
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Acorn C/C++

AMR draft (Version 10.06)

ii

Copyright © 1999 Acorn Computers Limited. All rights reserved.

Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

The product described in this manual is not intended for use as a critical component in
life support devices or any system in which failure could be expected to result in
personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product and its
use (including the information and particulars in this manual) are given by Acorn
Computers Limited in good faith. However, Acorn Computers Limited cannot accept
any liability for any loss or damage arising from the use of any information or
particulars in this manual.

If you have any comments on this manual, please complete the form at the back of the
manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your supplier
is available to help resolve any queries you might have.

ACORN, the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd.

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN 1 85250 166 9
Part number 0484,232
Issue 1, October 1999

Introduction 1
Installation of Acorn Desktop C 1
The C compiler 2
The C++ translator 2
This user guide 2
Useful references 6
Part 1 – Using the C tools 9
CC and C++ 11
The underlying programs 11
Getting started with CC and C++ 12
Libraries 14
File naming and placing conventions 15
Include file searching 18
The SetUp dialogue box 22
The SetUp menu 24
Output messages 40
The icon bar menu 41
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Command lines 42
Worked examples 46
CMHG 51
Starting CMHG 52
The icon bar menu 53
Example output 53
Command line interface 54
ToANSI 55
ToANSI C translation 56
Starting ToANSI 57
The icon bar menu 58
Example output 58
Command line interface 59
ToPCC 61
ToPCC C translation 62
Starting ToPCC 63
The icon bar menu 64
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Example output 65
Command line interface 66
Part 2 – C language issues 67
C implementation details 69
Implementation details 70
Identifiers 70
Data elements 70
Structured data types 73
Pointers 74
Arithmetic operations 74
Expression evaluation 75
Implementation limits 76
Standard implementation definition 77
Translation (A.6.3.1) 77
Environment (A.6.3.2) 77
Identifiers (A.6.3.3) 78
Characters (A.6.3.4) 78
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Integers (A.6.3.5) 80
Floating point (A.6.3.6) 80
Arrays and pointers (A.6.3.7) 80
Registers (A.6.3.8) 81
Structures, unions, enumerations and bitfields (A.6.3.9) 81
Qualifiers (A.6.3.10) 82
Declarators (A.6.3.11) 82
Statements (A.6.3.12) 82
Preprocessing directives (A.6.3.13) 82
Library functions (A.6.3.14) 82
Extra features 86
#pragma directives 86
Special function declaration keywords 89
Special variable declaration keywords 90
The C library 91
assert.h 92
ctype.h 93
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

errno.h 94
float.h 95
limits.h 96
locale.h 97
math.h 98
setjmp.h 99
signal.h 100
stdarg.h 102
stddef.h 104
stdio.h 105
stdlib.h 119
string.h 129
time.h 135
The ANSI library 139
Extra functions 140
The Event library 141
Introduction 141
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Registering and deregistering event handlers 141
Registering and deregistering message handlers 142
Quitting applications 142
Programmer interface 142
Initialisation 143
Polling 144
Registering handlers 145
Handlers 147
Example 148
The Wimp library 151
Programmer interface 152
The Toolbox library 165
The Render library 167
Part 3 – C++ language issues 169
C++ implementation details 171
Translation Limits 171
Identifiers (2.3) 172
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Character Constants (2.5.2) 172
Floating Constants (2.5.3) 172
String Literals (2.5.4) 173
Start and Termination (3.4) 173
Fundamental Types (3.6.1) 173
Integral Conversions (4.2) 174
Expressions (5) 174
Function Call (5.2.2) 174
Explicit Type Conversion (5.4) 175
Multiplicative Operators (5.6) 175
Shift Operators (5.8) 175
Relational Operators (5.9) 175
Storage Class Specifiers (7.1.1) 176
Type Specifiers (7.1.6) 176
Asm Declarations (7.3) 176
Linkage Specifications (7.4) 176
Class Members (9.2) 177
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Bitfields (9.6) 177
Multiple Base Classes (10.1) 177
Argument Matching (13.2) 177
Exception Handling (experimental) (15) 178
Predefined Names (16.10) 178
The Streams library 179
Introduction 180
filebuf 184
fstream 188
ios 192
istream 202
manipulators 209
ostream 213
stdiobuf 219
streambuf – protected 220
streambuf – public 228
strstream 233
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

strstreambuf 236
The Complex Math library 239
Introduction 240
cartesian/polar 241
complex_error 243
exp, log, pow, sqrt 246
complex operators 248
cplxtrig 251
Part 4 – Developing software for RISC OS 253
Portability 255
General portability considerations 255
ANSI C vs K&R C 258
The ToPCC and ToANSI tools 261
pcc compatibility mode 261
Environmental aspects 265
Assembly language interface 267
Register names 267
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Register usage 268
Control arrival 269
Passing arguments 269
Return link 269
Structure results 270
Storage of variables 270
Function workspace 271
Examples 271
How to write relocatable modules in C 273
Getting started 273
Constraints on modules written in C 274
Overview of modules written in C 274
Functional components of modules written in C 274
Overlays 289
Paging vs overlays 289
When to use overlays 290
Part 5 – Appendixes 293
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Changes to the C compiler 295
C errors and warnings 297
Interpreting CC errors and warnings 297
Warnings 298
Non-serious errors 306
Serious errors 316
Fatal errors 330
System errors 331
C++ errors and warnings 333
‘Not implemented’ messages 333
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

1 Introduction

corn C/C++ is a development environment for producing RISC OS desktop

applications and relocatable modules written in ANSI C and/or in C++. It consists A
of a number of programming tools which are RISC OS desktop applications. These tools

interact in ways designed to help your productivity, forming an extendable environment
integrated by the RISC OS desktop. Acorn C/C++ may be used with Acorn Assembler
(a part of this product) to provide an environment for mixed C, C++ and assembler
development.

Acorn C/C++ includes tools to:

l edit program source and other text files

l search and examine text files

l convert C source and header text between ANSI and UNIX dialects

l examine some binary files

l compile and link C programs

l compile and link C++ programs

l construct relocatable modules entirely from C or C++

l compile and construct programs under the control of makefiles, these being set up
from a simple desktop interface

l squeeze finished program images to occupy less disk space

l construct linkable libraries

l debug RISC OS desktop applications interactively

l design RISC OS desktop interfaces and test their functionality

l use the Toolbox to interact with those interfaces.

Most of the tools in this product are also of general use for constructing applications in
other programming languages, such as ARM Assembler. These non-language-specific
tools are described in the accompanying Desktop Tools guide.

Installation of Acorn Desktop C
Installation of Acorn C/C++ is described in the chapter Installing Acorn C/C++ on
page 7 of the accompanying Desktop Tools guide.
1

The C compiler

CC
ly
eady

C
duct:

 C++
s are
The C compiler
The Acorn C compiler for RISC OS (the tool CC supplied as a part of this product) is a
full implementation of C as defined by the 1989 ANSI language standard. To obtain this
standard document, see the section Useful references on page 6. It is tested with the
Plum-Hall C Validation Suite version 2.00, and passes all sections, except for failing to
produce two required diagnostic messages, as described in the release note
accompanying this user guide.

The C++ translator
The C++ translator for RISC OS (the tool C++ supplied as a part of this product) is a
port of Release 3.0 of AT&T’s CFront product.

This user guide
This guide is a reference manual for the C tools CC, C++, CMHG, ToANSI and ToP
working as part of the development environment of Acorn C/C++. These are the on
tools in this product which are not used for programming in other languages, and alr
described in the accompanying Desktop Tools guide. This manual also documents the
and C++ library support provided and other aspects that are particular to this C pro

l special features of this implementation of the C and C++ languages

l operating the Acorn C/C++ tools specific to the C and C++ languages

l developing programs for the RISC OS environment:

l Portability issues, including the portable C compiler (pcc) facility

l Desktop applications

l Relocatable modules

l Overlays

l Calling other programs and languages from C.

This guide is not intended as an introduction to C or C++, and does not teach C or
programming; nor is it a reference manual for the ANSI C standard. Both these need
addressed by publications listed in the section Useful references on page 6.
2

Introduction
This guide is organised into parts:

Part 1 – Using the C tools

Part 2 – C language issues

Part 3 – C++ language issues

Part 4 – Developing software for RISC OS

Part 5 – Appendixes

Part 1 – Using the C tools

This part of the guide describes the operation of the programming tools specific to C.
The first chapter describes the interaction of the C tools with the rest of the development
environment; each of the remaining chapters is devoted to an individual tool. Examples
in the text and on disc are used to illustrate several points.

The chapters are:

l CC and C++

l CMHG

l ToANSI

l ToPCC

Part 2 – C language issues

This covers issues to do with the C programming language itself, in particular those
parts of the ANSI standard that are necessarily machine- or operating system-specific.

The chapters are:

l C implementation details

How Acorn C implements those aspects of the language which ANSI leaves to the
discretion of the implementor; and how Acorn C behaves in those areas covered by
Appendix A.6 of the draft standard (which lists those aspects which the standard
requires each implementation to define).
3

This user guide
l The C library

This chapter works through the headers of the C library, (assert.h to time.h),
outlining the contents of each one:

l function prototypes

l macro, type and structure definitions

l constant declarations.

l The ANSI library

This chapter details the ANSI library, a superset of the C library that provides
additional features useful in debugging and profiling your software.

l The Event library

This chapter details the Event library, which provides calls for you to more easily
dispatch Toolbox and Wimp events within Toolbox based applications.

l The Wimp library

This chapter documents the Wimp library, which provides a set of C veneers onto
the Wimp (or Window Manager) SWI interface.

l The Toolbox library

This chapter documents the Toolbox library, which provides a set of C veneers onto
the Toolbox SWIs.

l The Render library

This chapter documents the Render library, which provides a set of C veneers onto
the DrawFile SWIs, used to render Draw files.

Part 3 – C++ language issues

This covers issues to do with the C++ programming language, such as details of its
implementation and of the libraries supplied with it.

l C++ implementation details

This chapter describes implementation specific behaviour of Acorn C++.

l The Streams library

This chapter describes the C++ Streams library, giving a synopsis (including
prototypes) and a description of each available interface.

l The Complex Math library

This chapter describes the C++ Complex Math library, giving a synopsis (including
prototypes) and a description of each available interface.
4

Introduction

 write

 are

d
Part 4 – Developing software for RISC OS

This part of the Guide tells you how to write software in C for the RISC OS
environment. Examples in the text and on disc are used to illustrate each type of program
development. It also includes a chapter on portability to help with porting applications in
C to and from RISC OS.

The chapters are:

l Portability

The chapter covers:

l portability considerations in general

l the major differences between ANSI and ‘K&R’ C

l using the pcc compatibility mode of the Acorn compiler

l standard headers and libraries

l environmental aspects of portability.

l Assembly language interface

How to handle procedure entry and exit in assembly language, so that you can
programs which interface correctly with the code produced by the C compiler.

l How to write relocatable modules in C

Relocatable modules – the building blocks of the RISC OS operating system –
needed for device drivers and similar low-level software.

l Overlays

This chapter explains how to write an application using overlays, with a worke
example as an illustration.

Part 5 – Appendixes

The appendixes are:

l Changes to the C compiler

This is the fifth release of the C compiler product for Acorn computers running the
RISC OS operating system. The appendix highlights all those features that are new
since the previous release (Acorn Desktop C).

l C errors and warnings

Messages produced by the compiler, of varying degrees of severity.

l C++ errors and warnings

Messages produced by the translator, of varying degrees of severity.
5

Useful references

nt,

are
all
Conventions used

Throughout this Guide, a fixed-width font is used for text that the user should type, with
an italic version representing classes of item that would be replaced in the command by
actual objects of the appropriate type. For example:

cc options filenames

This means that you type cc exactly as shown, and replace options and filenames
by specific examples.

Where it is necessary to differentiate between text you type, and that output by the
computer, your input is shown in bold, and the computer’s response in a normal
weight.

Useful references

C programming
l Harbison, S P and Steele, G L, (1984) A C Reference Manual, (second edition).

Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-109802-0.

This is a very thorough reference guide to C, including a useful amount of
information on the ANSI C standard.

Since the Acorn C compiler is an ANSI compiler, this book is particularly releva
but you must get the second edition for coverage of the ANSI standard.

l Kernighan, B W and Ritchie, D M, (1988) The C Programming Language (second
edition). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362- 8.

This is the original C ‘bible’, updated to cover the essentials of ANSI C too.

l Koenig, A, (1989) C Traps and Pitfalls, Addison-Wesley, Reading, Mass, USA.
ISBN 0-201-17928-8.

This book explains how to avoid the most common traps and pitfalls that ensn
even the most experienced C programmers. It provides informative reading at
levels.
6

Introduction

e C

heque

ted

ut it
C++ Programming
l Stroustrup, B, (1991) The C++ Programming Language, (second edition).

Addison-Wesley, Reading, Mass, USA. ISBN 0-201-53992-6.

The standard book describing the C++ language, including a complete copy of the
Reference Manual.

l Ellis, A and Stroustrup, B, (1990) The Annotated C++ Reference Manual.
Addison-Wesley, Reading, Mass, USA. ISBN 0-201-51459-1.

The original Reference Manual, used as an ANSI base document, with additional
annotations and commentary sections.

RISC OS
l The User Guide supplied with your computer, which describes how to use the RISC

OS operating system and the applications Edit, Paint and Draw.

l The RISC OS 3 Programmer’s Reference Manual.

l The RISC OS 3 Style Guide.

The ANSI C standard

The American National Standard for Information Systems – Programming Languag
is available with the reference number ANSI X3.159-1989 for £45.00 from:

British Standards Institution
Foreign Sales Department
Linford Wood
Milton Keynes
MK14 6LE

Members of the BSI can order copies by telephone; non-members should send a c
payable to BSI.

However, you should find the coverage of ANSI C in this manual and the books lis
above adequate for all but the most demanding requirements.

The ANSI C++ standard

At the time of going to press, the ANSI standard for C++ was not yet published – b
is unlikely to deviate significantly from The Annotated C++ Reference Manual referred
to above.
7

8

Part 1 – Using the C tools
9

10

2 CC and C++

C is a desktop tool which provides an easy interface to the CC and Link programs

es
that Acorn C/C++ installs in your computer’s library. It constructs command linC
and passes them to these programs. Likewise, C++ is a desktop tool that constructs
Link
overs

pter
er,
tion

sses
command lines for the CC, CFront and Link programs in the library.

Because these two desktop tools are so similar, and share the underlying CC and
programs, we describe them in the same chapter. Most of the rest of this chapter c
the CC and C++ options, and gives some programming examples.

If you are new to RISC OS and the Acorn C/C++ product, read the whole of this cha
before starting to use Acorn C/C++. If you are an experienced C or C++ programm
you will find this chapter essential for reference, and may choose to tackle the sec
Worked examples on page 46 first.

The underlying programs
The CC compiler is a full implementation of ANSI C as described in the chapter
Introduction on page 1. It consists of a preprocessor and a code generator; it proce
text files containing the source and headers of programs into linkable object files.

The Link program combines these object files to produce executable image files.

CFront is a C++ translator; it is a port of Release 3.0 of AT&T’s CFront product. It
converts C++ source code to C source code.

The characteristics of CC as a language implementation are defined in Part 2 –
C language issues on page 67. Similar information for C++ is in Part 3 – C++ language
issues on page 169.

How the tools use them

The command line that the CC tool produces first calls CC to preprocess and compile
the source into object files; it then calls Link to link those object files.

The command line that the C++ tool produces first calls the CC preprocessor in a special
C++ compatible mode; it then calls CFront to convert the resultant source files to C; it
then calls CC to compile the C source into object files, again using a special C++
compatible mode; it finally calls Link to link those object files.
11

Getting started with CC and C++

ind
r is

r those

s
or

in the
 of
A note about Make

The Make tool (see the chapter Make on page 57 of the Desktop Tools guide) can also
construct command lines for the underlying CC, CFront and Link programs. You’ll f
it a better tool for managing large projects. However, much of what is in this chapte
relevant, since Make both uses the same underlying programs, and sets options fo
programs with the CC and C++ tools’ user interfaces.

Getting started with CC and C++
To use the CC or C++ tool, first open the AcornC_C++.Tools directory display, then
double click on !CC or !C++ as required. (You cannot start CC or C++ by double
clicking on a file – the tools own no file type unlike, for example, Draw.)

The tool’s icon appears on the icon bar:

Clicking Select on this icon, or dragging a source file from a directory display to thi
icon, brings up the SetUp dialogue box. To see this work, open the directory display f
AcornC_C++.Examples, and then drag either CHello.c.HelloW to the CC icon,
or C++Hello.c++.HelloW to the C++ icon. The SetUp dialogue box appears:

As you have dragged a source file to bring up this dialogue box, its name appears
writable Source icon; otherwise this icon would have appeared containing the name
the last filename entered there, or be empty if there were none.
12

CC and C++

ing
Clicking Menu on the SetUp dialogue box brings up the SetUp menu:

The SetUp dialogue box and menu specify the next compilation to be done. You start the
next job by clicking Select on the Run button on the dialogue box (or on the Command
line menu dialogue box). Clicking Select on the Cancel button removes the SetUp
dialogue box and clears any changes you have just made to the options settings, leaving
them back in the state they were in before you brought up the SetUp box. The options
last until you adjust them again or reload the tool; or you can save the options for future
use with an item from the main icon menu.

Ensure that the option settings are the defaults, as in the above pictures. Click on the
Run button to compile either HelloW example with an integral link step. Save the
executable image file produced in the directory above that holding the source, naming it
HelloW, then double click Select on the file’s icon to run it. The program runs, putt
a Hello world message in the standard RISC OS command line window:
13

Libraries

pter
Libraries

C libraries

There are several libraries provided to support the C compiler:

l The stubs for the shared C library

This provides all the standard facilities of the language, as defined by the ANSI
standard document. Code using calls to the shared C library will be portable to other
environments if an ANSI compiler and library are available for that environment.
See the chapter The C library on page 91.

l The ANSI library

The ANSI library is a stand-alone version of the shared C library that contains a few
extra functions useful in debugging and profiling your code. You should use it for
development only, using the shared C library in any final product. See the chapter
The ANSI library on page 139.

l The Event library

The purpose of the ‘events’ library is to allow the client to more easily dispatch
Toolbox and Wimp events within Toolbox based applications. See the chapter The
Event library on page 141.

l The Wimp library

This is a low-level library that provides veneers to the Wimp_… SWI calls; you
may use it to interface directly with the Window Manager module. See the cha
The Wimp library on page 151, and the RISC OS 3 Programmer’s Reference
Manual.

l The Toolbox library

This library provides veneers onto the Toolbox SWIs; both the veneers and the
SWIs are described in the accompanying User Interface Toolbox guide.

C++ libraries

The C++ compiler produces output which uses the ANSI C library (by linking with the
stubs). A C++ program also needs to link with the C++ library which is held in
AcornC.C++.libraries.c++lib.o.c++lib. This has support functions such
as new and delete, and includes the streams and complex maths libraries.
14

CC and C++

bly
input

t

y are
the
File naming and placing conventions
This section explains the concept of a work directory, and describes the naming
conventions used to identify the different classes of file you will come across when
using Acorn C/C++.

Work directory

Both CC and C++ operate in a work directory. The work directory is where the tools
place all output files that you don’t explicitly place yourself by dragging from a Save As
dialogue box. This includes object files to be linked by an integral link step, assem
language output and listing output. The work directory is also a place where some
source and header files are looked for – see the next sections for more details.

If you’re using Make, the work directory is simply the directory containing the makefile
controlling the job.

If you’re using the CC or C++ tools, the work directory is formed from the directory
containing the source file, modified by the relative path name specified by the Work
directory option on the SetUp menu. The default Work directory SetUp menu value is
^.

For example, when compiling the example ‘Hello world’ C program with the defaul
Work directory setting:

l The source is in the directory AcornC_C++.Examples.CHello.c

l The work directory is therefore AcornC_C++.Examples.CHello.c.^, i.e.
AcornC_C++.Examples.CHello.

A typical directory arrangement is:

The resource files (such as !Run and Res) normally found in an application director
not shown above. With directories arranged as above and default option settings,
work directories for both the Make and the CC/C++ tools are the same, namely
Examples.!MyApp.

!MyAPP

Makefile !RunImage c h o

Examples
15

File naming and placing conventions

top
ix

d file
id
ng to

ent of
rted

 they
etUp

en

he
der
Filename conventions

The Acorn C/C++ system, in common with others, uses naming conventions to identify
the classes of file involved in the compilation and linking process. Many systems use
conventional suffixes for this. For example, the suffix .c denotes C source files on
UNIX and MS-DOS systems. This convention clashes with Acorn’s use of the full-s
character in pathnames. It is more natural under Acorn filing systems to use a pref
convention, e.g. c.foo, where c is the directory containing C source files, and foo is
the filename.

However, portability is an increasingly important issue. CC recognises the standar
naming conventions and performs the appropriate transformations to construct val
RISC OS pathnames. The following sections summarise the conventions for referri
source, include, object and program files.

Rooted filenames

A filename is rooted if it is

l a RISC OS filename beginning with a ‘$’ or an ‘&’ – for example:

$.library.h.baricon &.h.myheader

l a UNIX filename beginning with a ‘/’ – for example:

/library/baricon.h

l an MS-DOS filename beginning with a ‘\’ – for example:

\library\baricon.h

Rooted filenames are used by CC as absolute specifications of filenames, independ
work directories, search paths, etc. Rooted UNIX or MS-DOS filenames are conve
into the Acorn syntax and prefix forms.

Source files

The CC and C++ tools specify the source files to be compiled on the command line
construct and pass to the underlying programs. Dragging a source file to the CC S
dialogue box specifies the file as an absolute rooted filename.

Make uses a makefile to specify the source files; their pathnames are normally giv
relative to the work directory. C source files will be looked for in the subdirectory c of
the work directory. To aid portability, a file specified as foo.c in a makefile will be
looked for in @.c.foo, where @ means the work directory. C++ source files are
similarly looked for in the subdirectory c++.

Include files

The way in which the compiler searches for included files is dealt with in detail in t
section Include file searching on page 18. Here we describe the issues of naming hea
files and how to name them in #include lines in your C and C++ program source.
16

CC and C++

 For

ering

nd

at

tored

s to
 file
Include files are often headers for libraries, and are incorporated by issuing the
#include directive – dealt with by the preprocessor – at the start of a source file.
instance, in the C HelloW example:

#include <stdio.h>

By convention, header files are placed in subdirectory h. This convention is followed
here. You can use subdirectory h of the work directory for your own header files, which
can be incorporated with a source line like:

#include "myfile.h"

Note that both the example filenames stdio.h and myfile.h are in suffix form
rather than Acorn prefix form. This is because you can make use of Acorn C/C++’s
filename processing to interpret these, leaving program lines which do not need alt
to port them to machines expecting suffixes.

To facilitate the porting of code from UNIX and MS-DOS to RISC OS, UNIX-style a
MS-DOS-style filenames are translated to equivalent RISC OS-style filenames.

For example:

../include/defs.h is translated to ^.include.h.defs

..\cls\hash.h is translated to ^.cls.h.hash
includes.h is translated to h.includes

but:

system.defs is translated to system.defs

In the same way, the lists of directory names given as arguments to the compiler’s
Include and Default path SetUp options (see below) are translated to RISC OS form
before being used, in the rare event that this is necessary.

Object files

If you use the CC or C++ tool to compile a single file with the SetUp dialogue box
option Compile only enabled, you use a standard Save As dialogue box to save the
resultant object file.Otherwise the object files created by the compiler are instead s
in the o subdirectory of the work directory. Thus the result of compiling c.sieve will
be found in o.sieve.

Program files

If you haven’t enabled the Compile only option on the CC or C++ tool’s SetUp menu,
the tool compiles sources to object files, and then links them with the C library stub
produce an executable program file. You may find it convenient to save this program
in the work directory itself – there is no conventional suffix for these.
17

Include file searching

d

ly

le

ther
 filing

de
 source.
Compilation list files

If you enable the Listing option on the CC tool’s SetUp menu, then for each compile
source file the CC tool creates a compilation listing file in the l subdirectory of the work
directory. Thus compiling c.sieve with Listing enabled will by default result in the
list file l.sieve being created.

The C++ tool does not have a Listing option.

Assembly list files

If the CC or C++ tool’s SetUp menu option Assembler is enabled, no object code is
generated. Instead, an assembly listing of the code is created. If only one assemb
listing file is produced, you save it from a standard Save As dialogue box. If more than
one is produced these are placed in the subdirectory s of the work directory. Thus
compiling c.sieve with Assembler enabled can result in the assembly language fi
s.sieve being created.

Filename validity

The compiler does not check whether the filenames you give are acceptable –whe
they contain only valid characters and are of acceptable length – this is done by the
system.

Include file searching
The process of converting text C or C++ source to linkable object files of binary co
can be seen as a pipeline of several processes. The first stage is preprocessing the
It is at this stage that the text of header files is brought in at the position of #include
directives in the source text.

The preprocessor – which is used by both the CC and C++ tools – handles #include
directives of two forms:

#include <filename>

or

#include "filename"

You will normally include four types of header file:

l headers for the ANSI parts of the C library

l headers for the non-ANSI parts of the C library

l headers for the other libraries supplied with Acorn C/C++

l headers for your own include files.
18

CC and C++

th
e
ed

 with

st of
 use

rs:

ence
A special feature of the Acorn C/C++ system is that the standard ANSI headers are built
into the compiler, and are used by default. By writing the filename in the angle bracket
form, you indicate that the include file is a system file, and thus ensure that the compiler
looks first in its built-in filing system. Of the common types of header above, only the
headers for the ANSI parts of the C library should be referred to as system files in angle
brackets. Writing the filename in the double quote form indicates that the include file is
a user file.

The headers for the non-ANSI parts of the main C library – kernel, pragmas, SWIs
and varargs – are not built in to the compiler; nor are the headers for the other
libraries supplied with Acorn C/C++. However, by default the CC and C++ tools bo
set the Include icon on their SetUp dialogue box to C:. This makes the preprocessor us
the value of the C$Path system variable to find the headers for all the libraries suppli
in AcornC_C++.Libraries.

You can include headers for other libraries by adding the parent of the h directory
holding them to the Include writable icon on the tool’s SetUp dialogue box. The easiest
way to do so is to drag the included directory’s icon from a directory display to the
writable field.

As mentioned before, you can use the subdirectory h of the work directory for the last
common type of header file – your own header files, which you refer to as user files
directives such as:

#include "myfile.h"

This is all you need to know for basic use of CC with largely default options. The re
this section provides a level of detail useful for reference or studying if you wish to
CC in a non-standard way.

Reference section

The way in which the preprocessor looks for included files depends on three facto

l whether the filename is rooted

l whether the filename in the #include directive is between angle brackets <> or
double quotes ""

l use of the Include and Default path SetUp options (including the special filename
:mem).

If a filename is not rooted (as defined earlier) the preprocessor looks for it in a sequ
of directories called the search path.

Search path

The order of directories in the search path is as follows:
19

Include file searching

the

ctory
d
is a

e

e
1 The compiler’s own in-memory filing system.

This is only searched for #include <filename> directives when you have not
enabled the SetUp menu’s Default path option.

2 The current place (see the section Nested includes on page 20).

This is only searched for #include "filename" directives.

3 Arguments to the SetUp dialogue box’s Include option, if used.

As noted above, this is set to C: by default, and so all the directories supplied in
AcornC_C++.Libraries will be searched.

4 The system search path:

l The path given as an argument to the Default path SetUp menu option (see
below), if this is enabled; otherwise

l The value of the system variable C$Libroot, if this is set; otherwise

l $.Clib.

Nested includes

The current place is the directory containing the source file (C or C++ source, or
#included header) currently being processed by the compiler. Often, this will be
work directory.

When a file is found relative to an element of the search path, the name of the dire
containing that file becomes the new current place. When the compiler has finishe
processing that file it restores the old current place. So at any given instant, there
stack of current places corresponding to the stack of nested #includes.

For example, suppose the current place is $.include and the compiler is seeking the
#included file "sys.defs.h" (or "sys.h.defs", "sys/defs.h", etc). Now
suppose this is found as:

$.include.sys.h.defs.

Then the new current place becomes $.include.sys, and files #included by
h.defs, whose names are not rooted, will be sought relative to $.include.sys.

This is the search rule used by BSD UNIX systems. If you wish, you can disable th
stacking of current places using the SetUp menu option Features with the argument K,
to get the search rule described originally by Kernighan and Ritchie in The C
Programming Language. Then all non-rooted user includes are sought relative to the
directory containing the source file being compiled.

In all this, the penultimate .c, .c++ and .h components of the path are omitted. Thes
are logically part of the filename – a filename extension – not logically part of the
directory structure. However, directory names other than c, c++, h, o and s are not so
20

CC and C++

ose

,
plete

m

 set.
recognised (as filename extensions) and are used ‘as is’. For example, the name
sys.new.defs is exactly that: it is not translated to sys.defs.new and, if it is
found, the new part of the name does become part of the new current path.

Use of :mem

You can use the SetUp menu option Default path to provide your own system search
path, as mentioned in step 4 of the section Search path above. The preprocessor will then
use the argument you give to the Default path option as the system search path. You
will only require this feature if you use implementations of the C library other than th
provided with the Acorn C system.

Use of the Default path option also prevents a #include <filename> directive
being first searched for in the in-memory filing system (see step 1 of the section Search
path above). It can be reinstated by using the pseudo-filename :mem as an argument to
the Default path or Include options. If :mem is included in the search path in this way
its position in the path is as specified – not necessarily first – so you can take com
control over where the compiler looks for #included files.

Use of C$Libroot

C$Libroot is an environment variable that you can use to provide your own syste
search path, as shown in step 4 of the section Search path above. It is not needed for
normal use of the compiler.

If C$Libroot is set, and you have not used the Default path option, the preprocessor
will use the variable’s value as the system search path. By default, C$Libroot is not
set.

To set the value of C$Libroot to, for example, "$.MyLib", at the command line
type:

*Set C$Libroot $.MyLib

This variable is also used by the Acorn C/C++ system as the library search path, if
With the example given, the compiler will now look for include files in $.mylib.h,
and for libraries in $.mylib.o.
21

The SetUp dialogue box

to be

ith
tion

e
d

urce

are

h no

ers

s
The SetUp dialogue box
Clicking Select on the tool’s icon bar icon or dragging a source file from a directory
display to this icon brings up the tool’s SetUp dialogue box:

Source

This writable icon in the SetUp dialogue box contains the names of the source files
compiled.

When the SetUp box is obtained by clicking on the tool’s main icon, it comes up w
this icon containing its previous setting. You can thus repeat your previous compila
by just clicking on the Run button.

If the SetUp box appears as a result of dragging a source file to the main icon, the
writable Source icon appears containing the new source file name.

When the SetUp box appears the Source icon has input focus, and can be edited in th
normal RISC OS fashion. If you select a further source file in a directory display an
drag it to this writable icon, its name is added to a list of those already there.

If you drag pre-compiled or pre-assembled object files to the Source icon, they are
included in the set of object files linked together in an integral link step after the so
files themselves have been compiled to object files.

Include

This SetUp dialogue box icon adds specified directories to the list of places which
searched for #include files. The directories in the Include icon are searched in the
order in which they are given. The path should end with the name of a directory, wit
.h, which is added automatically.

The default setting of Include is to C:. This makes the preprocessor search for head
in the directories listed in the RISC OS environment variable C$Path, set by
AcornC_C++.!SetPaths. The directories listed are those that hold all the librarie
supplied with the product in AcornC_C++.Libraries
22

CC and C++

th

p is
file,

ject

m a

The

 a
the

a
urce
 any

ng
For more details of how to use #include lines and places searched for headers – bo
before and after those in this Include list – see the section File naming and placing
conventions on page 15.

Compile only

This option switches off or on the linking of object files. When enabled, the link ste
not performed, and the tools output object files. If you’re only compiling one source
you drag the object file produced from a Save as dialogue box. Otherwise, multiple files
are saved in the o subdirectory of the work directory.

If not enabled, both CC and C++ instead perform an integral link step, linking any ob
files produced by compilation to any additional ones dragged to the Source icon, and
library files, producing an executable program file. You control the saving of this fro
Save as dialogue box.

Compile only is not enabled by default.

Preprocess only

This option is not available for the C++ tool.

If this option is enabled, only the preprocessor phase of the compiler is executed.
output from the preprocessor is sent to the standard output window. The standard
non-interactive tool output window save facility is useful here to save this output to
file or SrcEdit window. By default, comments are stripped from the output, but see
SetUp menu option Keep comments on page 26.

Preprocess only is not enabled by default.

Debug

This option switches on or off production of debugging tables. When enabled, extr
information is included in the resultant object files and image files which enables so
level debugging of the linked image by the DDT debugger. If this option is disabled,
image file finally produced can only be debugged at machine level.

If you are only compiling the source to object files, you must remember to enable
debugging in the Link tool when you link them. If you don’t, you’ll lose the debuggi
information produced by the CC and C++ tools.

Debug is not enabled by default.
23

The SetUp menu
Throwback

This option switches editor throwback on or off. When enabled, if the DDEUtils module
and SrcEdit are loaded, any compilation errors cause the editor to display an error
browser. Double clicking Select on an error line in this browser makes the editor display
the source file containing the error, with the offending line highlighted. See the chapter
SrcEdit on page 71 of the accompanying Desktop Tools guide for more details.

Throwback is on by default.

The SetUp menu
Clicking Menu on the SetUp dialogue box brings up the SetUp menu. The CC menu
contains some options not available on the C++ menu, but the two menus are otherwise
virtually identical:

The options on this menu are described in the following subsections.
24

CC and C++
The command line

The Command line item at the top of the SetUp menu leads to a small dialogue box in
which the command line equivalent of the current SetUp options is displayed:

Clicking on the Run action button in this dialogue box starts compilation in the same
way as that in the main SetUp box. Pressing Return in the writable icon in this box has
the same effect. Before starting compilation from the command line box, you can edit
the command line textually, although this is not normally useful.
25

The SetUp menu
Controlling the preprocessor

Default path

The Default path entry on the SetUp menu leads to a writable icon in which you specify
a comma-separated list of directories to be searched for included files:

This overrides the system include path with the list of directories. You can specify the
memory file system in the list by using the name :mem (in any case). An example is:

myhdrs,:mem,$.proj.public.hdrs

For more details of the system include path and searching for include files in general, see
the section File naming and placing conventions on page 15.

Default path is not enabled by default.

Keep comments

This option is not available for the C++ tool.

When enabled in conjunction with Preprocess only, this option retains comments in
preprocessor output.

Keep comments is not enabled by default.
26

CC and C++
Define

The Define option on the SetUp menu leads to a writable icon in which you can
predefine preprocessor macros:

You can enter two forms of macro predefinition:

sym=value
sym

These both define sym as a preprocessor macro for the compilation. The two forms are
equivalent to the lines:

#define sym value
#define sym 1

at the head of the source file.

You can enter multiple symbols as a space-separated list.

Define is not enabled by default.
27

The SetUp menu
Undefine

The Undefine option on the SetUp menu leads to a writable icon in which you can
undefine preprocessor macros:

You enter the name of the macro concerned, eg:

sym

Use of this option is then equivalent to the line:

#undef sym

at the head of the source file.

You can enter multiple symbols as a space-separated list.

Undefine is not enabled by default.
28

CC and C++
Controlling code generation

Debug options

This option is not available for the C++ tool.

The Debug options option on the SetUp menu leads to a writable item in which you
enter a set of modifier letters:

The modifier letters limit the debugging tables generated in response to enabling the
Debug option on the SetUp dialogue box. The letters recognised are:

f generate information on functions and top-level variables (outside functions)
only

l generate information only describing each line in the file

v Generate information only describing all variables

You can use these letters in any combination.

Debug options is not enabled by default.
29

The SetUp menu

 time
with
Profile

This option is not available for the C++ tool.

Enabling this SetU menu option causes the compiler to generate code to count the
number of times each function is executed. This is called profiling.

The counts can be printed by calling _mapstore() to print them to stderr or by
calling _fmapstore("filename") to print them to a named file of your choice.
You should do this just before the final statement of your program.

Profiling is not supported by the shared C library, so you must link programs to be
profiled with ANSILib. If you wish, you can link with both Stubs and ANSILib, in
which case only the code for _mapstore() and _fmapstore() will be included
from ANSILib; your program will continue to use the shared C library, and will be much
smaller than if linked with ANSILib alone.

The printed counts are lists of lineno: count pairs. The lineno value is the
number of a line in your source code, and the count value is the number of times it was
executed. Note that lineno is ambiguous: it may refer to a line in a #include file.
However, this is rare and usually causes no confusion.

Provided you didn’t compile your program with the Features option with f as an
argument, blocks of counts will be interspersed with function names. In the simple
cases, the output reduces to a list of line-pairs like:

function

lineno: count, where count is the number of times function was executed.

If you use the SetUp menu option Others to add the text -px to the command line,
profiling of basic blocks within functions is performed in addition to profiling the
functions. If you do this, the lineno values within each function relate to the start of
each basic block. Sometimes, a statement (such as a for statement) may generate more
than one basic block, so there can be two different counts for the same line.

Profiled programs run slowly. For example, when compiled with Profile enabled,
Dhrystone 1.1 runs at about 5⁄8 speed; when compiled -px it runs at only about 3⁄8
speed.

There is no way, in this release of C, to relate execution counts to the proportion of
spent in each section of code. Nor is there any tool for annotating a source listing
profile counts. Future releases of C may address these issues.

Profile is not enabled by default.
30

CC and C++

ce be

fy a
Assembler

If this SetUp menu option is enabled, no object code is generated and, naturally, no
attempt is make to link it. If only one assembly listing file is produced, you save it from
a standard save dialogue box. If more than one is produced these are placed in the
subdirectory s of the work directory.

Assembler is not enabled by default.

Module code

This SetUp menu option must be enabled when compiling code for linking into a
RISC OS relocatable module, otherwise it should not be enabled. When enabled, code is
produced which allows the module’s static data to be separated from its code, hen
multiply instantiated.

Module code is not enabled by default.

Controlling the linker

Libraries

The Libraries option on the SetUp menu leads to a writable icon in which you speci
comma-separated list of filenames of libraries to be used in an integral link step:

The libraries specified with this option are used instead of the standard one
(AcornC_C++.Libraries.clib.o.Stubs), not in addition to it.

Libraries is not enabled by default.
31

The SetUp menu
Using the Features menu option

Features

The Features option on the SetUp menu leads to a small writable icon in which you can
specify additional compiler features with single modifier letters:

This entry controls a variety of compiler features, including certain checks on your code
more rigorous than usual. At least one of the following modifier letters must be entered
if Features are enabled:

a Check for certain types of data flow anomalies. The compiler performs data
flow analysis as part of code generation. The checks enabled by this option can
sometimes indicate when an automatic variable has been used before it has
been assigned a value.

c Enable the Limited pcc option. This allows characters after #else and
#endif preprocessor directives (treated as comments), and explicit casts of
integers to function as pointers (forbidden by ANSI). These features are often
required in order to use pcc-style include files in ANSI mode.

e Check that external names used within the file are still unique when reduced to
six case-insensitive characters. Some linkers only provide six significant
characters in their symbol tables. This can cause problems with clashes if a
system uses two names such as getExpr1 and getExpr2, which are only
unique in the eighth character. The check can only be made within one
compilation unit (source file) so cannot catch all such problems. Acorn C and
C++ allow external names of up to 256 characters, so this is a portability aid.
32

CC and C++

ring

it is

e

only
f Do not embed function names in the code area. The compiler does this to make
the output produced by the stack backtrace function (which is the default signal
handler) and _mapstore() more readable. Removing the names from the
compiler makes the code slightly smaller (typically 5%) at the expense of less
meaningful backtraces and _mapstore() outputs.

h Check that all external objects are declared in some included header file, and
that all static objects are used within the compilation unit in which they are
defined. These checks support good modular programming practices.

i In the listing file (see the Listing option) include the lines from any files
included with directives of the form:

#include "file"

j As above, but for files included by lines of the form:

#include <file>

k Use K&R search rules for nested #include directives (the ‘current place’ is
defined by the original source file and is not stacked; see the section File
naming and placing conventions on page 15 for details).

m Give a warning for preprocessor symbols that are defined but not used du
the compilation.

n Embed function names in the code area (see f feature). This improves the
readability of the output produced by the stack backtrace run time support
function and the _mapstore() function (see Profile on page 30). However,
it does increase the size of the code area slightly (around 5%). In general
not useful to specify the f feature with Profile (i.e. -p).

p Report on explicit casts of integers into pointers, eg:

char *cp = (char *) anInteger;

Implicit casts are reported anyway, unless suppressed by the Suppress
warnings option.

u By default, the source text as ‘seen’ by the compiler after preprocessing
(expansion) is listed. If this feature is specified then the unexpanded sourc
text, as written by the user, is listed. Consider the line

p = NULL;

By default, this will be listed as p=(0);. With the u feature specified, it will
be listed as p=NULL;.

v Report on all unused declarations, including those from standard headers.

w Allow string literals to be writable, as expected by some UNIX code, by
allocating them in the program’s data area rather than the notionally read-
code area.
33

The SetUp menu
When writing high-quality production software, you are encouraged to use at least the
fah Features options in the later stages of program development (the extra diagnostics
produced can be annoying in the earlier stages).

Features is not enabled by default.

Handling warnings and errors

Suppress warnings

The Suppress warnings option on the SetUp menu prevents warnings from appearing.

For the C++ tool, all warnings are suppressed.

For the CC tool, this menu option leads to a writable icon in which you can enter a set of
modifier letters:

The modifier letters specify various kinds of warning message to be suppressed by CC.
Usually the compiler is very free with its warnings, as this tends to indicate potential
portability or other problems. However, too many such messages can be a nuisance in
the early stages of porting a program from old-style C, so you can disable them.

The modifier letters for CC are:

a Give no Use of = in a condition context warning. This is given
when the compiler encounters statements such as if (a=b) {... where it
is quite possible that == was intended.
34

CC and C++
d Give no Deprecated declaration foo() – give arg types
warning. Use of old-style function declarations is deprecated in ANSI C, and in
a future version of the standard this feature may be removed. However, it is
useful sometimes to suppress this warning when porting old code.

f Give no Inventing "extern int foo()" message. This may be useful
when compiling old-style C as if it were ANSI C.

n Give no Implicit narrowing cast warning. This warning is issued
when the compiler detects an assignment of an expression to an object of
narrower width (eg long to int, float to int). This can cause problems with loss
of precision for certain values.

p Give no non-ANSI #include <...> warning. ANSI require that
#include <…> should only be used for ANSI headers, but it can be useful to
disable this warning when compiling code which does not conform to this
aspect of the standard.

v Give no Implicit return in non-void contex t warning. This is
most often caused by a return from a function which was assumed to return int
(because no other type was specified) but is in fact being used as a void
function.

If you enter a space in the writable icon, then Select or Return, all warning messages
from CC are suppressed.
35

The SetUp menu

’.

e end
Suppress errors

This option is not available for the C++ tool.

The Suppress errors option on the SetUp menu leads to a writable icon in which you
can enter a set of modifier letters:

These modifier letters can be used to force CC to accept C source which would normally
produce errors. If any of these options are needed, it means that the C source in question
does not conform to the ANSI C standard (CC normally generates precisely the
diagnostics required by ANSI).

The modifier letters are:

c Suppresses all implicit cast errors, e.g. ‘implicit cast of non-0 int to pointer

f Suppresses errors for unclean casts such as short to pointer.

i Suppresses syntax checking for #if.

p Suppresses the error which occurs if there are extraneous characters at th
of a preprocessor line.

z Suppresses the error if a zero-length array is used.
36

CC and C++

her
of

r and

er
UNIX pcc

This option is not available for the C++ tool.

Enabling this SetUp menu option switches to compiling ‘portable C compiler’ C rat
than ANSI C. This is based on the original Kernighan and Ritchie (K&R) definition
C, and is the dialect used on UNIX systems such as Acorn’s RISC iX product. This
option changes the syntax that is acceptable to the compiler, but the default heade
library files are still used. See the section on this option in the chapter Portability on
page 255 for more details.

UNIX pcc is not enabled by default.

Errors to file

This option is not available for the C++ tool.

Errors to file allows you to specify a file to which error messages are output for lat
inspection:
37

The SetUp menu
Listings

Listing

This option is not available for the C++ tool.

Enabling this SetUp menu option causes a listing file to be created. This consists of lines
of source interleaved with error and warning messages. You can get finer control over
the contents of this file using the Features option (see page 32).

Listing is not enabled by default.

Choosing your work directory

Work directory

The Work directory entry on the SetUp menu leads to a writable icon in which you
specify the work directory:

The effect of this option is described in the section File naming and placing conventions
on page 15.

The default Work directory setting is ^.
38

CC and C++
Specifying other command line options

Others

The Others option on the SetUp menu leads to a writable icon in which you can add an
arbitrary extra section of text to the command line to be passed to the relevant
underlying program:

This facility is useful if you wish to use any feature which is not supported by any of the
other entries on the SetUp dialogue box and menu. This may be because the feature is
used very little, or because it may not be supported in the future.

For a full description of command line options, see Command lines on page 42.
39

Output messages

 by

ary
f the

d and
 by the

.

p

ht
e, or
 file,
Output messages
The CC and C++ tools output text messages as they proceed. These include
preprocessed source (see Preprocess only), warning and error messages. By default any
such text is directed into a scrollable output window:

This window is read-only; you can scroll up and down to view progress, but you cannot
edit the text without first saving it. Clicking Select on the scrollable part of this window
has no effect, to indicate this.

The contents of the window illustrated above are typical of those you see from a
successful compilation – the title line of the compiler with version number, followed
no error messages.

Clicking Adjust on the close icon of the output window switches to the output summ
dialogue box. This presents a reminder of the tool running (CC or C++), the status o
task (Running, Paused, Completed or Aborted), the time when the task was starte
the number of lines of output that have been generated (ie those that are displayed
output window):

Clicking Adjust on the close icon of the summary box returns to the output window

Both the above output displays follow the standard pattern of those of all the
non-interactive Desktop tools. The common features of the non-interactive Deskto
tools are covered in more detail in the chapter General features on page 101 of the
accompanying Desktop Tools guide. Both tools’ output displays and the menus broug
up by clicking Menu on them offer the standard features allowing you to abort, paus
continue execution (if the execution hasn’t completed); and to save output text to a
or repeat execution.
40

CC and C++

l

ith

cing
Error messages appear in the output viewer, with copies in the editor error browser when
throwback is working. The appendixes C errors and warnings on page 297 and C++
errors and warnings on page 333 contain more details for interpreting error messages.

Preprocessed source appearing in the output window is often very large for compilation
of complex source files. The scrolling of the output window is useful to view it, and to
investigate it with the full facilities of the source editor, you can save the output text
straight into the editor by dragging the output file icon to the SrcEdit main icon on the
icon bar (providing Wimp$Scrap is properly set on your machine).

The icon bar menu
Clicking Menu on either the CC or the C++ icon on the icon bar gives the following
menu:

Save options saves all the tool’s current options, including those set both from the
SetUp dialogue box and from the Options item on this menu. When you restart the too
it is initialised with these options rather than the defaults.

The Options item on the main menu allows you to enable Auto run, Auto save or start
the output display as either a text window (default) or summary box. When Auto run is
enabled, dragging a source file to the tool’s icon starts a compilation immediately w
the current options, rather than displaying the SetUp box first. When Auto save is
enabled, output object files are saved to suitable places automatically without produ
a save dialogue box for you to drag the file from. Both Auto run and Auto save are off
by default.

For a description of each option in the tool’s menu see the chapter General features on
page 101 of the accompanying Desktop Tools user guide.
41

Command lines

ns.
 and

the
and

 by a

e

e any
t you

 use
Command lines
For normal use you do not need to understand the syntax of the underlying CC and C++
programs’ command lines, as they are generated automatically for you from the SetUp
dialogue box and menu settings.

The syntax of the command lines is:

cc «options» filenames
c++ «options» filenames

By default, the C compiler and C++ translator look for source files, and create object,
assembler and listing files, beneath the current work directory.

Many aspects of the programs’ operation can be controlled via command-line optio
All options are prefixed by a minus sign. There are two classes of option: keywords
flags:

l Keywords are recognised in upper case or lower case.

l A flag is a single letter, sometimes followed by an argument. Whenever this is
case, the C compiler allows white space to be inserted between the flag letter
the argument. However, this is not always true of other C compilers, so in the
following subsections we only list the form that would be acceptable to a UNIX
C compiler. Similarly, we only use the case of the letter that would be accepted
UNIX C compiler.

By using the conventions common to many C compilers, you can build portabl
makefiles that you can easily move between different environments.

The options are listed below. Where an option merely gives a page reference to a
desktop equivalent, you should see that page for full details. Should you need to us
of the more esoteric options that have no direct desktop equivalent, remember tha
can always add them to the SetUp menu’s Others option (see Specifying other command
line options on page 39).

Where an option is shaded, we recommend that you don’t use it with C++. You may
all options with CC, save for the Translator options on page 45, which are used by
CFront and hence irrelevant to CC.

Keyword options

Command line option Description
-help Outputs a summary of the command line options.

-pcc Equivalent to UNIX pcc in SetUp menu; see page 37.

-fussy or -strict Be extra strict about enforcing conformance to the
ANSI standard or to pcc conventions (e.g. prohibit
the volatile qualifier in -pcc mode).
42

CC and C++
-list Equivalent to Errors to file in SetUp menu; see
page 37.

-via file Reads in extra command line arguments from the
given filename.

-errors file Equivalent to Listing in SetUp menu; see page 38.

-littleend or -li Compile code suitable for a little-endian ARM.

-bigend or -be Compile code suitable for a big-endian ARM.

-apcs «3»qualifiers Specify which variant of the ARM Procedure Call
Standard is to be used by the compiler. At least one
qualifier must be present, and there must be no space
between qualifiers. The following qualifiers are
permitted:

/26«bit» 26 bit APCS variant.

/32«bit» 32 bit APCS variant.

/reent«rant» Reentrant APCS variant.

/nonreent«rant» Non reentrant APCS variant.

/swst«ackcheck» Software stack checking APCS variant.

/noswst«ackcheck» No software stack checking APCS variant.

/fp Use a dedicated frame-pointer register.

/nofp Do not use a frame-pointer.

/fpe2 Floating point emulator 2 compatibility.

/fpe3 Floating point emulator 3 compatibility.

/fpr«egargs» Floating point arguments passed in floating point
registers.

/nofpr«egargs» Floating point arguments are not passed in floating
point registers.

-depend dependfile Saves include file dependency lists, which are
suitable for use with ‘make’ utilities.

-throwback Equivalent to Throwback option icon in SetUp
dialogue box; see page 24.

-desktop directory Equivalent to Work directory in SetUp menu; see
page 38.

Command line option Description
43

Command lines

o

t

Preprocessor options

-C++ Assume C++ code is being processed. This option is
only used by the C++ program, when invoking the
compiler to pre-process C++ source before
translation, and when compiling the generated C.

When preprocessing under the -E option, comment
handling is changed to correctly deal with C++’s ‘//’
comments (which are terminated by the end of the
source line), and #pragma lines are passed through
to the preprocessor output.

During the C compilation stage, use of this flag
disables certain warnings (most notably ‘no
side-effect in void context’, and messages about
unused variables), otherwise produced by some
rather odd code constructs in the generated C. It als
arranges that in any warning or error reports, the
original (type-qualified) C++ source names are
printed rather than the modified names CFront
generates in order to implement overloading.

Command line option Description
-Idirectory Equivalent to Include option icon in SetUp dialogue

box; see page 22.

-jdirectories Equivalent to Default path in SetUp menu; see
page 26.

-E Equivalent to Preprocess only option icon in SetUp
dialogue box; see page 23.

-C Equivalent to Keep comments in SetUp menu; see
page 26.

-M If this flag is specified, only the preprocessor phase
of the compiler is executed (as with cc -E) but the
only output produced is a list, on the standard outpu
stream, of makefile dependency lines suitable for use
by a make utility. This can be redirected to a file
using standard UNIX/MS-DOS notation. For
example:

cc -M xxx.c >> Makefile.

-Dsymbol« =value» Equivalent to Define in SetUp menu; see page 27.

-Usymbol Equivalent to Undefine in SetUp menu; see page 28.

Command line option Description
44

CC and C++

e

Translator options

These options affect the operation of CFront.

Code generation options

If you are using C++, we recommend you only use the following from the code
generation options below: -o, -g, -S and -zM.

Command line option Description
+v Print commands as CFront executes them

+w Equivalent to Suppress warnings in C++’s SetUp
menu; see page 34. (Suppress warnings also uses
CC’s -W option.)

+p Pedantic – compile strict C++

+g Equivalent to Debug option icon in C++’s SetUp
dialogue box; see page 23. (Debug also uses CC’s -g
option.)

-F Send CFront output to stdout; do not compile it

Command line option Description
-o file The argument to the -o flag gives the name of the fil

which will hold the final output of the compilation
step. In conjunction with -c, it gives the name of the
object file; in conjunction with -S, it gives the name
of the assembly language file. Otherwise, it names
the final output of the link step.

-g«options» Equivalent to Debug option icon in SetUp dialogue
box and Debug options in SetUp menu; see pages 23
and 29.

-p«options» Equivalent to Profile in SetUp menu; see page 30.

-S Equivalent to Assembler in SetUp menu; see
page 31.

-zM Equivalent to Module code in SetUp menu; see
page 31.
45

Worked examples

’ for

ol
Linker options

Warning and error message options

If you are using C++, we recommend you only use the following from the warning and
error message options below: -W.

Additional feature options

If you are using C++, we recommend you only use the following from the additional
feature options below: -zr and -f.

Worked examples
Several examples of C and C++ programs on the discs of Acorn C/C++ are worked
through in this guide and in the Desktop Tools guide. A collection of examples are listed
here illustrating various points and styles of working.

The following example programs are in the directory AcornC_C++.Examples, each
in a subdirectory with the name of the example. For each program, we give a ‘recipe
how to compile, link and run the program. Filenames are given relative to the

Command line option Description
-c Equivalent to Compile only option icon in SetUp

dialogue box; see page 23.

-llibraries Equivalent to Libraries in SetUp menu; see page 31.

Command line option Description
-Woptions Equivalent to Suppress warnings in SetUp menu;

see page 34.

-eoptions Equivalent to Suppress errors in SetUp menu; see
page 36.

Command line option Description
-zpAlphaNum This flag can be used to emulate #pragma

directives. The letter and digit which follow it are the
same characters that would follow the '-' of a
#pragma directive. See #pragma directives on
page 86 for details.

-zrnumber This flag allows the size of (most) LDMs and (all)
STMs to be controlled between the limits of 3 and 16
registers transferred. This can be used to help contr
interrupt latency where this is critical.

-ffeatures Equivalent to Features in SetUp menu; see page 32.
46

CC and C++
subdirectory containing each example unless otherwise stated. It is assumed that you
have read the preceding parts of this chapter. For more details of the tool Make, see the
chapter Make on page 57 of the accompanying Desktop Tools user guide. When you
enter any command lines given below, you must first ensure that the currently-selected
directory is the subdirectory containing the example being tried.

There are some further less trivial examples that we omit here. These show you how to
implement more esoteric features, mainly involving interworking C and/or C++ with
assembler. They are described elsewhere in the Acorn C/C++ manual set, together with
necessary supporting technical information.

