Acorn C/C++
AMR draft (Version 10.06)

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Copyright © 1999 Acorn Computers Limited. All rights reserved.
Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

The product described in this manual is not intended for use as a critical component in
life support devices or any system in which failure could be expected to result in
personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product and its
use (including the information and particulars in this manual) are given by Acorn
Computers Limited in good faith. However, Acorn Computers Limited cannot accept
any liability for any loss or damage arising from the use of any information or
particulars in this manual.

If you have any comments on this manual, please complete the form at the back of the
manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your supplier
is available to help resolve any queries you might have.

ACORN, the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd.

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN 1 85250 166 9

Part number 0484,232

Issue 1, October 1999

Introduction 1

Installation of Acorn Desktop C 1

The C compiler 2

The C++ trandator 2

This user guide 2

Useful references 6

Part 1 — Using the C tools 9
CCand C++ 11

The underlying programs 11
Getting started with CC and C++ 12
Libraries 14

File naming and placing conventions 15
Include file searching 18

The SetUp dialogue box 22

The SetUp menu 24

Output messages 40

The icon bar menu 41

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Command lines 42
Worked examples 46
CMHG 51

Starting CMHG 52
Theicon bar menu 53
Example output 53
Command line interface 54
ToANSI 55

ToANSI C trandation 56
Starting TOANSI 57
Theicon bar menu 58
Example output 58
Command line interface 59
ToPCC 61

ToPCC C trandation 62
Starting ToPCC 63
Theicon bar menu 64

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Example output 65

Command line interface 66

Part 2 — C language issues 67
C implementation details 69
Implementation details 70
Identifiers 70

Data elements 70

Structured data types 73
Pointers 74

Arithmetic operations 74
Expression evaluation 75
Implementation limits 76
Standard implementation definition 77
Translation (A.6.3.1) 77
Environment (A.6.3.2) 77
Identifiers (A.6.3.3) 78
Characters (A.6.3.4) 78

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Integers (A.6.3.5) 80

Floating point (A.6.3.6) 80

Arrays and pointers (A.6.3.7) 80
Registers (A.6.3.8) 81

Structures, unions, enumerations and bitfields (A.6.3.9) 81
Qualifiers (A.6.3.10) 82

Declarators (A.6.3.11) 82

Statements (A.6.3.12) 82

Preprocessing directives (A.6.3.13) 82
Library functions (A.6.3.14) 82
Extrafeatures 86

#pragma directives 86

Specia function declaration keywords 89
Special variable declaration keywords 90
The C library 91

assert.h 92

ctype.h 93

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

errno.h 94

float.h 95

limits.h 96

locale.h 97

math.h 98

setjmp.h 99

signal.h 100

stdarg.h 102

stddef.h 104

stdio.h 105

stdlib.h 119

string.h 129

time.h 135

The ANSI library 139
Extrafunctions 140
The Event library 141
Introduction 141

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Registering and deregistering event handlers 141
Registering and deregistering message handlers 142
Quitting applications 142

Programmer interface 142

Initialisation 143

Polling 144

Registering handlers 145

Handlers 147

Example 148

The Wimp library 151

Programmer interface 152

The Toolbox library 165

The Render library 167

Part 3 — C++ language issues 169

C++ implementation details 171

Translation Limits 171

Identifiers (2.3) 172

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Character Constants (2.5.2) 172
Floating Constants (2.5.3) 172
String Literals (2.5.4) 173

Start and Termination (3.4) 173
Fundamental Types (3.6.1) 173
Integral Conversions (4.2) 174
Expressions (5) 174

Function Call (5.2.2) 174

Explicit Type Conversion (5.4) 175
Multiplicative Operators (5.6) 175
Shift Operators (5.8) 175
Relational Operators (5.9) 175
Storage Class Specifiers (7.1.1) 176
Type Specifiers (7.1.6) 176

Asm Declarations (7.3) 176
Linkage Specifications (7.4) 176
ClassMembers (9.2) 177

Replace this page with a

monochrome copy of the
front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Bitfields (9.6) 177

Multiple Base Classes (10.1) 177
Argument Matching (13.2) 177
Exception Handling (experimental) (15) 178
Predefined Names (16.10) 178
The Streams library 179
Introduction 180

filebuf 184

fstream 188

ios 192

istream 202

manipulators 209

ostream 213

stdiobuf 219

streambuf — protected 220
streambuf — public 228
strstream 233

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

strstreambuf 236

The Complex Math library 239
Introduction 240

cartesian/polar 241

complex_error 243

exp, log, pow, sqrt 246

complex operators 243

cplxtrig 251

Part 4 — Developing software for RISC OS 253
Portability 255

General portability considerations 255
ANSI C vs K&R C 258

The ToPCC and ToANSI tools 261
pcc compatibility mode 261
Environmental aspects 265

Assembly language interface 267
Register names 267

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Register usage 268

Control arrival 269

Passing arguments 269

Return link 269

Structure results 270

Storage of variables 270

Function workspace 271

Examples 271

How to write relocatable modulesin C 273
Getting started 273

Constraints on modules written in C 274
Overview of modules written in C 274
Functional components of modules writtenin C 274
Overlays 289

Paging vs overlays 289

When to use overlays 290

Part 5 — Appendixes 293

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Changes to the C compiler 295

C errors and warnings 297

Interpreting CC errors and warnings 297
Warnings 298

Non-serious errors 306

Serious errors 316

Fatal errors 330

System errors 331

C++ errors and warnings 333

‘Not implemented’ messages 333

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

1 Introduction

Acorn C/C++ isadevelopment environment for producing RISC OS desktop
applications and rel ocatable modules written in ANSI C and/or in C++. It consists
of anumber of programming toolswhich are RISC OS desktop applications. Thesetools
interact in ways designed to help your productivity, forming an extendable environment
integrated by the RISC OS desktop. Acorn C/C++ may be used with Acorn Assembler
(apart of this product) to provide an environment for mixed C, C++ and assembler
development.

Acorn C/C++ includes tools to:

I edit program source and other text files

I search and examinetext files

I convert C source and header text between ANSI and UNIX dialects
I examine some binary files

I compile and link C programs

I compile and link C++ programs

I construct relocatable modules entirely from C or C++

I compile and construct programs under the control of makefiles, these being set up
from a simple desktop interface

I sgueeze finished program images to occupy less disk space

I construct linkable libraries

I debug RISC OS desktop applications interactively

I design RISC OS desktop interfaces and test their functionality
| usethe Toolbox to interact with those interfaces.

Most of the toolsin this product are also of general use for constructing applicationsin
other programming languages, such as ARM Assembler. These non-language-specific
tools are described in the accompanying Desktop Tools guide.

Installation of Acorn Desktop C

Installation of Acorn C/C++ is described in the chapter Installing Acorn C/C++ on
page 7 of the accompanying Desktop Tools guide.

The C compiler

The C compiler

The Acorn C compiler for RISC OS (the tool CC supplied as a part of this product) isa
full implementation of C as defined by the 1989 ANSI language standard. To obtain this
standard document, see the section Useful references on page 6. It istested with the
Plum-Hall C Validation Suite version 2.00, and passes all sections, except for failing to
produce two required diagnostic messages, as described in the release note
accompanying this user guide.

The C++ translator

The C++ trandator for RISC OS (the tool C++ supplied as a part of this product) isa
port of Release 3.0 of AT&T’s CFront product.

This user guide

This guide is a reference manual for the C tools CC, C++, CMHG, ToANSI and ToPCC
working as part of the development environment of Acorn C/C++. These are the only
tools in this product which are not used for programming in other languages, and already
described in the accompanyiBgsktop Tools guide. This manual also documents the C
and C++ library support provided and other aspects that are particular to this C product:

I special features of this implementation of the C and C++ languages

I operating the Acorn C/C++ tools specific to the C and C++ languages

I developing programs for the RISC OS environment:

Portability issues, including the portable C compiler (pcc) facility
Desktop applications

Relocatable modules

Overlays

Calling other programs and languages from C.

This guide is not intended as an introduction to C or C++, and does not teach C or C++
programming; nor is it a reference manual for the ANSI C standard. Both these needs are
addressed by publications listed in the sedtieeful references on page 6.

Introduction

This guide is organised into parts:

Part 1 — Using the C tools

Part 2 — C language issues

Part 3 — C++ language issues

Part 4 — Developing software for RISC OS
Part 5 — Appendixes

Part 1 — Using the C tools

This part of the guide describes the operation of the programming tools specific to C.
Thefirst chapter describes the interaction of the C toolswith the rest of the development
environment; each of the remaining chaptersis devoted to an individual tool. Examples
in the text and on disc are used to illustrate several points.

The chapters are:
I CCandC++
I CMHG
I ToANS
I ToPCC

Part 2 — C language issues

This coversissues to do with the C programming language itself, in particular those
parts of the ANSI standard that are necessarily machine- or operating system-specific.

The chapters are:

I Cimplementation details
How Acorn C implements those aspects of the language which ANSI leaves to the
discretion of the implementor; and how Acorn C behaves in those areas covered by
Appendix A.6 of the draft standard (which lists those aspects which the standard
requires each implementation to define).

This user guide

The Clibrary

This chapter works through the headers of the C library, (assert . htoti ne. h),
outlining the contents of each one:

I function prototypes
I macro, type and structure definitions
I constant declarations.

The ANS library

This chapter details the ANSI library, a superset of the C library that provides
additional features useful in debugging and profiling your software.

The Event library

This chapter details the Event library, which provides calls for you to more easily
dispatch Toolbox and Wimp events within Toolbox based applications.

The Wmp library

This chapter documents the Wimp library, which provides a set of C veneers onto
the Wimp (or Window Manager) SWI interface.

The Toolbox library

This chapter documents the Toolbox library, which provides a set of C veneers onto
the Toolbox SWis.

The Render library

This chapter documents the Render library, which provides a set of C veneers onto
the DrawFile SWIs, used to render Draw files.

Part 3 — C++ language issues

This coversissues to do with the C++ programming language, such as details of its
implementation and of the libraries supplied with it.

C++ implementation details
This chapter describes implementation specific behaviour of Acorn C++.

The Sreams library

This chapter describes the C++ Streams library, giving a synopsis (including
prototypes) and a description of each available interface.

The Complex Math library

This chapter describesthe C++ Complex Math library, giving asynopsis (including
prototypes) and a description of each available interface.

Introduction

Part 4 — Developing software for RISC OS

This part of the Guide tells you how to write software in C for the RISC OS
environment. Examplesin the text and on disc are used to illustrate each type of program
development. It also includes achapter on portability to help with porting applicationsin
Cto and from RISC OS.

The chapters are:

| Portability
The chapter covers:
| portability considerationsin general
I the major differences between ANSI and ‘K&R' C
I using the pcc compatibility mode of the Acorn compiler
I standard headers and libraries
I environmental aspects of portability.
Assembly language interface
How to handle procedure entry and exit in assembly language, so that you can write
programs which interface correctly with the code produced by the C compiler.
How to write rel ocatable modulesin C
Relocatable modules — the building blocks of the RISC OS operating system — are
needed for device drivers and similar low-level software.
Overlays

This chapter explains how to write an application using overlays, with a worked
example as an illustration.

Part 5 — Appendixes
The appendixes are:

I Changes to the C compiler
Thisisthefifth release of the C compiler product for Acorn computers running the
RISC OS operating system. The appendix highlights all those features that are new
since the previous release (Acorn Desktop C).
C errors and warnings
M essages produced by the compiler, of varying degrees of severity.
C++ errors and warnings
M essages produced by the translator, of varying degrees of severity.

Useful references

Conventions used

Throughout this Guide, afixed-width font is used for text that the user should type, with
anitalic version representing classes of item that would be replaced in the command by
actual objects of the appropriate type. For example:

cc options filenanes

Thismeansthat you type cc exactly asshown, and replace opt i ons and fi | enanes
by specific examples.

Whereit is necessary to differentiate between text you type, and that output by the
computer, your input is shown in bol d, and the computer’s response ina nal
wei ght .

Useful references

C programming

Harbison, S P and Steele, G L, (1984 Reference Manual, (second edition).
Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-109802-0.

This is a very thorough reference guide to C, including a useful amount of
information on the ANSI C standard.

Since the Acorn C compiler is an ANSI compiler, this book is particularly relevant,
but you must get the second edition for coverage of the ANSI standard.

Kernighan, B W and Ritchie, D M, (1988he C Programming Language (second
edition). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362- 8.
This is the original C ‘bible’, updated to cover the essentials of ANSI C too.
Koenig, A, (1989)C Traps and Pitfalls, Addison-Wesley, Reading, Mass, USA.
ISBN 0-201-17928-8.

This book explains how to avoid the most common traps and pitfalls that ensnare
even the most experienced C programmers. It provides informative reading at all
levels.

Introduction

C++ Programming

I Stroustrup, B, (1991) The C++ Programming Language, (second edition).
Addison-Wesley, Reading, Mass, USA. ISBN 0-201-53992-6.
The standard book describing the C++ language, including a complete copy of the
Reference Manual .
Ellis, A and Stroustrup, B, (1990) The Annotated C++ Reference Manual.
Addison-Wesley, Reading, Mass, USA. ISBN 0-201-51459-1.

The original Reference Manual, used as an ANSI base document, with additional
annotations and commentary sections.

RISC OS

I TheUser Guide supplied with your computer, which describes how to use the RISC
OS operating system and the applications Edit, Paint and Draw.

I TheRISC OS 3 Programmer’s Reference Manual
I TheRISC OS 3 Style Guide

The ANSI C standard

The American National Standard for Information Systems — Programming Language C
is available with the reference number ANSI X3.159-1989 for £45.00 from:

British Standards Institution
Foreign Sales Department
Linford Wood

Milton Keynes

MK14 6LE

Members of the BSI can order copies by telephone; non-members should send a cheque
payable to BSI.

However, you should find the coverage of ANSI C in this manual and the books listed
above adequate for all but the most demanding requirements.

The ANSI C++ standard

At the time of going to press, the ANSI standard for C++ was not yet published — but it
is unlikely to deviate significantly fromhe Annotated C++ Reference Manual referred
to above.

Part 1 — Using the C tools

10

2 CC and C++ © on

is adesktop tool which provides an easy interface to the CC and Link programs
that Acorn C/C++ installs in your computer’s library. It constructs command lines
and passes them to these programs. Likewise,is a desktop tool that constructs
command lines for the CC, CFront and Link programs in the library.

Because these two desktop tools are so similar, and share the underlying CC and Link
programs, we describe them in the same chapter. Most of the rest of this chapter covers
the CC and C++ options, and gives some programming examples.

If you are new to RISC OS and the Acorn C/C++ product, read the whole of this chapter
before starting to use Acorn C/C++. If you are an experienced C or C++ programmer,
you will find this chapter essential for reference, and may choose to tackle the section
Worked examples on page 46 first.

The underlying programs

The CC compiler is a full implementation of ANSI C as described in the chapter
Introduction on page 1. It consists of a preprocessor and a code generator; it processes
text files containing the source and headers of programs into linkable object files.

The Link program combines these object files to produce executable image files.

CFront is a C++ translator; it is a port of Release 3.0 of AT&T’s CFront product. It
converts C++ source code to C source code.

The characteristics of CC as a language implementation are defirad bh—
C language issuem page 67. Similar information for C++isin Part 3 — C++ language
issueson page 169.

How the tools use them

The command line that the CC tool produces first calls CC to preprocess and compile
the source into object files; it then calls Link to link those object files.

The command line that the C++ tool producesfirst callsthe CC preprocessor in a special
C++ compatible mode; it then calls CFront to convert the resultant source filesto C; it
then calls CC to compile the C source into object files, again using a special C++
compatible mode; it finally calls Link to link those object files.

11

Getting started with CC and C++

A note about Make

The Make tool (see the chapter Make on page 57 of the Desktop Tools guide) can also

construct command lines for the underlying CC, CFront and Link programs. You'll find

it a better tool for managing large projects. However, much of what is in this chapter is
relevant, since Make both uses the same underlying programs, and sets options for those
programs with the CC and C++ tools’ user interfaces.

Getting started with CC and C++

12

To use the CC or C++ tool, first open theor nC_C++. Tool s directory display, then
double click on !CC or !C++ as required. (You cannot start CC or C++ by double
clicking on a file — the tools own no file type unlike, for example, Draw.)

The tool’s icon appears on the icon bar:

c Cs+
¥ G+

Clicking Select on this icon, or dragging a source file from a directory display to this
icon, brings up th&etUp dialogue box. To see this work, open the directory display for
Acor nC_C++. Exanpl es, and then drag eith€@Hel | o. c. Hel | oWto the CCicon,

or C++Hel | 0. c++. Hel | oWto the C++ icon. Th8etUp dialogue box appears:

[B & HE Es
Source EomiG_Ga++ Exsmpies,CHela ¢ o Source | G+ Exampies Ce+Hello. go+ Hisbioit|
Include | c | incluge | C |
Cptions Options
_ Commpile oniy _|Detag) Coempile only _|Debug
) Pregrocess onky ¥ Thiowhack ¥ Throwhack
Cancal | fum | Carcal | Aun |

As you have dragged a source file to bring up this dialogue box, its name appears in the
writable Sour ce icon; otherwise this icon would have appeared containing the name of
the last filename entered there, or be empty if there were none.

CC and C++

Clicking Menu on the SetUp dialogue box brings up the SetUp menu:

£L ighs

Comimand ling r- Commeand ling r-

D it path I D fault path Ik

Haap commants D=fing E

Lefne I Lindeting I

Lindsling E Apaambles

Do basg cpSons - Palicer] Lobes Cache

Profils + Libranas I-

A e FaaliuFas [

ol b il Suppress wamings
L Linnanas r- L Wi direchorny r-

Features k] L

SUpEsE WaAMINgs -

Suppress erroes B

LIP s

Emcas o bla P

Listing

Wk direciony 2

Cibers I

The SetUp dialogue box and menu specify the next compilation to be done. You start the
next job by clicking Select on the Run button on the dialogue box (or on the Command
line menu dialogue box). Clicking Select on the Cancel button removes the SetUp
dialogue box and clears any changes you have just made to the options settings, leaving
them back in the state they were in before you brought up the SetUp box. The options
last until you adjust them again or reload the tool; or you can save the options for future
use with an item from the main icon menu.

Ensure that the option settings are the defaults, as in the above pictures. Click on the

Run button to compile either Hel | oWexample with an integral link step. Save the
executable image file produced in the directory above that holding the source, naming it

Hel | oWthen double click Select on the file's icon to run it. The program runs, putting
aHel | o wor | d message in the standard RISC OS command line window:

[FanEih ey | Aeraris Cis b aagie LHwi Feioey [FenSEE Wy ¥ ol i Eorges. iblla Deiom |

Prlle Serud Brlle S nd

Fraus WFREL or siioh ssme e sewiisas Frass WALl er siieh sase e sesl inas

13

Libraries

Libraries

C libraries

There are severa libraries provided to support the C compiler:

I Thestubsfor the shared C library
This provides al the standard facilities of the language, as defined by the ANSI
standard document. Code using callsto the shared C library will be portableto other
environmentsif an ANSI compiler and library are available for that environment.
See the chapter The C library on page 91.

I The ANSI library
The ANSI library isastand-alone version of the shared C library that contains afew
extra functions useful in debugging and profiling your code. You should useit for
development only, using the shared C library in any final product. See the chapter
The ANS library on page 139.

I TheEvent library

The purpose of the ‘events’ library is to allow the client to more easily dispatch
Toolbox and Wimp events within Toolbox based applications. See the chipter
Event library on page 141.

I The Wimp library

This is a low-level library that provides veneers to the Wimp_... SWI calls; you
may use it to interface directly with the Window Manager module. See the chapter
The Wmp library on page 151, and tiRISC OS 3 Programmer’s Reference

Manual

I The Toolbox library

This library provides veneers onto the Toolbox SWIs; both the veneers and the
SWiIs are described in the accompanying User Interface Toolboguide.

C++ libraries

The C++ compiler produces output which uses the ANSI C library (by linking with the
stubs). A C++ program also needs to link with the C++ library which isheld in
AcornC. C++. |l i braries. c++lib.o.c++l i b. Thishas support functions such
asnewand del et e, and includes the streams and complex maths libraries.

14

CC and C++

File naming and placing conventions

This section explains the concept of awork directory, and describes the naming
conventions used to identify the different classes of file you will come across when
using Acorn C/C++.

Work directory

Both CC and C++ operate in awork directory. The work directory is where the tools

place all output files that you don’t explicitly place yourself by dragging fr@avaAs
dialogue box. This includes object files to be linked by an integral link step, assembly
language output and listing output. The work directory is also a place where some input
source and header files are looked for — see the next sections for more details.

If you're using Make, the work directory is simply the directory containingridiefile
controlling the job.

If you're using the CC or C++ tools, the work directory is formed from the directory
containing the source file, modified by the relative path name specified byate
directory option on the SetUp menu. The defalibrk directory SetUp menu value is
N

For example, when compiling the example ‘Hello world’ C program with the default
Work directory setting:

I The source is in the directoAcor nC_C++. Exanpl es. CHel | 0. ¢

I The work directory is thereforkcor nC_C++. Exanpl es. CHel | 0. c. *, i.e.
Acor nC_C++. Exanpl es. CHel | o.

A typical directory arrangement is:

Examples

IMyAPP

Makefile IRunlmage E

The resource files (such as 'Run and Res) normally found in an application directory are
not shown above. With directories arranged as above and default option settings, the
work directories for both the Make and the CC/C++ tools are the same, namely

Exanpl es. ! MyApp.

15

File naming and placing conventions

16

Filename conventions

The Acorn C/C++ system, in common with others, uses naming conventions to identify

the classes of file involved in the compilation and linking process. Many systems use
conventional suffixes for this. For example, the suffix . ¢ denotes C source files on

UNIX and MS-DOS systems. This convention clashes with Acorn’s use of the full-stop
character in pathnames. It is more natural under Acorn filing systems to use a prefix
convention, e.gc. f 00, wherec is the directory containing C source files, &ma is

the filename.

However, portability is an increasingly important issue. CC recognises the standard file
naming conventions and performs the appropriate transformations to construct valid
RISC OS pathnames. The following sections summarise the conventions for referring to
source, include, object and program files.

Rooted filenames

A filename is rooted if it is

I aRISC OS filename beginning with® ‘or an ‘& — for example:
$.library. h.baricon & h. myheader

I a UNIX filename beginning with d * — for example:
/library/baricon.h

I an MS-DOS filename beginning with & — for example:
\library\baricon.h

Rooted filenames are used by CC as absolute specifications of filenames, independent of
work directories, search paths, etc. Rooted UNIX or MS-DOS filenames are converted
into the Acorn syntax and prefix forms.

Sour cefiles

The CC and C++ tools specify the source files to be compiled on the command line they
construct and pass to the underlying programs. Dragging a source file to the CC SetUp
dialogue box specifies the file as an absolute rooted filename.

Make uses a makefile to specify the source files; their pathnames are normally given
relative to the work directory. C source files will be looked for in the subdirectofy

the work directory. To aid portability, a file specifiedfam. ¢ in a makefile will be
looked for in@ c. f oo, where@means the work directory. C++ source files are
similarly looked for in the subdirecton++.

Includefiles

The way in which the compiler searches for included files is dealt with in detail in the
sectioninclude file searching on page 18. Here we describe the issues of naming header
files and how to name them#t ncl ude lines in your C and C++ program source.

CC and C++

Include files are often headers for libraries, and are incorporated by issuing the
#i ncl ude directive — dealt with by the preprocessor — at the start of a source file. For
instance, in the Gel | oWexample:

#i ncl ude <stdi o. h>

By convention, header files are placed in subdiredtorhis convention is followed
here. You can use subdirectdryf the work directory for your own header files, which
can be incorporated with a source line like:

#i ncl ude "nyfile.h"

Note that both the example filenamstsdi 0. h andnyfi | e. h are in suffix form

rather than Acorn prefix form. This is because you can make use of Acorn C/C++'s
filename processing to interpret these, leaving program lines which do not need altering
to port them to machines expecting suffixes.

To facilitate the porting of code from UNIX and MS-DOS to RISC OS, UNIX-style and
MS-DOS-style filenames are translated to equivalent RISC OS-style filenames.

For example:
../include/defs.h is translated to Acinclude. h. defs
..\cls\hash. h is translated to N cls. h. hash
i ncl udes. h is translated to h. i ncl udes
but:
system defs is translated to system defs

In the same way, the lists of directory names given as arguments to the compiler’s
Include andDefault path SetUp options (see below) are translated to RISC OS format
before being used, in the rare event that this is necessary.

Object files

If you use the CC or C++ tool to compile a single file with the SetUp dialogue box
optionCompile only enabled, you use a stand&ale As dialogue box to save the
resultant object file.Otherwise the object files created by the compiler are instead stored
in theo subdirectory of the work directory. Thus the result of compiingi eve will

be found ino. si eve.

Program files

If you haven't enabled theéompile only option on the CC or C++ tool's SetUp menu,

the tool compiles sources to object files, and then links them with the C library stubs to
produce an executable program file. You may find it convenient to save this program file
in the work directory itself — there is no conventional suffix for these.

17

Include file searching

Compilation list files

If you enable the Listing option on the CC tool's SetUp menu, then for each compiled
source file the CC tool creates a compilation listing file ifl teebdirectory of the work
directory. Thus compiling. si eve with Listing enabled will by default result in the
listfile | . si eve being created.

The C++ tool does not havel asting option.

Assembly list files

If the CC or C++ tool's SetUp menu optidissembler is enabled, no object code is
generated. Instead, an assembly listing of the code is created. If only one assembly
listing file is produced, you save it from a stand8ade As dialogue box. If more than
one is produced these are placed in the subdirestofithe work directory. Thus
compilingc. si eve with Assembler enabled can result in the assembly language file
S. si eve being created.

Filename validity

The compiler does not check whether the filenames you give are acceptable —whether
they contain only valid characters and are of acceptable length — this is done by the filing
system.

Include file searching

The process of converting text C or C++ source to linkable object files of binary code

can be seen as a pipeline of several processes. The first stage is preprocessing the source.
It is at this stage that the text of header files is brought in at the posiiomof ude

directives in the source text.

The preprocessor — which is used by both the CC and C++ tools — héndidsude
directives of two forms:

#i ncl ude <fil enane>
or
#i ncl ude "fil enane"

You will normally include four types of header file:

I headers for the ANSI parts of the C library

I headers for the non-ANSI parts of the C library

I headers for the other libraries supplied with Acorn C/C++
I headers for your own include files.

18

CC and C++

A special feature of the Acorn C/C++ system isthat the standard ANSI headers are built
into the compiler, and are used by default. By writing the filename in the angle bracket
form, you indicate that the includefile is a system file, and thus ensure that the compiler
looks first in its built-in filing system. Of the common types of header above, only the
headers for the ANSI parts of the C library should be referred to as system filesin angle
brackets. Writing the filename in the double quote form indicates that the includefileis
auser file.

The headers for the non-ANSI parts of the main C librdegrnel , pragnas, SW s
andvar ar gs — are not built in to the compiler; nor are the headers for the other
libraries supplied with Acorn C/C++. However, by default the CC and C++ tools both
set thd ncludeicon on their SetUp dialogue box@o. This makes the preprocessor use
the value of th€$Pat h system variable to find the headers for all the libraries supplied
in Acor nC_C++. Li brari es.

You can include headers for other libraries by adding the parent bfdlvectory
holding them to thénclude writable icon on the tool'SetUp dialogue box. The easiest
way to do so is to drag the included directory’s icon from a directory display to the
writable field.

As mentioned before, you can use the subdired¢taf/the work directory for the last
common type of header file — your own header files, which you refer to as user files with
directives such as:

#i ncl ude "nyfile.h"

This is all you need to know for basic use of CC with largely default options. The rest of
this section provides a level of detail useful for reference or studying if you wish to use
CC in a non-standard way.

Reference section

The way in which the preprocessor looks for included files depends on three factors:
I whether the filename is rooted

I whether the filename in the #include directive is between angle brackeis
double quotes™

use of thdnclude andDefault path SetUp options (including the special filename

D mem.
If a filename is not rooted (as defined earlier) the preprocessor looks for it in a sequence
of directories called the search path.

Search path

The order of directories in the search path is as follows:

19

Include file searching

1 The compiler's own in-memory filing system.
This is only searched féh ncl ude <fi/ enane> directives when you have not
enabled the SetUp menwxfault path option.

2 Thecurrent place (see the sectioNested includes on page 20).
This is only searched féti ncl ude " fi/ enanme" directives.

3 Arguments to th&etUp dialogue box’d nclude option, if used.

As noted above, this is set@ by default, and so all the directories supplied in
Acor nC_C++. Li brari es will be searched.

4 The system search path:

I The path given as an argument to Brefault path SetUp menu option (see
below), if this is enabled; otherwise

I The value of the system varial8Li br oot , if this is set; otherwise
I $.dib.

Nested includes

Thecurrent place is the directory containing the source file (C or C++ source, or
#i ncl uded header) currently being processed by the compiler. Often, this will be the
work directory.

When a file is found relative to an element of the search path, the nhame of the directory
containing that file becomes the new current place. When the compiler has finished
processing that file it restores the old current place. So at any given instant, there is a
stack of current places corresponding to the stack of nested #includes.

For example, suppose the current plack isncl ude and the compiler is seeking the

#i ncl udedfile" sys. def s. h" (or"sys. h. def s","sys/ defs. h", etc). Now
suppose this is found as:

$. i ncl ude. sys. h. defs.

Then the new current place becorfie$ ncl ude. sys, and files#i ncl uded by
h. def s, whose names are not rooted, will be sought relati$e iacl ude. sys.

This is the search rule used by BSD UNIX systems. If you wish, you can disable the
stacking of current places using the SetUp menu optsatur es with the argumeni,

to get the search rule described originally by Kernighan and Ritchileei@

Programming Language. Then all non-rooted user includes are sought relative to the
directory containing the source file being compiled.

In all this, the penultimatec, . c++ and. h components of the path are omitted. These
are logically part of the filename — a filename extension — not logically part of the
directory structure. However, directory names other thant++, h, 0 ands are not so

20

CC and C++

recognised (as filename extensions) and are used ‘as is’. For example, the name
sys. new. def s is exactly that: it is not translatedsgs. def s. newand, if it is
found, the new part of the name does become part of the new current path.

Use of :mem

You can use the SetUp menu opt@efault path to provide your own system search
path, as mentioned in step 4 of the secBmmch path above. The preprocessor will then
use the argument you give to thefault path option as the system search path. You

will only require this feature if you use implementations of the C library other than those
provided with the Acorn C system.

Use of theDefault path option also prevents#i ncl ude <fil ename> directive

being first searched for in the in-memory filing system (see step 1 of the s&e=tioh

path above). It can be reinstated by using the pseudo-filenammas an argument to
theDefault path orInclude options. If: memis included in the search path in this way,

its position in the path is as specified — not necessarily first — so you can take complete
control over where the compiler looks #éirncl uded files.

Use of C$Libroot

C3$Li br oot is an environment variable that you can use to provide your own system
search path, as shown in step 4 of the se@sarch path above. It is not needed for
normal use of the compiler.

If CSLi br oot is set, and you have not used Beault path option, the preprocessor

will use the variable’s value as the system search path. By d€fultpr oot is not

set.

To set the value df$Li br oot to, for example} $. MyLi b", at the command line

type:

*Set CS$Li broot $. MyLib

This variable is also used by the Acorn C/C++ system as the library search path, if set.

With the example given, the compiler will now look for include file$.imyl i b. h,
and for libraries irs. myl i b. o.

21

The SetUp dialogue box

The SetUp dialogue box

Clicking Select on the tool’s icon bar icon or dragging a source file from a directory

display to this icon brings up the tool's SetUp dialogue box:

22

BE o EE Ei
Sourcs | Source |
Include | c incluge | C
Cpdione OptionE
_ Commpile oniy _|Detag) Coempile only _|Debug
) Pregrocess onky [+ Thicsack [Thrcsbesk
Carcal Aun Carcal Run

Source

This writable icon in the SetUp dialogue box contains the names of the source files to be
compiled.

When the SetUp box is obtained by clicking on the tool’s main icon, it comes up with
this icon containing its previous setting. You can thus repeat your previous compilation
by just clicking on thékun button.

If the SetUp box appears as a result of dragging a source file to the main icon, the
writable Source icon appears containing the new source file name.

When the SetUp box appears Bairce icon has input focus, and can be edited in the
normal RISC OS fashion. If you select a further source file in a directory display and
drag it to this writable icon, its name is added to a list of those already there.

If you drag pre-compiled or pre-assembled object files t&dece icon, they are
included in the set of object files linked together in an integral link step after the source
files themselves have been compiled to object files.

Include

This SetUp dialogue box icon adds specified directories to the list of places which are
searched fo#i ncl ude files. The directories in thenclude icon are searched in the

order in which they are given. The path should end with the name of a directory, with no
. h, which is added automatically.

The default setting dincludeis to C:. This makes the preprocessor search for headers
in the directories listed in the RISC OS environment vari@leat h, set by

Acor nC_C++. ! Set Pat hs. The directories listed are those that hold all the libraries
supplied with the product iacor nC_C++. Li brari es

CC and C++

For more details of how to use#i ncl ude lines and places searched for headers — both
before and after those in tHisclude list — see the sectidfile naming and placing
conventions on page 15.

Compile only

This option switches off or on the linking of object files. When enabled, the link step is
not performed, and the tools output object files. If you're only compiling one source file,
you drag the object file produced fronsave as dialogue box. Otherwise, multiple files
are saved in the subdirectory of the work directory.

If not enabled, both CC and C++ instead perform an integral link step, linking any object
files produced by compilation to any additional ones dragged t8otvese icon, and

library files, producing an executable program file. You control the saving of this from a
Save as dialogue box.

Compileonly is not enabled by default.

Preprocess only
This option is not available for the C++ tool.

If this option is enabled, only the preprocessor phase of the compiler is executed. The
output from the preprocessor is sent to the standard output window. The standard
non-interactive tool output window save facility is useful here to save this output to a
file or SrcEdit window. By default, comments are stripped from the output, but see the
SetUp menu optioK eep comments on page 26.

Preprocess only is not enabled by default.

Debug

This option switches on or off production of debugging tables. When enabled, extra
information is included in the resultant object files and image files which enables source
level debugging of the linked image by the DDT debugger. If this option is disabled, any
image file finally produced can only be debugged at machine level.

If you are only compiling the source to object files, you must remember to enable
debugging in the Link tool when you link them. If you don't, you'll lose the debugging
information produced by the CC and C++ tools.

Debug is not enabled by default.

23

The SetUp menu

Throwback

This option switches editor throwback on or off. When enabled, if the DDEUtils module
and SrcEdit are loaded, any compilation errors cause the editor to display an error
browser. Double clicking Select on an error linein this browser makes the editor display
the source file containing the error, with the offending line highlighted. See the chapter
SrcEdit on page 71 of the accompanying Desktop Tools guide for more details.

Throwback is on by default.

The SetUp menu

24

Clicking Menu on the SetUp dialogue box brings up the SetUp menu. The CC menu
contains some options not avail able on the C++ menu, but the two menus are otherwise
virtually identical:

£ L, 2
Commeand ling r- Comimand ling r-
Do favit path F Dwtavit path 2
Haap commants Dafing F
Lefne P Lindefing P
Lindaling - Agzaaimible
Doy opsons = i ke oo
Prodils Liranas I-
B aimbe Faaburas |2
Pt s i Suppress warmngs

L/ Liiranias T L Witk direciony F
Features F Ciers k.
Suipress wamngs -

Suppress errors B
LI, e

Ermoas o dla [
Liting

ok diee ooy r-
Cifwers F

The options on this menu are described in the following subsections.

The command line

CC and C++

The Command line item at the top of the SetUp menu leads to a small dialogue box in
which the command line equivalent of the current SetUp optionsis displayed:

[

o . e
S R
Cw'rn
netre
Cmoiig opacnn
=i
e
Mol oo

¥ L
* ey]

| CETITEE i

FaCEL iarey B Ape fo Sorgler il Biid
¥

| _um_]

i, g

Suppary s
R e
v
ey

1 Wik, clepcieay
e

T ———
frs o § Arp Sowp SoupDe sects0G

fun

By A
Linduls oo

= i

Fewirs L
ST R

R OO

Ok

Clicking on the Run action button in this dialogue box starts compilation in the same
way asthat in the main SetUp box. Pressing Return in the writable icon in this box has
the same effect. Before starting compilation from the command line box, you can edit
the command line textually, although this is not normally useful.

25

The SetUp menu

Controlling the preprocessor

Default path

The Default path entry on the SetUp menu leads to awritableicon in which you specify

acomma-separated list of directoriesto be searched for included files:

CC Cs
Camim g s Path Comimand lins =
Lfaul path Lesfault path
HaE ooamivesnty Dafing =
Lefne Lindetine B
Linicialineg A ainber
Dabisg opoons Piod ube ook
Profis + Liranes k
Asgamibler Feaburas [
Moduls code SuppesT wiFnings
Liwanias Work direciory [
Features Ciheers E

Suppress wamings
Suppress errors B

NI, o
Emoes o fke 2
Listing

Work drecicry =
Cibeers k.

This overrides the system include path with the list of directories. You can specify the
memory file system in the list by using the name : mem(in any case). An exampleis:

nyhdrs, :nmem $. proj . public. hdrs

For more details of the system include path and searching for includefilesin general, see
the section File naming and placing conventions on page 15.

Default path is not enabled by default.

K eep comments
This option is not available for the C++ tool.

When enabled in conjunction with Preprocess only, this option retains commentsin
preprocessor output.

K eep commentsis not enabled by defaullt.

26

Define

CC and C++

The Define option on the SetUp menu leads to awritable icon in which you can
predefine preprocessor macros:

co
o lns: =
Cefault path k.
Hgah Coamirsents
EIT—
Lindaling I-

Debug opions [
Frofils

Assambler
Polenc e o

L Libranas [
Feahures B

SupEpress warmings
Suppress ermors

LINIE e

Emces o file P
Listing

Work drecicry
Cibeers k.

%'

You can enter two forms of macro predefinition:

synrval ue

sym

El--l-
Comimand lrs L 2
D fault path F
CEI
Lincietine |
A ainier
Rlndule coce

L Liranias F
Faahures 2

SUpDress Warnings
L WDk dire oy [

Citeers [

These both define sy mas a preprocessor macro for the compilation. The two forms are
equivalent to the lines:

#def i ne sym val ue
#define sym1l

at the head of the sourcefile.

You can enter multiple symbols as a space-separated list.
Defineis not enabled by default.

27

The SetUp menu

Undefine

The Undefine option on the SetUp menu |eads to awritable icon in which you can
undefine preprocessor macros:

¥+ Lris

Comimandg lirss L 2 Copmumiaand lns: =
Default path k Casfault path =
HaaD (oamimsants Dafing L
Gutine] |
CETT— A
Dubug opsons | 2 Fnd ube ook
Profis W Libranes F
Asgamier Faahres 2
Moduls code Suppiress warnings

L Lisraniasg - L Wik direcioey -
Feabures k- Cibers [
SupDess wamings -
Suppress errors B
LAY, e
Emoces o file [2
Liabing

L/ Wk direciory.
Cibeers k.

You enter the name of the macro concerned, eg:

sym

Use of this option is then equivalent to the line:

#undef sym

at the head of the sourcefile.

You can enter multiple symbols as a space-separated list.
Undefineis not enabled by defaullt.

28

CC and C++

Controlling code generation

Debug options
This option is not available for the C++ tool.

The Debug options option on the SetUp menu leads to awritable item in which you
enter a set of modifier letters:

oG
Comumiand lns F

Cefault path k
Hpe {oeTarseing
Lefne b
Lingaling L Cphons.
Dnkiyg opions
Profis

Ansamivker

Pein e e
Liwanas I-
Features k
SUPDIESE WaMings |
Suppress emors |
LI e

Emoas o filn i
Listing

Wik dirgcioey 1
Cibesrs:

The modifier letters limit the debugging tables generated in response to enabling the
Debug option on the SetUp dialogue box. The letters recognised are:

f generate information on functions and top-level variables (outside functions)
only

I generate information only describing each linein thefile
% Generate information only describing all variables

You can use these lettersin any combination.

Debug optionsis not enabled by default.

29

The SetUp menu

Profile
This option is not available for the C++ tool.

Enabling this SetU menu option causes the compiler to generate code to count the
number of times each function is executed. Thisis called profiling.

The counts can be printed by calling _rmapst or e() to print themtost derr or by
caling_fmapstore("fil enane") to print them to a named file of your choice.
You should do this just before the final statement of your program.

Profiling is not supported by the shared C library, so you must link programs to be
profiled with ANSILib. If you wish, you can link with both Stubs and ANSILib, in
which case only the code for _mapst ore() and _f nmapst or e() will beincluded
from ANSILib; your program will continueto use the shared C library, and will be much
smaller than if linked with ANSILib alone.

The printed counts are listsof / i neno: count pairs. The/ i neno vaueisthe
number of alinein your source code, and the count valueisthe number of timesit was
executed. Note that / i neno is ambiguous: it may refer to alinein a#i ncl ude file.
However, thisis rare and usually causes no confusion.

Provided you didn’t compile your program with theatures option withf as an
argument, blocks of counts will be interspersed with function names. In the simple
cases, the output reduces to a list of line-pairs like:

function
l'i neno: count, where count is the nunmber of tines function was executed.

If you use the SetUp menu opti@thersto add the text px to the command line,
profiling of basic blocks within functions is performed in addition to profiling the
functions. If you do this, thei neno values within each function relate to the start of
each basic block. Sometimes, a statement (such as atatement) may generate more
than one basic block, so there can be two different counts for the same line.

Profiled programs run slowly. For example, when compiled Ridfile enabled,
Dhrystone 1.1 runs at abdu speed; when compiledpx it runs at only aboli¥s
speed.

There is no way, in this release of C, to relate execution counts to the proportion of time
spent in each section of code. Nor is there any tool for annotating a source listing with
profile counts. Future releases of C may address these issues.

Profile is not enabled by default.

30

CC and C++

Assembler

If this SetUp menu option is enabled, no object code is generated and, naturally, no
attempt is make to link it. If only one assembly listing fileis produced, you save it from
a standard save dialogue box. If more than oneis produced these are placed in the
subdirectory s of the work directory.

Assembler isnot enabled by default.

M odule code

This SetUp menu option must be enabled when compiling code for linking into a

RISC OS relocatable module, otherwise it should not be enabled. When enabled, codeis
produced which allows the module’s static data to be separated from its code, hence be
multiply instantiated.

Module code is not enabled by default.

Controlling the linker

Libraries

TheLibraries option on the SetUp menu leads to a writable icon in which you specify a
comma-separated list of filenames of libraries to be used in an integral link step:

— e

- o

...... . A mem -]
e e I IIIIIIIII
e -

The libraries specified with this option are used instead of the standard one
(AcornC_C++. Li braries. clib. o. Stubs), notin addition to it.

Librariesis not enabled by default.

31

The SetUp menu

Using the Features menu option

Features

The Features option on the SetUp menu leadsto a small writableicon in which you can
specify additional compiler features with single modifier letters:

[s
Command lins I Command lins P
Default path L Cafault path L
HBE (oeTavnty Dafing F
Lefne F Lindetine I
Linaline I Agaamiper
Dsibisg opoons I Piod ube ook
Profis + Libranas I
Angamier
[T e SUpEeSE Wwanings
Libranias | Fealwmes WDk direcicey r
. Qere |

SURDTeES WaFInge 1
Suppress errors
LINIX e

Emoes o file P
Listing

Wk direcioay 1
Citesrs L

Thisentry controlsavariety of compiler features, including certain checks on your code
more rigorous than usual. At least one of the following modifier letters must be entered
if Features are enabled:

a Check for certain types of data flow anomalies. The compiler performs data
flow analysis as part of code generation. The checks enabled by this option can
sometimes indicate when an automatic variable has been used before it has
been assigned avalue.

c Enable the Limited pcc option. This allows characters after #el se and
#endi f preprocessor directives (treated as comments), and explicit casts of
integers to function as pointers (forbidden by ANSI). These features are often
required in order to use pcc-style include filesin ANSI mode.

e Check that external names used within the file are still unique when reduced to
six case-insensitive characters. Some linkers only provide six significant
charactersin their symbol tables. This can cause problems with clashes if a
system uses two names such as get Expr 1 and get Expr 2, which are only
unique in the eighth character. The check can only be made within one
compilation unit (source file) so cannot catch all such problems. Acorn C and
C++ alow external names of up to 256 characters, so thisis a portability aid.

32

CC and C++

Do not embed function names in the code area. The compiler does thisto make
the output produced by the stack backtrace function (which isthe default signal
handler) and _nmapst or e() more readable. Removing the names from the
compiler makes the code dightly smaller (typically 5%) at the expense of less
meaningful backtracesand _napst or e() outputs.

Check that all external objects are declared in some included header file, and
that all static objects are used within the compilation unit in which they are
defined. These checks support good modular programming practices.

In the listing file (see the Listing option) include the lines from any files
included with directives of the form:

#i nclude "file"

As above, but for filesincluded by lines of the form:
#i nclude <file>

Use K&R search rules for nested #i ncl ude directives (the ‘current place’ is
defined by the original source file and is not stacked; see the sEdton
naming and placing conventions on page 15 for details).

Give a warning for preprocessor symbols that are defined but not used during
the compilation.

Embed function names in the code area {stsature). This improves the
readability of the output produced by the stack backtrace run time support
function and the mapst or e() function (sed’rofile on page 30). However,

it does increase the size of the code area slightly (around 5%). In general it is
not useful to specify thie feature withProfile (i.e.- p) .

Report on explicit casts of integers into pointers, eg:

char *cp = (char *) anl nteger;

Implicit casts are reported anyway, unless suppressed Sy fipeess
war nings option.

By default, the source text as ‘seen’ by the compiler after preprocessing
(expansion) is listed. If this feature is specified then the unexpanded source
text, as written by the user, is listed. Consider the line

p = NULL,

By default, this will be listed gs=(0) ; . With theu feature specified, it will

be listed ap=NULL; .

Report on all unused declarations, including those from standard headers.

Allow string literals to be writable, as expected by some UNIX code, by
allocating them in the program’s data area rather than the notionally read-only
code area.

33

The SetUp menu

34

When writing high-quality production software, you are encouraged to use at least the
f ah Features optionsin the later stages of program development (the extra diagnostics
produced can be annoying in the earlier stages).

Featuresis not enabled by default.

Handling warnings and errors

Suppress warnings
The Suppress war nings option on the SetUp menu prevents warnings from appearing.
For the C++ tool, all warnings are suppressed.

For the CC tool, this menu option leads to awritableicon in which you can enter a set of
modifier letters:

CC Ces
Command lins I Comimand ling r-
Default path F D fauit path F.
H g (DeTarserts Drififig P
Lfine F Lindeting P
Lnaling I By simibi
Dobug cpions P ule code
Profis « Libianas I
Angamier Fealurns [
Minduls oode
LEranas F Wik dirgciony L5
Fealures L Disakia Cihess 2
 Supgiress warnings | E
Suppress errors
LINIX e
Emoes o file P
Listing
Wk direcicey 1
Citesrs L

The modifier letters specify various kinds of warning message to be suppressed by CC.
Usually the compiler is very free with its warnings, as this tends to indicate potential
portability or other problems. However, too many such messages can be anuisancein
the early stages of porting a program from old-style C, so you can disable them.

The modifier letters for CC are:

a GivenoUse of = in a condition context warning. Thisisgiven
when the compiler encounters statementssuch asi f (a=b) {... whereit
is quite possible that == was intended.

CC and C++

Give no Deprecated declaration foo() — give arg types

warning. Use of old-style function declarationsisdeprecated in ANSI C, andin
afuture version of the standard this feature may be removed. However, it is
useful sometimes to suppress this warning when porting old code.

Giveno Inventing "externintfoo()" message. Thismay be useful
when compiling old-style C asiif it were ANSI C.

Give no Implicit narrowing cast warning. Thiswarning isissued
when the compiler detects an assignment of an expression to an object of
narrower width (eg long to int, float to int). This can cause problems with loss
of precision for certain values.

Give no non-ANSI #include <...> warning. ANSI require that
#include <...> should only be used for ANSI headers, but it can be useful to
disable this warning when compiling code which does not conform to this
aspect of the standard.

Give no Implicit return in non-void contex t warning. Thisis
most often caused by a return from afunction which was assumed to return int
(because no other type was specified) but isin fact being used as a void
function.

If you enter a space in the writable icon, then Select or Return, al warning messages
from CC are suppressed.

35

The SetUp menu

36

Suppresserrors

This option is not available for the C++ tool.

The Suppress errors option on the SetUp menu leads to a writable icon in which you
can enter a set of modifier |etters:

[

Command ling
Dwfault path
KB (oeTirsents
Lmfne
Il
Dubug opions
Profi=

& o o iker
Mgl code
Libmanas
Features

Suppress emor
LINEY e
Enmoes 1o file
Listing

Winek dirg cioay
Citesrs

SUDDIGHE WaFTIINGgE |

S

These modifier |etters can be used to force CC to accept C source which would normally
produce errors. If any of these options are needed, it means that the C source in question
does not conform to the ANSI C standard (CC normally generates precisely the
diagnostics required by ANS)).

The modifier letters are:

c Suppresses all implicit cast errors, e.g. ‘implicit cast of non-0 int to pointer’.

f Suppresses errors for unclean casts such as short to pointer.

i Suppresses syntax checking forf .

p Suppresses the error which occurs if there are extraneous characters at the end
of a preprocessor line.

z Suppresses the error if a zero-length array is used.

CC and C++

UNIX pcc
This option is not available for the C++ tool.

Enabling this SetUp menu option switches to compiling ‘portable C compiler’ C rather
than ANSI C. This is based on the original Kernighan and Ritchie (K&R) definition of

C, and is the dialect used on UNIX systems such as Acorn’s RISC iX product. This
option changes the syntax that is acceptable to the compiler, but the default header and
library files are still used. See the section on this option in the cHgtbility on

page 255 for more details.

UNIX pcc is not enabled by default.

Errorstofile
This option is not available for the C++ tool.

Errorstofile allows you to specify a file to which error messages are output for later
inspection:

CC |
Cammand krs

Cefault path

Kb ExHmimenis

]} o]

Lindelins

Debug options
Profls

Arsambkr

Module code
Liwarks

Feahures r
SIS Warnings -
Suporess errors
LI e [Filenama

Listimg
Wk dirg-cinry
Chers

37

The SetUp menu

Listings
Listing
This option is not available for the C++ tool.

Enabling this SetUp menu option causes alisting file to be created. This consists of lines
of source interleaved with error and warning messages. You can get finer control over
the contents of this file using the Features option (see page 32).

Listing is not enabled by default.

Choosing your work directory

Work directory

The Work directory entry on the SetUp menu leads to awritable icon in which you
specify the work directory:

CC Cs

Camim g s [2 Comimand lins =

Default path F Cafault path k.

HBED (oamiventy Dafing P

Define P Lindiefine [

Lincaline I Arziaimiper

Dubug opdons | 2 Piod ube ook

Frofie L Libranes F

Argambies Faatures [

Module oode SUpDeST wiFnings Diirgsctory
 Loraras : Mvio oy ST

Feahures F Cituere [

SUpDIeEs wWarmings -

Suppress errors B

LINEE s

Ermoes 1o file P

Liting Diirectory

[Work diecioey 8 :

Chfwers F

The effect of thisoption is described in the section File naming and placing conventions
on page 15.

The default Work directory setting is”.

38

CC and C++

Specifying other command line options

Others

The Other s option on the SetUp menu leads to awritable icon in which you can add an
arbitrary extra section of text to the command line to be passed to the relevant
underlying program:

CC Cres
Comimand lins = Camim g s [2
Cafault path F. Default path F
Hae coamaresiy Dafing F
Defing 3 Uinciefine [
Lindaling I- LT
Dwbiig opoons P Pl ik il
Profis L Libranias F
Assamier Faahres [2
Peinc e o SuppresT wiFnings

¢ Libranas (2 R
Features [

SupEpress warminga
Suppress enors B
LINIE pase:

Ermoes o fike =
Listing

Work drecicry e

Thisfacility isuseful if you wish to use any feature which is not supported by any of the
other entries on the SetUp dialogue box and menu. This may be because the feature is
used very little, or because it may not be supported in the future.

For afull description of command line options, see Command lines on page 42.

39

Output messages

Output messages

The CC and C++ tools output text messages as they proceed. These include
preprocessed source (see Preprocess only), warning and error messages. By default any
such text is directed into a scrollable output window:

I im |
E&l T+ Langam Ggklen !.i Ein E BLELH]

mﬁ
Thiswindow is read-only; you can scroll up and down to view progress, but you cannot

edit the text without first saving it. Clicking Select on the scrollable part of this window
has no effect, to indicate this.

The contents of the window illustrated above are typical of those you see from a
successful compilation — the title line of the compiler with version number, followed by
no error messages.

Clicking Adjust on the close icon of the output window switches to the output summary
dialogue box. This presents a reminder of the tool running (CC or C++), the status of the
task (Running, Paused, Completed or Aborted), the time when the task was started and
the number of lines of output that have been generated (ie those that are displayed by the
output window):

c Rangl 135030 Caw Rungl 135248
oo 1 Lings {f gl e 1 Lings of Gulge

+ g 3
Al i i

Clicking Adjust on the close icon of the summary box returns to the output window.

Both the above output displays follow the standard pattern of those of all the
non-interactive Desktop tools. The common features of the non-interactive Desktop
tools are covered in more detail in the chaftemeral features on page 101 of the
accompanyindpesktop Tools guide. Both tools’ output displays and the menus brought
up by clicking Menu on them offer the standard features allowing you to abort, pause, or
continue execution (if the execution hasn’t completed); and to save output text to a file,
or repeat execution.

40

CC and C++

Error messages appear in the output viewer, with copiesin the editor error browser when
throwback is working. The appendixes C errors and warnings on page 297 and C++
errors and warnings on page 333 contain more details for interpreting error messages.

Preprocessed source appearing in the output window is often very large for compilation
of complex source files. The scrolling of the output window is useful to view it, and to
investigate it with the full facilities of the source editor, you can save the output text
straight into the editor by dragging the output file icon to the SrcEdit main icon on the
icon bar (providing W nmp$Scr ap is properly set on your machine).

The icon bar menu

Clicking Menu on either the CC or the C++ icon on the icon bar gives the following

menu:
e e
Inkg P Inig P
Save opfons Save oplons
Oprlions [Cpilinng (2
Help Halp
Qi Chait

Save options saves all the tool’s current options, including those set both from the
SetUp dialogue box and from t@ptions item on this menu. When you restart the tool
it is initialised with these options rather than the defaults.

The Options item on the main menu allows you to enabigo run, Auto save or start

the output display as either a text window (default) or summary box. Wierr un is
enabled, dragging a source file to the tool’s icon starts a compilation immediately with
the current options, rather than displaying the SetUp box first. Whemsave is

enabled, output object files are saved to suitable places automatically without producing
a save dialogue box for you to drag the file from. Batito run andAuto save are off

by default.

For a description of each option in the tool's menu see the cl@gteral features on
page 101 of the accompanyiBgsktop Tools user guide.

41

Command lines

Command lines

Keywo

42

For normal use you do not need to understand the syntax of the underlying CC and C++
programs’ command lines, as they are generated automatically for you fr&atlthpe
dialogue box and menu settings.

The syntax of the command lines is:

cc «options» filenames
c++ «options» filenames

By default, the C compiler and C++ trandator look for source files, and create object,
assembler and listing files, beneath the current work directory.

Many aspects of the programs’ operation can be controlled via command-line options.
All options are prefixed by a minus sign. There are two classes of option: keywords and
flags:

I Keywords are recognised in upper case or lower case.

I Aflagis a single letter, sometimes followed by an argument. Whenever this is the
case, the C compiler allows white space to be inserted between the flag letter and
the argument. However, this is not always true of other C compilers, so in the
following subsections we only list the form that would be acceptable to a UNIX
C compiler. Similarly, we only use the case of the letter that would be accepted by a
UNIX C compiler.

By using the conventions common to many C compilers, you can build portable
makefiles that you can easily move between different environments.

The options are listed below. Where an option merely gives a page reference to a
desktop equivalent, you should see that page for full details. Should you need to use any
of the more esoteric options that have no direct desktop equivalent, remember that you
can always add them to the SetUp mefitker s option (seejecifying other command

line options on page 39).

Where an option is shaded, we recommend that you don't use it with C++. You may use
all options with CC, save for thieganslator options on page 45, which are used by
CFront and hence irrelevant to CC.

rd options

Command line option Description

-hel p Outputs a summary of the command line options.

- pcc Equivalent tdJNI X pcc in SetUp menu; see page 37.
-fussy or-strict Be extra strict about enforcing conformance to the

ANSI standard or to pcc conventions (e.g. prohibit
thevol at i | e qualifier in- pcc mode).

Command line option
-list

-via file

-errors file
-littleendor-1i
- bi gend or - be
-apcs «3x»qualifiers

[26«bi t »

/| 32«bi t »

/ r eent «r ant »

/ nonr eent «r ant »
/ swst «ackcheck »
/ noswst «ackcheck»
/[fp

/ nof p

[fpe2

[fpe3

/ f pr «egar gs »

/ nof pr «egar gs »
- depend dependfile
-t hr owback

-desktop directory

CC and C++

Description
Equivalent to Errorsto file in SetUp menu; see

page 37.
Reads in extra command line arguments from the
given filename.

Equivalent to Listing in SetUp menu; see page 38.
Compile code suitable for alittle-endian ARM.
Compile code suitable for abig-endian ARM.

Specify which variant of the ARM Procedure Call
Standard is to be used by the compiler. At least one
qualifier must be present, and there must be no space
between qualifiers. The following qualifiers are
permitted:

26 bit APCS variant.

32 bit APCS variant.

Reentrant APCS variant.

Non reentrant APCS variant.

Software stack checking APCS variant.

No software stack checking APCS variant.

Use a dedicated frame-pointer register.

Do not use aframe-pointer.

Floating point emulator 2 compatibility.

Floating point emulator 3 compatibility.

Floating point arguments passed in floating point
registers.

Floating point arguments are not passed in floating
point registers.

