Representation of Data Types on page 235)
describing the return type of the function or procedure

argcount the number of arguments to the function

args a sequence of argcount argument description items

type a type word (see Representation of Data Types on page 235)
describing the type of the argument

name the name of the argument (may be several words)
(the first byte of name is the name’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)
245

Debugging Data Items in Detail
In each case, after the code and length word, there is one word-sized field:

Fileinfo Items

A fileinfo item appears once per section, after all other debugging data items. If the
fileinfo item is too large for its length to be encoded in 16 bits, its length field must be
written as 0 (since this is the last item in a section and the section header contains the
length of the whole section, the length field is strictly redundant.

Each source file is described by a sequence of fragments. Each fragment describes a
contiguous region of the file, within which the addresses of compiled code increase
monotonically with source file position. The order in which fragments appear in the
sequence is not necessarily related to the source file positions to which they refer.

Note that for compilations which make no use of the #include facility, the list of
fragments may have only one entry, and all line-number information can be contiguous.

After its code and length word, the fileinfo item is a sequence of file entry items with the
following format:

If present, the date field contains the number of seconds since the beginning of 1970 (the
Unix date origin).

Following the final file entry item, is a single 0 word marking the end of the sequence.

The fragment data is a word giving the number of following fragments followed by a
sequence of fragment items:

codeaddress address of the start/end of scope (determined by the code
word)

len length of this entry in bytes (including the length of the
following fragments)

date date and time when the file was last modified may be 0,
indicating not available, or unused)

filename string (or "" if the name is not known)
(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

fragment data see below

n number of fragments following

fragments... n fragment items
246

Code file formats
Each fragment item consists of 5 words, followed by a sequence of byte pairs and half
word pairs, formatted as follows:

Each lineinfo item describes a source statement and consists of a pair of (unsigned)
bytes, possibly followed by a two or three (unsigned) half words, (each half word has the
byte ordering appropriate to the target memory system’s endian-ness or byte sex).

The short form (pair of bytes) lineinfo item is as follows:

lineinc describes how to calculate the source position (line, column) of the next
statement from the source position of this one:

If lineinc is in the range 0 ≤ and < 64, the new position is (line+lineinc,1).
If lineinc ≥ 64, the new position is (line, column+lineinc -64).

The number of bytes of code generated for a statement may be zero, provided the line
increment is non-zero (such an item may describe a block end or block start, for
example).

It is not possible to describe a statement which generates no code and no line number
increment, as that encoding is used as an escape to the long form lineinfo items
described below.

If codeinc is greater than 255, or lineinc is required to describe a line number change
greater than 63 or a column change greater than 191, then both bytes are written to
describe 0 increments, and the real values are given in the following two or three
(unsigned) half words. (Note that there are two ways to describe 0 increments: 0 lines

size length of this fragment in bytes (including length of
following lineinfo items)

firstline linenumber

lastline linenumber

codestart pointer to the start of the fragment’s executable code

codesize byte size of the code in the fragment

lineinfo... a variable number of bytes matching line numbers to code
addresses

codeinc # bytes of code generated by this statement

lineinc # source space occupied by this statement
247

Debugging Data Items in Detail
and 0 columns, which serves to discriminate between the two half word and three half
word forms). If the starting column for the next statement is 1, the two half word form is
used, which in effect is a triple of half words as follows:

Note that the order of the lineinc and codeinc half words is the reverse of the
corresponding bytes.

If the starting column for the next statement is not 1, the three half word form is used,
which in effect is a quadruple of half words, as follows:

Note as above that the order of the lineinc and codeinc half words is the reverse of the
corresponding bytes. Note also that the column item here is the absolute column number
for the next statement, and not an increment as in the two byte form.

(This encoding of lineinfo items is an incompatible change from the previous format
(version 2): in that format, lineinc in a two byte lineinfo item always describes a line
increment, and accordingly, there is no four half word form. Programs interpreting asd
tables should interpret lineinfo items differently according to the table format in the
section item.)

zero 2 zero bytes

lineinc # source lines occupied by this statement

codeinc # bytes of code generated by this statement

codeinc = 0, lineinc = 64

lineinc # source lines occupied by this statement

codeinc # bytes of code generated by this statement

newcol starting column for the next statement
248

Appendix F: ARM procedure call standard

his Appendix relates to the implementation of compiler code-generators and

language run-time library kernels for the Advanced RISC Machine (ARM) but is T
also a useful reference when interworking assembly language with high level language
ion

d
s for

es.

se C
a

gether

litate

g

ts at
code.

The reader should be familiar with the ARM’s instruction set, floating-point instruct
set and assembler syntax before attempting to use this information to implement a
code-generator. In order to write a run-time kernel for a language implementation,
additional information specific to the relevant ARM operating system will be neede
(some information is given in the sections describing the standard register binding
this procedure-call standard).

The main topics covered in this Appendix are the procedure call and stack disciplin
These disciplines are observed by Acorn’s C language implementation for the ARM
and, eventually, will be observed by other high level language compilers too. Becau
is the first-choice implementation language for RISC OS applications, the utility of
new language implementation for the ARM will be related to its compatibility with
Acorn’s implementation of C.

At the end of this document are several examples of the usage of this standard, to
with suggestions for generating effective code for the ARM.

The purpose of APCS
The ARM Procedure Call Standard (APCS) is a set of rules which regulate and faci
calls between separately compiled or assembled program fragments.

The APCS defines:

l constraints on the use of registers

l stack conventions

l the format of a stack-based data structure, used by stack tracing programs to
reconstruct the sequence of outstanding calls (i.e. nested function calls awaitin
completion)

l the passing of machine-level arguments, and the return of machine-level resul
externally visible function/procedure calls
249

The purpose of APCS

asiest

tion

 data

 and

l support for the ARM shared library mechanism; a standard way for shared
(reentrant) code to address the static data of its clients.

Since the ARM CPU is used in a wide variety of systems, the APCS is not a single
standard, but a consistent family of standards. See APCS variants on page 259 for
details of the variants in the family. Implementors of run-time systems, operating
systems, embedded control monitors, etc., must choose the variant(s) most appropriate
to their requirements.

Naturally, there can be no binary compatibility between program fragments which
conform to different members of the APCS family. Those concerned with long-term
binary compatibility must choose their options carefully.

Note: ‘function’ is used to mean function, procedure or subroutine.

Design criteria

Throughout its history, the APCS has compromised between fastest, smallest and e
to use.

The criteria considered to be important are:

l Function call should be fast and it should be easy for compilers to optimise func
entry sequences.

l The function call sequence should be as compact as possible.

l Extensible stacks and multiple stacks should be accommodated.

l The standard should encourage the production of reentrant code, with writable
separated from code.

l The standard should be simple enough to be used by assembly language
programmers, and should support simple approaches to link editing, debugging
run-time error diagnosis.

Overall, compact code and a clear definition have been ranked most highly, with
simplicity and ease of use ahead of performance in matters of fine detail where the
impact on performance is small.
250

ARM procedure call standard

tly

ode

ent
ent.

ch

the
The ARM Procedure Call Standard

This section defines the ARM Procedure Call Standard.

A program fragment which conforms to the APCS while making a call to an external
function (one which is visible between compilation units) is said to be conforming. A
program which conforms to the APCS at all instants of execution is said to be ‘stric
conforming’ or to ‘conform strictly’.

Note: In general, compiled code is expected to be strictly conforming; hand-written c
merely conforming.

Whether or not (and when) program fragments for a particular ARM-based environm
are required to conform strictly to the APCS is part of the definition of that environm

In the following sections, clauses following ‘shall’ and ‘shall not’ are obligations whi
must be met in order to conform to the APCS.

Register names

The ARM has 15 visible general registers, a program counter register and 8
floating-point registers.

In non-user machine modes, some general registers are shadowed. In all modes,
availability of the floating-point instruction set depends on the processor model,
hardware and operating system.
251

The ARM Procedure Call Standard
General registers

The 16 integer registers are divided into 3 sets:

l argument registers which can also be used as scratch registers or as caller-saved
register variables;

l callee-saved registers, conventionally used as register variables;

l registers which have a dedicated role, at least some of the time, in at least one
variant of APCS-3 (see APCS variants on page 259).

The 5 frame registers fp, ip, sp, lr and pc have dedicated roles in all variants of the
APCS.

The ip register has a dedicated role only during function call; at other times it may be
used as a scratch register.

Note: Conventionally, ip is used by compiler code generators as the/a local code
generator temporary register.

There are dedicated roles for sb and sl in some variants of the APCS; in other variants
they may be used as callee-saved registers.

The APCS permits lr to be used as a register variable when not in use during a function
call. It further permits an ARM system specification to forbid such use in some, or all,
non-user ARM processor modes.