CHello

Purpose: The standard most trivial C program. Try it as an exercise.

Source: c.HelloW

Compile using: default CC SetUp options

Run by: double clicking on HelloW

Clean up by: deleting HelloW and o.HelloW

C++Hello

Purpose: The standard most trivial C++ program. Try it as an exercise.

Source: c++.HelloW

Compile using: default C++ SetUp options

Run by: double clicking on HelloW

Clean up by: deleting HelloW and o.HelloW

Sieve

Purpose: The Sieve of Eratosthenes is often presented as a standard
benchmark, though it is not very meaningful in this context.

Source: c.Sieve

Compile using: default CC SetUp options

Run by: double clicking on Sieve

Clean up by: deleting Sieve and o.Sieve
47

Worked examples
Dhrystone 2.1

Purpose: Dhrystone 2.1 is the standard integer benchmark. Its results
require careful interpretation (it often overstates the real
performance of machines). Try as a first exercise in using the
Make utility (!Make).

Sources: h.dhry
c.dhry_1
c.dhry_2

Makefile: Makefile

Build by: double clicking on Makefile, with default Make options

Run by: double clicking on Dhrystone

Reply with any number in the range 20000 to 250000 to the
prompt for number of iterations. Try a big number such as 200000
and time the execution with a stopwatch or sweep second hand to
confirm the claimed performance. Note how performance
depends on screen mode.

Rebuild by: double clicking on Makefile again (try altering some of the
options in Makefile with Make between rebuilds: eg compile
in UNIX pcc mode or link with ANSILib instead of Stubs).

Clean up by: deleting Dhrystone, o.dhry_1 and o.dhry2.

CModule

Purpose: To illustrate how to implement a module in C. You can also use it
as another exercise in using Make. For more details on
constructing relocatable modules in C see the chapter How to
write relocatable modules in C on page 273.

Sources: c.CModule CModuleHdr

Build using: CC of c.CModule with options Compile only and Module
code enabled, saving output object file as o.CModule. CMHG
of cmhg.CModuleHdr to o.CModuleHdr. Link of
o.CModule, o.CModuleHdr and
AcornC_C++.Libraries.CLib.o.Stubs with Module
enabled to the output file CModule.

or by: double clicking on Makefile, with default Make options.

Run from: the command line using CModule

Test from: the command line using:
48

CC and C++
help tm1
help tm2
tm1 hello
tm2 1 2 3 4 5
tm1 1 2 3
tm2 hello

(try other combinations too)

*BASIC
> SYS &88000 : REM should give an error
> SYS &88001 : REM should give divide by 0 error
> SYS &88002 : REM no error, just a message
> SYS &88003 : REM no error, just a message
> SYS &88004 : REM same as &88000...

(now repeat some of these after issuing some invalid
* commands...)

>*foo
> SYS &88002

etc.

>QUIT

Clean up by: from the command line typing: RMKill TestCModule
deleting CModule, o.CModule and o.CModuleHdr or
running Make on Makefile with target clean selected.

Desktop application examples

The desktop applications !Hyper, !MinApp and !TBoxCalc and the various versions of
SaveAs are all too complex to be described here in great detail.

They are best built by double clicking on their Makefiles. They can be run by double
clicking on their application icons.
49

Worked examples
50

3 CMHG

MHG (the C Module Header Generator) is a desktop tool which provides an easy

interface to the CMHG program that Acorn C/C++ installs in your computer’s C
library. The CMHG tool constructs command lines and passes them to the CMHG

 C

west
 items
table
 you
HG

y

rd
VC)
hich

tines,

ol
ince
program. By using CMHG you can write a RISC OS relocatable module entirely in
without having to use ARM assembly language.

Every relocatable module has at its start (ie the part that loads into memory at its lo
address) a header table pointing to various items of data and program. Most of the
pointed to are optional, the pointers being zero if not needed. When writing a reloca
module in assembly language you lay this table out yourself, but when writing in C,
use CMHG to generate this for you. In addition to generating a module header, CM
also inserts small standard routines to, for example, initialise the C language librar
support and make service call handling efficient.

To construct a relocatable module you write a number of routines in C with standa
prototypes, some of these routines to be called with the processor in supervisor (S
mode. These are accompanied by a text description file written in a special syntax w
CMHG understands. For details of this language and the specifications of the C rou
see the chapter How to write relocatable modules in C on page 273. For more details of
relocatable module headers, see the chapter entitled Modules in the RISC OS 3
Programmer’s Reference Manual. For some hints about memory usage from relocatable
module code, see the RISC OS 3 Programmer’s Reference Manual.

The rest of this chapter explains the (simple) controls of the CMHG tool. CMHG is one
of the non-interactive desktop tools, its desktop user interface being provided by the
FrontEnd module. It shares many common features with the other non-interactive tools.
These common features are described in the chapter General features on page 101 of the
accompanying Desktop Tools guide.

A note about Make

The Make tool (see the chapter Make on page 57 of the Desktop Tools guide) can also
construct command lines for the underlying CMHG program. You’ll find it a better to
for managing large projects. However, much of what is in this chapter is relevant, s
Make sets options for the CMHG program with the CMHG tool’s user interface.
51

Starting CMHG
Starting CMHG
To start the CMHG tool, first open the AcornC_C++.Tools directory display, then
double click on !CMHG. Its icon appears on the icon bar:

Clicking Select on this icon, or dragging a CMHG description file from a directory
display to this icon, brings up the SetUp dialogue box, from which you control the
running of CMHG:

CMHG has hardly any options for its use, so its interface is simpler than most of the
other Acorn C/C++ tools.

The Source writable icon is for the name of the description file to be processed. If you
displayed the SetUp dialogue box by clicking on the CMHG icon bar icon, you will
want to fill this in by dragging a CMHG description file from a directory display to this
icon before running CMHG.

Clicking Menu on the SetUp dialogue box brings up the CMHG SetUp menu, which
owing to the simplicity of CMHG only has a single Command line item:

You can get CMHG to generate a header file from the description file, which contains
#defines of constants for the commands declared in the description file. To do so, you
need to append the name of the header file to the text in the Command line writable
icon:
52

CMHG
The icon bar menu
Clicking Menu on the CMHG application icon on the icon bar gives access to the
following options:

For a description of each option in the application menu see the chapter General features
on page 101 of the accompanying Desktop Tools guide.

Example output
The following is an example CMHG description file, similar to that used within Acorn
to construct the FrontEnd module, which is itself a relocatable module written in C:

; Purpose: module header for the generalised front end module ;

module-is-runnable: ; module start code

initialisation-code: FrontEnd_init

service-call-handler: FrontEnd_services 0x11 ; service-memory

title-string: FrontEnd

help-string: FrontEnd 1.00

command-keyword-table: FrontEnd_commands
FrontEnd_Start(min-args: 4, max-args: 5,

help-text: "Help text\n"),
FrontEnd_Setup(min-args: 8, max-args: 8,

help-text: "Help text\n")

swi-chunk-base-number: 0x081400
53

Command line interface
Running CMHG displays any error messages in the standard text output window for
non-interactive tools. If all goes well, as it should do if you try CMHG with the above
description file, this window is empty:

The output file produced is an object file. You link this with the object files compiled
from your C code to produce your relocatable module.

Command line interface
For normal use you do not need to understand the syntax of the underlying CMHG
program’s command line, as it is generated automatically for you from the SetUp
dialogue box and menu settings.

The syntax of the CMHG command line is:

cmhg descfile «objfile «defsfile»»

descfile Filename of the CMHG description file.

objfile Filename of the output object file to link with your objects to form a
relocatable module.

defs-file Filename of the output definitions header file, giving constants for the
commands in the description file.
54

4 ToANSI

oANSI is a desktop tool which provides an easy interface to the ToANSI program

ts
that Acorn C/C++ installs in your computer’s library. The ToANSI tool construcT
command lines and passes them to the ToANSI program. ToANSI helps convert

f C.

rted
ily

n

program source written in the PCC style of C to program source in the ANSI style o
PCC is the UNIX Portable C Compiler, and closely follows K&R C, as defined by B
Kernighan and D Ritchie in their book The C Programming Language.

ToANSI enables you to write (with care) programs that can be automatically conve
between the PCC and ANSI dialects of C, hence assisting you in constructing eas
portable programs. The associated tool ToPCC makes approximately the reverse
translations to ToANSI. For more details of portability issues, see the chapter Portability
on page 255. The changes that ToANSI makes to C source are listed in the sectio
ToANSI C translation below.

ToANSI is one of the non-interactive desktop tools, its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter General
features on page 101 of the accompanying Desktop Tools guide.
55

ToANSI C translation

s

ly
e
ToANSI C translation
ToANSI makes the following transformations to C source code or header text:

l Function declarations with embedded comments are rewritten without the comment
tokens. This reverses the action of ToPCC with regard to function declarations,
rewriting

type foo(/* args */);

as

type foo(args);

This transformation is one which requires care in the use of ToANSI, as it can result
in invalid C being uncommented.

l Function definitions of the form

type foo(a1, a2)
type a1;
type a2;
{...}

are rewritten as

type foo(type a1, type a2)

l A va_alist in the function definition is translated to

...

l type foo() is rewritten as type foo(void).

l VoidStar (what ToPCC replaces void * with) is left untouched, as if it is
correctly typedef’d to something suitable, thereafter its use is correct in both
PCC and ANSI C.

l ToPCC rewrites unsigned and unsigned long constants using the typecasts
(unsigned) and (unsigned long). ToANSI does not reverse this change, a
this is not required for correct ANSI C.

Note that ToANSI performs only simple textual translations and is not able to reliab
diagnose C syntax errors, which may produce surprising results, so it is best to us
ToANSI only on code you already know compiles.
56

ToANSI
A note about Make

Since porting programs is usually a one-off process involving some experimentation,
only direct use of ToANSI makes sense. You cannot use ToANSI from Make.

Starting ToANSI
To start the ToANSI tool, first open the AcornC_C++.Tools directory display, then
double click on !ToANSI. Its icon appears on the icon bar:

Clicking Select on this icon, or dragging a source file from a directory display to this
icon, brings up the SetUp dialogue box, from which you control the running of ToANSI:

ToANSI has hardly any options for its use, so its interface is simpler than most of the
other Acorn C/C++ tools.

The File writable icon is for the name of the description file to be processed. If you
displayed the SetUp dialogue box by clicking on the ToANSI icon bar icon, you will
want to fill this in by dragging a source file from a directory display to this icon before
running ToANSI.

Clicking Menu on the SetUp dialogue box brings up the ToANSI SetUp menu, which
owing to the simplicity of ToANSI only has a single Command line item:
57

The icon bar menu
The icon bar menu
Clicking Menu on the ToANSI application icon on the icon bar gives access to the
following options:

For a description of each option in the application menu see the chapter General features
on page 101 of the accompanying Desktop Tools guide.

Example output
Running ToANSI displays any error messages in the standard text output window for
non-interactive tools. If all goes well this window is empty:

As an example of using the tool ToANSI, open an empty SrcEdit text window and type
the following example C source lines in it:

int foo(a, b)
float a;
double b;
{}

Check that your Wimp$Scrap environment variable is set to a sensible file name, then
save your new text file straight onto the ToANSI icon bar icon. Run ToANSI, then save
the output text file straight onto the SrcEdit icon bar icon. The translated file looks like:

int foo(float a, double b)
{}
58

ToANSI
Command line interface
For normal use you do not need to understand the syntax of the underlying ToANSI
program’s command line, as it is generated automatically for you from the SetUp
dialogue box and menu settings.

The syntax of the ToANSI command line is:

toansi «options» «infile « outfile»»

options Options: the -d option describes ToANSI, and the -help option
gives the command line syntax and options.

infile Filename of the input C source or header text file, which defaults to
stdin.

outfile Filename of the output C source or header text file, which defaults to
stdout.
59

60

5 ToPCC

oPCC is a desktop tool which provides an easy interface to the ToPCC program that

Acorn C/C++ installs in your computer’s library. The ToPCC tool constructs T
ogram
command lines and passes them to the ToPCC program. ToPCC helps convert pr

 is

an

rted
ily

source written in the ANSI style of C to program source in the PCC style of C. PCC
the UNIX Portable C Compiler, and closely follows K&R C, as defined by B Kernigh
and D Ritchie in their book The C Programming Language.

ToPCC enables you to write (with care) programs that can be automatically conve
between the ANSI and PCC dialects of C, hence assisting you in constructing eas
portable programs. The associated tool ToANSI makes approximately the reverse
translations to ToPCC. For more details of portability issues, see the chapter Portability
on page 255. The changes that ToPCC makes to C source are listed in the section ToPCC
C translation below.

ToPCC is one of the non-interactive DDE tools, its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter General
features on page 101 of the accompanying Desktop Tools guide.
61

ToPCC C translation

gned)

ly
e

n,
ToPCC C translation
ToPCC makes the following transformations to C source code or header text:

l Function declarations of the form

type foo(args);

are rewritten as

type foo(/* args */);

Any comment tokens /* or */ in args are removed.

l Function definitions of the form

type foo(type a1, type a2) {...}

are rewritten as

type foo(a1, a2)
type a1;
type a2;

l A ... in the function definition is interpreted as int
va_alist. Full translation of variadic functions is not
performed.

l type foo(void)

is rewritten as

type foo()

l Type void * is converted to VoidStar which can be typedef’d to
something suitable (eg char *).

l Unsigned and unsigned long constants are rewritten using the typecasts (unsi
and (unsigned long).

For example, 300ul becomes (unsigned long)300L.

Note that ToPCC performs only simple textual translations and is not able to reliab
diagnose C syntax errors, which may produce surprising results, so it is best to us
ToPCC only on code you already know compiles.

A note about Make

Since porting programs is usually a one-off process involving some experimentatio
only direct use of ToPCC makes sense. You cannot use ToPCC from Make.
62

ToPCC
Starting ToPCC
To start the ToPCC tool, first open the AcornC_C++.Tools directory display, then
double click on !ToPCC. Its icon appears on the icon bar:

Clicking Select on this icon, or dragging a source file from a directory display to this
icon, brings up the SetUp dialogue box, from which you control the running of ToPCC:

ToPCC has hardly any options for its use, so its interface is simpler than most of the
other Acorn C/C++ tools.

The File writable icon is for the name of the description file to be processed. If you
displayed the SetUp dialogue box by clicking on the ToPCC icon bar icon, you will
want to fill this in by dragging a source file from a directory display to this icon before
running ToPCC.

Clicking Menu on the SetUp dialogue box brings up the ToPCC SetUp menu:

Command line shows you the command line that will be passed to the underlying
ToPCC program; you can then alter it if necessary.
63

The icon bar menu
Options leads to a writable field in which you can specify one or more single letter
options:

These options are:

The icon bar menu
Clicking Menu on the ToPCC application icon on the icon bar gives access to the
following options:

For a description of each option in the application menu see the chapter General features
on page 101 of the accompanying Desktop Tools guide.

c Don’t remove the keyword const

e Don’t remove #error ... directives

l Don’t remove #line ... directives

p Don’t remove #pragma ... directives

s Don’t remove keyword signed

t Don’t remove the second argument to va_start()

v Don’t remove the keyword volatile
64

ToPCC
Example output
Running ToPCC displays any error messages in the standard text output window for
non-interactive tools. If all goes well this window is empty:

As an example of using the tool ToPCC, open an empty SrcEdit text window and type
the following example C source line in it:

int foo(float a);

Check that your Wimp$Scrap environment variable is set to a sensible file name, then
save your new text file straight onto the ToPCC icon bar icon. Run ToPCC, then save the
output text file straight onto the SrcEdit icon bar icon. The translated file looks like:

int foo(/* float a */);
65

Command line interface

ted

o

 to
Command line interface

For normal use you do not need to understand the syntax of the ToPCC command line,
as it is generated automatically for you from the SetUp dialogue box setting before it is
used.

The syntax of the ToPCC command line is:

topcc «options» «infile « outfile»»

options A minus ‘-’ followed by one or more letters controlling individual
features of the conversion; see page 64. As well as the options lis
there, the -d option describes ToPCC, and the -help option gives
the command line syntax and options.

infile Filename of the input C source or header text file, which defaults t
stdin.

outfile Filename of the output C source or header text file, which defaults
stdout.
66

Part 2 – C language issues
67

68

s
6 C implementation details

his chapter is split into parts, each of which details certain aspects of Acorn C’

implementation of the ANSI C standard.T
 of
l The first part – Implementation details on page 70 – gives details of those aspects

d
e
ed

each
ints
the compiler which the ANSI standard identifies as implementation-defined, an
some other points of interest to programmers. They are grouped by subject; th
section Implementation limits on page 76 lists the points required to be document
as set out in appendix A.6 of the standard.

l The second part – Standard implementation definition on page 77 – discusses
aspects of the compiler which are not defined by the ANSI standard, but are
implementation-defined and must be documented.

Appendix A.6 of the standard X3.159-1989 collects together information about
portability issues; section A.6.3 lists those points which are implementation
defined, and directs that each implementation shall document its behaviour in
of the areas listed. This part corresponds to appendix A.6.3, answering the po
listed in the appendix, under the same headings and in the same order.

l The third part – Extra features on page 86 – describes some machine-specific
features of the Acorn C compiler: #pragma directives, and special declaration
keywords for functions and variables.
69

Implementation details

t

ernal.

.)

f the
Implementation details

Identifiers
Identifiers can be of any length. They are truncated by the compiler to 256 characters, all
of which are significant (the standard requires a minimum of 31).

The source character set expected by the compiler is 7 bit ASCII, except that within
comments, string literals, and character constants, the full ISO 8859-1 8 bit character set
is recognised. At run time, the C library processes the full ISO 8859-1 8 bit character set,
except that the default locale is the C locale (see the section Standard implementation
definition on page 77). The ctype functions therefore all return 0 when applied to
codes in the range 160–255. By calling setlocale(LC_CTYPE,"ISO8859-1")
you can cause the ctype functions such as isupper() and islower() to
behave as expected over the full 8 bit Latin alphabet, rather than just over the 7 bi
ASCII subset.

Upper and lower case characters are distinct in all identifiers, both internal and ext

In -pcc and -fc modes an identifier may also contain a dollar character.

Data elements
The sizes of data elements are as follows:

Type Size in bits
char 8
short 16
int 32
long 32
float 32
double 64
long double 64 (subject to future change)
all pointers 32

Integers are represented in two’s complement form.

Data items of type char are unsigned by default, though they may be explicitly
declared as signed char or unsigned char. (In -pcc mode there is no signed
keyword, so chars are signed by default and may be declared unsigned if required
Single-character constants are thus always positive.

Floating point quantities are stored in the IEEE format. In double and long double
quantities, the word containing the sign, the exponent and the most significant part o
mantissa is stored at the lower machine address.
70

C implementation details

ight
is
-ness

n the
Limits: limits.h and float.h

The standard defines two header files, limits.h and float.h, which contain
constant declarations describing the ranges of values which can be represented by the
arithmetic types. The standard also defines minimum values for many of these constants.

The following table sets out the values in these two headers on the ARM, and a brief
description of their significance. See the standard for a full definition of their meanings.

Number of bits in smallest object that is not a bit field (ie a byte):

CHAR_BIT 8

Maximum number of bytes in a multibyte character, for any supported locale:

MB_LEN_MAX 1

Numeric ranges of integer types:

The middle column gives the numerical value of each range’s endpoint, while the r
hand column gives the bit patterns (in hexadecimal) that would be interpreted as th
value in C. When entering constants you must be careful about the size and signed
of the quantity. Furthermore, constants are interpreted differently in decimal and
hexadecimal/octal. See the ANSI standard or any of the recommended textbooks o
C programming language for more details.

Range End-point Hex representation
CHAR_MAX 255 0xff

CHAR_MIN 0 0x00

SCHAR_MAX 127 0x7f

SCHAR_MIN –128 0x80

UCHAR_MAX 255 0xff

SHRT_MAX 32767 0x7fff

SHRT_MIN –32768 0x8000

USHRT_MAX 65535 0xffff

INT_MAX 2147483647 0x7fffffff

INT_MIN –2147483648 0x80000000

UINT_MAX 4294967295 0xffffffff

LONG_MAX 2147483647 0x7fffffff

LONG_MIN –2147483648 0x80000000

ULONG_MAX 4294967295 0xffffffff
71

Data elements
Characteristics of floating point:

The base (radix) of the ARM floating point number representation is 2, and floating
point addition rounds to nearest.

Ranges of floating types:

Ranges of base two exponents:

Ranges of base ten exponents:

Decimal digits of precision:

FLT_RADIX 2

FLT_ROUNDS 1

FLT_MAX 3.40282347e+38F

FLT_MIN 1.17549435e-38F

DBL_MAX 1.79769313486231571e+308

DBL_MIN 2.22507385850720138e-308

LDBL_MAX 1.79769313486231571e+308

LDBL_MIN 2.22507385850720138e-308

FLT_MAX_EXP 128

FLT_MIN_EXP (-125)

DBL_MAX_EXP 1024

DBL_MIN_EXP (-1021)

LDBL_MAX_EXP 1024

LDBL_MIN_EXP (-1021)

FLT_MAX_10_EXP 38

FLT_MIN_10_EXP (-37)

DBL_MAX_10_EXP 308

DBL_MIN_10_EX (-307)

LDBL_MAX_10_EXP 308

LDBL_MIN_10_EXP (-307)

FLT_DIG 6

DBL_DIG 15

LDBL_DIG 15
72

C implementation details
Digits (base two) in mantissa:

Smallest positive values such that (1.0 + x! = 1.0):

Structured data types
The standard leaves details of the layout of the components of structured data types to
each implementation. The following points apply to the Acorn C compiler:

l Structures are aligned on word boundaries.

l Structures are arranged with the first-named component at the lowest address.

l A component with a char type is packed into the next available byte.

l A component with a short type is aligned to the next even-addressed byte.

l All other arithmetic type components are word-aligned, as are pointers and ints
containing bitfields.

l The only valid type for bitfields are (signed) int and unsigned int. (In -pcc
mode, char, unsigned char, short, unsigned short, long and
unsigned long are also accepted.)

l A bitfield of type int is treated as unsigned by default (signed by default in -pcc
mode).

l A bitfield must be wholly contained within the 32 bits of an int.

l Bitfields are allocated within words so that the first field specified occupies the
lowest addressed bits of the word. (When configured little-endian, lowest addressed
means least significant; when configured big-endian, lowest
addressed means most significant.

FLT_MANT_DIG 24

DBL_MANT_DIG 53

LDBL_MANT_DIG 53

FLT_EPSILON 1.19209290e-7F

DBL_EPSILON 2.2204460492503131e-16

LDBL_EPSILON 2.2204460492503131e-16L
73

Pointers

ard.

lly

bit

lt is
n
Pointers
The following remarks apply to pointer types:

l Adjacent bytes have addresses which differ by one.

l The macro NULL expands to the value 0.

l Casting between integers and pointers results in no change of representation.

l The compiler warns of casts between pointers to functions and pointers to data (but
not in -pcc mode).

Pointer subtraction

When two pointers are subtracted, the difference is obtained as if by the expression:

((int)a - (int)b) / (int)sizeof(type pointed to)

If the pointers point to objects whose size is no greater than four bytes, word alignment
of data ensures that the division will be exact in all cases. For longer types, such as
doubles and structures, the division may not be exact unless both pointers are to
elements of the same array. Moreover the quotient may be rounded up or down at
different times, leading to potential inconsistencies.

Arithmetic operations
The compiler performs all of the ‘usual arithmetic conversions’ set out in the stand

The following points apply to operations on the integral types:

l All signed integer arithmetic uses a two’s complement representation.

l Bitwise operations on signed integral types follow the rules which arise natura
from two’s complement representation.

l Right shifts on signed quantities are arithmetic.

l Any quantity which specifies the amount of a shift is treated as an unsigned 8
value.

l Any value to be shifted is treated as a 32 bit value.

l Left shifts of more than 31 give a result of zero.

l Right shifts of more than 31 give a result of zero from a shift of an unsigned or
positive signed value; they yield -1 from a shift of a negative signed value.

l The remainder on integer division has the same sign as the divisor.

l If a value of integral type is truncated to a shorter signed integral type, the resu
obtained by masking the original value to the length of the destination, and the
sign extending.
74

C implementation details

e

tive
(b – c)

r,
ence

een
l Conversions between integral types never causes an exception to be raised.

l Integer overflow does not cause an exception to be raised.

l Integer division by zero causes an exception to be raised.

The following points apply to operations on floating types:

l When a double or long double is converted to a float, rounding is to the
nearest representable value.

l Conversions from floating to integral types cause exceptions to be raised only if the
value cannot be represented in a long int (or unsigned long int in the
case of conversion to an unsigned int).

l Floating point underflow is not detected; any operation which underflows returns
zero.

l Floating point overflow causes an exception to be raised.

l Floating point divide by zero causes an exception to be raised.

Expression evaluation
The compiler performs the ‘usual arithmetic conversions’ (promotions) set out in th
standard before evaluating any expression.

l The compiler may re-order expressions involving only associative and commuta
operators of equal precedence, even in the presence of parentheses (e.g. a +
may be evaluated as (a + b) – c).

l Between sequence points, the compiler may evaluate expressions in any orde
regardless of parentheses. Thus the side effects of expressions between sequ
points may occur in any order.

l Similarly, the compiler may evaluate function arguments in any order.

l Any detail of order of evaluation not prescribed by the standard may vary betw
releases of the Acorn C compiler.
75

Implementation limits

ed
Implementation limits
The standard sets out certain minimum translation limits which a conforming compiler
must cope with; you should be aware of these if you are porting applications to other
compilers. A summary is given here. The ‘mem’ limit indicates that no limit is impos
other than that of available memory.

Description Requirement Acorn C
Nesting levels of compound statements and
iteration/selection control structures

15 mem

Nesting levels of conditional compilation 8 mem

Declarators modifying a basic type 31 mem

Expressions nested by parentheses 32 mem

Significant characters

in internal identifiers and macro names 31 256

in external identifiers 6 256

External identifiers in one source file 511 mem

Identifiers with block scope in one block 127 mem

Macro identifiers in one source file 1024 mem

Parameters in one function definition/call 31 mem

Parameters in one macro definition/invocation 31 mem

Characters in one logical source line 509 no limit

Characters in a string literal 509 mem

Bytes in a single object 32767 mem

Nesting levels for #included files 8 mem

Case labels in a switch statement 257 mem

Members in a single struct or union,
enumeration constants in a single enum

127 mem

Nesting of struct/union in a single declaration 15 mem
76

C implementation details

ion
d a

 to

hite
 of
rs

ed by

e
Standard implementation definition

Translation (A.6.3.1)
Diagnostic messages produced by the compiler are of the form

"source-file", line #: severity: explanation

where severity is one of

l warning: not a diagnostic in the ANSI sense, but an attempt by the compiler to be
helpful to you.

l error: a violation of the ANSI specification from which the compiler was able to
recover by guessing your intentions.

l serious error: a violation of the ANSI specification from which no recovery was
possible because the compiler could not reliably guess what you intended.

l fatal (for example, ‘not enough memory’): not really a diagnostic, but an indicat
that the compiler’s limits have been exceeded or that the compiler has detecte
fault in itself.

Environment (A.6.3.2)
The mapping of a command line from the ARM-based environment into arguments
main() is implementation-specific. The shared C library supports the following:

l The arguments given to main() are the words of the command line (not including
I/O redirections, covered below), delimited by white space, except where the w
space is contained in double quotes. A white space character is any character
which isspace is true. (Note that the RISC OS Command Line Interpreter filte
out some of these).

A double quote or backslash character (\) inside double quotes must be preced
a backslash character. An I/O redirection will not be recognised inside double
quotes.

The shared C library supports a pair of interactive devices, both called :tt, that handle
the keyboard and the VDU screen:

l No buffering is done on any stream connected to :tt unless I/O redirection has
taken place. If I/O redirection other than to :tt has taken place, full file buffering
is used except where both stdout and stderr have been redirected to the sam
file, in which case line buffering is used.
77

Identifiers (A.6.3.3)

perset
6 and
nd in
Using the shared C library, the standard input, output and error streams, stdin,
stdout, and stderr can be redirected at runtime in the ways shown below. For
example, if mycopy is a compiled and linked program which simply copies the standard
input to the standard output, the following line:

*mycopy < infile > outfile 2> errfile

runs the program, redirecting stdin to the file infile, stdout to the file outfile
and stderr to the file errfile.

The following shows the allowed redirections:

0< filename read stdin from filename
< filename read stdin from filename

1> filename write stdout to filename
> filename write stdout to filename

2> filename write stderr to filename
2>&1 write stderr to wherever stdout is currently going

>& filename write both stdout and stderr to filename
>> filename append stdout to filename
>>& filename append both stdout and stderr to filename
1>&2 write stdout to wherever stderr is currently going

Identifiers (A.6.3.3)
256 characters are significant in identifiers without external linkage. (Allowed
characters are letters, digits, and underscores.)

256 characters are significant in identifiers with external linkage. (Allowed characters
are letters, digits, and underscores.)

Case distinctions are significant in identifiers with external linkage.

In -pcc and -fc modes, the character ‘$’ is also valid in identifiers.

Characters (A.6.3.4)
The characters in the source character set are ISO 8859-1 (Latin-1 Alphabet), a su
of the ASCII character set. The printable characters are those in the range 32 to 12
160 to 255. Any printable character may appear in a string or character constant, a
a comment.

The compiler has no support for multibyte character sets.
78

C implementation details
The ARM C library supports the ISO 8859-1 (Latin-1) character set, so the following
points hold:

l The execution character set is identical to the source character set.

l There are four chars/bytes in an int. If the ARM processor is configured to
operate with a little-endian memory system (as in RISC OS), the bytes are ordered
from least significant at the lowest address to most significant at the highest
address. If the ARM is configured to operate with a big-endian memory system, the
bytes are ordered from least significant at the highest address to most significant at
the lowest address.

l A character constant containing more than one character has the type int. Up to
four characters of the constant are represented in the integer value. The first
character contained in the constant occupies the lowest-addressed byte of the
integer value; up to three following characters are placed at ascending addresses.
Unused bytes are filled with the NULL (or /0) character.

l There are eight bits in a character in the execution character set.

l All integer character constants that contain a single character or character escape
sequence are represented in the source and execution character set.

l Characters of the source character set in string literals and character constants map
identically into the execution character set.

l No locale is used to convert multibyte characters into the corresponding wide
characters (codes) for a wide character constant.

l A plain char is treated as unsigned (but as signed in -pcc mode).

l Escape codes are:

Escape sequence Char value Description
\a 7 Attention (bell)

\b 8 Backspace

\f 12 Form feed

\n 10 Newline

\r 13 Carriage return

\t 9 Tab

\v 11 Vertical tab

\xnn 0xnn ASCII code in hexadecimal

\nnn 0nnn ASCII code in octal
79

Integers (A.6.3.5)

ction

en in

ters

on.
Integers (A.6.3.5)
The representations and sets of values of the integral types are set out in the section Data
elements on page 70. Note also that:

l The result of converting an integer to a shorter signed integer, if the value cannot be
represented, is as if the bits in the original value which cannot be represented in the
final value are masked out, and the resulting integer sign-extended. The same
applies when you convert an unsigned integer to a signed integer of equal length.

l Bitwise operations on signed integers yield the expected result given two’s
complement representation. No sign extension takes place.

l The sign of the remainder on integer division is the same as defined for the fun
div().

l Right shift operations on signed integral types are arithmetic.

Floating point (A.6.3.6)
The representations and ranges of values of the floating point types have been giv
the section Data elements on page 70. Note also that:

l When a floating point number is converted to a shorter floating point one, it is
rounded to the nearest representable number.

l The properties of floating point arithmetic accord with IEEE 754.

Arrays and pointers (A.6.3.7)
The ANSI standard specifies three areas in which the behaviour of arrays and poin
must be documented. The points to note are:

l The type size_t is defined as unsigned int.

l Casting pointers to integers and vice versa involves no change of representati
Thus any integer obtained by casting from a pointer will be positive.

l The type ptrdiff_t is defined as (signed) int.
80

C implementation details

Registers (A.6.3.8)
In the Acorn C compiler, you can declare any number of objects to have the storage class
register. Depending on which variant of the ARM Procedure Call Standard is in use,
there are between five and seven registers available. (There are six available in the
default APCS variant, as used by RISC OS.) Declaring more than this number of objects
with register storage class must result in at least one of them not being held in a register.
It is advisable to declare no more than four. The valid types are:

l any integer type

l any pointer type

l any integer-like structure (any one word struct or union in which all addressable
fields have the same address, or any one word structure containing only bitfields).

Note that other variables, not declared with the register storage class, may be held in
registers for extended periods; and that register variables may be held in memory
for some periods.

Note also that there is a #pragma which assigns a file-scope variable to a specified
register everywhere within a compilation unit.

Structures, unions, enumerations and bitfields (A.6.3.9)
The Acorn C compiler handles structures in the following way:

l When a member of a union is accessed using a member of a different type, the
resulting value can be predicted from the representation of the original type. No
error is given.

l Structures are aligned on word boundaries. Characters are aligned in bytes, shorts
on even numbered byte boundaries and all other types, except bitfields, are aligned
on word boundaries. Bitfields are subfields of ints, themselves aligned on word
boundaries.

l A ‘plain’ bitfield (declared as int) is treated as unsigned int (signed int
in -pcc mode).

l A bitfield which does not fit into the space remaining in the current int is placed in
the next int.

l The order of allocation of bitfields within ints is such that the first field specified
occupies the lowest addressed bits of the word.

l Bitfields do not straddle storage unit (int) boundaries.

l The integer type chosen to represent the values of an enumeration type is int
(signed int).
81

Qualifiers (A.6.3.10)
Qualifiers (A.6.3.10)
An object that has volatile-qualified type is accessed if any word or byte of it is read
or written. For volatile-qualified objects, reads and writes occur as directly implied
by the source code, in the order implied by the source code.

The effect of accessing a volatile-qualified short is undefined.

Declarators (A.6.3.11)
The number of declarators that may modify an arithmetic, structure or union type is
limited only by available memory.

Statements (A.6.3.12)
The number of case values in a switch statement is limited only by memory.

Preprocessing directives (A.6.3.13)
A single-character constant in a preprocessor directive cannot have a negative value.

The standard header files are contained within the compiler itself. The mechanism for
translating the standard suffix notation to an Acorn filename is described in the chapter
CC and C++ on page 11.

Quoted names for includable source files are supported. The rules for directory
searching are given in the chapter CC and C++ on page 11.

The recognized #pragma directives and their meaning are described in the section
#pragma directives on page 86.

The date and time of translation are always available, so __DATE__ and __TIME__
always give respectively the date and time.

Library functions (A.6.3.14)
The C library has or supports the following features:

l The macro NULL expands to the integer constant 0.

l If a program redefines a reserved external identifier, then an error may occur when
the program is linked with the standard libraries. If it is not linked with standard
libraries, then no error will be detected.

l The assert() function prints the following message:
*** assertion failed: expression, file filename, line, line-number

and then calls the function abort().
82

C implementation details
l The functions isalnum(), isalpha(), iscntrl(), islower(),
isprint(), isupper() and ispunct() usually test only for characters
whose values are in the range 0 to 127 (inclusive). Characters with values greater
than 127 return a result of 0 for all of these functions, except iscntrl() which
returns non-zero for 0 to 31, and 128 to 255.

After the call setlocale(LC_CTYPE,"ISO8859-1") the following statements
also apply to character codes and affect the results returned by the ctype functions:

l codes 128 to 159 are control characters

l codes 192 to 223 except 215 are upper case

l codes 224 to 255 except 247 are lower case

l codes 160 to 191, 215 and 247 are punctuation

The mathematical functions return the following values on domain errors:

Function Condition Returned value
log(x) x <= 0 -HUGE_VAL
log10(x) x <= 0 -HUGE_VAL
sqrt(x) x < 0 -HUGE_VAL
atan2(x,y) x = y = 0 -HUGE_VAL
asin(x) abs(x) > 1 -HUGE_VAL
acos(x) abs(x) > 1 -HUGE_VAL

Where -HUGE_VAL is written above, a number is returned which is defined in the
header h.math. Consult the errno variable for the error number.

The mathematical functions set errno to ERANGE on underflow range errors.

A domain error occurs if the second argument of fmod is zero, and
–HUGE_VAL returned.

The set of signals for the generic signal() function is as follows:

SIGABRT Abort
SIGFPE Arithmetic exception
SIGILL Illegal instruction
SIGINT Attention request from user
SIGSEGV Bad memory access
SIGTERM Termination request
SIGSTAK Stack overflow

The default handling of all recognised signals is to print a diagnostic message and call
exit . This default behaviour applies at program start-up.

When a signal occurs, if func points to a function, the equivalent of signal(sig,
SIG_DFL); is first executed.
83

Library functions (A.6.3.14)

 or
iting
If the SIGILL signal is received by a handler specified to the signal function, the
default handling is reset.

The C library also has the following characteristics relating to I/O:

l The last line of a text stream does not require a terminating newline character.

l Space characters written out to a text stream immediately before a newline character
do appear when read back in.

l No null characters are appended to a binary output stream.

l The file position indicator of an append mode stream is initially placed at the end of
the file.

l A write to a text stream does not cause the associated file to be truncated beyond
that point.

l The characteristics of file buffering are as intended by section 4.9.3 of the standard.

l A zero-length file (on which no characters have been written by an output stream)
does exist.

l The validity of filenames is defined by the host computer’s filing system.

l The same file can be opened many times for reading, but only once for writing
updating. A file cannot however be open for reading on one stream and for wr
or updating on another.

Note also the following points about library functions:

remove() Cannot remove an open file.

rename() The effect of calling the rename() function when the new name
already exists is dependent on the host filing system. Not all
renames are valid: examples of invalid renames include

("net:file1","net:$.file2") and
("net:file1","adfs:file2").

fprintf() Prints %p arguments in hexadecimal format (lower case) as if a
precision of 8 had been specified. If the variant form (%#p) is
selected, the number is preceded by the character @.

fscanf() Treats %p arguments identically to %x arguments.

Always treats the character – in a %[argument as a literal
character.

ftell() and
fgetpos()

Set errno to the value of EDOM on failure.

perror() Generates the following messages:

Error: Message:
0 No error (errno = 0)

EDOM EDOM – function argument out of range
84

C implementation details

n

ERANGE ERANGE – function result not representable

ESIGNUM ESIGNUM – illegal signal number to signal() or
raise()

others Error code number has no associated message

calloc(),
malloc()
and
realloc()

If the size of the area requested is zero, NULL is returned under
RISC OS 3.10, and non-NULL is returned under RISC OS 3.50..

abort() Closes all open files, and deletes all temporary files.

exit() The status returned by exit is the same value that was passed to
it. For a definition of EXIT_SUCCESS and EXIT_FAILURE
refer to the header file stdlib.h.

getenv() Returns the value of the named RISC OS Environmental variable,
or NULL if the variable had no value. For example:

root = getenv ("C$libroot");
if (root == NULL) root = "$.arm.clib";

system() Used either to CHAIN to another application or built-in command
or to CALL one as a sub-program. When a program is chained, all
trace of the original program is removed from memory and the
chained program invoked. If a program is called (which is the
default if no CHAIN: or CALL: precedes the program name – a
change from Release 2), the calling program and data are moved i
memory to somewhere safe and the callee loaded and started up.
The return value from the system() call is -2 (indicating a
failure to invoke the program) or the value of Sys$ReturnCode
set by the called program (0 indicates success).

strerror() The error messages given by this function are identical to those
given by the perror() function.

clock() Returns the time taken by the program since its invocation, as
indicated by the host’s operating system.
85

Extra features
Extra features
This section describes the following machine-specific features of the Acorn C compiler:

l #pragma directives

l special declaration keywords for functions and variables.

#pragma directives
Pragmas recognised by the compiler come in two forms:

#pragma -letter«digit»

and

#pragma «no»feature-name

A short-form pragma given without a digit resets that pragma to its default state;
otherwise to the state specified.

For example:

#pragma -s1
#pragma nocheck_stack

#pragma -p2
#pragma profile_statements

The set of pragmas recognised by the compiler, together with their default settings,
varies from release to release of the compiler. The current list of recognised pragmas is:

Pragma name Short form Short ‘No’
form

Command
line option

warn_implicit_fn_decls a1 * a0 -Wf

check_memory_accesses c1 c0 * -zpc0|1

warn_deprecated d1 * d0 -Wd

continue_after_hash_error e1 e0 *

(FP register variable) f1-f4 f0 *

include_only_once i1 i0 *

optimise_crossjump j1 * j0 -zpj0|1

optimise_multiple_loads m1 * m0 -zpm0|1

profile p1 p0 * -p

profile_statements p2 p0 * -px

(integer register variable) r1-r7 r0 *

check_stack s0 * s1 -zps0|1
86

C implementation details
In each case, the default setting is starred.

You can also globally set pragmas by options set in the command line passed to the cc
program (see the section Command lines on page 42); the preferred option to use is
shown above. Where no option is shown for a pragma, it is because that pragma may
only sensibly be used locally, and should be enabled/disabled around the particular
program statements it is to affect.

Pragmas controlling the preprocessor

The pragma continue_after_hash_error in effect implements a
#warning … preprocessor directive. Pragma include_only_once asserts that the
containing #include file is to be included only once, and that if its name recurs in a
subsequent #include directive then the directive is to be ignored.

The pragma force_top_level asserts that the containing #include file should
only be included at the top level of a file. A syntax error will result if the file is included,
say, within the body of a function.

Pragmas controlling printf/scanf argument checking

The pragmas check_printf_formats and check_scanf_formats control
whether the actual arguments to printf and scanf , respectively, are type-checked
against the format designators in a literal format string.

Of course, calls using non-literal format strings cannot be checked. By default, all calls
involving literal format strings are checked.

Pragmas controlling optimisation

The pragmas optimise_crossjump , optimise_multiple_loads and
optimise_cse give fine control over where these optimisations are applied. For
example, it is sometimes advantageous to disable cross-jumping (the common tail
optimisation) in the critical loop of an interpreter; and it may be helpful in a timing loop
to disable common subexpression elimination and the opportunistic optimisation of
multiple load instructions to load multiples. Note that the correct use of the volatile

force_top_level t1 t0 *

check_printf_formats v1 v0 *

check_scanf_formats v2 v0 *

side_effects y0 * y1

optimise_cse z1 * z0 -zpz0|1

Pragma name Short form Short ‘No’
form

Command
line option
87

#pragma directives

e also

h

all.

sion.

ess to

 be
qualifier should remove most of the more obvious needs for this degree of control (and
volatile is also available in the Acorn C compiler’s -pcc mode unless -strict is
specified).

By default, functions are assumed to be impure, so function invocations are not
candidates for common subexpression elimination. Pragma noside_effects asserts
that the following function declarations (until the next #pragma side_effects)
describe pure functions, invocations of which can be common subexpressions. Se
the section __pure on page 90.

Pragmas controlling code generation

Stack limit checking

The pragma nocheck_stack disables the generation of code at function entry whic
checks for stack limit violation. In reality there is little advantage to turning off this
check: it typically costs only two instructions and two machine cycles per function c
The one circumstance in which nocheck_stack must be used is in writing a signal
handler for the SIGSTAK event. When this occurs, stack overflow has already been
detected, so checking for it again in the handler would result in a fatal circular recur

Memory access checking

The pragma check_memory_accesses instructs the compiler to precede each acc
memory by a call to the appropriate one of:

__rt_rdnchk where n is 1, 2, or 4, for byte, short, or long reads (respectively)
__rt_wrnchk where n is 1, 2, or 4, for byte, short, or long writes (respectively).

Global (program-wide) register variables

The pragmas f0-f4 and r0-r7 have no long form counterparts. Each introduces or
terminates a list of extern, file-scope variable declarations. Each such declaration
declares a name for the same register variable. For example:

#pragma r1 /* 1st global register */
extern int *sp;
#pragma r2 /* 2ndglobal register */
extern int *fp, *ap; /* Synonyms */
#pragma r0 /* End of global declaration */
#pragma f1 /* 1st global FP register */
extern double pi;
#pragma f0 /* End of global declaration */

Any type that can be allocated to a register (see the section Registers (A.6.3.8) on
page 81) can be allocated to a global register. Similarly, any floating point type can
allocated to a floating point register variable.
88

C implementation details
Global register r1 is the same as register v1 in the ARM Procedure Call Standard
(APCS); similarly, r2 equates to v2, and so on. Depending on the APCS variant, between
five and seven integer registers (v1-v7, machine registers R4-R10) and four floating
point registers (F4-F7) are available as register variables. (There are six integer registers
available in the default APCS variant, as used by RISC OS.) In practice it is probably
unwise to use more than three global integer register variables and 2 global floating
point register variables.

Provided the same declarations are made in each compilation unit, a global register
variable may exist program-wide.

Otherwise, because a global register variable maps to a callee-saved register, its value
will be saved and restored across a call to a function in a compilation unit which does not
use it as a global register variable, such as a library function.

A corollary of the safety of direct calls out of a global-register-using compilation unit, is
that calls back into it are dangerous. In particular, a global-register-using function called
from a compilation unit which uses that register as a compiler allocated register, will
probably read the wrong values from its supposed global register variables.

Currently, there is no link-time check that direct calls are sensible. And even if there
were, indirect calls via function arguments pose a hazard which is harder to detect. This
facility must be used with care. Preferably, the declaration of global register variable
should be made in each compilation unit of the program. See also the section
__global_reg(n) on page 90.

Special function declaration keywords
Several special function declaration options are available to tell the Acorn C compiler to
treat that function in a special way. None of these are portable to other machines.

__value_in_regs

This allows the compiler to return a structure in registers rather than returning a pointer
to the structure. For example:

typedef struct int64_structt {
unsigned int lo;
unsigned int hi;

} int 64;

__value_in_regs extern int64 mul64(unsigned a, unsigned b);

See the appendix ARM procedure call standard on page 249 of the Desktop Tools guide
for details of the default way in which structures are passed and returned.
89

Special variable declaration keywords
__pure

By default, functions are assumed to be impure (i.e. they have side effects), so function
invocations are not candidates for common subexpression elimination. __pure has the
same effect as pragma noside_effects, and asserts that the function declared is a
pure function, invocations of which can be common subexpressions.

Special variable declaration keywords

__global_reg(n)

Allocates the declared variable to a global integer register variable, in the same way as
#pragma rn. The variable must have an integral or pointer type. See also the section
Global (program-wide) register variables on page 88.

__global_freg(n)

Allocates the declared variable to a global floating point register variable, in the same
way as #pragma fn. The variable must have type float or double. See also the section
Global (program-wide) register variables on page 88.

Note that the global register, whether specified by keyword or pragmas, must be
declared in all declarations of the same variable. Thus:

int x;
__global_reg(1) x;

is an error.
90

7 The C library

he shared C library is a relocatable module in the RISC OS ROM. Applications

which are resident in memory at the same time can share it. It provides all the T
standard facilities of the language, as defined by the ANSI standard document. Code
opy

 C
using calls to the shared C library will be portable to other environments if an ANSI
compiler and library are available for that environment.

C and C++ programs are linked with a small piece of code and data called Stubs,
which itself interfaces with the shared C library. The stubs contain your program’s c
of the library’s data, and an entry vector which allows your program to locate library
routines in the C library module. Stubs is found in the directory
AcornC_C++.Libraries.clib.o.

Use of the shared C library:

l economises on RAM space when multiple C applications are running

l saves space on disc, benefiting users with single floppy disc drives

l makes programs load faster

l costs practically nothing at run time.

(For example, the Dhrystone benchmark runs just as quickly using the shared
library as when linked stand-alone with ANSILib.)

Without the shared C library, it would not be possible to pack so much into
Acorn C/C++.
91

assert.h
assert.h

The assert macro puts diagnostics into programs. When it is executed, if its argument
expression is false, it writes information about the call that failed (including the text of
the argument, the name of the source file, and the source line number, the last two of
these being, respectively, the values of the preprocessing macros __FILE__ and
__LINE__) on the standard error stream. It then calls the abort function. If its
argument expression is true, the assert macro returns no value.

If NDEBUG is #defined prior to inclusion of assert.h, calls to assert expand to null
statements. This provides a simple way to turn off the generation of diagnostics
selectively.

Note that assert.h may be included more than once in a program with different
settings of NDEBUG.
92

The C library

f,
ctype.h

ctype.h declares several functions useful for testing and mapping characters. In all
cases the argument is an int, the value of which is representable as an unsigned char or
equal to the value of the macro EOF. If the argument has any other value, the behaviour
is undefined.

int isalnum(int c) Returns true if c is alphabetic or numeric

int isalph(int c) Returns true if c is alphabetic

int iscntrl(int c) Returns true if c is a control character (in the ASCII
locale)

int isdigit(int c) Returns true if c is a decimal digit

int isgraph(int c) Returns true if c is any printable character other than
space

int islower(int c) Returns true if c is a lower-case letter

int isprint(int c) Returns true if c is a printable character (in the ASCII
locale this means 0x20 (space) → 0x7E (tilde)
inclusive).

int ispunct(int c) Returns true if c is a printable character other than a
space or alphanumeric character

int isspace(int c) Returns true if c is a white space character viz: space,
newline, return, linefeed, tab or vertical tab

int isupper(int c) Returns true if c is an upper-case letter

int isxdigit(int c) Returns true if c is a hexadecimal digit, ie in 0…9, a…
or A…F

int tolower(int c) Forces c to lower case if it is an upper-case letter,
otherwise returns the original value

int toupper(int c) Forces c to upper case if it is a lower-case letter,
otherwise returns the original value
93

errno.h
errno.h

This file contains the definition of the macro errno, which is of type volatile
int. It contains three macro constants defining the error conditions listed below.

EDOM

If a domain error occurs (an input argument is outside the domain over which the
mathematical function is defined) the integer expression errno acquires the value of
the macro EDOM and HUGE_VAL is returned. EDOM may be used by non-mathematical
functions.

ERANGE

A range error occurs if the result of a function cannot be represented as a double value.
If the result overflows (the magnitude of the result is so large that it cannot be
represented in an object of the specified type), the function returns the value of the
macro HUGE_VAL, with the same sign as the correct value of the function; the integer
expression errno acquires the value of the macro ERANGE. If the result underflows
(the magnitude of the result is so small that it cannot be represented in an object of the
specified type), the function returns zero; the integer expression errno acquires the
value of the macro ERANGE. ERANGE may be used by non-mathematical functions.

ESIGNUM

If an unrecognised signal is caught by the default signal handler, errno is set to
ESIGNUM.
94

The C library
float.h

This file contains a set of macro constants which define the limits of computation on
floating point numbers. These are discussed in the chapter C implementation details on
page 69.
95

limits.h
limits.h

This set of macro constants determines the upper and lower value limits for integral
objects of various types, as follows:

Object type Minimum value Maximum value
Byte (number of bits) 0 8
Signed char -128 127
Unsigned char 0 255
Char 0 255
Multibyte character (number 0 1

of bytes)
Short int -0x8000 0x7fff
Unsigned short int 0 65535
Int (~0x7fffffff) 0x7fffffff
Unsigned int 0 0xffffffff
Long int (~0x7fffffff) 0x7fffffff
Unsigned long int 0 0xffffffff

See also the chapter C implementation details on page 69.
96

The C library

o

le,

f the

e
locale.h

This file handles national characteristics, such as the different orderings month-day-year
(USA) and day-month-year (UK).

char *setlocale(int category, const char *locale)

Selects the appropriate part of the program’s locale as specified by the category and
locale arguments. The setlocale function may be used to change or query the
program’s entire current locale or portions thereof. Locale information is divided int
the following types:

LC_COLLATE string collation
LC_CTYPE character type
LC_MONETARY monetary formatting
LC_NUMERIC numeric string formatting
LC_TIME time formatting
LC_ALL entire locale

The locale string specifies which locale set of information is to be used. For examp

setlocale

setlocale(LC_MONETARY,"uk")

would insert monetary information into the lconv structure. To query the current locale
information, set the locale string to null and read the string returned.

lconv

struct lconv *localeconv(void)

Sets the components of an object with type struct lconv with values appropriate for the
formatting of numeric quantities (monetary and otherwise) according to the rules o
current locale. The members of the structure with type char * are strings, any of which
(except decimal_point) can point to "", to indicate that the value is not available in
the current locale or is of zero length. The members with type char are non-negative
numbers, any of which can be CHAR_MAX to indicate that the value is not available in
the current locale. The members included are described above.

localeconv returns a pointer to the filled in object. The structure pointed to by th
return value will not be modified by the program, but may be overwritten by a
subsequent call to the localeconv function. In addition, calls to the setlocale
function with categories LC_ALL, LC_MONETARY, or LC_NUMERIC may overwrite
the contents of the structure.
97

math.h
math.h

This file contains the prototypes for 22 mathematical functions. All return the type
double.

Function Returns

double acos(double x) arc cosine of x. A domain error occurs
for arguments not in the range –1 to 1

double asin(double x) arc sine of x. A domain error occurs for
arguments not in the range –1 to 1

double atan(double x) arc tangent of x

double atan2(double x, double y) arc tangent of y/x

double cos(double x) cosine of x (measured in radians)

double sin(double x) sine of x (measured in radians)

double tan(double x) tangent of x (measured in radians)

double cosh(double x) hyperbolic cosine of x

double sinh(double x) hyperbolic sine of x

double tanh(double x) hyperbolic tangent of x

double exp(double x) exponential function of x

double frexp(double x, int *exp) the value x, such that x is a double
with magnitude in the interval 0.5 to 1.0
or zero, and value equals x times 2 raised
to the power *exp

double ldexp(double x, int exp) x times 2 raised to the power of exp

double log(double x) natural logarithm of x

double log10(double x) log to the base 10 of x

double modf(double x, double *iptr) signed fractional part of x. Stores
integer part of x in object pointed to by
iptr.

double pow(double x, double y) x raised to the power of y

double sqrt(double x) positive square root of x

double ceil(double x) smallest integer not less than x (ie
rounding up)

double fabs(double x) absolute value of x

double floor(double x) largest integer not greater than x (ie
rounding down)

double fmod(double x, double y) floating-point remainder of x/y
98

The C library
setjmp.h

This file declares two functions, and one type, for bypassing the normal function call
and return discipline (useful for dealing with unusual conditions encountered in a
low-level function of a program). It also defines the jmp_buf structure type required
by these routines.

setjmp

int setjmp(jmp_buf env)

The calling environment is saved in env, for later use by the longjmp function. If the
return is from a direct invocation, the setjmp function returns the value zero. If the
return is from a call to the longjmp function, the setjmp function returns a non-zero
value.

longjmp

void longjmp(jmp_buf env, int val)

The environment saved in env by the most recent call to setjmp is restored. If there
has been no such call, or if the function containing the call to setjmp has terminated
execution (eg with a return statement) in the interim, the behaviour is undefined. All
accessible objects have values as at the time longjmp was called, except that the
values of objects of automatic storage duration that do not have volatile type and that
have been changed between the setjmp and longjmp calls are indeterminate.

As it bypasses the usual function call and return mechanism, the longjmp function
executes correctly in contexts of interrupts, signals and any of their associated functions.
However, if the longjmp function is invoked from a nested signal handler (that is,
from a function invoked as a result of a signal raised during the handling of another
signal), the behaviour is undefined.