Savesinclude file dependency lists, which are
suitable for use with ‘make’ utilities.

Equivalent toT hrowback option icon in SetUp
dialogue box; see page 24.

Equivalent tolork directory in SetUp menu; see
page 38.

43

Command lines

44

Command line option
- CH+

Preprocessor options

Command line option
-l directory

-jdirectories

- Dsymbol« =value»
- Usymbol

Description

Assume C++ code is being processed. Thisoptionis
only used by the C++ program, when invoking the
compiler to pre-process C++ source before

translation, and when compiling the generated C.
When preprocessing under the -E option, comment
handling is changed to correctly deal with C++'6*
comments (which are terminated by the end of the
source line), andpr agna lines are passed through
to the preprocessor output.

During the C compilation stage, use of this flag
disables certain warnings (most notably ‘no
side-effect in void context’, and messages about
unused variables), otherwise produced by some
rather odd code constructs in the generated C. It also
arranges that in any warning or error reports, the
original (type-qualified) C++ source names are
printed rather than the modified names CFront
generates in order to implement overloading.

Description

Equivalent td nclude option icon in SetUp dialogue
box; see page 22.

Equivalent tdDefault path in SetUp menu; see

page 26.

Equivalent taPreprocess only option icon in SetUp
dialogue box; see page 23.

Equivalent tak eep commentsin SetUp menu; see
page 26.

If this flag is specified, only the preprocessor phase
of the compiler is executed (as witk - E) but the
only output produced is a list, on the standard output
stream, ofnakefile dependency lines suitable for use
by a make utility. This can be redirected to a file
using standard UNIX/MS-DOS notation. For
example:

cc -M xxx.c >> Makefile.

Equivalent to Define in SetUp menu; see page 27.
Equivalent to Undefinein SetUp menu; see page 28.

CC and C++

Translator options

These options affect the operation of CFront.

Command line option Description
+v Print commands as CFront executes them
+w Equivalent to Suppress warningsin C++'s SetUp

menu; see page 3@uppresswarnings also uses
CC'’s - Woption.)

+p Pedantic — compile strict C++

+g Equivalent taDebug option icon in C++’s SetUp
dialogue box; see page 4Bebugalso uses CC'sg
option.)

-F Send CFront output tet dout ; do not compile it

Code generation options

If you are using C++, we recommend you only use the following from the code
generation optionsbelow: - 0,-g,- Sand-zM

Command line option Description

-o file The argument to the -o flag gives the name of the file
which will hold the final output of the compilation
step. In conjunction with -c, it gives the name of the
object file; in conjunction with -S, it gives the name
of the assembly language file. Otherwise, it names
the final output of the link step.

- g «options» Equivalent to Debug option icon in SetUp dialogue
box and Debug optionsin SetUp menu; see pages 23
and 29.

- p«options» Equivalent to Profile in SetUp menu; see page 30.

-S Equivalent to Assembler in SetUp menu; see
page 31.

-zM Equivalent to M odule code in SetUp menu; see
page 31.

45

Worked examples

Linker options

Command line option Description

-C Equivalent tocCompile only option icon in SetUp
dialogue box; see page 23.

-l /ibraries Equivalent td_ibrariesin SetUp menu; see page 31.

Warning and error message options

If you are using C++, we recommend you only use the following from the warning and
error message options below: - W

Command line option Description

-Wopt i ons Equivalent toSuppress warnings in SetUp menu;
see page 34.

-eoptions Equivalent taSuppress errorsin SetUp menu; see
page 36.

Additional feature options

If you are using C++, we recommend you only use the following from the additional
feature options below: - zr and- f .

Command line option Description

- zpAl phaNum This flag can be used to emulater agma
directives. The letter and digit which follow it are the
same characters that would follow the '-' of a
#pragma directive. Sefragma directives on
page 86 for details.

- zr nunber This flag allows the size of (most) LDMs and (all)
STMs to be controlled between the limits of 3 and 16
registers transferred. This can be used to help control
interrupt latency where this is critical.

-f features Equivalent td~eaturesin SetUp menu; see page 32.

Worked examples

Several examples of C and C++ programs on the discs of Acorn C/C++ are worked
through in this guide and in the Desktop Tools guide. A collection of examples arelisted
here illustrating various points and styles of working.

The following example programs are in the directory Acor nC_C++. Exanpl es, each
in a subdirectory with the name of the example. For each program, we give a ‘recipe’ for
how to compile, link and run the program. Filenames are given relative to the

46

CHello

CC and C++

subdirectory containing each example unless otherwise stated. It is assumed that you
have read the preceding parts of this chapter. For more details of the tool Make, seethe

chapter Make on page 57 of the accompanying Desktop Tools user guide. When you

enter any command lines given below, you must first ensure that the currently-sel ected
directory is the subdirectory containing the example being tried.

There are some further less trivial examples that we omit here. These show you how to
implement more esoteric features, mainly involving interworking C and/or C++ with

assembler. They are described elsewhere in the Acorn C/C++ manual set, together with
necessary supporting technical information.

Purpose:

Source:

Compile using:

Run by:
Clean up by:

C++Hello

Sieve

Purpose:

Source:

Compile using:

Run by:
Clean up by:

Purpose:

Source:

Compile using:

Run by:
Clean up by:

The standard most trivial C program. Try it as an exercise.
c. Hel | oW

default CC SetUp options

double clicking on Hel | oW

deleting Hel | oWand o. Hel | oW

The standard most trivial C++ program. Try it as an exercise.
c++. Hel | oW

default C++ SetUp options

double clicking on Hel | oW

deleting Hel | oWand 0. Hel | oW

The Sieve of Eratosthenes is often presented as a standard
benchmark, though it is not very meaningful in this context.

c. Si eve
default CC SetUp options
doubleclickingon Si eve

deleting Si eve and 0. Si eve

47

Worked examples

48

Dhrystone 2.1
Purpose:

Sources.

Makefile:
Build by:
Run by:

Rebuild by:

Clean up by:

CModule
Purpose:

Sources.

Build using:

or by:
Run from:

Test from:

Dhrystone 2.1 is the standard integer benchmark. Its results
require careful interpretation (it often overstates the real
performance of machines). Try as afirst exercise in using the
Make utility ('Make).

h. dhry
c.dhry_1
c.dhry_2

Makefil e
double clicking on Makef i | e, with default Make options
double clicking on Dhr yst one

Reply with any number in the range 20000 to 250000 to the
prompt for number of iterations. Try abig number such as 200000
and time the execution with a stopwatch or sweep second hand to
confirm the claimed performance. Note how performance
depends on screen mode.

double clicking on Makef i | e again (try altering some of the
optionsin Makef i | e with Make between rebuilds: eg compile
in UNIX pcc mode or link with ANSILib instead of Stubs).

deleting Dhr yst one, 0. dhry_1 and 0. dhry2.

Toillustrate how to implement amodulein C. You can also use it
as another exercisein using Make. For more details on
constructing rel ocatable modules in C see the chapter How to
write relocatable modulesin C on page 273.

c. CModul e CMvbdul eHdr

CC of c. C\vbdul e with options Compile only and M odule
code enabled, saving output object fileas 0. Cvbdul e. CMHG
of cmhg. Cvodul eHdr too. CModul eHdr . Link of

0. CMbdul e, 0. CVbdul eHdr and

AcornC_C++. Li braries. CLi b. 0. St ubs with Module
enabled to the output file Cvbdul e.

double clicking on Makef i | e, with default Make options.
the command line using C\vbdul e

the command line using:

CC and C++

help tml
hel p tnR2
tml hello
tm2 1 2 345
tmLl 1 2 3
tn2 hello

(try other combinations too)

*BASI C

SYS &88000 : REM should give an error

SYS &88001 : REM should give divide by O error
SYS &88002 : REM no error, just a message
SYS &88003 : REM no error, just a message
SYS &88004 : REM same as &88000...

\Y

V V V V

(now repeat some of these after issuing some invalid
* commands...)

>*f 00
> SYS &88002

etc.

SQUIT
Clean up by: from the command linetyping: RWKi | | Test CModul e
deleting CMbdul e, 0. CModul e and o. Cvodul eHdr or
running Make on Makef i | e with target clean selected.
Desktop application examples

The desktop applications 'Hyper, IMinApp and ! TBoxCalc and the various versions of
SaveAs are al too complex to be described herein great detail.

They are best built by double clicking on their Makefiles. They can be run by double
clicking on their application icons.

49

Worked examples

50

CMHG e

HG (the C Module Header Generator) is a desktop tool which provides an easy
interface to the CMHG program that Acorn C/C++ installs in your computer’s
library. The CMHG tool constructs command lines and passes them to the CMHG
program. By using CMHG you can write a RISC OS relocatable module entirely in C
without having to use ARM assembly language.

Every relocatable module has at its start (ie the part that loads into memory at its lowest
address) a header table pointing to various items of data and program. Most of the items
pointed to are optional, the pointers being zero if not needed. When writing a relocatable
module in assembly language you lay this table out yourself, but when writing in C, you
use CMHG to generate this for you. In addition to generating a module header, CMHG
also inserts small standard routines to, for example, initialise the C language library
support and make service call handling efficient.

To construct a relocatable module you write a number of routines in C with standard
prototypes, some of these routines to be called with the processor in supervisor (SVC)
mode. These are accompanied by a text description file written in a special syntax which
CMHG understands. For details of this language and the specifications of the C routines,
see the chapteétow to write relocatable modulesin C on page 273. For more details of
relocatable module headers, see the chapter erititddles in theRISC OS 3

Programmer’s Reference Manu&br some hints about memory usage from rel ocatable

module code, see the RISC OS 3 Programmer’s Reference Manual

Therest of this chapter explains the (ssmple) controls of the CMHG tool. CMHG isone
of the non-interactive desktop tools, its desktop user interface being provided by the
FrontEnd module. It shares many common features with the other non-interactive tools.
These common features are described in the chapter General featuresn page 101 of the
accompanying Desktop Toolguide.

A note about Make

The Make tool (see the chapter Makeon page 57 of the Desktop Toolguide) can aso
construct command lines for the underlying CMHG program. You'll find it a better tool
for managing large projects. However, much of what is in this chapter is relevant, since
Make sets options for the CMHG program with the CMHG tool’s user interface.

51

Starting CMHG

Starting CMHG

52

To start the CMHG tool, first open the Acor nC_C++. Tool s directory display, then
double click on 'CMHG. Itsicon appears on the icon bar:

L
-::1.15:
Clicking Select on thisicon, or dragging a CMHG description file from a directory

display to thisicon, brings up the SetUp dialogue box, from which you control the
running of CMHG:

HE| CHIFG
5¢m|

Carcel Aun |

CMHG has hardly any options for its use, so itsinterface is simpler than most of the
other Acorn C/C++ tools.

The Sour ce writable icon is for the name of the description file to be processed. If you
displayed the SetUp dialogue box by clicking on the CMHG icon bar icon, you will
want to fill thisin by dragging a CMHG description file from adirectory display to this
icon before running CMHG.

Clicking Menu on the SetUp dialogue box brings up the CMHG SetUp menu, which
owing to the simplicity of CMHG only has asingle Command line item:

CMHG
Command ling

You can get CMHG to generate a header file from the description file, which contains
#def i nesof constants for the commands declared in the description file. To do so, you
need to append the name of the header file to the text in the Command line writable
icon:

CMHG MIM
I:m [FapBed 702 S5 MHE $, Trip CMHGDeH |

Fun |

The icon bar menu

CMHG

Clicking Menu on the CMHG application icon on the icon bar gives access to the

following options:

Inin

Cpitinng
Help
it

Save oplons

For adescription of each option in the application menu see the chapter General features
on page 101 of the accompanying Desktop Tools guide.

Example output

Thefollowing is an example CMHG description file, similar to that used within Acorn
to construct the FrontEnd module, which isitself arelocatable module written in C:

; Purpose: nodul e header for the generalised front end nodul e ;

nodul e-i s-runnabl e:
initialisation-code:
servi ce-cal | - handl er:
title-string:

hel p-string:

conmrand- keywor d- t abl e:

swi - chunk- base- nunber:

FrontEnd_init
Front End_servi ces
Fr ont End

FrontEnd 1.00

Fr ont End_conmands

; nodul e start code

0x11 , service-nenory

FrontEnd_Start(m n-args: 4, max-args: b5,

hel p-text:

"Hel p text\n"),

Front End_Setup(m n-args: 8, max-args: 8,

hel p-text:

0x081400

"Hel p text\n")

53

Command line interface

Running CMHG displays any error messages in the standard text output window for
non-interactive toals. If al goeswell, asit should do if you try CMHG with the above
description file, this window is empty:

= CMHG [Comgiet

The output file produced is an object file. You link this with the object files compiled
from your C code to produce your rel ocatable module.

Command line interface

54

For normal use you do not need to understand the syntax of the underlying CMHG
program’s command line, as it is generated automatically for you froBetbig
dialogue box and menu settings.

The syntax of the CMHG command line is:

chg descfil e «objfile «defsfile»»

descfile Filename of the CMHG description file.

obffile Filename of the output object file to link with your objectsto form a
relocatable module.

defs-file Filename of the output definitions header file, giving constants for the

commands in the description file.

ToANSI e

ToANSI is adesktop tool which provides an easy interface to the TOANS| program

that Acorn C/C++ installs in your computer’s library. The TOANSI tool constructs
command lines and passes them to the TOANSI program. TOANSI helps convert
program source written in the PCC style of C to program source in the ANSI style of C.
PCC is the UNIX Portable C Compiler, and closely follows K&R C, as defined by B
Kernighan and D Ritchie in their bodlke C Programming Language.

ToANSI enables you to write (with care) programs that can be automatically converted
between the PCC and ANSI dialects of C, hence assisting you in constructing easily
portable programs. The associated tool TOPCC makes approximately the reverse
translations to TOANSI. For more details of portability issues, see the cRaptaility

on page 255. The changes that TOANSI makes to C source are listed in the section
ToANS C trandlation below.

ToANSI is one of the non-interactive desktop tools, its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the ¢haEie
features on page 101 of the accompanyibgsktop Tools guide.

55

ToANSI C translation

ToANSI C translation

ToANSI makes the following transformations to C source code or header text:

I Function declarations with embedded comments are rewritten without the comment
tokens. This reverses the action of TOPCC with regard to function declarations,
rewriting
type foo(/* args */);
as
type foo(args);

Thistransformation is onewhich requires carein the use of TOANSI, asit can result
ininvalid C being uncommented.

I Function definitions of the form
type foo(al, a2)
type ail;
type az;

{...}
arerewritten as
type foo(type al, type a2)

I Ava_ali st inthefunction definition is trandated to

I type foo() isrewrittenast ype foo(void).

I Voi dSt ar (what TOPCC replacesvoi d * with) isleft untouched, asif itis
correctly t ypedef 'd to something suitable, thereafter its use is correct in both
PCC and ANSI C.

I ToPCC rewritesinsi gned andunsi gned | ong constants using the typecasts
(unsi gned) and(unsi gned | ong) . TOANSI does not reverse this change, as
this is not required for correct ANSI C.

Note that TOANSI performs only simple textual translations and is not able to reliably
diagnose C syntax errors, which may produce surprising results, so it is best to use
ToANSI only on code you already know compiles.

56

ToANSI

A note about Make

Since porting programs is usually a one-off process involving some experimentation,
only direct use of TOANSI makes sense. You cannot use TOANSI from Make.

Starting TOANSI

To start the TOANSI tool, first open the Acor nC_C++. Tool s directory display, then
double click on 'TOANSI. Itsicon appears on the icon bar:

c
|
TasNSI

Clicking Select on thisicon, or dragging a source file from a directory display to this
icon, brings up the SetUp dial ogue box, from which you control the running of TOANSI:

B TS

Fiin |

Cancel Fun

ToANSI has hardly any options for its use, so its interface is simpler than most of the
other Acorn C/C++ tools.

The File writable icon is for the name of the description file to be processed. If you
displayed the SetUp dialogue box by clicking on the TOANSI icon bar icon, you will
want to fill thisin by dragging a source file from a directory display to thisicon before
running TOANSI.

Clicking Menu on the SetUp dialogue box brings up the TOANSI SetUp menu, which
owing to the simplicity of TOANSI only has asingle Command lineitem:

TasME

Comimeand line b

57

The icon bar menu

The icon bar menu

Clicking Menu on the TOANSI application icon on the icon bar gives access to the
following options:

ToANS]
Inkg P
Save opfons
Ciptinsg e
Help

Chait

For adescription of each option in the application menu see the chapter General features
on page 101 of the accompanying Desktop Tools guide.

Example output

Running TOANSI displays any error messages in the standard text output window for
non-interactive tools. If al goes well this window is empty:

== To#MS! | Compiaied)

As an example of using the tool TOANSI, open an empty SrcEdit text window and type
the following example C sourcelinesinit:

int foo(a, b)
float a;
doubl e b;

{}

Check that your W mp$Scr ap environment variable is set to a sensible file name, then
save your new text file straight onto the TOANSI icon bar icon. Run ToOANSI, then save
the output text file straight onto the SrcEdit icon bar icon. The trandlated file looks like:

int foo(float a, double b)

{}

58

ToANSI

Command line interface

For normal use you do not need to understand the syntax of the underlying TOANSI
program’s command line, as it is generated automatically for you froBetbie
dialogue box and menu settings.

The syntax of the TOANSI command line is:

toansi «options» «infile « outfile»»

options Options: the - d option describes TOANSI, and the - hel p option
gives the command line syntax and options.

infile Filename of the input C source or header text file, which defaultsto
stdin.

outfile Filename of the output C source or header text file, which defaultsto
st dout .

59

60

TO PCC tc

OoPCC isadesktop tool which provides an easy interface to the TOPCC program that

Acorn C/C++ installs in your computer’s library. The ToPCC tool constructs
command lines and passes them to the ToPCC program. ToPCC helps convert program
source written in the ANSI style of C to program source in the PCC style of C. PCC is
the UNIX Portable C Compiler, and closely follows K&R C, as defined by B Kernighan
and D Ritchie in their bookhe C Programming Language.

ToPCC enables you to write (with care) programs that can be automatically converted
between the ANSI and PCC dialects of C, hence assisting you in constructing easily
portable programs. The associated tool TOANSI makes approximately the reverse
translations to TOPCC. For more details of portability issues, see the dPagédility

on page 255. The changes that TOPCC makes to C source are listed in thdgetibn

C trandation below.

ToPCC is one of the non-interactive DDE tools, its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the ¢haEie
features on page 101 of the accompanyibgsktop Tools guide.

61

ToPCC C translation

ToPCC C translation

ToPCC makes the following transformations to C source code or header text:

Function declarations of the form

type foo(args);

arerewritten as

type foo(/* args */);

Any comment tokens/ * or */ inar gs are removed.

Function definitions of the form

type foo(type al, type a2) {...}

arerewritten as

type foo(al, a2)

type al;

type az;

A ... inthefunctiondefinition is interpreted as int
va alist. Full translation of variadic functions is not
per f or med.

type foo(void)

isrewritten as

type foo()

Type voi d * isconverted to Voi dSt ar which canbet ypedef 'd to
something suitable (eghar *).

Unsigned and unsigned long constants are rewritten using the typecasts (unsigned)
and (unsigned long).

For example300ul becomesynsi gned | ong) 300L.

Note that TOPCC performs only simple textual translations and is not able to reliably
diagnose C syntax errors, which may produce surprising results, so it is best to use
ToPCC only on code you already know compiles.

A note about Make

Since porting programs is usually a one-off process involving some experimentation,
only direct use of TOPCC makes sense. You cannot use ToPCC from Make.

62

ToPCC

Starting ToPCC

To start the TOPCC tool, first open the Acor nC_C++. Tool s directory display, then
double click on ! ToPCC. Itsicon appears on the icon bar:

=
+

TaPCT

Clicking Select on thisicon, or dragging a source file from a directory display to this
icon, brings up the SetUp dialogue box, from which you control the running of ToPCC:

__l_.l ToPLTD

Fia |
Carcei | Fun |

ToPCC has hardly any options for its use, so itsinterface is simpler than most of the
other Acorn C/C++ tools.

The File writable icon is for the name of the description file to be processed. If you
displayed the SetUp dialogue box by clicking on the TOPCC icon bar icon, you will
want to fill thisin by dragging a source file from adirectory display to thisicon before
running ToPCC.

Clicking Menu on the SetUp dialogue box brings up the TOPCC SetUp menu:

ToPCC
Commeand ling -
Options [

Command line shows you the command line that will be passed to the underlying
ToPCC program; you can then alter it if necessary.

63

The icon bar menu

Optionsleadsto awritable field in which you can specify one or more single letter
options:

ToPCC
Command lns Oplians

These options are:

c Don't remove the keywordonst

e Don’'t remove#terror ... directives

I Don’'t remove#l i ne ... directives

p Don't removetpr agma . . . directives

S Don’'t remove keywordi gned

t Don’t remove the second argumenwtm start ()
% Don't remove the keywordol ati | e

The icon bar menu

64

Clicking Menu on the ToPCC application icon on the icon bar gives access to the
following options:

TalFCo
Inin r-
Save oplons
Cpilions -
Help
it

For adescription of each option in the application menu see the chapter General features
on page 101 of the accompanying Desktop Tools guide.

ToPCC

Example output

Running ToPCC displays any error messages in the standard text output window for
non-interactive tools. If al goeswell thiswindow is empty:

I 2| TOPCE [Compated

As an example of using the tool ToOPCC, open an empty SrcEdit text window and type
the following example C source lineinit:

int foo(float a);

Check that your W mp$Scr ap environment variable is set to asensible file name, then
saveyour new text file straight onto the ToPCC icon bar icon. Run ToPCC, then save the
output text file straight onto the SrcEdit icon bar icon. The translated file looks like:

int foo(/* float a */);

65

Command line interface

Command line interface

66

For normal use you do not need to understand the syntax of the TOPCC command line,
asit is generated automatically for you from the SetUp dialogue box setting beforeit is
used.

The syntax of the TOPCC command lineis:
topcc «options» «infile « outfile»»

options A minus -’ followed by one or more letters controlling individual
features of the conversion; see page 64. As well as the options listed
there, the d option describes TOPCC, and thieel p option gives
the command line syntax and options.

infile Filename of the input C source or header text file, which defaults to
stdin.

outfile Filename of the output C source or header text file, which defaults to
stdout .

Part 2 — C language issues

67

68

C implementation details

his chapter is split into parts, each of which details certain aspects of Acorn C's
implementation of the ANSI C standard.

The first part 4+mplementation details on page 70 — gives details of those aspects of
the compiler which the ANSI standard identifies as implementation-defined, and

some other points of interest to programmers. They are grouped by subject; the

sectionlmplementation limits on page 76 lists the points required to be documented
as set out in appendix A.6 of the standard.

The second part Sandard implementation definition on page 77 — discusses
aspects of the compiler which are not defined by the ANSI standard, but are
implementation-defined and must be documented.

Appendix A.6 of the standard X3.159-1989 collects together information about
portability issues; section A.6.3 lists those points which are implementation
defined, and directs that each implementation shall document its behaviour in each
of the areas listed. This part corresponds to appendix A.6.3, answering the points
listed in the appendix, under the same headings and in the same order.

The third part -Extra features on page 86 — describes some machine-specific
features of the Acorn C compiletpr agnma directives, and special declaration
keywords for functions and variables.

69

Implementation details

Implementation details

Identifiers

Data elements

70

I dentifiers can be of any length. They are truncated by the compiler to 256 characters, all
of which are significant (the standard requires a minimum of 31).

The source character set expected by the compiler is 7 bit ASCII, except that within
comments, string literals, and character constants, the full 1SO 8859-1 8 bit character set
isrecognised. At runtime, the C library processesthe full SO 8859-1 8 bit character set,
except that the default locale is the C local e (see the section Sandard implementation
definition on page 77). The ct ype functions therefore all return O when applied to

codes in the range 160-255. By calls®t | ocal e(LC_CTYPE, " | SO8859-1")

you can cause thet ype functions such aissupper () andi sl ower() to
behave as expected over the full 8 bit Latin alphabet, rather than just over the 7 bit
ASCII subset.

Upper and lower case characters are distinct in all identifiers, both internal and external.

In - pcc and- f ¢ modes an identifier may also contain a dollar character.

The sizes of data elements are as follows:

Type Sizein bits

char 8

short 16

i nt 32

| ong 32

fl oat 32

doubl e 64

| ong doubl e 64 (subject to future change)
all pointers 32

Integers are represented in two’s complement form.

Data items of typehar areunsi gned by default, though they may be explicitly
declared asi gned char orunsi gned char. (In- pcc mode there is nsi ghed
keyword, sachar s are signed by default and may be declared unsigned if required.)
Single-character constants are thus always positive.

Floating point quantities are stored in the IEEE format. In double and long double
guantities, the word containing the sign, the exponent and the most significant part of the
mantissa is stored at the lower machine address.

C implementation details

Limits limts.h andfl oat. h

The standard defines two header files, | i mi t s. h and f | oat . h, which contain
constant declarations describing the ranges of values which can be represented by the
arithmetic types. The standard a so defines minimum values for many of these constants.

The following table sets out the values in these two headers on the ARM, and a brief
description of their significance. See the standard for afull definition of their meanings.

Number of bitsin smallest object that is not a bit field (ie a byte):

CHAR BIT 8

Maximum number of bytesin a multibyte character, for any supported locale;
MB_LEN_MAX 1

Numeric ranges of integer types:

The middle column gives the numerical value of each range’s endpoint, while the right
hand column gives the bit patterns (in hexadecimal) that would be interpreted as this
value in C. When entering constants you must be careful about the size and signed-ness
of the quantity. Furthermore, constants are interpreted differently in decimal and
hexadecimal/octal. See the ANSI standard or any of the recommended textbooks on the
C programming language for more details.

Range End-point Hex representation
CHAR_MAX 255 Oxff
CHAR_ M N 0 0x00
SCHAR_MAX 127 ox7f
SCHAR_M N -128 0x80
UCHAR_MAX 255 Oxff
SHRT_MAX 32767 Ox7fff
SHRT_M N -32768 0x8000
USHRT_MAX 65535 Oxffff
I NT_MAX 2147483647 Ox T fffffff
I NT_M N —2147483648 0x80000000
Ul NT_MAX 4294967295 Oxfiffffff
LONG_MAX 2147483647 Ox 7 ffiffff
LONG M N —2147483648 0x80000000
ULONG_MAX 4294967295 Oxffffffff

71

Data elements

Characteristics of floating point:

FLT_RADI X 2
FLT_ROUNDS 1

The base (radix) of the ARM floating point number representation is 2, and floating
point addition rounds to nearest.

Ranges of floating types:

FLT_MAX 3.40282347e+38F
FLT_ M N 1.17549435e-38F
DBL_MAX 1.79769313486231571e+308
DBL_M N 2.22507385850720138e-308
LDBL_MAX 1.79769313486231571e+308
LDBL_M N 2.22507385850720138e-308

Ranges of base two exponents:

FLT_MAX_EXP 128
FLT_M N_EXP (-125)
DBL_MAX_EXP 1024
DBL_M N_EXP (-1021)
LDBL_NMAX_EXP 1024
LDBL_M N_EXP (-1021)

Ranges of base ten exponents:

FLT_MAX_10 EXP 38
FLT M N 10 EXP (-37)

DBL_MAX 10 Exp 308
DBL_M N_10_EX (-307)

LDBL_MAX_10 _Exp 308
LDBL_M N_10_EXP (-307)

Decimal digits of precision:

FLT DI G 6
DBL_DI G 15
LDBL_DI G 15

72

C implementation details

Digits (base two) in mantissa:

FLT_MANT DI G 24
DBL_MANT DI G 53
LDBL_MANT DI G 53

Smallest positive values such that (1.0 + x! = 1.0):

FLT_EPSI LON 1.19209290e-7F
DBL_EPSI LON 2.2204460492503131e-16
LDBL_EPSI LON 2.2204460492503131e-16L

Structured data types

The standard |eaves details of the layout of the components of structured data types to
each implementation. The following points apply to the Acorn C compiler:

Structures are aligned on word boundaries.

Structures are arranged with the first-named component at the lowest address.
A component with achar typeis packed into the next available byte.

A component withashort typeisaligned to the next even-addressed byte.

All other arithmetic type components are word-aligned, as are pointersand i nt s
containing bitfields.

The only valid type for bitfields are (signed) i nt andunsi gned i nt.(In-pcc
mode, char , unsi gned char, short,unsi gned short,l ong and

unsi gned | ong are aso accepted.)

A bitfield of typei nt istreated as unsigned by default (signed by defaultin- pcc
mode).

A bitfield must be wholly contained within the 32 bits of ani nt .

Bitfields are all ocated within words so that the first field specified occupies the
lowest addressed bits of theword. (When configured little-endian, lowest addressed
means |east significant; when configured big-endian, lowest

addressed means most significant.

73

Pointers

Pointers

The following remarks apply to pointer types:

I Adjacent bytes have addresses which differ by one.

I Themacro NULL expands to the value 0.

I Casting between integers and pointers results in no change of representation.

I The compiler warns of casts between pointers to functions and pointers to data (but
not in - pcc mode).

Pointer subtraction
When two pointers are subtracted, the differenceis obtained as if by the expression:
((int)a - (int)b) / (int)sizeof (type pointed to)

If the pointers point to objects whose size is no greater than four bytes, word alignment
of data ensures that the division will be exact in all cases. For longer types, such as
doubles and structures, the division may not be exact unless both pointers are to
elements of the same array. Moreover the quotient may be rounded up or down at
different times, leading to potential inconsi stencies.

Arithmetic operations
The compiler performs all of the ‘usual arithmetic conversions’ set out in the standard.

The following points apply to operations on the integral types:
I All signed integer arithmetic uses a two’s complement representation.

I Bitwise operations on signed integral types follow the rules which arise naturally
from two’s complement representation.

I Right shifts on signed quantities are arithmetic.

I Any quantity which specifies the amount of a shift is treated as an unsigned 8 bit
value.

I Any value to be shifted is treated as a 32 bit value.
I Left shifts of more than 31 give a result of zero.

I Right shifts of more than 31 give a result of zero from a shift of an unsigned or
positive signed value; they yieldl from a shift of a negative signed value.

I The remainder on integer division has the same sign as the divisor.

I If avalue of integral type is truncated to a shorter signed integral type, the result is
obtained by masking the original value to the length of the destination, and then
sign extending.

74

C implementation details

I Conversions between integral types never causes an exception to be raised.
I Integer overflow does not cause an exception to be raised.
I Integer division by zero causes an exception to be raised.

The following points apply to operations on floating types:

I Whenadoubl e orl ong doubl e isconvertedtoaf | oat , rounding isto the
nearest representable value.

Conversions from floating to integral types cause exceptionsto beraised only if the
value cannot berepresentedinal ong i nt (orunsi gned | ong i nt inthe
case of conversionto anunsi gned i nt).

Floating point underflow is not detected; any operation which underflows returns
zero.

I Floating point overflow causes an exception to be raised.
I Floating point divide by zero causes an exception to be raised.

Expression evaluation

The compiler performs the ‘usual arithmetic conversions’ (promotions) set out in the
standard before evaluating any expression.

I The compiler may re-order expressions involving only associative and commutative
operators of equal precedence, even in the presence of parentheses (e.g. a + (b —c)
may be evaluated as (a + b) — c).

Between sequence points, the compiler may evaluate expressions in any order,
regardless of parentheses. Thus the side effects of expressions between sequence
points may occur in any order.

I Similarly, the compiler may evaluate function arguments in any order.

I Any detail of order of evaluation not prescribed by the standard may vary between
releases of the Acorn C compiler.

75

Implementation limits

Implementation limits

The standard sets out certain minimum translation limits which a conforming compiler

must cope with; you should be aware of these if you are porting applications to other
compilers. A summary is given here. The ‘mem’ limit indicates that no limit is imposed
other than that of available memory.

Description Requirement AcornC
Nesting levels of compound statements and 15 mem
iteration/selection control structures
Nesting levels of conditional compilation 8 mem
Declarators modifying a basic type 31 mem
Expressions nested by parentheses 32 mem
Significant characters

in internal identifiers and macro names 31 256

in external identifiers 6 256
External identifiers in one source file 511 mem
Identifiers with block scope in one block 127 mem
Macro identifiers in one source file 1024 mem
Parameters in one function definition/call 31 mem
Parameters in one macro definition/invocation 31 mem
Characters in one logical source line 509 no limit
Characters in a string literal 509 mem
Bytes in a single object 32767 mem
Nesting levels for #included files 8 mem
Case labels inawi t ch statement 257 mem
Members in a singlst r uct oruni on, 127 mem
enumeration constants in a singleum
Nesting of struct/union in a single declaration 15 mem

76

C implementation details

Standard implementation definition

Translation (A.6.3.1)
Diagnostic messages produced by the compiler are of the form
"source-file", line #: severity: explanation

where severi t y isone of

I warning: not adiagnostic in the ANSI sense, but an attempt by the compiler to be
helpful to you.

error: aviolation of the ANSI specification from which the compiler was able to
recover by guessing your intentions.

serious error: aviolation of the ANSI specification from which no recovery was
possible because the compiler could not reliably guess what you intended.

fatal (for example, ‘not enough memory’): not really a diagnostic, but an indication
that the compiler’s limits have been exceeded or that the compiler has detected a
fault in itself.

Environment (A.6.3.2)

The mapping of a command line from the ARM-based environment into arguments to
mai n() is implementation-specific. The shared C library supports the following:

I The arguments given taai n() are the words of theommand line (not including
I/O redirections, covered below), delimited by white space, except where the white
space is contained in double quotes. A white space character is any character of
whichi sspace is true. (Note that the RISC OS Command Line Interpreter filters
out some of these).
A double quote or backslash character (\) inside double quotes must be preceded by
a backslash character. An 1/O redirection will not be recognised inside double
quotes.

The shared C library supports a pairméractive devices, both called t t , that handle
the keyboard and the VDU screen:

I No buffering is done on any stream connectedttb unless 1/O redirection has
taken place. If I/O redirection other than tiot has taken place, full file buffering
is used except where bath dout andst derr have been redirected to the same
file, in which case line buffering is used.

77

Identifiers (A.6.3.3)

Using the shared C library, the standard input, output and error streams, st di n,

st dout , and st der r can be redirected at runtime in the ways shown below. For
example, if mycopy isacompiled and linked program which simply copiesthe standard
input to the standard output, the following line:

*nycopy < infile > outfile 2> errfile

runsthe program, redirecting st di n tothefilei nfi | e, st dout tothefileoutfile
and st derr tothefileerrfile.

The following shows the allowed redirections:

0< fil enane
< fil enane
1> fil enane
> fil enane
2> fil enane
2>&1

>& fil enane
>> fjl enane
>>& fil enane
1>&2

Identifiers (A.6.3.3)

256 characters are significant in identifiers without external linkage. (Allowed
characters are | etters, digits, and underscores.)

read st di n from fi /| enane

read st di n from fi /| enane

writest dout tofi/ enane

writest dout tofi/ enane

writest derr tofi/ enane

write st der r to wherever st dout iscurrently going
write both st dout andst derr to fil enane
append st dout tofi/ enane

append both st dout and st derr tofi/ enane
write st dout to wherever st der r iscurrently going

256 characters are significant in identifiers with external linkage. (Allowed characters
are letters, digits, and underscores.)

Case distinctions are significant in identifiers with external linkage.

In- pcc and - f ¢ modes, the character ‘$’ is also valid in identifiers.

Characters (A.6.3.4)

78

The characters in the source character set are ISO 8859-1 (Latin-1 Alphabet), a superset
of the ASCII character set. The printable characters are those in the range 32 to 126 and
160 to 255. Any printable character may appear in a string or character constant, and in

a comment.

The compiler has no support for multibyte character sets.

C implementation details

The ARM C library supports the SO 8859-1 (Latin-1) character set, so the following
points hold:

The execution character set isidentical to the source character set.

There arefour char s/lbytesinani nt . If the ARM processor is configured to
operate with alittle-endian memory system (asin RISC OS), the bytes are ordered
from least significant at the lowest address to most significant at the highest
address. If the ARM is configured to operate with a big-endian memory system, the
bytes are ordered from least significant at the highest address to most significant at
the lowest address.

A character constant containing more than one character hasthetypei nt . Upto
four characters of the constant are represented in the integer value. The first
character contained in the constant occupies the lowest-addressed byte of the
integer value; up to three following characters are placed at ascending addresses.
Unused bytes are filled with the NULL (or / O) character.

There are eight bitsin a character in the execution character set.

All integer character constants that contain a single character or character escape
seguence are represented in the source and execution character set.

Characters of the source character set in string literals and character constants map
identically into the execution character set.

No localeis used to convert multibyte characters into the corresponding wide
characters (codes) for awide character constant.

A plainchar istreated as unsigned (but as signed in - pcc mode).

Escape codes are;

Escape sequence Char value Description

\a 7 Attention (bell)

\b 8 Backspace

\ f 12 Form feed

\n 10 Newline

\'r 13 Carriage return

\'t 9 Tab

\v 11 Vertical tab

\ xnn Ooxnn ASCII code in hexadecimal
\ nnn Onnn ASCII codein octal

79

Integers (A.6.3.5)

Integers (A.6.3.5)

The representations and sets of values of theintegral types are set out in the section Data
elements on page 70. Note also that:

I Theresult of converting an integer to ashorter signed integer, if the value cannot be
represented, is asif the bitsin the original value which cannot be represented in the
final value are masked out, and the resulting integer sign-extended. The same
applies when you convert an unsigned integer to a signed integer of equal length.

I Bitwise operations on signed integers yield the expected result given two'’s
complement representation. No sign extension takes place.

I The sign of the remainder on integer division is the same as defined for the function
div().

I Right shift operations on signed integral types are arithmetic.

Floating point (A.6.3.6)

The representations and ranges of values of the floating point types have been given in
the sectiorData elements on page 70. Note also that:

I When a floating point number is converted to a shorter floating point one, it is
rounded to the nearest representable number.

I The properties of floating point arithmetic accord with IEEE 754.

Arrays and pointers (A.6.3.7)

The ANSI standard specifies three areas in which the behaviour of arrays and pointers
must be documented. The points to note are:

I The typesi ze_t is defined asinsi gned i nt.

I Casting pointers to integers and vice versa involves no change of representation.
Thus any integer obtained by casting from a pointer will be positive.

I The typeptrdi ff_t is defined asgi gned)i nt.

80

Registers (A.6.3.8)

C implementation details

Inthe Acorn C compiler, you can declare any number of objectsto have the storage class
regi st er. Depending on which variant of the ARM Procedure Call Standard isin use,
there are between five and seven registers available. (There are six available in the
default APCSvariant, as used by RISC OS.) Declaring more than this number of objects
with register storage class must result in at least one of them not being held in aregister.
It is advisable to declare no more than four. The valid types are;

any integer type
any pointer type

any integer-like structure (any one word struct or union in which all addressable
fields have the same address, or any one word structure containing only bitfields).

Notethat other variables, not declared with ther egi st er storage class, may beheldin
registers for extended periods; and that r egi st er variables may be held in memory
for some periods.

Note also that thereis a#pr agma which assigns a file-scope variabl e to a specified
register everywhere within a compilation unit.

Structures, unions, enumerations and bitfields (A.6.3.9)

The Acorn C compiler handles structures in the following way:

When amember of a union is accessed using a member of a different type, the
resulting value can be predicted from the representation of the original type. No
error isgiven.

Structures are aligned on word boundaries. Characters are aligned in bytes, shorts
on even numbered byte boundaries and all other types, except bitfields, are aligned
on word boundaries. Bitfields are subfields of i nt s, themselves aligned on word
boundaries.

A ‘plain’ bitfield (declared a$ nt) is treated agnsi gned i nt (si gned i nt
in - pcc mode).

A bitfield which does not fit into the space remaining in the cuirantis placed in
the next nt .

The order of allocation of bitfields withinnt s is such that the first field specified
occupies the lowest addressed bits of the word.

Bitfields do not straddle storage uniing) boundaries.

The integer type chosen to represent the values of an enumerationitppe is
(signed int).

81

Qualifiers (A.6.3.10)

Qualifiers (A.6.3.10)

Anobjectthat hasvol at i | e-qualified typeisaccessed if any word or byte of it isread
or written. For vol at i | e-qualified objects, reads and writes occur as directly implied
by the source code, in the order implied by the source code.

The effect of accessingavol ati | e-qualified shor t isundefined.

Declarators (A.6.3.11)

The number of declarators that may modify an arithmetic, structure or union typeis
limited only by available memory.

Statements (A.6.3.12)

The number of case valuesinaswi t ch statement is limited only by memory.

Preprocessing directives (A.6.3.13)

A single-character constant in a preprocessor directive cannot have a negative value.

The standard header files are contained within the compiler itself. The mechanism for
translating the standard suffix notation to an Acorn filename is described in the chapter
CC and C++ on page 11.

Quoted names for includable source files are supported. The rules for directory
searching are given in the chapter CC and C++ on page 11.

The recognized #pr agma directives and their meaning are described in the section
#pragma directives on page 86.

The date and time of translation are always available, so_ DATE__and __ TIME__
always give respectively the date and time.

Library functions (A.6.3.14)

82

The C library has or supports the following features:
I Themacro NULL expands to the integer constant O.

1 If aprogram redefines areserved external identifier, then an error may occur when
the program is linked with the standard libraries. If it is not linked with standard
libraries, then no error will be detected.

I Theassert () function printsthe following message:
*** assertion failed: expression, file filenane, |ine, [ine-nunber

and then calls the function abor t () .

C implementation details

Thefunctionsi sal nun() ,i sal pha(),iscntrl (),islower(),
isprint(),isupper() andi spunct () usualy test only for characters
whose values are in the range 0 to 127 (inclusive). Characters with values greater
than 127 return aresult of O for al of these functions, excepti scntrl () which
returns non-zero for 0 to 31, and 128 to 255.

Afterthecall set| ocal e(LC _CTYPE, "1 SO8859- 1") thefollowing statements
also apply to character codes and affect the results returned by the ctype functions:

I codes 128 to 159 are control characters

| codes 192 to 223 except 215 are upper case

| codes 224 to 255 except 247 are lower case

I codes 160 to 191, 215 and 247 are punctuation

The mathematical functions return the following values on domain errors:

Function Condition Returned value
 og(x) X <=0 - HUGE_VAL
 0g10(x) X <=0 - HUGE_VAL
sqrt(x) X <0 - HUGE_VAL
atan2(x,y) x =y =0 - HUGE_VAL
asi n(x) abs(x) > 1 - HUGE_VAL
acos(x) abs(x) > 1 - HUGE_VAL

Where - HUGE_VAL iswritten above, a number is returned which is defined in the
header h. mat h. Consult the er r no variable for the error number.

The mathematical functions set er r no to ERANGE on underflow range errors.

A domain error occurs if the second argument of f nod is zero, and
—HUGE_VAlreturned.

The set of signalsfor the generic signal() function isasfollows:
SIGABRT Abort

SIGFPE Arithmetic exception
SIGILL Illegal instruction

SIGINT Attention request from user
SIGSEGV Bad memory access
SIGTERM Termination request
SIGSTAK Stack overflow

The default handling of all recognised signalsisto print a diagnostic message and call
exit . Thisdefault behaviour applies at program start-up.

When asignal occurs, if func pointsto afunction, the equivalent of signal(sig,
SIG_DFL); isfirst executed.

83

Library functions (A.6.3.14)

84

If the SI G LL signal isreceived by a handler specified to the signal function, the
default handling is reset.

The C library aso has the following characteristics relating to 1/O:
I Thelast line of atext stream does not require a terminating newline character.

I Spacecharacterswritten out to atext stream immediately before anewline character
do appear when read back in.

I Nonull characters are appended to a binary output stream.

I Thefileposition indicator of an append mode stream isinitially placed at the end of
thefile.

I A write to atext stream does not cause the associated file to be truncated beyond
that point.

I The characteristics of file buffering are as intended by section 4.9.3 of the standard.

I A zero-length file (on which no characters have been written by an output stream)
does exist.

I The validity of filenames is defined by the host computer’s filing system.

I The same file can be opened many times for reading, but only once for writing or
updating. A file cannot however be open for reading on one stream and for writing
or updating on another.

Note also the following points about library functions:

renove() Cannot remove an open file.

rename() The effect of calling theenane() function when the new name
already exists is dependent on the host filing system. Not all
renames are valid: examples of invalid renames include
("net:filel","net:$.file2") and
("net:filel","adfs:file2").

fprintf() Prints%p arguments in hexadecimal format (lower case) as if a
precision of 8 had been specified. If the variant foi) is
selected, the number is preceded by the char@ter

fscanf () Treats%p arguments identically téx arguments.
Always treats the character — il argument as a literal
character.
ftell () and Seterrno to the value of EDOM on failure.
f get pos()
perror() Generates the following messages:
Error: M essage:
0 No error érrno =0)
EDOM EDOM - function argument out of range

cal l oc(),
mal | oc()
and
real |l oc()

abort ()
exit()

get env()

system()

strerror()

cl ock()

C implementation details

ERANGE ERANGE - function result not representable

ESIGNUM ESIGNUM - illegal signal number to signal() or
raise()

others Error codaumber has no associated message

If the size of the area requested is z&ld, L is returned under
RISC OS 3.10, and noNULL is returned under RISC OS 3.50..

Closes all open files, and deletes all temporary files.

The status returned lexi t is the same value that was passed to
it. For a definition ofEXI T_SUCCESS andEXI T_FAI LURE
refer to the header filgt dl i b. h.

Returns the value of the named RISC OS Environmental variable,
or NULL if the variable had no value. For example:

root = getenv ("C$libroot");

if (root == NULL) root = "$.armclib";

Used either t&€HAI N to another application or built-in command

or toCALL one as a sub-program. When a program is chained, all
trace of the original program is removed from memory and the
chained program invoked. If a program is called (which is the
default if noCHAI N: or CALL: precedes the program hame — a
change from Release 2), the calling program and data are moved in
memory to somewhere safe and the callee loaded and started up.
The return value from theyst en() call is- 2 (indicating a

failure to invoke the program) or the valueSyfs$Ret ur nCode

set by the called program (0 indicates success).

The error messages given by this function are identical to those
given by theper r or () function.

Returns the time taken by the program since its invocation, as
indicated by the host’s operating system.

85

Extra features

Extra features
This section describes the following machine-specific features of the Acorn C compiler:
I #pragma directives
I special declaration keywords for functions and variables.

#pragma directives
Pragmas recognised by the compiler comein two forms:
#pragma - letter«digit»
and
#pragma «noxfeature-name

A short-form pragma given without a digit resets that pragma to its default state;
otherwise to the state specified.

For example:

#pragma -sl

#pragma nocheck_st ack
#pragma - p2

#pragma profile_statenments

The set of pragmas recognised by the compiler, together with their default settings,
varies from release to release of the compiler. The current list of recognised pragmasis:

Pragma name Short form Short ‘No’ Command
form line option

warn_i nplicit_fn_decls al * a0 - W

check_nenory_accesses cl cO * -zpcO| 1

war n_depr ecat ed dl * do -Wi

continue_after_hash_error el e0 *

(FP register variable) fl1-f4 fo *

i ncl ude_onl y_once il i0*

optim se_crossjunp j1 = jo -zpj 0] 1

optim se_nultiple_|oads m * no -zpn0| 1

profile pl po * -p

profile_statenents p2 po * - pX

(integer register variable) ri-r7 ro *

check_st ack sO * sl -zpsO| 1

86

C implementation details

Pragma name Short form Short ‘No’ Command
form line option

force_top_level t1 t0 *

check_printf_formats vl vO *

check_scanf_formats v2 vO *

side_effects y0 * yl

optimise_cse z1* z0 -zpz0|1

In each case, the default setting is starred.

You can also globally set pragmas by options set in the command line passed to the cc
program (see the section Command lines on page 42); the preferred option to useis
shown above. Where no option is shown for a pragma, it is because that pragma may
only sensibly be used locally, and should be enabled/disabled around the particular
program statementsit is to affect.

Pragmas controlling the preprocessor

Thepragmacont i nue_after_hash_error ineffectimplementsa

#warning ... preprocessor directive. Pragmainclude_only_once assertsthat the
containing #include fileisto beincluded only once, and that if its name recursin a
subsequent #include directive then the directive is to be ignored.

The pragmaforce_top_level asserts that the containing #include file should
only beincluded at thetop level of afile. A syntax error will result if the fileisincluded,
say, within the body of afunction.

Pragmas controlling printf/scanf argument checking

The pragmas check_printf_formats and check_scanf_formats control
whether the actual argumentsto printf and scanf , respectively, are type-checked
against the format designatorsin aliteral format string.

Of courseg, cals using non-literal format strings cannot be checked. By default, all calls
involving literal format strings are checked.

Pragmas controlling optimisation

The pragmas optimise_crossjump , optimise_multiple_loads and
optimise_cse givefine control over where these optimisations are applied. For
example, it is sometimes advantageous to disable cross-jumping (the common tail
optimisation) in the critical loop of an interpreter; and it may be helpful in atiming loop
to disable common subexpression elimination and the opportunistic optimisation of
multiple load instructions to load multiples. Note that the correct use of the volatile

87

#pragma directives

qualifier should remove most of the more obvious needs for this degree of control (and
vol ati | e is also available in the Acorn C compilerscc mode unlessstri ct is
specified).

By default, functions are assumed to be impure, so function invocations are not
candidates for common subexpression elimination. Pragraade_ef f ect s asserts

that the following function declarations (until the n#ptr agma si de_ef f ect s)

describe pure functions, invocations of which can be common subexpressions. See also
the section_pure on page 90.

Pragmas controlling code generation

88

Sack limit checking

The pragmanocheck_st ack disables the generation of code at function entry which
checks for stack limit violation. In reality there is little advantage to turning off this
check: it typically costs only two instructions and two machine cycles per function call.
The one circumstance in whiclocheck_st ack must be used is in writing a signal
handler for theSl GSTAK event. When this occurs, stack overflow has already been
detected, so checking for it again in the handler would result in a fatal circular recursion.

Memory access checking

The pragma check_memory_accesses instructs the compiler to precede each access to
memory by a call to the appropriate one of:

__rt_rdnchk wherenis 1, 2, or 4, for byte, short, or long reads (respectively)
__rt_wrnchk wherenis 1, 2, or 4, for byte, short, or long writes (respectively).
Global (program-wide) register variables

The pragmas 0-f 4 andr O-r 7 have no long form counterparts. Each introduces or
terminates a list aéxt er n, file-scope variable declarations. Each such declaration
declares a name for tisame register variable. For example:

#pragma rl /* 1st gl obal register */
extern int *sp;

#pragma r2 /* 2ndgl obal register */
extern int *fp, *ap; /* Synonyms */

#pragma r0 /* End of gl obal declaration */
#pragma f1 /* 1st global FP register */
extern doubl e pi;

#pragma fO /* End of gl obal declaration */

Any type that can be allocated to a register (see the s&&isters (A.6.3.8) on
page 81) can be allocated to a global register. Similarly, any floating point type can be
allocated to a floating point register variable.

C implementation details

Global register rlisthe same asregister v1 in the ARM Procedure Call Standard
(APCS); similarly, r2 equatesto v2, and so on. Depending on the APCS variant, between
five and seven integer registers (v1-v7, machine registers R4-R10) and four floating
point registers (F4-F7) are available asregister variables. (There are six integer registers
available in the default APCS variant, as used by RISC OS.) In practice it is probably
unwise to use more than three global integer register variables and 2 global floating
point register variables.

Provided the same declarations are made in each compilation unit, a global register
variable may exist program-wide.

Otherwise, because a global register variable maps to a callee-saved register, its value
will be saved and restored across acall to afunctionin acompilation unit which does not
useit asaglobal register variable, such as alibrary function.

A corollary of the safety of direct calls out of aglobal-register-using compilation unit, is
that calls back into it are dangerous. In particular, aglobal-register-using function called
from a compilation unit which uses that register as a compiler allocated register, will
probably read the wrong values from its supposed global register variables.

Currently, there is no link-time check that direct calls are sensible. And even if there
were, indirect calls viafunction arguments pose a hazard which is harder to detect. This
facility must be used with care. Preferably, the declaration of global register variable
should be made in each compilation unit of the program. See also the section
__global_reg(n) on page 90.

Special function declaration keywords

Several special function declaration options are availableto tell the Acorn C compiler to
treat that function in a special way. None of these are portable to other machines.

__value_in_regs
This alows the compiler to return a structure in registers rather than returning a pointer
to the structure. For example:

typedef struct int64_structt {
unsigned int lo
unsi gned int hi;

} int 64

__value_in_regs extern int64 mul 64(unsigned a, unsigned b);

See the appendix ARM procedure call standard on page 249 of the Desktop Tools guide
for details of the default way in which structures are passed and returned.

89

Special variable declaration keywords

__pure

By default, functions are assumed to be impure (i.e. they have side effects), so function
invocations are not candidates for common subexpression elimination. __pur e hasthe
same effect as pragmanosi de_ef f ect s, and asserts that the function declared isa
pure function, invocations of which can be common subexpressions.

Special variable declaration keywords

__global_reg(n)

Allocates the declared variable to aglobal integer register variable, in the same way as
#pragma r n. The variable must have an integral or pointer type. See also the section
Global (program-wide) register variables on page 88.

__global_freg(n)

Allocates the declared variable to a global floating point register variable, in the same
way as#pr agma f n. Thevariable must have typefloat or double. See also the section
Glaobal (program-wide) register variables on page 88.

Note that the global register, whether specified by keyword or pragmas, must be
declared in all declarations of the same variable. Thus:

int x;
__global _reg(1) x;

isan error.

90

The C library

he shared C library is arelocatable modulein the RISC OS ROM. Applications

which are resident in memory at the same time can shareiit. It provides all the
standard facilities of the language, as defined by the ANSI standard document. Code
using callsto the shared C library will be portable to other environments if an ANSI
compiler and library are available for that environment.

C and C++ programs are linked with a small piece of code and data called St ubs,

which itself interfaces with the shared C library. The stubs contain your program’s copy
of the library’s data, and amtry vector which allows your program to locate library
routines in the C library modul&t ubs is found in the directory

AcornC C++. Libraries.clib.o.

Use of the shared C library:

I economises on RAM space when multiple C applications are running
I saves space on disc, benefiting users with single floppy disc drives

I makes programs load faster

I costs practically nothing at run time.

(For example, the Dhrystone benchmark runs just as quickly using the shared C
library as when linked stand-alone with ANSILib.)

Without the shared C library, it would not be possible to pack so much into
Acorn C/C++.

91

assert.h

92

assert.h

Theassert macro puts diagnosticsinto programs. When it is executed, if its argument
expression isfase, it writes information about the call that failed (including the text of
the argument, the name of the source file, and the source line number, the last two of
these being, respectively, the values of the preprocessing macros__ FI LE__ and
__LINE__) onthe standard error stream. It then callstheabor t function. If its
argument expression istrue, theassert macro returns no value.

If NDEBUGIs#defined prior toinclusion of assert . h, calstoassert expandto null
statements. This provides a simple way to turn off the generation of diagnostics
selectively.

Note that assert . h may be included more than once in a program with different
settings of NDEBUG

The C library

ctype.h

ct ype. h declares several functions useful for testing and mapping characters. In all

cases the argument is an int, the value of which is representable as an unsigned char or
equal to the value of the macro EOF. If the argument has any other value, the behaviour
is undefined.

nt

i sal num(int c)

nt isal ph(int c)

nt

nt

nt

nt

nt

nt

nt

nt

nt

nt

nt

scntrl (int

sdigit(int
sgraph(i nt

sl ower (i nt

sprint (int

spunct (i nt

sspace(i nt

supper (i nt

sxdigit(int c)

c)

c)

c)

c)

c)

c)

c)

c)

tol ower (int c)

t oupper (i nt c)

Returnstrueif c is alphabetic or numeric
Returnstrueif c is alphabetic

Returnstrueif ¢ isacontrol character (in the ASCII
locale)

Returnstrueif cisadecimal digit

Returnstrueif ¢ isany printable character other than
space

Returnstrueif ¢ isalower-case letter

Returnstrueif ¢ isaprintable character (in the ASCII
locale this means 0x20 (space) — OX7E (tilde)
inclusive).

Returnstrueif ¢ isa printable character other than a
space or alphanumeric character

Returnstrueif c is awhite space character viz: space,
newline, return, linefeed, tab or vertical tab

Returnstrueif c isan upper-case letter

Returns true if ¢ is a hexadecimal digit, ie in 0...9, a...f,
orA...F

Forces c to lower case if it is an upper-case letter,
otherwise returns the original value

Forces c to upper case if it is a lower-case letter,
otherwise returns the original value

93

errno.h

EDOM

ERANGE

ESIGNUM

94

errno.h

This file contains the definition of the macro er r no, which isof typevol atil e
i nt . It contains three macro constants defining the error conditions listed bel ow.

If adomain error occurs (an input argument is outside the domain over which the
mathematical function is defined) the integer expression er r no acquires the value of
the macro EDOMand HUGE_ VAL is returned. EDOMmay be used by non-mathematical
functions.

A range error occursif the result of afunction cannot be represented as a double value.
If the result overflows (the magnitude of the result is so large that it cannot be
represented in an object of the specified type), the function returns the val ue of the
macro HUGE_ VAL, with the same sign as the correct value of the function; the integer
expression er r no acquires the value of the macro ERANGE. If the result underflows
(the magnitude of the result is so small that it cannot be represented in an object of the
specified type), the function returns zero; the integer expression er r no acquiresthe
value of the macro ERANGE. ERANGE may be used by non-mathematical functions.

If an unrecognised signal is caught by the default signal handler, er r no is set to
ESI GNUM

The C library

float.h

Thisfile contains a set of macro constants which define the limits of computation on
floating point numbers. These are discussed in the chapter C implementation details on

page 69.

95

limits.h

limits.h

This set of macro constants determines the upper and lower value limits for integral
objects of various types, as follows:

Object type Minimum value Maximum value
Byte (number of bits) 0 8
Signed char -128 127
Unsigned char 0 255
Char 0 255
Multibyte character (number 0 1

of bytes)
Short int - 0x8000 Ox7fff
Unsigned short int 0 65535
Int (~Ox7fffffff) OX7fffffff
Unsigned int 0 Oxffffffff
Longint (~Ox7fffffff) Ox7fffffff
Unsigned long int 0 Oxffffffff

See also the chapter C implementation details on page 69.