Name Number APCS Role

a1 0 argument 1 / integer result / scratch register
a2 1 argument 2 / scratch register
a3 2 argument 3 / scratch register
a4 3 argument 4 / scratch register

v1 4 register variable
v2 5 register variable
v3 6 register variable
v4 7 register variable
v5 8 register variable

sb/v6 9 static base / register variable
sl/v7 10 stack limit / stack chunk handle / reg. variable
fp 11 frame pointer
ip 12 scratch register / new-sb in inter-link-unit calls
sp 13 lower end of current stack frame
lr 14 link address / scratch register
pc 15 program counter
252

ARM procedure call standard

ace
rd.

nding
 of the

of

 be

l
y by
Floating point registers

Each ARM floating-point (FP) register holds one FP value of single, double, extended or
internal precision. A single-precision value occupies 1 machine word; a
double-precision value 2 words; an extended precision value occupies 3 words, as does
an internal precision value.

The floating-point (FP) registers are divided into two sets, analogous to the subsets
a1-a4 and v1-v5/v7 of the general registers:

l registers f0-f3 need not be preserved by called functions; f0 is the FP result register
and f0-f3 may hold the first four FP arguments (see Data representation and
argument passing on page 257 and APCS variants on page 259)

l registers f4-f7, the so called ‘variable’ registers, preserved by callees.

The Stack

The stack is a singly-linked list of ‘activation records’, linked through a ‘stack backtr
data structure’ (see below), stored at the high-address end of each activation reco

The stack shall be readable and writable by the executing program.

Each contiguous chunk of the stack shall be allocated to activation records in desce
address order. At all instants of execution, sp shall point to the lowest used address
most recently allocated activation record.

There may be multiple stack chunks, and there are no constraints on the ordering
these chunks in the address space.

Associated with sp is a possibly-implicit stack chunk limit, below which sp shall not
decremented (see APCS variants on page 259).

At all instants of execution, the memory between sp and the stack chunk limit shal
contain nothing of value to the executing program: it may be modified unpredictabl
the execution environment.

Name Number APCS Role
f0 0 FP argument 1 / FP result / FP scratch register

f1 1 FP argument 2 / FP scratch register

f2 2 FP argument 3 / FP scratch register

f3 3 FP argument 4 / FP scratch register

f4 4 floating point register variable

f5 5 floating point register variable

f6 6 floating point register variable

f7 7 floating point register variable
253

The ARM Procedure Call Standard
The stack chunk limit is said to be implicit if chunk overflow is detected and handled by
the execution environment. Otherwise it is explicit.

If the stack chunk limit is implicit, sl may be used as v7, an additional callee-saved
variable register.

If the conditions of the remainder of this subsection hold at all instants of execution, then
the program conforms strictly to the APCS; otherwise, if they hold at and during
external (inter-compilation-unit-visible) function calls, the program merely conforms to
the APCS.

If the stack chunk limit is explicit, then:

l sl shall point at least 256 bytes above it

l sl shall identify the current stack chunk in a system-defined manner

l at all times, sl shall identify the same chunk as sp points into.

Note: sl ≥ stack chunk limit + 256 allows the most common limit checks to be made very
cheaply during function entry.

This final requirement implies that on changing stack chunks, sl and sp must be loaded
simultaneously by means of an:

 LDM ..., {..., sl, sp}.

In general, this means that return from a function executing on an extension chunk, to
one executing on an earlier-allocated chunk, should be via an intermediate function
invocation, specially fabricated when the stack was extended.

The values of sl, fp and sp shall be multiples of 4.

The stack backtrace data structure

The value in fp shall be zero or shall point to a list of stack backtrace data structures
which partially describe the sequence of outstanding function calls.

If this constraint holds when external functions are called, the program is conforming; if
it holds at all instants of execution, the program is strictly conforming).
254

ARM procedure call standard

 j.

ure
cture
.

ich

The stack backtrace data structure has the format shown below:

The above picture shows between four and twenty-six words, with those words higher
on the page being at higher addresses in memory. The values shown inside the large
brackets are optional, and their presence need not imply the presence of any other. The
floating point values are stored in an internal format, and occupy three words each.

Function invocations and backtrace structures

If function invocation A calls function B, then A is called a direct ancestor of the
invocation of B. If invocation A[1] calls invocation A[2] calls... calls B, then each of the
A[i] is an ancestor of B and invocation A[i] is ‘more recent’ than invocation A[j] if i >

The return fp value shall be 0, or shall be a pointer to a stack backtrace data struct
created by an ancestor of the function invocation which created the backtrace stru
pointed to by fp. No more recent ancestor shall have created a backtrace structure

Note: There may be any number of tail-called invocations between invocations wh
create backtrace structures.

The return link value, return sp value and return fp value are, respectively, the values
to restore to pc, sp and fp at function exit.

fp points to here: save code pointer

return link value

return sp value

return fp value

 saved v6 value

 saved v5 value

 saved v4 value

 saved v3 value

 saved v2 value

 saved v1 value

 saved a4 value

 saved a3 value

 saved a2 value

 saved a1 value

 saved f7 value

 saved f6 value

 saved f5 value

 saved f4 value

[fp]

[fp, #-4]

[fp, #-8]

[fp, #-12]

three words

three words

three words

three words

Optional
values
255

The ARM Procedure Call Standard

to pc

all

d

s

nit
In the 32-bit PC variant of the APCS, the save code pointer shall point twelve bytes
beyond the start of the sequence of instructions that created the stack backtrace data
structure.

In the 26-bit PC variant of the APCS, the save code pointer, when cleared of PSR and
mode bits, shall point twelve bytes beyond the start of the sequence of instructions that
created the stack backtrace data structure.

Control arrival

At the instant when control arrives at the target function:

l pc contains the address of an entry point to the target function
(reentrant functions may have two entry points).

l lr shall contain the value to restore to pc on exit from the function (the return link
value – see The stack backtrace data structure on page 254)

Note: In 26-bit variants of the APCS, lr contains the PC + PSR value to restore
on exit from the function (see APCS variants on page 259)

l sp shall point at or above the current stack chunk limit; if the limit is explicit, it sh
point at least 256 bytes above it (see The Stack on page 253)

l fp shall contain 0 or shall point to the most recently created stack backtrace
structure (see The stack backtrace data structure on page 254)

l the space between sp and the stack chunk limit shall be readable, writable
memory which can be used by the called function as temporary workspace, an
overwritten with any values before the function returns (see The Stack on page 253)

l arguments shall have been marshalled as described below.

If the target function is reentrant (see The Stack on page 253) then it has two entry point
and control arrives:

l at the ‘intra-link-unit entry point’ if the caller has been directly linked with the
callee

l at the ‘inter-link-unit entry point’ if the caller has been separately linked with a
‘stub’ of the callee.

Note: Sometimes the two entry points are at the same address; usually they will be
separated by a single instruction.

On arrival at the intra-link-unit entry point, sb shall identify the static data of the link
unit which contains both the caller and the callee.

On arrival at the inter-link-unit entry point, ip shall identify the static data of the link u
containing the target function, or the target function shall make neither direct nor
indirect use of static data.
256

ARM procedure call standard

ed

vel
lt

 used
e

f the
alling.
ors
gs of

ed as

ess

n
In practice this usually means the callee must be a leaf function making no direct use of
static data.

The way in which sb ‘identifies’ the static data of a link unit is not specified by the
APCS.

If the call is by tail continuation, ‘calling function’ means that which would be return
to, were the tail continuation converted to a return).

If code is not required to be reentrant or sharable then sb may be used as v6, an
additional variable register.

Data representation and argument passing

Argument passing in the APCS is defined in terms of an ordered list of machine-le
values passed from the caller to the callee, and a single word or floating point resu
passed back from the callee to the caller. Each value in the argument list shall be:

l a word-sized, integer value

l a floating point value (of size 1, 2 or 3 words).

A callee may corrupt any of its arguments, howsoever passed.

Note: The APCS does not define the layout in store of records, arrays and so forth,
by ARM-targeted compilers for C, Pascal, Fortran-77, etc.; nor does it prescribe th
order in which language-level arguments are mapped into their machine-level
representations. In other words, the mapping from language-level data types, and
arguments to APCS words is defined by each language implementation, not by the
APCS. Indeed, there is no formal reason why two ARM-targeted implementations o
same language should not use different mappings and, hence, not support cross-c
Obviously, it would be very unhelpful to stand by this formal position so implement
are encouraged to adopt not just the letter of the APCS but also the natural mappin
source language objects into argument words. Guidance about this is given in C
Language calling conventions on page 261.

At the instant control arrives at the target function, the argument list shall be allocat
follows:

l In APCS variants which support the passing of floating-point arguments in
floating-point registers (see APCS variants on page 259), the first four
floating-point arguments (or fewer if the number of floating-point arguments is l
than four) shall be in machine registers f0-f3.

l The first four remaining argument words (or fewer if there are fewer than four
argument words remaining in the argument list) shall be in machine registers
a1-a4.

l The remainder of the argument list (if any) shall be in memory, at the locatio
addressed by sp and higher-addressed words thereafter.
257

The ARM Procedure Call Standard

tion

e call.

