Copyright [0 1999 Acorn Computers Limited. All rights reserved.
Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

The product described in this manua is not intended for use as a critical component in
life support devices or any system in which failure could be expected to result in
personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of atechnical nature and particulars of the product and its
use (including the information and particulars in this manual) are given by Acorn
Computers Limited in good faith. However, Acorn Computers Limited cannot accept
any liability for any loss or damage arising from the use of any information or
particulars in this manual.

If you have any comments on this manual, please complete the form at the back of the
manual and send it to the address given there.

Acorn suppliesits products through an international distribution network. Your supplier
isavailable to help resolve any queries you might have.

Within this publication, the term ‘BBC’ is used as an abbreviation for ‘British
Broadcasting Corporation’.

ACORN, the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN 1 85250 103 0

Part number 0470,280

Issue 1, October 1992

Contents

Contents ii

About the BBC BASIC Reference Manual 10
Intended readership 10
Structure of the manual 10
Conventions used in thismanual 11

About BBC BASIC 12
What isBASIC VI? 12
Why use BASIC VI? 12
The BASIC interpreter 13
Window managed programs 13

Command mode 16
Entering BASIC 16
Leaving BASIC 17
Command mode 17

Simple programming 20
Entering a program 20
Altering a program 21
Deleting whole programs 24
Numbering linesin a program 25
Listing long programs 26
Comments 27
Multiple statements 28
Saving and recalling programs 29

Variables and expressions 32
Types of variables 32

Numeric variables 34
Integers and floating point numbers 34
Special integer variables 36
Arithmetic operators 36

Contents

Bases 38
Hexadecimal numbers 38
Binary numbers and bits 38
Shift operators 39
AND, OR and EOR 41
TRUE and FALSE 42

String variables 44
Assigning valuesto string variables 44
Joining strings together 45
Splitting strings 45
How characters are represented 48
Converting between strings and numbers 43

Arrays 52
The DIM statement 52
Two dimensional arrays 52
Finding the size of an array 54
Operating on whole arrays 54
Array operations 57

Outputting text 60
Print formatting 60
The text cursor 63
Defining your own characters 65

Inputting data 66
Inputting data from the keyboard 66
Including data as part of a program 68
Programming the keyboard 70
Using the mouse in programs 72
Programming function keys 74

Contents

Control statements 76
IF... THEN... ELSE 76
Operators 77
IF.. THEN... ELSE... ENDIF 78
FOR... NEXT 79
REPEAT... UNTIL 82
WHILE... ENDWHILE 83
CASE... OF... WHEN... OTHERWISE... ENDCASE 84
GOTO 86
GOSUB... RETURN 87
ON... GOTO/GOSUB 88
For example: 88

Procedures and functions 90
Defining and calling procedures 90
Parameters and local variables 91
ON... PROC 95
Recursive procedures 96
Functions 97
Function and procedure libraries 98

Data and command files 104
Datafiles 104
Writing or reading single bytes 105
Writing or reading ASCI| strings 106
Command files 107

Screen modes 110
Changing screen modes 110
Shadow modes 111
Text size 111
Graphicsresolution 112
Colour modes 112
Changing colours 113
Changing the colour palette 113
256-colour modes 115
Using the screen under the Wimp 117

Contents

Simple graphics 118
The graphics screen 118
The point command 120
The line command 120
Rectangle and rectangle fill 121
Circleand circlefill 121
Ellipse and dlipsefill 122
Graphics colours 123
The graphics cursor 124
Relative coordinatesand BY 125
Printing text at the graphics cursor 125

Complex graphics 128
Plotting simple lines 129
Ellipses 134
Arcs 135
Sectors 136
Segments 137

Graphic patterns 138
Default patterns 138
Plotting using pattern fills 139
Defining your own patterns 140
Native mode patterns 141
BBC Master 128 mode patterns 142
Giant patterns 143
Simple patterns 143
Flood-fills 144
Copying and moving 145

Viewports 148
Text viewports 148
Graphics viewports 150

Sprites 152
Loading a user sprite 152
Plotting a user sprite 153

Contents

Teletext mode 154
Coloured text 154
Making text flash 155
Double-height text 155
Changing the background colour 155
Teletext graphics 156

Sound 160
Activating the sound system 160
Selecting sound channels 160
Allocating awave-form to each voice 160
Setting the stereo position 161
Creating a note 162
Synchronising the channels 163
Finding the value of the current beat 164
Finding the current tempo 164
Executing a sound on abeat 165

Accessing memory locations 166
Reserving a block of memory 166
The *?’ indirection operator 166
The ‘1" indirection operator 167
The ‘| indirection operator 168
The ‘$’ indirection operator 168

Error handling and debugging 170
Generating errors 172
External errors 172
Local error handling 173
Debugging 175

VDU control 178

Editing BASIC files 190
Editing BASIC files under RISC OS 3 190
Editing BASIC files under RISC OS 2 192

Vi

Contents

Keywords 210
VARIND 234
STOREA 234
STSTORE 235
LVBLNK 235
CREATE 236
EXPR 236
MATCH 237
TOKENADDR 238
FSTA 239
FLDA 239
FADD/FMUL 239
FSUB/FDIV 239
FLOAT 240
FIX 240
FSQRT 240
BBC/Master compatible calls 240
Formatting numbers 349

Appendix A - Numeric implementation 412
Numeric types 412
Effects of storage size 414
What is floating point arithmetic? 415
Implementation 416

vii

Appendix B - Minimum abbreviations 418
Appendix C - Error messages 424
Appendix D - Inkey values 428

Appendix E - Colour modes 432
Appendix F - Plot codes 434

Appendix G - VDU commands 436
Appendix H - *FX commands 438

Appendix | - BBC BASIC's history 440
BASIC Il improvements 441
BASIC Il improvements 443
BASIC IV improvements 443
BASIC V version 1.04 improvements 444
BASIC V version 1.05 improvements 446
BASIC VI version 1.05 improvements 446

Appendix J - ARM assembler 448
Using the BASIC assembler 448
Saving machine code to file 452
Executing a machine code program 452
Format of assembly language statements 452
Registers 453
Condition codes 455
Theinstruction set 455

Contents

viii

Contents

1 About the BBC BASIC Reference
Manual

his manual provides a complete description of BBC BASIC, one of the most
popular and widely-used programming languages.

Intended readership

You should read this manual if you are

I acomputer user who has never used BBC BASIC before, who wants an
introduction to a new computer language;

an experienced programmer in other computer languages, who wants aninsight into
BBC BASIC's features without having to resort to a lengthy tutorial-type manual;

an experienced BBC BASIC programmer, who needs specific information about the
structure of BBC BASIC, and the use of its commands.

Structure of the manual
The manual is divided into the following parts:

Part 1: Overview — includes this chapter, and the chapter entidlanlit BBC BASIC,
which gives an introduction to BASIC VI. It compares BASIC VI with BASIC V, and
describes the benefits and effects of using both versions.

Part 2: Programming techniques — explains how to program in BBC BASIC, and
introduces many of the commands (or keywords) provided by the language. The last
chapter in this section describes the BASIC screen editor.

Part 3: Keywords— contains a complete list of BBC BASIC keywords, in alphabetical
order. It defines the syntax of all the keywords, and gives you examples of how to use
them.

Part 4: Reference —contains the appendices, which have useful reference material,
such as numeric representation, error messages, keyword abbreviations and VDU
commands. Appendix | - BBC BASIC's histogyves a brief history of BBC BASIC.

10

Conventions used in this manual

Conventions used in this manual

11

The following conventions are applied throughout this manual:

Specific keys to press are denoted as Ctrl, Delete and so on.

Instructions which require you to press a combination of keys are shown thus:
Shift-Break means hold down the Shift key and press and release the Break key.

Text you type on the keyboard and text that is displayed on the screen appears as
follows:

PRI NT "Hel | o"

Classes of item are shown in italics: For example, in the descriptions of BASIC
keywords, you might see something like:

LET var = expression

where var and expr essi on are itemsyou need to supply, for example:

LET a$="hell 0"

Items within square brackets[] are optional. For example,

GCOL [expression2,] expressionl

means that you must supply at least one expression. If you supply two, you must
separate them with a comma.

All interactive commands are entered by pressing the Return key. However, thisis
not actually shown in the examples or syntax of commands.

Extra spaces are inserted into program listings to aid clarity, but need not be typed
in.

Program listings are indented to illustrate the structure of the programs.

If at any time you wish to interrupt a program the computer is executing you can do so
safely by pressing Esc.

Feel free to experiment. Try modifying the programs listed in this manual and writing
new ones of your own.

2 About BBC BASIC

BC BASIC consists of special keywords with which you create sequences of
instructions, called programs, to be carried out by the computer. You can use
programs to perform complicated tasks involving the computer and the devices
connected to it, such as:

I performing calculations
| creating graphics on the screen
I manipulating data.

Several examples of programswritten in BBC BASIC are provided with the RISC OS
Applications suite.

The BASIC language operates within an environment provided by the computer’s
operating system. The operating system is responsible for controlling the devices
available to the computer, such as:

| the keyboard
I the screen

I the filing system.
For example, it is the operating system which reads each key you press and displays the
appropriate character on the screen. You can enter operating system commands directly

from within BASIC, by prefixing them with an asterigk.(These commands are
described in th&he RISC OSuser guide.

What is BASIC VI?

BASIC VIl is the latest version of BBC BASIC, supplied alongside BASIC V with the
RISC OS 3 operating system. Its main advantage over BASIC V is that it can handle real
numbers with greater accuracy. It does this by using more memory space to store real
numbers (8 bytes instead of 5 bytes).

Why use BASIC VI?

Normally, the way in which the computer handles real numbers will not matter to your
programs. However, changes to BASIC VI mean that:

I BBC BASIC is how compatible with all BASIC compilers.

12

The BASIC interpreter

I Exchanging data between BBC BASIC and other languages, like C, is now easier.

I BBC BASIC now performs floating point calculationsin line with |EEE standard
754.

If you do need to know more about real numbers, Appendix A - Numeric implementation
explainsin detail how they are stored and manipul ated.

You will find afull list of the differences between BASIC V and BASIC VI in Appendix
| - BBC BASIC's history.

The BASIC interpreter

When you run a BASIC program, the operating system passes it to the BASIC
interpreter This translates your instructions into a form that the computer can
understand (called assembly language).

Different versions of BBC BASIC use different versions of the interpreter. BASIC V

and V1 both useversion 1.05 of the BASIC interpreter. However, you might not have the

latest version of BBC BASIC. If you don't have it, this manual also explains, where
necessary, how to achieve the same results using version 1.04 of the BASIC interpreter.

Window managed programs

13

If you wish to write programs that work in the desktop windowing environment you
must readrhe Window Manager chapter in th&rogrammer’s Reference Manuadhe
Window Manager provides:

I asimpleto use graphical interface

I thefacilitiesto allow programs to run in a multitasking environment, so that they
can interact with each other, and with other software.

The Window Manager is usually referred to as the Wimp (Windows, | cons, M enus and
Pointer) and it simplifiesthe task of producing programs that conform to the notion of a
‘desktop’, where the windows represent documents on a desk. An example of a BASIC
program written under the window environment is !Patience.

Commands to avoid

If you do decide to write a window managed program you must be careful to avoid the
commands in BASIC which will either interfere with the running of other programs
under the Wimp, or simply not work at all. These include:

Avoid described in reason

GET, INKEY, INPUT Inputting data these commands work under the Wimp,
but can cause problems

*EX commands

COLOUR, MODE

Flood-filling

Viewports

Inputting data

Screen modes

Graphic patterns

Viewports

About BBC BASIC

Some * FX commands should be
avoided under the Wimp; for example,
using the Tab and cursor keys to get
ASCII codes

these commands will interfere with
other programs - use the facilities
provided by the WIMP instead. For
example:
SYS " Col our Trans_Set GCOL"
SYS "W np_Set Col our", 0

flood-filling is not usable under the
Wimp

the Wimp usesits own viewports

14

Window managed programs

15

3 Command mode

his chapter describes how to enter and leave BASIC, and how command mode
works while within BASIC.

Entering BASIC

BASICV
BASIC V issupplied with both RISC OS 2.00 and RISC OS 3.

From RISC 0S2.00

Load Edit. From the Edit icon bar menu, choose Create/New Task window, and then
type the following:

BASI C

Press Return, and the BASIC V version and memory option will be displayed on the
screen.

From RISC OS3

To start BASIC V, display the Task manager menu (click Menu over the Acornicon at
the bottom righthand corner of the desktop). Choose the Task window option and then
type the following:

BASI C

Press Return, and the BASIC V version and memory option will be displayed on the
screen.

BASIC can also be started in both RISC OS 2.00 and RISC OS 3 from the New Task
option on the Task Manager or from the command line (press F12).

BASIC VI
BASIC VI is supplied with RISC OS 3 only.

BBC BASIC VI isdifferent to BBC BASIC V inthat it is stored on disc, not in the
computer's ROM. BASIC VI is also known as BASIC64.

BASIC VI is used by some applications (for example SciCalc) so it may get loaded into
memory without you having to take any special action.

16

Leaving BASIC

Leaving BASIC

To start BASIC VI, display the Task manager menu (click Menu over the Acorn icon at
the bottom righthand corner of the desktop). Choose the Task window option and then
type the following:

BASI C64

Press Return, and the BASIC VI version and memory option will be displayed on the
screen. If BASIC VI is not loaded you will get the error message:

File ‘BASIC64’ not found
If you get this error message then you should type:
SYSTEM:MODULES.BASIC64

Press Return, and the BASIC VI version and memory option will be displayed on the
screen.

If you now get the error message
File ‘system:modules.basic64’ not found

then either you have not seen a ! System directory, in which case you should open a

directory display on the directory containing your ! System, or your ! System does not

contain a copy of BASIC64. If you don’'t have BASIC64, you should update it from the
ISystem on the applications discs.

BASIC can also be started from the New task option on the Task manager menu or from
the command line (press F12).

BASIC files saved from both BASIC V and BASIC VI are the same and can be run
using either BASIC.

To leave BASIC, typ€&€UI T, then press Return twice to get back to the desktop.

Command mode

17

When you enter BASIC it is ioommand or interactive mode (sometimes this is termed
immediate mode). This means that you can type commands and the computer responds
straight away. For example, if you type

PRI NT "Hel | o"
the computer displays the following on the screen:
Hell o

Command mode

PRINT is an example of a keyword which the computer recognises. It instructs the
computer to display on the screen whatever follows the PRINT statement enclosed in
quotation marks. Keywords are always written in upper case letters (capitals).

If you make a mistake, the computer may not be able to make sense of what you have
typed. For example, if you type:

PRINT "Hello
the computer responds with the message:
M ssing "

Thisisan error message. It indicates that the computer cannot obey your command
because it does not follow the rules of BASIC (in this case because the computer could
not find a second quotation mark).

If PRINT isfollowed by any series of characters enclosed in quotation marks, then these
characters are displayed on the screen exactly as you typed them. Thus:

PRINT "12 - 3"
produces the output:
12 - 3
PRINT, however, can also be used to give the result of a calculation. For example,
typing
PRINT 12 - 3
produces the output:
9

In this case, because the sum was not enclosed in quotation marks, the computer
performed the calculation and displayed the result.

Similarly, multiplication and division can be performed using the symbols* and /. For
example:

PRI NT 12 * 13
PRINT 111 / 11

Some commands, although they have an effect on the computer, do not give evidence
that anything has changed. If, for example, you type

LET FRED = 12

nothing obvious happens. Nevertheless, the computer now knows about the existence of
avariable called FRED which hasthe value 12. A variable is aname which can have
different values assigned to it. It is described in more detail later in this manual.

18

Command mode

19

Now if you type
PRINT FRED / 3
the computer responds by displaying the number 4.

The program below illustrates how you can give commands to produce some graphics
on the screen:

MODE 12
CI RCLE FI LL 600, 500, 100

>Cl RCLE FILL 600, 500, 100
>

The MODE command sets up the computer to produce high resolution graphics (640 by
256 dotsin 16 colours). It also clears the screen.

TheCl RCLE FI LL command tells the computer to draw acircle at a position 600 dots
across from the left of the screen and 500 dots up from the bottom. Thisis near the
centre of the screen because the screen is 1280 units across and 1024 units high. The
third number tells the computer how big the circle should be, in this case giving aradius
of 100 dots.

4 Simple programming

programisalist of instructions to be carried out by the computer. These
instructions are stored in memory and are only executed when you tell the
computer to do so.

Entering a program

Once you have entered BASIC you can begin to type in programs. Each line of a
program is numbered so that it can be referred to more easily. Note that you must press
Return at the end of each line you type in. For example, type the following:

10 PRINT "Hell o"

Note that nothing happens (but all must be well as no error message was printed). Now
type
RUN

The Hello message is displayed on the screen. The number 10 at the start of thelineis
called the line number, and identifies the text after it as a program statement to be stored
in memory, rather than as a command to be executed immediately.

You can type spaces either between the start of the line and the line number, or between
the line number and the instruction without affecting the execution of the program.

10 PRI NT "Hel | 0"
and
10PRI NT "Hel | o"
are equally valid.

One of the advantages of programsis that they can be executed repeatedly: Typing RUN
again here causes Hel | o to be displayed a second time — there is no need to type the
completePRI NT "Hel | 0" statement again.

The following is a simple program demonstrating the use of a variable and the INPUT
statement:

10 PRINT "Can you give nme a nunber ";
20 | NPUT nunber
30 PRINT "The nunber you typed was "; nunber

20

Altering a program

Theline numbers determine the order in which the computer executes these instructions.
They can take any whole value between 0 and 65279. You can type line numbersin any
order you like; BASIC will sort them into ascending order and obey them in this order.

Now RUN this program. The computer obeys line 10 and displays the message:
Can you give me a nunber ?

The question mark is added automatically by the execution of line 20. It will appear on
anew lineif you miss off the semicolon at the end of line 10.

The keyword | NPUT instructs the computer to wait for you to type something, in this
case anumber. Type the following (followed by Return):

6
Line 30 is now obeyed, and the following message is displayed:
The nunber you typed was 6

Altering a program

Once you have entered a program, you may wish to make changesto it.

You can of course type in awhole new version of the program, but there are quicker
methods available.

To see the program which is currently stored in memory, type
LI ST
Lines 10, 20 and 30 are listed on the screen.

Replacing and adding lines

21

To add extralines to the program, type in the new line with an appropriate line number:

5 PRINT "Hel |l 0"
40 PRINT "Twice "; nunber " is ";2*nunber

and then:
LI ST

Note that these two extralines are added to the program in such away that the line
numbers are listed in numerical order:

Simple programming

5 PRI NT "Hel |l 0"

10 PRINT "Can you give nme a nunber "“;

20 | NPUT nunber

30 PRINT "The nunber you typed was "; nunber
40 PRINT "Twice "; nunber " is "; 2*nunber

To replace lines, enter the new line with the line number of the one which isto be
replaced. For example:

40 PRI NT nunber;" squared is ";nunber*nunber
Now when you type

LI ST

the following is displayed:

5 PRINT "Hell 0"

10 PRINT "Can you give nme a nunber "“;

20 I NPUT nunber

30 PRINT "The nunber you typed was "; nunber
40 PRI NT nunber;" squared is "; number*nunber

Altering a single line in a program

If youwish to ater only part of aline, for example, to correct a single spelling mistake,
you can do so using the cursor edit keys. These are the arrow keysto the right of the
main keyboard.

Suppose you want to change theword t yped to ent er ed on line 30. Begin by
pressing the 1 key twice. The original cursor position which was under line 40 becomes
a square and the cursor moves up to the start of line 30.

Press Copy afew times. The cursor editing moves along line 30, the square moves along
aswell, and line 30 is copied underneath line 40. Keep on pressing Copy until the word
t yped iscopied and then stop.

If you hold the Copy key down, the repeat action allows you to move the cursor quickly
across the screen. A quick press and release gives you precise control, moving one
character position. The following is displayed on your screen:

5 PRINT "Hell o"

10 PRINT "Can you give ne a number ";

20 | NPUT nunber

30 PRINT "The number you typed_was "; nunber
40 PRI NT nunber;" squared is "; numnber*nunber
30 PRINT "The nunmber you typed

22

Altering a program

Press Delete until theword t yped is deleted from the new line 30. The cursor on the
old line 30 does not move:

5 PRINT "Hel |l 0"

10 PRINT "Can you give me a nunber ";

20 I NPUT nunber

30 PRINT "The nunber you typed_was "; nunber
40 PRI NT nunber;" squared is "; nunber*nunber
30 PRI NT "The nunber you

Type the word
ent er ed
and press Copy to copy the rest of line 30 to your new version.

Press Return. The square disappears and the cursor movesto the start of anew line. Now
type

LI ST

to produce the following:

5 PRINT "Hell o"

10 PRINT "Can you give ne a number ";

20 | NPUT nunber

30 PRINT "The nunber you entered was "; nunber
40 PRI NT nunber;" squared is "; nunber*nunber

There are no restrictions on how much you move the cursor around when you are
copying. Note when the cursor reaches the end of the screen it will wrap-around to the
other side of the screen. You can use the right and left arrow keysto miss out parts of
lines or to repeat them. You can also copy from several different lines on to your new
line as you go.

Deleting lines

23

You can either delete lines one at atime, or delete a group of lines at once using the
DELETE command.

To delete asingle line, you just type the line number followed by Return. To deleteline
number 5, for example, type

5
To check that line 5 is deleted, type
LI ST

Simple programming

and the computer displays the following:

10 PRINT "Can you give ne a number ";

20 | NPUT nunber

30 PRINT "The nunber you entered was "; nunber
40 PRI NT nunber;" squared is "; nunber*nunber

The DELETE command allows you to delete a number of consecutive linesin three
different ways:

I By deleting ablock of lines. To delete al line numbers between 10 and 30 inclusive,
type
DELETE 10, 30
By deleting from the beginning of aprogram. To delete all lines from the beginning
of the program to line 30, type
DELETE 0, 30
The number zero is the minimum line number that can be used in a program.
Therefore, al lines from the start of the program to line 30 are del eted.
By deleting from aline to the end of the program. To delete all linesfrom line 20 to
the end of the program, for example, type
DELETE 20, 65279

The number 65279 isthe maximum line number that can be used in aprogram, soin
this case all lines from line 20 to the end of the program are deleted. Of course, you
can use any other number which is higher than the last line of the program, so
something like 60000 will usually work just as well, and is somewhat quicker to

typel

Deleting whole programs

Before you enter anew program, make sure no program currently existsin memory. If it
does, the lines of the new program you enter will get mixed up with the lines of the
existing program, and this could produce strange results!

To delete any existing program, you can use the DELETE command described above,
but an easier method is to type

NEW

Thistells the computer to forget about any existing program, and to be ready to accept a
new one.

Although the DELETE and LIST commands combined with cursor editing are fine for
making small changesto a BASIC program, you should note that, if you are using
RISC OS 2, the BASIC Editor is much more versatile. See the chapter entitled Editing
BASIC files on page 190 for details of using this program.

Note: RISC OS 3 users should use Edit as aBASIC program editor.
24

Numbering lines in a program

Numbering lines in a program

There may be occasions when you want to change the line numbers of a program
without changing their order. The command to useis RENUMBER. Thisfacility is
particularly useful when you want to insert alarge number of lines between two existing
ones.

You can specify two numbers after typing the RENUMBER command. The first number
tells the computer what you want the new first program line number to be. The second
number tells the computer how much to add to each line number to get the next one.

For example,
RENUMBER 100, 20

makes the first line into line 100 and numbers the remaining lines 120, 140, 160, and so
on.

If you leave out the second number in the RENUMBER command, the computer
automatically increments the line numbers in steps of 10. So, for example, you might
want to renumber the following program:

23 PRINT "This denonstrates”
24 PRINT "the use of"

48 PRINT "the very useful"
67 PRI NT "RENUMBER conmand"
Typing

RENUMBER 100
LI ST

produces the following display:

100 PRI NT "This denonstrates"
110 PRINT "the use of"

120 PRINT "the very useful"
130 PRI NT " RENUMBER conmand"

Typing
RENUMBER

without including a number after the command, means that your program lines are
renumbered 10, 20, 30, 40 and so on.

Automatic line numbering

You do not have to type line numbers at the beginning of each new program line. The
computer does it automatically when given the AUTO command. For example, type

25

Simple programming

AUTO

The computer displays the number 10 on the line below. If you type the first program
line and press Return, the number 20 appears on the next line, and so on. To leave this
automatic line numbering mode, press Esc.

Starting a program from a particular line

You can start aprogram at aline other than line 10 by following the AUTO command
with the first line number you wish to use. Thus,

AUTO 250
generates lines which are numbered 250, 260, 270, and so on.

You can also specify the number of spare lines between each of your program lines by
adding a second number, separated from the first by a comma. Thus,

AUTO 250, 15

starts at line number 250 and subsequently increases the line numbers in steps of 15,
generating lines numbered 250, 265, 280, and so on.

Listing long programs

The LIST command, used above to display the current program on the screen, can be
used to look at part of a program. Thisis particularly useful if the program is very big
and you want to concentrate on one part of it.

Listing sections of programs

To look at one particular line type, for example
LI ST 40

To look at a number of consecutive lines type, for example,
LI ST 20, 40

To see from the beginning of the program up to a particular line type, for example,
LI ST , 30

To display from aparticular line to the end of the program type, for example,
LI ST 20,

26

Comments

Halting listings from the command line

If you list more of a program than can fit on the screen all at once, the beginning of the
listing disappears off the top of the screen before you have timeto read it. If you are
running BASIC from the command line there are three ways of getting round this
problem:

I Pressing the Scroll Lock haltsthe listing; pressing it again allows the listing to
continue. This enables you to step through chunks of the listing.

I Holding down Ctrl and Shift together after typing LI ST halts the displayed listing
on the screen. To continue the listing, take your finger off either Ctrl or Shift.

I Putting the computer into paged mode. Thisis the most reliable method. To enter
this mode press Ctrl-N, then type LI ST. The listing stops as soon as the whole
screen isfilled. To display the next screenful of listing, press Scroll Lock twice.
This method ensures that you will not miss any of thelisting. To cancel the effect of
Ctrl-N, type Ctrl-O when the listing is finished.

In addition to the methods described for halting listings, you can also slow the listing
down by pressing Ctrl. This makesthe screen halt for the auto-repeat rate time (typically
about 1/25th of a second) between each new line. Thus it takes a second to scroll one
screenful in a25-line text mode.

Comments

When writing programs, especially long or complex ones, you should insert comments
to remind you what each part of the program is doing. Thisis done by using the REM
keyword which is short for ‘remark’.

REM tells the computer to ignore the rest of the line when it executes the program. For
example, to add comments to the following program:

10 PRINT "Can you give ne a number ";

20 I NPUT nunber

30 PRI NT "The number you typed was "; nunber
40 PRI NT nunber;" squared is "; nunber*nunber

type

5 REM Read in a value and assign it to nunber
25 REM Now print out the nunber given.
35 REM And its square

and then
LI ST

to display the complete program:

27

Simple programming

5 REM Read in a value and assign it to number
10 PRINT "Can you give nme a nunber "“;

20 I NPUT nunber

25 REM Now print out the nunber given.

30 PRINT "The nunber you typed was ";nunber
35 REM And its square

40 PRI NT nunber;" squared is "; number*nunber

You may like to add further REM statements to underline comments or leave space
above them to make them clearer:

5 REM Read in a value and assign it to number
6 REM - - - oo oo
10 PRINT "Can you give ne a nunber ";

20 | NPUT nunber

24 REM

25 REM Now print out the nunber given

26 REM - - - - - - - e e

30 PRINT "The nunber you typed was ";nunber
34 REM

35 REM And its square

36 REM - -------------

40 PRI NT nunber;" squared is "; number*nunber

Multiple statements

A line of BASIC can contain up to 238 characters and can be spread over several lines
on the screen. In al the programs given so far, each line of BASIC contains asingle
statement. Several statements, however, may be placed on one line separated by colons
(:). For example:

10 PRINT "Can you give me a nunber ";:|1NPUT numnber

30 PRINT "The number you typed was "; nunber: REM print out
t he number

40 PRI NT nunber;" squared is "; nunber*nunmber: REMand its
square

Note that REM statements must only be placed at the end of aline since the whole of the
rest of the lineisignored. If you alter the program so that line 30 reads as follows:

30 REM print out the nunber: PRINT "the nunber you typed
was "; nunber

you will prevent the PRINT statement being executed.

28

Saving and recalling programs

Thelines above illustrate that lines with more than one statement can overflow onto the
next screen line very easily, making the program hard to read. You should therefore try
to avoid too many multi-statement lines.

Saving and recalling programs

You can save a copy of the current program to disc at any time. Thisallows you to recall
(load) it at alater date, without having to retype all the instructions. How you are
running BASIC determines how you can save your program.

Saving and loading a program from Edit (RISC OS 3)

If you are writing your program in Edit, you can saveit to disc at any stage, using the
Save menu option (see the chapter on Edit in the Applications Guide). Once saved, the
file can be loaded for editing by holding down Shift and double-clicking on itsicon.

Saving a program from the command line
To save a program from the command line, type
SAVE " program nane"

The program will be saved to the currently-selected disc, with the name
program name. The name you use when saving a program can contain up to 10
characters. At this stage, you should confine your names to numbers and upper- and
lower-case letters and digits. Other characters may be used but some have special
meanings. See the RISC OSUser Guide for further information on file naming.

After using SAVE, your program remains in memory and is unaltered in any way. You
can still edit, LIST, RUN, and so on.

Another capability of the REM statement isthat it allows you to give the program name
for use by the SAV E command. The filename must be preceded by a> character, and the
REM containing it must be the first line of the program. Thus, if the first line of the
programis

10 REM >progl

all you need to do is type the SAVE command (or its abbreviation SA) on its own, and
the name progl will be used to save the program.

Loading a program from the command line
To load a program which you have previoudly saved, in this case progl, type
LOAD "progl"

29

Simple programming

The LOAD operation replaces the current program with the one from the disc (so you
should be sure that you don't mind losing the current program before you load a new
one). You can check this by listing the program currently in memory.

In addition to loading a program, you can add a program to the end of the current one
using the APPEND command. The appended program is renumbered to ensure that its
line numbers start after those of the initial program. The statements LIBRARY and
OVERLAY may be used to add libraries of procedures and functions to the current
program (see the chapter entitlacedures and functions on page 90 for details).

30

Saving and recalling programs

31

5 Variables and expressions

Avari able has aname and aval ue associated with it. The name, for example, FRED or
asingle letter such as x, allows the variable to be identified and its value to be

accessed. This value can be changed and retrieved as many times as required.

Types of variables

There are three different types of variables used to store different types of information.
These are;

I Integer variables which can only store whole numbers
I Floating point variables, which can store either whole numbers or fractions
I String variables which store characters.

Each typeis distinguished by the last character of the variable name. A name by itself,
like Fr ed, signifiesafloating point variable; Fr ed%is an integer variable, and Fr ed$
isastring variable.

Naming variables
The rules for naming variables are as follows:
I there must be no spaces within the name
I they can contain digits and unaccented upper- and lower-case | etters
I they can be divided into multiple words, using the underscore character ()
I they must not start with a digit
I they must not start with any BASIC keywords.

All the following names are allowed:

X

Xpos

XPOS

Xpos

X_position
greatest_x_position
posi tion_of X
XPOS1

32

Types of variables

33

Notethat upper- and lower-case | etters are regarded by BASIC as being different, so that
XPGS, xpos and Xpos are three separate variables.

The following names are not allowed:

2pos It does not begin with aletter.
TOTAL_Xx It beginswith TO, a BASIC keyword.
FOREST It beginswith FOR, a BASIC keyword.
COsT It beginswith COS, a BASIC keyword.
X- pos It contains a minus sign.
XPosition Itcontainsaspace.

X.pos It contains a punctuation mark.

It isvery easy to be caught out by the rule which says that the variables must not start
with aBASIC keyword. The best way to avoid this problem isto use lower- or
mixed-case variable names since BASIC keywords only use upper-case. This has the
added advantage of making the program easier to read.

The values of the current variables may be displayed at any time by typing the command
LVAR a the BASIC prompt and then pressing Return.

§) Numeric variables

his chapter tells you how to perform arithmetic operations using numeric variables.
If you want to know more about the different types of numeric variable which BBC
BASIC uses, and how they are represented, see Appendix A - Numeric implementation.

Integers and floating point numbers

Integer variables are specified by placing a percent sign (%) at the end of the name.
Floating point variables have no percent sign at the end. For instance, a variable called
nunber %is an integer variable, whereas a variable called nunber isafloating point
variable.

Floating point variables can represent both whole numbers (integers) and decimal
fractions, but integer variables can only store whole numbers. For example, the
assignments

LET nunber = 4/3
LET nunber% = 4/3

leave the variables with the following values:

nunber is 1. 33333333
nurber % is 1

In the case of the integer variable, the decimal fraction part has been lost. The
advantages, however, of using integer variables are:

I they are processed more quickly by the computer;
I they occupy less memory;
| they are precise.

34

Integers and floating point numbers

35

Assigning values to variables

The value assigned to a numeric (floating point or integer) variable can be specified as:
I asingle number

I the current value of another variable

I anexpression

I theresult of afunction.

For example

LET base = 3

LET height = 4

LET area = (base * height)/2

LET hypot = SQR(base*base + hei ght *hei ght)

(base * hei ght)/ 2 isamathematical expression consisting of the variablesbase
and hei ght , and arithmetic operations to be performed on them.

SQRisafunction which returns the square root of a number, in this case the expression
(base*base + height*height).

The above assignments leave the variables with the following values:

base is 3
hei ght is 4
area is 6
hypot is 5

Notethat giving anew valueto base or hei ght does not automatically update ar ea
or hypot . Once the expression is evaluated using the values of base and hei ght
current at that time, it is forgotten. In other words, ar ea and hypot only know what
value they contain, not how it was obtained.

The use of LET is optional. For example,
LET x = x+1

is equivalent to:

X = X+1

Using LET, however, makesit easier initially to understand what is happening. On its

ownx = x+1 looks, to amathematician, like an unbalanced eguation. Using LET

makesit clear that the = isnot being used in its usual algebraic sense but as shorthand for
‘become equal’LET x = x+1 can be read as ‘let x become equal to its old value with
one added to it'.

In BBC BASIC, it is usual not to use LET at all; it is principally allowed to provide
compatibility with other BASICs which require its presence.

Numeric variables

An aternative way of expressing an addition in an assignment is to use:
X +=1

This means ‘let x become equal to itself with one added to it".
Similarly,

X —=3

means ‘let x become equal to itself with three subtracted from it".

Special integer variables

The 27 integer variables A% to Z% and @% are treated slightly differently from the
others. They are called ‘resident’ integer variables because they are not cleared when the
program is run, or when NEW is used. This means that they can be used to pass values
from one program to another.

A special integer pseudo-variable is TIME. TIME is an elapsed time clock which is
incremented every hundredth of a second while the computer is switched on. It can be
used to find out how long something takes by putting the following statements around a
program:

T% = TI ME

PRINT (TIME — T%)/100 : REM Time in seconds

TIME may be assigned a starting value just like any other variable. So, for example, the
statement above could be replaced by:

TIME=0

PRINT TIME/100
Note that you cannot use LET with TIME.

Arithmetic operators

Thefull list of arithmetic operators and logical operatorsis given in the following table.
Each operator isassigned a priority. When an expression is being evaluated, this priority
determines the order in which the operators are executed. Priority 1 operators are acted
upon first, and priority 7 last.

36

Arithmetic operators

37

Priority Operator
1 _

+

NOT

FN

()

?

> — ¢ — -

>>>
6 AND

7 OR
EOR

Meaning

Unary minus

Unary plus

Logical NOT

Functions

Brackets

Byte indirection

Word indirection

String indirection
Floating point indirection

Raise to the power

Multiplication
Division

Integer division
Integer remainder

Addition
Subtraction

Equal to

Not equal to

Lessthan

Greater than

Lessthan or equal to
Greater than or equal to
Shift left

Arithmetic shift right
Logical shift right

Logical and bitwise AND

Logical and bitwise OR
Logical and bitwise Exclusive OR

For example, 12+3*4"2 is evaluated as 12+(3* (4"2)) and produce-s the result 60.

Operators with the same priority are executed |eft to right, as they appear in the
expression. Thus, 22 MOD 3/7 isevauated as (22 MOD 3)/7

Note that the shift operators are entered by typing two (or three) > or < symbols, and

should not be confused with the «and » characters in the ISO Latinl alphabet. Note also
that although you can say 1+2+3, you couldn’t write 1<<2<<3. This would have to be
bracketed thus: (1<<2)<<3. This is because you may only use one group 5 operator per
(unbracketed) expression.

4 Bases

are most familiar with numbers expressed in terms of powers of ten, or decimal

numbers. Sometimes it is more convenient to give numbersin a programin
another base. BASIC allows numbers to be given in hexadecimal (base 16) and binary
(base 2) aswell as base 10.

Hexadecimal numbers

The computer treats any number which is preceded by an & sign as a hexadecimal (hex)
number.

Whereas decimal numbers can contain ten separate digits, from 0 to 9, hexadecimal
numbers can contain sixteen separate digits, 0to 9 and A to F. The first 16 hexadecimal
numbers and their decimal equivalents are given below:

Hex Decimal Hex Decimal
&0 0 &8 8
&1 1 &9 9
&2 2 &A 10
&3 3 &B 11
&4 4 &C 12
&5 5 &D 13
&6 6 &E 14
&7 7 &F 15

The next hexadecimal number is & 10 which is equivalent to 16 in decimal notation.
Thus, in hexadecimal notation, onein acolumn represents a power of sixteen rather than
apower of ten. For example, & 100 represents 256 which is 16%.

Binary numbers and bits

You can enter numbers in binary notation, i.e. in base 2, by preceding them with the
percent sign %.

Binary numbers consist entirely of the digits 0 and 1. The following table gives the
binary equivalents of the decimal values 1 to 10.

38

Shift operators

Binary Decimal Binary Decimal
%l 1 %410 6
%40 2 %411 7
%41 3 %4000 8
%400 4 %4001 9
%401 5 %4010 10

A onein aparticular column represents a power of two:

27 26 25 2 23 22 21 20
128 64 32 16 8 4 2 1

Thus:
%1000101 =1*64 + 0*32 + 0*16 + 0*8 + 1*4 + 0*2+ 1*1 =69
Binary digits are usually referred to as bits.

Shift operators

There are three operators which act upon the 32 bits of an integer, shifting it either left or
right by a given number of places.

Shift left

The simplest shift is<<. This shiftsthe bits of an integer to the |eft by a given number of
places and inserts zeros in the righthand bits. For example:

A% = 10

B% = A << 1

C% = A%<< 2

D% = A% << 3

This leaves the variables with the following values:

Variable Value

A% 10 (%©0000000000000000000000000001010)
B% 20 (9©0000000000000000000000000010100)
C% 40 (990000000000000000000000000101000)
D% 80 (9%©0000000000000000000000001010000)

39

Bases

Shift right (unsigned)

The >>> operator shiftsthe bits of an integer to the right a given number of times, losing
the bits which were in those positions and introducing zeros at the left. For example:

A% = %4010

B% = A% >>> 1
C% = A% >>> 2
D% = A% >>> 3

This leaves the variables with the following values:

Variable Value

A% 10 (9©0000000000000000000000000001010)
B% 5 (9%90000000000000000000000000000101)
C% 2 (990000000000000000000000000000010)
D% 1 (9%90000000000000000000000000000001)

Shift right (signed)

The >> operator is similar to >>>, but instead of introducing zeros at the top at each
stage, the left-most bit is set to either one or zero depending on what the current setting
is. Theleft-most bit of an integer is normally used to indicate whether the integer is
positive (left-most bit = zero) or negative (left-most bit = one). Consequently, this
operator can be used to perform a division by a power of two on a number, retaining its
sign. For example:

A = -1610612740 B
= 536870912

A% = %10100000000000000000000000000000
B% = 9%©0100000000000000000000000000000

C% = Al >>> 2
D% = B% >>> 2
E% = A% >> 2

F% = B% >> 2
This leaves the variables with the following binary values:

Variable Value

C% %901010000000000000000000000000000 (671088640)
D% %900010000000000000000000000000000 (134217728)
E% 9411010000000000000000000000000000 (-402653184)
F% %900010000000000000000000000000000 (134217728)

40

AND, OR and EOR

Left shift as multiplication

The left shift operator can perform multiplication. The expression val <<n isequivalent

toval * 27n.Sofred<<3isthesameasf r ed* 8. Although using shift can be

faster than the equivalent multiply, you should bear in mind that bits may be shifted off

the end of the number, so leading to incorrect results which will not be trapped as errors.

For example, &10000<<16 yields 0, whereas the correct ‘multiply’ result is
&100000000 (which cannot be represented in a 32-bit integer, and would be converted
to floating point by BASIC).

Right shift as division

The two right shift operators perform a similar role in division. The >> operator gives
division of ‘signed’ numbers by a power of two. This means that both positive and
negative numbers may be divided; the result is always rounded towards the integer less
than or equal to the exact value. For exampB>1 is the same dsNT(- 3/ 2) =- 2,

not- 3 DIV 2, which is- 1. The>>> operator ignores the sign when shifting negative
numbers, so should only be used to divide positive numbers by a power of two.

AND, OR and EOR

41

The operators AND, OR and EOR produce a result which depends upon the bits of two
integer operands:

I Inthe case of AND, the bits in the two integers are compared and if they are both
one, then a one is placed in the corresponding bit of the result.

I Inthe case of OR, a one is placed in the corresponding bit of the result if either or
both of the bits in the integers are one.

I Inthe case of EOR, a one is placed in the corresponding bit of the result if either
(but not both) of the bits in the integers is one.

Inputs AND OR EOR

0 O 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0
For example:

A% = 94010
B% = 94100

C% = A% AND B%
D% = A% OR B%
E% = A% EOR B%

This leaves the variables with the following values:

Variable Value

A% 10 (94010)
B% 12 (94100)
C% 8 (94.000)
D% 14 (9%110)
E% 6 (99110)

Bases

Thelogical operators AND, OR and EOR are symmetrical, like+and*. ThusX AND Y
=Y AND X for al possible values of X and Y. Thisappliesto the other two operators as

well.

TRUE and FALSE

The truth values TRUE and FAL SE have the values - 1 and O respectively. This means

that:

With AND

TRUE AND TRUE
TRUE AND FALSE
FALSE AND FALSE

With OR

TRUE OR TRUE
TRUE OR FALSE
FALSE OR FALSE

With EOR

TRUE EOR TRUE
TRUE EOR FALSE
FALSE ECR FALSE

gives
gives
gives

gives
gives
gives

gives
gives
gives

AND -1
AND O
AND O

[eoNeN

-1)
0)
0)

-1)
-1)
0)

0)
-1)
0)

42

TRUE and FALSE

43

8 String variables

Stri ng variables may be used to store strings of characters, constituting words and
phrases. This chapter shows you how to assign values to a string variable, and
describes several useful operations you can perform on stringsin BASIC; such as
splitting a string and joining two or more strings together.

Assigning values to string variables

Each string can be up to 255 characters long. The following gives some examples of
strings:

day$ = "Monday"

Date$ = "29th February"

space$ = " "

Address$ = "10 Downing Street, London"
Age$ = "21"

Note that the variable Age$ is assigned a string containing the two characters2 and 1,
and not the number 21. So, if you type

Real _Age$ = 21 * 2

the result will not be "42" because BASIC cannot do arithmetic with strings. Instead, the
€rror message:

Type mi smatch: string needed

appears on the screen, indicating that only a string expression can be assigned to a string
variable. A type mismatch error can also be caused by an attempt to multiply strings, as
in:

total $ = "12"*"32"

You should note that the ‘null’ stridd' is valid. This is a string containing zero
characters. In comparisons, it is less than any other string (except, of course, another null
string).

In order to obtain a double quotation characteim a string, you use two of them
adjacent to each other. For example, to print theAeRker e, you would use:

PRI NT "A""here"

44

Joining strings together

Joining strings together

Two strings may be joined together, or, more correctly speaking, concatenated. The +
operator is used to indicate this:

10 Road$ = "Downing Street"”
20 Gity$ = "London"
30 PRINT Road$ + " " + City$

Typing RUN produces the following:
Downi ng Street London

The += operator can also be used, and as the following program shows, produces the
same output as +.

10 Address$ = "Downing Street”
20 Address$ += " "

30 Address$ += "London"

40 PRI NT Address$

Note, however, that the - = operator is meaningless when applied to strings and produces
an error message.

Splitting strings

45

Aswell asjoining two strings together, BASIC can split astring into smaller sequences
of characters. Three functions are provided for doing this.

I LEFT$(A$, n) which givesthefirst (Iefthand end) n characters of a string.
I RI GHT$(A3, n) which givesthelast (righthand end) n characters of astring.

I M D$(A$, m n) which givesn characters from the middle, beginning at the nth
character.

For example,

PRI NT LEFT$("HELLO', 2), RI GHT$(" THERE", 2) , M D$(" GORDON', 3, 2)
gives

HE RE RD

and

String variables

10 title$ = "Moonlight Sonata"

20 left_of _string$ = LEFT$(title$, 4)

30 right_of _string$ = RIGHT$(title$, 6)
40 m ddl e_of _string$ = MD$(title$, 5,9)
50 PRINT |l eft_of _string$

60 PRI NT right_of _string$

70 PRINT middl e_of _string$

produces the following when run:

Moon
Sonat a
i ght Son

Each of these functions has a convenient shorthand form:

I LEFT$(A$) givesall but thelast character of the string

I RIGHT$(A$) givesthe last character of the string

I M D$(AS$, m) givesal the characters from the nth to the last.

For example:

10 PRI NT LEFT$("Hel | o")
20 PRI NT RI GHT$(" Hel | o")
30 PRINT M D$("Hel l 0", 3)

produces the following:

Hel |
o}
I'lo

LEFTS$, RIGHTS$ and MID$ may be used to replace part of astring. In each case the
number of new characters equal sthe number of characters being replaced, and the string
staysthe samelength. The number of characters being changed can be determined by the
length of the replacement string. Thus:

10 A$ = "Hello there."
20 M D$(A$,7) = "Susan"
30 PRI NT A$

40 LEFT$(A$) = "Howdy"
50 PRI NT A$

60 RI GHT$(A$) = "I

70 PRI NT A$

46

Splitting strings

produces:

Hel | o Susan.
Howdy Susan.
Howdy Susan!

Alternatively, you can give the maximum number of charactersto be replaced. Then, if
the length of the replacement string is less than the given value, al of it is used.
Otherwise only the first designated number of characters have an effect. For example,

10 A$ = " ABCDEFGHI J"

20 RI GHT$(AS$, 3) = "KL"
30 PRI NT A$

40 LEFT$(AS$, 4) = " MNOPQR'
50 PRI NT A$

60 M D$(AS$, 4,3) = "STUVW
70 PRI NT A$

produces:

ABCDEFGHKL
MNOPEFGHKL
MNOSTUGHKL

Other keywords for manipulating strings

a7

There are also BASIC keywords to:

I produce along string consisting of multiple copies of a shorter string

i find thelength of astring

I determine whether one string is contained within the other.

These keywords are:

I STRI NGS(n, A$) , which returns astring consisting of n copies of AS.
I LEN(A3) , which gives the length of string AS.

I | NSTR(A%, B$) , which looks for the string B$ within the string A$ and returns
the position of the first place whereit is found.

For example,
PRI NT STRI NG$(20, "+-")
produces the output:

B i S i S S S S S S s S S

String variables

The statement PRI NT LEN(" PAUL") prints the number 4 and

A$ = "Geat Britain"
PRI NT LEN(A$)

produces the result 13. Note that the spaceis treated like any other character.

A$ = "Geat Britain"
PRI NT | NSTR(A$, "it")

prints 9 because the stringi t iscontained in G- eat Bri t ai n at the ninth character
position. If the substring in the INSTR function is not present in thefirst string, then 0 is
returned. Note also that you can start the search for the substring at any position, not just
from the start of the substring. Thisis done by specifying athird parameter, so that for
example,

PRINT INSTR("'ello "ello"," ello", 2)
will print 7, since the first occurrence of the substring will be skipped.

You can use therelational operators >, =, <= etc, to compare two strings. See the chapter
entitled Control statements on page 76 for details.

How characters are represented

Every character and symbol which can be reproduced on the screen is represented within
the computer by a number in the range 0 to 255. The system used to assign numbers to
characters and symbolsis known as | SO-8859. Thisis an extension of the very popular
ASCII (American Standard Code for Information Interchange) code, which only applies
to characters between 0 and 127. We shall use ASCII as ageneral term for character
codes. It iswiseto follow such astandard so that different computers can all understand
the same numerical alphabet.

BASIC provides apair of functions for converting characters to their ASCI|
number-codes and back again. These are:

I ASC(a%) , which givesthe ASCII code of the first character of a string.
I CHR$(n), which gives the one-character string whose ASCII codeis n.

Converting between strings and numbers
There are three keywords which convert between strings and numbers:
I VAL(A$%) , which converts astring of digits A% into a number.
I STR$(n) , which converts the number n into a string.
I EVAL(A$) , which evaluates the string A$ as though it were aBASIC expression.

48

Converting between strings and numbers

49

VAL

EVAL

STR$

VAL returns the value of a string, up to the first non-numeric character.
For example:
PRI NT VAL("10t010")

printsthe value 10, since al the characters after thet are ignored. The string may,
however, begin witha+ or - . Thus,

nunber = VAL("-5")

assignsthe value - 5 to nunber . If, however, the string does not start with adigit or a
plus or minus sign, VAL returns 0.

EVAL however, considers the whole string as an expression, alowing operators and
variable names to occur within it. Variables must be assigned values beforehand.

10 radius = 5
20 area = EVAL("PI *radi us”2")
30 PRINT area

When this program is run the value printed is 78. 5398163, which isthe value Pl
(3.141592653) multiplied by 5 squared.

STRS$ performs the opposite conversion to the above two functions. It takes the number
given and returns a string containing the digits in the number.

For example,
10 A = 45
20 B = 30.5

30 A$ = STR$(A)
40 B$ = STR$(B)
50 PRINT A + B
60 PRINT A$ + B$

produces the following when it isrun:

75.5
4530. 5

String variables

BBC BASIC can express humbers in base 16 (hexadecimal) as well as base 10
(decimal). Thisis useful for dealing with certain types of integer. The chapter entitled
Bases on page 38 explains more about the various ways in which bases can be used.
STR$~x gives the hexadecimal string representation of x. Thus

10 A = 45
20 A$ = STR$~(A)
30 PRI NT A$

produces:
2D

because 2D is the hexadecimal version of the decimal number 45.

50

Converting between strings and numbers

51

9 Arrays

Arays are groups of variables. An array has a name which appliesto all variablesin

the group. The individual members, known as the elements of the array, are

identified by a subscript. Thisis awhole number (zero or greater) indicating the

element’s position within the array. For example, A(0) is the first element in the array
named A(), and A(1) is the second element, and so on.

The DIM statement

The DIM statement tells BASIC how many elements you wish to use in the array. For
example,

DI M A(9)

allocates space in the computer’s memory for ten elements, each?¢3allealut each

having a different subscript, zero to nine. TheMstatement also assigns the value zero

to each of these elements, which may then be individually assigned values, just like any
other variables. For example:

A(l) = 0.56

A(2) = A(1) + 4

The example shown above is of a one-dimensional array: it may be thought of as a line
of variables, numbered from O to 9 in a sequence. More dimensions may be used.

Two dimensional arrays

Two dimensional arrays in which the individual variables are identified by two
subscripts can be thought of as the printing on a TV screen. Each character printed on
the screen is at a particular position from the left, and a particular position from the top.
(Use the rows and columns as a matrix.)

A two dimensional array may be defined as follows:
DI M B(2, 2)

52

Two dimensional arrays

53

This allocates space for nine elements, each called B() in this case, and each identified
by two subscripts as shown in the following table:

B(0,0) B(0,1) B(0,2)
B(1,0) B(1,1) B(1,?2)

B(2,0) B(2,1) B(2,2)

Arrays may have as many dimensions asyou like, and may hold floating point numbers,
integers, or strings. For example,

DIMstr$(1, 3, 2)

allocates space for 24 string variables (st r $(0, 0, 0) tostr$(1, 3, 2)), each of
them containing up to 255 characters.

The subscript need not be specified as a number - a variable or expression can be used
instead. For example:

10 DI M A(9)
20 X = 6
30 A(X) = 3

40 A(A(X)) =1
This gives A(6) the value 3, and A(3) the value 1.

Any arithmetic expression may be used as a subscript. Since subscripts can only be
whole numbers, any expression giving afloating point result has the number truncated
to itsinteger value (the part before the decimal point).

When using arrays, remember that if you DIM the array using a particular number of
subscripts, each element of the array must be referenced with the same number of
subscripts:

10 DI M nanme$(2, 2, 2)
20 nane$(0) = "FRED'

produces an error. Line 20 should be replaced by:
20 nane$(0,0,0) = "FRED"
In addition, the numbers used as subscripts must not be too big or less than zero:

10 DI M position(9, 4)
20 position(-1,5) =1

If you now type RUN an error message is displayed because the first subscript must be
between zero and nine and the second between zero and four.

Arrays

When you DIM astring array, the elements are initialised, just as they are for numeric
arrays. Each element in the array is set to the null string, ""'. No space isalocated for the
characters of each string element until they are assigned a value.

The operators += and —= are particularly useful with arrays, as they remove the need to
evaluate the subscript expressions twice. For example, suppose you had the assignment:

a(100*(SINRADangle+1))=a(100*(SINRADangle+1))+increment

The expression 100*(SINRADangle+1) must be calculated twice, which could be
quite time-consuming. On the other hand, if you used

a(100*(SINRADangle+1)) += increment

the complex subscript expression would only be used once, saving time. It isalso easier
to write and read!

Finding the size of an array

Functions are available to find the number of dimensions of an array, and the size of
each dimension. To find the number of dimensions of an array type

PRINT DIM(A()

To find the number of elements of the nth dimension, type
PRINT DIM(A(),n)

For example,

10 DIM A(4,2,7)

20 n = DIM(A()

30 PRINT n

40 PRINT DIM(A(),n)

produces:

3
7

These functions are useful mainly in procedures and functions which take array
parameters. See the chapter entitled Procedures and functions on page 90 for more
details.

Operating on whole arrays

As described above, every element of an array is given the value zero when the array is
DIMmed.

54

Operating on whole arrays

55

It ispossible to set every element in an array to any given value using asingle
assignment as follows:

10 DI M A(10), B(10)
20 n% = 2

30 A()
40 B()

(3*n%
A()
Line 10 dimensions two arrays of the same size. Line 30 sets all of the elements of A()

to 3*n%, i.e. 6. Then line 40 sets al of the elements of B() from the corresponding
elementsin A().

Note: You may be wondering why the righthand side of the assignmentinline30is

in brackets, i.e. why couldn’t we have written

20 A() = 3*n%

The answer is that the righthand side of an array assignment must be a single item
(number, single variable or expression in brackets) to avoid possible confusion with
a more complex array operation, for example

20 A() = 3*n%)

as described below.

Instead of setting all of the elements of an array to one value, you can set them to
different values by giving a list of values after thd-or example:

10 DIM a(5), b(2,2)
20 a() = 1,2,3,4
30 b() =6,54,3,2,1

Any elements omitted from the list are not changed in the array (for example, a(4) and
a(5) above wouldn't be assigned). In the case of multi-dimensional arrays, the elements
are assigned so that the last subscript changes quickest. For example, in the case of b()
above the six values listed would be assigned to b(0,0), b(0,1), b(0,2),.b(118(R,1),

b(2,2) respectively.

In addition, all the elements in an array can be increased, decreased, multiplied or
divided by a given amount:

10 DIM A(2,2), B(2,2)

20 A(0,0) = 4
30 A(1,1) =5
40 A(2,2) =6

50 n%=2: no= 3

60 A() = A() + (n%n%
70 A) = A() -

80 B() = A() * 6

90 B() = B() / n%

Arrays

When you RUN this program, the elements of the arrays A() and B() are assigned the
following values:

Array Value Array Value Array Value
A(0,0) 5 A(0,1) 1 A(0,2) 1
A(1,0) 1 A(1,1) 6 A(1,2) 1
A(2,0) 1 A(2,1) 1 A(2,2) 7
B(0,0) 15 B(0,1) 3 B(0,2) 3
B(1,0) 3 B(1,1) 18 B(1,2) 3
B(2,0) 3 B(2,1) 3 B(2,2) 21

Note that in line 60 the brackets around n% n%are necessary, as with a simple array
assignment. The amount being added, subtracted, and so on may be either a constant, a
variable, afunction result or an expression, provided that it is enclosed in brackets.
However, you can use shorthand versions for addition and subtraction which do not
require brackets:

60 A() += n% n%
70 A() -= n%

It is also possible to add, subtract, multiply or divide two arrays, provided that they are
of the same size. In the result, every element is obtained by performing the specified
operation on the two elements in the corresponding positions in the operands.

For example, for two arrays which have been DIMmed A(1,1) and B(1,1), the
instruction

A() = A() + B()

is equivalent to the following four instructions:

A(0,0) = A(0,0) + B(O0,0)
A(0,1) = A(0,1) + B(0,1)
A(1,0) = A(1,0) + B(1,0)
A(1,1) = A(1,1) + B(1,1)

BASIC will perform proper matrix multiplication on pairs of two-dimensional arrays
using the . operator. The first index of the array isinterpreted as the row and the second
as the column. For example:

10 i =2:j =3: k=4
20 DM A(i,), B(j, k), C(i, k)
30 :

40 REM Set up the array contents...
50 :

60 C() = A().B()

56

Array operations

Note that the second dimension of the first array must beidentical to the first dimension
of the second array.

Also, the matrix multiplication operation can multiply a vector (a one-dimensional
array) by atwo dimensional matrix to yield a vector. There are two possible cases:

row(). matrix()

This gives arow vector as the result. The number of elementsis equal to the number of
columns in the matrix.

mat ri x().columm()

This gives a column vector as the result. The number of elementsis equal to the number
of rowsin the matrix. For example:

10i =2: j =3

20 DM row(i), colum(j)
30 DM matrix(i,j)

40:

50 REMIlines to set up the arrays
200 colum() = matrix().colum()
220 PROCpri nt (col umm())

260 row() = row().matrix()

270 PROCpri nt (row())

Array operations

57

Arithmetic operations on arrays are not quite as general as those on simple numbers.
Although you can say a=b* b+c, you cannot use the equivalent array expression
a()=b()*b() +c() . Instead, you would have to split it into two assignments:

a() = b()*b()
a() = a()+c()

Also, the only place these array operations may appear is on the righthand side of an
assignment to another array. You cannot say

PRI NT a()*2
for example (or, indeed, PRI NT a()).

Arrays

The table below gives acomplete list of array operations.

array
array
array
array
array
array

array
array

array
array
array

array
array
array

array
array

array
array

array

array

factor

I + 111l

array
-array

array + array
array - array
array * array
array |/ array
factor

factor, expression,

array + factor
factor + array

= expression

array - factor
factor - array
= expression
array * factor
factor * array
array |/ factor
factor |/ array
array . array

Copy all elements

Copy all elements, negating

Add corresponding e ements
Subtract corresponding elements
Multiply corresponding elements
Divide corresponding elements

Set all elements
Set several elements

Increment (or concatenate) all elements

Decrement all elements

Multiply al elements

Divide all elements

Matrix multiplication

means any array variable. All of the operations on two arrays require arrays
of exactly the same size and type (real and integer arrays are treated as
different types for this purpose). Only the assignment and concatenation
operations are available on string arrays.

means asimple expression, such as 1, LENA$ or " HELLO' . If you want to
use an expression using binary operators, it must be enclosed in brackets:

(athb).

The arrays used in these operations may all be the same, or all be different, or
somewhere in between. For example, you are allowed to use:

b() + c()
a() + b()
a() + a()
The matrix multiplication operator works on two arrays which must be compatible in
size. This means that in the assignment

a() = b().c()

a()
a()
a()

58

Array operations

59

the following DIMs must have been used:

DIMb(i,j) : REMIleft side is i rows by j colums
DiMc(j,k) : REMright side is j rows by k colums
DIMa(i,k) : REMresult is i rows by k colums

In addition, the following would be permitted:
DIMb(i,j) : REMleft side is i by j matrix

DIMc(i) : REMright side is colum vector
DM a(i) : REMresult is colum vector

or

DI M b(k) : REMIleft side is row vector
DIMc(j,k) : REMright side is j by k matrix
DM a(j) : REMresult is row vector

There are some functions which act on single arrays:

I SUM array givesthe sum of all elements of the array or the concatenation of all the
strings (up to 255 characters)

I SUMLEN array gives the sum of the lengths of all of the stringsin an array

I MOD array gives the modulus, or square root of the sum of the squares of the
elements of anumeric array. For example, if you had the following statements:

10 DI M a(100)
20 ...

90 nmod=MODa()
then to perform the same operation without the MOD operator, you would have to
say:

10 DI M a(100), b(100)

20 ...

90 b()=a()*a()
100 mod=SQR(SUM b())

10 Outputting text

You can output text, including specia characters defined by yourself, using the
PRINT statement.

Print formatting
The PRINT statement provides a number of ways of formatting the printed output.

Using print separators

Theitemsin a PRINT statement can be separated by a variety of different punctuation
characters. Each of these characters affects the way in which the text is formatted:

I ltems separated by spaces are printed one after the other, with numbers right
justified and strings left justified.

Items separated by semicolons are printed one after the other, with no spaces
(numbers are left justified if there is a semicolon before the first number).

I ltems separated by commas are tabulated into columns.

I ltems separated by apostrophes are printed on separate lines.

The following program demonstrates this:

10 PRINT "Hello " "Hello ","Hello"" "What's all this?"
Typing RUN produces the following output:

Hello Hell o Hel | o
What’s all this?

Printing numbers

Numbers are printed right justified in the print field, unless preceded by a semicolon,
which causes them to be left justified. Print fields are discussed below. In the example
below, the first number isright justified in the default field of ten characters; the second
number isleft justified because a semicolon comes before it:

10 A% = 4

20 PRINT 4;" "; A%

Typing RUN produces (spaces are shown as .):

60

Print formatting

Numbersare normally printed (displayed) as decimal values unlessthey are preceded by
a~, in which case they are given in hexadecimal notation (hexadecimal numbers are
discussed in the chapter entitled Bases on page 38):

10 PRINT 10

20 PRINT &10
30 PRINT ~10
40 PRI NT ~&10

produces:

Defining fields

61

The columns controlled by commas are called fields. By default afield isten characters
wide. Each string which is printed following a comma starts at the lefthand side of the
next field. In other words, using commas is a convenient method of left-justifying text.
Numbers, on the other hand, are displayed to the right of the next field, so that the units
of integers, or the least significant decimal places of floating point numbers, line up.

