
Last changed: 21 October, 1999 12:16 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Acorn Assembler

AMR draft (Version 10.06)

ii

Copyright © 1999 Acorn Computers Limited. All rights reserved.

Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

The product described in this manual is not intended for use as a critical component in
life support devices or any system in which failure could be expected to result in
personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product and its
use (including the information and particulars in this manual) are given by Acorn
Computers Limited in good faith. However, Acorn Computers Limited cannot accept
any liability for any loss or damage arising from the use of any information or
particulars in this manual.

If you have any comments on this manual, please complete the form at the back of the
manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your supplier
is available to help resolve any queries you might have.

ACORN, the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd.

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN 1 85250 167 7
Part number 0484,233
Issue 1, October 1999

Introduction 1
Assembler tools 2
This user guide 2
Conventions used in this manual 3
Part 1 – Using the assembler 5
ObjAsm 7
Starting ObjAsm 7
The SetUp dialogue box 9
The SetUp menu 10
ObjAsm output 18
ObjAsm icon bar menu 20
Example ObjAsm session 21
ObjAsm command lines 22
Part 2 – Assembly language details 27
The ARM CPU 29
Introduction 29
Block diagram of core 31
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

26 bit architecture 32
32 bit architecture 36
Exceptions 40
ARM assembly language 49
General 49
Input lines 49
AREAs 49
ORG and ABS 51
Symbols 51
Labels 52
Local labels 52
Comments 53
Constants 53
The END directive 53
CPU instruction set 55
The condition field 55
Instruction timings 56
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

The barrel shifter 57
Shift types 59
Coprocessor instructions 64
Branch, Branch with Link (B, BL) 65
Data processing 68
PSR transfer (MRS, MSR) 77
Multiply and Multiply-Accumulate (MUL, MLA) 81
Multiply Long and Multiply-Accumulate Long (UMULL, SMULL, UMLAL, SMLAL) 84
Single data transfer (LDR, STR) 86
Block data transfer (LDM, STM) 91
Single data swap (SWP) 99
Software interrupt (SWI) 101
Coprocessor data operations (CDP) 103
Coprocessor data transfers (LDC, STC) 105
Coprocessor register transfers (MCR, MRC) 109
Undefined instructions 112
Instruction set summary 113
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Further instructions 118
Extended range immediate constants 118
The ADR instruction 119
The ADRL instruction 119
Literals 120
Floating point instructions 121
Programmer’s model 122
Available systems 122
Precision 123
Floating point number formats 123
Floating point status register 128
Floating Point Control Register 132
Assembler directives and syntax 134
The instruction set 136
Finding out more… 142
Directives 143
Storage reservation and initialisation – DCB, DCW and DCD 143
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Floating point store initialisation – DCFS and DCFD 144
Describing the layout of store – ^ and # 144
Organisational directives – END, ORG, LTORG and KEEP 145
Links to other object files – IMPORT and EXPORT 145
Links to other source files – GET/INCLUDE 146
Diagnostic generation – ASSERT and ! 146
Dynamic listing options – OPT 146
Titles – TTL and SUBT 147
Miscellaneous directives – ALIGN, NOFP, RLIST and ENTRY 147
Symbolic capabilities 149
Setting constants 149
Local and global variables – GBL, LCL and SET 150
Variable substitution – $ 151
Built-in variables 151
Expressions and operators 153
Unary operators 153
Binary operators 154
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Conditional and repetitive assembly 157
Conditional assembly 157
Repetitive assembly 160
Macros 161
Syntax 162
Local variables 163
MEXIT directive 164
Default values 164
Macro substitution method 164
Nesting macros 165
A division macro 165
Part 3 – Developing software for RISC OS 169
Exception handling 171
RISC OS processor configuration and modes 171
The pre-veneers 171
Claiming the hardware vectors 172
Writing to the FIQ vector 172
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Writing relocatable modules in assembler 175
Assembler directives 176
Example 176
Interworking assembler with C 179
Examples 179
Part 4 – Appendixes 183
Changes to the assembler 185
Error messages 187
Example assembler fragments 193
Using the conditional instructions 193
Pseudo-random binary sequence generator 194
Multiplication by a constant 195
Loading a word from an unknown alignment 196
Sign/zero extension of a half word 196
Return setting condition codes 196
Full multiply 197
Warnings on the use of ARM assembler 199
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Restrictions to the ARM instruction set 200
Instructions and code sequences to avoid 201
Static ARM problems 212
Support for AAsm source 215
The -ABSolute option 215
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

1 Introduction

corn Assembler is a development environment for producing RISC OS desktop

applications and relocatable modules written in ARM assembly language. It A
consists of a number of programming tools which are RISC OS desktop applications.

These tools interact in ways designed to help your productivity, forming an extendable
environment integrated by the RISC OS desktop. Acorn Assembler may be used with
Acorn C/C++ (a part of this product) to provide an environment for mixed C, C++ and
assembler development.

This product includes tools to:

l edit program source and other text files

l search and examine text files

l examine some binary files

l assemble small assembly language programs

l assemble and construct more complex programs under the control of makefiles,
these being set up from a simple desktop interface

l squeeze finished program images to occupy less disk space

l construct linkable libraries

l debug RISC OS desktop applications interactively

l design RISC OS desktop interfaces and test their functionality

l use the Toolbox to interact with those interfaces.

Most of the tools in this product are also of general use for constructing applications in
other programming languages, such as C and C++. These non-language-specific tools
are described in the accompanying Desktop Tools guide.

Installation

Installation of Acorn Assembler is described in the chapter Installing Acorn C/C++ on
page 7 of the accompanying Desktop Tools guide.
1

Assembler tools
Assembler tools
The assembler provided includes the following features:

l full support of the ARM instruction set, for all versions up to and including the
ARM7M core

l global and local label capability

l powerful macro processing

l comprehensive expression handling

l conditional assembly

l repetitive assembly

l comprehensive symbol table printouts

l pseudo-opcodes to control printout.

Objasm

The Assembler ObjAsm creates object files which cannot be executed directly, but must
first be linked using the Link tool. It is often most efficient to construct larger programs
from several portions, assembling each portion with ObjAsm before linking them all
together with Link. Object files linked with those produced by ObjAsm may be
produced from some programming language other than assembler, for example C.

The Link tool is described in the chapter Link on page 137 of the accompanying Desktop
Tools guide.

This user guide
This document is a reference guide to ObjAsm, which is the only tool in this product
which is not used for programming in other languages. The others are described in the
accompanying Acorn C/C++ and Desktop Tools guides. It is assumed that you are
familiar with other relevant Archimedes documentation, such as the:

l Welcome Guide supplied with your computer

l RISC OS 3 User Guide

l RISC OS 3 Programmer’s Reference Manual.
2

Introduction

re are

at not

atory
 the

f
You may also find useful one or more of the following books:

l ARM Assembly Language Programming / P.J. Cockerell – Computer
Concepts/MTC, 1987.

l Archimedes Assembly Language: A Dabhand Guide / M. Ginns – Manchester, UK:
Dabs Press, 1988.

l The ARM RISC Chip – A Programmer’s Guide / A. van Someren and C. Atack –
Wokingham, UK: Addison-Wesley, 1993.

Note on program examples

Both general and specific examples of syntax and screen output are given, but the
occasions where the full syntax of an instruction and its accompanying screen
appearance would obscure the specific points being made. It follows, therefore, th
all the examples given in the text can be used directly since they are incomplete.

Conventions used in this manual
The Assembler has its own interpretations of the punctuation symbols and special
symbols which are available from the keyboard. These are:

In order to distinguish between characters used in syntax and descriptive or explan
characters, typewriter style typeface is used to indicate both text which appears on
screen and text which can be typed on the keyboard. This is so that the position o
relevant spaces is clearly indicated.

The following typographical conventions are used throughout this manual:

! “ # $ % & ^ @ ()

[] { } | : . , ; +

- / * = < > ? _

Convention Meaning
filename Text that you must replace with the name of a file, register,

variable or whatever is indicated.

&1C Hexadecimal numbers are preceded with an ampersand.

«instruction» Italic guillemots «» enclose optional items in the syntax.

For example, the Assembler ObjAsm accepts a three field source
line which may be expressed in the form:

«instruction» «label» «;comment»

ALIGN Text that you type exactly as it appears in the manual. For
example:

L321 ADD Ra,Ra,Ra,LSL #1 ;multiply by 3
3

4

Part 1 – Using the assembler
5

6

2 ObjAsm

bjAsm is the ARM assembler forming part of the Acorn C/C++ product. It

processes text files containing program source written in ARM assembly language O
into linkable object files. Object files can be linked by the Link tool with each other or
for

ent of

Asm

with libraries of object files to form executable image files or relocatable modules.
ObjAsm multitasks under the RISC OS desktop, allowing other tasks to proceed while it
operates.

The sources for large programs can be split into several files, each of which only need be
re-assembled to an object file when you have altered it.

An example use of ObjAsm would be to construct a binary image file !RunImage in a
RISC OS desktop application from the two source files s.interface and
s.portable. ObjAsm processes the source files to form o.interface and
o.portable, which the Link tool processes to form !RunImage.

The controls of ObjAsm are similar to those of other non-interactive Desktop tools, with
the common features described in the chapter General features on page 101 of the
accompanying Desktop Tools guide. You adjust options for the next assembly operation
on a SetUp dialogue box and menu which by default appear when you click Select on
the main icon or drag a source file to it. Once you have set options you click on a Run
action icon and the assembly starts. While the assembly is running output windows
display any text messages from the assembler and allow you to stop the job if you wish.

There is no file type to double click on to start ObjAsm – it owns no file type unlike,
example, Draw.

Starting ObjAsm
Like other non-interactive Desktop tools, ObjAsm can be used under the managem
Make, with its assembly options specified by the makefile passed to Make. For such
managed use, ObjAsm is started automatically by Make; you don’t have to load Obj
onto the icon bar.

To use ObjAsm directly, unmanaged by Make, first open a directory display on the
AcornC_C++.Tools directory, then double click Select on !ObjAsm. The ObjAsm
main icon appears on the icon bar:
7

Starting ObjAsm

 the

start

have
p box.
save
Clicking Select on this icon or dragging an assembly language source file from a
directory display to this icon brings up the ObjAsm SetUp dialogue box:

Source will appear containing the name of the last filename entered there, or empty if
there isn’t one.

Dragging a file on to the icon will bring up the dialogue box and automatically insert
dragged filename as the Source file.

Clicking Menu on the SetUp dialogue box brings up the ObjAsm SetUp menu:

The SetUp dialogue box and menu specify the next assembly job to be done. You
the next job by clicking Run on the dialogue box (or Command line menu dialogue
box). Clicking Cancel removes the SetUp dialogue box and clears any changes you
just made to the options settings back to the state before you brought up the SetU
The options last until you adjust them again or !ObjAsm is reloaded. You can also
them for future use with an option from the main icon menu.
8

ObjAsm

ce

e the
ser

led,

e

The SetUp dialogue box
When the SetUp dialogue box is displayed the Source writable icon contains the name
of the source file to be assembled. The sourcefile can be specified in two ways:

l If the SetUp box is obtained by clicking on the main ObjAsm icon, it comes up with
the sourcefile from the previous setting. This helps you repeat a previous assembly,
as clicking on the Run action icon repeats the last job if there was one.

l If the SetUp box appears as a result of dragging a source file containing assembly
language text to the main icon, the source file will be the same as the dragged source
file.

When the SetUp box appears the Source icon has input focus, and can be edited in the
normal RISC OS fashion. If a further source file is selected in a directory display and
dragged to Source, its name replaces the one already there.

Include

The Include SetUp dialogue box icon adds directories to the source file search path so
that arguments to GET/INCLUDE directives (see page 146) do not need to be fully
qualified. The search rule used is similar to the ANSI C search rule – the current pla
being the directory in which the current file was found.

The directories are searched in the order in which they are given in the Include icon.

Options

The Throwback option switches editor throwback on (the default) or off. When
enabled, if the DDEUtils module and SrcEdit are loaded, any assembly errors caus
editor to display an error browser. Double clicking Select on an error line in this brow
makes the editor display the source file containing the error, with the offending line
highlighted. For more details, see the chapter SrcEdit on page 71 of the accompanying
Desktop Tools guide.

The Debug option switches on or off the production of debugging tables. When enab
extra information is included in the output object file which enables source level
debugging of the linked image (as long as Link’s Debug option is also enabled) by the
DDT debugger. If this option is disabled, any image file finally produced can only b
debugged at machine level. Source level debugging allows the current execution
position to be indicated as a displayed line of your source, whereas machine level
debugging only shows the position on a disassembly of memory.
9

The SetUp menu
The SetUp menu

The command line

The ObjAsm RISC OS desktop interface works by driving an ObjAsm tool underneath
with a command line constructed from your SetUp options. The Command line item at
the top of the SetUp menu leads to a small dialogue box in which the command line
equivalent of the current SetUp options is displayed:

The Run action icon in this dialogue box starts assembly in the same way as that in the
main SetUp box. Pressing Return in the writable icon in this box has the same effect.
Before starting assembly from the command line box, you can edit the command line
textually, although this is not normally useful.