After longjmp is completed, program execution continues as if the corresponding call
to setjmp had just returned the value specified by val. The longjmp function
cannot cause setjmp to return the value 0; if val is 0, setjmp returns the value 1.
99

signal.h
signal.h

Signal declares a type (sig_atomic_t) and two functions.

It also defines several macros for handling various signals (conditions that may be
reported during program execution). These are SIG_DFL (default routine), SIG_IGN
(ignore signal routine) and SIG_ERR (dummy routine used to flag error return from
signal).

void (*signal (int sig, void (*func)(int)))(int)

Think of this as

typedef void Handler(int);
Handler *signal(int, Handler *);

Chooses one of three ways in which receipt of the signal number sig is to be
subsequently handled. If the value of func is SIG_DFL, default handling for that
signal will occur. If the value of func is SIG_IGN, the signal will be ignored.
Otherwise func points to a function to be called when that signal occurs.

When a signal occurs, if func points to a function, first the equivalent of
signal(sig, SIG_DFL) is executed. (If the value of sig is SIGILL, whether the
reset to SIG_DFL occurs is implementation-defined (under RISC OS the reset does
occur)). Next, the equivalent of (*func)(sig); is executed. The function may
terminate by calling the abort, exit or longjmp function. If func executes a return
statement and the value of sig was SIGFPE or any other implementation-defined value
corresponding to a computational exception, the behaviour is undefined. Otherwise, the
program will resume execution at the point it was interrupted.

If the signal occurs other than as a result of calling the abort or raise function, the
behaviour is undefined if the signal handler calls any function in the standard library
other than the signal function itself or refers to any object with static storage duration
other than by assigning a value to a volatile static variable of type sig_atomic_t. At
program start-up, the equivalent of signal(sig, SIG_IGN) may be executed for
some signals selected in an implementation-defined manner (under RISC OS this does
not occur); the equivalent of signal(sig, SIG_DFL) is executed for all other
signals defined by the implementation.

If the request can be honoured, the signal function returns the value of func for most
recent call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is
returned and the integer expression errno is set to indicate the error.

raise

int raise(int /*sig*/)
100

The C library
Sends the signal sig to the executing program. Returns zero if successful, non-zero if
unsuccessful.
101

stdarg.h
stdarg.h

This file declares a type and defines three macros, for advancing through a list of
arguments whose number and types are not known to the called function when it is
translated. A function may be called with a variable number of arguments of differing
types. Its parameter list contains one or more parameters, the rightmost of which plays a
special role in the access mechanism, and will be called parmN in this description.

va_list

char *va_list[1]

An array type suitable for holding information needed by the macro va_arg and the
function va_end. The called function declares a variable (referred to as ap) having
type va_list. The variable ap may be passed as an argument to another function.
va_list is an array type so that when an object of that type is passed as an argument it
gets passed by reference, but this is not required by the ANSI specification and cannot
be relied on.

va_start

The va_start macro will be executed before any access to the unnamed arguments.
The parameter ap points to an object that has type va_list. The va_start macro
initialises ap for subsequent use by va_arg and va_end. The parameter parmN is the
identifier of the rightmost parameter in the variable parameter list in the function
definition (the one just before the , ...). If the parameter parmN is declared with the
register storage class the behaviour is undefined.

Returns: no value.

va_arg

The va_arg macro expands to an expression that has the type and value of the next
argument in the call. The parameter ap is the same as the va_list ap initialised by
va_start. Each invocation of va_arg modifies ap so that successive arguments are
returned in turn. The parameter type is a type name such that the type of a pointer to an
object that has the specified type can be obtained simply by postfixing a * to type. If
type disagrees with the type of the actual next argument (as promoted according to the
default argument promotions), the behaviour is undefined.

Returns: The first invocation of the va_arg macro after that of the va_start macro
returns the value of the argument after that specified by parmN. Successive invocations
return the values of the remaining arguments in succession. Care is taken in va_arg so
102

The C library

C

 is
that illegal things like va_arg(ap,char) – which may seem natural but are in fact
illegal – are caught. va_arg(ap,float) is wrong but cannot be patched up at the
macro level.

va_end

#define va_end(ap) ((void)(*(ap) = (char *)-256))

The va_end macro facilitates a normal return from the function whose variable
argument list was referenced by the expansion of va_start that initialised the
va_list ap. If the va_end macro is not invoked before the return, the behaviour
undefined.
103

stddef.h
stddef.h

This file contains a macro for calculating the offset of fields within a structure. It also
defines the pointer constant NULL and three types.

ptrdiff_t(here int) the signed integral type of the result of
subtracting two pointers

size_t(here unsigned int) the unsigned integral type of the result of the
sizeof operator

wchar_t(here int) also in stdlib.h. An integral type whose
range of values can represent distinct codes for
all members of the largest extended character
set specified among the supported locales; the
null character has the code value zero and each
member of the basic character set has a code
value when used as the lone character in an
integer character constant.

size_t offsetof(type, member)Expands to an integral constant expression
that has type size_t, the value of which is the
offset in bytes from the beginning of a structure
designated by type, of the member designated
by member (if the specified member is a
bit-field, the behaviour is undefined).
104

The C library
stdio.h

stdio declares two types, several macros, and many functions for performing input
and output. For a discussion on Streams and Files refer to sections 4.9.2 and 4.9.3 in the
ANSI standard or to one of the other references given in the Introduction to this Guide.

fpos_t fpos_t is an object capable of recording all information needed to
specify uniquely every position within a file.

FILE is an object capable of recording all information needed to control a
stream, such as its file position indicator, a pointer to its associated
buffer, an error indicator that records whether a read/write error has
occurred and an end-of-file indicator that records whether the
end-of-file has been reached. The objects contained in the #ifdef
__system_io clause are for system use only, and cannot be relied
on between releases of C.

remove

int remove(const char * filename)

Causes the file whose name is the string pointed to by filename to be removed.
Subsequent attempts to open the file will fail, unless it is created anew. If the file is open,
the behaviour of the remove function is implementation-defined (under RISC OS the
operation fails).

Returns: zero if the operation succeeds, non-zero if it fails.

rename

int rename(const char * old, const char * new)

Causes the file whose name is the string pointed to by old to be henceforth known by
the name given by the string pointed to by new. The file named old is effectively
removed. If a file named by the string pointed to by new exists prior to the call of the
rename function, the behaviour is implementation-defined (under RISC OS, the
operation fails).

Returns: zero if the operation succeeds, non-zero if it fails, in which case if the file
existed previously it is still known by its original name.

tmpfile

FILE *tmpfile(void)
105

stdio.h
Creates a temporary binary file that will be automatically removed when it is closed or
at program termination. The file is created if possible in Wimp$ScrapDir, or failing
that, in the directory $.tmp; it is then opened for update.

Returns: a pointer to the stream of the file that it created. If the file cannot be created, a
null pointer is returned.

tmpnam

char *tmpnam(char * s)

Generates a string that is not the same as the name of an existing file. The tmpnam
function generates a different string each time it is called, up to TMP_MAX times. If it is
called more than TMP_MAX times, the behaviour is implementation-defined (under
RISC OS the algorithm for the name generation works just as well after tmpnam has
been called more than TMP_MAX times as before; a name clash is impossible in any
single half year period).

Returns: If the argument is a null pointer, the tmpnam function leaves its result in an
internal static object and returns a pointer to that object. Subsequent calls to the tmpnam
function may modify the same object. If the argument is not a null pointer, it is assumed
to point to an array of at least L_tmpnam characters; the tmpnam function writes its
result in that array and returns the argument as its value.

fclose

int fclose(FILE * stream)

Causes the stream pointed to by stream to be flushed and the associated file to be
closed. Any unwritten buffered data for the stream are delivered to the host environment
to be written to the file; any unread buffered data are discarded. The stream is
disassociated from the file. If the associated buffer was automatically allocated, it is
deallocated.

Returns: zero if the stream was successfully closed, or EOF if any errors were detected
or if the stream was already closed.

fflush

int fflush(FILE * stream)

If the stream points to an output or update stream in which the most recent operation was
output, the fflush function causes any unwritten data for that stream to be delivered to
the host environment to be written to the file. If the stream points to an input or update
stream, the fflush function undoes the effect of any preceding ungetc operation on
the stream.
106

The C library
Returns: EOF if a write error occurs.

fopen

FILE *fopen(const char * filename, const char * mode)

Opens the file whose name is the string pointed to by filename, and associates a
stream with it. The argument mode points to a string beginning with one of the
following sequences:

r open text file for reading
w create text file for writing, or truncate to zero length
a append; open text file or create for writing at eof
rb open binary file for reading
wb create binary file for writing, or truncate to zero length
ab append; open binary file or create for writing at eof
r+ open text file for update (reading and writing)
w+ create text file for update, or truncate to zero length
a+ append; open text file or create for update, writing at eof
r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ create binary file for update, or truncate to zero length
a+b or ab+ append; open binary file or create for update, writing at

eof

l Opening a file with read mode (r as the first character in the mode argument) fails
if the file does not exist or cannot be read.

l Opening a file with append mode (a as the first character in the mode argument)
causes all subsequent writes to be forced to the current end of file, regardless of
intervening calls to the fseek function.

l In some implementations, opening a binary file with append mode (b as the second
or third character in the mode argument) may initially position the file position
indicator beyond the last data written, because of null padding (but not under
RISC OS).

l When a file is opened with update mode (+ as the second or third character in the
mode argument), both input and output may be performed on the associated stream.
However, output may not be directly followed by input without an intervening call
to the fflush function or to a file positioning function (fseek, fsetpos, or
rewind), nor may input be directly followed by output without an intervening call
to the fflush function or to a file positioning function, unless the input operation
encounters end-of-file.

l Opening a file with update mode may open or create a binary stream in some
implementations (but not under RISC OS). When opened, a stream is fully buffered
if and only if it does not refer to an interactive device. The error and end-of-file
indicators for the stream are cleared.
107

stdio.h
Returns: a pointer to the object controlling the stream. If the open operation fails,
fopen returns a null pointer.

freopen

FILE *freopen(const char * filename, const char * mode,
 FILE * stream)

Opens the file whose name is the string pointed to by filename and associates the
stream pointed to by stream with it. The mode argument is used just as in the fopen
function. The freopen function first attempts to close any file that is associated with
the specified stream. Failure to close the file successfully is ignored. The error and
end-of-file indicators for the stream are cleared.

Returns: a null pointer if the operation fails. Otherwise, freopen returns the value of
the stream.

setbuf

void setbuf(FILE * stream, char * buf)

Except that it returns no value, the setbuf function is equivalent to the setvbuf
function invoked with the values _IOFBF for mode and BUFSIZ for size, or if buf is
a null pointer, with the value _IONBF for mode.

Returns: no value.

setvbuf

int setvbuf(FILE * stream, char * buf, int mode, size_t
 size)

This may be used after the stream pointed to by stream has been associated with an
open file but before it is read or written. The argument mode determines how stream
will be buffered, as follows:

l _IOFBF causes input/output to be fully buffered.

l _IOLBF causes output to be line buffered (the buffer will be flushed when a
newline character is written, when the buffer is full, or when interactive input is
requested).

l _IONBF causes input/output to be completely unbuffered.
108

The C library
If buf is not the null pointer, the array it points to may be used instead of an
automatically allocated buffer (the buffer must have a lifetime at least as great as the
open stream, so the stream should be closed before a buffer that has automatic storage
duration is deallocated upon block exit). The argument size specifies the size of the
array. The contents of the array at any time are indeterminate. buf must be non-null.

Returns: zero on success, or non-zero if an invalid value is given for mode or size, or if
the request cannot be honoured.

fprintf

int fprintf(FILE * stream, const char * format, ...)

writes output to the stream pointed to by stream, under control of the string pointed to
by format that specifies how subsequent arguments are converted for output. If there
are insufficient arguments for the format, the behaviour is undefined. If the format is
exhausted while arguments remain, the excess arguments are evaluated but otherwise
ignored. The fprintf function returns when the end of the format string is reached.
The format must be a multibyte character sequence, beginning and ending in its initial
shift state (in all locales supported under RISC OS this is the same as a plain character
string). The format is composed of zero or more directives: ordinary multibyte
characters (not %), which are copied unchanged to the output stream; and conversion
specifiers, each of which results in fetching zero or more subsequent arguments. Each
conversion specification is introduced by the character %. For a complete description of
the available conversion specifiers refer to section 4.9.6.1 in the ANSI standard or to one
of the other references in the Introduction to this Guide. The minimum value for the
maximum number of characters that can be produced by any single conversion is at least
509.

A brief and incomplete description of conversion specifications is:

[flags][field width][.precision]specifier-char

flags is most commonly -, indicating left justification of the output item within the
field. If omitted, the item will be right justified.

field width is the minimum width of field to use. If the formatted item is longer, a
bigger field will be used; otherwise, the item will be right (left) justified in the field.

precision is the minimum number of digits to print for a d, i, o, u, x or X conversion,
the number of digits to appear after the decimal digit for e, E and f conversions, the
maximum number of significant digits for g and G conversions, or the maximum
number of characters to be written from strings in an s conversion.

Either or both of field width and precision may be *, indicating that the value
is an argument to printf.

The specifier chars are:
109

stdio.h
d, i int printed as signed decimal
o, u, x, X unsigned int value printed as unsigned octal, decimal or

hexadecimal
f double value printed in the style [-]ddd.ddd
e, E double value printed in the style [-]d.ddd…e±dd
g, G double printed in f or e format, whichever is more

appropriate
c int value printed as unsigned char
s char * value printed as a string of characters
p void * argument printed as a hexadecimal address
% write a literal %

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

printf

int printf(const char * format, ...)

Equivalent to fprintf with the argument stdout interposed before the arguments to
printf .

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

sprintf

int sprintf(char * s, const char * format, ...)

Equivalent to fprintf , except that the argument s specifies an array into which the
generated output is to be written, rather than to a stream. A null character is written at the
end of the characters written; it is not counted as part of the returned sum.

Returns: the number of characters written to the array, not counting the terminating null
character.

fscanf

int fscanf(FILE * stream, const char * format, ...)

Reads input from the stream pointed to by stream, under control of the string pointed
to by format that specifies the admissible input sequences and how they are to be
converted for assignment, using subsequent arguments as pointers to the objects to
receive the converted input. If there are insufficient arguments for the format, the
behaviour is undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated but otherwise ignored. The format is composed of zero or more
110

The C library
directives, one or more white-space characters, an ordinary character (not %), or a
conversion specification. Each conversion specification is introduced by the character
%. For a description of the available conversion specifiers refer to section 4.9.6.2 in the
ANSI standard, or to any of the references listed in the chapter Introduction on page 1.
A brief list is given above, under the entry for fprintf.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an
input failure; otherwise, unless execution of the current directive is terminated with a
matching failure, execution of the following directive (if any) is terminated with an input
failure.

If conversions terminate on a conflicting input character, the offending input character is
left unread in the input stream. Trailing white space (including newline characters) is left
unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than via the %n directive.

Returns: the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, the fscanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early conflict between an
input character and the format.

scanf

int scanf(const char * format, ...)

Equivalent to fscanf with the argument stdin interposed before the arguments to
scanf.

Returns: the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, the scanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early matching failure.

sscanf

int sscanf(const char * s, const char * format, ...)

Equivalent to fscanf except that the argument s specifies a string from which the
input is to be obtained, rather than from a stream. Reaching the end of the string is
equivalent to encountering end-of-file for the fscanf function.

Returns: the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, the scanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early matching failure.
111

stdio.h
vprintf

int vprintf(const char * format, va_list arg)

Equivalent to printf, with the variable argument list replaced by arg, which has been
initialised by the va_start macro (and possibly subsequent va_arg calls). The
vprintf function does not invoke the va_end function.

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

vfprintf

int vfprintf(FILE * stream,const char * format, va_list
 arg)

Equivalent to fprintf, with the variable argument list replaced by arg, which has
been initialised by the va_start macro (and possibly subsequent va_arg calls). The
vfprintf function does not invoke the va_end function.

Returns: the number of characters transmitted, or a negative value if an output error
occurred.

vsprintf

int vsprintf(char * s, const char * format, va_list arg)

Equivalent to sprintf, with the variable argument list replaced by arg, which has
been initialised by the va_start macro (and possibly subsequent va_arg calls). The
vsprintf function does not invoke the va_end function.

Returns: the number of characters written in the array, not counting the terminating null
character.

fgetc

int fgetc(FILE * stream)

Obtains the next character (if present) as an unsigned char converted to an int, from the
input stream pointed to by stream, and advances the associated file position indicator
(if defined).

Returns: the next character from the input stream pointed to by stream. If the stream is
at end-of-file, the end-of-file indicator is set and fgetc returns EOF. If a read error
occurs, the error indicator is set and fgetc returns EOF.
112

The C library
fgets

char *fgets(char * s, int n, FILE * stream)

Reads at most one less than the number of characters specified by n from the stream
pointed to by stream into the array pointed to by s. No additional characters are read
after a newline character (which is retained) or after end-of-file. A null character is
written immediately after the last character read into the array.

Returns: s if successful. If end-of-file is encountered and no characters have been read
into the array, the contents of the array remain unchanged and a null pointer is returned.
If a read error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

fputc

int fputc(int c, FILE * stream)

Writes the character specified by c (converted to an unsigned char) to the output stream
pointed to by stream, at the position indicated by the associated file position indicator
(if defined), and advances the indicator appropriately. If the file cannot support
positioning requests, or if the stream was opened with append mode, the character is
appended to the output stream.

Returns: the character written. If a write error occurs, the error indicator is set and
fputc returns EOF.

fputs

int fputs(const char * s, FILE * stream)

Writes the string pointed to by s to the stream pointed to by stream. The terminating
null character is not written.

Returns: EOF if a write error occurs; otherwise it returns a non-negative value.

getc

int getc(FILE * stream)

Equivalent to fgetc except that it may be (and is under RISC OS) implemented as a
macro. stream may be evaluated more than once, so the argument should never be an
expression with side effects.

Returns: the next character from the input stream pointed to by stream. If the stream is
at end-of-file, the end-of-file indicator is set and getc returns EOF. If a read error
occurs, the error indicator is set and getc returns EOF.
113

stdio.h
getchar

int getchar(void)

Equivalent to getc with the argument stdin.

Returns: the next character from the input stream pointed to by stdin. If the stream is
at end-of-file, the end-of-file indicator is set and getchar returns EOF. If a read error
occurs, the error indicator is set and getchar returns EOF.

gets

char *gets(char * s)

Reads characters from the input stream pointed to by stdin into the array pointed to by
s, until end-of-file is encountered or a newline character is read. Any newline character
is discarded, and a null character is written immediately after the last character read into
the array.

Returns: s if successful. If end-of-file is encountered and no characters have been read
into the array, the contents of the array remain unchanged and a null pointer is returned.
If a read error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

putc

int putc(int c, FILE * stream)

Equivalent to fputc except that it may be (and is under RISC OS) implemented as a
macro. stream may be evaluated more than once, so the argument should never be an
expression with side effects.

Returns: the character written. If a write error occurs, the error indicator is set and putc
returns EOF.

putchar

int putchar(int c)

Equivalent to putc with the second argument stdout.

Returns: the character written. If a write error occurs, the error indicator is set and putc
returns EOF.

puts

int puts(const char * s)
114

The C library
Writes the string pointed to by s to the stream pointed to by stdout, and appends a
newline character to the output. The terminating null character is not written.

Returns: EOF if a write error occurs; otherwise it returns a non-negative value.

ungetc

int ungetc(int c, FILE * stream)

Pushes the character specified by c (converted to an unsigned char) back onto the input
stream pointed to by stream. The character will be returned by the next read on that
stream. An intervening call to the fflush function or to a file positioning function
(fseek, fsetpos, rewind) discards any pushed-back characters. The external
storage corresponding to the stream is unchanged. One character pushback is
guaranteed. If the unget function is called too many times on the same stream without
an intervening read or file positioning operation on that stream, the operation may fail. If
the value of c equals that of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to the ungetc function clears the end-of-file indicator. The value of
the file position indicator after reading or discarding all pushed-back characters will be
the same as it was before the characters were pushed back. For a text stream, the value
of the file position indicator after a successful call to the ungetc function is
unspecified until all pushed-back characters are read or discarded. For a binary stream,
the file position indicator is decremented by each successful call to the ungetc
function; if its value was zero before a call, it is indeterminate after the call.

Returns: the character pushed back after conversion, or EOF if the operation fails.

fread

size_t fread(void * ptr,size_t size,
 size_t nmemb, FILE * stream)

Reads into the array pointed to by ptr, up to nmemb members whose size is specified
by size, from the stream pointed to by stream. The file position indicator (if defined)
is advanced by the number of characters successfully read. If an error occurs, the
resulting value of the file position indicator is indeterminate. If a partial member is read,
its value is indeterminate. The ferror or feof function shall be used to distinguish
between a read error and end-of-file.

Returns: the number of members successfully read, which may be less than nmemb if a
read error or end-of-file is encountered. If size or nmemb is zero, fread returns zero
and the contents of the array and the state of the stream remain unchanged.
115

stdio.h
fwrite

size_t fwrite(const void * ptr,
 size_t size, size_t nmemb, FILE * stream)

Writes, from the array pointed to by ptr up to nmemb members whose size is specified
by size, to the stream pointed to by stream. The file position indicator (if defined) is
advanced by the number of characters successfully written. If an error occurs, the
resulting value of the file position indicator is indeterminate.

Returns: the number of members successfully written, which will be less than nmemb
only if a write error is encountered.

fgetpos

int fgetpos(FILE * stream, fpos_t * pos)

Stores the current value of the file position indicator for the stream pointed to by
stream in the object pointed to by pos. The value stored contains unspecified
information usable by the fsetpos function for repositioning the stream to its position
at the time of the call to the fgetpos function.

Returns: zero, if successful. Otherwise non-zero is returned and the integer expression
errno is set to an implementation-defined non-zero value (under RISC OS fgetpos
cannot fail).

fseek

int fseek(FILE * stream, long int offset, int whence)

Sets the file position indicator for the stream pointed to by stream. For a binary
stream, the new position is at the signed number of characters specified by offset
away from the point specified by whence. The specified point is the beginning of the
file for SEEK_SET, the current position in the file for SEEK_CUR, or end-of-file for
SEEK_END. A binary stream need not meaningfully support fseek calls with a
whence value of SEEK_END, though the Acorn implementation does. For a text
stream, offset is either zero or a value returned by an earlier call to the ftell
function on the same stream; whence is then SEEK_SET. The Acorn implementation
also allows a text stream to be positioned in exactly the same manner as a binary stream,
but this is not portable. The fseek function clears the end-of-file indicator and undoes
any effects of the ungetc function on the same stream. After an fseek call, the next
operation on an update stream may be either input or output.

Returns: non-zero only for a request that cannot be satisfied.
116

The C library
fsetpos

int fsetpos(FILE * stream, const fpos_t * pos)

Sets the file position indicator for the stream pointed to by stream according to the
value of the object pointed to by pos, which is a value returned by an earlier call to the
fgetpos function on the same stream. The fsetpos function clears the end-of-file
indicator and undoes any effects of the ungetc function on the same stream. After an
fsetpos call, the next operation on an update stream may be either input or output.

Returns: zero, if successful. Otherwise non-zero is returned and the integer expression
errno is set to an implementation-defined non-zero value (under RISC OS the value is
that of EDOM in math.h).

ftell

long int ftell(FILE * stream)

Obtains the current value of the file position indicator for the stream pointed to by
stream. For a binary stream, the value is the number of characters from the beginning
of the file. For a text stream, the file position indicator contains unspecified information,
usable by the fseek function for returning the file position indicator to its position at
the time of the ftell call; the difference between two such return values is not
necessarily a meaningful measure of the number of characters written or read. However,
for the Acorn implementation, the value returned is merely the byte offset into the file,
whether the stream is text or binary.

Returns: if successful, the current value of the file position indicator. On failure, the
ftell function returns –1L and sets the integer expression errno to an
implementation-defined non-zero value (under RISC OS ftell cannot fail).

rewind

void rewind(FILE * stream)

Sets the file position indicator for the stream pointed to by stream to the beginning of
the file. It is equivalent to (void)fseek(stream, 0L, SEEK_SET) except that
the error indicator for the stream is also cleared.

Returns: no value.
117

stdio.h
clearerr

void clearerr(FILE * stream)

Clears the end-of-file and error indicators for the stream pointed to by stream. These
indicators are cleared only when the file is opened or by an explicit call to the
clearerr function or to the rewind function.

Returns: no value.

feof

int feof(FILE * stream)

Tests the end-of-file indicator for the stream pointed to by stream.

Returns: non-zero if the end-of-file indicator is set for stream.

ferror

int ferror(FILE * stream)

Tests the error indicator for the stream pointed to by stream.

Returns: non-zero if the error indicator is set for stream.

perror

void perror(const char * s)

Maps the error number in the integer expression errno to an error message. It writes a
sequence of characters to the standard error stream thus: first (if s is not a null pointer
and the character pointed to by s is not the null character), the string pointed to by s
followed by a colon and a space; then an appropriate error message string followed by a
newline character. The contents of the error message strings are the same as those
returned by the strerror function with argument errno, which are
implementation-defined.

Returns: no value.
118

The C library
stdlib.h

stdlib.h declares four types, several general purpose functions, and defines several
macros.

atof

double atof(const char * nptr)

Converts the initial part of the string pointed to by nptr to double * representation.

Returns: the converted value.

atoi

int atoi(const char * nptr)

Converts the initial part of the string pointed to by nptr to int representation.

Returns: the converted value.

atol

long int atol(const char * nptr)

Converts the initial part of the string pointed to by nptr to long int representation.

Returns: the converted value.

strtod

double strtod(const char * nptr, char ** endptr)

Converts the initial part of the string pointed to by nptr to double representation. First
it decomposes the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by the isspace function), a subject sequence
resembling a floating point constant, and a final string of one or more unrecognised
characters, including the terminating null character of the input string. It then attempts to
convert the subject sequence to a floating point number, and returns the result. A pointer
to the final string is stored in the object pointed to by endptr, provided that endptr is
not a null pointer.
119

stdlib.h
Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, plus or minus
HUGE_VAL is returned (according to the sign of the value), and the value of the macro
ERANGE is stored in errno. If the correct value would cause underflow, zero is
returned and the value of the macro ERANGE is stored in errno.

strtol

long int strtol(const char * nptr, char **endptr, int
 base)

Converts the initial part of the string pointed to by nptr to long int representation. First
it decomposes the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by the isspace function), a subject sequence
resembling an integer represented in some radix determined by the value of base, and a
final string of one or more unrecognised characters, including the terminating null
character of the input string.

It then attempts to convert the subject sequence to an integer, and returns the result. If
the value of base is 0, the expected form of the subject sequence is that of an integer
constant (described precisely in the ANSI standard, section 3.1.3.2), optionally preceded
by a + or - sign, but not including an integer suffix. If the value of base is between 2 and
36, the expected form of the subject sequence is a sequence of letters and digits
representing an integer with the radix specified by base, optionally preceded by a plus
or minus sign, but not including an integer suffix. The letters from a (or A) through z (or
Z) are ascribed the values 10 to 35; only letters whose ascribed values are less than that
of the base are permitted. If the value of base is 16, the characters 0x or 0X may
optionally precede the sequence of letters and digits following the sign if present. A
pointer to the final string is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, LONG_MAX or
LONG_MIN is returned (according to the sign of the value), and the value of the macro
ERANGE is stored in errno.

strtoul

unsigned long int strtoul(const char * nptr, char **
 endptr, int base)

Converts the initial part of the string pointed to by nptr to unsigned long int
representation. First it decomposes the input string into three parts: an initial, possibly
empty, sequence of white space characters (as determined by the isspace function), a
120

The C library
subject sequence resembling an unsigned integer represented in some radix determined
by the value of base, and a final string of one or more unrecognised characters,
including the terminating null character of the input string.

It then attempts to convert the subject sequence to an unsigned integer, and returns the
result. If the value of base is zero, the expected form of the subject sequence is that of
an integer constant (described precisely in the ANSI Draft, section 3.1.3.2), optionally
preceded by a + or - sign, but not including an integer suffix. If the value of base is
between 2 and 36, the expected form of the subject sequence is a sequence of letters and
digits representing an integer with the radix specified by base, optionally preceded by a
+ or - sign, but not including an integer suffix. The letters from a (or A) through z (or Z)
stand for the values 10 to 35; only letters whose ascribed values are less than that of the
base are permitted. If the value of base is 16, the characters 0x or 0X may optionally
precede the sequence of letters and digits following the sign, if present. A pointer to the
final string is stored in the object pointed to by endptr, provided that endptr is not a
null pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, ULONG_MAX
is returned, and the value of the * macro ERANGE is stored in errno.

rand

int rand(void)

Computes a sequence of pseudo-random integers in the range 0 to RAND_MAX, where
RAND_MAX = 0x7fffffff.

Returns: a pseudo-random integer.

srand

void srand(unsigned int seed)

Uses its argument as a seed for a new sequence of pseudo-random numbers to be
returned by subsequent calls to rand. If srand is then called with the same seed value,
the sequence of pseudo-random numbers will be repeated. If rand is called before any
calls to srand have been made, the same sequence is generated as when srand is first
called with a seed value of 1.

calloc

void *calloc(size_t nmemb, size_t size)

Allocates space for an array of nmemb objects, each of whose size is size. The space
is initialised to all bits zero.
121

stdlib.h

sful
 call
Returns: either a null pointer or a pointer to the allocated space.

free

void free(void * ptr)

Causes the space pointed to by ptr to be deallocated (made available for further
allocation). If ptr is a null pointer, no action occurs. Otherwise, if ptr does not match
a pointer earlier returned by calloc, malloc or realloc or if the space has been
deallocated by a call to free or realloc, the behaviour is undefined.

malloc

void *malloc(size_t size)

Allocates space for an object whose size is specified by size and whose value is
indeterminate.

Returns: either a null pointer or a pointer to the allocated space.

realloc

void *realloc(void * ptr, size_t size)

Changes the size of the object pointed to by ptr to the size specified by size. The
contents of the object is unchanged up to the lesser of the new and old sizes. If the new
size is larger, the value of the newly allocated portion of the object is indeterminate. If
ptr is a null pointer, the realloc function behaves like a call to malloc for the
specified size. Otherwise, if ptr does not match a pointer earlier returned by calloc,
malloc or realloc, or if the space has been deallocated by a call to free or
realloc, the behaviour is undefined. If the space cannot be allocated, the object
pointed to by ptr is unchanged. If size is zero and ptr is not a null pointer, the object
it points to is freed.

Returns: either a null pointer or a pointer to the possibly moved allocated space.

abort

void abort(void)

Causes abnormal program termination to occur, unless the signal SIGABRT is being
caught and the signal handler does not return. Whether open output streams are flushed
or open streams are closed or temporary files removed is implementation-defined (under
RISC OS all these occur). An implementation-defined form of the status ‘unsucces
termination’ (1 under RISC OS) is returned to the host environment by means of a
to raise(SIGABRT).
122

The C library

d

inted
he

sed
e
 the
atexit

int atexit(void (* func)(void))

Registers the function pointed to by func, to be called without its arguments at normal
program termination. It is possible to register at least 32 functions.

Returns: zero if the registration succeeds, non-zero if it fails.

exit

void exit(int status)

Causes normal program termination to occur. If more than one call to the exit function
is executed by a program (for example, by a function registered with atexit), the
behaviour is undefined. First, all functions registered by the atexit function are
called, in the reverse order of their registration. Next, all open output streams are
flushed, all open streams are closed, and all files created by the tmpfile function are
removed. Finally, control is returned to the host environment. If the value of status is
zero or EXIT_SUCCESS, an implementation-defined form of the status ‘successful
termination’ (0 under RISC OS) is returned. If the value of status is
EXIT_FAILURE, an implementation-defined form of the status ‘unsuccessful
termination’ (1 under RISC OS) is returned. Otherwise the status returned is
implementation-defined (the value of status is returned under RISC OS).

getenv

char *getenv(const char * name)

Searches the environment list, provided by the host environment, for a string that
matches the string pointed to by name. The set of environment names and the metho
for altering the environment list are implementation-defined.

Returns: a pointer to a string associated with the matched list member. The array po
to is not modified by the program, but may be overwritten by a subsequent call to t
getenv function. If the specified name cannot be found, a null pointer is returned.

system

int system(const char * string)

Passes the string pointed to by string to the host environment to be executed by a
command processor in an implementation-defined manner. A null pointer may be u
for string, to inquire whether a command processor exists. Under RISC OS, car
must be taken, when executing a command, that the command does not overwrite
calling program. To control this, the string chain: or call: may immediately
123

stdlib.h

r
d

der

t is

 is
d.

turns
 to be

are as
precede the actual command. The effect of call: is the same as if call: were not
present. When a command is called, the caller is first moved to a safe place in
application workspace. When the callee terminates, the caller is restored. This requires
enough memory to hold caller and callee simultaneously. When a command is chained,
the caller may be overwritten. If the caller is not overwritten, the caller exits when the
caller terminates. Thus a transfer of control is effected and memory requirements are
minimised.

Returns: If the argument is a null pointer, the system function returns non-zero only if
a command processor is available. If the argument is not a null pointer, it returns an
implementation-defined value (under RISC OS 0 is returned for success and –2 fo
failure to invoke the command; any other value is the return code from the execute
command).

bsearch

void *bsearch(const void *key, const void * base,
size_t nmemb, size_t size, int (* compar)
(const void *, const void *))

Searches an array of nmemb objects, the initial member of which is pointed to by base,
for a member that matches the object pointed to by key. The size of each member of the
array is specified by size. The contents of the array must be in ascending sorted or
according to a comparison function pointed to by compar, which is called with two
arguments that point to the key object and to an array member, in that order. The
function returns an integer less than, equal to, or greater than zero if the key objec
considered, respectively, to be less than, to match, or to be greater than the array
member.

Returns: a pointer to a matching member of the array, or a null pointer if no match
found. If two members compare as equal, which member is matched is unspecifie

qsort

void qsort(void * base, size_t nmemb, size_t size,
 int (* compar)(const void *, const void *))

Sorts an array of nmemb objects, the initial member of which is pointed to by base.
The size of each object is specified by size. The contents of the array are sorted in
ascending order according to a comparison function pointed to by compar, which is
called with two arguments that point to the objects being compared. The function re
an integer less than, equal to, or greater than zero if the first argument is considered
respectively less than, equal to, or greater than the second. If two members comp
equal, their order in the sorted array is unspecified.
124

The C library
abs

int abs(int j)

Computes the absolute value of an integer j. If the result cannot be represented, the
behaviour is undefined.

Returns: the absolute value.

div

div_t div(int numer, int denom)

Computes the quotient and remainder of the division of the numerator numer by the
denominator denom. If the division is inexact, the resulting quotient is the integer of
lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be
represented, the behaviour is undefined; otherwise, quot * denom + rem equals
numer.

Returns: a structure of type div_t, comprising both the quotient and the remainder.
The structure contains the following members: int quot; int rem. You may not
rely on their order.

labs

long int labs(long int j)

Computes the absolute value of an long integer j. If the result cannot be represented, the
behaviour is undefined.

Returns: the absolute value.

ldiv

ldiv_t ldiv(long int numer, long int denom)

Computes the quotient and remainder of the division of the numerator numer by the
denominator denom. If the division is inexact, the sign of the resulting quotient is that
of the algebraic quotient, and the magnitude of the resulting quotient is the largest
integer less than the magnitude of the algebraic quotient. If the result cannot be
represented, the behaviour is undefined; otherwise, quot * denom + rem equals
numer.

Returns: a structure of type ldiv_t, comprising both the quotient and the remainder.
The structure contains the following members: long int quot; long int rem.
You may not rely on their order.
125

stdlib.h

not

de

f

tibyte
(if
Multibyte character functions

The behaviour of the multibyte character functions is affected by the LC_CTYPE
category of the current locale. For a state-dependent encoding, each function is placed
into its initial state by a call for which its character pointer argument, s, is a null pointer.
Subsequent calls with s as other than a null pointer cause the internal state of the
function to be altered as necessary. A call with s as a null pointer causes these functions
to return a non-zero value if encodings have state dependency, and a zero otherwise.
After the LC_CTYPE category is changed, the shift state of these functions is
indeterminate.

mblen

int mblen(const char * s, size_t n)

If s is not a null pointer, the mblen function determines the number of bytes comprising
the multibyte character pointed to by s. Except that the shift state of the mbtowc
function is not affected, it is equivalent to mbtowc((wchar_t *)0, s, n).

Returns: If s is a null pointer, the mblen function returns a non-zero or zero value, if
multibyte character encodings, respectively do or do not have state-dependent
encodings. If s is not a null pointer, the mblen function either returns a 0 (if s points to
a null character), or returns the number of bytes that comprise the multibyte character (if
the next n of fewer bytes form a valid multibyte character), or returns –1 (if they do
form a valid multibyte character).

mbtowc

int mbtowc(wchar_t * pwc, const char * s, size_t n)

If s is not a null pointer, the mbtowc function determines the number of bytes that
comprise the multibyte character pointed to by s. It then determines the code for value
of type wchar_t that corresponds to that multibyte character. (The value of the co
corresponding to the null character is zero). If the multibyte character is valid and pwc
is not a null pointer, the mbtowc function stores the code in the object pointed to by
pwc. At most n bytes of the array pointed to by s will be examined.

Returns: If s is a null pointer, the mbtowc function returns a non-zero or zero value, i
multibyte character encodings, respectively do or do not have state-dependent
encodings. If s is not a null pointer, the mbtowc function either returns a 0 (if s points
to a null character), or returns the number of bytes that comprise the converted mul
character (if the next n of fewer bytes form a valid multibyte character), or returns –1
they do not form a valid multibyte character).
126

The C library

f

 the
an

ot

ray
hift

.

wctomb

int wctomb(char * s, wchar_t wchar)

Determines the number of bytes need to represent the multibyte character corresponding
to the code whose value is wchar (including any change in shift state). It stores the
multibyte character representation in the array object pointed to by s (if s is not a null
pointer). At most MB_CUR_MAX characters are stored. If the value of wchar is zero, the
wctomb function is left in the initial shift state).

Returns: If s is a null pointer, the wctomb function returns a non-zero or zero value, if
multibyte character encodings, respectively do or do not have state-dependent
encodings. If s is not a null pointer, the wctomb function returns a –1 if the value of
wchar does not correspond to a valid multibyte character, or returns the number o
bytes that comprise the multibyte character corresponding to the value of wchar.

Multibyte string functions

The behaviour of the multibyte string functions is affected by the LC_CTYPE category
of the current locale.

mbstowcs

size_t mbstowcs(wchar_t * pwcs, const char * s, size_t n)

Converts a sequence of multibyte characters that begins in the initial shift state from
array pointed to by s into a sequence of corresponding codes and stores not more thn
codes into the array pointed to by pwcs. No multibyte character that follow a null
character (which is converted into a code with value zero) will be examined or
converted. Each multibyte character is converted as if by a call to the mbtowc function.
If an invalid multibyte character is found, mbstowcs returns (size_t)-1.
Otherwise, the mbstowcs function returns the number of array elements modified, n
including a terminating zero code, if any.

wcstombs

size_t wcstombs(char * s, const wchar_t * pwcs, size_t n)

Converts a sequence of codes that correspond to multibyte characters from the ar
pointed to by pwcs into a sequence of multibyte characters that begins in the initial s
state and stores these multibyte characters into the array pointed to by s, stopping if a
multibyte character would exceed the limit of n total bytes or if a null character is stored
Each code is converted as if by a call to the wctomb function, except that the shift state
of the wctomb function is not affected. If a code is encountered which does not
127

stdlib.h
correspond to any valid multibyte character, the wcstombs function returns
(size_t)-1. Otherwise, the wcstombs function returns the number of bytes
modified, not including a terminating null character, if any.
128

The C library
string.h

string.h declares one type and several functions, and defines one macro useful for
manipulating character arrays and other objects treated as character arrays. Various
methods are used for determining the lengths of the arrays, but in all cases a char * or
void * argument points to the initial (lowest addresses) character of the array. If an
array is written beyond the end of an object, the behaviour is undefined.

memcpy

void *memcpy(void * s1, const void * s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed to by s1. If
copying takes place between objects that overlap, the behaviour is undefined.

Returns: the value of s1.

memmove

void *memmove(void * s1, const void * s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed to by s1.
Copying takes place as if the n characters from the object pointed to by s2 are first
copied into a temporary array of n characters that does not overlap the objects pointed to
by s1 and s2, and then the n characters from the temporary array are copied into the
object pointed to by s1.

Returns: the value of s1.

strcpy

char *strcpy(char * s1, const char * s2)

Copies the string pointed to by s2 (including the terminating null character) into the
array pointed to by s1. If copying takes place between objects that overlap, the
behaviour is undefined.

Returns: the value of s1.
129

string.h
strncpy

char *strncpy(char * s1, const char * s2, size_t n)

Copies not more than n characters (characters that follow a null character are not
copied) from the array pointed to by s2 into the array pointed to by s1. If copying takes
place between objects that overlap, the behaviour is undefined. If terminating nul has
not been copied in chars, no term nul is placed in s2.

Returns: the value of s1.

strcat

char *strcat(char * s1, const char * s2)

Appends a copy of the string pointed to by s2 (including the terminating null character)
to the end of the string pointed to by s1. The initial character of s2 overwrites the null
character at the end of s1.

Returns: the value of s1.

strncat

char *strncat(char * s1, const char * s2, size_t n)

Appends not more than n characters (a null character and characters that follow it are not
appended) from the array pointed to by s2 to the end of the string pointed to by s1. The
initial character of s2 overwrites the null character at the end of s1. A terminating null
character is always appended to the result.

Returns: the value of s1.

The sign of a non-zero value returned by the comparison functions is determined by the
sign of the difference between the values of the first pair of characters (both interpreted
as unsigned char) that differ in the objects being compared.

memcmp

int memcmp(const void * s1, const void * s2, size_t n)

Compares the first n characters of the object pointed to by s1 to the first n characters of
the object pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether the
object pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.
130

The C library
strcmp

int strcmp(const char * s1, const char * s2)

Compares the string pointed to by s1 to the string pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

strncmp

int strncmp(const char * s1, const char * s2, size_t n)

Compares not more than n characters (characters that follow a null character are not
compared) from the array pointed to by s1 to the array pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

strcoll

int strcoll(const char * s1, const char * s2)

Compares the string pointed to by s1 to the string pointed to by s2, both interpreted as
appropriate to the LC_COLLATE category of the current locale.

Returns: an integer greater than, equal to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2
when both are interpreted as appropriate to the current locale.

strxfrm

size_t strxfrm(char * s1, const char * s2, size_t n)

Transforms the string pointed to by s2 and places the resulting string into the array
pointed to by s1. The transformation function is such that if the strcmp function is
applied to two transformed strings, it returns a value greater than, equal to or less than
zero, corresponding to the result of the strcoll function applied to the same two
original strings. No more than n characters are placed into the resulting array pointed to
by s1, including the terminating null character. If n is zero, s1 is permitted to be a null
pointer. If copying takes place between objects that overlap, the behaviour is undefined.

Returns: The length of the transformed string is returned (not including the terminating
null character). If the value returned is n or more, the contents of the array pointed to by
s1 are indeterminate.
131

string.h
memchr

void *memchr(const void * s, int c, size_t n)

Locates the first occurrence of c (converted to an unsigned char) in the initial n
characters (each interpreted as unsigned char) of the object pointed to by s.

Returns: a pointer to the located character, or a null pointer if the character does not
occur in the object.

strchr

char *strchr(const char * s, int c)

Locates the first occurrence of c (converted to a char) in the string pointed to by s
(including the terminating null character). The BSD UNIX name for this function is
index().

Returns: a pointer to the located character, or a null pointer if the character does not
occur in the string.

strcspn

size_t strcspn(const char * s1, const char * s2)

Computes the length of the initial segment of the string pointed to by s1 which consists
entirely of characters not from the string pointed to by s2. The terminating null
character is not considered part of s2.

Returns: the length of the segment.

strpbrk

char *strpbrk(const char * s1, const char * s2)

Locates the first occurrence in the string pointed to by s1 of any character from the
string pointed to by s2.

Returns: returns a pointer to the character, or a null pointer if no character form s2
occurs in s1.

strrchr

char *strrchr(const char * s, int c)
132

The C library
Locates the last occurrence of c (converted to a char) in the string pointed to by s. The
terminating null character is considered part of the string. The BSD UNIX name for this
function is rindex().

Returns: returns a pointer to the character, or a null pointer if c does not occur in the
string.

strspn

size_t strspn(const char * s1, const char * s2)

Computes the length of the initial segment of the string pointed to by s1 which consists
entirely of characters from the string pointed to by s2.

Returns: the length of the segment.

strstr

char *strstr(const char * s1, const char * s2)

Locates the first occurrence in the string pointed to by s1 of the sequence of characters
(excluding the terminating null character) in the string pointed to by s2.

Returns: a pointer to the located string, or a null pointer if the string is not found.

strtok

char *strtok(char * s1, const char * s2)

A sequence of calls to the strtok function breaks the string pointed to by s1 into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by s2. The first call in the sequence has s1 as its first argument, and is followed by calls
with a null pointer as their first argument. The separator string pointed to by s2 may be
different from call to call. The first call in the sequence searches for the first character
that is not contained in the current separator string s2. If no such character is found, then
there are no tokens in s1 and the strtok function returns a null pointer. If such a
character is found, it is the start of the first token. The strtok function then searches
from there for a character that is contained in the current separator string. If no such
character is found, the current token extends to the end of the string pointed to by s1,
and subsequent searches for a token will fail. If such a character is found, it is
overwritten by a null character, which terminates the current token. The strtok
function saves a pointer to the following character, from which the next search for a
token will start. Each subsequent call, with a null pointer as the value for the first
argument, starts searching from the saved pointer and behaves as described above.

Returns: pointer to the first character of a token, or a null pointer if there is no token.
133

string.h

by a
memset

void *memset(void * s, int c, size_t n)

Copies the value of c (converted to an unsigned char) into each of the first n characters
of the object pointed to by s.

Returns: the value of s.

strerror

char *strerror(int errnum)

Maps the error number in errnum to an error message string.

Returns: a pointer to the string, the contents of which are implementation-defined.
Under RISC OS and Arthur the strings for the given errnums are as follows:

l 0 No error (errno = 0)

l EDOM EDOM – function argument out of range

l ERANGE ERANGE – function result not representable

l ESIGNUM ESIGNUM – illegal signal number to signal() or
raise()

l others Error code (errno) has no associated message).

The array pointed to may not be modified by the program, but may be overwritten
subsequent call to the strerror function.

strlen

size_t strlen(const char * s)

Computes the length of the string pointed to by s.

Returns: the number of characters that precede the terminating null character.
134

The C library

e
ed by
time.h

time.h declares two macros, four types and several functions for manipulating time.
Many functions deal with a calendar time that represents the current date (according to
the Gregorian calendar) and time. Some functions deal with local time, which is the
calendar time expressed for some specific time zone, and with Daylight Saving Time,
which is a temporary change in the algorithm for determining local time.

struct tm

struct tm holds the components of a calendar time called the broken-down time. The
value of tm_isdst is positive if Daylight Saving Time is in effect, zero if Daylight
Saving Time is not in effect, and negative if the information is not available.

struct tm {
 int tm_sec; /* seconds after the minute, 0 to 60
 (0-60 allows for the occasional leap
 second) */
 int tm_min /* minutes after the hour, 0 to 59 */
 int tm_hour /* hours since midnight, 0 to 23 */
 int tm_mday /* day of the month, 0 to 31 */
 int tm_mon /* months since January, 0 to 11 */
 int tm_year /* years since 1900 */
 int tm_wday /* days since Sunday, 0 to 6 */
 int tm_yday /* days since January 1, 0 to 365 */
 int tm_isdst /* Daylight Saving Time flag */
};

clock

clock_t clock(void)

Determines the processor time used.

Returns: the implementation’s best approximation to the processor time used by th
program since program invocation. The time in seconds is the value returned, divid
the value of the macro CLOCKS_PER_SEC. The value (clock_t)-1 is returned if
the processor time used is not available. In the desktop, clock() returns all processor
time, not just that of the program.

difftime

double difftime(time_t time1, time_t time0)
135

time.h

Computes the difference between two calendar times: time1 - time0. Returns: the
difference expressed in seconds as a double.

mktime

time_t mktime(struct tm * timeptr)

Converts the broken-down time, expressed as local time, in the structure pointed to by
timeptr into a calendar time value with the same encoding as that of the values
returned by the time function. The original values of the tm_wday and tm_yday
components of the structure are ignored, and the original values of the other components
are not restricted to the ranges indicated above. On successful completion, the values of
the tm_wday and tm_yday structure components are set appropriately, and the other
components are set to represent the specified calendar time, but with their values forced
to the ranges indicated above; the final value of tm_mday is not set until tm_mon and
tm_year are determined.

Returns: the specified calendar time encoded as a value of type time_t. If the calendar
time cannot be represented, the function returns the value (time_t)-1.

time

time_t time(time_t * timer)

Determines the current calendar time. The encoding of the value is unspecified.

Returns: the implementation’s best approximation to the current calendar time. The
value (time_t)-1 is returned if the calendar time is not available. If timer is not a
null pointer, the return value is also assigned to the object it points to.

asctime

char *asctime(const struct tm * timeptr)

Converts the broken-down time in the structure pointed to by timeptr into a string in
the style Sun Sep 16 01:03:52 1973\n\0.

Returns: a pointer to the string containing the date and time.

ctime

char *ctime(const time_t * timer)

Converts the calendar time pointed to by timer to local time in the form of a string. It
is equivalent to asctime(localtime(timer)).
136

The C library

ter)

Returns: the pointer returned by the asctime function with that broken-down time as
argument.

gmtime

struct tm *gmtime(const time_t * timer)

Converts the calendar time pointed to by timer into a broken-down time, expressed as
Greenwich Mean Time (GMT).

Returns: a pointer to that object or a null pointer if GMT is not available.

localtime

struct tm *localtime(const time_t * timer)

Converts the calendar time pointed to by timer into a broken-down time, expressed a
local time.

Returns: a pointer to that object.

strftime

size_t strftime(char * s, size_t maxsize, const char *
 format, const struct tm * timeptr)

Places characters into the array pointed to by s as controlled by the string pointed to by
format. The format string consists of zero or more directives and ordinary characters.
A directive consists of a % character followed by a character that determines the
directive’s behaviour. All ordinary characters (including the terminating null charac
are copied unchanged into the array. No more than maxsize characters are placed into
the array. Each directive is replaced by appropriate characters as described in the
following list. The appropriate characters are determined by the LC_TIME category of
the current locale and by the values contained in the structure pointed to by timeptr.

Directive Replaced by

%a the locale’s abbreviated weekday name
%A the locale’s full weekday name
%b the locale’s abbreviated month name
%B the locale’s full month name
%c the locale’s appropriate date and time representation
%d the day of the month as a decimal number (01–31)
%H the hour (24-hour clock) as a decimal number (00–23)
%I the hour (12-hour clock) as a decimal number (01–12)
%j the day of the year as a decimal number (001–366)
137

time.h

ate.
%m the month as a decimal number (01–12)
%M the minute as a decimal number (00–61)
%p the locale’s equivalent of either AM or PM designation

associated with a 12-hour clock
%S the second as a decimal number (00–61)
%U the week number of the year (Sunday as the first day of

week 1) as a decimal number (00–53)
%w the weekday as a decimal number (0(Sunday) –6)
%W the week number of the year (Monday as the first day of

week 1) as a decimal number (00–53)
%x the locale’s appropriate date representation
%X the locale’s appropriate time representation
%y the year without century as a decimal number (00–99)
%Y the year with century as a decimal number
%Z the time zone name or abbreviation, or by no character

if no time zone is determinable
%% %.

If a directive is not one of the above, the behaviour is undefined.

Returns: If the total number of resulting characters including the terminating null
character is not more than maxsize, the strftime function returns the number of
characters placed into the array pointed to by s not including the terminating null
character. Otherwise, zero is returned and the contents of the array are indetermin
138

8 The ANSI library

he ANSI library is a stand-alone version of the shared C library that contains a few

extra functions useful in debugging and profiling your code. You should use it for T
development only, using the shared C library in any final product.
This chapter describes the extra functions provided by the ANSI library. For details of
the other functions, see the chapter The C library on page 91.
139

Extra functions
Extra functions

__heap_checking_on_all_allocates
__heap_checking_on_all_deallocates

void __heap_checking_on_all_allocates (int on);
void __heap_checking_on_all_deallocates (int on);

Calling these functions with a non-zero argument causes malloc() and free()
respectively to check the consistency of the C heap on every call, rather than only when
the heap is coalesced. It is especially useful for tracking down exactly where memory
corruption is occurring. This feature is disabled by passing an argument of zero.

_mapstore
_fmapstore

void _mapstore (void);
void _fmapstore (char *filename);

These functions write profiling information for a program to stderr or filename
respectively, if the program has been compiled with profiling enabled.
140

9 The Event library

he purpose of the ‘event’ library is to allow the client to more easily dispatch

Toolbox and Wimp events within Toolbox based applications.T
troduction

ents
ed

lled

ed

ck

In
A typical client will register some event handlers, and then enter a poll loop, with ev
being dispatched for it to its event handler functions by the event library as describ
below.

When the client has called toolbox_initialise, it should call the function
event_initialise (see page 143), passing a pointer to the id block (see the User
Interface Toolbox manual for a description of this) which was passed to
toolbox_initialise; this pointer will then be passed to any event handler
functions which the client subsequently registers.

The client application enters a poll loop using a call to event_poll (see page 144),
passing a pointer to a poll block, just as for the SWI Wimp_Poll (which is, in fact, ca
on the client’s behalf). If the client wishes to cause a call to Wimp_PollIdle, then it
should call event_poll_idle instead (see page 144). The event block is the one
which will be filled in by SWI Wimp_Poll. When the Wimp is polled, the mask pass
in R0 is determined by the last call made by the client to the function
event_set_mask (see page 143); the default mask used is to just mask out Null
events.

Registering and deregistering event handlers
The event library also allows the client to register functions which will be called ba
for particular combinations of Toolbox or Wimp events, either on all objects or on a
given object. This is done for Toolbox events by calling the function
event_register_toolbox_handler (see page 145), and for Wimp events by
calling the function event_register_wimp_handler (see page 145).

These register a handler function which will be called back by the event library
following a call to event_poll (or event_poll_idle), if its given conditions are
met. The handler function will be passed a client-defined handle, a pointer to the poll
block passed to event_poll, and a pointer to the client’s id block (as passed to
event_initialise).
141

Registering and deregistering message handlers

iority
ey

.e. the

e

rary.
When event_poll is called and an event has arrived, the event library will try to find
a matching handler function in the following priority order:

l a handler registered for the object to which this event was delivered

l a handler registered for this event (for all objects).

All handler functions which are registered for the given event are called using the order
given above, until the list is exhausted or one of the handlers returns non-zero, indicating
that it has ‘claimed’ the event. If more than one function is registered at the same pr
level as defined above, then they are called in the reverse order to that in which th
were registered.

In order to deregister event handlers, the client calls
event_deregister_toolbox_handler (see page 146) and
event_deregister_wimp_handler (see page 146) with
the same parameters as when the handler was registered.