Thus,

10 FOR N% = 1 TO 5
20 A$ = LEFT$("Hello", N

30 B% = N 10" (N% 1)

40 PRINT A$, A$, A$, A$' B% B% B% B%
50 NEXT N%

produces the following when RUN:

H H H H
1 1 1 1
He He He He
20 20 20 20
Hel Hel Hel Hel
300 300 300 300
Hel | Hel | Hel | Hel |
4000 4000 4000 4000
Hel |l o Hel |l o Hell o Hel |l o
50000 50000 50000 50000

Outputting text

Using @% to alter output
Problems may occur when you print out floating point numbers. For example:
PRI NT 6,9, 7/ 3,57
produces:
6 92. 33333333 57
The nine and the decimal equivalent of 7/3 run into each other.

To prevent this, you can alter the default values for the field width or the number of
decimal places printed (or both) by using the integer variable @%. The way in which
you alter the value of @% depends on which version of the BASIC interpreter you are
using, asfollows:
Using the 1.05 inter preter.
To see the effect of atering the value of @%, type:
@F"F8. 4"
then
PRI NT 6,9, 7/ 3,57
and the following is produced:

6. 0000 9.0000 2.3333 57.0000
The value you supply for @% can take one of three forms:
I "Gx.y". Generd (G) format, where x isthe field width and y is the number of digits
I "Ex.y". Exponent (E) format, wherex isthefield width and y is the number of digits

I "Fx.y". Fixed (F) format, where x is the field width and y is the number of digits
after the decimal point.

For more information on using @%, see the section on the PRINT command, in the
chapter entitled Keywords on page 210.

Using the 1.04 inter preter.
To obtain the same format in the 1.04 and the 1.05 interpreter example, type:
@6 = &20408

The assignment of the variable @% is made up of anumber of parts:
I &indicatesthat a hexadecimal number follows

I Thefirst digit (2) indicates the format of the print field - two tellsBASIC to print a
fixed number of decimal places

62

The text cursor

I Thenext two digits (04) indicate the number of decimal places required
I Thelast two digits (08) give the field width.

The format: the first figure after the & symbol, can take three values:

I Oisthe default General (G) format; BASIC uses the number of decimal placesit
reguires up to a maximum of ten

I 1printsnumbersin Exponent (E) format; a number between 1 and 9.99999999
followed by E and then a power of ten

I 2 prints numbersin the Fixed (F) format; afixed number of decimal places, giving
up to a maximum of ten significant figures.

See PRINT on page 348 for more details on @%.

The text cursor

Text cursor coordinates

When text is entered at the keyboard or displayed using the PRINT statement, the
position at which it appears on the screen depends on the location of the text cursor. As
each character is printed, this cursor moves on to the next character position.

Initially, thetext cursor isat the top lefthand corner of the screen, which isposition (0,0).
The number of possible positions for the cursor depends on the screen mode. For
example, in screen mode 12 which has 80 characters across the screen and 32 rows, the
coordinates it can have vary as follows:

(0,0) (79,0)

(0,31 (79,31)

Altering the position of the text cursor

You can use TAB with one parameter to control the position of the text cursor. For
example:

63

Outputting text

PRI NT TAB(x)"Hel | 0"

It works as follows. If the current value of COUNT (which holds the number of
characters printed since the last newline) is greater than the required tab column (i.e. X
above), anewlineis printed. Thismovesthe cursor to the start of the next line, and resets
COUNT to zero. Then x spaces are printed, moving the cursor to the required column.

Notethat it is possible to tab to column 60 in a 40 column mode; the cursor will simply
move to column 20 of the line below the current one. Using TAB with one parameter to
position the cursor on the line will aso work, for example, when characters are sent to
the printer, asit isjust printing spaces to achieve the desired tabulation.

On the other hand, TAB with two arguments worksin acompletely different way: it uses

the operating system to position the cursor at a specified position on the screen - thisis
relative to the screen ‘home’ position, which is normally the top left. In this case, if you
try to position the cursor on, say, column 60 in a 40 column mode, the command will be
ignored. Furthermore, this kind of tabbing does not affect any characters being sent to
the printer.

The VDU statement

In addition to TAB, there are other methods of altering the position of the cursor. If, for
example, you type

10 PRI NT "A";
20 VDU 8
30 PRINT "B"

PRI NT " A"; prints anA at the current cursor position and moves the cursor one place
to the right VDU 8 moves the cursor back one position so that it is underneath the
Hence PRI NT " B" prints aB at the same position as thgand so rubs it out.

VDU 8 moves the cursor back one space.

VDU 9 moves the cursor forward one space.

VDU 10 moves the cursor down one line.

VDU 11 moves the cursor up one line.

VDU 12 clears the screen and puts the cursor at the top left.
VDU 13 moves the cursor to the beginning of the line.

VDU 30 moves the cursor to the ‘home’ position.

For details of these and other effects available with VDU see the chapter afiditled
control on page 178.

64

Defining your own characters

Defining your own characters

Each character is made up of a pattern of dots on an eight by eight grid. All normal
letters, numbers and so on are pre-defined in thisway. It is possible, however, to define
your own characters with ASCI| valuesin the range 32 to 255.

To do this, use the VDU 23 command, followed by the code of the character youwish to
define and then eight integers, each representing one row of the character, from top to
bottom. The bit pattern of each integer defines the sequence of dots and spaces: one
gives adot and zero gives a space.

12864 32 16 8 4 2 1

24
60
126
219
126
36
66
129

To set up character 128 to be the shape shown above, use the following:
VDU 23,128,24,60,126,219,126,36,66,129

Then, to display this character, type

PRINT CHR$(128)

65

11 Inputting data

his chapter describes several methods by which you can input datainto your BASIC
program:

I from the keyboard

I from predefined data within your program

I by programming keys on the keyboard

I fromamouse.

Inputting data from the keyboard
There are three commands you can use to input data from the keyboard:
I The INPUT command allows a program to request information.
I The GET command waits for the user to press asingle key.
I TheINKEY command waits a specified length of time for the user to pressasingle
key.
Note that you are advised not to use these three commands in BASIC programs written

under the window manager environment (see the section entitled Window managed
programs on page 13).

INPUT
The INPUT statement allows a program to request information from the user.
The following program gives an example:

10 PRINT "G ve ne a nunber and I'l|l double it";

20 I NPUT X

30 PRINT "Twice "; X " is "; X*2

When you run this program, the | NPUT command on line 20 displays a question mark
on the screen and waits for you to enter data. The number you typeis assigned to the
variable X. If you do not type anything, or type letters or symbolsinstead, X is assigned
the value 0.

66

Inputting data from the keyboard

67

INPUT may also be used with string and integer variables:

10 PRINT "What is your nanme ";
20 I NPUT A$
30 PRINT "Hello "; A$

Line 10 in each of the above two programs is used to print a message on the screen
indicating the type of response required. The INPUT statement allowstext promptsto be
included, so the program above could be written more neatly as:

10 I NPUT "WWhat is your nane ", A$
20 PRINT "Hello "; A$

The commain line 10 tells the computer to print a question mark when it wants input
from the keyboard. If you leave out the comma, the question mark is not printed. A
semi-colon may be used, with exactly the same effect as the comma.

When the program is being executed, the INPUT statement requires you to press Return
if you wish to send what you have typed to the computer. Until you press Return, you
can delete al or part of what you have typed by pressing Delete or Ctrl-U to erase the
whole line.

When you are inputting a string, the computer ignores any leading spaces and anything
after acomma, unless you put the whole string inside quotation marks.

To input awhole line of text, including commas and leading spaces, | NPUT LI NE (or
LI NE | NPUT) may be used:

10 I NPUT A$
20 I NPUT LI NE B$
30 PRINT A$
40 PRI NT B$

RUN the above program and, in response to each of the question marks, type
Hel I o, how are you?

This produces the following output:

Hel l o

Hell o, how are you?
Several inputs may be requested at one time:
10 INPUT A B, C$

You may enter the dataindividually, pressing Return after each item. In thiscaseyou are
prompted with a question mark until you enter the number required. Alternatively, you
can give all theinputs on one line, separated by commas.

Inputting data

GET and GET$
Single-character input may be used to read a single key press:

10 PRINT "Press a key"
20 A$ = CET$
30 PRINT "The key you pressed was "; A$

In this example the program waits at line 20 until you press akey. As soon as you do so,
the character that key representsisplaced in A$. You do not have to press Return and so
do not get the chance to change your mind.

GET issimilar to GET$ but returns the ASCI| code of the key pressed, instead of the
character.

INKEY and INKEY$

INKEY$issimilar to GETS, except that it does not wait indefinitely for akey to be
pressed. You giveit atime limit and it waits for that length of time only (unlessakey is
pressed first). For example:

10 PRI NT "You have 2 seconds to press a key"
20 A3 = | NKEY$(200)

The number following the INKEY $ isthe number of hundredths of a second it waits. If
akey ispressed in time, A$ holds the character which was typed. Otherwise, A$ isthe
null string.

INKEY isused in asimilar manner to INKEY $: it waits for agiven time for akey to be
pressed, and then returns the ASCII code for the key pressed, or - 1 if no key is pressed
within thistime.

Including data as part of a program

Predefined data may be included within a program and saved as part of it. When the
program is run, individual items of data are read and assigned to variables as follows:

10 FOR 1% =1 TO 4

20 READ age% dog$

30 PRINT "Nane: ";dog$ " Age: ";age%
40 NEXT 1%

50 DATA 9, "Laddie", 3, "Wat son"

60 DATA 1

70 DATA "Mingo", 3, " Honey"

You may use as many DATA statements asyou like, but you must make sure that the type
of each item of data matches the type of the variable into which it is being read. Each
DATA statement can be followed by one or more items of data separated by commas.

68

Including data as part of a program

69

You can usually leave out the quotation marks around strings, but they are needed if you
want to include spaces or commas in the string.

For example,

10 DATA Hello, ny nane is
20 DATA Marvin

30 READ A%, B$

40 PRI NT A$; B$

produces:
Hel |l ony nanme is

To obtainthe sentence Hel | o, ny name i s Marvi n, change the program as
follows:

10 DATA "Hello, ny nane is"
20 DATA " Marvin"

30 READ A$, B$

40 PRI NT A$; B$

A DATA statement must appear as thefirst statement on aline, otherwiseit will not be
found. If BASIC encounters a DATA statement while executing a program, it ignores it
and goes on to the next line.

When it attempts to READ the first item of data, it scans through the lines of the
program from the start until it finds the first DATA statement and uses the first item of
data on thisline. The next READ uses the second item and so on until the DATA
statement has no moreitems|eft, at which point the next DATA statement is searched for
and used.

If there isinsufficient data, the computer produces an error message, such as:
Qut of data at line 20

Thisindicates that it has tried to READ an item of data, but that all items have already
been read.

You might have alot of different sections of DATA, and want to start reading from a
certain point. You can do this using the RESTORE statement. It is followed by aline
number. BASIC will start subsequent searches for DATA from that line instead of from
the start of the program. For example, the program below

10 RESTORE 60

20 READ A$

30 PRI NT A$

40 END

50 DATA First |line of data
60 DATA Second |ine of data

Inputting data

will print out
Second |ine of data
because the RESTORE causes BASIC to start the search for DATA statements at line 60.

Because line numbers can't be used in procedure libraries, a special form of RESTORE
is provided so that you can still include data in them. If youREESTORE +of f set

BASIC will start searching for DATA statementsoffiset+1 lines from where the

RESTORE statement is located. For example, if you had the following lines:

1000 RESTORE +0
1010 DATA ...
1020 DATA ...

the next READ would read data from line 1010. If line 1000 RESTORE +1, then
data would be read next from line 1020, and so on.

A further useful feature is the ability to remember where data is currently being read
from (LOCAL DATA), read data from another part of the program, then restore the
original place (RESTORE DATA). This is mainly useful in functions and procedures, so
is explained in the section dealing with them.

A note about line numbers. In general, if you use line numbers anywhere in a program
(and there should be very few situations where you have to), they should be simple
numbers in the range 0 to 65279, not expressionstilke t %o-10* n% Otherwise, if

the program is renumbered, it will stop working since BASIC does not know how to
change the expression in the right way.

Programming the keyboard

Waiting for input

A program can wait for a key to be pressed, either indefinitely using GET and GET$, or
for a defined length of time using INKEY and INKEY$. Normally, every time you press

a key, it is placed in the keyboard buffer which is a temporary block of memory used to
store key presses until BASIC is ready to read them. Up to 31 key presses may be typed
ahead like this.

The GET and GETS$ instructions look in the keyboard buffer for a key. Hence they take
note of keys which were pressed before the input instructions were executed. If, for
instance, you want to ensure that you only read keys prafteed prompt has been
displayed, you can empty or flush the buffer before using these instructions. Then you
can be sure that the key obtained is in response to the prompt and not just an accidental
press of the keyboard a few moments before. To do this, use the operating system
command:

70

Programming the keyboard

71

*EX 15,1

Using the Tab & cursor keys to get ASCII code

The cursor editing keys can be made to generate ASCI| codes when they are pressed,
rather than performing their normal cursor editing functions, by typing

*EX 4,1

The codes they return are:
Key Code
Copy 135
- 136
- 137
! 138
1 139

You can restore cursor copying by giving the command

*FX 4

The Tab key can be made to return any ASCII value you choose by typing
*EX 219, n

where n isthe ASCII code you want it to return.

Thefollowing program uses these features to move a block around the screen until Copy
is pressed, and then to leave it at its current location. Don’t worry if you don’t
understand all of the statements (e.g. RECTANGLE and REPEAT); they are all
described later on in the manual.

Note that this method of redefining keys to generate ASCII codes is not compatible with
BASIC programs written under the window manager environment (described in the
section entitledMndow managed programs on page 13).

Inputting data

10 MODE 1

20 *FX 4,1

30 x = 600 : y = 492

40 oldx = x : oldy =y

50 RECTANGLE FILL x,vy, 80, 40
60 REPEAT

70 *EX 15,1

80 key = GET

90 CASE key OF

100 WHEN 135 : END

110 WHEN 136 : X -= 20
120 WHEN 137 : X += 20
130 WHEN 138 : y -= 20
140 WHEN 139 : y += 20

150 ENDCASE

160 RECTANGLE FI LL ol dx, ol dy, 80,40 TO X,y
170 oldx =x : oldy =y

180 UNTI L FALSE

Scanning the keyboard

When you give INKEY a positive parameter, it waits for a given length of time for a
particular key to be pressed; but it has an additional function. If you give INKEY a
negative parameter it teststo seeif a particular key is pressed at that instant.

Thisfeature is particularly useful for real-time applications where the computer is
constantly reacting to the current input it isbeing given, rather than stopping and waiting
for you to decide what to do next. For example:

210 I F I NKEY(-66) THEN PRI NT "You were pressing A"

Another advantage isthat it lets you check for keys like Shift and Ctrl being pressed,
which you cannot do with the other input functions.

Thelist of negative values associated with each of the keysis given in Appendix D -
Inkey values.

Using the mouse in programs

The mouse provides a convenient method of supplying information to a program. This
information isin three parts:

| aposition on the screen
I details of which of the buttons are currently being pressed
I the time of the last mouse ‘event’.

72

Using the mouse in programs

73

To input this information, type
MOUSE x, vy, but t ons, when

The valuesreturned in x and y give the position of the mouse. The variable but t ons

gives details of the mouse buttons currently pressed. Finally, when givesthe value of a
centi-second timer. Thistimer starts at 0 when the machine is switched on. So, when

givesthe last time a mouse button was pressed or released, or the current timeif no

presses or releases are ‘pending’. You can omit the last comma and variable if you are
not interested in the time.

Thebut t ons variable has a value whose meaning is as follows:

Buttons Details

No buttons pressed

Adjust (righthand) only pressed
Menu (middle) only pressed
Adjust and Menu pressed
Select (lefthand) only pressed
Select and Adjust pressed
Select and Menu pressed

All three buttons pressed

~No b~ wWwNEO

Linking the mouse to a pointer

The following program is a very simple sketchpad program which draws lines as you
move the mouse around and hold down its buttons:

10 MODE 12

20 MOVE 0,0

30 REPEAT

40 MOUSE X, y, button
50 GCOL button + 1
40 DRAW X, y

50 UNTI L FALSE

In order to be able to see the position of the mouse on the screen, it can be linked to a
pointer. The easiest way to show the mouse pointer is to use the BASIC statement
MOUSE ON. This gives the pointer an arrow shape and displays it on the screen. To
turn the pointer off, usklOUSE OFF.

Now, whenever you move the mouse, the pointer moves with it on the screen indicating
its current position. This enables the sketchpad program shown above to be altered so
that you can move to the position you want and then draw a line to this new position by
pressing any button:

Inputting data

5 MODE 15

10 MOUSE ON

20 MOVE 0,0

40 REPEAT

50 REPEAT

60 MOUSE X, y, butt on%
70 UNTI L button% <> 0
80 DRAW X, y

90 UNTIL FALSE

For more details about the MOUSE statement see the chapter entitled Keywords on
page 210.

Programming function keys

The keys across the top of the keyboard labelled F1 to F12 are function keys. These can
be programmed so that they generate any string you like when they are pressed. For
example, type

*KEY1 "*CAT"

Now when you press F1 the string * CAT is printed on the screen as though you had
typed it.

Try changing the definition to:
*KEY1 "*CAT |[M

The | sign meansthat the character following it isto be interpreted asacontrol character.
InthiscaseitisaCtrl-M which is being included in the string. This performs the same
function as pressing Return. A full list of the control charactersis givenin Appendix G -
VDU commands.

Now when you press F1, the string * CAT is printed and Return is ‘pressed’
automatically so the current directory is catalogued immediately.

Storing a series of commands

A whole series of commands can be stored in one key. The following defines a key to
select screen mode 3 and list the current program in paged mode.

*KEY2 "MCDE 3 |[M |N LI ST |M

74

Programming function keys

75

Storing a small BASIC program

You can even define akey so that it contains a small BASIC program:

*KEY 3 "10 MODE 15 |[M 20 FOR 1% = 1 TO 100|M 30 Cl RCLE
RND(1279), RND(1024), 50 + RND (300) [M 40 N. |M RUN |M'

The quotation marks around the string are not strictly necessary. However, it is
important to remember that everything on the line after the* KEY command istreated as

part of the string. So if *KEY isused in aprogram, it must be the last statement on the
line.

Using other keys as additional function keys

Thekey labelled PRINT acts as function key 0. In addition, the cursor editing keys and
Copy can be made to behave as function keys 11 to 15 by giving the command:

*FX 4,2

Following this command, the keys, instead of having their normal cursor editing effects,
return the function key strings assigned to them:

Key *KEY number

Copy 11
- 12
- 13
! 14
1 15

To return them to their normal state, type* FX 4

Symbols in function key strings

The following specia characters are allowed in function key strings:
I means |

| 'ch meansthe following character code + 128

1? means Delete (i.e. CHR$(127))

| " means" (useful for making " thefirst character)

<n> means CHR$n

12

Control statements

Normal ly, linesin aBASIC program are executed in sequence, one after the other.

However, the language includes two types of structure which alter this sequence:

I Conditional structures allow statementsto be executed only if certain conditions are
met.

L oop structures allow statements to be executed repeatedly, either for a fixed
number of times, or until a certain condition is met.

Inall cases, thecodeis easier to read if it is clear which statements are in the loop and
which are conditional on certain factors. This clarity can be achieved by use of the
LISTO command before listing the programs, to indent the conditional and loop
structures in the listing. All programsincluded in this chapter are listed asif the
command:

LI STO 3

had been typed beforehand; this gives a space after the line number and indents
structures.

IF... THEN... ELSE

The IF (single line) statement may be used to enable the computer to make a choice
about whether or not to execute a statement or group of statements. It has the form

| Fcondition [THEN] statenents [ELSE st at enent s]

A condi t i onisanexpression that givesanumber. It issaid to be TRUE if the number
if not zero, or FALSE if the number is zero. Usually the relational operators described
below are used in conditional expressions.

The st at enent s after the THEN keyword (which is optional, as indicated by the
square brackets) are only executed if the condition is TRUE. If it is FALSE, the
statements are skipped. However, if thereis an EL SE, then the statements following that
are executed if the condition is FALSE.

For example:

10 PRINT "What is 2 * 4"
20 | NPUT ans%
30 IF ans% = 8 THEN PRI NT "Wel| done" ELSE PRI NT "W ong"

76

Operators

Line 30 contains a conditional expression. In the example shown the expression is
TRUE (i.e. hasanon-zero value) when ans %is equal to 8, and isFALSE (i.e. hasazero
value) otherwise. Note that in an | F statement, either the THEN part or the EL SE part (if
present) is executed, never both.

Any non-zero number is treated as TRUE in an | F statement, however, the comparison
operators described in the following section return a particular value meaning TRUE: —
1. They return O for FALSE, of course. In addition, there are two functions called
FALSE and TRUE which return 0 and —1 respectively.

Operators

77

Two kinds of operators may be used in expressions:
I relational operators
I logical operators (on TRUE and FALSE values).

Relational operators
Relational operators can be used to evaluate numbers or strings:

Numbers

In the following, A and B can be integers or floating point numbers.

Operator Meaning
A=B TRUE when A is equal to B
A< B TRUE when A is less than B
A>B TRUE when A is greater than B
A<=B TRUE when A is less than or equal to B
A>B TRUE when A is greater than or equal to B
A <> B TRUE when A is not equal to B
Srings
Operator Meaning
A$ = B$ TRUE when A$ and B$ are the same
A$ <> B$ TRUE when A$ and B$ are different
A$ < B$ String comparisons; see below:
A$ > B$
A$ <= B$
A$ >= B$

Sring comparison

Control statements

Corresponding characters of each string are examined until either they are different, or
the end of astring isreached. If the strings are the same length, and the corresponding
characters are the same, the strings are said to be equal; otherwise, the shorter string is
‘less than’ the longer one.

In the case where the two corresponding characters differ, the relationship between the
strings is the same as that between the ASCII codes of the mismatched characters. For
example,’H " < "Hi " yields TRUE, because the ASCII code of upper tasdess

than that of lower case Similarly," SI X* > " FI FTEEN" is TRUE becaus&S| X"

starts withS, and the ASCII value d is larger than that dt.

Logical operators (on TRUE and FALSE values)

Operator M eaning

NOT A TRUE when A is FALSE

A AND B TRUE if both A and B are TRUE

AORB TRUE if either A or B or both are TRUE
AEORB TRUE if either A or B but not both are TRUE

IF... THEN... ELSE... ENDIF

A block structured IE. THEN... [ELSE...] ENDIF statement is available. It executes
a series of statements, which may be split over several lines, conditionally on the result
of the IF expression.

10 n% = RND(10)

20 P = RND(10)

30 PRINT "What is ";n%" * "ntg
40 | NPUT ans%

50 IF ans% = n% nf6 THEN

60 PRI NT "Wel | done"

70 ELSE

80 PRI NT "W ong"

90 PRINT n%" * ";mo" = ";n% nt
100 ENDI F

TheENDI F on line 90 terminates the statement. It indicates that execution of the
following statements is not dependent on the outcome of the conditional expression on
line 50, so these statements are executed as normal. With&NDh& the computer

has no way of knowing whether or not the statements on line 100 belongs to the ELSE
part.

There are certain rules which must be obeyed when using THEN... [ELSE...]
ENDIF constructions:

78

FOR... NEXT

FOR... NEXT

79

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

The

Thefirst line must take the form:

| F condi ti on THEN

with THEN being the last item on the line.

The EL SE part need not be present, but if it is, the EL SE must be the first thing on
aline (excluding spaces).

The ENDIF statement must be the first thing on aline (excluding spaces).
IF... THEN ... [ELSE ...] ENDIF statements may be nested: one may occur inside
another. For example:

DI M A% 10)

count% =0

PRINT "G ve me an integer between 0 and 9 ";
I NPUT numrber %

I F nunber % >= 0 AND nunber % <= 9 THEN
I F A% number% = O THEN
PRI NT " Thank you"
A% nunmber% = 1 : count% = count% + 1
ELSE
PRI NT "You' ve already had that nunber”
ENDI F
ELSE
PRI NT nunber% " is not between O and 9 !"
ENDI F
I F count% < 10 GOTO 30

FOR and NEXT statements are used to specify the number of times ablock of a

program is executed. These statements are placed so that they surround the block to be
repeated:

10
20
30

FOR Noo=1 TO 6
PRI NT N%
NEXT N%

Type RUN and the following is produced:

O WNPE

Control statements

The variable N% is called the control variable. It is used to control the number of times
the block of code is executed. The control variable can be started at any number you
choose, and you may alter the step size; the amount by which it changes each time round
the loop.

10 FOR N%o= -5 TO 5 STEP 2
20 PRI NT N%
30 NEXT N%

This program produces:

-5
-3
-1
1
3
5

The step size can be negative so that the control variable is decreased each time. It does
not have to be an integer value. You can also use adecimal step size, although thisis not
generally advisable. The reason isthat numbers such as 0.1 are not exactly representable
in the internal format used by the computer. This means that when the step is added to
the looping variable several times, small errors may accumulate. You can see this by
typing the following program:

10 FOR i =0 TO 100 STEP 0.1
20 PRI NT i
30 NEXT i

The looping variablei doesn'’t reach exactly 100.
FOR... NEXT loops may be nested. For example,

10 FORN= 3.0 TO-1.0 STEP -2.0
20 FOR M= 2.5 TO 2.9 STEP 0.2
30 PRI NT N, M

40 NEXT M

50 NEXT N

produces:

80

FOR... NEXT

81

3 2.5
3 2.7
3 2.9
1 2.5
1 2.7
1 2.9
-1 2.5
-1 2.7
-1 2.9

You do not need to specify the control variable to which NEXT refers. The following
program produces the same results as the one above:

10 FOR N = 3.0 TO-1.0 STEP -2.0
20 FOR M= 2.5 TO 2.9 STEP 0.2
I

30 PRI N, M
40 NEXT
50 NEXT

The program will now run slightly faster because the computer assumes that NEXT
applies to the most recent FOR.

If you put variable names after NEXT you should not mix them up as shown below:

10 FORN= 3.0 TO-1.0 STEP -2.0
20 FOR M= 2.5 TO 2.9 STEP 0.2

30 PRI NT N, M
40 NEXT N
50 NEXT M

The output produced by this exampleis:

3.0 2.5
1.0 2.5
-1.0 2.5

Not in a FOR loop at line 50

Loops must be nested totally within each other: they must not cross. In the above
example, the Nand M loops are incorrectly nested. BASIC tries to run the program, but
when line 50 is reached, it gives an error message indicating that it cannot match the
FOR statements with the NEXT statements.

Note: The reason the error wasn't given sooner, i.e. as soon as the mismatched NEXT
was met, was that it is actually legal, though not advisable, to close more than one loop
with a single NEXT. When BASIC meets a NEXar statement, it terminates all open
FOR loops until it meets one which started F@R Thus the NEXT N in the example
above closed the FOR M loop before performing the NEXT N.

Control statements

A FOR loop is ended when the control variableis:

| greater than the terminating value (valuein the FOR statement) when a positive step
Sizeisused.

less than the terminating value (value in the FOR statement) when a negative step
sizeis used.

Theloop is performed in the following sequence:

1 Assigntheinitial valueto the control variable.

2 Execute the block of code.

3 Add the step to the control variable.

4 Test against terminating value, and if it isto be performed again, go back to step 2.

Theinitial and terminating values and the step size are calculated only once, at the start
of the loop.

One of the conseguences of the way in which the loop is performed is that the block of
code is aways executed at least once. Thus,

10 FORN=6 TOO
20 PRI NT N
30 NEXT

produces:
6

FOR ... NEXT loops are very versatile, since the initial and terminating values and the
step size can be assigned any arithmetic expression containing variables or functions.
For example:

10 REM Draw a sine curve

20 MODE 0 : MOVE 0, 512

30 PRINT "Please give ne a step size (eg 0.1) "
40 I NPUT step

50 FOR angle = -2*Pl TO 2*Pl STEP step

60 DRAW 100*angl e, 100*SI N(angl e) +512

70 NEXT

80 END

REPEAT... UNTIL

The REPEAT ... UNTIL loop repeats ablock of code until agiven conditionisfulfilled.
For example:

82

WHILE... ENDWHILE

10 REM I nput a nunber in a given range

20 REPEAT

30 PRI NT "Pl ease give ne a nunber between 0 and 9 "
40 I NPUT N

50 UNTIL N>= 0 AND N <= 9

60 PRI NT "Thank You"

If the result of the conditional expression following the UNTIL is TRUE, then the loop
is ended and the statement following the UNTIL is executed. If, however, the result of
the expression is FAL SE, the block of code after the REPEAT is executed again and the
conditional expression isre-evaluated.

REPEAT ... UNTIL loops may be nested in the sameway asFOR ... NEXT loops. They
arealso similar to FOR loopsin that the body of the loop is always executed once, since
no test is performed until the end of the loop is reached.

10 REM Repeat questions until answered right first tine
20 REPEAT
30 tries%=20

40 REPEAT

50 PRI NT "What is 20 * 23 + 14 * 11 ";
60 I NPUT ans%

70 tries%+= 1

80 UNTIL ans% = 20 * 23 + 14 * 11

90 REPEAT

100 PRINT "What is 12 + 23 * 14 + 6 / 3 ";
110 I NPUT ans%

120 tries%+= 1

130 UNTIL ans% = 12 + 23 * 14 + 6 /| 3
140 UNTIL tries%= 2;

WHILE... ENDWHILE

83

The WHILE ... ENDWHILE loop repeats ablock of code while agiven condition holds
true. For example:

10 X = 0

20 WHI LE X < 100
30 PRINT X

40 X += RND(5)
50 ENDWHI LE

The WHILE ... ENDWHILE loop has a conditional expression at the start of it. If this
expression returns TRUE, the block of statements following the WHILE, down to the
matching ENDWHILE statement, is executed. Thisis repeated until the expression

Control statements

returns FAL SE, in which case execution jumps to the statement following the matching
ENDWHILE. We say ‘matching’ ENDWHILE because WHILE loops may be nested.
This means that when BASIC is looking for an ENDWHILE to terminate a loop, it
might skip nested WHILE.. ENDWHILE loops.

Here is an example of nested WHILE loops:

10 A%256

20 VWH LE A%>0

30 BY%1

40 VWHI LE B%<8

50 PRI NT A% B%
60 B%=B% 2

70 ENDWHI LE
80 A¥%A% DIV 2
90 ENDWH LE

WHILE ... ENDWHILE is similar to REPEAT... UNTIL except that the conditional
expression is evaluated at the beginning of the loop (so the body of the loop may never
be executed if the condition is initially FALSE) and the loop repeats if the result is
TRUE. The following program demonstrates the fact that REPEAINTIL loops are
always executed at least once, whereas the WHILENDWHILE loops need not be
executed at all.

10 REPEAT

20 PRI NT " Repeat"
30 UNTIL TRUE

40

50 WHI LE FALSE

60 PRI NT "Whi | e"
70 ENDWH LE

80

90 PRINT "All done"

This program produces the following output:

Repeat
Al'l done

CASE... OF... WHEN... OTHERWISE... ENDCASE

The IF... THEN ... ELSE... ENDIF construct is useful if you wish to make a choice
between two alternatives. The CASE statement can be used when there are many
alternatives to be acted upon in different ways.

84

CASE... OF... WHEN... OTHERWISE... ENDCASE

85

The following program is a keyboard-controlled sketch pad. The statements after the
WHENSs alter the values of X% and Y %, and then DRAW aline.

10 REM Draw a |ine depending on the L, R U, D keys
20 MODE O

30 MOVE 640, 512

40 X% = 640: Y% = 512

50 REPEAT

60 CASE CET$ OF

70 VWHEN "L","I": X% -= 40: DRAW X% Y% : REM go | eft
80 VWHEN "R',"r": X% += 40: DRAW X% Y% : REM go ri ght

I
r
90 VWHEN "D',"d": Y% -= 40: DRAW X% Y% : REM go down
100 WHEN "U', "u": Y% += 40: DRAW X% Y% : REM go up
110 ENDCASE

120 UNTIL FALSE : REM go on forever

This program reads in the character of the next key pressed and checksit against each of
the strings following the WHEN statements. If it matches one of these values, the
statements following it are executed. Execution continues until another WHEN or the
ENDCASE is reached. When this happens, control passes to the statement after the
ENDCASE.

If you press a key which is not recognised by any of the four WHEN statements, the
program goes round again and waits for another key to be pressed. You can include
another line to warn you that you pressed the wrong key. For example:

105 OTHERW SE VDU 7 : REM Make a short noi se

The OTHERW SE statement is used if none of the WHENS finds a matching key. The
VDU 7 makes a short bell sound to warn you that you have pressed the wrong key.
The following rules apply to CASE statements:

I CASE must be followed by an expression, and then OF. This statement must be at
theend of theline.

I Each WHEN must start at the beginning of aline. It may be followed by one or
more values, separated by commas.

I The statements dependent on a WHEN may follow it on the same line after a colon
., or be spread over severa linesfollowing it.

I The OTHERWISE part is optional. If present it must be at the beginning of aline.
The statements following OTHERWISE may be spread over several lines.

I An ENDCASE statement must be present. Like WHEN and OTHERWISE, it must
be the first non-spaceitem on aline.

GOTO

Control statements

Whenever the result of the expression matches one of the valueslisted after aWHEN, all
the statements following this WHEN down to the next WHEN, OTHERWISE or
ENDCASE are executed. BASIC then skips to the statement following the ENDCASE.
This meansthat if the result matches a value in more than one WHEN, only the
statements following the first one are executed: the others are ignored. Since
OTHERWISE matches any value, having WHEN statements following an
OTHERWISE is pointless since they can never be reached.

The following gives another example of using the CASE statement:

10 REM Guess a nunber

20 X% = RND(100)

30 Still_guessing% = TRUE

40 tries% =0

50 WHI LE Still_guessi ng%

60 I NPUT "What is your guess ", guess%
70 CASE guess% OF

80 WHEN X%
90 PRINT "Wl | done, you’' ve guessed it after ";tries%" attenpts"
100 Still_guessi ng% = FALSE
110 VWHEN X% 1, X%+1
120 PRI NT "Very cl ose"
130 tries% += 1
140 OTHERW SE
150 I F guess%<X% THEN PRI NT "Too | ow' ELSE PRI NT "Too high"
160 tries% += 1
170 ENDCASE
180 ENDWHI LE

Like all the other BASIC structures, CASE statements may be nested.

The GOTO instruction may be used to specify aline number from which the computer is
to continue executing the program. For example:

10 PRINT "Hel I 0"
20 GOrO 10

Whenever the computer executesline 20 it is sent back to line 10 once again. Left on its
own, this program never ends. To stop it, press Esc.

GOTO instructions send the control of the program either forwards or backwards. The
specified line number may be given as an expression. For example:

86

GOSUB... RETURN

10 start% = 100

20 GOTO (start%10)

30 PRINT "This line should not be executed"
100 REM start of the action

110 PRI NT "Hel | o"

120 END

Using avariable, however, as the destination for a GOTOis not recommended because
while RENUMBER changes the line numbers, it does not alter GOTO destinations that
are given as anything other than a simple number. If you must use an expression, it is
best to put in inside brackets, since BASIC may get confused if the expression starts
with a number.

If you wish to make your programs easy to read, especially for other people, use as few
GOTOs as possible. They make a program very difficult to follow. It is far better to use
one of the loop constructs like REPEAT ... UNTIL which have been described above.

GOSUB... RETURN

87

GOSUB stands for ‘go to subroutine’ and is another variation of GOTO. Instead of
continuing indefinitely from the line number which is jumpedhe, lines are executed

until a RETURN statement is reached. Control then passes back to the instruction which
comes after the GOSUB. For example,

10 GOSUB 100

20 PRINT "This is printed after the first GOSUB returns”
30 GOSUB 100

40 PRINT "This is printed after the second GOSUB ret urns"
50 END

100 PRINT "This is printed in the GOSUB"

110 RETURN

produces:

This is printed in the GOSUB
This is printed after the first GOSUB returns
This is printed in the GOSUB
This is printed after the second GOSUB returns

Like GOTO, GOSUB should be used sparingly, if at all. It is provided in this version of
BASIC for compatibility with weaker dialects of the language. Better methods of
providing blocks of code, which once executed then return control back to the point
from which they were called are described in the chapter erfittmgdures and

functions on page 90.

Control statements

ON... GOTO/GOSUB

For example:

The ON ... GOTO statement is used to choose one of a number of different lines
depending on the value of a given expression.

10 PRINT "I nput a nunber between 1 and 4"
20 | NPUT N%

30 ON N9 GOTO 60, 100, 80, 120

60 PRI NT "Your nunber is 1"

70 GOTO 999

80 PRI NT "Your number is 3"
90 GOTO 999

100 PRI NT "Your nunber is 2"
110 GOTO 999

120 PRI NT "Your nunber is 4"
999 END

The computer checks the value of N% which is input, then jumps to the N%th line
number in thelist. If N%is 3, the computer starts executing at line 80 and so on. If N% is
less than 1 or greater than 4, the error message

ON range at line 30
is displayed.

EL SE can be used to catch all other values. It isfollowed by a statement which is
executed if the value of the expression after ON has no corresponding line number. For
example, line 30 above could be replaced by:

30 ON N% GOTO 60, 100, 80, 120 ELSE PRI NT "Nunber out of range"
40 GOTO 999

Now, when the programisrun, if N% isnot between 1 and 4 the message Nunber out
of range isdisplayed and the program ends normally.

ON ... GOSUB actsin exactly the same way:

88

For example:

89

10
20
30
40
60
70
80
90
100
110
120
130

PRI NT "I nput a nunber between 1 and 4"

I NPUT N%

ON N% GOsuUB 60, 100, 80, 120
END

PRI NT "Your nunber is 1"
RETURN

PRI NT "Your nunber is 3"
RETURN

PRI NT "Your nunber is 2"
RETURN

PRI NT "Your nunber is 4"
RETURN

Thereisasoan ON ... PROC statement which is described in the chapter entitled
Procedures and functions on page 90. Note, however, that when writing new programs,
it is better to use the more versatile CA SE structures rather than the ON ...
GOTO/GOSUB/PROC constructs. Again, this old-fashioned construct is provided
mainly for backwards compatibility with less powerful versions of BASIC.

13 Procedures and functions

P rocedures (PROCSs) and functions (FNs) provide away of structuring a program by
grouping statements together and referring to them by a single name. The
statements can be executed from elsewhere in the program simply by specifying the
procedure or function name. A function returns a value, but a procedure does not.

Thetwo structures are very similar, but they are used in slightly different circumstances.
PROC:s are used wherever a statement can be executed. FNs are used in expressions,
wherever abuilt-in function might be used. Whereas procedures end with an ENDPROC
statement, functions return using =expression. The expression isreturned asthe result of
the function call. Functions can return integers, floating point numbers or strings.

Defining and calling procedures

Procedure names begin with the keyword PROC, followed by a name. The following
shows how a procedure may be defined and called:

10 MODE 12
20 PRI NT TAB(O, 10) " Count down comrenci ng ";
30 FOR %o = 30 TO 1 STEP -1

40 PRINT TAB(22,10) " " TAB(22,10); N%

50 PROCwai t _1 second

60 NEXT

70 PRINT TAB(O, 10) "BLAST OFF"; STRI NGH(14," ")
80 END

90

100 DEF PROOwait 1 second
110 TIME = 0

120 REPEAT

130 UNTIL TIME >= 100
140 ENDPROC

90

Parameters and local variables

The

important points about procedures are:

The procedure definition must start with DEF PROC (or, more simply, DEFPROC)
followed by the procedure name. There must be no spaces between PROC and the
name.

The procedure definition must end with the keyword ENDPROC.

Procedures are called by the keyword PROC followed by the procedure name, again
with no spaces.

Procedure names obey the same rules as variable names, except that they are
allowed to start with adigit and may include the character @. Procedure names can
also include or start with reserved words, e.g. PROCTO.

The main body of the program must be separated from the procedure definitions by

an END statement. That is, you should only enter the body of a procedure by a

PROC statement, not by ‘falling’ into it. DEF statements are treated as REMs if
they are encountered in the usual execution of a program.

Procedures enable you to split up a large amount of code into smaller distinct sections
which are easy to manage. The main body of a program can then consist almost entirely
of procedure calls, so that it can remain short and easy to follow (since it should be
obvious from the procedure names what each call is doing).

Parameters and local variables

Consider the following program:

91

10
20
30
40
50
60
70
80
100
110
120

The
box

REM Dr aw boxes centred on the screen
MODE 12
FOR N% =1 TO 10
PRI NT "What size do you want the next box to be ";
I NPUT si ze
| F size<1024 PROCbox(size) ELSE PRINT "Too | arge"
NEXT N%
END
DEF PROChox(edge)
RECTANGLE 640- edge/ 2, 512-edge/ 2, edge, edge
ENDPROC

procedure PROCbox draws a box around the centre of the screen. The size of this
is determined by the value of the variaddige. This variable has the current value

of si ze assigned to it each time the procedure is called from line 60. The values being
passed to the procedure are known as actual parameters. The variable edge used within
the procedure is known as a formal parameter.

Procedures and functions

A procedure can be defined with more than one parameter. However, it must always be
called with the correct number of parameters. These parameters may be:

I integers

I floating point numbers
| strings

| arays.

If astring variableis used as aformal parameter, it must have either a string expression
or astring variable passed to it. Floating point and integer parameters may be passed to
one another and interchanged freely, but remember that the fractional part of afloating
point variableislost if it isassigned to an integer variable. Array formal and actual
parameters must be of exactly the sasmetype. That is, if the formal parameter is an
integer, then only integer arrays may be passed as actual parameters.

Local variables

The formal parameters of a procedure are local to that procedure. This means that
assigning a value to any variable within the procedure does not affect any variable
elsawhere in the program which has the same name. In the following program, the
procedure PROCsquare has a parameter S% which is automatically local. It also
contains a variable, 3%, which is declared as being LOCAL.

10 FOR 1% =1 TO 10

20 PROCsquare(1 %

30 PROCcube(1 %9

40 NEXT

50 END

60

100 DEF PROCsquar e(S%

110 LOCAL J%

120 J% = S% "™ 2

130 PRINT S% " squared equals "J%
140 ENDPROC

150

200 DEF PROCcube(1%

210 1% = 1%" 3

220 PRINT " and cubed equals "; 1%
230 ENDPROC

In the case of PROCcube, the actual parameter passed and the formal parameter referred
towithin it are both called 1%. This means that there are two versions of the variable,
one inside the procedure and ancther outside it.

Adding theline

92

Parameters and local variables

93

35 PRINT | %

to the program above prints out the numbers 1 to 10, showing that the assignment to 1%
within PROCcube does not affect the value of 1% in the main body of the program.

Declaring local variables

Itisgood practiceto declare all variablesused in aprocedure aslocal, since this removes
therisk that the procedure will alter variables used elsewhere in the program.

When you declare alocal array, the LOCAL statement must be followed by a DIM
statement to dimension the local array. For example, consider the following function
which, when passed two vectors of the same size, returns their scalar product:

100 DEF FNscal ar_product (A(), B())

110 REM ** Both arrays must have a dinension of 1 **
120 IF DOMA()) <> 1 OR DIMB()) <> 1 THEN

130 PRI NT "Vectors required"

140 =0

150 ENDI F

160 REM ** Both arrays nmust be the sane size **

170 1F DIMA(),1) <> DIMB(),1) THEN

180 PRI NT "Vectors must be of sanme size"

190 =0

200 ENDI F

210 REM ** Create a tenporary array of the sanme size **
220 LOCAL ()

230 DIM C(DI M A(), 1))

240 REM ** Multiply the corresponding elenments and place in C() **
250 C() = A()*B()

260 REM ** Finally sumall the elements of C() **

270 =SUM C())

This example uses afunction instead of a procedure. Note that SUM is a built-in
function.

Notice that although function definitions may be multi-line, the syntax is such that
singlelinefunctionsasfound in older dialects of BASIC may be defined in acompatible
manner. Thus you can say either:

1000 DEF FNdi sc(a, b, c)
1010 REMfind the discrimnant of a, b and ¢
1020 =b*b-4*a*c

or, using the old-fashioned form:
1000 DEF FND(a, b, c) =b*b-4*a*c

(Another limitation of the non-BBC BASIC syntax was that often only single-letter
function names were alowed.)

Procedures and functions

Value-result parameter passing

The simple parameter passing scheme described above is known as ‘value’ parameter
passing because the value of the actual parameter is copied into the formal parameter,
which is then used within the procedure. The result of any modification to the formal
parameter is not communicated back to the actual parameter. Thus the formal parameter
is entirely local.

BASIC provides a second method of parameter passing known as ‘value-result’. This is
just like the simple value mechanism in that the actual parameter’s value is copied into
the formal parameter for use inside the procedure. The difference is, however, that when
the procedure returns, the final value of the formal parameter is copied back into the
actual parameter. Thus, a result can be passed back. (This means that the actual
parameter can only be a variable, not an expression.)

A statement specifying that you wish to pass a result back for a particular parameter
should be preceded by the keyword RETURN. For example:

100 DEF PROCor der edswap(RETURN A, RETURN B)
110 IF A > B SWAP A/B
120 ENDPRCC

SWAP is a built-in statement to swap the values of two variables or arrays.

Specifying RETURN before an array formal parameter does not make any difference to
the way the parameter is passed.

Arrays passed by reference

Arrays are always passed by reference. That is, the array formal parameter acts as an
‘alias’ for the actual parameter within the procedure or function, and if you change the
elements of the formal parameter, the actual parameter will also be altered. If you want
to simulate value passing of array parameters, you should use a local array of the same
dimensions as the actual parameter, for example:

1000 DEF PROCfred(a())

1010 LOCAL b()

1020 DIM b(DIMa(),1), bDiMa(),2)) :REMassune a() is 2D
1030 b()=a() : REM now b() can be altered at will

1040 ...

LOCAL DATA and LOCAL errors

Because procedures and functions often set up their own error handlers and local data, it
is possible to make these local so that nothing outside the procedure or function is
affected. In fact, both these may be made ‘local’ outside of a procedure. For example,

94

ON... PROC

ON... PROC

95

you can make an error handler local to a WHILE loop. However, the constructs are
mentioned here for completeness. More information can be found about local error
handlersin the chapter entitled Error handling and debugging on page 170.

To makethe current DATA pointer local, and then restore it, a sequence of the following
form isused:

1000 LOCAL DATA
1010 RESTORE +0
1020 DATA ...

1030 ...

1080 RESTORE DATA

LOCAL DATA stores the current data pointer (i.e. the place where the next READ will
get itsdatafrom) away. It can then be changed by a RESTORE to enable somelocal data
to be read, and finally restored to its original value using RESTORE DATA. Thus a
procedure or function which usesits own local datacan read it without affecting the data
pointer being used by the calling program.

As mentioned above, LOCAL DATA and RESTORE DATA can be used anywhere that
localised datais required, not just in functions and procedures. They can a so be nested.
However, if LOCAL DATA isused within afunction or procedure definition, it must
come after any LOCAL variables. BASIC will perform an automatic RESTORE DATA

on return from a PROC or FN, so that statement isn't strictly required at the end of
PROCs and FNs.

ON ... PROC is similar to ON.. GOTO which is described in the chapter entitled
Control statements on page 76. It evaluates the expression given after the ON keyword.
If the value N% is given, it then calls the procedure designated by N% on the list. For
example:

10
20
30
40
50
60
70
100
110
120
200
210
220

Procedures and functions

REPEAT

| NPUT "Enter a nunber ", num

PRI NT "Type 1 to double it"

PRI NT "Type 2 to square it"

| NPUT action

ON acti on PROCdoubl e(nunm), PROCsquar e(num
UNTI L FALSE

DEF PROCdoubl e(num

PRI NT "Your nunber doubled is ";nunt2
ENDPRCC

DEF PROCsquar e(num

PRI NT "Your nunber squared is ";nunmfnum
ENDPRCC

Note, however, that in most circumstances, the CASE statement provides a more
powerful and structured way of performing these actions.

Recursive procedures

A procedure may contain callsto other procedures and may even contain acall to itself.
A procedure which does call itself from within its own definition is called arecursive

procedure;

10 PRINT "Pl ease input a string :"

20 I NPUT A%

30 PRCCr enpve_spaces(A$)

40 END

100 DEF PRCOCr enpve_spaces(A$)

110 LOCAL pos_space%

120 PRI NT A$

130 pos_space% | NSTR(A$," "): REM =0 if no spaces
140 I F pos_space% THEN

150 A$=LEFT$(A$, pos_space% 1) +RlI GHT$(A$, pos_space%r-1)
160 PRCCr enpve_spaces(A$)

170 ENDI F

180 ENDPROC

In the example above, PROCr enove_spaces is passed astring as a parameter. If the
string contains no spaces, the procedure ends. If a space is found within the string, the
spaceisremoved and the procedureis called again with the new string as an argument to
remove any further spaces. For example, typing the string The qui ck brown f ox
causes the following to be displayed:

96

Functions

The qui ck brown fox
Thequi ck brown fox
Thequi ckbr own fox
Thequi ckbr ownf ox

Recursive procedures often provide a very clear solution to a problem. There are two
reasons, however, which suggest that they may not be the best way to solve a problem:

I Some operations are more naturally expressed as aloop, that is, using FOR ...
NEXT, REPEAT ... UNTIL, or WHILE ... ENDWHILE.

I Recursive procedures often use more of the computer’s memory than the
corresponding loop.

As an example, the following two programs both p8obd nor ni ng! backwards.
The first one uses a WHILE. ENDWHILE loop. The second uses a recursive
technique to achieve the same result.

First example:

10 PROCreverseprint("Good norning !'")
100 DEF PROCr ever sepri nt (A$)

110 FOR i % = LEN A% TO 1 STEP -1

120 PRINT M D$(AS$,i % 1)

130 NEXT

140 ENDPRCC

Second example:

10 PROCreverseprint("Good norning !'")
100 DEF PROCr ever sepri nt (A$)
110 | F LEN(A$) > 0 THEN
120 PRI NT RI GHT$(A3) ;
130 PROCreverseprint (LEFT$(AS$))
140 ENDI F
160 ENDPROC

Functions

Functions are similar in many ways to procedures, but differ in that they return a result.
BASIC provides many functions of its own, like the trigonometric functions SIN, COS,
TAN and RND. If you give RND a parameter with an integer value greater than 1, it
returns a random value between 1 and the number given inclusive. For example,

X = RND(10)

produces random numbers between 1 and 10.

97

Procedures and functions

You may define functions of your own using the keyword DEF followed by FN and the
name of your function. The function definition ends when a statement beginning with an
= sign isencountered. Thisassigns the expression on the right of the sign to the function
result. This result may be assigned to a variable in the normal way.

Functions obey the same rules as procedures with regard to naming conventions, the use
of parameters and local variables.

We have already seen an example function definitionin FNscal ar _pr oduct above.
The following is another example of how a function may be defined and used:

10 FOR N\% = 1 TO 10

20 PRI NT "A sphere of radius ";N%" has a volume "; FNvol une(N%

30 NEXT N%

40 END

100 DEF FNvol une(radi us%

110 = 4/ 3*Pl *radi us%3

Function and procedure libraries

Libraries provide a convenient way of adding frequently-used procedures and functions
toaBASIC program.

The libraries are kept in memory (unless they are OVERLAYed), and if areferenceis
made to a procedure or function which is not defined in your program, a search of each
library in turn is made until adefinition isfound. If theroutineisfound in alibrary, itis
executed exactly as though it were part of the program.

The advantages of using libraries are:

I They standardise certain routines between programs.

I They reduce the time required to write and test a program. (The library routines
only need to be written and tested once, not each time anew program is developed.)

They make programs shorter and more modular.

Loading a library into memory

There are three methods of loading alibrary into memory, INSTALL, LIBRARY and
OVERLAY.

INSTALL and LIBRARY arefollowed by a string giving afilename. Thisfile should
contain a set of BASIC procedure and function definitions, perhaps with local DATA
statements to be used by those procedures and functions.

INSTALL loads the library at the top of BASIC’s memory. It then lowers the upper
memory limit that BASIC programs can use. INSTALLed libraries are therefore
‘permanent’ in that they occupy memory (and may be called) until BASIC is re-started

98

Function and procedure libraries

99

(e.g. by another *BASIC command). You can not selectively remove INSTALLed
libraries. INSTALL must be used beforethe BASIC program isfirst run rather than from
within a program — it is a command, and cannot be used as a program statement.

LIBRARY reserves a sufficient area of memory for the library just above the main
BASIC program and loads the library. Any library loaded in this way remains only until
the variables are cleared. This occurs, for example, when the CLEAR or NEW
commands are given, when the program is edited in some way, or when a program is
run. Thus LIBRARY-type libraries are much more transient than INSTALLed ones (as
temporary as normal variables, in fact), so you would generally use LIBRARY from
within a program.

For example:

10 MODE 12

20 REM Print out a story

30 REM Load output library

40 LI BRARY "Printout"

50 REM Read and print the headi ng

60 READ A$

70 PROCcentre(A$)

80 REM Print out each sentence in turn

90 REPEAT
100 READ sent ence$
110 REMif sentence$ = "0" then have reached the end
120 I F sentence$ = "0" END
130 REM ot herwi se print it out
140 PROCpr et t ypri nt (sent ence$)
150 UNTI L FALSE
200 DATA A story
210 DATA Thi s, programi s, usi ng, t wo, procedures:
220 DATA 'centre’,and,’ prettyprint’ ,froma,library
230 DATA called,’ Printout’.
240 DATA The, library,is, | oaded, each,ting,
245 DATA the, programi s, run.
250 DATA The, procedure,’ centre’, places,a,string,in,the
260 DATA centre, of, t he, screen.
270 DATA The, procedure,’ prettyprint’, prints, out,
280 DATA a,word, at, t he, current, text, cursor,
290 DATA position,unless,it,wuld,be,split, over,
300 DATA a,line,in,which,case,it,starts,the,wrd,
305 DATA on,t he, next, |ine, down.
310 DATA O

Procedures and functions

Thelibrary Pri nt out could be asfollows:

10
20
30
40
50
60
70
80
90
100
110
120
130

140
200
210
220
230
240
250
260

270
300
310
320
330
340
350
360
370
380
390
400

REM >Printout - Text output library

REM EE R S O S o O O I I O O
DEF PROCPri nt out hel p

REM Print out details of the library routines
PRI NT "PRCCcentre(a$)"

PRINT "Place a string in the centre"

PRI NT "of a 40 character |ine"

PRI NT "PROCprettyprint(a$)"”

PRINT "Print out a word at the current”

PRI NT "text cursor position, starting"

PRINT "a new 40 character line if required"”
PRINT "to avoid splitting it over two |ines”
ENDPROC

REM R Ok O o O O R S

REM Pl ace a string in the centre
REM of a 40 character |ine

DEF PROCcent re(a$)

LOCAL start%

start% = (40 - LEN(a$))/2

PRI NT TAB(start%;a$

ENDPROC

REM EE R Ok O ok O O R O

REM Print out a word at the current

REM t ext cursor position, starting

REM a new 40 character line if required
REM to avoid splitting it over two |ines
DEF PROCprettyprint (a%$)

LOCAL end%

end% = PCS + LEN(a$)

IF end% < 40 PRINT a$;" "; : ENDPRCC
PRINT "a$;" ";

ENDPROC

REM EE R Ok O ok O O O O

In the above examplethe library Pri nt out contains three procedures:

PROCPrintouthel p prints out details of the library structure
PROCcentre prints a string in the middle of a 40 character line
PROCprettyprint printsaword at the current position or, if necessary,

on the next line to avoid splitting it

To make PROCprettyprint and PROCcentre more general-purpose a further refinement
would be for them to take an additional parameter specifying the number of characters
there are on theline, instead of afixed length of 40.

100

Function and procedure libraries

101

Overlaying

OVERLAY enablesyou to give alist of filenames which contain libraries. When

BASIC can't find a PROC or FN within the program or within any of the current
libraries, it will start to look in the OVERLAY files. You give OVERLAY a string array
as a parameter. For example:

10 DI M | i b$(5)

20 1ib$()="1ibl1","1ib2","1ib3","liba"
30 OVERLAY |ib$()
40 . ..

When theOVERLAY statement is executed, BASIC reserves enough space for the largest
of the files given in the string array. Then, when it can't find a PROC or FN definition
anywhere else, it will go through the list, loading the libraries in order until the
definition is found or the end of the array is met.

Once a definition has been found, that library stays in memory (and so the other
definitions in it may be used) until the next time a definition can't be found anywhere.
The search process starts again, so the current overlay library will be overwritten with
the first one in the list. Once BASIC has found a definition, it will remember which file
it was in (or more precisely, which element of the array held the filename), so that file
will be loaded immediately the next time the definition is required and it is not in
memory.

Because of the way one area of memory is used to hold each of the overlay files (and
only one at any one time), you are not allowed to call a procedure whose definition is in
an overlay library if one of the overlay definitions is currently active. Another way of
putting this is that you can’t nest overlay calls.

If you know that a given overlay file will never be needed again in the program, you can
speed up the search through the overlay list by setting the no-longer-required elements
of the array to the null string. You can also add new names to the end of the array, as long
as none of the new library files is bigger than the largest one specified in the original
OVERLAY statement.

You can execute OVERLAY more than once in a program. Each time it is called, the
memory set aside for the previous set of files will be lost, and a new block based on the
size of the new ones will be allocated.

Procedures and functions

Building your own libraries

There are certain rules which should be obeyed when writing library procedures and

functions:

I Line number references are not allowed.
Libraries must not use GOTO, GOSUB, etc. Any referenceto aline number isto be
taken asreferring to the current program, not to the line numbers with which the
library is constructed. You can use RESTORE+ to access DATA statementsin a
library.
Only local variables referring to the current procedure or function should be used.
It is advisable that library routines only use local variables, so that they aretotally
independent of any program which may call them.

Each library should have a heading.

It is recommended that a library’s first line contains the full name of the library and
details of a procedure which prints out information on each of the routines in the
library. For example:

10000 REMrhyperlib - gives hyperbolic functions.
Call PROChyperHelp for details

This last rule is useful because BASIC contains a command, LVAR, which lists the first
line of all libraries which are currently loaded. As a result, it is important that the first
line of each library contains all the essential information about itself.

102

Function and procedure libraries

103

14 Data and command files

his chapter describes how you can create data files to read information from files,
and how you can create command files to build up a sequence of commandsto
BASIC.

Data files

Programs can create and read information from files, called datafiles. For example, if
you write aprogram that creates alist of names and telephone numbers, you may wish to
save the names and telephone numbers as a data file.

Creating a data file

The datafileis specified in a program by one of the OPENxx keywords. For example
you can create adata file using the keyword OPENOUT.

For example, typing
A = OPENOUT "books"

creates adata file named books and opensit so that it is ready to receive data. The value
stored in the variable A is called a channel number and allows the computer to
distinguish this data file from other open datafiles. All future communication with the
file booksis made viathe file channel number in A rather than viathe name of thefile.

Writing information to a data file
Writing information to a data fileis done using PRINT#. For example:

104

Writing or reading single bytes

10 A = OPENQUT "books"

20 FOR1 =1 TO 5

30 READ book$

40 PRI NT#A, book$

50 NEXTI

60 CLCOSE#A

70 END

80 DATA "Bl ack Beauty"

90 DATA "Lord of the Ri ngs"

100 DATA "The Wnd in the WI I ows"
110 DATA "The House at Pooh Corner"
120 DATA "The BBC BASI C Ref erence Manual "

Closing a data file

Use CLOSE# to close a datafile. This ensures that any data belonging to the file which
isstill in amemory buffer is stored on the disc. The buffer can then be re-used for
another file. After a CLOSE, thefile handle is no longer valid.

Reading data from a file

You can read data from afile using OPENIN and INPUT#. OPENIN opens an existing
datafile so that information may be read from it. INPUT# then reads the individual
items of data. For example:

10 channel = OPENI N "books"
20 REPEAT

30 | NPUT#channel , title$
40 UNTI L EOF#channel

50 CLGSE#channel

60 END

EOF# is a function which returns TRUE when the end of afileis reached.

Writing or reading single bytes
Other useful keywords for reading or writing data are:
I BPUT# which writes asingle byte to afile
I BGET# which reads a single byte from afile.

105

Data and command files

The following writes all the upper-case letters to afile using BPUT# as part of the
program:

10 channel = OPENQUT "characters"
20 FOR N% = ASC("A") TO ASC("Z")
30 BPUT#channel , N%o

40 NEXT N%

50 CLOSE#channel

BGET# isused as part of a program that allows each character to be read into astring as
follows:

OPENI N "characters”

10 channel
20 string$
30 REPEAT
40 string$ += CHR$(BGET#channel)
50 UNTI L ECF#channel

60 CLOCSE#channel

Writing or reading ASCII strings

The BPUT# statement and GET$# function can also be used to write text to afile, and
read text from afile. These write and read the text in aform compatible with other
programs, such as text editors like Edit, unlike PRINT# and INPUT# which write and
read stringsin BASIC string format.

When you PRINT# an expression to afile, it iswritten as an encoded sequence of bytes.
For example, an integer is stored on the file as the byte & 40 followed by the binary
representation of the number. A string is written as & 00 followed by the length of the
string, followed by the string itself in reverse order.

To write information as pure text, you can use:
BPUT#channel , string[;]

The characters of the string, which may be any string expression, are written to the file.
If thereisno semi-colon at the end of the statement, then a newline character (ASCII 10)
iswritten after the last character of the string. If the semi-colon is present, no newlineis
appended to the string.

To read an ASCI| string from afile, you can use:
st r$=CET$#channel

This function reads characters from the file until a newline (ASCII 10), carriage return
(ASCII 13 and CHR$13), or null (ASCII 0 and CHR$0) character isread. This
terminates the string, but is not returned as part of it. Thus any newlines will look like
new strings when you read the file. The end of file also terminates the string.

106

Command files

Command files

A command file is afile whose contents are a sequence of commands to be executed as
if they had been typed at the keyboard. You can use a variety of methodsto create a
command file. Using Edit is probably the easiest, especialy if that application isalready
loaded and can be activated from the desktop. See the RISC OS Applications Guide for
details on using Edit.

Another way of creating acommand fileis to use the *BUILD command. If you type
*BUI LD keyfile

everything subsequently typed from the keyboard is sent directly to thefile called
keyfil e.If thereisafilenamed keyf i | e aready, it is deleted when the*BUILD
command is given.

Press Return at the end of each line. When you finish entering the commands, press Esc
to end keyboard input to keyfile.

Executing a command file

107

There are two main ways of executing acommand file. If the file contains a sequence of
commands to alanguage, such as BASIC, then you should * EXEC it. For example,
suppose you create afilecalled i nst al | which contains the following lines:

| NSTALL "basiclib.shell"
| NSTALL "basiclib. hyperlib”
I NSTALL "basi clib. debugger”
| NSTALL "basiclib. FPasn

Thelinesin thefile are designed to save the programmer from having to typein alist of
INSTALL commands whenever BASIC is started. To execute these commands, enter
BASIC then type the command

*EXEC i nstal |

Thiscausesthe contentsof i nst al | to betaken asinput, exactly asif it had been typed
in (but much quicker!). You can make the command even shorter by setting the file type
of i nstal | to COMMAND using the command

*SETTYPE install COMVAND

This convertsthe file into a runnabl e file. Once you have done this, you can * EXEC the
file just by giving its name as a command, for example:

*install

The other way in which a command file can be executed isto * OBEY it.