Controlling syntax

The next few entries in the SetUp menu all control the acceptable syntax for the
Assembler:

No APCS registers specifies whether the variant of the ARM Procedure Call Standard
used by RISC OS is in use, or the APCS is not in use at all. By default the APCS is in
use, and ObjAsm pre-declares extra register names and variables, and also specifies
some attributes of code areas:

l The following extra register names are pre-declared: a1-a4, v1-v6, sl, fp, and
ip. (This is in addition to the default pre-declared register names R0-R15,
r0-r15, sp, SP, lr, LR, pc and PC.)
10

ObjAsm

hey
s

d

l The ObjAsm built-in variable {CONFIG} is set to 26. This does not generate
particular ARM-specific code, but allows the Linker to warn of any mismatch
between files being linked, and also allows programs to use the standard built-in
variable {CONFIG} to determine what code to produce.

l Code areas are marked as using sl for the stack limit register, following the APCS.

When this menu option is chosen (i.e. it has a tick beside it), the APCS is not in use, and
so the above points no longer hold.

You can specify other APCS variants using the -APCS option in the Others writable
field at the bottom of the menu; see Specifying other command line options on page 18,
and Command line options not available from the desktop on page 23.

C strings, when enabled, allows the assembler to accept C style string escapes such as
‘\n’. C strings is not enabled by default, as it results in ‘\’ characters in string constants
being interpreted in a different way compared to previous Acorn assemblers.

Upper case, when chosen, makes ObjAsm recognise instruction mnemonics only if t
are entirely in upper case. By default, Upper case is not chosen, and ObjAsm recognise
mnemonics that are entirely in upper or lower case (but not a mixture of both).

This option is provided mainly to support old code that might have used lower case
versions of instruction mnemonics as macro names; it allows the macros to still be
recognised as such.

CPU sets the target ARM core. Currently this can take the values ARM6, ARM7 an
ARM7M, and defaults to ARM6. Some processor specific instructions will produce
warnings if assembled for the wrong ARM core:
11

The SetUp menu

 (in

bly.
cit

t be

ding
ading
y
Predefining a variable

The next entry – Define – allows you to set an initial value for an assembler global
variable:

You must give a valid variable name, followed by a SETL, SETA or SETS directive,
followed by a value. The value may be a simple constant or a constant expression
ObjAsm syntax) of appropriate type – logical, arithmetic or string for SETL, SETA and
SETS respectively – provided that its value can be computed at the start of assem
The variable is set as if the directive occurs before the start of the source; an impli
GBLL, GBLA or GBLS directive is also executed. In the case of SETS, quotation marks
are usually necessary around the value, since it is a string expression.; these mus
escaped by preceding each with a backslash (‘\’).

Controlling cacheing

ObjAsm is a two pass assembler – it examines each source file twice. To avoid rea
each source file twice from disk the assembler can cache the source in memory, re
it from disk for the first pass, then storing it in RAM for the second. This makes ver
heavy use of memory, and so is unsuitable for smaller machines.

The next two menu options control this cacheing:

NoCache disables cacheing when chosen, which is the default. When NoCache is
switched off, cacheing is enabled.
12

ObjAsm
MaxCache allows you to specify the maximum amount of RAM to be used for cacheing
source files, provided that NoCache is off. The maximum cache is specified in
megabytes; the default is 8MB:

Handling warnings and errors

The next menu options control handling of warnings and errors:

Suppress warnings, when chosen, turns off the warning messages that ObjAsm
generates. It is off by default (i.e. warning messages are generated).
13

The SetUp menu
Errors to file allows you to specify a file to which error messages are output for later
inspection:

Listings

The next options control whether or not a listing is produced, and its format:

The Listing option enables assembler source code to be sent to a file:
14

ObjAsm
This option turns on the Assembler listing, and during assembly the source code, object
code, memory addresses and reference line numbers will be sent to the named file.
Listing is off by default.

NoTerse modifies the listing that is output, which normally only includes the
conditionally assembled parts of your program. If you choose NoTerse, conditionally
non-assembled parts are listed as well. NoTerse is off by default.

Width sets the width, in characters, of the listing that is output:

This should be between 1 and 254. The default width is 131; a width of 76 is suitable for
a Mode 12 RISC OS window.
15

The SetUp menu
Length sets the number of lines per page for printer output. At the end of each page
ObjAsm inserts a form feed character. The default length is 60:

If you choose Cross reference, then after assembly ObjAsm outputs an alphabetically
sorted cross reference of all symbols encountered. Note that the text output may be very
large for a big program, and so this option may not function on a machine with restricted
memory. Cross reference is off by default.
16

ObjAsm
Choosing your work directory

Work directory allows you to specify the work directory:

The GET and LNK directives both result in the assembler loading source files specified
with the directive. The work directory is the place where these source files are to be
found. An example is a source file:

adfs::HardDisc4.$.Source.s.foo

containing the line:

GET s.macros

If the work directory is ^ then the file loaded is:

adfs::HardDisc4.$.Source.s.^.s.macros
(i.e. adfs::HardDisc4.$.Source.s.macros)

The work directory must be given relative to the position of the source file containing
the GET or LNK, without a trailing dot.

The default work directory is ^.
17

ObjAsm output
Specifying other command line options

The Others option on the SetUp menu leads to a writable icon in which you can add an
arbitrary extra section of text to the command line to be passed to ObjAsm:

This facility is useful if you wish to use any feature which is not supported by any of the
other entries on the SetUp dialogue box and menu. This may be because the feature is
used very little, or because it may not be supported in the future.

For a full description of command line options, see ObjAsm command lines on page 22.

ObjAsm output
ObjAsm outputs text messages as it proceeds. These include source listings and symbol
cross references (as described in the previous sections). By default any such text is
directed into a scrollable output window:
18

ObjAsm

put

r

ery

ou
he
This window is read-only; you can scroll up and down to view progress, but you cannot
edit the text without first saving it. To indicate this, clicking Select on the scrollable part
of this window has no effect.

The contents of the window illustrated above are typical of those you see from a
successful assembly; the title line of the assembler with version number, followed by no
error messages.

Clicking Adjust on the close icon of the output window switches to the output summary
dialogue box. This presents a reminder of the tool running (ObjAsm), the status of the
task (Running, Paused, Completed or Aborted), the time when the task was started, and
the number of lines of output that have been generated (ie those that are displayed by the
output window):

Clicking Adjust on the close icon of the summary box returns to the output window.

Both the above ObjAsm output displays follow the standard pattern of those of all the
non-interactive Desktop tools. The common features of the non-interactive Desktop
tools are covered in more detail in the chapter General features on page 101 of the
accompanying Desktop Tools guide. Both ObjAsm output displays and the menus
brought up by clicking Menu on them offer the standard features, which allow you to
abort, pause or continue execution (if the execution hasn’t completed), to save out
text to a file, or to repeat execution.

ObjAsm error messages appear in the output viewer, with copies in the editor erro
browser when throwback is working. The appendix Error messages on page 187 of this
manual contains a list of common ObjAsm error messages together with brief
explanations.

Assembly listings and cross references appearing in the output window are often v
large for assemblies of complex source files. The scrolling of the output window is
useful to view them. To investigate them with the full facilities of the source editor, y
can save the output text straight into the editor by dragging the output file icon to t
SrcEdit main icon on the icon bar.
19

ObjAsm icon bar menu
ObjAsm icon bar menu
The ObjAsm main icon bar menu follows the standard pattern for non-interactive
Desktop tools:

Save options saves all the current ObjAsm options, including both those set from the
SetUp dialogue box and from the Options item on this menu. When ObjAsm is restarted
it is initialised with these options rather than the defaults.

The Options submenu allows you to set the following options:

l Display specifies the output display as either a text window (default) or as a
summary box.

l If Auto run is enabled, dragging a source file to the ObjAsm main icon
immediately starts an assembly with the current options rather than displaying the
SetUp box first. Auto run is off by default.

l If Auto save is enabled output image files are saved to suitable places automatically
without producing a save dialogue box for you to drag the file from. Auto save is
off by default.

Clicking on Help on the main ObjAsm menu displays a short text summary of the
various SetUp options, in a scrollable read-only window:
20

ObjAsm

e

,

e

e
Example ObjAsm session
The programming example AcornC_C++.Examples.AsmHello is a non-desktop
free standing command line program written in assembly language. It outputs the text
‘Hello World’.

The assembly language source is held in the s subdirectory, in the file HelloW. The
code demonstrates the ObjAsm directives needed for a free standing program;

To assemble HelloW, first run !Objasm and !Link by double clicking on them. Drag th
HelloW source text file to the ObjAsm icon. The SetUp dialogue box of ObjAsm
appears. Check that the default SetUp options are enabled:

Click on Run to proceed, and save the object file produced in the o subdirectory. Drag
the object file to the Link icon, and Run Link to produce an AIF executable image file
the link having the HelloW object file as its only input file. Save the image file in
AcornC_C++.Examples.AsmHello.!RunImage. The command line program
is now ready for use.

To run the program under the desktop, double click on it. A window appears with th
text ‘Hello World’:

As the window instructs you to do, press the space bar or click on your mouse. Th
window disappears.
21

ObjAsm command lines
ObjAsm command lines
ObjAsm, in common with the other non-interactive Desktop tools, can be driven with a
text command line without its RISC OS desktop interface appearing. This enables
ObjAsm to be driven by Make as specified in textual makefiles.

You can use ObjAsm outside the RISC OS desktop from its command line, in the same
way that it could be used in the previous Acorn Desktop Assembler product. However,
as all the useful ObjAsm features can be more conveniently used from the RISC OS
desktop there is little reason for you to do this. The desktop removes the need for you to
understand the command line syntax.

The ObjAsm RISC OS desktop interface drives the ObjAsm tool underneath by issuing
a command line constructed from your SetUp options. The Command line SetUp menu
option allows you to view the command line constructed in this way.

The Make tool allows you to construct makefiles with assembly operations specified
using the ObjAsm desktop interface (by following the Tool options item of Make). You
can therefore construct makefiles without understanding the command line syntax of
ObjAsm.

The command to invoke ObjAsm takes either of the forms:

ObjAsm «options» sourcefile objectfile
ObjAsm «options» -o objectfile sourcefile

The options are listed below, split into two sections: those for which there is a direct
equivalent in the SetUp dialogue box or menu, and those others for which there is no
equivalent. Upper case is used to show the allowable abbreviations. Note that to
understand what many of these options do it may be necessary to refer to some of the
documentation above.

Command line options available from the desktop

The table below shows the various command line options that correspond to the options
available from the SetUp dialogue box and menu, together with a reference to the
desktop equivalent, which you should see for full details of the option:

Command line option Desktop equivalent Page
-I dir« ,dir» Include writable icon in dialogue box 9

-ThrowBack Throwback option icon in dialogue box 9

-G Debug option icon in dialogue box 9

(See -Apcs below) No APCS registers in menu 10

-Esc C strings in menu 11

-UpperCase Upper case in menu 11

-CPU ARMcore CPU in menu 11
22

ObjAsm
Command line options not available from the desktop

The table below shows those command line options for which there is no direct
equivalent in the SetUp dialogue box or menu. Should you need to use any of these more
esoteric options from the desktop, you can add them to the SetUp menu’s Others option
(see Specifying other command line options on page 18).

-PreDefine directive Define in menu 12

-NOCache NoCache in menu 12

-MaxCache n MaxCache in menu 13

-NOWarn Suppress warnings in menu 13

-ERRors errorfile Errors to file in menu 14

-LIST listingfile Listing in menu 14

-NOTerse NoTerse in menu 15

-WIdth n Width in menu 15

-Length n Length in menu 16

-Xref Cross reference in menu 16

-Desktop dirname Work directory in menu 17

Command line option Description
-Help Outputs a summary of the command line options.

-VIA filename Reads in extra command line arguments from the
given filename.

-LIttleend Assemble code suitable for a little-endian ARM, by
setting the built-in variable {ENDIAN} to
"little".

-BIgend Assemble code suitable for a big-endian ARM, by
setting the built-in variable {ENDIAN} to "big".

Command line option Desktop equivalent Page
23

ObjAsm command lines

d

te

,

le
-Apcs option« /qualifier»« /qualifier…»

Specifies whether the ARM Procedure Call Standard
is in use, and also specifies some attributes of CODE
AREAs. By default the register names R0-R15,
r0-r15, sp, SP, lr, LR, pc, and PC are
pre-declared. If the APCS is in use the following
register names are also pre-declared: a1-a4, v1-v6,
sl, fp, and ip.

There are two APCS options: NONE and 3. The
SetUp menu’s No APCS registers option (page 10) –
when chosen – declares the APCS in use as NONE.
The default behaviour is to use the
3/26bit/SWStackcheck APCS variant used by
RISC OS

The qualifiers – which should only be used with
option 3 – are as follows:

/REENTrant Sets the reentrant attribute for any code AREAs, an
predeclares sb (static base) in place of v6.

/32bit Is the default setting and informs the Linker that the
code being generated is written for 32 bit ARMs. The
built-in variable {CONFIG} is also set to 32.

/26bit Tells the Linker that the code is intended for 26 bit
ARMs. The built-in variable {CONFIG} is also set to
26.

Note that these options do not of themselves genera
particular ARM-specific code, but allow the Linker
to warn of any mismatch between files being linked
and also allow programs to use the standard built-in
variable {CONFIG} to determine what code to
produce.

/SWSTackcheck Marks CODE AREAs as using sl for the stack limit
register, following the APCS (the default setting).

/NOSWstackcheck Marks CODE AREAs as not using software
stack-limit checking, and predeclares an additional
v-register, v6 if reentrant, v7 if not.

-Depend dependfile Saves source file dependency lists, which are suitab
for use with ‘make’ utilities.

-ABSolute Accepts AAsm source code to provide some
backwards compatibility in this release. See the
appendix Support for AAsm source on page 215.