Registering and deregistering message handlers
Wimp messages are delivered on a per-task basis, and not to a particular object (i
id block is not filled in with an object id). A client can register a handler for Wimp
messages by calling the function event_register_message_handler (see
page 146).

If more than one handler is registered for a particular Wimp message, then they ar
called in the reverse order to that in which they were registered.

In order to deregister message handlers, the client calls
event_deregister_message_handler (see page 146) with
the same parameters as when the handler was registered.

Quitting applications
Event and message handlers are both held in application space. Application tasks
therefore do not need to remove them on quitting, nor need they deregister them.

Programmer interface
The rest of this chapter lists the C function calls that are used to control the event lib
See the chapter The Wimp library on page 151 for a description of the Wimp type
definitions in the Wimp SWI veneer library.
142

The Event library
Initialisation

event_initialise

extern _kernel_oserror *event_initialise (IdBlock *b);

The IdBlock that was given to toolbox_initialise should be passed to
event_initialise; this is then passed to Toolbox and Wimp handlers when they
are called.

event_set_mask

extern _kernel_oserror *event_set_mask
(unsigned int mask);

mask is an integer defining what events are to be returned. This has the same meaning
as the Wimp_Poll mask described on page 3-115 of the RISC OS 3 Programmer’s
Reference Manual. By default, this just masks out Null events.

event_get_mask

extern _kernel_oserror *event_get_mask
(unsigned int *mask);

mask should be the address of an integer where the current mask is to be stored.
143

Polling
Polling

event_poll

extern _kernel_oserror *event_poll (int *event_code,
WimpPollBlock *poll_block,
void *poll_word);

This function makes calls to the SWI Wimp_Poll. The poll_block should be
allocated before calling this function and its address passed in. The poll_word is
optional (i.e. the pointer may be set to zero), and is only used by the Wimp if the mask is
set accordingly (see page 3-115 of the RISC OS 3 Programmer’s Reference Manual) by
event_set_mask (see page 143).

event_poll_idle

extern _kernel_oserror *event_poll_idle (int *event_code,
WimpPollBlock *poll_block,
unsigned int earliest,
void *poll_word);

This function makes calls to the SWI Wimp_PollIdle. The poll_block should be
allocated before calling this function and its address passed in. The poll_word is
optional (i.e. the pointer may be set to zero), and is only used by the Wimp if the mask is
set accordingly (see page 3-115 of the RISC OS 3 Programmer’s Reference Manual) by
event_set_mask (see page 143). Like the SWI (page 3-184 of the RISC OS 3
Programmer’s Reference Manual), control will not return to the client before the earliest
time, unless an event other than a Null has occurred.
144

The Event library

 used

curs

with

te
Registering handlers

These functions allow registering handlers for Wimp events, Toolbox events and Wimp
messages. If you wish to register for all events or all objects a value of –1 should be
in place of the event_code or ObjectId.

If there is not enough memory to register the handler, an error will be raised.

event_register_wimp_handler

_kernel_oserror *event_register_wimp_handler
(ObjectId object_id,
int event_code,
WimpEventHandler *handler,
void *handle);

handler is the function that should be called when the given Wimp event code oc
on the object (e.g. a redraw event on a window). The handle is a value which will be
passed to the handler function, and thus may be used to associate a data structure
the given object.

event_register_toolbox_handler

_kernel_oserror *event_register_toolbox_handler
(ObjectId object_id,
int event_code,
ToolboxEventHandler *handler,
void *handle);

handler is the function that should be called when the given Toolbox event code
occurs on the object (e.g. a DCS_Discard event on a DCS object). The handle is a
value which will be passed to the handler function, and thus may be used to associa
a data structure with the given object.
145

Registering handlers
event_register_message_handler

_kernel_oserror *event_register_message_handler
(int msg_no,
WimpMessageHandler *handler,
void *handle);

handler is the function that should be called when the given Wimp message is
received by the task (e.g. Wimp_MQuit). The handle is a value which will be passed
to the handler function, and thus may be used to associate a data structure with the
given message.

To deregister a handler, the appropriate function below should be used. Note that the
parameters must exactly match those passed to the registration function.

An error will be raised if an attempt is made to deregister a handler that was not
previously registered.

event_deregister_wimp_handler

_kernel_oserror *event_deregister_wimp_handler
(ObjectId object_id,
int event_code,
WimpEventHandler *handler,
void *handle);

Deregisters a previously registered Wimp event handler.

event_deregister_toolbox_handler

_kernel_oserror *event_deregister_toolbox_handler
(ObjectId object_id,
int event_code,
ToolboxEventHandler *handler,
void *handle);

Deregisters a previously registered Toolbox event handler.

event_deregister_message_handler

_kernel_oserror *event_deregister_message_handler (int
msg_no, WimpMessageHandler
*handler, void *handle);

Deregisters a previously registered Wimp message handler.
146

The Event library

ed on
zero
Handlers

When a client calls event_poll, EventLib issues the SWI Wimp_Poll. If the Wimp
returns an event code and poll block that match one of the clients ‘interests’ then a
handler will be called.

The handlers that are registered and deregistered above have the following calling
parameters:

l The event_code passed in is the actual event that lead to the handler being
called.

l The IdBlock will be that passed to event_initialise, and is updated by the
Toolbox to identify which object the event has occurred on.

l The handle is the value that was passed through on registration, and is not
interpreted by EventLib or the Toolbox.

A handler should return zero if it has not handled the event, so that it may be pass
to other handlers which have been registered for a similar interest. Returning non-
will ‘claim’ the event, and event_poll will return.

WimpEventHandler

typedef int (WimpEventHandler) (int event_code,
WimpPollBlock *event,
IdBlock *id_block,
void *handle);

ToolboxEventHandler

typedef int (ToolboxEventHandler) (int event_code,
ToolboxEvent *event,
IdBlock *id_block,
void *handle);

WimpMessageHandler

typedef int (WimpMessageHandler) (WimpMessage *message,
void *handle);
147

Example
Example

The following is a simple example of how EventLib might be used. A more complete
example covering Wimp and Toolbox events can be found in the User Interface Toolbox
manual.

/* * Minimal Toolbox application, using the event veneers library. */

#include <stdlib.h>
#include "wimp.h"
#include "toolbox.h"
#include "event.h"

#define WimpVersion 310

static WimpPollBlock poll_block;
static MessagesFD messages;
static IdBlock id_block;

static int quit=0;

int quit_handler (WimpMessage *message, void *handle);
{

quit =1;
return 1; /* claim the event */

}

int main()
{

int event_code;

/*
 * register ourselves with the Toolbox.
 */

toolbox_initialise (0, WimpVersion, 0, 0, "<Test$Dir>",
 &messages, &id_block, 0, 0, 0);

/*
 * initialise the event library.
 */

event_initialise (&id_block);

/*
 * register handlers
 */

event_register_message_handler (Wimp_MQuit, quit_handler, 0);
148

The Event library
/*
 * poll loop
 */

while (!quit)
{

event_poll (&event_code, &poll_block, 0);
}

exit (EXIT_SUCCESS);
}

149

150

10 The Wimp library

impLib provides a set of C veneers onto the Wimp (or Window Manager) SWI

interface. For a description of the exact effect of a particular call, you should see W
the chapter The Window Manager at the start of Volume 3 of the RISC OS 3
er to

ed
low
t
ges,

d by
Programmer’s Reference Manual.

The section below lists in alphabetical order the functions provided by WimpLib. The
functions’ names are derived directly from the SWIs’ names: for example, the vene
call Wimp_CreateWindow is wimp_create_window. Each function has page
references to the RISC OS 3 Programmer’s Reference Manual – including ones, where
relevant, to Volume 5 (the Supplement for version 3.5).

WimpLib does not provide access to every Wimp SWI: for example, the Filter relat
SWIs and Wimp_SetWatchDogState are omitted. Such SWIs still have an entry be
under their expected function name, just so you can rapidly determine they are no
supported. Although functions are provided for adding and removing Wimp messa
you must not use these in Toolbox applications.

Note that when a value is returned as a parameter (e.g. an integer value is returne
function (int input, int *output)), the pointer to the return value may
be set to zero rather than provide a dummy variable.
151

Programmer interface

wn
Programmer interface

wimp_add_messages
_kernel_oserror *wimp_add_messages (int *list /* R0 in */);

This calls the SWI Wimp_AddMessages (see page 3-226 of the RISC OS 3
Programmer’s Reference Manual). You must not use this call in Toolbox applications.

wimp_base_of_sprites
_kernel_oserror *wimp_base_of_sprites (void **rom, /* R0 out */

void **ram /* R1 out */);

This calls the SWI Wimp_BaseOfSprites (see page 3-203 of the RISC OS 3
Programmer’s Reference Manual).

wimp_block_copy
_kernel_oserror *wimp_block_copy (int handle, /* R0 in */

int sxmin, /* R1 in */
int symin, /* R2 in */
int sxmax, /* R3 in */
int symax, /* R4 in */
int dxmin, /* R5 in */
int dymin /* R6 in */);

This calls the SWI Wimp_BlockCopy (see page 3-204 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_claim_free_memory

You might expect a function of this name to be provided to call
Wimp_ClaimFreeMemory. However, such a function is not implemented by WimpLib.

wimp_close_down
_kernel_oserror *wimp_close_down (int th /* R0 in */);

This sets up R1 to be &4B534154 (‘TASK’), and then calls the SWI Wimp_CloseDo
(see page 3-175 of the RISC OS 3 Programmer’s Reference Manual).
152

The Wimp library
wimp_close_template
_kernel_oserror *wimp_close_template (void);

This calls the SWI Wimp_CloseTemplate (see page 3-169 of the RISC OS 3
Programmer’s Reference Manual).

wimp_close_window
_kernel_oserror *wimp_close_window (int window_handle /* R1 in */);

This calls the SWI Wimp_CloseWindow (see page 3-114 of the RISC OS 3
Programmer’s Reference Manual).

wimp_command_window
_kernel_oserror *wimp_command_window (int type /* R0 in */);

This calls the SWI Wimp_CommandWindow (see page 3-212 of the RISC OS 3
Programmer’s Reference Manual).

wimp_create_icon
_kernel_oserror *wimp_create_icon (int priority, /* R0 in */

WimpCreateIconBlock *defn, /* R1 in */
int *handle /* R0 out */);

This calls the SWI Wimp_CreateIcon (see pages 3-96 and 5-204 of the RISC OS 3
Programmer’s Reference Manual).

wimp_create_menu, CloseMenu
#define CloseMenu ((void *) -1)

_kernel_oserror *wimp_create_menu (void * handle, /* R1 in */
int x, /* R2 in */
int y /* R3 in */);

This calls the SWI Wimp_CreateMenu (see pages 3-156 and 5-205 of the RISC OS 3
Programmer’s Reference Manual).

wimp_create_submenu
_kernel_oserror *wimp_create_submenu (void * handle, /* R1 in */

int x, /* R2 in */
int y /* R3 in */);

This calls the SWI Wimp_CreateSubmenu (see page 3-199 of the RISC OS 3
Programmer’s Reference Manual).
153

Programmer interface
wimp_create_window
_kernel_oserror *wimp_create_window (WimpWindow *defn, /* R1 in */

int *handle /* R0 out */);

This calls the SWI Wimp_CreateWindow (see pages 3-89 and 5-204 of the RISC OS 3
Programmer’s Reference Manual).

wimp_decode_menu
_kernel_oserror *wimp_decode_menu (void *data, /* R1 in */

int *selections, /* R2 in */
char *buffer /* R3 in */);

This calls the SWI Wimp_DecodeMenu (see page 3-161 of the RISC OS 3
Programmer’s Reference Manual).

wimp_delete_icon
_kernel_oserror *wimp_delete_icon (WimpDeleteIconBlock *block

/* R1 in */);

This calls the SWI Wimp_DeleteIcon (see page 3-110 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_delete_window
_kernel_oserror *wimp_delete_window (WimpDeleteWindowBlock *block

/* R1 in */);

This calls the SWI Wimp_DeleteWindow (see page 3-108 of the RISC OS 3
Programmer’s Reference Manual).

wimp_drag_box, CancelDrag
#define CancelDrag 0

_kernel_oserror *wimp_drag_box (WimpDragBox *block
/* R1 in */);

This calls the SWI Wimp_DragBox (see page 3-145 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_extend

You might expect a function of this name to be provided to call Wimp_Extend.
However, such a function is not implemented by WimpLib.
154

The Wimp library
wimp_force_redraw
_kernel_oserror *wimp_force_redraw (int window_handle, /* R0 in */

int xmin, /* R1 in */
int ymin, /* R2 in */
int xmax, /* R3 in */
int ymax /* R4 in */);

This calls the SWI Wimp_ForceRedraw (see page 3-150 of the RISC OS 3
Programmer’s Reference Manual).

wimp_get_caret_position
_kernel_oserror *wimp_get_caret_position(WimpGetCaretPositionBlock *block

/* R1 in */);

This calls the SWI Wimp_GetCaretPosition (see page 3-154 of the RISC OS 3
Programmer’s Reference Manual).

wimp_get_icon_state
_kernel_oserror *wimp_get_icon_state (WimpGetIconStateBlock *block

/* R1 in */);

This calls the SWI Wimp_GetIconState (see page 3-141 of the RISC OS 3
Programmer’s Reference Manual).

wimp_get_menu_state
_kernel_oserror *wimp_get_menu_state (int report, /* R0 in */

int *state, /* R1 in */
int window, /* R2 in */
int icon /* R3 in */);

This calls the SWI Wimp_GetMenuState (see page 3-222 of the RISC OS 3
Programmer’s Reference Manual).

wimp_get_pointer_info
_kernel_oserror *wimp_get_pointer_info (WimpGetPointerInfoBlock *block

/* R1 in */);

This calls the SWI Wimp_GetPointerInfo (see page 3-143 of the RISC OS 3
Programmer’s Reference Manual).
155

Programmer interface

wimp_get_rectangle
_kernel_oserror *wimp_get_rectangle (WimpRedrawWindowBlock *block,

/* R1 in */
int *more /* R0 out */);

This calls the SWI Wimp_GetRectangle (see page 3-133 of the RISC OS 3
Programmer’s Reference Manual).

wimp_get_window_info
_kernel_oserror *wimp_get_window_info (WimpGetWindowInfoBlock *block

/* R1 in */);

This calls the SWI Wimp_GetWindowInfo (see page 3-137 of the RISC OS 3
Programmer’s Reference Manual).

wimp_get_window_outline
_kernel_oserror *wimp_get_window_outline(WimpGetWindowOutlineBlock *block

/* R1 in */);

This calls the SWI Wimp_GetWindowOutline (see page 3-182 of the RISC OS 3
Programmer’s Reference Manual).

wimp_get_window_state
_kernel_oserror *wimp_get_window_state (WimpGetWindowStateBlock *state

/* R1 in */);

This calls the SWI Wimp_GetWindowState (see page 3-135 of the RISC OS 3
Programmer’s Reference Manual).

wimp_initialise
_kernel_oserror *wimp_initialise (int version, /* R0 in */

char *name, /* R2 in */
int *messages, /* R3 in */
int *cversion, /* R0 out */
int *task /* R1 out */);

This sets up R1 to be &4B534154 (‘TASK’), and then calls the SWI Wimp_Initialise
(see page 3-87 of the RISC OS 3 Programmer’s Reference Manual).
156

The Wimp library
wimp_load_template
_kernel_oserror *wimp_load_template (_kernel_swi_regs *regs /*R1-6 in*/);

This calls the SWI Wimp_LoadTemplate (see page 3-170 of the RISC OS 3
Programmer’s Reference Manual).

wimp_open_template
_kernel_oserror *wimp_open_template (char *name /* R1 in */);

This calls the SWI Wimp_OpenTemplate (see page 3-168 of the RISC OS 3
Programmer’s Reference Manual).

wimp_open_window
_kernel_oserror *wimp_open_window (WimpOpenWindowBlock *show

/* R1 in */);

This calls the SWI Wimp_OpenWindow (see page 3-112 of the RISC OS 3
Programmer’s Reference Manual).

wimp_plot_icon
_kernel_oserror *wimp_plot_icon (WimpPlotIconBlock *block

/* R1 in */);

This calls the SWI Wimp_PlotIcon (see page 3-186 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_poll
_kernel_oserror *wimp_poll (int mask, /* R0 in */

WimpPollBlock *block, /* R1 in */
int *pollword, /* R2 in */
int *event_code /* R0 out */);

This calls the SWI Wimp_Poll (see page 3-115 of the RISC OS 3 Programmer’s
Reference Manual).
157

Programmer interface
wimp_poll_idle
_kernel_oserror *wimp_pollidle (int mask, /* R0 in */

WimpPollBlock *block, /* R1 in */
int time, /* R2 in */
int *pollword, /* R3 in */
int *event_code /* R0 out */);

This calls the SWI Wimp_PollIdle (see page 3-184 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_process_key
_kernel_oserror *wimp_process_key (int keycode /* R0 in */);

This calls the SWI Wimp_ProcessKey (see page 3-173 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_read_palette
_kernel_oserror *wimp_read_palette (Palette *palette /* R1 in */);

This calls the SWI Wimp_ReadPalette (see page 3-192 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_read_pix_trans

You might expect a function of this name to be provided to call Wimp_ReadPixTrans.
However, such a function is not implemented by WimpLib.

wimp_read_sys_info, WimpSysInfo
typedef struct { int r0; int r1; } WimpSysInfo;

_kernel_oserror *wimp_read_sys_info (int reason, /* R0 in */
WimpSysInfo *results /* R0 out */);

This calls the SWI Wimp_ReadSysInfo (see pages 3-218 and 5-206 of the RISC OS 3
Programmer’s Reference Manual).

wimp_redraw_window
_kernel_oserror *wimp_redraw_window (WimpRedrawWindowBlock *block,

/* R1 in */
int *more /* R0 out */);

This calls the SWI Wimp_RedrawWindow (see page 3-129 of the RISC OS 3
Programmer’s Reference Manual).
158

The Wimp library
wimp_register_filter

You might expect a function of this name to be provided to call Wimp_RegisterFilter.
However, such a function is not implemented by WimpLib.

wimp_remove_messages
_kernel_oserror *wimp_remove_messages (int *list /* R0 in */);

This calls the SWI Wimp_RemoveMessages (see page 3-227 of the RISC OS 3
Programmer’s Reference Manual). You must not use this call in Toolbox applications.

wimp_report_error
int wimp_report_error (_kernel_oserror *er, /* R0 in */

int flags, /* R1 in */
char *name, /* R2 in */
char *sprite, /* R3 in */
void *area, /* R4 in */
char *buttons /* R5 in */);

This calls the SWI Wimp_ReportError (see pages 3-179 and 5-205 of the RISC OS 3
Programmer’s Reference Manual).

wimp_resize_icon
_kernel_oserror *wimp_resize_icon (int window, /* R0 in */

int icon, /* R1 in */
int xmin, /* R2 in */
int ymin, /* R3 in */
int xmax, /* R4 in */
int ymax /* R5 in */);

This calls the SWI Wimp_ResizeIcon (see page 5-217 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_send_message
_kernel_oserror *wimp_send_message (int code, /* R0 in */

void *block, /* R1 in */
int handle, /* R2 in */
int icon, /* R3 in */
int *th /* R2 out */);

This calls the SWI Wimp_SendMessage (see page 3-196 of the RISC OS 3
Programmer’s Reference Manual).
159

Programmer interface
wimp_set_caret_position
_kernel_oserror *wimp_set_caret_position(int window_handle, /* R0 in */

int icon_handle, /* R1 in */
int xoffset, /* R2 in */
int yoffset, /* R3 in */
int height, /* R4 in */
int index /* R5 in */);

This calls the SWI Wimp_SetCaretPosition (see page 3-152 of the RISC OS 3
Programmer’s Reference Manual).

wimp_set_colour, Wimp_BackgroundColour
#define Wimp_BackgroundColour (128)

_kernel_oserror *wimp_set_colour (int colour /* R0 in */);

This calls the SWI Wimp_SetColour (see page 3-194 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_set_colour_mapping
_kernel_oserror *wimp_set_colour_mapping(int which_palette, /* R1 in */

int *bpp1, /* R2 in */
int *bpp2, /* R3 in */
int *bpp4 /* R4 in */);

This calls sets R5, R6 and R7 to zero and then calls the SWI Wimp_SetColourMapping
(see page 3-228 of the RISC OS 3 Programmer’s Reference Manual).

wimp_set_extent
_kernel_oserror *wimp_set_extent (int window_handle, /* R0 in */

BBox *area /* R1 in */);

This calls the SWI Wimp_SetExtent (see page 3-164 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_set_font_colours
_kernel_oserror *wimp_set_font_colours (int fore /* R1 in */

int back /* R2 in */);

This calls the SWI Wimp_SetFontColours (see page 3-220 of the RISC OS 3
Programmer’s Reference Manual).
160

The Wimp library
wimp_set_icon_state
_kernel_oserror *wimp_set_icon_state (WimpSetIconStateBlock *block)

/* R1 in */;

This calls the SWI Wimp_SetIconState (see page 3-139 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_set_mode
_kernel_oserror *wimp_set_mode (int mode /* R0 in */);

This calls the SWI Wimp_SetMode (see page 3-188 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_set_palette, Palette
typedef struct { unsigned int colours[16];

unsigned int border;
unsigned int pointer1;
unsigned int pointer2;
unsigned int pointer3; } Palette;

_kernel_oserror *wimp_set_palette (Palette *palette /* R1 in */);

This calls the SWI Wimp_SetPalette (see page 3-190 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_set_pointer_shape
_kernel_oserror *wimp_set_pointer_shape (int shape, /* R0 in */

void *data, /* R1 in */
int width, /* R2 in */
int height, /* R3 in */
int activex, /* R4 in */
int activey /* R5 in */);

This calls the SWI Wimp_SetPointerShape (see page 3-166 of the RISC OS 3
Programmer’s Reference Manual).

wimp_set_watchdog_state

You might expect a function of this name to be provided to call
Wimp_SetWatchdogState. However, such a function is not implemented by WimpLib.
161

Programmer interface
wimp_slot_size
_kernel_oserror *wimp_slot_size (int current, /* R0 in */

int next, /* R1 in */
int *current, /* R0 out */
int *next, /* R1 out */
int *free /* R2 out */);

This calls the SWI Wimp_SlotSize (see page 3-206 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_sprite_op, SpriteParams
typedef struct {int r3; int r4; int r5; int r6; int r7;} SpriteParams;

_kernel_oserror *wimp_sprite_op (int code, /* R0 in */
char *name, /* R2 in */
SpriteParams *p /* R3… in */);

This calls the SWI Wimp_SpriteOp (see page 3-201 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_start_task
_kernel_oserror *wimp_start_task (char *cl, /* R0 in */

int *handle /* R0 out */);

This calls the SWI Wimp_StartTask (see page 3-177 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_text_colour
_kernel_oserror *wimp_text_colour (int colour /* R0 in */);

This calls the SWI Wimp_TextColour (see page 3-214 of the RISC OS 3 Programmer’s
Reference Manual).

wimp_text_op
_kernel_oserror *wimp_text_op (_kernel_swi_regs *regs /* R0… in */);

This calls the SWI Wimp_TextOp (see page 5-210 of the RISC OS 3 Programmer’s
Reference Manual).
162

The Wimp library
wimp_transfer_block
_kernel_oserror *wimp_transfer_block (int sh, /* R0 in */

void *sbuf, /* R1 in */
int dh, /* R2 in */
void *dbuf, /* R3 in */
int size /* R4 in */);

This calls the SWI Wimp_TransferBlock (see page 3-216 of the RISC OS 3
Programmer’s Reference Manual).

wimp_update_window
_kernel_oserror *wimp_update_window (WimpRedrawWindowBlock *block,

/* R1 in */
int *more /* R0 out */);

This calls the SWI Wimp_UpdateWindow (see page 3-131 of the RISC OS 3
Programmer’s Reference Manual).

wimp_which_icon
_kernel_oserror *wimp_which_icon (int window_handle, /* R0 in */

int *icons, /* R1 in */
unsigned int mask, /* R2 in */
unsigned int match /* R3 in */);

This calls the SWI Wimp_WhichIcon (see page 3-162 of the RISC OS 3 Programmer’s
Reference Manual).
163

164

11 The Toolbox library

he Toolbox library provides a set of C veneers onto the Toolbox SWIs. It is

described in the User Interface Toolbox manual, supplied as a part of this product. T
For full details of a particular veneer, you should see the documentation of the

corresponding SWI call.
165

166

12 The Render library

he Render library provides a set of C veneers onto the DrawFile SWIs, used to

render Draw files. It is described in the chapter DrawFile on page 501 of the User T
Interface Toolbox manual, supplied as a part of this product. For full details of a

particular veneer, you should see the documentation of the corresponding SWI call.
167

168

Part 3 – C++ language issues
169

170

13 C++ implementation details

his chapter describes implementation specific behaviour of the C++ Language

System. Implementation specific behaviours can be categorised as follows:T
1 Behaviour that the Reference Manual defines as ‘implementation dependent’
ith

ed in

nd

2 Behaviour that depends on the underlying C compiler or preprocessor used w
Release 3.0

3 Properties that are defined in the standard header files stddef.h, limits.h,
and stdlib.h

4 Translation limits

5 Language constructs that are not implemented in this release.

This chapter addresses categories 1, 2, 4, and 5. For details about properties defin
the standard header files (category 3), see the headers themselves. Additional
information about constructs that are not implemented is provided in the appendix C++
errors and warnings on page 333, which contains an alphabetical listing of the ‘not
implemented’ error messages.

The ordering and numbering of sections in this chapter corresponds to the order a
numbering of the related sections in the Reference Manual. The section Translation
Limits below (which does not have a corresponding section in the Reference Manual)
precedes the numbered sections.

Translation Limits
Release 3.0 of the Acorn C++ Language System imposes the following translation
limits:

l 50 nesting levels of compound statements

l 10 nesting levels of linkage declarations

l 4088 characters in a token

l 22222 virtual functions in a class

l 10000 identifiers generated by the implementation.

Additional translation limits may be inherited from the underlying C compiler and
preprocessor.
171

Identifiers (2.3)

the
ither
Identifiers (2.3)

Identifiers reserved by Release 3.0

Release 3.0 reserves identifiers that contain a sequence of two underscores for its own
use. In addition, identifiers reserved in the ANSI C standard are also reserved by
Release 3.0. Under the +w option, identifiers with double underscores result in a
warning in Release 3.0.

Character Constants (2.5.2)

Value of multicharacter constants

The Reference Manual states that the value of a multicharacter constant, such as
’abcd’, is implementation dependent. Release 3.0 passes these constants to the
underlying C compiler, which determines their values. A multicharacter constant
containing more characters than sizeof(int) is reported as an error by Release 3.0.

Value of (single) character constants

The Reference Manual states that the value of a character constant is implementation
dependent if it exceeds that of the largest char. Release 3.0 accepts octal and
hexadecimal character literals that do not fit in a char. It uses the low order bits that
make up the value of the constant. For example, the octal character constant ’\777’ is
treated as ’\377’. The hexadecimal character constant ’\x123’ is treated as
’\x23’.

Wide character constants

Release 3.0 does not implement wide character constants, such as L’ab’. A ‘not
implemented’ error message is reported.

Floating Constants (2.5.3)

Long double floating constants

When compiling with the +a0 option, Release 3.0 removes an l or L suffix from a
floating constant before passing the constant to the underlying C compiler. Under
+a1 option such a constant is passed unchanged to the underlying C compiler. In e
case, the constant is considered to be of type long double for purposes of resolving
overloaded function calls.
172

C++ implementation details

r

String Literals (2.5.4)

Distinct string literals

The Reference Manual states that it is implementation dependent whether all string
literals are distinct. Release 3.0 does not attempt to detect cases where string literals
could be represented as overlapping objects. The underlying C compiler may, however,
detect such cases and attempt to overlap their storage.

Wide character strings

Release 3.0 does not implement wide character strings, such as L"abcd". A ‘not
implemented’ error message is reported.

Start and Termination (3.4)

Type of main()

The Reference Manual states that the type of main() is implementation dependent.
Release 3.0 itself does not impose any restrictions on the type of main(), but the
underlying C compiler or the target environment may impose such restrictions.

Linkage of main()

The Acorn C++ Language System treats main() as if its linkage were extern "C".

Fundamental Types (3.6.1)

Signed integral types

Release 3.0 does not implement the type specifier signed; it issues a warning and
proceeds as though the specifier signed had not appeared.

Long double type

When Release 3.0 is invoked with the +a0 option, the type long double is
considered to be the same size and precision as the type double in the underlying C
compiler. Under the +a1 option, long double is passed to the underlying C compile
as long double. In either case, type long double is considered a distinct type for
purposes of resolving overloaded function declarations and invocations.
173

Integral Conversions (4.2)
Alignment requirements

Release 3.0 does not impose any alignment restrictions when allocating objects of a
particular type. Such restrictions, if they exist, are enforced by the underlying C
compiler.

Integral Conversions (4.2)

Conversion to a signed type

When a value of an integral type is converted to a signed integral type with fewer bits in
the representation, Release 3.0 issues a warning message if the +w option is specified.
The runtime behaviour of such a conversion depends on the treatment of the conversion
by the underlying C compiler.

Expressions (5)

Overflow and divide check

The Reference Manual states that the handling of overflow and divide check in
expression evaluation is implementation dependent. When the second operand of a
division or modulus operator is known to be zero at compile time, Release 3.0 reports an
error. Overflow and other divide check conditions are handled by the underlying C
compiler and execution environment.

Function Call (5.2.2)

Evaluation order

The Reference Manual states that the order of evaluation of arguments to a function call
is implementation dependent; similarly, the order of evaluation of the postfix expression,
which designates the function to be called, and the argument expression list are
implementation dependent. In both cases the order depends on the treatment by the
underlying C compiler.
174

C++ implementation details
Explicit Type Conversion (5.4)

Explicit conversions between pointer and integral types

The Reference Manual states that the value obtained by explicitly converting a pointer to
an integral type large enough to hold it is implementation dependent. This behaviour is
defined by the underlying C compiler. Similarly, the behaviour when explicitly
converting an integer to a pointer depends on the underlying C compiler.

Multiplicative Operators (5.6)

Sign of the remainder

The Reference Manual states that the sign of the result of the modulus operator is
non-negative if both operands are non-negative; otherwise, the sign of the result is
implementation dependent. This behaviour depends on the underlying C compiler
except when the values of both operands are known at compile time. In this case, the
sign of the result is the same as the sign of the numerator.

Shift Operators (5.8)

Result of right shift

The Reference Manual states that the result of a right shift when the left operand is a
signed type with a negative value is implementation dependent. This behaviour depends
on the underlying C compiler.

Relational Operators (5.9)

Pointer comparisons

According to the Reference Manual, certain pointer comparisons are implementation
dependent. For Release 3.0, the results of these comparisons depend on the underlying C
compiler.
175

Storage Class Specifiers (7.1.1)

red

.

 is
Storage Class Specifiers (7.1.1)

Inline functions

The Reference Manual states that the inline specifier is a hint to the compiler.

When compiling with the +d option, Release 3.0 always generates out-of-line calls to
inline functions.

Type Specifiers (7.1.6)

Volatile

Release 3.0 does not implement the type specifier volatile. If it is applied to a
member function, a ‘not implemented’ error message is issued; otherwise it is igno
and a warning message is issued.

Signed

Release 3.0 does not implement the type specifier signed; it is ignored and a warning
message is issued.

Asm Declarations (7.3)

Effect of an asm declaration

Release 3.0 passes asm declarations to the underlying C compiler without modification
However, the compiler supplied with Acorn C/C++ will fault them.

Linkage Specifications (7.4)

Languages supported

Release 3.0 supports linkage to C and C++.

Linkage to functions

The effect of a "C" linkage specification (extern "C") on a function that is not a
member function is that the function name is not encoded with type information, as
otherwise done for C++ functions. Member functions are not affected by linkage
specifications.
176

C++ implementation details

sses
torage

ntly,
Linkage to non-functions

The C linkage specification (extern "C"), when applied to a non-function
declaration, does not affect the C code generated.

Class Members (9.2)

Allocation of non-static data members

The Reference Manual states that the order of allocation of non-static data members
across access-specifiers is implementation dependent. Release 3.0 allocates non-static
data members in declaration order.

Bitfields (9.6)

Allocation and alignment of bitfields

The Reference Manual states that the allocation and alignment of bitfields within a class
object is implementation dependent. Responsibility for the allocation and alignment of
bitfields rests with the underlying C compiler.

Sign of ‘plain’ bitfields

Whether the high-order bit position of a ‘plain’ int bitfield is treated as a sign bit
depends on the behaviour of the underlying C compiler.

Multiple Base Classes (10.1)

Allocation of base classes

The Reference Manual states that the order in which storage is allocated for base cla
is implementation dependent. For non-virtual base classes, Release 3.0 allocates s
in the order that they are mentioned in the derived class declaration.

Argument Matching (13.2)

Integral arguments

The type of the result of an integral promotion (4.1) depends on the execution
environment, as does the type of an unsuffixed integer constant (2.5.1). Conseque
the determination of which overloaded function to call may also depend on the
execution environment, as illustrated by an example in 13.2 of the Reference Manual.
177

Exception Handling (experimental) (15)
Exception Handling (experimental) (15)
Release 3.0 does not implement exception handling. The keyword catch is reserved
for future use. A ‘not implemented’ error message is reported if catch is seen.

Predefined Names (16.10)

Predefined macros

The following macros are defined by Release 3.0:

_ _cplusplus The decimal constant 1.

c_plusplus The decimal constant 1. This macro is provided for
compatibility with previous releases and will not be
supported in the next major release.

Other macros may be predefined by the underlying preprocessor.
178

14 The Streams library

he Streams library is a part of the C++ library, ported from that supplied with

 is
AT&T’s CFront product. The only significant change made in porting the libraryT
the handling of file modes, because of the differences between filing systems in

RISC OS and UNIX.
179

Introduction

.

Introduction

iostream – buffering, formatting and input/output

Synopsis
#include <iostream.h>
class streambuf ;
class ios ;
class istream : virtual public ios ;
class ostream : virtual public ios ;
class iostream : public istream, public ostream ;
class istream_withassign : public istream ;
class ostream_withassign : public ostream ;
class iostream_withassign : public iostream ;

class Iostream_init ;

extern istream_withassign cin ;
extern ostream_withassign cout ;
extern ostream_withassign cerr ;
extern ostream_withassign clog ;

#include <fstream.h>
class filebuf : public streambuf ;
class fstream : public iostream ;
class ifstream : public istream ;
class ofstream : public ostream ;

#include <strstream.h>
class strstreambuf : public streambuf ;
class istrstream : public istream ;
class ostrstream : public ostream ;

#include <stdiostream.h>
class stdiobuf : public streambuf ;
class stdiostream : public ios ;

Description

The C++ iostream package declared in iostream.h and other header files consists
primarily of a collection of classes. Although originally intended only to support
input/output, the package now supports related activities such as incore formatting

In the iostream sections, character refers to a value that can be held in either a char or
unsigned char. When functions that return an int are said to return a character,
they return a positive value. Usually such functions can also return EOF (–1) as an error
indication. The piece of memory that can hold a character is referred to as a byte. Thus,
either a char* or an unsigned char* can point to an array of bytes.
180

The Streams library
The iostream package consists of several core classes, which provide the basic
functionality for I/O conversion and buffering, and several specialised classes derived
from the core classes. Both groups of classes are listed below.

Core Classes

The core of the iostream package comprises the following classes:

streambuf

This is the base class for buffers. It supports insertion (also known as storing or putting)
and extraction (also known as fetching or getting) of characters. Most members are
inlined for efficiency. The public interface of class streambuf is described in
streambuf – public on page 228, and the protected interface (for derived classes) is
described in streambuf – protected on page 220.

ios

This class contains state variables that are common to the various stream classes, for
example, error states and formatting states. See ios on page 192.

istream

This class supports formatted and unformatted conversion from sequences of characters
fetched from streambufs. See istream on page 202.

ostream

This class supports formatted and unformatted conversion to sequences of characters
stored into streambufs. See ostream on page 213.

iostream

This class combines istream and ostream. It is intended for situations in which
bidirectional operations (inserting into and extracting from a single sequence of
characters) are desired. See ios on page 192.

istream_withassign
ostream_withassign
iostream_withassign

These classes add assignment operators and a constructor with no operands to the
corresponding class without assignment. The predefined streams (see below) cin,
cout, cerr, and clog, are objects of these classes. See istream on page 202, ostream
on page 213, and ios on page 192.
181

Introduction
Iostream_init

This class is present for technical reasons relating to initialisation. It has no public
members. The Iostream_init constructor initialises the predefined streams (listed
below). Because an object of this class is declared in the iostream.h header file, the
constructor is called once each time the header is included (although the real
initialisation is only done once), and therefore the predefined streams will be initialised
before they are used. In some cases, global constructors may need to call the
Iostream_init constructor explicitly to ensure the standard streams are initialised
before they are used.

Predefined streams

The following streams are predefined:

cin

The standard input (file descriptor 0).

cout

The standard output (file descriptor 1).

cerr

Standard error (file descriptor 2). Output through this stream is unit-buffered, which
means that characters are flushed after each inserter operation. (See osfx() on page 215
in ostream, and unitbuf on page 197 in ios.)

clog

This stream is also directed to file descriptor 2, but unlike cerr its output is buffered.

Note: cin, cerr, and clog are tied to cout so that any use of these will cause cout
to be flushed.

In addition to the core classes enumerated above, the iostream package contains
additional classes derived from them and declared in other headers. Programmers may
use these, or may choose to define their own classes derived from the core iostream
classes.

Classes derived from streambuf

Classes derived from streambuf define the details of how characters are produced or
consumed. Derivation of a class from streambuf (the protected interface) is
discussed in streambuf – protected on page 220. The available buffer classes are:
182

The Streams library
filebuf

This buffer class supports I/O through file descriptors. Members support opening,
closing, and seeking. Common uses do not require the program to manipulate file
descriptors. See filebuf on page 184.

stdiobuf

This buffer class supports I/O through stdio FILE structs. It is intended for use when
mixing C and C++ code. New code should prefer to use filebufs. See stdiobuf on
page 219.

strstreambuf

This buffer class stores and fetches characters from arrays of bytes in memory (i.e.
strings). See strstreambuf on page 236.

Classes derived from istream, ostream, and iostream

Classes derived from istream, ostream, and iostream specialise the core classes
for use with particular kinds of streambufs. These classes are:

ifstream
ofstream
fstream

These classes support formatted I/O to and from files. They use a filebuf to do the
I/O. Common operations (such as opening and closing) can be done directly on streams
without explicit mention of filebufs. See fstream on page 188.

istrstream
ostrstream

These classes support ‘in core’ formatting. They use a strstreambuf. See strstream
on page 233.

stdiostream

This class specialises iostream for stdio FILEs. See stdiostream.h.

See also

ios (page 192), streambuf – public(page 228), streambuf – protected(page 220),
filebuf (page 184), stdiobuf(page 219), strstreambuf(page 236), istream(page 202),
ostream(page 213), fstream(page 188), strstream(page 233), manipulators(page 209)
183

filebuf

ads.
re

tdio).
filebuf

filebuf – buffer for file I/O

Synopsis
#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
// and lots of other stuff; see ios on page 192

} ;

#include <fstream.h>

class filebuf : public streambuf {
public:

static const int openprot ; /* default protection for open */

filebuf() ;
~filebuf() ;
filebuf(int d);
filebuf(int d, char* p, int len) ;

filebuf* attach(int d) ;
filebuf* close();
int fd();
int is_open();
filebuf* open(char *name, int omode, int prot=openprot) ;
streampos seekoff(streamoff, seek_dir, int omode) ;
streampos seekpos(streampos, int omode) ;
streambuf* setbuf(char* p, int len) ;
int sync() ;

};

Description

filebufs specialise streambufs to use a file as a source or sink of characters.
Characters are consumed by doing writes to the file, and are produced by doing re
When the file is seekable, a filebuf allows seeks. At least 4 characters of putback a
guaranteed. When the file permits reading and writing, the filebuf permits both
storing and fetching. No special action is required between gets and puts (unlike s
A filebuf that is connected to a file descriptor is said to be open.

Under RISC OS openprot is ignored.
184

The Streams library

The reserve area (or buffer; see streambuf – public on page 228 and streambuf –
protected on page 220) is allocated automatically if one is not specified explicitly with a
constructor or a call to setbuf(). filebufs can also be made unbuffered with
certain arguments to the constructor or setbuf(), in which case a system call is made
for each character that is read or written. The get and put pointers into the reserve area
are conceptually tied together; they behave as a single pointer. Therefore, the
descriptions below refer to a single get/put pointer.

In the descriptions below, assume:

l f is a filebuf.

l pfb is a filebuf*.

l psb is a streambuf*.

l i, d, len, and prot are ints.

l name and ptr are char*s.

l mode is an int representing an open_mode.

l off is a streamoff.

l p and pos are streampos’s.

l dir is a seek_dir.

Constructors

filebuf()

Constructs an initially closed filebuf.

filebuf(d)

Constructs a filebuf connected to file descriptor d.

filebuf(d, p, len)

Constructs a filebuf connected to file descriptor d and initialised to use the reserve
area starting at p and containing len bytes. If p is null or len is zero or less, the
filebuf will be unbuffered.
185

filebuf

id
Members

pfb=f.attach(d)

Connects f to an open file descriptor, d. attach() normally returns &f, but returns 0
if f is already open.

pfb=f.close()

Flushes any waiting output, closes the file descriptor, and disconnects f. Unless an error
occurs, f’s error state will be cleared. close() returns &f unless errors occur, in which
case it returns 0. Even if errors occur, close() leaves the file descriptor and f closed.

i=f.fd()

Returns i, the file descriptor f is connected to. If f is closed, i is EOF.

i=f.is_open()

Returns non-zero when f is connected to a file descriptor, and zero otherwise.

pfb=f.open(name, mode, prot)

Opens file name and connects f to it. If the file does not already exist, an attempt is
made to create it, unless ios::nocreate is specified in mode. Under RISC OS,
prot is ignored. Failure occurs if f is already open. open() normally returns &f, but
if an error occurs it returns 0. The members of open_mode are bits that may be OR’d
together. (Because the OR’ing returns an int, open() takes an int rather than an
open_mode argument.) The meanings of these bits in mode are described in detail in
fstream on page 188.

p=f.seekoff(off, dir, mode)

Moves the get/put pointer as designated by off and dir. It may fail if the file that f is
attached to does not support seeking, or if the attempted motion is otherwise inval
(such as attempting to seek to a position before the beginning of file). off is interpreted
as a count relative to the place in the file specified by dir as described in streambuf –
public on page 228. mode is ignored. seekoff() returns p, the new position, or EOF
if a failure occurs. The position of the file after a failure is undefined.
186

The Streams library
p=f.seekpos(pos, mode)

Moves the file to a position pos as described in streambuf – public on page 228. mode
is ignored. seekpos() normally returns pos, but on failure it returns EOF.

psb=f.setbuf(ptr, len)

Sets up the reserve area as len bytes beginning at ptr. If ptr is null or len is less
than or equal to 0, f will be unbuffered. setbuf() normally returns &f. However, if f
is open and a buffer has been allocated, no changes are made to the reserve area or to the
buffering status, and setbuf() returns 0.

i=f.sync()

Attempts to force the state of the get/put pointer of f to agree (be synchronised) with the
state of the file f.fd(). This means it may write characters to the file if some have
been buffered for output or attempt to reposition (seek) the file if characters have been
read and buffered for input. Normally, sync() returns 0, but it returns EOF if
synchronisation is not possible.

Sometimes it is necessary to guarantee that certain characters are written together. To do
this, the program should use setbuf() (or a constructor) to guarantee that the reserve
area is at least as large as the number of characters that must be written together. It can
then call sync(), then store the characters, then call sync() again.

See also

streambuf – public(page 228), streambuf – protected(page 220), fstream(page 188).
187

fstream
fstream

fstream – iostream and streambuf specialised to files

Synopsis
#include <fstream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end } ;
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
enum io_state { goodbit=0, eofbit, failbit, badbit } ;
// and lots of other stuff; see ios on page 192

};

class ifstream : istream {
ifstream() ;
~ifstream() ;
ifstream(const char* name, int =ios::in,

int prot =filebuf::openprot) ;
ifstream(int fd) ;
ifstream(int fd, char* p, int l) ;

void attach(int fd) ;
void close() ;
void open(char* name, int =ios::in,

int prot=filebuf::openprot) ;
filebuf* rdbuf() ;
void setbuf(char* p, int l) ;

};

class ofstream : ostream {
ofstream() ;
~ofstream() ;
ofstream(const char* name, int =ios::out,

int prot =filebuf::openprot) ;
ofstream(int fd) ;
ofstream(int fd, char* p, int l) ;

void attach(int fd) ;
void close() ;
void open(char* name, int =ios::out,

int prot=filebuf::openprot) ;
filebuf* rdbuf() ;
void setbuf(char* p, int l) ;

};
188

The Streams library
class fstream : iostream {
fstream() ;
~fstream() ;
fstream(const char* name, int mode,

int prot =filebuf::openprot) ;
fstream(int fd) ;
fstream(int fd, char* p, int l) ;

void attach(int fd) ;
void close() ;
void open(char* name, int mode,

int prot=filebuf::openprot) ;
filebuf* rdbuf() ;
void setbuf(char* p, int l) ;

};

Description

ifstream, ofstream, and fstream specialise istream, ostream, and
iostream, respectively, to files. That is, the associated streambuf will be a
filebuf.

In the following descriptions, assume:

l f is any of ifstream, ofstream, or fstream.

l pfb is a filebuf*.

l psb is a streambuf*.

l name and ptr are char*s.

l i, fd, len, and prot are ints.

l mode is an int representing an open_mode.

Constructors

The constructors for xstream, where x is either if, of, or f, are:

xstream()

Constructs an unopened xstream.

xstream(name, mode, prot)

Constructs an xstream and opens file name using mode as the open mode. Under
RISC OS prot is ignored. The error state (io_state) of the constructed xstream
will indicate failure in case the open fails.

xstream(d)

Constructs an xstream connected to file descriptor d, which must be already open.
189

fstream

:

f

le.
xstream(d,ptr,len)

Constructs an xstream connected to file descriptor d, and, in addition, initialises the
associated filebuf to use the len bytes at ptr as the reserve area. If ptr is null or
len is 0, the filebuf will be unbuffered.

Member functions

f.attach(d)

Connects f to the file descriptor d. A failure occurs when f is already connected to a
file. A failure sets ios::failbit in f’s error state.

f.close()

Closes any associated filebuf and thereby breaks the connection of the f to a file.

f’s error state is cleared except on failure. A failure occurs when the call to
f.rdbuf()->close() fails.

f.open(name,mode,prot)

Opens file name and connects f to it. If the file does not already exist, an attempt is
made to create it unless ios::nocreate is set. Under RISC OS prot is ignored.
Failure occurs if f is already open, or the call to f.rdbuf()->open() fails.
ios::failbit is set in f’s error status on failure. The members of open_mode are
bits that may be OR’d together. (Because the OR’ing returns an int, open() takes an
int rather than an open_mode argument.) The meanings of these bits in mode are

ios::app A seek to the end of file is performed. Subsequent data
written to the file is always added (appended) at the end o
file. ios::app implies ios::out.

ios::ate A seek to the end of the file is performed during the
open(). ios::ate does not imply ios::out.

ios::in The file is opened for input. ios::in is implied by
construction and opens of ifstreams. For fstreams it
indicates that input operations should be allowed if possib
Is is legal to include ios::in in the modes of an ostream
in which case it implies that the original file (if it exists)
should not be truncated. If the file being opened for input
does not exist, the open will fail.

ios::out The file is opened for output. ios::out is implied by
construction and opens of ofstreams. For fstream it
says that output operations are to be allowed. ios::out
may be specified.
190

The Streams library
ios::trunc If the file already exists, its contents will be truncated
(discarded). This mode is implied when ios::out is
specified (including implicit specification for ofstream)
and neither ios::ate nor ios::app is specified.

ios::nocreate If the file does not already exist, the open() will fail.

ios::noreplace If the file already exists, the open() will fail. Only valid
with ios::out.

pfb=f.rdbuf()

Returns a pointer to the filebuf associated with f. fstream::rdbuf() has the
same meaning as iostream::rdbuf() but is typed differently.

f.setbuf(p,len)

Has the usual effect of a setbuf() (see filebuf on page 184), offering space for a
reserve area or requesting unbuffered I/O. Normally the returned psb is f.rdbuf(),
but it is 0 on failure. A failure occurs if f is open or the call to f.rdbuf()->setbuf
fails.

See also

filebuf (page 184), istream (page 202), ios (page 192), ostream (page 213), streambuf –
public (page 228)
191

ios
ios

ios – input/output formatting

Synopsis
#include <iostream.h>

class ios {
public:

enum io_state { goodbit=0, eofbit, failbit, badbit };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace };
enum seek_dir { beg, cur, end };
/* flags for controlling format */
enum { skipws=01,

left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400,
uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000 };

static const long basefield;
/* dec|oct|hex */

static const long adjustfield;
/* left|right|internal */

static const long floatfield;
/* scientific|fixed */

public:
ios(streambuf*);

int bad();
static long bitalloc();
void clear(int state =0);
int eof();
int fail();
char fill();
char fill(char);
long flags();
long flags(long);
int good();
long& iword(int);
int operator!();

operator void*();
int precision();
int precision(int);
streambuf* rdbuf();
void* & pword(int);
int rdstate();
long setf(long setbits, long field);
long setf(long);
static void sync_with_stdio();
192

The Streams library
ostream* tie();
ostream* tie(ostream*);
long unsetf(long);
int width();
int width(int);
static int xalloc();

protected:
ios();
init(streambuf*);

private:
ios(ios&);

void operator=(ios&);
};

/* Manipulators */
ios& dec(ios&) ;
ios& hex(ios&) ;
ios& oct(ios&) ;
ostream& endl(ostream& i) ;
ostream& ends(ostream& i) ;
ostream& flush(ostream&) ;
istream& ws(istream&) ;

Description

The stream classes derived from class ios provide a high level interface that supports
transferring formatted and unformatted information into and out of streambufs. This
section describes the operations common to both input and output.

Several enumerations are declared in class ios, open_mode, io_state,
seek_dir, and format flags, to avoid polluting the global name space. The
io_states are described in Error states on page 194. The format fields are described
in Formatting on page 195. The open_modes are described in detail under
pfb=f.open(name, mode, prot) on page 186, in the section fstream. The seek_dirs are
described under pos=sb->seekoff(off, dir, mode) on page 225, in the section streambuf –
public.

In the following descriptions assume:

l s and s2 are ioss.

l sr is an ios&.

l sp is a ios*.

l i, oi, j, and n are ints.

l l, f, and b are longs.

l c and oc are chars.

l osp and oosp are ostream*s.

l sb is a streambuf*.
193

ios
l pos is a streampos.

l off is a streamoff.

l dir is a seek_dir.

l mode is an int representing an open_mode.

l fct is a function with type ios& (*)(ios&).

l vp is a void*&.

Constructors and assignment

ios(sb)

The streambuf denoted by sb becomes the streambuf associated with the
constructed ios. If sb is null, the effect is undefined.

ios(sr)
s2=s

Copying of ioss is not well-defined in general, therefore the constructor and
assignment operators are private so that the compiler will complain about attempts to
copy ios objects. Copying pointers to iostreams is usually what is desired.

ios()
init(sb)

Because class ios is now inherited as a virtual base class, a constructor with no
arguments must be used. This constructor is declared protected. Therefore
ios::init(streambuf*) is declared protected and must be used for initialisation
of derived classes.

Error states

An ios has an internal error state (which is a collection of the bits declared as
io_states). Members related to the error state are:

i=s.rdstate()

Returns the current error state.

s.clear(i)

Stores i as the error state. If i is zero, this clears all bits. To set a bit without clearing
previously set bits requires something like
s.clear(ios::badbit|s.rdstate()).
194

The Streams library
i=s.good()

Returns non-zero if the error state has no bits set, zero otherwise.

i=s.eof()

Returns non-zero if eofbit is set in the error state, zero otherwise. Normally this bit is
set when an end-of-file has been encountered during an extraction.

i=s.fail()

Returns non-zero if either badbit or failbit is set in the error state, zero otherwise.
Normally this indicates that some extraction or conversion has failed, but the stream is
still usable. That is, once the failbit is cleared, I/O on s can usually continue.

i=s.bad()

Returns non-zero if badbit is set in the error state, zero otherwise. This usually
indicates that some operation on s.rdbuf() has failed, a severe error, from which
recovery is probably impossible. That is, it will probably be impossible to continue I/O
operations on s.

Operators

Two operators are defined to allow convenient checking of the error state of an ios:
operator!() and operator void*(). The latter converts an ios to a pointer so
that it can be compared to zero. The conversion will return 0 if failbit or badbit is
set in the error state, and will return a pointer value otherwise. This pointer is not meant
to be used. This allows one to write expressions such as:

if (cin) ...
if (cin >> x) ...

The ! operator returns non-zero if failbit or badbit is set in the error state, which
allows expressions like the following to be used:

if (!cout) ...