Data and command files

Note: If you do this, each linein thefileis executed asa* command, i.e. it is passed to
the operating system command line interpreter only - not to BASIC. In this case you do
not see the lines that are being executed on the screen, and * OBEY allows parameter
substitution.

See the section Command scripts in the chapter Notes for command line usersin the
RISC OS 3 User Guide for more details on * OBEY.

108

Command files

109

15 Screen modes

he display produced on a standard monitor can be in any of 24 different modes

(modes 0-17, 22, 24, 33-36). Other modes are available for use with multiscan,
high-resolution and VGA monitors. Each mode gives a different combination of values
to the following four attributes:

I the number of characters you can display on the screen

I thegraphicsresolution

I thenumber of colours available on the screen at any one time
I theamount of memory allocated to the screen display.

For example, mode O allows 32 rows of text to be displayed, each containing up to 80
characters. It provides high resolution graphics, but allows just two colours to be
displayed on the screen. In contrast, mode 1 can display just 40 characters on arow and
provides medium resol ution graphics; it supports, however, up to four colours. Different
modes use different amounts of memory to hold the picture; the amount of memory is
determined by the resolution and by the number of colours. Mode 0O, for example,
requires 20K .

Full details on screen modes are given in the Appendix on screen modesin the RISC OS
User Guide.

Note: BASIC screen mode and graphics commands control the computer when BASIC
is being run from the command line. When it is being run from a Task Window, these
functions are controlled by the RISC OS Window Manager, hence these BASIC
commands have no effect.

Changing screen modes
To change mode, use MODE followed by the mode number you want. For example,
MODE 12

changes the display to mode 12. Thisis one of the most useful modes since it provides
high resolution graphics in 16 colours. It is the desktop’s standard mode.

When you type a MODE command from the command line, the desktop is cleared
automatically.

110

Shadow modes

Shadow modes

In addition to mode numbers 0 to 36, you can use 128 to 164 (i.e. the mode number with

128 added to it). These modes use the so-called ‘shadow’ memory. If you imagine that
there are two separate areas of memory which may be used to hold the screen
information, then selecting a normal mode will cause one area to be used, and selecting
a shadow mode (in the range 128 to 164) will cause the alternative bank to be used.

You can force all subsequent mode changes to use the shadow bank with the command:
S* SHADOW

After this, you can imagine 128 to be added to any mode number in the range 0 to 36. To
disable the automatic use of the shadow memory, issue the command:

* SHADOW 1

Using the shadow bank

Text size

In order to use the shadow bank, the ScreenSize configuration must reserve at least twice
as much screen memory as the amount required for the non-shadow mode. For example,
if you want to use both mode 0 and mode 128, 40K of screen memory must be available,
as mode 0 takes 20K.

In fact, for a given mode, there may be several banks available. You can work out how
many by dividing the amount of configured screen memory by the requirement of the
current mode.

The normal, non-shadow bank is numbered bank 1, and the shadow bank, used by mode
128, is bank 2. There are two more, banks 3 and 4. Using operating system calls, you can
choose which of the four banks is displayed, and which is used by the VDU drivers
when displaying text and graphics.

The number of characters displayed on the screen is affected by the number which are
allowed per row (i.e. the width of each character) and the number of rows which can be
displayed on the screen (i.e. the spacing between the rows). Using 25 rows on the screen
provides just the right amount of separation between the rows to make text easier to
read.

Changing text size

111

You can change the size of text characters in the modes which support graphics.
However, you can only do this when the display is in what is called VDU 5 mode. This
mode is explained in the section entitRriinting text at the graphics cursor on

page 125.

Screen modes

To set the size of charactersin VDU 5 mode, type:
VDU 23,17, 7,6, sx; sy; 0;

where sx isthe horizontal size of charactersand sy isthe vertical size. Characters are
normally eight pixels square so to get double height you would use:

VvDU 23, 17,7, 6, 8; 16; 0;

Single- and double-height character plotting is much faster than other sizes, but you can
choose any numbers for sx and sy between 1 and 32767.

Graphics resolution

Colour modes

The graphics resolution is specified by the number of pixels (rectangular dots) which
can be displayed horizontally and vertically. The greater the number of pixels which the
screen can be divided into, the smaller each pixel is. Since all lines have to be at least
one pixel thick, smaller pixels enable the lines to appear less chunky. To see the
difference the pixel size makes try typing the following in BASIC:

10 MODE 9

20 MOVE 100, 100
30 DRAW 100, 924
40 MOVE 100, 100
50 DRAW 1180, 100
60 MOVE 100, 100
70 DRAW 1180, 924

and then:

10 MODE O

20 MOVE 100, 100
30 DRAW 100, 924
40 MOVE 100, 100
50 DRAW 1180, 100
60 MOVE 100, 100
70 DRAW 1180, 924

The number of colours available on the screen at any given timeiseither 2, 4, 16 or 256.
When you first enter a particular mode, the computer selects the default colourswhichiit
uses for that particular mode. These are assigned to colour numbers (see Appendix E -
Colour modes on page 432).

112

Changing colours

The computer chooses one colour to display text and graphics and another for the
background. These two colours are chosen so that under default conditions the text and
graphics are in white and the background is black. For example, in four-colour modes
the computer chooses to draw text and graphicsin colour 3 (white) on a background
which is colour 0 (black).

256-colour modes

In the 256-colour modes, there are 64 different colours, and each colour may have four
different brightnesses, resulting in atotal of 256. The colours themselves are referred to

as numbers 0-63. The brightness levels are called ‘tints’ and are in the range 0-255.
However, because there are only four different tints, the numbers normally used are 0,
64, 128 and 192.

The 256-colour modes are described in more detail on page 115.

Changing colours

You may choose to display your text, graphics, or background in a different colour from
the defaults. To do this, use the following commands:

I COLOUR n selects coloun for text
I GCOL n selects coloun for graphics

Each command can affect both the foreground and background colours, depending on
the value it is given:

I If nisless than 128, the foreground colour is set to cafour
I If nis 128 or greater, the background colour is set to calol28.

If the colour number is greater than the number of colours available in a particular mode
then it is reduced to lie within the range available. For example, in a four-colour mode
COLOUR 5 and COLOUR 9 are both equivalent to COLOUR 1.

Try the following example:

10 MODE 1 : REM four-col our node
20 COLOUR 129 : REM red background
30 COLOUR 2 : REM yel | ow f or eground

40 PRINT "Hell o There"

Changing the colour palette

113

In addition to being able to select the colour in which numbers, text and so on are
displayed, you can also change the physical colour associated with each colour number.

Screen modes

Changing the shade of the colour

You can define the amount of red, green, and blue (as one of 16 levels) which go to make
up the colour displayed for each of thelogical colour numbers. Thus, any of the 16
colour numbers can be made to appear as a shade selected from the full range, or
‘palette’, of 16*16*16 = 4096 colours.

You can assign any of the shades available to a logical colour using the command:
COLOURN, r, g, b

This assigng parts redg parts green ant parts blue to logical colour. Each ofr, g

andb must be values between 0 and 255. A value of zero specifies that none of that
colour should be used and a value of 255 that the maximum intensity of that colour
should be used. Thus setting all of them to zero gives black and setting all to 255 gives
white.

Returning to the default colour settings
To return to the default settings for each of the colours type
VDU 20

Note: you should not ud&U 20 if you are writing a BASIC program under the Wimp
(described in the section entitlédndow managed programs on page 13).

Experimenting with colour

The following program allows you to mix and display various colours:

114

256-colour modes

10 REPEAT

20 MODE 1

30:

40 REM | nput val ues fromthe user

50:

60 | NPUT" Amount of red (0 - 15) "red%
70 | NPUT" Amount of green (O - 15) "green%
80 | NPUT" Arount of blue (0 - 15) "blue%
90:

100 REM Force the nunbers into the range required
110:

120 red% redo << 14

130 green%
140 bl ue%

green% << 4
blue% << 4

150:

160 COLOUR 0, red% green% bl ue%
170 GCOL O

180 RECTANGLE FI LL 540, 412, 200, 200
190:

200 Now=TI ME

250 REPEAT UNTIL TIME > Now + 500
260:

270 UNTIL FALSE : REM Repeat forever

This program asks you for three values, one for each of the amounts of red, green and
blue you require. It then plots arectangle in that colour. After it has displayed it for five
seconds it clears the screen and starts again. To stop the program at any stage press Esc.

Note: the current display hardware only supports 16 levels for each colour component
numbered 0, 16, 32... up to 240. Intermediate numbers will give the next lowest level.

256-colour modes
Full control is not available over the colour palette setting in 256-colour modes.

As noted above, in these modes, a choice of 64 coloursis available directly from the
simple COLOUR and GCOL commands.

For example:

10 MODE 15

20 FOR Col % = 0 TO 63
30 COLQUR Col %

40 PRINT ":"; Col %
50 NEXT

115

Screen modes

Asinthe other modes the colour of the background can be changed by adding 128 to the
parameter of the COLOUR command. Try modifying line 30 of the above program and
running it again.

About colour numbers

To understand the manner in which the colour number dictates the actual shade of colour
which you see you need to consider the binary pattern which makes up the colour
number. Only the right-most six bits are relevant. For an explanation of %and binary
numbers, see the chapter entitled Bases on page 38.

In common with the other modes colour zero (%000000) is black.

Colour binary pattern shade of colour

1 (%000001) dark red

2 (%6000010) mid-red

3 (96000011) bright red

4 (%000100) dark green

8 (%001000) mid-green
12 (%001100) bright green
16 (%010000) dark blue
32 (%100000) mid-blue
48 (%110000) bright blue
63 (%111111) white

Of the six bits which are used for the colour, the right-most two control the amount of
red, the middle two the amount of green and the left-most two the amount of blue.

For example, COLOUR 35 is composed as follows: 35 = %100011, and so contains two
parts of blue, no green and three parts of red, and appears as a purple shade. The
remaining two bits of the eight bits of colour information are supplied via a special
TINT keyword, already mentioned above.

The TINT keyword

The effect of TINT on the shade of the colour isto change the small amount of white tint
used in conjunction with the base colour. Thisgivesfour subtle variationsto each colour.

Therangeof the TINT valueis 0to 255; but there are only four distinct tint levelswithin
thisrange, and so all the number values within the following ranges have the same

effect:

0-63 No extra brightness
64-127 Some extra brightness
128-191 More extra brightness
192-255 Maximum extra brightness

116

Using the screen under the Wimp

For example:
COLOUR 35 TINT 128
or

GCOL 17 TINT O

Displaying 256 shades
Here is a program which shows all possible tints and colours:

10 MODE 15

20 FOR col %0 TO 63

30 FOR tint%0 TO 192 STEP 64

40 GCOL col % TINT tint%

50 RECTANGLE FILL tint%4, col %16, 256, 16
60 NEXT tint %

70 NEXT col %

Using the screen under the Wimp

When writing programs which run under the window environment, you should not use
the standard commands such as COLOUR and MODE as these will interfere with the
running of other active programs. Instead you should use the facilities provided by the
Wimp (see the section entitled Window managed programs on page 13 for more detail s).

117

16 Simple graphics

T ext and graphics plotting is performed by the operating system. Many graphics
operations require strings of control characters to be sent to the VDU drivers.
However, BASIC provides keywords to perform some of the more common operations,
such as plotting points, lines and circles and changing colours. This chapter describes
those keywords.

The graphics screen

Whichever graphics mode your programisin, the actual range of coordinatesthat can be
addressed is - 32768 to +32767 in each direction. The coordinate range of the graphics
screen that you actually use, and which is dependent upon the mode you select, isrealy
awindow on this area. Many graphics modes use a screen coordinate area 1280 units

across by 1024 units high, with the origin (0,0) located initially at the bottom left corner

118

The graphics screen

119

of the screen. So, for example, you could draw a line between (-1300,—900) and
(850,1500) and what would appear on the screen is the portion of the line which crosses
the region (0,0) to (1279,1023):

+32768
(850,1500)
e
s
e
1023
typical
screen
e
e
X-axis 70
-32768 = P 0 1279 - +32768
e
e
e
e
e
e
(-1300,-900) .
Y-axis

Y

-32768

Because the actual resolution of most of the modes available is less than the 1280 by
1024 system, screen pixels are more than one unit square. For example, in the 640 by
256 pixel mode 0, a pixel is 2 units wide (1280/640) by 4 units high (1024/256).
However, because the same coordinates are used in every mode, a line drawn between,
say, (100,100) and (768,564) will appear approximately the same. The only difference
between the modes will be the apparent ‘chunkiness’ of the line, due to the different
pixel sizes.

In most modes, the number of horizontal pixels is not a factor of 1280, and the number
of vertical pixels is not a factor of 1024. Where such a mode has 25 text lines, there are
200 vertical pixels and the screen is 1000 units high. In the cases where there are 132

characters across, the vertical resolution is 1056 pixels. However, each pixel is still two
units wide, so the screen is 2112 units wide. There are approximately 180 units per inch
on most screens.

Simple graphics

The point command

The simplest type of object you can plot on the screenisasingle pixel, or point. To plot
apoint, you use the statement POINT followed by the x and y coordinates of the pixel
you want plotted. For example:

PO NT 640, 512

will plot apixel inthe middle of the screen in the current graphics foreground colour
(and tint in a 256-colour mode).

The program below plots random points within a radius of 200 units from the centre of
the screen:

10 MODE 12

20 REPEAT

30 rad%=RND(199)

40 angl e=RADRND(360)

50 GCOL rad% 8/ 200

60 PO NT 640+r ad% COSangl e, 512+rad% Sl Nangl e
70 UNTIL FALSE

POINT may also be used as a function to discover the colour of apixel. It hasthe form:
col = PO NT(x% y%

In 256-colour modesit returns a number between 0 and 63. To find the tint of the pixel,
you usethe TINT keyword as afunction in asimilar way:

tint = TINT(x% Y%

The line command

BASIC provides avery smpleway of drawing lines on the screen. All you needto dois
to work out the positions of the two ends of the line. You can then draw aline with a
singleinstruction such as:

LI NE 120, 120, 840,920 : REMIine (120,120) to (840,920)
You could draw the line the other way and produce the same result:
LI NE 840, 920, 120, 120

The following program uses LINE four times to draw a box on the screen:

120

Rectangle and rectangle fill

10 MODE O

20 left% = 100
30 right% = 400
40 bottonto = 200
50 top% = 800
60:

70 LINE | eft% botton®g right% bottontb
80 LINE left%top% right%top%

90 LINE left%bottonty left%top%
100 LINE right%bottontg right%top%

Rectangle and rectangle fill

The RECTANGLE statements provide an easier way of drawing boxes on the screen.
The first two parameters of RECTANGLE are the x and y coordinates of the bottom | eft
corner. The second two parameters are the width and height of the rectangle. For
example:

RECTANGLE 440, 412, 400, 200
If the width and height are equal, asin a square, the fourth parameter may be omitted:
RECTANGLE 400, 312, 400

RECTANGLE FILL isused in exactly the same way as RECTANGLE, but instead of
drawing the outline of arectangle, it produces a solid rectangle. The following program
plots solid squares of gradually decreasing sizein different colours:

10 MODE 15

20 FOR 1% = 63 TO 1 STEP -1

30 GCOL | %

40 RECTANGLE FI LL 640-19%8,512-19%8,19% 16
50 NEXT 1%

Circle and circle fill

121

To draw the outline of acircle or to plot asolid circle, you need to provide the centre of
the circle and the radius. For example:

Cl RCLE 640,512, 100 : REM centre (640,512) radius 100
CI RCLE FI LL 640,512, 50

This produces the outline of acircle centred at (640,512), which is the centre of the
screen, and of radius 100. Inside thisis asolid circle, again centred at (640,512), which
has aradius of 50.

Try the following program:

Simple graphics

10 MODE 15

20 REPEAT

30 GCOL RND (64): MOUSE x,vVy, z

40 CIRCLE FILL x,y, RND(400)+50
50 UNTIL FALSE

This program produces circles in random colours, centred on the current mouse position
and with aradius of between 51 and 450. To stop it press Esc.

Ellipse and ellipse fill

To draw the outline of an ellipse or to plot asolid ellipse you need to provide its centre
point and the size of its major and minor axes. In addition, you may also give the angle
by which it is rotated from the horizontal .

For example:
ELLI PSE 640, 512, 200, 100, PI/4

This produces the outline of an ellipse centred at (640,512). The length of it is 200, the
width is 100 and it is rotated by pi/4 radians (45 degrees) from the horizontal. If you
omit the angle, an axis-aligned ellipse is produced:

ELLI PSE 400, 500, 320, 80

Try the following program, which plots eight ellipses of two different sizes with the
same centre point to form multi-petalled flowers:

122

Graphics colours

10 MODE 1 20
GCaL 1 30
FOR angle = 0 TO 3*PI /4 STEP PI/ 4 40
ELLI PSE FI LL 640, 512, 200, 60, angl e 50
NEXT angl e 60
GCOL 2 70
FOR angle = PI/8 TO 3*PI/4+PI /8 STEP PI/ 4 80
ELLI PSE FI LL 640,512, 100, 30, angl e 90
NEXT angl e

Graphics colours

In previous examples, GCOL has taken one parameter, a number which selects the
current logical colour for the graphics foreground or background. For example,

GCaL 3
GCOL 129

selects the graphics foreground colour to be logical colour three and the background
colour to be one.

GCOL may, however, take two parameters: GCOL m c. In this case the second (¢)
selects the foreground and background graphics colours, and the first () selectsthe
manner in which c is applied to the screen as follows:

M eaning

Store the colour ¢ on the screen

OR the colour on the screen with ¢

AND the colour on the screen with ¢

EOR the colour on the screen with ¢

Invert (NOT) the colour on the screen (disregards c)

L eave the colour on the screen unchanged (disregards c¢)
AND the colour on the screen with NOT ¢

OR the colour on the screen with NOT c.

~No b~ wWNEO 3

Two of the optionsignore the second parameter and either leave the colour on the screen
unchanged or invert it. Inverting a colour meansthat all the bitsin the colour number are
altered: zeros are set to ones and vice versa. For example:

10 MODE 9 : REM 16 col ours 0(%000) - 15 (9d111)
20 GCOL 128+5

30 CLG

40 GCOL 4,0 : REM plot in NOT (screen col our)
50 LINE 0,0, 100, 100

123

Simple graphics

The colour on the screen is colour 5 (%60101). The colour used to draw thelineis,
therefore, NOT (%0101) or colour 10 (%1010).

The OR, AND and EOR operators act on the bits of the colour aready on the screen and
on the colour given as the second GCOL parameter as described in the chapter Bases.
Thus:

10 MODE 12 : REM 16 col ours 0(9%9000) - 15(9%111)

20 GCOL 128+5 : REM cl ear screen to nagenta

30 CLG 40
GCOL 0,6 : LINE O, 0, 100, 100

50 GCOL 1,6 : LINE 100, 100, 200, 200

60 GCOL 2,6 : LINE 200,200, 300, 300

70 GCOL 3,6 : LINE 300, 300, 400, 400

80 GCOL 6,6 : LINE 400, 400, 500, 500

90 GCOL 7,6 : LINE 500,500, 600,600

The colour already on the screen when the lines are drawn is colour 5 (%60101). The
foreground colour is selected as colour 6 (%0110) in al cases. The method of applying
it to the screen, however, alters the actual colour displayed as follows:

I Thefirst line appearsin colour 6

I The second line appearsin colour 7 (%0101 OR %0110 = %0111)
I Thethird line appearsin colour 4 (%0101 AND %0110 = %0100)

I Thefourth line appearsin colour 3 (%0101 EOR %0110 = %0011)

| Thefifth line appearsin colour 1 (%0101 AND NOT %0110 = %0101 AND & 1001
= %60001)

The sixth line appearsin colour 13 (%0101 OR NOT %0110 = & 0101 OR %1001 =
%1101)

The graphics cursor

In the examples shown so far, we have always explicitly mentioned where objects are to

be plotted, for example by giving both end points of aline in the LINE statement. This

isn't always necessary, because of the graphics cursor. The graphics cursor is an
invisible point on the screen which affects where lines and other items are drawn from.

For example:

10 MODE 12
20 MOVE 100, 100
30 DRAW 200, 200

124

Relative coordinates and BY

This moves the graphics cursor to (100,100), then draws aline to (200,200) and leaves
the graphics cursor at this position. Now, if afurther line is added to the program as
follows:

40 DRAW 300, 100

This adds a line from (200,200) to (300,100). BASIC’s LINE command is actually
shorthand for a MOVE followed by a DRAW.

Many of the graphics entities described in the next chapter rely on the current position of
the graphics cursor, and some of them also use its previous positions.

Relative coordinates and BY

All coordinates used so far are ternabdolute because they tell the computer where to
plot the object with respect to the graphics origin (0,0). However, it is also possible to
userelative coordinates. When these are used, the coordinates given are added to the
current graphics cursor position to find the new point. To use relative coordinates in
POINT, MOVE and DRAW statements, you follow the keyword by the word BY.

Here is a program that starts in the middle of the screen and ‘walks’ randomly around:

10 MODE 0

20 MOVE 640, 512

30 REPEAT

40 dx%=8* (RND(3) - 2)

50 | F dx%0 THEN dy%:8*(RND(3)-2) ELSE dy%:0
60 DRAW BY dx% dy%

70 UNTIL FALSE

Printing text at the graphics cursor

125

Printing text at the text cursor positions gives only limited control over the places at
which characters may be located. In addition it does not allow characters to overlap.
Attempting to print one character on top of an existing one deletes the existing one. You
may find that you would like to be able to place text in different positions, for example

to label the axes of a graph or to type two characters on top of each other, in order to add
an accent, e.g. », to a letter. To do either of these type

VDU 5

You are now in VDU 5 mode. Whilst you are in this mode of operation, any characters
you print are placed at the graphics cursor position. The text cursor is ignored. You can
use the MOVE statement to locate the text precisely.

Simple graphics

Since this method of printing makes use of graphics facilities, it is not possiblein
text-only modes. If the command VDU 5 isgivenin any of these screen modesit has no
effect.

Each character is actually placed so that itstop left corner is at the graphics cursor. After
the character has been printed, the graphics cursor movesto the right by the width of one
character. Although the graphics cursor also automatically moves down by the height of
a character (32 unitsin modes 0 to 17) when the righthand side of the screen is reached,
the screen does not scroll when a character is placed in the bottom righthand corner.
Instead the cursor returns to the top left.

To return to the normal mode of operation type
VDU 4

126

Printing text at the graphics cursor

127

17

Complex graphics

he commands such as MOV E, DRAW, CIRCLE, etc are special cases of the more
general PLOT command. This command can give afar wider range of options over
what kind of shape you produce and how you produce it. Of course, the added
functionality it provides makes it more complicated to use.

PLOT takes the following format:
PLOT k, x,y

where k isthe mode of plotting, and x and y are the coordinates of a point to be used to
position the shape. PLOT takes one pair of coordinates. To produce shapes which need
more than one pair to define them, such as rectangles, it uses the previous position or
positions of the graphics cursor to provide the missing information. This means that you
must pay careful attention to the position of the graphics cursor after a shape has been
drawn. Otherwise future plots may produce unexpected results.

Each type of plot has ablock of eight numbers associated with it. These are listed below
in both decimal and hexadecimal notation. (See the chapter entitled Bases on page 38).

0-7 (&00 - &07) Solid line including both end points

8-15 (&08 - &0F) Solid line excluding final points

16-23 (&10- &17) Dotted line including both end points

24-31 (&18- &1F) Dotted line excluding final points

32-39 (&20- &27) Solid line excluding initial point

40-47 (&28 - &2F) Solid line excluding both end points

48-55 (&30- &37) Dotted line excluding initia point

56-63 (&38- &3F) Dotted line excluding both end points

64-71 (&40 - &47) Point plot

72-79 (&48 - &4F) Horizontal linefill (left & right) to non-background
80-87 (&50- &57) Triangle fill

88-95 (&58 - &5F) Horizontal linefill (right only) to background
96-103 (&60 - &67) Rectangle fill

104-111 (&68- &6F) Horizontal linefill (left & right) to foreground
112-119 (&70- &77) Parallelogram fill

120-127 (&78-&7F) Horizontal linefill (right only) to non-foreground
128-135 (&80- &87) Flood to non-background

136-143 (&88- &8F) Flood to foreground

128

Plotting simple lines

144-151 (&90- &97) Circle outline

152-159 (&98- &9F) Circlefill

160-167 (&AO0-&A7) Circular arc

168-175 (&A8-&AF) Segment

176-183 (&BO0O- &B7) Sector

184-191 (&B8- &BF) Block copy/move

192-199 (&CO0-&C7) Ellipse outline

200-207 (&C8-&CF) Ellipsefill

208-215 (&DO0- &D7) Graphics characters

216-223 (&D8- &DF) Reserved for Acorn expansion
224-231 (&EO- &E7) Reserved for Acorn expansion
232-239 (&E8- &EF) Sprite plot

240-247 (&FO- &F7) Reserved for user programs
248-255 (&F8- &FF) Reserved for user programs

Within each block of eight, the offset from the base number has the foll owing meaning:

offset meaning

move cursor relative (to last graphics point visited)
plot relative using current foreground colour

plot relative using logical inverse colour

plot relative using current background colour

move cursor absolute (i.e. move to actual coordinate given)
plot absolute using current foreground col our

plot absolute using logical inverse colour

plot absolute using current background col our

~No o h WNBEFE O

PLOT isagood example of where using hexadecimal notation helps to make things
clearer. Each block of eight starts at either &x0 or & X8, where X represents any
hexadecimal digit, so a plot absolute in the current foreground colour, for example, has
aplot code of &x5 or &xD. Thus, it is obvious which mode of plotting is being used.
Similarly, it is obvious which shape is being plotted, and so, for example, if theplot is
between & 90 and & 9F, then it isacircle. Thisisafar easier range to recognise than 144
to 159.

Each of the types of plot is described in further detail below.

Plotting simple lines

A lineis plotted between the coordinates given by the PLOT and the previous position
of the graphics cursor. The following examples draw aline from (200,200) to (800,800):

129

Complex graphics

10 MODE O
20 PLOT &04, 200, 200
30 PLOT &05, 800, 800

These two PLOT statements are equivalent to MOVE 200, 200 and DRAW 800, 800
respectively.

The same line can be drawn by a different PLOT code:

10 MODE O
20 PLOT &04, 200, 200
30 PLOT &01, 600, 600

This demonstrates the use of relative plotting. The coordinate (600,600) which has been
giveninline 30 is relative to the position of the graphics cursor. The absolute valueis
obtained by adding this offset to the previous position i.e. (600,600) + (200,200) which
gives a position of (800,800). Thisis equivaent to DRAW BY 600, 600.

Dot-dash lines

Straight lines do not have to be drawn as asolid line. Instead you can set up a pattern of
dots and dashes and use that to determine which pixels along the line will be plotted.

A dot-dash pattern is set up using:
VDU 23, 6, n1, n2, n3, n4, n5, n6, n7, n8

where n1 to n8 define a bit pattern. Each bit which is set to one represents a point
plotted and each bit set to zero represents no point. The pattern starts at bit 7 of n1, then
for each pixel plotted moves one bit to the right in n1. After bit O of n1 has been used,
bit 7 of n2 isused, and so on.

The pattern can be made to repeat (i.e. go back to bit 7 of n1) after agiven number of
pixels. The maximum pattern repeat is 64. However, you can set up any repeat between
one and 64 using:

*FX 163, 242, n

If you set n to zero, this sets up the default pattern which has arepeat length of eight bits
and is aternately on and off, i.e. n1 is%10101010 (& AA).

There are four different methods which may be used to plot the line:
PLOT range Effect

&10-&17 Both end pointsincluded, the pattern being restarted when each new
lineis drawn.

&18-&1F Final point omitted, the pattern being restarted when each new line
isdrawn.

130

Plotting simple lines

&30-&37 Initial point omitted, the pattern being continued when each new
lineisdrawn.
& 38-&3F Both end points omitted, the pattern being continued when each

new lineisdrawn.

Triangles

To draw atriangle plot, you need the coordinates given with the triangle PLOT code and
two previous points which mark the other corners. For example:

10 MODE 12

20 MOVE 200, 200

30 MOVE 600, 200

40 PLOT &55, 400, 400

This plots atriangle with corners (200,200), (600,600) and (400,400).
Adding afurther line:

50 PLOT &55, 800, 400

plots afurther triangle using corners (600,200), (400,400) and (800,400).

Rectangles

131

An axes-aligned (filled) rectangle plot can be plotted between the coordinates given by
the PLOT and the previous position of the graphics cursor. For example:

MOVE 200, 200
PLOT &61, 600, 600

Thisisequivalent to RECTANGLE FILL 200,200, 600,600. You can also specify
absolute coordinates in the PLOT version, for example:

MOVE 200, 200
PLOT &65, 800, 800

Complex graphics

Parallelograms

A parallelogram plot is constructed as arectangle which has been sheered sideways. For
example:

(400,800) (900,800)

(200),(200) (700,200)

These require three points to define them. Thus to plot the parallelogram shown above
the following could be used:

MOVE 200, 200
MOVE 700, 200
PLOT &75, 900, 800

Although any three corners of the parallelogram may be used to define it, the order in
which these are given affects which way round the parallelogram appears. Consider the
three points given below:

(700,800)

(200,500) (600,500)

These could produce any of three parallel ograms, depending on the order in which they
were used. The rule to determine what the final parallelogram will look likeis as
follows: the three points specify adjacent vertices, with the fourth vertex being
calculated from these. From this, it can be seen that the unspecified corner is the one
which appears diagonally opposite the second point given.

132

Plotting simple lines

Circles

133

Suppose, for example, you used the following sequence of statements with the three
points shown above;

MOVE 200, 500
MOVE 600, 500
PLOT &75, 700, 800

Thefinal point is calculated by the computer to have the coordinates (300,800),
diagonally opposite the point (600,500).

The other two possible parallel ograms that would be obtained using these three
sequences are;

MOVE 600, 500 : MOVE 700, 800 : PLOT &75, 200, 500
MOVE 700, 800 : MOVE 200,500 : PLOT &75, 600, 500

When specifying the corners, you can give them in ‘clockwise’ or ‘anti-clockwise’
order; the same shape is drawn regardless.

To plot a circle, define the centre by moving to it, and then use PLOT with the relevant
plot code and the coordinates of a point on its circumference. For example, to plot a solid
circle in the centre of the screen with a radius of 100, type

MOVE 640, 512 :REM centre
PLOT &9D, 740,512 : REM Xcentre+radi us, Ycentre

Alternatively you could use relative plotting:

MOVE 640, 512 :REM centre
PLOT &99, 100, 0 :REM radi us, 0

In both these examples the circles are solid and could have been produced using the
CIRCLE FILL command. The equivalent of the CIRCLE command for producing
outlines of circles would be PLOT &95 and PLOT &91.

Complex graphics

Ellipses

Ellipses are more complicated to define than circles:

To plot the above dllipse, the following information is required:

I thecentre point

I anoutermost point (either to the right or Ieft) at the same height as the centre
I thehighest or lowest point of the ellipse.

For exampl e, to draw the ellipse above, you could use:

MOVE 640, 512 :REM the centre

MOVE 740, 512 :REM t he righthand point
PLOT &C5, 800,712 :REMthe top point

or aternatively:

MOVE 640, 512 :REM the centre

MOVE 540, 512 :REM t he | ef thand poi nt

PLOT &C5, 480,312 :REMthe bottom point

Note that only the x coordinate of the second point is relevant, although for clarity itis
good practice to give the samey coordinate as for the centre point.

The following example creates a pattern using a number of differently shaped €ellipses:

134

Arcs

Arcs

135

10 MODE O

20 FOR step% = 0 TO 400 STEP 25
30 MOVE 640, 512

40 MOVE 215+step% 512

50 PLOT &C5, 640, 512+step%

60 NEXT step%

Solid ellipses are drawn in the same way using the plot codes & C8 to & CF.
The BASIC ELLIPSE keyword provides an easier way of specifying rotated ellipses.

We saw above how circle outlines are defined and drawn. In asimilar way, just aportion
of the circle outline may be drawn to produce an arc. In this case, three points are
required: the centre of the circle and two points to indicate the starting and finishing
points of the arc. Ideally, these would be given as follows:

In the example above, however, both the starting and finishing points are on the arc
itself. Thisis adesign which requires alarge amount of calculation. It is easier for the
starting point to be taken as being on the arc and used to cal culate the radius, the
finishing point being used just to indicate the angle the arc subtends. For example:

Complex graphics

Thisis the method used by the VDU drivers. To draw an arc, you need to specify the
centre of the circleit is based upon and the starting point of the arc, and then to plot to a
third point to specify the angle.

The example below draws an arc based on acircle whose centreis at (640,512). It draws
the portion of the arc from 0 to 270. Since arcs are drawn anticlockwise this means that
its starting position is the point (440,512) (270) and its finishing position (640,512+n)
(0):

MOVE 640, 512

MOVE 440, 512

PLOT &A5, 640, 1000

The resulting arc would look like that drawn below:

(640,512)

(440,512)

Sectors
A sector isafilled shape enclosed by two straight radii and the arc of acircle.

136

Segments

Segments

137

Sectors are defined in a similar manner to arcs. For example:

MOVE 640, 512 : REM centre point
MOVE 440, 512 :REM starting point on the circunference
PLOT &B5, 640, 1000 : REM poi nt indi cating angle of sector

Again the sector is taken as going anti-clockwise from the starting point to the finishing
point.

A segment is an area of acircle between the circumference and a chord as shown below:

Segments are defined in exactly the same way as arcs and sectors.

18 Graphic patterns

A\ny of the colours which are available in a given mode may be ‘interwoven’ to give

a tremendous range of colour patterns. When using modes with a limited number
of colours, for example any of the four-colour modes, this feature may be used to extend
the colours available, since combining similar colours produces further shades which
look like pure colours. Alternatively, contrasting colours may be used to give checks,
wavy lines, and so on.

Default patterns

Default patterns are set up for you as follows:

M ode(s) Pattern Colour
0 1 Dark grey
2 Grey
3 Light grey
4 Hatching
4,25 1 Dark grey
2 Grey
3 Light grey
4 Hatching
1,5,8,26 1 Red-orange
2 Orange
3 Yellow-orange
4 Cream
2,9,12,27 1 Orange
2 Pink
3 Yellow-green
4 Cream
13,15,28 1 White-grey stripes
2 Black-grey stripes
3 Green-black stripes
4 Pink-white stripes

138

Plotting using pattern fills

To use these patterns you issue a GCOL with a plot action which depends on the pattern
desired. In general, to use pattern n, the GCOL command should be

GCAL n*16+acti on, col

where act i onisthe plotting action you want to use with the pattern (for example O for
store, 1 for OR etc, as described earlier), and col is0if you want to set the foreground
colour as a pattern or 128 for a background pattern. The parameter nisin therange 1to
4 for the normal patterns, or 5 for alarge pattern which is formed by placing patterns 1
to 4 next to each other.

Plotting using pattern fills

139

All the shapes which have been described above can be plotted using these colour
patterns. A pattern may be selected using GCOL. The first parameter to GCOL affects
the plotting action as was seen earlier in the chapter entitled Screen modes. Patterns can
be used in future plots by using values in the following ranges:

16-31 Pattern1
32-47 Pattern 2
48-63 Pattern 3
64-79 Pattern 4

Try the following:

10 MODE 9

20 GCAL 16,0

30 MOVE 100, 100

40 MOVE 800, 800

50 PLOT &55, 700, 200

or

10 MODE 1

20 GCAL 32,0

30 MOVE 640, 512

40 PLOT &9D, 740, 512

Itis possibleto plot lines using these colour patternsin asimilar manner, but the effects
may be rather strange. Consider, for example, aline drawn at 45 degreesin mode one. If
the pattern being used were alternate black and white pixels, then this line would be

drawn either in al white or al black, the latter not being visible on a black background.

Graphic patterns

Defining your own patterns
You may define your own colour patterns using VDU commands as follows:
VDU 23, 2, n1, n2, n3, n4, n5, n6, n7, n8 definesGCOL 16, 0 i.e. pattern 1
VDU 23, 3, n1, n2, n3, n4, n5, n6, n7, n8 definesGCOL 32, 0 i.e. pattern 2
VDU 23, 4, n1, n2, n3, n4, n5, n6, n7, n8 definesGCOL 48, 0 i.e. pattern 3
VDU 23,5, n1, n2, n3, n4, n5, n6, n7, n8 definesGCOL 64, 0 i.e. pattern 4

The pattern produced by a set of parameters depends upon which pattern mode is being
used. There are two modes available, one where the parameters are interpreted in the
same manner ason a BBC Master 128 and another simpler method used by this machine
only. The default isthe BBC Master 128 mode. To change to native mode type

VDU 23, 17, 4, 1]
To revert back again to the Master mode type
VDU 23, 17, 4|

Note: the | character denotes a floating point indirection operator. See the chapter
entitled Accessing memory locations on page 166 for more information.

The pattern fill works with blocks of pixels. The size of these blocks depends on the
number of colours available in the mode:

Colours Horizontal pixels Vertical pixels
2 8 8
4 4 8

16 2 8

256 1 8

In all cases, each pixel may be assigned a colour independently of the others. Each
parameter of the VDU command corresponds to arow in the pixel block. The first
parameter contains the val ue of the top row, the second the value of the second row, and
so on. The way the value of the parameter is interpreted depends on the mode being
used.

140

Native mode patterns

Native mode patterns

In native mode the bits of the parameter are used in a straightforward manner to give the
colour of the pixels.

Two-colour modes

Each bit of the parameter is assigned to a pixel, the least significant bit applying to the
pixel on the left, i.e. the pixels appear on the screen in the opposite order to which the
bits are written down on paper. For example, to set arow of the pattern as follows:

black white white white black black black white
%0 %1 %1 %1 %0 %0 %0 %1

the value required is 142 (%10001110).

Four-colour modes
Each pair of bits of the parameter is assigned to a pixel, the least significant pair
applying to the pixel on the left. For example, to set arow of the pattern as follows:

yellow red white yellow
%10 %01 %11 %10

the value required is 182 (%10110110).

16-colour modes
Each set of four bits of the parameter is assigned to a pixel, the least significant set
applying to the pixel on the left. For example, to set arow of the pattern as follows:

green white
%0010 90111

the value required is 114 (%01110010).

256-colour modes

The vaue of the parameter defines the colour assigned to the pixel directly. Patternsin
these cases are more complex since they involve interleaving the bits from the col our to
obtain the parameter value.

141

Graphic patterns

BBC Master 128 mode patterns

In BBC Master 128 mode, the bits of the parameter are used in the following manner to
give the colour of the pixels:

Two-colour modes

Thisisthe easiest case to understand. Each pixel in the block corresponds to one bit of
the parameter, the least significant bit applying to the pixel on the right, so pixels on the
screen appear in the same order asthe bits are written down on paper. For example, to set
arow of the pattern as follows:

black white white white black black black white
%0 %1 %1 %1 %0 %0 %0 %1

the value required is 113 (%01110001).

Defining a pattern in atwo-colour mode is similar to setting up a user-defined character.

Four-colour modes

In four-colour modes each colour is defined using two bits as follows:

yellow (%10) red (%01) white (%11) yellow (%10)
bit 7 6 5 4 3 2 1 0
1 0 10 (yellow)
0 1 01 (red)
1 1 11 (white)
1 0 10 (yellow)

The value required is 182 (%10110110).

16-colour modes

In 16-colour modes the situation is different again. There are just two pixelsin arow,
four bits of the parameter being used to hold the value of each colour. However, it is not
the case that the left-most four bits correspond to thefirst colour and the right-most four
bits to the other. Instead, the bits of each are interleaved, as shown:

142

Giant patterns

Giant patterns

Simple patterns

143

green (%0010) white (%60111)

bit 7 6 5 4 3 2 1 0
0 0 1 0 0010 (green)
1 1 1 0111 (white)

\00011101\

and the value required is 29 (%00011101).
To get the colours the other way around different numbers are required:
white (%0111) green (%0010)

bit 7 6 5 4 3 2 1 0
0 1 1 1 0111 (white)
1 0 0010 (green)

\00101110\

and the value required is 46 (%00101110).
Thus a cross-hatch pattern of alternate white and green pixels can be defined:
VDU 23, 2, 29, 46, 29, 46, 29, 46, 29, 46

Giant patterns can be set up which take al four of the separate patterns and place them
side by side, giving an overall pixel size as shown below:

Colours Horizontal pixels Vertical pixels
2 32 8
4 16 8
16 8 8
256 4 8

To produce agiant patternin thisway, the first parameter given to GCOL should beinthe
range 80 to 95.

Often the most effective way of using the pattern fillsisfor simple cross-hatch patterns.
If you want to use this sort of colour pattern, asimpler way of definingitisavailable. In
this method, just asmall block of eight pixelsis defined which is used to form the
normal-sized block.

Graphic patterns

The eight pixel coloursin the following diagram are set up using
VDU 23, 2, n1, n2, n3, n4, n5, n6, n7, n8

where n1 to n8 correspond to the actual colours to be used.

1 2 1 2
3 4 3 4
5 6 5 6
7 8 7 8
16-colour modes Four-colour modes

The numbers are given in the following order:

Double pixels

o~ N

~N 0w |
~N O W |-
w0 o

Mode 4 Mode 8

Flood-fills

This section is concerned with how to fill the inside of any closed region, however
awkward the shape. The method used is flood-filling; with this you can start off at any
point within the boundaries of the shape. The whole shape is then filled at once.

Note that flood-filling is not compatible with BASIC programs written under the
window manager environment (described in the section entitled Window managed
programs on page 13).

144

Copying and moving

Flood to non-background

This can be used on shapes which arein the current background colour and bordered by
non-background colours. The shape s filled with the current foreground colour.

To use this flood-fill method, type, for example:
FILL 640,512

This starts filling from the point (640,512): the middle of the screen. If this pointisin a
non-background colour then it returns immediately. Otherwiseit fillsin all directions
until it reaches either a non-background colour or the edge of the screen.

Flood-fills may be performed using either pure colours or colour patterns. Note that if
you wish to colour in ashape it must be totally enclosed by a solid border. If thereisa
gap anywhere then the colour ‘leaks’ out into other regions.

Flood until foreground

Whereas the previous flood-fill filled a shape currently in the background colour, this
one fills a shape currently in any colour except the present foreground one, with the
present foreground colour. This is performed IRL®T command with plot codes &88
to &8F.

For example:
PLOT &8D, 640, 512

Flood-filling will only succeed when the region being filled does not already contain any
pixels in the colour being used. For example, if you are attempting a flood to
non-background when the background colour is black, you should not try to flood in
black or in a pattern which contains black pixels.

Copying and moving

145

Using RECTANGLE.. TO and RECTANGLE FILL.. TO, you can pick up a
rectangular area of the screen and either make a copy of it elsewhere on the screen or
move it toanother position, replacing it with a block of the background colour.

For example:
RECTANGLE FI LL 400, 600, 60, 80 TO 700, 580

This marks out the source rectangle as having one corner at co-ordinates (400,600), a
width of 60 and a height of 80. It then moves this rectangular area so that the bottom left
of it is at the co-ordinates (700,580). The old area is replaced by background.

The new position can overlap with the rectangular area, as in the example above, and the
expected result is still obtained.

Graphic patterns

The rectangle move and copy commands may also be expressed in terms of PLOT
codes. Therelevant range of codesis & B8 to & BF: first move to two points which
denote the bottom left and top right of the rectangle to be copied or moved; then plot,
using one of the range of codes described above, to the bottom left corner of the
destination rectangle. The meanings of the plot codes are as follows:

&B8 Move relative (no copy/move operation)
&B9 Reldtive rectangle move

&BA Relative rectangle copy

&BB Relative rectangle copy

&BC Move absolute (no copy/move operation)
&BD Absolute rectangle move

&BE Absolute rectangle copy

&BF Absolute rectangle copy

The rectangle move operations erase the source rectangle, whereas the copy operations
leaveitintact. So, the RECTANGLE FILL ... TO example above could aso be
expressed as:

MOVE 400, 600
MOVE BY 60, 80
PLOT &BD, 700, 580

The graphics used by Draw use the Draw module. This is outside the scope of this
manual, but is described in the Programmer’s Reference Manual

146

Copying and moving

147

19

Text viewports

Viewports

he operating system allowsthe programmer to set up special rectangular areas of the
screen, called viewports, in order to restrict where text or graphics can appear on the
screen.

Text viewports provide automatic scrolling of text written into the viewport area, and so
are also referred to as ‘scrolling viewports’'.

Graphics viewports restrict the area affected by graphics operations, so that, for
example, lines are clipped to lie within the viewport area. Graphics viewports are
therefore also referred to as ‘clipping viewports’.

Note: the text and graphics viewports described here are supported directly by the VDU
drivers, and are quite distinct from the bordered, moveable windows used by the
window manager software, which uses graphics viewports as a stepping stone to greater
functionality (for more details see the section entitdddow managed programs on

page 13).

Normally, text may appear anywhere on the screen. However, you can define a text
viewport, which allows the text to appear only inside the viewport. To set up a text
viewport, use th&DU 28 command as follows:

VDU 28, [eft, bottomright, top

wherel eft, bot t omis the bottom lefthand and ght, t op the top righthand
position inside the viewport given in text coordinates:

T

top

L bottom

Text

<« left—— .
Viewport

right

148

Text viewports

Nothing outside the text viewport is affected by text statements, such as CLSto clear the
text screen, or screen scrolling. Notethat TAB(X, Y) positionsthetext cursor relativeto
the position of the top left of the current text viewport. The following program
demonstrates how text viewports behave:

10 MODE 1

20 REM Set up a text viewport 6 characters square
30 VDU 28,5, 10, 10,5

40 REM Change the background col our to colour 1 (red)
50 COLOUR 129

60 REM Cl ear the text screen to show where it is
70 CLS

80 REM Denonstrate scrolling

90 FOR N%= 1 TO 20

100 PRI NT N%

110 NEXT N%

120 REM Show position of character (2,3)

130 PRINT TAB(2,3);"*"

140 END

To revert back to having the whole screen as the text viewport type
VDU 26

The precise actions of the VDU 26 command are as follows:

I Restore text viewport to the whole screen

I Restore graphics viewport to the whole screen

I Homethe text cursor

I Restore graphic origin to bottom left of screen

I Home graphics cursor to (0,0).

149

Graphics viewports

Viewports

Just astext may have atext viewport defined, so a graphics viewport may be set up using

VDU 24, [eft;bottomright;top;

where (/ ef t ,bot t om)and (ri ght ,t op) arethe coordinates of the lower lefthand and
upper righthand pixels inside the viewport. Be sure to use semi-colons as indicated, not
commeas.

right

Graphics
Viewport
left

T top
bottom

|

Nothing outside the graphics viewport is affected by graphics commands, such as CLG
to clear the graphics screen. When agraphics viewport is set up, the graphicsorigin (0,0)
is unaltered.

The following program demonstrates how graphics viewports behave:

10
20
30
40
50
60
70
80
90
100

MCDE 12

REM Set up a graphics viewport,a quarter of the screen size
VDU 24, 320; 256; 960; 768;

REM Change t he background col our to colour 1 (red)

GCOL 129

REM Cl ear the graphics viewport

CLG

REM Show position of 0,0

Cl RCLE 0, 0, 600

END

To revert back to having the whole screen as the graphics viewport type
VDU 26

150

Graphics viewports

151

20 Sprites

spriteisjust a graphic shape made up of an array of pixels. You can create and
manipul ate sprites using Paint. This is a general-purpose painting program whose
output happens to be stored in a sprite. It is fully described in the
RISC OS 3 Applications Guide.

Having created one or more sprites in a spritefile (using Paint), you can then:
I load thisfile;
I manipulate and plot one or more sprites fromit.

For afull description of how to load, manipulate and plot sprites see the Sprites chapter
of the Programmer’s Reference Manual.

Loading a user sprite

In the program fragment below the function FNload_sprites takes the name of a sprite
file as a parameter and loads sprites from thisfile into a user sprite area:

60 DEF FNl oad_sprites(sprite_file$)

70 LOCAL length% area_ptr%

80 REM Fi nd size of sprite file

90 SYS "Cs File",13,sprite_file$ TO,,,,length%
100 REM Reserve nmenory for user sprite area

110 REM Si ze of area should be size of file + 4 bytes for length
120 DI M area_ptr% | engt h%+4-1

130 REM I nitialise area with size...

140 area_ptr% 0 = | ength%4

150 REM ...and with offset to first sprite

160 area_ptr%d4 = 16

170 REM Finish initialising with this sprite op

180 SYS "OS_SpriteQp", 9+256, area_ptr%

190 REM Load sprites

200 SYS "OS_SpriteOp", 10+256, area_ptr%sprite_file$

210 REM Return pointer to user sprite area
220 = area_ptr%

The function FNIoad_sprites (defined above) calls OS_SpriteOp to initialise a sprite
user area and load the specified sprite fileinto it. OS_SpriteOp is the SWI which
controls the sprite system (SWI stands for SoftWare I nterrupt, and is one of the ARM’s

152

Plotting a user sprite

built-in instructions). Thefirst parameter this SWI takes is a number between 1 and 62
specifying the particular action to be taken. Adding 256 to this number indicates that it
isauser sprite. These actionsinclude:

OS SpriteOp 9+256 initialiseasprite area

OS SpriteOp 10+ 256 load sprite definitions from a spritefile into a sprite area
OS SpriteOp 34+256 plot asprite at the coordinates supplied

Plotting a user sprite

153

The following program calls the function FNIoad_spritesto load aspritefile and return a
pointer to the control block of the user sprite area. It then calls OS_SpriteOp 34+256 (i.e.
290) to plot a sprite from this spritefile on the screen at coordinates (200,300), using a
plot action of O:

10 REM Load spritefile from R SC OS "Applications 1" disc

20 sprite_area% = FN oad_sprites("adfs:: Appl. $.!System ! Sprites")
30 REM plot sprite to screen at (200, 300)

40 SYS "OS_SpriteQp", 34+256, sprite_area% "!systeni, 200, 300, 0

50 END

The parameters that OS_SpriteOp 290 takes are:

pointer to control block of sprite area

sprite name

X coordinate

y coordinate

plot action:

Value Action

0 Overwrite colour on screen
1 OR with colour on screen
2 AND with colour on screen
3 exclusive OR with colour on screen
4 Invert colour on screen
5 L eave colour on screen unchanged
6 AND with colour on screen with NOT of sprite pixel colour
7 OR with colour on screen with NOT of sprite pixel colour
&08 If set, then use the mask, otherwise don't
&10 ECF pattern 1
&20 ECF pattern 2
&30 ECF pattern 3
&40 ECF pattern 4
&50 Giant ECF pattern (patterns 1 - 4 placed side by side)

21 Teletext mode

he teletext mode, mode 7, is unique in the way it displays text and graphics.

Commands such as COLOUR, GCOL, MOV E and DRAW do not work in this
mode (or in the Wimp). Instead colourful displays are produced using teletext control
codes.

Mode 7 is compatible with the teletext pages broadcast by CEEFAX and Oracle. You
can produce your own teletext displays using the limited but effective graphics which
are available.

Coloured text
Type in the following program and run it:

10 MODE 7
20 PRINT"THI S"; CHR$(129); "denonstrates"; CHR$(130); "t he"; CHR$(131); "use"
30 PRI NT CHR$(132);"of"; CHR$(133);"control"; CHR$(134); "codes"

The characters 129, etc, which are printed using CHR$(129) are the control codes.
Although the control codes are invisible they till take up a character position, so the
words are separated by a space.

Each control code affects the way in which the remaining characters on that particular
line are displayed. For example, printing CHR$(129) makes the computer display the
text in red. Thefull list of colours and their associated control codes is given overleaf:

Code Text colour

129 Red

130 Green
131 Yellow
132 Blue
133 Magenta
134 Cyan

135 White (default)

Every line starts off with the text in white. So, if you want several rows of text to appear
inred, for example, you must start each of these rows with CHR$(129).

154

Making text flash

Making text flash

Text can be made to flash. For example:

10 MODE 7 20
PRI NT CHR$(136) " Fl ash"; CHR$(137) " St eady" ; CHR$(136); " Fl ash"

Flashing coloured text can be produced by using two control codes:

10 MODE 7
20 PRI NT "Steady white"; CHR$(129); CHR$(136)"Fl ashing red"

Since each control code occupies a character position, the wordswhi t e and
FI ashi ng are separated by two spaces on the screen.

Double-height text

Double-height text can be produced as follows:

10 MODE 7
20 PRI NT CHR$(141)"Doubl e hei ght"
30 PRI NT CHR$(141)"Doubl e hei ght"

To obtain double-height text, the same text must be printed on two successive lines
beginning with CHR$(141). If the text is only printed once, only the top half of the
lettersis displayed.

To revert to single-height graphics on the same line, the control code is 140. For
example:

10 MXDE 7 20
PRI NT CHR$(141) "Doubl e Hei ght"; CHR$(140); "Single Height"
30 PRI NT CHR$(141)"Doubl e Height"; CHR$(140); "Single Height"

Changing the background colour

155

Changing the background colour requires two codes:

10 MODE 7
20 PRI NT CHR$(131); CHR$(157)" Hel | 0"

Thefirst codeisfor yellow text. The second tells the computer to use the previous
control code as the background colour. The net effect of the two codes isto give yellow
text on ayellow background as you can see when you run the program above. Hence to
print text visibly on a coloured background, three control codes are required, two to
change the background colour, and a third to change the colour of the text.

Teletext mode

For example:

10 MODE 7
20 PRI NT CHR$(131); CHR$(157); CHR$(132)"Bl ue on yel |l ow'

Teletext graphics

Certain characters, such asthe lower-case letters, may either be printed normally as text
or made to appear as graphics shapes by preceding them with one of the graphics control
codes. These are;

Code Graphics colour

145 Red

146 Green

147 Yellow

148 Blue

149 Magenta

150 Cyan

151 White

156 Set background to black

157 Set background colour to the current foreground colour

Each line of the teletext display starts with the following attributes: white, alpha (i.e.
non-graphics) characters on a black background.

Each graphics shape is based on atwo by three grid:

A B

Itispossible to calculate the codefor any particular graphics shape, since each of the six
cells contributes a particular value to the code as follows:

12
4 | 8
16 | 64

156

Teletext graphics

The base value for the codesis 160, so that they lie in the ranges 160 to 191 and 224 to
255. For example,

hasacodeof 160 + 1 + 8 + 16 = 185 and so may be produced on the screenin red. To do
this, type

PRI NT CHRS$(145) ; CHR$(185)

Outlining blocks of colour

Normally, the blocks of colours are continuous. For example,
PRI NT CHR$(145) ; CHR$(255)

produces a solid block of red. Nevertheless, the graphics can be separated, with athin
black line around al the segments. To see the effect of this, try typing

PRI NT CHRS$(145) ; CHR$(154) ; CHR$(255)

Placing blocks of colour next to each other

157

So far we have seen that each of the teletext control characters appears on the screen as
a space. This meansthat it is not normally possible to have graphics blocks of different
colourstouching each other. They have to be separated by at |east one space to alow for
the graphics colour control codes.

However, if you wish to use different colours next to each other, you can do so by using
some of the more advanced teletext controls. For example, try typing

PRI NT CHR$(145) CHR$(152) CHR$(255) CHR$(158) CHR$(146)
CHR$(147) CHR$(159)

Code 152 concealsthedisplay of all graphics charactersuntil acolour change occurs.
Hence the solid red graphics block is not displayed.

Code 158 holds the graphics. This means that it remembers the previous graphics
character, in this case the solid block, and displays all future graphics
shapes and control codes as the remembered character.

Code 146 first colour change. Asaresult, it reverses the concealing effect of code
152 so that future characters are displayed, and al so selects green graphics.

Code 147

Code 159

Teletext mode

control code displayed as a solid graphics block in the current colour
whichis green. It selects yellow graphics.

control code displayed as asolid graphic block in the current colour which
isyellow. It releases the graphics, i.e. it reverses the effect of any previous
158 codes.

158

Teletext graphics

159

22 Sound

he computer contains a sound synthesizer which enables you to emulate up to eight
different instruments playing at once, giving either mono or stereo sound
production for each instrument.

Activating the sound system

The sound system can be activated or de-activated using the statements SOUND ON and
SOUND OFF.

Selecting sound channels

You can select how many different sound channels you want to use. The default valueis
1, but you can alter this by typing

VO CES n

The maximum number allowed is eight. Any number between one and eight can be
specified, but the number which the computer can handle has to be a power of two, and
so the number you give isrounded up by the computer to either one, two, four or eight.

Allocating a wave-form to each voice

After you have specified the number of voices you require, you will need to allocate a
wave-form to each voice. Thisis done with * CHANNELV OICE, the syntax of whichis:

* CHANNELVO CE channel voi cenane

It isimportant to realise that what istermed the voicein BASIC is called the channel by
RISC OS, while RISC OS refers to the wave-form as the voice.

Since the bell uses channel 1, you can get an idea of how the command works by
entering

* CHANNELVO CE 1 Per cussi on- Snare
and then sounding the bell by typing Ctrl-G.

Asyou will notice, the sound of the bell has changed, since the sound channel has been
allocated a new voice - in this case a percussion snare sound.

160

Setting the stereo position

A full list of the resident voices can be obtained, along with their channel alocations,
using the *VV OICES command. With voice 8 allocated to channel 1, the list appears as
follows:

Name

WaveSynt h- Beep
StringlLi b- Sof t
StringLi b- Pl uck
StringLi b- St eel
StringlLi b-Hard

Per cussi on- Sof t
Per cussi on- Medi um
Per cussi on- Snar e
Per cussi on- Noi se
ANNANANN - Channel Al | ocation Map

5
O
(¢}

1

O©CoOo~NOOOTPh, WNPE

Note that *V OI CES indicates only the mapping of voicesto channels - it does not
specify how many channels have been selected with BASIC’s VOICES command.

Setting the stereo position
For each active channel, the stereo position of the sound can be altered using:
STEREOchan, pos

pos can take any value between —127 (indicating the sound is fully to the left) and +127
(indicating the sound is fully to the right). The default value for each channel is zero
which gives central (mono) production.

Although the range of theos argument in the STEREO keyword is —127 to 127, there
are actually only seven discrete stereo positions. These are:

-127 to —80 Full left

—79 to —48 2/3 left
-47 to -16 1/3 left
-15to +15 Central
+16 to +47 1/3 right
+48 to +79 2/3 right

+80 to +127 Full right

161

Sound

Creating a note

BASIC provides a SOUND statement to create a note on any of the channels. This
requires four parameters which can be summarised as follows:

SCQUND channel , anplitude, pitch, duration],after]

Channel

There are eight different channels, numbered 1 to 8. Each of theseisidentical, except for
the voice assigned to it.

Setting the volume

Pitch

The second parameter anp! i t ude determines how loud anoteisto be played. You set

the amplitude to an integer between 0 and —15. —15 is the loudest, —7 is half-volume and
zero produces silence.

Alternatively, a logarithmic scale can be used, by giving a value between 256 (&100)
and 383 (&17F). A change of 16 represents a doubling or halving of the volume.

The pitch can be controlled in steps of a quarter of a semitone by giving a value between
0 and 255. The lowest note (0) is the A# one octave and two semitones below middle C.
The highest note is the D four octaves and a tone above middle C. A value of 53

produces middle C itself. The following table is a quick reference guide to help you find
the pitch you require:

Note Octave number
1 2 3 4 5 6

A 41 89 137 185 233
At 0 45 93 141 189 237
B 1 49 97 145 193 241
C 5 53 101 149 197 245
C# 9 57 105 153 201 249
D 13 61 109 157 205 253
D# 17 65 113 161 209

E 21 69 117 165 213

F 25 73 121 169 217

F# 29 77 125 173 221

G 33 81 129 177 225

G# 37 85 133 181 229

162

Synchronising the channels

Alternatively, afiner control is available by giving a value between 256 (& 0100) and
32767 (& 7FFF). Each number consists of 15 bits. The left-most three bits control the
octave number. The bottom 12 bits control the fractional part of the octave. This means
that each octaveis split up into 4096 different pitch levels. Middle C hasthe value 16384
(&4000).

Using hexadecimal notation is a particularly useful way of seeing what pitch a given
value defines. Each value in hexadecimal notation comprises four digits. The left-most
one gives the octave number and the right-most the fractional part of the octave. The
following table illustrates this:

Note Octave number

1 2 3 4 5 6 7 8 9
A &0C00 &1C0O0 &2C0O0 &3C0O0 &4C00 &5C00 &6C00 &7C00
A# &0D55 &1D55 &2D55 &3D55 &4D55 &5D55 &6D55 &7D55
B &OEAA &1EAA &2EAA &3EAA &4EAA &S5EAA &6EAA &TEAA
C &1000 &2000 &3000 &4000 &5000 &6000 &7000

C# &0155 &1155 &2155 &3155 &4155 &5155 &6155 &7155
D &02AA &12AA &22AA &32AA &42AA &52AA &B2AA &T2AA
D# &0400 &1400 &2400 &3400 &4400 &5400 &6400 &7400
E &0555 &1555 &2555 &3555 &4555 &5555 &6555 &7555
F &06AA &16AA &26AA &36AA &46AA &56AA &GGAA &T6AA
F# &0800 &1800 &2800 &3800 &4800 &5800 &6800 &7800
G &0955 &1955 &2955 &39AA &49AA &59AA &G6G9AA &T79AA
G# &0AAA &1AAA &2AAA &3AAA &4AAA &5AAA &B6AAA &TAAA

Duration of sound

The fourth SOUND parameter determines the duration of a sound. A value of 0 to 254
specifies the duration in twentieths of a second. For example, a value of 20 causes the
note to sound for one second. A value of 255 causes the note to sound continuously,
stopping only when you press Esc. Val ues between 256 and 32767 also give the duration
in 20ths of a second.

Synchronising the channels

The channels can be synchronised by using the beat counter. The counter increases from
zeroto aset limit, then starts again at zero. Typically, you would use thetimeit takes for
the counter to complete one cycle to represent a ‘bar’ in the music, and afterthe
parameter in the SOUND statement to determine where in the bar the note is sounded.

163

Sound

You can set the value that this counter will count up to by typing

BEATS n

The counter then counts from 0 to n—1 and when it reachesit resets itself to zero.
To find the current beat counter value, type

PRI NT BEATS

Increasing the number of beats increases the time taken before two notes are repeated. It
has no effect on the time interval between the two notes themselves.

Finding the value of the current beat
In addition, the current beat value is found by typing
PRI NT BEAT

Finding the current tempo

The rate at which the beat counter counts depends on the tempo which can be set as
follows:

TEMPOnN

n is a hexadecimal fractional number, in which the three least-significant digits are the
fractional part. A value of &1000 corresponds to a tempo of one tempo beat per
centi-second; doubling the value (&2000) causes the tempo to double (2 tempo beats per
centi-second), halving the value (&800) halves the tempo (to half a beat per
centi-second).