Command line option Description
24

ObjAsm
-FRom filename Supported, for backward compatibility with previous
release.

-TO filename Supported, for backward compatibility with previous
release.

-Print Supported, for backward compatibility with previous
release.

-Quit Recognised but ignored, for backward compatibility
with previous release.

Command line option Description
25

26

Part 2 – Assembly language details
27

28

3 The ARM CPU

he ARM (Advanced Risc Machine) is a general purpose32 bit single chip

microprocessor. The architecture is based on Reduced Instruction Set Computer T
(RISC) principles, and the instruction set and related decode mechanism are greatly

simplified compared with microprogrammed Complex Instruction Set Computers. This
simplification results in a high instruction throughput and a good real-time interrupt
response from a small and cost-effective chip.

Introduction

Bus widths

The ARM2 and ARM3 have a 32 bit data bus and a 26 bit address bus. On later versions
of the ARM, both the data bus and the address bus are a full 32 bits wide.

Instruction set

All instructions fit into one 32 bit word, and they can all be made conditional.

The ARM instruction set comprises ten basic classes of instruction:

l branches

l data operations between registers

l multiplies

l single register data transfers

l multiple register data transfers

l single register data swaps

l supervisor calls

l coprocessor data operations

l coprocessor/memory transfers

l coprocessor/register transfers.

Two of these make use of the on-chip arithmetic logic unit (ALU), barrel shifter and
multiplier to perform high-speed operations on the data in the 32 bit registers. Three
instruction classes control the transfer of data between main memory and the register
bank, one optimised for flexibility of addressing, another for rapid context switching,
29

Introduction
and the third for swapping data. Two instruction classes control the flow and privilege
level of execution. The remaining three classes are dedicated to the control of external
coprocessors, which allow the functionality of the instruction set to be extended off-chip
in an open and uniform way.

The ARM instruction set has proved to be a good target for compilers of many different
high-level languages. Where required for critical code segments, assembly code
programming is also straightforward, unlike some RISC processors which depend on
sophisticated compiler technology to manage complicated instruction
interdependencies.

The instruction set is detailed in the chapter CPU instruction set on page 55.

Pipelining

Pipelining is employed so that all parts of the processing and memory systems can
operate continuously.

The ARM uses a 3-stage instruction pipeline. This allows it to execute one instruction,
and at the same time both to decode the following instruction, and to fetch the one after
that from memory.

Memory interface

The memory interface has been designed to allow the performance potential to be
realised without incurring high costs in the memory system. Speed critical control
signals are pipelined to allow system control functions to be implemented in standard
low-power logic, and these control signals facilitate the exploitation of the fast local
access modes offered by industry standard dynamic random access memories
(DRAMs).

Data types

The processor can access two types of data:

l bytes (8 bits)

l words (32 bits)

where words must be aligned to four byte boundaries.

Instructions are fetched as words, and so must be aligned to four byte boundaries. Data
operations (eg ADD) are only performed on word quantities. Load and store operations
can transfer either bytes or words, and can put a full 26 or 32 bit address (depending on
the processor variant) – with bits 0 and 1 set as required – on to the address bus.
30

The ARM CPU
Block diagram of core

ABE
ALE

Instruction
Decoder

and
Control
Logic

32 bit ALU

Write Data Register
Instruction Pipeline

and Read Data Register

Barrel
Shifter

Multiplier

Register Bank
(32 bit Registers)

Address
Incrementer

Address Register

B
 B

us

A
LU

 B
us

A
 B

us

Increm
enter B

us

P
C

 B
us

PH1

PH2

IRQ

FIQ

RESET

ABORT

OPC

TRANS

M bus

MREQ

SEQ

CPI

CPA

CPB

D bus D bus

A bus

B/W R/W
31

26 bit architecture
Figure 3.1 ARM Core block diagram

26 bit architecture
This section describes the architecture of the ARM2 and ARM3 series, which only
supported a 26 bit address space. However, as we shall see in the section 32 bit
architecture on page 36, much of this is also relevant to later series of ARM when used
so as to provide backward-compatibility with the earlier 26 bit processors.

Processor modes

These older ARM series support four modes of operation:

l User mode: the normal program execution state

l Fast Interrupt mode (abbreviated to FIQ mode): designed to support a data transfer
or channel process

l Interrupt mode (abbreviated to IRQ mode): used for general purpose interrupt
handling

l Supervisor mode (abbreviated to SVC mode): a protected mode for the operating
system, also entered after a data or instruction prefetch abort, or when an undefined
instruction is executed.

Mode changes may be made under software control or may be brought about by external
interrupts or exception processing. Most application programs will execute in User
mode. The other modes, known as privileged modes, will be entered to service interrupts
or exceptions or to access protected resources.

Registers

The ARM has a number of 32 bit registers, 16 of which are visible to the programmer at
any time. This subset depends on the processor mode:

l Normally the ARM operates in User mode, with registers R0 to R15 visible.

l When in the other privileged modes (see the section Processor modes on page 32)
special private registers are switched in. If code running in these modes needs to use
any of the shared registers, it should save their contents in memory using one of the
block data transfer instructions available for this purpose; see Block data transfer
(LDM, STM) on page 91.

The IRQ and SVC modes have two private registers mapped to R13 and R14 (R13_irq
and R14_irq, and R13_svc and R14_svc respectively).
32

The ARM CPU

nd
ared
8-R14

 except

SR).

C and

r
The FIQ mode has more private registers so that FIQ code – which needs to respo
quickly – is less likely to need to use any of the shared registers, and so will be sp
the overhead of saving them to a stack. Its seven private registers are mapped to R
(R8_fiq-R14_fiq).

The register bank organisation is shown in the figure 26 bit register organisation below:

All registers are general purpose and may be used to hold data or address values,
for R15 and R14:

l R15 contains the Program Counter (PC) and the Processor Status Register (P
See the section Register R15 below.

l R14 is used as the subroutine Link register, and receives a copy of the return P
PSR when a Branch and Link instruction is executed. See the section Register R14
below.

R13 is also often used for a special purpose:

l R13 is, by convention only, often used as a private stack pointer for a processo
mode.

User mode SVC mode IRQ mode FIQ mode

R0

R1

R2

R3

R4

R5

R6

R7

R8 R8_fiq

R9 R9_fiq

R10 R10_fiq

R11 R11_fiq

R12 R12_fiq

R13 R13_svc R13_irq R13_fiq

R14 R14_svc R14_irq R14_fiq

R15 (PC/PSR)

Figure 3.2 26 bit register organisation
33

26 bit architecture
The private copies of R13 and R14 allow each mode to have a private stack pointer and
link register. SVC and IRQ mode programs are expected to save the User state on their
respective stacks and then use the User registers, remembering to restore the User state
before returning.

Register R15

R15 contains 24 bits of program counter (PC) and 8 bits of processor status register
(PSR).

The program counter (PC) is 24 bits wide and counts to &FFFFFF. However, two
low-order bits (both zeros) are appended to the PC value and a 26 bit value is put on the
address bus, thus quadrupling the total count to &3FFFFFC. The memory capacity of
the ARM processor is 64 Mbytes, or 16 Mwords. The PC is always a multiple of four
because of the two appended zeros, and so it follows that instructions must be aligned to
four byte boundaries.

Special bits in some instructions allow the PC and PSR to be treated together, or
separately, as required. The allocation of the bits within the register R15 is shown in the
figure The Program Counter (PC) and Process Status Register (PSR) below.

Figure 3.3 The Program Counter (PC) and Process Status Register (PSR)

N Z C V I F Program counter (PC) M1 M0

31 30 29 28 27 26 25 2 1 0

Processor mode

Program counter

FIQ disable

IRQ disable

Overflow

Carry/Not borrow/
Rotate extend

Zero

Negative/
Signed less than

00 ⇒ User mode
01 ⇒ FIQ mode
10 ⇒ IRQ mode
11 ⇒ Supervisor mode

(Word aligned)

0 ⇒ Enable
1 ⇒ Disable

0 ⇒ Enable
1 ⇒ Disable
34

The ARM CPU

5 is
,
ediate

ed by
 the

n
s:

ge
The mnemonics for the four condition flags are derived as follows:

The condition flags may be altered in any mode. The I, F, and Mode flags can only be
changed directly in privileged modes; they are also modified when exceptions occur or
SWI instructions are executed.

Register R14

R14 is used as the subroutine Link register, and receives a copy of the return PC and
PSR when a Branch and Link instruction is executed (see page 65). It may be treated as
a general purpose register at all other times. Similarly, R14_svc, R14_irq and R14_fiq
are used to hold the return values of R15 when interrupts and exceptions arise, or when
Branch and Link instructions are executed within supervisor or interrupt routines.

Changing operating modes

In the Assembler, the suffix P added to a CMN, CMP, TEQ or TST instruction causes the
instruction to change the PSR directly. Such instructions can be used to change the
ARM’s mode, for example:

TEQP R15,#2 changes to IRQ mode
TEQP R15,#0 changes to user mode.

The action is to Exclusive OR the first operand with a supplied immediate field. R1
the first operand. Whenever R15 is presented to the processor as the first operand
24 bits are presented; the PSR bits are supplied as zero. The TEQ causes the imm
field value to be written into the register, and the P causes the PSR bits (now alter
the immediate field value) to be written back into R15. Since two of the PSR bits are
mode control bits, the processor assumes its new mode.

As the mode control bits cannot be set in User mode, this technique will not work i
User mode. There are, however, two ways to pass from User mode to other mode

l by receiving an external interrupt

l by making use of the SWI instruction.

Note: For more details of instructions executed immediately following a mode chan
see the sections Forcing transfer of the user bank on page 96 and Using R15 as the
destination on page 74.

N Negative flag

Z Zero flag

C Carry flag

V Overflow flag
35

32 bit architecture

 the

e
ch

ips)

ble

abled

(see
32 bit architecture
The ARM architecture changed significantly with the introduction of the ARM6 series.
This section describes the differences in behaviour of more recent ARM processors.

New features in ARM6

The most notable change made in the ARM6 series was to extend the program counter to
a full 32 bits. As a result:

l The PSR had to be separated from the PC into its own register, the CPSR (Current
Program Status Register).

l The PSR can no longer be saved with the PC when changing processor modes;
instead, each privileged mode now has an extra register – the SPSR (Saved Program
Status Register) – to hold the previous mode’s PSR.

l Instructions have been added to use these new status registers.

A further change was the addition of extra privileged processor modes, allowed by
PSR now having a full 32 bits to use. These modes are used to handle Undefined
instruction and Abort exceptions. Consequently:

l Undefined instructions, aborts, and supervisor code no longer have to share th
same mode. This has removed restrictions on Supervisor mode programs whi
existed on earlier ARMs.

Processor configuration

The availability of these features in the ARM6 series (and other later compatible ch
is set by one of several on-chip control registers. One of three processor configurations
can be selected:

l 26 bit program and data space. This configuration forces ARM to operate with a
26 bit address space. In this configuration only the four 26 bit modes are availa
(see Processor modes below); it is impossible to select a 32 bit mode.

This configuration is set at reset on all current ARM6 and 7 series processors.

l 26 bit program space and 32 bit data space. This is the same as the 26 bit
program and data space configuration, except that address exceptions are dis
to allow data transfer operations to access the full 32 bit address space.

l 32 bit program and data space. This configuration extends the address space to
32 bits, and introduces major changes to the programmer’s model. In this
configuration you can select any of the 26 bit and the 32 bit processor modes
Processor modes below).
36

The ARM CPU

etch

r
ell

t

te an
ress

m
rating
or a

ng
ode,
Processor modes

When configured for a 32 bit program and data space, the ARM6 and ARM7 series
support ten overlapping processor modes of operation:

l User mode: the normal program execution state – or

User26 mode: a 26 bit version of the above

l FIQ mode: designed to support a data transfer or channel process – or

FIQ26 mode: a 26 bit version of the above

l IRQ mode: used for general purpose interrupt handling – or

IRQ26 mode: a 26 bit version of the above

l SVC mode: a protected mode for the operating system – or

SVC26 mode: a 26 bit version of the above

l Abort mode (abbreviated to ABT mode): entered after a data or instruction pref
abort

l Undefined mode (abbreviated to UND mode): entered when an undefined
instruction is executed.

The distinction between processor modes and configurations is important, and will be
rigidly adhered to in the rest of this manual.

The 26 bit processor modes

When in a 26 bit processor mode, the programmer’s model reverts to that of earlie
26 bit ARM processors. The behaviour is the same as that of the ARM2aS macroc
with the following alterations:

l Address exceptions are only generated by ARM when it is configured for 26 bi
program and data space.

In other configurations the OS may still simulate the behaviour of address
exception, using external logic such as a memory management unit to genera
abort if the 64Mbyte range is exceeded, and converting that abort into an ‘add
exception trap’ for the application.

l The new instructions to transfer data between general registers and the progra
status registers remain operative. The new instructions can be used by the ope
system to return to a 32 bit mode after calling a binary containing code written f
26 bit ARM.

l When in a 32 bit program and data space configuration, all exceptions (includi
Undefined Instruction and Software Interrupt) return the processor to a 32 bit m
so the operating system must be modified to handle them.
37

32 bit architecture
l If the processor attempts to write to a location between &0 and &1F inclusive (i.e.
the exception vectors), hardware prevents the write operation and generates a data
abort. This allows the operating system to intercept all changes to the exception
vectors and redirect the vector to some veneer code. The veneer code should place
the processor in a 26 bit mode before calling the 26 bit exception handler.