A floating-point value not passed in a floating-point register is treated as 1, 2 or 3 integer
values, as appropriate to its precision.

Control return

When the return link value for a function call is placed in the pc:

l sp, fp, sl/v7, sb/v6, v1-v5, and f4-f7 shall contain the same values as they
did at the instant of control arrival

l if the function returns a simple value of size one word or less, then that value shall
be in a1

Note: a language implementation is not obliged to consider all single-word values
simple. See C Language calling conventions on page 261)

l if the function returns a simple floating point value then that value shall be in f0.

The values of ip, lr, a2-a4, f1-f3 and any stacked arguments are undefined.

The definition of control return means that this is a ‘callee saves’ standard.

Note: In 32-bit ARM modes, the caller’s PSR flags are not preserved across a func
call. In 26-bit ARM modes, the caller’s PSR flags are naturally reinstated when the
return link pointer is placed in pc. Note that the N, Z, C and V flags from lr at the instant
of entry must be reinstated; it is not sufficient merely to preserve the PSR across th
Consider, a function ProcA which tail continues to ProcB as follows:

CMPS a1, #0
MOVLT a2, #255
MOVGE a2, #0
B ProcB

If ProcB merely preserves the flags it sees on entry, rather than restoring those fromlr,
the wrong flags may be set when ProcB returns direct to ProcA’s caller. See APCS
variants on page 259).
258

ARM procedure call standard

ion
sed
it

ent

ng to

hoice.

PSR

rison
e

t
ave
APCS variants

There are, currently, 2 x 2 x 2 x 2 = 16 APCS variants, derived from four independent
choices.

The first choice – 32-bit PC vs 26-bit PC – is fixed by your ARM CPU.

The second choice – implicit vs explicit stack-limit checking – is fixed by a combinat
of memory-management hardware and operating system software: if your ARM-ba
environment supports implicit stack-limit checking then use it; otherwise use explic
stack-limit checking.

The third choice – of how to pass floating-point arguments – supports efficient argum
passing in both of the following circumstances:

l the floating point instruction set is emulated by software and floating point
operations are dynamically very rare

l the floating point instruction set is supported by hardware or floating point
operations are dynamically common.

In each case, code conforming to one variant is not compatible with code conformi
the other.

Only the choice between reentrant and non-reentrant variants is a true user level c
Further, as the alternatives are compatible, each may be used where appropriate.

32-bit PC vs 26-bit PC

Older ARM CPUs and the 26-bit compatibility mode of newer CPUs use a 24-bit,
word-address program counter, and pack the 4 status flags (NZCV) and 2
interrupt-enable flags (IF) into the top 6 bits of r15, and the 2 mode bits (m0, m1) into
the least-significant bits of r15. Thus r15 implements a combined PC + PSR.

Newer ARM CPUs use a 32-bit program counter (in r15) and a separate PSR.

In 26-bit CPU modes, the PC + PSR is written to r14 by an ARM branch with link
instruction, so it is natural for the APCS to require the reinstatement of the caller’s
at function exit (a caller’s PSR is preserved across a function call).

In 32-bit CPU modes this reinstatement would be unacceptably expensive in compa
to the gain from it, so the APCS does not require it and a caller’s PSR flags may b
corrupted by a function call.

Implicit vs explicit stack-limit checking

ARM-based systems vary widely in the sophistication of their memory managemen
hardware. Some can easily support multiple, auto-extending stacks, while others h
no memory management hardware at all.

Safe programming practices demand that stack overflow be detected.
259

APCS variants

d in
The APCS defines conventions for software stack-limit checking sufficient to support
efficiently most requirements (including those of multiple threads and chunked stacks).

The majority of ARM-based systems are expected to require software stack-limit
checking.

Floating-point arguments in floating-point registers

Historically, many ARM-based systems have made no use of the floating point
instruction set, or they used a software emulation of it.

On systems using a slow software emulation and making little use of floating-point,
there is a small disadvantage to passing floating-point arguments in floating-point
registers: all variadic functions (such as printf) become slower, while only function calls
which actually take floating-point arguments become faster.

If your system has no floating-point hardware and is expected to make little use of
floating point, then it is better not to pass floating-point arguments in floating-point
registers. Otherwise, the opposite choice is best.

Reentrant vs non-reentrant code

The reentrant variant of the APCS supports the generation of code free of relocation
directives (position independent and addressing all data (indirectly) via a static base
register). Such code is ideal for placement in ROM and can be multiply threaded (shared
between several client processes).

In general, code to be placed in ROM or loaded into a shared library is expected to be
reentrant, while applications are expected not to be.

See also C Language calling conventions on page 261.

APCS-2 compatibility

APCS-2 – the second definition of The ARM Procedure Call Standard – is describe
the RISC OS 3 Programmer’s Reference Manual.

APCS-R (APCS-2 for Acorn’s RISC OS) is the following variant of APCS-3:

l 26-bit PC

l explicit stack-limit checking

l no passing of floating-point arguments in floating-point registers

l non-reentrant code

with the Acorn-specific constraints on the use of sl noted in APCS-2.

APCS-U (APCS-2 for Acorn’s RISCiX) is the following variant of APCS-3:

l 26-bit PC
260

ARM procedure call standard
l implicit stack-limit checking (with sl reserved to Acorn)

l no passing of floating-point arguments in floating-point registers

l non-reentrant code.

The (in APCS-2) obsolescent APCS-A has no equivalent in APCS-3.

C Language calling conventions

Argument representation

A floating point value occupies 1, 2, or 3 words, as appropriate to its type. Floating point
values are encoded in IEEE 754 format, with the most significant word of a double
having the lowest address.

The C compiler widens arguments of type float to type double to support inter-working
between ANSI C and classic C.

Char, short, pointer and other integral values occupy 1 word in an argument list. Char
and short values are widened by the C compiler during argument marshalling.

On the ARM, characters are naturally unsigned. In -pcc mode, the C compiler treats a
plain char as signed, widening its value appropriately when used as an argument,
(classic C lacks the signed char type, so plain chars are considered signed; ANSI C has
signed, unsigned and plain chars, the third, conventionally reflecting the natural
signedness of characters).

A structured value occupies an integral number of integer words (even if it contains only
floating point values).

Argument list marshalling

Argument values are marshalled in the order written in the source program.

If passing floating-point (FP) arguments in FP registers, the first 4 FP arguments are
loaded into FP registers.

The first 4 of the remaining argument words are loaded into a1-a4, and the remainder are
pushed on to the stack in reverse order (so that arguments later in the argument list have
higher addresses than those earlier in the argument list). As a consequence, a FP value
can be passed in integer registers, or even split between an integer register and the stack.

This follows from the need to support variadic functions, (functions having a variable
number of arguments, such as printf, scanf, etc.). Alternatives which avoid the passing
of FP values in integer registers require that a caller know that a variadic function is
being called, and use different argument marshalling conventions for variadic and
non-variadic functions.
261

C Language calling conventions

ments.
y be
 out’
Non-simple value return

A non-simple type is any non-floating-point type of size greater than 1 word (including
structures containing only floating-point fields), and certain 1 word structured types.

A structure is called integer-like if its size is less than or equal to one word, and the
offset of each of its addressable sub-fields is zero. An integer-like structured result is
considered simple and is returned in a1.

struct {int a:8, b:8, c:8, d:8;} and
union {int i; char *p;} are both integer-like;

struct {char a; char b; char c; char d;} is not.

A multi-word or non-integer-like result is returned to an address passed as an additional
first argument to the function call. At the machine level:

 TT tt = f(x, ...);

is implemented as:

 TT tt; f(&tt, x, ...);

Function entry

A complete discussion of function entry is complex; a few of the most important issues
and special cases are discussed here.

The important issues for function entry are:

l establishing the static base (if the function is to be reentrant)

l creating the stack backtrace data structure (if needed)

l saving the floating point variable registers (if required)

l checking for stack overflow (if the stack chunk limit is explicit).

A function is called leaf if its body contains no function calls.

If function F calls function G immediately before an exit from F, the call- exit sequence
can often be replaced instead by a return to G. After this transformation, the return to G
is called a tail call or tail continuation.

There are many subtle difficulties with tail continuations. Suppose stacked arguments
are unstacked by callers (almost mandatory for variadic callees), then G cannot be
directly tail-called if G itself takes stacked arguments. This is because there is no return
to F to unstack them. Of course, if this call to G takes fewer arguments than the current
call to F, then some of F’s stacked arguments can be replaced by G’s stacked argu
However, this can be hard to assert if F is variadic. More straightforwardly, there ma
no tail-call of G if the address of any of F’s arguments or local variables has ‘leaked
262

ARM procedure call standard

 link

 is

ted in

for the
cause

e
of F. This is because on return to G, the address may be invalidated by adjustment of the
stack pointer. In general, this precludes tail calls if any local variable or argument has its
address taken.