Suppose you are working in 4/4 time, and want to have a resolution of 8 computer beats
per musical beat (i.e. there are 32 computer beats to the bar). Furthermore, suppose you
want the musical tempo to be 125 beats per minute. This is 125*8/60 computer beats per
second, or 125*8/60/100 computer beats per centi second. If you calculate this, you
obtain 0.6666667 computer beats per centi-second. Multiply this by the scaling factor of
&1000 (4096), and you get a TEMPO value of 683. Therefore you would use the
following two commands:

TEMPO 683
BEATS 32

To find the current tempo, type
PRI NT TEMPO

Increasing the tempo decreases both the time taken before two notes are repeated and the
time interval between the two notes.

164

Executing a sound on a beat

Executing a sound on a beat

165

Sounds can be scheduled to execute a given number of beats from the last beat counter
reset by giving the fifth parameter after to the SOUND statement.

The optional after parameter in the SOUND statement specifies the number of beats
which should elapse before the sound is made. The beats are counted from the last time
the beat counter was set to zero (i.e. the start of the bar). If the beat counter is not enabled
(because no BEATS statement has been issued), the beats are counted from the time the
statement was executed.

For example, the listing below repeatedly waits for the start of the bar, then schedules
the sounds to be made after 50 beats and 150 beats respectively. If abar is 200 beats
long, this corresponds to the second and fourth beat of a4/4 time:

10 BEATS 200

15 VA CES 2

20 *CHANNELVO CE 1 1

30 *CHANNELVOI CE 2 1

40 REPEAT

50 REPEAT UNTI L BEAT=0

60 SCUND 1, -15, 100, 5, 50
70 SOQUND 2, -15, 200, 5, 150
80 REPEAT UNTI L BEAT<>0

90 UNTIL FALSE

Having scheduled the sounds, the program waits in another REPEAT loop until the
current beat is not zero. This prevents the sounds from being scheduled more than once
inabar.

Note: Where other things are happening in a program, such as screen updating, it is not
safeto test for BEAT=0, in case the program misses the short period where that wastrue.
It is better to test, for example, for BEAT<10 and treat beat 10 as the ‘start’ of the bar.

Synchronising sounds

If you give —1 as thafter parameter, the sound, instead of being scheduled for a given
number of beats, is synchronised with the last sound that was scheduled. For example,

SCUND 1, - 10, 200, 20, 100
SCOUND 2, - 10, 232, 20, -1

will cause two sounds, an octave apart, to be made 100 beats from the present moment,
assuming that at least two channels are active and have voices assigned.

Note: If you alter the sound system, you should restore it before returning to the desktop,
or running any other programs.

23 Accessing memory locations

I ndividual memory locations can be accessed from BASIC by using four indirection

operators:
Symbol Purpose Number of bytes
? Byte indirection operators 1
! Integer indirection operator 4
| Floating point indirection operator 5(BASICYV)
8 (BASIC VI)
$ String indirection operator 1to 256

These operators can either be used to read the value(s) in one or more memory locations
or to ater the value(s) there. You must be very careful that you only read from or write
to memory locations which you have set aside specially. Using these operators on other
areas of the memory can have undesirable effects.

Reserving a block of memory

You can reserve a block of memory using a special form of the DIM command. For
example:

DIM pointer% 100

Thisreserves ablock of (uninitialised) memory and sets the variable poi nt er %to the
address of the first byte of the block. The bytes are at addresses poi nt er %0 to

poi nt er %100, atotal of 101 bytes. Note that the address assigned to poi nt er %
will always be amultiple of four. This means that consecutive DIMswill not necessarily
allocate contiguous blocks of memory.

Note also that this differs from the usual use of DIM to dimension an array in that the
sizeis not contained in brackets, and the variable cannot be a string.

The *?’ indirection operator
You can set the contents of the first byte of this block of memory to 63 by typing
?poi nter% = 63
To check that this value has been inserted correctly, type
PRI NT ?poi nter %

166

The !’ indirection operator

The ? indirection operator affects only a single byte. Only the least significant byte of
the number is stored. Thus, if you giveit avalue of n, where n > 256, only n AND &FF
will be stored.

For example,

?poi nter% = 356
PRI NT ?poi nter%

produces the result:
100
because 356 AND &FF gives 100.

If you wish to set or examine the contents of the location which is five bytes after
pointer%, you can do this by typing

?(pointer% + 5) = 25
Alternatively, ashorter form is available as follows:
poi nter %5 = 25

The following program prints out the contents of al the memory locations in the
reserved block:

10 DI M bl ock_of _nenory% 100

20 FOR N9 = 0 TO 100

30 PRINT "Contents of ";Nw" are "; bl ock_of nmenory% N
40 NEXT N%

The ‘' indirection operator

BASIC integer variables are stored in four consecutive bytes of memory. The !
operator can be used to access these four bytes. For example, type

DI M poi nt er % 100
I poi nter% = 356
PRI NT ! poi nter%

The least significant byte of the integer is stored in the first memory location, and the
most significant byte in the fourth location. This can be seen in the following example:

10 DI M poi nter% 100

20 !pointer% = &12345678
30 PRI NT ~pointer%0

40 PRI NT ~poi nter @1

50 PRI NT ~poi nter %2

60 PRI NT ~pointer%®?3

167

Accessing memory locations

This prints:

78
56
34
12

The ‘|" indirection operator

Floating point numbers, which are stored in five bytes (in BASIC V) or eight bytes (in
BASIC VI), can be accessed using the unary operator |. For example:

10 DI M poi nter % 100
20 | pointer% = 3.678
30 PRINT | pointer%

Thereisno dyadic form of |. You cannot say, for example, a| 5=1. 23.

Appendix A - Numeric implementation explains how floating point numbersare storedin
BBC BASIC.

The ‘%’ indirection operator

Strings can be placed directly in memory, each character’s ASCII code being stored in
one byte of memory. For example:

DI M poi nt er % 100
$poi nter % = " STRI NG'
PRI NT $poi nt er %

The$ indirection operator places a carriage return (ASCII 13) after the last character of
the string. Thus, the example above uses seven bytes: six for the characters of the word
STRI NG plus one for the terminatirgarriage return. To see this, run the following
program:

10 DI M space% 10

20 REM set all bytes to zero
30 FOR N = 0 TO 10

40 space%’N% = 0

50 NEXT N%

60 REM Store the string

70 $space% = " STRI NG'

80 REM Print out the bytes
90 FOR %= 0 TO 10

100 PRI NT space%®?N% " "; CHR$(space%? NN
110 NEXT N%

168

The ‘$’ indirection operator

Aswith |, thereis no dyadic form of $. For example, although you may use
$(string+1),theformstring$1lisnot alowed.

169

24

Error handling and debugging

y default, when the BASIC interpreter finds an error it halts execution of the
program and prints an error message on the screen. Most errors are generated by
incorrect programming, such as using a variable which has not had avalue assigned to it.
You haveto correct this kind of error to make the program work. However, even if the
syntax of the program is correct, errors can occur whilst it is being executed, because it
cannot cope with the data it is given.

For example:

10 REPEAT

20 | NPUT " Nunber", N
30 L = LO N

40 PRINT "LOG of ";N' is ";L
50 UNTIL FALSE

This program takes a number from the keyboard and prints the logarithm of that number.
If you type in a negative number, however, the program gives the message:

Logarithmrange at line 30

The same thing happens if you type 0, or a character such as W, or aword such as
TWELVE.

Trapping an error

You may decide that you would like to trap such an error and print a message to tell the
user what he or she has done wrong instead of having the program end abruptly. You can
do this using the ON ERROR statement.

170

For exanpl e:
5 ON ERROR PROCer r or

10 REPEAT
20 I NPUT " Nunber", N
30 L = LOE N

40 PRINT "LOG of ";N' is ";L
50 UNTIL FALSE
60 END

100 DEFPROCerr or

110 I F ERR=22 THEN

120 PRI NT "The nunmber nust be greater than 0"
130 ELSE REPORT

140 PRINT " at line ";ERL

150 END

160 ENDI F

170 ENDPROC

The ON ERROR statement can be followed by a series of statements given on the same
line. In many cases, it is more convenient to follow it with acall to an error handling
procedure, as in the example above, which can then be as complex as you like.

When an error occurs, BASIC passes control to the first statement on the ON ERROR

line, as if it jumped there using a GOTO. It will ‘forget’ about any loops or procedures
that were active when the error occurred, as if the program had been re-started. Of
course, the values of all the variables and so on will still be intact.

Each error has an error number associated with it. When a particular error occurs, its
number is placed in a variable called ERR (these humbers are guaranteed to remain the
same). A full list of error numbers is givenAppendix C - Error messages.

In the example above, the error handling procedure tests for error 22 which is the
Logari t hm range error. If it was this error which occurred, it is dealt with
appropriately. If a different error occurred, the program executdRERERT

instruction which prints out the error message and then prints the number of the line
where the error occurred which is given in the funci®h. Then it executes tHeND

to end the execution of the program. Trapping all errors is not necessarily a good idea
since you then would not be able to press Esc, which is treated as an error, to stop the
program.

If a program contains more than one ON ERROR statement, the most recently executed
one is used when an error occurs.

171

Error handling and debugging

Turning off the error handler

Error handling can be turned off, and BASIC'’s default handler restored, at any stage in
the program using the instruction ON ERROR OFF.

Generating errors

External errors

In addition to the error messages that the interpreter itself generates when it discovers a
mistake in the program, you can cause your own errors. This can be useful when, for
example, you find a mistake in the user’s input data and want to notify the user through
your standard error handler. To generate an error, use the statement:

ERRORerrnum errstring

The er r numexpression is a number which will be passed to the error handler via the
ERR function, as usual. Ttex r st r i ng is accessible to the error handler through the
REPORT statement and REPORTS$ function. ERL will be set to the line number at which
the ERROR statement was executed.

If you use 0 as the error number, the error will be a ‘fatal’ one. As with built-in errors
with that number, it cannot be trapped by using ON ERROR.

An exanpl e of the use of ERROR is:

1000 ch=OPENI N(f $)
1010 | F ch=0 THEN ERROR 214,"File '"+f$+"' not found"

If an error occurs in a program, you may wish to leave BASIC altogether and pass the
error back to the program that called BASIC in the first place. You can do this using the
ERROR EXT statement. Its syntax is very similar to ERROR, described above. If you
say:

ERROR EXT 0,"Can’t find template file"

then BASIC will quit and the error message and number will be passed back to the error
handler of the program that called BASIC (e.g. the RISC OS Supervisor prompt or error
box).

BASIC's default error handler uses this form of the ERROR statement if the program
being executed was called from a command of the form

*BASIC -quit filenane

172

Local error handling

(A BASIC program filename typed asa* command will behave like this.) When

BASIC iscalled like this, it loads and executes the program stored in f i | enane, and

then QUITs automatically when the program terminates. In addition, the function QUIT

will return TRUE instead of FALSE, as it usually does. This is used in BASIC's default
error handler, which reads as follows:

TRACE OFF
IF QU T THEN
ERROR EXT ERR, REPORTS$
ELSE
RESTORE
'(H MEM 4) =@ : REM save current @b
@68&900 : REM print line nunbers as integers
REPORT
IF ERL THEN PRINT " at line "ERL ELSE PRI NT
@ (HHMEM 4) : REMrestore @6
END
ENDI F

Local error handling

When an error occurs, the ON ERROR command can be used to deal with it. BASIC,
however, forgets all about what it was doing at the time the error happened. For
example, if it was in the middle of a FOR NEXT loop or executing a procedure, it is

not possible to jump back to the place the error occurred and carry on as though nothing
had happened.

Trapping an error; procedures & functions

173

The ON ERROR LOCAL command can be used to get around this problem. This
command traps errors which occur inside an individual procedure or function and then
continues executing within the procedure or function rather than jumping back to the top
level. For example:

10 PROCcal cul at e(100)

20 END
100 DEFPROCcal cul at e(A)
110 LOCAL |

120 LOCAL ERROR

130 FOR | = -15 TO 15

140 ON ERROR LOCAL PRINT"Infinite Result":NEXT |: ENDPROC
150 PRINT A/ |

160 NEXT |

180 ENDPROC

Error handling and debugging

Local error handlers can be used in any loops, not just inside procedures and functions.

Restoring the previous error handler

Normally, when one ON ERROR or ON ERROR LOCAL statement is used, all
previous ON ERROR statements are forgotten about. It is possible, however, to use one
error handler and then restore the previous one. To do this, use the instruction LOCAL
ERROR to store the old error handler, and RESTORE ERROR to activate it again.

For example:

1 ON ERROR PRINT "Error "; REPORTS; : END
10 PROCcal cul at e(100)

15 this line will give an error !!!
20 END

100 DEFPROCcal cul at e(A)

110 LOCAL |

120 LOCAL ERROR

130 FOR I = -15 TO 15

140 ON ERROR LOCAL PRI NT"Infinite Result":NEXT |: ENDPROC
150 PRINT A/ 1

160 NEXT |

170 RESTORE ERROR

180 ENDPRCC

This shows that the local error handler isin force during the procedure, but that the
original one set up by thefirst line of the program is restored when the PROC has
finished.

Strictly speaking, the RESTORE ERROR is not required here because it is done
automatically when the ENDPROC is reached. RESTORE ERROR is also executed
automatically at the end of a user-defined function. However, if you set up alocal error
handler in aloop at the top level, then you would need to use it explicitly.

For example:

100 LOCAL ERROR

110 WH LE ...

120 ON ERRCR LOCAL ...
130 C

140 ENDWH LE

150 RESTORE ERROR

160 ...

174

Debugging

Debugging

A program may contain errors which cause it to behave differently from the way you
intended. In these circumstances, you may wish to watch more closely how the program
is being executed.

Stopping execution of the program

One option you have availableisto place a STOP statement at a particular point in the
program. When this line is reached, execution of the program stops and you can then
investigate the values assigned to any of its variables using the PRINT statement or
LVAR command.

Tracing the path through the program

Another option isto use the TRACE facility. The standard trace prints the BASIC line
numbersin the order these lines are executed, thus showing the path being taken through
the program. This can be invoked by typing

TRACE ON

To trace only those lines with aline number below 1000, for example, type
TRACE 1000

Alternatively you may trace procedures and functions only as follows:
TRACE PRCC

You can also trace both at once if you wish by typing
TRACE 1000 : TRACE PROC

Tracing can be performed in single-step mode where the computer stops after each line
or procedure call and waitsfor akey to be pressed before continuing. Single-step tracing
can be invoked by typing

TRACE STEP ON

to stop after every line traced, or
TRACE STEP n

totrace al lines below n and stop after each one, or
TRACE STEP PROC

to stop after every procedure call.

Instead of having TRA CE output displayed on the screen, you can send it to afile. To do
this, type

TRACE TO fil enane

This means that you have a permanent record of the path taken through your program.

175

Error handling and debugging

Any TRACE option affects all programs which are subsequently run until tracing is
turned off by

TRACE OFF
or until an error occurs.

Because TRACE is a statement, you can also use it from within a program. Thusif you
know that a program is going wrong within a particular procedure, you could insert a
TRACE ON statement at the start of the procedure, and a TRACE OFF just before the
ENDPROC. That way, trace information will only be produced while the procedureis
executing.

176

Debugging

177

25

VDU control

he Visual Display Unit (VDU) driver is a part of the operating system which
provides a set of routines used to display all text and graphical output. Any bytes
sent to the VDU driver are treated either as charactersto be displayed or as VDU
commands: instructions which tell the driver to perform a specific function. Their
interpretation depends on their ASCII values as follows:

ASCII value I nter pretation

0-31 VDU commands

32-126 Characters to be displayed

127 Delete

128-159 Characters to be displayed / teletext control codes
160-255 International characters to be displayed

The nearest equivalent to the statement VDU X is PRINT CHR$(X); with the exception
that VDU ignores the value of WIDTH and does not affect COUNT.

In addition, the VDU commands can be given from the keyboard by holding down Citrl
and one further key as shown in the table below. For example, to give the command
VDU 0, you would press Ctrl-@. Some VDU commands require extra data to be sent.
The number of bytes extrais also given in the table.

VDU Code Ctrl plus Extrabytes Meaning

0 200 @ 0 Do nothing

1 A 1 Send next character to printer only
2 B 0 Enable printer

3 C 0 Disable printer

4 D 0 Write text at text cursor

5 E 0 Write text at graphics cursor

6 F 0 Enable VDU driver

7 G 0 Generate bell sound

8 H 0 Move cursor back one character

9 I 0 Move cursor on one space

10 J 0 Move cursor down oneline

1 K 0 Move cursor up oneline

12 L 0 Clear text viewport

13 M 0 Move cursor to start of current line
14 N 0 Turn on page mode

15 0] 0 Turn off page mode

178

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Clear graphics viewport
Define text colour

Define graphics colour
Definelogical colour
Restore default logical colours
Disable VDU drivers
Select screen mode
Multi-purpose command
Define graphics viewport
PLOT

Restore default viewports
Does nothing

Define text viewport
Define graphics origin
Home text cursor

Move text cursor

or”
or

'O T NXKXS<CHODTOT

NORMPMPODOUITOORFRLROOUINEFO

Inthe VDU commands described below, note the following three points:

VDU 0

Expressions followed by a semi-colon are sent as two bytes (low byte first) to the
operating system VDU drivers.

Expressions followed by a comma (or nothing) are sent to the VDU drivers as one
byte, taken from the least significant byte of the expression.

The vertical bar | means, 0, 0, 0, 0, 0, O, 0, 0, 0, and so sends the expression
beforeit as abyte followed by nine zero bytes. Since the maximum number of
parameters required by any of the VDU statementsis nine, the vertical bar ensures
that sufficient parameters have been sent for any particular call. Any surplus ones
areirrelevant, since VDU 0 does nothing.

VDU 0 does nothing.

VDU 1

VDU 1 sendsthe next character to the printer only, if the printer has been enabled (with
VDU 2 for example).

VDU 2

VDU 2 causes all subsequent printable characters, and certain control characters, to be
sent to the printer as well as to the screen (subject to FX3 mask etc).

179

VDU control

VDU 3

VDU 3 cancelsthe effects of VDU 2 so that all subsequent printable characters are sent
to the screen only.

VDU 4

VDU 4 causes all subsequent printable charactersto be printed at the current text cursor
position using the current text foreground colour. Cursor control characters (e.g. carriage
return and line feed) affect the text cursor and not the graphics cursor.

VDU 5

VDU 5 linksthe text and graphics cursors and causes al subsequent printable characters
to be printed at the current graphics cursor position using the current graphics
foreground colour and action. Cursor control characters (e.g. carriage return and line
feed) affect the graphics cursor and not the text cursor.

VDU 6

VDU 6 restores the functions of the VDU driver after it has been disabled (using VDU
21). Hence, this command causes all subsequent printable characters to be sent to the
screen.

VDU 7
VDU 7 generates the bell sound.

VDU 8

VDU 8 causes either the text cursor (by default or after aVDU 4 command) or the
graphics cursor (after aVDU 5 command) to be moved back one character position. It
does not cause the last character to be deleted. Note that during command input, Ctrl-H
acts as the Delete key, so the last character will be deleted.

VDU 9

VDU 9 causes either the text cursor (by default or after aVDU 4 command) or the
graphics cursor (after aVVDU 5 command) to be moved on one character position.

VDU 10

VDU 10 causes either the text cursor (by default or after aVVDU 4 command) or the
graphics cursor (after aVDU 5 command) to be moved on oneline.

180

181

VDU 11

VDU 11 causes either the text cursor (by default or after aVVDU 4 command) or the
graphics cursor (after aVDU 5 command) to be moved back one line.

VDU 12

VDU 12 clears either the current text viewport (by default or after a VDU 4 command)
or the current graphics viewport (after aVVDU 5 command) to the current text or
graphics background colour respectively. In addition the text or graphics cursor is
moved to its home position (see VDU 30).

VDU 13

VDU 13 causesthe text cursor (by default or after aVVDU 4 command) or the graphics
cursor (after aVVDU 5 command) to be moved to the start of the current line.

VDU 14

VDU 14 enters paged mode, and so makes the screen display wait for Shift or Scroll
Lock (twice) to be pressed before displaying the next page.

VDU 15
VDU 15 cancels the effect of VDU 14 so that scrolling is unrestricted.

VDU 16

VDU 16 clears the current graphics viewport to the current graphics background col our
using the graphics and action. It does not affect the position of the graphics cursor.

VDU 17,n

VDU 17 sets either the text foreground (n<128) or background (n>=128) coloursto the
valuen. Itisequivalent to COLOUR n.

VDU 17,k,c

VDU 18 isused to define either the graphics foreground or background colour and the
way in which it isto be applied to the screen. The BASIC equivalent is GCOL k,c.

VDU 19,1,p,r,g,b
VDU 19 isused to define the physical colours associated with the logical colour I.

VDU control

If p<=15& p>=0,r, gand b areignored, and one of the standard colour settingsis
used. Thisisequivalent to COLOUR,p.

If p=16, the paletteis set up to contain the levels of red, green and blue dictated by r, g
and b. Thisiseguivalent to COLOUR I,r,g,b.

If p =24, the border is given colour components according to r, g and b.

If p=25, themouselogical colour | is given colour components accordingtor, g and b.
Thisisequivalent to MOUSE COLOUR I,1,g,b.

VDU 20

VDU 20 restores the default palette for the current mode and so cancels the effect of all
VDU 19 commands or their BASIC keyword counterparts. It also sets the default text
and graphics foreground and background colours.

VDU 21

VDU 21 stopsall further text and graphics output to the screen until aVDU 6 command
isreceived.

VDU 21
VDU 22 isused to change mode. It is equivalent to MODE n.
See Appendix G - VDU commands for full details of the modes available.

VDU 23,p1,p2,p3,p4, p5,p6,p7,p8,p9

VDU 23 isamulti-purpose command taking nine parameters, of which the first
identifies aparticular function. Each of the available functionsis described below. Eight
additional parameters are required in each case.

VDU 23,0,n,m|
If n =8, this sets the interlace as follows:
Value Effect
m=0 Toggles the screen interlace state
m=1 Sets the screen interlace state to the current * TV setting
m= &80 Turns the screen interlace off
m=&81 Turns the screen interlace on

182

If n = 10, then m defines the start line for the cursor and its appearance. Thus:

Bits Effect

0-4 define the start line
5-6 define its appearance:

Bit6 Bit5 Meaning
0 0 Steady

0 1 Off
1 0 Fast flash
1 1 Slow flash

If n= 11, then m defines the end line for the cursor.

VDU 23,1,n|

This controls the appearance of the cursor on the screen depending on the value of n.
Thus:

Value Effect

n=0 Stops the cursor appearing (OFF)
n=1 Makes the cursor reappear (ON)
n=2 Makes the cursor steady

n=3 Makes the cursor flash

VDU 23,2 to 5,n1,n2 n3,n4,n5,n6,n7,n8

These define the four colour patterns. Each of the parameters nl to n8 defines one row
of the pattern, n1 being the top row and n8 the bottom row. See the chapter entitled
Graphic patterns on page 138 for more details.

VDU 23,6,n1,n2,n3, n4,n5,n6,n7,n8

This sets the dot-dash line style used by dotted line PLOT commands. Each of the
parameters nl to n8 defines eight elements of the line style, n1 controlling the start and
n8 the end. The bits in each are read from the most significant to the least significant,
zero representing a space and one representing a dot. See the chapter entitled Complex
graphics on page 128 for more details.

VDU 23,7,m,d,z]|

This scrolls the current text screen. The values of m, d and z determine the area to be
scrolled, the direction of scrolling and the amount of scrolling respectively. Thus:

183

Value

33
o
)

N N 0000 o000 o

PO Nyouh WNRFRO

VDU control

Effect

Scroll the current text viewport
Scroll the entire screen

Scroll right
Scroll left
Scroll down
Scroll up

Scroll in the positive X direction
Scroll in the negative X direction
Scroll in the positive Y direction
Scroll in the negative Y direction

Scroll by one character cell
Scroll by one character cell vertically or one byte horizontally

VDU 23,8,t1,t2,x1,y1, x2,y2;0;

This clears ablock of the current text viewport to the text background colour. The
parameterst1 and t2 indicate the base positions rel ating to the start and end of the block
to be cleared respectively. The positions to which the values of t refer are shown below:

Value

— -+ —+
I 1 n
= OO0 O 0 hb~

~ ~ o~
I
o

Position

top left of viewport

top of cursor column
off top right of viewport

left end of cursor line
cursor position
off right of cursor line

bottom left of viewport
bottom of cursor column
off bottom right of viewport

The parameters x1, y1 and x2, y2 are the x and y displacements from the positions
specified by t1 and t2 respectively. They determine the start and end of the block.

VDU 23,9,n|

VDU 23,10,n|

These set the durations for the first and second flashing colours respectively. The
duration is set to n frame periods (1/50th of a second in the standard modes). For
example, VDU 23, 9, 10| setsthe duration of the first flash colour to 10/50 or 1/5 of a
second. An aternative to the VDU command is*FX9 or * FX 10 described in the
appendix * FX commands.

184

185

VDU 23,11]

This setsthe four-colour patternsto their default values. Seethe chapter entitled Graphic
patterns for more details.

VDU 23,12to15,n1,n2, n3,n4,n5,n6,n7,n8

These set up the simple colour patterns. A block of two-by-four pixelsis defined using
the eight parameters. Each pair of parameters corresponds to the colours of the pixelson
agiven row, nl and n2 being the top row and n7 and n8 the bottom row. See the chapter
entitled Graphic patternsfor more details.

This alters the direction of printing on the screen.

Normally when a character has been printed, the cursor moves to the right by one place,
and then to the start of the row below when a character is entered in the righthand

column. This movement, however, can be altered so that, for example, the cursor moves
down one row after each character, and movesto the top of the next column to the right
when the bottom of the screen has been reached. This effect can by produced by typing

VDU 23, 16, 8|
The effect on cursor movement depends on the value n as shown below:
Value Effect

0 Positive X direction isright, positive Y direction is down
2 Positive X direction is |eft, positive Y direction is down
4 Positive X direction isright, positive Y directionisup
6 Positive X direction is left, positive Y directionisup
8 Positive X direction is down, positive Y direction isright
10 Positive X direction is down, positive Y direction is left
12 Positive X direction is up, positive Y direction isright
14 Positive X direction is up, positive Y direction is|left

Altering the direction of cursor movement also affects the way in which the screen
scrolls; so in the example above, when a character has been entered at the bottom
righthand corner, the screen scrollsto the | eft by one column rather than scrolling up by
onerow asit usualy does.

VDU control

The following is the complete list of VDU commands for moving the cursor:

Command M ovement
VDU 8 Moves the cursor one place in the negative X direction
VDU 9 Moves the cursor one place in the positive X direction
VDU 10 Moves the cursor one place in the negative Y direction
VDU 11 Moves the cursor one place in the positive Y direction
VDU 13 Moves the cursor to negative X edge
VDU 30 Moves the cursor to the negative X and Y edges (home)
VDU 31,x,y Moves the cursor to TAB(X,y)
VDU 127 Moves the cursor one place in the negative X direction,
destructively
VDU 23,17,n,m|

If n=0to 3, thiscommand sets the tint to the value m for the text foreground, text
background, graphics foreground and graphics background colours respectively. It is
equivalent to TINT n,m. See the chapter entitled Screen modes on page 110 for more
details.

If n =4, this command chooses which set of default colour patternsisused. m= 0 gives
the Master 128-compatible set; m = 1 gives the native set. See the chapter entitled
Graphic patterns for more details.

If n =5, thiscommand swaps the text foreground and background colours.
If n =6, then the command has the format:
VDU 23,17, x;y;0;0

Thisisused to set the origin of colour patterns. By default, patterns are aligned so that
the top left corner of the pattern coincides with the top left corner of the screen. Using
this call, you can make the top left of the pattern coincide with any pixel on the screen,
given by the coordinates (x,y).

If n =7, then the command has the format:

VDU 23,17, 7, fl ags, dx; dy; 0; 0

The bitsin the flag byte have the following meanings:
Bit Meaning if set

0 Set VDU 4 character size from dx,dy
1 Set VDU 5 character size from dx,dy
2 Set VDU 5 character spacing from dx,dy

The bit 0 option is not implemented at present.

186

If bit 1 isset, then dx and dy give the sizein pixels of characters plotted in VDU 5 mode.
The standard size of 8 by 8, and double height, 8 by 16, are optimised. Other sizes use
the scaled character option of the sprite module and are therefore somewhat slower.

Bit 2 set causes dx and dy to be used to set the amount by which the VDU driver moves
after each VDU 5-mode character has been printed (dx) and the amount to move down

for aline feed (dy). Usualy these would be set to the same values as the character size

(so you would set bit 1 and 2), but they can be set independently to allow, for example,

narrower than usual spacing.

VvDU23,18t024,n1,n2, n3,n4,n5,n6,n7,n8

These are reserved for future expansion.

VDU 23,25,n1,n2,n3, n4,n5,n6,n7,n8

VDU 23, 25 isused for anti-aliased fonts. Use of these callsis now deprecated, and you
should use the SWIs provided by the FontManager module. See the Programmer’s
Reference Manudbr details.

VDU 23,26,h,s,p1,p2, s1,52,0,0

VDU 23,26 is used for anti-aliased fonts. Use of this call is now deprecated, and you
should use the SWis provided by the FontManager module. See the Programmer’s
Reference Manudbr details.

VDU 23,7,m,n|

If m= 0, this command selects the sprite whose name is STR$n. It is equivalent to
*SChoose n.

If m=1, thiscommand defines sprite n to contain the contents of the previously marked
rectangle. It isequivalent to * SGET n.

VDU 23,28to30,n1,n2 n3,n4,n5,n6,n7,n8

These are reserved for use by applications programs.

VDU 23,32to255,n1, n2,n3,n4,n5,n6,n7,n8

These redefine the printable ASCII characters. The bit pattern of each of the parameters
nlto n8correspondsto arow inthe eight-by-eight grid of the character. See the chapter
entitled Outputting texbn page 60 for more details.

187

VDU control

VDU 24,x1;y1;x2;y2

VDU 24 defines a graphics viewport. The four parameters define the |eft, bottom, right
and top boundaries respectively, relative to the current graphics origin.

The parameters may be sent as shown, with semicolons after them. Thisindicates that
the values are each two bytes long. Alternatively, they can be sent as eight one-byte
values separated as usual by commas. Thefirst of each pair contains the low byte for the
boundary; the second contains the high byte.

For example,

VDU 24, 160; 300; 360; 800;

is equivalent to

VDU 24, 160, 0, 44, 1, 104, 1, 32, 3.

See the chapter entitled Viewports on page 148 for more details.

VDU 25,k x;y;
VDU 25 isamulti-purpose graphics plotting command. It is equivalent to PLOT Kk,x,y.
See the chapter entitled Complex graphics on page 128 for more details.

VDU 26

VDU 26 returns the text and graphics viewportsto their default states: full screensize. In
addition, it resets the graphics origin to (0,0), moves the graphics cursor to (0,0), and
moves the text cursor to its home position.

VDU 27
VDU 27 has no effect.

VDU 28,Ix,by,rx,ty

VDU 28 definesatext viewport. The parameters specify the boundary of the viewport;
the left-most column, the bottom row, the right-most column and the top row
respectively. See the chapter entitled Viewports for more details.

VDU 29,x;y;

VDU 29 moves the graphics origin. x and y specify the coordinates of the new position.
Normally the origin is at the bottom left of the screen at (0,0): whenever apositionis
given as an absolute value, for example MOVE 20, 80, the coordinates are taken as
being relative to the graphics origin. This command, therefore, affects al movements of

188

the graphics cursor and all subsequent graphics viewport commands. The position on the
screen of any existing graphics viewport is not affected. This command is equivalent to
ORIGA N x, y.

VDU 30

VDU 30 movesthetext cursor to its home position.

VDU 31,x,y

VDU 31 movesthetext cursor to a specified position on the screen. It is equivalent to
PRI NT TAB(x, y); .

189

26 Editing BASIC files

here are two waysto edit BASIC files depending on which version of RISC OSyou
areusing:

I RISC OS2 provides aBASIC screen editor supplied as a module.
I RISC OS 3 Edit can be used as a BASIC program editor.

Editing BASIC files under RISC OS 3

Under RISC OS 3 Edit can be used as a BASIC program editor. It automatically
converts BASIC programsinto text format for editing, and then converts them back
again when they are saved.

For full details of editing files using Edit see The RISC OS Applications Guide.

Using Edit to write and edit BASIC programs
Edit can convert Text files produced in Edit to tokenised BASIC files.

Writing a new program

To write anew program, click Menu over the Edit icon on theicon bar and from the
Create menu choose BASIC. You can now type your program directly into an Edit
window. There is no need to include line numbers, as Edit will insert them for you when
you save thefile. Press Return at the end of the last line of the program.

Editing an existing program

To use Edit for working on an existing BASIC program, simply drag the program’s icon
from its directory onto the Edit icon on the icon bar.

Icon bar menu

Pressing Menu on the Edit icon bar icon displays a menu containing the Edit options.
Moving to theBASIC Options submenu displays the following options:

I Sriplinenumbers produces a text file with no line numbers. If a reference to a line
is found, an error box will appear asking whether you want to leave the number in.
This option is on by default.

190

Editing BASIC files under RISC OS 3

191

I Linenumber increment setsthe number increment between successive linesin the
program.

Edit
Info Y
Create % Options

iR i Strip line numbers Increnent
it Line nunber_inerenent GIET

Converting to a tokenised file

Converting atext file to atokenised file is usually quite straightforward. If there are no
line numbers, Edit will start at 10 and increment by 10. If line numbers are supplied,
these are used as a basis for any lines without line numbers.

Warnings
If there are line numbers, Edit will not sort them into ascending sequence and the
resulting BASIC program may behave very strangely.

If your code isincomplete, Edit will warn you about the following problems:
I Line number referencetoo large

I Mismatched quotes

I Mismatched brackets.

In all cases Edit will also quote the offending line number. After you have clicked on
OK, the tokenising continues.

Attempts to tokenise a crunched program (e.g. one with the spaces removed) will
generally result in a non-functioning program.

Printing a BASIC program

If you have Edit running, you can print aBASIC program on paper by dragging itsicon
onto a printer driver icon. Edit will perform the conversion to allow the program to be
printed.

Editing BASIC files

Editing BASIC files under RISC OS 2

The BASIC screen editor allows you to move around and change any part of aprogram
currently loaded in the computer.

Entering the editor

The editor is supplied as amodule with the RISC OS 2 Applications suite. Before you
can use it first insert the App2 disc into drive O, then load it by double-clicking itsicon
from the desktop. This only has to be done once, unless you switch the machine off or
press Ctrl-Break. You can also load the editor from the command line, by typing the
following:

*RMLOAD adf s:: 0. $. Mbdul es. Basi cEdi t

To enter the screen editor from BASIC type

EDI T

and press Return.

This command enters the editor with the current BASIC program displayed.
If you have previously been editing the program, and you type

EDT .

the editor tries to re-enter it at the point at which you left it. If you have changed the
program from within BASIC, it may not be possible to maintain the position, in which
case editing starts from the top of the program.

If you wish to enter the editor at a particular point, such asline 100, type
EDI T 100

The editor starts with line 100 displayed at the top of the screen. If line 100 does not
exist, the editor chooses either the next line or the end of the program, whichever comes
first.

You may wish to enter the editor with the first occurrence of a particular piece of text at
the top of the screen. For example:

EDIT three

The editor displaysthe program starting with the first occurrence of the word three at the
top of the screen. If the string cannot be found, the computer ‘beeps’ and editing starts at
the top of the program.

192

Editing BASIC files under RISC OS 2

193

Leaving the editor

If you want to save anything you have done before you leave the BASIC editor, follow
the instructions in the section entitled Saving a program on page 195. When you are
ready to leave the editor and return to BASIC, press Shift-F4.

The BASIC screen

Oncein the editor, your program is displayed with the line numbers at the lefthand side.
If you enter the editor with no program loaded the screen is nearly blank, with just the
number 10 at the top left.

The cursor is at the beginning of the top line on the screen, just to the right of the line
number. Note that the editor automatically puts a line number on the beginning of each
line: thereis no need for you to type them in.

Thestatusline

The status line is at the bottom of the screen, displayed in reversed colours in order to
make it stand out from your program text. It contains various useful pieces of
information such asthe size of your program, its name, and whether it has been modified
since you entered the editor.

The status line displays the following information (if it will fit):

I Program size

I Original /Modi fied indicator

I Program name

I Copy if in cursor copy mode.

In addition, the status line is used for prompts such asRepl ace? (Y/ N) which

appear in the SELECTIVE REPLACE facility. See the section entitled Searching and
replacing on page 200 for details.

Moving the cur sor

The cursor can be moved around using the four arrow keys. Note, however, that you
cannot move the cursor into that area of the screen containing the line numbers. Thisis
because in general you need never be concerned with providing line numbers for your
BASIC statements. As aresult, cursor movement is restricted to the area of the screen
which contains program text.

Changing aline

To change aline, use the cursor keys to position the cursor on the correct line. You can
then delete part or all of the line and type new text in place of the old.

Editing BASIC files

Now, assume that the program looks like this:

10 FOR X = 2 TO 30
20 PRI NT X+X
30 NEXT X

and that it needs to be changed to look like this:

10 FOR X = 2 TO 20
11 PRINT X*X

20 PRI NT X+X

30 NEXT X

To achieve this you must change line 10 and add a new line: line 11.

Position the cursor on the 0 of 30 on line 10, press Delete and type 2. The 30 isreplaced
by 20.

Adding aline

To create anew linein the middle of the program move the cursor to the line above the
place where you want the new line and press Return.

In the example above, move the cursor to line 10 and press Return.
Line 11 is now created.

To compl ete the above program type

PRI NT X* X

The program should now be complete. You may like to experiment with the Return and
cursor keysto create alarger program.

Inserting lines

There are two function keys which, no matter where you are in the program, create a
new line at the top or end of the program and move you there directly. These keys are
Ctrl-F9 (INSERT AT START) and Ctrl-F10 (INSERT AT END).

Deleting text

There are two ways to delete single characters. The Delete key removes the character to
the left of the cursor and moves the characters to the right of the cursor back one space.

To delete the character on which the cursor is placed, hold the Shift key down and press
the Delete key. Delete and Shift-Delete both move the following text back a space, but
Shift-Delete |eaves the cursor in the same position.

To delete all the characters from the cursor position to the end of the line, press the F11
key.

194

Editing BASIC files under RISC OS 2

195

Longlines

If astatement istoo long to fit on one line of the screen, it wraps around to the next line.
To seerthis, try typing more text after one of the linesin the program. Asin aBASIC
program, the length of alineislimited by the BASIC editor to 251 characters.

Saving and loading programs

Saving a program
To save a program which you have created or changed press F3 (SAVE).

A window appears into which you should type the name of the program. Once you are
sure that you have typed the correct name for the program press Return or F12
(EXECUTE) to perform the save operation.

The program name need not be enclosed within quotation marks.

If you wish to save only a portion of a program you may do this by setting limits. See the
section entitled Line command on page 198 for details of how to do this.

Loading a program

You may now wish to load in one of your own programs to experiment with before
moving on to the next section. To do this press F2 (LOAD).

A window appears ready to accept the filename.
Type in the name of the program and press Return or F12 (EXECUTE).

If the current program has been modified but not saved a warning message is given.

Appending a program
You can also join one program onto the end of the current one.

To do this press Shift-F2 (APPEND) and then proceed in the same manner as for
loading.

Seeing other parts of your program

Several commands are provided to help you move quickly around when you are editing
alarge program, such as one which istoo large to be displayed on the screen at one time.

Moving vertically

If you move the cursor to the top screen line and keep pressing the 1 key, previous
statements are brought onto the screen one at atime until you reach the beginning of the
program. Similarly, pressing ¢ from the bottom screen line brings the following
statements onto the screen one at atime until you reach the end of the program.

Editing BASIC files

To move directly to the top of your program, press Ctrl 1 which movesthe cursor to the
first line of the program. Pressing Ctrl | movesto thelast line.

If you press Shift |, the next screenful of your program isdisplayed. In thisway, you can
move quickly around your program from beginning to end. Similarly, if you press
Shift 1, you can see the previous screenful. These functions are duplicated by the

Page Up and Page Down keys.

If you press Ctrl-Shift 1 or Ctrl-Shift | you can moveto thefirst or last statement on the
current screen. In addition, if the cursor starts n characters along a statement, it remains
n characters along. It does not go to the beginning of the statement.

Moving horizontally

Pressing the Shift - and Shift — enables you to move sideways across the screen at
twice the normal speed.

Pressing Ctrl — takes you to the beginning of the current statement and Ctrl - takes
you to the end of the current line. Pressing Ctrl-Shift — takesyou to the beginning of the
next statement. Pressing Ctrl-Shift — takesyou to the beginning of the previous
Statement.

Using two windows

You can split the screen into two windows, which lets you look at two portions of your
program at the same time (thisis called split window mode). To do this, press Ctrl-F4.
This saves you scrolling through the program many times. To place the cursor in the
other window, press Ctrl-F2 (which acts as a toggle between the two windows).

When you want to return to a single window, press Ctrl-F4 again. Note that while you
are using the split window mode, the Copy key will not work.

Renumbering the program

If new lines are created in the middle of a program, the editor automatically adjusts the
numbering where necessary. If this happens in a program containing a GOTO or a
GOSUB to aline number as yet non-existent, then that line number is replaced by the
characters @aaQ)

You may at any time renumber the program yourself by pressing F8 (RENUMBER).
This renumbers the program starting at line 10 with an increment of 10.

196

Editing BASIC files under RISC OS 2

197

Further editing functions

Swapping case

If you have typed in some text in either upper or lower case and you want to change it to
the opposite case, move to the area to be changed and press F10 (SWAP). This converts
one alphabetic character at atime from lower case to upper case and vice versa.

Undoing changesto aline

If you want to abandon any changes you have made to a statement before you have left
it, press Shift-F10 (UNDO). This restores the statement to the way it was before you
made the changes. This only worksif you have not moved the cursor off the line.

Splitting and joining lines

Occasionally, you may want to split one statement into two or more. You can do this by
positioning the cursor on the character which isto be at the start of the new statement
and pressing Shift-F1 (SPLIT). You can only split a statement from somewherein the
middle. Asyou are creating a new statement, this may cause renumbering to take place.

There may also be occasions when you want to join two statements together. To do this,
move the cursor to the first of the two statements and press Ctrl-F1 (JOIN). The editor
automatically puts a colon between the two statements. If the combined length of the
two statements would exceed the maximum space available, the join is not carried out
and an error message is displayed.

Repeating aline

To create an exact copy of any statement immediately after it, move to the statement you
wish to copy and press Shift-F8 (REPEAT). Asin the case of SPLIT, thismay cause
renumbering to be carried out.

Marking a line

Placing the marker line

Asyou move about your program, there may be a statement which you wish to come
back to later on. The editor provides away of marking a statement so that you can go
back to it with asingle key-stroke. To mark a statement, first move to it and press F6
(TOGGLE MARK). Pressing the same key again removes the marker. A full stop
appears on the screen between the line number and the start of the text, indicating that
this statement has been marked. Up to four marks may be set at any time.

Editing BASIC files

Finding a marker

Wherever you are in the program, pressing Shift-F6 (GOTO MARK) brings the marked
statement to the top of the screen and positions the cursor there. If there is no marked
line, pressing GOTO MARK displays an error; pressing Esc then allows you to
continue.

Line command

These are commands which allow you to delete, move and copy either asingleline or a
block of lines. They can be inserted into the lefthand margin and are not executed until
F12 (EXECUTE) is pressed.

For example, to delete a single line, move the cursor onto that statement, hold down the
Ctrl-key and press D. The line number isremoved and replaced by theletter D. To delete
the line from your program, press F12 (EXECUTE). Thelineis removed from the
screen and the cursor positioned on the previous line.

Deleting lines

If thereisablock of lines which you want to delete, move to the first line in the block
and press Ctrl-D twice. The line number disappears and is replaced by the letters DD.
Now moveto the last linein the block and press Ctrl-D twice more. Finaly, press F12
(EXECUTE) to remove this block of lines from your program.

You may wish to delete from the current line to the end of the program. In this case,
press Ctrl-D twice on the current line and then press Ctrl-E. The line number is replaced
by DDE and the block from there to the end of the program can be removed by pressing
F12 (EXECUTE).

Inasimilar way, you can delete from the current line to the top of the program by using
Ctrl-T instead of Ctrl-E and then pressing F12 (EXECUTE).

Ctrl-E and Ctrl-T are examples of destinations and we shall encounter more of these
later.

Moving a block

To move a single statement from its current position to the end of the program, moveto
it and press Ctrl-M followed by Ctrl-E. The line number is replaced by ME and pressing
F12 (EXECUTE) movesthat line to the end of the program.

Ctrl-T can be used likewise to move a statement to the top of a program.

Instead of using Ctrl-T or Ctrl-E to specify the destination as the top or the end of the
program you can specify that the destination is before or after acertain line.

To move text to a position after a particular line, move to the destination and press
Ctrl-A.

198

Editing BASIC files under RISC OS 2

199

Alternatively you can use Ctrl-B to move text to a position before a particular line.

Blocks of lines can be moved as easily asasingle line by putting MM around the block
to be moved, choosing your destination, and pressing F12 (EXECUTE).

Copying lines

Whereas moving text removesit from its original position, copying text leavesthe
origina unchanged and duplicates it elsewhere. The command to copy text is Ctrl-C
instead of Ctrl-M, but otherwise the move and copy commands are the same.

Naturally, for both the move and copy commands the destination must not be within the
block being moved or copied.

Denoting limits

You can limit the effect of certain operations either to oneline or to a block of lines.
These operations are:

I SAVE: Part of aprogram can be saved.
I SEARCH, SEARCH & EDIT: The searchislimited to the line or block.

I SELECTIVE REPLACE, GLOBAL REPLACE: The replacement is limited to the
line or block.

To limit the operation to a single line, move the cursor to that line and press Ctrl-L. To
limit the operation to ablock of lines, press Ctrl-L twice each on the first and last line of
the block.

To limit the operation from a particular line to the top (or end) of the program, move the
cursor to that line and press Ctrl-L Ctrl-L T (or Ctrl-L Ctrl-L E).

When alimit is set up, the functions which take account of it display the limit in their
window.

Justifying text

The editor can indent all or part of a program automatically. To reformat a part of the
program, move to thefirst line of the block you want to justify and press Ctrl-J twice.
Then moveto thelast line of the block and press Ctrl-Jtwice. Pressing F12 (EXECUTE)
justifies the block so that the indentation of each lineisidentical to that of thefirst line.

Removing line commands

To remove aline command, move to the line in question and press Ctrl-R. This deletes
the line command from the screen and replaces the line number. Pressing Ctrl-R on a
line which does not contain any line commands removes all line commands no matter
where they are. You do not, however, have to remove aline command in order to change
it: to replace the old command simply overtype it with a new one.

Editing BASIC files

Ctrl-R can also be used to remove the line marker set by F6 (TOGGLE MARK); but
unlike the line commands, the marker can only be removed when you are on the marked
Statement.

Thingsto notice about line commands

Line commands are not stored as part of your program text but are only held internally
inthe editor. Thereis no need, therefore, to remove line commands or the marker before
saving your program.

Note that copying or moving statements causes renumbering to take place automatically.

Searching and replacing

Search and edit

To search for the first occurrence of a particular piece of text, press F4 (SEARCH &
EDIT). A window appears where you should enter the text to be found. When you have
done this press F12 (EXECUTE) and the search is carried out. The cursor reappears on
the first match within the program.

Search

Asan alternativeto SEARCH & EDIT you can find all occurrences of agiven string and
have them displayed. To do this press F7 (SEARCH) and enter the string which isto be
located. Then press F12 (EXECUTE) to perform the search. Any line on which amatch
isfound is displayed. You may then move up and down the list, choose oneto look at
and pressHome. Thislineisthen placed at thetop of thefull edit screen and you can edit
it.

Global replace

To change one string for another throughout your entire program press F5 (GLOBAL
REPLACE) and enter the text to be changed. You must then enter the new text, and
when you are happy with it press F12 (EXECUTE) to carry out the change.

Selective replace

It is possible to perform a replace operation selectively. To do so press Shift F5
(SELECTIVE REPLACE). You must then enter both the text to be changed and the new
text. Press F12 (EXECUTE) to start the search. Each match is displayed and you are
prompted for either Y or N to indicate whether the replacement is to be performed or not.

200

Editing BASIC files under RISC OS 2

Next match & previous match

It is possible to move on to the next occurrence of the text searched for in the last search
operation or back to the previous one. To do this press either Shift-F7 (NEXT MATCH)
or Ctrl-F7 (PREVIOUS MATCH).

Keyboard options

Pressing Shift-F3 brings up awindow which allows you to select various options. This
is called the Options Window. The options are displayed in three groups described
below. Pressing Return allows you to cycle through the groups.

TheTab key

This enables you to move more quickly across the screen. It moves the cursor to every
third character position. At the end of aline, it takes the cursor to the beginning of the
next line.

Pressing Shift-Tab moves the cursor in the opposite direction.

The options can be used to set the width of the tab movement to any value (number of
characters) in the range 0 to 63.

Auto indentation

The editor can automatically line up text in aprogram so that each line starts beneath the
first position of the line above which is not blank. Thisis known as auto-indentation. It
can be turned on or off using the Options Window: Auto-indent (on/off)

Insert mode and overtype mode

There will be times when you want to overtype existing text rather than insert before
what is already there. To do this, press Insert and you will see that the cursor has
changed to an underline. Thisindicates that you are in overtype mode, and that text
which you typein will replace existing text. To return to insert mode, press Insert again,
and you will be able to insert text as before. In insert mode, a block cursor isused. In
overtype mode, aline cursor is used.

When you enter the editor, the default setting (insert or overtype) isused. You can
change this default using the Options Window. Your choiceis retained in non-volatile
memory.

Wildcard options
There are four wildcards, each of which may be customised using the options available.
I Single character (default is.).
I Multiple characters (default is |).

201

Editing BASIC files

I Start caseinsensitivity: Thiswill match both PRI NT and pri nt (defaultis{).

I End caseinsensitivity: thiswill match exactly what is entered. Thisisthe normal
method of searching (defaultis}).

Wildcards can be changed to any punctuation character, or can be disabled by using the
Space Bar. Different wildcards must not use the same character.

Mode and colours

The editor worksin 40-, 80- or 132-column modes. You can choose the default mode
using the Options Window. The value is held between sessions in non-volatile memory.

Note that 256-colour modes and modes with 20-column text are not allowed. You can
also set up your default choice of foreground and background colours.

User-defined keys

The editor makes extensive use of the normal function keys, but you can still program
your own in the usual way viathe * KEY command. To access them you must press
Ctrl Shift together with the function key, and not just the function key on its own.

202

Editing BASIC files under RISC OS 2

203

Full use of windows

Windows are displayed whenever input is required or information is shown.

Input windows

Valid keys and their actions are:

Keys Effect

Tab/Return/ | Moves cursor to next field

Shift-Tab / 1 Moves cursor to previous field

Esc Cancels window, returns to editing

F12 (EXECUTE) Validates input & executes command

Insert Toggles insert/overtype for this window only
Delete Deletes character to left of cursor
Shift-Delete Deletes character above cursor

F11 Deletes characters from cursor to end of field
Shift-F11 Deletes all characters before cursor

Ctrl-F11 Deletes all text in thisfield

« [Shift « Moves cursor left 1 or 2 positions

- [Shift - Moves cursor right 1 or 2 positions

Ctrl ~ Moves cursor to beginning of field

Ctrl - Moves cursor to end of field

Information windows

Esc Removes window and returns to editing.

Entering data

Data can be entered in one of three ways:
I Typing intext (eg program name)
I Selecting aprompted action (eg Y/N)

I Pressing the Space Bar to cycle through alist of valid choices (eg foreground
colour)

Pressing another function key whilst awindow is present usually executes its function.
The exceptions are those functions which manipul ate the program text (eg SPLIT and
JOIN).

Keyboard summary

Editing BASIC files

The following actions are performed directly via key presses:

Editing keys

—

—

1
1

Shift -
Shift ~
Shift 1
Shift |

Ctrl -
Ctrl
Ctrl 1
Ctrl ¢

Ctrl-Shift -
Ctrl-Shift ~
Ctrl-Shift 1
Ctrl-Shift |

Page Up
Page Down

Tab
Shift-Tab
Home

Copy
Enter

Insert
Delete
Shift-Delete

Enter

Function keys

F1 (* COMMAND)

F2 (LOAD)

F3 (SAVE)

F4 (SEARCH & EDIT)
F5 (GLOBAL REPLACE)

Movesright
Moves left
Moves up
Moves down

Moves right two characters
Moves |eft two characters
Moves cursor up a screenful
Moves cursor down a screenful

Movesto the end of the statement
Moves to the beginning of the statement
Moves to the beginning of the program
Moves to the end of the program

Moves to beginning of next statement
Moves to beginning of previous statement
Moves to top of current screen

Moves to bottom of current screen

Moves cursor up a screenful
Moves cursor down a screenful

Moves right to next tab position
Moves | eft to previous tab position
Brings statement to top of screen

Enters copy mode
Ends copy mode

Toggles insert/overtype mode
Deletes character to left of cursor
Deletes character at cursor position

Creates a new statement after the current one

Perform OS command
Load a program

Save aprogram

Find string and edit from it
Global search and replace

204

Editing BASIC files under RISC OS 2

205

F6 (TOGGLE MARK)

F7 (SEARCH)

F8 (RENUMBER)

F9 (OLD)

F10 (SWAP)

F11 (DEL TO END OF LINE)
F12 (EXECUTE)

Function keyswith Shift

Shift-F1 (SPLIT)
Shift-F2 (APPEND)
Shift-F3 (OPTIONS)
Shift-F4 (EXIT)

Shift-F5

(SELECTIVE REPLACE)
Shift-F6 (GOTO MARK)
Shift-F7 (NEXT MATCH)
Shift-F8 (REPEAT)
Shift-F9 (NEW)

Shift-F10 (UNDO)
Shift-F11

(DELETE TO START OF LINE)

Shift-F12
(GOTO LINE COMMAND)

Function keyswith Ctrl

Ctrl-F1 (JOIN)

Ctrl-F2 (SWAP WINDOW)
Ctrl-F3

Ctrl-F4

(SPLIT/JOIN WINDOW)
Ctrl-F5 (HELP)

Ctrl-F6 (INFO)

Ctrl-F7 (PREV. MATCH)
Ctrl-F8 (EXTEND)
Ctrl-F9 (INSERT START)
Ctrl-F10 (INSERT END)
Ctrl-F11 (DELETE LINE)
Ctrl-F12 (GO TO LINE)

Set or remove a marker. Up to four markers allowed
Find all occurrences of a string

Renumber the entire program

SameasBASIC OLD

Swap case of alphabetic characters

Delete from cursor to end of line

Execute line commands

Split statement at the cursor

Append a program

Present the Options Window

Return to BASIC. Variables will be lost if changes
were made

Selective replace. When prompted, only

YN, Escape and Honre arevalid

Go to next marker, with program wraparound
Go to next occurrence of search string

Copy current statement

Same as BASIC NEW. Promptsif program has
been modified

Undo changes to current statement

Delete all characters before the cursor

Go to next line command, with program
wraparound

Join two statements, with a colon separator
Toggle between windows

Reserved

Split or join window(s)

Display help window

Display program information

Go to previous occurrence of search string
Add alineto current statement

Add a statement at beginning of program
Add a statement at end of program

Delete all text from current statement

Go to selected line number

Function keys are used with Ctrl and Shift for user-defined strings.

Editing BASIC files

Error messages
The editor displays the following messages. In each case, an explanation is given below
the message.
Limt is xxxx to xxxx/Limt is xxxx only
A range has been set using the L or LL line commands, and this function will only
operate within the range.
Line xxxx is too long to be edited
The program already contains aline which istoo long.

Not enough roomin RVA for The BASIC Editor
RMA initialisation failed to acquire workspace.
Repl ace? (Y/'N)
Displayed on the status line when prompting during the SELECTIVE REPLACE
operation.
Tab nust be between 0 and 63
Displayed by OPTIONS.
The conbined | ength of these statenents would be too
bi g
The two statements cannot be joined.
The destination nust be outside the bl ock being noved
or copied
Raised by EXECUTE.
The first statenent in the block to be justified nust
not be bl ank
Raised by EXECUTE.

The maximumline is 65279
Raised by GOTO LINE.

The nane has been truncated

On saving, the program name following REM > in thefirst line of the program islonger
than can be displayed in the window.

The naned programis invalid
The user appended a program which was invalid. The editor restored the original .

The naned programis too big

206

Editing BASIC files under RISC OS 2

207

The user tried to load or append a program for which there was not enough room in
memory.

The renunber has fail ed. Unnmat ched |ine nunbers have
been repl aced by @oa@
When trying to renumber the program one or more line number references could not be
resolved.
The search string has no text
The search string must not be blank, and must not contain only wildcards.
The string could not be found
The search string could not be found.
There is not enough nmenory to update the program
All available memory has been used up.
This is not a valid node
Aninvalid screen mode was specified in OPTIONS.
This is not a valid program
OLD was pressed with no valid BASIC program in memory, or the user tried to load an
invalid program.
Thi s program coul d not be found
The named program on aload or append was not in the directory.
Thi s program has not been saved
The user iswarned on aload if the program has been modified and not saved.
Thi s program has not been saved
Press NEW again to confirm.
Press ESCAPE to cancel
The user pressed NEW but the program had been modified and not saved.
This statenment is too |ong
The statement istoo long, and needs to be shortened.
This statement is too |long to be changed
Replacing or justifying would make the statement too long.
This statenent is too long to be split
Even after splitting, both parts of the statement would still be too long.

W | dcards nust not be the sane
Raised by OPTIONS.

Editing BASIC files

You cannot |load a directory
The filename specified in load or append is a directory.

You do not need to enter a destination for this command
Raised by EXECUTE.
You do not need to enter a repetition factor for this
conmand
Raised by EXECUTE.

You have entered a destination but no comand
Raised by EXECUTE.

You have entered too nmany conmands
Raised by EXECUTE.

You have not entered any |ine commands
Raised by GOTO LINE COMMAND when there are no line commands.

You have not entered any narkers
Raised by GOTO MARKER when no markers are set.

You have not yet entered a search string
Raised by NEXT MATCH or PREVIOUS MATCH when no find string has been
entered.
You have used the nmaxi mum nunmber of statenents. No
nore can be added
The program already contains the maximum number of statements allowed by BASIC
(65279) and the user tried to add another.
You nust enter a destination for this command
Raised by EXECUTE.

You nust enter a node
No screen mode was specified within OPTIONS.

You must enter a program nane
The program name was not entered for |oad, append or save.

You nust enter a search string
The search string was not entered.

You nmust enter a tab val ue
No tab value was specified in OPTIONS.

208

Editing BASIC files under RISC OS 2

You need to specify both ends of the range for this
comand

Raised by EXECUTE.

You should not enter two different conmands
Raised by EXECUTE.

*ARMBE is only valid from BASIC
The user invoked the editor from outside BASIC.

209

Keywords

his chapter describesthe BBC BASIC keywords. First, there isashort list grouping
the keywords by function. Use thislist if you are not sure what keywords are
available for a particular task.

I Assembly language
CALL, SYS, USR
Character/string handling
ASC, CHRS, INSTR(, LEFT$(, LEN, MID$(, RIGHT$(, STR$, STRINGH(
Error handling

ERL, ERR, ERROR, LOCAL ERROR, ON ERROR, REPORT, REPORTS$,
RESTORE ERROR

File commands

BGET#, BPUT#, CLOSE#, EOF#, EXT#, GET$#, INPUT#, OPENIN, OPENOUT,
OPENUP, PRINT#, PTR#

Graphics
BY, CIRCLE, CLG CLS, COLOUR (COLOR), DRAW, ELLIPSE, FILL, GCOL,

LINE, MODE, MOVE, OFF, ON, ORIGIN, PLOT, POINT, POINT(,
RECTANGLE, TINT, VDU, WAIT

I nput/Output

GET, GET$, INKEY, INKEY$, INPUT, INPUT LINE, LINE INPUT, MOUSE,
PRINT, SPC, TAB, WIDTH

Logical

AND, EOR, FALSE, NOT, OR, TRUE

Numerical

ABS, DIV, EVAL, INT, MOD, RND, SGN, SQR, SUM, SUMLEN, SWAP, VAL
Program construction

APPEND, AUTO, *BASIC, *BASIC64, CRUNCH, DELETE, EDIT, HELR,
INSTALL, LIST, LISTO, LOAD, LVAR, NEW, OLD, RENUMBER, SAVE,
TEXTLOAD, TEXTSAVE, TWIN

210

I Program statements

CHAIN, CLEAR, DATA, DEF, DIM, END, ENDPROC, FN, GOSUB, GOTO,
LET, LIBRARY, LOCAL, OSCLI, PROC, QUIT, READ, REM, RESTORE,
RETURN, RUN, STOPR, TRACE

I Sound
BEAT, BEATS, SOUND, STEREO, TEMPO, VOICES
I Structures

CASE, ELSE, ENDCASE, ENDIF, ENDWHILE, FOR, IF, NEXT, OF,
OTHERWISE, REPEAT, THEN, UNTIL, WHEN, WHILE

I Trigonometric
ACS, ASN, ATN, COS, DEG, EXP, LN, LOG, PI, RAD, SIN, TAN
I Variables
ADVAL, COUNT, HIMEM, LOMEM, PAGE, POS, TIME, TIMES$, TOP, VPOS

The remainder of this chapter lists the keywords alphabetically (with the exceptions of
*BASIC and *BASIC64, which appear first) for ease of reference. It gives complete
definitions of syntax, with examples.

Each keyword is listed in the index.

211

Keywords

*BASIC

The command to enter the BASIC V interpreter.

Syntax
*BASI C [opt i ons]

Purpose

The command * BASI Cis not one of the usual BASIC keywords which are described in
this chapter. It is an operating system command which is used to activate the interpreter
inthefirst place. It is described here for completeness.

The opt i ons control how the interpreter will behave when it starts, and when any
program that it executes terminates. If no option is given, BASIC simply starts with a
message of the form:

ARM BBC BASIC V version 1.05 (C) Acorn 1989
Starting with 643324 bytes free

The number of bytes free in the above message will depend on the amount of free RAM
on your computer. Thefirst lineis aso used for the default REPORT message, before
any errors occur.

One of three options may follow the * BASIC command to cause aprogram to be loaded,
and, optionally, executed automatically. Alternatively, you can use a program that is
already loaded into memory by passing its address to the interpreter. Each of these
possibilities is described in turn below.

In all cases where a program is specified, this may be a tokenised BASIC program, as
created by a SAVE command, or atextual program, which will be tokenised (and
possibly renumbered) automatically.