96

The C library

locale.h

Thisfile handles national characteristics, such as the different orderings month-day-year
(USA) and day-month-year (UK).

char *setlocal e(int category, const char *|ocale)

Selects the appropriate part of the program’s locale as specified battegor y and

| ocal e arguments. Theet | ocal e function may be used to change or query the

program’s entire current locale or portions thereof. Locale information is divided into
the following types:

LC COLLATE string collation

LC _CTYPE character type
LC_MONETARY monetary formatting

LC _NUMERI C numeric string formatting
LC TI ME time formatting

LC ALL entire locale

The locale string specifies which locale set of information is to be used. For example,

setlocale
set| ocal e(LC_MONETARY, "uk")
would insert monetary information into theonv structure. To query the current locale
information, set théocal e string to null and read the string returned.

lconv

struct | conv *| ocal econv(void)

Sets the components of an object with type stracinv with values appropriate for the
formatting of numeric quantities (monetary and otherwise) according to the rules of the
current locale. The members of the structure with tjper * are strings, any of which
(exceptdeci mal _poi nt) can pointtd ", to indicate that the value is not available in
the current locale or is of zero length. The members withdjpe are non-negative
numbers, any of which can @AR_MAX to indicate that the value is not available in

the current locale. The members included are described above.

| ocal econv returns a pointer to the filled in object. The structure pointed to by the
return value will not be modified by the program, but may be overwritten by a
subsequent call to tHeocal econv function. In addition, calls to theet | ocal e
function with categoriesC_ALL, LC_MONETARY, or LC_NUMERI C may overwrite

the contents of the structure.

97

math.h

98

math.h

This file contains the prototypes for 22 mathematical functions. All return the type
doubl e.

Functi on Ret ur ns

doubl e acos(doubl e x) arc cosine of x. A domain error occurs
for arguments not in the range -1 to 1

doubl e asi n(doubl e x) arc sine ofx. A domain error occurs for
arguments not in the range -1 to 1

doubl e atan(doubl e x) arc tangent ok

doubl e atan2(doubl e x, double y) arc tangent of// x

doubl e cos(doubl e x) cosine ofx (measured in radians)

doubl e si n(doubl e x) sine ofx (measured in radians)

doubl e tan(doubl e x) tangent ofx (measured in radians)

doubl e cosh(doubl e x) hyperbolic cosine ok

doubl e si nh(doubl e x) hyperbolic sine ok

doubl e tanh(doubl e x) hyperbolic tangent ot

doubl e exp(doubl e x) exponential function ok

doubl e frexp(double x, int *exp) the valuex, such thak is a double

with magnitude in the interval 0.5 to 1.0
or zero, and value equatdimes 2 raised
to the power exp

doubl e | dexp(doubl e x, int exp) xtimes 2 raised to the powerektp
doubl e | og(doubl e x) natural logarithm ok
doubl e 1 0g10(doubl e x) log to the base 10 of

doubl e nodf (doubl e x, double *iptr) signed fractional part of. Stores
integer part ofx in object pointed to by

iptr.

doubl e pow(doubl e x, double y) xraised tothe power of

doubl e sqgrt (doubl e x) positive square root of

doubl e ceil (doubl e x) smallest integer not less than (ie
rounding up)

doubl e fabs(double x) absolute value of

doubl e fl oor (doubl e x) largest integer not greater than (ie

rounding down)
doubl e fnod(doubl e x, doubl e y) floating-point remainder ot/ y

setjmp

longjmp

The C library

setjimp.h

This file declares two functions, and one type, for bypassing the normal function call
and return discipline (useful for dealing with unusual conditions encountered in a
low-level function of a program). It also definesthej np_buf structure type required
by these routines.

int setjnp(jnmp_buf env)

The calling environment is saved in env, for later use by thel ongj np function. If the
return is from adirect invocation, the set j np function returns the value zero. If the
returnisfrom acall tothel ongj np function, the set j np function returns anon-zero
value.

voi d | ongj mp(j np_buf env, int val)

The environment saved in env by the most recent call to set j np isrestored. If there
has been no such call, or if the function containing thecall toset j np has terminated
execution (eg with areturn statement) in the interim, the behaviour is undefined. All
accessible objects have values as at thetime | ongj np was called, except that the
values of objects of automatic storage duration that do not have volatile type and that
have been changed between theset j np and | ongj np calls are indeterminate.

Asit bypasses the usual function call and return mechanism, thel ongj np function
executes correctly in contexts of interrupts, signalsand any of their associated functions.
However, if thel ongj np function isinvoked from a nested signal handler (that is,
from afunction invoked as aresult of asignal raised during the handling of another
signal), the behaviour is undefined.

After | ongj np iscompleted, program execution continues as if the corresponding call
toset j np had just returned the value specified by val . Thel ongj nmp function
cannot cause set j np to return thevalue O; if val is0, set j np returnsthe value 1.

99

signal.h

raise

100

signal.h

Si gnal declaresatype(si g_atom c_t) and two functions.

It also defines several macros for handling various signals (conditions that may be
reported during program execution). Theseare SI G_DFL (default routine), SI G_| GN
(ignore signal routine) and SI G_ERR (dummy routine used to flag error return from
si gnal).

void (*signal (int sig, void (*func)(int)))(int)
Think of thisas

typedef void Handler(int);
Handl er *signal (int, Handler *);

Chooses one of three waysin which receipt of the signal number si g isto be
subsequently handled. If the value of f unc isSI G_DFL, default handling for that
signal will occur. If thevalue of f unc isSI G_I G\, the signal will be ignored.
Otherwise f unc pointsto afunction to be called when that signal occurs.

When asignal occurs, if f unc pointsto afunction, first the equivalent of

si gnal (si g, S| G _DFL) isexecuted. (If thevalueof si g isSI G LL, whether the
reset to SI G_DFL occursisimplementation-defined (under RISC OS the reset does
occur)). Next, the equivalent of (*f unc) (si g) ; is executed. The function may
terminate by callingtheabort ,exi t orl ongj np function. If f unc executesareturn
statement and thevalue of si g was SI GFPE or any other implementation-defined value
corresponding to a computational exception, the behaviour is undefined. Otherwise, the
program will resume execution at the point it was interrupted.

If the signal occurs other than as aresult of calling theabort orr ai se function, the
behaviour is undefined if the signal handler calls any function in the standard library
other than the signal function itself or refersto any object with static storage duration
other than by assigning avalueto avolatile static variable of typesi g_at oni c_t . At
program start-up, the equivalent of si gnal (si g, Sl G_| GN) may be executed for
some signals selected in an implementation-defined manner (under RISC OS this does
not occur); the equivalent of si gnal (si g, SI G _DFL) isexecuted for all other
signals defined by the implementation.

If the request can be honoured, thesi gnal function returnsthe value of f unc for most
recent call to si gnal for the specified signal si g. Otherwise, avalue of SI G_ERRIis
returned and the integer expression er r no is set to indicate the error.

int raise(int /*sig*/)

The C library

Sends the signal sig to the executing program. Returns zero if successful, non-zero if
unsuccessful.

101

stdarg.h

va_list

va_start

va_arg

102

stdarg.h

This file declares a type and defines three macros, for advancing through alist of
arguments whose number and types are not known to the called function when it is
translated. A function may be called with a variable number of arguments of differing
types. Its parameter list contains one or more parameters, the rightmost of which playsa
special role in the access mechanism, and will be called par N in this description.

char *va_list[1]

An array type suitable for holding information needed by the macro va_ar g and the
function va_end. The called function declares avariable (referred to as ap) having
typeva_l i st. Thevariable ap may be passed as an argument to another function.
va_l i st isanarray type so that when an object of that type is passed as an argument it
gets passed by reference, but thisis not required by the ANSI specification and cannot
be relied on.

Theva_st art macrowill be executed before any access to the unnamed arguments.
The parameter ap pointsto an object that hastypeva_| i st. Theva_st art macro
initialisesap for subsequent useby va_ar g andva_end. The parameter par mNisthe
identifier of the rightmost parameter in the variable parameter list in the function
definition (the one just beforethe, . ..). If the parameter par mNis declared with the
register storage class the behaviour is undefined.

Returns; no value.

Theva_ar g macro expands to an expression that has the type and value of the next
argument in the call. The parameter ap isthe sameastheva_Il i st ap initialised by
va_st art . Eachinvocation of va_ar g modifiesap so that successive arguments are
returned in turn. The parameter t ype isatype name such that the type of a pointer to an
object that has the specified type can be obtained simply by postfixinga* tot ype. If
t ype disagrees with the type of the actual next argument (as promoted according to the
default argument promotions), the behaviour is undefined.

Returns: Thefirst invocation of theva_ar g macro after that of theva_st art macro
returns the value of the argument after that specified by par . Successive invocations
return the values of the remaining argumentsin succession. Careistakeninva_ar g so

The C library

that illegal thingslikeva_ar g(ap, char) — which may seem natural but are in fact
illegal — are caughttza_ar g(ap, f | oat) is wrong but cannot be patched up at the C
macro level.

va_end
#defi ne va_end(ap) ((void)(*(ap) = (char *)-256))

Theva_end macro facilitates a normal return from the function whose variable
argument list was referenced by the expansioreofst art that initialised the

va_l i st ap. Iftheva_end macro is not invoked before the return, the behaviour is
undefined.

103

stddef.h

104

stddef.h

This file contains a macro for calculating the offset of fields within a structure. It also
defines the pointer constant NULL and three types.

ptrdi ff_t(here int)

size_t (here unsigned int)

wchar _t (here int)

the signed integral type of the result of
subtracting two pointers

the unsigned integral type of the result of the
si zeof operator

asoinstdlib. h. Anintegra type whose
range of values can represent distinct codes for
all members of the largest extended character
set specified among the supported locales; the
null character has the code value zero and each
member of the basic character set has a code
value when used as the lone character in an
integer character constant.

size_t offsetof (type, menber) Expandsto anintegral constant expression

that hastypesi ze_t , thevalue of whichisthe
offset in bytesfrom the beginning of astructure
designated by t y pe, of the member designated
by menber (if the specified member isa
bit-field, the behaviour is undefined).

remove

rename

tmpfile

The C library

stdio.h

st di o declarestwo types, several macros, and many functions for performing input
and output. For a discussion on Streams and Files refer to sections 4.9.2 and 4.9.3 in the
ANSI standard or to one of the other references given in the Introduction to this Guide.

fpos_t f pos_t isan object capable of recording all information needed to
specify uniquely every position within afile.

FI LE is an object capable of recording all information needed to control a
stream, such asitsfile position indicator, a pointer to its associated
buffer, an error indicator that records whether a read/write error has
occurred and an end-of-file indicator that records whether the
end-of-file has been reached. The objects contained in the #i f def
__system.i o clause arefor system use only, and cannot be relied
on between releases of C.

int renove(const char * filenane)

Causes the file whose name is the string pointed to by f i | enane to be removed.
Subsequent attemptsto open thefilewill fail, unlessit is created anew. If thefileis open,
the behaviour of ther enpove function isimplementation-defined (under RISC OS the
operation fails).

Returns: zero if the operation succeeds, non-zero if it fails.

int renane(const char * ol/d, const char * new

Causes the file whose name is the string pointed to by o/ d to be henceforth known by
the name given by the string pointed to by new The file named o/ d is effectively
removed. If afile named by the string pointed to by new exists prior to the call of the
r ename function, the behaviour is implementation-defined (under RISC OS, the
operation fails).

Returns: zero if the operation succeeds, non-zero if it fails, in which caseif thefile
existed previoudly it is still known by its original name.

FILE *tnpfil e(void)

105

stdio.h

tmpnam

fclose

fflush

106

Creates atemporary binary file that will be automatically removed when it is closed or
at program termination. Thefileis created if possiblein W np$Scr apDi r, or failing
that, in the directory $. t np; it is then opened for update.

Returns: a pointer to the stream of the file that it created. If the file cannot be created, a
null pointer is returned.

char *tnpnam(char * s)

Generates a string that is not the same as the name of an existing file. Thet npnam
function generates a different string each timeit is called, up to TMP_MAX times. If it is
called more than TMP_MAX times, the behaviour isimplementation-defined (under
RISC OS the algorithm for the name generation works just as well after t mpnamhas
been called more than TMP_MAX times as before; a name clash isimpossible in any
single half year period).

Returns: If the argument is a null pointer, thet npnamfunction leavesitsresult in an
internal static object and returns a pointer to that object. Subsequent callsto thet mpnam
function may modify the same object. If the argument is not a null pointer, it is assumed
to point to an array of at least L_t npnamcharacters; thet npnamfunction writesits
result in that array and returns the argument as its value.

int fclose(FILE * stream

Causes the stream pointed to by st r eamto be flushed and the associated file to be
closed. Any unwritten buffered datafor the stream are delivered to the host environment
to be written to the file; any unread buffered data are discarded. The stream is
disassociated from the file. If the associated buffer was automatically allocated, it is
deallocated.

Returns: zero if the stream was successfully closed, or EOF if any errors were detected
or if the stream was already closed.

int fflush(FILE * strean)

If the stream points to an output or update stream in which the most recent operation was
output, thef f | ush function causes any unwritten datafor that stream to be delivered to
the host environment to be written to the file. If the stream points to an input or update

stream, thef f | ush function undoes the effect of any preceding unget ¢ operation on
the stream.

fopen

The C library

Returns; EOF if awrite error occurs.

FI LE *fopen(const char * filenane, const char * npde)

Opens the file whose name is the string pointed to by f i | ename, and associates a
stream with it. The argument node pointsto a string beginning with one of the
following sequences:

r open text file for reading

w create text file for writing, or truncate to zero length

a append; open text file or create for writing at eof

rb open binary file for reading

wb create binary file for writing, or truncate to zero length

ab append; open binary file or create for writing at eof

r+ open text file for update (reading and writing)

WH create text file for update, or truncate to zero length

a+ append; open text file or create for update, writing at eof

r+borrb+ open binary file for update (reading and writing)

wHb or wh+ create binary file for update, or truncate to zero length

a+b or ab+ append; open binary file or create for update, writing at
eof

Opening afile with read mode (r asthe first character in the node argument) fails
if the file does not exist or cannot be read.

Opening a file with append mode (a asthefirst character in the node argument)
causes all subsequent writes to be forced to the current end of file, regardless of
intervening calsto thef seek function.

In some implementations, opening a binary file with append mode (b as the second
or third character in the npbde argument) may initially position the file position
indicator beyond the last data written, because of null padding (but not under
RISC 0S).

When afileis opened with update mode (+ as the second or third character in the
nmpde argument), both input and output may be performed on the associated stream.
However, output may not be directly followed by input without an intervening call
tothef f I ush function or to afile positioning function (f seek, f set pos, or

r ewi nd), nor may input be directly followed by output without an intervening call
tothef f I ush function or to afile positioning function, unless the input operation
encounters end-of-file.

Opening afile with update mode may open or create a binary stream in some
implementations (but not under RISC OS). When opened, astream isfully buffered
if and only if it does not refer to an interactive device. The error and end-of-file
indicators for the stream are cleared.

107

stdio.h

freopen

setbuf

setvbuf

108

Returns: a pointer to the object controlling the stream. If the open operation fails,
f open returns anull pointer.

FILE *freopen(const char * filenane, const char * npde,
FILE * stream

Opens the file whose name is the string pointed to by f i / ename and associates the
stream pointed to by st r eamwith it. The npde argument isused just asinthef open
function. Thef r eopen function first attempts to close any file that is associated with
the specified stream. Failure to close the file successfully isignored. The error and
end-of-file indicators for the stream are cleared.

Returns: anull pointer if the operation fails. Otherwise, f r eopen returns the value of
the stream.

void setbuf (FILE * stream char * buf)

Except that it returns no value, the set buf function is equivalent to the set vbuf
function invoked with the values _|OFBF for node and BUFSIZ for si ze, or if buf is
anull pointer, with the value _|ONBF for node.

Returns: no value.

int setvbuf (FILE * stream char * buf, int npde, size_t
Si ze)

This may be used after the stream pointed to by st r eamhas been associated with an
open file but beforeit is read or written. The argument node determines how st ream
will be buffered, asfollows:

I _|OFBF causes input/output to be fully buffered.

I _IOLBF causes output to be line buffered (the buffer will be flushed when a
newline character is written, when the buffer isfull, or when interactiveinput is
reguested).

I _IONBF causesinput/output to be completely unbuffered.

fprintf

The C library

If buf isnot the null pointer, the array it points to may be used instead of an
automatically allocated buffer (the buffer must have alifetime at least as great asthe
open stream, so the stream should be closed before a buffer that has automatic storage
duration is deall ocated upon block exit). The argument s/ ze specifies the size of the
array. The contents of the array at any time are indeterminate. buf must be non-null.

Returns: zero on success, or non-zero if an invalid valueis given for mode or size, or if
the request cannot be honoured.

int fprintf(FILE * stream const char * format, ...)

writes output to the stream pointed to by st r eam under control of the string pointed to
by f or mat that specifies how subsequent arguments are converted for output. If there
areinsufficient arguments for the format, the behaviour is undefined. If the format is
exhausted while arguments remain, the excess arguments are evaluated but otherwise
ignored. Thef pri nt f function returns when the end of the format string is reached.
The format must be a multibyte character sequence, beginning and ending in itsinitial
shift state (in all locales supported under RISC OS this is the same as a plain character
string). The format is composed of zero or more directives: ordinary multibyte
characters (not %), which are copied unchanged to the output stream; and conversion
specifiers, each of which results in fetching zero or more subsequent arguments. Each
conversion specification isintroduced by the character %. For a complete description of
the available conversion specifiersrefer to section 4.9.6.1in the ANSI standard or to one
of the other references in the Introduction to this Guide. The minimum value for the
maximum number of charactersthat can be produced by any single conversionisat least
509.

A brief and incomplete description of conversion specificationsis:
[flags][field width][.precision]specifier-char

f 1 ags ismost commonly -, indicating | eft justification of the output item within the
field. If omitted, the item will be right justified.

field w dthistheminimum width of field to use. If the formatted item is longer, a
bigger field will be used; otherwise, the item will beright (Ieft) justified in the field.

preci si onisthe minimum number of digitsto print for ad, i, o, u, x or X conversion,
the number of digits to appear after the decimal digit for e, E and f conversions, the
maximum number of significant digits for g and G conversions, or the maximum
number of characters to be written from stringsin an s conversion.

Either or both of fi e/ d wi dt h and preci si on may be* , indicating that the value
isanargumenttopri ntf .

Thespeci fier chars are

109

stdio.h

printf

sprintf

fscanf

110

d, i int printed as signed decimal

0, U, X, X unsignedintvalue printed asunsigned octal, decimal or
hexadecimal

f double value printed in the style[-] ddd. ddd

e, E double value printed in the style [-]d.ddd...e+dd

0,G double printed in f or e format, whichever is more
appropriate

c int value printed as unsigned char

s char* value printed as a string of characters

p void * argument printed as a hexadecimal address

% write aliteral %

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

int printf(const char * format, ..)

Equivalent to fprintf with the argument stdout interposed before the argumentsto
printf

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

int sprintf(char * s, const char * format, ..)

Equivalent to fprintf |, except that the argument s specifies an array into which the
generated output isto bewritten, rather than to astream. A null character iswritten at the
end of the characters written; it is not counted as part of the returned sum.

Returns: the number of characters written to the array, not counting the terminating null
character.

int fscanf(FILE * st ream const char * format, ..)

Reads input from the stream pointed to by st r eam under control of the string pointed
toby f or mat that specifies the admissible input sequences and how they are to be
converted for assignment, using subseguent arguments as pointers to the objects to
receive the converted input. If there are insufficient arguments for the format, the
behaviour is undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated but otherwise ignored. The format is composed of zero or more

scanf

sscanf

The C library

directives, one or more white-space characters, an ordinary character (not %), or a
conversion specification. Each conversion specification is introduced by the character
%. For adescription of the available conversion specifiersrefer to section 4.9.6.2 in the
ANSI| standard, or to any of the references listed in the chapter Introduction on page 1.
A brief list is given above, under the entry for f pri nt f.

If end-of-fileis encountered during input, conversion isterminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an
input failure; otherwise, unless execution of the current directive is terminated with a
matching failure, execution of thefollowing directive (if any) isterminated with an input
failure.

If conversions terminate on aconflicting input character, the offending input character is
left unread in theinput stream. Trailing white space (including newline characters) isleft
unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than viathe %n directive.

Returns: the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, thef scanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early conflict between an
input character and the format.

i nt scanf(const char * format, ...)

Equivalent to f scanf with the argument st di n interposed before the argumentsto
scanf .

Returns: the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, thescanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early matching failure.

i nt sscanf(const char * s, const char * format, ...)

Equivalent tof scanf except that the argument s specifies a string from which the
input is to be obtained, rather than from a stream. Reaching the end of the string is
equivalent to encountering end-of-file for the f scanf function.

Returns: the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, thescanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early matching failure.

111

stdio.h

vprintf

viprintf

vsprintf

fgetc

112

int vprintf(const char * format, va_list arg)

Equivalenttopri nt f , with the variable argument list replaced by ar g, which has been
initialised by theva_st art macro (and possibly subsequent va_ar g cals). The
vpri nt f function does not invoketheva_end function.

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

int vfprintf(FILE * streamconst char * format, va_list
arg)

Equivalent tof pri nt f , with the variable argument list replaced by ar g, which has
beeninitialised by theva_st art macro (and possibly subsequent va_ar g calls). The
vf pri nt f function does not invoke theva_end function.

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

int vsprintf(char * s, const char * format, va_ list arg)

Equivalenttospri nt f , with the variable argument list replaced by ar g, which has
beeninitialised by theva_st art macro (and possibly subsequent va_ar g calls). The
vspri nt f function does not invoke the va_end function.

Returns: the number of characters written in the array, not counting the terminating null
character.

int fgetc(FILE * streanm

Obtains the next character (if present) as an unsigned char converted to an int, from the
input stream pointed to by st r eam and advances the associated file position indicator
(if defined).

Returns: the next character from the input stream pointedto by st r eam If the streamis
at end-of-file, the end-of-file indicator is set and f get ¢ returns EOF. If aread error
occurs, the error indicator is set and f get ¢ returns EOF.

fgets

fputc

fputs

getc

The C library

char *fgets(char * s, int n, FILE * streanm

Reads at most one less than the number of characters specified by n from the stream
pointed to by st r eaminto the array pointed to by s. No additional characters are read
after a newline character (which isretained) or after end-of-file. A null character is
written immediately after the last character read into the array.

Returns: s if successful. If end-of-file is encountered and no characters have been read
into the array, the contents of the array remain unchanged and a null pointer is returned.
If aread error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

int fputc(int ¢, FILE * stream

Writes the character specified by ¢ (converted to an unsigned char) to the output stream
pointed to by st r eam at the position indicated by the associated file position indicator
(if defined), and advances the indicator appropriately. If the file cannot support
positioning requests, or if the stream was opened with append mode, the character is
appended to the output stream.

Returns; the character written. If awrite error occurs, the error indicator is set and
f put c returns EOF.

int fputs(const char * s, FILE * stream

Writes the string pointed to by s to the stream pointed to by st r eam The terminating
null character is not written.

Returns; EOF if awrite error occurs; otherwise it returns a non-negative value.

int getc(FILE * stream

Equivalent to f get ¢ except that it may be (and is under RISC OS) implemented as a
macro. st r eammay be evaluated more than once, so the argument should never be an
expression with side effects.

Returns: the next character from the input stream pointed to by st r eam If the streamis
at end-of-file, the end-of-file indicator is set and get ¢ returns EOF. If aread error
occurs, the error indicator is set and get ¢ returns EOF.

113

stdio.h

getchar

gets

putc

putchar

puts

114

i nt getchar(void)
Equivalent to get ¢ with the argument st di n.

Returns: the next character from the input stream pointed to by st di n. If the streamis
at end-of-file, the end-of-file indicator is set and get char returns EOF. If aread error
occurs, the error indicator is set and get char returns EOF.

char *gets(char * s)

Reads characters from the input stream pointed to by st di n into the array pointed to by
s, until end-of-fileis encountered or anewline character is read. Any newline character
isdiscarded, and anull character iswritten immediately after the last character read into
the array.

Returns: s if successful. If end-of-fileis encountered and no characters have been read
into the array, the contents of the array remain unchanged and a null pointer is returned.
If aread error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

int putc(int ¢, FILE * stream

Equivalent tof put ¢ except that it may be (and is under RISC OS) implemented asa
macro. st r eammay be evaluated more than once, so the argument should never be an
expression with side effects.

Returns: the character written. If awrite error occurs, the error indicator is set and put ¢
returns ECF.

int putchar(int c)
Equivalent to put ¢ with the second argument st dout .

Returns: the character written. If awrite error occurs, the error indicator is set and put ¢
returns ECF.

int puts(const char * s)

ungetc

fread

The C library

Writes the string pointed to by s to the stream pointed to by st dout , and appends a
newline character to the output. The terminating null character is not written.

Returns. EOF if awrite error occurs; otherwise it returns a non-negative value.

int ungetc(int ¢, FILE * strean)

Pushes the character specified by ¢ (converted to an unsigned char) back onto the input
stream pointed to by st r eam The character will be returned by the next read on that
stream. Anintervening call tothef f | ush function or to afile positioning function

(f seek, f set pos, r ewi nd) discards any pushed-back characters. The external
storage corresponding to the stream is unchanged. One character pushback is
guaranteed. If theunget function iscalled too many times on the same stream without
anintervening read or file positioning operation on that stream, the operation may fail. If
the value of ¢ eguals that of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to theunget c function clears the end-of-file indicator. The value of
the file position indicator after reading or discarding all pushed-back characters will be
the same as it was before the characters were pushed back. For atext stream, the value
of the file position indicator after a successful call to theunget c functionis
unspecified until al pushed-back characters are read or discarded. For abinary stream,
the file position indicator is decremented by each successful call to theunget ¢
function; if its value was zero before acall, it is indeterminate after the call.

Returns: the character pushed back after conversion, or ECF if the operation fails.

size_t fread(void * ptr,size_t size,
size_t nnmenb, FILE * strean)

Reads into the array pointed to by pt r, up to nimenmb members whose size is specified
by si ze, from the stream pointed to by st r eam Thefile position indicator (if defined)
is advanced by the number of characters successfully read. If an error occurs, the
resulting value of thefile position indicator isindeterminate. If apartial member isread,
itsvalueisindeterminate. Thef er r or or f eof function shall be used to distinguish
between aread error and end-of-file.

Returns: the number of members successfully read, which may be lessthan nnent if a
read error or end-of-fileis encountered. If si ze or nmenb iszero, f r ead returns zero
and the contents of the array and the state of the stream remain unchanged.

115

stdio.h

fwrite

fgetpos

fseek

116

size_t fwite(const void * ptr,
size_t size, size_t nnenb, FILE * stream

Writes, from the array pointed to by pt r up to nnmenb members whose sizeis specified
by si ze, to the stream pointed to by st r eam Thefile position indicator (if defined) is
advanced by the number of characters successfully written. If an error occurs, the
resulting value of the file position indicator is indeterminate.

Returns: the number of members successfully written, which will be less than nmenb
only if awrite error is encountered.

int fgetpos(FILE * stream fpos_t * pos)

Stores the current value of the file position indicator for the stream pointed to by

st r eamin the object pointed to by pos. The value stored contains unspecified
information usable by thef set pos function for repositioning the stream to its position
at the time of the call to the f get pos function.

Returns: zero, if successful. Otherwise non-zero is returned and the integer expression
er r no is set to an implementation-defined non-zero value (under RISC OSf get pos
cannot fail).

int fseek(FILE * stream long int offset, int whence)

Sets the file position indicator for the stream pointed to by st r eam For abinary
stream, the new position is at the signed number of characters specified by of f set
away from the point specified by whence. The specified point is the beginning of the
file for SEEK_SET, the current position in the file for SEEK_CUR, or end-of-file for
SEEK_END. A binary stream need not meaningfully support f seek callswith a
uwhence value of SEEK_END, though the Acorn implementation does. For atext
stream, of f set iseither zero or avaluereturned by an earlier call tothef t el |
function on the same stream; whence isthen SEEK SET. The Acorn implementation
also alows atext stream to be positioned in exactly the same manner as abinary stream,
but thisis not portable. Thef seek function clears the end-of-file indicator and undoes
any effects of the unget c function on the same stream. After an f seek call, the next
operation on an update stream may be either input or output.

Returns. non-zero only for arequest that cannot be satisfied.

fsetpos

ftell

rewind

The C library

int fsetpos(FILE * stream const fpos_t * pos)

Sets the file position indicator for the stream pointed to by st r eamaccording to the
value of the object pointed to by pos, which isavalue returned by an earlier call to the
f get pos function on the same stream. The f set pos function clears the end-of-file
indicator and undoes any effects of the unget ¢ function on the same stream. After an
f set pos call, the next operation on an update stream may be either input or output.

Returns: zero, if successful. Otherwise non-zero is returned and the integer expression
er r no isset to an implementation-defined non-zero value (under RISC OSthevalueis
that of EDOM in mat h. h).

long int ftell (FILE * stream

Obtains the current value of the file position indicator for the stream pointed to by

st r eam For abinary stream, the value is the number of characters from the beginning
of thefile. For atext stream, thefile position indicator contains unspecified information,
usable by the f seek function for returning the file position indicator to its position at
thetimeof theft el | call; the difference between two such return valuesis not
necessarily ameaningful measure of the number of characters written or read. However,
for the Acorn implementation, the value returned is merely the byte offset into the file,
whether the stream istext or binary.

Returns: if successful, the current value of the file position indicator. On failure, the
ftell function returns —1L and sets the integer expressiomo to an
implementation-defined non-zero value (under RISCf®8I | cannot fail).

void rewi nd(FILE * strean)

Sets the file position indicator for the stream pointed tetwyeamto the beginning of
the file. It is equivalent tévoi d) f seek(stream OL, SEEK SET) except that
the error indicator for the stream is also cleared.

Returns: no value.

117

stdio.h

clearerr

feof

ferror

perror

118

void clearerr(FILE * streanm

Clears the end-of-file and error indicators for the stream pointed to by st r eam These
indicators are cleared only when the file is opened or by an explicit call to the
cl ear err function or to ther ewi nd function.

Returns: no value.

int feof (FILE * stream
Tests the end-of-file indicator for the stream pointed to by st r eam

Returns; non-zero if the end-of-file indicator is set for st r eam

int ferror(FILE * strean)
Tests the error indicator for the stream pointed to by st r eam

Returns; non-zero if the error indicator is set for st r eam

void perror(const char * s)

Maps the error number in the integer expression er r no to an error message. It writesa
sequence of characters to the standard error stream thus: first (if s is not anull pointer
and the character pointed to by s is not the null character), the string pointed to by s
followed by a colon and a space; then an appropriate error message string followed by a
newline character. The contents of the error message strings are the same as those
returned by the st r er r or function with argument er r no, which are
implementation-defined.

Returns: no value.

atof

atoi

atol

strtod

The C library

stdlib.h

st dl i b. h declaresfour types, several general purpose functions, and defines several
Macros.

doubl e at of (const char * nptr)
Convertstheinitial part of the string pointed to by npt r to double * representation.

Returns: the converted value.

int atoi (const char * nptr)
Convertstheinitial part of the string pointed to by npt r to int representation.

Returns: the converted value.

long int atol (const char * nptr)
Convertstheinitial part of the string pointed to by npt r to long int representation.

Returns: the converted value.

doubl e strtod(const char * nptr, char ** endptr)

Convertstheinitia part of the string pointed to by npt r to double representation. First
it decomposes the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by thei sspace function), a subject sequence
resembling afloating point constant, and a final string of one or more unrecognised
characters, including the terminating null character of theinput string. It then attemptsto
convert the subject sequence to afloating point number, and returnsthe result. A pointer
tothefinal string is stored in the object pointed to by endpt r, provided that endpt r is
not anull pointer.

119

stdlib.h

strtol

strtoul

120

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, plus or minus
HUGE_VAL isreturned (according to the sign of the value), and the value of the macro
ERANCE isstored in er r no. If the correct value would cause underflow, zero is
returned and the value of the macro ERANCE is stored iner r no.

long int strtol (const char * nptr, char **endptr, int
base)

Convertstheinitial part of the string pointed to by npt r to long int representation. First
it decomposes the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by thei sspace function), a subject sequence
resembling an integer represented in some radix determined by the value of base, and a
final string of one or more unrecognised characters, including the terminating null
character of the input string.

It then attempts to convert the subject sequence to an integer, and returns the result. If
the value of base is 0, the expected form of the subject sequence is that of an integer
constant (described precisely inthe ANSI standard, section 3.1.3.2), optionally preceded
by a+ or - sign, but not including an integer suffix. If the value of base is between 2 and
36, the expected form of the subject sequence is a sequence of |etters and digits
representing an integer with the radix specified by base, optionally preceded by a plus
or minus sign, but not including an integer suffix. The lettersfrom a (or A) through z (or
Z) are ascribed the values 10 to 35; only |etters whose ascribed values are | ess than that
of the base are permitted. If the value of base is 16, the characters Ox or 0X may
optionally precede the sequence of letters and digits following the sign if present. A
pointer to the final string is stored in the object pointed to by endpt r, provided that
endpt r isnot anull pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, LONG_MAX or
LONG_M Nisreturned (according to the sign of the value), and the value of the macro
ERANGCE is stored in er r no.

unsigned long int strtoul (const char * nptr, char **
endptr, int base)

Convertstheinitial part of the string pointed to by npt r to unsigned long int
representation. First it decomposes the input string into three parts: an initial, possibly
empty, sequence of white space characters (as determined by thei sspace function), a

rand

srand

calloc

The C library

subject sequence resembling an unsigned integer represented in some radix determined
by the value of base, and afina string of one or more unrecognised characters,
including the terminating null character of the input string.

It then attempts to convert the subject sequence to an unsigned integer, and returns the
result. If the value of base is zero, the expected form of the subject sequence isthat of
an integer constant (described precisely in the ANSI Draft, section 3.1.3.2), optionally
preceded by a+ or - sign, but not including an integer suffix. If thevalue of baseis
between 2 and 36, the expected form of the subject sequence is a sequence of |letters and
digits representing an integer with the radix specified by base, optionally preceded by a
+ or - sign, but not including an integer suffix. Thelettersfrom a(or A) through z (or Z)
stand for the values 10 to 35; only letters whose ascribed values are less than that of the
base are permitted. If the value of base is 16, the characters Ox or OX may optionally
precede the sequence of |etters and digits following the sign, if present. A pointer to the
final string is stored in the object pointed to by endpt r, provided that endpt r isnot a
null pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, ULONG MAX
isreturned, and the value of the * macro ERANCE is stored iner r no.

int rand(void)

Computes a sequence of pseudo-random integersin the range 0 to RAND_MAX, where
RAND _MAX = Ox7fffffff.

Returns; a pseudo-random integer.

voi d srand(unsigned int seed)

Uses its argument as a seed for a new sequence of pseudo-random numbers to be
returned by subsequent callstor and. If sr and isthen called with the same seed value,
the sequence of pseudo-random numbers will be repeated. If r and is called before any
calsto sr and have been made, the same sequenceis generated aswhen sr and isfirst
called with a seed value of 1.

void *call oc(size_t nnenb, size t size)

Allocates space for an array of nnmenb objects, each of whose sizeis si ze. The space
isinitialised to al bits zero.

121

stdlib.h

free

malloc

realloc

abort

122

Returns: either anull pointer or a pointer to the allocated space.

void free(void * ptr)

Causes the space pointed to by pt r to be deallocated (made available for further
alocation). If pt r isanull pointer, no action occurs. Otherwise, if pt r does not match
apointer earlier returned by cal | oc, mal | oc orr eal | oc or if the space has been
deallocated by acall tof r ee orr eal | oc, the behaviour is undefined.

void *mal | oc(size_t size)

Allocates space for an object whose size is specified by si ze and whose valueis
indeterminate.

Returns: either a null pointer or a pointer to the allocated space.

void *realloc(void * ptr, size t size)

Changes the size of the object pointed to by pt r to the size specified by si ze. The
contents of the object is unchanged up to the lesser of the new and old sizes. If the new
sizeislarger, the value of the newly allocated portion of the object isindeterminate. If
pt r isanull pointer, ther eal | oc function behaveslikeacall tomal | oc for the
specified size. Otherwise, if pt r does not match a pointer earlier returned by cal | oc,
mal | oc orreal | oc, orif the space has been deallocated by acall tof r ee or

r eal | oc, the behaviour is undefined. If the space cannot be allocated, the object
pointed to by pt r isunchanged. If sizeis zero and pt r isnot anull pointer, the object
it pointstoisfreed.

Returns: either anull pointer or a pointer to the possibly moved allocated space.

voi d abort (voi d)

Causes abnormal program termination to occur, unlessthe signal SI GABRT is being

caught and the signal handler does not return. Whether open output streams are flushed

or open streams are closed or temporary files removed isimplementation-defined (under

RISC OS all these occur). An implementation-defined form of the status ‘unsuccessful
termination’ (1 under RISC OS) is returned to the host environment by means of a call
torai se(Sl GABRT) .

The C library

atexit
int atexit(void (* func)(void))

Registers the function pointed to by f unc, to be called without its arguments at normal
program termination. It is possible to register at least 32 functions.

Returns: zero if the registration succeeds, non-zero if it fails.

exit
void exit(int status)

Causes normal program termination to occur. If morethan one call totheexi t function
is executed by a program (for example, by afunction registered with at exi t), the
behaviour is undefined. First, all functions registered by the at exi t function are
called, in the reverse order of their registration. Next, all open output streams are
flushed, all open streams are closed, and all files created by thet npf i | e function are
removed. Finally, control isreturned to the host environment. If thevalue of st at us is
zero or EXI T_SUCCESS, an implementation-defined form of the status ‘successful
termination’ (O under RISC OS) is returned. If the valustoht us is

EXI T_FAI LURE, an implementation-defined form of the status ‘unsuccessful
termination’ (1 under RISC OS) is returned. Otherwise the status returned is
implementation-defined (the value $f at us is returned under RISC OS).

getenv
char *getenv(const char * nane)

Searches the environment list, provided by the host environment, for a string that
matches the string pointed to bgme. The set of environment names and the method
for altering the environment list are implementation-defined.

Returns: a pointer to a string associated with the matched list member. The array pointed
to is not modified by the program, but may be overwritten by a subsequent call to the
get env function. If the specified name cannot be found, a null pointer is returned.

system
i nt system(const char * string)

Passes the string pointed to$#r i ng to the host environment to be executed by a
command processor in an implementation-defined manner. A null pointer may be used
for st ri ng, to inquire whether a command processor exists. Under RISC OS, care
must be taken, when executing a command, that the command does not overwrite the
calling program. To control this, the strinhai n: orcal | : may immediately

123

stdlib.h

precede the actual command. The effect of cal | : isthesameasif cal | : werenot
present. When acommand is called, the caller is first moved to asafe place in

application workspace. When the callee terminates, the caller isrestored. This requires
enough memory to hold caller and callee simultaneously. When a command is chained,

the caller may be overwritten. If the caller is not overwritten, the caller exits when the
caller terminates. Thus atransfer of control is effected and memory requirements are
minimised.

Returns: If the argument isanull pointer, the sy st emfunction returns non-zero only if
acommand processor is available. If the argument is not a null pointer, it returns an
implementation-defined value (under RISC OS 0 is returned for success and —2 for
failure to invoke the command; any other value is the return code from the executed
command).

bsearch

voi d *bsearch(const void *key, const void * base,
size_t nnmenb, size_t size, int (* conpar)
(const void *, const void *))

Searches an array ofrenb objects, the initial member of which is pointed totas e,

for a member that matches the object pointed thdyy The size of each member of the
array is specified bgi ze. The contents of the array must be in ascending sorted order
according to a comparison function pointed toclyrpar, which is called with two
arguments that point to the key object and to an array member, in that order. The
function returns an integer less than, equal to, or greater than zero if the key object is
considered, respectively, to be less than, to match, or to be greater than the array
member.

Returns: a pointer to a matching member of the array, or a null pointer if no match is
found. If two members compare as equal, which member is matched is unspecified.

gsort

void gsort(void * base, size_t nnenb, size_t size,
int (* conpar)(const void *, const void *))

Sorts an array afinrenb objects, the initial member of which is pointed todase.

The size of each object is specifieddiyze. The contents of the array are sorted in
ascending order according to a comparison function pointedd¢ofyar, which is

called with two arguments that point to the objects being compared. The function returns
an integer less than, equal to, or greater than zero if the first argument is considered to be
respectively less than, equal to, or greater than the second. If two members compare as
equal, their order in the sorted array is unspecified.

124

abs

div

labs

[div

The C library

int abs(int j)

Computes the absolute value of aninteger j . If the result cannot be represented, the
behaviour is undefined.

Returns: the absolute value.

div_t div(int nunmer, int denom

Computes the quotient and remainder of the division of the numerator numer by the
denominator denom If the division isinexact, the resulting quotient is the integer of
lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be
represented, the behaviour isundefined; otherwise, quot * denom+ remequal s
nuner.

Returns; a structure of type di v_t , comprising both the quotient and the remainder.
The structure contains the following members: i nt quot ;i nt rem You may not
rely on their order.

long int labs(long int j)

Computesthe absolute value of an long integer j . If theresult cannot be represented, the
behaviour is undefined.

Returns: the absolute value.

Idiv_t lIdiv(long int nuner, long int denom

Computes the quotient and remainder of the division of the numerator numer by the
denominator denom If the division isinexact, the sign of the resulting quotient is that
of the algebraic quotient, and the magnitude of the resulting quotient is the largest
integer less than the magnitude of the algebraic quotient. If the result cannot be
represented, the behaviour is undefined; otherwise, quot * denom + r emequals
nuner.

Returns: a structure of type | di v_t , comprising both the quotient and the remainder.
The structure contains the following members: | ong i nt quot; long int rem
You may not rely on their order.

125

stdlib.h

mblen

mbtowc

126

Multibyte character functions

The behaviour of the multibyte character functions is affected by the LC_CTYPE
category of the current locale. For a state-dependent encoding, each function is placed
into itsinitial state by acall for which its character pointer argument, s, isanull pointer.
Subsequent calls with s as other than anull pointer cause the internal state of the
function to be altered as necessary. A call with s asanull pointer causes these functions
to return anon-zero value if encodings have state dependency, and a zero otherwise.
After the LC_CTYPE category is changed, the shift state of these functionsis
indeterminate.

int nmblen(const char * s, size_t n)

If s isnot anull pointer, thenbl en function determines the number of bytes comprising
the multibyte character pointed to by s. Except that the shift state of the bt owc
function is not affected, it is equivalent to mbt owc((wchar _t *)0, s, n).

Returns: If s isanull pointer, the mbl en function returns a non-zero or zero value, if
multibyte character encodings, respectively do or do not have state-dependent

encodings. If s isnot anull pointer, the mbl en function either returnsaO (if s pointsto

anull character), or returnsthe number of bytes that comprise the multibyte character (if

the next n of fewer bytes form a valid multibyte character), or returns —1 (if they do not
form a valid multibyte character).

i nt nbtowc(wchar_t * puwe, const char * s, size_ t n)

If s is not a null pointer, thebt owc function determines the number of bytes that
comprise the multibyte character pointed tosbyt then determines the code for value
of typewchar _t that corresponds to that multibyte character. (The value of the code
corresponding to the null character is zero). If the multibyte character is valghand

is not a null pointer, thebt owc function stores the code in the object pointed to by
pwe. At mostn bytes of the array pointed to sywill be examined.

Returns: Ifs is a null pointer, thebt owc function returns a non-zero or zero value, if
multibyte character encodings, respectively do or do not have state-dependent
encodings. I is not a null pointer, thebt owc function either returns a 0 (§f points

to a null character), or returns the number of bytes that comprise the converted multibyte
character (if the next of fewer bytes form a valid multibyte character), or returns -1 (if
they do not form a valid multibyte character).

The C library

wctomb
int wetonb(char * s, wchar_t wchar)

Determines the number of bytes need to represent the multibyte character corresponding
to the code whose valueis we har (including any change in shift state). It stores the
multibyte character representation in the array object pointed to by s (if s isnot anull
pointer). At most MB_CUR_MAX charactersare stored. If thevalue of wehar iszero, the
wet ob functionisleft in theinitial shift state).

Returns: If s isanull pointer, thewct onb function returns a non-zero or zero value, if
multibyte character encodings, respectively do or do not have state-dependent

encodings. If s isnot anull pointer, thewct onb function returns a -1 if the value of
wechar does not correspond to a valid multibyte character, or returns the number of
bytes that comprise the multibyte character corresponding to the vahodaf .

Multibyte string functions

The behaviour of the multibyte string functions is affected by theCTYPE category
of the current locale.

mbstowcs
size_t nbstowcs(wchar _t * pwes, const char * s, size_t n)

Converts a sequence of multibyte characters that begins in the initial shift state from the
array pointed to by into a sequence of corresponding codes and stores not more than
codes into the array pointed to pycs. No multibyte character that follow a null
character (which is converted into a code with value zero) will be examined or
converted. Each multibyte character is converted as if by a call idtheac function.

If an invalid multibyte character is foundbst owcs returns(si ze_t) - 1.

Otherwise, tharbst owcs function returns the number of array elements modified, not
including a terminating zero code, if any.

wcstombs
size_t wcstonbs(char * s, const wchar_t * pwes, size_t n)

Converts a sequence of codes that correspond to multibyte characters from the array
pointed to bypwes into a sequence of multibyte characters that begins in the initial shift
state and stores these multibyte characters into the array pointed,tetbpping if a
multibyte character would exceed the limitabtal bytes or if a null character is stored.
Each code is converted as if by a call towbé onb function, except that the shift state

of thewct onb function is not affected. If a code is encountered which does not

127

stdlib.h

correspond to any valid multibyte character, thewcst onbs function returns
(size_t)- 1. Otherwise, thewcst onbs function returns the number of bytes
modified, not including aterminating null character, if any.

128

memcpy

memmove

strcpy

The C library

string.h

st ri ng. h declares one type and several functions, and defines one macro useful for
manipulating character arrays and other objects treated as character arrays. Various
methods are used for determining the lengths of the arrays, but in all casesachar * or
voi d * argument pointsto theinitial (lowest addresses) character of the array. If an
array iswritten beyond the end of an object, the behaviour is undefined.

void *nmencpy(void * s1, const void * s2, size t n)

Copies n characters from the object pointed to by s2 into the object pointed to by s 1. If
copying takes place between objects that overlap, the behaviour is undefined.

Returns; the value of s1.

void *nmemmove(void * s1, const void * s2, size t n)

Copies n characters from the object pointed to by s2 into the object pointed to by s1.
Copying takes place as if the n characters from the object pointed to by s2 are first
copied into atemporary array of n charactersthat does not overlap the objects pointed to
by s1 and s2, and then the n characters from the temporary array are copied into the
object pointed to by s 1.

Returns: the value of s 1.

char *strcpy(char * s1, const char * s2)

Copies the string pointed to by s2 (including the terminating null character) into the
array pointed to by s 1. If copying takes place between objects that overlap, the
behaviour is undefined.

Returns: the value of s 1.

129

string.h

strncpy

strcat

strncat

memcmp

130

char *strncpy(char * s1, const char * s2, size_t n)

Copies not more than n characters (characters that follow anull character are not
copied) from the array pointed to by s2 into the array pointed to by s 1. If copying takes
place between objects that overlap, the behaviour is undefined. If terminating nul has
not been copied in chars, noterm nul isplacedin s2.

Returns; thevaueof s1.

char *strcat(char * s1, const char * s2)

Appends acopy of the string pointed to by s2 (including the terminating null character)
to the end of the string pointed to by s1. Theinitial character of s2 overwrites the null
character at theend of s1.

Returns; thevaue of s1.

char *strncat(char * s1, const char * s2, size_t n)

Appends not morethan n characters (anull character and charactersthat follow it are not
appended) from the array pointed to by s2 to the end of the string pointed toby s1. The
initial character of s2 overwrites the null character at the end of s1. A terminating null
character is always appended to the result.

Returns; thevalue of s1.

The sign of anon-zero value returned by the comparison functions is determined by the
sign of the difference between the values of thefirst pair of characters (both interpreted
as unsigned char) that differ in the objects being compared.

int nmencnp(const void * s1I, const void * s2, size_t n)

Comparesthefirst n characters of the object pointed to by s 1 to thefirst n characters of
the object pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether the
object pointed to by s1 isgreater than, equal to, or less than the object pointed to by s2.

strcmp

strncmp

strcoll

strxfrm

The C library

int strcnp(const char * s1, const char * s2)
Compares the string pointed to by s1 to the string pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

int strncnp(const char * s1, const char * s2, size_t n)

Compares not more than n characters (characters that follow a null character are not
compared) from the array pointed to by s1 to the array pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

int strcoll(const char * s1, const char * s2)

Compares the string pointed to by s1 to the string pointed to by s2, both interpreted as
appropriate to the LC_COLLATE category of the current locale.

Returns: an integer greater than, equal to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2
when both are interpreted as appropriate to the current locale.

size_t strxfrm(char * s1, const char * s2, size_t n)

Transforms the string pointed to by s2 and places the resulting string into the array
pointed to by s1. The transformation function is such that if the st r cnp function is
applied to two transformed strings, it returns avalue greater than, equal to or less than
zero, corresponding to the result of the st r col | function applied to the same two
original strings. No more than n characters are placed into the resulting array pointed to
by s1, including the terminating null character. If niszero, s1 is permitted to be anull
pointer. If copying takes place between objects that overlap, the behaviour is undefined.

Returns: The length of the transformed string is returned (not including the terminating
null character). If the value returned is n or more, the contents of the array pointed to by
s1 areindeterminate.

131

string.h

memchr
void *nenchr(const void * s, int ¢, size_ t n)

Locates the first occurrence of ¢ (converted to an unsigned char) in theinitial n
characters (each interpreted as unsigned char) of the object pointed to by s.

Returns: a pointer to the located character, or anull pointer if the character does not
occur in the abject.

strchr
char *strchr(const char * s, int c¢)

Locates the first occurrence of ¢ (converted to a char) in the string pointed to by s
(including the terminating null character). The BSD UNIX name for this functionis
i ndex().

Returns: a pointer to the located character, or anull pointer if the character does not
occur in the string.

strcspn
size t strcspn(const char * s1, const char * s2)

Computes the length of theinitial segment of the string pointed to by s1 which consists
entirely of characters not from the string pointed to by s2. The terminating null
character is not considered part of s2.

Returns: the length of the segment.

strpbrk
char *strpbrk(const char * s1, const char * s2)

Locates the first occurrence in the string pointed to by s 1 of any character from the
string pointed to by s2.

Returns: returns a pointer to the character, or anull pointer if no character form s2
occursin s1.

strrchr

char *strrchr(const char * s, int c¢)

132

strspn

strstr

strtok

The C library

L ocates the last occurrence of ¢ (converted to achar) in the string pointed to by s. The
terminating null character is considered part of the string. The BSD UNIX namefor this
functionisri ndex() .

Returns: returns a pointer to the character, or anull pointer if ¢ does not occur in the
string.

size_t strspn(const char * s1, const char * s2)

Computes the length of theinitial segment of the string pointed to by s1 which consists
entirely of characters from the string pointed to by s2.

Returns: the length of the segment.

char *strstr(const char * sl1, const char * s2)

L ocates the first occurrence in the string pointed to by s 1 of the sequence of characters
(excluding the terminating null character) in the string pointed to by s2.

Returns: a pointer to the located string, or anull pointer if the string is not found.

char *strtok(char * s1, const char * s2)

A sequence of callstothe st r t ok function breaksthe string pointed to by s1 into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by s2. Thefirst call inthe sequence has s 1 asitsfirst argument, and isfollowed by calls
with anull pointer astheir first argument. The separator string pointed to by s2 may be
different from call to call. Thefirst call in the sequence searches for the first character
that isnot contained in the current separator string s 2. If no such character isfound, then
there are no tokensin s1 and the st r t ok function returns anull pointer. If such a
character isfound, it isthe start of thefirst token. The st r t ok function then searches
from there for a character that is contained in the current separator string. If no such
character isfound, the current token extends to the end of the string pointed to by s1,
and subsequent searches for atoken will fail. If such acharacter isfound, itis
overwritten by a null character, which terminates the current token. The st r t ok
function saves a pointer to the following character, from which the next search for a
token will start. Each subsequent call, with anull pointer as the value for the first
argument, starts searching from the saved pointer and behaves as described above.

Returns: pointer to the first character of atoken, or anull pointer if thereis no token.

133

string.h

memset

strerror

strlen

134

void *nenmset(void * s, int ¢, size_t n)

Copies the value of ¢ (converted to an unsigned char) into each of thefirst n characters
of the object pointed to by s.

Returns; thevaue of s.

char *strerror(int errnum
Maps the error number in er r numto an error message string.

Returns: a pointer to the string, the contents of which are implementation-defined.
Under RISC OS and Arthur the strings for the given er r nuns are as follows:

10 No error (errno = 0)

I EDOM EDOM- function argument out of range

I ERANGE ERANGE — function result not representable

1 ESI GNUM ESI GNUM- illegal signal number tei gnal () or
raise()

I others Error code (errno) has no associated message).

The array pointed to may not be modified by the program, but may be overwritten by a
subsequent call to thet r er r or function.

size_t strlen(const char * s)
Computes the length of the string pointed tasby

Returns: the number of characters that precede the terminating null character.

The C library

time.h

ti me. h declarestwo macros, four types and several functions for manipulating time.
Many functions deal with a calendar time that represents the current date (according to
the Gregorian calendar) and time. Some functions deal with local time, which isthe
calendar time expressed for some specific time zone, and with Daylight Saving Time,
which is atemporary change in the algorithm for determining local time.

struct tm

st ruct t mholdsthe components of acalendar time called the broken-down time. The
valueof t m i sdst ispositiveif Daylight Saving Timeisin effect, zero if Daylight
Saving Timeis not in effect, and negative if the information is not available.

struct tm{
int tmsec; /* seconds after the mnute, O to 60

(0-60 allows for the occasional |eap
second) */

nt tmmnin /* minutes after the hour, 0 to 59 */

nt tm hour /* hours since midnight, 0 to 23 */

nt tm nday /* day of the month, 0 to 31 */

nt tm . non /* months since January, 0 to 11 */

nt tmyear /* years since 1900 */

nt tm wday /* days since Sunday, 0 to 6 */

nt tmyday /* days since January 1, 0 to 365 */

nt tm.i sdst /* Daylight Saving Tine flag */

clock
clock _t cl ock(void)
Determines the processor time used.

Returns: the implementation’s best approximation to the processor time used by the
program since program invocation. The time in seconds is the value returned, divided by
the value of the macrt6LOCKS_PER_SEC. The valug cl ock_t) -1 is returned if

the processor time used is not available. In the desktap; k() returns all processor

time, not just that of the program.

difftime

double difftime(tine_t tinel, time_t tine0)

135

time.h

Computes the difference between two calendar times: t i nrel - ti ne0. Returns: the
difference expressed in seconds as a double.

mktime
time_t nktine(struct tm?* tineptr)

Converts the broken-down time, expressed aslocal time, in the structure pointed to by
ti mept r into a calendar time value with the same encoding as that of the values
returned by thet i me function. The original values of thet m wday andt m yday
components of the structure are ignored, and the original values of the other components
are not restricted to the rangesindicated above. On successful completion, the values of
thet m wday andt m yday structure components are set appropriately, and the other
components are set to represent the specified calendar time, but with their values forced
to the ranges indicated above; the final value of t m_nday isnot set until t m_nmon and
t m year aredetermined.

Returns: the specified calendar time encoded asavalue of typet i ne_t . If the calendar
time cannot be represented, the function returnsthevalue (time_t) - 1.

time
time_t time(tine_t * tiner)
Determines the current calendar time. The encoding of the value is unspecified.

Returns: the implementation’s best approximation to the current calendar time. The
value(time_t) -1 is returned if the calendar time is not availablé.ilfrer is not a
null pointer, the return value is also assigned to the object it points to.

asctime
char *asctime(const struct tm?* tineptr)

Converts the broken-down time in the structure pointed toibyept r into a string in
the styleSun Sep 16 01:03:52 1973\ n\O0.

Returns: a pointer to the string containing the date and time.

ctime
char *ctine(const tine_t * tiner)

Converts the calendar time pointed tothyner to local time in the form of a string. It
is equivalent t@ascti me(l ocal time(timer)).

136

The C library

Returns: the pointer returned by theasct i me function with that broken-down time as

argument.
gmtime
struct tm*gntine(const time_t * tiner)
Convertsthe calendar time pointed to by t i mer into abroken-down time, expressed as
Greenwich Mean Time (GMT).
Returns: a pointer to that object or anull pointer if GMT is not available.
localtime
struct tm*localtime(const time_t * tiner)
Converts the calendar time pointed to by t i ner into a broken-down time, expressed a
local time.
Returns: a pointer to that object.
strftime

size t strftinme(char * s, size_ t nmaxsize, const char *
format, const struct tm?* tjnmeptr)

Places charactersinto the array pointed to by s as controlled by the string pointed to by

f or mat . The format string consists of zero or more directives and ordinary characters.

A directive consists of a %character followed by a character that determines the

directive’s behaviour. All ordinary characters (including the terminating null character)
are copied unchanged into the array. No more ttieeqsi ze characters are placed into
the array. Each directive is replaced by appropriate characters as described in the
following list. The appropriate characters are determined bly@h&l ME category of

the current locale and by the values contained in the structure pointetlitonbyt r .

Directive Replaced by

%a the locale’s abbreviated weekday name

YA the locale’s full weekday name

% the locale’s abbreviated month name

B the locale’s full month name

% the locale’s appropriate date and time representation
%l the day of the month as a decimal number (01-31)
% the hour (24-hour clock) as a decimal number (00-23)
% the hour (12-hour clock) as a decimal number (01-12)
% the day of the year as a decimal number (001-366)

137

time.h

%n the month as a decimal number (01-12)

9 the minute as a decimal number (00—61)

% the locale’s equivalent of either AM or PM designation
associated with a 12-hour clock

%S the second as a decimal number (00-61)

%J the week number of the year (Sunday as the first day of
week 1) as a decimal number (00-53)

%v the weekday as a decimal number (0(Sunday) —6)

%N the week number of the year (Monday as the first day of
week 1) as a decimal number (00-53)

U the locale’s appropriate date representation

%X the locale’s appropriate time representation

%y the year without century as a decimal number (00-99)

%Y the year with century as a decimal number

% the time zone name or abbreviation, or by no character

if no time zone is determinable
%80 %

If a directive is not one of the above, the behaviour is undefined.