In all other respects, when operating in a 26 bit mode the ARM behaves as like a 26 bit
ARM. (See the section 26 bit architecture on page 32.) The relevant bits of the CPSR
appear to be incorporated back into R15 to form the PC/PSR with the I and F bits in bits
27 and 26. The instruction set behaves like that of the ARM2aS macrocell, with the
addition of the MRS and MSR instructions.

RISC OS processor configuration and modes

For details, see the section RISC OS processor configuration and modes on page 171.
38

The ARM CPU
Registers

The registers available in the ARM6 and ARM7 series are:

These are similar to those available in the ARM2 and ARM3 series registers. The key
differences are:

l the PC is a full 32 bits wide

l the PSR is held in its own register, the CPSR (see the section The CPSR and SPSR
registers below)

l each privileged mode has a private SPSR register in which to save the CPSR

l there are two new privileged modes, each of which has private copies of R13 and
R14.

User and
User26
mode

SVC and
SVC26
mode

IRQ and
IRQ26
mode

ABT mode UND mode
FIQ and
FIQ26
mode

R0

R1

R2

R3

R4

R5

R6

R7

R8 R8_fiq

R9 R9_fiq

R10 R10_fiq

R11 R11_fiq

R12 R12_fiq

R13 R13_svc R13_irq R13_abt R13_und R13_fiq

R14 R14_svc R14_irq R14_abt R14_und R14_fiq

R15 (PC)

CPSR

SPSR_svc SPSR_irq SPSR_abt SPSR_und SPSR_fiq

Figure 3.4 32 bit register organisation
39

Exceptions

ers –
 you

nder
The CPSR and SPSR registers

The allocation of the bits within the CPSR (and the SPSR registers to which it is saved)
is shown in the figure The Current Process Status Register (CPSR) below.

Exceptions
This last section of the chapter is mainly of interest to operating systems programm
for example when constructing relocatable modules. If you are writing applications,
can skip forward to the chapter ARM assembly language on page 49.

This section describes the general behaviour of the ARM, rather than its behaviour u
RISC OS. For details specific to RISC OS you must also see the chapter Exception
handling on page 171.

Figure 3.5 The Current Process Status Register (CPSR)

N Z C V I F M1 M0

31 30 29 28 7 627 1 0

M2

2

M3

3

M4

458

00000 ⇒ User26 mode
00001 ⇒ FIQ26 mode
00010 ⇒ IRQ26 mode
00011 ⇒ SVC26 mode
10000 ⇒ User mode
10001 ⇒ FIQ mode
10010 ⇒ IRQ mode
10011 ⇒ SVC mode
10111 ⇒ ABT mode
11011 ⇒ UND mode

Processor mode

0 ⇒ Enable
1 ⇒ Disable

FIQ disable

0 ⇒ Enable
1 ⇒ Disable

IRQ disable

Overflow

Carry/Not borrow/
Rotate extend

Zero

Negative/
Signed less than
40

The ARM CPU
Introduction

Exceptions arise whenever there is a need for the normal flow of program execution to
be broken, so that (for instance) the processor can be diverted to handle an interrupt from
a peripheral. The processor state just prior to handling the exception must be preserved
so that the original program can be resumed when the exception routine has completed.
Many exceptions may arise at the same time.

ARM handles exceptions by making use of the banked registers to save state. The old
PC and PSR are copied, in a 26 bit configuration to the appropriate R14, or in a 32 bit
configuration to the appropriate R14 and SPSR. The PC and processor mode bits are
forced to a value which depends on the exception. Interrupt disable flags are set where
required to prevent otherwise unmanageable nestings of exceptions. In the case of a
re-entrant interrupt handler, R14 should be saved onto a stack in main memory before
re-enabling the interrupt. When multiple exceptions arise simultaneously a fixed priority
determines the order in which they are handled.

FIQ (Fast interrupt request)

The FIQ (Fast Interrupt reQuest) exception is externally generated by taking the FIQ pin
LOW. This input can accept asynchronous transitions, and is delayed by one clock cycle
for synchronisation before it can affect the processor execution flow. It is designed to
support a data transfer or channel process, and has sufficient private registers to remove
the need for register saving in such applications, so that the overhead of context
switching is minimised.

The FIQ exception may be disabled by setting the F flag in the PSR (but note that this is
not possible from User mode). If the F flag is clear ARM checks for a LOW level on the
output of the FIQ synchroniser at the end of each instruction.

When ARM is successfully FIQed it will:

1 Save R15 in R14_fiq, and (for 32 bit configuration ARMs) save the CPSR in
SPSR_fiq.

2 Force the mode bits to FIQ mode and set the F and I bits in the PSR.

3 Force the PC to fetch the next instruction from address &1C.

To return normally from FIQ use:

SUBS PC,R14_fiq,#4

This will resume execution of the interrupted code sequence, and restore the original
mode and interrupt enable state.
41

Exceptions

‘1’ in
dress

 trap
 of the

he
fer.
IRQ (Interrupt request)

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level on
the IRQ pin. This input can accept asynchronous transitions, and is delayed by one clock
cycle for synchronisation before it can affect processor execution. It has a lower priority
than FIQ, and is masked out when a FIQ sequence is entered. Its effect may be masked
out at any time by setting the I bit in the PC (but note that this is not possible from user
mode). If the I flag is clear ARM checks for a LOW level on the output of the IRQ
synchroniser at the end of each instruction.

When ARM is successfully IRQed it will:

1 Save R15 in R14_irq, and (for 32 bit configuration ARMs) save the CPSR in
SPSR_irq.

2 Force the mode bits to IRQ mode and set the I bit in the PSR.

3 Force the PC to fetch the next instruction from address &18.

To return normally from IRQ use:

SUBS PC,R14_irq,#4

This will restore the original processor state and thereby re-enable IRQ.

Address exception trap

On a 32 bit configuration processor, address exceptions are never generated, and you
may therefore ignore this section for such processors.

On a 26 bit configuration processor, an address exception arises whenever a data transfer
is attempted with a calculated address above &3FFFFFF. The ARM address bus is
26 bits wide, but an address calculation has a 32 bit result. If this result has a logic
any of the top 6 bits it is assumed that the address overflow is an error, and the ad
exception trap is taken.

Note that a branch cannot cause an address exception, and a block data transfer
instruction which starts in the legal area but increments into the illegal area will not
(it wraps round to address 0 instead). The check is performed only on the address
first word to be transferred.

When an address exception is seen ARM will:

1 If the data transfer was a store, force it to load. (This protects the memory from
spurious writing.)

2 Complete the instruction, but prevent internal state changes where possible. T
state changes are the same as if the instruction had aborted on the data trans

3 Save R15 in R14_svc.

4 Force the mode bits to SVC mode and set the I bit in the PSR.
42

The ARM CPU
5 Force the PC to fetch the next instruction from address &14.

Normally an address exception is caused by erroneous code, and it is inappropriate to
resume execution. If a return is required from this trap, use SUBS PC,R14_svc,#4.
This will return to the instruction after the one causing the trap.

Abort

The Abort signal comes from an external Memory Management system, and indicates
that the current memory access cannot be completed. For instance, in a virtual memory
system the data corresponding to the current address may have been moved out of
memory onto a disc, and considerable processor activity may be required to recover the
data before the access can be performed successfully. ARM checks for an Abort at the
end of the first phase of each bus cycle. When successfully Aborted ARM will respond
in one of three ways.

Abort during instruction prefetch

If abort is signalled during an instruction prefetch (a Prefetch abort), the prefetched
instruction is marked as invalid; when it comes to execution, it is reinterpreted as below.
(If the instruction is not executed, for example as a result of a branch being taken while
it is in the pipeline, the abort will have no effect.)

Then ARM will:

1 Save R15 in R14_svc, or (for 32 bit configuration ARMs) save R15 in R14_abt and
save the CPSR in SPSR_abt.

2 Force the mode bits to SVC mode or (for 32 bit configuration ARMs) ABT mode
and set the I bit in the PSR.

3 Force the PC to fetch the next instruction from address &0C.

To continue after a Prefetch abort use SUBS PC,R14,#4 (where R14 is R14_svc or
R14_abt depending on the processor configuration). The ARM will then re-execute
the aborting instruction, so you should ensure that you have removed the cause of the
original abort.

Abort during data access

If the abort command occurs during a data access (a Data Abort), the action depends on
the instruction type.

l Single data transfer instructions (LDR and STR) are aborted as though the
instruction had not executed.

l Block data transfer instructions (LDM and STM) complete, and if writeback is set,
the base is updated. If the instruction would normally have overwritten the base
with data (ie LDM with the base in the transfer list), this overwriting is prevented.
43

Exceptions

ble.
address
tem
ilable,
the

to
All register overwriting is prevented after the Abort is indicated, which means in
particular that R15 (which is always last to be transferred) is preserved in an aborted
LDM instruction.

Then ARM will:

1 Save R15 in R14_svc, or (for 32 bit configuration ARMs) save R15 in R14_abt and
save the CPSR in SPSR_abt.

2 Force the mode bits to SVC mode or (for 32 bit configuration ARMs) ABT mode
and set the I bit in the PSR.

3 Force the PC to fetch the next instruction from address &10.

To continue after a data abort, remove the cause of the abort, then reverse any
auto-indexing that the original instruction may have done, then return to the original
instruction with SUBS PC,R14,#8 (where R14 is R14_svc or R14_abt depending
on the processor configuration).

Abort during an internal cycle

The ARM ignores aborts signalled during internal cycles.

Using aborts to implement virtual memory systems

The abort mechanism allows a ‘demand paged virtual memory system’ to be
implemented when a suitable memory management unit (such as MEMC) is availa
The processor is allowed to generate arbitrary addresses, and when the data at an
is unavailable the memory manager signals an abort. The processor traps into sys
software which must work out the cause of the abort, make the requested data ava
and retry the aborted instruction. The application program needs no knowledge of
amount of memory available to it, nor is its state in any way affected by the abort.

Software interrupt

The software interrupt instruction is used for getting into supervisor mode, usually
request a particular supervisor function. ARM will:

1 Save R15 in R14_svc, and (for 32 bit configuration ARMs) save the CPSR in
SPSR_svc.

2 Force the mode bits to SVC mode and set the I bit in the PSR.

3 Force the PC to fetch the next instruction from address &8.

To return from a SWI, use MOVS PC,R14_svc. This returns to the instruction
following the SWI.
44

The ARM CPU
Undefined instruction trap

When ARM executes a coprocessor instruction or an undefined instruction, it offers it to
any coprocessors which may be present. If a coprocessor can perform this instruction but
is busy at that moment, ARM will wait until the coprocessor is ready. If no coprocessor
can handle the instruction ARM will take the undefined instruction trap.

When the undefined instruction trap is taken ARM will:

1 Save R15 in R14_svc, or (for 32 bit configuration ARMs) save R15 in R14_und and
save the CPSR in SPSR_und.

2 Force the mode bits to SVC mode or (for 32 bit configuration ARMs) UND mode
and set the I bit in the PSR.

3 Force the PC to fetch the next instruction from address &4.

The undefined instruction trap may be used for software emulation of a coprocessor in a
system which does not have the coprocessor hardware; or for general purpose
instruction set extension by software emulation (the floating point instruction set is
implemented in software this way).

To return from this trap (after performing a suitable emulation of the required function),
use MOVS PC,R14 (where R14 is R14_svc or R14_und depending on the processor
configuration). This will return to the instruction following the undefined instruction.

Reset

ARM can be reset by pulling its RESET pin HIGH. If this happens, ARM will stop the
currently executing instruction and start executing no-ops. When RESET goes LOW
again, it will:

1 Save R15 in R14_svc, and (for 32 bit configuration ARMs) save the CPSR in
SPSR_svc.

2 Force the mode bits to SVC mode and set the F and I bits in the PSR.

3 Force the PC to fetch the next instruction from address &0.

Vector summary

The first eight words of store normally contain branch instructions pointing to the
relevant routines. The FIQ routine may reside at &000001C onwards, and thereby avoid
the need for (and execution time of) a branch instruction.

Address Definition
&0000000 Reset

&0000004 Undefined instruction

&0000008 Software interrupt
45

Exceptions
Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the
order in which they will be handled:

1 Reset (highest priority)

2 Address exception, Data abort

3 FIQ

4 IRQ

5 Prefetch abort

6 Undefined Instruction, Software interrupt (lowest priority)

Note that not all exceptions can occur at once. Address exception and data abort are
mutually exclusive, since if an address is illegal the ARM will ignore the ABORT input.
Undefined instruction and software interrupt are also mutually exclusive since they each
correspond to particular (non-overlapping) decodings of the current instruction.

If an address exception or data abort occurs at the same time as a FIQ, and FIQs are
enabled (ie the F flag in the PSR is clear), ARM will enter the address exception or data
abort handler and then immediately proceed to the FIQ vector. A normal return from
FIQ will cause the address exception or data abort handler to resume execution. Placing
address exception and data abort at a higher priority than FIQ is necessary to ensure that
the transfer error does not escape detection, but the time for this exception entry should
be added to worst case FIQ latency calculations.

Interrupt latencies

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time
the request can take to pass through the synchroniser, plus the time for the longest
instruction (typically load multiple registers) to complete, plus the time for address
exception or data abort entry, plus the time for FIQ entry. At the end of this time ARM
will be executing the instruction at 1CH.

The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ
has higher priority and could delay entry into the IRQ handling routine for an arbitrary
length of time.