*BASI C - hel p

This command causes BASIC to print some help information describing the options
documented here. Then BASIC starts as usual.

*BASIC [-chain] filenane

If yougiveaf il enane after the *BASIC command, optionally preceded by the
keyword - chai n, then the named fileisloaded and executed. When the program stops,
BASIC enters immediate mode, as usual.

212

*BASIC

*BASIC -quit filenane

This behavesin asimilar way to the previous option. However, when the program
terminates, BASIC quits automatically, returning to the environment from which the
interpreter was originally called. It al'so performsa CRUNCH %4111 on the program
(see the description of the CRUNCH command later in this chapter). Thisis the default
action used by BASIC programs that are executed as* commands. In addition, the
function QUIT returns TRUE if BASIC is called in this fashion.

*BASI C -1 oad filenane

This option causesthe file to be loaded automatically, but not executed. BASIC remains
in immediate mode, from where the program can be edited or executed as required.

*BASI C @tart, end

Thisactsin asimilar way to the - | oad form of the command. However, the program

that is ‘loaded’ automatically is not in a file, but already in memory. Followin@ére

two addresses. These give, in hexadecimal, the address of the start of the in-core
program, and the address of the byte after the last one. The program is copied to PAGE
and tokenised if necessary. This form of the command is used by Twin when returning to
BASIC.

Note that the in-core address description is fixed format. It should be in the form:
@XXXXXXXX, XXXXXXXX

wherex means a hexadecimal digit. Leading zeros must be supplied. The command line
terminator character must come immediately after the last digit. No spaces are allowed.

*BASI C -chain @tart, end

This behaves like the previous option, but the program is executed as well. When the
program terminates, BASIC enters immediate mode.

*BASIC -quit @tart, end

This option behaves as the previous one, but when the BASIC program terminates,
BASIC automatically quits. The function QUIT will return TRUE during the execution
of the program.

Examples

*BASI C

*BASI C -quit shell Prog
*BASI C @OOADFOC, 000AE345
*BASI C -chain fred

213

Keywords

*BASIC64

The command to enter the BASIC VI interpreter.

Syntax
*BASI C64 [opti ons]

Purpose

This has exactly the same purpose asthe * BASIC command, and takes the same options,
the only difference being that it entersthe BASIC VI interpreter instead of the BASIC V
interpreter.

If no option isgiven, BASIC VI simply starts with a message of the form:
ARM BBC BASIC VI version 1.05 (C) Acorn 1989

Starting with 581628 bytes free.

The number of bytes free in the above message will depend on the amount of free RAM
on your computer.

Examples

* BASI C64

*BASI C64 -quit shell Prog
*BASI C64 @O0O0ADFOC, 000AE345
*BASI C64 -chain fred

214

ABS

ABS

Function giving magnitude of its numeric argument, i.e. changes negative numbersinto
positive numbers.

Syntax
ABS factor

Argument

Any numeric.

Result
Same as the argument if this is positive, or —(the argument) if it is negative.

Note: The largest negative integer does not have a legal positive value, so that if
a%= 2147483648, ABS(a%) yields the same val@t47483648. However, this
does not arise with floating point numbers.

Example
di f f =ABS(| engt h1-1 engt h2)

215

Keywords

ACS

Function giving the arc-cosine of its numeric argument.

Syntax
ACS factor

Argument

Real or integer between —1 and 1 inclusive.

Result

Real in the range 0 mradians, being the inverse cosine of the argument.

Examples

ang=ACS(nor nvecl(1)*nornvec2(1l)+nornvecl(2)*nornmvec2(2))
angl e=DEG(ACS(cosl))
PRI NT ACS(0.5)

216

ADVAL

ADVAL

Function reading data from an analogue port if fitted, or giving buffer data.

Syntax
ADVAL factor

Argument

Negative integerr; wheren is a buffer number between 1 and 10.

Result

The number of spaces or entries in the buffer is given in the table below:

arg Buffer name Result

-1 Keyboard (input) Number of characters used
-2 RS-423 (input) Number of characters used
-3 RS-423 (output) Number of characters free

-4 Printer (output) Number of characters free

-5 Sound 0 (output) Number of bytes free

-6 Sound 1 (output) Number of bytes free

-7 Sound 2 (output) Number of bytes free

-8 Sound 3 (output) Number of bytes free

-9 Speech (output) Number of bytes free

-10 Mouse (input) Number of bytes used

The ADVAL function only returns a result for positive arguments if the optional
analogue—digital converter podule is fitted. If this is absent, the fur’sBigAL(1) , for
example, will result in 8ad conmand error.

Example
| F ADVAL(-1)=0 THEN PROCi nput

217

Keywords

AND

Operator giving logical AND or bitwise AND

Syntax

rel ati onal AND rel ati onal

Operands
Relational expressions, or bit values to be ANDed.

Result

The bitwise AND of the operands. Corresponding bits in the integer operands are
ANDed to produce the result. Hence abit in theresult isoneif both of the corresponding
bits of the operands are one. Otherwise it is zero.

If used to combine relational values, AND’ s operands should be either TRUE (- 1) or
FALSE (0). Otherwise, unexpected results may occur. For example, 2 and 4 are both true
(non-zero), but 2 AND 4 yields FALSE (zero).

Examples
a=XxANDy :REMais setto binary AND of x and y
PRINT var AND 3 : REM print lowest 2 bits of var
IF day=4 AND month$="April" THEN PRINT "Happy birthday"
IF temp>50 AND NOT windy THEN PROCgo_out ELSE PROCstay _in

REPEAT
a=a+l
b=b-1
UNTIL a>10 AND b<0

isadog = feet=4 AND tails=1 AND hairy

218

APPEND

APPEND

Command to append afileto aBASIC program.

Syntax
APPEND expressi on

Argument

expr essi on isastring which should evaluate to afilenamethat is valid for thefiling
systemin use.

Purpose

Thefile specified is added to the end of the BASIC program currently in memory. If the
file contains a BASIC program, the line numbers and any references to them in the
added section are renumbered so that they start after the last line of the current program.

Examples

APPEND ": 0.lib"
APPEND second_hal f$

219

Keywords

ASC

Function giving the ASCII code of the first character in string.

Syntax
ASC factor

Argument
String of length O to 255 characters.

Result

ASCII code of the first character of the argument in the range 0 to 255, or -1 if the
argument is a null string.

Examples

10 x2=ASC(nane$)
100 | F code >= ASC("a") AND code <= ASC("z") THEN PRI NT
"Lower case"

220

ASN

ASN

Function giving the arc-sine of its numeric argument.

Syntax
ASN factor

Argument

Numeric between —1 and 1 inclusive.

Result

Real in the rangem®2 to +72 radians, being the inverse sine of the argument.

Examples

PRI NT ASN(opposite/ hypot enuse)
angl e=DEG{ ASN(0. 2213))

221

Keywords

ATN

Function giving the arc-tangent of its numeric argument.

Syntax
ATN factor

Argument

Any numeric.

Result

Real in the rangem?2 to +1/2 radians, being the inverse tangent of the argument.
Examples

ang = DEG ATN(sin/cos))
PRI NT "The slope is "; ATN(opposite/adjacent)

222

AUTO

AUTO

Command initiating automatic line numbering.

Syntax
AUTO [start]][, step]

Parameters

St art isaninteger constant in the range 0 to 65279 and is the first line to be generated
automatically. It defaults to 10.

St ep isaninteger constant in the range 1 to 65279 and is the amount by which the line
numbers increase when Return is pressed. If omitted, 10 is assumed.

Purpose

AUTO is used when entering program lines to produce aline number automatically, so
that you do not have to type them yourself. To end automatic line numbering use Esc.
AUTO will stop if the line number becomes greater than 65279.

Examples

AUTO
AUTO 1000
AUTO 12, 2

223

Keywords

BEAT

Function returning the current beat value.

Syntax
BEAT

Result

Aninteger giving the current beat value. Thisisthe value yielded by the beat counter as
it counts from zero to the number set by BEATS at a rate determined by TEMPO. When
it reachesits limit it resets to zero. Synchronisation between sound channelsis
performed with respect to the last reset of the beat counter.

Example
PRI NT BEAT

224

BEATS

BEATS

Function returning or statement altering the beat counter.

Syntax

(1) BEATS expression
(2) BEATS

Arguments (1)

expr essi on givesthe value 1 higher than that which the beat counter increments to,
i.e. it counts from O to expression- 1. This counter is used in conjunction with the
SOUND and TEM PO statements to synchronise sound outputs from different sound
channels.

Result (2)

An integer giving the current value of the beat limit, as set by a BEATS statement, or O
if no counting is currently being performed.

Examples

BEATS 2000
PRI NT BEATS

225

Keywords

Function returning the next byte from afile.
Syntax
BGET# factor
Argument
A channel number returned by an OPENxx function.
Result
The ASCII code of the character read (at position PTR#) from thefile, in the range 0 to
255.
Note: PTR# is updated to point to the next character in thefile. If the last character
inthefile has been read, EOF# for the channel will be TRUE. The next BGET# will
return an undefined value and the one after that will producean End of file
on file handl e nneror.
Examples

char %=BGET# channel
char $=CHR$(BGET#f i | eno)

VH LE NOT EOF# channel
char % = BGET# channel

PROCpr ocess(char %
ENDWHI LE

226

BPUT #

BPUT #

Statement to write a byte or astring to afile.

Syntax

(1) BPUT#factor, nuneri c-expressi on
(2) BPUT#factor, string-expression[;]

Arguments (1)

fact or isachannel number as returned by an OPENxx function. The
numeri c- expressi onistruncated to an integer 0 to 255, and is the ASCII code of
the character to be sent to the file.

Arguments (2)

fact or isachannel number as returned by an OPENxx function.
Sstring-expressi onisastring containing 0 to 255 characters. The ASCII codes of
all the charactersin the string are sent to thefile. Thisisfollowed by a newline (ASCII
value 10), unless the statement isterminated by a ; (semi-colon).

Note: PTR# is updated to point to the next character to be written. If the end of the
fileis reached, the length (EXT#) increasestoo. It is only possible to use BPUT#
with OPENUP and OPENOUT files, not OPENIN ones.

Examples

BPUT#out putfil e, byt e%

BPUT#channel , ASC(M D$(nane$, pos, 1))
BPUT#fil e, "Hel | o"

BPUT#chan, A$+B$;

227

Keywords

BY

Optional part of MOVE, DRAW, POINT and FILL statements.

Syntax
See the above-mentioned keywords.

Purpose

The BY keyword changes the effect of certain graphics statements. In particular it
indicates that the coordinates given in the statement are relative rather than absol ute. For
example, PO NT BY 100, 100 means plot a point at coordinates displaced by
(2100,100) from the current graphics cursor position, rather than a point which is at
(100,100).

Interms of its effect at the VDU driver level, BY makes BASIC use the relative forms of
the appropriate OS_PI ot calls, instead of the absolute ones.

Examples

MOVE BY 4*x% 4*y%
PO NT BY 100, 0
DRAW BY x% 16, y%4
FILL BY x% y%

228

CALL

CALL

Statement to execute a machine code or assembly language subroutine.

Syntax
CALL expression [,variable...]

Arguments

expr essi onistheaddress of the routine to be called. The parameter variables, if
present, may be of any type, and must exist when the CALL statement is executed. They
are accessed through a parameter block which BASIC sets up. The format of this
parameter block and of the variables accessed through it is described bel ow.

Purpose

CALL can be used to enter amachine code program from BASIC. Before the routine is
called, the ARM’s registers are set up as follows:

RO A%

R1 B%

R2 C%

R3 D%

R4 E%

R5 F%

R6 G%

R7 H%

R8 Pointer to BASIC'’s workspace (ARGP)

R9 Pointer to list of I-values of the parameters

R10 Number of parameters

R11 Pointer to BASIC's string accumulator (STRACC)

R12 BASIC'’s LINE pointer (points to the current statement)
R13 Pointer to BASIC's full, descending stack

R14 Link back to BASIC and environment information pointer.

Format of the CALL parameter block

R9 points to a list giving details of each variable passed as a parameter to CALL. For
each variable, two word-aligned words are used. The first one is the I-value of the
parameter. This is the address in memory in which the value of the variable is stored.

229

Keywords

The second word is the type of variable. Thislist isin reverse order, so thel-value
pointed to by R9 is that of the last parameter in the list. The pointer to thelist is always
valid, even when if thelistisnull (i.e. R10 contains 0). The possible types are asfollows:

Type BASIC I-value pointsto

&00 ?factor byte-aligned byte

&04 I factor byte-aligned word

&04 name% word-aligned word

&04 name%(n) word-aligned word

&05 |factor byte-aligned FP value (5 bytes)
&05 name byte-aligned FP value (5 bytes)
&05 name(n) byte-aligned FP value (5 bytes)
&08 |factor word-aligned FP value (8 bytes)
&08 name word-aligned FP value (8 bytes)
&08 name(n) word-aligned FP value (8 bytes)
&80 name$ byte-aligned SIB (5 bytes)

&80 name$(n) byte-aligned SIB (5 bytes)

&81 $factor byte-aligned byte-string (CR-terminated)
&100+&04 name%!() word-aligned array pointer
&100+&05 name() word-aligned array pointer
&100+&08 name() word-aligned array pointer
&100+&80 name$() word-aligned array pointer

For types &00, &04, &05 and &08, the address points to the actual byte, the four—byte
integer, the five—byte floating point value or the eight-byte floating point value.

For type &80, the address points to a five-byte ‘string information block’. The first four
bytes are a byte-aligned word pointing to the first character of the string itself, which is
on a word boundary, followed by a byte containing the length of the string.

For types &100# the value points to a word-aligned word. If the array has not been
allocated, or has been made LOCAL but not DIMed, this word contains a value less than
16. Otherwise, the word points to a word-aligned list of integer subscript sizes (the
values in the DIM statement plus 1) terminated by a zero word, followed by a word
which contains the total number of entries in the array, followed by the zeroth element of
the array. For example, consider the following program:

230

CALL

10 DI M a(10, 20)

20 a = 12.3
30 a$ = "char"
40 ...

100 CALL code, a, a(), a$

5 bytes
a(0,0)
word
a type (&05) # elements (231)
5 bytes word
a l-value > 123 terminator
word
a () type (&105) sub 2 size (21)
word word
al() I-value »| array pointer |—»| sub 1 size (11)
— byte r
R10=3
a$ type (&80) length(4) a
RO —» word —» 2 :
a$ l-value |—» string pointer Increasing
addresses

The diagram above shows the resulting parameter block and other data items when
code iscalled. The access method into the arrays is given by the following agorithm:

position = 0
number = 0
REPEAT
| F subscript (nunber) > array(nunmber) THEN fault
nunber = nunber +1
| F nunber<>total THEN position = (position+subscript) *
array(numnber)
UNTI L no_nore_subscripts
position = position*size(array)

This means that the last subscript references adjacent elements. For asimple two
dimensiona array DIM A(LIMI-1,LIMJ1) the address of A(l,J) is

(I*LIMI+J)* size+base_address

MOVS PC, R14 returnsto the BASIC calling program if V set on error is signalled at
RO. However, R14 aso points to an array of useful values:

231

Keywords

Offset Name Meaning
&00 RETURN Return addressto BASIC

The following are words containing a word-aligned offset from ARGP (R8):

&04 STRACC String accumulator (256 bytes long)

&08 PAGE Current program PAGE

&C TOP Current program TOP

&10 LOVEM Current start of variable storage

&l14 H MVEM Current stack end (i.e. highest stack location)
&18 MEMLIM T Limit of available memory

&1C FSA Free space start (end of variables/stack limit)
&0 TALLY Value of COUNT

&4 TRACEF TRACEFILE handle (or 0 if no file being traced to)
&28 ESCWORD Exception flag word (contains escflg, trcflg)
&C WDTHLOC Value of WIDTH-1

Branches to internal BASIC routines:

&30 VARI ND Get value of |-value

&34 STOREA Storevalueinto I-value

&38 STSTORE Store string into type 128 strings

&3C LVBLNK Convert variable name string to |-value address
and type

&40 CREATE Create new variable

&44 EXPR Use expression analyser on string

&48 MATCH Lexically analyse source string to destination string

&4AC TOKENADDR Pointer to string for given token

&50 END End of list, azero word

In the following (BASIC V only), RO..R3 contain an expanded floating point value. R9
points to a packed five—byte floating point value accessed througbpkeator:

&54 9 number of extra routines

&58 FSTA [R9] = RO..R3

&C FLDA RO..R3 = [R9]

&60 FADD RO..R3 = [R9] + (RO..R3)

&64 FSUB RO0..R3 = [R9] - (RO..R3)

&68 FMUL RO..R3 = (RO..R3) * [R9]

&C FDV R0..R3 = [R9]/ (RO..R3)

&70 FLOAT RO0..R3 = FLOAT(RO) (RO contains an integer on entry)
&74 FI X RO = FIX(RO0..R3) (RO contains an integer on exit)

&78 FSQRT RO..R3 = SQR(RO0..R3)

232

CALL

The word at address [R14] is a branch instruction which returns you to the BASIC
interpreter. The words which follow it contain useful addresses which are not absolute,
but are offsets from the contents of the ARGP register, R8.

Thefirst offset word, at [R14,#4], givesthe location of the string accumulator, STRACC,
where string results are kept. Thusif you execute

LDR RO, [R14, #4] ; Get STRACC offset from R8
ADD RO, R8, RO ; Add of fset to ARGP

RO will give the base address of the string accumulator. (Actually, the address of
STRACC is also in R11 on entry, so this isn't a particularly good example.) Similarly, to
load the pointer to the end of free space into RO, you would use:

LDR RO, [R14, #&1C] ; Get FSA offset from R3
LDR RO, [R8, RO] ;De-reference it

Although the word referenced through the TRACEF offset is the TRACEFILE handle,
the four that follow it are also used. They contain respectively:

[R*, TRACEF+4] LOCALARLI ST a pointer to the list of local arrays

[R*, TRACEF+8] I NSTALLLI ST a pointer to the list of installed libraries
[R*, TRACEF+12] LI BRARYLI ST a pointer to the list of transient libraries
[R*, TRACEF+16] OVERPTR a pointer to the overlay structure

The first of these is probably not very useful, but the other three allow routines to access
the libraries that have been loaded. For example, a ‘find’ routine would be able to find a
procedure no matter where it was defined (which LIST IF can't do).

Libraries are stored as a word, which is a pointer to the next library (0 denoting the end
of the list). The word is followed immediately by the BASIC program which forms the
library.

Before an OVERLAY statement has been executed, OVERPTR contains 0. After a
statement such as OVERLAY a$(), it contains a pointer to the following structure:

OVERPTR+&00 Pointer to base of OVERLAY array, i.e. a$(0)
OVERPTR+&04 Index of current OVERLAY file (or —1 if none loaded)
OVERPTR+&08 Total allowed size of OVERLAY area
OVERPTR+&0C Start of current OVERLAY file in memory.

After the word offsets come the branches useful to BASIC routines. For example, to call
STOREA, whose branch is at offset &34 from R14, you might use:

233

VARIND

STOREA

Keywords

STMFD R13!, {R14} ; Save BASI C return address
MOV R10, R14 ; Save pointer to branches
ADR R14, nyRet ; Set up return address to ny code
ADD PC, R10, #&34 ; Do the ' branch’
. nyRet
LDMFD R13!, {PC}~ ;Return to BASIC

Theinternal routines are only guaranteed to work in ARM user mode. The following
functions are provided:

Entry with RO:

RO = Address of I-value, i.e. where to load the variable from
R9 = Type of |-value, asin CALL parameter block

R12 = LINE

Returns with RO...R3 asthe value (or FO if using BASIC VI), R9 the type of the value
asfollows:

R9 Type L ocation of value

0 String STRACC, R2 pointsto end ([R2]-STRACC islength)
& 40000000 I nteger RO

& 80000000 Float RO..R3

Uses no other registers (including stack). Possible error if asked to take value of an array
fred(): will need R12 valid for this error to be reported correctly.

When floating point values are returned/required in RO..R3, the format is as follows:

RO = 32-bit mantissa, normalised (so bit 31 =1)
R1 = Exponent in excess-128 form

R2 = Undefined

R3 = Sign. 0 0 positive, & 80000000 O negative

Thisis provided for information only. We reserve the right to change this format; you
should treat RO..R3 as asingle item, without regard to the constituent parts.

Entry with RO..R3 value (stay in STRACC with R2=end) if using BASIC V (FO if using
BASIC VI), as appropriate to type of valuein R9.

234

STSTORE

R4 = Address of |-value (where to store the value)
R5 = Type of I-value (asin CALL parameter block)
R8 = ARGP

RO = Type of value

R12 = LINE (for errors)

R13 = Stack pointer (for free space check)

Converts between various formats, for example integer and floating point numbers, or
produces an error if conversionisimpossible.

Returns with RO to R7 destroyed. Stack is not used.

STSTORE

This stores a string into a string variable. Entry with:

R2 = Length (i.e. address of byte beyond the last one)

R3 = Address of start of string

R4 = Address of |-value

R8 = ARGP

R12 = LINE (for error reporting)

R13 = Stack pointer (for free space check)

The string must start on aword boundary and the length must be 255 or less.

Uses RO, R1, R5, R6, R7. Preserves input registers. Stack not used.
LVBLNK

This routine looks up a variable from the name pointed to by R8.

On entry:

R8 = ARGP

R11 = Pointer to start of name

R12 = LINE (many errors possible, such as subscript error in array)

R13 = Stack (may call EXPR to evaluate subscripts)

Thestring is processed to read one variable name and provide an address and type which
can be given to VARIND.

If avalid variable name (or more precisely I-value) was found:

Zflag = O
RO = Addressof I-value
R9 = Typeof |-value

If avalid variable was not found:

235

CREATE

EXPR

Keywords

Zflag = 1

Cflag 1if thereis no way the string was a variable name (e.g. %Q)
Cflag = 0 Could be a variable but hasn't been created (e.g. A)
Other register set up for a subsequent call to CREATE.

Uses all registers.

This creates a variable. Input is the failure of LVBLNK to find something. Thus we
have:

R3 = Second character of name or 0

R4 = Points to start of the rest of the name

R8 = ARGP

R9 = Contains the number of zero bytes on the end
R10 = First character of name

R11 = Points to the end of the name

R12 = LINE

R13 = Stack pointer

It is recommended that CREATE is only called immediately after a failed LVBLNK.

CREATE uses all registers. Returns result as LVBLNK. The LVBLNK and CREATE
routines can be combined together to provide a routine which checks for a variable to
assign to, and creates it if necessary:

STMFD R13!, { R14} ; Save return address
BL LVBLNK ; Look-up name
LDMNEFD R13!, { PC} ; Return if found
LDMCSFD R13!, { PC} ;O illegal nane

BL CREATE ; Create the new var
LDVFD R13!, { PC} ; Return

This evaluates an expression pointed to by R11. On entry:

R8 = ARGP

R11 = Pointer to start of string
R12 = LINE

R13 = Stack pointer

EXPR stops after reading one expression (like those in the PRINT statement).

The value is returned in the same manner as VARIND. On exit:

236

MATCH

MATCH

237

Zflag = 10 theexpressionwasastring

Zflag = 00 theexpressionwasanumber
Nflag =10 expression was afloating point number
Nflag =00 expressionwas an integer

R9 = Type

R10 = First character after the expression

R11 = Pointer to next character after R10

The status found in the Z and N flags on exit can be recreated by executing the
instruction TEQ R9, #0.

One useful thing about EXPR isthat it enables the machine codeto call aBASIC
routine. You do this by evaluating a string which has a call to a user-defined function in
it. For example, the string you evaluate might be" FNi nput " . The function could
perform some task which istediousto do in machine code, such asinput afloating point
number.

One slight complication is that the string to be evaluated must have been tokenised
aready, so you must either call MATCH described below, or store the string with the
tokenised form of FN (the byte & A4).

Thisroutinetakes atext string and tokenisesit to another string. Strings passed to EXPR
and LVBLNK must be tokenised first if they contain any BASIC keywords. On entry:

RL = Points to the source string (terminated by ASCII 10 or 13)
R2 = Points to the destination string

R3 = MODE

R4 = CONSTA

R13 = Stack pointer

Note that MATCH does not need ARGP or LINE.

The MODE valueis O for left-mode (before an = sign, or at the start of a statement) and
1 for right-mode (in an expression). The difference isin the way that BASIC tokenises
the pseudo-variables. Each of these has two tokens, one for when it isused asa
statement (e.g. TIME=...) and onewhen it isused asafunction (PRINT TIME). Asyou
will generally use MATCH to tokenise an expression string, you will use MODE = 1.

The CONSTA valueis 0 if you do not want BASIC to convert integers which could be
line numbers (in the range 0 to 65279) into internal format, and 1 if you do. Interna
format consists of the token & 8D followed by three bytes which contain the encoded
line number. A property of these bytesisthat they lie in the range 64 to 127, and
therefore do not contain control codes or tokens.

TOKENADDR

Keywords

Encoded constants are used for line numbers after GOTO, GOSUB, RESTORE, THEN

and EL SE keywords. Because they are of fixed length, the program can be renumbered
without having to move program lines about. Because they don’t contain special
characters, certain BASIC search operations (e.g. for the ELSE in a single-line IF) are
speeded up.

Both MODE and CONSTA will be updated during the use of the routine. For example,
GOTO will set CONSTA to &8D to read the line number, PRINT will change MODE to
1 to read an expression. The table below summarises the setting of MODE and
CONSTA:

MODE CONSTA Meaning
0 0 Tokenise a statement
0 &8D Used to read line number at the start of a line
1 0 Tokenise an expression
1 &8D Tokenise an expression after GOTO etc.

The routine uses RO to R5.

On exit, R1 and R2 are left pointing one byte beyond the terminating CR codes of the
strings.

R5 contains status information, it can usually be disregarded: values greater than or
equal to &1000 imply mismatched brackets. Bit 8 set implies that a number which was
too large to be encoded using &8D (i.e. was greater than 65279) was found. If (R5 AND
255) = 1 then mismatched string quotes were found.

Note: if the first item in the source string is a line number and CONSTA is set on
entry, the &8D byte will not be inserted into the destination string, but a space will
be left for it. It is safe for the source and destination strings to be the same, as long
as the destination never becomes longer than the source (which CONSTA line
numbers can do.)

This routine converts a token value into a pointer to the text string representing it. On
entry:

RO
R12

The token value
Pointer to next byte of token string

The value of R12 is only used when two-byte tokens are required. No other registers are
used or required.

Returns R1 as a pointer to the first character of the string, terminated by a byte whose
value is &7F or greater. RO is set to the address of the start of the token table itself. R12
will have been incremented by one if a two-byte token has been used.

238

FSTA

FSTA
Store afour-word FP value into afive-byte variable. On entry:
RO.R3 = Source floating pointer value
R9 = Pointer to destination value
On exit:
R2 = Altered (but this doesn’t affect the FP value)
No errors. Stack not used.
FLDA
Load a five-byte variable into a four-word FP value. On entry:
R9 = Pointer to source value
On exit:
RO..R3 = Loaded FP value
No errors. Stack not used.
FADD/FMUL
Add/multiply the four-word FP value in RO..R3 by the variable aj [R®n entry:
RO..R3 = Source FP value
R9 = Pointer to five-byte variable.
On exit:
RO..R3 = Added/multiplied by [R9]
R4.R7 = Corrupted
Overflow errors possible. Stack not used.
FSUB/FDIV
Subtract R0O..R3 from [R9] or divide [R9] by RO0..R3, with the result in RO..R3. On entry:
RO..R3 = FP value
R9 = Pointer to five-byte variable.
On exit:
RO..R3 = [R9] minus old value or [R9] / old value
R4.R7 = Corrupted

239

FLOAT

FIX

FSQRT

Overflow errors possible. Divide by zero possible for FDIV. Stack not used.

Convert integer to four-word floating point value. On entry:

RO = Integer

On exit:

RO.R3 = Floated version

R9 = & 80000000 (floating type code)

No overflow possible. Stack not used.

Convert four-word floating point value to an integer. On entry:

RO..R3 = Floating point value
On exit:
RO Fixed version (rounded towards 0)

R9 & 40000000 (integer type code)

Overflow error possible. Stack not used.

Take the sguare root of the floating point number in R0O..R3. On entry:

RO.R3 = Floating point value
On exit:

RO..R3 = SQR(old value)
RO..R7 = Corrupt

Negative root error possible. Stack not used.

BBC/Master compatible calls

If the CALL statement is used with an address which corresponds to a MOS entry point
on the BBC Micro/Acorn Electron/Master 128 series machines and there are no other
parameters, then BASIC treats the call asif it had been made from one of those

machines. The way in which the registers areinitialised is then as follows:

Keywords

240

BBC/Master compatible calls

RO A%
R1 X%
R2 Y%

Cflag C% (bit0)
This means that programs written to run on earlier machines using legal MOS calls can
continue to work. For example, the sequence

10 osbyt e=&FFF4
1000 A%=138
1010 X%-0
1020 Y%65
1030 CALL oshyte

will be interpreted as the equivalent SYS OS Byte call:
1000 SYS "OsS Byte", 138,0, 65

Thisfacility is provided for backwards compatibility only. You should not useit in new
programs. Also, you must be careful that any machine code you assemble in a program
does not liein the address range & FFCE to & FFF7; otherwise when you call it, it might
be mistaken for a call to an old MOS routine.

Examples

CALL invertMatrix,a()
CALL sanpl eWavef orm start % end% val ues%)

241

Keywords

CASE

Statement marking the start of aCASE ... OF ... WHEN ... OTHERWISE ...
ENDCASE construct. It must be the first statement on the line.

Syntax
CASE expression OF
WHEN expression [, expression...] [:statenents...]
[st at enent s]
[WHEN . . .]
OTHERW SE [statenents. . .|
[statenents. . .]
ENDCASE

Arguments
expr essi on can beany numeric or string expression. The value of expr essi onis
compared with the values of each of the expressionsin thelist following the first WHEN
statement. If amatch is found, then the block of statements following the WHEN down
to either the next WHEN or OTHERWISE or ENDCASE is executed. Then control
moves on to the statement following the ENDCASE. If there is no match, then the next
WHEN isused, if it exists. OTHERWISE is equivalent to a WHEN but matches any
value.

Examples
CASE A% OF
CASE Y*2 + X*3 OF
CASE GET$ OF

242

CHAIN

CHAIN

Statement to load and run a BASIC program.

Syntax
CHAI N expressi on

Argument

expr essi on should evaluate to astring which isavalid filename for the filing system
inuse.

Note: A filing system error may be produced if, for example, the file specified
cannot be found. When the program isloaded, all existing variables are lost (except
the system integer variables and installed libraries).

Examples
CHAI N "partB"
CHAI N a$+"2"

243

Keywords

CHR$

Function giving the character corresponding to an ASCII code.

Syntax
CHR$ factor

Argument
An integer in the range 0 to 255

Result

A single-character string whose ASCII code is the argument.

Examples

PRI NT CHR$(code)
| ower $=CHR$(ASC(upper $) OR &20)

244

CIRCLE

CIRCLE

Statement to draw acircle.

Syntax
Cl RCLE [FI LL] expressionl, expression2, expressi on3

Arguments

The expressions are integers in the range —32767 to +32768. The first two values give
the x and y coordinates of the centre of the circle. The third gives the radius. CIRCLE
produces a circle outline, whereas CIRCLE FILL plots a solid circle. The current
graphics foreground colour and action are used.

Note: In both cases, the position of the graphics cursor is updated to lie at a position
on the circumference which has an x coordinatexgr essi onl1 +

expressi on3 and a y coordinate @&xpr essi on2. The ‘previous graphics

cursor’ position (as used by, for example, triangle plotting) will be updated to lie at
the centre of the circle plotted.

Examples

Cl RCLE 640, 512, 50
CI RCLE FILL RND(1278), RND(1022), RND(200) +50

245

Keywords

CLEAR

Statement to remove all program variables.

Syntax
CLEAR

Purpose

When this statement is executed, al variables are removed and so become undefined. In
addition, any currently active procedures, subroutines, loops, and so on are forgotten,
and LIBRARY and OVERLAY libraries are lost. The exceptions to this are the system
integer variables and INSTAL L ed libraries which still remain.

246

CLG

CLG

Statement to clear the graphics viewport to the graphics background colour, using the
graphics background action.

Syntax
CLG

Examples
CLG

MODE 1

GCOL 130

VDU 24, 200; 200; 1080; 824;
CLG

247

Keywords

CLOSE #

Statement to close an open file.

Syntax
CLCSE#f act or

Argument

A channel number as returned by the OPENxx function. If zero is used al open files on
the current filing system are closed. Otherwise, only the file with the channel number
specified is closed.

Note: you shouldn't use the CLOSE#0 form within programs, as other programs
may be relying on files remaining open. You should only use it as an immediate
command, and possibly in a program during its development stage.

Purpose

Closing a file ensures that its contents are updated on whatever medium is being used.
This is necessary as a certain amount of buffering is used to make the transfer of data
between computer and mass-storage device more efficient. Closing a file, therefore,
releases a buffer for use by another file.

Examples

CLCSE#i ndexFi | e
CLCSE#0

248

CLS

CLS

Statement to clear the text viewport to the text background colour.

Syntax
CLS

Note: CLS aso resets COUNT to zero and moves the text cursor to its home
position, which is normally the top left of the text window.

Examples
CLS

MODE 1

CCOLOUR 129

VDU 28, 4, 28, 35, 4
CLS

249

Keywords

COLOUR (COLOR)

Statement to set the text colours or ater the pal ette settings.

Syntax

(1) COLOUR expression [TINT expression]
(2) COLOUR expression, expression
(3) COLOUR expression, expressi on, expressi on, expressi on

Arguments (1)

expr essi onisaninteger in the range 0 to 255. The range 0 to 127 sets the text
foreground colour. Adding 128 to this (i.e. 128 to 255) sets the text background colour.
The colour istreated MOD the number of coloursin the current mode. The argument is
thelogical colour. For alist of the default logical colours, seethe chapter entitled Screen
modes on page 110.

The optional TINT isonly effective in 256-colour modes. It selects the amount of white
to be added to the colour. The value can lie in the range 0 to 255, with only the values 0,
64, 128 and 192 currently being used to obtain different whitenesslevels. Coloursin the
256-colour modes are in the range 0 to 63.

Arguments (2)

Thefirst expression is an integer in the range 0 to 15 giving the logical colour number.
The second expression is an integer in the range 0 to 15 giving the actual colour to be
displayed when the logical colour isused. The actua colour numbers correspond to the
default colours available in 16-colour modes: eight steady colours and eight flashing
colours. The colour list is given in the chapter entitled Screen modes on page 110.

This form of the command sets the palette, so any changes are visible immediately.

In WIM P-based programs, you should use the call W np__Set Pal et t e to control the
palette.

Arguments (3)

Thefirst expression is an integer in the range 0 to 15 giving the logical colour number.
The next three expressions are integersin the range 0 to 255 giving the amount of red,
green and blue which are to be assigned to that logical colour. Only the top four bits of
each are relevant with the current video display hardware. Thus distinct levelsare 0, 16,
32, ...

250

COLOUR (COLOR)

Note: The keyword islisted as COLOUR in programs, even if it was typed in using
the alternative spelling.

In all modes the default state, before any changes to the palette, dictates that col our
0 isblack and colour 63 iswhite.

Only colours 0 and 1 are unique in two-colour modes. After that the cycle repeats.
Similarly, only colours 0, 1, 2 and 3 are distinct in the four-colour modes.

In WIM P-based programs, you should usethe call W np_Set Pal et t e to control
the palette.

Examples

COLOUR 128+1 : REM text background colour =1
COLOUR 1,5 : REM Il ogical colour 1 = colour 5 (magenta)
COLOUR 1, 255,255,255 : REM logical colour 1 = white

251

Keywords

COS

Function giving the cosine of its numeric argument.

Syntax
CCS factor

Argument

factor isananglein radians.

Result
Real between —1 and +1 inclusive.

Note: If the argument is outside the range -8388608 to 8388608 radians, it is
impossible to determine how marty to subtract. The errorckur acy | ost
i n sine/cosinel/tangent is generated.

Examples

PRI NT COS(RAD(45))
adj acent = hypot enuse* COS(angl e)

252

COUNT

COUNT

Function giving the number of characters printed since the last newline.

Syntax
COUNT

Result
Positive integer, giving the number of characters output since the last newline was
generated by BASIC.
Note: COUNT isreset to zero every time a carriage return is printed (which may
happen automatically if anon-zero WIDTH is being used). It isincremented every
time a character is output by PRINT, INPUT or REPORT, but not when output by
VDU or any of the graphics commands. COUNT isalso reset to zero by CLS and

MODE.

Examples

REPEAT PRI NT " ";
UNTI L COUNT=20
chars = COUNT

253

Keywords

CRUNCH

Command to strip various spaces from a program.

Syntax
CRUNCH vari abl e

Argument
vari abl e isa5-bit binary word. Each bit in the variable has a special meaning, as
follows:
Bit0=1 strips out all spaces before statements.
Bitl1=1 strips out all spaces within statements. Note that CRUNCH %4.0 may
make a program uneditable.
Bit2=1 strips out all REM statements, except those on thefirst line.
Bit3=1 strips out all empty statements.
Bit4=1 strips out al empty lines.

The interpreter has been optimised for fully CRUNCHed programs.

Note that, in BASIC VI, programs with —quit set will be CRUNCH %1111, as will
LIBRARY subprograms. BASIC V will also do this if the OS variable BASIC$Crunch
exists. OVERLAY statements will not be CRUNCHed.

Restrictions

The BASIC 1.04 interpreter cannot read assembler statements that have been
CRUNCHed; for exampl&ORR4, R4, R5. Setting bit 4 to 1 may cause problems in
constructs that expect an empty line as the target (e.g. GOTO, GOSUB, IF THEN,
RESTORE).

Examples

CRUNCH 94101
CRUNCH 940011

254

DATA

DATA

Passive statement marking the position of datain the program.

Syntax
DATA [expression] [, expression], etc

Argument

The expressions may be of any type and range, and are only evaluated when a READ
statement requires them.

Note: The way in which DATA isinterpreted depends on the type of variable in the
READ statement. A numeric READ evaluates the data as an expression, whereas a
string READ treats the data as a literal string. Leading spaces in the dataitem are
ignored, but trailing spaces (except for the last dataitem on the line) are counted. If
it is necessary to have leading spaces, or acomma or quote in the dataitem, it must
be put between quotation marks. For example:

100 DATA " H" "A B ", """ABCD"

If an attempt is made to execute a DATA statement, BASIC treatsit asa REM. In
order to be recognised by BASIC, the DATA statement, like other passive
statements, should be the first item on aline.

Examples

DATA Jan, Feb, Mar, Apr, May, Jun, Jul , Aug, Sep, Cct, Nov, Dec
DATA 3.26,4,4.3,0

255

Keywords

DEF

Passive statement defining a function or procedure.

Syntax
(1) DEF FNproc-part
(2) DEF PROCproc-part

where proc- part hastheformi dentifier[(paraneter-1ist)]

Parameters (1) and (2)

The optional parameters, which must be enclosed between round brackets and separated
by commas, may be of any type. For example: par m par nfg par n, ! par m $par m
It may be preceded by RETURN to use value-result passing instead of simple value
passing. In addition, whole arrays may be passed as parameters, e.g. a() , a$() .

Purpose

The DEF statement marks the first line of a user-defined function or procedure, and also
indicates which parameters are required and their types. The parameters are local to the
function or procedure (except for arrays), and are used within it to stand for the values of
the actual parameters used when it was called.

Note: Function and procedure definitions should be placed at the end of the
program, so that they cannot be executed except when called by the appropriate
PROC statement or FN function. The DEF statement should be the first item on the
line. If not, it will not be found.

Examples
DEF FNmean(a, b)
DEF PRCC ni t
DEF PRCCt hrow di ce(d%tries, RETURN nesg$)
DEF PRCCar ray_det ermi nant (A())

256

DEG

DEG

Function returning the number of degrees of its radian argument.

Syntax
DEG factor

Argument

Any numeric value.

Result

A real equal to 180* n/Ttwheren is the argument’s value.
Examples

angl e=DEG(ATN(a))
PRI NT DEG(PI/ 4)

257

Keywords

DELETE

Command to delete a section of the program.

Syntax
DELETE i nt eger, integer

Argument

Integer constantsin the range zero to 65279. They give the first and last line to be

del eted respectively. If the first line number is greater than the second, no lines are
deleted. Todelete just asingle linethe DELETE command is not necessary. Instead type
the line number and press Return.

Examples

DELETE 5, 22
DELETE 110, 150

258

DIM

DIM

Statement declaring arrays or reserving storage.
Function returning information about an array.

Syntax
DM dimpart [,dimpart] etc
where di m part is.
(1) identifier[%or $](expression[, expression] etc)
or
(2) nuneric-variabl e space expression

or asafunction:

(3) DI Marray)
(4) DI M array, expressi on)

Argument (1)

Thei denti fi er canbeany real, integer or string variable name. The expressions are
integers which should be greater than or equal to zero. They declare the upper bound of
the subscripts; the lower bound is aways zero.

Thisistheway to declare arraysin BASIC. They may be multi-dimensional: the bounds
are limited only by the amount of memory in the computer. Numeric arrays are
initialised to zeros and string arrays to null strings.

Argument (2)

The numeri c- vari abl eisany integer or real name. It isalwaysglobal, evenif itis
declared locally. The expression gives the number of bytes of storage required minus
one, and should be -1 or greater. It is limited only by the amount of free memory.

The use of this form of DIM is to reserve a given number of bytes of memory, in which
to put for example, machine code. The address of the first byte reserved, which will be a
multiple of four, is placed in theumeric-variable. The byte array is uninitialised.

Argument (3)

Thear r ay is the name of any previously DIMed array, or an array used as a formal
parameter in a procedure or function. The result of the function is the number of
dimensions which that array has.

259

Keywords

Argument (4)

The ar r ay isthe name of any previously DIMed array or an array used as aformal
parameter in a procedure or function. The expression is anumber between one and the
number of dimensions of the array. The result of the function is the subscript of the
highest element in that dimension, i.e. the value used for that subscript in the DIM
statement that declared the array in the first place.

Note: It is possible to have local arrays, whose contents are discarded when the
procedure or function in which they are created returns. See LOCAL on page 314.

Examples

DI M nane$(num nanmes%

DI M si n(90)

DM matrix% 4, 4)

DIM A(64), BY%12,4), C$(2,8,3)
Dl M byt es% si ze* 10+over head
PRI NT DI M name$())

si ze% =Dl M name$(), 1)

260

DIv

DIV

Integer division

Syntax
operand DIV operand

Operands

I nteger-range numerics. Reals are converted to integers before the divide operation is
carried out. The righthand side must not evaluate to zero.

Result

The (integer) quotient of the operands is always rounded towards zero. If the signs of the
operands are the same, the quotient is positive, otherwiseit is negative. The remainder
can be found using MOD.

Examples

PRINT (first-last) DIV 10
a%space% DIV &100

261

Keywords

DRAW

Statement to draw aline to specified coordinates.

Syntax
DRAW [BY] expression, expressi on

Arguments

The two expressions give the coordinates of one of the end points of astraight line. The
other end point is given by the current graphics cursor position. After the line has been

drawn (using the graphics foreground colour and action), the graphics cursor is updated
to the coordinates given in the DRAW statement.

If the keyword BY is omitted, the coordinates are absolute. That is, they give the
position of the end of the line with respect to the graphics origin. If BY isincluded, the
coordinates are relative. That means they give the position of the end of the line with
respect to the current graphics cursor position.

Examples

DRAW 640,512 : REMDraw a line to mddle of the screen
DRAW BY dx% dy%

262

EDIT

EDIT

Command to enter the BASIC screen editor.

Syntax
EDI T

Purpose

EDI T enters the BASIC screen editor to alow you to create a new program or amend
the current one. Full details of the editor are given in the chapter entitled Editing BASC
files on page 190.

263

Keywords

ELLIPSE

Statement to draw an ellipse.

Syntax
ELLI PSE [FI LL] expr1, expr2, expr3, exprd[, expr 5]

Arguments
expr 1to expr 5 areinteger expressions. The first two give the coordinates of the
centre of the ellipse. The third expression gives the length of the semi-major axis. This
istheaxisparallel with the x axisif theellipseisnot rotated. Thefourth expression gives
the length of the semi-minor axis. Thisisthe axisparallel with they axisif the ellipseis
not rotated.

The optional fifth expression gives the rotation of the ellipse, in radians, anti-clockwise.
ELLIPSE drawsthe outline of an ellipse. ELLIPSE FILL plots asolid ellipse.

Note: The ELLIPSE statement has some (minor) restrictions about the size of its
operands: if both of the semi-axes are of length zero, then you are not allowed to
specify arotation value. If the semi-minor axis length is zero, then the rotation, if
specified, must not be zero. The result of trying to draw any of these ‘illegal’
ellipses is &i vi si on by zer o error.

Examples

ELLI PSE 640, 512, 200, 100
ELLI PSE FI LL x% y% maj or % m nor % ang

264

ELSE

ELSE

Part of the ON GOTO/GOSUB/PROC ... ELSE or IF ... THEN ... ELSEor IF ...
THEN ... ELSE ... ENDIF constructs.

Syntax
See |IF and ON entries, as appropriate.

Note: EL SE may occur anywherein the program, but is only meaningful after an IF
(multi- or single-line) or ON ... GOSUB/GOTO/PROC statement. When used as
part of amulti-line IF statement, it must be the first non-space object on the line.

Examples

| F a=b THEN PRI NT "hell 0" ELSE PRI NT "good-bye"
| F ok ELSE PRI NT "Error"
ON choi ce GOSUB 100, 200, 300, 400 ELSE PRI NT"Bad choi ce"

I F num>=0 THEN
PRI NT SQR(num

ELSE
PRI NT "Negative number"
PRI NT SQR(-num

ENDI F

265

Keywords

END

Statement terminating the execution of a program or afunction returning the top of
memory used.

Statement setting the highest address used by BASIC.
Function returning the address of the end of BASIC variables.

Syntax
as a statement:
(1) END
(2) END = expression
as afunction:
(3) END

Purpose (1)
The END statement terminates the execution of a program.

Note: This statement is not always necessary in programs; execution stops when the
line at the end of the program is executed. However, END (or STOP) must be
included if execution isto end at a point other than at the last program line. This
prevents control falling through into a procedure, function or subroutine. END is
also useful in error handlers.

Purpose (2)

When used in aassignment, END sets the highest address used by BASIC when running
under the WIMP. This can be used by programs running under the WIMP to claim more
memory from the free pool, or aternatively to give up unrequired memory.

The expression should be an integer giving the new value for HIMEM. After the call,
memory above the given address will be de-allocated and HIMEM will be set to that
location. In addition, local arrays and installed libraries are cleared.

Restrictions on the use of END=

I 1.04interpreter
AsHIMEM holds the address of the start of the stack, you should not use this
statement if there is anything on the stack, i.e. you should not use it within PROCs,
FNs or any looping construct.

266

END

I 1.05interpreter
You can now use END= almost anywhere, except with INSTALLed libraries,
nested within EVAL or LOCAL ERROR, nested within assignmentsto local arrays,
or within nested local arrays.

If there is not enough free memory to set HIMEM to the requested value, the error
Attenpt to allocate insufficient menory isgiven.

Purpose (3)

The END function returns the address of the top of memory used by a program and its
variables. The expression END-TOP gives the number of bytes used by variables
(except LOCAL arrays), and OVERLAY and LIBRARY libraries.

Examples

PRI NT END
END = &10000 : REM only need 32K to RUN

267

Keywords

ENDCASE
Statement marking theend of aCASE ... OF ... WHEN ... OTHERWISE ...
ENDCA SE construct.
Syntax
ENDCASE

Note: ENDCA SE must be the first non-space object on the line. When the
statements corresponding to a WHEN or OTHERWISE statement have been
executed, control then jumps to the statement following the ENDCASE. If
ENDCASE itself is executed, it signals the end of the CASE statement, no matches
having been made. Control then continues as normal.

268

ENDIF

ENDIF

Terminatesan IF ... THEN ... ELSE ... ENDIF construct.

Syntax
ENDI F

Note: ENDIF marks the end of a block-structured IF statement. It must be the first
non-space object on aline. When the statements corresponding to the THEN or

EL SE statement have been executed, control jumps to the statement following the
ENDIF. If ENDIF itself is executed, it signals the end of the IF statement, nothing
having been executed as aresult of it. Control then continues as normal.

269

Keywords

ENDPROC

Statement marking the end of a user-defined procedure.

Syntax
ENDPROC

Purpose

When executed, an ENDPROC statement causes BASIC to terminate the execution of
the current procedure and to restore local variables, actual parameters, LOCAL DATA
and LOCAL ERROR. Control is passed to the statement after the PROC which called
the procedure. ENDPROC should only be used in a procedure. Otherwise, whenitis
encountered, aNot i n a procedur e error message is generated.

Examples
ENDPRCC

| F a<=0 THEN ENDPROC ELSE PRCCrecurse(a-1)

270

ENDWHILE

ENDWHILE

Statement to terminate a WHILE ... ENDWHILE loop.

Syntax

ENDWHI LE

Note: When an ENDWHILE is executed, control 1oops back to the corresponding
WHILE statement. The statements forming the WHILE ... ENDWHILE loop are
executed until the condition following the matching WHILE evaluates to FAL SE,
whereupon control jumps to the statement following the ENDWHILE.

Example

MODE 15

I NPUT X

VWH LE X > 0
&AL X
CI RCLE FI LL 640, 512, X
X-=4

ENDVWHI LE

271

Keywords

EOF #

Function indicating whether the end of afile has been reached.

Syntax
EOF#f act or

Argument
A channel number returned by an OPENxx function.

Result

TRUE if the last character in the specified file has been read, FAL SE otherwise. EOF for
afile may bereset by positioning its pointer using the PTR# statement.

Examples

REPEAT
VDU BCET#fil e
UNTIL ECF#file

| F EOF#i nvoi ces PRINT "No npre invoi ces"

272

EOR

EOR

Operator giving the bitwise exclusive-OR (EOR).

Syntax
rel ati onal EOR rel ati onal

Operands
Relational expressions, or hit values to be EORed

Result

Thelogical bitwise EOR of the operands. Corresponding bitsin the operands are EORed
to produce the result. Each bit in the result is zero if the corresponding bitsin the
operands are equal, and otherwise one.

Examples

PRI NT hei ght >10 EOR wei ght <20
bits = mask EOR val uel

273

Keywords

ERL

Function returning the last error line.

Syntax
ERL

Result
Integer between 0 and 65279. Thisisthe line number of the last error to occur. An error
line of O impliesthat the error happened in immediate mode or that there has not been an
error.
Note: If an error occursinside aLIBRARY, INSTALL or OVERLAY procedure,
ERL is set to the number of the last line of the main program. It does not normally
indicate where in the library the error occurred.

Examples

REPORT : |IF ERL<>0 THEN PRINT " at line "; ERL
| F ERL=3245 PRI NT "Bad function, try again”

274

ERR

ERR

Function returning the last error number.

Syntax
ERR

Result
A four-byte signed integer. Errors produced by BASIC are in the range 0 to 127.

Note: The error number O is classed as a fatal error and cannot be trapped by the
ON ERROR statement. An example of afatal error isthat produced when aBASIC
STOP statement is executed.

Examples
| F ERR=18 THEN PRINT "Can't use zero; try again!!"

| F ERR=17 THEN PRI NT" Sur e?": A$=GET$: | F | NSTR(" Yy", A$) THEN
STOP

275

Keywords

ERROR

Generates an error, or is part of the ON ERROR statement.

Syntax

(1) ON ERROR ...
(2) ERROR [EXT] expressionl, expression2

Note (1): See ON ERROR for details of the error handling statements.

Arguments (2)

expressi onl evauatesto afour-byte signed integer corresponding to an error
number. expr essi on2 evaluates to a string associated with this error number. The
error described is generated, in the same way asinternal BASIC errors. Thus ERL will
be set to expr essi onl and REPORTS set to expr essi on2. The current error
handler will then be called, unless the error number is zero, in which case afatal
(untrappable) error will be generated.

If the keyword EXT is present, then BASIC terminates and the error number and string
are passed to the error handler of the program that invoked BASIC. The default BASIC
error handler usesthisif the - qui t option was given on the command line.

Examples

ERROR 6, "Type m smatch: nunber needed"
ERROR EXT ERR, REPORT$: REM pass on the error

276

EVAL

EVAL

Function which evaluatesiits string statement as an expression.

Syntax
EVAL factor

Argument
A string which EVAL evaluates as a BASIC expression.

Result

EVAL can return anything that could appear on the righthand side of an assignment
statement, including strings. It can also produce the same errors that occur during
assignment. For example:

Type m smatch: nunber needed
and

No such function/ procedure.

Examples

| NPUT hex$
PRI NT EVAL("&" +hex$)

f $=" LEFTS$("
e$=EVAL(fS$+"""ABCDE""",2)")

277

Keywords

EXP

Function returning the exponential of its argument.

Syntax
EXP factor

Argument

Numeric from the largest negative real (about —1E38) to approximately +88.

Result

Positive real in the range zero to the largest positive real (about 1E38). The result could
be expressed as the argument where E is the constant 2.718281828.

Example
DEF FNcosh(x)=(EXP(x) + EXP(-x))/2

278

EXT#

EXT#

Pseudo-variable returning or setting the length (extent) of an openfile.

Syntax

(1) EXT#factor
(2) EXT#factor=expression

Argument (1)
f act or isachannel number, as allocated by one of the OPENxx functions.

Result

Integer giving the current length of the file from 0 to, in theory 2147483648, although in
practice the extent is limited by the file medium in use.

Argument (2)
fact or isachannel number as allocated by one of the OPENxx functions.

expr essi onisthe desired extent of the file, whose upper limit depends on the filing
system. The lower limit is 0. The main use of the statement isto shorten afile. For
example: EXT#f i | e=EXT#f i | e- &1000. A file may be lengthened by explicitly
using PTR#, or implicitly by BPUTing to its end.
Note: Aswith all the pseudo-variables, the LET keyword and the operators += and
—= cannot be used with EXT#.

EXT is also used a part of the ERROR EXT . statement; see the ERROR
keyword for details.

Examples

| F EXT#fi1e>90000 THEN PRINT "File ful | ": CLOSE#fil e
EXT#0op=EXT#o0p+&2000

279

Keywords

FALSE

Function returning the logical value FALSE.

Syntax
FALSE

Result

The constant zero. The function is used mnemonically inlogical or conditional
expressions.

Examples
f | ag=FALSE

REPEAT
Cl RCLE RND(1279) , RND(1024) , RND(200)
UNTI L FALSE

280

FILL

FILL

Flood-fill an areain the current foreground colour.

Syntax

FILL [BY] expression, expression

Arguments

The two expressions give the coordinates of the point from which the flood-fill isto
commence (the ‘seed’ point). The filled pixels are plotted using the current foreground
colour and action over an area bounded by non-background colour pixels and the
graphics viewport. If the seed point is in a non-background colour, then no filling takes
place at all.

The graphics cursor is updated to the coordinates given,

If the keyword BY is omitted, the coordinates are absolute. That is, they give the
position of the seed point with respect to the graphics origin. If BY is included, the
coordinates are relative. That means they give the position of the seed point with respect
to the current graphics cursor position.

Examples

FILL x% y%
FILL BY dx% dy%

281

Keywords

FN

Word introducing or calling a user-defined function.

Syntax
(1) DEF FNproc-part
(2) FNproc-part

Argument (1)

For the format of pr oc- part, see DEF above. It gives the names and types of the
parameters of the function, if any. For example:

1000 DEF FNni n(a% b% |F a%hb% THEN =a% ELSE =b%

a%and b%are the formal parameters. They stand for the expressions passed to the
function (the actual parameters) when FNimi n is called. The result of a user-defined
functionisgiven by a statement starting with =. Asthe example above shows, there may
be more than one = in afunction. The first one which is encountered during execution
terminates the function.

Note: User-defined functions may span several program lines, and contain all the
normal BASIC statements, for example, FOR loops, |F statements, and so on. They
may also declare local variables using the LOCAL keyword.

Argument (2)

proc- part isanidentifier followed by alist of expressions (or array or RETURN
variables) corresponding to the formal parametersin the DEF statement for the function.
The result depends on the assignment that terminated the function, and so can be of any
type and range. An example function call is:

PRI NT FNmi n(2*bananas% 3*appl es%+1)

Examples

DEF FNfact (n% |F n%1 THEN =1 ELSE =n% FNf act (n% 1)
DEF FNhex4(n% =Rl GHT$(" 000" +STR$~(n% , 4)
REPEAT PRI NT FNnex4(GET): UNTIL FALSE

282

FOR

283

FOR

Part of the FOR ... NEXT statement.

FOR vari abl e=expressi on TO expressi on [STEP expressi on]

Arguments

The variable can be any numeric variable reference. The expressions can be any numeric
expressions, though they must lie in the integer range if the variable is an integer one. It
is recommended that integer looping variables are used for the following reasons:

I theloops go faster
I rounding errors are avoided.

If the STEP part is omitted, the step is taken to be +1. The action of the FOR loop is as
follows. Thelooping variableis set to thefirst expression. Thelimit expression and step,
if present, are remembered for later. The statements up to the matching NEXT are
executed. At this stage, the step is added to the looping variable. The termination
condition is that, for positive steps, the looping variable has become greater than the
limit, and for negative steps it has become less than the limit. If this condition is met,
control continues at the statement after the NEXT. Otherwise, control jumps back to the
statement after the NEXT.

Note: The statements between a FOR and its corresponding NEXT are executed at
least once as the test for loop termination is performed at the NEXT rather than the
FOR. Thus aloop started with FOR I=1 TO 0 executes once, with | setto 1 in the
body of the loop. The value of the looping variable when the loop has finished
should be treated as undefined, and should not be used before being reset by an
assignment.

Examples

FOR addr %200 TO 8000 STEP 4
FOR | =1 TO LEN(a$)

Keywords

GCOL

Statement to set the graphics colours and actions.

Syntax

GCOL [expressionl,] expression2 [TINT expression3]

Arguments
GCOL sets the colour and plot mode that will be used in subsequent graphics operations.

expressi onl,if present, isan integer between 0 and 255 which determines the plot
‘action’, i.e. how the graphics colowxpr essi on2, will be combined with what's on
the screen when plotting points, lines, etc. Its basic range is 0 to 7, as shown below:

Action Meaning

Store the colougxpression2 on the screen

OR the colour on the screen wékpression2

AND the colour on the screen wigkpression2

EOR the colour on the screen witpression2

Invert the current colour, disregardiegression2

Do not affect the screen at all

AND the colour on the screen with the N@&gression2
OR the colour on the screen with the NéXpression2

NOoO o~ WNEO

Although action 5 does not actually alter the screen, each pixel is accessed as though the
operation was taking place, so it is no quicker than the other actions.

If you add n*16 to the action number, then colour patterns are used instead of solid
colours. n is in the range 1 to 4 for the four basic patterns, or 5 for a large pattern made
from the other four placed side by side. VDU 23,2 to VDU 23,5 are used to set the
colour fill patterns. If the currently selected pattern is re-defined, it becomes active
immediately.

If you further add 8 to the action, then where the colour pattern contains the current
graphics background colour, nothing is plotted, i.e. that colour becomes transparent. For
example, suppose the display is a four-colour one, and the current background colour is
129 (red).

Now, if pattern 1 was selected as the foreground co8C@{ 16, 0), a solid rectangle
would be red-yellow, as pattern 1 consists of alternating red and yellow pixels. However,
if the foreground colour was set usiBGOL 24, 0 (adding 8 to the plot action

number), then a solid rectangle would appear yellow, with transparent ‘holes’ where the
red pixels would have been plotted.

284

GCOL

Adding 8 to the action also causes sprite plotting to use the transparency mask, if
present. See the chapter entitled Sprites on page 152 for more details.

If expr essi onlisomitted, 0isused, which meansthat the colour given isstored onto
the screen.

The colour number, expr essi on2, isintherange 0to 255. Values below 128 are used
to set the graphics foreground colour. Other values set the background colour. For
example, colour 129 sets the background colour to 129-128, or 1. The number is treated
MOD the number of coloursin the current mode, i.e. 2, 4, 16 or 64. Thusin 256-colour
modes, the colour range is 0 to 63 (or 128 to 191 for background).

The TINT value, if present, is used to add one of four whiteness levels to the 64 colours

availablein the 256-colour modes, giving thetotal 256 possible hues. expr essi on3is

in the range 0 to 255, where currently the only significant levels are 0, 64, 128 and 192.
Note: WIMP-based programs should use Wimp_SetColour or
ColourTrans_ReturnGCOL, not GCOL.

Examples
GCca. 2
DRAW 100, 100 : REMDraw a line in colour 2
GCOL 4,128
CLG : REM I nvert the graphics w ndow
GCCa. 1,2 : REMOR the screen with col our 2

GCOL 18 TINT 128

285

Keywords

GET

Function returning a character code from the input stream (e.g. keyboard, R$423, etc).

Syntax
CET

Result

Aninteger between 0 and 255. Thisisthe ASCII code of the next character in the buffer
of the currently selected input stream (keyboard or RS423). The function will not return
until a character is available, and so it can be used to halt the program temporarily.

Note: The character entered is not echoed onto the screen. To make it appear you
must explicitly PRINT it.

Examples
PRI NT "Press space to continue" :REPEAT UNTIL GET=32
ON GET-127 PROCa, PROCh, PROCc ELSE PRINT "IIlegal entry”

286

GET$#

GETS$#

Function returning a string from afile.

Syntax
GET$#f act or

Argument
A channel number returned by an OPENxx function.

Result

A string of characters read until alinefeed (ASCII 10), carriage return (ASCII 13), null
character (ASCII 0) or the end of the file is encountered, or else the maximum of 255
charactersis reached. The terminating character is not returned as part of the string.

Note: PTR# is updated to point to the next character in the file. If the last character
in the file has been read, EOF# for the channel will be TRUE.

Examples

string$ = GET$#channel
PRI NT GET$#fil eno

287

Keywords

Function returning a character from the input stream (e.g. keyboard).

Syntax
CET$

Result
A one-character string whose value would be CHR$(GET) if GET had been called
instead. Thisis provided so you can use statements like IF GET$="*". . . rather than
IF CHR$(GET)="*"

Examples

PRI NT "Do you want anot her gane?":response$ = GET$
| F response$ = "Y" or response$ = "y" CHAIN "progrant

PRINT "Input a digit "; : PRINT GET$

288

GOSUB

GOSuUB

Statement to call a subroutine.

Syntax
(1) GOSUB expression
(2) ON expression GOSUB expressionl [, expression2...]
[ELSE st atenent]

Argument (1)
expr essi on should evaluate to an integer between 0 and 65279, in other words aline
number. If the expression is not asimple integer (e.g. 1030) it should be enclosed
between round brackets. The line given isjumped to, and control is returned to the
statement after the GOSUB by the next RETURN statement.