If a function is a leaf function, or all function calls from its body are tail calls and, in
both cases, the function uses no v-registers (v1-v7) then the function need create no
stack backtrace structure (such functions will also be termed ‘frameless’).

A leaf function which makes no use of static data need not establish a static base.

Function entry - establishing the static base

The ARM shared library mechanism supports both the direct linking together of
functions into a link unit, and the indirect linking of functions with the stubs of other
link units. Thus a reentrant function can be entered directly via a call from the same
unit (an intra-link-unit call), or indirectly via a function pointer or direct call from
another link unit (an inter-link-unit call).

The general scheme for establishing the static base in reentrant code is:

 intra MOV ip, sb ; intra link unit (LU) calls target here
 inter ; inter-LU calls target here, having loaded
 ; ip via an inter-LU or fn-pointer veneer.

 <create backtrace structure, saving sb>

 MOV sb, ip ; establish sb for this LU

 <rest of entry>

Code which is not required to be reentrant need not use a static base. Code which
reentrant is marked as such, which allows the linker to create the inter-LU veneers
needed between independent reentrant link units, and between reentrant and
non-reentrant code.

Function entry - creating the stack backtrace structure

For non-reentrant, non-variadic functions the stack backtrace structure can be crea
just 3 instructions, as follows:

 MOV ip, sp ; save current sp, ready to save as old sp
 STMFD sp!, {a1-a4, v1-v5, sb, fp, ip, lr, pc} ; as needed
 SUB fp, ip, #4

Each argument register a1-a4 need only be saved if a memory location is needed
corresponding parameter (because it has been spilled by the register allocator or be
its address has been taken).

Each of the registers v1-v7 need only be saved if it used by the called function. Th
minimum set of registers to be saved is {fp, old-sp, lr, pc}.

A reentrant function must avoid using ip in its entry sequence:
263

C Language calling conventions
 STMFD sp!, {sp, lr, pc}
 STMFD sp!, {a1-a4, v1-v5, sb, fp} ; as needed
 ADD fp, sp, #8+4*|{a1-a4, v1-v5, sb, fp}| ; as used above

sb (aka v6) must be saved by a reentrant function if it calls any function from another
link unit (which would alter the value in sb). This means that, in general, sb must be
saved on entry to all non-leaf, reentrant functions.

For variadic functions the entry sequence is more complicated again. Usually, it will be
desired or required to make a contiguous argument list on the stack. For non-reentrant
variadic functions this can be done by:

 MOV ip, sp ; save current sp, ready to save as old sp
 STMFD sp!, {a1-a4} ; push arguments on stack
 SFMFD f0, 4, [sp] ; push FP arguments on stack...
 STMFD sp!, {v1-v6, fp, ip, lr, pc} ; as needed
 SUB fp, ip, #20 ; if all of a1-a4 pushed...

It is not necessary to push arguments corresponding to fixed parameters (though saving
a1-a4 is little more expensive than just saving, say, a3-a4).

If floating point arguments are not being passed in floating point registers then there is
no need for the SFMFD. SFM is not supported by the issue-1 floating-point instruction
set and must be simulated by 4 STFEs. See Function entry - saving and restoring
floating point registers below.

For reentrant variadic functions, the requirements are yet more complicated and the
sequence becomes less elegant.

Function entry - saving and restoring floating point registers

The issue-2 floating-point instruction set defines two new instructions, Store Floating
Multiple (SFM) and Load Floating Multiple (LFM), for saving and restoring the
floating-point registers, as follows:

l SFM and LFM are exact inverses;

l a SFM will never trap, whatever the IEEE trap mode and the value transferred
(unlike a STFE which can trap on storing a signalling NaN);

l SFM and LFM transfer 3-word internal representations of floating point values
which vary from implementation to implementation, and which, in general, are
unrelated to any of the supported IEEE representations;

l any 1-4, cyclically contiguous floating-point registers can be transferred by
SFM/LFM (e.g. {f4-f7}, {f6, f7, f0}, {f7, f0}, {f1}).

On function entry, a typical use of SFM might be as follows:

 SFMFD f4, 4, [sp]! ; save f4-f7 on a Full Descending stack,
 ; adjusting sp as values are pushed.
264

ARM procedure call standard

this

e, by

ns,

eing
On function exit, the corresponding sequence might be as follows:

 LFMEA f4, 4, [fp, #-N] ; restore f4-f7; fp-N points just
 ; above the floating point save area.

On function exit, sp-relative addressing may be unavailable if the stack has been
discontiguously extended.

In issue-1 instruction set compatibility modes, SFM and LFM have to be simulated
using sequences of STFEs and LDFEs.

Function entry - checking for stack limit violations

In some environments, stack overflow detection will be implicit: an off stack reference
will cause an address error or memory fault which may, in turn, cause stack extension or
program termination.

In other environments, the validity of the stack must be checked on function entry and,
perhaps at other times. There are three cases:

l the function uses 256 bytes or less of stack space

l the function uses more than 256 bytes of stack space, but the amount is known
and bounded at compile time

l the function uses an amount of stack space unknown until run time.

The third case does not arise in C, save with stack-based implementations of the
non-standard, BSD-Unix alloca() function. The APCS does not support alloca() in a
straightforward manner.

In Modula-2, Pascal and other languages there may be arrays created on block entry or
passed as open array arguments, the size of which is unknown until run time. These
are located in the callee’s stack frame, so impact stack limit checking. In practice,
adds little complication, as discussed in Stack limit checking - vari-sized frames on
page 266.

The check for stack limit violation is made at the end of the function entry sequenc
which time ip is available as a work register. If the check fails, a standard run-time
support function (‘__rt_stkovf_split_small’ or ‘__rt_stkovf_split_big’) is called. Each
environment which supports explicit stack limit checking must provide these functio
which can do one of the following:

l terminate execution

l extend the existing stack chunk, decrementing sl

l allocate a new stack chunk, resetting sp and sl to point into it, and guarante
that an immediate repeat of the limit check will succeed.
265

C Language calling conventions
Stack limit checking - small, fixed frames

For frames of 256 bytes or less the limit check is as follows:

 <create stack backtrace structure>

 CMPS sp, sl
 BLLT |__rt_stkovf_split_small|
 SUB sp, sp, #<size of locals> ; <= 256, by hypothesis

This adds 2 instructions and, in general, only 2 cycles to function entry.

After a call to __rt_stkovf_split_small, fp and sp do not, necessarily, point into the same
stack chunk. Arguments passed on the stack must be addressed by offsets from fp, not by
offsets from sp.

Stack limit checking - large, fixed frames

For frames bigger than 256 bytes, the limit check proceeds as follows:

 SUB ip, sp, #FrameSizeBound ; can be done in 1 instr
 CMPS ip, sl
 BLLT |__rt_stkovf_split_big|
 SUB sp, sp, #InitFrameSize ; may take more than 1 instr

FrameSizeBound can be any convenient constant at least as big as the largest frame the
function will use. Note that functions containing nested blocks may use different
amounts of stack at different instants during their execution.

InitFrameSize is the initial stack frame size: subsequent adjustments within the called
function require no limit check.

After a call to __rt_stkovf_split_big, fp and sp do not, necessarily, point into the same
stack chunk. Arguments passed on the stack must be addressed by offsets from fp, not by
offsets from sp.

Stack limit checking - vari-sized frames

(For Pascal-like languages).

The handling of frames the size of which is unknown at compile time, is identical to the
handling of large frames, save that:

l the computation of the proposed new stack pointer is more complicated,
involving arguments to the function itself

l the addressing of the vari-sized objects is more complicated than the addressing
of fixed size objects need be

l the vari-sized objects have to be initialised by the called function.
266

ARM procedure call standard

e

ually
have
is
uence,
till
ns
lves.
The general scheme for stack layout in this case is as follows:

Objects notionally passed by value are actually passed by reference and copied by the
callee.

The callee addresses the copied objects via pointers located in the fixed size part of the
stack frame, immediately above sp. These can be addressed relative to sp. The original
arguments are all addressable relative to fp.

After a call to __rt_stkovf_split_big, fp and sp do not, necessarily, point into the same
stack chunk. Arguments passed on the stack must be addressed by offsets from fp, not by
offsets from sp.

If a nested block extends the stack by an amount which can’t be known until run tim
then the block entry must include a stack limit check.

Function exit

A great deal of design effort has been devoted to ensuring that function exit can us
be implemented in a single instruction (this is not the case if floating-point registers
to be restored). Typically, there are at least as many function exits as entries, so it
always advantageous to move an instruction from an exit sequence to an entry seq
(Fortran may violate this rule by virtue of multiple entries, but on average the rule s
holds true). If exit is a single instruction then, in multi-exit functions, further instructio
can be saved by replacing branches to a single exit by the exit instructions themse

Exit from functions which use no stack and save no floating point registers is
particularly simple:

 MOV pc, lr

Stack-based arguments

Stack backtrace data structure
... reg save area...