&000000C Abort (prefetch)

&0000010 Abort (data)

&0000014 Address exception

&0000018 IRQ

&000001C FIQ

Address Definition
46

The ARM CPU
The minimum latency for FIQ or IRQ consists of the shortest time the request can take
through the synchroniser, plus the time for FIQ or IRQ entry.

The above times can vary considerably between different versions of the ARM, and
obviously also depend on clock speeds. For more information you should see the
relevant datasheets.
47

Exceptions
48

4 ARM assembly language

RM Assembly Language is the language which ObjAsm parses and compiles to

produce object code in ARM Object Format. Information on ObjAsm command A
line options are detailed in ObjAsm command lines on page 22. This chapter details

ted by
t be

ed by
EA
bled
ARM Assembly Language, but does not give examples of its use.

General
Instruction mnemonics and register names may be written in upper or lower case (but
not mixed case). Directives must be written in upper case.

Input lines

The general form of assembler input lines is:

«label» «instruction» «;comment»

A space or tab should separate the label, where one is used, and the instruction. If no
label is used the line must begin with a space or tab. Any combination of these three
items will produce a valid line; empty lines are also accepted by the assembler and can
be used to improve the clarity of source code.

Assembler source lines are allowed to be up to 255 characters long. To make source files
easier to read, a long line of source can be split onto several lines by placing a backslash
character, ‘\’, at the end of a line. The backslash must not be followed by any other
characters (including spaces or tabs). The backslash + end of line sequence is trea
ObjAsm as white space. Note that the backslash + end of line sequence should no
used within quoted strings.

AREAs

AREAs are the independent, named, indivisible chunks of code and data manipulat
the Linker. The Linker places each AREA in a program image according to the AR
placement rules (i.e. not necessarily adjacent to the AREAs with which it was assem
or compiled).
49

AREAs
Conventionally, an assembly, or the output of a compilation, consists of two AREAs,
one for the code (usually marked read-only), and one for the data which may be written
to. A reentrant object will generally have a third AREA marked BASED sb (see
below), which will contain relocatable address constants. This allows the code area to be
read-only, position-independent and reentrant, making it easily ROM-able.

In ARM assembly language, each AREA begins with an AREA directive. If the AREA
directive is missing the assembler will generate an AREA with an unlikely name
(|$$$$$$$|) and produce a diagnostic message to this effect. This will limit the
number of spurious errors caused by the missing directive, but will not lead to a
successful assembly.

The syntax of the AREA directive is:

AREA name«,attr»« ,attr» ...

You may choose any name for your AREAs, but certain choices are conventional. For
example, |C$$code| is used for code AREAs produced by the C compiler, or for code
AREAs otherwise associated with the C library.

Area attributes

AREA attributes are as follows:

ABS Absolute: rooted at a fixed address.

REL Relocatable: may be relocated by the Linker (the default).

PIC Position Independent Code: will execute where loaded without
modification.

CODE Contains machine instructions.

DATA Contains data, not instructions.

READONLY This area will not be written to.

COMDEF Common area definition.

COMMON Common area.

NOINIT Data AREA initialised to zero: contains only space reservation
directives, with no initialised values.

REENTRANT The code AREA is reentrant.

BASED Rn Static base data AREA containing tables of address constants locating
static data items. Rn is a register, conventionally R9. Any label
defined within this AREA becomes a register-relative expression
50

ARM assembly language
which can be used with LDR and STR instructions. For full details see
the appendix ARM procedure call standard on page 249 of the
Desktop Tools guide.

ALIGN=expression
The ALIGN sub-directive forces the start of the area to be aligned on a
power-of-two byte-address boundary. By default AREAs are aligned
on a 4-byte word boundary, but the expression can have any value
between 2 and 12 inclusive.

ORG and ABS

ORG base-address

The ORG (origin) directive is used to set the base address and the ABS (absolute)
attribute of the containing AREA, or of the following AREA if there is no containing
AREA. In some circumstances this will create objects which cannot be linked. In
general it only makes sense to use ORG in programs consisting of one AREA, which
need to map fixed hardware addresses such as trap vector locations. Otherwise ORG
should be avoided.

Symbols

Numbers, logical values, string values and addresses may be represented by symbols.
Symbols representing numbers or addresses, logical values and strings are declared
using the GBL and LCL directives, and values are assigned immediately by SETA, SETL
and SETS directives respectively (see Local and global variables – GBL, LCL and SET
on page 150). Addresses are assigned by the Assembler as assembly proceeds, some
remaining in symbolic, relocatable form until link time.

Symbols must start with a letter in either upper or lower case; the assembler is
case-sensitive and treats the two forms as distinct. Numeric characters and the
underscore character may be part of the symbol name. All characters are significant.

Symbols should not use the same name as instruction mnemonics or directives. While
the assembler can distinguish between the uses of the term through their relative
positions in the input line, a programmer may not always be able to do so.

Symbol length is limited by the 255 character line length limit.

If there is a need to use a wider range of characters in symbols, for instance when
working with other compilers, use enclosing bars to delimit the symbol name; for
example, |C$$code|. The bars are not part of the symbol.
51

Labels
Labels

Labels are a special form of symbol, distinguished by their position at the start of lines.
The address represented by a label is not explicitly stated but is calculated during
assembly.

Local labels

The local label, a subclass of label, begins with a number in the range 0-99. Local labels
work in conjunction with the ROUT directive and are most useful for solving the
problem of macro-generated labels. Unlike global labels, a local label may be defined
many times; the assembler uses the definition closest to the point of reference. To begin
a local label area use:

«label» ROUT

The label area will start with the next line of source, and will end with the next ROUT
directive or the end of the program.

Local labels are defined as:

number«routinename»

although routinename need not be used; if omitted, it is assumed to match the label
of the last ROUT directive. It is an error to give a routine name when no label has been
attached to the preceding ROUT directive.

References to local labels

A reference to a local label has the following syntax:

%«x»«y»n«routinename»

% introduces the reference and may be used anywhere where an ordinary label reference
is valid.

x tells the assembler where to search for the label; use B for backward or F for forward.
If no direction is specified the assembler looks both forward and backward. However
searches will never go outside the local label area (i.e. beyond the nearest ROUT
directives).

y provides the following options: A to look at all macro levels, T to look only at this
macro level, or, if y is absent, to look at all macro from the current level to the top level.

n is the number of the local label.

routinename is optional, but if present it will be checked against the enclosing
ROUT’s label.
52

ARM assembly language
Comments

The first semi-colon on a line marks the beginning of a comment, except where the
semi-colon appears inside a string constant. A comment alone is a valid line. All
comments are ignored by the assembler.

Constants

Numbers

Numeric constants are accepted in three forms: decimal (e.g. 123), hexadecimal (e.g.
&7B), and n_xxx, where n is a base between 2 and 9, and xxx is a number in that base.

Strings

Strings consist of opening and closing double quotes, enclosing characters and spaces. If
double quotes or dollar signs are used within a string as literal text characters, they
should be represented by a pair of the appropriate character; e.g. $$ for $.

Boolean

The Boolean constants ‘true’ and ‘false’ should be written as {TRUE} and {FALSE}.

The END directive

Every assembly language source must end with:

END

on a line by itself.
53

54

5 CPU instruction set

his chapter describes the CPU instructions available in ObjAsm. It includes
Tinstruction formats, assembler syntax, and a synopsis of each instruction.T

e condition field
n;
nic to

ing

ics.
Th
All ARM instructions are conditionally executed, which means that they will only be
executed if the N, Z, C and V flags in the PSR are in the correct state at the end of the
preceding instruction. The condition is encoded in a four bit condition field, held in bits
28 - 31 of an instruction. By default ObjAsm encodes the ‘always execute’ conditio
other conditions can be requested by appending a two-character condition mnemo
ObjAsm’s mnemonic for an instruction.

The figure below shows the condition codes, their mnemonics, and the correspond
conditions under which the instruction is executed:

Figure 5.1 The condition field

Note that ObjAsm implements HS (Higher or Same) and LO (LOwer than) as
synonymous with CS and CC respectively, giving it a total of 17 condition mnemon

0000 ⇒ EQ Z set (equal)
0001 ⇒ NE Z clear (not equal)
0010 ⇒ CS C set (unsigned higher or same)
0011 ⇒ CC C clear (unsigned lower)
0100 ⇒ MI N set (minus – i.e. negative)
0101 ⇒ PL N clear (plus – i.e. positive or zero)
0110 ⇒ VS V set (overflow)
0111 ⇒ VC V clear (no overflow)
1000 ⇒ HI C set and Z clear (unsigned higher)
1001 ⇒ LS C clear or Z set (unsigned lower or same)
1010 ⇒ GE N set and V set, or N clear and V clear (greater or equal)
1011 ⇒ LT N set and V clear, or N clear and V set (less than)
1100 ⇒ GT Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 ⇒ LE Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 ⇒ AL always execute (ignore flags)
1111 reserved

31 0

Condition field

28 27

Cond
55

Instruction timings

o

nd

 waste
e.

 using

n is
ssor

te
its in
mer

 not

For example, suppose you had a CMP (compare) instruction followed by an instruction
with the EQ condition (so it is executed only if the Z flag is set):

l If the CMP instruction’s two operands were equal, it would set the Z flag, and s
your conditional instruction would be executed.

l If the CMP instruction’s two operands were different, it would clear the Z flag, a
so your conditional instruction would not be executed.

Conditional instruction sequence

Branches which are taken cause breaks in the pipeline. For this reason they often
time, and can sometimes be replaced by a suitable conditional instruction sequenc

As an example, the coding of IF A=4 THEN B:=A ELSE C:=D+E might be
conventionally achieved using five ARM instructions:

CMP R5, #4 ;test "A=4"
BNE LABEL ;if not equal goto LABEL
MOV R6,R5 ;do "B:=A"
B LAB2 ;jump around the ELSE clause

LABEL ADD R0,R1,R2;do "C:=D+E"
LAB2 ;finish

whereas, using the condition testing instructions, the same effect may be achieved
three instructions:

CMP 5, #4 ;test "A=4"
MOVEQ R6,R5 ;if so do "B:=A"
ADDNE R0,R1,R2;else do "C:=D+E".

If the condition tested is true, the instruction is performed. If it is false, the instructio
skipped and the PC is advanced to the next memory word, which takes little proce
time. The first of the examples above takes about twice as long as the second.

After the instruction is obeyed, the arithmetic logic unit (ALU) will output appropria
signals on the flag lines. On certain instructions, the flags set the condition code b
the PSR; for other instructions, the flags in the PSR are only altered if the program
permits them to be updated.

Instruction timings
Instruction timings can vary between versions of the ARM processor, and so we do
detail them here. For code that is timing dependent, we advise that you consult the
datasheets for all ARM versions on which your code may run.
56

CPU instruction set

a

nd a

g on

use
type

The barrel shifter
The arithmetic logic unit has a 32-bit barrel shifter capable of various shift and rotate
operations. Data involved in the data processing group of instructions (detailed in the
section Data processing on page 68) may pass through the barrel shifter, either as a
direct consequence of the programmer’s actions, or as a result of the internal
computations of ObjAsm. The barrel shifter also affects the index for the single dat
transfer instructions (detailed in the section Single data transfer (LDR, STR) on
page 86).

The barrel shifter has a carry in, which takes its input from the C flag of the PSR; a
carry out, which may be latched back into the C bit of the PSR for logical data
operations (see The S bit on page 72).

The shift mechanism can produce the following types of operand:

Unshifted register

Syntax: register
For example: RO

Register shifted by a constant amount

A register shifted by a constant amount, in the range 0-31, 1-31 or 1-32 (dependin
shift type).

Syntax: register, shift-type #amount
For example: R0,LSR #1

Value resulting from rotating register and carry bit one bit right

A value which is the result of rotating a register and the carry bit one bit right. Beca
the carry is included in the shift, 33 bits (rather than 32 bits) are affected. The shift
is known as rotate right extended.

Syntax: register,RRX
For example: R0,RRX

Register shifted by n bits

A register shifted by n bits, where n is the least significant byte of a register. This form
is not valid as an index in a single register transfer.

Syntax: register,shift-type register
For example: R1,LSL R2
57

The barrel shifter

ot

nt for

red,
8-bit constant rotated right by 2n bits

A constant constructed by rotating an 8-bit constant right by 2n bits, where n is a 4-bit
constant. The shift type is always rotate right. This form is not valid as an index in a
single register transfer.

Syntax: #expression
For example: #&3FC

Note that the rotation is invisible to the programmer, who should merely supply an
immediate value for the data processing instruction to use.

ObjAsm will evaluate the expression and reject any number which cannot be expressed
as a rotation by an even amount of a number in the range 0-255. If possible, ObjAsm
always constructs it as an unrotated value, even if there are other possibilities.

Examples of valid immediate constants are:

#1
#&FF
#&3FC This is &FF rotated right by 30
#&80000000 This is 2 rotated right by 2
#&FC000003 This is &FF rotated right by 6.

Examples of invalid constants are:

#&101 cannot be obtained by rotating an 8-bit value
#&1FE an 8-bit value rotated by an odd amount – but not an 8-bit value

rotated by an even amount.

8-bit constant rotated right by 2n bits and specified explicitly

A constant constructed as in the point above, but specified explicitly. This form is n
valid as an index in a single register transfer.

Syntax: #constant, rotate amount
For example: #4,2

The shift amount should be an even number in the range 0-30. This can be importa
setting the carry flag on an operation which would otherwise not update it.