Argument (2)

expr essi on should evaluate to an integer. If thisinteger is n then the nth subroutine
listed after the GOSUB is jumped to. If theinteger islessthan 1 or greater than the
number of line numbers given, the statement following the EL SE, if it is present, is

executed.

Note: Procedures should be used in preference to subroutines since they are more
flexible and produce a better structured program. The line number after GOSUB
should be a constant so that RENUMBER works properly.

Examples

10 GOsUB 2000
20 GOSUB (2300+20*opt): REM not nice
30 ON x% GOSUB 100, 200, 300 ELSE PRI NT "Qut of range"

289

Keywords

GOTO

Statement to transfer control to another line.

Syntax

(1) GOTO expression
(2) ON expression GOTO expressionl [, expression2...][ELSE
statenent]

Argument (1)

expr essi on should evaluate to an integer between 0 and 65279: aline number. If the
expression isnot asimpleinteger, it should be placed between round brackets. Thisline
number isjumped to and execution carries on from this new line.

Argument (2)

expr essi on should evaluate to an integer. expr essi onl1... should evaluate to
integer line numbers between 0 and 65279. If the first integer is n then the nth line after
the GOTO isjumped to. If theinteger isless than 1 or greater than the number of line
numbers given, the statement following the EL SE, if it is present, is executed.

Note: The line number after GOTO should be a constant so that RENUMBER and
APPEND work properly.

Examples

GOTO 230
I F TI ME<1000 THEN GOTO 1000
ON x GOro 20, 50, 30, 160

290

HELP

HELP

Command giving help information.

Syntax
HELP [keywor d]

Purpose

HELP displaysalist of useful information about the status of BASIC. If the keywor d
is present, help about that particular command, statement or function is printed. To
obtain alist of al keywords, type HELP . .

Examples

HELP
HELP H M
HELP .

201

Keywords

HIMEM

Pseudo-variable holding address of the top of the BASIC stack.

Syntax

(1) H MEM
(2) H MEM = expression

Result (1)

Aninteger giving the address of the location above the end of user memory. The amount
of user memory isgivenby HHIMEM - LOMEM and the amount of free memory by
HIMEM - END.

Argument (2)

expr essi on should be an integer between LOMEM and the top of usable memory. It
restricts the amount of memory which the current program can use for workspace stacks
etc, hence giving an area where data, or machine code routines can be stored.

Note: If HIMEM is set carelessly, running the program may producethe No r oom
error. There must always be enough for the stack.

The INSTALL statement lowers HIMEM by the size of the library being installed.

When an attempt is made to set HIMEM, LOMEM, or PAGE to aniillegal value, a
warning message is displayed, and no change is made, but the program nevertheless
continues to run. This means that such errors cannot be trapped using ON ERROR.

Examples

PRI NT "Menory available = "; H MEM - LOVEM
a%H MEM 1000 : H MEM=a%

292

IF

293

Statement to execute statements conditionally.

(1)
| F expr [THEN] [statenents...]
[[ELSE][statenents. ..]]

(2)
| F expressi on THEN
[statenents...]
[ELSE [statenents...]
statenents. . .|
ENDI F

Arguments (1)

expr istreated as atruth value. If it is non-zero, it is counted as TRUE and any
st at enent s inthe THEN part are executed. If the expression eval uates to zero
(FALSE), then the ELSE part st at enent s are executed.

st at enent s iseither alist of zero or more statements separated by colons, or aline
number. In the latter case thereis an implied GOTO after the THEN (which hasto be
present) or EL SE.

Note: The THEN is optional before statements except before* commands. For
example:
| F a THEN *CAT
not
IF a *CAT

The EL SE part matches any |F, so be wary of nesting IFson aline. Constructs of the
form:

IFa THEN... IF b THEN... ELSE...

should be avoided because the EL SE part might match either the first or second IF
depending on the values of a and b. To avoid the ambiguity, use amulti-line I F of
the form:

Keywords

| F a THEN | F a THEN
IF b THEN IF b THEN
ELSE or ENDI F
ELSE REM part of IF a
ENDI F -
ENDI F ENDI F
depending on the effect required.

However, the form:
IF a THEN... ELSE IF b THEN...

is not ambiguous and can be used with no problems.

Arguments (2)

expr essi onistreated asatruth value. If itisnon-zero, it iscounted as TRUE and any
statements on the line after the THEN down to either an ELSE or an ENDIF are
executed. If the expression evaluates to zero (FAL SE), any statements following the
EL SE (if present) until the ENDIF are executed. Note that in this form, THEN must be
the last thing on the line.

Examples

| F tenp<=10 PROC ow_t enp
| F a%b% THEN SWAP a% b% ELSE PRI NT "No swap"
IF B*"2 >= 4*A*C THEN

PROCr oot s(A, B, O

ENDI F

IFr$ ="Y" ORr$ ="y" THEN
PRI NT " YES"

ELSE
PRI NT " NO'
STCP

ENDI F

294

INKEY

INKEY

Function returning a character code from the current input stream, or interrogating the
keyboard.

Syntax

(1) INKEY positive-factor
(2) INKEY negati ve-factor
(3) I NKEY -256

Argument (1)
Aninteger in the range 0 to 32767, which is atime limit in centi-seconds.

Result

The ASCII code of the next character in the current input buffer if one appearsin the
time limit set by the argument, or —1 if a time-out occurs.

Argument (2)

An integer in the range —255 to —1, which is the negative INKEY code of the key being
interrogated (se@ppendix D - Inkey values on page 428or details).

Result
TRUE if the key is being pressed at the time of the call, FALSE if it is not.

Argument (3)
—256

Result

A number indicating which version of the operating system isin the computer.

Examples

DEF PROCwait(secs%)
IF INKEY (100*secs%): REM throw away result
ENDPROC

IF INKEY(-99) THEN REPEAT UNTIL NOT INKEY(-99)

295

Keywords

INKEY$

Function returning a character from the input stream.

Syntax
| NKEY$ factor

Argument
AsINKEY (1)

Result

Where INKEY would return =1, INKEY$ returns the null string. In all other
situations, it return€HR$(| NKEYar gunent) .

Example
A$ = | NKEY$(500)

296

INPUT

INPUT

Statement obtaining a value or values from the input stream.

Syntax

INPUT isfollowed by an optional prompt, which, if present, may be followed by a
semi-colon or comma, which causes a ? to be printed out after the prompt. Thisis
followed by alist of variable names of any type, separated by commas. After the last
variable, the whole sequence may be repeated, separated from the first by acomma. In
addition the position of prompts may be controlled by the SPC, TAB and ’ print
formatters (see PRINT on page 348).

Note: Leading spaces of the input string itself are skipped, and commas are taken as
marking the end of input for the current item.

Examples
INPUT a$: REM Print a sinple"?" as a pronpt
I NPUT " How many", nunf : REM pronpt is "How many?"
I NPUT " Address &'hex$: REM "Address &' no ? because no ,
| NPUT TAB(10)"Nane ", n$ TAB(10)"Address ", a$
INPUT a, b,c,d,"Mre ",yn$
| NPUT SPC(5)"Letter",char$

297

Keywords

INPUT LINE

Statement obtaining a value or values from the input stream.

Syntax
This has the same syntax as INPUT

Result

If the input variable is a string, all the user’s input is read into the variable, including
leading and trailing spaces and commas. If the input variable is numeric, only a single
value will be selected from the beginning of the input line.

Note: INPUT LINE is equivalent to LINE INPUT

Example
I NPUT LINE ">" basic$

298

INPUT#

INPUT#

Statement obtaining a value or values from afile.

Syntax
| NPUT#factor [, variable, variable...]

Arguments

f act or isthe channel number of the file from which the information isto be read, as
obtained by an OPENxx function. The variables, if present, may be of any type. The
separators may be semi-colons instead of commas.

Integer variables are read as &40 followed by the two’s complement representation of
the integer in four bytes, most significant byte first.

5-byte real variables are read as &80 followed by five bytes. The first four bytes are the
mantissa and the fifth is the exponent. The mantissa is read least significant byte (LSB)
first. 31 bits represent the magnitude of the mantissa and one bit (bit 7 of the fourth byte)
the sign. The exponent byte is in excess-128 form.

8—byte real variables are read as &88 followed by two 4—-byte words, in IEEE Double
Precision (D) format. The exponent is represented by bits 20 to 30 in the first word. The
sign bit is bit 31 in the first word. The mantissa is represented by bits 0 to 19 in the first
word and bits 0 to 31 in the second word.

Both BASIC V and BASIC VI can read 5—- and 8-byte real formats.

String variables are read as a zero byte followed by a byte containing the string length
and then the characters in the string in reverse order.

Note: Files read using INPUT# must adhere to the format described above, which
implies they should have been created using PRINT#. BASIC will perform
conversion between integers and floating point values where possible.

Examples

| NPUT#dat a, nane$, addr 1$, addr 2$, addr 3%, age%
| NPUT#dat a, $buffer, | en

299

Keywords

INSTALL

Statement to load a function or procedure library into memory.

Syntax
| NSTALL expression

Argument

expr essi onisastring which should evaluate to afilename that is valid for the filing
systemin use.

Purpose

INSTALL loads the chosen function and procedure library into the top of memory and
lowers the BASIC stack and value of HIMEM by an appropriate amount. The library
remains in memory until you QUIT from BASIC. Any number of libraries may be
installed provided that there is enough memory for them.

When searching for a procedure or function, BASIC looks in the following order: first,
the current program is searched, in line-number order; next, any procedure libraries
loaded using LIBRARY are searched - the most recently loaded file is searched first;
then, any INSTALLed libraries are examined, again in the reverse order of loading.
Finally the OVERLAY library list is searched.

The LVAR command lists (the first lines of) librariesin the order in which they are
examined.

Examples

| NSTALL "Printout"
A$ = "Libraryl"
| NSTALL A$

300

INSTR(

INSTR(

Function to find the position of a substring in a string.

Syntax

| NSTR(expr essi onl, expressi on2[, expressi on3])

Argument
expressi onlisany string which isto be searched for a substring.
expressi onZ isthe substring required.

expressi on3isanumeric in therange 1 to 255 and determines the position in the
main string a which the search for the substring will start. This defaultsto 1.

Result

An integer in the range O to 255. If O is returned, the substring could not be found in the
main string. A result of 1 means that the substring was found at the first character of the
main string, and so on. The position of the first occurrence only is returned.

Note: If the substring is longer than the main string, O is always returned. If the
substring isthe null string, the result isalways equal to expr essi on3, or 1if this
is omitted.

Examples

REPEAT a$=GET$: UNTIL | NSTR("YyNn", a$) <> 0
pos%I| NSTR(cont, " *FX", 10)

301

Keywords

INT

Function giving the integer part of a number.

Syntax
| NT factor

Argument

Any integer-range numeric.

Result

Nearest integer less than or equal to the argument. Note that thisis different from
rounding towards zero: whereas| NT(1. 5) equals1, | NT(- 1. 5) isequal to- 2, not
-1

Examples

DEF FNround(n) =l NT(n+0. 5)
DEF FNTruncat eToZer o(n) =SGN\n* | NT(ABS(n))
size=l en% | NT((t op-bottom)/100)

302

LEFT$(

LEFTS$(

Function returning, or statement altering, the left part of a string.

Syntax

(1) LEFT$(expressionl [, expression2])
(2) LEFT$(variable [, expressionl]) = expression2

Argument (1)
expressi onlisastring of length between 0 and 255 characters.

expressi on2, if present, gives the number of characters from the left of the string
that are to be returned. If itisomitted, LEN(expr essi onl) - 1 isused, i.e. al but the
last character of the string is returned. Thisis useful for stripping off unwanted trailing
characters.

Result

Characters from the left of expr essi on1, where the length of the result isthe
minimum of the length of expr essi onl1 and expr essi on2 (or theimplied default
for expressi on2).

Argument (2)

var i abl eisthename of thestring variableto be altered. The charactersin thevariable

are replaced, starting from the lefthand character (position 1), by the string

expressi on2. If the number expr essi onl ispresent, this gives the maximum
number of charactersthat will be overwritten in the variable. Otherwise, it isthe smaller

of LENvar i abl e and LENexpr essi onZ2: the string’s length can never be altered by
this statement.

Examples
start$ = LEFT$(a$)
| eft _hal f $=LEFT$(i nput$, LEN(i nput$) DIV 2)
LEFT$(A$) = " ABCD'
LEFT$S(A$, n% = B$

303

Keywords

LEN

Function returning the length of a string.

Syntax
LEN f act or

Argument
Any string of 0 to 255 characters.

Result
The number of characters in the argument string, from 0 to 255.

Note: The function SUMLEN returns the total length of the elementsin a string array.

Examples

REPEAT | NPUT a$: UNTIL LEN(a$)<=10
| E LEN(i n$) > 12 THEN PRINT "Too | ong"

304

LET

LET

Statement assigning avalue to avariable.

Syntax
LET variable = expression

Argument

The vari abl e isany addressable object, suchasa, a$,a%! a,a?10,%a,a(1),
a() andsoon.

expr essi onisany expression of the range and type allowed by the variable: for reals,
any numeric; for integers, any integer-range numeric; for strings, any string of length 0
to 255 characters, and for bytes any integer in the range 0 to 255 (though an
integer-range number will be treated AND & FF).

If the variable is awhole array, the righthand side obeys the rules described in the
chapter entitled Arrays on page 52.

Note: The LET keyword is always optional in a variable assignment, and must not
be used in the assignment to a pseudo-variable. For example, LET Tl ME=100 is

illegal.

Examples

LET starttime=TI ME

LET a$=LEFT$(addr$, 10)

LET tabl e?i =127*SI N(RAD(i))
LET a() =1

LET A%) = B%) + C%)

305

Keywords

LIBRARY

Statement to load a function or procedure library into memory.

Syntax
LI BRARY expression

Argument

expr essi onisastring which should evaluate to afilename that is valid for the filing
systemin use.

Purpose

LIBRARY reserves an areain the BASIC heap (where variables are stored) and loads
the chosen function and procedure library into thisarea. It remains there until the heap is
cleared. Whilst the library isin memory, the current program can call any of the
procedures and functions it contains. See also INSTALL on page 300.

Examples
LI BRARY "Printout"

A$ = "Libraryl"
LI BRARY A$

306

LINE

LINE

Draw aline between two points.

Syntax

LI NE expression, expressi on, expr essi on, expressi on

Arguments

The (integer) expressions are two pairs of coordinates between which the lineis drawn.
The line is drawn using the current graphics foreground colour and action, and the
graphics cursor position is updated to the second pair of coordinates. It isequivalent to a
MOVE followed by a DRAW.

Examples

LI NE 100, 100, 600, 700
LI NE x1,y1,x2,y2
LI NE x1, y1, x1+xof f set, yl+yof fset

307

Keywords

LINE INPUT

Statement obtaining a value or values from the input stream.

Syntax
This has the same syntax as INPUT

Result

If the input variable is a string, all the user’s input is read into the variable, including
leading and trailing spaces and commas. If the input variable is numeric, only a single
value will be selected from the input line.

Note: LINE INPUT is equivalent to INPUT LINE

Example
LI NE | NPUT "Your nessage" mess$

308

LIST

309

LIST

Command to list the program.

Syntax
LI ST [/ine-range][| Fstring]

Argument

I'i ne- range givesthe start and end lines to be listed. Both values are optional and
should be separated by a comma. The first value defaults to zero and the last to 65279.

The IF, when present, is followed by a string of characters (not in quotes). Only lines
which contain this string are listed.

Note: In the search string following the | F statement, leading spaces areincluded as
part of the string. So the command

LIST I F PRI NT

will list

100 PRINT "Single space between |ine nunber and statenent.”
110 PRINT "Several spaces between |ine nunber and statenent”
but will ignore

120PRINT "No space between |ine nunber and statenent."

The command

LI ST | FPRI NT

will find and list al threelines.

The string given after the IF is tokenised before it is checked against the program.
Hence, LI ST | F PRINTandLI ST | F P. bothlist lines containing the PRINT
keyword. However, LI ST | F PR does not.

Because the string after IF is tokenised, only one version of the pseudo-variables
(each of which hastwo tokens) can be found. Thisisthe one acting as afunction (as
in PRINT TIME), rather than the statement version (asin TI ME=expr essi on).

Examples

LI ST
LI ST
LI ST
LI ST
LI ST
LI ST

1000,

, 50

10, 40

| FDEF

, 100 | Ffred%

Keywords

list the whole program

list from line 1000 to the end

list from the start to line 50

list from line 10 to 40 inclusive

list al lines containing a DEF

list al lines up to line 100 containing fred%=

310

LISTO

LISTO

Command to set the LIST indentation options.

Syntax
LI STO expressi on

Argument

expr essi on should be in the range zero to 31 and is treated as a five—bit number. The
meaning of the bits is as follows:

Bit Meaning

0 A space is printed after the line number
1 Structures are indented
2 Lines are split at the : statement delimiter
3 The line number is not listed. An error is displayed at line number
references
4 Keywords are listed in lower case
Examples
LI STO O Default
LI STO 2 All loops and conditionals indented by two characters
LI STO 940011 Tokens in lower case, structures indented, line numbers

followed by a space.

311

Keywords

LN

Function returning the natural logarithm of its argument.

Syntax
LN factor

Argument

Any strictly positive value: a numeric greater than zero.

Result
Real in the range —89 to +88 which is the log to base E (2.718281828) of the argument.

Examples

DEF FN og2(n)=LN(n)/LN(2)
PRI NT LN(10)

312

LOAD

LOAD

Command to load a BASIC program at PAGE.

Syntax
LOAD expression

Argument

expr essi on isastring which should evaluate to afilenamethat is valid for thefiling
systemin use.

Note: Any program which is currently in memory is overwritten and lost with all its
variables. The static integers (A%- Z%and @4 and INSTALLed libraries are not
affected.

Examples
LOAD adfs:: GDi sc. di sasm

where GDi sc isthe name of afloppy disc.
LOAD FNnextFil e

313

Keywords

LOCAL

Statement to declare alocal variable in a procedure or function.
Statement to make current DATA pointer local.
Statement to make the error control statuslocal.

(1) LOCAL [variable] [,variable...]
(2) LOCAL DATA
(3) LOCAL ERROR

Argument (1)

vari abl es following the LOCAL may be of any type, such asa, a% a$, $buf f er,

a() , and so on. The statement causes the current val ue of the variables cited to be stored

on BASIC's stack, ready for retrieval at the end of the procedure or function. This means
the value inside the procedure may be altered without fear of corrupting a variable of the
same name outside the procedure. At the end of the procedure, the old value of the
variable is restored.

Note: Local numerics are initialised to zero, and local strings are initialised to the
null string. Arrays can be declared as being local and then dimensioned using DIM
as normal.

Argument (2)

LOCAL DATA stores the current data pointer on the stack for the duration of a loop or
function/procedure call. This enables a new data pointer to be set up, using RESTORE,
and for the original one to be restored with RESTORE DATA. RESTORE DATA is
performed automatically on return from a function/ procedure.

Argument (3)

LOCAL ERROR remembers the current error handler so a subsequent use of
ON ERROR does not overwrite it. This error handler can later be restored using
RESTORE ERROR.

Note: LOCAL ERROR can be used anywhere in a program

If LOCAL ERROR is used within a procedure or function it must be the last item to
be made local.

Returning from a procedure or function call which contained a LOCAL ERROR
automatically restores any stored error status.

314

LOCAL

See also ON ERROR LOCAL on page 333.

Examples

LOCAL a$%,len%price
LOCAL a(), B() : DIMa(2), B(4,5)

10 ON ERROR PRCCerr or

20 res = FNdi vi de(opp, adj)

30 END

40 DEFFNdi vi de(x, y)

50 LOCAL ERROR

60 ON ERROR LOCAL PRINT "attenpt to divide by zero" :=0
70 =x/y : REM end of function restores previous error
status

315

Keywords

LOG

Function returning the logarithm to base ten of its argument.

Syntax
LOG factor

Argument

Any strictly positive value: a numeric greater than zero.

Result

Real in the range —38 to +38, which is the log to base ten of the argument.

Example
PRI NT LOG 2. 4323)

316

LOMEM

LOMEM

Pseudo-variable holding the address of BASIC variables.

Syntax

(1) LOVEM
(2) LOVEM = expression

Result (1)
The address of the start of the BASIC variables.

Argument (2)

expr essi onisthe address at which BASIC variables start. The expression should be
intherange TOPto HIMEM to avoid corruption of the program and/or the generation of
No r oomerrors.

Note: LOMEM should not be changed after any assignmentsin a program. If it is,
variables assigned before the change are lost. LOMEM isreset to TOP by CLEAR
(and thus by RUN).

If you attempt to set LOMEM to anillegal value, awarning messageis given and
LOMEM isnot altered.

Thevalue of LOMEM for the BASIC VI (64 bit reals) interpreter is 2K bytes higher
than that for the BASIC V (40 bit reals) interpreter.

Examples

LOVEMETOP+&8400 : REM reserve 1K above TOP
PRI NT LOVEM

317

Keywords

LVAR

Command displaying thefirst line of al current libraries, al defined variables and all
procedures and functions that have been called.

Syntax
LVAR

Purpose

LVARlists all the values of BASIC variables, sizes of arrays, known procedures and
functions. It also liststhe first line of al libraries currently loaded. These are displayed
in the same order asthat in which the libraries are searched when alibrary procedure or

function is called.

Note: In order for LVAR to be useful, you should ensure that the first line of each
library includes the full name of the library and the name of a procedure which can
be called to provide details of all the routines which the library contains.

318

MIDS$(

319

MIDS$(

Function returning, or statement assigning to a substring of a string.

Syntax

(1) M D$(expressionl, expression2[, expression3])
(2) M D$(vari abl e, expressi onl|[, expression2]) = expression3

Argument (1)
expressi onlisastring of length 0 to 255 characters.
expr essi onZ isthe position within the string of the first character required.

expressi on3, if present, gives the number of charactersin the substring. The default
valueis 255 (or to the end of the source string).

Result

The substring of the source string, of alength given in the third argument, and starting
from the position specified. The result string can never be of greater length than the
source string.

Argument (2)
var i abl e isthe name of the string variable which isto be altered.

expr essi on3 evaluates to a string which provides the characters to replace thosein
variable.

expr essi onl isthe position within the string of the first character to be replaced.

expressi on2, if present, gives the maximum number of characters to be replaced.
The replacement stops when the end of the string variable is reached, even if there are
charactersin expr essi on3 which are unused.

Examples

PRI NT M D$("ABCDEFG', 2,3); : REM should print "BCD'
ri ght _hal f $=M D$(any$, LEN(any$) DV 2)

M D$(A3, 4, 4) B$

M D$(AS$, 2, 5) M D$(B$, 3, 6)

Keywords

MOD

Operator giving the integer remainder of its operands, i.e. gives remainder of the
division.
Function giving the modulus of its array argument.
Syntax (1)
operand MXD operand

Arguments
The oper ands are integer-range numerics. The righthand side must not be zero.

Result

Remainder when the lefthand operand is divided by the righthand one using integer
division. The sign of the result is the same as the sign of the lefthand operand.

Syntax (2)
MOD nuneric array

Arguments
The numeri ¢ array canbe any integer or floating point array.

The square root of the sum of the squares (the modulus) of al the elements of the array.

Examples

INPUT i % i% = i % MOD nmax_nunfo
count %=count % MOD max% + 1

PRI NT result% MOD 100

DEF FNrns(a())=MoDa()/ SQRDI M a(), 1)

320

MODE

MODE

Statement changing, or function returning, the display mode.

Syntax

(1) MODE expression
(2) MODE

Arguments (1)
expr essi on should be an integer in the range 0 to 255.

There are 33 different modes, numbered from 0 to 36 (some numbers are excluded). The
appendix VDU commands shows you which modes will work on the different types of
monitor available.

If expr essi on isgreater than 128, the mode used is expression-128. Sufficient
memory, however, for two copies of the screen isreserved if the configured screen size
allows. Thisallows you to have one copy on display whilst you are updating the other,
which means that smooth animation can be obtained.

Details of all the modes available are given in the appendix VDU commands.
Changing mode also does the following:

I sets COUNT to zero

I setsthe text and graphics viewports to their defaults of the whole screen

I clearsthe screen to the current text background colour

I homesthe text cursor

I movesthe graphics cursor to (0,0)

I resetsthelogical-physical colour map (palette) to the default for the new mode

I resetsthe colour-fill patternsto their defaults for the new mode sets the dot pattern
for dotted linesto & AA and the repeat length to 8

I resets VDU 5 magnification.

Result (2)

Aninteger giving the current screen mode. If the screen mode was entered using a
number greater than or equal to 128 (i.e. a shadow mode), thisis not reflected in the
value returned by the MODE function. For example, if you typed MODE 129, the
MODE function would return 1.

321

Keywords

Examples

MCDE 0
MCDE nf46-128
PRI NT MODE

322

MOUSE

MOUSE

Statement interrogating and controlling the mouse position and button status.

Syntax (1)
MOUSE vari abl el, vari abl e2, vari abl e3 [, vari abl e4]

Thefirst two variables are assigned the x and y positions of the mouse as valuesin the
range —32768 to 32767. The third variable is assigned a value giving the status of the
mouse buttons as follows:

Value Satus

No buttons pressed

Right button only pressed
Middle button only pressed
Middle and right buttons pressed
Left button only pressed

Left and right buttons pressed
Left and middle buttons pressed
All three buttons pressed

No o~ wNEO

If present, the last variable is assigned the time of a monotonic (always increasing)
centi-second timer, which can act as a time-stamp for making sure that button-press
events are processed in order, and for detecting double clicks, etc.

Syntax (2)
MOUSE ON [expressi on]

MOUSE ON causes the mouse pointer to be displayed. The optional numeric expression
is the pointer shape to be used in the range 1 to 4. If it is omitted, 1 is used.

If bit 7 of the pointer shape number is set, i.e. the expression is in the range &81 to &84,
then the mouse pointer will be unlinked from the mouse. That is, movements of the
physical mouse will not affect the screen pointer. Instead, you c&Qudd TO x, y

to position the pointer.

Syntax (3)
MOUSE OFF

MOUSE OFF disables the mouse pointer, removing it from the screen.

323

Keywords

Syntax (4)

MOUSE COLOUR expression, expression, expression,
expressi on

This sets the colour components of the mouse pointer logical colour given in the first
expression to the red, green and blue values given in the second, third and fourth
expressions. Pointer logical colours are in the range 1 to 3. Colour O is always
transparent.

Syntax (5)
MOUSE TO expressi on, expressi on

This moves the mouse (and pointer) to the (x,y) position given by the first and second
numeric arguments.

Syntax (6)
MOUSE STEP expression[, expressi on]

This control s the speed of movement of the mouse pointer compared to the speed of the
movement of the actual mouse device. If there is one argument, it is used asamultiplier
for both the x and y movements. If there are two, thefirst is used for x and the second for
y. The arguments can be negative to reverse the usual directions.

Syntax (7)
MOUSE RECTANGLE expr, expr, expr, expr

This sets a bounding rectangle outside which the mouse cannot move. The arguments
arethe left, bottom, right and top of the rectangle in graphics units. If the mouse pointer
is outside the box when this command is given, it will be moved to the nearest point
within it.

Examples

MOUSE xpos% ypos% but t on%

MOUSE ON 2

MOUSE OFF

MOUSE COLOUR Col % red% gr een% bl ue%
MOUSE TO 100, 100

MOUSE STEP 3, 2

MOUSE RECTANGLE 640, 512, 1023, 1279

324

MOVE

MOVE

Statement to set the position of the graphics cursor.

Syntax

MOVE [BY] expression, expression

Arguments
The expressions are x and y coordinates of the new position for the graphics cursor.

If the keyword BY is omitted, the coordinates are absolute. That is, they give the
position of the cursor with respect to the graphics origin. If BY isincluded, the
coordinates are relative. That means they give the new position of the cursor with
respect to the current graphics cursor position.

MOVE isequivalent to PLOT 4; MOVE BY isequivaent to PLOT 0.

Examples

MOVE 0,0 : REM Goto the origin
MOVE BY 4*dx% 4*dy%

325

Keywords

NEW

Command to remove the current program, and to initialise the computer so that it is
ready to receive anew program.

Syntax
NEW

Purpose

The NEW command does not destroy the program, but merely sets afew internal
variables asif there were no program in the memory. The effect of NEW may be undone
using the OLD command, providing no program lines have been typed in, or variables
created, between the two commands. BASIC does an automatic NEW whenever it is
entered.

326

NEXT

NEXT

Part of the FOR ... TO ... NEXT structure.

Syntax
NEXT [variable][,[variable]...]

Arguments

The variables are of any numeric type, and if present should correspond to the variable
used to open the loop. See the FOR entry for adescription of the mechanism of the FOR
... NEXT loop.

Note: The variables after the NEXT should always be specified as this enables
BASIC to detect improperly nested loops. If the loop variable given after a NEXT
does not correspond to the innermost open loop, BASIC closes the inner loops until
amatching looping variable is found. In order for the indentation produced by
LISTO 2 to be useful, you should only close one loop per NEXT statement.

Examples
NEXT a%
NEXT : REM cl ose one | oop
NEXT j% i % : REM cl ose two | oops
NEXT , ,, : REM cl ose four | oops

327

Keywords

NOT

Function returning the bitwise NOT of its argument.

Syntax
NOT factor

Argument

An integer-range numeric.

Result

An integer in which all the bits of the argument have been inverted: ones have changed
to zeros and zeros have changed to ones. If the argument is a truth value, NOT can be
used in alogical statement to invert the condition. In this case, the truth value should
only be one of the values —1 (TRUE) and O (FALSE).

Examples

I F NOT ok THEN PRINT "Error in input"
i Nv¥%=NOT mask%
REPEAT UNTI L NOT | NKEY(-99)

328

OF

OF

Part of the CASE ... OF ... WHEN ... OTHERWISE ... ENDCASE statement.

Syntax
CASE expression OF

Arguments
expressi on may yield any type of value: integer, floating point, or string.

Note: The OF keyword must be the last item on the line. See the CASE keyword for
more details.

Examples

CASE n% OF
CASE LEFT$(answer$) OF

329

Keywords

OFF

Statement to remove the cursor from the screen

Syntax
CFF

Purpose

The OFF statement switches off the flashing text cursor until it is re-enabled by the ON
statement, or until cursor copying is used.

Examples
OFF

330

OLD

OLD

Command to retrieve a program after NEWhas been typed.

Syntax
oD

Purpose

The OLD command retrieves a program lost by NEW or Break providing no new
program lines have been entered, or variables defined. When you recover the previous
program using OL D, you may notice that the first [ine number has changed. In
particular, it isnow its old value MOD 256. So if thefirst line used to be 1000, it will

now be 232. You can remedy this slight problem using the RENUMBER command to
reduce the value of the line numbers.

331

Keywords

ON

Statement to restore the text cursor on to the screen.

Syntax
ON

Purpose

The ON statement re-enables the text cursor after it has been removed with an OFF
statement.

Example
ON

332

ON ERROR

ON ERROR

Statement defining or cancelling an error handler

Syntax

(1) ON ERROR [LOCAL] statenents
(2) ON ERROR OFF

Use (1)

The ON ERROR statement introduces an error handler. When an error occurs after an
ON ERROR has been executed, control passesto the first statement of the ON ERROR
line. The program continues from there. Note that all of the error handler code hasto be
on the ON ERROR line, so complex error handlers should use a procedure, for example:

10 ON ERROR PROCerr _handl er

Usually, before the error handler is called, BASIC will forget about all active

procedures, functions and loops, in effect reverting to the ‘top-level’ of the program.
However, if the LOCAL keyword is used on til ERROR line, then the nesting level
current when the ON ERROR is executed will be re-entered when the error occurs. Thus
error handlers which are useful within loops and other constructs may be written.

See also LOCAL ERROR on page 314 and RESTORE ERROR on page 366.

Use (2)

ON ERROR OFF cancels any active error handler, so that this default action is used
when an error occurs:

100 TRACE OFF
110 IF QU T THEN

120 ERROR EXT ERR, REPORT$

130 ELSE

140 RESTORE: (H MEM 4) =@b6 @4&8900

150 REPORT:IF ERL PRINT " at line " ERL ELSE PRI NT
160 @&! (H MEM 4) : END

170 ENDIF

An automatic ON ERROR OFF is performed when fatal errors are generated.

Examples

ON ERROR | F ERR=17 STOP : REMtrap just Escape
ON ERROR LOCAL PRI NT"Bad argunents" : ENDPROC

333

Keywords

OPENIN

Function opening an existing file for input only.

Syntax
OPENI N factor

Argument

A string which evaluates to avalid filename.

Result

Aninteger acting as achannel number for thefile. All subsequent operationson file (e.g.
BGET#, PTR#, EOF# etc.) use the channel number, sometimes called a handle, as an
argument.

OPENIN opens a file for input only. The file must exist prior to the call. If it doesn't, a
channel number of 0 is returned. Only read-type operations are allowed on the file. For
example, you can get characters from it, but not put them. You can move PTR# freely
within the file, but not outside of it. A file may be opened for reading several times.
However, you can't OPENIN and OPENOUT (or OPENUP) the same file.

Examples

in_file%OPENIN "I nvoi ces"
dat a%OPENI N(" : 0" +dat a$)

334

OPENOUT

OPENOUT

Function for opening a new file for input and output.

Syntax
OPENQUT factor

Argument

A string which evaluates to a valid filename.

Result

Aninteger acting as achannel number for thefile. All subsegquent operationsonfile (e.g.
BGET#, PTR#, EOF# etc.) use the channel number, sometimes called a handle, as an
argument.

OPENOUT creates and opens afile for input and output. Read- and write-type

operations are allowed on thefile. You can both get characters from, and write

characters to, the file. You can move PTR# freely within the file, and extend the file by
moving PTR# outside of the file (beyond EXT#). You can also shorten the file by
assigning to EXT#. Once you OPENOUT a file, it can’t be opened again unless it is
closed first. Trying to OPENOUT an open file gives an error.

Examples

out fil e%OPENQUT " Custoners"
dat a%OPENOUT(" : dat adi sc. " +dat a$)

335

Keywords

OPENUP

Function for opening an existing file for input and output (update).

Syntax
OPENUP factor

Argument
A string which evaluates to avalid filename.

Result
Aninteger acting as achannel number for thefile. All subsequent operationson file (e.g.
BGET#, PTR#, EOF# etc.) use the channel number, sometimes called a handle, as an
argument.
OPENUP opens afile, which must exist already, for input and output. Read- and
write-type operations are allowed on the file. You can both get characters from, and
write charactersto, the file. You can move PTR# freely within the file, and extend the
file by moving PTR# outside of the file (beyond EXT#). You can also shorten the file by
assigning to EXT#. Once you OPENUP afile, it can’'t be opened again unlessiitis closed
first. Similarly, trying to OPENUP an open file gives an error.

Examples
random fil e%OPENUP("records")

336

OR

337

OR

Operator giving the bitwise OR of its operands.

Syntax

rel ational OR rel ati onal

Argument

rel at i onal s can be any integer-range numerics.

Result

An integer obtained by ORing together the corresponding bits in the operands. The
operands may be interpreted as bit-patterns, in which case abit in the result is set to one
if either or both of the corresponding bitsin the operands are one. Alternatively, they
may be interpreted aslogical values, in which case theresult is TRUE if either or both of
the operands are TRUE.

Examples

PRI NT a% OR &AA55
| F a<l OR a>10 THEN PRI NT "Bad range"

Keywords

ORIGIN

Statement to move the graphics origin.

Syntax

ORI G N expression, expressi on

Arguments

The expressions are integer numerics in the range —32768 to +32767. They are the
absolute coordinates of the new graphics origin: the position of the point (0,0). These
coordinates are always given with respect to the bottom left corner of the screen.

The graphics origin is used by all commands which plot graphics, such as MOVE,
LINE, PLOT, CIRCLE, and so on, and also by VDU 24 which sets a graphics viewport.

Example
ORIG N 640,512 : REM Set origin to the centre of screen

338

OSCLI

OSCLI

Statement to pass a string to the operating system.

Syntax
OSCLI expression

Argument

expr essi on should be a string of between 0 and 255 characters. It is passed to the
operating system OS_CLI| routine to be executed.

Note: The difference between passing a string to the operating system viaa*
command and via OSCLI is that the former makes no attempt to process the text
following it, whereas the latter eval uates the text as a BASIC string expression.
Thus you can say:

OSCLI "LOAD file "+STR$~buffer%
but not (usefully)
*"LOAD file "+STR$~buffer %

Many extensions to BBC BASIC on previous machines (e.g. the Master 128) used
‘internal’ BASIC routines called from OSCLI commands. BBC BASIC provides
extra information when using * or OSCLI to allow such software to be ported onto
this computer. (Note that this does not happes#s "OS CLI","fred").

Information is passed in registers RO to R5, because the high user-mode registers
are not conveniently readable from other modes. Before using the information
passed in these registers, the routine should transfer them to the correct registers, as
documented in the section on CALL. It should also ensure it is executing in user
mode before calling any BASIC routines.

RO contains CLI string pointer

R1 contains &BA51Cxxx

R2 ARGP

R3 LINE

R4 current string pointer

R5 environment information pointéasCALL)

The value in R1 should be inspected by any routine in order to validate that the call
is, indeed, from BASIC (it is also a good idea to check R2 to R5 for valid
addresses); the value is also at address [R5,#—4]. The current BASIC interpreter
provides&BA51C005, the nexitBA51C006 and so on.

339

Keywords

Thevauein LINE should not be relied on, except that it is sufficient for BASIC to
produce the correct line number in case of an error. When BASIC is eventually
returned to at the end of the SWI OS_CLI call, its (user-mode) registers must not
have been altered.

Examples

OSCLI " CAT"
OSCLI "LOAD "+fil e$+" "+STR$buff% REM get file in buffer

340

OTHERWISE

OTHERWISE

Part of the CASE ... OF ... WHEN ... OTHERWISE ... ENDCASE statement.

Syntax
See CASE

Note: The OTHERWISE statement is executed only when the previous WHEN
statements have failed to match the value of the CASE expression. OTHERWISE
matches any values. If it is present, all statementsfollowing it will be executed until

the matching ENDCASE is encountered.

Examples

OTHERW SE PRI NT "Bad i nput”
OTHERW SE PROCdr aw(X, y) : PROCwai t

341

Keywords

PAGE

Pseudo-variable holding the address of the program.

Syntax

(1) PAGE
(2) PACE = expression

Result (1)

An address which is an unsigned number. PAGE isthe location at which the current
BASIC program starts.

Argument (2)

expressi onisaninteger intherange & 8F00 to HIMEM, where & 8F00 is the current

limit of BASIC’s own workspace (this could change in later versions of BASIC). PAGE
should be on a word boundary. By changing PAGE, you can have several BASIC
programs residing in the machine at once.

Note: If you attempt to set PAGE to an invalid address, a warning message is given
and PAGE is not altered.

Example
PAGE = HI MEM - &4000

342

PI

Function returning the value of Tt

Syntax
Pl

Result
The constant 3.141592653589793

Examples
DEF FNcircun(r)=2*Pl *r

343

Pl

Keywords

PLOT

Statement performing an operating system PLOT function.

Syntax
PLOT expressionl, expressi on2, expressi on3

Arguments

expr essi onlistheplot number in the range from 0 to 255. For example, 85 isthe
plot number for an absolute triangle plot in the foreground colour.

The second and third expressions are the x and y coordinates respectively, in the range —
32768 to +32767.

SeeAppendix F - Plot codes on page 434or a full list of PLOT codes.
Examples

PLOT 85,100,100 : REM Draw a triangle
PLOT 69,x,y : REM Plot a single point

344

POINT

POINT

Statement to plot a single point or move the on-screen pointer.

Syntax

(1) PO NT [BY] expression, expression
(2) PO NT TO expression, expressi on

Arguments (1)

The expressions are integers giving the coordinates at which the point will be plotted.
The point is plotted using the current graphics foreground colour and action, and the
graphics cursor is updated to these coordinates.

If the keyword BY is omitted, the coordinates are absolute. That is, they give the
position of the point with respect to the graphics origin. If BY isincluded, the
coordinates are relative. That means they give the position of the point with respect to
the current graphics cursor position.

Arguments (2)

The expressions are integers giving the coordinates at which the on-screen pointer will
be placed if it is not linked to the mouse position. If the pointer is linked to the mouse
this command isignored. See MOUSE for more detail s about unlinking the pointer from
the mouse.

Examples

PO NT 320, 600
PO NT X%+4, Y%4
PO NT BY 100,0
PO NT TO 640, 512

345

Keywords

POINT(

Finds the logical colour of agraphics pixel.

Syntax

PO NT(expr essi on, expr essi on)

Arguments

The expressions are the coordinates of the pixel whose colour is required.

Result

This is an integer in the range —Intavheren is one less than the number of logical
colours in the current mode. For examplés 15 in a 16-colour mode. If the point

specified lies outside the current graphics viewport, —1 is returned. Otherwise, it is the
logical colour of the point.

Note that the value returned is in the range 0 to 63 for the 256-colour modes. The

function TINT(x,y) will read the tint of the given coordinate, returning a value in the
range O to 255.

Example
REPEAT Y%-=4: UNTI L PO NT(640, Y% <>0

346

POS

POS

Function returning the x-coordinate of the text cursor.

Syntax
POS

Result

Aninteger between 0 and n, where nisthe width of the current text viewport minus one.
Thisisthe position of the text cursor which is normally given relative to the lefthand
edge of thetext viewport. If the cursor direction hasbeen atered using VDU 23, 16, ...
then it is given relative to the negative x edge of the screen which may be top, bottom,
left or right.

Note: Evenin VDU 5 mode, POS returns the position of the text cursor. You should
therefore keep track of the horizontal position explicitly in programs which must
operate in VDU 5 mode (e.g. WIMP-based programs). COUNT still works as
expected in VDU 5 mode.

Examples

ol d_x%POS
| F POS<>0 THEN PRI NT

347

Keywords

PRINT

Print information on the output stream(s) (e.g. screen, printer, etc).

Syntax

Theitemsfollowing PRINT may be string expressions, numeric expressions, and print
formatters. By default, numerics are printed in decimal, right justified in the print field
given by @% (see below). Strings are printed |eft justified in the print field. The print
formatters have the following effects when printing numbers:

, (comma)

~ (tilde)

" (single quote)

TAB(

SPCf act or

space

Do not right justify (print leading spaces before) numbersin the
print field. Set numeric printing to decimal. Semi-colon staysin
effect until acomma s encountered. Do not print anew line at the
end if thisisthe last character of the PRINT statement.

Right justify numbersin the print field. Set numeric printing to
decimal. Thisisthe default print mode. Comma staysin effect until
a semi-colon is encountered. If the cursor is not at the start of the
print field, print spaces to reach the next one.

Print numbers as hexadecimal integers, using the current
left/right-justify mode. Tilde stays in effect until acomma or
semi-colon is encountered.

Print anew line. Retain current left/right-justify and
hexadecimal/decimal modes.

If there is one argument, for example, TAB(n) , print (n_COUNT)
spaces. If the cursor isinitialy past position n (i.e. COUNT>n),
print anew linefirst. If there are two arguments, for example,
TAB(10, 20) , movedirectly to that tab position. Left/right-justify
and hexadecimal/decimal modes are retained.

Print the given number of spaces. For example SPC5 outputs five
spaces. Right-justify and hexadecimal/decimal modes are retained.

Print the next item, retaining left/right-justify and
hexadecimal/decima modes.

When strings are printed the descriptions above apply, except that hexadecimal mode
does not affect the string. Also no trailing spaces are printed after astring unlessitis
followed by a comma. This prints enough spaces to move to the start of the next print

field.

The print formatters TAB, SPC and’ may also beused in INPUT statements.

348

Formatting numbers

Formatting numbers

The format in which numbers are printed, and the width of print fields are determined by
the value of the special system integer variable, @%. The way in which you specify @%
depends whether you are using the 1.05 BASIC interpreter or the 1.04 BASIC
interpreter, as follows:

Setting @% using the 1.05 interpreter

The value of @% is specified in ANSI printf format, as follows:
@F" expressi on"
where expr essi on takestheform [+] Ax. y, and must be in quotes.

A defines the format, and can take the following values:

I G(General format). In G format, x definesthe field width and y defines the number
of digitsto be printed. Note that if x islessthan 0.01, printing revertsto E format.

I E (Exponent format). In E format, x defines the field width and y definesthe
number of significant figures to be printed after the decimal point. Note that E
format allows 3 digits for the exponent, and an optional minus sign. Thiswill leave
up to threetrailing spacesif the exponent is positive and only one or two digitslong.

I F(Fixedformat). In F format, x definesthe number of figures (exactly) to be printed
after the decimal point and y defines the field width.

The optiona + sign is a switch affecting the STR$ function. If supplied, it forces STR$
to use the format determined by @%. If it is not supplied, STR$ uses adefault format
equivalent to @&" +CG0. 10" . Note that there must not be any spaces in the definition
of @%.

The BASIC 1.05 interpreter supports partial setting of @%, which means you do not
have to supply all the arguments. See the examples of @% below.

Examples of @%

349

@F" GLO. 9" isthe default setting. It isa General format, with afield width of 10 and
aprecision of 9 digits; for example 12. 3456789. STR$ uses its default.

@6" +E10. 3" isan Exponent format, with afield width of 10, and 3 digits after the
decimal point; for example 1. 24E1. STR$ uses this format instead of its default.

@6" F7. 4" isaFixed format, with afield width of 7, and 4 digits after the decimal
point; for example 12. 3457. STR$ uses its default.

@F" +" forces STR$ to use the current format.
@F" G' changesto G format. STR$ usesits default.

Keywords

@F" 10" setsthefield width for the current format to 10, and forces STR$ to use its
default.

@6" . 5" just setsthe precision for the current format to 5 digits, and forces STR$ to
use its default.

Setting @% using the 1.04 interpreter

You can set the variable @% to produce the same results asthe BASIC 1.05 interpreter.
The value of @% is specified using a hexadecimal word four bytes long, as follows:

@FEIWMXXYYZZ

| Byte4, which can be 1 or 0, corresponds to the + STR$ switch. If thisbyteis 1,
STRS$ uses the format specified by the rest of @%. If it isO, STR$ uses its default
value of & 00000A00.

I Byte3, whichcanbe0, 1 or 2, selectsthe G E or F format.

I Byte2, which can take valuesfrom 1 to 10, determines the number of digits printed.
In General format, thisis the number of digits which may be printed before
reverting to Exponent format (1 to 10); in Exponent format it gives the number of
significant figuresto be printed after the decimal point (1 to 10). In fixed format it
gives the number of digits (exactly) that follow the decimal point.

Byte 1, whichisinthe range 0 to 255, givesthe print field width for tabulating using
commas.

Examples of @%

@&&0000090A uses General format with up to nine significant digitsin afield width
of ten characters. Note that General format revertsto Exponent format when the number
islessthan 0.1. Thisisthe default setting of @%.

@&&0101030A uses Exponent format. Three significant digits are printed, in afield
of ten characters. These numberslook like 1. 23E0, 1. 10E- 3, etc. In addition, STR$
uses this format instead of its default (which is & 00000AQ0).

@58&00020407 uses Fixed format with four decimal placesin atab field width of
seven. Numbers are printed out in the form 1. 23, 923. 10, etc.

Note: Setting bytetwoto 10, e.g. & 0AOA, showstheinaccuracies which arise when
trying to store certain numbersin binary. For example:

PRINT 7.7
prints 7.699999999 when @%=& OAOA.

350

Formatting numbers

Examples

PRINT "Hello there";
PRINT a, SIN(RAD(a)), X,y ' p,q;
PRI NT TAB(10, 3)"Profits"SPC(10); profits;

351

Keywords

PRINT#

Print information to an open file.

Syntax
PRI NT#factor [, expression, expression. . .|

Arguments

f act or isthe channel number of afile opened for output or update. The expressions, if
present, are any BASIC integer, real or string expressions. They are evaluated and sent
to the file specified with the corresponding type information.

Integers are written as &40 followed by the two’s complement representation of the

integer in four bytes, most significant byte first.

5-byte real variables are written as &80 followed by five bytes. The first four bytes are
the mantissa and the fifth is the exponent. The mantissa is written least significant byte
(LSB) first. 31 bits represent the magnitude of the mantissa and one bit (bit 7 of the

fourth byte) the sign. The exponent byte is in excess-128 form. BASIC V only prints real

numbers in 5-byte real format.

8—byte real variables are written as &88 followed by two 4—byte words, in IEEE Double
Precision (D) format. The exponent is represented by bits 20 to 30 in the first word. The
sign bit is bit 31 in the first word. The mantissa is represented by bits 0 to 19 in the first
word and bits 0 to 31 in the second word. BASIC VI only prints real numbers in 8—byte

real format. You need 1.05 series (rather than 1.04) to read this information back.

Strings are written as &00 followed by a one byte count of the length of the string,
followed by the characters in the string in reverse order.

Example
PRI NT#f il e, nane$+": ", | NT(100*pri ce+.5), qnty%

352

PROC

PROC

Statement introducing or calling a user-defined procedure.

Syntax

(1) DEF PRCCproc- part
(2) PROCpr oc- part
(3) ON expressi on PROCprocl [,PROCproc2...] [ELSE statenent]

Argument (1)

proc- part hastheformidentifier[(paraneter-|ist)].Itgivesthename
of the procedure (the identifier) and the names and types of the optional parameters,
which must be enclosed in brackets and separated by commas.

Argument (2)

The second form is used when the procedure is actually invoked, and this time the
parameter list comprises expressions of types corresponding to the parameters declared
in the DEF PROC statement. The expressions are evaluated and assigned (locally) to the
parameter variables. Control returns to the calling program when an ENDPROC is
executed.

Argument (3)

expr essi on should evaluate to an integer. If thisinteger is n then the nth procedure
listed iscalled. If theinteger islessthan 1 or greater than the number of line numbers
given, the statement following the EL SE, if it is present, is executed.

Examples

DEF PROCdel ay(n)
TI ME=0: REPEAT UNTIL TI ME=n*100: ENDPROC

| F ?f1 ag=0 THEN REPEAT PROCdel ay(0.1): UNTIL ?fl ag

353

Keywords

PTR#

Pseudo-variable accessing the pointer of afile.

Syntax
() PTR#factor

(2) PTR#factor = expression

Argument (1)
f act or isachannel number, as returned from an OPENxx function.

Result

An integer giving the position of the next byte to be read or written relative to the start
of the file. The minimum value is 0 and the maximum val ue depends on the filing
systemin use.

Argument (2)

fact or isas(1). The expression is an integer giving the desired position of the
sequential pointer in the file. Files opened for input may only have their PTR# value set
to between 0 and the EXT# of thefile.

Examples

PRI NT PTR#file; "bytes processed”
PTR#chan%rec_| en%

354

QuUIT

QUIT

Statement to leave BASIC.
Function returning - qui t status.

Syntax
QUIT

Purpose (1)
QUIT as astatement leaves the BASIC interpreter.

Purpose (2)

QUIT as afunction returns TRUE or FALSE. If the interpreter was invoked using the
- qui t flag, thenit will return TRUE. If - qui t was not specified on the command line,
then the function returns FAL SE.

355

Keywords

RAD

Function returning the radian value of its argument.

Syntax
RAD factor

Argument

A number representing an angle in degrees.

Result
A real giving the corresponding value in radians: argument* v 180.

Examples

(sin%i % 5)=SI N(RAD(i %)
PRI NT RAD(theta)-Pl/2

356

READ

READ

Statement reading information from a DATA statement.

Syntax
READ [variable] [, variable...]

Argument

Any variables should correspond in type to the itemsin the DATA statement being read.
Infact, astring READ itemis ableto read any type of DATA and interpret it asastring
constant after stripping leading spaces. A numeric READ item triesto evaluate its
DATA; soin the latter case, the DATA expression should yield a suitable number.

Examples

READ n%
READ a$, fred% fl oat

357

Keywords

RECTANGLE

Statement to draw arectangle or copy/move arectangular area of the screen or set the
mouse bounding box.

Syntax

(1) RECTANGLE [FILL] expl, exp2, exp3[, exp4]
(2) RECTANGLE [FI LL] expl, exp2, exp3[, exp4] TO exp5, exp6
(3) MOUSE RECTANGLE expl, exp2, exp3, exp4

Arguments (1)

expl and exp2 are integer expressions in the range —32768 to +32767. They are the

coordinates of one of the corners of the rectangle.

exp3is the width of the rectangle. It is also the height (giving a square) wxpsgkis
given, in which case this is the height.

Purpose

RECTANGLE draws the outline of a rectangle which is aligned with the x and y axes.
RECTANGLE FILL plots a solid axes-aligned rectangle. The rectangles are drawn using

the current graphics foreground colour and action.

RECTANGLE leaves the graphics cursor at the starting position. However, with
RECTANGLE FILL, the graphics cursor is updated to the position of the opposite
corner to the one specified.

Arguments (2)

The first four arguments define a rectangular area of the screen, as for the first usage

described above.

exp5 andexpé6 give the position to which the lower left corner of the source rectangle

is copied or moved.

Purpose

RECTANGLE... TO copies the original rectangular area defined to the new position,
hence making a second copy of a rectangular screen area. Pixels in the source that are
outside of the current graphics viewport are drawn in the current graphics background

colour.

358

RECTANGLE

RECTANGLE FILL ... TO movesthe original rectangular area defined to the new
position, replacing the old area with the current graphics background colour. In both
cases the new position is allowed to overlap with the rectangular area.

Purpose (3)
To set abounding box for the mouse pointer. See MOUSE for details.

Examples
RECTANGLE 500, 500, - 200, - 100
RECTANGLE FILL bl 9% 1), bl % 2), wi dt h% hei ght %
RECTANGLE 400, 400, 60, 60 TO 460, 400
RECTANGLE FILL x,vy, size, size TO xnew, ynew

359

Keywords

REM

Statement indicating a remark.

Syntax
REM rest-of-1i ne

Argument

rest - of -1 i ne can be absolutely anything; it isignored by BASIC. The purpose of a
REM isto provide comments to make the program clear to any reader.

Example
REM find the next prine

360

RENUMBER

RENUMBER

Command to renumber the program lines.

Syntax
RENUMBER [start] [, step]

Argument
See AUTO on page 223 for a description.

Purpose

RENUMBER resequences the lines in the program so that thefirst lineis st art and
the line numbersincrease in steps of st ep. It aso changes line numbers within the
program, such as after RESTORES, so that they match the new line numbers. If the line
used in a RESTORE cannot be found, the message

Failed with nnnn on line [//]

isgiven, where nnnn is the line number which was referenced but which does not
appear in the program, and / / / | isthe line on which the reference was made.

RENUMBER needs some workspace, and if there is not enough room to change the line
numbers successfully, aRENUVMBER space error is generated.

Examples

RENUMBER
RENUMBER 1000, 20

361

Keywords

REPEAT

Statement marking start of a REPEAT ... UNTIL loop.

Syntax
REPEAT
Purpose
The statements following REPEAT are repeatedly executed until the condition
following the matching UNTIL evaluatesto FALSE. The statements may occur over
several program lines, or may al be on the same line separated by colons. The second
approach is useful in immediate statements. The statements are executed at |east once.
Examples
REPEAT UNTIL I NKEY-99 : REMwait for SPACE
REPEAT
a%=1:c%c%>> 1
UNTIL c%0

362

REPORT

REPORT

Statement printing the message of the last error encountered.

Syntax
REPORT

Examples
REPORT: PRINT " at line ";ERL; END
REPORT: PRINT " error!!"’’:END

363

Keywords

Function returning the message of the last error encountered as a string.
Syntax

REPORTS$
Examples

PRI NT REPORT$
ERROR ERR, REPORT$

364

RESTORE

RESTORE

Statement setting the DATA pointer.
Statement restoring DATA pointer from the stack.

Syntax

(1) RESTORE [[+] expression]
(2) RESTORE DATA

Argument (1)

expressi onisalinenumber. If it is absent, the DATA pointer is reset to the first
DATA statement in the program, and the next item READ comes from there. If theline
number is present, the DATA pointer is set to the first item of data on or after the line
specified, so that subsequent READs access that particular data item (and those which
follow).

If the expression is preceded by a + sign, then it isinterpreted as an offset from the line
containing the RESTORE statement. +0 means the line after the one containing the
RESTORE, +1 means the line after that, and so on. The main use of thisisin libraries,
where references to actual line numbers are not alowed (and RESTORE on its own
restores to the start of the main program, not the library).

Purpose (2)

The second form of RESTORE loads a DATA pointer from the stack that was previously
saved using LOCAL DATA. By using these two statements as a pair, you can prevent
any RESTORESsin aprocedure or function from changing the DATA pointer used by the
main program.

Examples

RESTORE
RESTORE 1000
RESTORE +10

365

Keywords

RESTORE ERROR

Statement to restore saved error status.

Syntax
RESTORE ERROR

Note: RESTORE ERROR restores the error status previously saved using LOCAL
ERROR. If an error status has not been saved then afatal error arises.

The error statusis restored automatically on return from a procedure or function,
and when one of the loop-terminating constructs is encountered (UNTIL,
ENDWHILE and NEXT).

Examples

10 LOCAL ERROR

20 REPEAT

30 ON ERROR LOCAL PRI NT"Negative val ue"
40 I NPUT x

50 PRI NT "Square root of x = "; SQR(X)
60 UNTIL x=0

70 RESTORE ERROR

366

RETURN

RETURN

Statement returning control from a subroutine.
Modifier in formal parameter list.

Syntax

(1) RETURN
(2) RETURN par anet er

Purpose (1)

RETURN returns control to the statement following the most recent GOSUB. If there
areno GOSUBs currently active, aNot i n a subrouti ne error occurs.

Purpose (2)

RETURN indicates value-and-result parameter passing (as distinct from value passing,
the default) when applied to a parameter in the definition.

Examples

DEF PROCSwapl f Di sor der ed(RETURN A, RETURN B)
| F A>B SWAP A B
ENDPROC

367

Keywords

RIGHTS$(

Function returning or statement altering the right-most character(s) of a string.

Syntax
(1) Rl GHT$(expressi onl [, expressi on2])
(2 Rl GHT$(vari abl e [, expressionl]) = expression2

Argument (1)
expressi onl should be astring of length 0 to 255 characters.

If expressi on2 i spresent, it should be a numeric giving the number of characters
from the right of the string to be returned, also in the range 0 to 255. If it is omitted, a
default of 1is used.

Result

A string consisting of the n right-most character(s) from the source string, wherenis
expressi on2or 1. If nisgreater than the length of the source string, the whole source
string is returned.

Argument (2)

vari abl e isthe name of the string variable to be atered. The righthand charactersin
vari abl e are replaced by the string expr essi on2.

If present, expr essi onl gives the maximum number of characters which will be
replaced: the number of characters altered isthe lesser of expr essi onl and
LENexpr essi on2. expr essi onl defaultsto 255.

Examples

PRI NT RI GHT$(any$, 4)

year $=RI GHT$(dat e$, 2)

RI GHT$(bi rt hday$) = " May"
Rl GHT$(name$, 4) = "Mary"

368

RND

369

RND

Function returning a random number.

Syntax (1)
RND

Result
A four-byte signed random integer between - 2147483648 and +2147483647

Syntax (2)
RND(expr essi on)

Result

expression<0

expr essi on should be an integer. This reseeds the random number generator, and the
function returnsits (truncated) argument as a result. Reseeding the generator with a
given seed value aways produces the same sequence of random numbers.

expression = 0
This uses the same seed as the last RND(1) call and returns the same random number
rounded between 0 and 1.

expression = 1
This returns arandom real number between 0 and 1.

expression > 1

The expression, n, should be an integer. The result is an integer between 1 and n
inclusive.

Note that there should be no space before the opening bracket.

Examples

dummy=RND(-TI ME) : REM reseed the generator 'randony’
Xx%RND(1280) : y%RND AND &3f f

pr ob=RND(1)

| ast Pr ob=RND(0)

r %=RND

Keywords

RUN

Statement to execute the current program.

Syntax
RUN

Purpose

RUN executes the program in memory, if oneis present, after clearing all variables and
resetting LOMEM.

370

SAVE

SAVE

Command to save a program as afile.

Syntax
SAVE [expressi on]

Argument

If present, expr essi on should evaluate to astring which isavalid filename under the
filing systemin use. Thecurrent BASIC program is stored (without variables, etc) onthe
medium under this name.

SAVE can be used without an expression, in which case the name is taken from the first
line of the program which should have the format:

10 REM > fj I enane
For example:
10 REM > Ganel

Examples

SAVE " Ver si onl"
SAVE FNpr ogName
SAVE

371

Function returning the sign of its argument.

Syntax
SGN factor

Argument

Any numeric.

Result

-1 for negative arguments
0 for zero-valued arguments
+1 for positive arguments

Examples

DEF FNsquar e(th) =SGN(SI N(t h))
| F SGN(a) <>SGN(b) THEN ...

Keywords

SGN

372

SIN

SIN

Function returning the sine of its argument.

Syntax
SIN factor

Argument

A numeric representing an angle in radians.

Result
A real in the range —1 to 1, being the sine of the argument.

Note: If the argument is outside the range —8388608 to 8388608 radians, it is impossible
to determine how mangs to subtract. The erroAccur acy | ost in
si ne/ cosi ne/ t angent is generated.

Examples

PRI NT SI N(RAD(135))
opp=hyp*SI N(t het a)

373

Keywords

SOUND

Statement generating a sound or suppressing/allowing subsegquent sound generation.

Syntax

(1) SOQUND ON
(2) SOUND OFF
(3) SOUND expr 1, expr 2, expr 3, expr4[, expr 5]

Purpose (1) and (2)

SOUND ON isthe default setting. It allows sounds to be produced by subsequent use of
the SOUND (3) statements. SOUND OFF suppresses sounds and means that subsequent
SOUND (3) statements have no effect.

Arguments (3)

expr 1 isthe channel number
expr 2 isthe amplitude

expr 3isthe pitch

expr 4 isthe duration

expr 5, if present, isthe delay.

Channel
A two-byte integer giving the channel number to be used. It hasthe range 1 to 8.

Amplitude

This is an integer in one of two different ranges. The range —15 to 0 is a simple volume
(amplitude), —15 being the loudest and zero being the quietest (no sound). The range 256
(&100) to 511 (&1FF) is a logarithmic volume range, a difference of 16 providing a
doubling or halving of the volume.

Pitch

This is treated as an integer. In the range 0 to 255, the note middle C has a pitch value of
53; a difference in the parameter of 48 corresponds to a difference in pitch of one octave.
In other words, there are four pitch values per semi-tone. In the range 256 (&100) to
32767 (&7FFF), the note middle C has a pitch value of &4000, and a difference in the
value of &1000 corresponds to a difference in pitch of one octave.

Duration

The last compulsory SOUND parameter is also treated as a two-byte integer. It gives the
duration of the note in twentieths of a second. A value of 255 gives a note with an
infinite duration: one that does not stop unless the sound queue is flushed in some way.
A value greater than 255 is treated as a duration in 20ths of a second.