Area for vari-sized objects,
passed by value or created on
block entry

Fixed size remainder of frame

fp points here

sp points here
267

Some examples

his

 but it

ure at

n very
s, the

 of
yed.
(26-bit compatibility demands MOVS pc, lr to reinstate the caller’s PSR flags, but t
must not be used in 32-bit modes).

Exit from other functions which save no floating-point registers is by:

 LDMEA fp, {v1-v5, sb, fp, sp, pc} ; as saved

Here, it is crucial that fp points just below the save code pointer, as this value is not
restored, (LDMEA is a pre-decrement multiple load).(26-bit compatibility demands
LDMEA fp, {regs}^, to reinstate the caller’s PSR flags, but this must not be used in
32-bit modes).

The saving and restoring of floating-point registers is discussed above.

Some examples
This section is not intended to be a general guide to the writing of code generators,
seems worthwhile to highlight some of the optimisations that appear particularly
relevant to the ARM and to this standard.

In order to make effective use of the APCS, compilers must compile code a proced
a time. Line at a time compilation is insufficient.

In the case of leaf functions, much of the standard entry sequence can be omitted. I
small functions, such as those that frequently occur implementing data abstraction
function-call overhead can be tiny.

Consider:

 typedef struct {...; int a; ...} foo;
 int foo_get_a(foo* f) {return(f-a);}

The function foo_get_a can compile to just:

 LDR a1, [a1, #aOffset]
 MOV pc, lr ; MOVS in 26-bit modes

In functions with a conditional as the top level statement, in which one or other arm
the conditional is leaf (calls no functions), the formation of a stack frame can be dela
268

ARM procedure call standard
For example, the C function:

 int get(Stream *s)
 {
 if (s->cnt > 0)
 { --s;
 return *(s-p++);
 }
 else
 {
 ...
 }
 }

... could be compiled (non-reentrantly) into:

 get MOV a3, a1
 ; if (s->cnt > 0)
 LDR a2, [a3, #cntOffset]
 CMPS a2, #0
 ; try the fast case,frameless and heavily conditionalized
 SUBGT a2, a2, #1
 STRGT a2, [a3, #cntOffset]
 LDRGT a2, [a3, #pOffset]
 LDRBGT a1, [a2], #1
 STRGT a2, [a3, #pOffset]
 MOVGT pc, lr
 ; else, form a stack frame and handle the rest as normal code
 MOV ip, sp
 STMDB sp!, {v1-v3, fp, ip, lr, pc}
 CMP sp, sl
 BLLT |__rt_stkovf_split_small|
 ...
 LDMEA fp, {v1-v3, fp, sp, pc}

This is only worthwhile if the test can be compiled using any spare of a1-a4 and ip, as
scratch registers. This technique can significantly accelerate certain speed-critical
functions, such as read and write character.

Finally, it is often worth applying the tail call optimisation, especially to procedures
which need to save no registers.

For example:

 extern void *malloc(size_t n)
 {
 return primitive_alloc(NOTGCABLEBIT, BYTESTOWORDS(n));
 }
269

The APCS in non-user ARM modes

 the
nded

s

vel
to

blem

nd

round

hat

page

d data
 itself

 the
... is compiled (non-reentrantly) by the C compiler into:

 malloc
 ADD a1, a1, #3 ; 1S
 MOV a2, a1, LSR #2 ; 1S - BYTESTOWORDS(n)
 MOV a1, #1073741824 ; 1S - NOTGCABLEBIT
 B primitive_alloc ; 1N+2S = 4S

In this case, the optimisation avoids saving and restoring the call-frame registers and
saves 5 instructions (and many cycles-17 S cycles on an uncached ARM with N=2S).

The APCS in non-user ARM modes
There are some consequences of the ARM’s architecture which, while not explicit in
ARM Procedure Call Standard, need to be understood by implementors of code inte
to run in the ARM’s SVC and IRQ modes.

An IRQ corrupts r14_irq, so IRQ-mode code must run with IRQs off until r14_irq ha
been saved.

A general solution to this problem is to enter and exit IRQ handlers written in high-le
languages via hand-crafted wrappers, which on entry save r14_irq, change mode
SVC, and enable IRQs; and on exit restore the saved r14_irq, IRQ mode and the
IRQ-enable state. Thus the handlers themselves run in SVC mode, avoiding the pro
in compiled code.

SWIs corrupt r14_svc, so care has to be taken when calling SWIs in SVC mode.

In high-level languages, SWIs are usually called out of line, so it suffices to save a
restore r14 in the calling veneer around the SWI. If a compiler can generate in-line
SWIs, then it should, of course, also generate code to save and restore r14 in-line a
the SWI, unless it is known that the code will not be executed in SVC mode.

Aborts and pre-ARM6-based ARMs

With pre-ARM6-based ARMs (ARM2, ARM3), aborts corrupt r14_svc. This means t
care has to be taken when causing aborts in SVC mode.

An abort in SVC mode may be symptomatic of a fatal error, or it may be caused by
faulting in SVC mode. Page faulting can occur because an instruction needs to be
fetched from a missing page (causing a prefetch abort), or because of an attempte
access to a missing page. The latter may occur even if the SVC-mode code is not
paged, (consider an unpaged kernel accessing a paged user-space).

A data abort is recoverable provided r14 contains nothing of value at the instant of
abort. This can be ensured by:

l saving R14 on entry to every function and restoring it on exit;
270

ARM procedure call standard
l not using R14 as a temporary register in any function;

l avoiding page faults (stack faults) in function entry sequences.

A prefetch abort is harder to recover from, and an aborting BL instruction cannot be
recovered, so special action has to be taken to protect page faulting function calls.

In code compiled from C, r14 is saved in the 2nd or 3rd instruction of an entry sequence.
Aligning all functions at addresses which are 0 or 4 modulo 16, ensures the critical part
of the entry sequence cannot prefetch-abort. A compiler can do this by padding code
sections to a multiple of 16 bytes, and being careful about the alignment of functions
within code sections.

Data-aborts early in function entry sequences can be avoided by using a software
stack-limit check.

A possible way to protect BL instructions from prefetch-aborts, is to precede each BL by
a

 MOV ip, pc

instruction. If the BL faults, the prefetch abort handler can safely overwrite r14 with ip
before resuming execution at the target of the BL. If the prefetch abort is not caused by
a BL then this action is harmless, as r14 has been corrupted anyway, (and, by design,
contained nothing of value at any instant a prefetch abort could occur).
271

272

Index

DataLength 221
Symbols
*DebugIAF 23
*filer_opendir 95
*FrontEnd_SetUp 158, 171
*FrontEnd_Start 158, 160, 167

invoking using command_is 163
*IconSprites 159
*Prefix 193
*RMEnsure 160
*RMTidy 146
*Spool 95
*wimpSlot 95

A
a.out format 205
Acorn C/C++

directory structure 10
Acorn Library Format see ALF
Acorn Make Utility see AMU
AIF 137, 201, 224

debugging 225
executable 224
layout of an image 226
layout of an uncompressed image 226
layout of the header 228
non-executable 224
relocation 225
self-move 230
self-relocation 225, 230
zero-initialisation 230

ALF 201, 220
alignment 202
ChunkIndex 221
Data 221

EntryLength 221
LIB_DATA 222
LIB_DIRY 220
LIB_TIME 222
LIB_VSRN 222
library file chunks 220
object code libraries 223
OFL_SYMT 223
OFL_TIME 223
Time stamps 222

AMU 109-112
Application menu 111
command line 112
controlling operation 110
SetUp dialogue box 110
SetUp menu 110
specifying makefile to be used 110
specifying targets 110

amu command line tool 109
AOF 201

alignment 202
area attributes 211
area name 207
area size 207
AREAs 142

attributes 147
packing 144

attributes and alignment 207
chunk file format 203
entry address area/ entry address offset 206
files 129
format of area headers 207
format of the areas chunk 212
format of the symbol table chunk 215
header chunk format 205
identification chunk (OBJ_IDFN) 219
273

Index
number of areas 206
number of relocations 207
relocation directives 212
string table chunk (OBJ_STRT) 218
symbol attributes 216
symbol table 206

APCS 141, 249-271
APCS-2 compatibility 260
argument passing 257
C language calling conventions 261

argument list marshalling 261
argument representation 261
non-simple value return 262

data representation 257
design criteria 250
examples 268
function entry 262
non-user ARM modes 270
purpose 249
registers 251

floating point 253
general 252

stack 253
stack backtrace 254
variants of APCS 259

application description
arrow icons 167
DBOX section 166
FILEOUTPUT section 165
icon default values 167
icon types 166
METAOPTIONS section 164
toggling dialogue box size 167
TOOLDETAILS section 163

applications
adding new ones 157
porting to RISC OS 157

Arm Object Format see AOF
ARM Procedure Call Standard see APCS
arrow icons 167
ASD 233-248

compilation units (sections) 233
data encoding 234

data items 236
Array item 243
code and length field 236
Endproc item 240
Enumeration item 244
Fileinfo item 246
Function Declaration item 245
Label item 240
offsets 237
Procedure item 239
Scope items 245
Section item 237
Set item 244
Struct item 242
Subrange item 244
text names 237
Type item 242
Variable item 241

data types 235
debug data areas (items) 233
endian memory systems 234
order of 233
Source file position 236
sourcepos field 236