For example:

MOVS R0, #4,2 produces the same result as
MOVS R0, #1

but because the first instruction does a rotate right of two bits the carry flag is clea
whereas it is not altered by the second instruction.
58

CPU instruction set
Shift types
Various instructions use the barrel shifter to shift register operands. The effects of such
shifts are detailed in this section, rather than being repeated for each instruction.

Mnemonics

There are six assembler mnemonics for shift types, used to control the barrel shifter.
These are:

The mnemonic ASL (arithmetic shift left) may be freely interchanged with LSL (logical
shift left).

Specification of the shift amount

The shift amount may either be specified in the instruction, or in a register specified by
the instruction.

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which
may take any value from 0 to 31.

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift
amount.

If this byte is zero, the unchanged contents of Rm will be used as the second operand,
and the old value of the PSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an
instruction specified shift with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shifting
process. This is detailed for each mnemonic described below.

LSL Logical Shift Left

ASL Arithmetic Shift Left

LSR Logical Shift Right

ASR Arithmetic Shift Right

ROR Rotate Right

RRX Rotate Right with Extend
59

Shift types

pt
Logical shift left, or arithmetic shift left

A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified
amount to a more significant position. The least significant bits of the result are filled
with zeroes. The high bits of Rm which do not map into the result are discarded – exce
that the least significant discarded bit becomes the barrel shifter’s carry out.

For example, the effect of LSL #5 is:

Figure 5.2 A logical or arithmetic shift left by 5

Special cases

l LSL #0 or ASL #0, and LSL Rs or ASL Rs where Rs is 0:

The barrel shifter’s result is the unchanged contents of Rm, and its carry out is the
old value of the PSR C flag.

l LSL Rs or ASL Rs where Rs is 32:

The result is zero, and the carry out is bit 0 of Rm.

l LSL Rs or ASL Rs where Rs is greater than 32:

Both the result and the carry out are zero.

Rm,LSL #n or
Shift contents of Rm left by n bits, where n is 0 to 31.

Rm,ASL #n

Rm,LSL Rs or
Shift contents of Rm left by the least significant byte of Rs.

Rm,ASL Rs

000 00

31 028 27 26 Contents of Rm

Value of operand 231 5 4 0

Carry out
60

CPU instruction set
Logical shift right

A logical shift right (LSR) is similar to a logical shift left, but the contents of Rm are
moved to less significant positions in the result. LSR #5 has this effect:

Figure 5.3 A logical shift right by 5

Logical shift right zero is redundant as it is the same as logical shift left zero. The form
of the shift field which might be expected to correspond to LSR #0 is therefore used to
encode LSR #32. ObjAsm assembles LSR #0 (and ASR #0 and ROR #0) as LSL #0,
and allows you to specify LSR #32.

Special cases

l LSR #0:

This is assembled as LSL #0 (see page 60), which has the same effect as LSR #0.

l LSR Rs where Rs is 0:

The barrel shifter’s result is the unchanged contents of Rm, and its carry out is the
old value of the PSR C flag.

l LSR #32, or LSR Rs where Rs is 32:

The result is zero, and the carry out is bit 31 of Rm. (LSR #32 is encoded in the
format you would expect to correspond to LSR #0.)

l LSR Rs where Rs is greater than 32:

Both the result and the carry out are zero.

Rm,LSR #n Shift contents of Rm right by n bits, where n is 1 to 32.

Rm,LSR Rs Shift contents of Rm right by the least significant byte of Rs.

0 0 00 0

031 345Contents of Rm

Value of operand 2 0262731

Carry out
61

Shift types

ent

e
e
as

R #0.
Arithmetic shift right

An arithmetic shift right (ASR) is similar to a logical shift right, except that the high bits
are filled with bit 31 of Rm instead of zeroes. This preserves the sign in 2’s complem
notation. For example, ASR #5:

Figure 5.4 An arithmetic shift right by 5

Arithmetic shift right zero is redundant as it is the same as logical shift left zero. Th
form of the shift field which might be expected to correspond to ASR #0 is therefor
used to encode ASR #32. ObjAsm assembles ASR #0 (and LSR #0 and ROR #0)
LSL #0, and allows you to specify ASR #32.

Special cases

l ASR #0:

This is assembled as LSL #0 (see page 60), which has the same effect as AS

l ASR Rs where Rs is 0:

The barrel shifter’s result is the unchanged contents of Rm, and its carry out is the
old value of the PSR C flag.

l ASR #32, or ASR Rs where Rs is 32 or more:

Each bit of the result is equal to bit 31 of Rm; the result is therefore all ones or all
zeroes. The carry out is also bit 31 of Rm. (ASR #32 is encoded in the format you
would expect to correspond to ASR #0.)

Rm,ASR #n Shift contents of Rm right by n bits, where n is 1 to 32.

Rm,ASR Rs Shift contents of Rm right by the least significant byte of Rs.

030 345Contents of Rm

Value of operand 2 0252731

Carry out

31

26
62

CPU instruction set

t
 used

f the
code
#0

R #0.
Rotate right

Rotate right (ROR) operations reuse the bits which ‘overshoot’ in a logical shift righ
operation by reintroducing them at the high end of the result, in place of the zeroes
to fill the high end in logical right operations. For example, ROR #5:

Figure 5.5 A rotate right by 5

Rotate right zero is redundant as it is the same as logical shift left zero. The form o
shift field which might be expected to correspond to ROR #0 is therefore used to en
rotate right extended (see the next section). ObjAsm assembles ROR #0 (and LSR
and ASR #0) as LSL #0.

Special cases

l ROR #0:

This is assembled as LSL #0 (see page 60), which has the same effect as RO

l ROR Rs where Rs is 0:

The barrel shifter’s result is the unchanged contents of Rm, and its carry out is the
old value of the PSR C flag.

l ROR Rs where Rs is 32:

The result is equal to Rm, and the carry out is bit 31 of Rm.

l ROR Rs where Rs is greater than 32:

The result and carry out are the same as for ROR ((Rs – 1) MOD 32 + 1); therefore
repeatedly subtract 32 from Rs until its value is in the range 1 to 32, and then see
above.

Rm,ROR #n Rotate contents of Rm right by n bits, where n is 1 to 31.

Rm,ROR Rs Rotate contents of Rm right by the least significant byte of Rs.

31

031 345Contents of Rm

Value of operand 2 0262730

Carry out
63

Coprocessor instructions

e
.

f
rd set

ne or

n the
Rotate right with extend

The form of the shift field which might be expected to give ROR #0 is used to encode a
special function of the barrel shifter, rotate right extended (RRX). This is a rotate right
by one bit position of the 33 bit quantity formed by appending the PSR C flag to the
most significant end of the contents of Rm:

Figure 5.6 A rotate right with extend

Coprocessor instructions
The ARM can work with up to 16 external coprocessors, which (if present) will execute
the instructions listed below. If the requested coprocessor is absent, these instructions
will be regarded as undefined. The undefined instruction trap can then take appropriate
action (for example emulating the requested instruction in software or telling the user
that the program won’t run in a machine without the coprocessor.)

The floating point coprocessor uses coprocessor numbers 1 and 2. If it’s absent, th
floating point emulator traps the resulting undefined instructions and emulates them
The coprocessor 15 instructions are used by ARM as instructions to control its own
operation (such as cache control, and 26/32 bit configuration).

ObjAsm provides support for coprocessors at two levels. Firstly, it provides a set o
generic coprocessor instructions, detailed below. Secondly, it recognises a standa
of floating point instructions and translates them into the appropriate coprocessor
instructions; see the chapter Floating point instructions on page 121 for details.

All the generic coprocessor operations include a coprocessor number symbol and o
more coprocessor register symbols. These should be defined using the CP and CN
directives respectively. (See the chapter Directives on page 143.)

All coprocessor instructions are conditional. Whether they are executed depends o
ARM’s condition flags, not on any coprocessor status register.

Rm,RRX Rotate contents of Rm and the carry flag right by 1 bit only.

031 1Contents of Rm

Value of operand 2 03031

Carry
out

Carry
in
64

CPU instruction set

o

hin a
om of
Branch, Branch with Link (B, BL)

Instructions for branching to an instruction other than the next one

Instruction format

Assembler syntax

B«L»«cond» expression

where:

«L» requests the Branch with Link form of the instruction (see The link bit
below). If absent, R14 will not be affected by the instruction.

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

expression is a program-relative expression describing the branch
destination, from which ObjAsm calculates the offset.

Synopsis

These instructions branch to an instruction other than the next one, by altering the value
of the program counter (R15). The Branch with Link form of the instruction also stores
a return address in the link register (R14), so that program flow can branch to a
subroutine, and then return to the instruction immediately following the Branch with
Link instruction; for more details see The link bit below.

All branches take a signed 2’s complement 24 bit word offset. This is shifted left tw
bits, and added to the program counter, with any overflow being ignored, giving an
offset of ±32Mbytes. The branch can therefore reach any word aligned address wit
26 bit address space, since the calculation ‘wraps round’ between the top and bott
memory.

0 ⇒ Branch
1 ⇒ Branch with link

31 0

Link bit

28 27

Cond

25 24 23

L Offset

Condition field
(see page 55)

1 0 1
65

Branch, Branch with Link (B, BL)
When using this instruction with ObjAsm you should provide a label, from which
ObjAsm will calculate the 24 bit offset.

The encoded offset must take account of the effects of pipelining and prefetching within
the CPU, which causes the PC to be two words ahead of the current instruction. ObjAsm
automatically handles this for you. For example, the calculated jump offset in the
following piece of code is 000000, even though the jump is to a label two PC locations
ahead.

The instruction is only executed if the condition specified in the condition field is true
(see the section The condition field on page 55).

The link bit

Branch with Link works in the same way as Branch, but it also writes the old PC and
PSR into the link register (R14) of the current bank. The PC value written is first
adjusted to allow for the prefetch, and contains the address of the instruction following
the branch and link instruction.

This form of the instruction is often used for branching to subroutines. At the end of the
subroutine the program flow can return to the instruction immediately following the
Branch with Link instruction by writing the link register (R14) value back into the
program counter (R15). To do so, the subroutine should end with:

MOV PC,R14

if the link register has not been saved on a stack, or:

LDMxx Rn,{PC}

if the link register has been saved on a stack addressed by Rn. (xx is the stack type; see
the section Block data transfer (LDM, STM) on page 91.)

These methods of returning do not restore the original PSR. If the PSR does need to be
restored then

MOV PC,R14 can be replaced by MOVS PC,R14 or
LDMxx Rn,{PC} by LDMxx Rn,{PC}^

However, care should be taken when using these methods in modes other than user
mode, as they will also restore the mode and the interrupt bits. In particular, restoring the
interrupt bits may interfere unintentionally with the interrupt system.

Code generated Label Mnemonic Destination
EA000000 L1 BEQ L2

xxxxxxxx xxx

xxxxxxxx L2 xxx
66

CPU instruction set
32 bit operation

Calculating the offset

In 32 bit operation, the offset is sign extended to 32 bits before it is added to the program
counter.

Branches beyond ±32Mbytes must use an offset or an absolute destination which has
previously been loaded into a register. In this case you should manually save the PC in
R14 if you require a Branch with Link type operation.

The link bit

Branch with Link does not save the CPSR with the PC. If you need to preserve the CPSR
over a subroutine, it is your responsibility to explicitly save and restore it, either on entry
to and exit from (respectively) the subroutine, or in the calling part of the program.

Examples
here BAL here ; Assembles to EAFFFFFE

; (note effect of PC offset)

B there ; ALways condition used as default

CMP R1,#0 ; Compare register 1 with zero
BEQ fred ; Branch to fred if register 1 was zero,

; otherwise continue to next instruction

BL sub + ROM ; Unconditionally call subroutine at
; computed address

ADDS R1,#1 ; Add 1 to register 1, setting PSR flags on
; the result

BLCC sub ; Call subroutine if the C flag is clear,
; which will be the case unless R1 contained
; FFFFFFFFH
; Otherwise continue to next instruction
67

Data processing
Data processing

Instructions for performing arithmetic or logical operation on one or two operands
68

CPU instruction set
Instruction format

0 ⇒ do not alter condition codes
1 ⇒ set condition codes

31 028 27

Cond

26 25 24

I Opcode

Condition field
(see page 55)

S Rn Rd Operand2

21 20 19 16 15 12 11

Destination register

1st operand register

Set condition codes

Operation code
0000 ⇒ AND Rd := Rn AND Op2
0001 ⇒ EOR Rd := Rn EOR Op2
0010 ⇒ SUB Rd := Rn – Op2
0011 ⇒ RSB Rd := Op2 – Rn
0100 ⇒ ADD Rd := Rn + Op2
0101 ⇒ ADC Rd := Rn + Op2 + C flag
0110 ⇒ SBC Rd := Rn – Op2 – NOT(C flag)
0111 ⇒ RSC Rd := Op2 – Rn – NOT(C flag)
1000 ⇒ TST set condition codes on Rn AND Op2
1001 ⇒ TEQ set condition codes on Rn EOR Op2
1010 ⇒ CMP set condition codes on Rn – Op2
1011 ⇒ CMN set condition codes on Rn + Op2
1100 ⇒ ORR Rd := Rn OR Op2
1101 ⇒ MOV Rd := Op2
1110 ⇒ BIC Rd := Rn AND NOT Op2
1111 ⇒ MVN Rd := NOT Op2

Immediate Operand

0

Shift

11

Rm

4 3

0 ⇒ Operand2 is a register

Shift applied to Rm 2nd operand register

0

Rotate

11

Imm

8 7

1 ⇒ Operand2 is an immediate value

Shift applied to Imm Unsigned 8 bit
immediate value

0 0
69

Data processing

m
t

C
Assembler syntax

The data processing instructions use three different types of syntax, depending on
whether the opcode being used takes one or two operands, and whether or not it writes
the result into a destination register:

MOV and MVN – single operand

opcode«cond»« S» Rd,op2

CMN, CMP, TEQ and TST – no result written

opcode«cond»« P» Rn,op2

ADC, ADD, AND, BIC, OR, ORR, RSB, RSC, SBC, SUB – two operands

opcode«cond»« S» Rd,Rn,op2

Parameters

opcode is a mnemonic for the data processing operation to be performed; see
Opcodes below

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

«S» means to set the PSR’s condition codes from the operation. ObjAs
forces this for CMN, CMP, TEQ and TST, provided the P flag is no
specified. See Opcodes below for a summary of the flags affected by
each opcode, and The S bit on page 72 for more detail.