374

SOUND

Delay

Thisisthe number of beat counts from the last beat counter reset before the sound is

produced. See BEATS on page 225 and TEM PO on page 389 for more details. If this
parameter is omitted, the sound is produced immediately. A value of —1 synchronises the
new note with the last scheduled sound.

Examples

SOUND OFF

SOUND 1, - 15, 255, 10

SOUND &102, &140, &2400, 200
SOUND 3, 300, 300, 100, 200

375

Keywords

SPC

Print modifier to generate spacesin PRINT and INPUT statements.

Syntax
SPC factor

Argument
A one-byte integer between 0 and 255. It gives the number of spaces to be printed.

Examples

PRI NT SPC(10);
| NPUT SPC(7)"How many", a$

376

SOR

Function returning the square-root of its argument.

Syntax
SR factor

Argument
Any non-negative numeric.

Result

A real which is the argument’s square-root.
Examples

DEF FN en(x1,y1l, x2,y2)=SQR((x2-x1)"2+(y2-y1l)"2)
di sc=SQR(b*b-4*a*c)

377

Keywords

STEREO

Statement setting the stereo position of a sound channel.

Syntax
STEREO expressionl, expressi on2

Arguments

expr essi onl isthe channel number which should be between 1 and the number of
active channel s (the maximum being 8).

expressi on2is a value giving the stereo position. It can take any value between —127
(meaning that the sound is fully to the left) and +127 (meaning that the sound is fully to
the right). The default value of each channel is 0, giving central (mono) production.

If the number of physical channels is eight, only the channel specified is programmed.
Otherwise, the following occurs, whetlean is expr essi onl1:

No of channels Channels programmed

1 chan to eight

2 chan and every alternate channel up to eight

4 chan andchan+4 if chan+4 is less than or equal to eight
Examples

STEREO 4, - 60
STEREO n% stereo%

378

STOP

STOP

Statement producing the fatal error St opped to terminate the program.

Syntax
STOP

Purpose

The STOP statement gives the fatal (untrappable) error message St opped. It differs

from END, as the |atter produces no message. It may be used as a debugging aid to halt

the program at a given point so that the current values of the program’s variables can be
determined.

Example
I F NOT ok THEN PRI NT"Bad data": STOP

379

Keywords

STR$

Function producing the string representation of its argument.

Syntax
STR$[~] factor

Argument

Any numeric for decimal conversion, any integer for hexadecimal conversion. Decimal
conversion is used when the tilde (~) is absent, hex conversion when it is present.

Result

Decimal or hex string representation of the argument, depending upon the absence or
presence of thetilde.

Note: The string returned by STR$ is usually formatted in the same way as the
argument would be printed with @% set to & A00. However, if the most significant
byte of @% is non-zero, STR$ returns the result in exactly the same format as it
would be printed, taking the current value of @% into account. See also PRINT.

Examples

DEF FNhex4(a% =Rl GHT$(" 000" +STR$~(a%) , 4)
DEF FNdi gi t s(a) =LEN(STR$(a))
dp=I NSTR(STR$(any_val),".")

380

STRINGS$(

STRINGS$(

Function returning multiple copies of astring.

Syntax
STRI NG$(expr essi onl, expr essi on2)

Arguments
expressi onlisaninteger, n, in the range 0 to 255.

expr essi on2 should be a string of length 0 to (255 DIV n) characters.

Result

A string comprising n concatenated copies of the source string, of alength
n* LEN(expr essi on2) .

Examples

MODE
PRI NT STRI NG$(40," "); :REMunderline across the screen
pat t er n$=STRI NG$(20, " <- - >"

381

Keywords

SUM

Function returning the arithmetic sum or string concatenation of an array.

Syntax
SUM array

Argument
ar r ay isthe name of an array.

Result

If the argument is an integer or floating point array, it isan integer or floating point value
of the sum of all the elementsin the array.

If theargument isastring array, it is the string which contains each of the elements of the
array concatenated. This must be less than 256 charactersin all.

Examples

A() =1 : PRINT "There are "; SUMA())" elenents."
DEF FNmean(a())=Suwva()/DI Ma(), 1)

382

SUMLEN

SUMLEN

Function returning the length of the string concatenation of an array.

Syntax
SUMLEN st ring-array

Argument
string-array isthe name of astring array.

Result
The sum of the lengths of all the elementsin the array. Thus
SUMLENa$() =LENSUMa$()

except that the former is not limited to a maximum of 255 characters.

Examples
DEF FNmeanl en(a$())=SUM_LENa$()/DI M a(), 1)

383

Keywords

SWAP

Statement exchanging the value of two variables or arrays.

Syntax
SWAP jdentifierl,identifier2

Arguments

The arguments are variables or array names. Simple variables must be of
assignment-compatible types, i.e. both string or numeric. Arrays must be of identical
type elements (both integer, floating point or string), but can be of differing sizes.

Purpose

The SWAP statement exchanges the contents of the two variables or arrays. In the case
where arrays are swapped, the number of subscripts and their upper limits are also
swapped. For example, if you have

DI M A(10), B(20, 20)

SWAP A(), B()

then after the SWAP, it would be as if the arrays had been DIMed:
DI M A(20, 20), B(10)

All of the elements of the arrays are al so swapped, though no actual movement of datais
involved so thisis avery quick operation.

Examples

SWAP A% B%

SWAP f or enane$, surnane$

SWAP arr(i%, arr(i%gap%
SWAP arrayl$(), array2$()
SWAP a, B%

SWAP A3, $A%

SWAP matrix(), vector()

384

SYS

385

SYS

A statement for calling operating system routines.

SYS exprl [,[exprn]...] [TO[varl][,[var2]...] [;flags]]

Arguments

expr 1 defines which operating system routine isto be called. It may evaluateto a

number giving the routine’s SWI number, or to a string which is the name of a routine.
BASIC uses the SWI OS_SWINumberFromString to convert from a string to number,
so the case of the letters in the string must match exactly that of the SWI name.

The optional list of expressions following this, up to a maximum of eight, is passed to
the routine via registers RO to R7. If the expression evaluates to a numeric, it is
converted to an integer and placed directly in a register. If the expression evaluates to a
string, the string is placed on BASIC's stack, beginning at a word boundary and
terminated with a null character. A pointer to it is put in the register. Any expressions not
given (indicated by adjacent commas) default to zero.

The optional TO is followed by a variable list. Each variable is assigned any value
returned by the routine in the registers RO to R7 respectively. If the variable to assign to
is numeric, the integer in the register is converted to an appropriate format and stored in
it. If the variable to assign to is a string, the register is treated as a pointer to a string
terminated by ASCII 0, 10 or 13 and this string is assigned to the variable. The strings
given on input can be overwritten, but should not be extended. As with the input
expressions, output variables may be omitted using adjacent commas in the list.

f 1 ags is an optional variable, to which the processor flag bits are returned. The value
stored in thdlags value is a binary number of the form %NZCV, where the letters stand
for the result flags of the ARM status register.

Purpose

SYS provides access to the routines supplied by the operating system for entering and
outputting characters, error handling, sprite manipulation, and so on. Details of these
operating system routines is beyond the scope of this book, but can be found in the
Programmer’s Reference Manual

Keywords

Examples

SYS " OS_ReadMonot oni cTime" TO tine
SYS "OS_SpriteCp", 28,, "MYSPRI TE", , 3
SYS "Font _Fi ndFont ", , " Honer t on. Medi uni', 12*16, 12*16 TO f %

10 SYS 0,0,42 : REMoutput a *
20 OS Wite% = 0

30 SYS OS_ Wite% 42

40 END

386

TAB

TAB

Print modifier to position text cursor in PRINT and INPUT statements.

Syntax

(1) TAB(expressi on)
(2) TAB(expressionl, expression?2)

Argument (1)
A numericin the range 0 to 255. It expresses the desired x-coordinate of the cursor. This
position is obtained by printing spaces. A new lineis generated first if the current
position isat or to the right of the required one. COUNT is updated appropriately. This
formisuseful for tabulating on both the screen (evenin VDU 5 mode) or printed output.

Argument (2)
expressi onlisthedesired x coordinate;
expressi on2isthedesired y coordinate.

The position is reached using the VDU 31 command. Both coordinates must lie within
the current text viewport, otherwise, no cursor movement will take place. COUNT isno
longer correct. Thisform is only useful when positioning the cursor on the screen as it
uses control codes which will not be sent to a printer.

Examples

PRI NT TAB(10) "Product"; TAB(20) "Price"
| NPUT TAB(O, 10) "How nmany eggs", eggs%

387

Keywords

TAN

Function giving the tangent of its argument.

Syntax
TAN factor

Argument

A real number interpreted as an angle in radians.

Result
A real giving the tangent of the angle, in the range —1E38 to +1E38.

Note: If the argument is outside the range —8388608 to 8388608 radians, it is
impossible to determine how marty to subtract. The erroAccur acy | ost
i n sine/cosinel/tangent is generated.

Examples
opp=adj * TAN(RAD(t het a))

388

TEMPO

TEMPO

Function returning or statement altering the beat counter rate.

Syntax

(1) TEMPO expression
(2) TEMPO

Argument (1)

expressi onisascaled fractional number, in which the 12 least-significant bits are
the fractional part. Thusavalue of & 1000 correspondsto atempo of one tempo beat per
centi-second; doubling the value (& 2000) causes the tempo to double (two tempo beats
per centi-second), halving the value (& 800) halves the tempo (one beat every two
centi-seconds).

The tempo determines the rate at which the beat counter increases.

Result (2)

A number giving the current tempo.

Examples

TEMPO &2000

PRI NT TEMPO

DEF FNt enpo=TEMPQ &1000

DEF PROCt enpo(t) TEMPO t *&1000: ENDPROC

389

Keywords

TEXTLOAD

Command to load aBASIC file at PAGE.

Syntax
TEXTLQAD string expression

Argument

string expressi onisastringwhich should evaluateto afilenamethat isvalid for
thefiling systemin use. Thefile can beaBASIC program, or aBASIC program that was
saved asatext file (see TEXTSAVE). If atext fileisloaded which has lineswithout line
numbers, TEXTLOAD automatically renumbersit.

Note 1: Any program which is currently in memory is overwritten and lost with all
itsvariables. The static integers (A%- Z%and @4 and INSTALLed libraries are not
affected.

Note 2: Filesloaded with this command must end in alinefeed, or the computer will
hang.

Examples
TEXTLOAD adfs:: G sc. di sasm

where GDi sc isthe name of afloppy disc.

TEXTLOAD FNnextFil e

390

TEXTSAVE

TEXTSAVE

Command to save aBASIC program to atext file.

Syntax

(1) TEXTSAVE string expression
(2) TEXTSAVEO expression, String expression

Arguments (1)

string expressi on should evaluateto astring whichisavalid filename under the
filing system in use. The current BASIC program is stored as a text file on the medium
under this name.

Arguments (2)

expr essi on should be in the range zero to 31, and is treated as a 5-bit binary number.
TEXTSAVEO is similar to TEXTSAVE, but when it converts the program to text, it uses
the LISTO-type option specified lexpr essi on to format the output to the file given

by string expression.

Examples

TEXTSAVE " Ver si onl"
TEXTSAVEO 8, "Version2" : REM strips out |ine nunbers

391

Keywords

THEN

Optional part of asinglelineIF ... THEN ... EL SE statement and compulsory part of
multi-lineIF ... THEN ... ELSE ... ENDIF statement.

Syntax
See |F on page 293

Examples

| F a>3 THEN PRI NT "Too | arge" : REM THEN opti onal
| F mem THEN H MVEM = H MEM - &2000
| F A$="Y" THEN 1200 ELSE GOTO 1400

MCDE 1

IF colour$ = "red" THEN
COLOUR 1
CLS

ELSE
COLOUR 0 : CLS

ENDI F

392

TIME

393

TIME

Pseudo-variable reading or altering the value of the centi-second clock.

Syntax

(1) TIME
(2) TIME = expression

Result (1)

Aninteger giving the number of centi-seconds that have elapsed since the last time the
clock was set to zero.

Arguments (2)

expr essi onisaninteger value used to set the clock. TIME isinitialy set to the

lowest four bytes of the five—byte clock value maintained by the operating system.
Assigning to the TIME pseudo-variable alters the system centi-second timer (the one
which is read and written by OS_Words1 and 2 respectively). There is, however, an
additional system clock which is monotonic: it always increases in value with time, and
cannot be reset by software. TIME does not affect this timer.

Examples
DEF PROCdel ay(n) T% Tl ME+n*100: REPEAT UNTIL TI ME>T%

Keywords

TIMES$

Pseudo-variable accessing the real-time clock.

Syntax

(1) TIMVES$
(2) TIME$ = expression

Result (1)
TI MES$ returns a 24-character string of the format:
Fri,24 May 1984.17:40:59
The date and time part are separated by a full stop ‘.’

Result (2)

The expr essi on should be a string specifying the date, the time, or both. Punctuation
and spacing are crucial and should be as shown in the exampl es bel ow.

Examples

PRINT TIME$

TIME$="Tue,01 Jan 1972"
TIME$="21:12:06"

TIME$="Tue,01 Jan 1972.21:12:06"

Note that the day of the week is automatically calculated from the date, so that any three
characters may be entered at the start of the date, for example

TIME$="xxx,19 Aug 1987"

394

TINT

TINT

Part of the COLOUR or GCOL statements for use in 256-colour modes, or a statement
on itsown, or afunction.

Syntax

(1) COLOUR expr [TINT expression]

(2) GCOL [expr,] expr [TINT expression]
(3) TINT expression, expression

(4) TINT(expression, expression)

Arguments (1) and (2)
For usages (1) and (2), see COLOUR (COLOR) on page 250 and GCOL on page 284
respectively.

Arguments (3)

The TINT statement takes two expressions. The first isanumber in the range 0 to 3
which indicates which type of colour’s tint value is being set:

Number Colour affected
0 Text foreground
1 Text background
2 Graphics foreground
3 Graphics background

The second expression is a number in the range 0 to 255. This gives the amount of white
to add to the basic colour. Currently, only the top two bits of this number are significant,
s0 0, 64, 128 and 192 give distinct tint values.

The two lines below are equivalent:

GCOL 34 TINT 128
GCOL 34 : TINT 2,128

Result (4)

The two expressions within the brackets give the coordinates of the point whose tint is
required. The result is the tint for that pixel, currently one of the values 0, 64, 128 or 192.
If the pixel is outside the graphics window, 0 is returned?@adNT() should be used to
check that the point is valid first.

395

Keywords

Examples

COLOUR 1+J% TI NT N%

GCOL 128+63 TINT 255 : REM solid white

GCOL 3 TINT TINT(x,y) : REM NB two uses at once!
t =TI NT(O, 0)

396

TOP

TOP

Function returning the address of the end of the program.

Syntax
TOP

Result

TOP gives the address of the first byte after the BASIC program. The length of the
program is equal to TOP-PAGE. LOMEM isusually set to TOP (or thefirst word above
if TOP isn’t on a word boundary), so this is where the variables start.

Example
PRI NT TOP

397

Keywords

TRACE

Statement to initiate or terminate line/procedure tracing.
Function enabling text to be sent to atracefile.

Syntax

as a statement:

(1)
(2)
(3)
(4)
(5)
(6)

TRACE [STEP] expression
TRACE [STEP] ON

TRACE [STEP] PRCC
TRACE OFF

TRACE TO fil enane
TRACE CLOSE

as afunction:

(7) TRACE

Argument (1)

expr essi onisaline number. All line numbers bel ow thisline number are printed out
when they are encountered during the execution of the program.

Argument (5)

fi I enane isthe name of the file to which TRACE output is directed.

Purpose

TRACE causes line numbers or procedure and function namesto be printed as they are
encountered. In cases (1), (2) and (3), if STEP is present, BASIC will wait for akey to
be pressed before continuing after each traced item.

@

@

®
4
©)

TRACE expr essi on traces only those lines with aline number below the
value of expressi on.

TRACE ON isthe same as TRACE 65279, i.e. al line numbers are printed as
they are met.

TRACE PROC traces procedures and functions only.
TRACE OFF disables tracing, as does the default error handler.

TRACE TO sends the output from TRACE to a specified file (not available on
1.04 interpreter).

398

TRACE

(6) TRACE CLOSE stopsoutput to anamed file (theinterpreter closesthefile before
exit). Note that errors found when writing to this file will cause it to be closed.

(7) Thefunction TRACE is either zero, or afile handle. It allows output other than
line numbers to be sent to the trace file, asin the last example below.

Examples

| F debug THEN TRACE 9000

TRACE STEP PRCC

| F debug THEN TRACE COFF

| F TRACE THEN BPUT#TRACE, "X is "+STR$X

399

Keywords

TRUE

Function returning the constant —1.

Syntax
TRUE

Result

TRUE always returns —1, which is the number yielded by the relational operators when
the condition is true. For examplet1<3 gives TRUE as its result.

Examples

debug=TRUE
| F debug PRI NT"debug in operation”

400

TWIN

TWIN

Command to enter the Twin text editor.

Syntax

TWN
TW NO expression

Purpose

TWIN converts the program to text, then calls the Twin editor (which should be on a
convenient disc known to the system). You can edit the program as required, then return
to BASIC using one of Twin’s commands. SeeTivn User Guide for details.

TWINO is similar, except that when it converts the program to text, it uses the
LISTO-type option that follows the command. Most useful is 8, which strips line
numbers from the start of the program.

401

Keywords

UNTIL

Statement to terminate a REPEAT loop.

Syntax
UNTI L expressi on

Argument

expr essi on can be any numeric expression which can be evaluated to give atruth
value. If it iszero (FALSE), control passes back to the statement immediately after the
corresponding REPEAT. If the expression is non-zero (TRUE), control continuesto the
statement after the UNTIL.

Examples

DEF PRCCirritate
REPEAT VDU 7: UNTI L FALSE
ENDPRCC

REPEAT PRCCnove: UNTI L ganmeQOver

402

USR

USR

Function returning the value of RO after executing a machine code routine.

Syntax
USR factor

Argument

The address of the machine code to be called. Calls to the 6502-based BBC
Microcomputer operating systems are handled by USR for compatibility.

USRissimilar to CALL except that it returns aresult and cannot be passed any
parameters. On entry to the routine, R0..R14 are as for CALL.

Result
An integer, being the contents of RO on return to BASIC.

Example
DEF FNmachi necode =USR(start_of code)

403

Keywords

VAL

Function returning the numeric value of adecimal string.

Syntax
VAL factor

Argument
A string of length zero to 255 characters.

Result

The number that would have been read if the string had been typed in responseto a
numeric INPUT statement. The string isinterpreted up to the first character that is not a
legal numericone (0to 9, E, - , +, and .).

Example
dat e=VAL(dat %)

404

VDU

VDU

Statement sending bytes to the VDU drivers.

Syntax
VDU [expr [, or ; or | or expr]...[; or |]

Arguments
Any expressions may be followed by acomma, a semi-colon, avertical bar, or nothing.

Expressions followed by a semi-colon are sent as two bytes (low byte first) to the
operating system VDU drivers.

Expressions followed by a comma (or nothing) are sent to the VDU drivers as one byte,
taken from the least significant byte of the expression.

The vertical bar means, 0, 0, 0, 0, 0, 0, 0, 0, 0, and so sends the expression before
it as a byte followed by nine zero bytes. Since the maximum number of parameters
required by any of the VDU statementsis nine, the vertical bar ensures that sufficient
parameters have been sent for any particular call. Any surplus ones are irrelevant, since
VDU 0 does nothing.

Note: For the meanings of the VDU codes, see the chapter entitled VDU control on
page 178.

Examples

VDU 24, 400; 300; 1000; 740; : REM set up a graphi cs w ndow
VDU 7 : REM Enit a beep
VDU 23, 9, 200] 23, 10, 200] : Slow down the flash rate

405

Keywords

VOICES

Statement specifying the number of sound channels to be used.

Syntax
VO CES expressi on

Arguments

expr essi on isthe number of channelsto be used. The maximum number allowed is
eight. Any number between 1 and 8 can be specified, but the number which the
computer isto handle must be apower of two and so the computer rounds up the number
you give to either one, two, four or eight.

Note: The sound system uses up some of the computer’s processing power, and so it
is good practice to minimise the number of active channels. Otherwise, the
computer will take longer to perform other tasks such as drawing to the screen.

Examples

VO CES 4
VO CES n% 2

406

VPOS

VPOS

Function returning the y-coordinate of the text cursor.

Syntax
VPGS

Result

Aninteger between 0 and n, where nisthe height of the current text viewport minus one.
Thisisthe position of the text cursor which is normally given relative to the top edge of
the text viewport. If the cursor direction has been altered using VDU 23, 16, ... thenit
is given relative to the negative y edge of the screen which may be top, bottom, left or
right.

Note: Evenin VDU 5 mode, VPOS returns the position of the text cursor. You
should therefore keep track of the vertical position explicitly in programs which
must operate in VDU 5 mode (e.g. WIMP-based programs).

Examples

DEF FNmyTab(x%
PRI NT TAB(x% VPCS);: =""

| F VPOS>10 THEN PRI NT TAB(O0, 10);

407

Keywords

WAIT

Statement to wait for end of the current display frame. Waiting until the end of the frame
maximises the amount of time available in which to draw objects while the electron
beam is ‘blanked’.

Syntax
WAI T

Purpose

To enable a program to synchronise animation effects with the scanning of the display
hardware.

Examples

MODE 0
a=0
REPEAT
PO NT 1279, 500+200* SI Na
a+=RAD5
WAI T: RECTANGLE FI LL 0, 300, 1279, 400 TO -4, 300
UNTI L FALSE

408

WHEN

WHEN

Part of the CASE ... OF ... WHEN ... OTHERWISE ... ENDCASE statement.

Syntax

VWHEN expression [, expression...] [:statenents]
[st at enent s]

Arguments

VWHEN isfollowed by alist of expressions separated by commas. These expressions
should evaluate to the same type as that of the expression following the corresponding
CASE statement. If the value of the expression following the CA SE statement matches
that of any of the list following the WHEN, st at enent s are executed and control is
then passed to the statement following the ENDCASE.

Note: WHEN must be the first non-space object on aline. A CASE statement can
contain any number of WHEN statements, but only the statements of the first one
which contains a matching value will be executed. To match any value, an
OTHERWI SE should be used.

Examples

WHEN 1 : PROC oad
VWHEN 2,4,6,8 : PRINT "Even" : renminder= 0
VWHEN "Y","y" "YES", "Yes", "yes" : PROCgane

409

Keywords

WHILE

Statement marking the start of aWHILE ... ENDWHILE loop.

Syntax
VWHI LE expression
Arguments
expr essi on can be any numeric which can be evaluated to give atruth value. If it is
zero (FALSE), control passes forward to the statement immediately after the
corresponding ENDWHILE. If it is non-zero, control continues until the ENDWHILE
statement is reached, then loops back to the WHILE statement, and expr essi onis
re-eval uated.
Note: The statements making up the body of the WHILE ... ENDWHILE loop are
never executed if the initial value of expression is FALSE.
Examples
WH LE TI ME < 1000
PROCdr aw
ENDVWH LE

VWHI LE flag : PROCnai nl oop : ENDWHI LE

410

WIDTH

WIDTH

Statement setting the line width for BASIC output, and function returning same.

Syntax

(1) WDTH
(2) WDTH expression

Result (1)

WIDTH returns the current print width, i.e. the last value used in aWIDTH statement
described below (or 0 by default).

Argument (2)

expr essi on should be a positive integer. Expressions in the range 1 to 2147483627
cause BASIC to print anew line and reset COUNT to zero every time COUNT exceeds
that number. If the expression is 0, BASIC stops generating auto-newlines, which isthe
default.

Examples

WDTH 0: REM’infinite width’
W DTH 40: REM new i ne every 40 characters horizontally
PRI NT W DTH

411

Appendix A - Numeric implementation

efore you can perform any arithmetic operations, you need to know how the
computer handles numbers, and what limitations there are on their use.
This appendix describes the different types of numbers you can use with BBC BASIC,
tellsyou how they are stored and manipulated, and explains what limitations this places
on your programs.

Numeric types
You can use the following numeric types with BBC BASIC:

Integers

These are whole numbers, which can be represented exactly by the computer, for
example:

1
2
1024

Floating point numbers
These are real numbers expressed as a decimal fraction, for example:

13
123.45
1.2345E2

Fixed point numbers

These are real numbers expressed as a decimal fraction, but with a fixed number of
places after the decimal point. For example:

1.3333
1.2346
123.4568

are fixed point numbers accurate to four decimal places.

412

Numeric types

413

The most important factor governing numeric typesis the amount of memory used to
store them. For the purposes of this description, we will only consider integers and
floating point numbers.

BASIC VI uses the following storage sizes for numeric types:

Numeric type Soragesize
Integers 4 bytes (32 bits)
Floating point numbers 8 bytes (64 bits)

Remember that BASIC V only supports integers and 5-byte reals (we shall use the term
n—byte realto mean n-byte floating point numbers). The following figures show how
the storage for each numeric type is organised.

bit bit
31 0

2's complement representation of integer

bit bit
31 0
1st word | Sign Mantissa
2nd word Exponent

Appendix A - Numeric implementation

bit bit
31 30 2019 i 0
1st word | Sign Exponent Mantissa
2nd word Mantissa

Effects of storage size
The storage size of a numeric type affects the following things:
I the speed with which numbers of that type are processed by the computer;
I theamount of memory left for your program;
I therange of numbers of that type which can be represented by the computer;
I theaccuracy with which numbers of that type can be represented by the compuiter.

For example, integers occupy |ess space than real numbers, and are handled much more
quickly. 8—byte reals use more memory than 5-byte reals, and are therefore more
accurate. The computer can represent larger numbers in the 8—byte format.

The effect on memory usage is very important if, for instance, your program uses arrays
of real numbers. Consider an array with 100 elements in, each element being a 5-byte
real. This will occupy 500 bytes of memory, whereas it would occupy 800 bytes if the
elements were 8-byte reals. This is a trivial example, but the effects can become
severely limiting if you use very large arrays.

The following two subsections explain range and accuracy of representation in more
detail.

414

What is floating point arithmetic?

Range

The greater the storage size of a given numeric type, the greater the range of numbers of
that type that the computer can represent. For instance, integers are stored in 4 bytes or
32 bits. The maximum positive integer that the computer can represent is given by

27 (32-1)
which means 2 raised to the power of 31, and is equal to 2147483647.

The maximum positive real number that the computer can represent depends on which
type of real number you specify. For instance, the maximum positive 5-byte real that the
computer can represent is

1.7 x 168

Accuracy

The accuracy of a number is determined by how many significant figures of the number
that the computer can show. The computer can show all the significant figures in an
integer (as long as it is within the representable range). However, it must lose some of
the significant figures of a floating point number.

For instance, the value of Pl shown to three significant figures is 3.14. Shown to six
significant figures, it is 3.14159. BASIC VI can show up to 17 significant figures of a
floating point number, but this does not mean it is completely accurate. Pl has an infinite
number of digits after the decimal point, and so the computer can only print an
approximation to it, by chopping off the trailing digits.

The table below summarises the numerical representation of BBC BASIC.

Range Accuracy Soredin
Integers —2147483648 to 2147483647 absolute 4 bytes
5-bytereals +1.7x10% to +15x10°3° 9sigfigs 5 bytes
8—byte reals +1.7x10%%® to +1.5x107°%% 17sdigfigs 8 bytes

Therest of this appendix explainsthe two methods used by BASIC V1 for implementing
8-byte floating point arithmetic to | EEE standard 754. BASIC V only employs one of
these methods, and does perform its 5-byte arithmetic to the | EEE standard.

What is floating point arithmetic?

415

Floating point arithmetic is the process by which real numbers are manipulated, as a
result of your instructions to the computer. For example, a computer cannot add two
numbers together in the way we can. It must first convert the numbers into binary form,
and then add them using Boolean operations.

Appendix A - Numeric implementation

Every arithmetic operation can be reduced, at the lowest level, to agroup of Boolean
operations. It is more convenient, however, to represent these groups by a set of
mnemonics, called the floating point instruction set. The BBC BASIC floating point
instruction set isgivenin full in the RISC OS Programmer’s Reference Manual.

Implementation

BBC BASIC VI uses two methods to implement floating point arithmetic. They are as
follows:

I software implementation, using a floating point emulator (FPE)
I hardware implementation, using an optional floating point coprocessor.

The advantage of hardware implementation is that it is much faster.

When you instruct the computer to add two real numbers A and B together, the
following sequence of events takes place:

1 TheBASIC interpreter storesthe numbersin floating point format.

2 The ARM processor scansthe list of operationsit can perform. It cannot perform
floating point operations itself, so one of the following two things can happen:

I Theinstruction is performed by the floating point coprocessor (if fitted).
I Theinstruction is performed by the floating point emulator.

3 Theinterpreter produces machine code instructions, telling the ARM
microprocessor that the floating point numbers A and B are to be added together
using afloating point add instruction (ADF).

4 The ARM processor stores A and B in itsinternal floating point registers.

Floating point emulator

The floating point emulator is a software module that provides floating point support. It
emulates a hardware floating point coprocessor. It isthis module that provides the
floating point instruction set, extending the existing instruction set of the ARM
processor.

You cannot use floating point instructions directly, as the BASIC interpreter does not
understand them. However, you can include them in an assembly language module
which is called from your program. The description of the CALL statement (on

page 229) explainsthis.

416

Implementation

Floating point coprocessor

The floating point coprocessor is an optional hardware device that performs floating
point arithmetic to | EEE standard 754. The coprocessor only directly supports a subset
of the floating point instruction set. If a particular instruction is not supported by the
coprocessor, it is performed by the emulator instead.

It does not matter to your program whether a coprocessor is present or not. The user
interface ensures that programs run in exactly the same way in either case. The only
difference you will seeisin the speed at which your program runs.

Floating point instructions are performed much faster in hardware, although the actual
improvement in performance depends on what equipment you are using, and which
processor you have.

417

Appendix B - Minimum abbreviations

Keyword Abbr. Version Token byte(s)
ABS ABS I &94

ACS ACS I &95
ADVAL AD. I &96

AND A | &80
APPEND AP. V &C7 &8E
ASC ASC I &97

ASN ASN I &98

ATN ATN I &99
AUTO AU. I &C7 &8F
BEAT BEAT V &C6 &8F
BEATS BEA. \% &C8 &9E
BGET B. | &9A
BCET$ BGET$ V

BPUT BP. I,V &D5
BPUT$ BPUT$ V

BY BY \% &42 &59 (not tokenised)
CALL CA. I &D6
CASE CASE \% &C8 &BE
CHAI N CH. I &D7
CHRS$ CHR$ I &BD

Cl RCLE cl. \% &C8 &8F
CLEAR CL. I &D8

CLG CLG I &DA
CLCSE CLO I &D9
CLOSE# CLCSE# I

CLS CLS I &DB
COLOR C. (N &FB
COLOUR C. I &FB

00 Ccs I &9B
COUNT Cou. I &9C
CRUNCH CR \% &C7 &90
DATA D. | &DC

DEF DEF I &DD

DEG DEG I &9D
DELETE DEL. I &C7 &91

418

419

Keyword Abbr. Version

DI M D M I,V
DV D v I
DRAW DR. I
EDIT ED. IV
EDI TO ED. O IV
ELLI PSE ELL. \Y,
ELSE EL. I,V
END END I,V
ENDCASE ENDC. \Y,
ENDI F ENDI F \Y
ENDPROC E. I
ENDWHI LE ENDW \Y
EOF ECF I
EOF# ECF# I
EOR ECR I
ERL ERL I
ERR ERR I
ERROR ERR. I,V
EVAL EV. |
EXP EXP |
EXT EXT I, 1V, V
EXT# EXT# 1,V
FALSE FA. |
FILL Fl . \%
FN FN I
FOR F. I
GCaL GC. I,V
CGET GET |
CGETS$ GE. I,V
GETS$# CET$# \%
GOosuUB &S |
(€]]0) G I
HELP HE. \%

H MEM H. I

I F I F I,V
I NKEY I NKEY |

| NKEY$ I NK. I

I NPUT l. I

| NPUT# | NPUT# I

I NPUT LI NEI NPUT LINE I

I NSTALL I NS. \Y,

Token byte(s)

&DE

&81

&DF

&C7 &92
&C7 &92 &AF
&C8 &9D
&CC

&EO0

&CB

&CD

&E1

&CE

&C5

&82
&9E
&9F
&85
&A0
&A1
&A2

&A3
&C8 &90
&A4
&E3
&E6
&A5
&BE

&E4

&E5

&C7 &93
&D3 / &93
&E7

&AG

&BF

&E8

&C8 &9A

Keyword

| NSTR(

| NT
LEFTS$(
LEN

LET

LI BRARY
LI NE

LI NE | NPUT
LI ST

LI STO
LN
LOAD
LOCAL

LOCAL ERRCR

LOG
LOVEM
LVAR

M D$(
MOD
MODE
MOUSE
MOVE
NEW
NEXT
NOT

OF

OFF

oD

ON

ON ERROR
OPENI N
OPENOQUT
OPENUP
OoRrR
ORIG N
OSCLI
OTHERW SE
OVERLAY
PAGE

Pl

PLOT

Abbr.

I NS,
I NT
LE.
LEN
LET
LI B.
LI NE
LI NE | NPUT
L.
L.O
LN
LO
LCC.

LOCAL ERROR

LOG
LOM

LV.

M

MOD

MO,

MOoU.
MOVE
NEW

N.

NOT

OF

OFF

O

ON

ON ERROR
CP.
OPENO.
OPENUP

>2983%

Pl
PL.

Version

<

<

< < =

<< <

< <

T T <L KT ZT T <K T K<KTTTTLT I K<KTTLTTTI < kxkTmTtTY/-/-/—~—

Token byte(s)

&A7
&A8
&C0
&A9
&E9
&C8 &9B
&86

&C7 &94

&C7 &94 &AF

&C7 95
&EA

&b2 | &92
&C7 &96
&C1

&83

&EB

&C8 &97
&EC

&C7 &97
&ED

&CA
&87
&C7 &98
&EE

&8E

&84

&C8 &91
&FF

&7F

&C8 &A3
&Db0 / &90

&F0

Appendix B - Minimum abbreviations

420

Keyword Abbr. Version Token byte(s)

PO NT PO NT Vv &C8 &92
PO NT(PO | &B0

PCS PCS | &B1

PRI NT P. | &F1

PRI NT# PRI NT# |

PROC PROC | &F2

PTR PTR | &CF | &8F
PTR# PTR# |

QT Q Vv &C8 &98
READ READ | &F3
RECTANGLE REC. Vv &C8 &93
REM REM | &F4
RENUMBER REN. | &C7 899
REPEAT REP. | &F5
REPORT REPO, | &F6
REPORT$ REPO. $ Vv &F6 &24
RESTORE RES. Y &F7
RESTORE DATA Vv

RESTORE ERROR Vv

RETURN R I,V &F8
RIGHT$(RI. I,V &C2

RND RND | &B3

RUN RUN | &F9
SAVE SA. I,V &C7 &9QA
SGN SGN | &B4
SIN SIN | &B5
SOUND SO I,V &D4
SPC SPC | &89
SR SR | &B6
STEP S. Y &88
STEREO STER. Vv &C8 &A2
STOP STOP | &FA
STR$ STR$ | &C3
STRINGS(STRI. | &CA4
SUM SUM v &C6 &8E
SUMLEN SUMLEN Vv &C6 &8E
SWAP sSw v &C8 &94
SYS SYs v &C8 &99
TAB(TAB(| &8A
TAN T. | &B7
TEMPO TE. v &C8 &9F

421

Keyword

TEXTLCAD
TEXTSAVE
THEN
TI ME
TI VE$
TI NT
TO

TOP
TRACE
TRUE
TWN
TW NO
UNTI L
USR
VAL
VDU
VO CE
VO CES
VPCS
VAI'T
WHEN
VWHI LE
W DTH

Abbr.

TEXTL.
TEXTS.

TH.
TI.
TI. $
TINT
TO
TOP
TR
TRUE
TWN
TW
u.
USR
VAL
V.
VA CE
VO
VP.
WA,
VWHEN
W

W .

Version

= <

<

<

TLLLKT<LKLKT T T LKL T T T I I k<<

Appendix B - Minimum abbreviations

Token byte(s)

&C7 &9B
&C7 &9C
&8C

&bl / &91
&D1 / &91 $
&C8 &9C
&B8

&B8 &50
&FC

&B9

&C7 &9D
&C7 &9E
&FD
&BA
&BB

&EF

&C8 &A1
&C8 &A0
&BC

&C8 &96
&C9

&C8 &95
&FE

The two values for the pseudo-variables LOMEM, HIMEM, PAGE, PTR and TIME are

the statement and function tokens respectively.

Where more than one version number is given, the second one indicates that the
keyword was employed in a new way in that version.

422

423

Appendix C - Error messages

Note that error numbers 20 to 24 cannot be formed in BASIC V1.

Error Error
number message
0 Corruption of stack

Error control status not found on stack for
RESTORE ERROR

HELP has no infornmation on this keyword
Incorrect in-core file description
Invalid LISTO option

Invalid TW NO option

Li ne too | ong

Li ne nunbers | arger than 65279 woul d be
generated by this renunmber

LI ST/ TWN found |ine nunber reference
M ssing incore name

No room
No roomto do this renunber
St opped
1 No such mmenoni c
No such suffix on EQU
2 Assenbler limt reached

Bad address of f set
Bad i mredi at e const ant

Bad shift
3 Bad register
Duplicate register in multiply
4 M ssing =
4 M ssing = in FOR statenent
M st ake
5 M ssing ,
6 Type m smatch: array needed

Type mismatch: nuneric array needed

424

Error Error

number message
Type m smatch: nunber needed
Type mismatch: nuneric vari abl e needed
Type mismatch: string array needed
Type mismatch: string needed
Type mismatch: string variabl e needed
6 Type m smatch between arrays

Can’'t assign to array of this size
Array type msmatch as paraneter
Can’t SWAP arrays of different types

7 Not in a function

8 Too | ow a val ue for $<nunber>
9 M ssing "

10 Arrays cannot be redi nmensi oned

Bad DI M st at enent
Can’t DI M negative anopunt
DI M) function needs an array
| npossi bl e di mensi on
No end of dinmension list)
No roomto do matrix multiple with
source(s) the sane as destination
11 Attenpt to allocate insufficient nenory
No room for this DIM
No room for this dinmension

12 Itenms can only be made local in a function or
procedure

13 Not in a procedure

14 Ref erence array incorrect

14 Undi mensi oned array

Unknown array
Unknown array in DI M) function

15 I ncorrect nunber of subscripts
Subscri pt out of range

16 Syntax error

17 Escape

18 Di vision by zero

425

Error
number
19

20

21
22
23

24
26

27

28

29
30
31

32
33
34
35
36
38
39
40
41
42

42
43

Appendix C - Error messages

Error

message

String too | ong

Nunber too big

Nunber too big for arc Sine or arc Cosine
Negati ve root

Logarithm range

Accuracy lost in Sinel/ Cosinel
Tangent

Exponent range

Can't use array reference here
Unknown or mi ssing variable

M ssing)

M ssing]

M ssing {

M ssing }

Bad Bi nary

Bad Hex

Hex nunber too |arge

No such function/ procedure

Bad call of function/procedure
Argunments of function/procedure incorrect
Invalid array actual paramneter
Inval id RETURN actual paraneter
Not in a FOR | oop

Can’t match FOR

Bad FOR control variable

The step cannot be zero

M ssing TO

Not in a subroutine

ON synt ax

ON range

No such line

DATA poi nter not found on stack for RESTORE
DATA

Qut of data
Not in a REPEAT | oop

426

Error Error

number message

44 Too many nested structures

45 M ssing #

46 Not in a WH LE | oop

47 M ssi ng ENDCASE

48 CASE. . OF statenent nust be the last thing on
aline

48 OF missing from CASE st at enent

49 M ssing ENDI F

50 Bad MOUSE vari abl e

51 Too many input expressions for SYS
Too many output variables for SYS

52 Can't install library

Bad program used as function/procedure library
No room for library

427

Appendix D - Inkey values

Key INKEY number
Print -33
F1 -114
F2 -115
F3 -116
F4 -21
F5 -117
F6 -118
F7 -23
F8 -119
F9 -120
F10 -31
F11 -29
F12 -30
A - 66
B -101
C -83
D -51
E -35
F -68
G -84
H -85

I -38
J -70
K -71
L -87
M -102
N -86
@] -55
P -56
Q -17
R -52
S -82
T -36
U -54
\Y, -100

428

Key INKEY number
W -34
X -67
Y -69
Z -98
0 -40
1 -49
2 -50
3 -18
4 -19
5 -20
6 -53
7 - 37
8 -22
9 -39

, -103
- -24

. -104
/ -105
[-57
\ -121
] -89

; - 88
Esc -113
Tab - 97
Caps Lock - 65
Scrol I Lock -32
Num Lock -78
Br eak -45
‘I~ -46
#/Currency -47
Back Space -48
Insert -62
Home -63
Page Up -64
Page Down -79

T -80
Shift (either/both) -1

Alt (either/both) -3

Shift (left/right-hand) -4/-7

Ctrl (left/right-hand) -5/-8

Alt (left/right-hand) -6/-9

429

Appendix D - Inkey values

Key INKEY number
Space Bar -99
Del ete -90
Ret urn -74
Copy -106
1 -58
- -26
N -122
! -42
Keypad 0O -107
Keypad 1 -108
Keypad 2 -125
Keypad 3 -109
Keypad 4 -123
Keypad 5 -124
Keypad 6 -27
Keypad 7 -28
Keypad 8 -43
Keypad 9 -44
Keypad + -59
Keypad - - 60
Keypad . =77
Keypad / -75
Keypad # -91
Keypad * -92
Keypad Enter -61

Sel ect nouse button (Left) -10
Menu mouse button (Mddle) -11
Adj ust nouse button (Right) -12

430

431

Appendix E - Colour modes

Two-colour mode

0
1

black
white

Four-colour modes

0

WN -

black
red
yellow
white

16-colour modes

QOWowo~NOoOUTh,WNEO

black

red

green

yellow

blue

magenta

cyan

white

flashing black-white
flashing red-cyan
flashing green-magenta
flashing yellow-blue
flashing blue-yellow
flashing magenta-green
flashing cyan-red
flashing white-black

432

433

Appendix F - Plot codes

The groups of PLOT codes are as follows:

0 -
8 -
16 -
24 -
32 -
40 -
48 -
56 -
64 -
72 -

80 -
88 -

9% -
104 -

112 -
120 -

128 -
136 -
144 -
152 -
160 -
168 -
176 -
184 -
192 -
200 -
208 -
216 -
224 -
232 -
240 -
248 -

7
15
23
31
39
47
55
63
71
79

87
95

103
111

119
127

135
143
151
159
167
175
183
191
199
207
215
223
231
239
247
255

(&00 - &07)
(&08 - &OF)
(&10 - &17)
(&18 - &1F)
(&20 - &27)
(&28 - &2F)
(&30 - &37)
(&38 - &3F)
(&40 - &47)
(848 - &4F)
(&50 - &57)
(&58 - &5F)
(&60 - &67)
(&68 - &6F)
(&70 - &77)
(&78 - &7F)
(&80 - &87)
(&88 - &8F)
(&90 - &97)
(&98 - &9F)
(&AO - &A7)
(&A8 - &AF)
(&BO - &B7)
(&B8 - &BF)
(&CO - &C7)
(&C8 - &CF)
(&DO - &D7)
(&D8 - &DF)
(&EO - &E7)
(&E8 - &EF)
(&FO - &F7)
(&F8 - &FF)

Solid line including both end points
Solid line excluding final points
Dotted line including both end points
Dotted line excluding final points
Solid line excluding initial point
Solid line excluding both end points
Dotted line excluding initial point
Dotted line excluding both end points
Point plot

Horizontal linefill (left & right) to non-
background

Trianglefill

Horizontal linefill (right only) to
background

Rectangle fill

Horizontal linefill (left & right) to
foreground

Parallelogram fill

Horizontal linefill (right only) to non-
foreground

Flood to background

Flood to foreground

Circle outline

Circlefill

Circular arc

Segment

Sector

Block copy/move

Ellipse outline

Ellipsefill

Graphics characters

Reserved for Acorn expansion
Reserved for Acorn expansion

Sprite plot

Reserved for user programs
Reserved for user programs

434

Within each block of eight the offset from the base number has the following meaning:

Move cursor relative (to last graphics point visited)

Draw relative using current foreground colour

Draw relative using logical inverse colour

Draw relative using current background colour

Move cursor absolute (ie move to actual co-ordinate given)
Draw absolute using current foreground colour

Draw absolute using logical inverse colour

Draw absolute using current background colour

~N o 0ok WN PP O

The above applies except for COPY and MOV E where the codes are as follows:

184 (&B8) Move only, relative

185 (&B9) Move rectangle relative
186 (&BA) Copy rectangle relative
187 (&BB) Copy rectangle relative
188 (&BC) Move only, absolute

189 (&BD) Move rectangle absolute
190 (&BE) Copy rectangle absolute
191 (&BF) Copy rectangle absolute

435

Appendix G - VDU commands

VDU Ctrl Extra Meaning

Code bytes

Does nothing

Sends next character to printer only
Enables printer

Disables printer

Writes text at text cursor

Writes text at graphics cursor
Enables VDU driver

Generates bell sound

Moves cursor back one character (or
deletes previous character)

O~NO OIS WNEO
TOMMOO®>QE

[eNeoNoNeoNoNoNol e

9 I 0 Moves cursor on one space

10 J 0 Moves cursor down one line

11 K 0 Moves cursor up one line

12 L 0 Clears text window

13 M 0 Moves cursor to start of current line
14 N 0 Turns on page mode

15 @) 0 Turns off page mode

16 P 0 Clears graphics window

17 Q 1 Defines text colour

18 R 2 Defines graphics colour

19 S 5 Defines logical colour

20 T 0 Restores default logical colours
21 U 0 Disables VDU drivers (or deletes current line)
22 \% 1 Selects screen mode

23 W 9 Multi-purpose command

24 X 8 Defines graphics window

25 Y 5 PLOT command

26 4 0 Restores default windows

27 [0 Does nothing

28 \ 4 Defines text window

29] 4 Defines graphics origin

30 n 0 Homes text cursor

31 2 Moves text cursor

For more details of VDU commands see the chapter entitled VDU control on page 178.

436

437

Appendix H - *FX commands

Command

* FX
* FX
* FX
* FX
* FX
* FX
* FX
*FX
* FX
*FX
* FX
* FX
* FX
* FX
*FX
* FX
* FX
* FX
* FX
* FX
*FX
*FX
*FX
*FX
*FX
*FX
*FX
*FX
*FX
* FX
*FX
* FX
*FX
*FX
*FX

©Coo~NOOOUTA~,WNEO

Description

Displays operating system title and version number
Writes to location left free for the user

Specifies stream for all subsequent datainput
Specifies stream for all subsequent data output
Controls cursor key status

Selects where subsequent printer output will be sent
Selects printer ignore character

Selects R$423 baud rate for receiving data

Selects R$423 baud rate for transmitting data
Selects flash rate for first colour

Selects flash rate for second colour

Selects keyboard auto-repeat delay

Selects keyboard auto-repeat rate

Flushes buffer

Resets function keys

Waits for vertical sync (vsync)

Resets font definitions

Flushes a selected buffer

Resets a group of font definitions

Selects cursor / activates mouse

Writes screen bank number addressed by VDU driver
Writes screen bank number addressed by display hardware
Sets up automatic shadow mode

Reflects keyboard statusin LEDs

Writes keys pressed information

Clears Esc condition

Sets Esc condition

Acknowledges Esc condition

Inserts character code into buffer

*OPT equivalent

I ssues module services call

*TV equivalent

Inserts character into input buffer

Sets RS423 attributes

Writesavaluein CMOS RAM

438

Command Description

*FX 163 Sets the dot-dash line pattern length

*FEX 178 Enabl es/disables keyboard

*FX 181 Alters RS423 character actions

*FX 196 *FX 11 equivalent

*EX 197 *FX 12 equivalent

*FX 200 Selects Break and Escape effects

*FX 201 Sets keyboard status

*FX 202 Alters keyboard status byte

*FX 203 Sets RS423 ‘buffer full’ limit

*FEX 204 Enables/disables RS423 buffering

*EX 211 Selects bell channel number

*EX 212 Selects bell amplification

*FEX 213 Selects bell frequency

*EX 214 Selects bell duration

*EX 216 Cancels function key expansion

*EX 217 Resets paged mode line count

*FX 218 Cancels VDU command sequence

*EX 219 Selects Tab key code

*FEX 220 Selects Esc character

*EX 221 Selects interpretation of input values 192 to 207
*EX 222 Selects interpretation of input values 208 to 223
*FEX 223 Selects interpretation of input values 224 to 239
*EX 224 Selects interpretation of input values 240 to 255
*EX 225 Selects soft key interpretation

*FEX 226 Selects Shift plus the soft key interpretation
*EX 227 Selects Ctrl plus the soft key interpretation

*FEX 228 Selects Shift Ctrl plus the soft key interpretation
*EX 229 Selects Esc key status

*FX 230 Selects Esc effects

*FX 238 Selects numeric keypad interpretation

*EX 247 Sets the Break key effects

*FX 254 Selects effect of Shift on numeric keypad

*FX 254 Selects effect of Shift on numeric keypad

For more details of *FX commands and their parameters, see the chapter entitled
OS Bytes and thelndex of OS Bytes in theProgrammer’s Reference Manual

439

Appendix | - BBC BASIC’s history

his appendix is designed to pinpoint the variations found among the dialects of BBC
BASIC. You can useit to determine whether a given feature of the languageis
present in a particular version. You should also refer to Appendix B - Minimum
abbreviations on page 418. Thisgivesthe version number of the first appearance of each
keyword. For example, OSCLI has I in the version column, as the OSCLI statement
was first introduced in BASIC 1.

There have been six releases of BBC BASIC, the latest being BASIC VI. The complete
listis:

BASIC |

The original version supplied with early BBC Microcomputers, models A and B. BBC
BASIC isin turn descended from Atom BASIC, afast integer-only BASIC supplied
with the Acorn Atom.

BASIC I

Thiswas an update to BASIC I. It also ran on the BBC models A and B. It incorporated
various bug fixesto BASIC I, and added the OPENUP and OSCL | keywords, and offset
assembly. Version |1 isthe principal BBC Microcomputer version of BBC BASIC.

BASIC 11l

This was supplied on the BBC Microcomputer model B+. It was substantially
unchanged from version I1. There were one or two bug fixes, and a new keyword: the
American spelling of the COLOR statement.

BASIC IV

Also known as CMOS BASIC, this version was a major development from BASIC 111.
It was designed for use on the BBC Master series and 65C12 Second Processors. Both
these used a slightly more powerful version of the 6502 processor than the one used in
the original BBC. This allowed several major enhancements to be squeezed into the
ROM, such asLIST IF, EXT# as a statement, EDIT, TIMES, ON ... PROC, |in VDU
statements and faster floating point. Some bugs were also corrected.

440

BASIC Il improvements

BASIC V, version 1.04

Developed for Acorn RISC computers. BASIC V built on the foundations provided by
BASIC IV. However, because of the lack of restrictions such as 16 KBytes total code
size, the enhancements made were far greater than those that appeared previously. The
interpreter was by now about 61 KBytes long, including comprehensive built-in help
text, and was probably the most powerful BASIC found on any computer. It was
certainly the fastest interpreted BASIC in the world.

BASIC V, version 1.05

This upgrade of the version 1.04 interpreter gave BBC BASIC more speed and power.
New commands were introduced. The interpreter had grown to 64K bytes to
accommodate the improvements.

BASIC VI, version 1.05

BASIC VI runs on the Acorn RISC computers. Improved floating point handling means
it now performs floating point arithmetic to IEEE standard 754, using 8—byte real
representation.

Because BASIC V is still a useful language, you are given the option to invoke either
BASIC V (using the *BASIC command) or BASIC VI (using the new *BASIC64
command). The interpreter is now only 57 KBytes long, although the value of PAGE is
higher.

BASIC Il improvements

441

OSCLI. This passes a string to the command line interpreter for execution. It is more
powerful than simple * commands, as these cannot contain general string expressions.

New keywords and features

OPENUP. This does an OSFIND with reason code &CQ0, i.e. open an existing file for
update. This was the action of OPENIN in BASIC I. OPENIN now does an OSFIND
&40, i.e. open for input only. OPENOUT still does an OSFIND &80, i.e. create and
open for update.

Numeric printing has been improved to allow numbers to be printed to ten digits
accuracy. This allows integers up & 2 be printed without resorting to ‘E’ notation.

The MODE statement now resets the COUNT function to zero.

A semi-colon(;) is allowed in place of a comma)(in the INPUT statement.

Appendix | - BBC BASIC'’s history

Fatal errors are introduced. These have error number 0, and cause an automatic ON
ERROR OFF. This means that the default error handler is always used for these errors.
The STOP statement now causes afatal error, as does the No r oomcondition.
Additionally, the standard error handler no longer uses stack space, so spurious No

r oomerrors are not produced.

A new error, number 45, M ssi ng # isgiven if any of the keywords PTR, EOF, BGET,
BPUT, EXT isnot followed by a#.

String allocation has been improved. A string which was the last one created on the heap
can be extended without discarding the old storage. This stops No r oomerrors from
being generated in certain situations.

Bit 2 of the assembler OPT expression is used to control offset assembly. If thisbit is set,
P% holds the run-time location counter, and O% holds the assembly-time counter where
bytes are actually assembled to. If bit 2 is clear, P% holds both the run-time and
assembly-time counters.

Four new assembler directives are introduced: EQUB, EQUW, EQUD, EQUS. These
allow one-, two-, four- and multiple-byte (string) quantities to be embedded into the
code.

Bug fixes

ELSEinan ON ... GOTO/GOSUB no longer leaves a byte on the 6502 stack. This
prevented EL SE from being used in ON statementsin BASICI.

INSTR no longer leaves the main string on the software stack when it is shorter than the
substring. This caused ENDPROC and =expression to crash when INSTR was used
inside a PROC or FN under the above-mentioned condition.

The argument of EVAL is now tokenised correctly so that EVAL"TIME" (or any other
pseudo-variable) works. Previously the statement versions of pseudo-variables were
used, resultinginaNo such vari abl e error when BASIC tried to evaluate the
expression.

The ABS function can now cope with non-negative integers without returning a string
type. Previously, ABS1 appeared to yield astring so a statement like PRI NT - ABS1
would give atype-mismatch error.

The LN and LOG functions have been re-written. This makes them more accurate and
avoids a problem when BASIC tried to evaluate LN(2E-39). Other changes to the
arithmetic package are afix to a bug which caused INT1E39 to fail and the re-coding of
the SIN/COS routine to make it more accurate.

A bug associated with ON ERROR GOTO 9999 (and other line numbers) has been
fixed.

442

BASIC Ill improvements

DIM var nwherenis an expression less than —1 now givBaa DI Merror instead of
lowering the value of the free space pointer. This former action could result in the
corruption of variables or the program.

BASIC Il improvements

The COLOUR keyword may now be spelt COLOR, to aid the porting of programs from
American dialects of BASIC. In programs, the keyword always lisBOROUR, except

in the American version of BASIC I, which always lists it@&LOR. This is the only
difference between the two versions.

A string expression in a SAVE command works correctly now, so you can say, for
example SAVE A$+B$ without error.

The indirection operators ? and ! may be used as formal parameters without problems.
For example, you could have a procedb® PROCa(! &70) , where the contents of
locations &70..&73 act as a local integer variable.

BASIC IV improvements

443

The ON... GOTO/GOSUB statement has been extended to include PROCSs. The syntax
is ONexpression PRO@G, PROOM, PROGQ:... [ELSE statement]. Thenth PROC in
the list is called, wherme is the value oéxpression.

The EDIT command converts the program to text and then calls the editor with a
*EDIT command. The program can be edited then re-tokenised by returning to BASIC.
A No roomerror will be given if there is not enough room to store both the tokenised
and textual version of the program during conversion to text.

The TIMES$ pseudo-variable can be used to display and alter the time held in the CMOS
battery-backed clock.

The delimiter | may be used in VDU statements to send nine 0 bytes after the last
expression. This can be used to ensure that, for example, VDU 23 commands which
require many trailing zeros are correctly terminated.

LISTO bits 1 and 2 (which cause loops to be indented) now work correctly, inasmuch as
the NEXT lines up with its FOR and UNTIL with its REPEAT. If LISTO is non-zero,
leading spaces are stripped from input lines (i.e. between the line-number and first
statement). Trailing spaces are always stripped.

LIST has been extended by adding the IF part to it. LIS&ikill only list lines which
contain text.

The functionEXT# returning the length of the file may now also be used as a statement
to set the length of a file (EXTHan=expr). It relies for its operation on an OSARGS
call supported by ADFS and ANFS.

Appendix | - BBC BASIC'’s history

AUTO no longer prints a space after the line number, as this wasn't part of the input line
anyway.

The assembler supports the full 65C12 instruction set, and now accepts lower case in all
circumstances (e.g. thein| da &70, x which previously had to be in upper case).

RENUMBER and LIST no longer get confused by the presence of an &8D Teletext
control character iREMstatements. (&8D is used in internal-format line numbers by
BASIC).

In previous versions, a FOR loop which used an FN in the start, end or step expressions,
where the FN itself contained a FOR loop would not work properly. This has been fixed.

The random number generator gives different results from previous versions for RND(1)
and RND@). This is to avoid certain statistical problems.

A bug whereby it was possible to RESTORE to a line which had no DATA statement but
a comma present has been fixed.

BASIC V version 1.04 improvements

This uses version 1.04 of the BASIC interpreter. Because the major part of the BASIC V
guide is concerned with the documentation of BASIC V, this section only mentions the
new keywords and features in very terse terms. You are directedKeytlierds

chapters for detailed descriptions of all BASIC keywords. The index also gives you the
page reference for the main discussion of topics mentioned below.

The new constructs WHILE. ENDWHILE, IF ... THEN ... ELSE... ENDIF, CASE
... OF... WHEN ... OTHERWISE... ENDCASE have been introduced. This makes
readable, GOTO-less programming much easier to attain than previously.

Procedure and function calls have been enhanced in the following ways: value and result
parameters (RETURN parameters), array parameters and local arrays, procedure
libraries (LIBRARY, INSTALL and OVERLAY), LOCAL DATA and LOCAL ERROR
handlers, a relative RESTORE statement which does not require the use of line numbers.

Many array operations have been introduced. These include: local arrays and array
reference parameters, whole arrays operations such as assignment, four-function
arithmetic, matrix and vector multiplication, SUM of array elements, the DIM function
to find information on array parameters, array element initialisation, MOD (square root
of the sum of the squares of a numeric array).

Several new operators have been introduced{left shift), >> (arithmetic right shift),
>>> (logical right shift)] (floating point indirection), += (increment assignment,
including all the elements of an array), —= (decrement assignment). The character %
introduces binary constants as & introduces hexadecimal ones.

444

BASIC V version 1.04 improvements

TRACE has been enhanced to allow single stepping and the tracing of procedure and
function calls. Example: TRACE STEP PRCC.

Line numbers may now be in the range 0-& FEFF, i.e. 0-65279. On line entry, BASIC
checks for mismatched quotes and parentheses and attempts to reference line numbers
greater than 65279. An error isreported if amismatch is detected.

Attempts to set PAGE, LOMEM or HIMEM to incorrect values will result in an error
message being printed, but execution will continue.

Many new statements have been introduced. The relevant keywords are: BEATS,
BPUT#, CIRCLE, COLOUR, ELLIPSE, END, ERROR, EXT, FILL, GCOL, LINE,
INPUT, LEFT$, MID$, RIGHT$, MOUSE, ON, OFF, ORIGIN, POINT, QUIT,
RECTANGLE, SOUND, STEREO, SWAP, SYS, TEMPO, VOICE, VOICES, WAIT.

Several new functions have a so been introduced. The keywords are: BEAT, BEATS,
DIM, END, GET$#, LEFT$, MODE, REPORT$, RIGHTS$, SUM, SUMLEN, TEMPO.

Some new commands have been introduced. They are: APPEND, HELP, LISTO
(enhanced), LVAR, SAVE (enhanced), TWIN, TWINO. Additionally, the *BASIC
command itself now supports several command-line options and arguments.

All error messages have been made more useful, and many new error messages have
been introduced.

The assembler accepts the full ARM instruction set. Full details of the assembler are
given in the Assembler Guide; a brief description is given in the appendix on the
assembler in the Programmer’s Reference Manual

CALL and USR may be used to call ARM assembler routine, or to emulate 6502-based
MOS routine when supplied with the appropriate addresses. Access to many internal
BASIC routinesis (legally) available to writers of CALL, USR and OSCLI routines.
SY S can be used to access operating system SWI routines.

The default error handler sets @% to avalue which ensures that the line number will be
printed as an integer. It restores @% at the end.

COUNT and WIDTH are now stored as 32-bit wide quantities. This means that
tabulation using commas is more reliable. (Strange effects used to occur after 255
characters had been printed.)

The pseudo-variables may now be used as statements after an IF even when the THEN
isomitted. Thatis, | F r el ocat e% PAGE=PAGE+&10000 will work, even though it
didn’t previously.

Integer FOR statements that would overflow will be ignored. (Basically this means that
if limit+step—1 / &7FFFFFFF, the loop will terminate at the NEXT.)

445

Appendix | - BBC BASIC'’s history

BASIC V version 1.05 improvements

This uses version 1.05 of the BASIC interpreter. It is an upgrade of BASIC V version
1.04, and includes new commands as well as bug fixes.

The new CRUNCH command strips various spaces from a program. Its argument is a 5—
bit binary word. Each bit in the word has a different meaning (for instance bit O controls
the stripping of spaces before statements; bit 2 controls the stripping out of REM
statements).

END= can now be used almost anywhere, with the following exceptions: nested within
EVAL or LOCAL ERROR,; nested within assignments to local arrays; within nested
local arrays.

The @% print formatter now uses ANSI G, E or F formats. If you use the 1.04
interpreter, you can achieve the same results using the method given in the description of
the PRINT command.

The new TEXTLOAD command can load a file that is either a BASIC program, or a
BASIC program that was saved as a text file. In the latter case, TEXTLOAD
automatically renumbers the program. TEXTSAVE stores a BASIC program as a text
file, and strips out the line numbers.

The TRACE command is now more versatile. Output from a TRACE command can
now be sent to a file, using TRACE TiGename. TRACE can also be used as a function,
to enable output other than line numbers to be sent to the trace file.

The speed of the following array statements has been increased:

f oo() =<expressi on>

f 00%) =<expr essi on>
foo()=fie()

DI M foo(, foo(, foo%

The interpreter now tags error messages with the name of the library which caused the
error message (found from the REM statement on the first line of the library).

The interpreter can now handle such things as TAN1E-5.
PRINT —-17-10 will now print the value 1, instead of causing a crash.
There is now no difference between IF THEN ELSE and IF THENELSE.