Auto Run option
enabling 164

Auto Save option
enabling 164

B
!Boot file, for new WIMP application 159
breakpoints

setting 27
on addresses and low-level expressions 32
on procedure names 27

byte
definition 201
sex 201
274

Index
C
C module header generator (CMHG) 146
chunk file

chunkId 204
format 203
header entries 204
layout 203
offset 204

command line interface 104
DecAOF 115
Diff 120
Find 127
LibFile 133
Link 148
ObjSize 152
Squeeze 154

command lines
passing long command lines see DDEUtils

module
compiler

adding a new one 157
compiling a program

with debugging information 21
Context window 24
controlling DDT execution 33

D
DBOX 166
DDEUtils module 157, 170, 193
!DDT 23
DDT 19-56

accessing nested variables 30
breakpoints

on addresses and low-level expressions 32
on procedure names 27

Context window 24
enabling debugging 21
error messages 24
example session 49
execution control 33

limitations 19
linking a program 22
main menu 26
menu options

*Commands 47
Breakpoint 36
Call 35
Change 44
Continue 33
Debug 23
Display 40
Find 47
Help 48
Log 46
Options 45
Quit 48
Single step 34
Trace 39
Watchpoint 37

menu shortcuts
Breakpoint 37
Continue 33, 48
Display 40
Single step 35
Watchpoint 38

preparing a program 21
program examination and modification 40
specifying program objects 26
starting a debugging session 23
Status window 24
watchpoints

on variable names 28
debugging

source-level 22
debugging see also DDT (desktop debugging tool)
DecAOF

Application menu 114
command line interface 115
menu options

Command line 114
Output window 115
SetUp

dialogue box 113
275

Index
menu 114
SetUp options

Area contents 113
Area declarations 114
Debug 113
Files 113
Only area declarations 113
Relocation directives 114
String table 113
Symbol table 113

demonstration program 9
desktop utility

adding a new one 157
Diff

Application menu 118
command line interface 120
menu options

Command line 118
Dir. structure 118
Equate CR/LF 118
Expand tabs 118
Fast 118
Large files 118
Squidge 118

Output window 119
SetUp

dialogue box 117
menu 118

SetUp options
Case insensitive 117
Expand tabs 117
Remove spaces 117
Squash spaces 117

directory structure of Acorn C/C++ 10

E
EBNF rule, for application 163
Entry points see Link menu options
environment variables 11

C$Path 11
DDE$Path 11

Run$Path 11
error messages

DDT 24
error throwback 195
Errors

linking a program 140
extracting files

LibFile 131

F
file formats

AIF 224-232
ALF 220-223
AOF 203-219
SrcEdit 199
undefined fields 202

file type
Text 73

filename prefixing see DDEUtils module
FILEOUTPUT 165
Find

Application menu 126
command line interface 127
menu options

Allow 125
Command line 125
Grep style 125

Output window 126
SetUp

dialogue box 121
menu 125

SetUp options
Case insensitive 122
Filenames only 122
Files 121
Line count only 122
Patterns 121
Throwback 122
Verbose 122
Wildcards 122

SetUp wildcard filenames
276

Index
0orMore 125
0orMore filename chs. 124
Filename ch. 124
Or 125
Sub-directories 124

SetUp wildcard patterns
0 or more 124
1 or more 124
Alphanum 123
Any 123
Ctrl 123
Digit 123
Newline 123
Normal 123
Not 123
Set 123

finding
text in a file 77

fonts see SrcEdit (fonts)
format of AOF area headers 207
FrontEnd

producing new RISC OS applications 158
FrontEnd module 157, 158-170

operation when command line tool is run 158

H
half word 201
hardware requirement for Acorn C/C++ 7

I
icon types 166
IMPORT directive 146
installing Acorn C/C++

configuration options 8, 9
demonstration program 9
hardware requirement 7

invoking a WIMP frontend for a tool 158

K
KEEP directive 22

L
language processors – output format 201
LIB_DATA 222
LIB_DIRY 220
LIB_TIME 222
LIB_VSRN 222
LibFile 129-134

command line interface 133
extracting files 131
limitations when creating libraries 132
menu options

Command line 130
List symbol table 130
Null timestamps 132
Via file 130

Output window 131
SetUp

dialogue box 129
menu 130

SetUp options
Create 129
Delete 129
Extract 129
File list 129
Insert 129
Library 129
List library 129
Object library 130

libraries
linking 141
symbol references 141

library archives
AOF files 129

Link 137-149
AIF 137
command line interface 138, 148
errors 140
277

Index
IMPORT directive 146
inter-area references 144
libraries 141
linking with the overlay manager 144
loading 137
menu options

Base 139
Command line 138
Debug 138
Entry 139
Link map 138, 140, 144
No case 139
Overlay 139, 143
Relocatable AIF 139
Verbose 140
Via file 139
Workspace 138, 139, 146
X-Ref 138, 144

Output window 139
overlaying programs 141
predefined symbols 147
relocatable AIF images 145
relocatable module format (RMF) 137
relocatable modules 146
SetUp

dialogue box 137
menu 138

SetUp options
AIF 137
Binary 138
Files 137
Module 137
Relocatable AIF 138

specifying files to be linked 137
utility programs 146

linking
preparing to debug a program 22, 138

little endian 201

M
Make 15, 109, 171

command execution 175
command line tools 68
invoking 57
Makefiles

conventional Makefiles 67
editing 66
file naming 181
format 67
specifying 110
structure 178

menu options
Info 57
Open 57
Options 57

MFLAGS macro 185
Output window 64
programmer interface 68
projects 58

adding a member 61
adding a target 62
creating a final target 64
creating a new project 59
final targets 58
listing members 61
opening a project 60
removing a member 61
removing a project 64
setting tool options 63
touching members 62

rule patterns 182-183
tool options, message passing 69
VPATH macro 181
WIMP message format 69

Make project management tool 157
METAOPTIONS 164
module headers

creating in assembler 147
multi-tasking

pre-emptive multi-tasking 158
278

Index
N
nested variables

accessing in DDT 30

O
OBJ_

name of AOF files 204
OBJ_AREA

areas chunk 212
OBJ_IDFN 219
OBJ_STRT 218
ObjAsm

KEEP directive 22
object file

format 204
chunk names 204

type 206
ObjSize

Application menu 151
command line interface 152
menu options

Command line 151
Output window 152
SetUp

dialogue box 151
menu 151

SetUp options
Files 151

OFL_SYMT 223
OFL_TIME 223
output formats in Link 139

AIF 137
binary 138
RMF 137

Output window
DecAOF 115
Diff 119
Find 126
LibFile 131
Link 139

ObjSize 152
Squeeze 154

overlay description files 143
overlay manager

linking 144
overlaying programs 141

P
packing

AREAs 144
parent directories

indicating with ^. 165
porting applications to RISC OS 157
predefined linker symbols 147
Prefix$Dir 183
procedure names

setting breakpoints in DDT 27
program objects

specifying in DDT 26
project management tool

creating 157
projects see MAKE

R
relocatable AIF images 145
relocatable module area (RMA) 146
relocatable module format (RMF) 137
relocatable modules 146
relocating applications on the stack

the Workspace option 146
resource files in SrcEdit 171
!Run file, for new WIMP application 159

S
saving single output object 165
!SetUp file, for new WIMP application 159
source-level debugging 22
279

Index
Squeeze
Application menu 154
command line interface 154
menu options

Command line 153
Output window 154
SetUp

dialogue box 153
menu 153

SetUp options
Input 153
Try harder 153
Verbose 153

SrcEdit 171
Application menu options

Create 93
Options 93
Save All 92
Save Options 92

Backspace 73
block operations 74
bracket-matching 87
carriage return 83
case sensitivity in Find 79
colours 84
ColTab 86
copy a selection 74
copying - Ctrl-C shortcut 75
copying block 75
counting occurrences 79
Ctrl-U 73
Delete 73
deleting block 75
entering text 71
file formats 199
find a specific line 83
finding text 77-82
fonts 84
Format width 84
formatting text 84
Goto

line 83
option 83

indenting 75
inserting/deleting text 72
keyboard shortcuts 78
keystroke equivalents 96
line spacing 84
linefeed 83
Magic characters 79
margin 84
moving block 75
moving -Ctrl-V shortcut 75
printing a file 85
reading text from another file 87
redoing changes 83
replacing text 78
resource files 171
searching for text 77
select a block 74
selected block - saving a 74
signalling errors via throwback 88
starting 71
tabs 84, 86
task windows 94
Text found dialogue box 77
text wrap 85
throwback 171
undoing changes 75, 78, 83
wildcarded expressions 80
window 71

string
definition 201

SWI
DDEUtils_GetCLSize 194
DDEUtils_Prefix 193
DDEUtils_SetCL 194
DDEUtils_SetCLSize 194
DDEUtils_ThrowbackEnd 197
DDEUtils_ThrowbackRegister 195
DDEUtils_ThrowbackStart 195
DDEUtils_ThrowbackUnRegister 195
Throwback_ReasonErrorIn 196
Throwback_ReasonProcessing 196
Throwback_Send 196
WimpInitialise 158
280