Returns: If the total number of resulting characters including the terminating null
character is not more thamaxsi ze, thest r f t i ne function returns the number of
characters placed into the array pointed ts ot including the terminating null
character. Otherwise, zero is returned and the contents of the array are indeterminate.

138

The ANSI library

he ANSI library is a stand-alone version of the shared C library that contains afew
extra functions useful in debugging and profiling your code. You should useit for
development only, using the shared C library in any final product.

This chapter describes the extra functions provided by the ANSI library. For details of
the other functions, see the chapter The C library on page 91.

139

Extra functions

Extra functions

__heap_checking_on_all_allocates
__heap_checking_on_all_deallocates

_mapstore
_fmapstore

140

void _ heap_checking on _all _allocates (int on);
void _ heap_checking on_all _deallocates (int on);

Calling these functions with a non-zero argument causes mal | oc() andfree()
respectively to check the consistency of the C heap on every call, rather than only when
the heap is coalesced. It is especially useful for tracking down exactly where memory
corruption is occurring. This feature is disabled by passing an argument of zero.

void _mapstore (void);
void _fmapstore (char *fil enane);

These functions write profiling information for aprogramto st derr orfi | enane
respectively, if the program has been compiled with profiling enabled.

Introduction

The Event library

he purpose of the ‘event’ library is to allow the client to more easily dispatch
Toolbox and Wimp events within Toolbox based applications.

A typical client will register some event handlers, and then enter a poll loop, with events
being dispatched for it to its event handler functions by the event library as described
below.

When the client has callédol box_i ni ti al i se, it should call the function
event initialise (see page 143), passing a pointer tadh#ock (see theJser
Interface Toolbox manual for a description of this) which was passed to

t ool box_i ni ti al i se; this pointer will then be passed to any event handler
functions which the client subsequently registers.

The client application enters a poll loop using a caditent _pol | (see page 144),
passing a pointer to a poll block, just as for the SWI Wimp_Poll (which is, in fact, called
on the client’s behalf). If the client wishes to cause a call to Wimp_Pollldle, then it
should callevent _pol | _i dl e instead (see page 144). The event block is the one
which will be filled in by SWI Wimp_Poll. When the Wimp is polled, the mask passed
in RO is determined by the last call made by the client to the function

event _set nmask (see page 143); the default mask used is to just mask out Null
events.

Registering and deregistering event handlers

The event library also allows the client to register functions which will be called back
for particular combinations of Toolbox or Wimp events, either on all objects or on a
given object. This is done for Toolbox events by calling the function

event regi ster_tool box_handl er (see page 145), and for Wimp events by
calling the functiorevent _regi st er _w np_handl er (see page 145).

These register Bandler function which will be called back by the event library
following a call toevent _pol | (orevent pol | _i dl e), if its given conditions are
met. The handler function will be passed a client-defiaedl e, a pointer to the poll
block passed tevent pol | , and a pointer to the client’s id block (as passed to
event _initialise).

141

Registering and deregistering message handlers

Whenevent _pol | iscalled and an event has arrived, the event library will try to find
amatching handler function in the following priority order:

I ahandler registered for the object to which this event was delivered
I ahandler registered for this event (for all objects).

All handler functions which are registered for the given event are called using the order

given above, until thelist is exhausted or one of the handl ers returns non-zero, indicating

that it has ‘claimed’ the event. If more than one function is registered at the same priority
level as defined above, then they are called in the reverse order to that in which they
were registered.

In order to deregister event handlers, the client calls

event _deregi st er_t ool box_handl er (see page 146) and
event _deregi ster_wi np_handl er (see page 146) with
the same parameters as when the handler was registered.

Registering and deregistering message handlers

Wimp messages are delivered on a per-task basis, and not to a particular object (i.e. the
id block is not filled in with an object id). A client can register a handler for Wimp
messages by calling the functiement _r egi st er _nmessage_handl er (see

page 146).

If more than one handler is registered for a particular Wimp message, then they are
called in the reverse order to that in which they were registered.

In order to deregister message handlers, the client calls
event _der egi st er_nessage_handl er (see page 146) with
the same parameters as when the handler was registered.

Quitting applications

Event and message handlers are both held in application space. Application tasks
therefore do not need to remove them on quitting, nor need they deregister them.

Programmer interface

The rest of this chapter lists the C function calls that are used to control the event library.
See the chaptéthe Wimp library on page 151 for a description of the Wimp type
definitions in the Wimp SWI veneer library.

142

The Event library

Initialisation

event_initialise
extern _kernel _oserror *event _initialise (1dBlock *b);

Thel dBl ock that wasgiventot ool box_i ni ti al i se should be passed to
event _initialise;thisisthen passed to Toolbox and Wimp handlers when they
are called.

event_set_mask

extern _kernel _oserror *event_set_mask
(unsi gned int mask);

mask isaninteger defining what events are to be returned. This has the same meaning
as the Wimp_Poll mask described on page 3-115 of the RISC OS 3 Programmer’s
Reference ManuaBy default, this just masks out Null events.

event_get _mask

extern _kernel _oserror *event_get_ mask
(unsi gned int *nmask);

mask should be the address of an integer where the current mask is to be stored.

143

Polling

event_poll

event_poll_idle

144

Polling

extern _kernel _oserror *event_poll (int *event_code,
W nmpPol | Bl ock *pol | _bl ock,
void *pol | _word);

This function makes calls to the SWI Wimp_Poll. Thepol | _bl ock should be
allocated before calling this function and its address passed in. Thepol | _wor d is
optional (i.e. the pointer may be set to zero), and is only used by the Wimp if themask is
set accordingly (see page 3-115 of the RISC OS 3 Programmer’s Reference Maiisl
event _set _mask (seepage 143).

extern _kernel _oserror *event poll _idle (int *event_ code,
W npPol | Bl ock *pol | _bl ock,
unsigned int earliest,
voi d *pol | _word);

This function makes calls to the SWI Wimp_Poallldle. Thepol | _bl ock should be
allocated before calling this function and its address passed in. Thepol | _word is
optional (i.e. the pointer may be set to zero), and is only used by the Wimp if themask is
set accordingly (see page 3-115 of the RISC OS 3 Programmer’s Reference Mahbsl
event _set mask (see page 143). Like the SWI (page 3-184 of the RISC OS 3
Programmer’s Reference Manygatontrol will not return to the client before the earliest
time, unless an event other than a Null has occurred.

The Event library

Registering handlers

These functions alow registering handlers for Wimp events, Toolbox events and Wimp
messages. If you wish to register for all events or all objects a value of —1 should be used
in place of theevent _code oroj ect | d.

If there is not enough memory to register the handler, an error will be raised.

event_register_wimp_handler

_kernel _oserror *event_regi ster_w np_handl er
(njectld object_id,
i nt event _code,
W nmpEvent Handl er *handl er,
voi d *handl e);

handl er is the function that should be called when the given Wimp event code occurs
on the object (e.g. a redraw event on a window). {ded| e is a value which will be
passed to theandl er function, and thus may be used to associate a data structure with
the given object.

event_register_toolbox_handler

_kernel _oserror *event register_tool box_handl er
(Objectld object _id,
i nt event code,
Tool boxEvent Handl er *handl er,
voi d *handl e);

handl er is the function that should be called when the given Toolbox event code
occurs on the object (e.g. a DCS_Discard event on a DCS object)afidé e is a

value which will be passed to thandl er function, and thus may be used to associate
a data structure with the given object.

145

Registering handlers

event_register_

message_handler

_kernel _oserror *event _regi ster_nessage_handl er
(int msg_no,
W npMessageHandl er *handl er,
voi d *handl e);

handl er isthefunction that should be called when the given Wimp messageis
received by the task (e.g. Wimp_MQuit). The handl e isavalue which will be passed
tothehandl er function, and thus may be used to associate a data structure with the
given message.

To deregister ahandler, the appropriate function below should be used. Note that the
parameters must exactly match those passed to the registration function.

An error will be raised if an attempt is made to deregister a handler that was not
previously registered.

event_deregister_wimp_handler

_kernel _oserror *event_deregi ster_wi np_handl er
(Qojectld object_id,
i nt event_code,
W npEvent Handl er *handl er,
voi d *handl e);

Deregisters a previously registered Wimp event handler.

event_deregister_toolbox_handler

_kernel _oserror *event deregi ster_tool box_handl er
(Qbjectld object _id,
i nt event code,
Tool boxEvent Handl er *handl er,
voi d *handl e);

Deregisters a previously registered Toolbox event handler.

event_deregister_message handler

146

_kernel _oserror *event _deregi ster_nessage_handl er (int
msg_no, W npMessageHandl| er
*handl er, void *handl e);

Deregisters a previously registered Wimp message handler.

The Event library

Handlers

When aclient callsevent _pol | , EventLib issues the SWI Wimp_Poll. If the Wimp
returns an event code and poll block that match one of the clients ‘interests’ then a
handler will be called.

The handlers that are registered and deregistered above have the following calling

parameters:

I Theevent _code passed in is the actual event that lead to the handler being
called.

Thel dBI ock will be that passed tevent _i niti al i se, and is updated by the
Toolbox to identify which object the event has occurred on.

Thehandl e is the value that was passed through on registration, and is not
interpreted by EventLib or the Toolbox.

A handler should return zero if it has not handled the event, so that it may be passed on
to other handlers which have been registered for a similar interest. Returning non-zero
will ‘claim’ the event, andevent _pol | will return.

WimpEventHandler

typedef int (WnpEventHandl er) (int event_code,
W nmpPol | Bl ock *event,
| dBl ock *i d_bl ock,
voi d *handl e);

ToolboxEventHandler

typedef int (Tool boxEventHandl er) (int event code,
Tool boxEvent *event,
I dBl ock *id_bl ock,
voi d *handl e);

WimpMessageHandler

typedef int (W npMessageHandl er) (W npMessage *nessage,
voi d *handl e);

147

Example

Example

The following is a simple example of how EventLib might be used. A more complete
exampl e covering Wimp and Toolbox events can be found in the User Interface Toolbox
manual.

/* * Mniml Tool box application, using the event veneers library. */
#include <stdlib. h>

#i ncl ude "winp. h"

#i ncl ude "t ool box. h"

#i nclude "event. h"

#def i ne W npVersi on 310

static W npPol | Bl ock pol | _bl ock;

static MessagesFD nmessages;
static |1dBl ock i d_bl ock;
static int qui t =0;
int quit_handl er (WnpMessage *nmessage, void *handle);
{
quit =1;
return 1; /* claimthe event */
}
int main()
{
int event _code;

/*
* register ourselves with the Tool box.
*/

tool box_initialise (0, WnpVersion, 0, 0, "<Test$Dir>",
&nressages, & d_block, 0, 0, 0);

/*

* initialise the event library.
*/

event _initialise (& d_bl ock);

/*
* register handlers
*/

event _regi ster_nessage_handl er (Wnp_Muit, quit_handler, 0);

148

The Event library

/*
* poll 1oop
*/
while (!'quit)

event _poll (&event_code, &poll _block, 0)

}

exit (EXIT_SUCCESS);

149

150

10

The Wimp library

mpLib provides a set of C veneers onto the Wimp (or Window Manager) SWI

interface. For a description of the exact effect of a particular call, you should see
the chapter The Window Manager at the start of Volume 3 of the RISC OS 3
Programmer’s Reference Manual

The section below listsin alphabetical order the functions provided by WimpLib. The
functions’ names are derived directly from the SWIs’ names: for example, the veneer to
call Wimp_CreateWindow isi np_cr eat e_wi ndow. Each function has page
references to thRISC OS 3 Programmer’s Reference Manuaicluding ones, where
relevant, to Volume 5 (th8upplement for version 3.5).

WimpLib does not provide access to every Wimp SWI: for example, the Filter related
SWiIs and Wimp_SetWatchDogState are omitted. Such SWis still have an entry below
under their expected function name, just so you can rapidly determine they are not
supported. Although functions are provided for adding and removing Wimp messages,
you must not use these in Toolbox applications.

Note that when a value is returned as a parameter (e.g. an integer value is returned by
function (int input, int *output)),the pointer to the return value may
be set to zero rather than provide a dummy variable.

151

Programmer interface

Programmer interface

wimp_add_messages
_kernel _oserror *w np_add_nessages (int *list /* RO in */);

This calls the SWI Wimp_AddM essages (see page 3-226 of the RISC OS 3
Programmer’s Reference MandiaYou must not usethiscall in Toolbox applications.

wimp_base of_sprites

_kernel _oserror *w np_base_of _sprites (void **rom /* RO out */
void **ram /* Rl out */);

This calls the SWI Wimp_BaseOf Sprites (see page 3-203 of the RISC OS 3
Programmer’s Reference Manjal

wimp_block_copy

_kernel _oserror *w np_bl ock_copy (int handl e, /* RO in */
int sxmn, /* RLin */
int symn, /* R2 in */
int sxnax, /* R3in */
int symax, /* R4 in */
int dxmn, /* RS in */
int dymn /* R6 in */);

This calls the SWI Wimp_BlockCopy (see page 3-204 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_claim_free_memory

You might expect a function of this name to be provided to call
Wimp_ClaimFreeMemory. However, such afunction is not implemented by WimpL.ib.

wimp_close_down
_kernel _oserror *w np_cl ose_down (int th /* RO in */);

This sets up R1 to be &4B534154 (‘TASK’), and then calls the SWI Wimp_CloseDown
(see page 3-175 of tHRISC OS 3 Programmer’s Reference Majual

152

The Wimp library

wimp_close_template
_kernel _oserror *w np_cl ose_tenplate (void);

This calls the SWI Wimp_CloseTemplate (see page 3-169 of the RISC OS 3
Programmer’s Reference Manjal

wimp_close_window
_kernel _oserror *w np_cl ose_wi ndow (i nt wi ndow_handl e /* RLin */);

This calls the SWI Wimp_CloseWindow (see page 3-114 of the RISC OS 3
Programmer’s Reference Manjal

wimp_command_window
_kernel _oserror *w np_conmand_w ndow (int type /* RO in */);

This calls the SWI Wimp_CommandWindow (see page 3-212 of the RISC OS 3
Programmer’s Reference Manjal

wimp_create_icon

_kernel _oserror *w np_create_icon (int priority, /* RO in */
W npCreat el conBl ock *defn, /* RL in */
int *handl e /* RO out */);

This calls the SWI Wimp_Createl con (see pages 3-96 and 5-204 of the RISC OS 3
Programmer’s Reference Manjal

wimp_create_menu, CloseMenu

#define CloseMenu ((void *) -1)

_kernel _oserror *w np_create_nenu (void * handl e, /* RL in */
int x, /* R2 in */
inty /* R3in */);

This calls the SWI Wimp_CreateMenu (see pages 3-156 and 5-205 of the RISC OS 3
Programmer’s Reference Manjal

wimp_create_submenu

_kernel _oserror *w np_create_subnenu (void * handl e, /* RL in */
int x, /* R2 in */
inty /* R3in */);

This calls the SWI Wimp_CreateSubmenu (see page 3-199 of the RISC OS 3
Programmer’s Reference Manjal

153

Programmer interface

wimp_create_window

_kernel _oserror *w np_create_w ndow (W nmpW ndow *def n, /* RLin */
int *handl e /* RO out */);

This calls the SWI Wimp_CreateWindow (see pages 3-89 and 5-204 of the RISC OS 3
Programmer’s Reference Manjal

wimp_decode_menu

_kernel _oserror *w np_decode_nenu (voi d *data, /* RLin */
int *sel ections, /* R2 in */
char *buffer /* R3in */);

This calls the SWI Wimp_DecodeMenu (see page 3-161 of the RISC OS 3
Programmer’s Reference Manjal

wimp_delete_icon

_kernel _oserror *w np_del ete_icon (W npDel et el conBl ock *bl ock
/* RLin */);

This calls the SWI Wimp_Deletel con (see page 3-110 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_delete_window

_kernel _oserror *wi np_del et e_wi ndow (W npDel et eW ndowBl ock *bl ock
/* RLin */);

This calls the SWI Wimp_DeleteWindow (see page 3-108 of the RISC OS 3
Programmer’s Reference Manjal

wimp_drag_box, CancelDrag

#define Cancel Drag O

_kernel _oserror *w np_drag_box (W npDr agBox *bl ock
/* RLin */);

This calls the SWI Wimp_DragBox (see page 3-145 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_extend

You might expect a function of this name to be provided to call Wimp_Extend.
However, such afunction is not implemented by WimpLib.

154

The Wimp library

wimp_force_redraw

_kernel _oserror *w np_force_redraw (i nt wi ndow_handl e, /* RO in */
int xmn, /* RLin */
int ymn, /* R2 in */
int xmax, /* R3in */
int ymax /* R4 in */);

This calls the SWI Wimp_ForceRedraw (see page 3-150 of the RISC OS3
Programmer’s Reference Manjal

wimp_get_caret_position

_kernel _oserror *w np_get_caret_position(W npGet Car et Posi ti onBl ock *bl ock
/* RLin */);

This calls the SWI Wimp_GetCaretPosition (see page 3-154 of the RISC OS 3
Programmer’s Reference Manjal

wimp_get_icon_state

_kernel _oserror *w np_get_icon_state (W npCet | conSt at eBl ock *bl ock
/* RLin */);

This calls the SWI Wimp_Getl conState (see page 3-141 of the RISC OS 3
Programmer’s Reference Manjal

wimp_get_menu_state

_kernel _oserror *w np_get_nenu_state (int report, /* RO in */
int *state, /* RLin */
int w ndow, /* R2 in */
int icon /* R3in */);

This calls the SWI Wimp_GetMenuState (see page 3-222 of the RISC OS 3
Programmer’s Reference Manjal

wimp_get_pointer_info

_kernel _oserror *w np_get_pointer_info (W npGetPointerlnfoBlock *bl ock
/* RLin */);

This calls the SWI Wimp_GetPointerInfo (see page 3-143 of the RISC OS 3
Programmer’s Reference Manjal

155

Programmer interface

wimp_get_rectangle

_kernel _oserror *w np_get_rectangle (W nmpRedr awW ndowBIl ock *bl ock,
/* RLin */
int *nore /* RO out */);

This calls the SWI Wimp_GetRectangle (see page 3-133 of the RISC OS 3
Programmer’s Reference Manial

wimp_get_window_info

_kernel _oserror *w np_get _wi ndow_i nfo (W mpGet W ndowl nf oBl ock *bl ock
/* RLin */);

This calls the SWI Wimp_GetWindowInfo (see page 3-137 of the RISC OS 3
Programmer’s Reference Manjal

wimp_get_window_outline

_kernel _oserror *w np_get _w ndow_out | i ne(W npGet W ndowQut | i neBl ock *bl ock
/* RLin */);

This calls the SWI Wimp_GetWindowOutline (see page 3-182 of the RISC OS 3
Programmer’s Reference Maniial

wimp_get_window_state

_kernel _oserror *w np_get_wi ndow state (W npGet WndowSt at eBl ock *state
/* RLin */);

This calls the SWI Wimp_GetWindowState (see page 3-135 of the RISC OS 3
Programmer’s Reference Manjal

wimp_initialise

_kernel _oserror *winp_initialise (int version, /* RO in */
char *nane, /* R2 in */
int *messages, /* R3in */
int *cversion, /* RO out */
int *task /* RL out */);

This sets up R1 to be &4B534154 (‘TASK’), and then calls the SWI Wimp_ Initialise
(see page 3-87 of tHeISC OS 3 Programmer’s Reference Majual

156

The Wimp library

wimp_load_template
_kernel _oserror *w np_|l oad_tenpl ate (_kernel _swi _regs *regs /*Rl-6 in*/);

This calls the SWI Wimp_LoadTemplate (see page 3-170 of the RISC OS 3
Programmer’s Reference Manjal

wimp_open_template
_kernel _oserror *w np_open_tenpl ate (char *nane /* RLin */);

This calls the SWI Wimp_OpenTemplate (see page 3-168 of the RISC OS 3
Programmer’s Reference Manjal

wimp_open_window

_kernel _oserror *w np_open_wi ndow (W npOpenW ndowBIl ock *show
/* RLin */);

This calls the SWI Wimp_OpenWindow (see page 3-112 of the RISC OS 3
Programmer’s Reference Manjal

wimp_plot_icon

_kernel _oserror *w np_pl ot _i con (W npPl ot | conBl ock *bl ock
/* RLin */);

This calls the SWI Wimp_Plotlcon (see page 3-186 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_poll
_kernel _oserror *w np_pol | (i nt mask, /* RO in */
W npPol | Bl ock *bl ock, /* RLin */
int *pollword, /* R2 in */
int *event_code /* RO out */);

This calls the SWI Wimp_Poll (see page 3-115 of the RISC OS 3 Programmer’s
Reference Manugl

157

Programmer interface

wimp_poll_idle

_kernel _oserror *wi np_pollidle (int mask, /* RO in */
W npPol | Bl ock *bl ock, /* RLin */
int tine, /* R2 in */
int *pollword, /* R3in */
int *event _code /* RO out */);

This calls the SWI Wimp_Pollldle (see page 3-184 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_process_key
_kernel _oserror *w np_process_key (int keycode /* RO in */);

This callsthe SWI Wimp_ProcessK ey (see page 3-173 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_read_palette
_kernel _oserror *w np_read_pal ette (Palette *palette /* RLin */);

This callsthe SWI Wimp_ReadPal ette (see page 3-192 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_read_pix_trans

You might expect a function of this name to be provided to call Wimp_ReadPixTrans.
However, such afunction is not implemented by WimpLib.

wimp_read_sys_info, WimpSysinfo
typedef struct { int rO; int rl; } WnpSysinfo;

_kernel _oserror *w np_read_sys_info (int reason, /* RO in */
W npSyslnfo *results /* RO out */);

This calls the SWI Wimp_ReadSyslInfo (see pages 3-218 and 5-206 of the RISC OS 3
Programmer’s Reference Manjal

wimp_redraw_window

_kernel _oserror *w np_redraw_w ndow (W npRedr awW ndowBIl ock *bl ock,
/* RLin */
int *nore /* RO out */);

This calls the SWI Wimp_RedrawWindow (see page 3-129 of the RISC OS 3
Programmer’s Reference Manjal

158

The Wimp library

wimp_register_filter

You might expect a function of this name to be provided to call Wimp_RegisterFilter.
However, such afunction is not implemented by WimpLib.

wimp_remove_messages
_kernel _oserror *w np_renobve_nessages (int *list /* RO in */);

This calls the SWI Wimp_RemoveM essages (see page 3-227 of the RISC OS 3
Programmer’s Reference Mana¥ou must not usethiscall in Toolbox applications.

wimp_report_error

int winp_report_error (_kernel _oserror *er, /* RO in */
int flags, /* RLin */
char *nane, /* R2 in */
char *sprite, /* R3in */
void *area, /* R4 in */
char *buttons /* R5 in */);

This calls the SWI Wimp_ReportError (see pages 3-179 and 5-205 of the RISC OS 3
Programmer’s Reference Manjal

wimp_resize_icon

_kernel _oserror *w np_resize_icon (i nt wi ndow, /* RO in */
int icon, /* RLin */
int xmn, /* R2 in */
int ymn, /* R3in */
int xmax, /* R4 in */
int ymax /* R5 in */);

This calls the SWI Wimp_Resizel con (see page 5-217 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_send_message

_kernel _oserror *w np_send_nessage (i nt code, /* RO in */
voi d *bl ock, /* RLin */
int handl e, /* R2in */
int icon, /* R3in */
int *th /* R2 out */);

This calls the SWI Wimp_SendM essage (see page 3-196 of the RISC OS 3
Programmer’s Reference Manjal

159

Programmer interface

wimp_set _caret_position

_kernel _oserror *w np_set_caret_position(int w ndow_handl e, /* RO in */
int icon_handle, /* RLin */
int xoffset, /* R2 in */
int yoffset, /* R3in */
int height, /* R4 in */
int index /* R5 in */);

This calls the SWI Wimp_SetCaretPosition (see page 3-152 of the RISC OS 3
Programmer’s Reference Maniial

wimp_set_colour, Wimp_BackgroundColour
#define W np_BackgroundCol our (128)
_kernel _oserror *w np_set_col our (int col our /* RO in */);

This calls the SWI Wimp_SetColour (see page 3-194 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_set_colour_mapping

_kernel _oserror *w np_set_col our _nmappi ng(i nt which_palette, /* RLin */
int *bppl, /* R2 in */
int *bpp2, /* R3in */
int *bpp4 /* R4 in */);

This calls sets R5, R6 and R7 to zero and then calls the SWI Wimp_SetColourMapping
(see page 3-228 of the RISC OS 3 Programmer’s Reference Majual

wimp_set_extent

_kernel _oserror *w np_set_extent (i nt wi ndow_handl e, /* RO in */
BBox *area /* RLin */);

This calls the SWI Wimp_SetExtent (see page 3-164 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_set_font_colours

_kernel _oserror *w np_set_font_colours (int fore /* RLin */
int back /* R2 in */);

This calls the SWI Wimp_SetFontColours (see page 3-220 of the RISC OS 3
Programmer’s Reference Maniial

160

The Wimp library

wimp_set_icon_state

_kernel _oserror *w np_set_icon_state (W npSet | conSt at eBl ock *bl ock)
/* RLin */;

This callsthe SWI Wimp_SetlconState (see page 3-139 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_set_mode
_kernel _oserror *w np_set_node (i nt node /* RO in */);

This calls the SWI Wimp_SetMode (see page 3-188 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_set_palette, Palette

typedef struct { unsigned int colours[16];
unsi gned int border;
unsi gned int pointerl;
unsi gned int pointer?2;
unsigned int pointer3; } Palette;

_kernel _oserror *w np_set_palette (Palette *palette /* Rl in */);

This calls the SWI Wimp_SetPal ette (see page 3-190 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_set_pointer_shape

_kernel _oserror *w np_set_poi nter_shape (int shape, /* RO in */
voi d *data, /* RLin */
int width, /* R in */
int height, /* R3in */
int activex, /* R4 in */
int activey /* R5 in */);

This calls the SWI Wimp_SetPointerShape (see page 3-166 of the RISC OS 3
Programmer’s Reference Manjal

wimp_set_watchdog_state

You might expect a function of this name to be provided to call
Wimp_SetWatchdogState. However, such afunction is not implemented by WimpLib.

161

Programmer interface

wimp_slot_size

_kernel _oserror *w np_sl ot_size (int current, /* RO in */
int next, /* RL in */
int *current, /* RO out */
int *next, /* Rl out */
int *free /* R2 out */);

This calls the SWI Wimp_SlotSize (see page 3-206 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_sprite_op, SpriteParams

typedef struct {int r3; int r4; int r5; int r6; int r7;} SpriteParans;

_kernel _oserror *w np_sprite_op (int code, /* RO in */
char *nane, /* R2 in */
SpriteParans *p /*R3...in */);

This calls the SWI Wimp_SpriteOp (see page 3-201 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_start_task

_kernel _oserror *w np_start_task (char *cl, /* RO in */
int *handl e /* RO out */);

This callsthe SWI Wimp_StartTask (see page 3-177 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_text_colour
_kernel _oserror *w np_text_col our (int col our /* RO in */);

This calls the SWI Wimp_TextColour (see page 3-214 of the RISC OS 3 Programmer’s
Reference Manugl

wimp_text_op
_kernel _oserror *w np_text_op (_kernel _swi _regs *regs /*RO...in*);

This calls the SWI Wimp_TextOp (see page 5-210 of the RISC OS 3 Programmer’s
Reference Manugl

162

The Wimp library

wimp_transfer_block

_kernel _oserror *w np_transfer_bl ock (int sh, /* RO in */
void *sbuf, /* RLin */
int dh, /* R in */
voi d *dbuf, /* R3in */
int size /* R4 in */);

This calls the SWI Wimp_TransferBlock (see page 3-216 of the RISC OS 3
Programmer’s Reference Manjal

wimp_update_window

_kernel _oserror *w np_updat e_w ndow (W npRedr awW ndowBl ock *bl ock,
/* RLin */
int *nore /* RO out */);

This calls the SWI Wimp_UpdateWindow (see page 3-131 of the RISC OS 3
Programmer’s Reference Manjal

wimp_which_icon

_kernel _oserror *w np_whi ch_icon (i nt wi ndow_handl e, /* RO in */
int *icons, /* RLin */
unsi gned int mask, /* R2 in */
unsi gned int match /* R3in */);

This calls the SWI Wimp_Whichl con (see page 3-162 of the RISC OS 3 Programmer’s
Reference Manugl

163

164

11

The Toolbox library

he Toolbox library provides a set of C veneers onto the Toolbox SWis. It is

described in the User Interface Toolbox manual, supplied as a part of this product.
For full details of a particular veneer, you should see the documentation of the
corresponding SWI call.

165

166

12

The Render library

he Render library provides a set of C veneers onto the DrawFile SWIs, used to

render Draw files. It is described in the chapter DrawFile on page 501 of the User
Interface Toolbox manual, supplied as a part of this product. For full details of a
particular veneer, you should see the documentation of the corresponding SWI call.

167

168

Part 3 — C++ language issues

169

170

13 C++ iImplementation details

his chapter describes implementation specific behaviour of the C++ Language
System. Implementation specific behaviours can be categorised as follows:

Behaviour that the Reference Manual defines as ‘implementation dependent’

Behaviour that depends on the underlying C compiler or preprocessor used with
Release 3.0

3 Properties that are defined in the standard headestilddef . h, i m t s. h,
andstdlib.h

4 Translation limits
5 Language constructs that are not implemented in this release.

This chapter addresses categories 1, 2, 4, and 5. For details about properties defined in
the standard header files (category 3), see the headers themselves. Additional
information about constructs that are not implemented is provided in the ap@endix
errors and warnings on page 333, which contains an alphabetical listing of the ‘not
implemented’ error messages.

The ordering and numbering of sections in this chapter corresponds to the order and
numbering of the related sections in Reference Manual. The sectiorTranslation

Limits below (which does not have a corresponding section iRefeeence Manual)
precedes the numbered sections.

Translation Limits
Release 3.0 of the Acorn C++ Language System imposes the following translation
limits:
I 50 nesting levels of compound statements
I 10 nesting levels of linkage declarations
I 4088 characters in a token
I 22222 virtual functions in a class
I 10000 identifiers generated by the implementation.

Additional translation limits may be inherited from the underlying C compiler and
preprocessor.

171

Identifiers (2.3)

Identifiers (2.3)

Identifiers reserved by Release 3.0

Release 3.0 reserves identifiers that contain a sequence of two underscores for its own
use. In addition, identifiers reserved in the ANSI C standard are also reserved by
Release 3.0. Under the +w option, identifiers with double underscoresresult in a
warning in Release 3.0.

Character Constants (2.5.2)

Value of multicharacter constants

The Reference Manual states that the value of a multicharacter constant, such as
"abcd’ , isimplementation dependent. Release 3.0 passes these constants to the
underlying C compiler, which determines their values. A multicharacter constant
containing more characters than si zeof (i nt) isreported as an error by Release 3.0.

Value of (single) character constants

The Reference Manual states that the value of a character constant is implementation
dependent if it exceeds that of the largest char . Release 3.0 accepts octal and
hexadecimal character literalsthat do not fit in achar . It usesthe low order bits that
make up the value of the constant. For example, the octal character constant’ \ 777’ is
trested as’ \ 377’ . The hexadecimal character constant ’ \ X123’ istreated as

"\ x23".

Wide character constants

Release 3.0 does not implement wide character constants, suchasL’ ab’ . A ‘not
implemented’ error message is reported.

Floating Constants (2.5.3)

Long double floating constants

When compiling with the-a0 option, Release 3.0 removeslaor L suffix from a

floating constant before passing the constant to the underlying C compiler. Under the
+al option such a constant is passed unchanged to the underlying C compiler. In either
case, the constant is considered to be ofltypeg doubl e for purposes of resolving
overloaded function calls.

172

C++ implementation details

String Literals (2.5.4)

Distinct string literals

The Reference Manual states that it is implementation dependent whether all string
literals are distinct. Release 3.0 does not attempt to detect cases where string literals
could be represented as overlapping objects. The underlying C compiler may, however,

detect such cases and attempt to overlap their storage.
Wide character strings

Release 3.0 does not implement wide character strings, such asL" abcd" . A ‘not
implemented’ error message is reported.

Start and Termination (3.4)

Type of main()

The Reference Manual states that the type ohi n() is implementation dependent.
Release 3.0 itself does not impose any restrictions on the typ of) , but the
underlying C compiler or the target environment may impose such restrictions.

Linkage of main()

The Acorn C++ Language System tre@is n() as if its linkage werextern " C".

Fundamental Types (3.6.1)

Signed integral types

Release 3.0 does not implement the type spesifigned; it issues a warning and
proceeds as though the specifiégned had not appeared.

Long double type

When Release 3.0 is invoked with th@0 option, the typeé ong doubl e is
considered to be the same size and precision as thdayie e in the underlying C
compiler. Under theal option,| ong doubl e is passed to the underlying C compiler
asl ong doubl e. In either case, typdeong doubl e is considered a distinct type for
purposes of resolving overloaded function declarations and invocations.

173

Integral Conversions (4.2)

Alignment requirements

Release 3.0 does not impose any alignment restrictions when allocating objects of a

particular type. Such restrictions, if they exist, are enforced by the underlying C
compiler.

Integral Conversions (4.2)

Conversion to a signed type

When avalue of anintegral typeisconverted to asigned integral type with fewer bitsin
the representation, Release 3.0 issues a warning message if the +w option is specified.
The runtime behaviour of such a conversion depends on the treatment of the conversion
by the underlying C compiler.

Expressions (5)

Overflow and divide check

The Reference Manual states that the handling of overflow and divide check in
expression evaluation is implementation dependent. When the second operand of a
division or modulus operator isknown to be zero at compiletime, Release 3.0 reports an
error. Overflow and other divide check conditions are handled by the underlying C
compiler and execution environment.

Function Call (5.2.2)

Evaluation order

The Reference Manual statesthat the order of evaluation of argumentsto afunction call
isimplementation dependent; similarly, the order of evaluation of the postfix expression,
which designates the function to be called, and the argument expression list are

implementation dependent. In both cases the order depends on the treatment by the
underlying C compiler.

174

C++ implementation details

Explicit Type Conversion (5.4)

Explicit conversions between pointer and integral types

The Reference Manual statesthat the value obtained by explicitly converting apointer to
an integral type large enough to hold it is implementation dependent. This behaviour is
defined by the underlying C compiler. Similarly, the behaviour when explicitly
converting an integer to a pointer depends on the underlying C compiler.

Multiplicative Operators (5.6)

Sign of the remainder

The Reference Manual states that the sign of the result of the modulus operator is
non-negative if both operands are non-negative; otherwise, the sign of theresult is
implementation dependent. This behaviour depends on the underlying C compiler
except when the values of both operands are known at compile time. In this case, the
sign of the result is the same as the sign of the numerator.

Shift Operators (5.8)

Result of right shift

The Reference Manual states that the result of aright shift when the left operand isa

signed type with anegative value isimplementation dependent. This behaviour depends
on the underlying C compiler.

Relational Operators (5.9)

Pointer comparisons

According to the Reference Manual, certain pointer comparisons are implementation

dependent. For Release 3.0, theresults of these comparisons depend on the underlying C
compiler.

175

Storage Class Specifiers (7.1.1)

Storage Class Specifiers (7.1.1)

Inline functions
The Reference Manual states that thei nl i ne specifier is ahint to the compiler.

When compiling with the +d option, Release 3.0 always generates out-of-line calls to
inline functions.

Type Specifiers (7.1.6)

Volatile

Release 3.0 does not implement the type specifier vol ati | e. If itisappliedto a
member function, a ‘not implemented’ error message is issued; otherwise it is ignored
and a warning message is issued.

Signed

Release 3.0 does not implement the type spesifigned; it is ignored and a warning
message is issued.

Asm Declarations (7.3)

Effect of an asm declaration

Release 3.0 passasmdeclarations to the underlying C compiler without modification.
However, the compiler supplied with Acorn C/C++ will fault them.

Linkage Specifications (7.4)

Languages supported

Release 3.0 supports linkage to C and C++.

Linkage to functions

The effect of & C' linkage specificationgxt ern " C") on a function that is not a
member function is that the function name is not encoded with type information, as is
otherwise done for C++ functions. Member functions are not affected by linkage
specifications.

176

C++ implementation details

Linkage to non-functions

The C linkage specification (ext ern " C"), when applied to a non-function
declaration, does not affect the C code generated.

Class Members (9.2)

Allocation of non-static data members

The Reference Manual states that the order of allocation of non-static data members
across access-specifiersis implementation dependent. Release 3.0 all ocates non-static
data members in declaration order.

Bitfields (9.6)

Allocation and alignment of bitfields

The Reference Manual states that the allocation and alignment of bitfields within a class
object isimplementation dependent. Responsibility for the allocation and alignment of
bitfields rests with the underlying C compiler.

Sign of ‘plain’ bitfields

Whether the high-order bit position of a ‘plaimt bitfield is treated as a sign bit
depends on the behaviour of the underlying C compiler.

Multiple Base Classes (10.1)

Allocation of base classes

The Reference Manual states that the order in which storage is allocated for base classes
is implementation dependent. For non-virtual base classes, Release 3.0 allocates storage

in the order that they are mentioned in the derived class declaration.

Argument Matching (13.2)

Integral arguments

The type of the result of an integral promotion (4.1) depends on the execution

environment, as does the type of an unsuffixed integer constant (2.5.1). Consequently,

the determination of which overloaded function to call may also depend on the
execution environment, as illustrated by an example in 13.2 &dfleeence Manual.

177

Exception Handling (experimental) (15)

Exception Handling (experimental) (15)

Release 3.0 does not implement exception handling. The keyword cat ch isreserved
for future use. A ‘not implemented’ error message is reportedtith is seen.

Predefined Names (16.10)

Predefined macros
The following macros are defined by Release 3.0:
__cplusplus The decimal constant 1.

c_pl uspl us The decimal constant 1. This macro is provided for
compatibility with previous releases and witt be
supported in the next major release.

Other macros may be predefined by the underlying preprocessor.

178

14

The Streams library

he Streams library is a part of the C++ library, ported from that supplied with

AT&T's CFront product. The only significant change made in porting the library is
the handling of file modes, because of the differences between filing systems in
RISC OS and UNIX.

179

Introduction

Synopsis

Description

180

Introduction

iostream — buffering, formatting and input/output

#i ncl ude <i ostream h>

cl ass streanbuf ;

class ios ;

class istream: virtual public ios ;

class ostream: virtual public ios ;

class iostream: public istream public ostream;
class istreamw thassign : public istream;

cl ass ostreamwi thassign : public ostream;

class iostreamw thassign : public iostream;

class lostreaminit ;

extern istreamw thassign cin ;
extern ostreamw t hassign cout ;
extern ostreamw t hassign cerr ;
extern ostreamw t hassign clog ;

#i ncl ude <fstream h>

class filebuf : public streanbuf ;
class fstream: public iostream;
class ifstream: public istream;
class of stream: public ostream;

#i ncl ude <strstream h>

cl ass strstreanbuf : public streanbuf ;
class istrstream: public istream;
class ostrstream: public ostream;

#i ncl ude <stdi ostream h>
cl ass stdiobuf : public streanbuf ;
class stdiostream: public ios ;

The C++ iostream package declared @st r eam h and other header files consists
primarily of a collection of classes. Although originally intended only to support
input/output, the package now supports related activities such as incore formatting.

In the iostream sectioneharacter refers to a value that can be held in eithehar or
unsi gned char. When functions that return &amt are said to return a character,
they return a positive value. Usually such functions can also re@krt—1) as an error
indication. The piece of memory that can hold a character is referred tuyt&s Bhus,
either achar * or anunsi gned char* can point to an array of bytes.

The Streams library

Theiostream package consists of several core classes, which provide the basic
functionality for I/O conversion and buffering, and several specialised classes derived
from the core classes. Both groups of classes are listed bel ow.

Core Classes

The core of the iostream package comprises the following classes:

st r eanbuf

Thisisthe base classfor buffers. It supportsinsertion (also known as storing or putting)
and extraction (also known as fetching or getting) of characters. Most members are
inlined for efficiency. The public interface of class st r eanbuf isdescribed in
streambuf — publion page 228, and the protected interface (for derived classes) is
described in streambuf — protectesh page 220.

i 0s

This class contains state variables that are common to the various stream classes, for
example, error states and formatting states. See ios on page 192.

i stream

This class supports formatted and unformatted conversion from sequences of characters
fetched from st r eanbuf s. See istreamon page 202.

ostream

This class supports formatted and unformatted conversion to sequences of characters
stored into st r eanbuf s. See ostreamon page 213.

i ostream

Thisclass combinesi st r eamand ost r eam It isintended for situationsin which
bidirectional operations (inserting into and extracting from a single sequence of
characters) are desired. Seeios on page 192.

i stream wi t hassi gn
ostream w t hassi gn
i ostream w t hassi gn

These classes add assignment operators and a constructor with no operands to the
corresponding class without assignment. The predefined streams (see below) ci n,
cout,cerr,andcl og, are objects of these classes. See istreamon page 202, ostream
on page 213, and ios on page 192.

181

Introduction

182

lostream.init

This classis present for technical reasons relating to initialisation. It has no public
members. The | ost r eam_ i ni t constructor initialises the predefined streams (listed
below). Because an object of thisclassisdeclared inthei ost r eam h header file, the
constructor is called once each time the header is included (although the real
initialisation is only done once), and therefore the predefined streamswill be initialised
before they are used. In some cases, global constructors may need to call the

| ost ream. i ni t constructor explicitly to ensure the standard streams are initialised
before they are used.

Predefined streams

The following streams are predefined:
cin
The standard input (file descriptor 0).

cout

The standard output (file descriptor 1).

cerr

Standard error (file descriptor 2). Output through this stream is unit-buffered, which
means that characters are flushed after each inserter operation. (See osfx() on page 215
in ostream, and unitbuf on page 197 inios.)

cl og
This stream is a so directed to file descriptor 2, but unlike cer r its output is buffered.

Note: ci n,cerr,andcl og aretiedto cout sothat any use of these will cause cout
to be flushed.

In addition to the core classes enumerated above, the iostream package contains
additional classes derived from them and declared in other headers. Programmers may
use these, or may choose to define their own classes derived from the core iostream
classes.

Classes derived from streambuf

Classes derived from st r eanbuf define the details of how characters are produced or
consumed. Derivation of aclassfrom st r eanbuf (the protected interface) is
discussed in streambuf — protectesh page 220. The available buffer classes are:

See also

The Streams library

fil ebuf

This buffer class supports 1/0 through file descriptors. Members support opening,
closing, and seeking. Common uses do not require the program to manipulate file
descriptors. See filebuf on page 184.

st di obuf

This buffer class supports I/O through stdio FI LE structs. It isintended for use when
mixing C and C++ code. New code should prefer touse f i | ebuf s. See stdiobuf on
page 219.

st rstreanbuf

This buffer class stores and fetches characters from arrays of bytesin memory (i.e.
strings). See strstreambuf on page 236.

Classes derived from istream, ostream, and iostream

Classesderived fromi st r eam ost r eam andi ost r eamspecialise the core classes
for use with particular kinds of st r eanbuf s. These classes are:

i fstream
of stream
fstream

These classes support formatted 1/0O to and from files. They useaf i | ebuf todothe
I/0. Common operations (such as opening and closing) can be done directly on streams
without explicit mention of f i | ebuf s. See fstream on page 188.

i strstream
ostrstream

These classes support ‘in core’ formatting. They userast r eanbuf . Seestrstream
on page 233.

st di ostream

This class specialiseost r eamfor stdioF| LES. Seest di ost r eam h.

ios (page 192)streambuf — publi¢page 228), streambuf — protecteghage 220),
filebuf (page 184), stdiobuf(page 219), strstreambufpage 236), istream(page 202),
ostream(page 213), fstream(page 188), strstream(page 233), manipulators(page 209)

183

filebuf

Synopsis

Description

184

filebuf

filebuf — buffer for file I/0O

#i ncl ude <i ostream h>

typedef |ong streanoff, streanpos;
class ios {

public:
enum seek_dir { beg, cur, end };
enum open_nmode { in, out, ate, app, trunc, nocreate, noreplace } ;
/1 and lots of other stuff; see jos on page 192

P

#i ncl ude <fstream h>

class fil ebuf public streanbuf {

public:
static const int openprot ; /* default protection for open */
filebuf() ;
~filebuf() ;
filebuf(int d);
filebuf(int d, char* p, int len) ;
fil ebuf* attach(int d) ;
fil ebuf* close();
int fd();
int is_open();
fil ebuf* open(char *nane, int onode, int prot=openprot) ;
st reanpos seekof f (streanof f, seek_dir, int onode) ;
st reanpos seekpos(streanpos, int onode) ;
st r eambuf * setbuf (char* p, int len) ;
int sync() ;
b

fil ebuf s specialisst r eanbuf s to use a file as a source or sink of characters.
Characters are consumed by doing writes to the file, and are produced by doing reads.
When the file is seekablef &l ebuf allows seeks. At least 4 characters of putback are
guaranteed. When the file permits reading and writingf tHeebuf permits both

storing and fetching. No special action is required between gets and puts (unlike stdio).
A fil ebuf thatis connected to a file descriptor is said toben.

Under RISC O®penpr ot is ignored.

The Streams library

The reserve area (or buffer; see streambuf — publion page 228 and streambuf —
protectedon page 220) is allocated automatically if oneis not specified explicitly with a
constructor or acall toset buf (). fi | ebuf scanasobemadeunbuf f er ed with
certain arguments to the constructor or set buf () , inwhich case asystem call is made
for each character that isread or written. Theget and put pointersinto the reserve area
are conceptually tied together; they behave as asingle pointer. Therefore, the
descriptions below refer to a single get/put pointer.

In the descriptions below, assume:

I fisafil ebuf.

I pfbisafil ebuf*.

| psbisastreanbuf*.

| i,d,len,and prot areints.

I naneandptr arechar*s.

I npdeisani nt representing an open_node.
I offisastreanoff.

| pand pos arestreanpos’s.

I dirisaseek_dir.

Constructors
filebuf()

Constructs an initially closefd | ebuf .

fil ebuf(d)
Constructs &i | ebuf connected to file descriptat:
filebuf(d, p, len)

Constructs &i | ebuf connected to file descriptatand initialised to use the reserve
area starting gt and containing len bytes. gfis null or/ en is zero or less, the
fil ebuf will be unbuffered.

185

filebuf

186

Members

pfb=f.attach(d)

Connects f to an open file descriptor, d. at t ach() normally returns &f, but returns 0
if f isaready open.

pfb=f.cl ose()

Flushes any waiting output, closesthe file descriptor, and disconnects f . Unlessan error
occurs, f's error state will be cleared.ose() returns&f unless errors occur, in which
case it returns 0. Even if errors ocaurose() leaves the file descriptor arfidclosed.

i=f.fd()

Returnsi , the file descriptof is connected to. If is closed, i i€0F.

i=f.is_open()

Returns non-zero whehis connected to a file descriptor, and zero otherwise.

pf b=f.open(name, node, prot)

Opens filename and connects to it. If the file does not already exist, an attempt is
made to create it, unleg®s: : nocr eat e is specified immpde. Under RISC OS,

pr ot is ignored. Failure occursffis already operopen() normally return&f, but
if an error occurs it returns 0. The memberspén_node are bits that may be OR'd
together. (Because the OR’ing returnd amh , open() takes an nt rather than an
open_node argument.) The meanings of these bitginde are described in detail in
fstream on page 188.

p=f.seekof f (of f, dir, npde)

Moves the get/put pointer as designateaby anddi r. It may fail if the file thaff is
attached to does not support seeking, or if the attempted motion is otherwise invalid
(such as attempting to seek to a position before the beginning obfile)s interpreted

as a count relative to the place in the file specified by dir as descrisrdambuf —
public on page 228. node isignored. seekof f () returns p, the new position, or EOF

if afailure occurs. The position of the file after afailure is undefined.

See also

The Streams library

p=f. seekpos(pos, node)

Movesthe file to aposition pos as described in streambuf — publion page 228. node
isignored. seekpos() normally returns pos, but on failure it returns ECF.

psb=f.setbuf (ptr, Ien)

Setsup thereserve areaas | en bytes beginning at pt r. If pt r isnull or / enisless
than or equal to O, f will be unbuffered. set buf () normally returns &f . Howevey, if f
isopen and a buffer has been allocated, no changes are made to the reserve area or to the
buffering status, and set buf () returnsO.

i=f.sync()

Attemptsto force the state of the get/put pointer of f to agree (be synchronised) with the
state of thefile f. f d() . Thismeansit may write characters to the file if some have
been buffered for output or attempt to reposition (seek) the file if characters have been
read and buffered for input. Normally, sync() returns O, but it returns EOF if
synchronisation is not possible.

Sometimesit is necessary to guarantee that certain characters are written together. To do
this, the program should use set buf () (or aconstructor) to guarantee that the reserve
areais at least as large as the number of characters that must be written together. It can
then call sync() , then store the characters, then call sync() again.

streambuf — publi¢page 228), streambuf — protectegbage 220), fstream(page 188).

187

fstream

fstream

fstream — iostream and streambuf specialised to files

Synopsis
#i ncl ude <fstream h>

typedef |ong streanoff, streanpos;
class ios {

public:
enum seek_dir { beg, cur, end } ;
enum open_nmode { in, out, ate, app, trunc, nocreate, noreplace } ;
enum io_state { goodbit=0, eofbit, failbit, badbit } ;
/1 and lots of other stuff; see ios on page 192
b
class ifstream: istream {
ifstream() ;
~i fstreanm() ;
ifstream(const char* nane, int =ios::in,
int prot =filebuf::openprot) ;
ifstrean(int fd) ;
ifstream(int fd, char* p, int |) ;
voi d attach(int fd) ;
voi d close() ;
voi d open(char* nane, int =ios::in,
int prot=filebuf::openprot) ;
filebuf* rdbuf () ;
voi d setbuf (char* p, int 1) ;
}
cl ass of stream: ostream {
of streanm() ;
~of strean() ;
of stream(const char* nane, int =ios::out,
int prot =filebuf::openprot) ;
of stream(int fd) ;
of stream(int fd, char* p, int I) ;
voi d attach(int fd) ;
voi d close() ;
voi d open(char* nanme, int =ios::out,
int prot=filebuf::openprot) ;
fil ebuf* rdbuf () ;
voi d setbuf (char* p, int 1) ;
}

188

The Streams library

class fstream: iostream {
fstrean() ;
~fstrean() ;
fstrean(const char* nane, int node,
int prot =filebuf::openprot) ;
fstrean(int fd) ;
fstrean(int fd, char* p, int I) ;

voi d attach(int fd) ;
void close() ;
voi d open(char* nane, int node,
int prot=filebuf::openprot) ;
filebuf* rdbuf () ;
voi d setbuf (char* p, int I) ;
}s
Description
i fstreamof streamandf streamspeciaisei st ream ost r eam and
i ost ream respectively, to files. That is, the associated st r eanbuf will bea
filebuf.
In the following descriptions, assume:
I fisanyofifstreamofstreamorfstream.
I pfbisafil ebuf*.
| psbisastreanbuf*.
I naneandptr arechar*s.
I i,fd,len,andprot aeints.
I npdeisani nt representing an open_node.
Constructors

The constructorsfor xst r eam where x iseitheri f, of ,or f , are

xstream)

Constructs an unopened xst r eam

xstrean(nanme, node, prot)

Constructs an xst r eamand opens file nane using node as the open mode. Under
RISC OS pr ot isignored. The error state (i 0_st at e) of the constructed xst r eam
will indicate failure in case the open fails.

xstrean(d)

Constructs an xst r eamconnected to file descriptor d, which must be already open.

189

fstream

xstrean(d, ptr, | en)

Constructs an xst r eamconnected to file descriptor d, and, in addition, initialises the
associated f i | ebuf tousethe/ en bytesat pt r asthereservearea. If pt r isnull or
| enisO,thefi | ebuf will beunbuffered.

Member functions

f.attach(d)

Connects f to thefile descriptor d. A failure occurswhen f isaready connected to a
file. A falluresetsi os: : fail bit inf’s error state.

f.close()
Closes any associatéd| ebuf and thereby breaks the connection ofthe a file.

f’s error state is cleared except on failure. A failure occurs when the call to
f.rdbuf ()->cl ose() fails.

f. open(nane, node, prot)

Opens filename and connects to it. If the file does not already exist, an attempt is
made to create it unleg®s: : nocr eat e is set. Under RISC OPBr ot is ignored.
Failure occurs if is already open, or the call fo r dbuf () - >open() fails.

i os::failbit issetinf’s error status on failure. The member®pen_node are
bits that may be OR’d together. (Because the OR’ing returnatajopen() takes an

i nt rather than anpen_node argument.) The meanings of these bits in mode are:

i 0s::app A seek to the end of file is performed. Subsequent data
written to the file is always added (appended) at the end of
file. i os: : app impliesi os: : out .

ios::ate A seek to the end of the file is performed during the
open() .i os:: at e does notimply os: : out .

ios::in The file is opened for inpuit.os: : i n is implied by
construction and opens bf st r eans. Forf st reans it
indicates that input operations should be allowed if possible.
Isis legal toincludéos: : i ninthe modes of anst r eam
in which case it implies that the original file (if it exists)
should not be truncated. If the file being opened for input
does not exist, the open will fail.

i 0s::out The file is opened for outputos: : out is implied by
construction and opens of st r eans. Forf st r eamit
says that output operations are to be allowed.: : out
may be specified.

190

See also

The Streams library

i0s::trunc If the file already exists, its contents will be truncated
(discarded). Thismode isimplied wheni os: : out is
specified (including implicit specification for of st r eam)
and neitheri 0s: : at e nori os: : app is specified.

i 0s::nocreate If the file does not aready exist, theopen() will fail.

i 0s::norepl ace If the file aready exists, theopen() will fail. Only valid
withi os: : out.

pf b=f. rdbuf ()

Returns apointer to thef i | ebuf associated with f.f st ream : r dbuf () hasthe

samemeaning asi ost r eam : r dbuf () but istyped differently.

f.setbuf (p,/en)

Has the usual effect of aset buf () (seefilebuf on page 184), offering space for a
reserve area or requesting unbuffered 1/0. Normally the returned psbisf. r dbuf (),
butitisOonfailure. A failureoccursif f isopenorthecal tof. r dbuf () - >set buf
fails.

filebuf (page 184), istream (page 202), ios (page 192), ostream (page 213), streambuf —
public (page 228)

191

ios

Synopsis

192

ios — input/output formatting

#i ncl ude <i ostream h>

class ios {

public:
enum io_state { goodbit=0, eofbit, failbit,
enum open_node { in, out, ate, app, trunc,
enum seek_dir { beg, cur, end };
/* flags for controlling fornat */
enum { ski pws=01,
| eft =02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoi nt =0400,
upper case=01000, showpos=02000,
scientific=04000, fixed=010000,
uni t buf =020000, st di 0=040000 };
static const |ong basefield;
/* dec|oct| hex */
static const long adjustfield;
/* left|right|internal */
static const long floatfield;
/* scientific|fixed */
public:
i os(streanbuf*);
int bad();
static |ong bitalloc();
voi d clear(int state =0);
int eof ();
int fail();
char fill();
char fill(char);
| ong flags();
I ong flags(long);
int good() ;
| ong& iword(int);
int operator!();
operator void*();
int precision();
int precision(int);
st r eanbuf * rdbuf ();
voi d* & pword(int);
int rdstate();
| ong setf(long setbits, long field)
| ong setf (1 ong);
static void sync_wi th_stdio();

badbit };
nocreat e,

l0S

norepl ace };

The Streams library

ostreant tie();
ostreant tie(ostreant);
I ong unset f (1 ong);
int wi dth();
int wi dth(int);
static int xal loc();
pr ot ect ed:
ios();
init(streanbuf*);
private:
ios(ios&);
voi d oper at or =(i 0s&) ;
b
/* Manipul ators */
i 0s& dec(ios&) ;
i 0s& hex(i o0s&) ;
i 0s& oct(ios&) ;
ostream& endl (ostream& i) ;
ostream& ends(ostream& i) ;
ostrean& flush(ostrean®) ;
istream& ws(i strean®) ;

Description

The stream classes derived from classi os provide a high level interface that supports
transferring formatted and unformatted information into and out of st r eanbuf s. This
section describes the operations common to both input and output.

Several enumerations are declared in classi os, open_node, i o_st at e,

seek_di r, and format flags, to avoid polluting the global name space. The

i 0_st at esaredescribed in Error states on page 194. The format fields are described
in Formatting on page 195. The open_nodes are described in detail under
pfb=f.open(name, mode, prot) on page 186, in the section fstream. Theseek _di r sare
described under pos=sh-> seekoff(off, dir, mode) on page 225, in the section streambuf —
public.

In the following descriptions assume:
I sands2arei 0Ss.

I Srisani osé&

| spisaios*.

I i,o0f,j,andnareints.

I I,f,andbarel ongs.

I candocaechars.

I ospandoosp areostreants.
I sbisastreanbuf*.

193

ios

194

I posisastreanpos.

I offisastreanoff.

I dirisaseek_dir.

I npdeisani nt representing an open_node.

I fct isafunction withtypei os& (*) (i 0s&) .
I vpisavoi d*&

Constructors and assignment

i os(sb)

Thest r eanbuf denoted by sb becomesthe st r eanmbuf associated with the
constructed i os. If sbisnull, the effect is undefined.

i os(sr)
s2=s

Copying of i ossisnot well-defined in general, therefore the constructor and
assignment operators are private so that the compiler will complain about attemptsto
copy i 0s objects. Copying pointerstoi ost r eansisusually what is desired.

i os()
init(sh)

Because classi 0s isnhow inherited as a virtual base class, a constructor with no
arguments must be used. This constructor is declared protected. Therefore

i 0s::init(streanbuf*) isdeclared protected and must be used for initialisation
of derived classes.