Formatting

An ios has a format state that is used by input and output operations to control the
details of formatting operations. For other operations the format state has no particular
effect and its components may be set and examined arbitrarily by user code. Most
formatting details are controlled by using the flags(), setf(), and unsetf()
functions to set the following flags, which are declared in an enumeration in class ios.
Three other components of the format state are controlled separately with the functions
fill(), width(), and precision().
195

ios
skipws

If skipws is set, whitespace will be skipped on input. This applies to scalar extractions.
When skipws is not set, whitespace is not skipped before the extractor begins
conversion. If skipws is not set and a zero length field is encountered, the extractor
will signal an error. Additionally, the arithmetic extractors will signal an error if
skipws is not set and a whitespace is encountered.

left
right
internal

These flags control the padding of a value. When left is set, the value is left-adjusted,
that is, the fill character is added after the value. When right is set, the value is
right-adjusted, that is, the fill character is added before the value. When internal is
set, the fill character is added after any leading sign or base indication, but before the
value. Right-adjustment is the default if none of these flags is set. These fields are
collectively identified by the static member, ios::adjustfield. The fill character
is controlled by the fill() function, and the width of padding is controlled by the
width() function.

dec
oct
hex

These flags control the conversion base of a value. The conversion base is 10 (decimal)
if dec is set, but if oct or hex is set, conversions are done in octal or hexadecimal,
respectively. If none of these is set, insertions are in decimal, but extractions are
interpreted according to the C++ lexical conventions for integral constants. These fields
are collectively identified by the static member, ios::basefield. The manipulators
hex, dec, and oct can also be used to set the conversion base; see the section Built-in
Manipulators on page 200.

showbase

If showbase is set, insertions will be converted to an external form that can be read
according to the C++ lexical conventions for integral constants. showbase is unset by
default.

showpos

If showpos is set, then a ‘+’ will be inserted into a decimal conversion of a positive
integral value.
196

The Streams library

ting

tion
ere
o the

be
 equal
th
e
uppercase

If uppercase is set, then an uppercase ‘X’ will be used for hexadecimal conversion
when showbase is set, or an uppercase ‘E’ will be used to print floating point numbers
in scientific notation.

showpoint

If showpoint is set, trailing zeros and decimal points appear in the result of a floa
point conversion.

scientific
fixed

These flags control the format to which a floating point value is converted for inser
into a stream. If scientific is set, the value is converted using scientific notation, wh
there is one digit before the decimal point and the number of digits after it is equal t
precision (see below), which is six by default. An uppercase ‘E’ will introduce the
exponent if uppercase is set, a lowercase ‘e’ will appear otherwise. If fixed is set,
the value is converted to decimal notation with precision digits after the decimal
point, or six by default. If neither scientific nor fixed is set, then the value will
be converted using either notation, depending on the value; scientific notation will
used if the exponent resulting from the conversion is less than –4 or greater than or
to precision digits. Otherwise the value will be converted to decimal notation wi
precision digits total. If showpoint is not set, trailing zeroes are removed from th
result and a decimal point appears only if it is followed by a digit. scientific and
fixed are collectively identified by the static member ios::floatfield.

unitbuf

When set, a flush is performed by ostream::osfx() after each insertion. Unit
buffering provides a compromise between buffered output and unbuffered output.
Performance is better under unit buffering than unbuffered output, which makes a
system call for each character output. Unit buffering makes a system call for each
insertion operation, and doesn’t require the user to call ostream::flush().

stdio

When set, stdout and stderr are flushed by ostream::osfx() after each
insertion.
197

ios

ter.
The following functions use and set the format flags and variables:

oc=s.fill(c)

Sets the fill character format state variable to c and returns the previous value. c will be
used as the padding character, if one is necessary (see width() below). The default fill
or padding character is a space. The positioning of the fill character is determined by the
right, left, and internal flags; see above. A parameterised manipulator,
setfill, is also available for setting the fill character; see manipulators on page 209.

c=s.fill()

Returns the ‘fill character’ format state variable.

l=s.flags()

Returns the current format flags.

l=s.flags(f)

Resets all the format flags to those specified in f and returns the previous settings.

oi=s.precision(i)

Sets the precision format state variable to i and returns the previous value. This
variable controls the number of significant digits inserted by the floating point inser
The default is 6. A parameterised manipulator, setprecision, is also available for
setting the precision; see manipulators on page 209.

i=s.precision()

Returns the precision format state variable.

l=s.setf(b)

Turns on in s the format flags marked in b and returns the previous settings. A
parameterised manipulator, setiosflags, performs the same function; see
manipulators on page 209.

l=s.setf(b,f)

Resets in s only the format flags specified by f to the settings marked in b, and returns
the previous settings. That is, the format flags specified by f are cleared in s, then reset
to be those marked in b. For example, to change the conversion base in s to be hex, one
could write: s.setf(ios::hex,ios::basefield). ios::basefield
specifies the conversion base bits as candidates for change, and ios::hex specifies
the new value. s.setf(0,f) will clear all the bits specified by f, as will a
parameterised manipulator, resetiosflags; see manipulators on page 209.
198

The Streams library
l=s.unsetf(b)

Unsets in s the bits set in b and returns the previous settings.

oi=s.width(i)

Sets the field-width format variable to i and returns the previous value. When the field
width is zero (the default), inserters will insert only as many characters as necessary to
represent the value being inserted. When the field-width is non-zero, the inserters will
insert at least that many characters, using the fill character to pad the value, if the value
being inserted requires fewer than field-width characters to be represented. However, the
numeric inserters never truncate values, so if the value being inserted will not fit in
field-width characters, more than field-width characters will be output. The field-width is
always interpreted as a minimum number of characters; there is no direct way to specify
a maximum number of characters. The field-width format variable is reset to the default
(zero) after each insertion or extraction, and in this sense it behaves as a parameter for
insertions and extractions. A parameterised manipulator, setw, is also available for
setting the width; see manipulators on page 209.

i=s.width()

Returns the field-width format variable.

User-defined Format Flags

Class ios can be used as a base class for derived classes that require additional format
flags or variables. The iostream library provides several functions to do this. The two
static member functions ios::xalloc and ios::bitalloc, allow several such
classes to be used together without interference.

b=ios::bitalloc()

Returns a long with a single, previously unallocated, bit set. This allows users who
need an additional flag to acquire one, and pass it as an argument to ios::setf(), for
example.

i=ios::xalloc()

Returns a previously unused index into an array of words available for use as format
state variables by derived classes.

l=s.iword(i)

When i is an index allocated by ios::xalloc, iword() returns a reference to the
ith user-defined word.
199

ios

rs
vp=s.pword(i)

When i is an index allocated by ios::xalloc, pword() returns a reference to the
ith user-defined word. pword() is the same as iword except that it is typed
differently.

Other members

sb=s.rdbuf()

Returns a pointer to the streambuf associated with s when s was constructed.

ios::sync_with_stdio()

Solves problems that arise when mixing stdio and iostreams. The first time it is called it
will reset the standard iostreams (cin, cout, cerr, clog) to be streams using
stdiobufs. After that, input and output using these streams may be mixed with input
and output using the corresponding FILEs (stdin, stdout, and stderr) and will
be properly synchronised. sync_with_stdio() makes cout and cerr unit
buffered (see ios::unitbuf and ios::stdio above). Invoking
sync_with_stdio() degrades performance a variable amount, depending on the
length of the strings being inserted (shorter strings incur a larger performance hit).

oosp=s.tie(osp)

Sets the tie variable to osp, and returns its previous value. This variable supports
automatic ‘flushing’ of ioss. If the tie variable is non-null and an ios needs more
characters or has characters to be consumed, the ios pointed at by the tie variable is
flushed. By default, cin is tied initially to cout so that attempts to get more characte
from standard input result in flushing standard output. Additionally, cerr and clog are
tied to cout by default. For other ioss, the tie variable is set to zero by default.

osp=s.tie()

Returns the tie variable.

Built-in Manipulators

Some convenient manipulators (functions that take an ios&, an istream&, or an
ostream& and return their argument; see manipulators on page 209) are:

sr<<dec
sr>>dec

These set the conversion base format flag to 10.
200

The Streams library
sr<<hex
sr>>hex

These set the conversion base format flag to 16.

sr<<oct
sr>>oct

These set the conversion base format flag to 8.

sr>>ws

Extracts whitespace characters. See istream on page 202.

sr<<endl

Ends a line by inserting a newline character and flushing. See ostream on page 213.

sr<<ends

Ends a string by inserting a null (0) character. See ostream on page 213.

sr<<flush

Flushes outs. See ostream on page 213.

Several parameterised manipulators that operate on ios objects are described in
manipulators on page 209: setw, setfill, setprecision, setiosflags, and
resetiosflags.

The streambuf associated with an ios may be manipulated by other methods than
through the ios. For example, characters may be stored in a queuelike streambuf
through an ostream while they are being fetched through an istream. Or for
efficiency some part of a program may choose to do streambuf operations directly
rather than through the ios. In most cases the program does not have to worry about
this possibility, because an ios never saves information about the internal state of a
streambuf. For example, if the streambuf is repositioned between extraction
operations the extraction (input) will proceed normally.

See also

Introduction (page 180), streambuf – protected(page 220), streambuf –
public (page 228), istream(page 202), ostream(page 213), manipulators(page 209)
201

istream
istream

istream – formatted and unformatted input

Synopsis
#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
/* flags for controlling format */
enum { skipws=01,

left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400,
uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000 };

// and lots of other stuff; see ios on page 192
} ;

class istream : public ios {
public:

istream(streambuf*);
int gcount();
istream& get(char* ptr, int len, char delim=’\n’);
istream& get(unsigned char* ptr,int len, char delim=’\n’);

istream& get(unsigned char&);
istream& get(char&);
istream& get(streambuf& sb, char delim =’\n’);
int get();
istream& getline(char* ptr, int len, char delim=’\n’);
istream& getline(unsigned char* ptr, int len, char delim=’\n’);
istream& ignore(int len=1,int delim=EOF);
int ipfx(int need=0);
int peek();
istream& putback(char);
istream& read(char* s, int n);
istream& read(unsigned char* s, int n);
istream& seekg(streampos);
istream& seekg(streamoff, seek_dir);
int sync();
streampos tellg();
202

The Streams library
istream& operator>>(char*);
istream& operator>>(char&);
istream& operator>>(short&);
istream& operator>>(int&);
istream& operator>>(long&);
istream& operator>>(float&);
istream& operator>>(double&);
istream& operator>>(unsigned char*);
istream& operator>>(unsigned char&);
istream& operator>>(unsigned short&);
istream& operator>>(unsigned int&);
istream& operator>>(unsigned long&);
istream& operator>>(streambuf*);
istream& operator>>(istream& (*)(istream&));
istream& operator>>(ios& (*)(ios&));

};

class istream_withassign : public istream {
istream_withassign();

istream& operator=(istream&);
istream& operator=(streambuf*);

};

extern istream_withassign cin;

istream& ws(istream&);
ios& dec(ios&) ;
ios& hex(ios&) ;
ios& oct(ios&) ;

Description

istreams support interpretation of characters fetched from an associated
streambuf. These are commonly referred to as input or extraction operations. The
istream member functions and related functions are described below.

In the following descriptions assume that

l ins is an istream.

l inswa is an istream_withassign.

l insp is an istream*.

l c is a char&

l delim is a char.

l ptr is a char* or unsigned char*.

l sb is a streambuf&.

l i, n, len, d, and need are ints.

l pos is a streampos.

l off is a streamoff.
203

istream

ise
l dir is a seek_dir.

l manip is a function with type istream& (*)(istream&).

Constructors and assignment

istream(sb)

Initialises ios state variables and associates buffer sb with the istream.

istream_withassign()

Does no initialisation.

inswa=sb

Associates sb with inswa and initialises the entire state of inswa.

inswa=ins

Associates ins->rdbuf() with inswa and initialises the entire state of inswa.

Input prefix function

i = ins.ipfx(need)

If ins’s error state is non-zero, returns zero immediately. If necessary (and if it is
non-null), any ios tied to ins is flushed (see the description of ios::tie() on
page 200 onwards of ios. Flushing is considered necessary if either need==0 or if there
are fewer than need characters immediately available. If ios::skipws is set in
ins.flags() and need is zero, then leading whitespace characters are extracted
from ins. ipfx() returns zero if an error occurs while skipping whitespace; otherw
it returns non-zero.

Formatted input functions call ipfx(0), while unformatted input functions call
ipfx(1); see below.

Formatted input functions (extractors)

ins>>x

Calls ipfx(0) and if that returns non-zero, extracts characters from ins and converts
them according to the type of x. It stores the converted value in x. Errors are indicated
by setting the error state of ins. ios::failbit means that characters in ins were
not a representation of the required type. ios::badbit indicates that attempts to
extract characters failed. ins is always returned.
204

The Streams library

ables
t it to
actors

C++
ions

e

e

s

 is
al
al

l

t
The details of conversion depend on the values of ins’s format state flags and vari
(see ios on page 192) and the type of x. Except that extractions that use width rese
0, the extraction operators do not change the value of ostream’s format state. Extr
are defined for the following types, with conversion rules as described below.

The type and name (operator>>) of the extraction operations are chosen to give a
convenient syntax for sequences of input operations. The operator overloading of
permits extraction functions to be declared for user-defined classes. These operat
can then be used with the same syntax as the member functions described here.

char*,
unsigned char*

Characters are stored in the array pointed at by x until a
whitespace character is found in ins. The terminating
whitespace is left in ins. If ins.width() is non-zero it
is taken to be the size of the array, and no more than
ins.width()-1 characters are extracted. A terminating
null character (0) is always stored (even when nothing els
is done because of ins’s error status). ins.width() is
reset to 0.

char&,
unsigned char&

A character is extracted
and stored in x.

short&,
unsigned short&,
int&,
unsigned int&,
long&,
unsigned long&

Characters are extracted and converted to an integral valu
according to the conversion specified in ins’s format flags.
Converted characters are stored in x. The first character may
be a sign (+ or -). After that, if ios::oct, ios::dec, or
ios::hex is set in ins.flags(), the conversion is
octal, decimal, or hexadecimal, respectively. Conversion i
terminated by the first ‘non-digit,’ which is left in ins.
Octal digits are the characters ‘0’ to ‘7’. Decimal digits are
the octal digits plus ‘8’ and ‘9’. Hexadecimal digits are the
decimal digits plus the letters ‘a’ through ‘f’ (in either upper
or lower case). If none of the conversion base format flags
set, then the number is interpreted according to C++ lexic
conventions. That is, if the first characters (after the option
sign) are 0x or 0X a hexadecimal conversion is performed
on following hexadecimal digits. Otherwise, if the first
character is a 0, an octal conversion is performed, and in al
other cases a decimal conversion is performed.
ios::failbit is set if there are no digits (not counting
the 0 in 0x or 0X) during hex conversion) available.

float&,
double&

Converts the characters according to C++ syntax for a floa
or double, and stores the result in x. ios::failbit is set
if there are no digits available in ins or if it does not begin
with a well formed floating point number.
205

istream

ay
ins>>sb

If ios.ipfx(0) returns non-zero, extracts characters from ios and inserts them into
sb. Extraction stops when EOF is reached. Always returns ins.

Unformatted input functions

These functions call ipfx(1) and proceed only if it returns non-zero:

insp=&ins.get(ptr,len,delim)

Extracts characters and stores them in the byte array beginning at ptr and extending for
len bytes. Extraction stops when delim is encountered (delim is left in ins and not
stored), when ins has no more characters, or when the array has only one byte left. get
always stores a terminating null, even if it doesn’t extract any characters from ins
because of its error status. ios::failbit is set only if get encounters an end of file
before it stores any characters.

insp=&ins.get(c)

Extracts a single character and stores it in c.

insp=&ins.get(sb,delim)

Extracts characters from ins.rdbuf() and stores them into sb. It stops if it
encounters end of file or if a store into sb fails or if it encounters delim (which it
leaves in ins). ios::failbit is set if it stops because the store into sb fails.

i=ins.get().

Extracts a character and returns it. i is EOF if extraction encounters end of file.
ios::failbit is never set.

insp=&ins.getline(ptr,len,delim)

Does the same thing as ins.get(ptr,len,delim) with the exception that it
extracts a terminating delim character from ins. In case delim occurs when exactly
len characters have been extracted, termination is treated as being due to the arr
being filled, and this delim is left in ins.

insp=&ins.ignore(n,d)

Extracts and throws away up to n characters. Extraction stops prematurely if d is
extracted or end of file is reached. If d is EOF it can never cause termination.
206

The Streams library

e

of

insp=&ins.read(ptr,n)

Extracts n characters and stores them in the array beginning at ptr. If end of file is
reached before n characters have been extracted, read stores whatever it can extract
and sets ios::failbit. The number of characters extracted can be determined via
ins.gcount().

Other members

i=ins.gcount()

Returns the number of characters extracted by the last unformatted input function.
Formatted input functions may call unformatted input functions and thereby reset this
number.

i=ins.peek()

Begins by calling ins.ipfx(1). If that call returns zero or if ins is at end of file, it
returns EOF. Otherwise it returns the next character without extracting it.

insp=&ins.putback(c)

Attempts to back up ins.rdbuf(). c must be the character before ins.rdbuf()’s
get pointer. (Unless other activity is modifying ins.rdbuf() this is the last character
extracted from ins.) If it is not, the effect is undefined. putback may fail (and set the
error state). Although it is a member of istream, putback never extracts characters,
so it does not call ipfx. It will, however, return without doing anything if the error stat
is non-zero.

i=&ins.sync()

Establishes consistency between internal data structures and the external source
characters. Calls ins.rdbuf()->sync(), which is a virtual function, so the details
depend on the derived class. Returns EOF to indicate errors.

ins>>manip

Equivalent to manip(ins). Syntactically this looks like an extractor operation, but
semantically it does an arbitrary operation rather than converting a sequence of
characters and storing the result in manip. A predefined manipulator, ws, is described
below.

Member functions related to positioning

insp=&ins.seekg(off,dir)

Repositions ins.rdbuf()’s get pointer. See streambuf – public on page 228 for a
discussion of positioning.
207

istream
insp=&ins.seekg(pos)

Repositions ins.rdbuf()’s get pointer. See streambuf – public on page 228 for a
discussion of positioning.

pos=ins.tellg()

The current position of ios.rdbuf()’s get pointer. See streambuf – public on
page 228 for a discussion of positioning.

Manipulator

ins>>ws

Extracts whitespace characters.

ins>>dec

Sets the conversion base format flag to 10. See ios on page 192.

ins>>hex

Sets the conversion base format flag to 16. See ios on page 192.

ins>>oct

Sets the conversion base format flag to 8. See ios on page 192.

Caveats

There is no overflow detection on conversion of integers.

See also

ios (page 192), streambuf – public(page 228), manipulators(page 209)
208

The Streams library
manipulators

manipulators – iostream out of band manipulations

Synopsis
#include <iostream.h>
#include <iomanip.h>

template <class T>

class SMANIP {
SMANIP(ios& (*)(ios&,T), T);
friend istream& operator>>(istream&, SMANIP<T>&);
friend ostream& operator<<(ostream&, SMANIP<T>&);

};
template <class T>
class SAPP {

SAPP(T)(ios& (*)(ios&,T));
SMANIP<T> operator()(T);

};
template <class T>
class IMANIP {

IMANIP(istream& (*)(istream&,T), T);
friend istream& operator>>(istream&, IMANIP<T>&);

};
template <class T>
class IAPP {

IAPP(istream& (*)(istream&,T));
IMANIP<T> operator()(T);

};
template <class T>
class OMANIP {

OMANIP(ostream& (*)(ostream&,T), T);
friend ostream& operator<<(ostream&, OMANIP<T>&);

};
template <class T>
class OAPP {

OAPP(ostream& (*)(ostream&,T));
OMANIP<T> operator()(T);

};
template <class T>
class IOMANIP {

IOMANIP(iostream& (*)(iostream&,T), T);
friend istream& operator>>(iostream&, IOMANIP<T>&);
friend ostream& operator<<(iostream&, IOMANIP<T>&);

};
template <class T>
class IOAPP {

IOAPP(iostream& (*)(iostream&,T));
IOMANIP<T> operator()(T);

};
209

manipulators

ining
SMANIP<long> resetiosflags(long);
SMANIP<int> setfill(int);
SMANIP<long> setiosflags(long);
SMANIP<int> setprecision(int);
SMANIP<int> setw(int w);

Description

Manipulators are values that may be ‘inserted into’ or ‘extracted from’ streams to
achieve some effect (other than to insert or extract a value representation), with a
convenient syntax. They enable one to embed a function call in an expression conta
a series of insertions or extractions. For example, the predefined manipulator for
ostreams, flush, can be used as follows:

cout << flush

to flush cout. Several iostream classes supply manipulators: see ios on page 192,
istream on page 202, and ostream on page 213. flush is a simple manipulator; some
manipulators take arguments, such as the predefined ios manipulators, setfill and
setw (see below).

In the following descriptions, assume:

l t is a T, or type name.

l s is an ios.

l i is an istream.

l o is an ostream.

l io is an iostream.

l f is an ios& (*)(ios&).

l if is an istream& (*)(istream&).

l of is an ostream& (*)(ostream&).

l iof is an iostream& (*)(iostream&).

l n is an int.

l l is a long.
210

The Streams library
s<<SMANIP<T>(f,t)
s>>SMANIP<T>(f,t)
s<<SAPP<T>(f)(t)
s>>SAPP<T>(f)(t)

Returns f(s,t), where s is the left operand of the insertion or extractor operator (i.e.
s, i, o, or io).

i>>IMANIP<T>(if,t)
i>>IAPP<T>(if)(t)

Returns if(i,t).

o<<OMANIP<T>(of,t)
o<<OAPP<T>(of)(t)

Returns of(o,t).

io<<IOMANIP<T>(iof,t)
io>>IOMANIP<T>(iof,t)
io<<IOAPP<T>(iof)(t)
io>>IOAPP<T>(iof)(t)

Returns iof(io,t).

iomanip.h contains declarations of some manipulators that take an int or a long
argument. These manipulators all have to do with changing the format state of a stream;
see ios on page 192 for further details.

o<<setw(n)
i>>setw(n)

Sets the field width of the stream (left-hand operand: o or i) to n.

o<<setfill(n)
i>>setfill(n)

Sets the fill character of the stream (o or i) to be n.

o<<setprecision(n)
i>>setprecision(n)

Sets the precision of the stream (o or i) to be n.
211

manipulators
o<<setiosflags(l)
i>>setiosflags(l)

Turns on in the stream (o or i) the format flags marked in l. (Calls o.setf(l) or
i.setf(l)).

o<<resetiosflags(l)
i>>resetiosflags(l)

Clears in the stream (o or i) the format bits specified by l. (Calls o.setf(0,l) or
i.setf(0,l)).

See also

ios (page 192), istream (page 202), ostream (page 213)
212

The Streams library
ostream

ostream – formatted and unformatted output

Synopsis
#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
enum { skipws=01,

left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400,
uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000 };

// and lots of other stuff; see ios on page 192
} ;

class ostream : public ios {
public:

ostream(streambuf*);
ostream& flush();
int opfx();
ostream& put(char);
ostream& seekp(streampos);
ostream& seekp(streamoff, seek_dir);
streampos tellp();
ostream& write(const char* ptr, int n);
ostream& write(const unsigned char* ptr, int n);
ostream& operator<<(const char*);
ostream& operator<<(char);
ostream& operator<<(short);
ostream& operator<<(int);
ostream& operator<<(long);
ostream& operator<<(float);
ostream& operator<<(double);
ostream& operator<<(unsigned char);
ostream& operator<<(unsigned short);
ostream& operator<<(unsigned int);
ostream& operator<<(unsigned long);
ostream& operator<<(void*);
ostream& operator<<(streambuf*);
ostream& operator<<(ostream& (*)(ostream&));
ostream& operator<<(ios& (*)(ios&));

};
213

ostream
class ostream_withassign {
ostream_withassign();

istream& operator=(istream&);
istream& operator=(streambuf*);

};

extern ostream_withassign cout;
extern ostream_withassign cerr;
extern ostream_withassign clog;

ostream& endl(ostream&) ;
ostream& ends(ostream&) ;
ostream& flush(ostream&) ;
ios& dec(ios&) ;
ios& hex(ios&) ;
ios& oct(ios&) ;

Description

ostreams support insertion (storing) into a streambuf. These are commonly referred
to as output operations. The ostream member functions and related functions are
described below.

In the following descriptions, assume:

l outs is an ostream.

l outswa is an ostream_withassign.

l outsp is an ostream*.

l c is a char.

l ptr is a char* or unsigned char*.

l sb is a streambuf*

l i and n are ints.

l pos is a streampos.

l off is a streamoff.

l dir is a seek_dir.

l manip is a function with type ostream& (*)(ostream&).
214

The Streams library

Constructors and assignment

ostream(sb)

Initialises ios state variables and associates buffer sb with the ostream.

ostream_withassign()

Does no initialisation. This allows a file static variable of this type (cout, for example)
to be used before it is constructed, provided it is assigned to first.

outswa=sb

Associates sb with swa and initialises the entire state of outswa.

inswa=ins

Associates ins->rdbuf() with swa and initialises the entire state of outswa.

Output prefix function

i=outs.opfx()

If outs’s error state is non-zero, returns immediately. If outs.tie() is non-null, it is
flushed. Returns non-zero except when outs’s error state is non-zero.

Output suffix function

osfx()

Performs ‘suffix’ actions before returning from inserters. If ios::unitbuf is set,
osfx() flushes the ostream. If ios::stdio is set, osfx() flushes stdout and
stderr.

osfx() is called by all predefined inserters, and should be called by user-defined
inserters as well, after any direct manipulation of the streambuf. It is not called by the
binary output functions.
215

ostream

low:

s to

t

mal,

ion
ro
a

s
t all

o

of

r

n
Formatted output functions (inserters)

outs<<x

First calls outs.opfx() and if that returns 0, does nothing. Otherwise inserts a
sequence of characters representing x into outs.rdbuf(). Errors are indicated by
setting the error state of outs. outs is always returned.

x is converted into a sequence of characters (its representation) according to rules that
depend on x’s type and outs’s format state flags and variables (see ios on page 192.
Inserters are defined for the following types, with conversion rules as described be

After the representation is determined, padding occurs. If outs.width() is greater
than 0 and the representation contains fewer than outs.width() characters, then
enough outs.fill() characters are added to bring the total number of character
ios.width(). If ios::left is set in ios’s format flags, the sequence is

char* The representation is the sequence of characters up to (but no
including) the terminating null of the string x points at.

any integral type
except char and
unsigned char

If x is positive the representation contains a sequence of deci
octal, or hexadecimal digits with no leading zeros according to
whether ios::dec, ios::oct, or ios::hex, respectively, is
set in ios’s format flags. If none of those flags are set, convers
defaults to decimal. If x is zero, the representation is a single ze
character(0). If x is negative, decimal conversion converts it to
minus sign (–) followed by decimal digits. If x is positive and
ios::showpos is set, decimal conversion converts it to a plu
sign (+) followed by decimal digits. The other conversions trea
values as unsigned. If ios::showbase is set in ios’s format
flags, the hexadecimal representation contains 0x before the
hexadecimal digits, or 0X if ios::uppercase is set. If
ios::showbase is set, the octal representation contains a
leading 0.

void* Pointers are converted to integral values and then converted t
hexadecimal numbers as if ios::showbase were set.

float, double The arguments are converted according to the current values
outs.precision(), outs.width() and outs’s format
flags ios::scientific, ios::fixed, and
ios::uppercase. (See ios on page 192.) The default value fo
outs.precision() is 6. If neither ios::scientific nor
ios::fixed is set, either fixed or scientific notation is chose
for the representation, depending on the value of x.

char, unsigned
char

No special conversion is necessary.
216

The Streams library
left-adjusted, that is, characters are added after the characters determined above. If
ios::right is set, the padding is added before the characters determined above. If
ios::internal is set, the padding is added after any leading sign or base indication
and before the characters that represent the value. ios.width() is reset to 0, but all
other format variables are unchanged. The resulting sequence (padding plus
representation) is inserted into outs.rdbuf().

outs<<sb

If outs.opfx() returns non-zero, the sequence of characters that can be fetched from
sb are inserted into outs.rdbuf(). Insertion stops when no more characters can be
fetched from sb. No padding is performed. Always returns outs.

Unformatted output functions

outsp=&outs.put(c)

Inserts c into outs.rdbuf(). Sets the error state if the insertion fails.

outsp=&outs.write(s,n)

Inserts the n characters starting at s into outs.rdbuf(). These characters may
include zeros (i.e. s need not be a null terminated string).

Other member functions

outsp=&outs.flush()

Storing characters into a streambuf does not always cause them to be consumed (e.g.
written to the external file) immediately. flush() causes any characters that may have
been stored but not yet consumed to be consumed by calling outs.rdbuf()->sync.

outs<<manip

Equivalent to manip(outs). Syntactically this looks like an insertion operation, but
semantically it does an arbitrary operation rather than converting manip to a sequence
of characters as do the insertion operators. Predefined manipulators are described below.

Positioning functions

outsp=&ins.seekp(off,dir)

Repositions outs.rdbuf()’s put pointer. See streambuf – public on page 228 for a
discussion of positioning.
217

ostream
outsp=&outs.seekp(pos)

Repositions outs.rdbuf()’s put pointer. See streambuf – public on page 228 for a
discussion of positioning.

pos=outs.tellp()

The current position of outs.rdbuf()’s put pointer. See streambuf – public on
page 228 for a discussion of positioning.

Manipulators

outs<<endl

Ends a line by inserting a newline character and flushing.

outs<<ends

Ends a string by inserting a null (0) character.

outs<<flush

Flushes outs.

outs<<dec

Sets the conversion base format flag to 10. See ios on page 192.

outs<<hex

Sets the conversion base format flag to 16. See ios on page 192.

outs<<oct

Sets the conversion base format flag to 8. See ios on page 192.

See also

ios (page 192), streambuf – public(page 228), manipulators(page 209)
218

The Streams library

iately

.

ould
stdiobuf

stdiobuf – iostream specialised to stdio FILE

Synopsis
#include <iostream.h>
#include <stdiostream.h>
#include <stdio.h>

class stdiobuf : public streambuf {
stdiobuf(FILE* f);

FILE* stdiofile();
};

Description

Operations on a stdiobuf are reflected on the associated FILE. A stdiobuf is
constructed in unbuffered mode, which causes all operations to be reflected immed
in the FILE. seekg()s and seekp()s are translated into fseek()s. setbuf()
has its usual meaning; if it supplies a reserve area, buffering will be turned back on

Caveats

stdiobuf is intended to be used when mixing C and C++ code. New C++ code sh
prefer to use filebufs, which have better performance.

See also

filebuf (page 184), istream (page 202), ostream (page 213), streambuf –
public (page 228)
219

streambuf – protected
streambuf – protected

streambuf – interface for derived classes

Synopsis
#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
// and lots of other stuff; see ios on page 192

} ;

class streambuf {
public:

streambuf() ;
streambuf(char* p, int len);

void dbp() ;

protected:
int allocate();
char* base();
int blen();
char* eback();
char* ebuf();
char* egptr();
char* epptr();
void gbump(int n);
char* gptr();
char* pbase();
void pbump(int n);
char* pptr();
void setg(char* eb, char* g, char* eg);
void setp(char* p, char* ep);
void setb(char* b, char* eb, int a=0);
int unbuffered();
void unbuffered(int);

virtual int doallocate();
virtual ~streambuf() ;
220

The Streams library
public:
virtual int pbackfail(int c);
virtual int overflow(int c=EOF);
virtual int underflow();
virtual streambuf*

setbuf(char* p, int len);
virtual streampos

seekpos(streampos, int =ios::in|ios:out);
virtual streampos

seekoff(streamoff, seek_dir, int =ios::in|ios:out);
virtual int sync();

};

Description

streambufs implement the buffer abstraction described in streambuf – public on
page 228. However, the streambuf class itself contains only basic members for
manipulating the characters and normally a class derived from streambuf will be
used. This section describes the interface needed by programmers who are coding a
derived class. Broadly speaking there are two kinds of member functions described here.
The non-virtual functions are provided for manipulating a streambuf in ways that are
appropriate in a derived class. Their descriptions reveal details of the implementation
that would be inappropriate in the public interface. The virtual functions permit the
derived class to specialise the streambuf class in ways appropriate to the specific
sources and sinks that it is implementing. The descriptions of the virtual functions
explain the obligations of the virtuals of the derived class. If the virtuals behave as
specified, the streambuf will behave as specified in the public interface. However, if
the virtuals do not behave as specified, then the streambuf may not behave properly,
and an iostream (or any other code) that relies on proper behaviour of the
streambuf may not behave properly either.

In the following descriptions assume:

l sb is a streambuf*.

l i and n are ints.

l ptr, b, eb, p, ep, eb, g, and eg are char*s.

l c is an int character (positive or EOF)).

l pos is a streampos. (See streambuf – public on page 228.)

l off is a streamoff.

l dir is a seekdir.

l mode is an int representing an open_mode.
221

streambuf – protected
Constructors

streambuf()

Constructs an empty buffer corresponding to an empty sequence.

streambuf(b,len)

Constructs an empty buffer and then sets up the reserve area to be the len bytes starting
at b.

The Get, Put, and Reserver area

The protected members of streambuf present an interface to derived classes
organised around three areas (arrays of bytes) managed cooperatively by the base and
derived classes. They are the get area, the put area, and the reserve area (or buffer). The
get and the put areas are normally disjoint, but they may both overlap the reserve area,
whose primary purpose is to be a resource in which space for the put and get areas can
be allocated. The get and the put areas are changed as characters are put into and got
from the buffer, but the reserve area normally remains fixed. The areas are defined by a
collection of char* values. The buffer abstraction is described in terms of pointers that
point between characters, but the char* values must point at chars. To establish a
correspondence the char* values should be thought of as pointing just before the byte
they really point at.

Functions to examine the pointers

ptr=sb->base()

Returns a pointer to the first byte of the reserve area. Space between sb->base() and
sb->ebuf() is the reserve area.

ptr=sb->eback()

Returns a pointer to a lower bound on sb->gptr(). Space between sb->eback()
and sb->gptr() is available for putback.

ptr=sb->ebuf()

Returns a pointer to the byte after the last byte of the reserve area.

ptr=sb->egptr()

Returns a pointer to the byte after the last byte of the get area.

ptr=sb->epptr()

Returns a pointer to the byte after the last byte of the put area.
222

The Streams library
ptr=sb->gptr()

Returns a pointer to the first byte of the get area. The available characters are those
between sb->gptr() and sb->egptr(). The next character fetched will be
*sb->gptr()) unless sb->egptr() is less than or equal to sb->gptr().

ptr=sb->pbase()

Returns a pointer to the put area base. Characters between sb->pbase() and
sb->pptr() have been stored into the buffer and not yet consumed.

ptr=sb->pptr()

Returns a pointer to the first byte of the put area. The space between sb->pptr() and
sb->epptr() is the put area and characters will be stored here.

Functions for setting the pointers

Note that to indicate that a particular area (get, put, or reserve) does not exist, all the
associated pointers should be set to zero.

sb->setb(b, eb, i)

Sets base() and ebuf() to b and eb respectively. i controls whether the area will be
subject to automatic deletion. If i is non-zero, then b will be deleted when base is
changed by another call of setb(), or when the destructor is called for *sb. If b and
eb are both null then we say that there is no reserve area. If b is non-null, there is a
reserve area even if eb is less than b and so the reserve area has zero length.

sb->setp(p, ep)

Sets pptr() to p, pbase() to p, and epptr() to ep.

sb->setg(eb, g, eg)

Sets eback() to eb, gptr() to g, and egptr() to eg.
223

streambuf – protected

 is to
Other non-virtual members

i=sb->allocate()

Tries to set up a reserve area. If a reserve area already exists or if
sb->unbuffered() is non-zero, allocate() returns 0 without doing anything. If
the attempt to allocate space fails, allocate() returns EOF, otherwise (i.e. allocation
succeeds) allocate() returns 1. allocate() is not called by any non-virtual
member function of streambuf.

i=sb->blen()

Returns the size (in chars) of the current reserve area.

dbp()

Writes directly on file descriptor 1 information in ASCII about the state of the buffer. It
is intended for debugging and nothing is specified about the form of the output. It is
considered part of the protected interface because the information it prints can only be
understood in relation to that interface, but it is a public function so that it can be called
anywhere during debugging.

sb->gbump(n)

Increments gptr() by n which may be positive or negative. No checks are made on
whether the new value of gptr() is in bounds.

sb->pbump(n)

Increments pptr() by n which may be positive or negative. No checks are made on
whether the new value of pptr() is in bounds.

sb->unbuffered(i)
i=sb->unbuffered()

There is a private variable known as sb’s buffering state. sb->unbuffered(i) sets
the value of this variable to i and sb->unbuffered() returns the current value. This
state is independent of the actual allocation of a reserve area. Its primary purpose
control whether a reserve area is allocated automatically by allocate.
224

The Streams library
Virtual member functions

Virtual functions may be redefined in derived classes to specialise the behaviour of
streambufs. This section describes the behaviour that these virtual functions should
have in any derived classes; the next section describes the behaviour that these functions
are defined to have in base class streambuf.

i=sb->doallocate()

Is called when allocate() determines that space is needed. doallocate() is
required to call setb() to provide a reserve area or to return EOF if it cannot. It is only
called if sb->unbuffered() is zero and sb->base() is zero.

i=overflow(c)

Is called to consume characters. If c is not EOF, overflow() also must either save c
or consume it. Usually it is called when the put area is full and an attempt is being made
to store a new character, but it can be called at other times. The normal action is to
consume the characters between pbase() and pptr(), call setp() to establish a
new put area, and if c!=EOF store it (using sputc()). sb->overflow() should
return EOF to indicate an error; otherwise it should return something else.

i=sb->pbackfail(c)

Is called when eback() equals gptr() and an attempt has been made to putback c.
If this situation can be dealt with (e.g. by repositioning an external file), pbackfail()
should return c; otherwise it should return EOF.

pos=sb->seekoff(off, dir, mode)

Repositions the get and/or put pointers (i.e. the abstract get and put pointers, not
pptr() and gptr()). The meanings of off and dir are discussed in streambuf –
public on page 228. mode specifies whether the put pointer (ios::out bit set) or the
get pointer (ios::in bit set) is to be modified. Both bits may be set in which case both
pointers should be affected. A class derived from streambuf is not required to support
repositioning. seekoff() should return EOF if the class does not support
repositioning. If the class does support repositioning, seekoff() should return the
new position or EOF on error.

pos=sb->seekpos(pos, mode)

Repositions the streambuf get and/or put pointer to pos. mode specifies which
pointers are affected as for seekoff(). Returns pos (the argument) or EOF if the
class does not support repositioning or an error occurs.
225

streambuf – protected
sb=sb->setbuf(ptr, len)

Offers the array at ptr with len bytes to be used as a reserve area. The normal
interpretation is that if ptr or len are zero then this is a request to make the sb
unbuffered. The derived class may use this area or not as it chooses. It may accept or
ignore the request for unbuffered state as it chooses. setbuf() should return sb if it
honours the request. Otherwise it should return 0.

i=sb->sync()

Is called to give the derived class a chance to look at the state of the areas, and
synchronise them with any external representation. Normally sync() should consume
any characters that have been stored into the put area, and if possible give back to the
source any characters in the get area that have not been fetched. When sync() returns
there should not be any unconsumed characters, and the get area should be empty.
sync() should return EOF if some kind of failure occurs.

i=sb->underflow()

Is called to supply characters for fetching, i.e. to create a condition in which the get area
is not empty. If it is called when there are characters in the get area it should return the
first character. If the get area is empty, it should create a non-empty get area and return
the next character (which it should also leave in the get area). If there are no more
characters available, underflow() should return EOF and leave an empty get area.

The default definitions of the virtual functions:

i=sb->streambuf::doallocate()

Attempts to allocate a reserve area using operator new.

i=sb->streambuf::overflow(c)

streambuf::overflow() should be treated as if it had undefined behaviour. That
is, derived classes should always define it.

i=sb->streambuf::pbackfail(c)

Returns EOF.

pos=sb->streambuf::seekpos(pos, mode)

Returns sb->seekoff(streamoff(pos),ios::beg,mode). Thus to define
seeking in a derived class, it is frequently only necessary to define seekoff() and use
the inherited streambuf::seekpos().

pos=sb->streambuf::seekoff(off, dir, mode)

Returns EOF.
226

The Streams library
sb=sb->streambuf::setbuf(ptr, len)

Will honour the request when there is no reserve area.

i=sb->streambuf::sync()

Returns 0 if the get area is empty and there are no unconsumed characters. Otherwise it
returns EOF.

i=sb->streambuf::underflow()

Is compatible with the old stream package, but that behaviour is not considered part of
the specification of the iostream package. Therefore, streambuf::underflow()
should be treated as if it had undefined behaviour. That is, it should always be defined in
derived classes.

See also

streambuf – public(page 228), ios (page 192), istream(page 202), ostream(page 213)
227

streambuf – public

 or
 of
 the
ought
rstand
e of
e left
streambuf – public

streambuf – public interface of character buffering class

Synopsis
#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
// and lots of other stuff; see ios on page 192

} ;

class streambuf {
public :

int in_avail();
int out_waiting();
int sbumpc();
streambuf* setbuf(char* ptr, int len);
streampos seekpos(streampos, int =ios::in|ios::out);
streampos seekoff(streamoff, seek_dir, int =ios::in|ios::out);
int sgetc();
int sgetn(char* ptr, int n);
int snextc();
int sputbackc(char);
int sputc(int c);
int sputn(const char* s, int n);
void stossc();
virtual int sync();

};

Description

The streambuf class supports buffers into which characters can be inserted (put)
from which characters can be fetched (got). Abstractly, such a buffer is a sequence
characters together with one or two pointers (a get and/or a put pointer) that define
location at which characters are to be inserted or fetched. The pointers should be th
of as pointing between characters rather than at them. This makes it easier to unde
the boundary conditions (a pointer before the first character or after the last). Som
the effects of getting and putting are defined by this class but most of the details ar
to specialised classes derived from streambuf. (See filebuf on page 184, strstreambuf
on page 236, and stdiobuf on page 219.)
228

The Streams library
Classes derived from streambuf vary in their treatments of the get and put pointers.
The simplest are unidirectional buffers which permit only gets or only puts. Such classes
serve as pure sources (producers) or sinks (consumers) of characters. Queuelike buffers
(e.g. see strstream on page 233 and strstreambuf on page 236) have a put and a get
pointer which move independently of each other. In such buffers characters that are
stored are held (i.e. queued) until they are later fetched. Filelike buffers (e.g. filebuf,
see filebuf on page 184) permit both gets and puts but have only a single pointer. (An
alternative description is that the get and put pointers are tied together so that when one
moves so does the other.)

Most streambuf member functions are organised into two phases. As far as possible,
operations are performed inline by storing into or fetching from arrays (the get area and
the put area, which together form the reserve area, or buffer). From time to time, virtual
functions are called to deal with collections of characters in the get and put areas. That
is, the virtual functions are called to fetch more characters from the ultimate producer or
to flush a collection of characters to the ultimate consumer. Generally the user of a
streambuf does not have to know anything about these details, but some of the public
members pass back information about the state of the areas. Further detail about these
areas is provided in streambuf – protected on page 220, which describes the protected
interface.

The public member functions of the streambuf class are described below. In the
following descriptions assume:

l i, n, and len are ints.

l c is an int. It always holds a ‘character’ value or EOF. A ‘character’ value is
always positive even when char is normally sign extended.

l sb and sb1 are streambuf*s.

l ptr is a char*.

l off is a streamoff.

l pos is a streampos.

l dir is a seek_dir.

l mode is an int representing an open_mode.
229

streambuf – public

m the
Public member functions:

i=sb->in_avail()

Returns the number of characters that are immediately available in the get area for
fetching. i characters may be fetched with a guarantee that no errors will be reported.

i=sb->out_waiting()

Returns the number of characters in the put area that have not been consumed (by the
ultimate consumer.

c=sb->sbumpc()

Moves the get pointer forward one character and returns the character it moved past.
Returns EOF if the get pointer is currently at the end of the sequence.

pos=sb->seekoff(off, dir, mode)

Repositions the get and/or put pointers. mode specifies whether the put pointer
(ios::out bit set) or the get pointer (ios::in bit set) is to be modified. Both bits
may be set in which case both pointers should be affected. off is interpreted as a byte
offset. (Notice that it is a signed quantity.) The meanings of possible values of dir are

ios::beg The beginning of the stream.

ios::cur The current position.

ios::end The end of the stream (end of file.)

Not all classes derived from streambuf support repositioning. seekoff() will
return EOF if the class does not support repositioning. If the class does support
repositioning, seekoff() will return the new position or EOF on error.

pos=sb->seekpos(pos, mode)

Repositions the streambuf get and/or put pointer to pos. mode specifies which
pointers are affected as for seekoff(). Returns pos (the argument) or EOF if the
class does not support repositioning or an error occurs. In general a streampos should
be treated as a ‘magic cookie’ and no arithmetic should be performed on it. Two
particular values have special meaning:

streampos(0) The beginning of the file.

streampos(EOF) Used as an error indication.

c=sb->sgetc()

Returns the character after the get pointer. Contrary to what most people expect fro
name it does not move the get pointer. Returns EOF if there is no character available.
230

The Streams library
sb1=sb->setbuf(ptr, len, i)

Offers the len bytes starting at ptr as the reserve area. If ptr is null or len is zero or
less, then an unbuffered state is requested. Whether the offered area is used, or a request
for unbuffered state is honoured depends on details of the derived class. setbuf()
normally returns sb, but if it does not accept the offer or honour the request, it returns 0.

i=sb->sgetn(ptr, n)

Fetches the n characters following the get pointer and copies them to the area starting at
ptr. When there are fewer than n characters left before the end of the sequence
sgetn() fetches whatever characters remain. sgetn() repositions the get pointer
following the fetched characters and returns the number of characters fetched.

c=sb->snextc()

Moves the get pointer forward one character and returns the character following the new
position. It returns EOF if the pointer is currently at the end of the sequence or is at the
end of the sequence after moving forward.

i=sb->sputbackc(c)

Moves the get pointer back one character. c must be the current content of the sequence
just before the get pointer. The underlying mechanism may simply back up the get
pointer or may rearrange its internal data structures so the c is saved. Thus the effect of
sputbackc() is undefined if c is not the character before the get pointer.
sputbackc() returns EOF when it fails. The conditions under which it can fail
depend on the details of the derived class.

i=sb->sputc(c)

Stores c after the put pointer, and moves the put pointer past the stored character;
usually this extends the sequence. It returns EOF when an error occurs. The conditions
that can cause errors depend on the derived class.

i=sb->sputn(ptr, n)

Stores the n characters starting at ptr after the put pointer and moves the put pointer
past them. sputn() returns i, the number of characters stored successfully. Normally
i is n, but it may be less when errors occur.

sb->stossc()

Moves the get pointer forward one character. If the pointer started at the end of the
sequence this function has no effect.
231

streambuf – public

 any
acters
i=sb->sync()

Establishes consistency between the internal data structures and the external source or
sink. The details of this function depend on the derived class. Usually this ‘flushes’
characters that have been stored but not yet consumed, and ‘gives back’ any char
that may have been produced but not yet fetched. sync() returns EOF to indicate
errors.

See also

ios (page 192), istream (page 202), ostream (page 213), streambuf –
protected(page 220)
232

The Streams library

g
strstream

strstream – iostream specialised to arrays

Synopsis
#include <strstream.h>

class ios {
public:

enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
// and lots of other stuff; see ios on page 192

} ;

class istrstream : public istream {
public:

istrstream(char*) ;
istrstream(char*, int) ;

strstreambuf* rdbuf() ;
} ;

class ostrstream : public ostream {
public:

ostrstream();
ostrstream(char*, int, int=ios::out) ;

int pcount() ;
strstreambuf* rdbuf() ;
char* str();

};

class strstream : public strstreambase, public iostream {
public:

strstream();
strstream(char*, int, int mode);

strstreambuf* rdbuf() ;
char* str();

};

Description

strstream specialises iostream for ‘incore’ operations, that is, storing and fetchin
from arrays of bytes. The streambuf associated with a strstream is a
strstreambuf (see strstreambuf on page 236).

In the following descriptions assume:

l ss is a strstream.

l iss is an istrstream.

l oss is an ostrstream.
233

strstream
l cp is a char*.

l mode is an int representing an open_mode.

l i and len are ints.

l ssb is a strstreambuf*.

Constructors

istrstream(cp)

Characters will be fetched from the (null-terminated) string cp. The terminating null
character will not be part of the sequence. Seeks (istream::seekg()) are allowed
within that space.

istrstream(cp, len)

Characters will be fetched from the array beginning at cp and extending for len bytes.
Seeks (istream::seekg()) are allowed anywhere within that array.

ostrstream()

Space will be dynamically allocated to hold stored characters.

ostrstream(cp,n,mode)

Characters will be stored into the array starting at cp and continuing for n bytes. If
ios::ate or ios::app is set in mode, cp is assumed to be a null-terminated string
and storing will begin at the null character. Otherwise storing will begin at cp. Seeks are
allowed anywhere in the array.

strstream()

Space will be dynamically allocated to hold stored characters.

strstream(cp,n,mode)

Characters will be stored into the array starting at cp and continuing for n bytes. If
ios::ate or ios::app is set in mode, cp is assumed to be a null-terminated string
and storing will begin at the null character. Otherwise storing will begin at cp. Seeks are
allowed anywhere in the array.

istrstream members

ssb = iss.rdbuf()

Returns the strstreambuf associated with iss.
234

The Streams library

ty

f use

a
e
ostrstream members

ssb = oss.rdbuf()

Returns the strstreambuf associated with oss.

cp=oss.str()

Returns a pointer to the array being used and ‘freezes’ the array. Once str has been
called the effect of storing more characters into oss is undefined. If oss was
constructed with an explicit array, cp is just a pointer to the array. Otherwise, cp points
to a dynamically allocated area. Until str is called, deleting the dynamically allocated
area is the responsibility of oss. After str returns, the array becomes the responsibili
of the user program.

i=oss.pcount()

Returns the number of bytes that have been stored into the buffer. This is mainly o
when binary data has been stored and oss.str() does not point to a null terminated
string.

strstream members

ssb = ss.rdbuf()

Returns the strstreambuf associated with ss.

cp=ss.str()

Returns a pointer to the array being used and ‘freezes’ the array. Once str has been
called the effect of storing more characters into ss is undefined. If ss was constructed
with an explicit array, cp is just a pointer to the array. Otherwise, cp points to a
dynamically allocated area. Until str is called, deleting the dynamically allocated are
is the responsibility of ss. After str returns, the array becomes the responsibility of th
user program.

See also

strstreambuf (page 236), ios (page 192), istream (page 202), ostream (page 213)
235

strstreambuf

e

t/put
strstreambuf

strstreambuf – streambuf specialised to arrays

Synopsis
#include <iostream.h>
#include <strstream.h>

class strstreambuf : public streambuf {
public:

strstreambuf() ;
strstreambuf(char*, int, char*);
strstreambuf(int);
strstreambuf(unsigned char*, int, unsigned char*);
strstreambuf(void* (*a)(long), void(*f)(void*));

void freeze(int n=1) ;
char* str();
virtual streambuf* setbuf(char*, int)

};

Description

A strstreambuf is a streambuf that uses an array of bytes (a string) to hold th
sequence of characters. Given the convention that a char* should be interpreted as
pointing just before the char it really points at, the mapping between the abstract ge
pointers (see streambuf – public on page 228) and char* pointers is direct. Moving the
pointers corresponds exactly to incrementing and decrementing the char* values.

To accommodate the need for arbitrary length strings strstreambuf supports a
dynamic mode. When a strstreambuf is in dynamic mode, space for the character
sequence is allocated as needed. When the sequence is extended too far, it will be copied
to a new array.

In the following descriptions assume:

l ssb is a strstreambuf*.

l n is an int.

l ptr and pstart are char*s or unsigned char*s.

l a is a void* (*)(long).

l f is a void* (*)(void*).
236

The Streams library
Constructors

strstreambuf()

Constructs an empty strstreambuf in dynamic mode. This means that space will be
automatically allocated to accommodate the characters that are put into the
strstreambuf (using operators new and delete). Because this may require
copying the original characters, it is recommended that when many characters will be
inserted, the program should use setbuf() (described below) to inform the
strstreambuf.

strstreambuf(a, f)

Constructs an empty strstreambuf in dynamic mode. a is used as the allocator
function in dynamic mode. The argument passed to a will be a long denoting the
number of bytes to be allocated. If a is null, operator new will be used. f is used to free
(or delete) areas returned by a. The argument to f will be a pointer to the array allocated
by a. If f is null, operator delete is used.

strstreambuf(n)

Constructs an empty strstreambuf in dynamic mode. The initial allocation of space
will be at least n bytes.

strstreambuf(ptr, n, pstart)

Constructs a strstreambuf to use the bytes starting at ptr. The strstreambuf
will be in static mode; it will not grow dynamically. If n is positive, then the n bytes
starting at ptr are used as the strstreambuf. If n is zero, ptr is assumed to point
to the beginning of a null terminated string and the bytes of that string (not including the
terminating null character) will constitute the strstreambuf. If n is negative, the
strstreambuf is assumed to continue indefinitely. The get pointer is initialised to
ptr. The put pointer is initialised to pstart. If pstart is null, then stores will be
treated as errors. If pstart is non-null, then the initial sequence for fetching (the get
area) consists of the bytes between ptr and pstart. If pstart is null, then the initial
get area consists of the entire array.
237

strstreambuf
Member functions

ssb->freeze(n)

Inhibits (when n is non-zero) or permits (when n is zero) automatic deletion of the
current array. Deletion normally occurs when more space is needed or when ssb is
being destroyed. Only space obtained via dynamic allocation is ever freed. It is an error
(and the effect is undefined) to store characters into a strstreambuf that was in
dynamic allocation mode and is now frozen. It is possible, however, to thaw (unfreeze)
such a strstreambuf and resume storing characters.

ptr=ssb->str()

Returns a pointer to the first char of the current array and freezes ssb. If ssb was
constructed with an explicit array, ptr will point to that array. If ssb is in dynamic
allocation mode, but nothing has yet been stored, ptr may be null.

ssb->setbuf(0,n)

ssb remembers n and the next time it does a dynamic mode allocation, it makes sure
that at least n bytes are allocated.

See also

streambuf – public(page 228), strstream(page 233)
238

15 The Complex Math library

he Complex Math library is a part of the C++ library, ported from that supplied with

AT&T’s CFront product.T
239

Introduction

C++

s a
d

ine,

ssed
Introduction

complex – introduction to C++ complex mathematics library

Synopsis
#include <complex.h>
class complex;

Description

This section describes complex mathematics functions and operators found in the
Library.

The Complex Mathematics library implements the data type of complex numbers a
class, complex. It overloads the standard input, output, arithmetic, assignment, an
comparison operators, discussed in complex operators on page 248. It also overloads the
standard exponential, logarithm, power, and square root functions, discussed in exp, log,
pow, sqrt on page 246, and the trigonometric functions of sine, cosine, hyperbolic s
and hyperbolic cosine, discussed in cplxtrig on page 251, for the class complex.
Routines for converting between Cartesian and polar coordinate systems are discu
in cartesian/polar on page 241. Error handling is described in complex_error on
page 243.

Diagnostics

Functions in the Complex Mathematics Library may return the conventional values (0,
0), (0, ±HUGE), (±HUGE, 0), or (±HUGE, ±HUGE), when the function is
undefined for the given arguments or when the value is not representable. (HUGE is the
largest-magnitude single-precision floating-point number and is defined in the file
<math.h>. The header file <math.h> is included in the file <complex.h>.) In
these cases, the external variable errno is set to the value EDOM or ERANGE.

See also

cartesian/polar (page 241), complex_error (page 243), complex operators (page 248),
exp, log, pow, sqrt (page 246), cplxtrig (page 251).
240

The Complex Math library
cartesian/polar

cartesian/polar – functions for the C++ Complex Math Library

Synopsis
#include <complex.h>

class complex {

public:

friend double abs(complex);
friend double arg(complex);
friend complex conj(complex);
friend double imag(complex);
friend double norm(complex);
friend complex polar(double, double = 0);
friend double real(complex);

};

Description

The following functions are defined for complex, where:

l d, m, and a are of type int

l x and y are of type complex.

d = abs(x)

Returns the absolute value or magnitude of x.

d = norm(x)

Returns the square of the magnitude of x. It is faster than abs, but more likely to cause
an overflow error. It is intended for comparison of magnitudes.

d = arg(x)

Returns the angle of x, measured in radians in the range –π to π.

y = conj(x)

Returns the complex conjugate of x. That is, if x is (real, imag), then conj(x) is
(real, -imag).
241

cartesian/polar
y = polar(m, a)

Creates a complex given a pair of polar coordinates, magnitude m, and angle a,
measured in radians.

d = real(x)

Returns the real part of x.

d = imag(x)

Returns the imaginary part of x.