Index
SWIDDEUtils_GetCL 194
symbol references

to libraries 141
symbols

predefined linker symbols 147

T
targets

specifying to AMU 110
Templates file

CmdLine 162
Output 162
progInfo 161
query 162
save 163
SetUp 161
Summary 163
Window name 161
xfer_send 163

TextFile 73
Throwback

example session 88-90, 91
SWIs 195

throwback 14
protocol 195
SrcEdit 88

throwback see also DDEUtils module
tool output, specifying default 165
TOOLDETAILS 163
tools

defaults when invoking from Make 167
tools, interactive 14, 101

DDT 19
entering filenames 14
Make 57
SrcEdit 71

tools, non-interactive 14, 101
AMU 109
Application menu 102
DecAOF 113
Diff 117

entering filenames 14
file output 107
Find 121
LibFile 129
Link 137
ObjSize 151
Output windows 105

Summary 106
Text 105
toggling between 106

SetUp dialogue box 103
SetUp menu 104
Squeeze 153
starting 101

U
utility programs 146

V
variable names

setting watchpoints in DDT 28
version ID 206
via file

use in LibFile 130
use in Link 139

W
watchpoints

setting 28
WIMP

description file 158
frontend, adding to tools 158
invoking frontend for a tool 158
producing complete WIMP application 159
setting MAKE options 158

wimpslot
default 164
281

Index
size 159
word

definition 201
work directory 15
writing an application description 163
282

#

Reader’s Comment Form
Desktop Tools, Issue 1

0484,230

We would greatly appreciate your comments about this Manual, which will be taken into account for the next
issue:

How would you classify your experience with computers?

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

ProgrammerUsed computers before Experienced User Experienced Programmer

Cut out (or photocopy) and post to: Your name and address:
This information will only be used to get in touch with you in case we wish to explore your
comments further
Dept RC, Technical Publications
Acorn Computers Limited
Acorn House, Vision Park
Histon, Cambridge CB4 4AE
England

	Desktop Tools
	AMR draft

	Contents
	Contents�iii
	Introduction�1
	Part 1 - Getting started�5
	Installing Acorn C/C++�7
	Working with desktop tools�13

	Part 2 - Interactive tools�17
	Desktop debugging tool�19
	Make�57
	SrcEdit�71

	Part 3 - Non-interactive tools�99
	General features�101
	AMU�109
	DecAOF�113
	Diff�117
	Find�121
	LibFile�129
	Link�137
	ObjSize�151
	Squeeze�153
	Adding your own desktop tools�157

	Appendices�173
	Makefile syntax�175
	FrontEnd protocols�187
	DDEUtils�193
	SrcEdit file formats�199
	Code file formats�201
	ARM procedure call standard�249
	Index�273

	1 Introduction
	About this manual
	Part 1– Getting started
	Part 2 – Interactive tools
	Part 3 – Non-interactive tools
	Part 4 – Appendices

	Conventions used
	Part 1 - Getting started

	2 Installing Acorn C/C++
	Hardware requirement
	The Install application
	Running the Installer application
	1 Insert Disc 1 (labelled Installation Disc) in your drive and click Select on the drive icon to ...
	2 Double-click on !Installer in the resulting directory display.
	Demonstration program
	AcornC_C++ directory structure

	Environment variables and Acorn C/C++
	Run$Path
	DDE$Path
	C$Path

	3 Working with desktop tools
	Desktop tools
	Interactive and non-interactive tools
	Entering filenames

	Working styles
	Where to go from here
	Part 2 - Interactive tools

	4 Desktop debugging tool
	Overview
	Topics covered in this chapter

	About debuggers
	Preparing your program
	Compiling
	Linking

	Starting a debugging session
	Specifying program objects
	Procedure names
	Variable names
	Expressions
	Addresses & low-level expressions
	Examples:

	Execution control
	Continue
	Single step
	Call
	Return
	Breakpoint
	Watchpoint
	Trace
	Execution
	Breakpoints
	Watchpoints
	Procedures
	Event breaks
	SWI breaks

	Program examination and modification
	Display
	Source
	Expression
	Arguments
	Locals
	Backtrace
	Symbols
	Disassembly
	Memory
	Registers
	FP Registers

	Change
	Variable
	Register
	Memory contents

	Options and other commands
	Source-level debugging
	Machine-level debugging
	Memory protection
	Source line numbers
	Stop at entry
	RISC�OS bindings / Arthur bindings
	Command line
	Base
	Source tree
	Log
	Find
	Word or Byte
	String

	*Commands
	Help
	Quit

	An example debugging session
	The debugging session
	1 Compile and link the program using !Make with the Makefile provided in the !Sort directory.
	2 Double click on the !Sort application directory. The Sort tool icon will appear on the icon bar.
	3 Drag the example input file infile on to the Sort tool icon.
	4 Quit the Sort tool.
	5 Construct a debug version of Sort with Make. To do this, first open the Make project dialogue b...
	6 Start the debugger if you haven’t started it already and drag the !Sort application directory o...
	7 Drag the sample input file infile on to the Sort icon on the icon bar. The debugger’s Context a...
	8 Set a breakpoint on procedure sortstrings:
	9 Choose the Continue option from the debugger’s menu. The debugger will stop with the following ...
	10 Choose Continue from the main menu again.
	11 Choose Display on the debugger’s menu (or use the short cut Ctrl-D) and click on the Arguments...
	12 Enter the array element as it would appear on the left hand side of an assignment in C in the ...
	13 Quit the debugging session and drag the sample input file infile to the Sort icon to start a n...
	14 Now follow the instructions in step 8 to set the breakpoint at function sortfile instead of fu...
	15 Scroll the Source window up until the initialisation loop comes into view.
	16 Enter 84 in the Breakpoint dialogue box and click on at Line.
	17 Now choose Continue from the main menu.
	18 Enter cp in the Watchpoint dialogue box and click on on Variable.
	19 Choose Continue again. The debugger will stop with the message:
	20 Choose Continue again. The debugger will respond with:
	21 Quit the debugger and the Sort tool.
	22 Edit the file c.sort and change line 87 to read:
	23 Recompile c.sort using the Make utility.
	24 Double click on the !Sort application directory and drag the file infile to the Sort tool icon...
	25 Quit the Sort tool frontend.
	26 Drag infile to the Sort tool icon.
	27 Set a breakpoint on function sortstrings and choose Continue.
	28 Choose Continue again, and the debugger will stop at the start of sortstrings.
	29 Display the individual elements of a by entering a[0] etc., in the Display dialogue box and ch...
	30 Scroll the source display to find the line number; it should be line 39. Enter 39 in the Break...
	31 Enter j in the Display dialogue box and choose Expression; then do the same for h. The debugge...
	32 Enter a[1] in the Display dialogue box and choose Expression. The debugger should display:
	33 Add the following line at the start of the function after line 29:
	34 Compile the program, this time disabling the Debug option of Link using Make (see step 5), and...

	5 Make
	Invoking Make
	Using Make
	Projects
	Creating new projects
	Maintaining projects
	Opening a project
	Adding and removing members
	Listing members
	Touching members
	Multiple targets
	Setting tool options
	Removing projects

	Creating a final target for a project
	Saving a project without Making it
	Setting Make main options
	Text-editing Makefiles
	Using conventional Makefiles

	Makefile format
	Programmer interface
	Registering command-line tools with Make
	Message-passing interface for setting tool options
	1 Acknowledge the WIMP message. You must also store the taskhandle of Make.
	2 Display a dialogue box to allow the user of your application to set options appropriately.
	3 When the user has chosen the options, send back a WIMP message to Make, with the following format:

	6 SrcEdit
	Starting SrcEdit
	Typing in text
	Inserting and deleting text

	SrcEdit menus
	The Misc menu
	Saving text – the Save menu
	1 Click Menu over the SrcEdit window, and move to the Save submenu. A dialogue box appears, conta...
	2 If the file has not been saved before, SrcEdit offers you a default filename of ‘TextFile’. If ...
	3 Place the pointer on the icon in the box and drag the icon into the directory display where you...