Error states

Ani os hasaninternal error state (which isa collection of the bits declared as
i 0_st at es). Membersrelated to the error state are:

i=s.rdstate()

Returns the current error state.

s.clear (i)

Stores i asthe error state. If i iszero, this clears all bits. To set a bit without clearing
previously set bits requires something like
s.clear(ios::badbit]|s.rdstate()).

The Streams library

i =s. good()

Returns non-zero if the error state has no bits set, zero otherwise.

i=s.eof ()

Returns non-zero if eof bi t issetintheerror state, zero otherwise. Normally thisbit is
set when an end-of-file has been encountered during an extraction.

i=s.fail()

Returnsnon-zero if either badbi t orf ai | bi t issetintheerror state, zero otherwise.
Normally this indicates that some extraction or conversion has failed, but the stream is
dtill usable. That is, oncethef ai | bi t iscleared, 1/0 on s can usually continue.

i =s. bad()

Returns non-zero if badbi t isset in the error state, zero otherwise. This usually
indicates that some operation on s. r dbuf () hasfailed, a severe error, from which
recovery is probably impossible. That is, it will probably be impossible to continue I/O
operationson s.

Operators

Two operators are defined to allow convenient checking of the error state of ani os:
operator! () andoperat or voi d*() . Thelatter convertsani os to apointer so
that it can be compared to zero. The conversion will return Qif f ai | bi t orbadbi t is
set inthe error state, and will return a pointer value otherwise. This pointer is not meant
to be used. This allows one to write expressions such as:

if (cin) ...

if (cin>x) ...

The! operator returnsnon-zeroif f ai | bi t or badbi t issetin the error state, which
allows expressions like the following to be used:

if ('cout) ...

Formatting

Ani os hasaformat state that is used by input and output operations to control the
details of formatting operations. For other operations the format state has no particular
effect and its components may be set and examined arbitrarily by user code. Most
formatting details are controlled by using thef | ags(),setf(),andunset f ()
functions to set the following flags, which are declared in an enumeration in classi os.
Three other components of the format state are controlled separately with the functions
fill(),w dth(),andprecision().

195

ios

ski pws

If ski pws isset, whitespace will be skipped oninput. This appliesto scalar extractions.
When ski pws is not set, whitespace is not skipped before the extractor begins
conversion. If ski pws isnot set and a zero length field is encountered, the extractor
will signal an error. Additionally, the arithmetic extractors will signal an error if

ski pws isnot set and awhitespace is encountered.

| ef t
right
i nt er nal

These flags control the padding of avalue. When | ef t isset, the value isleft-adjusted,
that is, thefill character is added after thevalue. Whenr i ght isset, thevalueis
right-adjusted, that is, the fill character is added before the value. Wheni nt er nal is
set, the fill character is added after any leading sign or base indication, but before the
value. Right-adjustment is the default if none of these flagsis set. These fields are
collectively identified by the static member, i os: : adj ust fi el d. Thefill character
iscontrolled by thefi I | () function, and the width of padding is controlled by the

wi dt h() function.

dec
oct
hex

These flags control the conversion base of avalue. The conversion baseis 10 (decimal)
if dec isset, butif oct or hex isset, conversions are donein octal or hexadecimal,
respectively. If none of these is set, insertions are in decimal, but extractions are
interpreted according to the C++ lexical conventionsfor integral constants. These fields
arecollectively identified by the static member, i os: : basefi el d. The manipulators
hex, dec, andoct can also be used to set the conversion base; see the section Built-in
Manipulators on page 200.

showbase

If showbase isset, insertions will be converted to an external form that can be read
according to the C++ lexical conventions for integral constants. showbase isunset by
default.

showpos

If showpos is set, then a+’ will be inserted into a decimal conversion of a positive
integral value.

196

The Streams library

upper case

If upper case is set, then an uppercasgé will be used for hexadecimal conversion
whenshowbase is set, or an uppercade will be used to print floating point numbers
in scientific notation.

showpoi nt

If showpoi nt is set, trailing zeros and decimal points appear in the result of a floating
point conversion.

scientific
fixed

These flags control the format to which a floating point value is converted for insertion
into a stream. If scientific is set, the value is converted using scientific notation, where
there is one digit before the decimal point and the number of digits after it is equal to the
pr eci si on (see below), which is six by default. An upperca&Sewill introduce the
exponent ifupper case is set, a lowercase™ will appear otherwise. Ifi xed is set,

the value is converted to decimal notation vatreci si on digits after the decimal

point, or six by default. If neithexci enti fi ¢ norfi xed is set, then the value will

be converted using either notation, depending on the value; scientific notation will be
used if the exponent resulting from the conversion is less than —4 or greater than or equal
to pr eci si on digits. Otherwise the value will be converted to decimal notation with

pr eci si on digits total. fshowpoi nt is not set, trailing zeroes are removed from the
result and a decimal point appears only if it is followed by a digitenti fi c and

f i xed are collectively identified by the static members: : f| oatfi el d.

uni t buf

When set, a flush is performed bgt r eam : osf x() after each insertion. Unit
buffering provides a compromise between buffered output and unbuffered output.
Performance is better under unit buffering than unbuffered output, which makes a
system call for each character output. Unit buffering makes a system call for each
insertion operation, and doesn’t require the user tosall eam : f1 ush().

stdio

When setst dout andst derr are flushed bystream : osf x() after each
insertion.

197

ios

The following functions use and set the format flags and variables:

oc=s.fill(c)

Setsthefill character format state variableto ¢ and returnsthe previousvalue. ¢ will be
used asthe padding character, if oneisnecessary (seewi dt h() below). The default fill
or padding character is aspace. The positioning of the fill character is determined by the
right,l eft,andi nternal flags, see above. A parameterised manipulator,
setfill,isalsoavailablefor setting thefill character; see manipulators on page 209.
c=s.fill()

Returns the ‘fill character’ format state variable.

I=s.flags()

Returns the current format flags.

I =s.flags(f)

Resets all the format flags to those specifiefl and returns the previous settings.

oi =s. precision(i)

Sets thepr eci si on format state variable to and returns the previous value. This
variable controls the number of significant digits inserted by the floating point inserter.
The default is 6. A parameterised manipulagett, pr eci si on, is also available for
setting the precision; seaanipulators on page 209.

i =s. precision()

Returns ther eci si on format state variable.

I =s.setf(b)

Turns on ins the format flags marked i and returns the previous settings. A
parameterised manipulateret i osf | ags, performs the same function; see
manipulators on page 209.

I =s.setf(b,f)

Resets irs only the format flags specified Wyto the settings marked i and returns
the previous settings. That is, the format flags specifidddng cleared i3, then reset
to be those marked im For example, to change the conversion basadabehex, one
could write:s. set f (i 0s: : hex, i 0os:: basefield).ios::basefield
specifies the conversion base bits as candidates for changeg&ndhex specifies
the new values. set f (0,) will clear all the bits specified bf, as will a
parameterised manipulatoreset i osf | ags; seemanipulators on page 209.

198

The Streams library

I =s.unsetf(b)
Unsetsin s the bits set in b and returns the previous settings.

oi=s.wi dth(i)

Sets the field-width format variableto / and returns the previous value. When the field
width is zero (the default), inserters will insert only as many characters as necessary to
represent the value being inserted. When the field-width is non-zero, the inserters will
insert at least that many characters, using the fill character to pad the value, if the value
being inserted requires fewer than field-width charactersto be represented. However, the
numeric inserters never truncate values, so if the value being inserted will not fit in
field-width characters, more than field-width characterswill be output. Thefield-widthis
always interpreted as a minimum number of characters; there is no direct way to specify
amaximum number of characters. The field-width format variableisreset to the default
(zero) after each insertion or extraction, and in this sense it behaves as a parameter for
insertions and extractions. A parameterised manipulator, set w; is aso available for
setting the width; see manipulators on page 209.

i=s.w dt h()
Returns the field-width format variable.

User-defined Format Flags

Classi 0s can be used as a base class for derived classes that require additional format
flags or variables. Theiostream library provides several functionsto do this. The two
static member functionsi os: : xal | oc andi os: : bi tal | oc, allow several such
classes to be used together without interference.

b=i os::bitalloc()

Returnsal ong with asingle, previously unallocated, bit set. This allows users who
need an additional flag to acquire one, and passit asan argument toi os: : setf (), for
example.

i=ios::xalloc()

Returns a previously unused index into an array of words available for use as format
state variables by derived classes.

I=s.iword(i)

When i isanindex allocated by i os: : xal | oc,i wor d() returnsareference to the
i th user-defined word.

199

ios

200

vp=s. pword(i)

When j isanindex allocated by i os: : xal | oc, pwor d() returnsareference to the
i th user-defined word. pwor d() isthesameasi wor d except that it is typed
differently.

Other members

sb=s. rdbuf ()

Returns apointer to the st r eanbuf associated with s when s was constructed.

ios::sync_with_stdio()

Solves problems that arise when mixing stdio and iostreams. Thefirst timeitiscalled it
will reset the standard iostreams (ci n, cout , cer r, cl 0g) to be streams using

st di obuf s. After that, input and output using these streams may be mixed with input
and output using the corresponding FI LEs (st di n, st dout , and st der r) and will
be properly synchronised. sync_wi t h_st di o() makescout andcerr unit
buffered (seei os: : uni t buf andi os: : st di o above). Invoking

sync_wi t h_stdi o() degrades performance a variable amount, depending on the
length of the strings being inserted (shorter stringsincur alarger performance hit).

oosp=s.tie(osp)

Setsthet i e variableto osp, and returnsits previous value. This variable supports
automatic ‘flushing’ ofi oss. If thet i e variable is non-null and @ms needs more
characters or has characters to be consumedpth@ointed at by théi e variable is
flushed. By defaultgi n is tied initially tocout so that attempts to get more characters
from standard input result in flushing standard output. Additionadlyr andcl og are
tied tocout by default. For otherross, thet i e variable is set to zero by default.

osp=s.tie()

Returns the i e variable.

Built-in Manipulators

Some convenient manipulators (functions that takiees®, ani st r ean®, or an
ost r eam& and return their argument; seanipulators on page 209) are:

sr<<dec
sr>>dec

These set the conversion base format flag to 10.

See also

The Streams library

sr<<hex
sr>>hex

These set the conversion base format flag to 16.

sr<<oct
sr>>oct

These set the conversion base format flag to 8.

Sr>>Ws

Extracts whitespace characters. See istream on page 202.

sr<<endl

Ends aline by inserting a newline character and flushing. See ostream on page 213.

sr<<ends

Ends a string by inserting a null (0) character. See ostream on page 213.

sr<<flush
Flushesout s. See ostream on page 213.

Several parameterised manipulators that operate on ios objects are described in
manipulators on page 209: set w,setfil | ,set preci si on, seti osfl ags, and
resetiosfl ags.

Thest r eanmbuf associated with ani 0s may be manipulated by other methods than
through the i os. For example, characters may be stored in a queuelike st r eambuf
through an ost r eamwhile they are being fetched through ani st r eam Or for
efficiency some part of a program may choose to do st r eanbuf operations directly
rather than through thei os. In most cases the program does not have to worry about
this possibility, because ani 0s never saves information about the internal state of a
st r eanbuf . For example, if the st r eanbuf isrepositioned between extraction
operations the extraction (input) will proceed normally.

Introduction (page 180), streambuf — protectefghage 220), streambuf —
public (page 228), istream(page 202), ostream(page 213), manipulatorspage 209)

201

istream

iIstream

istream — formatted and unformatted input

Synopsis
#i ncl ude <i ostream h>

typedef |ong streanoff, streanpos;
class ios {

public:
enum seek_dir { beg, cur, end };
enum open_nmode { in, out, ate, app, trunc, nocreate, noreplace } ;
/* flags for controlling fornat */
enum { ski pws=01,
| eft =02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoi nt =0400,
upper case=01000, showpos=02000,
scientific=04000, fixed=010000,
uni t buf =020000, st di 0=040000 };
/1 and lots of other stuff; see jos on page 192
P
class istream: public ios {
public:
i strean(streanbuf*);
int gcount () ;
istream& get(char* ptr, int len, char delim="\n");
istream& get(unsigned char* ptr,int len, char delim="\n’);
istream& get(unsigned char&);
istream& get(char&);
istream& get(streambuf& sb, char delim ="\n");
int get();
istream& getline(char* ptr, int len, char delim="\n");
istream& getline(unsigned char* ptr, int len, char delim="\n");
istream& ignore(int len=1,int delim=EOF);
int ipfx(int need=0);
int peek();
istream& putback(char);
istream& read(char* s, int n);
istream& read(unsigned char* s, int n);
istream& seekg(streampos);
istream& seekg(streamoff, seek_dir);
int sync();
streampos tellg();

202

Description

The Streams library

i stream& oper at or >>(char *);

istream& oper at or >>(char &) ;

i stream& oper at or >>(short &) ;

i stream& operator>>(int&);

istream& oper at or >>(1 ong&) ;

i stream& operat or>>(fl oat &) ;

istream& oper at or >>(doubl e&) ;

i stream& oper at or >>(unsi gned char*);
istream& oper at or >>(unsi gned char &) ;
istream& oper at or >>(unsi gned short&);
i stream& oper at or >>(unsi gned inté&);
istream& oper at or >>(unsi gned | ong&) ;
i stream& oper at or >>(st reanbuf*);
istream& operator>>(istream& (*)(istrean®));
i stream& operator>>(ios& (*)(ios&));

}s

class istreamw thassign : public istream/{
i streamw t hassign();

istream& operat or=(i streamg);
i streanm& oper at or =(st r eanbuf *) ;
b
extern istreamw t hassign cin;
i streanm& ws(i streang);
i 0s& dec(ios&) ;
i 0s& hex(i 0s&) ;
i 0s& oct(ios&) ;

i st r eamns support interpretation of characters fetched from an associated
st r eanbuf . These are commonly referred to as input or extraction operations. The
i st r eammember functions and related functions are described below.

In the following descriptions assume that

I insisanistream

I inswaisani stream w t hassi gn.
I inspisanistreant.

I cisachar&

I delimisachar.

I ptrisachar* orunsi gned char*.
I sbisastreanbuf &

I i,n,len, d andneedareints.

| posisastreanpos.

I offisastreanoff.

203

istream

I dirisaseek_dir.
I mani pisafunction with typei stream& (*) (i strean®).

Constructors and assignment

i strean(sb)

Initialisesi os state variables and associates buffer sb with thei st r eam

i stream wi t hassi gn()

Does no initiaisation.

i nswa=sb

Associates sb with i nswa and initialises the entire state of i nswa.

i nswa=i ns

Associates i ns- >r dbuf () with i nswa and initialises the entire state of / nswa.

Input prefix function

i = ins.ipfx(need)

If i ns’s error state is non-zero, returns zero immediately. If necessary (and if it is
non-null), anyi os tied to/ ns is flushed (see the descriptioniafs: : ti e() on

page 200 onwards afs. Flushing is considered necessary if eitheed==0 or if there

are fewer thameed characters immediately availablei Bs: : ski pws is set in
ins.flags() andneed is zero, then leading whitespace characters are extracted
fromi ns.i pf x() returns zero if an error occurs while skipping whitespace; otherwise
it returns non-zero.

Formatted input functions callpf x(0) , while unformatted input functions call
i pf x(1); see below.

Formatted input functions (extractors)

i ns>>x

Callsi pf x(0) and if that returns non-zero, extracts characters fromand converts
them according to the type &f It stores the converted valuexnErrors are indicated
by setting the error state bhis.i os: : fai | bi t means that charactersiins were
not a representation of the required tyipes: : badbi t indicates that attempts to
extract characters failedins is always returned.

204

The Streams library

The details of conversion depend on the values of ins’s format state flags and variables
(seeios on page 192) and the type of x. Except that extractions that use width reset it to
0, the extraction operators do not change the value of ostream’s format state. Extractors

are defined for the following types, with conversion rules as described below.

char*,
unsi gned char*

char &,
unsi gned char &

short &,

unsi gned short &,
inté&,

unsi gned int &,

| ongé&,

unsi gned | ong&

fl oat &,
doubl e&

Characters are stored in the array pointed at btil a
whitespace character is foundiins. The terminating
whitespace is left inns. If i ns. wi dt h() is non-zero it

is taken to be the size of the array, and no more than

i ns. wi dt h() -1 characters are extracted. A terminating
null character (0) is always stored (even when nothing else
is done because o6fns’s error status)i ns. wi dt h() is

reset to 0.

A character is extracted
and stored irx.

Characters are extracted and converted to an integral value
according to the conversion specified ins’s format flags.
Converted characters are stored iff he first character may

be a sign (+ or -). After that, ifos: : oct,i os: : dec, or

i 0s:: hexissetini ns. fl ags(), the conversion is

octal, decimal, or hexadecimal, respectively. Conversion is
terminated by the first ‘non-digit,” which is left ims.

Octal digits are the characters ‘0’ to ‘7'. Decimal digits are
the octal digits plus ‘8" and '9’. Hexadecimal digits are the
decimal digits plus the letters ‘a’ through ‘f’ (in either upper
or lower case). If none of the conversion base format flags is
set, then the number is interpreted according to C++ lexical
conventions. That is, if the first characters (after the optional
sign) aredx or 0X a hexadecimal conversion is performed
on following hexadecimal digits. Otherwise, if the first
character is 8, an octal conversion is performed, and in all
other cases a decimal conversion is performed.

i os::failbit is setif there are no digits (not counting
the0 in Ox or 0X) during hex conversion) available.

Converts the characters according to C++ syntax for a float
or double, and stores the resulkin os: : fail bi t is set

if there are no digits available ims or if it does not begin
with a well formed floating point number.

The type and namefer at or >>) of the extraction operations are chosen to give a
convenient syntax for sequences of input operations. The operator overloading of C++
permits extraction functions to be declared for user-defined classes. These operations
can then be used with the same syntax as the member functions described here.

205

istream

i ns>>sh
Ifi os.i pfx(0) returnsnon-zero, extracts charactersfromi os and insertsthem into
sb. Extraction stops when EOF isreached. Alwaysreturns i ns.

Unformatted input functions

These functionscall i pf x(1) and proceed only if it returns non-zero:

i nsp=& ns. get(ptr,len, delim

Extracts characters and stores them in the byte array beginning at pt r and extending for

| en bytes. Extraction stopswhen del i misencountered (del i misleftini ns and not
stored), when / ns has no more characters, or when the array has only one byteleft. get
always stores a terminating null, even if it doesn'’t extract any characters frem
because of its error statusos: : f ai | bi t is set only if get encounters an end of file
before it stores any characters.

i nsp=&i ns. get (c¢)

Extracts a single character and stores d.in

i nsp=& ns. get (sb, del i m

Extracts characters fromns. r dbuf () and stores them intb. It stops if it
encounters end of file or if a store irgd fails or if it encountergle/ i m(which it
leaves in ns).i os:: fail bit is setif it stops because the store sofails.
i=ins.get().

Extracts a character and returng iis EOF if extraction encounters end of file.
i os::failbit isnever set.

insp=& ns. getline(ptr,len,delin

Does the same thing a®s. get (ptr, | en, del i m with the exception that it
extracts a terminatinde/ i mcharacter from ns. In casedel i moccurs when exactly

| en characters have been extracted, termination is treated as being due to the array
being filled, and thigle/ i mis left ini ns.

i nsp=& ns. i gnore(n, d)

Extracts and throws away up taccharacters. Extraction stops prematurely i
extracted or end of file is reacheddlfs EOF it can never cause termination.

206

The Streams library

i nsp=&i ns.read(ptr, n)

Extracts n characters and stores them in the array beginning at pt r. If end of fileis
reached before n characters have been extracted, r ead stores whatever it can extract
and setsi os: : fail bit.Thenumber of characters extracted can be determined via
i ns.gcount ().

Other members

i =i ns. gcount ()

Returns the number of characters extracted by the last unformatted input function.
Formatted input functions may call unformatted input functions and thereby reset this
number.

i =i ns. peek()

Beginsby calling i ns. i pf x(1) . If that call returns zero or if i ns isat end of file, it
returns ECF. Otherwise it returns the next character without extracting it.

i nsp=&i ns. put back(c)

Attemptsto back up 7 ns. r dbuf () . ¢ must be the character before i ns. r dbuf () 's

get pointer. (Unless other activity is modifyings. r dbuf () this is the last character
extracted froni ns.) If it is not, the effect is undefinedut back may fail (and set the
error state). Although it is a memberiaft r eam put back never extracts characters,
so it does not call pf x. It will, however, return without doing anything if the error state
is non-zero.

i =& ns. sync()

Establishes consistency between internal data structures and the external source of
characters. Callsns. r dbuf () - >sync() , which is a virtual function, so the details
depend on the derived class. RetUEa¥ to indicate errors.

i ns>>mani p

Equivalent tarani p(i ns) . Syntactically this looks like an extractor operation, but
semantically it does an arbitrary operation rather than converting a sequence of
characters and storing the resultveni p. A predefined manipulatows, is described
below.

Member functions related to positioning

i nsp=& ns. seekg(of f, dir)

Repositiong ns. r dbuf () 's get pointer. Sestreambuf — publion page 228 for a
discussion of positioning.

207

istream

Caveats

See also

208

i nsp=&i ns. seekg(pos)

Repositions i ns. r dbuf () 's get pointer. Sestreambuf — publion page 228 for a
discussion of positioning.

pos=ins.tellg()

The current position of i os. r dbuf () ’s get pointer. Sestreambuf — publion
page 228 for a discussion of positioning.

Manipulator

i ns>>wus

Extracts whitespace characters.

i ns>>dec

Sets the conversion base format flag to 10. Seeios on page 192.

i ns>>hex

Sets the conversion base format flag to 16. Seeios on page 192.

i ns>>oct

Sets the conversion base format flag to 8. See ios on page 192.

There is no overflow detection on conversion of integers.

ios (page 192), streambuf — publi¢page 228), manipulators(page 209)

Synopsis

The Streams library

manipulators

manipulators — iostream out of band manipulations

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

tenplate <class T>

class SMANIP {
SMANI P(i0s& (*)(ios& T), T);
friend istream& operator>>(istream SMANI P<T>&);
friend ostrean& operator<<(ostreanm® SMANI P<T>&);
b
tenplate <class T>
cl ass SAPP {
SAPP(T)(i0s& (*)(ios&T));
SMANI P<T> operator()(T);
b
tenplate <class T>
class IMANIP {
I MANI P(istream& (*)(istream&, T), T);
friend istreanm& operator>>(istrean®, |MN P<T>&);

b

tenplate <class T>

class | APP {
| APP(istream& (*)(istream®&, T));
I MANI P<T> operator()(T);

b

tenplate <class T>
class OMANI P {
OVANI P(ostream& (*)(ostream&, T), T);
friend ostrean& operator<<(ostreanmt OVANI P<T>&);

b

tenplate <class T>

cl ass QAPP {
OAPP(ostream& (*)(ostream&, T));
OVANI P<T> operator()(T);

b

tenplate <class T>
class IOVANI P {
| OVANI P(i ostream& (*)(iostream& T), T);
friend istreanm& operator>>(iostream, | OVANI P<T>&);
friend ostrean& operator<<(iostream& | OVAN P<T>&);
b
tenpl ate <class T>
class |1 QAPP {
| OAPP(iostream& (*)(iostreanm®, T));
| OMANI P<T> operator () (T);
b

209

manipulators

Description

210

SMANI P<| ong> reseti osfl ags(long);

SMANI P<i nt > setfill(int);
SMANI P<| ong> seti osfl ags(long);
SMANI P<i nt > setprecision(int);
SMANI P<i nt > setw(int w;

Manipulators are values that may be ‘inserted into’ or ‘extracted from’ streams to
achieve some effect (other than to insert or extract a value representation), with a
convenient syntax. They enable one to embed a function call in an expression containing
a series of insertions or extractions. For example, the predefined manipulator for

ost reans,f | ush, can be used as follows:

cout << flush

to flushcout . Several iostream classes supply manipulatorsoses page 192,
istream on page 202, angstream on page 213.| ush is a simple manipulator; some
manipulators take arguments, such as the preddfioednanipulatorsset fi I | and
set w(see below).

In the following descriptions, assume:

t is aT, or type name.

S is ani o0s.

i is ani stream

0 is anost r eam

i ois ani ostream

fisani 0s& (*) (i 0s&).

i fisani stream& (*)(istreang).
of isanostream& (*) (ostrean®).
j of isani ostream& (*) (i ostrean).
nisani nt.

| is al ong.

The Streams library

S<<SMANI P<T>(f, t)
s>>SMANI P<T>(f, t)
S<<SAPP<T>(f) (t)
S>>SAPP<T>(f) (t)

Returnsf (s, t) , where s isthe left operand of the insertion or extractor operator (i.e.
S,i,0,0rio).

i>>1 MANI P<T>(j f, t)

I >>1 APP<T>(if)(t)

Returnsi f(i,t).

0<<OMANI P<T>(of , t)

0<<QAPP<T>(of) (t)

Returnsof (o, t) .

i o<<l QVANI P<T>(i of , t)
i 0>>1 QVANI P<T>(i of , t)
i o<<| OAPP<T>(j of) (t)
i 0>>1 OAPP<T>(j of) (t)

Returnsi of (i o, t).

i omani p. h contains declarations of some manipulatorsthat takeani nt oral ong
argument. These manipulators al have to do with changing the format state of a stream;
seeios on page 192 for further details.

o<<set W n)
i >>setw n)

Setsthe field width of the stream (left-hand operand: o or i) to n.

o<<setfill (n)
i>>setfill (n)

Setsthefill character of the stream (o0 or i) to be n.

o<<set preci sion(n)
i >>set preci sion(n)

Sets the precision of the stream (o or i) to be n.

211

manipulators

o<<setiosflags(/)
i>>setiosflags(/)

Turnson in the stream (o or) the format flags marked in / . (Calls 0. setf (/) or
i.setf(/l)).

o<<resetiosflags(/)

i>>resetiosflags(/)

Clearsin the stream (o or i) the format bits specified by / . (Calls 0. set f (0, /) or
i.setf(0,/)).

See also
ios (page 192), istream (page 202), ostream (page 213)

212

The Streams library

ostream

ostream — formatted and unformatted output

Synopsis
#i ncl ude <i ostream h>

typedef |ong streanoff, streanpos;
class ios {

public:
enum seek_dir { beg, cur, end };
enum open_node { in, out, ate, app, trunc, nocreate, noreplace } ;
enum { skipws=01,
| eft =02, right=04, internal =010,
dec=020, oct =040, hex=0100,
showbase=0200, showpoi nt =0400,
upper case=01000, showpos=02000,
sci entific=04000, fixed=010000,
uni t buf =020000, st di 0=040000 };
/1 and lots of other stuff; see jos on page 192
P
class ostream: public ios {
public:
ostrean(streanbuf *);
ostream& flush();
int opf x();
ostrean& put (char);
ostrean& seekp(st reanpos);
ostrean& seekp(streanoff, seek_dir);
st reanpos tellp();
ostrean& wite(const char* ptr, int n);
ostream& write(const unsigned char* ptr, int n);
ostrean& oper at or <<(const char*);
ostrean& oper at or <<(char);
ostream& oper at or <<(short);
ostream& operator<<(int);
ostrean& oper at or <<(1 ong);
ostream& operat or<<(fl oat);
ostrean& oper at or <<(doubl e) ;
ostrean& oper at or <<(unsi gned char);
ostream& oper at or <<(unsi gned short);
ostrean& oper at or <<(unsi gned int);
ostrean& oper at or <<(unsi gned | ong);
ostrean& oper at or <<(voi d*);
ostrean& oper at or <<(st reanbuf*);
ostream& oper at or <<(ostreanm& (*)(ostreang®));
ostrean& operator<<(ios& (*)(ios&));
b

213

ostream

Description

214

cl ass ostreamwit hassign {
ostream wi t hassi gn();
i strean& operator =(i streanm);
i strean& oper at or =(st reanbuf *);

}s

extern ostreamw thassign cout;
extern ostreamw thassign cerr;
extern ostreamw thassign clog;

ostream& endl (ostream&) ;
ostream& ends(ostreamg) ;
ostrean& flush(ostream) ;
i0s& dec(ios&) ;

i 0s& hex(ios&) ;

i0s& oct (ios&) ;

ostreams support insertion (storing) into ast r eanbuf . These are commonly referred
to as output operations. The ost r eammember functions and related functions are
described below.

In the following descriptions, assume:

I outsisanostream

I outswaisanostream w t hassign.
I outspisanostreant.

I cisachar.

I ptrisachar* orunsi gned char*.
I sbisastreanbuf*

I andnareints

I posisastreanpos.

I offisastreanoff.

I dirisaseek_dir.

I mani pisafunction withtypeostrean& (*) (ostrean®).

The Streams library

Constructors and assignment

ost rean(sb)

Initialisesi os state variables and associates buffer sb with the ost r eam

ostream w t hassi gn()

Doesno initialisation. Thisallows afile static variable of thistype (cout , for example)
to be used before it is constructed, provided it is assigned to first.

out swa=sb
Associates sb with swa and initialises the entire state of out swa.
i nswa=i ns

Associates i ns- >r dbuf () with swa and initialises the entire state of out swa.
Output prefix function

i =out s. opf x()
If out s’s error state is non-zero, returns immediatelput s. ti e() is non-null, itis
flushed. Returns non-zero except wimert s’s error state is non-zero.

Output suffix function

osf x()

Performs ‘suffix’ actions before returning from inserters.dt: : uni t buf is set,
osf x() flushes thest ream Ifi os: : st di o is setosf x() flushesst dout and
stderr.

osf x() is called by all predefined inserters, and should be called by user-defined
inserters as well, after any direct manipulation otheeanbuf . It is not called by the
binary output functions.

215

ostream

216

Formatted output functions (inserters)

out s<<x

First calls out s. opf x() and if that returns O, does nothing. Otherwise inserts a
sequence of characters representing x into out s. r dbuf () . Errors are indicated by
setting the error state of out s. out s isalways returned.

X is converted into a sequence of characters (its representation) according to rules that
depend on x’s type andout s’s format state flags and variables (sa®on page 192.
Inserters are defined for the following types, with conversion rules as described below:

char* The representation is the sequence of characters up to (but not
including) the terminating null of the stringpoints at.

any integral type If x is positive the representation contains a sequence of decimal,

exceptchar and octal, or hexadecimal digits with no leading zeros according to

unsi gned char whetheri os:: dec,i 0s::oct, ori 0s: : hex, respectively, is
set ini os’s format flags. If none of those flags are set, conversion
defaults to decimal. Ik is zero, the representation is a single zero
character(0). If is negative, decimal conversion converts it to a
minus sign (-) followed by decimal digits.xfis positive and
i 0s:: showpos is set, decimal conversion converts it to a plus
sign (+) followed by decimal digits. The other conversions treat all
values as unsigned.ilfos: : showbase is set ini 0s’s format
flags, the hexadecimal representation cont@insefore the
hexadecimal digits, @Xif i 0s: : upper case is set. If
i 0s:: showbase is set, the octal representation contains a
leading O.

voi d* Pointers are converted to integral values and then converted to
hexadecimal numbers ad ibs: : showbase were set.

fl oat,doubl e The arguments are converted according to the current values of
outs. precision(),outs.w dth() andout s’s format
flagsi os: :scientific,ios::fixed,and
i 0S:: uppercase. (Seeioson page 192.) The default value for
out s. preci sion() is 6. If neitheli os: : sci entific nor
i os::fixedis set, either fixed or scientific notation is chosen
for the representation, depending on the value. of

char,unsi gned No special conversion is necessary.

char

After the representation is determined, padding occumifis. wi dt h() is greater

than 0 and the representation contains fewer thdrs. wi dt h() characters, then
enoughout s. fill () characters are added to bring the total number of characters to
ios.width().Ifios::left issetini os’s format flags, the sequence is

The Streams library

left-adjusted, that is, characters are added after the characters determined above. If

i 0s::right isset, the padding is added before the characters determined above. If

i 0s::internal isset, thepadding isadded after any leading sign or base indication
and before the characters that represent the value. i os. wi dt h() isresetto 0, but all
other format variables are unchanged. The resulting sequence (padding plus
representation) isinserted into out s. r dbuf () .

out s<<sb

If out s. opf x() returnsnon-zero, the sequence of charactersthat can be fetched from
sb areinserted into out s. r dbuf () . Insertion stops when no more characters can be
fetched from sb. No padding is performed. Always returns out s.

Unformatted output functions

out sp=&out s. put (¢)

Inserts ¢ into out s. r dbuf () . Setsthe error state if the insertion fails.

out sp=&outs.wite(s, n)

Inserts the n characters starting at s into out s. r dbuf () . These characters may
include zeros (i.e. s need not be a null terminated string).

Other member functions

out sp=&out s. f1 ush()

Storing charactersinto ast r eanbuf doesnot always cause them to be consumed (e.g.
written to the external file) immediately. f | ush() causesany charactersthat may have
been stored but not yet consumed to be consumed by calling out s. r dbuf () - >sync.

out s<<mani p

Equivalent to mani p(out s) . Syntactically thislooks like an insertion operation, but
semantically it does an arbitrary operation rather than converting nani p to a sequence
of characters as do the insertion operators. Predefined manipulators are described bel ow.

Positioning functions

out sp=&i ns. seekp(of f, dir)

Repositions out s. r dbuf () ’s put pointer. Sestreambuf — publion page 228 for a
discussion of positioning.

217

ostream

See also

218

out sp=&out s. seekp(pos)

Repositions out s. r dbuf () ’s put pointer. Sestreambuf — publion page 228 for a
discussion of positioning.

pos=outs.tellp()

The current position of out s. r dbuf () ’s put pointer. Sestreambuf — publion
page 228 for a discussion of positioning.

Manipulators

out s<<end|

Ends aline by inserting a newline character and flushing.

out s<<ends

Ends a string by inserting a null (0) character.

out s<<fl ush

Flushes out s.

out s<<dec

Sets the conversion base format flag to 10. See ios on page 192.

out s<<hex

Sets the conversion base format flag to 16. Seeios on page 192.

out s<<oct

Sets the conversion base format flag to 8. See ios on page 192.

ios (page 192), streambuf — publi¢page 228), manipulators(page 209)

Synopsis

Description

Caveats

See also

The Streams library

stdiobuf

stdiobuf — iostream specialised to stdio FILE

#i ncl ude <i ostream h>
#i ncl ude <stdi ostream h>
#i ncl ude <stdio. h>

cl ass stdiobuf : public streanmbuf {
st di obuf (FI LE* f);
FI LE* stdiofile();

Operations on at di obuf are reflected on the associatdd_E. A st di obuf is
constructed in unbuffered mode, which causes all operations to be reflected immediately
in theFl LE. seekg() s andseekp() s are translated infoseek () s.set buf ()

has its usual meaning; if it supplies a reserve area, buffering will be turned back on.

st di obuf is intended to be used when mixing C and C++ code. New C++ code should
prefer to usé i | ebuf s, which have better performance.

filebuf (page 184)istream (page 202)pstream (page 213)streambuf —
public (page 228)

219

streambuf — protected

streambuf — protected

streambuf — interface for derived classes

Synopsis
#i ncl ude <i ostream h>

typedef |ong streanoff, streanpos;
class ios {

public:
enum seek_dir { beg, cur, end };
enum open_nmode { in, out, ate, app, trunc, nocreate, noreplace } ;
/1 and lots of other stuff; see jos on page 192
P
cl ass streanbuf {
public:
streanbuf () ;
streanbuf (char* p, int len);
voi d dbp() ;
pr ot ect ed:
int al | ocate();
char* base();
int bl en();
char* eback();
char* ebuf ();
char* egptr();
char* epptr();
voi d gbunp(int n);
char* gptr();
char* pbase();
voi d pbunp(int n);
char* pptr();
voi d setg(char* eb, char* g, char* eg);
voi d setp(char* p, char* ep);
voi d setb(char* b, char* eb, int a=0);
int unbuf fered();
voi d unbuf fered(int);
virtual int doal | ocate();
vi rtual ~streanbuf () ;

220

Description

The Streams library

public:
virtual int pbackfail (int c);
virtual int overflow(i nt c=ECF);
virtual int under fl ow();
vi rtual st reanbuf *
setbuf (char* p, int len);
vi rtual st r eanpos
seekpos(streanpos, int =ios::in|ios:out);
vi rtual st r eanpos
seekof f (streamoff, seek_dir, int =ios::in|ios:out);
virtual int sync();

st r eanbuf simplement the buffer abstraction described in streambuf — publion
page 228. However, the st r eanbuf classitself contains only basic members for
manipulating the characters and normally a class derived from st r eanbuf will be
used. This section describes the interface needed by programmers who are coding a
derived class. Broadly speaking there are two kinds of member functions described here.
The non-virtual functions are provided for manipulating ast r eanbuf inwaysthat are
appropriate in aderived class. Their descriptions reveal details of the implementation
that would be inappropriate in the public interface. The virtual functions permit the
derived classto specialisethe st r eanbuf classin ways appropriate to the specific
sources and sinks that it isimplementing. The descriptions of the virtual functions
explain the obligations of the virtuals of the derived class. If the virtuals behave as
specified, the st r eanmbuf will behave as specified in the public interface. However, if
the virtual s do not behave as specified, then the st r eanbuf may not behave properly,
and ani ost r eam(or any other code) that relies on proper behaviour of the

st r eambuf may not behave properly either.

In the following descriptions assume:

I sbisastreanbuf*.

I [andnareints

| ptr,b,eb,p, ep,eb,g,and eg arechar *s.

I cisanint character (positive or EOF)).

I posisastreanpos. (See streambuf — publion page 228.)
I offisastreanoff.

I dirisaseekdir.

I npdeisani nt representing an open_node.

221

streambuf — protected

Constr

uctors

st reanbuf ()

Constructs an empty buffer corresponding to an empty sequence.

streanbuf (b, I en)

Constructs an empty buffer and then sets up the reserve areato bethe/ en bytes starting
a b.

The Get, Put, and Reserver area

The protected members of st r eanbuf present an interface to derived classes
organised around three areas (arrays of bytes) managed cooperatively by the base and
derived classes. They arethe get area, the put area, and the reserve area (or buffer). The
get and the put areas are normally disjoint, but they may both overlap the reserve area,
whose primary purpose isto be aresource in which space for the put and get areas can
be allocated. The get and the put areas are changed as characters are put into and got
from the buffer, but the reserve area normally remains fixed. The areas are defined by a
collection of char * values. The buffer abstraction is described in terms of pointersthat
point between characters, but thechar * values must point at char s. To establish a
correspondence the char * values should be thought of as pointing just before the byte
they really point at.

Functions to examine the pointers

222

pt r=sb->base()

Returns a pointer to the first byte of the reserve area. Space between sb- >base() and
sb- >ebuf () isthereserve area.

pt r=sb- >eback()

Returns a pointer to alower bound on sb- >gpt r () . Space between sb- >eback()
and sb- >gpt r () isavailablefor putback.

pt r=sb- >ebuf ()

Returns a pointer to the byte after the last byte of the reserve area.
ptr=sb->egptr ()

Returns a pointer to the byte after the last byte of the get area.

pt r=sb->epptr ()

Returns a pointer to the byte after the last byte of the put area.

The Streams library

ptr=sb->gptr()

Returns a pointer to the first byte of the get area. The available characters are those
between sb- >gpt r () and sb- >egpt r () . The next character fetched will be
*sb->gptr ()) unlesssb- >egptr () islessthan or equal to sb- >gptr ().

pt r=sb- >pbase()

Returns a pointer to the put area base. Characters between sb- >pbase() and
sb->ppt r () have been stored into the buffer and not yet consumed.

ptr=sb->pptr ()
Returns a pointer to the first byte of the put area. The space between sb- >ppt r () and
sb- >eppt r () isthe put area and characters will be stored here.

Functions for setting the pointers

Note that to indicate that a particular area (get, put, or reserve) does not exit, al the
associated pointers should be set to zero.

sb->setb(b, eb, i)

Setsbase() andebuf () to band eb respectively. i controls whether the areawill be
subject to automatic deletion. If i isnon-zero, then b will be deleted when base is
changed by another call of set b() , or when the destructor iscalled for * sb. If b and
eb are both null then we say that thereis no reserve area. If b isnon-null, thereisa
reserve area even if ebislessthan b and so the reserve area has zero length.

sb->setp(p, ep)
Setspptr () top, pbase() top,andepptr () toep.

sb->setg(eb, g, eg)
Setseback() toeb,gptr () tog,andegptr () toeg.

223

streambuf — protected

Other non-virtual members

224

i =sb->al | ocate()

Triesto set up areserve area. If areserve areaalready existsor if

sb- >unbuf f ered() isnon-zero,al | ocat e() returns0without doing anything. If
the attempt to allocate spacefails, al | ocat e() returns EOF, otherwise (i.e. allocation
succeeds) al | ocat e() returns1. al | ocat e() isnot caled by any non-virtua
member function of st r eanbuf .

i =sb->bl en()

Returnsthe size (in char s) of the current reserve area.

dbp()

Writes directly on file descriptor 1 information in ASCI| about the state of the buffer. It
isintended for debugging and nothing is specified about the form of the output. Itis
considered part of the protected interface because the information it prints can only be
understood in relation to that interface, but it is a public function so that it can be called
anywhere during debugging.

sb- >gbunp(n)

Increments gpt r () by n which may be positive or negative. No checks are made on
whether the new value of gpt r () isin bounds.

sb- >pbunp(n)

Increments ppt r () by n which may be positive or negative. No checks are made on
whether the new value of ppt r () isin bounds.

sb->unbuffered(i)
i =sb- >unbuf f er ed()

Thereisaprivate variable known as sb’s buffering statesb- >unbuf f ered(/) sets

the value of this variable toandsb- >unbuf f er ed() returns the current value. This
state is independent of the actual allocation of a reserve area. Its primary purpose is to
control whether a reserve area is allocated automaticaky bgpcat e.

The Streams library

Virtual member functions

Virtual functions may be redefined in derived classes to specialise the behaviour of

st r eanbuf s. This section describes the behaviour that these virtual functions should
have in any derived classes; the next section describes the behaviour that these functions
are defined to have in base class st r eanbuf .

i =sb->doal | ocat e()

Iscaledwhenal | ocat e() determinesthat spaceis needed. doal | ocat e() is
requiredto call set b() to provideareserve areaor to return ECF if it cannot. Itisonly
caled if sb- >unbuf f er ed() iszeroand sb- >base() iszero.

i =overfl ow c)

Is called to consume characters. If ¢ isnot EOF, over f | ow() also must either save ¢
or consumeit. Usualy it is called when the put areaisfull and an attempt is being made
to store a new character, but it can be called at other times. The normal action isto
consume the characters between pbase() and pptr (), cal set p() toestablisha
new put area, and if ¢! =EOF storeit (using sput c()). sb- >overfl ow() should
return ECF to indicate an error; otherwise it should return something else.

i =sb->pbackfail ()

Iscaled when eback() equalsgpt r () and an attempt has been made to putback c.
If this situation can be dealt with (e.g. by repositioning an externdl file), pbackf ai | ()
should return c; otherwise it should return ECF.

pos=sb- >seekof f (of f, dir, npde)

Repositions the get and/or put pointers (i.e. the abstract get and put pointers, not
pptr() andgptr ()). Themeaningsof of f and di r are discussed in streambuf —
public on page 228. node specifies whether the put pointer (i os: : out bit set) or the
get pointer (i 0s: : i n bit set) isto be modified. Both bits may be set in which case both
pointers should be affected. A classderived from st r eanbuf isnot required to support
repositioning. seekof f () should return EOF if the class does not support
repositioning. If the class does support repositioning, seekof f () should return the
new position or EOF on error.

pos=sb- >seekpos(pos, node)

Repositionsthe st r eanmbuf get and/or put pointer to pos. nmode specifies which
pointers are affected asfor seekof f () . Returns pos (the argument) or ECF if the
class does not support repositioning or an error occurs.

225

streambuf — protected

226

sb=sb->set buf (ptr, Ien)

Offersthe array at pt r with / en bytesto be used as a reserve area. The normal
interpretation isthat if pt r or / en are zero then thisisarequest to makethe sb
unbuffered. The derived class may use this area or not asit chooses. It may accept or
ignore the request for unbuffered state asit chooses. set buf () should return sb if it
honours the request. Otherwise it should return O.

i =sb->sync()

Is called to give the derived class a chance to ook at the state of the areas, and
synchronise them with any external representation. Normally sync() should consume
any characters that have been stored into the put area, and if possible give back to the
source any charactersin the get area that have not been fetched. When sync() returns
there should not be any unconsumed characters, and the get area should be empty.
sync() should return EOF if some kind of failure occurs.

i =sb->under fl ow()

Iscalled to supply charactersfor fetching, i.e. to create a condition in which the get area
isnot empty. If it is called when there are characters in the get area it should return the
first character. If the get areais empty, it should create a non-empty get area and return
the next character (which it should also leave in the get area). If there are no more
characters available, under f I ow() should return EOF and leave an empty get area.

The default definitions of the virtual functions:

i =sb->streanbuf:: doal | ocate()

Attempts to allocate areserve areausing oper at or new.

i =sb->streanbuf::overfl ow c)

streambuf: : overfl ow() should betreated asif it had undefined behaviour. That
is, derived classes should always defineit.

i =sb->streanbuf: : pbackfail (c)
Returns EOF.

pos=sb- >st reanbuf : : seekpos(pos, node)

Returns sb- >seekof f (st reanof f (pos), i os: : beg, npbde) . Thusto define
seeking in aderived class, it isfrequently only necessary to defineseekof f () and use
theinherited st r eambuf : : seekpos() .

pos=sb->streanbuf: : seekof f (off, dir, npde)

Returns ECF.

See also

The Streams library

sb=sb- >streanbuf::setbuf (ptr, Ilen)

Will honour the request when there is no reserve area.

i =sb->streanbuf::sync()

Returns 0 if the get area is empty and there are no unconsumed characters. Otherwise it
returns ECF.

i =sb->streanbuf:: underfl ow()

Is compatible with the old stream package, but that behaviour is not considered part of
the specification of the iostream package. Therefore, st r eanbuf : : under f 1 ow()
should betreated asif it had undefined behaviour. That is, it should always be defined in
derived classes.

streambuf — publi¢page 228), ios (page 192), istream(page 202), ostream(page 213)

227

streambuf — public

Synopsis

Description

228

streambuf — public

streambuf — public interface of character buffering class

#i ncl ude <i ostream h>

typedef |ong streanoff, streanpos;
class ios {

public:
enum seek_dir { beg, cur, end };
enum open_nmode { in, out, ate, app, trunc, nocreate, noreplace } ;
/1 and lots of other stuff; see jos on page 192
P
cl ass streanbuf {
public :
int in_avail ();
int out _waiting();
int sbunpc();
st r eambuf * setbuf (char* ptr, int len);
st reanpos seekpos(streanpos, int =ios::in|lios::out);
st reanpos seekof f (streanmoff, seek_dir, int =ios::in|ios::out);
int sgetc();
int sgetn(char* ptr, int n);
int snextc();
int sput backc(char);
int sputc(int c);
int sputn(const char* s, int n);
voi d stossc();
virtual int sync();
b

Thest r eanbuf class supports buffers into which characters can be inserted (put) or
from which characters can be fetched (got). Abstractly, such a buffer is a sequence of
characters together with one or two pointers (a get and/or a put pointer) that define the
location at which characters are to be inserted or fetched. The pointers should be thought
of as pointing between characters rather than at them. This makes it easier to understand
the boundary conditions (a pointer before the first character or after the last). Some of
the effects of getting and putting are defined by this class but most of the details are left
to specialised classes derived fretr eanbuf . (Sedfilebuf on page 184strstreambuf

on page 236, anstdiobuf on page 219.)

The Streams library

Classes derived from st r eanbuf vary in their treatments of the get and put pointers.
The simplest are unidirectional bufferswhich permit only getsor only puts. Such classes
serve as pure sources (producers) or sinks (consumers) of characters. Queuelike buffers
(e.g. see strstream on page 233 and strstreambuf on page 236) have a put and a get
pointer which move independently of each other. In such buffers characters that are
stored are held (i.e. queued) until they are later fetched. Filelike buffers (e.g.fi | ebuf,
see filebuf on page 184) permit both gets and puts but have only a single pointer. (An
alternative description is that the get and put pointers are tied together so that when one
moves so does the other.)

Most st r eanbuf member functions are organised into two phases. Asfar as possible,
operations are performed inline by storing into or fetching from arrays (the get area and
the put area, which together form the reserve area, or buffer). From timeto time, virtual
functions are called to deal with collections of charactersin the get and put areas. That
is, the virtual functions are called to fetch more characters from the ultimate producer or
to flush a collection of characters to the ultimate consumer. Generally the user of a

st r eanbuf doesnot have to know anything about these details, but some of the public
members pass back information about the state of the areas. Further detail about these
areasis provided in streambuf — protectesh page 220, which describes the protected
interface.

The public member functions of the st r eambuf class are described below. In the
following descriptions assume:

[i,n,and/ enareints.

I cisanint. It always holds a ‘character’ value BOF. A ‘character’ value is
always positive even wherhar is normally sign extended.

I sbandsbl arestreanbuf *s.

| ptrisachar*.

| off isastreanoff.

| posisastreanpos.

I dirisaseek_dir.

I npdeis ani nt representing aopen_node.

229

streambuf — public

Public member functions:

i=sb->in_avail ()

Returns the number of characters that areimmediately available in the get area for
fetching. i characters may be fetched with a guarantee that no errors will be reported.
i =sb->out _waiting()

Returns the number of charactersin the put area that have not been consumed (by the
ultimate consumer.

c=sb- >sbunpc()

Moves the get pointer forward one character and returns the character it moved past.
Returns EOF if the get pointer is currently at the end of the sequence.

pos=sb->seekoff (of f, dir, npde)

Repositions the get and/or put pointers. node specifies whether the put pointer

(i os: : out bit set) or the get pointer (i 0s: : i n hit set) isto be modified. Both bits
may be set in which case both pointers should be affected. of f isinterpreted as a byte
offset. (Notice that it is a signed quantity.) The meanings of possible values of di r are

i 0s:: beg The beginning of the stream.
i os::cur The current position.
i os::end The end of the stream (end of file)

Not all classes derived from st r eanbuf support repositioning. seekof f () will
return ECF if the class does not support repositioning. If the class does support
repositioning, seekof f () will return the new position or EOF on error.
pos=sb- >seekpos(pos, node)

Repositionsthe st r eanbuf get and/or put pointer to pos. node specifies which
pointers are affected asfor seekof f () . Returns pos (the argument) or ECF if the
class does not support repositioning or an error occurs. In general ast r eanpos should
be treated as a ‘magic cookie’ and no arithmetic should be performed on it. Two
particular values have special meaning:

st reamnpos(0) The beginning of the file.

st r eanmpos(ECF) Used as an error indication.

c=sb->sget c()

Returns the character after the get pointer. Contrary to what most people expect from the
nameit does not move the get pointer. ReturnsECF if there is no character available.

230

The Streams library

sbl=sb->setbuf (ptr, len, i)

Offersthe / en bytes starting at pt r asthereservearea. If pt r isnull or | eniszeroor
less, then an unbuffered state is requested. Whether the offered areais used, or arequest
for unbuffered state is honoured depends on details of the derived class. set buf ()

normally returns s b, but if it does not accept the offer or honour the request, it returns 0.

i =sb->sgetn(ptr, n)

Fetchesthe n characters following the get pointer and copies them to the area starting at
pt r. When there are fewer than n characters |eft before the end of the sequence

sget n() fetcheswhatever charactersremain. sget n() repositions the get pointer
following the fetched characters and returns the number of characters fetched.

c=sb->snext c()

Movesthe get pointer forward one character and returns the character following the new
position. It returns ECF if the pointer is currently at the end of the sequence or is at the
end of the sequence after moving forward.

i =sb- >sput backc(¢)

Movesthe get pointer back one character. ¢ must be the current content of the sequence
just before the get pointer. The underlying mechanism may simply back up the get
pointer or may rearrange itsinternal data structures so the ¢ is saved. Thus the effect of
sput backc() isundefined if ¢ is not the character before the get pointer.

sput backc() returns EOF when it fails. The conditions under which it can fail
depend on the details of the derived class.

i =sb->sput c(c)

Stores ¢ after the put pointer, and moves the put pointer past the stored character;
usually this extends the sequence. It returns EOF when an error occurs. The conditions
that can cause errors depend on the derived class.

i =sb->sputn(ptr, n)

Stores the n characters starting at pt r after the put pointer and moves the put pointer
past them. sput n() returnsi , the number of characters stored successfully. Normally
i isn, butit may be less when errors occur.

sb->st ossc()

Moves the get pointer forward one character. If the pointer started at the end of the
sequence this function has no effect.

231

streambuf — public

See also

232

i =sb->sync()

Establishes consistency between the internal data structures and the external source or

sink. The details of this function depend on the derived class. Usually this ‘flushes’ any
characters that have been stored but not yet consumed, and ‘gives back’ any characters
that may have been produced but not yet fetchedc () returnsEOF to indicate

errors.

ios (page 192)ijstream (page 202)pstream (page 213)streambuf —
protected(page 220)

Synopsis

Description

The Streams library

strstream

strstream — iostream specialised to arrays

#i ncl ude <strstream h>

class ios {

public:
enum open_node { in, out, ate, app, trunc, nocreate, noreplace } ;
/1 and lots of other stuff; see jos on page 192
s
class istrstream: public istream {
public:
istrstrean(char*) ;
istrstrean{char*, int) ;
strstreanbuf* rdbuf () ;
P
class ostrstream: public ostream {
public:
ostrstrean();
ostrstrean(char*, int, int=ios::out) ;
int pcount () ;
strstreanbuf* rdbuf () ;
char* str();
b
class strstream: public strstreanbase, public iostream {
public:
strstrean();
strstrean(char*, int, int node);
strstreanbuf* rdbuf () ;
char* str();
b

st r st r eamspecialises iostream for ‘incore’ operations, that is, storing and fetching
from arrays of bytes. Thet r eanbuf associated with &t r st r eamis a
st rstreanbuf (seestrstreambuf on page 236).

In the following descriptions assume:
I Ssisastrstream

| issisanistrstream

I o0SSisanostrstream

233

Strstream

234

I cpisachar*.

I npdeisani nt representing an open_node.
I [and/enareints

I Sssbisastrstreanbuf*.

Constructors

i strstreamcp)

Characters will be fetched from the (null-terminated) string ¢p. The terminating null
character will not be part of the sequence. Seeks (i st ream : seekg()) arealowed
within that space.

istrstream(cp, [en)

Characters will be fetched from the array beginning at ¢p and extending for / en bytes.
Seeks (i st ream : seekg()) are allowed anywhere within that array.

ostrstrean()
Space will be dynamically allocated to hold stored characters.

ostrstrean(cp, n, node)

Characters will be stored into the array starting at ¢p and continuing for n bytes. If
ios::ateorios::appissetinnopde, cpisassumed to be anull-terminated string
and storing will begin at the null character. Otherwise storing will begin at cp. Seeksare
allowed anywherein the array.

strstream)
Space will be dynamically allocated to hold stored characters.

strstrean(cp, n, node)

Characters will be stored into the array starting at ¢p and continuing for n bytes. If
ios::ateorios::appissetinnopde, cpisassumed to be anull-terminated string
and storing will begin at the null character. Otherwise storing will begin at cp. Seeksare
allowed anywherein the array.

istrstream members

ssb = iss.rdbuf ()

Returnsthe st r st r eanbuf associated with i ss.

See also

The Streams library

ostrstream members

ssb = oss. rdbuf ()

Returnsthe st r st r eanbuf associated with oss.

cp=0ss.str()

Returns a pointer to the array being used and ‘freezes’ the arraysOndeas been
called the effect of storing more characters oda is undefined. lfoss was

constructed with an explicit arragp is just a pointer to the array. Otherwis@, points

to a dynamically allocated area. Urdtiir is called, deleting the dynamically allocated
area is the responsibility ofss. Afterst r returns, the array becomes the responsibility
of the user program.

i =0ss. pcount ()

Returns the number of bytes that have been stored into the buffer. This is mainly of use
when binary data has been stored and. st r () does not point to a null terminated
string.

strstream members

ssb = ss.rdbuf ()

Returns thest r st r eanbuf associated witlss.

cp=ss.str()

Returns a pointer to the array being used and ‘freezes’ the arraysOndes been
called the effect of storing more characters s¢ds undefined. Iss was constructed
with an explicit arrayep is just a pointer to the array. Otherwisg, points to a
dynamically allocated area. Unéit r is called, deleting the dynamically allocated area
is the responsibility ofs. Afterst r returns, the array becomes the responsibility of the
user program.

strstreambuf (page 236)ios (page 192)istream (page 202)pstream (page 213)

235

strstreambuf

Synopsis

Description

236

strstreambuf

strstreambuf — streambuf specialised to arrays

#i ncl ude <i ostream h>
#i ncl ude <strstream h>

cl ass strstreanbuf : public streanbuf {
public:
strstreanbuf () ;
strstreanbuf (char*, int, char*);
strstreanbuf (int);
strstreanbuf (unsigned char*, int, unsigned char*);
strstreanbuf (void* (*a)(long), void(*f)(void*));

voi d freeze(int n=1) ;
char* str();
virtual streanbuf* set buf (char*, int)

A strstreanbuf is astreanbuf that uses an array of bytes (a string) to hold the
sequence of characters. Given the convention tbhaa* should be interpreted as
pointing just before the char it really points at, the mapping between the abstract get/put
pointers (sestreambuf — publion page 228) and char * pointersisdirect. Moving the
pointers corresponds exactly to incrementing and decrementing thechar * values.

To accommodate the need for arbitrary length strings st r st r eanbuf supports a
dynamic mode. When ast r st r eanbuf isin dynamic mode, space for the character
sequenceisalocated as needed. When the sequenceis extended too far, it will be copied
to anew array.

In the following descriptions assume:

I ssbisastrstreanbuf*.

I nisanint.

I ptrandpstart arechar *sorunsi gned char*s.
I aisavoid* (*)(long).

I fisavoid* (*)(void*).