See also

Introduction (page 240), complex_error (page 243), complex operators (page 248), exp,
log, pow, sqrt (page 246), cplxtrig (page 251)
242

The Complex Math library
complex_error

complex_error – error-handling function for the C++ Complex Math Library

Synopsis
#include <complex.h>

class c_exception
{

int type;
char *name;
complex arg1;
complex arg2;
complex retval;

public:

c_exception(char *n, const complex& a1,
const complex& a2 = complex_zero);

friend int complex_error(c_exception&);

friend complex exp(complex);
friend complex sinh(complex);
friend complex cosh(complex);
friend complex log(complex);

};

Description

In the following description of the complex error handling routine:

l i is of type int

l x is of type c_exception.

i = complex_error(x)

Invoked by functions in the C++ Complex Mathematics Library when errors are
detected.

Users may define their own procedures for handling errors, by defining a function
named complex_error in their programs. complex_error must be of the form
described above.
243

complex_error

es,
ese

has
The element type is an integer describing the type of error that has occurred, from the
following list of constants (defined in the header file):

SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error

The element name points to a string containing the name of the function that incurred the
error. The variables arg1 and arg2 are the arguments with which the function was
invoked. retval is set to the default value that will be returned by the function unless
the user’s complex_error sets it to a different value.

If the user’s complex_error function returns non-zero, no error message will be
printed, and errno will not be set.

If complex_error is not supplied by the user, the default error-handling procedur
described with the complex math functions involved, will be invoked upon error. Th
procedures are also summarised in the table below. In every case, errno is set to EDOM
or ERANGE and the program continues.

Note that complex math functions call functions included in the math library which
its own error handling routine, matherr. Users may also override this routine by
supplying their own version.

Key: M Message is printed (EDOM error)
(H, 0) (HUGE, 0) is returned
(±H, ±H) (±HUGE, ±HUGE) is returned
(0, 0) (0, 0) is returned

Default error handling procedures

Types of Errors

type SING OVERFLOW UNDERFLOW

errno EDOM ERANGE ERANGE

EXP
real too large/small — (±H, ±H) (0, 0)

imag too large — (0, 0) —

LOG arg = (0, 0) M, (H, 0) — —

SINH
real too large — (±H, ±H) —

imag too large — (0, 0) —

COSH
real too large — (±H, ±H) —

imag too large — (0, 0) —
244

The Complex Math library
See also

Introduction (page 240), cartesian/polar (page 241), complex operators (page 248),
exp, log, pow, sqrt (page 246), cplxtrig (page 251)
245

exp, log, pow, sqrt

++

exp, log, pow, sqrt

exp, log, pow, sqrt – exponential, logarithm, power, square root functions for the C
complex library

Synopsis
#include <complex.h>

class complex {

public:
friend complex exp(complex);
friend complex log(complex);
friend complex pow(double, complex);
friend complex pow(complex, int);
friend complex pow(complex, double);
friend complex pow(complex, complex);
friend complex sqrt(complex);

};

Description

The following math functions are overloaded by the complex library, where:

l x, y, and z are of type complex.

z = exp(x)

Returns ex.

z = log(x)

Returns the natural logarithm of x.

z = pow(x, y)

Returns xy

z = sqrt(x)

Returns the square root of x, contained in the first or fourth quadrants of the complex
plane.
246

The Complex Math library
Diagnostics

exp returns (0, 0) when the real part of x is so small, or the imaginary part is so
large, as to cause overflow. When the real part is large enough to cause overflow, exp
returns (HUGE, HUGE) if the cosine and sine of the imaginary part of x are positive,
(HUGE, -HUGE) if the cosine is positive and the sine is not, (-HUGE, HUGE) if the
sine is positive and the cosine is not, and (-HUGE, -HUGE) if neither sine nor cosine
is positive. In all these cases, errno is set to ERANGE.

log returns (-HUGE, 0) and sets errno to EDOM when x is (0, 0). A message
indicating SING error is printed on the standard error output.

These error-handling procedures may be changed with the function complex_error
(see page 243).

See also

Introduction (page 240), cartesian/polar (page 241), complex_error (page 243),
complex operators (page 248), cplxtrig (page 251)
247

complex operators
complex operators

complex_operators: operators for the C++ complex math library

Synopsis
#include <complex.h>

class complex {

public:
friend complex operator+(complex, complex);
friend complex operator–(complex);
friend complex operator–(complex, complex);
friend complex operator*(complex, complex);
friend complex operator/(complex, complex);

friend int operator==(complex, complex);
friend int operator!=(complex, complex);

void operator+=(complex);
void operator–=(complex);
void operator*=(complex);
void operator/=(complex);

};

Description

The basic arithmetic operators, comparison operators, and assignment operators are
overloaded for complex numbers. The operators have their conventional precedences. In
the following descriptions for complex operators:

l x, y, and z are of type complex.

Arithmetic operators:

z = x + y

Returns a complex which is the arithmetic sum of complex numbers x and y.

z = -x

Returns a complex which is the arithmetic negation of complex number x.

z = x - y

Returns a complex which is the arithmetic difference of complex numbers x and y.
248

The Complex Math library
z = x * y

Returns a complex which is the arithmetic product of complex numbers x and y.

z = x / y

Returns a complex which is the arithmetic quotient of complex numbers x and y.

Comparison operators

x == y

Returns non-zero if complex number x is equal to complex number y; returns 0
otherwise.

x != y

Returns non-zero if complex number x is not equal to complex number y; returns 0
otherwise.

Assignment operators

x += y

Complex number x is assigned the value of the arithmetic sum of itself and complex
number y.

x -= y

Complex number x is assigned the value of the arithmetic difference of itself and
complex number y.

x *= y

Complex number x is assigned the value of the arithmetic product of itself and complex
number y.

x /= y

Complex number x is assigned the value of the arithmetic quotient of itself and complex
number y.
249

complex operators
Warning

The assignment operators do not produce a value that can be used in an expression. That
is, the following construction is syntactically invalid:

complex x, y, z;
x = (y += z);

whereas:

x = (y + z);

x = (y == z);

are valid.

See also

Introduction (page 240), cartesian/polar (page 241), complex_error (page 243), exp,
log, pow, sqrt (page 246), cplxtrig (page 251)
250

The Complex Math library
cplxtrig

cplxtrig – trigonometric and hyperbolic functions for the C++ complex library

Synopsis
#include <complex.h>

class complex {

public:
friend complexsin(complex);
friend complexcos(complex);

friend complexsinh(complex);
friend complexcosh(complex);

};

Description

The following trigonometric functions are defined for complex, where:

l x and y are of type complex.

y = sin(x)

Returns the sine of x.

y = cos(x)

Returns the cosine of x.

y = sinh(x)

Returns the hyperbolic sine of x.

y = cosh(x)

Returns the hyperbolic cosine of x.

Diagnostics

If the imaginary part of x would cause overflow sinh and cosh return (0, 0). When
the real part is large enough to cause overflow, sinh and cosh return (HUGE,
HUGE) if the cosine and sine of the imaginary part of x are non-negative, (HUGE,
251

cplxtrig
-HUGE) if the cosine is non-negative and the sine is less than 0, (-HUGE, HUGE) if
the sine is non-negative and the cosine is less than 0, and (-HUGE, –HUGE) if both
sine and cosine are less than 0. In all these cases, errno is set to ERANGE.

These error-handling procedures may be changed with the function complex_error
(see page 243).

See also

Introduction (page 240), cartesian/polar (page 241), complex_error (page 243),
complex operators (page 248), exp, log, pow, sqrt (page 246)
252

Part 4 – Developing software for RISC OS
253

254

16 Portability

he C programming language has gained a reputation for being portable across

machines, while still providing capabilities at a machine-specific level. The fact that T
a program is written in C by no means indicates the effort required to port software from
he

in
vely

. In

the
hich

d 4
at the
one machine to another, or indeed from one compiler to another. Obviously the most
time-consuming task is porting between two entirely different hardware environments,
running different operating systems with different compilers. Since many users of the
Acorn C compiler will find themselves in this situation, this chapter deals with a number
of issues you should be aware of when porting software to or from our environment. The
chapter covers the following:

l general portability considerations

l major differences between ANSI C and the well-known ‘K&R’ C as defined in t
book The C Programming Language, (first edition) by Kernighan and Ritchie

l using the Acorn C compiler in ‘pcc’ compatibility mode

l environmental aspects of portability.

General portability considerations
If you intend your code to be used on a variety of different systems, there are certa
aspects which you should bear in mind in order to make porting an easy and relati
error-free process. It is essential to single out items which may make software
system-specific, and to employ techniques to avoid non-portable use of such items
this section, we describe general portability issues for C programs.

Fundamental data types

The size of fundamental data types such as char, int, long int, short int and
float will depend mainly on the underlying architecture of the machine on which
C program is to run. Compiler writers usually implement these types in a manner w
best fits the architectures of machines for which their compilers are targeted. For
example, Release 5 of the Microsoft C Compiler has int, short int and long int
occupying 2, 2 and 4 bytes respectively, where the Acorn C Compiler uses 4, 2 an
bytes. Certain relations are guaranteed by the ANSI C Standard (such as the fact th
size of long int is at least that of short int), but code which makes any
assumptions regarding implementation-defined issues such as whether int and long
int are the same size will not be maximally portable.
255

General portability considerations

 you

A common non-portable assumption is embedded in the use of hexadecimal constant
values. For example:

 int i;
 i = i & 0xfffffff8; /* set bottom 3 bits to zero, assuming 32-bit int */

Such non-portability can be avoided by using:

 int i;
 i = i & ~0x07; /* set bottom 3 bits to zero, whatever sizeof(int) */

If you find that some size assumptions are inevitable, then at least use a series of
assert calls when the program starts up, to indicate any conditions under which
successful operation is not guaranteed. Alternatively, write macros for frequently-used
operations so that size assumptions are localised and can be altered locally.

Byte ordering

A highly non-portable feature of many C programs is the implicit or explicit exploitation
of byte ordering within a word of store. Such assumptions tend to arise when copying
objects word by word (rather than byte by byte), when inputting and outputting binary
values, and when extracting bytes from or inserting bytes into words using a mix of
shift-and-mask and byte addressing. A contrived example is the following code which
copies individual bytes from an int variable w into an int variable pointed to by p,
until a null byte is encountered. The code assumes that w does contain a null byte.

int a;
char *p = (char *)&a;
int w = AN_ARBITRARY_VALUE;

for (;;)
{
 if ((*p++ = w) == 0) break;
 w >>= 8;
}

This code will only work on a machine with even (or little-endian) byte-sex, and so is
not portable. The best solution to such problems is either to write code which does not
rely on byte-sex, or to have different code to deal appropriately with different byte-sex
and to compile the correct variant conditionally, depending on your target machine
architecture.

Store alignment

The only guarantee given in the ANSI C Standard regarding alignment of members of a
struct, is that a ‘hole’ (caused by padding) cannot exist at the beginning of the
struct. The values of ‘holes’ created by alignment restrictions are undefined, and
should not make assumptions about these values. In particular, two structures with
256

Portability
identical members, each having identical values, will only be considered equal if
field-by-field comparison is used; a byte-by-byte, or word-by-word comparison may not
indicate equality.

This may also have implications on the size requirements of large arrays of structs.
Given the following declarations:

#define ARRSIZE 10000
typedef struct
 {
 int i;
 short s;
 } ELEM;
ELEM arr[ARRSIZE];

this may require significantly different amounts of store under, say, a compiler which
aligns ints on even boundaries, as opposed to one which aligns them on word
boundaries.

Pointers and pointer arithmetic

A deficiency of the original definition of C, and of its subsequent use, has been the
relatively unrestrained interchanging between pointers to different data types and
integers or longs. Much existing code makes the assumption that a pointer can safely be
held in either a long int or int variable. While such an assumption may indeed be
true in many implementations on many machines, it is a highly non-portable feature on
which to rely.

This problem is further compounded when taking the difference of two pointers by
performing a subtraction. When the difference is large, this approach is full of possible
errors. For this purpose, ANSI C defines a type ptrdiff_t, which is capable of
reliably storing the result of subtracting two pointer values of the same type; a typical
use of this mechanism would be to apply it to pointers into the same array.

Function argument evaluation

Whilst the evaluation of operands to such operators as && and || is defined to be strictly
left-to-right (including all side-effects), the same does not apply to function argument
evaluation. For example, in the function call f(i, i++);, the issue of whether the
post-increment of i is performed after the first use of i is implementation-dependent. In
any case, this is an unwise form of statement, since it may be decided later to implement
f as a macro, instead of a function.
257

ANSI C vs K&R C
System-specific code

The direct use of operating system calls is, as you would expect, non-portable. If you use
code which is obviously targeted for a particular environment, then it should be clearly
documented as such, and should preferably be isolated into a system-specific module,
which needs to be modified when porting to a new machine or operating system.
Pathnames of system files should be #defined and not hard-coded into the program, and,
as far as possible, all processing of filenames should be made easy to modify. Many file
operations can be written in terms of the ANSI input/output library functions, which will
make an application more portable. Obviously, binary data files are inherently
non-portable, and the only solution to this problem may be the use of some portable
external representation.

ANSI C vs K&R C
The ANSI C Standard has succeeded in tightening up many of the vague areas of K&R
C. This results in a much clearer definition of a correct C program. However, if
programs have been written to exploit particular vague features of K&R C, then their
authors may find surprises when porting to an ANSI C environment. In the following
sections, we present a list of what we consider to be the major differences between ANSI
and K&R C. These differences are at the language level, and we defer discussion of
library differences until a later section. The order in which this list is presented follows
approximately relevant parts of the ANSI C Standard Document.

Lexical elements

The ordering of phases of translation is well-defined. Of special note is the preprocessor
which is conceptually token-based (which does not yield the same results as might
naively be expected from pure text manipulation).

A number of new keywords have been introduced with the following meanings:

l The type qualifier volatile which means that the object may be modified in
ways unknown to the implementation, or have other unknown side effects.
Examples of objects correctly described as volatile include device registers,
semaphores and flags shared with asynchronous signal handlers. In general,
expressions involving volatile objects cannot be optimised by the compiler.

l The type qualifier const which indicates that a variable’s value should not be
changed.

l The type specifier void to indicate a non-existent value for an expression.

l The type specifier void *, which is a generic pointer to or from which pointer
variables can be assigned, without loss of information.

l The signed type qualifier, to sign any integral types explicitly.
258

Portability

tored
ple,
l structs and unions have their own distinct name spaces.

l There is a new floating-point type long double.

l The K&R C practice of using long float to denote double is now outlawed in
ANSI C.

l Suffixes U and L (or u and l), can be used to explicitly denote unsigned and
long constants (eg. 32L, 64U, 1024UL etc).

l The use of ‘octal’ constants 8 and 9 (previously defined to be octal 10 and 11
respectively) is no longer supported.

l Literal strings are to be considered as read-only, and identical strings may be s
as one shared version (as indeed they are, in the Acorn C Compiler). For exam
given:

 char *p1 = "hello";
 char *p2 = "hello";

p1 and p2 will point at the same store location, where the string hello is held.
Programs should not therefore modify literal strings.

l Variadic functions (ie those which take a variable number of arguments) are
declared explicitly using an ellipsis (…). For example, int printf(const
char *fmt, ...);

l Empty comments /**/ are replaced by a single space (use the preprocessor directive
to do token-pasting if you previously used /**/ to do this).

Conversions

ANSI C uses value-preserving rules for arithmetic conversions (whereas K&R C
implementations tend to use unsigned-preserving rules). Thus, for example:

int f(int x, unsigned char y)
{
 return (x+y)/2;
}

does signed division, where unsigned-preserving implementations would do unsigned
division.

Aside from value-preserving rules, arithmetic conversions follow those of K&R C, with
additional rules for long double and unsigned long int . It is now also
possible to perform float arithmetic without widening to double . Floating-point
values truncate towards zero when they are converted to integral types.

It is illegal to attempt to assign function pointers to data pointers and vice versa (even
using explicit casts). The only exception to this is the value 0, as in:
259

ANSI C vs K&R C

s

also
n

ment
int (*pfi)();
pfi = 0;

Assignment compatibility between structs and unions is now stricter. For example,
consider the following:

struct {char a; int b;} v1;
struct {char a; int b;} v2;
v1 = v2; /* illegal because v1 and v2
 strictly have different types*/

Expressions
l structs and unions may be passed by value as arguments to functions.

l Given a pointer to function declared as, say, int (*pfi)();, then the function
to which it points can be called either by pfi(); or (*pfi)();.

l Due to the use of distinct name spaces for struct and union members absolute
machine addresses must be explicitly cast before being used as struct and
union pointers. For example:

((struct io_space *)0x00ff)->io_buf;

Declarations

Perhaps the greatest impact on C of the ANSI Standard has been the adoption of function
prototypes. A function prototype declares the return type and argument types of a
function. For example, int f(int, float); declares a function returning int
with one int and one float argument. This means that a function’s argument type
are part of the type of that function, thus giving the advantage of stricter argument
type-checking, especially across source files. A function definition (which is also a
prototype) is similar except that identifiers must be given for the arguments. For
example, int f(int i, float f);. It is still possible to use ‘old style’ function
declarations and definitions, but you are advised to convert to the ‘new style’. It is
possible to mix old and new styles of function declaration. If the function declaratio
which is in scope is an old style one, normal integral promotions are performed for
integral arguments, and floats are converted to double. If the function declaration
which is in scope is a new style one, arguments are converted as in normal assign
statements.

Empty declarations are now illegal.

Arrays cannot be defined to have zero or negative size.
260

Portability

de.

rs.
ings.

ing

pace

ers
ilities

’

Statements
l ANSI has defined the minimum attributes of control statements (eg the minimum

number of case limbs which must be supported by a compiler). These values are
almost invariably greater than those supported by PCCs, and so should not present a
problem.

l A value returned from main() is guaranteed to be used as the program’s exit co

l Values used in the controlling statement and labels of a switch can be of any
integral type.

Preprocessor
l Preprocessor directives cannot be redefined.

l There is a new ## directive for token-pasting.

l There is a directive # which produces a string literal from its following characte
This is useful for cases where you want replacement of macro arguments in str

l The order of phases of translation is well defined and is as follows for the
preprocessing phases:

1 Map source file characters to the source character set (this includes replac
trigraphs).

2 Delete all newline characters which are immediately preceded by \.

3 Divide the source file into preprocessing tokens and sequences of white s
characters (comments are replaced by a single space).

4 Execute preprocessing directives and expand macros.

Any #include files are passed through steps 1-4 recursively.

The macro __STDC__ is #defined to 1 in ANSI-conforming compilers.

The ToPCC and ToANSI tools
The desktop tools ToPCC and ToANSI help you to translate C programs and head
between the ANSI and PCC dialects of C. For more details of their use and capab
see the earlier chapters ToANSI and ToPCC.

pcc compatibility mode
This section discusses the differences apparent when the compiler is used in ‘PCC
mode. When the UNIX pcc setup option is enabled, the C compiler will accept
(Berkeley) UNIX-compatible C, as defined by the implementation of the Portable C
Compiler and subject to the restrictions which are noted below.
261

pcc compatibility mode

han
ve

e of

In essence, PCC-style C is K&R C, as defined by B Kernighan and D Ritchie in their
book The C Programming Language, with a small number of extensions and
clarifications of language features that the book leaves undefined.

Language and preprocessor compatibility

In UNIX pcc mode, the Acorn C compiler accepts K&R C, but it does not accept many
of the old-style compatibility features, the use of which has been deprecated and warned
against for many years. Differences are listed briefly below:

l Compound assignment operators where the = sign comes first are accepted (with a
warning) by some PCCs. An example is =+ instead of +=. Acorn C does not allow
this ordering of the characters in the token.

l The = sign before a static initialiser was not required by some very old C
compilers. Acorn C does not support this syntax.

l The following very peculiar usage is found in some UNIX tools pre-dating UNIX
Version 7:

struct {int a, b;};
double d;

d.a = 0;
d.b = 0x....;

This is accepted by some UNIX PCCs and may cause problems when porting old
(and badly written) code.

l enums are less strongly typed than is usual under PCCs. enum is a non-K&R
extension to C which has been standardised by ANSI somewhat differently from the
usual PCC implementation.

l chars are signed by default in UNIX pcc mode.

l In UNIX pcc mode, the compiler permits the use of the ANSI ‘...’ notation
which signifies that a variable number of formal arguments follow.

l In order to cater for PCC-style use of variadic functions, a version of the PCC
header file varargs.h is supplied with the release.

l With the exception of enums, the compiler’s type checking is generally stricter t
PCC’s – much more akin to lint’s, in fact. In writing the Acorn C compiler, we ha
attempted to strike a balance between generating too many warnings when
compiling known, working code, and warning of poor or non-portable
programming practices. Many PCCs silently compile code which has no chanc
executing in just a slightly different environment. We have tried to be helpful to
those who need to port C among machines in which the following varies:

l the order of bytes within a word (eg little-endian ARM, VAX, Intel versus
big-endian Motorola, IBM370)
262

Portability

ode,
d

med

SI
 C
ry,

D
iles:
l the default size of int (four bytes versus two bytes in many PC
implementations)

l the default size of pointers (not always the same as int)

l whether values of type char default to signed or unsigned char

l the default handling of undefined and implementation-defined aspects of the C
language.

If the verbosity of CC in UNIX pcc mode is found undesirable, all warnings and/or
errors can be turned off using the Suppress warnings and/or Suppress errors setup
options.

l The compiler’s preprocessor is believed to be equivalent to UNIX’s cpp, except for
the points listed below. Unfortunately, cpp is only defined by its implementation,
and although equivalence has been tested over a large body of UNIX source c
completely identical behaviour cannot be guaranteed. Some of the points liste
below only apply when the Preprocess only option is used with the CC tool.

l There is a different treatment of whitespace sequences (benign).

l nl is processed by CC with Preprocess only enabled, but passed by cpp
(making lines longer than expected).

l Cpp breaks long lines at a token boundary; CC with Preprocess only enabled
doesn’t (this may break line-size constraints when the source is later consu
by another program).

l The handling of unrecognised # directives is different (this is mostly benign).

Standard headers and libraries

Use of the compiler in UNIX pcc mode precludes neither the use of the standard AN
headers built in to the compiler nor the use of the run-time library supplied with the
compiler. Of course, the ANSI library does not contain the whole of the UNIX C libra
but it does contain almost all the commonly used functions. However, look out for
functions with different names, or a slightly different definition, or those in different
‘standard’ places. Unless the user directs otherwise using Default path, the C compiler
will attempt to satisfy references to, say, <stdio.h> from its in-store filing system.

Listed below are a number of differences between the ANSI C Library, and the BS
UNIX library. They are placed under headings corresponding to the ANSI header f

ctype.h

There are no isascii() and toascii() functions, since ANSI C is not
character-set specific.
263

pcc compatibility mode

ning
n
ill

tion
l
errno.h

On BSD systems there are sys_nerr and sys_errlist() defined to give error
messages corresponding to error numbers. ANSI C does not have these, but provides
similar functionality via perror(const char *s), which displays the string
pointed to by s followed by a system error message corresponding to the current value
of errno.

There is also char *strerror(int errnum) which, when given a purported
value of errno, returns its textual equivalent.

math.h

The #defined value HUGE, found in BSD libraries, is called HUGE_VAL in ANSI C.
ANSI C does not have asinh(), acosh(), atanh().

signal.h

In ANSI C the signal() function’s prototype is:

extern void (*signal(int, void(*func)(int)))(int);

signal() therefore expects its second argument to be a pointer to a function retur
void with one int argument. In BSD-style programs it is common to use a functio
returning int as a signal handler. The PCC-style function definitions shown below w
therefore produce a compiler warning about an implicit cast between different func
pointers (since f() defaults to int f()). This is just a warning, and correct code wil
be generated anyway.

f(signo)
int signo;
{
.........
}

main()
{
extern f();
signal(SIGINT, f);
}

264

Portability

r.

made
ts of

a
stdio.h

sprintf() now returns the number of characters ‘printed’ (following UNIX System
V), whereas the BSD sprintf() returns a pointer to the start of the character buffe

The BSD functions ecvt(), fcvt() and gcvt() are not included in ANSI C, since
their functionality is provided by sprintf().

string.h

On BSD systems, string manipulation functions are found in strings.h, whereas
ANSI C places them in <string.h>. The Acorn C Compiler also has strings.h
for PCC-compatibility.

The BSD functions index() and rindex() are replaced by the ANSI functions
strchr() and strrchr() respectively.

Functions which refer to string lengths (and other sizes) now use the ANSI type
size_t, which in our implementation is unsigned int.

stdlib.h

malloc() returns void *, rather than the char * of the BSD malloc().

float.h

A new header added by ANSI giving details of floating point precision etc.

limits.h

A new header added by ANSI to give maximum and minimum limit values for data
types.

locale.h

A new header added by ANSI to provide local environment-specific features.

Environmental aspects
When porting an application, the most extensive changes will probably need to be
at the operating system interface level. The following is a brief description of aspec
RISC OS and Acorn C which differ from systems such as UNIX and MS-DOS.

The most apparent interface between a C program and its environment is via the
arguments to main(). The ANSI Standard declares that main() is a function defined
as the program entry point with either no arguments or two arguments (one giving
count of command line arguments, commonly called int argc, the other an array of
265

hich

pointers to the text of the arguments themselves, after removal of input/output
redirection, commonly called char *argv[]). As discussed in the section
Environment (A.6.3.2) on page 77, Acorn C supports the style of input/output redirection
used by UNIX BSD4.3, but does not support filename wildcarding. Further parameters
to main() are not supported.

Under UNIX and MS-DOS, it is common to use a third parameter, normally called
char *environ[] under UNIX and char *envp[] under Microsoft C for
MS-DOS, to give access to environment variables. The same effect can be achieved in
our system by using getenv() to request system variable values explicitly; the names
of these variables are as they appear from a RISC OS *Show command. The string
pointed at by argv[0] is the program name (similar to UNIX and MS-DOS, except the
name is exactly that typed on invocation, so if a full pathname is used to invoke the
program, this is what appears in argv[0]).

File naming is one of the least portable aspects in any programming environment.
RISC OS uses a full stop (.) as a separator in pathnames and does not support filename
extensions (nor does UNIX, but existing UNIX tools make assumptions about file
naming conventions). The best way to simulate extensions is to create a directory whose
name corresponds to the required extension (in a manner similar to the use of c and h
directories for C source and header files). RISC OS filename components are limited to
10 characters.

The Acorn C compiler has support for making Software Interrupt (SWI) calls to
RISC OS routines, which can be used to replace any system calls which you make under
UNIX or MS-DOS. The include file kernel.h has function prototypes and
appropriate typedefs for issuing SWIs. Briefly, the type _kernel_swi_regs
allows values to be placed in registers R0-R9, and _kernel_swi() can then be used
to issue the SWI; a list of SWI numbers can be found in the include file swis.h. File
information, for example, can be obtained in a way similar to stat() under UNIX, by
making an OS_GBPB SWI with R0 set to the reason code 11 (full file information).
Most of the UNIX/MS-DOS low-level I/O can be simulated in this way, but the ANSI C
run-time library provides sufficient support for most applications to be written in a
portable style.

You’ll find some more information on kernel.h in comments within the header file
itself.

RISC OS does not support different memory models as in MS-DOS, so programs w
have been written to exploit this will need modification; this should only require the
removal of Microsoft C keywords such as near, far and huge, if the program has
otherwise been written with portability in mind.
266

17 Assembly language interface

nterworking assembly language and C – writing programs with both assembly

rther
language and C parts – requires use both of ObjAsm and of CC and/or C++. FuI
explanation of examples is provided in the chapter Interworking assembler with C on
ality
e
ws
age

l the

 that

 and
 and

 and
ggers

bly
rary
page 179 of the Acorn Assembler guide.

Interworking assembly language and C can be very useful for construction of top qu
RISC OS applications. Using this technique you can take advantage of many of th
strong points of both languages. Writing most of the bulk of your application in C allo
you to take advantage of the portability of C, the maintainability of a high level langu
and the power of the C libraries and language. Writing critical portions of code in
assembler allows you to take advantage of all the speed of the Archimedes and al
features of the machine (eg use the complete floating-point instruction set).

The key to interworking C and assembler is writing assembly language procedures
obey the ARM Procedure Call Standard (APCS). This is a contract between two
procedures, one calling the other. The called procedure needs to know which ARM
floating-point registers it can freely change without restoring them before returning,
the caller needs to know which registers it can rely on not being corrupted over a
procedure call.

Additionally, both procedures need to know which registers contain input arguments
return arguments, and the arrangement of the stack has to follow a pattern that debu
and so on can understand. For the specification of the APCS, see the appendix ARM
procedure call standard on page 249 of the Desktop Tools guide.

This chapter explains how C uses the APCS, in terms of the appearance of assem
language optionally output by CC and the way the stack set up by the C run-time lib
works.

Register names
The following names are used in referring to ARM registers:

a1 R0 Argument 1, also integer result, temporary
a2 R1 Argument 2, temporary
a3 R2 Argument 3, temporary
a4 R3 Argument 4, temporary
v1 R4 Register variable
v2 R5 Register variable
267

Register usage

n

ters

lled

e
r
ard

s

v3 R6 Register variable
v4 R7 Register variable
v5 R8 Register variable
v6 R9 Register variable
sl R10 Stack limit
fp R11 Frame pointer
ip R12 Temporary work register
sp R13 Lower end of current stack frame
lr R14 Link address on calls, or workspace
pc R15 Program counter and processor status

f0 F0 Floating point result
f1 F1 Floating-point work register
f2 F2 Floating-point work register
f3 F3 Floating-point work register
f4 F4 Floating-point register variable (must be preserved)
f5 F5 Floating-point register variable (must be preserved)
f6 F6 Floating-point register variable (must be preserved)
f7 F7 Floating-point register variable (must be preserved)

In this section, ‘at [r]’ means at the location pointed to by the value in register r; ‘at
[r,#n]’ refers to the location pointed to by r+n. This accords with ObjAsm’s syntax.

Register usage
The following points should be noted about the contents of registers across functio
calls.

l Calling a function (potentially) corrupts the argument registers a1 to a4, ip, lr,
and f0-f3. The calling function should save the contents of any of these regis
it may need.

l Register lr is used at the time of a function call to pass the return link to the ca
function; it is not necessarily preserved during or by the function call.

l The stack pointer sp is not altered across the function call itself, though it may b
adjusted in the course of pushing arguments inside a function. The limit registesl
may change at any time, but should always represent a valid limit to the downw
growth of sp. User code will not normally alter this register.

l Registers v1 to v6, and the frame pointer fp, are expected to be preserved acros
function calls. The called procedure is responsible for saving and restoring the
contents of any of these registers which it may need to use.
268

Assembly language interface

’
ory

 into

load

st the
as
Control arrival
At a procedure call, the convention is that the registers are used as follows:

l a1 to a4 contain the first four arguments. If there are fewer than four arguments,
just as many of a1 to a4 as are needed are used.

l If there are more than four arguments, sp points to the fifth argument; any further
arguments will be located in succeeding words above [sp].

l fp points to a backtrace structure.

l sp and sl define a temporary workspace of at least 256 bytes available to the
procedure.

l sl contains a stack chunk handle, which is used by stack handling code to extend
the stack in a non-contiguous manner.

l lr contains the value which should be restored into pc on exit from the called
procedure.

l pc contains the entry address of the called procedure.

Passing arguments
All integral and pointer arguments are passed as 32-bit words. Floating point ‘float
arguments are 32-bit values, ‘double’-argument 64-bit values. These follow the mem
representation of the IEEE single and double precision formats.

Arguments are passed as if by the following sequence of operations:

l Push each argument onto the stack, last argument first.

l Pop the first four words (or as many as were pushed, if fewer) of the arguments
registers a1 to a4.

l Call the function, for example by the branch with link instruction:

BL functionname

In many cases it is possible to use a simplified sequence with the same effect (eg
three argument words into a1-a3).

If more than four words of arguments are passed, the calling procedure should adju
stack pointer after the call, incrementing it by four for each argument word which w
pushed and not popped.

Return link
On return from a procedure, the registers are set up as follows:
269

Structure results
l fp, sp, sl, v1 to v6 and f4 to f7 have the same values that they contained at the
procedure call.

l Any result other than a floating point or a multi-word structure value is placed in
register a1.

l A floating point result should be placed in register f0.

Structure values returned as function results are discussed below.

Structure results
A C function which returns a multi-word structure result is treated in a slightly different
manner from other functions by the compiler. A pointer to the location which should
receive the result is added to the argument list as the first argument, so that a declaration
such as the following:

s_type afunction(int a, int b, int c)
{

s_type d;
/* ... */
return d;

}

is in effect converted to this form:

void afunction(s_type *p, int a, int b, int c)
{

s_type d;
/* ... */
*p = d;
return;

}

Any assembler-coded functions returning structure results, or calling such functions,
must conform to this convention in order to interface successfully with object code from
the C compiler.

Storage of variables
The code produced by the C compiler uses argument values from registers where
possible; otherwise they are addressed relative to fp, as illustrated in Examples below.

Local variables, by contrast, are always addressed with positive offsets relative to sp. In
code which alters sp, this means that the offset for the same variable will differ from
place to place. The reason for this approach is that it permits the stack overflow
procedure to recover by changing sp and sl to point to a new stack segment as
necessary.
270

Assembly language interface
Function workspace
The values of sp and sl passed to a called function define an area of readable, writable
memory available to the called function as workspace. All words below [sp] and at or
above [sl,#-512] are guaranteed to be available for reading and writing, and the
minimum allowed value of sp is sl-256. Thus the minimum workspace available is
256 bytes.

The C run-time system, in particular the stack extension code, requires up to 256 bytes
of additional workspace to be left free. Accordingly, all called functions which require
no more than 256 bytes of workspace should test that sp does not point to a location
below sl, in other words that at least 512 bytes remain. If the value in sp is less than
that in sl, the function should call the stack extension function x$stack_overflow.
Functions which need more than 256 bytes of workspace should amend the test
accordingly, and call x$stack_overflow1, as described below. The following
examples illustrate a method of performing this test.

Note that these are the C-specific aliases for the kernel functions
_kernel_stkovf_split_0frame and _kernel_stkovf_split_frame
respectively, described in the chapter The shared C library in the RISC OS 3
Programmer’s Reference Manual.

Examples
The following fragments of assembler code illustrate the main points to consider in
interfacing with the C compiler. If you want to examine the code produced by the
compiler in more detail for particular cases, you can request an assembler listing by
enabling the Assembler option on the CC SetUp menu.
271

Examples
This is a function gggg which expects two integer arguments and uses only one register
variable, v1. It calls another function ffff.

AREA |C$$code|, CODE, READONLY

IMPORT |ffff|

 IMPORT |x$stack_overflow|

EXPORT |gggg|

gggx DCB "gggg", 0 ;name of function, 0 terminated

ALIGN ;padded to word boundary

gggy DCD &ff000000 + gggy - gggx

;dist. to start of name

;Function entry: save necessary regs. and args. on stack

gggg MOV ip, sp

STMFD sp!, {a1, a2, v1, fp, ip, lr, pc}

SUB fp, ip, #4 ;points to saved pc

;Test workspace size

CMPS sp, sl

BLLT |x$stack_overflow|

;Main activity of function

;

ADD v1, v1, #1 ;use a register variable

BL |ffff| ;call another function

CMP v1, #99 ;rely on reg. var. after call

;

;Return: place result in a1, and restore saved registers

MOV a1, result

LDMEA fp, {v1, fp, sp, pc}^

If a function will need more than 256 bytes of workspace, it should replace the
two-instruction workspace test shown above with the following:

SUB ip, sp, #n
CMP ip, sl
BLLT |x$stack_overflow1|

where n is the number of bytes needed. Note that x$stack_overflow1 must be
called if more than 256 bytes of frame are needed. ip must contain sp_needed, as
shown in the example above.

A function which expects a variable number of arguments should store its arguments in
the following manner, so that the whole list of arguments is addressable as a contiguous
array of values:

MOV ip, sp ;copy value of sp
STMFD sp!, {a1, a2, a3, a4};save 4 words of args.
STMFD sp!, {v1, v2, fp, ip, lr, pc}

;save v1-v6 needed
SUB fp, ip, #20;fp points to saved pc
CMPS sp, sl ;test workspace
BLLT |x$stack_overflow|

Some complete program examples are described in the chapter Interworking assembler
with C on page 179 of the Acorn Assembler guide.
272

18 How to write relocatable modules
in C

elocatable modules are the basic building blocks of RISC OS and the means by

which RISC OS can be extended by a user. The archetypal use for RISC OS R
extensions is the provision of device drivers for devices attached to Archimedes
dule)

 the
 a
 the

C
ubs
n

,
 to
hardware.

Relocatable modules also provide mechanisms which can be exploited to:

l extend RISC OS’s repertoire of built-in commands (* commands)
(analogous to plugging additional ROMs into a BBC microcomputer of
pre-Archimedes vintages)

l provide services to applications (for example, as does the shared C library mo

l implement ‘terminate and stay resident’ (TSR) applications.

The idea of TSR applications will be most familiar to PC users, whereas extending
* command set (via ‘software ROM modules’) will seem most familiar to those with
background in the BBC computer. A complete discussion of these topics is beyond
scope of this chapter.

For modules which provide services, the principal mechanism for accessing those
services from user code is the SoftWare Interrupt (SWI). For example, the shared
library implements a handler for a single SWI which, when called from the library st
linked with the application, returns the address of the C library module which in tur
allows the library stubs to be initialised to point to the correct addresses within the
library module. Thereafter, library services are accessed directly by procedure call
rather than by SWI call. All this illustrates is the rich variety of mechanism available
be exploited.

Getting started
To write a module in C you will need:

l the CC and CMHG tools supplied with Acorn C/C++

l the C Library stubs supplied with Acorn C/C++

l a thorough understanding of RISC OS modules (read the Modules chapter of the
RISC OS 3 Programmer’s Reference Manual).
273

Constraints on modules written in C

ted

e

ntry

m

l

. This

m
Constraints on modules written in C
A module written in C must use the shared C library module via the library stubs. Use
of the stand-alone C library (ANSILib) is not a supported option.

All components of a module written in C must be compiled with the compiler SetUp
menu option Module code enabled. This allows the module’s static data to be separa
from its code and multiply instantiated.

Overview of modules written in C
 A module written in C includes the following:

l a Module Header (described in the Modules chapter of the RISC OS 3
Programmer’s Reference Manual), constructed using CMHG;

l a set of entry and exit ‘veneers’, interfacing the module header to the C run-tim
environment (also constructed using CMHG);

l the stubs of the shared C library;

l code written by you to implement the module’s functionality – for example:
*command handlers, SWI handlers and service call handlers.

These parts must be linked together using the Link tool with the SetUp box Module
option enabled.

The next section describes:

l how to write a CMHG input file to make a module header and any necessary e
veneers

l the interface definitions to which each component of your module must confor

l how to write a CMHG input file to generate entry veneers for IRQ and event
handlers written in C.

Functional components of modules written in C
The following components may be present in a module written in C (all are optiona
except for the title string and the help string which are obligatory):

l Runnable application code (called start code in the module header description)
will be present if you tell CMHG that the module is runnable and include a main()
function amongst your module code.

l Initialisation code. ‘System’ initialisation code is always present, as the shared
library must be initialised. Your initialisation function will be called after the syste
has been initialised if you declare its name to CMHG.
274

How to write relocatable modules in C
l Finalisation code. The C library has to be closed down properly on module
termination. Your own finalisation code will be called before the system has been
closed down if you declare its name to CMHG.

l Service call handler. This will be present if you declare the name of a handler
function to CMHG. In addition, you can give a list of service call numbers which
you wish to deal with and CMHG will generate fast code to ignore other calls
without calling your handler.

l A title string in the format described in the RISC OS 3 Programmer’s Reference
Manual. CMHG will insist that you give it a valid title string.

l A help string in the format described in the RISC OS 3 Programmer’s Reference
Manual. Again, CMHG will insist that you give a valid help string.

l Help and command keyword table. This section is optional and will be present only
if you describe it to CMHG and declare the names of the command handlers to
CMHG. Obviously, their implementations must be included in the linked module.

l SWI chunk base number. Present only if declared to CMHG.

l SWI handler code. Present if you declare the name of a handler function to CMHG.

l SWI decoding table. Present only if described to CMHG.

l SWI decoding code. Present only if you declare the name of your decoding function
to CMHG.

l IRQ handlers. Though not associated with the module header, CMHG will generate
entry veneers for IRQ handlers. You can register these veneers with RISC OS using
SWI OS_Claim, etc; you have to provide implementations of the handlers
themselves. The names of the handler functions and of the entry veneers have to be
given to CMHG.

l An event handler. Though not associated with the module header, CMHG will
generate entry veneers for an event handler. You can register these veneers with
RISC OS using SWI OS_Claim, etc; you have to provide implementations of the
handlers themselves. The names of the handler functions and of the entry veneers
have to be given to CMHG.

Each component that you wish to use must be described in your input to CMHG. Use of
most components also requires that you write some C code which must conform to the
interface descriptions given in the sections below.

The C module header generator

The C Module Header Generator (CMHG) is a special-purpose assembler of module
headers. It accepts as input a text file describing which module facilities you wish to use
and generates as output a linkable object module (in ARM Object Format). For details of
how to run the CMHG tool, see the chapter entitled CMHG earlier in this manual.
275

Functional components of modules written in C

 and
bed

that

equired

is

, a
ader

our
The format of input to CMHG

Input to CMHG is in free format and consists of a sequence of ‘logical lines’. Each
logical line starts with a keyword which is followed by some number of parameters
(sometimes) keywords. The precise form of each kind of logical input line is descri
in the following sections.

A logical line can be continued on the next line of input immediately after a comma (
it, if the next non-white-space character after a comma is a newline then the line is
considered to be continued).

Lists of parameters can be separated by commas or spaces, but use of comma is r
if the line is to be continued.

A comment begins with a ; and continues to the end of the current line. A comment
valid anywhere that trailing white space is valid (and, in particular, after a comma).

A keyword consists of a sequence of alphabetic characters and minus signs. Often
keyword is the same as the description of the corresponding field of the module he
(as described in the RISC OS 3 Programmer’s Reference Manual) but with spaces
replaced by minus signs. For example: initialisation-code; title-string;
service-call-handler.

Keywords are always written entirely in lower case and are always immediately
followed by a :. Character case is significant in all contexts: in keywords, in identifiers,
and in strings.

Numbers used as parameters are unsigned. Three formats are recognised:

l unsigned decimal

l 0xhhh... (up to 8 hex digits)

l &hhh... (up to 8 hex digits).

In the following sections, the parts headed CMHG description tell you what you have to
describe to CMHG in order to use the facility described in that section; the parts headed
C interface introduce a description of the interface to which the handler function you
write must conform. You may omit any trailing arguments that you don’t need from y
handler implementations.

Runnable application code

CMHG description:

module-is-runnable: ; No parameters.

C interface:
276

How to write relocatable modules in C

ble

 the
int main(int argc, char *argv[]);
/*
* Entered in user-mode with argc and argv
* set up as for any other application. Malloc
* obtains storage from application workspace.
*/

To be useful (ie re-runnable) as a ‘terminate and stay resident’ application, a runna
application must implement at least one * command handler (see below) for its
command line, which, when invoked, enters the module (calls SWI OS_Module with
Enter reason code).

Initialisation code

CMHG description:

initialisation-code: user_init ; The name of your initialisation function.
; Any valid C function name will do.

C interface:

_kernel_oserror *user_init(char *cmd_fail, int podule_base, void *pw);
/*
* Return NULL if your initialisation succeeds; otherwise return a pointer to an
* error block. cmd_tail points to the string of arguments with which the
* module is invoked (may be "").
* podule_base is 0 unless the code has been invoked from a podule.
* pw is the ‘r12’ value established by module initialisation. You may assume
* nothing about its value (in fact it points to some RMA space claimed and
* used by the module veneers). All you may do is pass it back for your module
* veneers via an intermediary such as SWI OS_Call Every (use _kernel_swi() to
* issue the SWI call).
*/

Note that you can choose any valid C function name as the name of your initialisation
code (CMHG insists on no more than 31 characters).

Finalisation code

CMHG description:

finalisation-code: user_final ; The name of your finalisation function.
; Any valid C function name will do.

C interface:

extern _kernel_oserror *user_final(int fatal, int podule, void *pw);
/*

* Return NULL if your finalisation succeeds. Otherwise return a pointer to an
* error block if your finalisation handler does not wish to die (e.g. toolbox
* modules return a 'Task(s) active' error).
* fatal, podule and pw are the values of R10, R11 and R12 (respectively)
* on entry to the finalisation code.
*/
277

Functional components of modules written in C

ice
A call to library finalisation code is inserted automatically by CMHG; the C library
finalisation code will call your finalisation handler immediately before closing down the
library (on module finalisation).

Service call handler

CMHG description:

service-call-handler: sc_handler <number> <number> ...

C interface:

void sc_handler(int service_number, _kernel_swi_regs *r, void *pw);
/*
* Return values should be poked directly into r->r[n];
* the right value/register to use depends on the service number
* (see the relevant RISC OS Programmer’s Reference Manual section for details).
* pw is the private word (the ‘r12’ value.
*/

Service calls provide a generic mechanism. Some need to be handled quickly; others are
not time critical. Because of this, you may give a list of service numbers in which you
are interested and CMHG will generate code to ignore the rest quickly. The fast
recognition code looks like:

CMPS r1, #FirstInterestingServiceNumber
CMPNES r1, #SecondInterestingServiceNumber
...
CMPNES r1, #NthInterestingServiceNumber
MOVNES pc, lr ; drop into service call entry veneer.

If you give no list of interesting service numbers then all service calls will be passed to
your handler.

In order to construct a relocatable module which implements a RISC OS application (a
TSR application) you must claim and deal with the Service_Memory service call. See
the relevant section in the Programmer’s Reference Manual for details of this serv
call.

The following is a suitable handler written in C for this service call:

#define Service_Memory 0x11
extern void FrontEnd_services(int service_number, _kernel_swi_regs *r, void
*pw)
{

IGNORE(pw);
/* keep application workspace (r2 holds CAO pointer) */
if (service_number == Service_Memory && r->r[2] ==
(int)Image__RO_Base)
{

r->r[1] = 0; /* refuse to relinquish app. workspace */
}

}

278

How to write relocatable modules in C

t will
The above handler needs to compare the contents of r[2] with the address of the base of
your module containing it. This is not a value directly available in C, so the following
assembly language fragment can be used to gain access to the symbol
Image$$RO$$Base, which is defined by Link when your module is linked together:

IMPORT |Image$$RO$$Base|
EXPORT Image__RO_Base

AREA Code_Description, DATA, REL
Image__RO_Base

DCD |Image$$RO$$Base|

END

Title string

CMHG description:

title-string: title

title must consist entirely of printable, non-space ASCII characters.

Any underscores in the title are replaced by spaces. CMHG will fault any title longer
than 31 characters and warn if the length of the title string is more than 16.

Help string

CMHG description:

help-string: help d.dd comment ; help string and version number

The help string is restricted to 15 or fewer alphanumeric, ASCII characters and
underscores. Longer strings are truncated (with a warning) to 15 characters then padded
with a single space. Shorter titles are padded with one or two TAB characters so they
will appear exactly 16 characters long.

The version number must consist of a digit, a dot, then 2 consecutive digits.
Conventionally, the first digit denotes major releases; the second digit minor releases;
and the third digit bug-fix or technical changes. If the version number is omitted, 0.00 is
used.

CMHG automatically inserts the current date into the version string, as required by
RISC OS convention.

A ‘comment’ of up to 34 characters can also be included after the version number. I
appear in the tail of the module’s help string, after the date. A typical use is for
annotating the help string in the following style:

SomeModule 0.91 (27 JUN 1989) Experimental version
279

Functional components of modules written in C

sses.
CMHG refuses to generate a help string longer than 79 characters and warns if it has to
truncate your input.

Help and command keyword table

CMHG description:

command-keyword-table: cmd_handler command-description+

(Here command-description+ denotes one or more command descriptions).

A command-description has the format:

star-command-name "("
min-args: unsigned-int ; default 0
max-args: unsigned-int ; default 0
gstrans-map: unsigned-int ; default 0
fs-command: ; flag bits in
status: ; the flag byte
configure: ; of the cmd table
help: ; info word.
invalid-syntax: text
help-text: text
")"

Each sub-argument is optional. A comma after any item allows continuation on the next
line.

A text item follows the conventions of ANSI C string constants: it is a sequence of
implicitly concatenated string segments enclosed in " and ".

Segments may be separated by white space or newlines (no continuation comma is
needed following a string segment).

Within a string segment \ introduces an escape character. All the single character ASCII
escapes are implemented, but hexadecimal and octal escape codes are not implemented.
A \ immediately preceding a newline allows the string segment to be continued on the
following line (but does not include a newline in the string; if a newline is required, it
must be explicitly included as \n).

min-args and max-args record the minimum and maximum number of arguments
the command may accept; gstrans-map records, in the least significant 8 bits, which
of the first 8 arguments should be subject to expansion by OS_GSTrans before calling
the command handler.

The keywords fs-command, status, configure and help set bits in the
command’s information word which mark the command as being of one of those cla

invalid-syntax and help-text messages are (should be) self-explanatory.

Example CMHG description:
280

How to write relocatable modules in C
command-keyword-table: cmd_handler
tm0(min-args: 0, max-args: 255,

help-text: "Syntax\ttm1 <filenames>\n"),
tm1(min-args:1, max-args:1,

help-text: "Syntax\ttm2" " <integer>"
"\n")

This describes two * commands, *tm0 and *tm1, which are to be handled by the C
function cmd_handler. The handler function will be called with 0 as its third
argument if it is being called to handle the first command (tm0, above), 1 as its third
argument if it is being called to handle the second command (tm1, above), etc. The
programmer must keep the CMHG description in step with the implementation of
cmd_handler.

C interface:

_kernel_oserror *cmd_handler(char *arg_string, int argc, int cmd_no, void *pw);
/*
* If cmd_no identifies a *HELP entry, then cmd_handler must return
* arg_string or NULL (if arg_string is returned, the NUL-terminated
* buffer will be printed).
* Return NULL if if the command has been successfully handled;
* otherwise return a pointer to an error block describing the failure
* (in this case, the veneer code will set the ‘V’ bit).
* *STATUS and *CONFIGURE handlers will need to cast ‘arg_string’ to
* (possibly unsigned) long and ignore argc. See the RISC OS Programmer’s
* Reference Manual for details.
* pw is the private word pointer (‘r12’) value passed into the entry veneer
*/

SWI chunk base number

CMHG description:

swi-chunk-base-number: number

You should use this entry if your module provides any SWI handlers. It denotes the base
of a range of 64 values which may be passed to your SWI handler. SWI chunks are
allocated by Acorn: read the documentation carefully to discover which chunks you may
use safely. In some cases you may need to write to Acorn to get a chunk allocated
uniquely to your product (though this should not be undertaken lightly and should only
be done when all alternatives have been exhausted). See the chapter An introduction to
SWIs in the RISC OS 3 Programmer’s Reference Manual for more details.

SWI handler code

CMHG description:

swi-handler-code: swi_handler ; any valid C function name will do

C interface:
281

Functional components of modules written in C
_kernel_oserror *swi_handler(int swi_no, _kernel_swi_regs *r, void *pw);
/*
* Return: NULL if the SWI is handled successfully; otherwise return
* a pointer to an error block which describes the error.
* The veneer code sets the ‘V’ bit if the returned value is non-NULL.
* The handler may update any of its input registers (r0-r9).
* ps is the private word pointer (‘r12’) value passed into the
* swi_handler entry veneer.
*/

If your module is to handle SWIs then it must include both swi-handler-code and
swi-chunk-base.

Example CMHG description:

swi-chunk-base-number: 0x88000
swi-handler-code: widget_swi

SWI decoding table

CMHG description:

swi-decoding-table: swi-base-name swi-name*

This table, if present, is used by OS_SWINumberTo/FromString.

Example CMHG description:

swi-chunk-base-number: 0x88000
swi-handler-code: widget_swi
swi-decoding-table: Widget,

Init Read Write Close

This would be appropriate for the following name/number pairs:

Widget_Init 0x88000
Widget_Read 0x88001
Widget_Write 0x88002
Widget_Close 0x88003

SWI decoding code

CMHG description:

swi-decoding-code: swi_decoder ; any valid C function name will do

C interface:
282

How to write relocatable modules in C

und
neral

t to

nts:
void swi_decode(int r[4], void *pw);
/*
* On entry, r[0] < 0 means a request to convert from text to a number.
* In this case r[1] points to the string to convert (terminated by a
* control character, NOT necessarily by NUL).
* Set r[0] to the offset (0..63) of the SWI within the SWI chunk if
* you recognise its name; set r[0] < 0 if you don’t recognise the name.
*
* On entry, r[0] >= 0 means a request to convert from a SWI number to
* a SWI string:
* r[0] is the offset (0..63) of th SWI within the SWI chunk.
* r[1] is a pointer to a buffer;
* r[2] is the offset within the buffer at which to place the text;
* r[3] points to the byte beyond the end of the buffer.
* You should write th SWI name into the buffer at th position given
* by r[2] then update r[2] by the length of the text written (excluding
* any terminating NUL, if you add one).
*
* pw is the private word pointer (‘r12’) passed into the swi_decode
* entry veneer.
*/

If you omit a SWI decoding table then your SWI decoding code will be called instead.
Of course, you don’t have to provide either.

Turning interrupts on and off

The following (<kernel.h>) library functions support the control of the interrupt
enable state:

int _irqs_disabled(void);
/*
* Returns non-0 if IRQs are currently disabled.
*/

void _irqs_off(void);
/*
* Disable IRQs.
*/

void _irqs_on(void);
/*
* Enable IRQs.
*/

These functions suffice to allow saving, restoring and setting of the IRQ state. Gro
rules for using these functions are beyond the scope of this document. However, ge
advice is to leave the IRQ state alone in SWI handlers which terminate quickly, bu
enable it in long-running SWI handlers.

What a SWI handler does to the IRQ state is part of its interface contract with its clie
you, the implementor, control that interface contract.
283

Functional components of modules written in C
IRQ handlers

CMHG description:

irq-handlers: entry_name/handler_name ...

Any number of entry_name/handler_name pairs may be given. If you omit the / and the
handler name, CMHG constructs a handler name by appending _handler to the entry
name.

C interface:

extern int entry_name(_kernel_swi_regs *r, void *pw);
/*
* This is name of the IRQ handler entry veneer compiled by CMHG.
* Use this name as an argument to, for example, SWI OS_Claim, in
* order to attach your handler to IrqV.
*/

int handler_name(_kernel_swi_regs *r, void *pw);
/*
* This is the handler function you must write to handle the IRQ for
* which entry_name is the veneer function.
*
* Return 0 if you handled the interrupt.
* Return non-0 if you did NOT handle the interrupt (because,
* for example, it wasn’t for your handler, but for some other
* handler further down the stack of handlers).
*
* ’r’ points to a vector of words containing the values of r0-r9 on
* entry to the veneer. Pure IRQ handlers do not require these, though
* event handlers and filing system entry points do. If r is updated,
* the updated values will be loaded into r0-r9 on return from the
* handler.
*
* pw is the private word pointer (‘r12’) value with which
* the IRQ entry veneer is called.
*/

Handlers must be installed from some part of the module which runs in SVC mode (eg
initialisation code, a SWI handler, etc). The name to use at installation time is the
entry_name (not the name of the handler function). This is because C functions
cannot be entered directly from IRQ mode, but have to be entered and exited via a
veneer which switches to SVC mode. Running in SVC mode gives your handler
maximum flexibility.