«P» means to take the result of a CMN, CMP, TEQ or TST operation, and
move it to the bits of R15 that hold the PSR – even though the
instruction has no destination register. Bits corresponding to the P
are masked out, as are (in User mode) the I, F, and mode bits.

Rd, Rn & Rm are expressions evaluating to a valid ARM register number.

op2 may be any of the operands that the barrel shifter can produce.

The syntax is Rm«,shift» or #expression

If #expression is used, ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field. If this is
impossible, it will give an error.

shift is shiftname Rs or shiftname #expression , or
RRX (rotate right one bit with extend). shiftname s are: ASL, LSL,
LSR, ASR, and ROR. (ASL is a synonym for LSL, and the two
assemble to the same code.) See Shift types on page 59.
70

CPU instruction set

Opcodes

The opcodes supported are:

Synopsis

These instructions produce a result by performing a specified arithmetic or logical
operation on one or two operands.

The operation is performed between a source register Rn and an operand op2 – except
for MOV and MVN, where only the operand is needed (and for which the assembler sets
Rn to R0). The source register can be any one of the 16 registers. The operand can be
any operand that the barrel shifter can produce: i.e. a shifted register Rm, or a rotated 8
bit immediate value Imm, according to the value of the I bit in the instruction. (See The
barrel shifter on page 57 and Shift types on page 59.) Note that any shifting is done
before the operation is performed.

The logical operations (AND, BIC, EOR, MOV, MVN, ORR, TEQ, TST) perform the
logical action on all corresponding bits of the operand or operands to produce the result.
The arithmetic operations (ADC, ADD, CMP, CMN, RSB, RSC, SBC, SUB) treat each
operand as a 32 bit integer (either unsigned or 2’s complement signed, the two are
equivalent). Some add the bit held in the ALU’s carry flag into the operation.

Assembler
Mnemonic

Meaning Operation Flags
affected

ADC Add with Carry Rd:=Rn + op2 + C flag N,Z,C,V

ADD Add Rd:=Rn + op2 N,Z,C,V

AND And Rd:=Rn AND op2 N,Z,C

BIC Bit Clear Rd:=Rn AND (NOT(op2)) N,Z,C

CMN Compare Negated Rn + op2 N,Z,C,V

CMP Compare Rn – op2 N,Z,C,V

EOR Exclusive Or Rd:=Rn EOR op2 N,Z,C

MOV Move Rd:=op2 N,Z,C

MVN Move Not Rd:=NOT op2 N,Z,C

ORR Logical Or Rd:=Rn OR op2 N,Z,C

RSB Reverse Subtract Rd:=op2 – Rn N,Z,C,V

RSC Reverse Subtract with Carry Rd:=op2 – Rn –
NOT(C flag)

N,Z,C,V

SBC Subtract with Carry Rd:=Rn – op2 –
NOT(C flag)

N,Z,C,V

SUB Subtract Rd:=Rn – op2 N,Z,C,V

TEQ Test Equivalence Rn EOR op2 N,Z,C

TST TeST and mask Rn AND op2 N,Z,C
71

Data processing

odes

so
s of
ns
ere
at the

ged

e
ger);

ister

sult
The result of the operation is placed in the destination register Rd – except for CMN,
CMP, TEQ and TST, which are used only to perform tests and to set the condition c
on the result (and for which the assembler sets Rd to R0). The destination register may
be any one of the 16 registers.

The condition codes in the PSR may be preserved or updated as a result of this
instruction, according to the value of the S bit; see The S bit below.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 55.

The S bit

The instruction contains a one bit field called the S bit, standing for ‘set condition
codes’. The result of the operation in the ALU affects its N and Z flags, and may al
affect its C and V flags. However, the ALU doesn’t copy its flags to the relevant part
the PSR unless the S bit is set. ObjAsm always sets the S bit for the four instructio
CMN, CMP, TEQ and TST, since they would be meaningless unless their results w
copied to the PSR. In the case of the remaining 12 instructions, you may request th
S bit be set by appending the letter S to the instruction mnemonic.

The way the PSR flags are altered differs for logical and arithmetic operations:

Logical operations (AND, BIC, EOR, MOV, MVN, ORR, TEQ, TST)

l The V flag in the PSR will be unaffected.

l The C flag will be set to the last bit shifted out by the barrel shifter, or is unchan
if no shifting took place.

l The Z flag will be set if and only if the result is all zeroes.

l The N flag will be set to the logical value of bit 31 of the result.

Arithmetic operations (ADC, ADD, CMP, CMN, RSB, RSC, SBC, SUB)

l The V flag in the PSR will be set if signed overflow occurs (i.e. if you regard th
operands as signed 32 bit integers, the signed result does not fit in a 32 bit inte
this may be ignored if the operands were considered unsigned, but warns of a
possible error if the operands were 2’s complement signed (the destination reg
is set to the bottom 32 bits of the correct unsigned result).

l The C flag will be set to the carry out of bit 31 of the ALU, which for addition
indicates that 32 bit overflow occurred, and for subtraction indicates that 32 bit
underflow did not occur.

l The Z flag will be set if and only if the result was zero.

l The N flag will be set to the value of bit 31 of the result, indicating a negative re
if the operands are considered to be 2’s complement signed.
72

CPU instruction set
The P flag

The P flag invokes a special form of the CMN, CMP, TEQ and TST operations, used to
update the PSR. The operation is carried out, and then the PSR is overwritten by the
corresponding bits in the ALU result: so bit 31 of the result goes to the N flag, bit 30 to
the Z flag, bit 29 to the C flag, and bit 28 to the V flag. In user mode the other flags (I, F,
M1, M0) are protected from direct change, but in non-user modes these will also be
affected, accepting copies of bits 27, 26, 1 and 0 of the result respectively.

This is typically used to change modes. For example:

TEQP R15, #0 ; Change to user mode.

Note the treatment of R15 as the first operand, described in Using R15 as an operand on
page 74.

This form is encoded by setting the S bit, and setting the destination register to R15.

Shifts

When the second operand is specified to be a shifted register, the operation of the barrel
shifter is controlled by the Shift field in the instruction. This field indicates the type of
shift to be performed (logical left or right, arithmetic right or rotate right). The amount
by which the register should be shifted may be contained in an immediate field in the
instruction, or in the bottom byte of another register:

Figure 5.7 Shifts

Shifts are detailed in the section Shift types on page 59.

Note that the zero in bit 7 of an instruction with a register controlled shift is compulsory;
a one in this bit will cause the instruction to be a multiply or an undefined instruction.

511 7 6 4

0

00 ⇒ logical left
01 ⇒ logical right
10 ⇒ arithmetic right
11 ⇒ rotate right

Shift type

Shift amount
5 bit unsigned integer

511 7 6 4

1

00 ⇒ logical left
01 ⇒ logical right
10 ⇒ arithmetic right
11 ⇒ rotate right

Shift type

Shift register
Shift amount specified in
bottom byte of Rs

8

0

73

Data processing
Immediate operand rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift
operation on the 8 bit immediate value. The immediate value is zero extended to 32 bits,
and then subject to a rotate right by twice the value in the rotate field. This enables many
common constants to be generated, for example all powers of 2. Another example is that
the 8 bit constant may be aligned with the PSR flags (bits 0, 1, and 26 to 31). All the
flags can thereby be initialised in one TEQP instruction.

Immediate operand rotates are detailed in the section The barrel shifter on page 57.

Using R15 as the destination or operand

Note that the CPU takes certain actions whenever the destination or any operand is R15.
These are as follows:

Using R15 as the destination

If R15 is the destination register, and the S bit is not set, the PC is overwritten, but not
the PSR.

If the S bit is set, then the PC is overwritten, and also all bits of the PSR that are
unprotected in the current mode; thus in User mode the N, Z, C and V flags are
overwritten, whereas in other modes the entire PSR is overwritten.

Using R15 as an operand

R15 will always contain the value of the PC, which will be the address of the instruction,
plus 8 or 12 bytes due to instruction prefetching. If the shift amount is specified in the
instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift amount,
the PC will be 8 bytes ahead when used as Rs, and 12 bytes ahead when used as Rn or
Rm.

R15 may or may not contain the values of the PSR flags as they were at the completion
of the previous instruction, depending on which operand position it occupies:

l If R15 is the first operand in a two operand instruction, it is presented to the
arithmetic logic unit (ALU) with the PSR bits set to zero.

l If the second or only operand is R15 (possibly shifted), it is presented to the barrel
shifter or ALU with the PSR bits unchanged.

l If R15 is the shift register, it is presented to the barrel shifter with the PSR bits set to
zero.
74

CPU instruction set
32 bit operation

TEQP, TSTP, CMPP and CMNP

These opcodes should not be used in 32 bit modes. You should instead use the new PSR
transfer functions. When used in a privileged mode, TEQP moves the SPSR for the
current mode to the CPSR.

Using R15 as the shift register

You must not use R15 as the shift register.

Using R15 as the destination

If R15 is the destination register, and the S bit is not set, the PC is overwritten, but not
the CPSR. This is what you would expect as an extension of the 26 bit behaviour.

If the destination register is R15 and the S bit is set, then as well as writing the result to
the PC, the SPSR for the current mode is moved to the CPSR. This is again what you
would expect as an extension of the 26 bit behaviour.

Examples
; Simple use of a one operand instruction:

MVN R2,R3 ; R2 is set to the bitwise inverse of the
; contents of R3.

; Simple uses of instructions that does not write a result:
CMP R0,R1 ; Compare the contents of R0 with R1

CMP R0,#&80 ; Compare the contents of R0 with &80

TEQS R4,#3 ; Test R4 for equality with 3
; (The S is in fact redundant as the assembler
; inserts it automatically)

; Simple use of a two operand instruction:
ADD R0,R1,R2 ; R0=R1+R2

; Conditional execution of an instruction:
ADDEQ R2,R4,R5 ; If the Z flag is set make R2:=R4+R5

; Use of the S bit to alter the PSR:
ADDS R0,R1,#1 ; R0=R1+1, and set N,Z,C,V

; Use of a register specified shift:
SUB R4,R5,R7,LSR R2 ; Logical right shift R7 by the number in

; the bottom byte of R2, subtract the result
; from R5, and put the answer into R4

; Use of an immediate shift:
MOV R0,R1,LSL#2 ; The contents of R1 are shifted left by

; 2 bits and transferred to R0.
75

Data processing
; Using ADC to implement multi-word additions. For example a 64 bit ADD:
ADDS R4,R2,R0 ; Add least significant 32 bits updating carry
ADC R5,R3,R1 ; Add most significant 32 bits and carry

; from previous

; Using SBC to implement multi-word subtractions. For example:
SUBS R4,R2,R0 ; Do least significant word of subtraction
SBC R5,R3,R1 ; Do most significant word, taking account

; of the borrow. This does the 64 bit
; subtraction (R5,R4)=(R3,R2)-(R1,R0)

; Changing to user mode and returning from a subroutine:
; Assume non-user mode here
TEQP R15,#0 ; Change to user mode and clear N,Z,C,V,I,F

; NB R15 is here in the Rn position,
; so it comes without the PSR flags

MOV R0,R0 ; No-op to avoid mode change hazard
MOV PC,R14 ; Return from subroutine

; (R14 is a banked register)

; Returning from a subroutine and restoring the PSR:
MOVS PC,R14 ; return from subroutine and restore the PSR
76

CPU instruction set
PSR transfer (MRS, MSR)

Instructions for accessing the CPSR and SPSR registers

These instructions are not available on ARM2 and ARM3 series processors

Instruction format

Assembler syntax

MRS«cond» Rd,psr
MSR«cond» psr ,Rm
MSR«cond» psrf ,Rm
MSR«cond» psrf ,#expression

0 ⇒ CPSR
1 ⇒ SPSR_current mode

31 028 27

Cond

23

Condition field
(see page 55)

Rd

21 16 15 12 11

Destination register

Source PSR

0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 1 1 10 0 1 0 Ps

22

MRS (transfer PSR contents to a register)

0 ⇒ CPSR
1 ⇒ SPSR_current mode

31 028 27

Cond

23

Condition field
(see page 55)

Rs

21 12 11

Source register

Destination PSR

0 0 0 0 0 0 0 0 01 0 1 0 00 0 1 0 Pd

22

1 1 1 1 1

4 3

MSR (transfer register contents to PSR)
77

PSR transfer (MRS, MSR)
where:

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

Rd & Rm are expressions evaluating to a valid ARM register number other than
R15.

psr is CPSR, CPSR_all, SPSR or SPSR_all.