The Streams library

Constructors

st rstreamnbuf ()

Constructsan empty st r st r earbuf in dynamic mode. This means that space will be
automatically allocated to accommodate the characters that are put into the

st rst reanmbuf (using operatorsnewand del et e). Because this may require
copying the original characters, it is recommended that when many characters will be
inserted, the program should use set buf () (described below) to inform the

st rstreanbuf.

strstreanbuf(a, f)

Constructs an empty st r st r eanrbuf in dynamic mode. a is used as the allocator
function in dynamic mode. The argument passed to a will beal ong denoting the
number of bytesto be allocated. If a isnull, operator newwill be used. f isused to free
(or delete) areasreturned by a. The argument to f will be apointer to the array allocated
by a. If f isnull, operator del et e is used.

st rstreanbuf (n)

Constructsan empty st r st r eanbuf in dynamic mode. Theinitial allocation of space
will be at least n bytes.

strstreanmbuf (ptr, n, pstart)

Congtructsast r st r eanbuf to usethe bytes starting at pt r. The st r st r eanbuf
will bein static mode; it will not grow dynamically. If n is positive, then the n bytes
starting at pt r areused asthest r st r eanbuf . If niszero, pt r isassumed to point
to the beginning of anull terminated string and the bytes of that string (not including the
terminating null character) will constitute the st r st r eanbuf . If n is negative, the
strstreanbuf isassumed to continue indefinitely. The get pointer isinitialised to
pt r. The put pointer isinitialisedto pst art. If pst art isnull, then stores will be
treated as errors. If pst art isnon-null, then theinitial sequence for fetching (the get
area) consists of the bytesbetween pt r and pst art . If pst art isnull, thentheinitial
get area consists of the entire array.

237

strstreambuf

See also

238

Member functions

ssb->freeze(n)

Inhibits (when n is non-zero) or permits (when n is zero) automatic deletion of the
current array. Deletion normally occurs when more space is needed or when ssb is
being destroyed. Only space obtained via dynamic allocation is ever freed. It isan error
(and the effect is undefined) to store charactersinto ast r st r eanbuf that wasin
dynamic allocation mode and is now frozen. It is possible, however, to thaw (unfreeze)
suchast r st reanbuf and resume storing characters.

ptr=ssb->str()

Returns a pointer to thefirst char of the current array and freezes ssb. If ssb was
constructed with an explicit array, pt r will point to that array. If ssb isin dynamic
allocation mode, but nothing has yet been stored, pt r may be null.

ssb->set buf (0, n)

ssb remembers n and the next time it does a dynamic mode allocation, it makes sure
that at least n bytes are allocated.

streambuf — publi¢page 228), strstream(page 233)

15 The Complex Math library

he Complex Math library isapart of the C++ library, ported from that supplied with
AT&T’'s CFront product.

239

Introduction

Synopsis

Description

Diagnostics

See also

240

Introduction

complex — introduction to C++ complex mathematics library

#i ncl ude <conpl ex. h>
cl ass conpl ex;

This section describes complex mathematics functions and operators found in the C++
Library.

The Complex Mathematics library implements the data type of complex numbers as a
class,conpl ex. It overloads the standard input, output, arithmetic, assignment, and
comparison operators, discussedamplex operatorson page 248. It also overloads the
standard exponential, logarithm, power, and square root functions, discueggdag,

pow, sgrt on page 246, and the trigonometric functions of sine, cosine, hyperbolic sine,
and hyperbolic cosine, discussediiixtrig on page 251, for the clasenpl ex.

Routines for converting between Cartesian and polar coordinate systems are discussed
in cartesian/polar on page 241. Error handling is describedamplex_error on

page 243.

Functions in the Complex Mathematics Library may return the conventional y&lues
0),(0, xHUGE),(zHUGE, 0), or(+HUGE, +HUGE), when the function is
undefined for the given arguments or when the value is not represerithlie. i§ the
largest-magnitude single-precision floating-point number and is defined in the file
<mat h. h>. The header fil&mat h. h> is included in the filecconpl ex. h>.) In
these cases, the external variadale no is set to the valuEDOMor ERANGE.

cartesian/polar (page 241)complex_error (page 243)complex operators (page 248),
exp, log, pow, sgrt (page 246)cplxtrig (page 251).

Synopsis

Description

The Complex Math library

cartesian/polar

cartesian/polar — functions for the C++ Complex Math Library

#i ncl ude <conpl ex. h>
class conpl ex {

public:
friend double abs(conpl ex) ;
friend double ar g(conpl ex) ;
friend conplex conj(conplex);
friend double i mag(conpl ex) ;
friend double nor m(conpl ex) ;

friend conplex polar(double, double = 0);
friend double real (conpl ex) ;

The following functions are defined for complex, where:
I d, manda are of type nt

I x andy are of typeconpl ex.

d = abs(x)

Returns the absolute value or magnitude.of

d = norn(x)

Returns the square of the magnitudexoft is faster thambs, but more likely to cause
an overflow error. It is intended for comparison of magnitudes.

d = arg(x)
Returns the angle of, measured in radians in the rangete-1.
y = conj (x)

Returns the complex conjugatexofThat is, ifx is(r eal , i nmag), thenconj (x) is
(real, -img).

241

cartesian/polar

y = polar(m a)

Creates a complex given apair of polar coordinates, magnitude m and angle a,
measured in radians.

d = real (x)

Returnsthereal part of x.

d = i mg(x)
Returns the imaginary part of x.

See also

Introduction (page 240), complex_error (page 243), complex operators (page 248), exp,
log, pow, sgrt (page 246), cplxtrig (page 251)

242

Synopsis

Description

The Complex Math library

complex_error

complex_error — error-handling function for the C++ Complex Math Library

#i ncl ude <conpl ex. h>

class c_exception

{
int type;
char *namne;
conpl ex argl;
conpl ex arg2;
conpl ex retval ;
public:
c_exception(char *n, const conplex& al,
const conpl ex& a2 = conpl ex_zero);
friend int conpl ex_error(c_exception&);
friend conplex exp(conplex);
friend conplex sinh(conplex);
friend conplex cosh(conplex);
friend conplex 1og(conplex);
b

In the following description of the complex error handling routine:
I I is of typei nt
I Xxisoftypec_exception.

i = compl ex_error(x)

Invoked by functions in the C++ Complex Mathematics Library when errors are
detected.

Users may define their own procedures for handling errors, by defining a function
namedconpl ex_error in their programsconpl ex_err or must be of the form
described above.

243

complex_error

244

The element type is an integer describing the type of error that has occurred, from the
following list of constants (defined in the header file):

SI NG argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error

The element name pointsto a string containing the name of the function that incurred the
error. The variablesar g1 and ar g2 are the arguments with which the function was
invoked. r et val isset to the default value that will be returned by the function unless
the user'ssonpl ex_error sets it to a different value.

If the user’sconpl ex_error function returns non-zero, no error message will be
printed, ancer r no will not be set.

If compl ex_error is not supplied by the user, the default error-handling procedures,
described with the complex math functions involved, will be invoked upon error. These
procedures are also summarised in the table below. In evenecas® is set taEDOM

or ERANGE and the program continues.

Note that complex math functions call functions included in the math library which has
its own error handling routinegt her r. Users may also override this routine by
supplying their own version.

Default error handling procedures
Types of Errors
type SING OVERFLOW UNDERFLOW
errno EDOM ERANGE ERANGE
real too large/small — (xH, £H) (0, 0)
EXP
imag too large — 0, 0) —
LOG arg = (0, 0) M, (H, 0) — —
real too large — (£H, +H) _
SINH
imag too large — (0, 0) —
real too large — (xH, £H) —
COSH
imag too large — 0,0) —
Key: M Message is printede2DOMerror)
(H, 0) (HUGE, O0) is returned
(xH, £H) (£HUGE, £HUCE) is returned
(0, 0) (0, 0) isreturned

The Complex Math library

See also

Introduction (page 240), cartesian/polar (page 241), complex operators (page 248),
exp, log, pow, sgrt (page 246), cplxtrig (page 251)

245

exp, log, pow, sqrt

Synopsis

Description

246

exp, log, pow, sqgrt

exp, log, pow, sqrt — exponential, logarithm, power, square root functions for the C++
complex library

#i ncl ude <conpl ex. h>
cl ass conpl ex {

public:
friend conplex exp(conplex);
friend conplex [|og(conplex);
friend conpl ex pow(double, conplex);
friend conpl ex pow(conplex, int);
friend conplex pow(conplex, double);
friend conpl ex pow conplex, conplex);
friend conplex sqrt(conplex);

The following math functions are overloaded by the complex library, where:
I X,Y,andz are of typeconpl ex.

z = exp(x)
Returns &.
z = log(x)

Returns the natural logarithm ®f

z = pow(X, Y)
Returnsx”
Z = sqgrt(x)

Returns the square root xf contained in the first or fourth quadrants of the complex
plane.

Diagnostics

See also

The Complex Math library

exp returns (0, 0) whenthereal part of x isso small, or the imaginary part is so
large, asto cause overflow. When the real part is large enough to cause overflow, exp
returns (HUGE, HUGE) if the cosine and sine of the imaginary part of x are positive,
(HUGE, -HUGE) if thecosineispositiveandthesineisnot, (- HUGE, HUGE) if the
sineis positive and the cosineis not, and (- HUGE, - HUGE) if neither sine nor cosine
ispositive. In all these cases, er r no is set to ERANGE.

| og returns (- HUGE, 0) and setserr no to EDOMwhen x is(0, 0).A message
indicating SI NGerror is printed on the standard error outpuit.

These error-handling procedures may be changed with the function conpl ex_err or
(see page 243).

Introduction (page 240), cartesian/polar (page 241), complex_error (page 243),
complex operators (page 248), cplxtrig (page 251)

247

complex operators

complex operators

complex_operators. operators for the C++ complex math library

Synopsis
#i ncl ude <conpl ex. h>
cl ass conpl ex {

public:
friend conpl ex operator+(conplex, conplex);
friend conpl ex operator—(complex);
friend complex operator—(complex, complex);
friend complex operator*(complex, complex);
friend complex operator/(complex, complex);

friend int operator==(complex, complex);
friend int operator!=(complex, complex);

void operator+=(complex);
void operator—=(complex);
void operator*=(complex);
void operator/=(complex);

Description

The basic arithmetic operators, comparison operators, and assignment operators are
overloaded for complex numbers. The operators have their conventional precedences. In
the following descriptions for complex operators:

I X,y,and z are of type conpl ex.
Arithmetic operators:
zZ=x+y

Returnsaconpl ex which is the arithmetic sum of complex numbers x and y.

zZ = -X

Returnsaconpl ex which is the arithmetic negation of complex number x.

zZ=Xx-y

Returnsaconpl ex which isthe arithmetic difference of complex numbers x and y.

248

The Complex Math library

Z=Xx*y
Returnsaconpl ex which is the arithmetic product of complex numbers x and y.
z=x1lvy

Returnsaconpl ex which isthe arithmetic quotient of complex numbers x and y.

Comparison operators

X ==Yy

Returns non-zero if complex number x is equal to complex number y; returns 0
otherwise.

X!=y

Returns non-zero if complex number x is not equal to complex number y; returns O
otherwise.

Assignment operators

X +=y

Complex number x is assigned the value of the arithmetic sum of itself and complex
number y.

X -=y

Complex number x is assigned the value of the arithmetic difference of itself and
complex number y.

X *=y

Complex number x is assigned the value of the arithmetic product of itself and complex
number y.

xXIl=y

Complex number x is assigned the value of the arithmetic quotient of itself and complex
number y.

249

complex operators

Warning
The assignment operators do not produce avalue that can be used in an expression. That
is, the following construction is syntactically invalid:
conpl ex X, Y, Z;
x=(y+=2z);
whereas:
x=(y+z);
x=(y==2z);
arevalid.
See also

Introduction (page 240), cartesian/polar (page 241), complex_error (page 243), exp,
log, pow, sgrt (page 246), cplxtrig (page 251)

250

Synopsis

Description

Diagnostics

The Complex Math library

cplxtrig

cplxtrig — trigonometric and hyperbolic functions for the C++ complex library

#i ncl ude <conpl ex. h>
class conpl ex {

public:
friend conpl exsin(conpl ex);
friend conpl excos(conpl ex);

friend conpl exsi nh(conpl ex);
friend conpl excosh(conpl ex);

The following trigonometric functions are defined for complex, where:
I x andy are of typeconpl ex.

y = sin(x)

Returns the sine of.

y = cos(x)

Returns the cosine of.

y = sinh(x)

Returns the hyperbolic sine ®f
y = cosh(x)

Returns the hyperbolic cosine xf

If the imaginary part ok would cause overflowi nh andcosh return(0, 0).When
the real part is large enough to cause overfiawmh andcosh return(HUGE,
HUGE) if the cosine and sine of the imaginary park@fre non-negativeé, HUGE,

251

cplixtrig

See also

252

- HUGE) if the cosineis non-negative and the sineislessthan O, (- HUGE, HUGE) if
the sine is non-negative and the cosineis lessthan 0, and (-HUGE, —-HUGE) if both
sine and cosine are lessthan 0. In all these cases, er r no is set to ERANGE

These error-handling procedures may be changed with the function complex_error
(see page 243).

Introduction (page 240), cartesian/polar (page 241), complex_error (page 243),
complex operators (page 248), exp, log, pow, sqrt (page 246)

Part 4 — Developing software for RISC OS

253

254

16 Portability

he C programming language has gained a reputation for being portable across

machines, while still providing capabilities at amachine-specific level. The fact that
aprogramiswritten in C by no meansindicates the effort required to port software from
one machine to another, or indeed from one compiler to another. Obviously the most
time-consuming task is porting between two entirely different hardware environments,
running different operating systems with different compilers. Since many users of the
Acorn C compiler will find themselvesin this situation, this chapter deals with anumber
of issues you should be aware of when porting software to or from our environment. The
chapter covers the following:

| genera portability considerations

I major differences between ANSI C and the well-known ‘K&R’ C as defined in the
book The C Programming Language, (first edition) by Kernighan and Ritchie

I using the Acorn C compiler in ‘pcc’ compatibility mode
I environmental aspects of portability.

General portability considerations

If you intend your code to be used on a variety of different systems, there are certain
aspects which you should bear in mind in order to make porting an easy and relatively
error-free process. It is essential to single out items which may make software
system-specific, and to employ techniques to avoid non-portable use of such items. In
this section, we describe general portability issues for C programs.

Fundamental data types

The size of fundamental data types sucbtesr ,i nt,l ong i nt,short int and

f | oat will depend mainly on the underlying architecture of the machine on which the

C program is to run. Compiler writers usually implement these types in a manner which
best fits the architectures of machines for which their compilers are targeted. For
example, Release 5 of the Microsoft C Compilerihats, short i nt andl ong i nt
occupying 2, 2 and 4 bytes respectively, where the Acorn C Compiler uses 4, 2 and 4
bytes. Certain relations are guaranteed by the ANSI C Standard (such as the fact that the
size ofl ong i nt is at least that afhort i nt), but code which makes any

assumptions regarding implementation-defined issues such as whethandl ong

i nt are the same size will not be maximally portable.

255

General portability considerations

256

A common non-portable assumption is embedded in the use of hexadecimal constant
values. For example:

int i;

i =i & Oxfffffff8; /* set bottom3 bits to zero, assum ng 32-bit int */

Such non-portability can be avoided by using:

int i;

i =i & ~0x07; /* set bottom 3 bits to zero, whatever sizeof(int) */
If you find that some size assumptions are inevitable, then at least use a series of
assert calswhen the program starts up, to indicate any conditions under which
successful operation is not guaranteed. Alternatively, write macros for frequently-used
operations so that size assumptions are localised and can be atered locally.

Byte ordering

A highly non-portable feature of many C programsistheimplicit or explicit exploitation
of byte ordering within aword of store. Such assumptions tend to arise when copying
objects word by word (rather than byte by byte), when inputting and outputting binary
values, and when extracting bytes from or inserting bytes into words using a mix of
shift-and-mask and byte addressing. A contrived example is the following code which
copiesindividual bytesfromani nt variablewintoani nt variable pointed to by p,
until anull byte is encountered. The code assumes that w does contain a null byte.

int a
char *p = (char *)&a;
int w= AN ARBI TRARY_ VALUE;

for (5;)

{
if ((*p++ = w) == 0) break;
w >>= §;

}

This code will only work on a machine with even (or little-endian) byte-sex, and so is
not portable. The best solution to such problemsis either to write code which does not
rely on byte-sex, or to have different code to deal appropriately with different byte-sex
and to compile the correct variant conditionally, depending on your target machine
architecture.

Store alignment

The only guarantee given in the ANSI C Standard regarding alignment of members of a
struct, is that a ‘hole’ (caused by padding) cannot exist at the beginning of the
struct . The values of ‘holes’ created by alignment restrictions are undefined, and you
should not make assumptions about these values. In particular, two structures with

Portability

identical members, each having identical values, will only be considered equal if
field-by-field comparison is used; a byte-by-byte, or word-by-word comparison may not
indicate equality.

This may also have implications on the size requirements of large arrays of st r uct s.
Given the following declarations:

#def i ne ARRSI ZE 10000
typedef struct
{ . .
int i;
short s;
} ELEM
ELEM arr [ARRSI ZE] ;

this may require significantly different amounts of store under, say, a compiler which
alignsi nt son even boundaries, as opposed to one which aligns them on word
boundaries.

Pointers and pointer arithmetic

A deficiency of the original definition of C, and of its subsequent use, has been the
relatively unrestrained interchanging between pointers to different data types and
integers or longs. Much existing code makes the assumption that a pointer can safely be
held in either al ong i nt ori nt variable. While such an assumption may indeed be
true in many implementations on many machines, it is a highly non-portable feature on
which to rely.

This problem is further compounded when taking the difference of two pointers by
performing a subtraction. When the difference is large, this approach is full of possible
errors. For this purpose, ANSI C definesatypept rdi ff_t, whichiscapable of
reliably storing the result of subtracting two pointer values of the same type; atypical
use of this mechanism would be to apply it to pointers into the same array.

Function argument evaluation

Whilst the evaluation of operands to such operators as && and || is defined to be strictly
left-to-right (including all side-effects), the same does not apply to function argument
evaluation. For example, inthefunctioncall f (i, i ++); , theissue of whether the
post-increment of i isperformed after thefirst useof i isimplementation-dependent. In
any case, thisisan unwise form of statement, sinceit may be decided later to implement
f asamacro, instead of a function.

257

ANSI C vs K&R C

System-specific code

Thedirect use of operating system callsis, asyou would expect, non-portable. If you use
code which is obvioudy targeted for a particular environment, then it should be clearly
documented as such, and should preferably be isolated into a system-specific module,
which needs to be modified when porting to a new machine or operating system.
Pathnames of system files should be #defined and not hard-coded into the program, and,
asfar as possible, all processing of filenames should be made easy to modify. Many file
operations can be written in terms of the ANSI input/output library functions, which will
make an application more portable. Obviously, binary data files are inherently
non-portable, and the only solution to this problem may be the use of some portable
external representation.

ANSI Cvs K&R C

The ANSI C Standard has succeeded in tightening up many of the vague areas of K&R
C. Thisresultsin amuch clearer definition of a correct C program. However, if
programs have been written to exploit particular vague features of K& R C, then their
authors may find surprises when porting to an ANSI C environment. In the following
sections, we present alist of what we consider to bethe major differences between ANSI
and K&R C. These differences are at the language level, and we defer discussion of
library differences until alater section. The order in which thislist is presented follows
approximately relevant parts of the ANSI C Standard Document.

Lexical elements

The ordering of phases of trandlation is well-defined. Of special noteis the preprocessor
which is conceptually token-based (which does not yield the same results as might
naively be expected from pure text manipulation).

A number of new keywords have been introduced with the following meanings:

I Thetypequalifier vol at i | e which meansthat the object may be modified in
ways unknown to the implementation, or have other unknown side effects.
Examples of objects correctly described asvol at i | e include device registers,
semaphores and flags shared with asynchronous signal handlers. In general,
expressionsinvolving vol at i | e objects cannot be optimised by the compiler.

I Thetypequalifier const which indicates that a variable’s value should not be
changed.

I The type specifievoi d to indicate a non-existent value for an expression.

I The type specifievoi d *, which is a generic pointer to or from which pointer
variables can be assigned, without loss of information.

I Thesi gned type qualifier, to sign any integral types explicitly.

258

Portability

I struct sanduni onshavetheir own distinct name spaces.
I Thereisanew floating-point typel ong doubl e.

I TheK&RCpracticeof usingl ong f | oat todenotedoubl e isnow outlawedin
ANSI C.

Suffixes U and L (or u and 1), can be used to explicitly denote unsi gned and
| ong constants (eg. 32L, 64U, 1024UL etc).

The use of ‘octal’ constants 8 and 9 (previously defined to be octal 10 and 11
respectively) is no longer supported.

Literal strings are to be considered as read-only, and identical strings may be stored
as one shared version (as indeed they are, in the Acorn C Compiler). For example,
given:

char *pl "hel | 0";

char *p2 = "hello";

pl andp2 will point at the same store location, where the sthni@pl o is held.
Programs should not therefore modify literal strings.

Variadic functions (ie those which take a variable number of arguments) are
declared explicitly using an ellipsis)(For example, int printf(const
char *fmt, ...);

Empty comments /**/ are replaced by a single space (use the preprocessor directive
to do token-pasting if you previously used /**/ to do this).

Conversions

ANSI C uses value-preserving rules for arithmetic conversions (whereas K&R C
implementations tend to use unsigned-preserving rules). Thus, for example:

int f(int X, unsigned char y)

return (x+y)/2;
}

does signed division, where unsigned-preserving implementations would do unsigned
division.

Aside from value-preserving rules, arithmetic conversions follow those of K& R C, with
additional rulesfor long double and unsigned long int . Itisnow aso

possible to perform float arithmetic without widening to double . Floating-point
values truncate towards zero when they are converted to integral types.

Itisillegal to attempt to assign function pointers to data pointers and vice versa (even
using explicit casts). The only exception to thisisthe value O, asin:

259

ANSI C vs K&R C

int (*pfi)();

pfi = 0;

Assignment compatibility between st r uct sand uni onsisnow stricter. For example,
consider the following:

struct {char a; int b;} vi;

struct {char a; int b;} v2;

vl =v2; /* illegal because vl and v2
strictly have different types*/

Expressions

I structsanduni onsmay be passed by value as arguments to functions.

I Givenapointer to function declared as, say, i nt (*pfi) () ,thenthefunction
to which it points can be called either by pfi (); or (*pfi)();.

I Dueto the use of distinct name spacesfor st r uct and uni on members absolute
machine addresses must be explicitly cast before being used asst r uct and
uni on pointers. For example:

((struct io_space *)0x00ff)->i o_buf;

Declarations

260

Perhapsthe greatest impact on C of the ANSI Standard has been the adoption of function
prototypes. A function prototype declares the return type and argument types of a

function. For example,i nt f(int, float); declaresafunction returningi nt

withonei nt andonef| oat argument. This means that a function’s argument types
are part of the type of that function, thus giving the advantage of stricter argument
type-checking, especially across source files. A function definition (which is also a
prototype) is similar except that identifiers must be given for the arguments. For
examplejnt f(int i, float f);.Itis still possible to use ‘old style’ function
declarations and definitions, but you are advised to convert to the ‘new style’. It is also
possible to mix old and new styles of function declaration. If the function declaration
which is in scope is an old style one, normal integral promotions are performed for
integral arguments, arfd oat s are converted toubl e. If the function declaration
which is in scope is a new style one, arguments are converted as in normal assignment
statements.

Empty declarations are now illegal.

Arrays cannot be defined to have zero or negative size.

Portability

Statements

I ANSI has defined the minimum attributes of control statements (eg the minimum
number of case limbs which must be supported by acompiler). These values are
almost invariably greater than those supported by PCCs, and so should not present a
problem.

I Avauereturned frommai n() is guaranteed to be used as the program'’s exit code.

I Values used in the controlling statement and labelssefid ch can be of any
integral type.

Preprocessor
I Preprocessor directives cannot be redefined.
I There is a new ## directive for token-pasting.

I There is a directive # which produces a string literal from its following characters.
This is useful for cases where you want replacement of macro arguments in strings.

The order of phases of translation is well defined and is as follows for the
preprocessing phases:

1 Map source file characters to the source character set (this includes replacing
trigraphs).

Delete all newline characters which are immediately preceded by \.

Divide the source file into preprocessing tokens and sequences of white space
characters (comments are replaced by a single space).

4 Execute preprocessing directives and expand macros.
Any #i ncl ude files are passed through steps 1-4 recursively.

The macro __STDC___is #defined to 1 in ANSI-conforming compilers.

The ToPCC and ToANSI tools

The desktop tools ToPCC and ToANSI help you to translate C programs and headers
between the ANSI and PCC dialects of C. For more details of their use and capabilities
see the earlier chaptéFsANS andToPCC.

pcc compatibility mode

This section discusses the differences apparent when the compiler is used in ‘PCC’
mode. When th&NI X pcc setup option is enabled, the C compiler will accept
(Berkeley) UNIX-compatible C, as defined by the implementation of the Portable C
Compiler and subject to the restrictions which are noted below.

261

pcc compatibility mode

262

In essence, PCC-style CisK&R C, as defined by B Kernighan and D Ritchie in their
book The C Programming Language, with a small number of extensions and
clarifications of language features that the book |eaves undefined.

Language and preprocessor compatibility

InUNI X pcc mode, the Acorn C compiler accepts K& R C, but it does not accept many
of the old-style compatibility features, the use of which has been deprecated and warned
against for many years. Differences are listed briefly below:

Compound assignment operators where the = sign comes first are accepted (with a
warning) by some PCCs. An example is =+ instead of +=. Acorn C does not allow
this ordering of the charactersin the token.

The=sign beforeast at i c initialiser was not required by some very old C
compilers. Acorn C does not support this syntax.

The following very peculiar usage is found in some UNIX tools pre-dating UNIX
Version 7:

struct {int a, b;};

doubl e d;
d.a = 0;
d.b =0x....;

Thisis accepted by some UNIX PCCs and may cause problems when porting old
(and badly written) code.

enums are less strongly typed than is usual under PCCs. enumisanon-K&R
extension to C which has been standardised by ANSI somewhat differently from the
usual PCC implementation.

chars are signed by default in UNI X pcc mode.

InUNI X pcc mode, the compiler permits the use of the ANSI “... notation

which signifies that a variable number of formal arguments follow.

In order to cater for PCC-style use of variadic functions, aversion of the PCC
header file varargs.h issupplied with the release.

With the exception of enums, the compiler’s type checking is generally stricter than
PCC's — much more akin to lint’s, in fact. In writing the Acorn C compiler, we have
attempted to strike a balance between generating too many warnings when
compiling known, working code, and warning of poor or non-portable
programming practices. Many PCCs silently compile code which has no chance of
executing in just a slightly different environment. We have tried to be helpful to
those who need to port C among machines in which the following varies:

I the order of bytes within a word (eqg little-endian ARM, VAX, Intel versus
big-endian Motorola, IBM370)

Portability

the default size of i nt (four bytes versus two bytesin many PC
implementations)

I thedefault size of pointers (not alwaysthe sameasi nt)
I whether values of type char default to signed or unsigned char

I thedefault handling of undefined and implementati on-defined aspects of the C
language.

If the verbosity of CCin UNI X pcc modeisfound undesirable, all warnings and/or

errors can beturned off using the Suppresswar ningsand/or Suppresserror s setup

options.

The compiler’s preprocessor is believed to be equivalent to UNP{s except for

the points listed below. Unfortunatebpp is only defined by its implementation,

and although equivalence has been tested over a large body of UNIX source code,
completely identical behaviour cannot be guaranteed. Some of the points listed
below only apply when thEereprocess only option is used with the CC tool.

I There is a different treatment of whitespace sequences (benign).

I nl is processed bgC with Preprocess only enabled, but passed bpp
(making lines longer than expected).

Cpp breaks long lines at a token boundd®¢, with Preprocess only enabled
doesn't (this may break line-size constraints when the source is later consumed
by another program).

The handling of unrecogniséddirectives is different (this is mostly benign).

Standard headers and libraries

Use of the compiler ikNI X pcc mode precludes neither the use of the standard ANSI
headers built in to the compiler nor the use of the run-time library supplied with the C
compiler. Of course, the ANSI library does not contain the whole of the UNIX C library,
but it does contain almost all the commonly used functions. However, look out for
functions with different names, or a slightly different definition, or those in different
‘standard’ places. Unless the user directs otherwise Ossfaylt path, the C compiler

will attempt to satisfy references to, sagt di 0. h> from its in-store filing system.

Listed below are a number of differences between the ANSI C Library, and the BSD
UNIX library. They are placed under headings corresponding to the ANSI header files:

ctype.h

There are ndosasci i () andt oasci i () functions, since ANSI C is not
character-set specific.

263

pcc compatibility mode

errno.h

OnBSD systemstherearesys_nerr andsys_errli st () definedto giveerror
messages corresponding to error numbers. ANSI C does not have these, but provides
similar functionality viaper r or (const char *s), which displaysthe string
pointed to by s followed by a system error message corresponding to the current value
of errno.

Thereisalsochar *strerror(int errnum which, when given apurported
value of er r no, returnsits textual equivalent.

math.h

The #defined value HUGE, found in BSD libraries, is called HUGE_VAL in ANSI C.
ANSI C doesnot have asi nh(),acosh(),atanh().

signal.h
In ANSI Cthesi gnal () function’s prototype is:
extern void (*signal (int, void(*func)(int)))(int);

si gnal () therefore expects its second argument to be a pointer to a function returning
voi d with onei nt argument. In BSD-style programs it is common to use a function
returningi nt as a signal handler. The PCC-style function definitions shown below will
therefore produce a compiler warning about an implicit cast between different function
pointers (sincé () defaultstd nt f ()). This is just a warning, and correct code will

be generated anyway.

f (si gno)

i nt signo;

{

.}

mai n()

{

extern f();

signal (SIANT, f);
}

264

Portability

stdio.h

sprintf () now returns the number of characters ‘printed’ (following UNIX System
V), whereas the BSBpr i nt f () returns a pointer to the start of the character buffer.

The BSD functiongcvt (), fcvt () andgcvt () are notincluded in ANSI C, since
their functionality is provided bgprintf ().

string.h

On BSD systems, string manipulation functions are foursd m ngs. h, whereas
ANSI C places them irst ri ng. h>. The Acorn C Compiler also hasri ngs. h
for PCC-compatibility.

The BSD functions ndex() andri ndex() are replaced by the ANSI functions
strchr() andstrrchr () respectively.

Functions which refer to string lengths (and other sizes) now use the ANSI type
si ze_t, which in our implementation isnsi gned i nt .

stdlib.h

mal | oc() returnsvoi d *, rather than thehar * of the BSDnal | oc() .

float.h

A new header added by ANSI giving details of floating point precision etc.

limits.h

A new header added by ANSI to give maximum and minimum limit values for data
types.

locale.h

A new header added by ANSI to provide local environment-specific features.

Environmental aspects

When porting an application, the most extensive changes will probably need to be made
at the operating system interface level. The following is a brief description of aspects of
RISC OS and Acorn C which differ from systems such as UNIX and MS-DOS.

The most apparent interface between a C program and its environment is via the
arguments torai n() . The ANSI Standard declares thati n() is a function defined
as the program entry point with either no arguments or two arguments (one giving a
count of command line arguments, commonly calletl ar gc, the other an array of

265

266

pointers to the text of the arguments themselves, after removal of input/output
redirection, commonly called char *ar gv[]). Asdiscussed in the section
Environment (A.6.3.2) on page 77, Acorn C supportsthe style of input/output redirection
used by UNIX BSD4.3, but does not support filename wildcarding. Further parameters
tomai n() are not supported.

Under UNIX and MS-DOS, it is common to use a third parameter, normally called
char *environ[] under UNIX and char *envp[] under Microsoft C for
MS-DOS, to give access to environment variables. The same effect can be achieved in
our system by using get env() to request system variable values explicitly; the names
of these variables are as they appear from a RISC OS * Show command. The string
pointed at by ar gv[0] isthe program name (similar to UNIX and MS-DOS, except the
name is exactly that typed on invocation, so if afull pathnameis used to invoke the
program, thisiswhat appearsinar gv[0]).

File naming is one of the least portable aspectsin any programming environment.
RISC OS uses afull stop (.) as a separator in pathnames and does not support filename
extensions (nor does UNIX, but existing UNIX tools make assumptions about file
naming conventions). The best way to simulate extensionsisto create adirectory whose
name corresponds to the required extension (in a manner similar to the use of ¢ and h
directoriesfor C source and header files). RISC OS filename components are limited to
10 characters.

The Acorn C compiler has support for making Software Interrupt (SWI) callsto

RISC OS routines, which can be used to replace any system calls which you make under
UNIX or MS-DOS. Theincludefileker nel . h has function prototypes and
appropriate t ypedef sfor issuing SWis. Briefly, thetype ker nel _swi _regs
allows valuesto be placed in registers R0-R9, and _ker nel _swi () can then be used
to issue the SWI; alist of SWI numbers can be found in the include file swi s. h. File
information, for example, can be obtained in away similar to st at () under UNIX, by
making an OS_GBPB SWI with RO set to the reason code 11 (full file information).
Most of the UNIX/MS-DOS low-level 1/0 can be simulated in thisway, but the ANSI C
run-time library provides sufficient support for most applications to be written in a
portable style.

You'll find some more information oker nel . h in comments within the header file
itself.

RISC OS does not support different memory models as in MS-DOS, so programs which
have been written to exploit this will need modification; this should only require the

removal of Microsoft C keywords suchmsar , f ar andhuge, if the program has
otherwise been written with portability in mind.

17 Assembly language interface

nterworking assembly language and C — writing programs with both assembly
language and C parts — requires use both of ObjAsm and of CC and/or C++. Further
explanation of examples is provided in the chapierworking assembler with C on
page 179 of thécorn Assembler guide.

Interworking assembly language and C can be very useful for construction of top quality
RISC OS applications. Using this technique you can take advantage of many of the
strong points of both languages. Writing most of the bulk of your application in C allows
you to take advantage of the portability of C, the maintainability of a high level language
and the power of the C libraries and language. Writing critical portions of code in
assembler allows you to take advantage of all the speed of the Archimedes and all the
features of the machine (eg use the complete floating-point instruction set).

The key to interworking C and assembler is writing assembly language procedures that
obey the ARM Procedure Call Standard (APCS). This is a contract between two
procedures, one calling the other. The called procedure needs to know which ARM and
floating-point registers it can freely change without restoring them before returning, and
the caller needs to know which registers it can rely on not being corrupted over a
procedure call.

Additionally, both procedures need to know which registers contain input arguments and
return arguments, and the arrangement of the stack has to follow a pattern that debuggers
and so on can understand. For the specification of the APCS, see the aphdix
procedure call standard on page 249 of thBesktop Tools guide.

This chapter explains how C uses the APCS, in terms of the appearance of assembly
language optionally output by CC and the way the stack set up by the C run-time library
works.

Register names
The following names are used in referring to ARM registers:

al RO Argument 1, also integer result, temporary
a2 R1 Argument 2, temporary

a3 R2 Argument 3, temporary

a4 R3 Argument 4, temporary

vl R4 Register variable

v2 R5 Register variable

267

Register usage

v3
v4
vb
v6
sl

fp
ip
sp
Ir
pc

fo
fl
f2
f3
fa
f5
f6
f7

R6 Register variable

R7 Register variable

R8 Register variable

R9 Register variable

R10 Stack limit

R11 Frame pointer

R12 Temporary work register

R13 Lower end of current stack frame
R14 Link address on calls, or workspace
R15 Program counter and processor status

FO Floating point result

F1 Floating-point work register

F2 Floating-point work register

F3 Floating-point work register

F4 Floating-point register variable (must be preserved)
F5 Floating-point register variable (must be preserved)
F6 Floating-point register variable (must be preserved)
F7 Floating-point register variable (must be preserved)

In this section, ‘af r] * means at the location pointed to by the value in registéat

[r,

Register usage

#n] ' refers to the location pointed to Ibyn. This accords with ObjAsm’s syntax.

The following points should be noted about the contents of registers across function
calls.

268

Calling a function (potentially) corrupts the argument registéro a4, ip, | r,
andf O0- f 3. The calling function should save the contents of any of these registers
it may need.

Registel r is used at the time of a function call to pass the return link to the called
function; it is not necessarily preserved during or by the function call.

The stack pointesp is not altered across the function call itself, though it may be
adjusted in the course of pushing arguments inside a function. The limit regjister
may change at any time, but should always represent a valid limit to the downward
growth ofsp. User code will not normally alter this register.

Registers/1 tov6, and the frame pointéip, are expected to be preserved across
function calls. The called procedure is responsible for saving and restoring the
contents of any of these registers which it may need to use.

Control arrival

Assembly language interface

At aprocedure call, the convention is that the registers are used as follows:

I al toa4 contain thefirst four arguments. If there are fewer than four arguments,
just as many of al to a4 as are needed are used.

If there are more than four arguments, sp points to the fifth argument; any further
arguments will be located in succeeding words above [sp] .

I f p pointsto abacktrace structure.

I spandsl| defineatemporary workspace of at least 256 bytes available to the
procedure.

sl contains a stack chunk handle, which is used by stack handling code to extend
the stack in a non-contiguous manner.

| r containsthe value which should be restored into pc on exit from the called
procedure.

pc contains the entry address of the called procedure.

Passing arguments

Return link

All integral and pointer arguments are passed as 32-bit words. Floating point ‘float’
arguments are 32-bit values, ‘double’-argument 64-bit values. These follow the memory
representation of the IEEE single and double precision formats.

Arguments are passedif by the following sequence of operations:
I Push each argument onto the stack, last argument first.

I Pop the first four words (or as many as were pushed, if fewer) of the arguments into
registeraal toa4.

Call the function, for example by the anch wi t h | i nk instruction:
BL functionnane

In many cases it is possible to use a simplified sequence with the same effect (eg load
three argument words intdl - a3).

If more than four words of arguments are passed, the calling procedure should adjust the
stack pointer after the call, incrementing it by four for each argument word which was
pushed and not popped.

On return from a procedure, the registers are set up as follows:

269

Structure results

I fp,sp,sl,vltov6 andf4tof 7 havethe samevaluesthat they contained at the
procedure call.

I Any result other than a floating point or a multi-word structure valueis placed in
register al.

I A floating point result should be placed in register f O.

Structure values returned as function results are discussed bel ow.

Structure results

A C function which returns a multi-word structure result is treated in adlightly different
manner from other functions by the compiler. A pointer to the location which should
receive the result is added to the argument list asthe first argument, so that adeclaration
such asthe following:

s_type afunction(int a, int b, int c)
{

s_type d;

[* o0

return d;

}
isin effect converted to this form:

void afunction(s_type *p, int a, int b, int c)
{

s_type d;

[* ... *]

*p = d;

return;

}

Any assembler-coded functions returning structure results, or calling such functions,
must conform to this convention in order to interface successfully with object code from
the C compiler.

Storage of variables

270

The code produced by the C compiler uses argument values from registers where
possible; otherwise they are addressed relative to f p, asillustrated in Examples bel ow.

Local variables, by contrast, are always addressed with positive offsetsrelativeto sp. In
code which alters sp, this means that the offset for the same variable will differ from
place to place. The reason for this approach is that it permits the stack overflow
procedure to recover by changing sp and sl to point to a new stack segment as
necessary.

Assembly language interface

Function workspace

Thevaluesof sp and sl passed to acalled function define an area of readable, writable
memory available to the called function as workspace. All words below [sp] and at or
above[sl , #- 512] are guaranteed to be available for reading and writing, and the
minimum allowed value of sp issl - 256. Thus the minimum workspace availableis
256 bytes.

The C run-time system, in particular the stack extension code, requires up to 256 bytes
of additional workspace to be |eft free. Accordingly, all called functions which require
no more than 256 bytes of workspace should test that sp does not point to alocation
below sl , in other words that at least 512 bytes remain. If the valuein sp islessthan
thatin sl , the function should call the stack extension function x$st ack_over f | ow.
Functions which need more than 256 bytes of workspace should amend the test
accordingly, and call x$st ack_over f | owl, as described below. The following
examplesillustrate amethod of performing this test.

Note that these are the C-specific aliases for the kernel functions

_kernel _stkovf_split_Ofranme and_kernel _stkovf_split_frane
respectively, described in the chapter The shared C library in the RISC OS 3
Programmer’s Reference Manual

Examples

The following fragments of assembler code illustrate the main points to consider in
interfacing with the C compiler. If you want to examine the code produced by the
compiler in more detail for particular cases, you can request an assembler listing by
enabling the Assembler option on the CC SetUp menu.

271

Examples

272

Thisisafunction gggg which expectstwo integer arguments and uses only one register
variable, v1. It calls another function f f f f .

AREA | C$$code|, CODE, READONLY
I MPORT | ffff|

I MPORT | x$st ack_overfl oW

EXPORT | gggg|

gggx DCB "gggg", O ;nane of function, O term nated
ALI GN ; padded to word boundary
gogy DCD &f £ 000000 + gggy - gggx

;dist. to start of nane
; Function entry: save necessary regs. and args. on stack

9999 MoV ip, sp
STMFD sp!, {al, a2, vi, fp, ip, Ir, pc}
SUB fp, ip, #4 ;points to saved pc

; Test wor kspace size

CVPS sp, sl

BLLT | x$st ack_overf | ow
;Main activity of function

ADD vl, vi1, #1 ;use a register variable
BL | FFFF ;call another function
cawP vl, #99 ;rely on reg. var. after call

;Return: place result in al, and restore saved registers
MoV al, result
LDVEA fp, {v1, fp, sp, pc}i”

If afunction will need more than 256 bytes of workspace, it should replace the
two-instruction workspace test shown above with the following:

SUB ip, sp, #n
CWVP ip, sl
BLLT | x$st ack_over fl owl|

where n is the number of bytes needed. Note that x$st ack _over f | owl must be
called if more than 256 bytes of frame are needed. i p must contain sp_needed, as
shown in the exampl e above.

A function which expects a variable number of arguments should store its argumentsin
the following manner, so that the whole list of arguments is addressable as a contiguous
array of values:

MOV ip, sp ;copy value of sp
STMFD sp!, {al, a2, a3, a4};save 4 words of args.
STMFD sp!, {v1, v2, fp, ip, Ir, pc}
;save v1-v6 needed
SUB fp, ip, #20;fp points to saved pc
CWS sp, sl ;test workspace
BLLT | x$stack_overflow

Some compl ete program examples are described in the chapter Interworking assembler
with C on page 179 of the Acorn Assembler guide.

18

Getting started

How to write relocatable modules
in C

el ocatable modules are the basic building blocks of RISC OS and the means by

which RISC OS can be extended by a user. The archetypal use for RISC OS
extensionsis the provision of device drivers for devices attached to Archimedes
hardware.

Rel ocatable modules al so provide mechanisms which can be exploited to:

I extend RISC OS’s repertoire of built-in commands (* commands)
(analogous to plugging additional ROMs into a BBC microcomputer of
pre-Archimedes vintages)

I provide services to applications (for example, as does the shared C library module)
I implement ‘terminate and stay resident’ (TSR) applications.

The idea of TSR applications will be most familiar to PC users, whereas extending the
* command set (via ‘software ROM modules’) will seem most familiar to those with a
background in the BBC computer. A complete discussion of these topics is beyond the
scope of this chapter.

For modules which provide services, the principal mechanism for accessing those
services from user code is the SoftWare Interrupt (SWI). For example, the shared C
library implements a handler for a single SWI which, when called from the library stubs
linked with the application, returns the address of the C library module which in turn
allows the library stubs to be initialised to point to the correct addresses within the
library module. Thereafter, library services are accessed directly by procedure call,
rather than by SWI call. All this illustrates is the rich variety of mechanism available to
be exploited.

To write a module in C you will need:
I the CC and CMHG tools supplied with Acorn C/C++
| the C Library stubs supplied with Acorn C/C++

I athorough understanding of RISC OS modules (reaitueles chapter of the
RISC OS 3 Programmer’s Reference Maiual

273

Constraints on modules written in C

Constraints on modules written in C

A module written in C must use the shared C library module viathe library stubs. Use
of the stand-alone C library (ANSILib) is not a supported option.

All components of amodule written in C must be compiled with the compiler SetUp
menu option M odule code enabled. This allows the module’s static data to be separated
from its code and multiply instantiated.

Overview of modules written in C

A module written in C includes the following:

a Module Header (described in thi®dules chapter of th&ISC OS3
Programmer’s Reference Manjiatonstructed using CMHG;

a set of entry and exit ‘veneers’, interfacing the module header to the C run-time
environment (also constructed using CMHG);

the stubs of the shared C library;

code written by you to implement the module’s functionality — for example:
*command handlers, SWI handlers and service call handlers.

These parts must be linked together using the Link tool withSe&Jp boxV odule
option enabled.

The next section describes:

how to write a CMHG input file to make a module header and any necessary entry
veneers

the interface definitions to which each component of your module must conform

how to write a CMHG input file to generate entry veneers for IRQ and event
handlers written in C.

Functional components of modules written in C

274

The following components may be present in a module written in C (all are optional
except for the title string and the help string which are obligatory):

Runnable application code (called start code in the module header description). This
will be present if you tell CMHG that the module is runnable and include a()
function amongst your module code.

Initialisation code. ‘System’ initialisation code is always present, as the shared
library must be initialised. Your initialisation function will be called after the system
has been initialised if you declare its name to CMHG.

How to write relocatable modules in C

Finalisation code. The C library hasto be closed down properly on module
termination. Your own finalisation code will be called before the system has been
closed down if you declare its name to CMHG.

Service call handler. Thiswill be present if you declare the name of a handler
function to CMHG. In addition, you can give alist of service call numberswhich
you wish to deal with and CMHG will generate fast code to ignore other calls
without calling your handler.

A title string in the format described in the RISC OS 3 Programmer’s Reference
Manual CMHG will insist that you giveit avalid title string.

A help string in the format described in the RISC OS 3 Programmer’s Reference
Manual Again, CMHG will insist that you give avalid help string.

Help and command keyword table. This section is optional and will be present only
if you describe it to CMHG and declare the names of the command handlersto
CMHG. Obviously, their implementations must be included in the linked module.

I SWI chunk base number. Present only if declared to CMHG.
I SWI handler code. Present if you declare the name of a handler function to CMHG,
I SWI decoding table. Present only if described to CMHG.

I SWI decoding code. Present only if you declare the name of your decoding function
to CMHG

IRQ handlers. Though not associated with the module header, CMHG will generate
entry veneersfor IRQ handlers. You can register these veneers with RISC OS using
SWI OS_Claim, etc; you have to provide implementations of the handlers
themselves. The names of the handler functions and of the entry veneers haveto be
givento CMHG

An event handler. Though not associated with the module header, CMHG will
generate entry veneers for an event handler. You can register these veneers with
RISC OS using SWI OS_Claim, etc; you have to provide implementations of the
handlers themselves. The names of the handler functions and of the entry veneers
have to be given to CMHG,

Each component that you wish to use must be described in your input to CMHG. Use of
most components al so requires that you write some C code which must conform to the
interface descriptions given in the sections bel ow.

The C module header generator

The C Module Header Generator (CMHG) is a special-purpose assembl er of module
headers. It accepts asinput atext file describing which module facilities you wish to use
and generates as output alinkable object module (in ARM Object Format). For details of
how to run the CMHG tool, see the chapter entitted CMHG earlier in this manual.

275

Functional components of modules written in C

The format of input to CMHG

Input to CMHG is in free format and consists of a sequence of ‘logical lines’. Each
logical line starts with a keyword which is followed by some number of parameters and
(sometimes) keywords. The precise form of each kind of logical input line is described
in the following sections.

Alogical line can be continued on the next line of input immediately after a comma (that
it, if the next non-white-space character after a comma is a newline then the line is
considered to be continued).

Lists of parameters can be separated by commas or spaces, but use of comma is required
if the line is to be continued.

A comment begins with a and continues to the end of the current line. A comment is
valid anywhere that trailing white space is valid (and, in particular, after a comma).

A keyword consists of a sequence of alphabetic characters and minus signs. Often, a
keyword is the same as the description of the corresponding field of the module header
(as described in thRISC OS 3 Programmer’s Reference Mahbat with spaces

replaced by minussigns. For exampleli niti al i sati on-code;title-string;

servi ce-cal | - handl er.

Keywords are always written entirely in lower case and are always immediately
followed by a: . Character caseis significant in al contexts: in keywords, in identifiers,
and in strings.

Numbers used as parameters are unsigned. Three formats are recognised:
I unsigned decimal

I Oxhhh... (up to 8 hex digits)

I &hhh... (up to 8 hex digits).

In the following sections, the parts headed CVHGdescriptiontell you what you have to
describe to CMHG in order to use the facility described in that section; the parts headed

C interfaceintroduce a description of the interface to which the handler function you

write must conform. You may omit any trailing arguments that you don’t need from your
handler implementations.

Runnable application code
CMHG description:

nmodul e-i s-runnabl e: ; No paraneters.

C interface:

276

How to write relocatable modules in C

int main(int argc, char *argv[]);

/*

* Entered in user-nbpde with argc and argv

* set up as for any other application. Mlloc
* obtains storage from application workspace.
*/

To be useful (ie re-runnable) as a ‘terminate and stay resident’ application, a runnable
application must implement at least one * command handler (see below) for its

command line, which, when invoked, enters the module (calls SWI OS_Module with the
Enter reason code).

Initialisation code
CMHG description:

initialisation-code: user_init ; The nane of your initialisation function.
; Any valid C function name will do.

C interface:

_kernel _oserror *user_init(char *cnd_fail, int podul e_base, void *pw);
/*
* Return NULL if your initialisation succeeds; otherw se return a pointer to an
* error block. cnd_tail points to the string of arguments with which the
* modul e is invoked (may be "").
* podul e_base is 0 unless the code has been invoked froma podul e.
* pw is the ‘r12’ value established by module initialisation. You may assume
* nothing about its value (in fact it points to some RMA space claimed and
* used by the module veneers). All you may do is pass it back for your module
* veneers via an intermediary such as SWI OS_Call Every (use _kernel_swi() to
* issue the SWI call).
*/

Note that you can choose any valid C function name as the name of your initialisation
code (CMHG insists on no more than 31 characters).

Finalisation code

CMHG description:

finalisation-code: user_final ; The name of your finalisation function.
; Any valid C function name will do.

Cinterface:

extern _kernel_oserror *user_final(int fatal, int podule, void *pw);
/*
* Return NULL if your finalisation succeeds. Otherwise return a pointer to an
* error block if your finalisation handler does not wish to die (e.g. toolbox
* modules return a 'Task(s) active' error).
* fatal, podule and pw are the values of R10, R11 and R12 (respectively)
* on entry to the finalisation code.
*

277

Functional components of modules written in C

A call to library finalisation code isinserted automatically by CMHG; the C library
finalisation code will call your finalisation handler immediately before closing down the
library (on module finalisation).

Service call handler
CMHG description:

service-call-handler: sc_handl er <nunber> <nunber> ...
Cinterface:
voi d sc_handl er (int service_nunber, _kernel _sw _regs *r, void *pw);
/*

* Return val ues shoul d be poked directly into r->r[n];

* the right value/register to use depends on the service nunber

* (see the relevant RISC OS Programmer’s Reference Manual section for details).

* pw is the private word (the ‘r12’ value.

*/
Service calls provide a generic mechanism. Some need to be handled quickly; othersare
not time critical. Because of this, you may give alist of service numbersin which you
areinterested and CMHG will generate code to ignore the rest quickly. The fast
recognition code looks like:

CVPS rl, #FirstlnterestingServi ceNunber
CWPNES r1, #SecondlnterestingServiceNunber

CVPNES r1, #NthlnterestingServiceNunber
MOVNES pc, Ir ; drop into service call entry veneer.

If you give no list of interesting service numbers then all service calls will be passed to
your handler.

In order to construct a relocatable module which implements a RISC OS application (a

TSR application) you must claim and deal with the Service_Memory service call. See

the relevant section in the Programmer’s Reference Manual for details of this service
call.

The following is a suitable handler written in C for this service call:

#def i ne Service_Menory Ox11
extern void Front End_servi ces(int service_number, _kernel _sw _regs *r, void

*pw)
{
1 GNORE(pW) ;
/* keep application workspace (r2 hol ds CAO pointer) */
if (service_nunber == Service_Menory && r->r[2] ==
(int)l mage__RO Base)
{
r->r[1] =0; [/* refuse to relinquish app. workspace */
}
}

278

How to write relocatable modules in C

The above handler needs to compare the contents of r[2] with the address of the base of
your module containing it. Thisis not avalue directly availablein C, so the following
assembly language fragment can be used to gain access to the symbol
Image$$RO$$Base, which is defined by Link when your module is linked together:

| MPORT | | mage$$ROB$Base|
EXPORT | nmage__RO Base

AREA Code_Descri ption, DATA, REL
I mge__ RO Base

DCD | I mage$$ROB$Base|
END
Title string
CMHG description:

title-string: title
titlemust consist entirely of printable, non-space ASCII characters.

Any underscores in the title are replaced by spaces. CMHG will fault any title longer
than 31 characters and warn if the length of the title string is more than 16.

Help string
CMHG description:
hel p-string: help d.dd comment ; help string and version nunber

The help string is restricted to 15 or fewer a phanumeric, ASCII characters and
underscores. Longer strings are truncated (with awarning) to 15 characters then padded
with a single space. Shorter titles are padded with one or two TAB characters so they
will appear exactly 16 characters long.

The version number must consist of a digit, adot, then 2 consecutive digits.
Conventionally, the first digit denotes major releases; the second digit minor releases;
and the third digit bug-fix or technical changes. If the version number is omitted, 0.00 is
used.

CMHG automatically inserts the current date into the version string, as required by
RISC OS convention.

A ‘comment’ of up to 34 characters can also be included after the version number. It will
appear in the tail of the module’s help string, after the date. A typical use is for
annotating the help string in the following style:

SomeModul e 0.91 (27 JUN 1989) Experinmental version

279

Functional components of modules written in C

280

CMHG refuses to generate a help string longer than 79 characters and warns if it hasto
truncate your input.

Help and command keyword table

CMHG description:
comand- keywor d-t abl e: cnd_handl er conmand- descri pti on+
(Here conmand- descr i pt i on+ denotes one or more command descriptions).

A command-description has the format:

st ar - conmand- nane " ("

m n-args: unsi gned- i nt ; default 0O

max- ar gs: unsi gned- i nt ; default 0O
gstrans- nap: unsi gned- i nt ; default O

f s- conmand: ; flag bits in

st at us: ; the flag byte
configure: ; of the cnd table
hel p: ; info word.
invalid-syntax: text

hel p-text: t ext

)

Each sub-argument is optional. A comma after any item allows continuation on the next
line.

A t ext item follows the conventions of ANSI C string constants: it is a sequence of
implicitly concatenated string segments enclosed in" and " .

Segments may be separated by white space or newlines (no continuation commais
needed following a string segment).

Within a string segment \ introduces an escape character. All the single character ASCII
escapes are implemented, but hexadecimal and octal escape codes are not implemented.
A\ immediately preceding a newline allows the string segment to be continued on the
following line (but does not include a newline in the string; if anewlineis required, it
must be explicitly included as\n).

m n- ar gs and max- ar gs record the minimum and maximum number of arguments
the command may accept; gst r ans- map records, in the least significant 8 bits, which
of the first 8 arguments should be subject to expansion by OS_GSTrans before calling
the command handler.

The keywordsf s- command, st at us, conf i gur e and hel p set bitsin the

command’s information word which mark the command as being of one of those classes.

i nval i d- synt ax andhel p-t ext messages are (should be) self-explanatory.

Example CMHG description:

How to write relocatable modules in C

command- keywor d-t abl e: cnd_handl er
t mD(mn-args: 0, max-args: 255,
hel p-text: "Syntax\ttnl <fil enames>\n"),

til(mn-args: 1, max-args: 1,
hel p-text: "Syntax\ttnR2" " <integer>"
"\'n")

This describes two * commands, *tmO and *tm1, which are to be handled by the C
function crd_handl er . The handler function will be called with 0 asits third
argument if it is being called to handle the first command (tm0, above), 1 asits third
argument if it is being called to handle the second command (tm1, above), etc. The
programmer must keep the CMHG description in step with the implementation of
cmd_handler.

Cinterface:

_kernel _oserror *cnd_handl er(char *arg_string, int argc, int cnd_no, void *pw);
/*

* If cnmd_no identifies a *HELP entry, then cnd_handl er nust return
arg_string or NULL (if arg_string is returned, the NUL-tern nated
buffer will be printed).

Return NULL if if the command has been successful ly handl ed;

* otherwi se return a pointer to an error block describing the failure
* (in this case, the veneer code will set the V' bit).

**STATUS and *CONFIGURE handlers will need to cast ‘arg_string’ to

* (possibly unsigned) long and ignore argc. See the RISC OS Programmer’s

* Reference Manual for details.

* pw is the private word pointer ('r12’) value passed into the entry veneer

*

EREE

SWI chunk base number
CMHG description:
swi - chunk- base- nunber: nunber

You should use thisentry if your module provides any SWI handlers. It denotesthe base
of arange of 64 values which may be passed to your SWI handler. SWI chunks are
allocated by Acorn: read the documentation carefully to discover which chunksyou may
use safely. In some cases you may need to write to Acorn to get a chunk allocated
uniquely to your product (though this should not be undertaken lightly and should only
be done when all alternatives have been exhausted). See the chapter An introduction to
SMsinthe RISC OS 3 Programmer’'s Reference Marfoamore details.

SWI handler code
CMHG description:
swi - handl er-code: swi _handler ; any valid C function nane will do

Cinterface:

281

Functional components of modules written in C

_kernel _oserror *sw _handl er(int sw _no, _kernel_swi _regs *r, void *pw);
/ *

* Return: NULL if the SW is handl ed successfully; otherw se return

* a pointer to an error block which describes the error.

* The veneer code sets the ‘V’ bit if the returned value is non-NULL.

* The handler may update any of its input registers (r0-r9).

* ps is the private word pointer (‘r12’) value passed into the

* swi_handler entry veneer.