IRQ handlers can also be used as filing system entry points. A full discussion of these
topics is beyond the scope of this Guide; refer to the RISC OS 3 Programmer’s
Reference Manual for details and for information on how to install and remove handlers.
284

How to write relocatable modules in C
Event handler

CMHG description:

event-handler: entry_name/handler_name event_no event_no ...

Only one entry_name/handler_name pair may be given.

C interface:

extern int entry_name(_kernel_swi_regs *r, void *pw);
/*
* This is name of the event handler entry veneer compiled by CMHG.
* Use this name as an argument to, for example, SWI OS_Claim, in
* order to attach your handler to EventV.
*/

int handler_name(_kernel_swi_regs *r, void *pw);
/*
* This is the handler function you must write to handle the event for
* which entry_name is the veneer function.
*
* Return 0 if you wish to claim the event.
* Return non-0 if you do not wish to claim the event.
*
* ’r’ points to a vector of words containing the values of r0-r9 on
* entry to the veneer. If r is updated, the updated values will be
* loaded into r0-r9 on return from the handler.
*
* pw is the private word pointer (‘r12’) value with which
* the event entry veneer is called.
*/

The name to use at installation time is the entry_name (not the name of the handler
function). Refer to the RISC OS 3 Programmer’s Reference Manual for details and for
information on how to install and remove event handlers. As an example, this is the
skeleton of an event handler for key presses and mouse clicks:

/* the claim/free functions... */

#define EventV 16
#define EnableEvent 14
#define DisableEvent 13
#define MouseClick 10
#define Keypress 11

static void claim_release(int claim, void *pw)
{

_kernel_swi_regs regs;
regs.r[0] = EventV;
regs.r[1] = (int) register_event;
regs.r[2] = (int) pw;
_kernel_swi(claim ? OS_Claim : OS_Release,®s,®s);

}

285

Functional components of modules written in C
static void add_remove(int add)
{

_kernel_swi_regs regs;
regs.r[0] = add ? EnableEvent:DisableEvent;
regs.r[1] = MouseClick; /* mouse */
_kernel_swi(OS_Byte,®s,®s);
regs.r[1] = Keypress; /* keyboard */
_kernel_swi(OS_Byte,®s,®s);

}

static void claim_free_events(int claim,void *pw)
{

if (claim) {
claim_release(1,pw);
add_remove(1);

} else {
add_remove(0);
claim_release(0,pw);

}
}

/* init... */
extern _kernel_oserror *events_init(char *cmd_tail, int podule_base, void *pw)
{

IGNORE(cmd_tail);
IGNORE(podule_base);
claim_free_events(1,pw);
return NULL;

}

/* finalise... */
extern _kernel_oserror *events_final (int fatal, int podule, void *pw)
{

IGNORE(fatal);
IGNORE(podule);
/* handle low level events */
claim_free_events(0,pw);
return NULL;

}

/* the handler itself... */
extern int event_handler(_kernel_swi_regs *r,void *pw)
{

IGNORE(pw);
/* switch on the event code */
switch (r->r[0]) {
case MouseClick:
case Keypress:

break;
default:

break;
}
return 1;

}

286

How to write relocatable modules in C
Library initialisation code

CMHG description:

library-initialisation-code: xxxx

The code xxxx is called instead of _clib_initialisemodule. Because the
C library has not been initialised at this point, and there is hence no C environment
present, xxxx must be written in assembler. It should be a veneer around a call to
_clib_initialisemodule.
287

Functional components of modules written in C
288

19 Overlays

verlays are a very old technique for squeezing quart-sized programs into pint-sized

memories: a kind of poor man’s paging.O
store
In common with paged programs, an overlaid program is stored on some backing
ount
 load

xcept
rlays

rlays

ks
ures
rded. In
t this

eed).
h

rease
age

e than
s of

rlay
 same
e

 is
t the

ple, it
s the
e

ch of
nt in
medium such as a floppy disc or a hard disc and its components (called overlay
segments) are loaded into memory only as required. In theory, this reduces the am
of memory required to run a program at the expense of increasing the time taken to
it and repeatedly re-load parts of it. It is a classic space-time trade-off. In practice, e
in rather special circumstances, the saving in memory accruing from the use of ove
is rather modest and less than you might expect. Indeed, as discussed below, ove
have rather restricted applicability under RISC OS. Nonetheless, their use can
occasionally be a ‘life saver’.

Paging vs overlays
In a paged system, a program and its workspace is broken up into fixed size chun
called pages. A combination of special hardware and operating system support ens
that pages are loaded only when needed and that un-needed pages are soon disca
principle, the author of a paged program need not be aware that it will be paged (bu
is often not true in practice if the author wishes the program to run at maximum sp
Both code and data are paged, automatically. In general, for single programs whic
re-use their workspace whenever possible, one sees a ratio of program size plus
workspace size to occupied memory size in the region 1.5 to 3. One can always inc
the ratio arbitrarily by integrating several sequentially used programs into a single im
and by never re-using workspace. But, fundamentally, paging rarely squeezes mor
a quart-sized program into a pint-sized memory. Of course, there are other benefit
paging, but these are beyond the scope of this section.

In contrast, an overlaid program is broken up into variable sized chunks (called ove
segments) by the user, who also determines which of these chunks may share the
area of memory. As the overlay system permits two code fragments which share th
same area of memory to call one another and return successfully to the caller, this
merely a matter of performance. However, if data is included in an overlaid segmen
situation becomes more complicated and the user has more work to do. For exam
must be ensured that all code which uses the data resides in the same segment a
data. Furthermore, it must be acceptable that the data is re-initialised every time th
segment is re-loaded. Thus, in general, it is possible to overlay two work areas ea
which is private to two distinct sets of functions which are not simultaneously reside
289

When to use overlays

n

 it

tter to
 By
utility
. (See

u can

u

les.
ms for

der to
memory. Overall, it would be unusual to overlay more than a quart-sized program into a
pint-sized memory, much as with paging (you may achieve a factor as high as four for
code, but non-overlaid data will usually dilute the overall factor substantially; it all
depends on the details of your application).

A more detailed description of the low-level aspects of overlays is given in the section
Generating overlaid programs on page 141 of the Desktop Tools guide. If you are
especially interested in using overlays you may prefer to read that section next.
Otherwise, if you are more interested in when to use overlays, please read on.

When to use overlays
Overlays work best when a program has several semi-independent parts. A good model
for purposes of understanding is to think of a special-purpose command interpreter (the
root segment) which can invoke separate commands (overlay segments) in response to
user input. Consider, for example, a word processor which consists of a text editor and a
collection of printer drivers. It is clear that each of the printer drivers can be overlaid
(you are unlikely to have more than one printer); it may even be plausible to overlay
each with the editor itself (you may not be able to edit while printing – depending o
how fast the printer goes and on how much CPU time is required to drive it).
Furthermore, if the time taken to load an overlay segment can be tacked on to an
interaction with the user, it is probable that the program will feel little slower than if
were memory-resident. In summary: overlays work best if your program has many
independent sub-functions.

On the other hand, if your program has many semi-independent parts, it may be be
structure it as several independent programs, each called from a control program.
using the shared C library, each program can be relatively small, and the Squeeze
can be used to reduce the space taken by it on backing store by nearly a factor of 2
the chapter Squeeze on page 153 of the Desktop Tools guide for details). In contrast,
overlay segments cannot be squeezed (though the root program can be). So, if yo
structure your application as independent, squeezed programs it may take up less
precious floppy disc space and load faster, especially from a floppy disc, than if yo
structure it using overlays.

If adopted, this strategy will force the independent programs to communicate via fi
Provided the data to be communicated has a simple structure this causes no proble
the application; provided it is not too voluminous, use of the RAM filing system
(RamFS) is suggested as this is fast and requires no special application code in or
use it.
290

Overlays

e –
ch

ation

t to

ery
ther,
So, overlays are most appropriate for applications which manipulate very large amounts
of highly structured data – Computer Aided Design applications are archetypal her
whereas multiple independent programs are most appropriate for applications whi
manipulate relatively small amounts of simply structured data and are otherwise
dominated by large amounts of code.

Naturally, if you are porting an existing application to RISC OS, your view will be
coloured by whether or not it is already structured to use overlays. If it is, it will
probably be best to stick to using overlays, rather than attempting to split the applic
up into semi-independent sub-applications.

On the other hand, if you are writing an application from scratch, you probably wan
ponder this question in more depth. For example, to what other systems will the
application be targeted? Using multiple semi-independent applications may work v
nicely under UNIX or OS/2 where the output of one process can be piped into ano
but less well under MS-DOS where use of overlays is much more the norm.
291

292

Part 5 – Appendixes
293

294

Appendix A: Changes to the C compiler

corn C/C++ is the fifth release of an Acorn C compiler product for RISC OS, and

replaces the Acorn Desktop C product. The product has seen the following A
significant changes since the last release:
aster.
e

 of
nying

s far
l The product has been merged with the Assembler.

l A C++ translator has been added to the product. This is a port of Release 3.0 of
AT&T’s CFront product.

l A C++ tool has been added to the product to provide an interface for C++
compilation that is similar to that provided by the CC tool for C compilation.

l The compiler now produces smaller programs that use less memory and run f
This performance improvement is the result of many small improvements to th
compiler, such as:

l in-lining some commonly used small library functions

l introducing conditionalised conditions

l using variable lifetime analysis to improve the allocation of variables to
registers.

l The Toolbox has been added to the product, to facilitate the design and coding
consistent user interfaces for RISC OS desktop applications. See the accompa
User Interface Toolbox guide.

l RISC_OSLib has been removed from the product, as the Toolbox now provide
superior facilities for writing RISC applications.
295

296

Appendix B: C errors and warnings

his appendix gives a brief description of the intended purposes of error and warning

messages from the CC tool, along with some hints for interpreting them. It then lists T
most of the common errors in alphabetical order. It is not a complete list. Since the
d by

ages
messages are designed as far as possible to be self-explanatory, some of the more simple
common ones are not listed here.

Interpreting CC errors and warnings
The compiler can produce error and warning messages of several degrees of severity.
They are as follows:

l Warnings indicating curious, but legal, program constructs, or constructs that are
indicative of potential error;

l Non-serious errors that still allow code to be produced;

l Serious errors that may cause loss of code;

l Fatal errors that may stop the compiler from compiling;

l System errors that signal faults in the system itself.

Warnings from CC are intended to provide a helpful level of checking, in addition to the
level required by the ANSI standard. On some other systems, such as UNIX, separate
facilities (like lint) are provided to perform this checking. Warnings flag program
constructs that may indicate potential errors, or those not recommended because they
may function differently on other machines, and hence hinder the portability of code.

Some warnings point out the use of facilities provided in this ANSI C implementation
which are above the minimum required by ANSI – for example, use of external
identifiers that are identical in the first six characters, which may not be differentiate
other systems which conform to the ANSI standard.

Programs ported from other machines may cause large numbers of warning mess
from CC, which you can disable with the Suppress warnings option (see page 34 for
more information).

You can also enable additional checks with the CC and C++ Features option. This is
best done in the final stages of a project, and will help you to produce high-quality
software.
297

Warnings

or is
.

C can
hen
tax
as,
 often

ns

d

cause
de

gh

e
Errors and serious errors collectively respond to ANSI ‘diagnostics’; whether an err
serious or not reflects the compiler’s view, not yours, or that of the ANSI committee

After issuing a warning, non-serious, or serious error, CC continues compiling,
sometimes producing more such messages in the process. Compilation of C by C
be thought of as a pipeline process, starting with preprocessing, syntax analysis, t
semantic analysis (when the structure of a portion of code is analysed). When syn
errors in C are encountered by CC, the compiler can often guess what the error w
correct it, and continue. When semantic errors are found, portions of your code are
ignored before continuing, and serious error messages are reported.

Unfortunately, the compact and powerful nature of C leads to a high proportion of
semantic errors. Ignoring portions of your code is likely to make subsequent portio
incorrect, so one serious error can often start a cascade of error messages. Often,
therefore, it is sensible to ignore a set of error messages following a serious error
message.

If the compiler produces any message more serious than a warning, it will set a ba
return code, usually terminating any ‘make’ of which it is a part in the process. Any
serious error will cause the output object file to be deleted; fatal and system errors
immediate termination of compilation, with loss of the object file and bad return co
set.

Future releases of the compiler may distinguish further forms of error, or produce
slightly different forms of wording.

In pcc mode, constructs that are erroneous in ANSI mode are reported, even thou
legal in pcc mode.

Warnings
Warning messages indicate legal but curious C programs, or possibly unintended
constructs (unless warnings are suppressed). On detection of such a condition, th
compiler issues a warning message, then continues compilation.

Warning messages

’&’ unnecessary for function or array xx

This is a reminder that if xx is defined as char xx[10] then xx already has a pointer
type. There is a similar reminder for function names too. Example:

static char mesg[] = "hello\n";
int main ()
{

char *p = &mesg; /* mesg is already compatible with char * */
...
298

C errors and warnings
actual type ’xx’ mismatches format ’%x’

A type error in a printf or scanf format string. Example:

{
int i;
printf("%s\n", i); /* %s need char* not int */
...

ANSI 'xx' trigraph for 'x' found – was this intended?

This helps to avoid inadvertent use of ANSI trigraphs. Example:

printf("Type ??/!!: "); /* "??/" is trigraph for "\" */

argument and old-style parameter mismatch : xx

A function with a non-ANSI declaration has been called using a parameter of a wrong
data type. Example:

int fnl(a , b)
int a;
int b;
{
 return a * b;
{
...
int main()
{
 int l; float m;
 fnl(l , m); /* m should be ’int’ */
 ...

character sequence /* inside comment

You cannot nest comments in C. Example:

/* comment out func() for now...
/* func() returns a random number */
int func(void)
{

...
return i;

}
*/
299

Warnings

ct
eir

 in
Dangling ’else’ indicates possible error

This hints that you may have mismatched your ifs and elses. Remember an else
always refers to the most recent unmatched if. Use braces to avoid ambiguity.
Example:

if (a)
 if (b)
 return 1;
 else if (c)
 return 2;
else /* this belongs to the if (a). Or does it?*/
 return 3;

Deprecated declaration of xx() – give arg types

A feature of the ANSI standard is that argument types should be given in function
declarations (prototypes). ‘No arguments’ is indicated by void. Example:

extern int func(); /* should have ’void’ in the parentheses */

extern clash xx , xx clash (ANSI 6 char monocase)

Using compiler Feature option e, it was found that two external names were not distin
in the first six characters. Some linkers provide only six significant characters in th
symbol table. Example:

extern double function1 (int i);
extern char * function2 (long l);

extern ’main’ needs to be ’int’ function

This is a reminder that main() is expected to return an integer. Example:

void main()
{

...

extern xx not declared in header

Compiling with Feature h, an external object was discovered which was not declared
any included header file.
300

C errors and warnings
floating point constant overflow

This is typically caused by a division by zero in a floating point constant expression
evaluated at compile time. Example:

#define lim 1
#define eps 0.01
static float a = eps/(lim-1); /* lim-1 yields 0 */

floating to integral conversion failed

A cast (possibly implicit) of a floating point constant to an integer failed at compile time.
Example:

static int i = (int) 1.0e20; /* INT_MAX is about 2e10 */

formal parameter ’xx' not declared – 'int' assumed

The declaration of a function parameter is missing. Example:

int func(a)
/*a should be declared here or within the parentheses*/
{

...

Format requires nn parameters, but mm given

Mismatch between a printf or scanf format string and its other arguments.
Example:

printf("%d, %d\n",1); /* should be two ints */

function xx declared but not used

When compiling with Feature v, the function xx was declared but not used within the
source file.

Illegal format conversion '% x'

Indicates an illegal conversion implied by a printf or scanf format string. Example:

printf("%w\n",10); /* no such thing as %w */
301

Warnings
implicit narrowing cast : xx

An arithmetic operation or bit manipulation is attempted involving assignment from one
data type to another, where the size of the latter is naturally smaller than that of the
assigned value. Example:

double d = 1.0; long l = 2L; int i = 3;
i = d * i;
i = 1 | 3;
i = 1 & ~1;

implicit return in non-void function

A non-void function may exit without using a return statement, but won’t return a
meaningful result. Example:

int func(int a)
{

int b=a*10;
.../* no return <expr> statement */

}

incomplete format string

A mistake in a printf or scanf format string. Example:

printf("Score was %d%",score); /* 2nd % should be %% */

’int xx()' assumed – 'void' intended?

If the definition of a function omits its return type – it defaults to int. You should be
explicit about the type, using void if the function doesn’t return a result. Example:

main()
{

...

inventing ’extern int xx();’

The declaration of a function is missing. Example:

printf("Type your name: ");
/* forgot to #include <stdio.h> */
302

C errors and warnings
lower precision in wider context: xx

An arithmetic operation or bit manipulation is attempted involving assignment from
int, short or char to long. Example:

long l = 1L; int i = 2; short j = 3;
l = i & j;
l = i | 5;
l = i * j;

One circumstance in which this causes problems is when code like

long f(int x){return 1<<x;}

(which fails if int has 16 bits) is moved to machines such as the IBM PC.

No side effect in void context: ’op’

An expression which does not yield any side effect was evaluated; it will have no effect
at run-time. Example:

a+b;

no type checking of enum in this compiler

Compiling with Feature x, an enum declaration was found, and this message refers to
the ANSI stipulation that enum values be integers, less strictly typed than in some earlier
dialects of C.

Non-ANSI #include <xx>

A header file has been #included which is not defined in the ANSI standard. < > should
be replaced by " ".

non-portable – not 1 char in ' xx'

Assigning character constants containing more than one character to an int will
produce non-portable results. Example:

static int exitCode = ’ABEX’;
303

Warnings
non-value return in a non-void function

The expression was omitted from a return statement in a function which was defined
with a non-void return type. Example:

int func(int a)

{
int b=a*10;
...
return; /* no <expr> */

}

odd unsigned comparison with 0 : xx

An attempt has been made to determine whether an unsigned variable is negative.
Example:

unsigned u , v;
if (u < 0) u = u * v;
if (u >= 0) u = u / v;

Old-style function: xx

Compiling with Feature o, it was noted that the code contains a non-ANSI function
declaration. Example:

void fn2(a , b)
int a;
int b;
{ b = a; }

omitting trailing ’\0’ for char[nn]

The character array being equated to a string is one character too short for the whole
string, so the trailing zero is being omitted. Example:

static char mesg[14] = "(C)1988 Acorn\n";/* needs 15 */

repeated definition of #define macro xx

When compiling with Feature h, a macro has been repeatedly #defined to take the same
value.
304

C errors and warnings
shift by nn illegal in ANSI C

This is given for negative constant shifts or shifts greater than 31. On the ARM, the
bottom byte of the number given is used, ie it is treated as (unsigned char) nn.
NB: negative shifts are not treated as positive shifts in the other direction. Example:

printf("%d\n",1<<-2);

’short’ slower than ’int’ on this machine (see manual)

For speed you are advised to use ints rather than shorts where possible. This is
because of the overhead of performing implicit casts from short to int in expression
evaluation. However, shorts are half the size of ints, so arrays of shorts can be
useful. Example:

{
short i,j; /* quicker to use ints */
...

spurious {} around scalar initialiser

Braces are only required around structure and array initialises. Example:

static int i = {INIT_I}; /* don’t need braces */

static xx declared but not used

A static variable was declared in a file but never used in it. It is therefore redundant.

Unrecognised #pragma (no ’-’ or unknown word)

#pragma directives are of the form

#pragma -xd
or
#pragma long_spelling

where x is a letter and d is an optional digit. These messages warn against unknown
letters and missing minus signs.

use of ’op’ in condition context

Warns of such possible errors as = and not == in an if or looping statement. Example:

if (a=b) {
...
305

Non-serious errors

ce
 if

been
variable xx declared but not used

This refers to an automatic variable which was declared at the start of a block but never
used within that block. It is therefore redundant. Example:

int func(int p)
{

int a; /* this is never used */
return p*100;

}

xx may be used before being set

Compiling with Feature a, an automatic variable is found to have been used before any
value has been assigned to it.

xx treated as xxul in 32-bit implementation

This message warns of two’s complement arithmetic’s dependence on assigning
negative constants to unsigned ints, and it explains that ints and long ints are
both 32 bits.

Non-serious errors
These are errors which will allow ‘working’ code to be produced – they will not produ
loss of code. On detection of such an error the compiler issues an error message,
enabled, then continues compilation.

’,’ (not ’;’) separates formal parameters

Incorrect punctuation between function parameters. Example:

extern int func(int a;int b);

ANSI C does not support ’long float’

This used to be a synonym for double, but is not allowed in ANSI C.

ancient form of initialisation, use ’=’

An obsolete syntax for initialisation was used, or incorrectly nested brackets have
found. Example:

int i{1}; /* use int i=1; */
306

C errors and warnings

s the

lted in
array [0] found

The minimum subscript count allowed is 1. (Remember that the subscripts go from
0 - n–1.) Example:

static int a[0];

array of xx illegal – assuming pointer

Illegal objects have been declared to occupy an array. Examples:

int fn2[5](); /* array of functions */
void v[10]; /* array of voids */

assignment to 'const' object 'xx'

You can’t assign to objects declared as const. Example:

{
const int ic = 42; /* initialisation ok */
ic = 69; /* can’t change it now */
...

comparison ’op’ of pointer and int:
literal 0 (for == and !=) is the only legal case

You cannot use the comparison operators between an integer and a pointer type. A
message implies, you can only check for a pointer being (not) equal to NULL (int 0).
Example:

{
int i,j,*ip;
j = i>ip; /* can’t compare an int and an int * */
...

declaration with no effect

The compiler detected what appeared to be a declaration statement, but which resu
no store being allocated. This may imply that a data type name was omitted.

differing pointer types: ’xx’

An illegal implicit type cast was detected in a comparison operation between two
pointers of different types. Example:

{
int *ip;
char *cp;
printf("%d\n", ip==cp); /* can’t compare these */
...
307

Non-serious errors

 able

t a
differing redefinition of #define macro xx

#define gives a definition contradicting that already assigned to the named macro.

ellipsis (...) cannot be only parameter

Although C allows variable length argument lists, the ‘...’ parameter cannot stand
alone in this function declaration. Example:

void fnl(...) { }

expected ’xx’ or ’x’ - inserted ’x’ before ’yy’

Often caused by omitting a terminating symbol in a statement when the compiler is
to insert this symbol for you, and then to recover. Example:

int f(int j)
{
 return j;
}
int main()
{
 int i=f(10; /* ’)’ omitted here */
 return i;
}

formal name missing in function definition

This error occurs when a comma in a function definition led the compiler to suspec
further formal parameter was going to follow, but none did. Example:

int a(int b,) /* missing parameter */
{

...

function prototype formal ’xx' needs type or class – 'int'
assumed

A formal parameter in a function prototype was not given a type or class. It needs at least
one of these (register being the only allowed class). Example:

void func(a); /* I mean int a or perhaps register a */
308

C errors and warnings
function returning xx illegal – assuming pointer

A function apparently intends to return an illegal object. Example:

int fn3()[] /* hoping to return an array */
{
 int list[3] = {1,2,3};
 return list;
}

function xx may not be initialised – assuming function
pointer

A function is not a variable, so cannot be initialised. As an attempt to initialise xx has
been made, xx is treated as of type function *. Example:

extern int func(void);
static int fn() = func; /* the compiler will use

 static int (*fn)() = func; instead */

<int> op <pointer> treated as <int> op (int)<pointer>

Warns of an illegal implicit cast within an expression. Typically op is an operator which
has no business being used on pointers anyway, such as | or dyadic *. Example:

{
int i, *ip;
i = i | ip; /* bitwise-or on a pointer?! */
...

junk at end of # xx line – ignored

The xx is either else or endif. These directives should not have anything following
them on the line. Example:

/* text after the #else should be a comment */
#else if it isn’t defined
...

L'...' needs exactly 1 wide character

The wchar_t declaration of a wide character names an identifier comprising other than
one character. Example:

wchar_t wc = L’abc’;
309

Non-serious errors
linkage disagreement for ’xx' – treated as 'xx'

There was a linkage type disagreement for declarations, eg a function was declared as
extern then defined later in the file as static. Example:

int func(int a); /* compiler assumes extern here */
...
static func(int a) /* but told static here */
{

...

more than 4 chars in character constant

A character constant of more than four characters cannot be assigned to a 32 bit int.
Example:

{
int i = ’12345’; /* more than four chars */
...

no chars in character constant ''

At least one character should appear in a character constant. The empty constant is taken
as zero. Example:

{
int i = ’’; /* less than one char == ’\0’ */
...

objects that have been cast are not l-values

The programmer tried to use a cast expression as an l-value. Example:

char *p;
*((int *)p)=10; /* (int *)p is NOT an l-value */

omitted <type> before formal declarator – 'int' assumed

This is given in a formal parameter declaration where a type modifier is given but no
base type. Example:

int func(*a); /* a is a pointer, but to what? */
310

C errors and warnings
’op’: cast between function pointer and non-function object

Casts between function and object pointers can be very dangerous! One possibly valid
(but still very suspect) use is in casting an array of int into which machine code has
been loaded into a function pointer. Example:

static int mcArray[100];
/*pointer to function returning void*/
typedef void (*pfv)(void);

...
 ((pfv)mcArray)(); /* convert to fn type and apply */

’op’: implicit cast of non-0 int to pointer

Zero, equal to a NULL pointer, is the only int which can be legally implicitly cast to a
pointer type. Example:

{
int i, *ip;
ip = i; /* only the constant int 0 can be implicitly

cast to a pointer type */
...

’op’: implicit cast of pointer to non-equal pointer

An illegal implicit cast has been detected between two different pointer types. The type
casting must be made explicit to escape this error. Example:

{
int *ip;
char *cp;
ip = cp; /* differing pointer types */
...

’op’: implicit cast of pointer to ’int’

An illegal implicit cast has been detected between an integer and a pointer. Such casts
must be made explicitly. Example:

{
int i, *ip;
i = ip; /* pointer must be cast explicitly */
...
311

Non-serious errors

:

f a
le:
overlarge escape ’\\xxxx’ treated as ’\\xxx’

A hexadecimal escape sequence is too large. Example:

int novalue()
{
 if (seize) return ’\xfff’; /* \xfff’ too large */
 else return ’\xff’;
}

overlarge escape ’\\x’ treated as ’\\x’

An octal escape sequence is too large. Example:

int novalue()
{
 if (huit) return ’\777’; /* \777 too large */
 else return ’\77’;
}

<pointer> op <int> treated as (int)<pointer> op <int>

The only legal operators allowed in this context are + and -.

prototype and old-style parameters mixed

Use has been made of both the ANSI style function/definition (including a type name for
formal parameters in a function’s heading) and pcc style parameters lists. Example

void fn4(a, int b)
int a;
{
 a = b;
}

’register’ attribute for ’xx’ ignored when address taken

Addresses of register variables cannot be calculated, so an address being taken o
variable with a register storage class causes that attribute to be dropped. Examp

{
register int i, *ip;
ip = &i; /* & forces i to lose its register attribute */
...
312

C errors and warnings
return <expr> illegal for void function

A function declared as void must not return with an expression. Example:

void a(void)
{

...
return 0;

}

size of 'void' required – treated as 1

This indicates an attempt to do pointer arithmetic on a void *, probably indicating an
error. Example:

{
void *vp;
vp++; /* how many bytes to increment by ? */
...

size of a [] array required – treated as [1]

If an array is declared as having an empty first subscript size, the compiler cannot
calculate the array’s size. It therefore assumes the first subscript limit to be 1 if
necessary. This is unlikely to be helpful.

extern int array[][10];
static int s = sizeof(array); /*can’t determine this*/

sizeof <bit field> illegal – sizeof(int) assumed

Bitfields do not necessarily occupy an integral number of bytes but they are always parts
of an int, so an attempt to take the size of a bitfield will return sizeof(int).
Example:

struct s {
int exp : 8;
int mant : 23;
int s : 1;

};
int main(void)
{

struct s st;
int i = sizeof(st.exp); /* can’t obtain this in bytes */
...
313

Non-serious errors
Small (single precision) floating value converted to 0.0
Small floating point value converted to 0.0

A floating point constant was so small that it had to be converted to 0.0. Example:

static float f = 1.0001e-38 – 1.0e-38; /* 1e-42 too small for float */

Spurious #elif ignored
Spurious #else ignored
Spurious #endif ignored

One of these three directives was encountered outside any #if or #ifdef scope.
Example:

#if defined sym
...
#endif
#else /* this one is spurious */
...

static function xx not defined – treated as extern

A prototype declares the function to be static, but the function itself is absent from this
compilation unit.

string initialiser longer than char [nn]

An attempt was made to initialise a character array with a string longer than the array.
Example:

static char str[10] = "1234567891234";

struct component xx may not be function – assuming function
pointer

A variable such as a structure component cannot be declared to have type function,
only function *. Example:

struct s {
int fn();/* compiler will use int (*fn)(); */
char c;

};
314

C errors and warnings

ss.

e
type or class needed (except in function definition) – int
assumed

You can’t declare a function or variable with neither a return type nor a storage cla
One of these must be present. Examples:

func(void); /* need, eg, int or static */
x;

Undeclared name, inventing ’extern int xx’

The name xx was undeclared, so the default type extern int was used. This may
produce later spurious errors, but compilation continues. Example:

int main(void) {
int i = j; /*j has not been previously declared*/
...

unprintable character xx found – ignored

An unrecognised character was found embedded in your source – this could be fil
corruption, so back up your sources! Note that ‘unprintable character’ means any
non-whitespace, non-printable character.

variable xx may not be function – assuming function pointer

A variable cannot be declared to have type function, only function *. Example:

int main(void)
{

auto void fn(void); /* treated as void (*fn)(void);*/
...

xx may not have whitespace in it

Tokens such as the compound assignment operators (+= etc) may not have embedded
whitespace characters in them. Example:

{
int i;
...
i + = 4; /* space not allowed between + and = */
...
315

Serious errors
Serious errors
These are errors which will cause loss of generated code. On detection of such an error,
the compiler will attempt to continue and produce further diagnostic messages, which
are sometimes useful, but will delete the partly produced object file.

’...’ must have exactly 3 dots

This is caused by a mistake in a function prototype where a variable number of
arguments is specified. Example:

extern int printf(const char *format,....); /*one . too many*/

'{' of function body expected – found ' xx'

This is produced when the first character after the formal parameter declarations of a
function is not the { of the function body. Example:

int func(a)
int a;

if (a) ... /* omitted the { */

'{' or <identifier> expected after ' xx', but found ' yy'

xx is typically struct or union, which must be followed either by the tag identifier
or the open brace of the field list. Example:

struct *fred; /* Missed out the tag id */

' xx' variables may not be initialised

A variable is of an inappropriate class for initialisation. Example:

int main()
{
 extern int n=1;
 return 1;
}

316

C errors and warnings
’op’: cast to non-equal ’xx’ illegal
’op’: illegal cast of ’xx’ to pointer
’op’: illegal cast to ’xx’

These errors report various illegal casting operations. Examples:

struct s {
int a,b;

};
struct t {

float ab;
};
int main(void)
{

int i;
struct s s1;
struct t s2;

/* ’=’: illegal cast to ’int’ */
i = s1;

/* ’=’: illegal cast to non-equal ’struct’ */
s1 = s2;

/* <cast>: illegal cast of ’struct’ to pointer */
i = *(int *) s1;

/* <cast>: illegal cast to ’int’ */
i = (int) s2;
...

’op’: illegal use in pointer initialiser

(Static) pointer initialisers must evaluate to a pointer or a pointer constant plus or minus
an integer constant. This error is often accompanied by others. Example:

extern int count;
static int *ip = &count*2;

{} must have 1 element to initialise scalar

When a scalar (integer or floating type) is initialised, the expression does not have to be
enclosed in braces, but if they are present, only one expression may be put between
them. Example:

static int i = {1,2}; /* which one to use? */

Array size nn illegal – 1 assumed

Arrays have a maximum dimension of 0xffffff. Example:

static char dict[0x1000000]; /* Too big */
317

Serious errors
attempt to apply a non-function

The function call operator () was used after an expression which did not yield a pointer
to function type. Example:

{
int i;
i();
...

Bit fields do not have addresses

Bitfields do not necessarily lie on addressable byte boundaries, so the & operator cannot
be used with them. Example:

struct s {
int h1,h2 : 13;

};
int main(void)
{

struct s s1;
short *sp = &s1.h2; /* can’t take & of bit field */
...

Bit size nn illegal – 1 assumed

Bitfields have a maximum permitted width of 32 bits as they must fit in a single integer.
Example:

struct s {
int f1 : 40; /* This one is too big */
int f2 : 8;

};

'break' not in loop or switch – ignored

A break statement was found which was not inside a for, while or do loop or
switch. This might be caused by an extra }, closing the statement prematurely.
Example:

int main(int argc)
{

if (argc == 1)
break;

...
318

C errors and warnings
'case' not in switch – ignored

A case label was found which was not inside a switch statement. This might be
caused by an extra }, closing the switch statement prematurely. Example:

void fn(void)
{

case ’*’: return;
...

<command> expected but found a ' op'

This error occurs when a (binary) operator is found where a statement or side-effect
expression would be expected. Example:

if (a) /10; /* mis-placed) perhaps? */
...

'continue' not in loop – ignored

A continue statement was found which was not inside a for, while or do loop.
This might be caused by an extra }, closing the loop statement prematurely. Example:

while (cc) {
if (dd) /* intended a { here */

error();
} /*this closes the while */
if (ee)

continue;
}

'default' not in switch – ignored

A default label was found which was not inside a switch statement. This might be
caused by an extra }, closing the switch statement prematurely. Example:

switch (n) {
case 0:

return fn(n);
case 1: if (cc)

return -1;
 else

 break;
} /* spurious } closes the switch */
default:

error();
}

319

Serious errors
duplicated case constant: nn

The case label whose value is nn was found more than once in a switch statement.
Note that nn is printed as a decimal integer regardless of the form the expression took in
the source. Example:

switch (n) {
case ’ ’:
...
case ’ ’:
...

}

duplicate ’default’ case ignored

Two cases in a single switch statement were labelled default. Example:

switch (n) {
default:
...
default:
...

}

duplicate definition of ’struct’ tag ’xx’

There are duplicate definitions of the type struct xx {...} ;. Example:

struct s { int i,j;};
struct s {float a,b;};

duplicate definition of ’union’ tag ’xx’

There are duplicate definitions of the type union xx {...} ;. Example:

union u {int i; char c[4];};
union u {double d; char c[8];};

duplicate type specification of formal parameter ’xx’

A formal function parameter had its type declared twice, once in the argument list and
once after it. Example:

void fn(int i)
int i; /* this one is redundant */
{

...
320

C errors and warnings
EOF in comment
EOF in string
EOF in string escape

These all refer to unexpected occurrences of the end of the source file.

Expected <identifier> after ’xx’ but found ’xx’
expected 'xx' – inserted before 'yy'

This typically occurs when a terminating semi-colon has been omitted before a }.
(Common amongst Pascal programmers) Another case is the omission of a closing
bracket of a parenthesised expression. Examples:

int fn(int a, int b, int c)
{

int d = a*(b+c; /* missing) */
return d /* missing ; */

}

Expecting <declarator> or <type>, but found ' xx'

xx is typically a punctuation character found where a variable or function declaration or
definition would be expected (at the top level). Example:

static int i = MAX;+1; /* spurious ; ends expression */

<expression> expected but found ' op'

Similar to above. An operator was found where an operand might reasonably be
expected. Example:

func(>>10); /* missing left hand side of >> */

grossly over-long floating point number

Only a certain number of decimal digits are needed to specify a floating point number to
the accuracy that it can be stored to. This number of digits was exceeded by an
unreasonable amount.

grossly over-long number

A constant has an excessive number of leading zeros, not affecting its value.
321

Serious errors
hex digit needed after 0x or 0X

Hexadecimal constants must have at least one digit from the set 0-9, a-f, A-F following
the 0x. Example:

int i = 0xg; /* illegal hex char */

<identifier> expected but found ’xx’ in ’enum’ definition

An unexpected token was found in the list of identifiers within the braces of an enum
definition. Example:

enum colour {red, green, blue,;}; /* spurious ; */

identifier (xx) found in <abstract declarator> - ignored

The sizeof() function and cast expressions require abstract declarators, ie types
without an identifier name. This error is given when an identifier is found in such a
situation. Examples:

i = (int j) ip; /* trying to cast to integer */
l = sizeof(char str[10]); /* probably just mean sizeof(str) */

illegal bit field type ’xx' – 'int' assumed

Int (signed or unsigned) is the only valid bitfield type in ANSI-conforming
implementations. Example:

struct s { char a : 4; char b : 4;};

illegal in case expression (ignored): xx
illegal in constant expression: xx
illegal in floating type initialiser: xx

All of these errors occur when a constant is needed at compile time but a variable
expression was found.

illegal in l-value: 'enum' constant ' xx'

An incorrect attempt was made to assign to an enum constant. This could be caused by
misspelling an enum or variable identifier. Example:

enum col {red, green, blue};
int fn()
{

int read;
red = 10;
...
322

C errors and warnings

ion

 in

 the
illegal in the context of an l-value: ’xx’
illegal in lvalue: function or array ’xx’

An incorrect attempt was made to assign to xx, where the object in question is not
assignable (an l-value). You can’t, for example, assign to an array name or a funct
name. Examples:

{
int a,b,c;
a ? b : c = 10; /* ?: can’t yield l-values. */
if (a) /* use this instead */

b = 10;
else

c = 10;
...

or, in the same context,

*(a ? &b: &c) = 10;

illegal in static integral type initialiser: xx

A constant was needed at compile time but a suitable expression wasn’t found.

illegal types for operands : ’op’

An operation was attempted using operands which are unsuitable for the operator
question. Examples:

{
struct {int a,b;} s;
int i;
i = *s; /* can’t indirect through a struct */
s = s+s; /* can’t add structs */
...

incomplete type at tentative declaration of ’xx’

An incomplete non-static tentative definition has not been completed by the end of
compilation unit. Example:

int incomplete[];
...
/* should be completed with a declaration like: */
/* int incomplete[SOMESIZE]; */
323

Serious errors
junk after #if <expression>
junk after #include "xx"
junk after #include <xx>

None of these directives should have any other non-whitespace characters following the
expression/filename. Example:

#include <stdio.h> this isn’t allowed

label ’xx’ has not been set

An attempt has been made to use a label that has not been declared in the current scope,
after having been referenced in a goto statement. Example:

int main(void)
{

goto end;
}

misplaced '{' at top level – ignoring block

{ } blocks can only occur within function definitions. Example:

/* need a function name here */
{

int i;
...

misplaced 'else' ignored

An else with no matching if was found. Example:

if (cc) /* should have used { } */
i = 1;
j =2;

else
k = 3;

...

misplaced preprocessor character 'xx'

Usually a typing error; one of the characters used by the preprocessor was detected out
of context. Example:

char #str[] = "string"; /* should be char *str[] */

missing #endif at EOF

A #if or #ifdef was still active at end of the source file. These directives must
always be matched with a #endif.
324

C errors and warnings
missing ’"’ in pre-processor command line

A line such as #include "name has the second " missing.

missing ’)’ after xx(... on line nn

The closing bracket (or comma separating the arguments) of a macro call was omitted.
Example:

#define rdch(p) {ch=*p++;}
...
{

rdch(p /* missing) */
...

missing ’,’ or ’)’ after #define xx(...

One of the above characters was omitted after an identifier in the macro parameter list.
Example:

#define rdch(p {ch = *p++;}

missing ’<’ or ’"’ after #include

A #include filename should be within either double quotes or angled brackets.

missing hex digit(s) after \x

The string escape \x is intended to be used to insert characters in a string using their
hexadecimal values, but was incorrectly used here. It should be followed by between
one and three hexadecimal digits. Example:

printf("\xxx/"); /* probably meant "\\xxx/" */

missing identifier after #define
missing identifier after #ifdef
missing identifier after #undef

Each of these directives should be followed by a valid C identifier. Example:

#define @ at

missing parameter name in #define xx(...

No identifier was found after a , in a macro parameter list. Example:

#define rdch(p,) {ch=*p++;}
325

Serious errors
no ’)’ after #if defined (...

The defined operator expects an identifier, optionally enclosed within brackets.
Example:

#if defined(debug

no identifier after #if defined

See above.

non static address ’xx’ in pointer initialiser

An attempt was made to take the address of an automatic variable in an expression used
to initialise a static pointer. Such addresses are not known at compile-time. Example:

{
int i;
static int *ip = &i; /*&i not known to compiler*/
...

non-formal ’xx’ in parameter-type-specifier

A parameter name used to declare the parameter types did not actually occur in the
parameter list of the function. Example:

void fn(a)
int a,b;
{

...

number nn too large for 32-bit implementation

An integer constant was found which was too large to fit in a 32 bit int. Example:

static int mask = 0x800000000; /*0x80000000 intended?*/

objects or arrays of type void are illegal

void is not a valid data type.

overlarge floating point value found
overlarge (single precision) floating point value found

A floating point constant has been found which is so large that it will not fit in a floating
point variable. Examples:

float f = 1e40; /* largest is approx 1e38 for float */
double d = 1e310; /* and 1e308 for double */
326

C errors and warnings
quote (" or ’) inserted before newline

Strings and character constants are not allowed to contain unescaped newline characters.
Use \<nl> to allow strings to span lines. Example:

printf("Total =

re-using ’struct’ tag ’xx’ as ’union’ tag

There are conflicting definitions of the type struct xx {...} ; and union xx
{...} ;. Structure and union tags currently share the same name-space in C.
Example:

struct s {int a,b;};
...
union s (int a; double d;};

re-using ’union’ tag ’xx’ as ’struct’ tag

As above.

size of struct ’xx’ needed but not yet defined

An operation requires knowledge of the size of the struct, but this was not defined. This
error is likely to accompany others. Example:

{
struct s; /* forward declaration */
struct s *sp; /* pointer to s */
sp++; /* need size for inc operation */
...

size of union ’xx’ needed but not yet defined

See above.

storage class ’xx’ incompatible with ’xx' – ignored

An attempt was made to declare a variable with conflicting storage classes. Example:

{
static auto int i; /* contradiction in terms */
...
327

Serious errors
storage class 'xx' not permitted in context xx – ignored

An attempt was made to declare a variable whose storage class conflicted with its
position in the program. Examples:

register int i; /* can’t have top-level regs */
void fn(a)
static int a; /* or static parameters */
{

...

struct ' xx' must be defined for (static) variable
declaration

Before you can declare a static structure variable, that structure type must have been
defined. This is so the compiler knows how much storage to reserve for it. Examples:

static struct s s1; /* s not defined */
struct t;
static struct t t1; /* t not defined */

struct/union ' xx' not yet defined – cannot be selected from

The structure or union type used as the left operand of a . or → operator has not yet been
defined so the field names are not known. Example:

{
struct s s1; /* forward reference */
s1.a = 12; /* don’t know field names yet */
...

too few arguments to macro xx(... on line nn
too many arguments to macro xx(... on line nn

The number of arguments used in the invocation of a macro must match exactly the
number used when it was defined. Example:

#define rdch(ch,p) while((ch = *p++)==’ ’);
...

rdch(ptr);/* need ptr and ch */
...

too many initialisers in {} for aggregate

The list of constants in a static array or structure initialiser exceeded the number of
elements/fields for the type involved. Example:

static int powers[8] = {0,1,2,4,8,16,32,64,128};
328

C errors and warnings
type ’xx’ inconsistent with ’xx’
type disagreement for ’xx’

Conflicting types were encountered in function declaration (prototype) and its
definition. Example:

void fn(int);
...
int fn(int a)
{

...

A pernicious error of this type is caused by mixing ANSI and old-style function
declarations. Example:

int f(char x);
int f(x)char x;
{
 ...

typedef name ’xx’ used in expression context

A typedef name was used as a variable name. Example:

typedef char flag;
...
{

int i = flag;

undefined struct/union ’xx’ cannot be member

A struct/union not already defined cannot be a member of another
struct/union. In particular this means that a struct/union cannot be a member
of itself: use pointers for this. Example:

struct s1 {
struct s2 type; /* s2 not defined yet */
int count;

};

unknown preprocessor directive : #xx

The identifier following a # did not correspond to any of the recognised pre-processor
directives. Example:

#asm /* not an ANSI directive */
329

Fatal errors

some
uninitialised static [] arrays illegal

Static [] arrays must be initialised to allow the compiler to determine their size.
Example:

static char str[]; /* needs {} initialiser */

union ’xx’ must be defined for (static) variable declaration

Before you can declare a static union variable, that union type must have been defined.
Example:

static union u u1; /* compiler can’t ascertain size */

'while' expected after 'do' – found ' xx'

The syntax of the do statement is do statement while (expression). Example:

do /* should put these statements in {} */
l = inputLine();
err = processLine(l);/*finds err, not while */

while (!err);

Fatal errors
These are causes for the compiler to give up compilation. Error messages are issued and
the compiler stops.

couldn't create object file 'file'

The compiler was unable to open or write to the specified output code file, perhaps
because it was locked or the o directory does not exist.

macro args too long

Grossly over-long macro arguments, possibly as a result of some other error.

macro expansion buffer overflow

Grossly over-complicated macros were used, possibly as a result of some other error.

no store left
out of store (in cc_alloc)

The compiler has run out of memory – either shorten your source programs, or free
RAM by, for example, quitting some other applications.
330

C errors and warnings
If running under the desktop, you can use the Task Manager to increase your
wimpslot size.

too many errors

More than 100 serious errors were detected.

too many file names

An attempt was made to compile too many files at once. 25 is the maximum that will be
accepted.

System errors
There are some additional error messages that can be generated by the compiler if it
detects errors in the compiler itself. It is very unusual to encounter this type of error. If
you do, note the circumstances under which the error was caused and contact your
Acorn supplier.

These error messages all look like this:

 * The compiler has detected an internal inconsistency. This can occur *
 * because it has run out of a vital resource such as memory or disk *
 * space or because there is a fault in it. If you cannot easily alter *
 * your program to avoid causing this rare failure, please contact your *
 * Acorn dealer. The dealer may be able to help you immediately and will *
 * be able to report a suspected compiler fault to Acorn Computers. *

331

System errors
332

ges
Appendix C: C++ errors and warnings

his appendix contains the text and explanation for all ‘not implemented’ messa

produced by the C++ Language System Release 3.0. They are listed here in T
alphabetical order.
nted’.

line

ed’
es,
Each message is preceded by a file name, a line number, and the text ‘not impleme
A complete error has this syntax:

"file", line n: not implemented: message

where the message is as used in the headings below. The line number is usually the
on which a problem has been diagnosed.

A ‘not implemented’ message is issued when Release 3.0 encounters a legal construct
for which it cannot generate code. Because code is not generated, ‘not implement
messages cause the CC command to fail, and the program is not linked. Release 3.0 do
however, attempt to examine the rest of your program for other errors.

‘Not implemented’ messages

actual parameter expression of type string literal

A template is instantiated with a sting literal actual argument:

template <char* s> struct S {/*...*/};

S<"hello world"> svar;

"file", line 3: not implemented: actual parameter expression of type string
literal

address of bound member as actual template argument

A template is instantiated with the address of a class member bound to an actual class
object:

template <int *pi> class x {};
class y { public: int i; } b;

x< &b.i > xi;

"file", line 4: not implemented: address of bound member (& ::b . y::i) as
actual template argument
333

‘Not implemented’ messages
& of op

This message should not be produced.

1st operand of .* too complicated

The first operand of a function call expression involves a pointer to a member function
and is an expression that may have side effects or may require a temporary.

struct S { virtual int f(); };
int (S::*pmf)() = &S::f;
S *f();
int i = (f()->*pmf)();

"file", line 5: not implemented: 1st operand of .* too complicated

2nd operand of .* too complicated

The second operand of a pointer to member operator is an expression that has side
effects.

struct S { int f(); };
int (S::*pmf)() = &S::f;
S *sp = new S;
int i = 5;
int j = (sp->*(i+=5, pmf))();

"file", line 5: not implemented: 2nd operand of .* too complicated

call of virtual function function before class has been
completely declared

class x {
public:

virtual x& f();
int foo(x t = pt->f());

private:
static x* pt;
int i;

};

"file", line 6: not implemented: call of virtual function x::f() before class
x has been completely declared - try moving call from argument list into
function body or make function non-virtual
334

C++ errors and warnings
cannot expand inline function function with for statement
in inline

A for statement appears in the definition of an inline function.

struct S {
int s[100];
S() { for (int i = 0; i < 100; i++) s[i] = i; }

};

"file", line 1: not implemented: cannot expand inline function S::S() with for
statement in inline

cannot expand inline function function with statement
after "return"

A value-returning inline function contains a statement following a return statement.

inline int f(int i) {
if (i) return i;
return 0;

}

"file", line 4: not implemented: cannot expand inline function f() with
statement after "return"

cannot expand inline function function with two local
variables with the same name (name)

Two variables with the same name and different types are declared within the body of a
value-returning inline function.

inline int f(int i) {
{ int x = i; }
{ double x = i; }
return 0;

}

"file", line 5: not implemented: cannot expand inline function f() with two
local variables with the same name (x)

cannot expand inline function needing temporary variable
of array type

An inline function that contains a local declaration of an array object is called.

inline int f(int i) {
int a[1];
a[0] = i;
return i;

}
int v = f(0);

"file", line 6: not implemented: cannot expand inline function needing
temporary variable of array type
335

‘Not implemented’ messages
cannot expand inline function with return in if statement

This message should not be produced.

cannot expand inline function with static name

An inline function contains the declaration of a static object.

inline void f() {
static int i = 5;

}

"file", line 2: not implemented: cannot expand inline function with static i

cast of non-integer constant

A cast of a non-integer constant as an actual parameter to a template class.

template <int i> class x;
int yy;

x< (int)&yy > xi;

"file", line 4: not implemented: cast of non-integer constant

cannot expand inline void function called in comma
expression

A call of an inline void function that cannot be translated into an expression (that
is, one that includes a loop, a goto, or a switch statement) appears as the first
operand of a comma operator.

int i;
inline void f() { for (;;) ; }
void g() { for (f(), i = 0; i < 10; i++) ; }

"file", line 3: not implemented: cannot expand inline void f() called in comma
expression

cannot expand inline void function called in for
expression

A call of an inline void function that cannot be translated into an expression (that
is, one that includes a loop, a goto, or a switch statement) appears in the second
expression of a for statement.

void inline f() { for (;;) ; } void g() { for (;; f()) ; }

"file", line 2: not implemented: cannot expand inline void f() called in for
expression
336

C++ errors and warnings
cannot expand value-returning inline function with call of
...

A value-returning inline function is defined, and it contains a call to another inline
function that is not value-returning.

inline void f() { for(;;) ; }
inline int g() { f(); return 0; }

"file", line 2: not implemented: cannot expand value-returning inline g() with
call of non-value-returning inline f()

cannot merge lists of conversion functions

A derived class with multiple bases is declared and there are conversion operators
declared in more than one of the base classes.

struct B1 {
operator int();

};
struct B2 {

operator float();
};
struct D : public B1, public B2 { };

"file", line 7: not implemented: cannot merge lists of conversion functions

catch

The keyword catch appears; catch is reserved for future use.

int catch;

"file", line 1: not implemented: catch
"file", line 1: warning: name expected in declaration list

class defined within sizeof

A class or union definition appears as the type name in a sizeof expression.

int i = sizeof (struct S { int i; });

"file", line 1: not implemented: class defined within sizeof
"file", line 1: error: S undefined, size not known

class hierarchy too complicated

This message should not be produced.
337

‘Not implemented’ messages
conditional expression with type

The second and third operands of a conditional expression are member functions or
pointers to members.

struct S { int i, j; };
void f(int i) {

int S::*pmi = i ? &S::i : &S::j;
}

"file", line 3: not implemented: conditional expression with int S::*

constructor needed for argument initializer

The default value for an argument is a constructor or is an expression that invokes a
constructor.

struct S { S(int); };
int f(S = S(1));
int g(S = 5);

"file", line 2: not implemented: constructor as default argument
"file", line 3: not implemented: constructor needed for argument initializer

copy of member[], no memberwise copy for class

An implementation-generated copy operation for a class X is required, but the operation
cannot be generated because X has an array member whose type is a class with either a
virtual base class or its own defined copy operation. The workaround is to add a
memberwise copy operator to X.

struct S1 {};
struct S2 : S1 { S2& operator=(const S2&); };
struct X { S2 m[1]; };
X var1;
X var2 = var1;

"file", line 5: not implemented: copy of S2[], no memberwise copy for S2

default argument too complicated

A default argument in a declaration not at file scope requires the generation of a
temporary.

struct S {
S();
int f(const int &r = 1);

};

"file", line 3: not implemented: default argument too complicated
"file", line 3: not implemented: needs temporary variable to evaluate argument
initializer
338

C++ errors and warnings
ellipsis (...) in argument list of template function name

An ellipsis is used in a template function declaration:

template <class T> f(T, ...);

"file", line 1: not implemented: ellipsis (...) in argument list of template
function f()

explicit template parameter list for destructor of
specialized template class name

Explicit template parameters are included in declaration of a specialised class’
destructor:

template <class T> struct S { /*...*/ };

struct S<int> {
~S<int>();

};

"file", line 4: not implemented: explicit template parameter list for
destructor of specialized template class S <> -- please drop the parameter
list

Instead, declare the specialised destructor as follows:

template <class T> struct S { /*...*/ };

struct S<int> {
~S();

};

formal type parameter name used as base class of template

The formal type parameter is used as the base class of a template class:

template <class T> struct S : public T {/*...*/};

"file", line 1: not implemented: formal type parameter T used as base class of
template

forward declaration of a specialized version of template
name

A forward declaration of a specialised, rather than generalised template:

template <class T> struct S; struct S<int>;

"file", line 2: not implemented: forward declaration of a specialized version
of template S <int >
339

‘Not implemented’ messages
general initializer in initializer list

The initialiser list in a declaration contains an expression that cannot easily be evaluated
at compile time or that requires runtime evaluation.

int f();
int i[1] = { f() };

"file", line 2: not implemented: general initializer in initializer list

initialization of name (automatic aggregate)

An aggregate at local scope is initialised. This message is not issued if the +a1 option
(produces declarations acceptable to an ANSI C compiler) is specified.

void f() {
int i[1] = {1};

}

"file", line 2: not implemented: initialization of i (automatic aggregate)

initialization of union with initializer list

An object of union type is initialised with an initialiser list. This message is not issued if
the +a1 option (produces declarations acceptable to an ANSI C compiler) is specified.

union U { int i; float f; };
U u = {1};

"file", line 2: not implemented: initialization of union with initializer list

initializer for class member array with constructor

This message should always be accompanied by an error message. The ‘not
implemented’ message is inappropriate and should not be reported.

initializer for local static too complicated

This message should not be produced.

initializer for multi-dimensional array of objects of
class class with constructor name

A multi-dimensional array of a class with a constructor has an explicit initialiser.

struct S { S(int); };
S s[2][2] = {1,2,3,4};

"file", line 2: not implemented: initializer for multi-dimensional array of
objects of class S with constructor ::s
340

C++ errors and warnings
implicit static initializer for multi-dimensional array of
objects of class with constructor

class x {
public:

x() ;
};

main() {
static x xx[10][20];
}

"file", line 7: not implemented: implicit static initializer for multi-
dimensional array of objects of class x with constructor

initializer list for local variable name

This message should not be produced.

label in block with destructors

A labelled statement appears in a block in which an object with a destructor exists.

struct S { S(int); ∼S(); };
void f() {

S s(5);
xyz: ;
}

"file", line 5: not implemented: label in block with destructors

local class name within template function

A local class is defined inside a template function. A similar message is issued for
local enums and local typedefs defined inside a template function:

template <class T> f() {
class l {/*...*/};
enum E {/*...*/};
typedef int* ip;

};

"file", line 2: not implemented: local class l (local to f()) within template
function
"file", line 3: not implemented: local enum E(local to f()) within template
function
"file", line 4: not implemented: local typedef ip within template function
341

‘Not implemented’ messages
local static class name (type)

A static array of objects of a class with a constructor is declared at local scope.

class S {
public:

S();
};
void f() {

static S s[9];
}

"file", line 2: not implemented: local static class s (S [9])

local static name has class::∼class() but no constructor
(add class:: class())

A static class object with a destructor, but no constructor, appears at local scope.

struct S { ~S(); };
void f() { static S s; }

"file", line 1: warning: S has S::~S() but no constructor
"file", line 2: not implemented: local static s has S::~S() but no constructor
(add S:: S())

lvalue op too complicated

This message should not be produced.

needs temporary variable to evaluate argument initializer

A default argument requires a temporary variable.

void f() {
int g(const int& = 5);

}

"file", line 2: not implemented: needs temporary variable to evaluate argument
initializer

nested class type as parameter type to template class name

A nested class is used as the actual parameter for a template class instantiation:

template <class T> struct S;

struct outer {
struct inner {};

};

S<outer::inner> svar;

"file", line 7: not implemented: nested class outer::inner as parameter type
to template class S
342

C++ errors and warnings

ight

tions
nested class name within nested class name within template
class name

Classes may only be nested directly within template classes, classes within nested
classes within template classes are not implemented:

template <class T> class S {
class nest1 {

class nest2 {/*...*/};
};

};

"file", line 3: not implemented: nested class S::nest1::nest2 within nested
class S::nest1 within template class S

nested depth class beyond 9 unsupported

Classes are nested more than nine levels deep.

struct S1 {
struct S2 {
struct S3 {
struct S4 {
struct S5 {
struct S6 {
struct S7 {
struct S8 {
struct S9 {
struct S10 { enum { e }; };

};};};};};};};};};

"file", line 20: not implemented: nested depth class beyond 9 unsupported

non-trivial declaration in switch statement

A ‘non-trivial’ declaration appears within a switch statement. Such a declaration m
declare an object of reference type, a static object, a const object, an object of a class
type with constructor or destructor, an object with an initialiser list, or an object
initialised with a string literal.

void f(int i) {
switch (i) {
default:

int& j = i;
}

}

"file", line 2: not implemented: non-trivial declaration in switch statement
(try enclosing it in a block)

Note that since it is illegal to jump past a declaration with an explicit or implicit
initialiser unless the declaration is in an inner block that is not entered, most declara
in switch statements and not contained in inner blocks will be errors.
343

‘Not implemented’ messages
out-of-line definition of member function of class nested
within template class

The member functions of a class nested within a template function must be defined
within the definition of the nested class.

template <class t> struct x {
struct y { void foo(); };
// ...