	Manipulating blocks of text – the Select menu
	1 Try to load file Selection.
	2 If (1) fails try to load file:
	3 Try to load file DirectoryPath.Selection.
	4 If (3) fails try the comma-separated list of directories entered by the user from the Search Pa...
	5 If (3) and (4) fail, try the comma-separated list of directories which are registered for the c...

	The Edit menu
	Searching for a string of characters
	Replacing a string of characters with a new string
	Using keyboard short-cuts
	Other useful facilities
	Magic characters and their meanings
	Wildcarded expressions and their meanings
	Other options on the Edit menu:

	The Display menu

	Printing a SrcEdit file
	Laying out tables – the Tab key
	Regular columns
	Irregular columns

	Reading in text from another file
	Bracket Matching
	Throwback
	C example throwback session
	Assembler example throwback session
	C++ example throwback session

	Saving Options
	Setting options in a SrcEdit window

	The SrcEdit icon bar menu
	SrcEdit task windows
	Some guidelines and suggestions for using task windows
	Keystroke equivalents
	When editing
	Keystroke equivalents in the Select menu
	Keystroke equivalents in the Edit menu
	Keystroke equivalents in the Find menu
	Keystroke File options
	Part 3 - Non-interactive tools

	7 General features
	Interface
	The Application menu
	The Setup box
	The SetUp menu

	Output
	The Text window
	The Summary window
	Toggling between the Text and Summary windows
	Processed file output from filter tools

	8 AMU
	Starting AMU
	The Application menu
	Example output
	Command line interface
	Options

	9 DecAOF
	The SetUp dialogue box
	SetUp options
	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options

	10 Diff
	The SetUp dialogue box
	SetUp options
	The SetUp menu

	The Application Menu
	Example output
	Example 1
	Example 2

	Command line interface
	Options

	11 Find
	The SetUp dialogue box
	SetUp options
	Pattern wildcards
	File wildcards

	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options
	Pattern
	Filepattern

	12 LibFile
	The SetUp dialogue box
	The SetUp options
	The SetUp menu

	Output
	1 Any directories in the File List to be archived will be recursively archived (i.e. all files in...
	2 When extracting files, LibFile places absolute filenames from the libraries index in their corr...
	3 When creating libraries for distribution purposes, you should not use absolute filenames in the...
	4 When creating libraries for backup purposes, you can use absolute filenames, since you will alw...
	5 When creating a library, LibFile builds the library in memory. This means that you cannot creat...
	6 When the Symbol table option is selected, LibFile always updates the external symbol table rega...
	7 If the Symbol table option is not selected, LibFile deletes the external symbol table when used...
	8 Convergence testing is a testing method whereby a binary file (such as an object library) is re...
	9 Wildcard matching, when applied to library members (when using Extract or Delete) applies the w...

	Command line interface
	Options
	1 Multiple options may be specified in a single options argument. For example, -clso is equivalen...
	2 Most of the above options should be familiar from the description of the desktop interface. One...
	3 The -q option is used by the desktop interface (since the desktop has no notion of a current wo...
	4 For compatibility with previous versions of LibFile, specifying -c with -o with a null file lis...

	Examples
	Assembler example
	1 Double click on the !Link application to load it.
	2 Assemble s.ATestPrLib to o.ATestPrLib with ObjAsm.
	3 Link o.ATestPrLib with the finished PrintLib library to produce an executable AIF image file.

	13 Link
	The SetUp dialogue box
	The SetUp menu

	Output
	Possible errors during a link stage
	Libraries
	Generating overlaid programs
	Overlay description files
	X-Ref option
	Link map option
	Linking with the overlay manager

	Relocatable AIF images
	Utilities

	Relocatable modules
	Predefined linker symbols
	Command line interface
	Options

	14 ObjSize
	The SetUp dialogue box
	The SetUp menu

	The Application menu
	Example output
	Command line interface

	15 Squeeze
	The SetUp dialogue box
	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options

	16 Adding your own desktop tools
	The FrontEnd module
	Overview
	*FrontEnd_Start
	*FrontEnd_SetUp
	Example

	Producing a complete Wimp application
	!Run, !Boot and !SetUp files
	!Sprites file
	Template files
	Writing an application description
	TOOLDETAILS section
	METAOPTIONS section
	FILEOUTPUT section
	DBOX section
	1 those that map directly onto command line strings
	2 those that increase or decrease the numeric value of another icon
	3 those that cause a string to be inserted in a writable icon
	4 those that extend and contract the dialogue box.

	MENU section
	DESELECTIONS section
	EXCLUSIONS section
	MAKE_EXCLUSIONS section
	ORDER section
	1 the dialogue box icons in the order given in the DBOX section
	2 the menu entries in the order given in the MENU section
	3 the output option if appropriate.

	MAKE_ORDER section

	Messages files
	Providing interactive help
	!Choices file

	The DDEUtils module
	SrcEdit
	Resource files

	Make
	Appendices

	Appendix�A: Makefile syntax
	Make and AMU
	Command execution

	Makefile basics
	File name truncation
	Macros as targets

	Makefile structure
	Advanced features
	File naming
	VPATH
	Rule patterns, .SUFFIXES, $@, $*, $< and $?
	Use of ::

	Prefix$Dir

	Makefiles constructed by Make
	Miscellaneous features

	Appendix�B: FrontEnd protocols
	Star Commands
	EBNF Grammar of Description Format
	WIMP Message returned after a *FrontEnd_SetUp

	Appendix�C: DDEUtils
	Filename prefixing SWIs
	Filename prefixing *Commands
	Long command line SWIs
	Throwback SWIs
	Throwback WIMP messages

	Appendix�D: SrcEdit file formats
	Language File Format
	Help File Format

	Appendix�E: Code file formats
	Terminology
	Byte Sex or Endian-ness
	Alignment
	Undefined fields
	AOF
	Chunk file format
	Object file format
	Format of the AOF header chunk
	Object file type
	Version ID
	Number of areas
	Number of symbols
	Entry address area/ entry address offset

	Format of area headers
	Area name
	Area size
	Number of relocations

	Attributes and Alignment
	Bit 8
	Bit 9
	Bits 10 and 11
	Bit 12
	Bit 13
	Bit 14
	Bit 15
	Bit 16
	Bit 17
	Bit 18
	Bit 19
	Bit 20
	Bit 21
	Bits 22-23
	Bits 24-27
	Bits 28-31

	Area Attributes Summary
	Format of the areas chunk
	Relocation directives
	Offset
	SID (Subject Identification)
	FT (Field Type)
	II (Instruction Instruction)
	R (relocation type)
	Bits 29-31

	Format of the symbol table chunk
	Name
	Value
	Area Name

	Symbol Attributes
	Bits 1 and 0
	Bit 2
	Bit 3
	Bit 4
	Bit 5
	Bit 6
	Bit 7
	Bit 8-11
	Bit 12-31

	Symbol Attribute Summary
	String table chunk (OBJ_STRT)
	Identification chunk (OBJ_IDFN)

	ALF
	Library file format
	LIB_DIRY
	ChunkIndex
	EntryLength
	DataLength
	Data
	Time Stamps
	LIB_TIME
	LIB_VSRN
	LIB_DATA

	Object Code Libraries
	OFL_SYMT
	OFL_TIME

	AIF
	Properties of AIF
	Executable AIF

	The Layout of AIF
	AIF Header Layout
	Notes

	Zero-Initialisation Code
	Self-Move and Self-Relocation Code

	ASD
	Order of Debugging Data
	Endian-ness and the Encoding of Debugging Data
	Representation of Data Types
	Representation of Source File Positions
	Debugging Data Items in Detail
	The Code and Length Field
	Text Names in Items
	Offsets in File and Addresses in Memory
	Section Items
	Procedure Items
	Label Items
	Endproc Items
	Variable Items
	Type Items
	Struct Items
	Array Items
	Subrange Items
	Set Items
	Enumeration Items
	Function Declaration Items
	Begin and End Naming Scope Items
	Fileinfo Items

	Appendix�F: ARM procedure call standard
	The purpose of APCS
	Design criteria

	The ARM Procedure Call Standard
	Register names
	General registers
	Floating point registers

	The Stack
	The stack backtrace data structure
	Function invocations and backtrace structures
	Control arrival
	Data representation and argument passing
	Control return

	APCS variants
	32-bit PC vs 26-bit PC
	Implicit vs explicit stack-limit checking
	Floating-point arguments in floating-point registers
	Reentrant vs non-reentrant code
	APCS-2 compatibility

	C Language calling conventions
	Argument representation
	Argument list marshalling
	Non-simple value return
	Function entry
	Function entry - establishing the static base
	Function entry - creating the stack backtrace structure
	Function entry - saving and restoring floating point registers
	Function entry - checking for stack limit violations
	Stack limit checking - small, fixed frames
	Stack limit checking - large, fixed frames
	Stack limit checking - vari-sized frames
	Function exit

	Some examples
	The APCS in non-user ARM modes
	Aborts and pre-ARM6-based ARMs

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