BASIC VI version 1.05 improvements

This also uses version 1.05 of the BASIC interpreter. The major change for BASIC VI is
that it now supports real numbers in 8—byte format (according to IEEE standard 754).
This means greater precision and accuracy in floating point arithmetic.

446

BASIC VI version 1.05 improvements

447

BASIC VI can still understand 5-byte reals, but will only print numbers in the 8—byte
real format.

Another change to note is that the name of this manual has change8BCtBAS C
Reference Manual. The structure has also changed. In particular, the first two sections
contain introductory and tutorial material, and the rest of the manual is given over to
reference information. The sections on Keywords have been reorganised into one
chapterKeywords, which lists the keywords in alphabetical order.

BASIC VI is invoked using the new *BASIC64 command. BASIC V can still be
invoked, by using the old *BASIC command. Both commands take the same command
line options and arguments.

The interface of the CALL statement has changed to accommodate 8-byte reals. There
are additions to the list of [-values to which R9 points.

INPUT# can now read variables in both 5-byte real format and 8—byte real format.
PRINT# only prints numbers in 8—byte real format.

Appendix J - ARM assembler

ssembly language is a programming language in which each statement translates
directly into a single machine code instruction or piece of data. An assembler isa
piece of software which converts these statements into their machine code counterparts.

Writing in assembly language has its disadvantages. The code is more verbose than the
equivalent high-level language statements, more difficult to understand and therefore
harder to debug. High-level languages were invented so that programs could be written
to look more like English so we could talk to computers in our language rather than
directly in its own.

There are two reasons why, in certain circumstances, assembly languageis used in
preference to high-level languages. The first reason is that the machine code program
produced by it executes more quickly than its high-level counterparts, particularly those
in languages such as BASIC which are interpreted. The second reason is that assembly
language offers greater flexibility. It allows certain operating system routines to be
called or replaced by new pieces of code, and it allows greater access to the hardware
devices and controllers.

Finding out more

For more details of writing in assembly language see the Acorn Assembler Release 2
manual.

For more details of RISC OS see the Programmer’s Reference Manual.

For more details of the ARM3 processor, see the Acorn RISC Machine family Data
Manual VLS| Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ, USA:
ISBN 0-13-781618-9.

Using the BASIC assembler

The assembler is part of the BBC BASIC language. Square brackets ‘[’ and ‘]’ are used
to enclose all the assembly language instructions and directives and hence to inform
BASIC that the enclosed instructions are intended for its assembler. However, there are
several operations which must be performed from BASIC itself to ensure that a
subsequent assembly language routine is assembled correctly.

448

Using the BASIC assembler

449

Initialising external variables

The assembler allows the use of BASIC variables as addresses or data in instructions
and assembler directives. For example variables can be set up in BASIC giving the
numbers of any SWI routines which will be called:

OS_Witel = &100

SWI OS_Writel+ASC">"

Reserving memory space for the machine code

The machine code generated by the assembler is stored in memory. However, the
assembler does not automatically set memory aside for this purpose. You must reserve
sufficient memory to hold your assembled machine code by using the DIM statement.
For example:

1000 DIM code% 100

The start address of the memory area reserved is assigned to the variable code%. The
address of the last memory location is code%+100. Hence, this example reserves atotal
of 101 bytes of memory. In future examples, the size of memory reserved is shown as
required_size, to emphasise that you must substitute a value appropriate to the size of
your code.

Memory pointers

You need to tell the assembl er the start address of the area of memory you have reserved.
The simplest way to do thisis to assign P% to point to the start of thisarea. For example:

DIM code% required_size

P% = code%

P% is then used as the program counter. The assembler places the first assembler
instruction at the address P% and automatically increments the value of P% by four so
that it points to the next free location. When the assembler has finished assembling the
code, P% points to the byte following the final location used. Therefore, the number of
bytes of machine code generated is given by:

P% - code%

This method assumes that you wish subsequently to execute the code at the same
location.

Appendix J - ARM assembler

The position in memory at which you load a machine code program may be significant.

For example, it might refer directly to data embedded within itself, or expect to find

routines at fixed addresses. Such aprogram only worksif it isloaded in the correct place

in memory. However, it is often inconvenient to assemble the program directly into the

place where it will eventually be executed. This memory may well be used for

something el se whilst you are assembling the program. The solution to thisproblemisto

use a technique called ‘offset assembly’ where code is assembled as if it is to run at a
certain address but is actually placed at another.

To do this, set 0% to point to the place where the first machine code instruction is to be
placed and P% to point to the address where the code is to be run.

To notify the assembler that this method of generating code is to be used, the directive
OPT, which is described in more detail below, must have bit 2 set.

It is usually easy, and always preferable, to write ARM code that is position
independent.

Implementing passes

Normally, when the processor is executing a machine code program, it executes one
instruction and then moves on automatically to the one following it in memory. You can,
however, make the processor move to a different location and start processing from there
instead by using one of the ‘branch’ instructions. For example:

.result_was 0

BEQ result_ was 0

The fullstop in front of the name result_was 0O identifies this string as the name of a
‘label’. This is a directive to the assembler which tells it to assign the current value of the
program counter (P%) to the variable whose name follows the fullstop.

BEQ means ‘branch if the result of the last calculation that updated the PSR was zero'.
The location to be branched to is given by the value previously assigned to the label
result_ was_0.

The label can, however, occur after the branch instruction. This causes a slight problem
for the assembler since when it reaches the branch instruction, it hasn’t yet assigned a
value to the variable, so it doesn’t know which value to replace it with.

You can get around this problem by assembling the source code twice. This is known as
two-pass assembly. During the first pass the assembler assigns values to all the label
variables. In the second pass it is able to replace references to these variables by their
values.

It is only when the text contains no forward references of labels that just a single pass is
sufficient.

450

Using the BASIC assembler

451

These two passes may be performed by a FOR...NEXT loop as follows:

DI M code% requi red_si ze
FOR pass% = 0 TO 3 STEP 3
P% = code%
[
OPT pass%
further assembly language statements and assembler directives

]
NEXT pass%

Note that the pointer(s), in this case just P%, must be set at the start of both passes.

The OPT directive

The OPT is an assembler directive whose bits have the following meaning:

Bit M eaning

0 Assembly listing enabled if set

1 Assembler errors enabled

2 Assembled code placed in memory at O% instead of P%

3 Check that assembled code does not exceed memory limit L%

Bit 0 controls whether alisting is produced. It is up to you whether or not you wish to
have one or not.

Bit 1 determineswhether or not assembler errors are to be flagged or suppressed. For the
first pass, bit 1 should be zero since otherwise any forward-referenced labelswill cause

theerror ‘Unknown or missing variable’ and hence stop the assembly. During the second
pass, this bit should be set to one, since by this stage all the labels defined are known, so
the only errors it catches are ‘real ones’ — such as labels which have been used but not

defined.

Bit 2 allows ‘offset assembly’, i.e. the program may be assembled into one area of
memory, pointed to by O%, whilst being set up to run at the address pointed to by P%.

Bit 3 checks that the assembled code does not exceed the area of memory that has been
reserved (i.e. none of it is held in an address greater than the value held in L%). When

reserving space, L% might be set as follows:

DI M code% requi red_si ze
L% = code% + requi red_si ze

Appendix J - ARM assembler

Saving machine code to file

Once an assembly language routine has been successfully assembled, you can then save
it tofile. To do so, you can use the * Save command. In our above examples, code%
points to the start of the code; after assembly, P%points to the byte after the code. So we
could use this BASIC command:

OSCLI "Save "+outfil e$+" "+STR$~(code% +" " +STRS~(PY%

after the above example to save the code in the file named by ouitfile$.

Executing a machine code program

From memory
From memory, the resulting machine code can be executed in avariety of ways:

CALL address
USR addr ess

These may be used from inside BASIC to run the machine code at a given address.

From file

The commands below will load and run the named file, using either itsfiletype (such as
& FF8 for absolute code) and the associated Alias3@L oadType XXX and
Alias$@RunType_XXX system variables, or the load and execution addresses defined
when it was saved.

* nane
*RUN nane
* | nane

We strongly advise you to use file types in preference to load and execution addresses.

Format of assembly language statements

The assembly language statements and assembl er directives should be between the
square brackets.

There are very few rules about the format of assembly language statements; those which
exist are given below:

I Each assembly language statement comprises an assembler mnemonic of one or
more letters followed by avarying number of operands.

Instructions should be separated from each other by colons or newlines.

452

Registers

I Any text following a full stop *." is treated as a label name.

I Any text following a semicolon ‘;’, or backslash V', or ‘REM’ is treated as a
comment and so ignored (until the next end of line or *").

I Spaces between the mnemonic and the first operand, and between the operands
themselves are ignored.

The BASIC assembler contains the following directives:

EQUB i nt Define 1 byte of memory from LSB ofnt (DCB, =)

EQUW i nt Define 2 bytes of memory fromnt (DCW)

EQUD i nt Define 4 bytes of memory fromnt (DCD)

EQUS str Define 0 - 255 bytes as required by string expression
str (DCS)

ALl GN Align P% (and O%) to the next word (4 byte) boundary

ADR reg, addr Assemble instruction to loaalddr into r eg

I The first four operations initialise the reserved memory to the values specified by
the operand. In the case of EQUS the operand field must be a string expression. In
all other cases it must be a numeric expression. DCB (and =), DCW, DCD and DCS
are synonyms for these directives.

I The ALIGN directive ensures that the next P% (and O%) that is used lies on a word
boundary. It is used after, for example, an EQUS to ensure that the next instruction
is word-aligned.

I ADR assembles a single instruction — typically but not necessarily an ADD or SUB
— with reg as the destination register. It obtains addr in that register. It does so in a
PC-relative (i.e. position independent) manner where possible.

Registers

At any particular time there are sixteen 32-bit registers available for use, RO to R15.
However, R15 is special since it contains the program counter and the processor status
register.

R15 is split up with 24 bits used as the program counter (PC) to hold the word address of
the next instruction. 8 bits are used as the processor status register (PSR) to hold
information about the current values of flags and the current mode/register bank. These
bits are arranged as follows:

453

Appendix J - ARM assembler

The top six bits hold the following information:

Bit Flag Meaning

31 N Negative flag

30 z Zero flag

29 C Carry flag

28 \% Overflow flag

27 I Interrupt request disable

26 F Fast interrupt request disable

The bottom two bits can hold one of four different values:
Meaning
User mode

Fast interrupt processing mode (FIQ mode)
Interrupt processing mode (IRQ mode)
Supervisor mode (SV C mode)

WNR O Z

User modeisthe normal program execution state. SVC modeisaspecia modewhichis
entered when calls to the supervisor are made using software interrupts (SWIs) or when
an exception occurs. From within SV C mode certain operations can be performed which
are not permitted in user mode, such as writing to hardware devices and peripherals.
SV C mode hasits own private registers R13 and R14. So after changing to SV C mode,
theregisters RO - R12 are the same, but new versions of R13 and R14 are available. The
values contained by these registers in user mode are not overwritten or corrupted.

Similarly, IRQ and FIQ modes have their own private registers (R13 - R14and R8 - R14
respectively).

Although only 16 registers are available at any one time, the processor actually contains
atotal of 27 registers.

For amore compl ete description of the registers, see the chapter entitled ARM Hardware
in the Programmers’ Reference Manual

454

Condition codes

Condition codes

All the machine code instructions can be performed conditionally according to the status
of one or more of the following flags: N, Z, C, V. The sixteen available condition codes

are

AL Always Thisisthe default

CcC Carry clear C clear

CS Carry set C set

EQ Equal Z set

GE Greater than or equal (N set and V set) or
(N clear and V clear)

Gr Greater than ((N setand V set) or
(N clear and V clear)) and Z clear

HI Higher (unsigned) C set and Z clear

LE Less than or equal (N set and V clear) or
(N clear and V set) or Z set

LS Lower or same (unsigned) Cclear or Z set

LT Lessthan (N set and V clear) or
(N clear and V set)

Ml Negative N set

NE Not equal Z clear

NV Never

PL Positive N clear

VvC Overflow clear V clear

VS Overflow set V set

Two of these may be given alternative names as follows:
LO Lower unsigned isequivalent to CC
HS Higher / same unsigned isequivalent to CS

You should not use the NV (never) condition code.

The instruction set

The available instructions are introduced below in categories indicating the type of
action they perform and their syntax. The description of the syntax obeys the following

standards:
«» indicates that the contents of the brackets are optional (unlike all
other chapters, where we have been using [] instead)
(xly) indicates that either x or y but not both may be given

455

Appendix J - ARM assembler

#exp indicates that aBASIC expression is to be used which evaluates
to an immediate constant. An error isgiven if the value cannot be
stored in the instruction.

Rn indicates that an expression evaluating to a register number (in
the range O - 15) should be used, or just aregister name, e.g. RO.
PC may be used for R15.

shift indicates that one of the following shift options should be used:
ASL (Rn}#exp) Arithmetic shift left by contents of Rn
or expression
LSL (Rn[#exp) Logical shift left
ASR (Rnj#exp) Arithmetic shift right
LSR (Rn}#exp) Logical shift right
ROR (Rn}#exp) Rotate right
RRX Rotate right one bit with extend

Infact ASL and LSL are the same (because the ARM does not
handle overflow for signed arithmetic shifts), and synonyms. LSL
isthe preferred form, as it indicates the functionality.

Moves

Syntax:
opcode«cond»«S» Rd, (#exp|Rm)«,shift»

There are two move instructions. ‘Op2’ means ‘(#exp|Rm)«,shift»’:

Instruction Calculation performed
MOV Move Rd = Op2
MOVN Move NOT Rd = NOT Op2

Each of these instructions produces a result which it places in a destination register (Rd).
The instructions do not affect bytes in memory directly.

Again, all of these instructions can be performed conditionally. In addition, if the ‘'S’ is
present, they can cause the condition codes to be set or cleared. These instructions set N
and Z from the ALU, C from the shifter (but only if it is used), and do not affect V.
Examples:

MOV RO, #10 : Load RO with the val ue 10.

Special actions are taken if the source register is R15; the action is as follows:

I If Rm=R15 all 32 bits of R15 are used in the operation, i.e. the PC + PSR.

456

The instruction set

If the destination register is R15, then the action depends on whether the optional ‘S’ has
been used:

I If Sis not present only the 24 bits of the PC are set.

I If Sis present the whole result is written to R15, the flags are updated from the
result. (However the mode, | and F bits can only be changed when in non-user
modes.)

Arithmetic and logical instructions

Syntax:
opcode«cond»«S» Rd, Rn, (#exp|Rm)«,shift»

The instructions available are given below; again, ‘Op2’ means ‘(#exp|Rm)«,shift»’:

Instruction Calculation performed
ADC Add with carry Rd=Rn+0Op2+C

ADD Add without carry Rd = Rn + Op2

SBC Subtract with carry Rd=Rn-0p2-(1-0C)
SuUB Subtract without carry Rd = Rn — Op2

RSC Reverse subtract with carry Rd=0p2-Rn-(1-0C)
RSB Reverse subtract without carry Rd = Op2 — Rn

AND Bitwise AND Rd = Rn AND Op2

BIC Bitwise AND NOT Rd = Rn AND NOT (Op2)
ORR Bitwise OR Rd = Rn OR Op2

EOR Bitwise EOR Rd = Rn EOR Op2

Each of these instructions produces a result which it places in a destination register (Rd).
The instructions do not affect bytes in memory directly.

As was seen above, all of these instructions can be performed conditionally. In addition,
if the ‘S’ is present, they can cause the condition codes to be set or cleared. The
condition codes N, Z, C and V are set by the arithmetic logic unit (ALU) in the
arithmetic operations. The logical (bitwise) operations set N and Z from the ALU, C
from the shifter (but only if it is used), and do not affect V.

Examples:
ADDEQ R1, R1, #7 ; If the zero flag is set then add 7
; to the contents of register RI.
SBCS R2, R3, R4 ; Subtract with carry the contents of register R4 from

; the contents of register R3 and place the result in
; register R2. The flags will be updated.

AND R3, R1, R2, LSR #2 ; Performa logical AND on the contents of register Rl
; and the contents of register R2 / 4, and place the
; result in register R3.

457

Appendix J - ARM assembler

Specia actions are taken if any of the source registers are R15; the action is as follows:
I If Rm=R15 all 32 bits of R15 are used in the operation i.e. the PC + PSR.
I If Rn=R15 only the 24 bits of the PC are used in the operation.

If the destination register is R15, then the action depends on whether the optional ‘'S’ has
been used:

I If Sis not present only the 24 bits of the PC are set.

I If Sis present the whole result is written to R15, the flags are updated from the
result. (However the mode, | and F bits can only be changed when in non-user
modes.)

Comparisons

Syntax:
opcode«cond»«S|P» Rn, (#exp|Rm)«,shift»

There are four comparison instructions; again, ‘Op2’ means ‘(#exp|Rm)«,shift»’:

Instruction Calculation performed
CMN Compare negated Rn + Op2

CMP Compare Rn — Op2

TEQ Test equal Rn EOR Op2

TST Test Rn AND Op2

These are similar to the arithmetic and logical instructions listed above except that they
do not take a destination register since they do not return a result. Also, they
automatically set the condition flags (since they would perform no useful purpose if they
didn’t). Hence, the ‘S’ of the arithmetic instructions is implied. You can put an ‘S’ after
the instruction to make this clearer.

These routines have an additional function which is to set the whole of the PSR to a
given value. This is done by using a ‘P’ after the opcode, for example TEQP.

Normally the flags are set depending on the value of the comparison. The | and F bits
and the mode and register bits are unaltered. The ‘P’ option allows the corresponding
eight bits of the result of the calculation performed by the comparison to overwrite those
in the PSR (or just the flag bits in user mode).

Example

TEQP PC, #&80000000 ; Set N flag, clear all others. Also enable
; IRQ, FIQs, select User node if privileged

The above example (as well as setting the N flag and clearing the others) will alter the
IRQ, FIQ and mode bits of the PSR — but only if you are in a privileged mode.

458

The instruction set

The ‘P’ option is also useful in user mode, for example to collect errors:

STMFD sp!, {r0, r1, rl4}

BL routinel

STRVS r0, [sp, #0] ; save error block ptr in return rO
; in stack frame if error

MoV rl, pc ; save psr flags inrl

BL routine2 ; called even if error fromroutinel

STRVS r0, [sp, #0] ; to do sone tidy up action etc.

TEQVCP r1, #0 ; if routine2 didn’t give error,

LDMFD sp!, {r0, r1, pc} ; restore error indication from rl

Multiply instructions

Syntax:

MUL«cond»«S» Rd,Rm,Rs
MLA«cond»«S» Rd,Rm,Rs,Rn

There are two multiply instructions:

Instruction Calculation performed
MUL Multiply Rd =Rmx Rs
MLA Multiply-accumulate Rd = Rmx Rs + Rn

The multiply instructions perform integer multiplication, giving the least significant 32
bits of the product of two 32-bit operands.

The destination register must not be R15 or the same as Rm. Any other register
combinations can be used.

If the ‘'S’ is given in the instruction, the N and Z flags are set on the result, and the C and
V flags are undefined.

Examples:
MUL RL, R2, R3
MLAEQS R, R2, R3, R4

Branching instructions

Syntax:

B«cond» expression
BL«cond» expression

459

Appendix J - ARM assembler

There are essentialy only two branch instructions but in each case the branch can take
place as aresult of any of the 15 usable condition codes:

Instruction
B Branch
BL Branch and link

The branch instruction causes the execution of the code to jump to the instruction given
at the address to be branched to. This addressis held relative to the current location.

Example:
BEQ | abel 1 ; branch if zero flag set
BM m nus ; branch if negative flag set

The branch and link instruction performs the additional action of copying the address of

the instruction following the branch, and the current flags, into register R14. R14 is

known as the ‘link register’. This means that the routine branched to can be returned
from by transferring the contents of R14 into the program counter and can restore the
flags from this register on return. Hence instead of being a simple branch the instruction
acts like a subroutine call.

Example:
BLEQ equal
......... ; address of this instruction
......... ; nmoved to R14 automatically
.equal ; start of subroutine
MOVS R15, R14 ; end of subroutine

Single register load/save instructions

Syntax:
opcode«cond»«B»«T» Rd, address

The single register load/save instructions are as follows:

Instruction
LDR Load register
STR Store register

These instructions allow a single register to load a value from memory or save a value to
memory at a given address.

460

The instruction set

461

Theinstruction has two possible forms:
I theaddressis specified by register(s), whose names are enclosed in square brackets
I theaddressis specified by an expression

Address given by registers

The simplest form of addressis aregister number, in which case the contents of the
register are used as the address to load from or save to. There are two other alternatives:

I pre-indexed addressing (with optional write back)
I post-indexed addressing (always with write back)

With pre-indexed addressing the contents of another register, or animmediate value, are
added to the contents of the first register. This sum is then used as the address. It is

known as pre-indexed addressing because the address being used is cal cul ated before the
load/save takes place. Thefirst register (Rn below) can be optionally updated to contain

the address which was actually used by adding a ‘!I" after the closing square bracket.

Address syntax Address

[RN] Contents of Rn

[Rn,#m]«!» Contents of Rn + m
[RNn,«—»Rm]«!» Contents of Racontents of Rm

[Rn,«—»Rm,shift #s]«!» Contents of Rn(contents of Rm shifted by s places)

With post-indexed addressing the address being used is given solely by the contents of
the register Rn. The rest of the instruction determines what value is written back into Rn.
This write back is performed automatically; no ‘!’ is needed. Post-indexing gets its name

from the fact that the address that is written back to Rn is calculated after the load/save
takes place.

Address syntax Value written back

[Rn],#m Contents of Rn + m

[Rn],«—»Rm Contents of Ra contents of Rm

[Rn],«—»Rm,shift #s Contents of Rn(contents of Rm shifted by s places)

Address given as an expression

If the address is given as a simple expression, the assembler will generate a pre-indexed
instruction using R15 (the PC) as the base register. If the address is out of the range of
the instruction£4095 bytes), an error is given.

Options

If the ‘B’ option is specified after the condition, only a single byte is transferred, instead
of a whole word. The top 3 bytes of the destination register are cleared by an LDRB
instruction.

Appendix J - ARM assembler

If the ‘T’ option is specified after the condition, then the TRANS pin on the ARM
processor will be active during the transfer, forcing an address translation. This allows
you to access User mode memory from a privileged mode. This option is invalid for
pre-indexed addressing.

Using the program counter

If you use the program counter (PC, or R15) as one of the registers, a number of special
cases apply:

[the PSR is never modified, even when Rd or Rn is the PC

I the PSR flags are not used when the PC is used as Rn, and (because of pipelining) it
will be advanced by eight bytes from the current instruction

the PSR flags are used when the PC is used as Rm, the offset register.

Multiple load/save instructions

Syntax:
opcode«cond»type Rn«!», {Rlist}«»

These instructions allow the loading or saving of several registers:

Instruction
LDM Load multiple registers
ST™M Store multiple registers

The contents of register Rn give the base address from/to which the value(s) are loaded
or saved. This base address is effectively updated during the transfer, but is only written
back to if you follow it with a ‘"

Rlist provides a list of registers which are to be loaded or saved. The order the registers
are given, in the list, is irrelevant since the lowest numbered register is loaded/saved
first, and the highest numbered one last. For example, a list comprising {R5,R3,R1,R8}
is loaded/saved in the order R1, R3, R5, R8, with R1 occupying the lowest address in
memory. You can specify consecutive registers as a range; so {R0-R3} and
{RO,R1,R2,R3} are equivalent.

The type is a two-character mnemonic specifying either how Rn is updated, or what sort
of a stack results:

Mnemonic Meaning

DA Decrement Ri\fter each store/load
DB Decrement RiBefore each store/load
1A Increment RriAfter each store/load
1B Increment RiBefore each store/load

462

The instruction set

463

EA
ED
FA
FD

Empty Ascending stack is used
Empty Descending stack is used
Full Ascending stack is used
Full Descending stack is used

an empty stack is one in which the stack pointer points to the first free slot in it

afull stack is one in which the stack pointer points to the last data item written to it

an ascending stack is one which grows from low memory addresses to high ones

a descending stack is one which grows from high memory addressesto low ones

In fact these are just different ways of looking at the situation — the way Rn is updated
governs what sort of stack results, and vice versa. So, for each type of instruction in the
first group there is an equivalent in the second:

LDMEA
LDMED
LDMFA
LDMFD

STMEA
STMED
STMFA
STMFD

is the same as
is the same as
is the same as
is the same as

is the same as
is the same as
is the same as
is the same as

LDMDB
LDMIB
LDMDA
LDMIA

STMIA
STMDA
STMIB
STMDB

All Acorn software uses an FD (full, descending) stack. If you are writing code for SVC
mode you should try to use a full descending stack as well — although you can use any
type you like.

A "N at the end of the register list has two possible meanings:
For a load with R15 in the list, the V' forces update of the PSR.

Otherwise the V' forces the load/store to access the User mode registers. The base
is still taken from the current bank though, and if you try to write back the base it
will be put in the User bank — probably not what you would have intended.

Examples:

LDM A R5,

LDVDB RS,

{RO, R1, R2}

{ RO- R2}

; where R5 contains the val ue

; &1484

; This will load RO from &1484
Rl from &1488
R2 from &148C

; where R5 contains the val ue

; &1484

; This will load RO from &1478
Rl from &147C
R2 from &1480

Appendix J - ARM assembler

If there were a ‘! after R5, so that it were written back to, then this would leave R5
containing &1490 and &1478 after the first and second examples respectively.

The examples below show directly equivalent ways of implementing a full descending
stack. The first uses mnemonics describing how the stack pointer is handled:

STMDB St ackpointer!, {RO-R3} ; push onto stack

LDMIA Stackpointer!, {R0-R3} ; pull from stack
and the second uses mnemonics describing how the stack behaves:

STMFD Stackpointer!, {R0,R1,R2,R3} ; push onto stack

LDMFD Stackpointer!, {R0,R1,R2,R3} ; pull from stack

Using the baseregister

I You can aways load the base register without any side effects on the rest of the
LDM operation, because the ARM uses an internal copy of the base, and so will not
be aware that it has been loaded with a new value.

However, you should see Appendix B: Warnings on the use of ARM assembler inthe
Programmers’ Reference Manuak notes on using writeback when doing so.

You can store the base register as well. If you are not using write back then no
problem will occur. If you are, then thisis the order in which the ARM does the
STM:

1 writethe lowest numbered register to memory
2 do the write back
3 writethe other registersto memory in ascending order.

So, if the base register is the lowest-numbered onein thelist, its original valueis
stored:

STM A R2!, {R2-R6} ; R2 stored is value before wite back
Otherwise its written back valueis stored:
STM A R2!, {Rl-R5} : R2 stored is value after wite back

Using the program counter

If you use the program counter (PC, or R15) in the list of registers:

I the PSR issaved with the PC; and (because of pipelining) it will be advanced by
twelve bytes from the current position

the PSR is only loaded if you follow the register list with a ‘*’; and even then, only
the bits you can modify in the ARM’s current mode are loaded.

It is generally not sensible to use the PC as the base register. If you do:

464

The instruction set

I the PSR bits are used as part of the address, which will give an address exception
unless all the flags are clear and all interrupts are enabled.

SWI instruction

Syntax:
SWi«cond» expression
SWIi«cond» "SWIname" (BBC BASIC assembler)

The SWI mnemonic stands f8oftWarel nterrupt. On encountering a SWI, the ARM
processor changes into SVC mode and stores the address of the next location in R14_svc
— so the User mode value of R14 is not corrupted. The ARM then goes to the SWI
routine handler via the hardware SWI vector containing its address.

The first thing that this routine does is to discover which SWI was requested. It finds this
out by using the location addressed by (R14_svc — 4) to read the current SWI instruction.
The opcode for a SWI is 32 bits long; 4 bits identify the opcode as being for a SWI, 4
bits hold all the condition codes and the bottom 24 bits identify which SWI it is. Hence
224 different SWI routines can be distinguished.

When it has found which particular SWI it is, the routine executes the appropriate code
to deal with it and then returns by placing the contents of R14_svc back into the PC,
which restores the mode the caller was in.

This means that R14_svc will be corrupted if you execute a SWI in SVC mode — which
can have disastrous consequences unless you take precautions.

The most common way to call this instruction is by using the SWI name, and letting the
assembler translate this to a SWI number. The BBC BASIC assembler can do this
translation directly:

SWNE "OS_WiteC

See the chapter entitlédh Introduction to SWIsin theProgrammers’ Reference Manual
for afull description of how RISC OS handles SWIs, and theindex of SWisfor afull list
of the operating system SWis.

465

Appendix J - ARM assembler

466

Symbols

! 37, 167

" 44

$ 37,168

% 38

& 38

(37

) 37

* 37

+ 37

+ (string concatenation) 45
+= 36

+= (string lengthen) 45
+= (with arrays) 54

. (matrix multiplication) 56
/37

<37, 77

<< 37,39

<=37,77

<>37,77

=35, 37, 77

- 37

—=36

—= (with arrays) 54
=expression 90

> 29,37, 77

>= 37,77

>> 37, 40

>>> 37, 40

? 37, 167

@ 62

@% 62

n37

| 168

~ 50, 61

/37

cdlxvii

Numerics
256-colour modes 113, 115
A
ABS 215
absolute coordinates 125
ACS 216
actual parameter 91
ADVAL 217
amplitude, sound 162
AND 37,41, 78, 218
APPEND 30, 219
arc plot 135
arithmetic operator 36
array 52
array operations 54
ASC 48, 220
ASCII 48
ASN 221
assembler
arithmetic and logical instructions 457—-459
branching instructions 459
condition codes 455
format of language statements 452—-453
implementing passes 450-451
memory pointers 449-450
moves 456—457
multiple load/save instructions 462—-465
multiply instructions 459
OPT directive 451
registers available 453-454
reserving memory for machine code 449
single register load/save instructions 460-462
SWI instructions 465
using BASIC variables 449
assembly language, calling subroutines 229
assignment 34, 35
ATN 222

cdlxviii

AUTO 26, 223

automatic line numbering 25

B

background colour 113, 123
teletext 155

bases 38
base 16 38
base 2 38

*BASIC 214

*BASIC64 214

BASIC assembler see assembler

BASIC interpreter 13

BASIC screen editor 190, 192—-209
altering text 193
block copy 199
block move 198
cursor movement 193
deleting lines 198
deleting text 194
EDIT 192
errors 206
insert/overtype 201
inserting text 194
keys 203
line commands 198
loading programs 195
marking lines 197
mode 202
renumbering 196
saving programs 195
searching 200
status line 193
wildcards 201
windows 203

BEAT 164, 224

beat counter 163

BEATS 164, 225

cdlxix

BGET# 105, 226
binary 38

block structured IF 78
BPUT# 105, 106, 227
BY 125, 228

byte DIM 166

byte indirection 166
C

CALL 229

CASE 84, 242
CHAIN 243
changing colour 113
changing text size 111
channel number 104
channel, sound 162

*CHANNELVOICE 160

character input 68
CHR$ 48, 244
CIRCLE 121, 245
circle
outline 121, 133
solid 121, 133
CIRCLEFILL 19,121
CLEAR 246
CLG 247
CLOSE# 105, 248
CLS 249
COLOR 250
COLOUR 113, 250
colour
changing 113
modes 112, 432
palette 113
pattern 138
teletext 154
command mode 17
comments 27

cdlIxx

comparison operators 77
concatenation, string 45
conditional structures 76
control variable 80
conversions 48
Copy 22
copying rectangles 145
COS 252
COUNT 253
CRUNCH 254
cursor
appearance 183
editing 22
keys 71
moving 186
start line 183
cursor movement, in editor 193
D
DATA 68, 255
datafiles 104
debugging 175
DEF 91, 256
default
colours 114
error handler 172
patterns 138
viewports 150
defining
colour patterns 140
functions 98
procedures 90
DEG 257
DELETE 23, 258
deleting programs 24
DIM 52, 259
asafunction 54
byte form 166

cdlxxi

dimension 52
disabling error trapping 172
displaying text 60
DIV 37, 261
division, in BASIC 18
dot-dash pattern 130
double-height characters 112
in teletext 155
DRAW 124, 262
duration, sound 163
E
EDIT 263
Edit 190
editing BASIC programs 190
Options submenu
Line number increment 191
Strip line numbers 190
printing a BASIC program 191
tokenised files 191
editing a program 21
ELLIPSE 122, 264
ELLIPSE FILL 122
ellipse plot 134
ELSE 76, 79, 265
(in ON) 88
END 266
ENDCASE 85, 268
ENDIF 79, 269
ENDPROC 91, 270
ENDWHILE 83, 271
entering a program 20
entering BASIC 16
EOF# 105, 272
EOR 37, 41, 78, 273
ERL 171, 274
ERR 171, 275
ERROR 172, 276

cdlxxii

ERROR EXT 172, 276
errors 170
external 172
handling 170
trapping 170
EVAL 49, 277
*EXEC 107
executing a command file 107
EXP 278
EXT# 279
F
FALSE 42, 280
files 104
creating 104
executing 107
input 105
output 104
FILL 145, 281
Fixed point numbers 412
flashing colours 184
flashing, teletext 155
floating point coprocessor 416
floating point emulator (FPE) 416
floating point instruction set 416
floating point variable 32, 34, 412
indirection 168
flood-fill 144
FN 37, 90, 98, 282
FOR 79, 283
foreground colour 113, 123
formal parameter 91
function keys 74
programming 74
special characters 75
function library 98
functions 90
*EX 1571

cdlxxiii

*EX 21971
*EX 471
*FX commands 438
G
GCOL 113,123, 284
GET 68, 286
GET$ 68, 288
GET$# 106, 287
giant patterns 143
GOSUB 87, 289
GOTO 86, 290
graphics 118
cursor 124
resolution 112
screen 118
teletext 156
units 118
viewport 148, 150
H
HELP 291
hexadecimal 38
HIMEM 292
I
IF 293
multi-line 78
singleline 76
THEN, ELSE 78
immediate mode 17
indirection
byte 167
floating point 168
string 168
word 167
INKEY 68, 295
values 428
INKEY $ 68, 296
INPUT 20, 66, 297

cdIxxiv

INPUT LINE 67, 298
INPUT# 105, 299
INSTALL 98, 300
INSTR 47, 301
INT 302
integer 32, 412
variable 34
interactive mode 17
interlace 182
|SO-8859 48
K
*KEY 74
keyboard
buffer 70
input 66
programming 70
Keywords 210
L
left shift 39
LEFT$ 45, 303
LEN 47, 304
LET 18, 35, 305
libraries
function 98
loading 98
procedure 98
LIBRARY 99, 254, 306
LINE 120, 307
LINE INPUT 67, 308
line number 20
LIST 21, 26, 309
LISTO 76, 311
LN 312
LOAD 29, 313
LOCAL 92, 314
LOCAL DATA 95, 314
LOCAL ERROR 174

cdixxv

local error handling 173

LOG 316

logical operator 36, 42

LOMEM 317

loop structures 76

LVAR 33,102, 175, 318

M

machine code, calling subroutines 229

matrix multiplication 58

MID$ 45, 319

MOD 37, 59, 320

MODE 19, 110, 321

mode 17, 110

MOUSE 323

mouse 72

MOVE 124, 325

moving rectangles 145

multiplication, in BASIC 18

N

negative INKEY 72
values 428

NEW 326

NEXT 79, 327

NOT 37, 78, 328

note synchronisation 163, 165

null string 44

Numeric types 412

O

*OBEY 107

octave 162

OF 85, 329

OFF 330

OLD 331

ON 332

ON ... GOSUB 88, 289

ON ... GOTO 88, 290

ON ... PROC 95, 353

cdIxxvi

ON ERROR 170, 333

ON ERROR LOCAL 173

ON ERROR OFF 172

OPENIN 105, 334

OPENOUT 104, 335

OPENUP 336

operators 77
arithmetic 36
logical 36, 77
precedence 37
relational 77

OR 37, 41, 78, 337

ORIGIN 338

OSCLI 339

OTHERWISE 341

OVERLAY 101, 254

P

PAGE 342

paged mode 181

palette 113

parallelogram plot 132

parameter 92

pattern fill 139

Pl 343

pitch, sound 162

pixel 120

PLOT 128, 344
codes 434

POINT 120
function 346
statement 345

pointer 73

POS 347

precedence, of operators 37

PRINT 18, 60, 348

PRINT# 104, 352

printer 179

cdlxxvii

PROC 90
procedure library 98
procedures 90
program 20

data 68

deleting 24

editing 21

entering 20

inserting comments 27

listing 26

loading 29

multiple statements 28

numbering linesin 25

running 20

saving 29

window managed 13
prompt 67
PTR# 354
Q
QUIT 17,173, 355
R
RAD 356
READ 68, 357
reading from afile 105
reading text 66
RECTANGLE 121, 358
RECTANGLE ... TO 145
RECTANGLEFILL 121
RECTANGLE FILL ... TO 145
rectangle plot 131
recursion 96
relative coordinates 125
REM 27, 360
RENUMBER 25, 361
REPEAT 82, 362
REPORT 171, 363
REPORTS$ 364

cdIxxviii

resequencing programs 25
resident integer variable 36
resolution 110, 119
RESTORE 69, 365
RESTORE DATA 95, 365
RESTORE ERROR 174, 366
RESTORE+ 102
RETURN 87, 367
parameter 94
right shift
arithmetic 40
logical 40
RIGHT$ 45, 368
RND 369
RUN 20, 370
running a program 20
S
SAVE 29, 371
scaled characters 186
screen display 110
screen editor see BASIC screen editor
scrolling 183
sector plot 136
segment plot 137
*SETTY PE 107
SGN 372
shadow mode 111
shift operator 39
simple patterns 143
SIN 373
single-bytefilei/o 105
single-character input 63
SOUND 160, 374
sound 160
after parameter 165
amplitude 162
channel 162

cdlIxxix

duration 163
pitch 162
scheduling 165
synchronisation 165
volume 162

SPC 376

sprites 152-153, 187
loading 152
plotting 153

STEP 80

STEREO 161, 378

STOP 175, 379

STR$ 49, 380

STR$~ 50

string array 54

string file I/0 106

string indirection 168

string variable 32, 44
converting to numbers 48
joining strings together 45
splitting strings 45

STRINGS$ 47, 381

subroutines
assembly language 229
machine code 229

subscript 52

substring 45

SUM 59, 382

SUMLEN 59, 383

SWAP 384

synchronisation, sound 163, 165

SYS 385

T

TAB 63, 387

Tab key 71

TAN 388

teletext mode 154

cdIxxx

TEMPO 164, 389

text
cursor 63
defining characters 65
direction 185
input 66
output 60
reading 66
size11l
viewports 148

TEXTLOAD 390

TEXTSAVE 391

THEN 76, 79, 392

TIME 36, 393

TIMES$ 394

timed input 68

TINT 116, 395

tints 113

TO 79

TOP 397

TRACE 175, 398

trapping errors 170

triangle plot 131

TRUE 42, 400

TWIN 401

TWINO 401

U

UNTIL 82, 402

user-defined
characters 65
function 97
procedure 90

USR 403

Vv

VAL 49, 404

variable 18, 32

VDU commands 64, 178, 405

cdIxxxi

VDU 5125
viewport 148
VOICES 160, 406
volume, sound 162
VPOS 407
w
WAIT 408
WHEN 85, 409
WHILE 83, 410
WIDTH 411
window managed programs 13
word indirection 167
writing to afile 104

cdlxxxii

	Contents
	Contents�ii
	About the BBC BASIC Reference Manual�10
	About BBC BASIC�12
	Command mode�16
	Simple programming�20
	Variables and expressions�32
	Numeric variables�34
	Bases�38
	String variables�44
	Arrays�52
	Outputting text�60
	Inputting data�66
	Control statements�76
	Procedures and functions�90
	Data and command files�104
	Screen modes�110
	Simple graphics�118
	Complex graphics�128
	Graphic patterns�138
	Viewports�148
	Sprites�152
	Teletext mode�154
	Sound�160
	Accessing memory locations�166
	Error handling and debugging�170
	VDU control�178
	Editing BASIC files�190
	Keywords�210
	Appendix A - Numeric implementation�412
	Appendix B - Minimum abbreviations�418
	Appendix C - Error messages�424
	Appendix D - Inkey values�428
	Appendix E - Colour modes�432
	Appendix F - Plot codes�434
	Appendix G - VDU commands�436
	Appendix H - *FX commands�438
	Appendix I - BBC BASIC’s history�440
	Appendix J - ARM assembler�448

	1 About the BBC BASIC Reference Manual
	Intended readership
	Structure of the manual
	Conventions used in this manual

	2 About BBC BASIC
	What is BASIC VI?
	Why use BASIC VI?
	The BASIC interpreter
	Window managed programs
	Commands to avoid

	3 Command mode
	Entering BASIC
	BASIC V
	From RISC�OS 2.00
	From RISC�OS 3

	BASIC VI

	Leaving BASIC
	Command mode

	4 Simple programming
	Entering a program
	Altering a program
	Replacing and adding lines
	Altering a single line in a program
	Deleting lines

	Deleting whole programs
	Numbering lines in a program
	Automatic line numbering
	Starting a program from a particular line

	Listing long programs
	Listing sections of programs
	Halting listings from the command line

	Comments
	Multiple statements
	Saving and recalling programs
	Saving and loading a program from Edit (RISC�OS 3)
	Saving a program from the command line
	Loading a program from the command line

	5 Variables and expressions
	Types of variables
	Naming variables

	6 Numeric variables
	Integers and floating point numbers
	Assigning values to variables

	Special integer variables
	Arithmetic operators

	7 Bases
	Hexadecimal numbers
	Binary numbers and bits
	Shift operators
	Shift left
	Shift right (unsigned)
	Shift right (signed)
	Left shift as multiplication
	Right shift as division

	AND, OR and EOR
	TRUE and FALSE
	With AND
	With OR
	With EOR

	8 String variables
	Assigning values to string variables
	Joining strings together
	Splitting strings
	Other keywords for manipulating strings

	How characters are represented
	Converting between strings and numbers
	VAL
	EVAL
	STR$

	9 Arrays
	The DIM statement
	Two dimensional arrays
	Finding the size of an array
	Operating on whole arrays
	Array operations

	10 Outputting text
	Print formatting
	Using print separators
	Printing numbers
	Defining fields
	Using @% to alter output
	Using the 1.05 interpreter.
	Using the 1.04 interpreter.

	The text cursor
	Text cursor coordinates
	Altering the position of the text cursor
	The VDU statement

	Defining your own characters

	11 Inputting data
	Inputting data from the keyboard
	INPUT
	GET and GET$
	INKEY and INKEY$

	Including data as part of a program
	Programming the keyboard
	Waiting for input
	Using the Tab & cursor keys to get ASCII code
	Scanning the keyboard

	Using the mouse in programs
	Linking the mouse to a pointer

	Programming function keys
	Storing a series of commands
	Storing a small BASIC program
	Using other keys as additional function keys
	Symbols in function key strings

	12 Control statements
	IF... THEN... ELSE
	Operators
	Relational operators
	Numbers
	Strings

	Logical operators (on TRUE and FALSE values)

	IF... THEN... ELSE... ENDIF
	FOR... NEXT
	1 Assign the initial value to the control variable.
	2 Execute the block of code.
	3 Add the step to the control variable.
	4 Test against terminating value, and if it is to be performed again, go back to step 2.

	REPEAT... UNTIL
	WHILE... ENDWHILE
	CASE... OF... WHEN... OTHERWISE... ENDCASE
	GOTO
	GOSUB... RETURN
	ON... GOTO/GOSUB
	For example:

	13 Procedures and functions
	Defining and calling procedures
	Parameters and local variables
	Local variables
	Declaring local variables
	Value-result parameter passing
	Arrays passed by reference

	LOCAL DATA and LOCAL errors

	ON... PROC
	Recursive procedures
	Functions
	Function and procedure libraries
	Loading a library into memory
	Overlaying

	Building your own libraries

	14 Data and command files
	Data files
	Creating a data file
	Writing information to a data file
	Closing a data file
	Reading data from a file

	Writing or reading single bytes
	Writing or reading ASCII strings
	Command files
	Executing a command file

	15 Screen modes
	Changing screen modes
	Shadow modes
	Using the shadow bank

	Text size
	Changing text size

	Graphics resolution
	Colour modes
	256-colour modes

	Changing colours
	Changing the colour palette
	Changing the shade of the colour
	Returning to the default colour settings

	Experimenting with colour

	256-colour modes
	About colour numbers
	The TINT keyword
	Displaying 256 shades

	Using the screen under the Wimp

	16 Simple graphics
	The graphics screen
	The point command
	The line command
	Rectangle and rectangle fill
	Circle and circle fill
	Ellipse and ellipse fill
	Graphics colours
	The graphics cursor
	Relative coordinates and BY
	Printing text at the graphics cursor

	17 Complex graphics
	Plotting simple lines
	Dot-dash lines
	Triangles
	Rectangles
	Parallelograms
	Circles

	Ellipses
	Arcs
	Sectors
	Segments

	18 Graphic patterns
	Default patterns
	Plotting using pattern fills
	Defining your own patterns
	Native mode patterns
	Two-colour modes
	Four-colour modes
	16-colour modes
	256-colour modes

	BBC Master 128 mode patterns
	Two-colour modes
	Four-colour modes
	16-colour modes

	Giant patterns
	Simple patterns
	Flood-fills
	Flood to non-background
	Flood until foreground

	Copying and moving

	19 Viewports
	Text viewports
	Graphics viewports

	20 Sprites
	Loading a user sprite
	Plotting a user sprite

	21 Teletext mode
	Coloured text
	Making text flash
	Double-height text
	Changing the background colour
	Teletext graphics
	Outlining blocks of colour
	Placing blocks of colour next to each other

	22 Sound
	Activating the sound system
	Selecting sound channels
	Allocating a wave-form to each voice
	Setting the stereo position
	Creating a note
	Channel
	Setting the volume
	Pitch
	Duration of sound

	Synchronising the channels
	Finding the value of the current beat
	Finding the current tempo
	Executing a sound on a beat
	Synchronising sounds

	23 Accessing memory locations
	Reserving a block of memory
	The ‘?’ indirection operator
	The ‘!’ indirection operator
	The ‘|’ indirection operator
	The ‘$’ indirection operator

	24 Error handling and debugging
	Trapping an error
	Turning off the error handler
	Generating errors
	External errors
	Local error handling
	Trapping an error; procedures & functions
	Restoring the previous error handler

	Debugging
	Stopping execution of the program
	Tracing the path through the program

	25 VDU control
	VDU 0
	VDU 1
	VDU 2
	VDU 3
	VDU 4
	VDU 5
	VDU 6
	VDU 7
	VDU 8
	VDU 9
	VDU 10
	VDU 11
	VDU 12
	VDU 13
	VDU 14
	VDU 15
	VDU 16
	VDU 17,n
	VDU 17,k,c
	VDU 19,1,p,r,g,b
	VDU 20
	VDU 21
	VDU 21
	VDU 23,p1,p2,p3,p4, p5,p6,p7,p8,p9
	VDU 23,0,n,m|
	VDU 23,1,n|
	VDU 23,2 to 5,n1,n2 n3,n4,n5,n6,n7,n8
	VDU 23,6,n1,n2,n3, n4,n5,n6,n7,n8
	VDU 23,7,m,d,z|
	VDU 23,8,t1,t2,x1,y1, x2,y2;0;
	VDU 23,9,n| VDU 23,10,n|
	VDU 23,11|
	VDU 23,12to15,n1,n2, n3,n4,n5,n6,n7,n8
	This alters the direction of printing on the screen.
	VDU 23,17,n,m|
	VDU23,18to24,n1,n2, n3,n4,n5,n6,n7,n8
	VDU 23,25,n1,n2,n3, n4,n5,n6,n7,n8
	VDU 23,26,h,s,p1,p2, s1,s2,0,0
	VDU 23,7,m,n|
	VDU 23,28to30,n1,n2 n3,n4,n5,n6,n7,n8
	VDU 23,32to255,n1, n2,n3,n4,n5,n6,n7,n8
	VDU 24,x1;y1;x2;y2
	VDU 25,k,x;y;
	VDU 26
	VDU 27
	VDU 28,lx,by,rx,ty
	VDU 29,x;y;
	VDU 30
	VDU 31,x,y

	26 Editing BASIC files
	Editing BASIC files under RISC�OS 3
	Using Edit to write and edit BASIC programs
	Writing a new program
	Editing an existing program
	Icon bar menu
	Converting to a tokenised file
	Printing a BASIC program

	Editing BASIC files under RISC�OS 2
	Entering the editor
	Leaving the editor

	The BASIC screen
	The status line
	Moving the cursor
	Changing a line
	Adding a line
	Inserting lines
	Deleting text
	Long lines

	Saving and loading programs
	Saving a program
	Loading a program
	Appending a program

	Seeing other parts of your program
	Moving vertically
	Moving horizontally
	Using two windows

	Renumbering the program
	Further editing functions
	Swapping case
	Undoing changes to a line
	Splitting and joining lines
	Repeating a line

	Marking a line
	Placing the marker line
	Finding a marker

	Line command
	Deleting lines
	Moving a block
	Copying lines
	Denoting limits
	Justifying text
	Removing line commands
	Things to notice about line commands

	Searching and replacing
	Search and edit
	Search
	Global replace
	Selective replace
	Next match & previous match

	Keyboard options
	The Tab key
	Auto indentation
	Insert mode and overtype mode

	Wildcard options
	Mode and colours
	User-defined keys
	Full use of windows
	Input windows
	Information windows
	Entering data

	Keyboard summary
	Editing keys
	Function keys
	Function keys with Shift
	Function keys with Ctrl

	Error messages

	27 Keywords
	*BASIC
	Syntax
	Purpose
	Examples

	*BASIC64
	Syntax
	Purpose
	Examples

	ABS
	Syntax
	Argument
	Result
	Example

	ACS
	Syntax
	Argument
	Result
	Examples

	ADVAL
	Syntax
	Argument
	Result
	Example

	AND
	Syntax
	Operands
	Result
	Examples

	APPEND
	Syntax
	Argument
	Purpose
	Examples

	ASC
	Syntax
	Argument
	Result
	Examples

	ASN
	Syntax
	Argument
	Result
	Examples

	ATN
	Syntax
	Argument
	Result
	Examples

	AUTO
	Syntax
	Parameters
	Purpose
	Examples

	BEAT
	Syntax
	Result
	Example

	BEATS
	Syntax
	Arguments (1)
	Result (2)
	Examples

	BGET #
	Syntax
	Argument
	Result
	Examples

	BPUT #
	Syntax
	Arguments (1)
	Arguments (2)
	Examples

	BY
	Syntax
	Purpose
	Examples

	CALL
	Syntax
	Arguments
	Purpose
	Format of the CALL parameter block
	VARIND
	STOREA
	STSTORE
	LVBLNK
	CREATE
	EXPR
	MATCH
	TOKENADDR
	FSTA
	FLDA
	FADD/FMUL
	FSUB/FDIV
	FLOAT
	FIX
	FSQRT
	BBC/Master compatible calls
	Examples

	CASE
	Syntax
	Arguments
	Examples

	CHAIN
	Syntax
	Argument
	Examples

	CHR$
	Syntax
	Argument
	Result
	Examples

	CIRCLE
	Syntax
	Arguments
	Examples

	CLEAR
	Syntax
	Purpose

	CLG
	Syntax
	Examples

	CLOSE #
	Syntax
	Argument
	Purpose
	Examples

	CLS
	Syntax
	Examples

	COLOUR (COLOR)
	Syntax
	Arguments (1)
	Arguments (2)
	Arguments (3)
	Examples

	COS
	Syntax
	Argument
	Result
	Examples

	COUNT
	Syntax
	Result
	Examples

	CRUNCH
	Syntax
	Argument
	Restrictions
	Examples

	DATA
	Syntax
	Argument
	Examples

	DEF
	Syntax
	Parameters (1) and (2)
	Purpose
	Examples

	DEG
	Syntax
	Argument
	Result
	Examples

	DELETE
	Syntax
	Argument
	Examples

	DIM
	Syntax
	Argument (1)
	Argument (2)
	Argument (3)
	Argument (4)
	Examples

	DIV
	Syntax
	Operands
	Result
	Examples

	DRAW
	Syntax
	Arguments
	Examples

	EDIT
	Syntax
	Purpose

	ELLIPSE
	Syntax
	Arguments
	Examples

	ELSE
	Syntax
	Examples

	END
	Syntax
	Purpose (1)
	Purpose (2)
	Restrictions on the use of END=

	Purpose (3)
	Examples

	ENDCASE
	Syntax

	ENDIF
	Syntax

	ENDPROC
	Syntax
	Purpose
	Examples

	ENDWHILE
	Syntax
	Example

	EOF #
	Syntax
	Argument
	Result
	Examples

	EOR
	Syntax
	Operands
	Result
	Examples

	ERL
	Syntax
	Result
	Examples

	ERR
	Syntax
	Result
	Examples

	ERROR
	Syntax
	Arguments (2)
	Examples

	EVAL
	Syntax
	Argument
	Result
	Examples

	EXP
	Syntax
	Argument
	Result
	Example

	EXT#
	Syntax
	Argument (1)
	Result
	Argument (2)
	Examples

	FALSE
	Syntax
	Result
	Examples

	FILL
	Syntax
	Arguments
	Examples

	FN
	Syntax
	Argument (1)
	Argument (2)
	Examples

	FOR
	Syntax
	Arguments
	Examples

	GCOL
	Syntax
	Arguments
	Examples

	GET
	Syntax
	Result
	Examples

	GET$#
	Syntax
	Argument
	Result
	Examples

	GET$
	Syntax
	Result
	Examples

	GOSUB
	Syntax
	Argument (1)
	Argument (2)
	Examples

	GOTO
	Syntax
	Argument (1)
	Argument (2)
	Examples

	HELP
	Syntax
	Purpose
	Examples

	HIMEM
	Syntax
	Result (1)
	Argument (2)
	Examples

	IF
	Syntax
	Arguments (1)
	Arguments (2)
	Examples

	INKEY
	Syntax
	Argument (1)
	Result
	Argument (2)
	Result
	Argument (3)
	Result
	Examples

	INKEY$
	Syntax
	Argument
	Result
	Example

	INPUT
	Syntax
	Examples

	INPUT LINE
	Syntax
	Result
	Example

	INPUT#
	Syntax
	Arguments
	Examples

	INSTALL
	Syntax
	Argument
	Purpose
	Examples

	INSTR(
	Syntax
	Argument
	Result
	Examples

	INT
	Syntax
	Argument
	Result
	Examples

	LEFT$(
	Syntax
	Argument (1)
	Result
	Argument (2)
	Examples

	LEN
	Syntax
	Argument
	Result
	Examples

	LET
	Syntax
	Argument
	Examples

	LIBRARY
	Syntax
	Argument
	Purpose
	Examples

	LINE
	Syntax
	Arguments
	Examples

	LINE INPUT
	Syntax
	Result
	Example

	LIST
	Syntax
	Argument
	Examples

	LISTO
	Syntax
	Argument
	Examples

	LN
	Syntax
	Argument
	Result
	Examples

	LOAD
	Syntax
	Argument
	Examples

	LOCAL
	Syntax
	Argument (1)
	Argument (2)
	Argument (3)
	Examples

	LOG
	Syntax
	Argument
	Result
	Example

	LOMEM
	Syntax
	Result (1)
	Argument (2)
	Examples

	LVAR
	Syntax
	Purpose

	MID$(
	Syntax
	Argument (1)
	Result
	Argument (2)
	Examples

	MOD
	Syntax (1)
	Arguments
	Result
	Syntax (2)
	Arguments
	Examples

	MODE
	Syntax
	Arguments (1)
	Result (2)
	Examples

	MOUSE
	Syntax (1)
	Syntax (2)
	Syntax (3)
	Syntax (4)
	Syntax (5)
	Syntax (6)
	Syntax (7)
	Examples

	MOVE
	Syntax
	Arguments
	Examples

	NEW
	Syntax
	Purpose

	NEXT
	Syntax
	Arguments
	Examples

	NOT
	Syntax
	Argument
	Result
	Examples

	OF
	Syntax
	Arguments
	Examples

	OFF
	Syntax
	Purpose
	Examples

	OLD
	Syntax
	Purpose

	ON
	Syntax
	Purpose
	Example

	ON ERROR
	Syntax
	Use (1)
	Use (2)

	Examples

	OPENIN
	Syntax
	Argument
	Result
	Examples

	OPENOUT
	Syntax
	Argument
	Result
	Examples

	OPENUP
	Syntax
	Argument
	Result
	Examples

	OR
	Syntax
	Argument
	Result
	Examples

	ORIGIN
	Syntax
	Arguments
	Example

	OSCLI
	Syntax
	Argument
	Examples

	OTHERWISE
	Syntax
	Examples

	PAGE
	Syntax
	Result (1)
	Argument (2)
	Example

	PI
	Syntax
	Result
	Examples

	PLOT
	Syntax
	Arguments
	Examples

	POINT
	Syntax
	Arguments (1)
	Arguments (2)
	Examples

	POINT(
	Syntax
	Arguments
	Result
	Example

	POS
	Syntax
	Result
	Examples

	PRINT
	Syntax
	Formatting numbers
	Setting @% using the 1.05 interpreter
	Examples of @%
	Setting @% using the 1.04 interpreter
	Examples of @%
	Examples

	PRINT#
	Syntax
	Arguments
	Example

	PROC
	Syntax
	Argument (1)
	Argument (2)
	Argument (3)
	Examples

	PTR#
	Syntax
	Argument (1)
	Result
	Argument (2)
	Examples

	QUIT
	Syntax
	Purpose (1)
	Purpose (2)

	RAD
	Syntax
	Argument
	Result
	Examples

	READ
	Syntax
	Argument
	Examples

	RECTANGLE
	Syntax
	Arguments (1)
	Purpose
	Arguments (2)
	Purpose
	Purpose (3)
	Examples

	REM
	Syntax
	Argument
	Example

	RENUMBER
	Syntax
	Argument
	Purpose
	Examples

	REPEAT
	Syntax
	Purpose
	Examples

	REPORT
	Syntax
	Examples

	REPORT$
	Syntax
	Examples

	RESTORE
	Syntax
	Argument (1)
	Purpose (2)
	Examples

	RESTORE ERROR
	Syntax
	Examples

	RETURN
	Syntax
	Purpose (1)
	Purpose (2)
	Examples

	RIGHT$(
	Syntax
	Argument (1)
	Result
	Argument (2)
	Examples

	RND
	Syntax (1)
	Result
	Syntax (2)
	Result
	Examples

	RUN
	Syntax
	Purpose

	SAVE
	Syntax
	Argument
	Examples

	SGN
	Syntax
	Argument
	Result
	Examples

	SIN
	Syntax
	Argument
	Result
	Examples

	SOUND
	Syntax
	Purpose (1) and (2)
	Arguments (3)
	Examples

	SPC
	Syntax
	Argument
	Examples

	SQR
	Syntax
	Argument
	Result
	Examples

	STEREO
	Syntax
	Arguments
	Examples

	STOP
	Syntax
	Purpose
	Example

	STR$
	Syntax
	Argument
	Result
	Examples

	STRING$(
	Syntax
	Arguments
	Result
	Examples

	SUM
	Syntax
	Argument
	Result
	Examples

	SUMLEN
	Syntax
	Argument
	Result
	Examples

	SWAP
	Syntax
	Arguments
	Purpose
	Examples

	SYS
	Syntax
	Arguments
	Purpose
	Examples

	TAB
	Syntax
	Argument (1)
	Argument (2)
	Examples

	TAN
	Syntax
	Argument
	Result
	Examples

	TEMPO
	Syntax
	Argument (1)
	Result (2)
	Examples

	TEXTLOAD
	Syntax
	Argument
	Examples

	TEXTSAVE
	Syntax
	Arguments (1)
	Arguments (2)
	Examples

	THEN
	Syntax
	Examples

	TIME
	Syntax
	Result (1)
	Arguments (2)
	Examples

	TIME$
	Syntax
	Result (1)
	Result (2)
	Examples

	TINT
	Syntax
	Arguments (1) and (2)
	Arguments (3)
	Result (4)
	Examples

	TOP
	Syntax
	Result
	Example

	TRACE
	Syntax
	Argument (1)
	Argument (5)
	Purpose
	Examples

	TRUE
	Syntax
	Result
	Examples

	TWIN
	Syntax
	Purpose

	UNTIL
	Syntax
	Argument
	Examples

	USR
	Syntax
	Argument
	Result
	Example

	VAL
	Syntax
	Argument
	Result
	Example

	VDU
	Syntax
	Arguments
	Examples

	VOICES
	Syntax
	Arguments
	Examples

	VPOS
	Syntax
	Result
	Examples

	WAIT
	Syntax
	Purpose
	Examples

	WHEN
	Syntax
	Arguments
	Examples

	WHILE
	Syntax
	Arguments
	Examples

	WIDTH
	Syntax
	Result (1)
	Argument (2)
	Examples

	Appendix A - Numeric implementation
	Numeric types
	Integers
	Floating point numbers
	Fixed point numbers

	Effects of storage size
	Range
	Accuracy

	What is floating point arithmetic?
	Implementation
	1 The BASIC interpreter stores the numbers in floating point format.
	2 The ARM processor scans the list of operations it can perform. It cannot perform floating point...
	3 The interpreter produces machine code instructions, telling the ARM microprocessor that the flo...
	4 The ARM processor stores A and B in its internal floating point registers.
	Floating point emulator
	Floating point coprocessor

	Appendix B - Minimum abbreviations
	Appendix C - Error messages
	Appendix D - Inkey values
	Appendix E - Colour modes
	Two-colour mode
	Four-colour modes
	16-colour modes

	Appendix F - Plot codes
	Appendix G - VDU commands
	Appendix H - *FX commands
	Appendix I - BBC BASIC’s history
	BASIC I
	BASIC II
	BASIC III
	BASIC IV
	BASIC V, version 1.04
	BASIC V, version 1.05
	BASIC VI, version 1.05
	BASIC II improvements
	New keywords and features
	Bug fixes

	BASIC III improvements
	BASIC IV improvements
	BASIC V version 1.04 improvements
	BASIC V version 1.05 improvements
	BASIC VI version 1.05 improvements

	Appendix J - ARM assembler
	Finding out more
	Using the BASIC assembler
	Initialising external variables
	Reserving memory space for the machine code
	Memory pointers
	Implementing passes
	The OPT directive

	Saving machine code to file
	Executing a machine code program
	From memory
	From file

	Format of assembly language statements
	Registers
	Condition codes
	The instruction set
	Moves
	Syntax:
	Examples:

	Arithmetic and logical instructions
	Syntax:
	Examples:

	Comparisons
	Syntax:
	Example

	Multiply instructions
	Syntax:
	Examples:

	Branching instructions
	Syntax:
	Example:
	Example:

	Single register load/save instructions
	Syntax:
	Address given by registers
	Address given as an expression
	Options
	Using the program counter

	Multiple load/save instructions
	Syntax:
	Instruction
	Examples:
	Using the base register
	Using the program counter

	SWI instruction
	Syntax:

	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