};

template <class t>
void x<t>::y::foo(){}

"file", line 7: not implemented: out-of-line definition of member function of
class nested within template class (x::y:: foo())

overly complex op of op

This message should not be produced.

parameter expression of type float, double or long double

A template taking a non-type argument is declared taking a float, double or long double
argument:

template <double d> struct S { /*...*/};

"file", line 1: not implemented: parameter expression of type float, double,
or long double

postfix template function operator ++(): please make a
class member function

The postfix implementation of a template increment or decrement operator must be a
member function.

template <class t> struct x {
int operator++(int); // ok

};

template <class t>
int operator++(x<t>&,int); // sorry

x<int> xi;

"file", "", line 6: not implemented: postfix template function operator ++():
please make a class member function

pointer to member function type too complicated

This message should not be produced.
344

C++ errors and warnings
public specification of overloaded function

The base class member in an access declaration refers to an overloaded function. A
similar message is issued for private and protected access declarations.

struct B { int f(); int f(int); };
class D : private B {
public:

B::f;
};

"file", line 2: not implemented: public specification of overloaded B::f()

reuse of formal template parameter name

A template formal parameter name is reused within the template declaration:

template <class T> struct S {
int T;

};

"file", line 2: not implemented: reuse of formal template parameter T

specialized template name not at global scope

A specialised template is declared at other than global scope:

template <class T> struct S {
T var;

};

void f() {
struct S <int > {

int var;
};

};

"file", line 6: not implemented: specialized template S not at global scope

static member anonymous union

A static class member is declared as an anonymous union.

class C {
static union {

int i;
double d;

};
};

"file, line 5: not implemented: static member anonymous union

struct name member name

This message should not be produced.
345

‘Not implemented’ messages
template function actuals too complicated (please
simplify)

#include <iostream.h>

template <class i> struct x { x(); };

template <class t>
ostream& operator<<(ostream &os, x<t>&) { return os; }

x<int> z;

main() {
/*
* ok: simplified invocation of actual template function:
* cout << "hello"; cout << z << endl;
*/

// generates sorry message: actuals too complicated
cout << "hello" << z << endl;
}

"file", line 17: not implemented: template function operator <<(): actuals too
complicated (please simplify)

template function instantiated with local class name

template <class T> int f(T);

f2() {
struct local {/*...*/};
local lvar;
f(lvar);

}

"file", line 6: not implemented: template function f() instantiated with local
class local

temporary of class name with destructor needed in expr
expression

An expression containing a ?:, ||, or && operator requires a temporary object of a class
that has a destructor.

struct S { S(int); ∼S(); };
S f(int i) {

return i ? S(1) : S(2) ;
}

"file", line 3: not implemented: temporary of class S with destructor needed
in ?: expression
346

C++ errors and warnings
too few initializers for name

The initialiser list for an array of class objects has fewer initialisers than the number of
elements in the array.

struct S { S(int); S(); };
S a[2] = {1};

"file", line 2: not implemented: too few initializers for ::a

type1 assigned to type2 (too complicated)

A pointer is initialised or assigned with an expression whose type is too complicated.

struct S1 {};
struct S2 { int i; };
struct S3 : S1, S2 {};
int S3::*pmi = &S2::i;

"file", line 4: not implemented: int S2::* assigned to int S3::* (too
complicated)

use of member with formal template parameter

An attempt to use a member of a formal parameter type, such as T::type, is not
currently supported. For example,

template <class T> class U {
typedef T TU;
// ...

};

template <class Type> class V {
Type::TU t;
// ...

};

"file", line 9: not implemented: use of Type::TU with formal template type
parameter
"file", line 9: cannot recover from earlier errors

visibility declaration for conversion operator

An access declaration is specified for a conversion operator.

struct B { operator int(); };
class D : private B {
public:

B::operator int;
};

"file", line 1: not implemented: visibility declaration for conversion
operator
347

volatile functions

A member function is specified as volatile.

struct S {
int f() volatile;

};

"file", line 2: not implemented: volatile functions

wide character constant
wide character string

A wide character constant or a wide character string is used.

int wc = L’ab’;
char *ws = L"abcd";

" file", line 1: not implemented: wide character constant
" file", line 2: not implemented: wide character string
348

Symbols
__heap_checking_on_all_allocates 140
__heap_checking_on_all_deallocates 140
_fmapstore 30, 140
_kernel_stkovf_split_0frame 271
_kernel_stkovf_split_frame 271
_kernel_swi 266
_mapstore 30, 33, 140
A
abort 82, 85, 122
abs 125
acos 83, 98
asctime 136
asin 83, 98
assert 82
atan 98
atan2 83, 98
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

atexit 123
atof 119
atoi 119
atol 119
B
bsearch 124
C
calloc 85, 121
ceil 98
clearerr 118
clock 85, 135
cos 98
cosh 98
ctime 136
D
difftime 135
div 125
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

E
event_deregister_message_handler 142, 146
event_deregister_toolbox_handler 142, 146
event_deregister_wimp_handler 142, 146
event_get_mask 143
event_initialise 141, 143, 147
event_poll 141, 142, 144, 147
event_poll_idle 141, 144
event_register_message_handler 142, 146
event_register_toolbox_handler 141, 145
event_register_wimp_handler 141, 145
event_set_mask 141, 143, 144
exit 85, 123
exp 98
F
fabs 98
fclose 106
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

feof 118
ferror 118
fflush 106
fgetc 112
fgetpos 84, 116
fgets 113
floor 98
fmod 83, 98
fopen 107
fprintf 84, 109
fputc 113
fputs 113
fread 115
free 122
freopen 108
frexp 98
fscanf 84, 110
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

fseek 116
fsetpos 117
ftell 84, 117
fwrite 116
G
getc 113
getchar 114
getenv 85, 123
gets 114
gmtime 137
I
isalnum 83, 93
isalpha 83, 93
iscntrl 83, 93
isdigit 93
isgraph 93
islower 93
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

islowert 83
isprint 83, 93
ispunct 83, 93
isspace 93
isupper 83, 93
isxdigit 93
L
labs 125
lconv 97
ldexp 98
ldiv 125
localtime 137
log 83, 98
log10 83, 98
longjmp 99
M
main 77, 261, 265
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

malloc 85, 122, 265
mblen 126
mbstowcs 127
mbtowc 126
memchr 132
memcmp 130
memcpy 129
memmove 129
memset 134
mktime 136
modf 98
P
perror 84, 118
pow 98
printf 87, 110
putc 114
putchar 114
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

puts 114
Q
qsort 124
R
raise 100
rand 121
realloc 85, 122
remove 84, 105
rename 84, 105
rewind 117
S
scanf 87, 111
setbuf 108
setjmp 99
setlocale 83, 97
setvbuf 108
signal 83, 264
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

sin 98
sinh 98
sprintf 110, 265
sqrt 83, 98
srand 121
sscanf 111
strcat 130
strchr 132, 265
strcmp 131
strcoll 131
strcpy 129
strcspn 132
strerror 85, 134
strftime 137
strlen 134
strncat 130
strncmp 131
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

strncpy 130
strpbrk 132
strrchr 132, 265
strspn 133
strstr 133
strtod 119
strtok 133
strtol 120
strtoul 120
struct tm 135
strxfrm 131
system 85, 123
T
tan 98
tanh 98
time 136
tmpfile 105
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

tmpnam 106
tolower 93
toolbox_initialise 141, 143
toupper 93
U
ungetc 115
V
va_arg 102
va_end 103
va_list 102
va_start 102
vfprintf 112
vprintf 112
vsprintf 112
W
wcstombs 127
wctomb 127
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

wimp_add_messages 152
wimp_base_of_sprites 152
wimp_block_copy 152
wimp_close_down 152
wimp_close_template 153
wimp_close_window 153
wimp_command_window 153
wimp_create_icon 153
wimp_create_menu 153
wimp_create_submenu 153
wimp_create_window 154
wimp_decode_menu 154
wimp_delete_icon 154
wimp_delete_window 154
wimp_drag_box 154
wimp_force_redraw 155
wimp_get_caret_position 155
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

wimp_get_icon_state 155
wimp_get_menu_state 155
wimp_get_pointer_info 155
wimp_get_rectangle 156
wimp_get_window_info 156
wimp_get_window_outline 156
wimp_get_window_state 156
wimp_initialise 156
wimp_load_template 157
wimp_open_template 157
wimp_open_window 157
wimp_plot_icon 157
wimp_poll 157
wimp_poll_idle 158
wimp_process_key 158
wimp_read_palette 158
wimp_read_sys_info 158
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

wimp_redraw_window 158
wimp_remove_messages 159
wimp_report_error 159
wimp_resize_icon 159
wimp_send_message 159
wimp_set_caret_position 160
wimp_set_colour 160
wimp_set_colour_mapping 160
wimp_set_extent 160
wimp_set_font_colours 160
wimp_set_icon_state 161
wimp_set_mode 161
wimp_set_palette 161
wimp_set_pointer_shape 161
wimp_slot_size 162
wimp_sprite_op 162
wimp_start_task 162
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

wimp_text_colour 162
wimp_text_op 162
wimp_transfer_block 163
wimp_update_window 163
wimp_which_icon 163
X
x$stack_overflow 271
x$stack_overflow1 271
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

C
c_exception

complex_error 243
cerr 182
cin 182
clog 182
complex 240

– 248
!= 249
* 249
*= 249
+ 248
+= 249
/ 249
/= 249
–= 249
== 249
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

abs 241
arg 241
conj 241
cos 251
cosh 251
exp 246
imag 242
log 246
norm 241
polar 242
pow 246
real 242
sin 251
sinh 251
sqrt 246

cout 182
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

F
filebuf 183, 184

attach 186
close 186
fd 186
filebuf 185
is_open 186
open 186
seekoff 186
seekpos 187
setbuf 187
sync 187

fstream 183, 188
attach 190
close 190
fstream 189
open 190
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

rdbuf 191
setbuf 191

I
IAPP 209
ifstream 183, 188

attach 190
close 190
ifstream 189
open 190
rdbuf 191
setbuf 191

IMANIP 209
IOAPP 209
IOMANIP 209
ios 181, 192

! 195
* 195
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

<< 200
>> 200
bad 195
bitalloc 199
clear 194
dec 196
eof 195
fail 195
fill 198
fixed 197
flags 198
good 195
hex 196
init 194
internal 196
ios 194
iword 199
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

left 196
oct 196
precision 198
pword 200
rdbuf 200
rdstate 194
right 196
scientific 197
setf 198
showbase 196
showpoint 197
showpos 196
skipws 196
stdio 197
sync_with_stdio 200
tie 200
unitbuf 197
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

unsetf 199
uppercase 197
width 199
xalloc 199

iostream 181
Iostream_init 182
iostream_withassign 181
istream 181, 202

>> 204, 208
gcount 207
get 206
getline 206
ignore 206
ipfx 204
istream 204
istream_withassign 204
manip 207
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

peek 207
putback 207
read 207
seekg 207
sync 207
tellg 208

istream_withassign 181
istrstream 183, 233

istrstream 234
rdbuf 234

M
main 173
matherr 244
O
OAPP 209
ofstream 183, 188

attach 190
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

close 190
ofstream 189
open 190
rdbuf 191
setbuf 191

OMANIP 209
ostream 181, 213

<< 216
dec 218
endl 218
ends 218
flush 217, 218
hex 218
manip 217
oct 218
opfx 215
osfx 215
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

ostream 215
ostream_withassign 215
put 217
seekp 217
tellp 218
write 217

ostream_withassign 181
ostrstream 183, 233

ostrstream 234
pcount 235
rdbuf 235
str 235

S
SAPP 209
SMANIP 209
stdiobuf 183, 219
stdiostream 183
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

streambuf 181, 220, 228
allocate 224
base 222
blen 224
dbp 224
doallocate 225, 226
eback 222
ebuf 222
egptr 222
epptr 222
gbump 224
gptr 223
in_avail 230
out_waiting 230
overflow 225, 226
pbackfail 225, 226
pbase 223
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

pbump 224
pptr 223
sbumpc 230
seekoff 225, 226, 230
seekpos 225, 226, 230
setb 223
setbuf 226, 227, 231
setg 223
setp 223
sgetc 230
sgetn 231
snextc 231
sputbackc 231
sputc 231
sputn 231
stossc 231
streambuf 222
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

sync 226, 227, 232
unbuffered 224
underflow 226, 227

strstream 233
rdbuf 235
str 235
strstream 234

strstreambuf 183, 236
freeze 238
setbuf 238
str 238
strstreambuf 237
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Symbols
#include 16, 18–21, 22
:mem 19, 21
:tt 77
__global_freg 90
__global_reg 90
__pure 90
__value_in_regs 89
A
absolute machine addresses 260
Acorn Desktop C 295
alignment 256
an 268, 269
ANSI library 14, 30, 139–140
ANSI standard 2, 7, 11, 42, 69–85

vs K&R 258–261
APCS 43, 267
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

arguments 177
passing to assembler 269

arithmetic operations 74–75
arrays 80, 236–238, 260
asm declarations 176
assembly language 267–272
assert.h 92
B
bibliography 6–7
bitfields 81, 177
BL 269
buffers 181, 182

characters 228–232
file I/O 184–187

buttons see application (button name)
byte ordering 256
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

C
C Module Header Generator see CMHG
C$Libroot 20, 21
C$Path 19, 22
C++ 11–49

Assembler 18, 31
Auto run 41
Auto save 41
Cancel 13
command line 39, 42–46
Command line (menu option) 13, 25
Compile only 17, 23
Debug 23
Default path 17, 19–21, 26
Define 27
Features 20, 32–34
icon bar menu 41
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Include 17, 19–21, 22
Module code 31
Options 41
Others 39
Run 13, 22, 25
Save options 41
SetUp dialogue box 12–13, 22–24
SetUp menu 13, 24–39
Source 12, 22
Suppress warnings 33, 34
Throwback 24
Undefine 28
Work directory 15, 38

C++ library 14, 179–252
C++Hello example 47

see also HelloW example
cartesian coordinates 241–242
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

case sensitivity 42
CC 2, 11–49, 273

Assembler 18, 31, 271
Auto run 41
Auto save 41
Cancel 13
command line 39, 42–46
Command line (menu option) 13, 25
Compile only 17, 23
Debug 23
Debug options 29
Default path 17, 19–21, 26
Define 27
Errors to file 37
Features 20, 30, 32–34, 38
icon bar menu 41
Include 17, 19–21, 22
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Keep comments 26
Libraries 31
Listing 18, 33, 38
Module code 31
Options 41
Others 30, 39
Preprocess only 23, 40, 263
Profile 30
Run 13, 22, 25
Save options 41
SetUp dialogue box 12–13, 22–24
SetUp menu 13, 24–39
Source 12, 22
Suppress errors 36
Suppress warnings 33, 34–35
Throwback 24
Undefine 28
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

UNIX pcc 37
Work directory 15, 38

CFront 2, 11, 45, 295
characters 78–79

testing and mapping 93
chars 70
CHello example 47

see also HelloW example
classes

members 177
multiple base 177

CMHG 51–54, 273–287
command line 54
Command line (menu option) 52
description files 53, 276
icon bar menu 53
SetUp dialogue box 52
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

SetUp menu 52
Source 52

CModule example 48
comments 259
common subexpression elimination 88
compiler see CC and C++
Complex Math library 239–252

operators 248–250
complex numbers 240
conditionalised conditions 295
const qualifier 258
constants

character 172
floating 172
hexadecimal 256
octal 259

control statements 261
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

conventions 6
conversions 174, 175, 181, 259
cpp 263
cross-jumping 87
ctype.h 93, 263
current place 20–21
D
data elements 70–73

limits 71–73, 96
debugging

machine level 23
source level 23
tables 23, 29

declarations 260
declarators 82
device drivers 273
Dhrystone 2.1 example 48
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

diagnostics 92
dialogue boxes see application (dialogue box name)
doubles 70, 75
DrawFile module 167
E
EDOM 94, 244, 247
enumeration types 81
ERANGE 94, 244
errno.h 94, 264
errors 24, 36, 37, 40, 77, 194–195, 297–348

browser 24
Complex Math library 243–245
domain 94
range 94

ESIGNUM 94
event handlers 141–142
Event library 14, 141–149
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

examples 46–49
exception handling 178
exponential functions 246–247
expressions 174

evaluation 75
F
FILE 105
filenames 14–18

extensions 16, 266
rooted 16, 19

files
buffering 84
closing 106
creating 186, 190
deleting 105
flushing 106
formatted I/O 183
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

naming 106
opening 107–108, 186, 189, 190
position indicators 116–118
reading 184
renaming 105
seeking 186, 190
syncing 187
temporary 106
writing 184
zero-length 84

flags 42–46
float.h 95, 265
floating point 80, 95
floats 70, 75, 259
fn 268, 270
fp 268, 269, 270
fpos_t 105
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

functions
arguments 257
calls 174
declaration keywords 89–90
declarations 260
definitions 260
in-lining 295
prototypes 260
workspace 271

G
get area 222
H
header files 11, 15, 18

ANSI 19
from CMHG 52

heap checking 140
HelloW example 12–13, 17
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

HUGE and HUGE_VAL 264
Hyper example 49
hyperbolic functions 251–252
I
I/O

buffering 108–109
redirection 78

I/O functions 105–118
icons see application (icon name)
identifiers 70, 78, 172
IEEE double precision 269
IEEE single precision 269
implementation limits 76
include files 16, 22, 26, 87

nesting 20–21
searching for 18–21

input functions 110–111, 112–113, 113–114, 115
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

installation 1
integers 80
interactive devices 77
ints 70
ip 268
ISO 8859-1 79
K
kernel.h 19, 266
L
Latin-1 character set 79
LDM 46
libraries 4, 14, 19, 22, 31, 91–167, 179–252

ANSI vs BSD UNIX 263–265
limits.h 96, 265
Link 11, 23

Debug 23
linkage specifications 176
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

listings 18, 31, 33, 38, 271
locale.h 97, 265
logarithmic functions 246–247
long doubles 70, 75, 259
long floats 259
long ints 75
longs 70, 259
lr 268, 269
M
macros 178
Make 12, 15, 16, 43, 51, 57, 62
manipulators 209–212
math.h 98, 264
mathematical functions 83, 98, 125
memory allocation functions 121–122
menus see application (menu name)
message handlers 142
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

MinApp example 49
modules 31, 51, 273–287

application code 274, 276
components 274–275
constraints 274
event handler 275, 285–286
finalisation code 275, 277–278
header 51
help and command keyword table 275, 280–281
help string 275, 279–280
initialisation code 274, 277
IRQ handlers 275, 284
library initialisation code 287
service call handler 275, 278–279
SWI chunk base number 275, 281
SWI decoding code 275, 282–283
SWI decoding table 275, 282
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

SWI handler code 275, 281–282
title string 275, 279
turning interrupts on and off 283

MS-DOS 16, 17, 266
multibyte character functions 126–127
multibyte string functions 127–128
O
object files 11, 15, 17, 22, 23, 41, 54
offsetof 104
operating system interface 123, 258, 265–266
operators

multiplicative 175
relational 175
shifts 175

optimisation 87–88
output 40–41, 54, 58, 65
output functions 109–110, 112, 113, 114–115, 116
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

overlays 289–291
alternatives to 290

P
paging 289
pathname separator 266
pc 269
pcc 32, 37, 42, 55–66, 88, 261–263
pointers 70, 74, 80, 257, 259

subtraction 74
polar coordinates 241–242
portability 255–266, 291
portable C compiler see pcc
power functions 246–247
pragmas 46, 64, 86–89

header file 19
preprocessor 11, 18, 23, 26–28, 33, 44, 87, 261, 263

directives 82
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

translation ordering 261
see also CC and C++

profiling 30, 140
program termination functions 122–123
ptrdiff_t 104
put area 222
R
RAM filing system 290
random numbers 121
register storage class 81
register variables 88–89, 90
registers

names 267
usage 268

Render library 167
reserve area 222
resource files 15
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

RISC_OSLib 295
rooted filenames see filenames (rooted)
S
search functions 123, 124
setjmp.h 99
SetPaths 22
shared C library 14, 30, 82–85, 91–138

modules 273
shorts 70
Sieve example 47
signal.h 100–101, 264
signals 94, 100–101
signed qualifier 258
size_t 104
sl 268, 269, 270, 271
Software Interrupt see SWI
sort functions 124
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

source files 11, 15, 16
sp 268, 269, 270, 271
specifiers

storage class 176
type 176

square root functions 246–247
SrcEdit 23, 24
stack checking 43, 88
stack extension 271
stdarg.h 102–103
stddef.h 104
stderr 78
stdin 78
stdio.h 105–118, 265
stdlib.h 119–128, 265
stdout 78
STM 46
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

streams 182, 192–201
formatting 195–200, 204–206, 216–217

Streams library 179–238
string functions

appending 130
comparison 130–131
conversion 119–121
copying 129–130
error message mapping 134
length 132, 133, 134
locating 132–133
time 137–138
tokenising 133
transformation 131

string literals 33, 173, 259, 261
string.h 129–134, 265
structures 73, 81, 89, 256, 259
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

results 270
stubs 14, 30, 91, 273, 274

entry vectors 91
summary 40
SWI 266, 273
swis.h 19
switch statement 82, 261
T
TBoxCalc example 49
text streams 84
throwback 24, 43
time.h 135–138
ToANSI 55–59, 261

command line 59
Command line (menu option) 57
File 57
icon bar menu 58
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

SetUp dialogue box 57
SetUp menu 57

token-pasting 261
Toolbox 141, 151, 295
Toolbox library 14, 165
tools 9–66

common features 41, 51, 55, 61
ToPCC 61–66, 261

command line 66
Command line (menu option) 63
File 63
icon bar menu 64
Options 64
SetUp dialogue box 63
SetUp menu 63–64

translation limits 171
trigonometric functions 251–252
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

TSR 273
types 173

checking 262
typographic conventions see conventions
U
unions 81, 259
UNIX 16, 17, 20
unsigned long ints 259
unsigned qualifier 75, 259
V
varargs.h 19
variables

declaration keywords 90
lifetime analysis 295
storing 270

variadic functions 259
vn 268, 270
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

void 258
void * 258
volatile qualifier 82, 87, 258
W
warnings 34–35, 77, 297–348
wchar_t 104
Wimp library 14, 151–163
work directory 15, 38, 43
Last changed: 21 October, 1999 12:19 pm

Printed: 21 October, 1999 12:20 pm

Replace this page with a
monochrome copy of the
front cover for the guide

#

Reader’s Comment Form
Acorn C/C++, Issue 1

0484,232

We would greatly appreciate your comments about this Manual, which will be taken into account for the next
issue:

How would you classify your experience with computers?

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

Used computers before Experienced ProgrammerExperienced User Programmer

Cut out (or photocopy) and post to: Your name and address:
This information will only be used to get in touch with you in case we wish to explore your
comments further
Dept RC, Technical Publications
Acorn Computers Limited
Acorn House, Vision Park
Histon, Cambridge CB4 4AE
England

	Acorn C/C++
	AMR draft (Version 10.06)

	1 Introduction
	Installation of Acorn Desktop C
	The C compiler
	The C++ translator
	This user guide
	Part 1 – Using the C tools
	Part 2 – C�language issues
	Part 3 – C++�language issues
	Part 4 – Developing software for RISC�OS
	Part 5 – Appendixes
	Conventions used

	Useful references
	C programming
	C++ Programming
	RISC OS
	The ANSI�C standard
	The ANSI�C++ standard

	Part 1 – Using the C tools
	2 CC and C++
	The underlying programs
	How the tools use them
	A note about Make

	Getting started with CC and C++
	Libraries
	C�libraries
	C++ libraries

	File naming and placing conventions
	Work directory
	Filename conventions
	Rooted filenames
	Source files
	Include files
	Object files
	Program files
	Compilation list files
	Assembly list files
	Filename validity

	Include file searching
	Reference section
	Search path
	1 The compiler’s own in-memory filing system.
	2 The current place (see the section Nested includes on page�20).
	3 Arguments to the SetUp dialogue box’s Include option, if used.
	4 The system search path:

	Nested includes
	Use of :mem
	Use of C$Libroot

	The SetUp dialogue box
	Source
	Include
	Compile only
	Preprocess only
	Debug
	Throwback

	The SetUp menu
	The command line
	Controlling the preprocessor
	Default path
	Keep comments
	Define
	Undefine

	Controlling code generation
	Debug options
	Profile
	Assembler
	Module code

	Controlling the linker
	Libraries

	Using the Features menu option
	Features

	Handling warnings and errors
	Suppress warnings
	Suppress errors
	UNIX pcc
	Errors to file

	Listings
	Listing

	Choosing your work directory
	Work directory

	Specifying other command line options
	Others

	Output messages
	The icon bar menu
	Command lines
	Keyword options
	Preprocessor options
	Translator options
	Code generation options
	Linker options
	Warning and error message options
	Additional feature options

	Worked examples
	CHello
	C++Hello
	Sieve
	Dhrystone 2.1
	CModule
	Desktop application examples

	3 CMHG
	A note about Make
	Starting CMHG
	The icon bar menu
	Example output
	Command line interface

	4 ToANSI
	ToANSI C translation
	A note about Make

	Starting ToANSI
	The icon bar menu
	Example output
	Command line interface

	5 ToPCC
	ToPCC C translation
	A note about Make

	Starting ToPCC
	The icon bar menu
	Example output
	Command line interface

	Part 2 – C�language issues
	6 C implementation details
	Implementation details
	Identifiers
	Data elements
	Limits: limits.h and float.h

	Structured data types
	Pointers
	Pointer subtraction

	Arithmetic operations
	Expression evaluation
	Implementation limits

	Standard implementation definition
	Translation (A.6.3.1)
	Environment (A.6.3.2)
	Identifiers (A.6.3.3)
	Characters (A.6.3.4)
	Integers (A.6.3.5)
	Floating point (A.6.3.6)
	Arrays and pointers (A.6.3.7)
	Registers (A.6.3.8)
	Structures, unions, enumerations and bitfields (A.6.3.9)
	Qualifiers (A.6.3.10)
	Declarators (A.6.3.11)
	Statements (A.6.3.12)
	Preprocessing directives (A.6.3.13)
	Library functions (A.6.3.14)

	Extra features
	#pragma directives
	Pragmas controlling the preprocessor
	Pragmas controlling printf/scanf argument checking
	Pragmas controlling optimisation
	Pragmas controlling code generation
	Stack limit checking
	Memory access checking
	Global (program-wide) register variables

	Special function declaration keywords
	__value_in_regs
	__pure

	Special variable declaration keywords
	__global_reg(n)
	__global_freg(n)

	7 The C�library
	assert.h
	ctype.h
	errno.h
	EDOM
	ERANGE
	ESIGNUM

	float.h
	limits.h
	locale.h
	setlocale
	lconv

	math.h
	setjmp.h
	setjmp
	longjmp

	signal.h
	raise

	stdarg.h
	va_list
	va_start
	va_arg
	va_end

	stddef.h
	stdio.h
	remove
	rename
	tmpfile
	tmpnam
	fclose
	fflush
	fopen
	freopen
	setbuf
	setvbuf
	fprintf
	printf
	sprintf
	fscanf
	scanf
	sscanf
	vprintf
	vfprintf
	vsprintf
	fgetc
	fgets
	fputc
	fputs
	getc
	getchar
	gets
	putc
	putchar
	puts
	ungetc
	fread
	fwrite
	fgetpos
	fseek
	fsetpos
	ftell
	rewind
	clearerr
	feof
	ferror
	perror

	stdlib.h
	atof
	atoi
	atol
	strtod
	strtol
	strtoul
	rand
	srand
	calloc
	free
	malloc
	realloc
	abort
	atexit
	exit
	getenv
	system
	bsearch
	qsort
	abs
	div
	labs
	ldiv
	Multibyte character functions

	mblen
	mbtowc
	wctomb
	Multibyte string functions

	mbstowcs
	wcstombs

	string.h
	memcpy
	memmove
	strcpy
	strncpy
	strcat
	strncat
	memcmp
	strcmp
	strncmp
	strcoll
	strxfrm
	memchr
	strchr
	strcspn
	strpbrk
	strrchr
	strspn
	strstr
	strtok
	memset
	strerror
	strlen

	time.h
	struct tm
	clock
	difftime
	mktime
	time
	asctime
	ctime
	gmtime
	localtime
	strftime

	8 The ANSI library
	Extra functions
	__heap_checking_on_all_allocates __heap_checking_on_all_deallocates
	_mapstore _fmapstore

	9 The Event library
	Introduction
	Registering and deregistering event handlers
	Registering and deregistering message handlers
	Quitting applications
	Programmer interface
	Initialisation
	event_initialise
	event_set_mask
	event_get_mask

	Polling
	event_poll
	event_poll_idle

	Registering handlers
	event_register_wimp_handler
	event_register_toolbox_handler
	event_register_message_handler
	event_deregister_wimp_handler
	event_deregister_toolbox_handler
	event_deregister_message_handler

	Handlers
	WimpEventHandler
	ToolboxEventHandler
	WimpMessageHandler

	Example

	10 The Wimp library
	Programmer interface
	wimp_add_messages
	_kernel_oserror *wimp_add_messages (int *list /* R0 in */);

	wimp_base_of_sprites
	_kernel_oserror *wimp_base_of_sprites (void **rom, /* R0 out */ void **ram /* R1 out */);

	wimp_block_copy
	_kernel_oserror *wimp_block_copy (int handle, /* R0 in */ int sxmin, /* R1 in */ int symin, /* R2...

	wimp_claim_free_memory
	wimp_close_down
	_kernel_oserror *wimp_close_down (int th /* R0 in */);

	wimp_close_template
	_kernel_oserror *wimp_close_template (void);

	wimp_close_window
	_kernel_oserror *wimp_close_window (int window_handle /* R1 in */);

	wimp_command_window
	_kernel_oserror *wimp_command_window (int type /* R0 in */);

	wimp_create_icon
	_kernel_oserror *wimp_create_icon (int priority, /* R0 in */ WimpCreateIconBlock *defn, /* R1 in ...

	wimp_create_menu, CloseMenu
	#define CloseMenu ((void *) -1)
	_kernel_oserror *wimp_create_menu (void * handle, /* R1 in */ int x, /* R2 in */ int y /* R3 in */);

	wimp_create_submenu
	_kernel_oserror *wimp_create_submenu (void * handle, /* R1 in */ int x, /* R2 in */ int y /* R3 i...

	wimp_create_window
	_kernel_oserror *wimp_create_window (WimpWindow *defn, /* R1 in */ int *handle /* R0 out */);

	wimp_decode_menu
	_kernel_oserror *wimp_decode_menu (void *data, /* R1 in */ int *selections, /* R2 in */ char *buf...

	wimp_delete_icon
	_kernel_oserror *wimp_delete_icon (WimpDeleteIconBlock *block /* R1 in */);

	wimp_delete_window
	_kernel_oserror *wimp_delete_window (WimpDeleteWindowBlock *block /* R1 in */);

	wimp_drag_box, CancelDrag
	#define CancelDrag 0
	_kernel_oserror *wimp_drag_box (WimpDragBox *block /* R1 in */);

	wimp_extend
	wimp_force_redraw
	_kernel_oserror *wimp_force_redraw (int window_handle, /* R0 in */ int xmin, /* R1 in */ int ymin...

	wimp_get_caret_position
	_kernel_oserror *wimp_get_caret_position (WimpGetCaretPositionBlock *block /* R1 in */);

	wimp_get_icon_state
	_kernel_oserror *wimp_get_icon_state (WimpGetIconStateBlock *block /* R1 in */);

	wimp_get_menu_state
	_kernel_oserror *wimp_get_menu_state (int report, /* R0 in */ int *state, /* R1 in */ int window,...

	wimp_get_pointer_info
	_kernel_oserror *wimp_get_pointer_info (WimpGetPointerInfoBlock *block /* R1 in */);

	wimp_get_rectangle
	_kernel_oserror *wimp_get_rectangle (WimpRedrawWindowBlock *block, /* R1 in */ int *more /* R0 ou...

	wimp_get_window_info
	_kernel_oserror *wimp_get_window_info (WimpGetWindowInfoBlock *block /* R1 in */);

	wimp_get_window_outline
	_kernel_oserror *wimp_get_window_outline (WimpGetWindowOutlineBlock *block /* R1 in */);

	wimp_get_window_state
	_kernel_oserror *wimp_get_window_state (WimpGetWindowStateBlock *state /* R1 in */);

	wimp_initialise
	_kernel_oserror *wimp_initialise (int version, /* R0 in */ char *name, /* R2 in */ int *messages,...

	wimp_load_template
	_kernel_oserror *wimp_load_template (_kernel_swi_regs *regs /*R1-6 in*/);

	wimp_open_template
	_kernel_oserror *wimp_open_template (char *name /* R1 in */);

	wimp_open_window
	_kernel_oserror *wimp_open_window (WimpOpenWindowBlock *show /* R1 in */);

	wimp_plot_icon
	_kernel_oserror *wimp_plot_icon (WimpPlotIconBlock *block /* R1 in */);

	wimp_poll
	_kernel_oserror *wimp_poll (int mask, /* R0 in */ WimpPollBlock *block, /* R1 in */ int *pollword...

	wimp_poll_idle
	_kernel_oserror *wimp_pollidle (int mask, /* R0 in */ WimpPollBlock *block, /* R1 in */ int time,...

	wimp_process_key
	_kernel_oserror *wimp_process_key (int keycode /* R0 in */);

	wimp_read_palette
	_kernel_oserror *wimp_read_palette (Palette *palette /* R1 in */);

	wimp_read_pix_trans
	wimp_read_sys_info, WimpSysInfo
	typedef struct { int r0; int r1; } WimpSysInfo;
	_kernel_oserror *wimp_read_sys_info (int reason, /* R0 in */ WimpSysInfo *results /* R0 out */);

	wimp_redraw_window
	_kernel_oserror *wimp_redraw_window (WimpRedrawWindowBlock *block, /* R1 in */ int *more /* R0 ou...

	wimp_register_filter
	wimp_remove_messages
	_kernel_oserror *wimp_remove_messages (int *list /* R0 in */);

	wimp_report_error
	int wimp_report_error (_kernel_oserror *er, /* R0 in */ int flags, /* R1 in */ char *name, /* R2 ...

	wimp_resize_icon
	_kernel_oserror *wimp_resize_icon (int window, /* R0 in */ int icon, /* R1 in */ int xmin, /* R2 ...

	wimp_send_message
	_kernel_oserror *wimp_send_message (int code, /* R0 in */ void *block, /* R1 in */ int handle, /*...

	wimp_set_caret_position
	_kernel_oserror *wimp_set_caret_position (int window_handle, /* R0 in */ int icon_handle, /* R1 i...

	wimp_set_colour, Wimp_BackgroundColour
	#define Wimp_BackgroundColour (128)
	_kernel_oserror *wimp_set_colour (int colour /* R0 in */);

	wimp_set_colour_mapping
	_kernel_oserror *wimp_set_colour_mapping (int which_palette, /* R1 in */ int *bpp1, /* R2 in */ i...

	wimp_set_extent
	_kernel_oserror *wimp_set_extent (int window_handle, /* R0 in */ BBox *area /* R1 in */);

	wimp_set_font_colours
	_kernel_oserror *wimp_set_font_colours (int fore /* R1 in */ int back /* R2 in */);

	wimp_set_icon_state
	_kernel_oserror *wimp_set_icon_state (WimpSetIconStateBlock *block) /* R1 in */;

	wimp_set_mode
	_kernel_oserror *wimp_set_mode (int mode /* R0 in */);

	wimp_set_palette, Palette
	typedef struct { unsigned int colours[16]; unsigned int border; unsigned int pointer1; unsigned i...
	_kernel_oserror *wimp_set_palette (Palette *palette /* R1 in */);

	wimp_set_pointer_shape
	_kernel_oserror *wimp_set_pointer_shape (int shape, /* R0 in */ void *data, /* R1 in */ int width...

	wimp_set_watchdog_state
	wimp_slot_size
	_kernel_oserror *wimp_slot_size (int current, /* R0 in */ int next, /* R1 in */ int *current, /* ...

	wimp_sprite_op, SpriteParams
	typedef struct {int r3; int r4; int r5; int r6; int r7;} SpriteParams;
	_kernel_oserror *wimp_sprite_op (int code, /* R0 in */ char *name, /* R2 in */ SpriteParams *p /*...

	wimp_start_task
	_kernel_oserror *wimp_start_task (char *cl, /* R0 in */ int *handle /* R0 out */);

	wimp_text_colour
	_kernel_oserror *wimp_text_colour (int colour /* R0 in */);

	wimp_text_op
	_kernel_oserror *wimp_text_op (_kernel_swi_regs *regs /* R0… in */);

	wimp_transfer_block
	_kernel_oserror *wimp_transfer_block (int sh, /* R0 in */ void *sbuf, /* R1 in */ int dh, /* R2 i...

	wimp_update_window
	_kernel_oserror *wimp_update_window (WimpRedrawWindowBlock *block, /* R1 in */ int *more /* R0 ou...

	wimp_which_icon
	_kernel_oserror *wimp_which_icon (int window_handle, /* R0 in */ int *icons, /* R1 in */ unsigned...

	11 The Toolbox library
	12 The Render library
	Part 3 – C++�language issues
	13 C++ implementation details
	1 Behaviour that the Reference Manual defines as ‘implementation dependent’
	2 Behaviour that depends on the underlying C compiler or preprocessor used with Release�3.0
	3 Properties that are defined in the standard header files stddef.h, limits.h, and stdlib.h
	4 Translation limits
	5 Language constructs that are not implemented in this release.
	Translation Limits
	Identifiers (2.3)
	Identifiers reserved by Release�3.0

	Character Constants (2.5.2)
	Value of multicharacter constants
	Value of (single) character constants
	Wide character constants

	Floating Constants (2.5.3)
	Long double floating constants

	String Literals (2.5.4)
	Distinct string literals
	Wide character strings

	Start and Termination (3.4)
	Type of main()
	Linkage of main()

	Fundamental Types (3.6.1)
	Signed integral types
	Long double type
	Alignment requirements

	Integral Conversions (4.2)
	Conversion to a signed type

	Expressions (5)
	Overflow and divide check

	Function Call (5.2.2)
	Evaluation order

	Explicit Type Conversion (5.4)
	Explicit conversions between pointer and integral types

	Multiplicative Operators (5.6)
	Sign of the remainder

	Shift Operators (5.8)
	Result of right shift

	Relational Operators (5.9)
	Pointer comparisons

	Storage Class Specifiers (7.1.1)
	Inline functions

	Type Specifiers (7.1.6)
	Volatile
	Signed

	Asm Declarations (7.3)
	Effect of an asm declaration

	Linkage Specifications (7.4)
	Languages supported
	Linkage to functions
	Linkage to non-functions

	Class Members (9.2)
	Allocation of non-static data members

	Bitfields (9.6)
	Allocation and alignment of bitfields
	Sign of ‘plain’ bitfields

	Multiple Base Classes (10.1)
	Allocation of base classes

	Argument Matching (13.2)
	Integral arguments

	Exception Handling (experimental) (15)
	Predefined Names (16.10)
	Predefined macros

	14 The Streams library
	Introduction
	Synopsis
	Description
	Core Classes
	streambuf
	ios
	istream
	ostream
	iostream
	istream_withassign ostream_withassign iostream_withassign
	Iostream_init

	Predefined streams
	cin
	cout
	cerr
	clog

	Classes derived from streambuf
	filebuf
	stdiobuf
	strstreambuf

	Classes derived from istream, ostream, and iostream
	ifstream ofstream fstream
	istrstream ostrstream
	stdiostream

	See also

	filebuf
	Synopsis
	Description
	Constructors
	filebuf()
	filebuf(d)
	filebuf(d, p, len)

	Members
	pfb=f.attach(d)
	pfb=f.close()
	i=f.fd()
	i=f.is_open()
	pfb=f.open(name, mode, prot)
	p=f.seekoff(off, dir, mode)
	p=f.seekpos(pos, mode)
	psb=f.setbuf(ptr, len)
	i=f.sync()

	See also

	fstream
	Synopsis
	Description
	Constructors
	xstream()
	xstream(name, mode, prot)
	xstream(d)
	xstream(d,ptr,len)

	Member functions
	f.attach(d)
	f.close()
	f.open(name,mode,prot)
	pfb=f.rdbuf()
	f.setbuf(p,len)

	See also

	ios
	Synopsis
	Description
	Constructors and assignment
	ios(sb)
	ios(sr) s2=s
	ios() init(sb)

	Error states
	i=s.rdstate()
	s.clear(i)
	i=s.good()
	i=s.eof()
	i=s.fail()
	i=s.bad()

	Operators
	Formatting
	skipws
	left right internal
	dec oct hex
	showbase
	showpos
	uppercase
	showpoint
	scientific fixed
	unitbuf
	stdio
	oc=s.fill(c)
	c=s.fill()
	l=s.flags()
	l=s.flags(f)
	oi=s.precision(i)
	i=s.precision()
	l=s.setf(b)
	l=s.setf(b,f)
	l=s.unsetf(b)
	oi=s.width(i)
	i=s.width()

	User-defined Format Flags
	b=ios::bitalloc()
	i=ios::xalloc()
	l=s.iword(i)
	vp=s.pword(i)

	Other members
	sb=s.rdbuf()
	ios::sync_with_stdio()
	oosp=s.tie(osp)
	osp=s.tie()

	Built-in Manipulators
	sr<<dec sr>>dec
	sr<<hex sr>>hex
	sr<<oct sr>>oct
	sr>>ws
	sr<<endl
	sr<<ends
	sr<<flush

	See also

	istream
	Synopsis
	Description
	Constructors and assignment
	istream(sb)
	istream_withassign()
	inswa=sb
	inswa=ins

	Input prefix function
	i = ins.ipfx(need)

	Formatted input functions (extractors)
	ins>>x
	ins>>sb

	Unformatted input functions
	insp=&ins.get(ptr,len,delim)
	insp=&ins.get(c)
	insp=&ins.get(sb,delim)
	i=ins.get().
	insp=&ins.getline(ptr,len,delim)
	insp=&ins.ignore(n,d)
	insp=&ins.read(ptr,n)

	Other members
	i=ins.gcount()
	i=ins.peek()
	insp=&ins.putback(c)
	i=&ins.sync()
	ins>>manip

	Member functions related to positioning
	insp=&ins.seekg(off,dir)
	insp=&ins.seekg(pos)
	pos=ins.tellg()

	Manipulator
	ins>>ws
	ins>>dec
	ins>>hex
	ins>>oct

	Caveats
	See also

	manipulators
	Synopsis
	Description
	s<<SMANIP<T>(f,t) s>>SMANIP<T>(f,t) s<<SAPP<T>(f)(t) s>>SAPP<T>(f)(t)
	i>>IMANIP<T>(if,t) i>>IAPP<T>(if)(t)
	o<<OMANIP<T>(of,t) o<<OAPP<T>(of)(t)
	io<<IOMANIP<T>(iof,t) io>>IOMANIP<T>(iof,t) io<<IOAPP<T>(iof)(t) io>>IOAPP<T>(iof)(t)
	o<<setw(n) i>>setw(n)
	o<<setfill(n) i>>setfill(n)
	o<<setprecision(n) i>>setprecision(n)
	o<<setiosflags(l) i>>setiosflags(l)
	o<<resetiosflags(l) i>>resetiosflags(l)

	See also

	ostream
	Synopsis
	Description
	Constructors and assignment
	ostream(sb)
	ostream_withassign()
	outswa=sb
	inswa=ins

	Output prefix function
	i=outs.opfx()

	Output suffix function
	osfx()

	Formatted output functions (inserters)
	outs<<x
	outs<<sb

	Unformatted output functions
	outsp=&outs.put(c)
	outsp=&outs.write(s,n)

	Other member functions
	outsp=&outs.flush()
	outs<<manip

	Positioning functions
	outsp=&ins.seekp(off,dir)
	outsp=&outs.seekp(pos)
	pos=outs.tellp()

	Manipulators
	outs<<endl
	outs<<ends
	outs<<flush
	outs<<dec
	outs<<hex
	outs<<oct

	See also

	stdiobuf
	Synopsis
	Description
	Caveats
	See also

	streambuf – protected
	Synopsis
	Description
	Constructors
	streambuf()
	streambuf(b,len)

	The Get, Put, and Reserver area
	Functions to examine the pointers
	ptr=sb->base()
	ptr=sb->eback()
	ptr=sb->ebuf()
	ptr=sb->egptr()
	ptr=sb->epptr()
	ptr=sb->gptr()
	ptr=sb->pbase()
	ptr=sb->pptr()

	Functions for setting the pointers
	sb->setb(b, eb, i)
	sb->setp(p, ep)
	sb->setg(eb, g, eg)

	Other non-virtual members
	i=sb->allocate()
	i=sb->blen()
	dbp()
	sb->gbump(n)
	sb->pbump(n)
	sb->unbuffered(i) i=sb->unbuffered()

	Virtual member functions
	i=sb->doallocate()
	i=overflow(c)
	i=sb->pbackfail(c)
	pos=sb->seekoff(off, dir, mode)
	pos=sb->seekpos(pos, mode)
	sb=sb->setbuf(ptr, len)
	i=sb->sync()
	i=sb->underflow()
	i=sb->streambuf::doallocate()
	i=sb->streambuf::overflow(c)
	i=sb->streambuf::pbackfail(c)
	pos=sb->streambuf::seekpos(pos, mode)
	pos=sb->streambuf::seekoff(off, dir, mode)
	sb=sb->streambuf::setbuf(ptr, len)
	i=sb->streambuf::sync()
	i=sb->streambuf::underflow()

	See also

	streambuf – public
	Synopsis
	Description
	i=sb->in_avail()
	i=sb->out_waiting()
	c=sb->sbumpc()
	pos=sb->seekoff(off, dir, mode)
	pos=sb->seekpos(pos, mode)
	c=sb->sgetc()
	sb1=sb->setbuf(ptr, len, i)
	i=sb->sgetn(ptr, n)
	c=sb->snextc()
	i=sb->sputbackc(c)
	i=sb->sputc(c)
	i=sb->sputn(ptr, n)
	sb->stossc()
	i=sb->sync()

	See also

	strstream
	Synopsis
	Description
	Constructors
	istrstream(cp)
	istrstream(cp, len)
	ostrstream()
	ostrstream(cp,n,mode)
	strstream()
	strstream(cp,n,mode)

	istrstream members
	ssb = iss.rdbuf()

	ostrstream members
	ssb = oss.rdbuf()
	cp=oss.str()
	i=oss.pcount()

	strstream members
	ssb = ss.rdbuf()
	cp=ss.str()

	See also

	strstreambuf
	Synopsis
	Description
	Constructors
	strstreambuf()
	strstreambuf(a, f)
	strstreambuf(n)
	strstreambuf(ptr, n, pstart)

	Member functions
	ssb->freeze(n)
	ptr=ssb->str()
	ssb->setbuf(0,n)

	See also

	15 The Complex Math library
	Introduction
	Synopsis
	Description
	Diagnostics
	See also

	cartesian/polar
	Synopsis
	Description
	d = abs(x)
	d = norm(x)
	d = arg(x)
	y = conj(x)
	y = polar(m, a)
	d = real(x)
	d = imag(x)

	See also

	complex_error
	Synopsis
	Description
	i = complex_error(x)

	See also

	exp, log, pow, sqrt
	Synopsis
	Description
	z = exp(x)
	z = log(x)
	z = pow(x, y)
	z = sqrt(x)

	Diagnostics
	See also

	complex operators
	Synopsis
	Description
	Arithmetic operators:
	z = x + y
	z = -x
	z = x - y
	z = x * y
	z = x / y

	Comparison operators
	x == y
	x != y

	Assignment operators
	x += y
	x -= y
	x *= y
	x /= y

	Warning
	See also

	cplxtrig
	Synopsis
	Description
	y = sin(x)
	y = cos(x)
	y = sinh(x)
	y = cosh(x)

	Diagnostics
	See also

	Part 4 – Developing software for RISC�OS
	16 Portability
	General portability considerations
	Fundamental data types
	Byte ordering
	Store alignment
	Pointers and pointer arithmetic
	Function argument evaluation
	System-specific code

	ANSI C vs K&R C
	Lexical elements
	Conversions
	Expressions
	Declarations
	Statements
	Preprocessor
	1 Map source file characters to the source character set (this includes replacing trigraphs).
	2 Delete all newline characters which are immediately preceded by \.
	3 Divide the source file into preprocessing tokens and sequences of white space characters (comme...
	4 Execute preprocessing directives and expand macros.

	The ToPCC and ToANSI tools
	pcc compatibility mode
	Language and preprocessor compatibility
	Standard headers and libraries
	ctype.h
	errno.h
	math.h
	signal.h
	stdio.h
	string.h
	stdlib.h
	float.h
	limits.h
	locale.h

	Environmental aspects

	17 Assembly language interface
	Register names
	Register usage
	Control arrival
	Passing arguments
	Return link
	Structure results
	Storage of variables
	Function workspace
	Examples

	18 How to write relocatable modules in C
	Getting started
	Constraints on modules written in C
	Overview of modules written in C
	Functional components of modules written in C
	The C module header generator
	The format of input to CMHG
	Runnable application code
	Initialisation code
	Finalisation code
	Service call handler
	Title string
	Help string
	Help and command keyword table
	SWI chunk base number
	SWI handler code
	SWI decoding table
	SWI decoding code
	Turning interrupts on and off
	IRQ handlers
	Event handler
	Library initialisation code

	19 Overlays
	Paging vs overlays
	When to use overlays

	Part 5 – Appendixes
	Appendix�A: Changes to the C compiler
	Appendix�B: C�errors and warnings
	Interpreting CC errors and warnings
	Warnings
	Warning messages

	Non-serious errors
	Serious errors
	Fatal errors
	System errors

	Appendix�C: C++ errors and warnings
	‘Not implemented’ messages
	actual parameter expression of type string literal
	address of bound member as actual template argument
	& of op
	1st operand of .* too complicated
	2nd operand of .* too complicated
	call of virtual function function before class has been completely declared
	cannot expand inline function function with for statement in inline
	cannot expand inline function function with statement after "return"
	cannot expand inline function function with two local variables with the same name (name)
	cannot expand inline function needing temporary variable of array type
	cannot expand inline function with return in if statement
	cannot expand inline function with static name
	cast of non-integer constant
	cannot expand inline void function called in comma expression
	cannot expand inline void function called in for expression
	cannot expand value-returning inline function with call of ...
	cannot merge lists of conversion functions
	catch
	class defined within sizeof
	class hierarchy too complicated
	conditional expression with type
	constructor needed for argument initializer
	copy of member[], no memberwise copy for class
	default argument too complicated
	ellipsis (...) in argument list of template function name
	explicit template parameter list for destructor of specialized template class name
	formal type parameter name used as base class of template
	forward declaration of a specialized version of template name
	general initializer in initializer list
	initialization of name (automatic aggregate)
	initialization of union with initializer list
	initializer for class member array with constructor
	initializer for local static too complicated
	initializer for multi-dimensional array of objects of class class with constructor name
	implicit static initializer for multi-dimensional array of objects of class with constructor
	initializer list for local variable name
	label in block with destructors
	local class name within template function
	local static class name (type)
	local static name has class::~class() but no constructor (add class:: class())
	lvalue op too complicated
	needs temporary variable to evaluate argument initializer
	nested class type as parameter type to template class name
	nested class name within nested class name within template class name
	nested depth class beyond 9 unsupported
	non-trivial declaration in switch statement
	out-of-line definition of member function of class nested within template class
	overly complex op of op
	parameter expression of type float, double or long double
	postfix template function operator ++(): please make a class member function
	pointer to member function type too complicated
	public specification of overloaded function
	reuse of formal template parameter name
	specialized template name not at global scope
	static member anonymous union
	struct name member name
	template function actuals too complicated (please simplify)
	template function instantiated with local class name
	temporary of class name with destructor needed in expr expression
	too few initializers for name
	type1 assigned to type2 (too complicated)
	use of member with formal template parameter
	visibility declaration for conversion operator
	volatile functions
	wide character constant wide character string
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	C
	F
	I
	M
	O
	S
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