*/

If your moduleisto handle SWIsthen it must include both swi - handl er - code and
SwW - chunk- base.

Example CMHG description:

swi-chunk-base-number: 0x88000
swi-handler-code: widget_swi

SWI decoding table
CMHG description:
swi-decoding-table: swi - base- nane swi - name*
Thistable, if present, isused by OS_SWINumberTo/FromString.
Example CMHG description:

swi-chunk-base-number: 0x88000
swi-handler-code: widget_swi
swi-decoding-table: Widget,

Init Read Write Close

This would be appropriate for the following name/number pairs:

Widget_Init 0x88000
Widget_Read 0x88001
Widget_Write 0x88002
Widget_Close 0x88003

SWI decoding code
CMHG description:

swi-decoding-code: swi _decoder ; any valid C function name will do

Cinterface:

282

How to write relocatable modules in C

voi d swi _decode(int r[4], void *pw);

/ *
* On entry, r[0] < O neans a request to convert fromtext to a nunber.
* In this case r[1] points to the string to convert (term nated by a
* control character, NOT necessarily by NUL).
* Set r[0] to the offset (0..63) of the SW within the SW chunk if
* you recognise its name; set r[0] < 0 if you don't recognise the name.
*
* On entry, r[0] >= 0 means a request to convert from a SWI number to
*a SWI string:
* r[0] is the offset (0..63) of th SWI within the SWI chunk.
* r[1] is a pointer to a buffer;
* r[2] is the offset within the buffer at which to place the text;
* r[3] points to the byte beyond the end of the buffer.
*You should write th SWI name into the buffer at th position given
* by r[2] then update r[2] by the length of the text written (excluding
* any terminating NUL, if you add one).
*
* pw is the private word pointer ('rl2’) passed into the swi_decode
* entry veneer.
*/

If you omit a SWI decoding table then your SWI decoding code will be called instead.
Of course, you don't have to provide either.

Turning interrupts on and off

The following Kker nel . h>) library functions support the control of the interrupt
enable state:

int _irqgs_disabl ed(void);

/*

* Returns non-0 if IRQs are currently disabl ed.
*/

void _irqgs_of f(void);
/*

* Disable | RGs.

*/

void _irgs_on(void);
/*

* Enabl e | RQs.

*/

These functions suffice to allow saving, restoring and setting of the IRQ state. Ground
rules for using these functions are beyond the scope of this document. However, general
advice is to leave the IRQ state alone in SWI handlers which terminate quickly, but to
enable it in long-running SWI handlers.

What a SWI handler does to the IRQ state is part of its interface contract with its clients:
you, the implementor, control that interface contract.

283

Functional components of modules written in C

284

IRQ handlers

CMHG description:

irg-handlers: entry_nane/ handl er _nane ...

Any number of entry_name/handler_name pairs may be given. If you omit the/ and the
handler name, CMHG constructs a handler name by appending _handl er to the entry
name.

Cinterface:

extern int entry_nane(_kernel _swi _regs *r, void *pw);

/*

* This is name of the I RQ handler entry veneer conpiled by CVHG
* Use this nane as an argunent to, for exanple, SW OS_ daim in
* order to attach your handler to IrgV.

*/

int handl er _nanme(_kernel _swi _regs *r, void *pw);

/*

* This is the handler function you nust wite to handle the I RQ for
* which entry_nane is the veneer function.

*

* Return 0 if you handled the interrupt.

* Return non-0 if you did NOT handle the interrupt (because,

* for example, it wasn't for your handler, but for some other

* handler further down the stack of handlers).
*

*'r’ points to a vector of words containing the values of r0-r9 on

* entry to the veneer. Pure IRQ handlers do not require these, though
* event handlers and filing system entry points do. If r is updated,

* the updated values will be loaded into r0-r9 on return from the

* handler.
*

* pw is the private word pointer ('r12’) value with which

* the IRQ entry veneer is called.

*/
Handlers must be installed from some part of the module which runsin SVC mode (eg
initialisation code, a SWI handler, etc). The name to use at installation timeis the
ent ry_name (not the name of the handler function). Thisis because C functions
cannot be entered directly from IRQ mode, but have to be entered and exited viaa
veneer which switches to SVC mode. Running in SV C mode gives your handler
maximum flexibility.

IRQ handlers can a so be used as filing system entry points. A full discussion of these
topicsis beyond the scope of this Guide; refer to the RISC OS 3 Programmer’s
Reference Manudbr details and for information on how to install and remove handlers.

How to write relocatable modules in C

Event handler
CMHG description:

event - handl er: entry_nane/ handl er _nane event_no event_no ...
Only one entry_name/handler_name pair may be given.

Cinterface:

extern int entry_nane(_kernel _swi _regs *r, void *pw);

/*

* This is name of the event handler entry veneer conpiled by CVHG
* Use this name as an argunment to, for exanple, SW OS_ Cdaim in
* order to attach your handler to EventV.

*/

int handl er _nanme(_kernel _swi _regs *r, void *pw);
/*
* This is the handler function you nust wite to handle the event for
* which entry_nane is the veneer function.
*
* Return O if you wish to claimthe event.
* Return non-0 if you do not w sh to claimthe event.
*
*'r' points to a vector of words containing the values of r0-r9 on
* entry to the veneer. If r is updated, the updated values will be
* loaded into r0-r9 on return from the handler.
*
* pw is the private word pointer (‘r12’) value with which
* the event entry veneer is called.
*/

The nameto use at installation timeistheent r y_namne (not the name of the handler
function). Refer to the RISC OS 3 Programmer’s Reference Marfealdetails and for

information on how to install and remove event handlers. As an example, thisisthe
skeleton of an event handler for key presses and mouse clicks:

/* the claimfree functions... */

#define EventV 16

#def i ne Enabl eEvent 14
#define Disabl eEvent 13
#define Mousedick 10
#define Keypress 11

static void claimrelease(int claim void *pw)

{

_kernel _swi _regs regs;

regs.r[0] = EventV;

regs.r[1] = (int) register_event;

regs.r[2] = (int) pw

_kernel _swi(claim? OS_Caim: OS_Rel ease, ®s, & egs);
}

285

Functional components of modules written in C

static void add_renove(int add)

{
_kernel _swi _regs regs;
regs.r[0] = add ? Enabl eEvent: Di sabl eEvent;
regs.r[1] = Moused i ck; /* nmouse */
_kernel _sw (OS_Byte, ®s, & egs);
regs.r[1] = Keypress; /* keyboard */
_kernel _swi (OS_Byte, & egs, & egs);
}
static void claimfree_events(int claimvoid *pw)
{
if (claim {
claimrel ease(1, pw);
add_renove(1l);
} else {
add_renove(0);
claimrel ease(0, pw) ;
}
}
[* init... */
extern _kernel _oserror *events_init(char *cnd_tail, int podul e_base, void *pw)
{
| GNORE(cnd_tail);
| GNORE(podul e_base) ;
claimfree_events(1, pw;
return NULL;
}
/* finalise... */
extern _kernel _oserror *events_final (int fatal, int podule, void *pw)
{
| GNORE(f atal) ;
| GNORE(podul e) ;
/* handl e | ow | evel events */
claimfree_events(0, pw;
return NULL;
}
/* the handler itself... */
extern int event_handl er (_kernel _swi _regs *r,void *pw)
{
1 GNORE(pW) ;
/* switch on the event code */
switch (r->r[0]) {
case Moused i ck:
case Keypress:
br eak;
defaul t:
br eak;
}
return 1;
}

286

How to write relocatable modules in C

Library initialisation code
CMHG description:
library-initialisation-code: xxxx

The code xxxx iscalledinstead of _cl i b_i ni ti al i senodul e. Becausethe

C library has not been initidised at this point, and there is hence no C environment
present, xxxx must be written in assembler. It should be aveneer around acal to

_clib_initialisenodule.

287

Functional components of modules written in C

288

19 Overlays

Overlays are avery old technique for squeezing quart-sized programs into pint-sized
memories: a kind of poor man’s paging.

In common with paged programs, an overlaid program is stored on some backing store
medium such as a floppy disc or a hard disc and its components (called overlay
segments) are loaded into memory only as required. In theory, this reduces the amount
of memory required to run a program at the expense of increasing the time taken to load
it and repeatedly re-load parts of it. It is a classic space-time trade-off. In practice, except
in rather special circumstances, the saving in memory accruing from the use of overlays
is rather modest and less than you might expect. Indeed, as discussed below, overlays
have rather restricted applicability under RISC OS. Nonetheless, their use can
occasionally be a ‘life saver’.

Paging vs overlays

In a paged system, a program and its workspace is broken up into fixed size chunks
calledpages. A combination of special hardware and operating system support ensures
that pages are loaded only when needed and that un-needed pages are soon discarded. Ir
principle, the author of a paged program need not be aware that it will be paged (but this
is often not true in practice if the author wishes the program to run at maximum speed).
Both code and data are paged, automatically. In general, for single programs which
re-use their workspace whenever possible, one sees a ratio of program size plus
workspace size to occupied memory size in the region 1.5 to 3. One can always increase
the ratio arbitrarily by integrating several sequentially used programs into a single image
and by never re-using workspace. But, fundamentally, paging rarely squeezes more than
a quart-sized program into a pint-sized memory. Of course, there are other benefits of
paging, but these are beyond the scope of this section.

In contrast, an overlaid program is broken up into variable sized chunks (called overlay
segments) by the user, who also determines which of these chunks may share the same
area of memory. As the overlay system permits two code fragments which share the
same area of memory to call one another and return successfully to the caller, this is
merely a matter of performance. However, if data is included in an overlaid segment the
situation becomes more complicated and the user has more work to do. For example, it
must be ensured that all code which uses the data resides in the same segment as the
data. Furthermore, it must be acceptable that the data is re-initialised every time the
segment is re-loaded. Thus, in general, it is possible to overlay two work areas each of
which is private to two distinct sets of functions which are not simultaneously resident in

289

When to use overlays

memory. Overall, it would be unusual to overlay more than a quart-sized programinto a
pint-sized memory, much as with paging (you may achieve afactor as high as four for
code, but non-overlaid data will usually dilute the overall factor substantialy; it all
depends on the details of your application).

A more detailed description of the low-level aspects of overlaysis given in the section
Generating overlaid programs on page 141 of the Desktop Tools guide. If you are
especialy interested in using overlays you may prefer to read that section next.
Otherwise, if you are more interested in when to use overlays, please read on.

When to use overlays

290

Overlays work best when a program has several semi-independent parts. A good model

for purposes of understanding isto think of a special-purpose command interpreter (the

root segment) which can invoke separate commands (overlay segments) in response to

user input. Consider, for example, aword processor which consists of atext editor and a
collection of printer drivers. It is clear that each of the printer drivers can be overlaid

(you are unlikely to have more than one printer); it may even be plausible to overlay

each with the editor itself (you may not be able to edit while printing — depending on
how fast the printer goes and on how much CPU time is required to drive it).
Furthermore, if the time taken to load an overlay segment can be tacked on to an
interaction with the user, it is probable that the program will feel little slower than if it
were memory-resident. In summary: overlays work best if your program has many
independent sub-functions.

On the other hand, if your program has many semi-independent parts, it may be better to
structure it as several independent programs, each called from a control program. By
using the shared C library, each program can be relatively small, and the Squeeze utility
can be used to reduce the space taken by it on backing store by nearly a factor of 2. (See
the chapteBgueeze on page 153 of thBesktop Tools guide for details). In contrast,

overlay segments cannot be squeezed (though the root program can be). So, if you can
structure your application as independent, squeezed programs it may take up less
precious floppy disc space and load faster, especially from a floppy disc, than if you
structure it using overlays.

If adopted, this strategy will force the independent programs to communicate via files.
Provided the data to be communicated has a simple structure this causes no problems for
the application; provided it is not too voluminous, use of the RAM filing system

(RamFS) is suggested as this is fast and requires no special application code in order to
use it.

Overlays

So, overlays are most appropriate for applications which manipulate very large amounts

of highly structured data — Computer Aided Design applications are archetypal here —
whereas multiple independent programs are most appropriate for applications which
manipulate relatively small amounts of simply structured data and are otherwise
dominated by large amounts of code.

Naturally, if you are porting an existing application to RISC OS, your view will be
coloured by whether or not it is already structured to use overlays. If it is, it will
probably be best to stick to using overlays, rather than attempting to split the application
up into semi-independent sub-applications.

On the other hand, if you are writing an application from scratch, you probably want to
ponder this question in more depth. For example, to what other systems will the
application be targeted? Using multiple semi-independent applications may work very
nicely under UNIX or OS/2 where the output of one process can be piped into another,
but less well under MS-DOS where use of overlays is much more the norm.

291

292

Part 5 — Appendixes

293

294

Appendix A: Changes to the C compiler

Acorn C/C++ isthefifth release of an Acorn C compiler product for RISC OS, and

replaces the Acorn Desktop C product. The product has seen the following

significant changes since the last release:

The product has been merged with the Assembler.

A C++ tranglator has been added to the product. Thisisa port of Release 3.0 of
AT&T’s CFront product.

A C++ tool has been added to the product to provide an interface for C++
compilation that is similar to that provided by the CC tool for C compilation.

The compiler now produces smaller programs that use less memory and run faster.
This performance improvement is the result of many small improvements to the
compiler, such as:

I in-lining some commonly used small library functions
I introducing conditionalised conditions

I using variable lifetime analysis to improve the allocation of variables to
registers.

The Toolbox has been added to the product, to facilitate the design and coding of
consistent user interfaces for RISC OS desktop applications. See the accompanying
User Interface Toolbox guide.

RISC_OSLib has been removed from the product, as the Toolbox now provides far
superior facilities for writing RISC applications.

295

296

Appendix B: C errors and warnings

his appendix gives abrief description of theintended purposes of error and warning

messages from the CC tool, along with some hints for interpreting them. It then lists
most of the common errorsin alphabetical order. It is not acomplete list. Since the
messages are designed as far as possible to be self-explanatory, some of the more simple
common ones are not listed here.

Interpreting CC errors and warnings

The compiler can produce error and warning messages of several degrees of severity.
They are asfollows:

I Warningsindicating curious, but legal, program constructs, or constructs that are
indicative of potential error;

I Non-seriouserrorsthat still allow code to be produced;
I Seriouserrorsthat may cause loss of code;

I Fatal errorsthat may stop the compiler from compiling;
I System errorsthat signa faultsin the system itself.

Warnings from CC are intended to provide ahelpful level of checking, in addition to the
level required by the ANSI standard. On some other systems, such as UNIX, separate
facilities (like lint) are provided to perform this checking. Warnings flag program
constructs that may indicate potential errors, or those not recommended because they
may function differently on other machines, and hence hinder the portability of code.

Some warnings point out the use of facilities provided in this ANSI C implementation

which are above the minimum required by ANSI — for example, use of external
identifiers that are identical in the first six characters, which may not be differentiated by
other systems which conform to the ANSI standard.

Programs ported from other machines may cause large numbers of warning messages
from CC, which you can disable with tBappress war nings option (see page 34 for
more information).

You can also enable additional checks with the CC andReatures option. This is
best done in the final stages of a project, and will help you to produce high-quality
software.

297

Warnings

Warnings

298

Errors and serious errors collectively respond to ANSI ‘diagnostics’; whether an error is
serious or not reflects the compiler’s view, not yours, or that of the ANSI committee.

After issuing a warning, non-serious, or serious error, CC continues compiling,
sometimes producing more such messages in the process. Compilation of C by CC can
be thought of as a pipeline process, starting with preprocessing, syntax analysis, then
semantic analysis (when the structure of a portion of code is analysed). When syntax
errors in C are encountered by CC, the compiler can often guess what the error was,
correct it, and continue. When semantic errors are found, portions of your code are often
ignored before continuing, and serious error messages are reported.

Unfortunately, the compact and powerful nature of C leads to a high proportion of
semantic errors. Ignoring portions of your code is likely to make subsequent portions
incorrect, so one serious error can often start a cascade of error messages. Often,
therefore, it is sensible to ignore a set of error messages following a serious error
message.

If the compiler produces any message more serious than a warning, it will set a bad
return code, usually terminating any ‘make’ of which it is a part in the process. Any
serious error will cause the output object file to be deleted; fatal and system errors cause
immediate termination of compilation, with loss of the object file and bad return code
set.

Future releases of the compiler may distinguish further forms of error, or produce
slightly different forms of wording.

In pcc mode, constructs that are erroneous in ANSI mode are reported, even though
legal in pcc mode.

Warning messages indicate legal but curious C programs, or possibly unintended
constructs (unless warnings are suppressed). On detection of such a condition, the
compiler issues a warning message, then continues compilation.

Warning messages

"& unnecessary for function or array xx

This is a reminder that if xx is defined@sar xx[10] thenxx already has a pointer
type. There is a similar reminder for function names too. Example:

static char nmesg[] = "hello\n";
int main ()
{

char *p = &resg; /* nmesg is already conpatible with char * */

C errors and warnings

actual type 'xx' msnmatches format ' %’
Atypeerrorinaprintf orscanf format string. Example:
{

int i;

printf("%\n", i); /* % need char* not int */

ANSI 'xx' trigraph for 'x' found — was this intended?

This helpsto avoid inadvertent use of ANSI trigraphs. Example:
printf("Type ??2/!!: "); [* "?2?/" is trigraph for "\" */

argument and old-style parameter mismatch : XX

A function with anon-ANSI declaration has been called using a parameter of awrong
data type. Example:

int fnl(a, b)
int a;

int b;

{

return a * b;
{
int main()
{

int 1; float m
fnl (1, m; /* mshould be "int’ */

character sequence /* inside comment

You cannot nest commentsin C. Example:

/* comment out func() for now. ..
/* func() returns a random nunber */
int func(void)

{

return i;

299

Warnings

300

Dangling 'else’ indicates possible error

This hints that you may have mismatched your i f sand el ses. Remember anel se
always refers to the most recent unmatched i f . Use braces to avoid ambiguity.
Example:
if (a)

if (b)

return 1;

else if (c)

return 2;

else /* this belongs to the if (a). O does it?*/

return 3;

Deprecat ed decl aration of xx()— give arg types

A feature of the ANSI standard is that argument types should be given in function
declarations (prototypes). ‘No arguments’ is indicated dyd. Example:

extern int func(); /* should have 'void in the parentheses */

extern clash xx , xx clash (ANSI 6 char nonocase)

Using compilef~eature optione, it was found that two external names were not distinct
in the first six characters. Some linkers provide only six significant characters in their
symbol table. Example:

extern double functionl (int i);
extern char * function2 (long I);

extern 'main’ needs to be 'int’ function
This is a reminder thatai n() is expected to return an integer. Example:

void main()

{

extern xx not declared in header

Compiling withFeatureh, an external object was discovered which was not declared in
any included header file.

C errors and warnings

floating point constant overfl ow

Thisistypically caused by adivision by zero in afloating point constant expression
evaluated at compile time. Example:
#define lim1

#define eps 0.01
static float a = eps/(lim1); /* lim1 yields 0 */

floating to integral conversion failed

A cast (possibly implicit) of afloating point constant to an integer failed at compiletime.
Example:

static int i = (int) 1.0e20; /* INT_MAX is about 2el0 */

formal paraneter ' xx'notdeclared - 'int' assumed

The declaration of afunction parameter is missing. Example:

int func(a)

/*a shoul d be declared here or within the parentheses*/
{

Format requires nn parameters, but mmgiven

Mismatch between apri nt f or scanf format string and its other arguments.
Example:

printf("%l, %\n",1); /* should be two ints */

function xx declared but not used

When compiling with Feature v, the function xx was declared but not used within the
source file.

lllegal format conversion '% X

Indicatesan illegal conversionimplied by apri nt f or scanf format string. Example:

printf("9%\n",10); /* no such thing as %w */

301

Warnings

302

inmplicit narrowi ng cast : xx

An arithmetic operation or bit manipulation is attempted invol ving assignment from one
data type to another, where the size of the latter is naturally smaller than that of the
assigned value. Example:

double d = 1.0; long | = 2L; int i = 3

i

i
i

w

e

*
|
& ~1;

inplicit return in non-void function

A non-void function may exit without using a return statement, but won't return a
meaningful result. Example:
int func(int a)
{
int b=a*10;
.../* no return <expr> statenent */

i nconplete format string

A mistakeinapri ntf or scanf format string. Example:

printf("Score was %% ,score); /* 2nd % shoul d be %% */

"int xx()'assumed - 'void' intended?

If the definition of a function omits its return type — it defaults nd . You should be
explicit about the type, usingoi d if the function doesn't return a result. Example:

mai n()

{

inventing "extern int xx();’
The declaration of a function is missing. Example:

printf("Type your nane: ");
/* forgot to #include <stdio.h> */

C errors and warnings

| ower precision in wder context: xx

An arithmetic operation or bit manipulation is attempted involving assignment from
i nt,short orchar tol ong. Example:

long I =1L; int i = 2; short j = 3;
I_
|
|

&j;
| 5;
*

i
i
[I

One circumstance in which this causes problems is when code like
long f(int x){return 1<<x;}

(which failsif i nt has 16 bits) is moved to machines such asthe IBM PC.

’)

No side effect in void context: 'op

An expression which does not yield any side effect was evaluated; it will have no effect
at run-time. Example:

atb;

no type checking of enumin this conpiler

Compiling with Feature x, an enumdeclaration was found, and this message refersto
the ANSI stipulation that enum values beintegers, less strictly typed than in some earlier
diaectsof C.

Non- ANSI #i ncl ude <xx>

A header file has been #included which is not defined in the ANS| standard. < > should
bereplaced by " "

non-portable — not 1 char in " XX

Assigning character constants containing more than one character to ani nt will
produce non-portable results. Example:

static int exitCode = 'ABEX ;

303

Warnings

304

non-value return in a non-void function

The expression was omitted from ar et ur n statement in afunction which was defined
with anon-voi d return type. Example:
int func(int a)
{
int b=a*10;

return; /* no <expr> */

odd unsi gned conparison with 0 : xx

An attempt has been made to determine whether an unsigned variable is negative.
Example:
unsigned u , v;

if (u<0) u=u*y
if (u>0) u=u/ v;

A d-style function: xx

Compiling with Feature o, it was noted that the code contains anon-ANSI function
declaration. Example:

void fn2(a, b)
int
int
{b

e

omtting trailing '\0" for char[nn]

The character array being equated to a string is one character too short for the whole
string, so the trailing zero is being omitted. Example:

static char mesg[14] = "(C) 1988 Acorn\n";/* needs 15 */

repeated definition of #define macro xx

When compiling with Feature h, amacro has been repeatedly #defined to take the same
value.

C errors and warnings

shift by nnillegal in ANSI C

Thisisgiven for negative constant shifts or shifts greater than 31. On the ARM, the
bottom byte of the number givenisused, ieitistreated as(unsi gned char) nn.
NB: negative shifts are not treated as positive shifts in the other direction. Example:

printf("%l\n", 1<<-2);

"short’ slower than "int’ on this nmachine (see nanual)

For speed you are advised to use i nt srather than shor t swhere possible. Thisis
because of the overhead of performing implicit castsfromshort toi nt inexpression
evaluation. However, shor t sare half thesize of i nt s, so arrays of shor t scan be
useful. Example:

{

short i,j; /* quicker to use ints */

spurious {} around scalar initialiser

Braces are only required around structure and array initialises. Example:

static int i = {INT_l}; /* don't need braces */

static xx declared but not used

A static variable was declared in afile but never used in it. It is therefore redundant.

Unr ecogni sed #pragma (no '-' or unknown word)

#pragma directives are of the form
#pragma - xd

or

#pragma | ong_spel ling

where x is aletter and d is an optional digit. These messages warn against unknown
letters and missing minus signs.

use of *op’ in condition context
Warns of such possible errorsas=and not == inani f or looping statement. Example:
if (a=b) {

305

Non-serious errors

vari abl e xx decl ared but not used

Thisrefersto an automatic variable which was declared at the start of ablock but never
used within that block. It is therefore redundant. Example:

int func(int p)
{

int a; /* this is never used */
return p*100;

xx may be used before being set

Compiling with Feature a, an automatic variable is found to have been used before any
value has been assigned to it.

xx treated as xxul in 32-bit inplenmentation

This message warns of two’s complement arithmetic’s dependence on assigning
negative constants tmsi gned i nt s, and it explains thatnt s and ong i nt s are
both 32 bits.

Non-serious errors

306

These are errors which will allow ‘working’ code to be produced — they will not produce
loss of code. On detection of such an error the compiler issues an error message, if
enabled, then continues compilation.

.’ (not

;') separates formal paraneters

Incorrect punctuation between function parameters. Example:

extern int func(int a;int b);

ANSI C does not support 'long fl oat’

This used to be a synonym fdoubl e, but is not allowed in ANSI C.

ancient formof initialisation, use '=

An obsolete syntax for initialisation was used, or incorrectly nested brackets have been
found. Example:

int i{1}; /* use int i=1; */

C errors and warnings

array [0] found

The minimum subscript count allowed is 1. (Remember that the subscripts go from
0 - n-1.) Example:

static int a[0];

array of xx illegal — assuming pointer

I1legal objects have been declared to occupy an array. Examples:

int fn2[5](); /* array of functions */
void v[10]; /* array of voids */

assignment to 'const' object 'xx'
You can't assign to objects declareccasist . Example:
{

const int ic = 42; /* initialisation ok */
ic =69; /* can’t change it now */

conparison 'op’ of pointer and int:
literal O (for == and !'=) is the only | egal case

You cannot use the comparison operators between an integer and a pointer type. As the
message implies, you can only check for a pointer being (not) equéLto(i nt 0).
Example:
{

int i,j,*ip;

j =i>p; /* can’t conpare an int and an int * */

decl aration with no effect

The compiler detected what appeared to be a declaration statement, but which resulted in
no store being allocated. This may imply that a data type name was omitted.

differing pointer types: ' xx’

An illegal implicit type cast was detected in a comparison operation between two
pointers of different types. Example:
{

int *ip;

char *cp;

printf("%\n", ip==cp); /* can’t conpare these */

307

Non-serious errors

308

differing redefinition of #define macro xx

#define gives adefinition contradicting that already assigned to the named macro.

ellipsis (...) cannot be only paraneter

Although C allows variable length argument lists, the.” parameter cannot stand
alone in this function declaration. Example:

void fnl(...) { }

X' - inserted

expected ' xx' or x' before 'yy’

Often caused by omitting a terminating symbol in a statement when the compiler is able
to insert this symbol for you, and then to recover. Example:

int f(int j)

{

return j;

}

int main()

{
int i=f(10; /* ') omtted here */
return i;

}

formal name missing in function definition

This error occurs when a comma in a function definition led the compiler to suspect a
further formal parameter was going to follow, but none did. Example:

int a(int b,) /* mssing paraneter */

{

function prototype formal ' xx'needs type or class — 'int'
assumed

A formal parameter in afunction prototype was not given atype or class. It needs at | east
one of these (r egi st er being the only allowed class). Example:

void func(a); /* | mean int a or perhaps register a */

C errors and warnings

function returning xx illegal — assuming pointer

A function apparently intends to return an illegal object. Example:

int fn3()[] /* hoping to return an array */

{
int list[3] = {1,2,3};
return |ist;

}

function XX may not be initialised — assuming function
pointer

A function is not avariable, so cannot be initialised. As an attempt to initialise xx has
been made, xx istreated as of type function * . Example:

extern int func(void);
static int fn() = func; /* the conpiler will use
static int (*fn)() = func; instead */

<int> op <pointer> treated as <int> op (int)<pointer>

Warns of anillegal implicit cast within an expression. Typically op isan operator which
has no business being used on pointers anyway, such as | or dyadic * . Example:
{

int i, *ip;

i =i | ip; /* bitwise-or on a pointer?! */

junk at end of # xx line —ignored

The xx iseither el se or endi f . These directives should not have anything following
them on the line. Example:

/* text after the #else should be a comment */
#else if it isn't defined

L'..." needs exactly 1 wide character

Thewchar _t declaration of awide character namesan identifier comprising other than
one character. Example:

wchar_t we = L’ abc’;

309

Non-serious errors

| i nkage di sagreenent for ' xx'-—treated as 'xx'

There was a linkage type disagreement for declarations, eg a function was declared as
ext er n then defined later in thefileasst at i ¢. Example:

int func(int a); /* conpiler assunes extern here */

static func(int a) /* but told static here */

{

more than 4 chars in character constant

A character constant of more than four characters cannot be assigned to a32 bit i nt .
Example:

{

int i ='12345 ; /* nore than four chars */

no chars in character constant "

At least one character should appear in acharacter constant. The empty constant is taken
as zero. Example:

{

int i ='"; /* less than one char == '\0" */

objects that have been cast are not I-values

The programmer tried to use a cast expression as an |-value. Example:

char *p;
*((int *)p)=10; /* (int *)p is NOT an |-value */
omitted <type> before formal declarator — 'int' assumed

Thisisgivenin aformal parameter declaration where atype modifier is given but no
base type. Example:

int func(*a); /* ais a pointer, but to what? */

310

C errors and warnings

op’ . cast between function pointer and non-function object

Casts between function and object pointers can be very dangerous! One possibly valid
(but still very suspect) useisin casting an array of i nt into which machine code has
been loaded into a function pointer. Example:

static int ncArray[100]

/*pointer to function returning void*/
typedef void (*pfv)(void)

((pfv)ntArray)(); /* convert to fn type and apply */

op': inplicit cast of non-0 int to pointer

Zero, equal to aNULL pointer, istheonly i nt which can be legally implicitly cast to a
pointer type. Example:

{
int i, *ip;
ip=i; /* only the constant int 0 can be inplicitly
cast to a pointer type */
"op': inplicit cast of pointer to non-equal pointer

Anillegal implicit cast has been detected between two different pointer types. The type
casting must be made explicit to escape this error. Example:

{

int *ip;

char *cp;

ip=cp; /* differing pointer types */
"op': inplicit cast of pointer to 'int’

Anillegal implicit cast has been detected between an integer and a pointer. Such casts
must be made explicitly. Example:
{

int i, *ip;

i =ip; /* pointer nust be cast explicitly */

311

Non-serious errors

312

overl arge escape '\\xxxx' treated as ’'\\xxx’

A hexadecimal escape sequenceistoo large. Example:

int noval ue()

{
if (seize) return '\ xfff’; [* \xfff’ too large */
else return "\ xff’;

}

overlarge escape '\\x' treated as '\\Xx’

An octal escape sequence istoo large. Example:

int noval ue()

{
if (huit) return "\777"; [* \777 too |large */
el se return '\77;

}

<pointer> op <int> treated as (int)<pointer> op <int>

The only legal operators alowed in this context are + and - .

prototype and ol d-styl e paraneters mni xed

Use has been made of both the ANSI style function/definition (including atype name for
formal parameters in a function’s heading) and pcc style parameters lists. Example:
void fn4(a, int b)
int a;
{

a = b;

}

"register’ attribute for ’'xx' ignored when address taken

Addresses of register variables cannot be calculated, so an address being taken of a
variable with & egi st er storage class causes that attribute to be dropped. Example:

{
register int i, *ip;
ip=&; /* &forces i to lose its register attribute */

C errors and warnings

return <expr> illegal for void function

A function declared as void must not return with an expression. Example:

void a(void)

{

return O;

size of 'void' required — treated as 1

Thisindicates an attempt to do pointer arithmeticonavoi d *, probably indicating an
error. Example:

{
voi d *vp;
vp++; /* how nany bytes to increment by ? */

size of a [] array required — treated as [1]

If an array is declared as having an empty first subscript size, the compiler cannot
calculate the array’s size. It therefore assumes the first subscript limit to be 1 if
necessary. This is unlikely to be helpful.

extern int array[][10];
static int s = sizeof(array); /*can't determine this*/

sizeof <bit field> illegal — sizeof(int) assumed

Bitfields do not necessarily occupy an integral number of bytes but they are always parts
of ani nt , so an attempt to take the size of a bitfield will return si zeof (i nt) .
Example:

struct s {
int exp : 8;
int mant : 23;
int s: 1;
b
int main(void)
{
struct s st;
int i = sizeof(st.exp); /* can’t obtain this in bytes */

313

Non-serious errors

314

Smal |l (single precision) floating value converted to 0.0
Smal | floating point value converted to 0.0

A floating point constant was so small that it had to be converted to 0.0. Example:

static float f = 1.0001e-38 — 1.0e-38; /* 1e-42 too small for float */

Spurious #elif ignored
Spurious #el se ignored
Spurious #endif ignored

One of these three directives was encountered outside any #i f or #i f def scope.
Example:

#if defined sym

#endif
#else /* this one is spurious */

static function xx not defined — treated as extern

A prototype declares the function to be static, but the function itself is absent from this
compilation unit.

string initialiser longer than char [nn]

An attempt was made to initialise a character array with a string longer than the array.
Example:

static char str[10] = "1234567891234";
struct component XX may not be function — assuming function
pointer

A variable such as a structure component cannot be declared to have type f uncti on,
only functi on *.Example:

struct s {
int fn();/* conpiler will use int (*fn)(); */
char c;

C errors and warnings

type or class needed (except in function definition) — int
assumed

You can't declare a function or variable with neither a return type nor a storage class.
One of these must be present. Examples:

func(void); /* need, eg, int or static */
X,
Undecl ared nane, inventing 'extern int xx’

The name xx was undeclared, so the default &ggeer n i nt was used. This may
produce later spurious errors, but compilation continues. Example:

int main(void) {
int i =j; /*] has not been previously declared*/

unprintabl e character xx found - ignored

An unrecognised character was found embedded in your source — this could be file
corruption, so back up your sources! Note that ‘unprintable character’ means any
non-whitespace, non-printable character.

variable xx may not be function — assuming function pointer

A variable cannot be declared to have typef unct i on, only f uncti on *. Example:

int main(void)
{

auto void fn(void); /* treated as void (*fn)(void);*/

XX may not have whitespace in it

Tokens such as the compound assignment operators (+= etc) may not have embedded
whitespace characters in them. Example:

{

int i

i +=4; |/* space not allowed between + and = */

315

Serious errors

Serious errors

316

These are errors which will cause loss of generated code. On detection of such an error,
the compiler will attempt to continue and produce further diagnostic messages, which
are sometimes useful, but will delete the partly produced object file.

nmust have exactly 3 dots

Thisis caused by amistakein afunction prototype where a variable number of
arguments is specified. Example:

extern int printf(const char *format,....); /*one . too many*/

{" of function body expected — found ' XX

Thisis produced when the first character after the formal parameter declarations of a
function is not the { of the function body. Example:

int func(a)
int a;
if (a) ... /* onmitted the { */
'{* or <identifier> expected after ' xx', but found ' yy'

xx istypically st ruct or uni on, which must be followed either by the tag identifier
or the open brace of the field list. Example:

struct *fred; /* Mssed out the tag id */

' xx' variables may not be initialised

A variableis of an inappropriate class for initialisation. Example:

int main()

{
extern int n=1;
return 1;

}

C errors and warnings

op’ . cast to non-equal ’'xx' illegal
"op': illegal cast of 'xx' to pointer
"op': illegal cast to ’'xx’
These errors report various illegal casting operations. Examples:
struct s {
int a,b;
b
struct t {
float ab;
b
int main(void)
{
int i;

struct s sli;
struct t s2;

/* =": illegal cast to 'int’ */
i = s1;
/* "=": illegal cast to non-equal ’'struct’' */
sl = s2;
/* <cast>: illegal cast of 'struct’ to pointer */
i =*(int *) s1;
/* <cast>: illegal cast to "int’ */
i = (int) s2;
"op': illegal use in pointer initialiser

(Static) pointer initialisers must evaluate to a pointer or apointer constant plus or minus
an integer constant. This error is often accompanied by others. Example:

extern int count;
static int *ip = &ount*2;
{} must have 1 elenment to initialise scalar

When ascalar (integer or floating type) isinitialised, the expression does not have to be
enclosed in braces, but if they are present, only one expression may be put between
them. Example:

static int i ={1,2}; /* which one to use? */

Array size nnillegal — 1 assumed

Arrays have a maximum dimension of Oxf f f f f f . Example:

static char dict[0x1000000]; /* Too big */

317

Serious errors

318

attenpt to apply a non-function

The function call operator () was used after an expression which did not yield a pointer
to function type. Example:

{
int i;

i();

Bit fields do not have addresses

Bitfields do not necessarily lie on addressabl e byte boundaries, so the & operator cannot
be used with them. Example:

struct s {

int hl, h2 : 13;
b
int main(void)
{

struct s sli;

short *sp = &s1.h2; /* can't take & of bit field */

Bit size nnillegal — 1 assumed

Bitfields have a maximum permitted width of 32 bits asthey must fit in asingle integer.
Example:

struct s {
int f1: 40; /* This one is too big */
int f2 : 8;

}

‘break’ not in loop or switch — ignored

A break statement was found which was not inside af or, whi | e or do loop or
swi t ch. This might be caused by an extra}, closing the statement prematurely.
Example:

int main(int argc)
{
if (argc == 1)
br eak;

C errors and warnings

‘case’ not in switch — ignored

A case label was found which wasnot insideaswi t ch statement. This might be
caused by an extra}, closing the swi t ch statement prematurely. Example:

void fn(void)
{

case '*': return;

<command> expected but found a op

This error occurs when a (binary) operator is found where a statement or side-effect
expression would be expected. Example:

if (a) /10; /* ms-placed) perhaps? */

‘continue’ not in loop — ignored

A cont i nue statement was found which was not inside af or , whi | e or do loop.
This might be caused by an extra}, closing thel oop statement prematurely. Example:

while (cc) {
if (dd) /* intended a { here */
error();
/*this closes the while */
if (ee)
conti nue;

‘default’' not in switch — ignored

A def aul t label wasfound which wasnot insideaswi t ch statement. This might be
caused by an extra}, closing the swi t ch statement prematurely. Example:

switch (n) {
case O:
return fn(n);
case 1. if (cc)
return -1;
el se
br eak;
} /* spurious } closes the switch */
defaul t:
error();

319

Serious errors

320

duplicated case constant: nn

The case label whose value is nn was found more than onceinaswi t ch statement.
Notethat nnis printed as adecimal integer regardless of the form the expression took in
the source. Example:

switch (n) {
case ’

case '’

duplicate 'default’ case ignored

Two casesin asingle swi t ch statement were labelled def aul t . Example:

switch (n) {
defaul t:

defaul t:

duplicate definition of "struct’ tag ' xx’

There are duplicate definitions of thetypest ruct xx {...} ;.Example

struct s { int i,j;};
struct s {float a,b;};

duplicate definition of 'union’ tag ' xx
There are duplicate definitions of thetypeuni on xx {...} ;.Example:

union u {int i; char c[4];};
union u {double d; char c[8];};

duplicate type specification of formal parameter ' xx

A formal function parameter had its type declared twice, once in the argument list and
once after it. Example:

void fn(int i)

int i; /* this one is redundant */

{

C errors and warnings

ECF in comment
EOF in string
ECF in string escape

These all refer to unexpected occurrences of the end of the sourcefile.

Expected <identifier> after 'xx' but found ’'xx

expected 'xx' — inserted before 'yy'

This typically occurs when a terminating semi-colon has been omitted beforea}.
(Common amongst Pascal programmers) Another case isthe omission of aclosing
bracket of a parenthesised expression. Examples:

int fn(int a, int b, int c)

{

int d = a*(b+c; /* mssing) */
return d /* mssing ; */
}
Expecting <declarator> or <type>, but found ' xx'

xx istypically a punctuation character found where a variable or function declaration or
definition would be expected (at the top level). Example:

static int i = MAX +1; /* spurious ; ends expression */

<expression> expected but found ' op

Similar to above. An operator was found where an operand might reasonably be
expected. Example:

func(>>10); /* mssing left hand side of >> */

grossly over-long floating point number

Only acertain number of decimal digits are needed to specify afloating point number to
the accuracy that it can be stored to. This number of digits was exceeded by an
unreasonable amount.

grossly over-long number

A constant has an excessive number of leading zeros, not affecting its value.

321

Serious errors

hex digit needed after Ox or 0X

Hexadecimal constants must have at least one digit from the set 0-9, a-f , A-F following
the Ox. Example:

int i =0xg; /* illegal hex char */

<identifier> expected but found 'xx’ in enun definition

An unexpected token was found in the list of identifiers within the braces of an enum
definition. Example:

enum col our {red, green, blue,;}; /* spurious ; */

identifier (xx) found in <abstract declarator> - ignored

Thesi zeof () function and cast expressions require abstract declarators, ie types
without an identifier name. This error is given when an identifier isfound in such a
situation. Examples:

(int j) ip; /* trying to cast to integer */
si zeof (char str[10]); /* probably just nean sizeof (str) */

[
[
illegal bit field type ' xx'—'int'assumed

Int (signed or unsigned) is the only valid bitfield type in ANSI-conforming
implementations. Example:

struct s { char a : 4; char b : 4;};

illegal in case expression (ignored): XX

illegal in constant expression: XX

illegal in floating type initialiser: XX

All of these errors occur when a constant is needed at compile time but avariable
expression was found.

illegal in l-value: 'enum' constant ' XX'

An incorrect attempt was made to assign to an enumconstant. This could be caused by
misspelling an enumor variable identifier. Example:

enum col {red, green, blue};
int fn()
{

int read;

red = 10;

322

C errors and warnings

XX
XX

illegal in the context of an I|-value:
illegal in lvalue: function or array

An incorrect attempt was made to assign to xx, where the object in question is not
assignable (an I-value). You can't, for example, assign to an array name or a function
name. Examples:

{
int a,b,c;
a?b: c=10; /* ?: can’t yield |-values. */
if (a) /* use this instead */
b = 10;
el se
c = 10;

or, in the same context,
*(a ? &: &c) = 10;

illegal in static integral type initialiser: xx

A constant was needed at compile time but a suitable expression wasn't found.

illegal types for operands : 'op

An operation was attempted using operands which are unsuitable for the operator in
guestion. Examples:

{
struct {int a,b;} s;
int i;
i = *s; /* can’t indirect through a struct */
S = S+s; /* can’t add structs */

i nconpl ete type at tentative declaration of ’'xx

An incomplete non-static tentative definition has not been completed by the end of the
compilation unit. Example:

int inconplete[];

/* should be conpleted with a declaration |ike: */
/* int inconplete[SOVESI ZE] ; */

323

Serious errors

324

junk after #if <expression>
junk after #include "xx"
junk after #include <xx>

None of these directives should have any other non-whitespace characters following the
expression/filename. Example:

#include <stdio.h> this isn’t allowed

| abel ' xx’ has not been set

An attempt has been made to use alabel that has not been declared in the current scope,
after having been referenced in agot o statement. Example:

int main(void)

{
}

goto end

misplaced '{' at top level — ignoring block
{ } blocks can only occur within function definitions. Example:

/* need a function nane here */

{

int i

misplaced 'else' ignored

An el se with no matchingi f wasfound. Example:
if (cc) /* shoul d have used { } */
i =1;
i =2
el se
k =3

misplaced preprocessor character 'xx'

Usually atyping error; one of the characters used by the preprocessor was detected out
of context. Example:

char #str[] = "string"; /* should be char *str[] */

missing #endif at EOF

A #if or#i f def wasstill active at end of the source file. These directives must
always be matched with a#endi f .

C errors and warnings

mssing '"" in pre-processor comand |ine

A linesuchas#i ncl ude "nane has the second " missing.
mssing ')’ after xx(... on line nn

The closing bracket (or comma separating the arguments) of amacro call was omitted.
Example:

#define rdch(p) {ch=*p++;}

{
rdch(p /* mssing) */

mssing ',’ or ')’ after #define xx(...

One of the above characters was omitted after an identifier in the macro parameter list.
Example:

#define rdch(p {ch = *p++;}

mssing '<' or '"' after #include

A #i ncl ude filename should be within either double quotes or angled brackets.

m ssing hex digit(s) after \x

The string escape\ x isintended to be used to insert charactersin a string using their
hexadecimal values, but was incorrectly used here. It should be followed by between
one and three hexadecimal digits. Example:

printf("\xxx/"); /* probably meant "\\xxx/" */

mssing identifier after #define
mssing identifier after #ifdef
mssing identifier after #undef

Each of these directives should be followed by avalid C identifier. Example:

#define @ at

m ssing paraneter nanme in #define xx(...

No identifier was found after a, in amacro parameter list. Example:

#define rdch(p,) {ch=*p++;}

325

Serious errors

326

no ')’ after #if defined (...

Thedef i ned operator expects an identifier, optionally enclosed within brackets.
Example:

#i f defined(debug

no identifier after #if defined

See above.

non static address 'xx’ in pointer initialiser

An attempt was made to take the address of an automatic variable in an expression used
toinitialiseast at i ¢ pointer. Such addresses are not known at compile-time. Example:
{

int i

static int *ip = & ; /*& not known to conpiler*/

non-formal ' xx' in paraneter-type-specifier

A parameter name used to declare the parameter types did not actually occur in the
parameter list of the function. Example:

void fn(a)
int a,b;

{

nunber nn too large for 32-bit inplenentation

An integer constant was found which was too large to fit ina 32 biti nt . Example:

static int mask = 0x800000000; /*0x80000000 i ntended?*/

objects or arrays of type void are ill egal

voi d isnot avalid data type.

overlarge floating point value found
overlarge (single precision) floating point value found

A floating point constant has been found which is so large that it will not fit in afloating
point variable. Examples:

float f = 1e40; /* largest is approx 1e38 for float */
doubl e d = 1e310; /* and 1e308 for double */

C errors and warnings

quote (" or ') inserted before newine

Strings and character constants are not allowed to contain unescaped newline characters.
Use\<nl > to alow strings to span lines. Example:

printf("Total =

re-using 'struct’ tag 'xx’ as 'union’ tag

There are conflicting definitions of thetypest ruct xx {...} ; anduni on xx
{...} ;.Structure and union tags currently share the same name-spacein C.
Example:

struct s {int a,b;};

union s (int a; double d;};

re-using 'union’ tag 'xx’ as 'struct’ tag

As above.

size of struct ' xx' needed but not yet defined

An operation requires knowledge of the size of the struct, but this was not defined. This
error is likely to accompany others. Example:

{

struct s; /* forward declaration */
struct s *sp; /* pointer to s */
Sp++; /* need size for inc operation */

size of union ’xx’ needed but not yet defined

See above.

storage class ' xx' inconpatible with ’xx'—ignored
An attempt was made to declare a variable with conflicting storage classes. Example:
{

static auto int i; /* contradiction in terns */

327

Serious errors

storage class 'xx' not permitted in context xx — ignored

An attempt was made to declare a variable whose storage class conflicted with its
position in the program. Examples:

register int i; /* can't have top-level regs */
void fn(a)

static int a; /* or static paraneters */

{

struct ' xx' must be defined for (static) variable
declaration

Before you can declare a static structure variable, that structure type must have been
defined. Thisis so the compiler knows how much storage to reserve for it. Examples:

static struct s sli; /* s not defined */

struct t;

static struct t t1; /* t not defined */
struct/union ' xx' not yet defined — cannot be selected from

The structure or union type used asthe left operand of a. or — operator has not yet been
defined so the field names are not known. Example:

{

struct s sli; /* forward reference */
sl.a = 12; /* don’t know field names yet */
too few arguments to macro xX(... on line nn
too many arguments to macro xx(... on line nn

The number of arguments used in the invocation of a macro must match exactly the
number used when it was defined. Example:

#define rdch(ch,p) while((ch = *p++)==" ");

rdch(ptr);/* need ptr and ch */

too many initialisers in {} for aggregate

Thelist of constants in a static array or structure initialiser exceeded the number of
elements/fields for the type involved. Example:

static int powers[8] = {0,1,2,4,8,16, 32,64, 128};

328

C errors and warnings

type ' xx' inconsistent with
type disagreement for ' xx

XX

Conflicting types were encountered in function declaration (prototype) and its
definition. Example:

void fn(int);

i. nt fn(int a)

{

A pernicious error of thistypeis caused by mixing ANSI and old-style function
declarations. Example:

int f(char x);
int f(x)char x;

{

typedef name ' xx’ used in expression context
At ypedef name was used as a variable name. Example:
typedef char fl ag;
{

int i = flag;
undefined struct/union ' xx cannot be menber

A struct /uni on not already defined cannot be a member of another
st ruct /uni on. In particular this meansthat ast r uct /uni on cannot be a member
of itself: use pointers for this. Example:

struct sl {
struct s2 type; /* s2 not defined yet */
int count;

unknown preprocessor directive : #xx

The identifier following a# did not correspond to any of the recognised pre-processor
directives. Example:

#asm /* not an ANSI directive */

329

Fatal errors

uninitialised static [] arrays illegal

Static[] arrays must beinitialised to allow the compiler to determine their size.
Example:

static char str[]; /* needs {} initialiser */

union ’ xx’ must be defined for (static) variable declaration

Before you can declare a static union variable, that union type must have been defined.
Example:

static union u ul; /* conpiler can't ascertain size */

‘while' expected after 'do' — found ' XX

The syntax of the do statement isdo statement whi | e (expressi on) . Example:

do /* shoul d put these statenments in {} */

I = inputLine();

err = processLine(l);/*finds err, not while */
while (lerr);

Fatal errors

These are causes for the compiler to give up compilation. Error messages are issued and
the compiler stops.

couldn't create object file "file'

The compiler was unable to open or write to the specified output code file, perhaps
because it was locked or the o directory does not exist.

macro args too long

Grosdly over-long macro arguments, possibly as aresult of some other error.

macro expansion buffer overflow

Grossly over-complicated macros were used, possibly as aresult of some other error.

no store left
out of store (in cc_alloc)

The compiler has run out of memory — either shorten your source programs, or free some
RAM by, for example, quitting some other applications.

330

C errors and warnings

If running under the desktop, you can use the Task Manager to increase your
wi npsl ot size.

too many errors

More than 100 serious errors were detected.

too many file nanes

An attempt was made to compile too many files at once. 25 is the maximum that will be
accepted.

System errors

There are some additional error messages that can be generated by the compiler if it
detects errorsin the compiler itself. It is very unusual to encounter this type of error. If
you do, note the circumstances under which the error was caused and contact your
Acorn supplier.

These error messages all look like this:

B R R R R R R R R R R

* The conpiler has detected an internal inconsistency. This can occur *
* because it has run out of a vital resource such as nmenory or disk *
* space or because there is a fault init. If you cannot easily alter *
* your programto avoid causing this rare failure, please contact your *
* Acorn dealer. The dealer may be able to help you immediately and will *
* *
* *

be able to report a suspected conpiler fault to Acorn Conputers.
R R R R E R R EE R S R R RS R EEEEEEREEEEEEREEEEE]

331

System errors

332

Appendix C: C++ errors and warnings

his appendix contains the text and explanation for all ‘not implemented’ messages
produced by the C++ Language System Release 3.0. They are listed here in
alphabetical order.

Each message is preceded by a file name, a line number, and the text ‘not implemented’.
A complete error has this syntax:

"file", line n: not inplenmented: nessage

where themessage is as used in the headings below. The line number is usually the line
on which a problem has been diagnosed.

A ‘not implemented’ message is issued when Release 3.0 encoulagaka@nstruct

for which it cannot generate code. Because code is not generated, ‘not implemented’
messages cause @€ command to fail, and the program is not linked. Release 3.0 does,
however, attempt to examine the rest of your program for other errors.

‘Not implemented’ messages

actual paraneter expression of type string literal
A template isinstantiated with a sting literal actual argument:
tenplate <char* s> struct S {/*...*/};

S<"hell o worl d"> svar;

"file", line 3: not inplenmented: actual paraneter expression of type string
literal

address of bound menmber as actual tenplate argunent

A template isinstantiated with the address of a class member bound to an actua class
object:

tenplate <int *pi> class x {};
class y { public: int i; } b;

X< &b.i > xi;

"file", line 4: not inplenmented: address of bound menber (& ::b . y::i) as
actual tenplate argunent

333

‘Not implemented’ messages

& of op
This message should not be produced.

1st operand of .* too conplicated

Thefirst operand of afunction call expression involves a pointer to a member function
and is an expression that may have side effects or may require a temporary.

struct S { virtual int f(); };
int (S:*pnf)() = &S::f;

S *f();
int i = (f()->pnf)();
"file", line 5: not inplenmented: 1st operand of .* too conplicated

2nd operand of .* too conplicated

The second operand of a pointer to member operator is an expression that has side
effects.

struct S{ int f(); };
int (S:*pnf)() = &S::f;
S *sp = new S;

int i 5;
int j = (sp->*(i+=5 pnf))();
"file", line 5: not inplemented: 2nd operand of .* too conplicated

call of virtual function function before class has been
compl etely decl ared

class x {
public:
virtual x& f();
int foo(x t = pt->f());

private:
static x* pt;
int i;
b
"file", line 6: not inplemented: call of virtual function x::f() before class

x has been conpletely declared - try noving call fromargunent list into
function body or nmake function non-virtual

334

C++ errors and warnings

cannot expand inline function function with for statenent
ininline

A f or statement appearsin the definition of an inline function.

struct S {
int s[100];
S() { for (int i =0; i < 100; i++) s[i] =1i; }
b
"file", line 1: not inplenmented: cannot expand inline function S::S() with for

statenent in inline

cannot expand inline function function with statement
after "return"

A vaue-returning inline function contains a statement following ar et ur n statement.

inline int f(int i) {
if (i) returni;
return O;

}

"file", line 4: not inplenmented: cannot expand inline function f() with
statenent after "return"

cannot expand inline function function with two | ocal
variables with the sanme name (nane)

Two variables with the same name and different types are declared within the body of a
value-returning inline function.

inline int f(int i) {
i

{int x =1i; }
{ double x =1i; }
return O;
}
"file", line 5: not inplenmented: cannot expand inline function f() with two

local variables with the sane name (Xx)

cannot expand inline function needing tenporary variable
of array type

Aninline function that contains alocal declaration of an array object is called.

inline int f(int i) {

int a[1];
a[0] =i;
return i;
}
int v =1f(0);
"file", line 6: not inplenmented: cannot expand inline function needing

tenporary variable of array type

335

‘Not implemented’ messages

336

cannot expand inline function with return in if statenent

This message should not be produced.

cannot expand inline function with static nane

An inline function contains the declaration of a static object.

inline void f() {
static int i = 5;

}

"file", line 2: not inplenented: cannot expand inline function with static
cast of non-integer constant

A cast of anon-integer constant as an actual parameter to atemplate class.

tenplate <int i> class x
int yy;
x< (int)&y > xi

"file", line 4. not inplenented: cast of non-integer constant

cannot expand inline void function called in comma
expr essi on

A cal of ani nl i ne voi d function that cannot be translated into an expression (that
is, one that includes aloop, agot o, or aswi t ch statement) appears as the first
operand of a comma operator.

int i

inline void f() { for (;;) ; }

void g() { for (f(), i =0; i <10; i++) ; }

"file", line 3: not inplenmented: cannot expand inline void f() called in comma

expr ession

cannot expand inline void function called in for
expr essi on

A cdl of ani nl i ne voi d function that cannot be translated into an expression (that
is, one that includes aloop, agot o, or aswi t ch statement) appears in the second
expression of af or statement.

void inline f() { for (;;) ; } void g() { for (;; f()) ; }

"file", line 2: not inplemented: cannot expand inline void f() called in for
expression

C++ errors and warnings

cannot expand value-returning inline function with call of

A vaue-returning inline function is defined, and it contains acall to another inline
function that is not value-returning.

inline void f() { for(;;) ; }
inline int g() { f(); return 0; }

"file", line 2: not inplenmented: cannot expand value-returning inline g() with
call of non-value-returning inline f()

cannot nerge lists of conversion functions

A derived class with multiple bases is declared and there are conversion operators
declared in more than one of the base classes.

struct Bl {
operator int();
b
struct B2 {
operator float();
b
struct D: public Bl, public B2 { };
"file", line 7: not inplemented: cannot nerge |ists of conversion functions
catch

The keyword cat ch appears; cat ch isreserved for future use.

int catch;
"file", line 1: not inplenmented: catch
"file", line 1: warning: nanme expected in declaration list

cl ass defined within sizeof

A class or union definition appears asthetype namein asi zeof expression.

int i = sizeof (struct S{ int i; });
"file", line 1: not inplenmented: class defined within sizeof
"file", line 1. error: S undefined, size not known

cl ass hierarchy too conplicated

This message should not be produced.

337

‘Not implemented’ messages

338

conditional expression with type

The second and third operands of a conditional expression are member functions or
pointers to members.

struct S { int i, j; };
void f(int i) {
int SS:*pm =i ? &S::i : &S::j;
}
"file", line 3: not inplenmented: conditional expression with int S :*

constructor needed for argunent initializer

The default value for an argument is a constructor or is an expression that invokes a
constructor.

struct S{ S(int); };
int f(S=5(1));

int g(S=05);
"file", line 2: not inplemented: constructor as default argunent
"file", line 3: not inplenented: constructor needed for argument initializer

copy of nenber[], no nenberw se copy for class

An implementation-generated copy operation for a class Xis required, but the operation
cannot be generated because X has an array member whose typeis a class with either a
virtual base class or its own defined copy operation. The workaround isto add a
memberwise copy operator to X.

struct S1 {};

struct S2 : S1 { S2& operator=(const S2&); };
struct X { S2 n{1]; };

X varl,;

X var2 = varl;

"file", line 5: not inplenmented: copy of S2[], no nenberw se copy for S2
default argunent too conplicated

A default argument in a declaration not at file scope requires the generation of a
temporary.

struct S {
S();
int f(const int & = 1);
b
"file", line 3: not inplemented: default argunent too conplicated
"file", line 3: not inplemented: needs tenporary variable to eval uate argunent

initializer

C++ errors and warnings

ellipsis (...) in argunment list of tenmplate function nane

Anélipsisisused in atemplate function declaration:
tenplate <class T> f(T, ...);

"file", line 1: not inplenmented: ellipsis (...) in argument list of tenplate
function f()

explicit tenplate parameter |ist for destructor of
speci al i zed tenpl ate cl ass nane

Explicit template parameters are included in declaration of a specialised class’
destructor:

tenplate <class T> struct S { /*...*/ };

struct S<int> {

~S<int>();
b
"file", line 4: not inplenmented: explicit tenplate paranmeter list for
destructor of specialized tenplate class S <> -- please drop the paraneter

l'i st
Instead, declare the specialised destructor as follows:

tenplate <class T> struct S { /*...*/ };

struct S<int> {
~S();
b

formal type paraneter nane used as base class of tenplate
The formal type parameter is used as the base class of a template class:

tenplate <class T> struct S : public T {/*...*/};

"file", line 1. not inplenmented: formal type paraneter T used as base cl ass of
tenpl ate

forward declaration of a specialized version of tenplate
nane

A forward declaration of a specialised, rather than generalised template:
tenplate <class T> struct S; struct S<int>;

"file", line 2: not inplemented: forward declaration of a specialized version
of tenplate S <int >

339

‘Not implemented’ messages

340

general initializer ininitializer |ist

Theinitialiser list in adeclaration contains an expression that cannot easily be evaluated
at compile time or that requires runtime eval uation.

int f();
int if1] ={f() }
"file", line 2: not inplenented: general initializer in initializer |ist

initialization of nane (automatic aggregate)

An aggregate at local scopeisinitialised. This message is not issued if the +al option
(produces declarations acceptable to an ANSI C compiler) is specified.

void f() {
int i[1] = {1};
}

"file", line 2: not inplemented: initialization of i (autonmtic aggregate)
initialization of union with initializer list

An object of union typeisinitialised with an initialiser list. This messageis not issued if
the +al option (produces declarations acceptable to an ANSI C compiler) is specified.

union U { int i; float f; };
Uu = {1};

"file", line 2: not inplemented: initialization of union with initializer |ist
initializer for class nenber array with constructor

This message should always be accompanied by an error message. The ‘not
implemented’ message is inappropriate and should not be reported.
initializer for local static too conplicated

This message should not be produced.

initializer for nmulti-dimensional array of objects of

class cl/ass with constructor nane

A multi-dimensional array of a class with a constructor has an explicit initialiser.

struct S { S(int); };
Ss[2][2] ={1,2,3,4};

"file", line 2: not inplemented: initializer for nulti-dinmensional array of
obj ects of class S with constructor ::s

C++ errors and warnings

implicit static initializer for multi-dinensional array of
objects of class with constructor

class x {
public:
x()
b
main() {
static x xx[10][20];
}
"file", line 7: not inplenmented: inplicit static initializer for multi-

di mensional array of objects of class x with constructor

initializer list for |ocal variable nane

This message should not be produced.

| abel in block with destructors

A labelled statement appears in ablock in which an object with a destructor exists.

struct S { S(int); OS(); };

void f() {
S s(5);
Xyz: ;
}
"file", line 5: not inplemented: |abel in block with destructors

| ocal class nane within tenplate function

A local classis defined inside atemplate function. A similar message isissued for
| ocal enumsand| ocal typedefs defined inside atemplate function:

tenplate <class T> f() {
class | {/*...*/};
enumE {/*...*/};
typedef int* ip;

b

"file", line 2: not inplenented: local class | (local to f()) within tenplate
function

"file", line 3: not inplenmented: |ocal enum E(local to f()) within tenplate
function

"file", line 4: not inplenmented: l|ocal typedef ip within tenplate function

341

‘Not implemented’ messages

342

| ocal static class nane (type)

A static array of objects of aclasswith a constructor is declared at local scope.

class S {
public:
S();
b
void f() {
static S s[9];
}
"file", line 2: not inplemented: local static class s (S [9])

| ocal static nane has class::[class() but no constructor
(add class:: class())

A static class object with a destructor, but no constructor, appears at local scope.

struct S{ ~S(); };
void f() { static S's; }

"file", line 1: warning: S has S::~S() but no constructor
"file", line 2: not inplenmented: local static s has S::~S() but no constructor
(add S:: S())

| val ue op too conplicated

This message should not be produced.

needs tenporary variable to evaluate argunment initializer

A default argument requires atemporary variable.

void f() {
int g(const int& = 5);
}

"file", line 2: not inplemented: needs tenporary variable to eval uate argunent
initializer

nested class type as paraneter type to tenplate class nane
A nested classis used as the actual parameter for atemplate class instantiation:

tenpl ate <class T> struct S;

struct outer {
struct inner {};

S<out er::inner> svar;

"file", line 7: not inplenented: nested class outer::inner as paranmeter type
to tenplate class S

C++ errors and warnings

nested class nane within nested class nane within tenpl ate
cl ass nane

Classes may only be nested directly within template classes, classes within nested
classes within template classes are not implemented:

tenplate <class T> class S {
class nestl {
class nest2 {/*...*/};
b
b

"file", line 3: not inplemented: nested class S::nestl::nest2 within nested
class S::nestl within tenplate class S

nested depth class beyond 9 unsupported

Classes are nested more than nine level s deep.

struct S1 {
struct S2 {
struct S3 {
struct S4 {
struct S5 {
struct S6 {
struct S7 {
struct S8 {
struct S9 {
struct S10 { enum{ e }; };
[0 T B S

"file", line 20: not inplenmented: nested depth class beyond 9 unsupported

non-trivial declaration in switch statenent

A ‘non-trivial’ declaration appears within a switch statement. Such a declaration might
declare an object of reference type, a static objexdnst object, an object of a class
type with constructor or destructor, an object with an initialiser list, or an object
initialised with a string literal.

void f(int i) {

switch (i) {
defaul t:
int&j =1i;
}
}
"file", line 2: not inplemented: non-trivial declaration in switch statemnent

(try enclosing it in a block)

Note that since it is illegal to jump past a declaration with an explicit or implicit
initialiser unless the declaration is in an inner block that is not entered, most declarations
in swi t ch statements and not contained in inner blocks will be errors.

343

‘Not implemented’ messages

out-of-line definition of nenber function of class nested
within tenplate class

The member functions of a class nested within atemplate function must be defined
within the definition of the nested class.

template <class t> struct x {
struct y { void foo(); };
11

}s

tenpl ate <class t>
void x<t>::y::foo(){}

"file", line 7: not inplenented: out-of-line definition of menber function of
class nested within tenplate class (x::y:: foo())

overly conplex op of op

This message should not be produced.

par amet er expression of type float, double or |ong double

A template taking a non-type argument is declared taking a float, double or long double
argument:

tenpl ate <double d> struct S { /*...*/};

"file", line 1: not inplenmented: parameter expression of type float, double,
or | ong double

postfix tenplate function operator ++(): please nake a
cl ass nenber function

The postfix implementation of atemplate increment or decrement operator must be a
member function.

template <class t> struct x {
int operator++(int); // ok

}s

tenpl ate <class t>
int operator++(x<t>&int); // sorry

x<int> xi;

"file", "", line 6: not inplenmented: postfix tenplate function operator ++():
pl ease make a cl ass nenber function

poi nter to menber function type too conplicated

This message should not be produced.

344

C++ errors and warnings

public specification of overloaded function

The base class member in an access declaration refers to an overloaded function. A
similar message isissued for pri vat e and pr ot ect ed access declarations.

struct B{ int f(); int f(int); };
class D: private B {
public:
B::f;
s

"file", line 2: not inplenmented: public specification of overloaded B::f()

reuse of formal tenplate paraneter nane

A template formal parameter name is reused within the template declaration:
tenplate <class T> struct S {
int T;
}
"file", line 2: not inplenmented: reuse of fornal tenplate paraneter T

speci al i zed tenpl ate nane not at gl obal scope

A specialised template is declared at other than global scope:

tenplate <class T> struct S {

T var;
b
void f() {

struct S <int > {

int var;

b
b
"file", line 6: not inplenmented: specialized tenplate S not at gl obal scope

static menber anonynmous uni on

A static class member is declared as an anonymous union.

class C {
static union {
int i;
doubl e d;
b
b
"file, line 5: not inplenmented: static nenber anonynopus union

struct nane nmenber nane

This message should not be produced.

345

‘Not implemented’ messages

346

tenpl ate function actuals too conplicated (please
sinplify)
#i ncl ude <i ostream h>

tenplate <class i> struct x { x(); };

tenpl ate <class t>
ostrean®& operat or<<(ostream &s, x<t>& { return os; }

x<int> z;

main() {

/*

* ok: sinplified invocation of actual tenplate function:
* cout << "hello"; cout << z << endl;

*/

/] generates sorry message: actuals too conplicated
cout << "hello" << z << endl;

}

"file", line 17: not inplenmented: tenplate function operator <<(): actuals too
conplicated (please sinplify)

tenpl ate function instantiated with |ocal class nane

tenplate <class T> int f(T);

f2() {
struct local {/*...*/};
local lvar;
f(lvar);
}
"file", line 6: not inplemented: tenplate function f() instantiated with | ocal

cl ass | ocal

tenmporary of class name with destructor needed in expr
expr essi on

Anexpression containinga?: ,| | , or & operator requires atemporary object of aclass
that has a destructor.

struct S { S(int); 05(); };:
Sf(int i) {

returni ? S(1) : S(2) ;
}

"file", line 3: not inplenented: tenporary of class S with destructor needed
in ?. expression

C++ errors and warnings

too fewinitializers for nane

Theinitiaiser list for an array of class objects has fewer initialisers than the number of
elementsin the array.

struct S { S(int); S(); };
Sa[2] = {1};

"file", line 2: not inplenmented: too fewinitializers for ::a

typel assigned to type2 (too conplicated)

A pointer isinitialised or assigned with an expression whose type istoo complicated.

struct S1 {};

struct S2 { int i; };
struct S3 : S1, S2 {};
int S3::*pm = &S2::i;

"file", line 4: not inplenmented: int S2::* assigned to int S3::* (too
conpl i cat ed)

use of nenmber with formal tenplate paraneter

An attempt to use amember of aformal parameter type, suchas T: : t ype, isnot
currently supported. For example,

tenplate <class T> class U {
typedef T TU,

11
b
tenpl ate <cl ass Type> class V {
Type:: TU t;
11
b
"file", line 9: not inplenmented: use of Type::TUwth formal tenplate type
par anmet er
"file", line 9: cannot recover fromearlier errors

visibility declaration for conversion operator

An access declaration is specified for a conversion operator.

struct B { operator int(); };
class D: private B {

public:
B: :operator int;
s
"file", line 1: not inplenmented: visibility declaration for conversion
oper at or

347

348

vol atile functions

A member function is specified asvol ati | e.

struct S {
int f() volatile;

h
"file", line 2: not inplenmented: volatile functions

wi de character constant
wi de character string

A wide character constant or awide character string is used.
intwec = L’ab’;
char *ws = L"abcd";

"file" line 1: not implemented: wide character constant
"file" line 2: notimplemented: wide character string

Symbols

__heap _checking _on_all _allocates 140
__heap _checking_on_all _deallocates 140
_fmapstore 30, 140
_kernel_stkovf_split_Oframe 271
_kernel_stkovf_split_frame 271
_kernel_swi 266

_mapstore 30, 33, 140

A

abort 82, 85, 122

abs 125

acos 83, 98

asctime 136

asin 83, 98

assert 82

atan 98

atan2 83, 98

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

atexit 123
atof 119

atoi 119

atol 119

B

bsearch 124
C

caloc 85, 121
ceil 98
clearerr 118
clock 85, 135
cos 98

cosh 98
ctime 136

D

difftime 135
div 125

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

E

event_deregister message handler 142, 146
event_deregister _toolbox_handler 142, 146
event_deregister wimp_handler 142, 146
event_get mask 143

event_initialise 141, 143, 147

event_poll 141, 142, 144, 147

event_poll idle 141, 144
event_register_message handler 142, 146
event_register_toolbox_handler 141, 145
event_register wimp_handler 141, 145
event_set mask 141, 143, 144

exit 85, 123

exp 98

F

fabs 98

fclose 106

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

feof 118
ferror 118
fflush 106
fgetc 112
fgetpos 84, 116
fgets 113
floor 98

fmod 83, 98
fopen 107
fprintf 84, 109
fputc 113
fputs 113
fread 115

free 122
freopen 108
frexp 98
fscanf 84, 110

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

fseek 116
fsetpos 117
ftell 84, 117
fwrite 116

G

getc 113
getchar 114
getenv 85, 123
gets 114
gmtime 137

I

isalnum 83, 93
isalpha 83, 93
iscntrl 83, 93
isdigit 93
isgraph 93
isower 93

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

islowert 83
isprint 83, 93
ispunct 83, 93
isspace 93
isupper 83, 93
isxdigit 93

L

labs 125
[conv 97
Idexp 98

[div 125
localtime 137
log 83, 98
log10 83, 98
longimp 99

M

main 77, 261, 265

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

malloc 85, 122, 265
mblen 126
mbstowcs 127
mbtowc 126
memchr 132
memcmp 130
memcpy 129
memmove 129
memset 134
mktime 136
modf 98

]

perror 84, 118
pow 98

printf 87, 110
putc 114
putchar 114

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

puts 114

Q

gsort 124

R

raise 100

rand 121
realloc 85, 122
remove 84, 105
rename 84, 105
rewind 117

S

scanf 87, 111
setbuf 108
setjmp 99
setlocale 83, 97
setvbuf 108
signal 83, 264

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

sin 98

sinh 98

sprintf 110, 265
sgrt 83, 98
srand 121
sscanf 111
strcat 130
strchr 132, 265
stremp 131
strcoll 131
strcpy 129
strcspn 132
strerror 85, 134
strftime 137
strlen 134
strncat 130
strncmp 131

Replace this page with a

monochrome copy of the
front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

strnepy 130
strpbrk 132
strrchr 132, 265
strspn 133
strstr 133
strtod 119
strtok 133
strtol 120
strtoul 120
struct tm 135
strxfrm 131
system 85, 123
T

tan 98

tanh 98

time 136
tmpfile 105

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

tmpnam 106
tolower 93
toolbox _initialise 141, 143
toupper 93

U

ungetc 115

\

va arg 102
va end 103
va list 102
va_start 102
vfprintf 112
vprintf 112
vsprintf 112
W

wcstombs 127
wctomb 127

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

wimp_add messages 152
wimp_base of sprites 152
wimp_block_copy 152
wimp_close_down 152
wimp_close template 153
wimp_close window 153
wimp_command_window 153
wimp_create icon 153
wimp_create_menu 153
wimp_create_submenu 153
wimp_create window 154
wimp_decode_menu 154
wimp_delete icon 154
wimp_delete window 154
wimp_drag_box 154
wimp_force _redraw 155
wimp_get_caret_position 155

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

wimp_get_icon_state 155
wimp_get_menu_state 155
wimp_get_pointer_info 155
wimp_get_rectangle 156
wimp_get_window_info 156
wimp_get_window_outline 156
wimp_get_window_state 156
wimp_initialise 156
wimp_load template 157
wimp_open_template 157
wimp_open_window 157
wimp_plot_icon 157
wimp_poll 157
wimp_poll_idle 158
wimp_process key 158
wimp_read palette 158
wimp_read sys info 158

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

wimp_redraw_window 158
wimp_remove_messages 159
wimp_report_error 159
wimp_resize icon 159
wimp_send_message 159
wimp_set caret_position 160
wimp_set_colour 160
wimp_set_colour_mapping 160
wimp_set_extent 160
wimp_set_font_colours 160
wimp_set icon_state 161
wimp_set mode 161
wimp_set_palette 161
wimp_set_pointer_shape 161
wimp_slot_size 162
wimp_sprite_op 162
wimp_start_task 162

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

wimp_text_colour 162
wimp_text_op 162
wimp_transfer_block 163
wimp_update_window 163
wimp_which_icon 163

X

x$stack overflow 271
x$stack_overflowl 271

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

C

C_exception
complex_error 243

cerr 182

cin 182

clog 182

complex 240
— 248
=249
* 249
*= 249
+ 248
+= 249
/ 249
/=249
—=249
== 249

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

abs 241
arg 241
conj 241
cos 251
cosh 251
exp 246
imag 242
log 246
norm 241
polar 242
pow 246
real 242
sin 251
sinh 251
sgrt 246
cout 182

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

F

filebuf 183, 184
attach 186
close 186
fd 186
filebuf 185
is_open 186
open 186
seekoff 186
seekpos 187
setbuf 187
sync 187

fstream 183, 188
attach 190
close 190
fstream 189
open 190

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

rdbuf 191
setbuf 191
I
IAPP 209
ifstream 183, 188
attach 190
close 190
ifstream 189
open 190
rdbuf 191
setbuf 191
IMANIP 209
IOAPP 209
IOMANIP 209
ios 181, 192
1195
* 195

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

<< 200

>> 200

bad 195
bitalloc 199
clear 194
dec 196

eof 195

fail 195

fill 198
fixed 197
flags 198
good 195
hex 196
init 194
internal 196
i0os 194
iword 199

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

left 196

oct 196
precision 198
pword 200
rdbuf 200
rdstate 194
right 196
scientific 197
setf 198
showbase 196
showpoint 197
showpos 196
skipws 196
stdio 197
sync_with_stdio 200
tie 200

unitbuf 197

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

unsetf 199
uppercase 197
width 199
xalloc 199
iostream 181
|ostream _init 182
iostream_withassign 181
istream 181, 202
>> 204, 208
gcount 207
get 206
getline 206
ignore 206
ipfx 204
istream 204
istream_withassign 204
manip 207

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

peek 207
putback 207
read 207
seekg 207
sync 207
tellg 208
istream_withassign 181
istrstream 183, 233
istrstream 234
rdbuf 234
M
main 173
matherr 244
@)
OAPP 209
ofstream 183, 188
attach 190

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

close 190
ofstream 189
open 190
rdbuf 191
setbuf 191
OMANIP 209
ostream 181, 213
<< 216
dec 218
endl 218
ends 218
flush 217, 218
hex 218
manip 217
oct 218
opfx 215
osfx 215

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

ostream 215
ostream_withassign 215
put 217
seekp 217
tellp 218
write 217
ostream_withassign 181
ostrstream 183, 233
ostrstream 234
pcount 235
rdbuf 235
str 235
S
SAPP 209
SMANIP 209
stdiobuf 183, 219
stdiostream 183

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

streambuf 181, 220, 228
allocate 224
base 222
blen 224
dbp 224
doallocate 225, 226
eback 222
ebuf 222
egptr 222
epptr 222
gbump 224
gptr 223
in_avail 230
out_waiting 230
overflow 225, 226
pbackfail 225, 226
pbase 223

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

pbump 224

pptr 223

sbumpc 230

seekoff 225, 226, 230
seekpos 225, 226, 230
setb 223

setbuf 226, 227, 231
setg 223

setp 223

sgetc 230

sgetn 231

snextc 231

sputbackc 231

sputc 231

sputn 231

stossc 231

streambuf 222

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

sync 226, 227, 232

unbuffered 224

underflow 226, 227
strstream 233

rdbuf 235

str 235

strstream 234
strstreambuf 183, 236

freeze 238

setbuf 238

str 238

strstreambuf 237

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Symbols

#include 16, 18-21, 22

‘mem 19, 21

w77

__global_freg 90

__global_reg 90

__pure 90

__value_in_regs 89

A

absolute machine addresses 260

Acorn Desktop C 295

alignment 256

an 268, 269

ANSI library 14, 30, 139-140

ANSI standard 2, 7, 11, 42, 69-85
vs K&R 258-261

APCS 43, 267

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

arguments 177

passing to assembler 269
arithmetic operations 74—-75
arrays 80, 236—238, 260
asm declarations 176
assembly language 267-272
assert.h 92
B
bibliography 6—-7
bitfields 81, 177
BL 269
buffers 181, 182

characters 228-232

file /O 184-187
buttonssee application (button name)
byte ordering 256

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

C
C Module Header Generator see CMHG
C$Libroot 20, 21
C$Path 19, 22
C++11-49
Assembler 18, 31
Auto run 41
Auto save 41
Cancel 13
command line 39, 42—-46
Command line (menu option) 13, 25
Compile only 17, 23
Debug 23
Default path 17, 19-21, 26
Define 27
Features 20, 32-34
icon bar menu 41

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Include 17, 19-21, 22

Module code 31

Options 41

Others 39

Run 13, 22, 25

Save options 41

SetUp dialogue box 12-13, 22-24

SetUp menu 13, 24-39

Source 12, 22

Suppress warnings 33, 34

Throwback 24

Undefine 28

Work directory 15, 38
C++ library 14, 179-252
C++Hello example 47

see also HelloW example
cartesian coordinates 241-242

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

case sensitivity 42

CC2,11-49, 273
Assembler 18, 31, 271
Auto run 41
Auto save 41
Cancel 13
command line 39, 42—-46
Command line (menu option) 13, 25
Compile only 17, 23
Debug 23
Debug options 29
Default path 17, 19-21, 26
Define 27
Errors to file 37
Features 20, 30, 32-34, 38
icon bar menu 41
Include 17, 19-21, 22

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Keep comments 26

Libraries 31

Listing 18, 33, 38

Module code 31

Options 41

Others 30, 39

Preprocess only 23, 40, 263
Profile 30

Run 13, 22, 25

Save options 41

SetUp dialogue box 12-13, 22-24
SetUp menu 13, 24-39
Source 12, 22

Suppress errors 36

Suppress warnings 33, 34-35
Throwback 24

Undefine 28

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

UNIX pcc 37

Work directory 15, 38
CFront 2, 11, 45, 295
characters 78—79

testing and mapping 93
chars 70
CHello example 47

see also HelloW example
classes

members 177

multiple base 177
CMHG 51-54, 273-287

command line 54

Command line (menu option) 52

description files 53, 276

icon bar menu 53

SetUp dialogue box 52

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

SetUp menu 52

Source 52
CModule example 48
comments 259
common subexpression elimination 88
compiler see CC and C++
Complex Math library 239-252

operators 248-250
complex numbers 240
conditionalised conditions 295
const qualifier 258
constants

character 172

floating 172

hexadecimal 256

octal 259
control statements 261

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

conventions 6
conversions 174, 175, 181, 259
cpp 263
Cross-jumping 87
ctype.h 93, 263
current place 20-21
D
data elements 70-73
limits 71-73, 96
debugging
machine level 23
source level 23
tables 23, 29
declarations 260
declarators 82
device drivers 273
Dhrystone 2.1 example 48

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

diagnostics 92

dialogue boxes see application (dialogue box name)

doubles 70, 75

DrawFile module 167

E

EDOM 94, 244, 247

enumeration types 81

ERANGE 94, 244

errno.h 94, 264

errors 24, 36, 37, 40, 77, 194-195, 297-348
browser 24
Complex Math library 243-245
domain 94
range 94

ESIGNUM 94

event handlers 141-142

Event library 14, 141-149

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

examples 46—49

exception handling 178

exponential functions 246-247

expressions 174
evaluation 75

F

FILE 105

filenames 14-18
extensions 16, 266
rooted 16, 19

files
buffering 84
closing 106
creating 186, 190
deleting 105
flushing 106
formatted 1/0 183

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

naming 106
opening 107-108, 186, 189, 190
position indicators 116-118
reading 184
renaming 105
seeking 186, 190
syncing 187
temporary 106
writing 184
zero-length 84
flags 42—-46
float.h 95, 265
floating point 80, 95
floats 70, 75, 259
fn 268, 270
fp 268, 269, 270
fpos_t 105

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

functions
arguments 257
calls174
declaration keywords 89—90
declarations 260
definitions 260
in-lining 295
prototypes 260
workspace 271

G

get area 222

H

header files 11, 15, 18
ANSI 19
from CMHG 52

heap checking 140

HelloW example 12-13, 17

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

HUGE and HUGE_VAL 264
Hyper example 49
hyperbolic functions 251-252
I
I/0
buffering 108-109
redirection 78
I/O functions 105-118
iconssee application (icon name)
identifiers 70, 78, 172
IEEE double precision 269
IEEE single precision 269
implementation limits 76
include files 16, 22, 26, 87
nesting 20-21
searching for 18-21
input functions 110-111, 112-113, 113-114, 115

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

installation 1

integers 80

interactive devices 77

ints 70

ip 268

SO 8859-1 79

K

kernel.h 19, 266

L

Latin-1 character set 79

LDM 46

libraries 4, 14, 19, 22, 31, 91-167, 179-252
ANSI vs BSD UNIX 263-265

limits.h 96, 265

Link 11, 23
Debug 23

linkage specifications 176

Replace this page with a

monochrome copy of the
front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

listings 18, 31, 33, 38, 271

locale.n 97, 265

logarithmic functions 246—-247

long doubles 70, 75, 259

long floats 259

long ints 75

longs 70, 259

Ir 268, 269

M

macros 178

Make 12, 15, 16, 43, 51, 57, 62
manipulators 209-212

math.h 98, 264

mathematical functions 83, 98, 125
memory allocation functions 121-122
menussee application (menu name)
message handlers 142

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

MinApp example 49

modules 31, 51, 273-287
application code 274, 276
components 274-275
constraints 274
event handler 275, 285-286
finalisation code 275, 277-278
header 51
help and command keyword table 275, 280-281
help string 275, 279-280
initialisation code 274, 277
IRQ handlers 275, 284
library initialisation code 287
service call handler 275, 278-279
SWI chunk base number 275, 281
SWI decoding code 275, 282—-283
SWI decoding table 275, 282

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

SWI handler code 275, 281-282
title string 275, 279
turning interrupts on and off 283
MS-DOS 16, 17, 266
multibyte character functions 126-127
multibyte string functions 127-128
O
object files 11, 15, 17, 22, 23, 41, 54
offsetof 104
operating system interface 123, 258, 265-266
operators
multiplicative 175
relational 175
shifts 175
optimisation 87—-88
output 40-41, 54, 58, 65
output functions 109-110, 112, 113, 114-115, 116

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

overlays 289-291
alternatives to 290

]

paging 289

pathname separator 266

pc 269

pcc 32, 37, 42, 55-66, 88, 261-263

pointers 70, 74, 80, 257, 259
subtraction 74

polar coordinates 241-242

portability 255-266, 291

portable C compilesee pcc

power functions 246—-247

pragmas 46, 64, 86—89
header file 19

preprocessor 11, 18, 23, 26-28, 33, 44, 87, 261, 263
directives 82

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

trand ation ordering 261
see also CC and C++
profiling 30, 140
program termination functions 122—-123
ptrdiff t 104
put area 222
R
RAM filing system 290
random numbers 121
register storage class 81
register variables 88-89, 90
registers
names 267
usage 268
Render library 167
reserve area 222
resource files 15

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

RISC_OSLib 295

rooted filenames see filenames (rooted)

S

search functions 123, 124

setjmp.h 99

SetPaths 22

shared C library 14, 30, 82—-85, 91-138
modules 273

shorts 70

Sieve example 47

signal.h 100-101, 264

signals 94, 100-101

signed qualifier 258

size_t104

sl 268, 269, 270, 271

Software Interrupsee SWI

sort functions 124

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

source files 11, 15, 16
sp 268, 269, 270, 271
specifiers
storage class 176
type 176
square root functions 246247
SrcEdit 23, 24
stack checking 43, 88
stack extension 271
stdarg.h 102-103
stddef.h 104
stderr 78
stdin 78
stdio.h 105-118, 265
stdlib.h 119-128, 265
stdout 78
STM 46

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

streams 182, 192—-201
formatting 195-200, 204-206, 216-217
Streams library 179-238
string functions
appending 130
comparison 130-131
conversion 119-121
copying 129-130
error message mapping 134
length 132, 133, 134
locating 132-133
time 137-138
tokenising 133
transformation 131
string literals 33, 173, 259, 261
string.h 129-134, 265
structures 73, 81, 89, 256, 259

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

results 270
stubs 14, 30, 91, 273, 274
entry vectors 91
summary 40
SWI 266, 273
swis.h 19
switch statement 82, 261
T
TBoxCalc example 49
text streams 84
throwback 24, 43
time.h 135-138
ToANSI 55-59, 261
command line 59
Command line (menu option) 57
File 57
icon bar menu 58

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

SetUp dialogue box 57
SetUp menu 57
token-pasting 261
Toolbox 141, 151, 295
Toolbox library 14, 165
tools 9-66
common features 41, 51, 55, 61
ToPCC 61-66, 261
command line 66
Command line (menu option) 63
File 63
icon bar menu 64
Options 64
SetUp dialogue box 63
SetUp menu 63-64
translation limits 171
trigonometric functions 251-252

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

TSR 273
types 173
checking 262
typographic conventions see conventions
U
unions 81, 259
UNIX 16, 17, 20
unsigned long ints 259
unsigned qualifier 75, 259
Vv
varargs.h 19
variables
declaration keywords 90
lifetime analysis 295
storing 270
variadic functions 259
vn 268, 270

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

void 258

void * 258

volatile qualifier 82, 87, 258

w

warnings 34-35, 77, 297-348
wchar_t 104

Wimp library 14, 151-163
work directory 15, 38, 43

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:19 pm
Printed: 21 October, 1999 12:20 pm

Reader’'s Comment Form

Acorn C/C++, Issue 1
0484,232

We would gresatly appreciate your comments about this Manual, which will be taken into account for the next
issue:

Did you find the infor mation you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

How would you classify your experience with computers?

Used computersbefore Experienced User Programmer Experienced Programmer

Cut out (or photocopy) and post to: Your name and address:
Dept RC, Technical Publications
Acorn Computers Limited
Acorn Housg, Vision Park

HIStOI’], Cambrldge CB44AE This information will only be used to get in touch with you in case we wish to explore your
England comments further

	Acorn C/C++
	AMR draft (Version 10.06)

	1 Introduction
	Installation of Acorn Desktop C
	The C compiler
	The C++ translator
	This user guide
	Part 1 – Using the C tools
	Part 2 – C�language issues
	Part 3 – C++�language issues
	Part 4 – Developing software for RISC�OS
	Part 5 – Appendixes
	Conventions used

	Useful references
	C programming
	C++ Programming
	RISC OS
	The ANSI�C standard
	The ANSI�C++ standard

	Part 1 – Using the C tools
	2 CC and C++
	The underlying programs
	How the tools use them
	A note about Make

	Getting started with CC and C++
	Libraries
	C�libraries
	C++ libraries

	File naming and placing conventions
	Work directory
	Filename conventions
	Rooted filenames
	Source files
	Include files
	Object files
	Program files
	Compilation list files
	Assembly list files
	Filename validity

	Include file searching
	Reference section
	Search path
	1 The compiler’s own in-memory filing system.
	2 The current place (see the section Nested includes on page�20).
	3 Arguments to the SetUp dialogue box’s Include option, if used.
	4 The system search path:

	Nested includes
	Use of :mem
	Use of C$Libroot

	The SetUp dialogue box
	Source
	Include
	Compile only
	Preprocess only
	Debug
	Throwback

	The SetUp menu
	The command line
	Controlling the preprocessor
	Default path
	Keep comments
	Define
	Undefine

	Controlling code generation
	Debug options
	Profile
	Assembler
	Module code

	Controlling the linker
	Libraries

	Using the Features menu option
	Features

	Handling warnings and errors
	Suppress warnings
	Suppress errors
	UNIX pcc
	Errors to file

	Listings
	Listing

	Choosing your work directory
	Work directory

	Specifying other command line options
	Others

	Output messages
	The icon bar menu
	Command lines
	Keyword options
	Preprocessor options
	Translator options
	Code generation options
	Linker options
	Warning and error message options
	Additional feature options

	Worked examples
	CHello
	C++Hello
	Sieve
	Dhrystone 2.1
	CModule
	Desktop application examples

	3 CMHG
	A note about Make
	Starting CMHG
	The icon bar menu
	Example output
	Command line interface

	4 ToANSI
	ToANSI C translation
	A note about Make

	Starting ToANSI
	The icon bar menu
	Example output
	Command line interface

	5 ToPCC
	ToPCC C translation
	A note about Make

	Starting ToPCC
	The icon bar menu
	Example output
	Command line interface

	Part 2 – C�language issues
	6 C implementation details
	Implementation details
	Identifiers
	Data elements
	Limits: limits.h and float.h

	Structured data types
	Pointers
	Pointer subtraction

	Arithmetic operations
	Expression evaluation
	Implementation limits

	Standard implementation definition
	Translation (A.6.3.1)
	Environment (A.6.3.2)
	Identifiers (A.6.3.3)
	Characters (A.6.3.4)
	Integers (A.6.3.5)
	Floating point (A.6.3.6)
	Arrays and pointers (A.6.3.7)
	Registers (A.6.3.8)
	Structures, unions, enumerations and bitfields (A.6.3.9)
	Qualifiers (A.6.3.10)
	Declarators (A.6.3.11)
	Statements (A.6.3.12)
	Preprocessing directives (A.6.3.13)
	Library functions (A.6.3.14)

	Extra features
	#pragma directives
	Pragmas controlling the preprocessor
	Pragmas controlling printf/scanf argument checking
	Pragmas controlling optimisation
	Pragmas controlling code generation
	Stack limit checking
	Memory access checking
	Global (program-wide) register variables

	Special function declaration keywords
	__value_in_regs
	__pure

	Special variable declaration keywords
	__global_reg(n)
	__global_freg(n)

	7 The C�library
	assert.h
	ctype.h
	errno.h
	EDOM
	ERANGE
	ESIGNUM

	float.h
	limits.h
	locale.h
	setlocale
	lconv

	math.h
	setjmp.h
	setjmp
	longjmp

	signal.h
	raise

	stdarg.h
	va_list
	va_start
	va_arg
	va_end

	stddef.h
	stdio.h
	remove
	rename
	tmpfile
	tmpnam
	fclose
	fflush
	fopen
	freopen
	setbuf
	setvbuf
	fprintf
	printf
	sprintf
	fscanf
	scanf
	sscanf
	vprintf
	vfprintf
	vsprintf
	fgetc
	fgets
	fputc
	fputs
	getc
	getchar
	gets
	putc
	putchar
	puts
	ungetc
	fread
	fwrite
	fgetpos
	fseek
	fsetpos
	ftell
	rewind
	clearerr
	feof
	ferror
	perror

	stdlib.h
	atof
	atoi
	atol
	strtod
	strtol
	strtoul
	rand
	srand
	calloc
	free
	malloc
	realloc
	abort
	atexit
	exit
	getenv
	system
	bsearch
	qsort
	abs
	div
	labs
	ldiv
	Multibyte character functions

	mblen
	mbtowc
	wctomb
	Multibyte string functions

	mbstowcs
	wcstombs

	string.h
	memcpy
	memmove
	strcpy
	strncpy
	strcat
	strncat
	memcmp
	strcmp
	strncmp
	strcoll
	strxfrm
	memchr
	strchr
	strcspn
	strpbrk
	strrchr
	strspn
	strstr
	strtok
	memset
	strerror
	strlen

	time.h
	struct tm
	clock
	difftime
	mktime
	time
	asctime
	ctime
	gmtime
	localtime
	strftime

	8 The ANSI library
	Extra functions
	__heap_checking_on_all_allocates __heap_checking_on_all_deallocates
	_mapstore _fmapstore

	9 The Event library
	Introduction
	Registering and deregistering event handlers
	Registering and deregistering message handlers
	Quitting applications
	Programmer interface
	Initialisation
	event_initialise
	event_set_mask
	event_get_mask

	Polling
	event_poll
	event_poll_idle

	Registering handlers
	event_register_wimp_handler
	event_register_toolbox_handler
	event_register_message_handler
	event_deregister_wimp_handler
	event_deregister_toolbox_handler
	event_deregister_message_handler

	Handlers
	WimpEventHandler
	ToolboxEventHandler
	WimpMessageHandler

	Example

	10 The Wimp library
	Programmer interface
	wimp_add_messages
	_kernel_oserror *wimp_add_messages (int *list /* R0 in */);

	wimp_base_of_sprites
	_kernel_oserror *wimp_base_of_sprites (void **rom, /* R0 out */ void **ram /* R1 out */);

	wimp_block_copy
	_kernel_oserror *wimp_block_copy (int handle, /* R0 in */ int sxmin, /* R1 in */ int symin, /* R2...

	wimp_claim_free_memory
	wimp_close_down
	_kernel_oserror *wimp_close_down (int th /* R0 in */);

	wimp_close_template
	_kernel_oserror *wimp_close_template (void);

	wimp_close_window
	_kernel_oserror *wimp_close_window (int window_handle /* R1 in */);

	wimp_command_window
	_kernel_oserror *wimp_command_window (int type /* R0 in */);

	wimp_create_icon
	_kernel_oserror *wimp_create_icon (int priority, /* R0 in */ WimpCreateIconBlock *defn, /* R1 in ...

	wimp_create_menu, CloseMenu
	#define CloseMenu ((void *) -1)
	_kernel_oserror *wimp_create_menu (void * handle, /* R1 in */ int x, /* R2 in */ int y /* R3 in */);

	wimp_create_submenu
	_kernel_oserror *wimp_create_submenu (void * handle, /* R1 in */ int x, /* R2 in */ int y /* R3 i...

	wimp_create_window
	_kernel_oserror *wimp_create_window (WimpWindow *defn, /* R1 in */ int *handle /* R0 out */);

	wimp_decode_menu
	_kernel_oserror *wimp_decode_menu (void *data, /* R1 in */ int *selections, /* R2 in */ char *buf...

	wimp_delete_icon
	_kernel_oserror *wimp_delete_icon (WimpDeleteIconBlock *block /* R1 in */);

	wimp_delete_window
	_kernel_oserror *wimp_delete_window (WimpDeleteWindowBlock *block /* R1 in */);

	wimp_drag_box, CancelDrag
	#define CancelDrag 0
	_kernel_oserror *wimp_drag_box (WimpDragBox *block /* R1 in */);

	wimp_extend
	wimp_force_redraw
	_kernel_oserror *wimp_force_redraw (int window_handle, /* R0 in */ int xmin, /* R1 in */ int ymin...

	wimp_get_caret_position
	_kernel_oserror *wimp_get_caret_position (WimpGetCaretPositionBlock *block /* R1 in */);

	wimp_get_icon_state
	_kernel_oserror *wimp_get_icon_state (WimpGetIconStateBlock *block /* R1 in */);

	wimp_get_menu_state
	_kernel_oserror *wimp_get_menu_state (int report, /* R0 in */ int *state, /* R1 in */ int window,...

	wimp_get_pointer_info
	_kernel_oserror *wimp_get_pointer_info (WimpGetPointerInfoBlock *block /* R1 in */);

	wimp_get_rectangle
	_kernel_oserror *wimp_get_rectangle (WimpRedrawWindowBlock *block, /* R1 in */ int *more /* R0 ou...

	wimp_get_window_info
	_kernel_oserror *wimp_get_window_info (WimpGetWindowInfoBlock *block /* R1 in */);

	wimp_get_window_outline
	_kernel_oserror *wimp_get_window_outline (WimpGetWindowOutlineBlock *block /* R1 in */);

	wimp_get_window_state
	_kernel_oserror *wimp_get_window_state (WimpGetWindowStateBlock *state /* R1 in */);

	wimp_initialise
	_kernel_oserror *wimp_initialise (int version, /* R0 in */ char *name, /* R2 in */ int *messages,...

	wimp_load_template
	_kernel_oserror *wimp_load_template (_kernel_swi_regs *regs /*R1-6 in*/);

	wimp_open_template
	_kernel_oserror *wimp_open_template (char *name /* R1 in */);

	wimp_open_window
	_kernel_oserror *wimp_open_window (WimpOpenWindowBlock *show /* R1 in */);

	wimp_plot_icon
	_kernel_oserror *wimp_plot_icon (WimpPlotIconBlock *block /* R1 in */);

	wimp_poll
	_kernel_oserror *wimp_poll (int mask, /* R0 in */ WimpPollBlock *block, /* R1 in */ int *pollword...

	wimp_poll_idle
	_kernel_oserror *wimp_pollidle (int mask, /* R0 in */ WimpPollBlock *block, /* R1 in */ int time,...

	wimp_process_key
	_kernel_oserror *wimp_process_key (int keycode /* R0 in */);

	wimp_read_palette
	_kernel_oserror *wimp_read_palette (Palette *palette /* R1 in */);

	wimp_read_pix_trans
	wimp_read_sys_info, WimpSysInfo
	typedef struct { int r0; int r1; } WimpSysInfo;
	_kernel_oserror *wimp_read_sys_info (int reason, /* R0 in */ WimpSysInfo *results /* R0 out */);

	wimp_redraw_window
	_kernel_oserror *wimp_redraw_window (WimpRedrawWindowBlock *block, /* R1 in */ int *more /* R0 ou...

	wimp_register_filter
	wimp_remove_messages
	_kernel_oserror *wimp_remove_messages (int *list /* R0 in */);

	wimp_report_error
	int wimp_report_error (_kernel_oserror *er, /* R0 in */ int flags, /* R1 in */ char *name, /* R2 ...

	wimp_resize_icon
	_kernel_oserror *wimp_resize_icon (int window, /* R0 in */ int icon, /* R1 in */ int xmin, /* R2 ...

	wimp_send_message
	_kernel_oserror *wimp_send_message (int code, /* R0 in */ void *block, /* R1 in */ int handle, /*...

	wimp_set_caret_position
	_kernel_oserror *wimp_set_caret_position (int window_handle, /* R0 in */ int icon_handle, /* R1 i...

	wimp_set_colour, Wimp_BackgroundColour
	#define Wimp_BackgroundColour (128)
	_kernel_oserror *wimp_set_colour (int colour /* R0 in */);

	wimp_set_colour_mapping
	_kernel_oserror *wimp_set_colour_mapping (int which_palette, /* R1 in */ int *bpp1, /* R2 in */ i...

	wimp_set_extent
	_kernel_oserror *wimp_set_extent (int window_handle, /* R0 in */ BBox *area /* R1 in */);

	wimp_set_font_colours
	_kernel_oserror *wimp_set_font_colours (int fore /* R1 in */ int back /* R2 in */);

	wimp_set_icon_state
	_kernel_oserror *wimp_set_icon_state (WimpSetIconStateBlock *block) /* R1 in */;

	wimp_set_mode
	_kernel_oserror *wimp_set_mode (int mode /* R0 in */);

	wimp_set_palette, Palette
	typedef struct { unsigned int colours[16]; unsigned int border; unsigned int pointer1; unsigned i...
	_kernel_oserror *wimp_set_palette (Palette *palette /* R1 in */);

	wimp_set_pointer_shape
	_kernel_oserror *wimp_set_pointer_shape (int shape, /* R0 in */ void *data, /* R1 in */ int width...

	wimp_set_watchdog_state
	wimp_slot_size
	_kernel_oserror *wimp_slot_size (int current, /* R0 in */ int next, /* R1 in */ int *current, /* ...

	wimp_sprite_op, SpriteParams
	typedef struct {int r3; int r4; int r5; int r6; int r7;} SpriteParams;
	_kernel_oserror *wimp_sprite_op (int code, /* R0 in */ char *name, /* R2 in */ SpriteParams *p /*...

	wimp_start_task
	_kernel_oserror *wimp_start_task (char *cl, /* R0 in */ int *handle /* R0 out */);

	wimp_text_colour
	_kernel_oserror *wimp_text_colour (int colour /* R0 in */);

	wimp_text_op
	_kernel_oserror *wimp_text_op (_kernel_swi_regs *regs /* R0… in */);

	wimp_transfer_block
	_kernel_oserror *wimp_transfer_block (int sh, /* R0 in */ void *sbuf, /* R1 in */ int dh, /* R2 i...

	wimp_update_window
	_kernel_oserror *wimp_update_window (WimpRedrawWindowBlock *block, /* R1 in */ int *more /* R0 ou...

	wimp_which_icon
	_kernel_oserror *wimp_which_icon (int window_handle, /* R0 in */ int *icons, /* R1 in */ unsigned...

	11 The Toolbox library
	12 The Render library
	Part 3 – C++�language issues
	13 C++ implementation details
	1 Behaviour that the Reference Manual defines as ‘implementation dependent’
	2 Behaviour that depends on the underlying C compiler or preprocessor used with Release�3.0
	3 Properties that are defined in the standard header files stddef.h, limits.h, and stdlib.h
	4 Translation limits
	5 Language constructs that are not implemented in this release.
	Translation Limits
	Identifiers (2.3)
	Identifiers reserved by Release�3.0

	Character Constants (2.5.2)
	Value of multicharacter constants
	Value of (single) character constants
	Wide character constants

	Floating Constants (2.5.3)
	Long double floating constants

	String Literals (2.5.4)
	Distinct string literals
	Wide character strings

	Start and Termination (3.4)
	Type of main()
	Linkage of main()

	Fundamental Types (3.6.1)
	Signed integral types
	Long double type
	Alignment requirements

	Integral Conversions (4.2)
	Conversion to a signed type

	Expressions (5)
	Overflow and divide check

	Function Call (5.2.2)
	Evaluation order

	Explicit Type Conversion (5.4)
	Explicit conversions between pointer and integral types

	Multiplicative Operators (5.6)
	Sign of the remainder

	Shift Operators (5.8)
	Result of right shift

	Relational Operators (5.9)
	Pointer comparisons

	Storage Class Specifiers (7.1.1)
	Inline functions

	Type Specifiers (7.1.6)
	Volatile
	Signed

	Asm Declarations (7.3)
	Effect of an asm declaration

	Linkage Specifications (7.4)
	Languages supported
	Linkage to functions
	Linkage to non-functions

	Class Members (9.2)
	Allocation of non-static data members

	Bitfields (9.6)
	Allocation and alignment of bitfields
	Sign of ‘plain’ bitfields

	Multiple Base Classes (10.1)
	Allocation of base classes

	Argument Matching (13.2)
	Integral arguments

	Exception Handling (experimental) (15)
	Predefined Names (16.10)
	Predefined macros

	14 The Streams library
	Introduction
	Synopsis
	Description
	Core Classes
	streambuf
	ios
	istream
	ostream
	iostream
	istream_withassign ostream_withassign iostream_withassign
	Iostream_init

	Predefined streams
	cin
	cout
	cerr
	clog

	Classes derived from streambuf
	filebuf
	stdiobuf
	strstreambuf

	Classes derived from istream, ostream, and iostream
	ifstream ofstream fstream
	istrstream ostrstream
	stdiostream

	See also

	filebuf
	Synopsis
	Description
	Constructors
	filebuf()
	filebuf(d)
	filebuf(d, p, len)

	Members
	pfb=f.attach(d)
	pfb=f.close()
	i=f.fd()
	i=f.is_open()
	pfb=f.open(name, mode, prot)
	p=f.seekoff(off, dir, mode)
	p=f.seekpos(pos, mode)
	psb=f.setbuf(ptr, len)
	i=f.sync()

	See also

	fstream
	Synopsis
	Description
	Constructors
	xstream()
	xstream(name, mode, prot)
	xstream(d)
	xstream(d,ptr,len)

	Member functions
	f.attach(d)
	f.close()
	f.open(name,mode,prot)
	pfb=f.rdbuf()
	f.setbuf(p,len)

	See also

	ios
	Synopsis
	Description
	Constructors and assignment
	ios(sb)
	ios(sr) s2=s
	ios() init(sb)

	Error states
	i=s.rdstate()
	s.clear(i)
	i=s.good()
	i=s.eof()
	i=s.fail()
	i=s.bad()

	Operators
	Formatting
	skipws
	left right internal
	dec oct hex
	showbase
	showpos
	uppercase
	showpoint
	scientific fixed
	unitbuf
	stdio
	oc=s.fill(c)
	c=s.fill()
	l=s.flags()
	l=s.flags(f)
	oi=s.precision(i)
	i=s.precision()
	l=s.setf(b)
	l=s.setf(b,f)
	l=s.unsetf(b)
	oi=s.width(i)
	i=s.width()

	User-defined Format Flags
	b=ios::bitalloc()
	i=ios::xalloc()
	l=s.iword(i)
	vp=s.pword(i)

	Other members
	sb=s.rdbuf()
	ios::sync_with_stdio()
	oosp=s.tie(osp)
	osp=s.tie()

	Built-in Manipulators
	sr<<dec sr>>dec
	sr<<hex sr>>hex
	sr<<oct sr>>oct
	sr>>ws
	sr<<endl
	sr<<ends
	sr<<flush

	See also

	istream
	Synopsis
	Description
	Constructors and assignment
	istream(sb)
	istream_withassign()
	inswa=sb
	inswa=ins

	Input prefix function
	i = ins.ipfx(need)

	Formatted input functions (extractors)
	ins>>x
	ins>>sb

	Unformatted input functions
	insp=&ins.get(ptr,len,delim)
	insp=&ins.get(c)
	insp=&ins.get(sb,delim)
	i=ins.get().
	insp=&ins.getline(ptr,len,delim)
	insp=&ins.ignore(n,d)
	insp=&ins.read(ptr,n)

	Other members
	i=ins.gcount()
	i=ins.peek()
	insp=&ins.putback(c)
	i=&ins.sync()
	ins>>manip

	Member functions related to positioning
	insp=&ins.seekg(off,dir)
	insp=&ins.seekg(pos)
	pos=ins.tellg()

	Manipulator
	ins>>ws
	ins>>dec
	ins>>hex
	ins>>oct

	Caveats
	See also

	manipulators
	Synopsis
	Description
	s<<SMANIP<T>(f,t) s>>SMANIP<T>(f,t) s<<SAPP<T>(f)(t) s>>SAPP<T>(f)(t)
	i>>IMANIP<T>(if,t) i>>IAPP<T>(if)(t)
	o<<OMANIP<T>(of,t) o<<OAPP<T>(of)(t)
	io<<IOMANIP<T>(iof,t) io>>IOMANIP<T>(iof,t) io<<IOAPP<T>(iof)(t) io>>IOAPP<T>(iof)(t)
	o<<setw(n) i>>setw(n)
	o<<setfill(n) i>>setfill(n)
	o<<setprecision(n) i>>setprecision(n)
	o<<setiosflags(l) i>>setiosflags(l)
	o<<resetiosflags(l) i>>resetiosflags(l)

	See also

	ostream
	Synopsis
	Description
	Constructors and assignment
	ostream(sb)
	ostream_withassign()
	outswa=sb
	inswa=ins

	Output prefix function
	i=outs.opfx()

	Output suffix function
	osfx()

	Formatted output functions (inserters)
	outs<<x
	outs<<sb

	Unformatted output functions
	outsp=&outs.put(c)
	outsp=&outs.write(s,n)

	Other member functions
	outsp=&outs.flush()
	outs<<manip

	Positioning functions
	outsp=&ins.seekp(off,dir)
	outsp=&outs.seekp(pos)
	pos=outs.tellp()

	Manipulators
	outs<<endl
	outs<<ends
	outs<<flush
	outs<<dec
	outs<<hex
	outs<<oct

	See also

	stdiobuf
	Synopsis
	Description
	Caveats
	See also

	streambuf – protected
	Synopsis
	Description
	Constructors
	streambuf()
	streambuf(b,len)

	The Get, Put, and Reserver area
	Functions to examine the pointers
	ptr=sb->base()
	ptr=sb->eback()
	ptr=sb->ebuf()
	ptr=sb->egptr()
	ptr=sb->epptr()
	ptr=sb->gptr()
	ptr=sb->pbase()
	ptr=sb->pptr()

	Functions for setting the pointers
	sb->setb(b, eb, i)
	sb->setp(p, ep)
	sb->setg(eb, g, eg)

	Other non-virtual members
	i=sb->allocate()
	i=sb->blen()
	dbp()
	sb->gbump(n)
	sb->pbump(n)
	sb->unbuffered(i) i=sb->unbuffered()

	Virtual member functions
	i=sb->doallocate()
	i=overflow(c)
	i=sb->pbackfail(c)
	pos=sb->seekoff(off, dir, mode)
	pos=sb->seekpos(pos, mode)
	sb=sb->setbuf(ptr, len)
	i=sb->sync()
	i=sb->underflow()
	i=sb->streambuf::doallocate()
	i=sb->streambuf::overflow(c)
	i=sb->streambuf::pbackfail(c)
	pos=sb->streambuf::seekpos(pos, mode)
	pos=sb->streambuf::seekoff(off, dir, mode)
	sb=sb->streambuf::setbuf(ptr, len)
	i=sb->streambuf::sync()
	i=sb->streambuf::underflow()

	See also

	streambuf – public
	Synopsis
	Description
	i=sb->in_avail()
	i=sb->out_waiting()
	c=sb->sbumpc()
	pos=sb->seekoff(off, dir, mode)
	pos=sb->seekpos(pos, mode)
	c=sb->sgetc()
	sb1=sb->setbuf(ptr, len, i)
	i=sb->sgetn(ptr, n)
	c=sb->snextc()
	i=sb->sputbackc(c)
	i=sb->sputc(c)
	i=sb->sputn(ptr, n)
	sb->stossc()
	i=sb->sync()

	See also

	strstream
	Synopsis
	Description
	Constructors
	istrstream(cp)
	istrstream(cp, len)
	ostrstream()
	ostrstream(cp,n,mode)
	strstream()
	strstream(cp,n,mode)

	istrstream members
	ssb = iss.rdbuf()

	ostrstream members
	ssb = oss.rdbuf()
	cp=oss.str()
	i=oss.pcount()

	strstream members
	ssb = ss.rdbuf()
	cp=ss.str()

	See also

	strstreambuf
	Synopsis
	Description
	Constructors
	strstreambuf()
	strstreambuf(a, f)
	strstreambuf(n)
	strstreambuf(ptr, n, pstart)

	Member functions
	ssb->freeze(n)
	ptr=ssb->str()
	ssb->setbuf(0,n)

	See also

	15 The Complex Math library
	Introduction
	Synopsis
	Description
	Diagnostics
	See also

	cartesian/polar
	Synopsis
	Description
	d = abs(x)
	d = norm(x)
	d = arg(x)
	y = conj(x)
	y = polar(m, a)
	d = real(x)
	d = imag(x)

	See also

	complex_error
	Synopsis
	Description
	i = complex_error(x)

	See also

	exp, log, pow, sqrt
	Synopsis
	Description
	z = exp(x)
	z = log(x)
	z = pow(x, y)
	z = sqrt(x)

	Diagnostics
	See also

	complex operators
	Synopsis
	Description
	Arithmetic operators:
	z = x + y
	z = -x
	z = x - y
	z = x * y
	z = x / y

	Comparison operators
	x == y
	x != y

	Assignment operators
	x += y
	x -= y
	x *= y
	x /= y

	Warning
	See also

	cplxtrig
	Synopsis
	Description
	y = sin(x)
	y = cos(x)
	y = sinh(x)
	y = cosh(x)

	Diagnostics
	See also

	Part 4 – Developing software for RISC�OS
	16 Portability
	General portability considerations
	Fundamental data types
	Byte ordering
	Store alignment
	Pointers and pointer arithmetic
	Function argument evaluation
	System-specific code

	ANSI C vs K&R C
	Lexical elements
	Conversions
	Expressions
	Declarations
	Statements
	Preprocessor
	1 Map source file characters to the source character set (this includes replacing trigraphs).
	2 Delete all newline characters which are immediately preceded by \.
	3 Divide the source file into preprocessing tokens and sequences of white space characters (comme...
	4 Execute preprocessing directives and expand macros.

	The ToPCC and ToANSI tools
	pcc compatibility mode
	Language and preprocessor compatibility
	Standard headers and libraries
	ctype.h
	errno.h
	math.h
	signal.h
	stdio.h
	string.h
	stdlib.h
	float.h
	limits.h
	locale.h

	Environmental aspects

	17 Assembly language interface
	Register names
	Register usage
	Control arrival
	Passing arguments
	Return link
	Structure results
	Storage of variables
	Function workspace
	Examples

	18 How to write relocatable modules in C
	Getting started
	Constraints on modules written in C
	Overview of modules written in C
	Functional components of modules written in C
	The C module header generator
	The format of input to CMHG
	Runnable application code
	Initialisation code
	Finalisation code
	Service call handler
	Title string
	Help string
	Help and command keyword table
	SWI chunk base number
	SWI handler code
	SWI decoding table
	SWI decoding code
	Turning interrupts on and off
	IRQ handlers
	Event handler
	Library initialisation code

	19 Overlays
	Paging vs overlays
	When to use overlays

	Part 5 – Appendixes
	Appendix�A: Changes to the C compiler
	Appendix�B: C�errors and warnings
	Interpreting CC errors and warnings
	Warnings
	Warning messages

	Non-serious errors
	Serious errors
	Fatal errors
	System errors

	Appendix�C: C++ errors and warnings
	‘Not implemented’ messages
	actual parameter expression of type string literal
	address of bound member as actual template argument
	& of op
	1st operand of .* too complicated
	2nd operand of .* too complicated
	call of virtual function function before class has been completely declared
	cannot expand inline function function with for statement in inline
	cannot expand inline function function with statement after "return"
	cannot expand inline function function with two local variables with the same name (name)
	cannot expand inline function needing temporary variable of array type
	cannot expand inline function with return in if statement
	cannot expand inline function with static name
	cast of non-integer constant
	cannot expand inline void function called in comma expression
	cannot expand inline void function called in for expression
	cannot expand value-returning inline function with call of ...
	cannot merge lists of conversion functions
	catch
	class defined within sizeof
	class hierarchy too complicated
	conditional expression with type
	constructor needed for argument initializer
	copy of member[], no memberwise copy for class
	default argument too complicated
	ellipsis (...) in argument list of template function name
	explicit template parameter list for destructor of specialized template class name
	formal type parameter name used as base class of template
	forward declaration of a specialized version of template name
	general initializer in initializer list
	initialization of name (automatic aggregate)
	initialization of union with initializer list
	initializer for class member array with constructor
	initializer for local static too complicated
	initializer for multi-dimensional array of objects of class class with constructor name
	implicit static initializer for multi-dimensional array of objects of class with constructor
	initializer list for local variable name
	label in block with destructors
	local class name within template function
	local static class name (type)
	local static name has class::~class() but no constructor (add class:: class())
	lvalue op too complicated
	needs temporary variable to evaluate argument initializer
	nested class type as parameter type to template class name
	nested class name within nested class name within template class name
	nested depth class beyond 9 unsupported
	non-trivial declaration in switch statement
	out-of-line definition of member function of class nested within template class
	overly complex op of op
	parameter expression of type float, double or long double
	postfix template function operator ++(): please make a class member function
	pointer to member function type too complicated
	public specification of overloaded function
	reuse of formal template parameter name
	specialized template name not at global scope
	static member anonymous union
	struct name member name
	template function actuals too complicated (please simplify)
	template function instantiated with local class name
	temporary of class name with destructor needed in expr expression
	too few initializers for name
	type1 assigned to type2 (too complicated)
	use of member with formal template parameter
	visibility declaration for conversion operator
	volatile functions
	wide character constant wide character string
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	C
	F
	I
	M
	O
	S
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