(CPSR and CPSR_all are synonyms, as are SPSR and SPSR_all.)

psrf is CPSR_flg or SPSR_flg. The most significant four bits of Rm or
#expression are written to the N, Z, C and V flags respectively.

#expression is an expression symbolising a 32 bit value.

If #expression is used, ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field. If this is
impossible, it will give an error.

0 0 1Pd

31 028 27

Cond

23 22

Condition field
(see page 55)

21 12 11

Destination PSR

Immediate Operand

011

Rm

4 3

0 ⇒ Source operand is a register

Source register

0

Rotate

11

Imm

8 7

1 ⇒ Source operand is an immediate value

Shift applied to Imm Unsigned 8 bit
immediate value

0 1 0 1 0 0I 1 Source operand0 1 1 1 1

0 ⇒ CPSR
1 ⇒ SPSR_current mode

26 25 24

0 0 0 0 0 0 0 0

MSR (transfer register contents or immediate value to PSR flag bits only)
78

CPU instruction set

entire

s.

 for

rom
Synopsis

These instructions allow access to the CPSR and SPSR registers:

l The MRS instruction moves the contents of the CPSR or SPSR_current mode
register to a general register.

l The MSR instruction moves the contents of a general register to the CPSR or
SPSR_current mode register.

Alternatively, the MSR instruction can write to the condition code flags of the CPSR or
SPSR_current mode register without affecting its control bits:

l In this case the source may be either the contents of a general register or an
immediate value, and only its top four bits are used.

The instructions are encoded using the CMN, CMP, TEQ and TST instructions without
the S flag set.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 55.

These instructions are not available on ARM2 and ARM3 series processors.

On ARM6 series processors and later, they are available in all modes and configurations.
However, we recommend that you avoid using these instructions, as you will lose
backwards compatibility with older ARMs. Indeed, in the 26 bit modes used by
RISC OS (except when handling FIQs), you can access the PSR just as you always have
– for example, with TEQP.

Operand restrictions

In user mode, the control bits of the CPSR are protected from change, so only the
condition code flags of the CPSR can be changed. In other (privileged) modes the
CPSR can be changed.

R15 must not be specified as the source or destination register.

You must not attempt to access the SPSR in user mode, as no such register exist

Reserved bits

Not all bits of the PSR are defined (e.g. only N, Z, C, V, I, F and M[4:0] are defined
the ARM 6 and 7 series). The remaining ones (bits 27-8 and 5 in the ARM 6 and 7
series) are reserved for use in future versions of the ARM. The ensure future
compatibility, the following rules should be observed:

l You must preserve the reserved bits when changing the value in a PSR.

l When you are checking the PSR status, you must not rely on specific values f
the reserved bits, since they may read as one or zero in future processors.
79

PSR transfer (MRS, MSR)
You should therefore use a read-modify-write strategy when altering the control bits of
any PSR register. This involves transferring the appropriate PSR register to a general
register using the MRS instruction, changing only the relevant bits, and then transferring
the modified value back to the PSR register using the MSR instruction.

For example, to perform a mode change:

MRS R0,CPSR ; Take a copy of the PSR
BIC R0,R),#0x1F ; Clear the mode bits
ORR R0,R0,#new_mode ; Set bits for new mode
MSR CPSR,R0 ; Write back the modified CPSR,

; changing mode

When you wish simply to change the condition flags in a PSR, you can write an
immediate value directly to the flag bits without disturbing the control bits. For example,
the following instruction sets the N, Z, C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags regardless
; of their previous state
; (does not affect any control bits)

You must not attempt to write an 8 bit immediate value into the whole PSR, since such
an operation cannot preserve the reserved bits.

Examples

In user mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA
; (i.e. set N,C; clear Z,V)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5
; (i.e. set Z,V; clear N,C)

MRS Rd,SPSR ; Rd[31:0] <- SPSR[31:0]

MSR SPSR_all,Rm ; SPSR_<mode>[31:0] <- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]

MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC
; (i.e. set N,Z; clear C,V)

MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]
80

CPU instruction set

 of
s.

Multiply and Multiply-Accumulate (MUL, MLA)

Instructions for performing integer multiplication, giving a 32 bit result

Instruction format

Assembler syntax

MUL«cond»« S» Rd,Rm,Rs
MLA«cond»« S» Rd,Rm,Rs,Rn

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

«S» means to set the PSR’s condition codes from the operation.

Rd, Rm, Rs & Rnare expressions evaluating to a valid ARM register number.

(Rd must not be R15 and must not be the same as Rm.)

Synopsis

The multiply and multiply-accumulate instructions use a 2 bit Booth’s algorithm to
perform integer multiplication. They give the least significant 32 bits of the product
two 32 bit operands, and may be used to synthesize higher precision multiplication

The multiply form of the instruction gives Rd:=Rm×Rs. Rn is ignored, and should be set
to zero for compatibility with possible future upgrades to the instruction set.

0 0

0 ⇒ do not alter condition codes
1 ⇒ set condition codes

31 028 27

Cond

22

Condition field
(see page 55)

S Rd Rn Rs

21 20 19 16 15 12 11

Operand registers

Destination register

Set condition codes

Accumulate bit

Rm1 0 0 10 0 0 0 A

8 7 4 3

0 ⇒ multiply
1 ⇒ multiply and accumulate
81

Multiply and Multiply-Accumulate (MUL, MLA)

e N
f and
 set

d
look
The multiply-accumulate form gives Rd:=Rm×Rs+Rn, which can save an explicit ADD
instruction in some circumstances.

The results of a signed multiply and of an unsigned multiply of 32 bit operands differ
only in the upper 32 bits; the low 32 bits are identical. As these instructions only
produce those low 32 bits, they can be used with operands which may be considered as
either signed (2’s complement) or unsigned integers.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 55.

PSR flags

Setting the PSR flags is optional, and is controlled by the S bit in the instruction. Th
and Z flags are set correctly on the result (N is equal to bit 31 of the result, Z is set i
only if the result is zero), the V flag is unaffected by the instruction, and the C flag is
to a meaningless value.

Operand restrictions

Because of the way the Booth’s algorithm has been implemented, you should avoi
certain combinations of operand registers. (ObjAsm will issue a warning if you over
these restrictions.)

The destination register Rd must not be the same as the Rm operand register, as Rd is
used to hold intermediate values, and Rm is used repeatedly during the multiply.

The destination register Rd must also not be R15.

All other register combinations will give correct results, and Rd, Rn and Rs may use the
same register when required.

32 bit operation

R15 must not be used as any of Rd, Rm, Rn or Rs.

Examples
MUL R1,R2,R3 ; R1:=R2*R3

MLAEQS R1,R2,R3,R4 ; conditionally R1:=R2*R3+R4,
; setting condition codes
82

CPU instruction set
The multiply instruction may be used to synthesize higher precision multiplications, for
instance to multiply two 32 bit integers and generate a 64 bit result:

mul64
MOV a1,A,LSR #16 ; a1:= top half of A
MOV D,B,LSR #16 ; D := top half of B
BIC A,A,a1,LSL #16 ; A := bottom half of A
BIC B,B,D,LSL #16 ; B := bottom half of B
MUL C,A,B ; Low section of result
MUL B,a1,B ;) Middle sections
MUL A,D,A ;) of result
MUL D,a1,D ; High section of result
ADDS A,B,A ; Add middle sections (couldn’t use

; MLA as we need C correct)
ADDCS D,D,#&10000 ; Carry from above add
ADDS C,C,A,LSL #16 ; C is now bottom 32 bits of product
ADC D,D,A,LSR #16 ; D is top 32 bits

(A, B are registers containing the 32 bit integers; C, D are registers for the 64 bit result;
a1 is a temporary register. A and B are overwritten during the multiply.)

Note that more recent ARM processors have a single instruction to do just this; see the
next section.
83

Multiply Long and Multiply-Accumulate Long (UMULL, SMULL, UMLAL, SMLAL)
Multiply Long and Multiply-Accumulate Long
(UMULL, SMULL, UMLAL, SMLAL)

Instructions for performing integer multiplication, giving a 64 bit result

This instruction is only available in 32 bit mode on the ARM7M series or later

Instruction format

Assembler syntax

UMULL«cond»« S» RdLo,RdHi ,Rm,Rs
SMULL«cond»« S» RdLo,RdHi ,Rm,Rs
UMLAL«cond»« S» RdLo,RdHi ,Rm,Rs
SMLAL«cond»« S» RdLo,RdHi ,Rm,Rs

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

«S» means to set the PSR’s condition codes from the operation.

RdLo, RdHi, are expressions evaluating to a valid ARM register number other Rm
& Rs than R15.

0 0

0 ⇒ do not alter condition codes
1 ⇒ set condition codes

31 028 27

Cond

22

Condition field
(see page 55)

S RdHi RdLo Rs

21 20 19 16 15 12 11

Operand registers

Destination registers

Set condition codes

Accumulate bit

Rm1 0 0 10 0 A

8 7 4 3

0 ⇒ multiply
1 ⇒ multiply and accumulate

U

23

1

Unsigned bit
0 ⇒ unsigned
1 ⇒ signed
84

CPU instruction set

 with

e

as

rs as a

y

e N
f and
Synopsis

The multiply long instructions perform integer multiplication on two 32 bit operands,
and produce a 64 bit result. The multiplication can be signed or unsigned, which –
optional accumulate – gives rise to four variations.

The multiply forms of the instruction (UMULL and SMULL) give a 64 bit result of th
form RdHi,RdLo:=Rm×Rs.

The multiply-accumulate forms (UMLAL and SMLAL) give Rd:=Rm×Rs+Rn, which
can save an explicit ADD instruction in some circumstances.

The lower 32 bits of the result and of the accumulator (where used) are held in RdLo,
and the upper 32 bits in RdHi.

The unsigned forms of the instruction (UMULL and UMLAL) treat all four registers
unsigned numbers. The signed forms (SMULL and SMLAL) treat the two operand
registers as 2’s complement signed 32 bit numbers, and the two destination registe
2’s complement signed 64 bit number.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 55.

This instruction was first introduced on the ARM7M series of processor, and is onl
available in 32 bit modes. This instruction is therefore unlikely to be of use under
RISC OS.

PSR flags

Setting the PSR flags is optional, and is controlled by the S bit in the instruction. Th
and Z flags are set correctly on the result (N is equal to bit 31 of the result, Z is set i
only if the result is zero), and the V and C flags are set to a meaningless value.

Operand restrictions

R15 must not be used as any of RdHi, RdLo, Rm or Rs.

RdHi, RdLo and Rm must all specify different registers.

Examples
UMULL R1,R4,R2,R3 ; R1,R4:=R2*R3

UMLALS R1,R5,R2,R3 ; R1,R5:=R2*R3+R1,R5,
; also setting condition codes
85

Single data transfer (LDR, STR)
Single data transfer (LDR, STR)

Instructions for loading or storing single bytes or words of data

Instruction format

0 ⇒ store to memory
1 ⇒ load from memory

31 028 27

Cond

26 25

I

Condition field
(see page 55)

L Rn Rd Offset

20 19 16 15 12 11

Source/Destination register

Base register

Load/Store bit

Immediate offset

0

Immediate offset

11

0 ⇒ offset is an immediate value

Unsigned 12 bit immediate offset

0

Shift

11

Rm

4 3

1 ⇒ offset is a register

Offset register

0 1

24

P

23

U

22

B

21

W

0 ⇒ no write-back
1 ⇒ write address into base

Write-back bit

0 ⇒ transfer word quantity
1 ⇒ transfer byte quantity

Byte/Word bit

0 ⇒ down: subtract offset from base
1 ⇒ up: add offset to base

Up/Down bit

0 ⇒ post: add offset after transfer
1 ⇒ pre: add offset before transfer

Pre/Post indexing bit

Shift applied to Rm
(see below, and page 59)
86

CPU instruction set
Assembler syntax

LDR|STR«cond»« B»«T» Rd,address

LDR loads from memory into a register.

STR stores from a register into memory.

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

«B» means to transfer a byte, otherwise a word is transferred.

«T» means to set the W bit in a post-indexed instruction, forcing
non-privileged mode for the transfer cycle. T is not allowed when a
pre-indexed addressing mode is specified or implied.

Rd is an expression evaluating to a valid ARM register number.

address can be:

l An expression which generates an address:

expression

ObjAsm will attempt to generate an instruction using the PC as a
base and a corrected immediate offset to address the location
given by evaluating the expression. This will be a PC relative,
pre-indexed address. If the address is out of range, an error will be
generated.

l A pre-indexed addressing specification:

l A post-indexed addressing specification:

Rn and Rm are expressions evaluating to a valid ARM register
number. Note if Rn is R15 then ObjAsm will subtract 8 from the offset
value to allow for ARM pipelining.

shift is a general shift operation (see the section Shift types on
page 59), but note that the shift amount may not be specified by a
register.

«!» if present sets the W bit to write-back the base register.

[Rn] offset of zero

[Rn,#expression]«!» offset of expression bytes

[Rn,«+|-»Rm«,shift»]«!» offset of ±contents of index
register, shifted by shift .

[Rn],#expression offset of expression bytes

[Rn],«+|-»Rm«,shift» offset of ±contents of index
register, shifted by shift .
87

Single data transfer (LDR, STR)

 are
ack

 in

n the
dded

 may
ant,

he W

ser
 of this
Synopsis

The single data transfer instructions are used to load or store single bytes or words of
data. The memory address used in the transfer is calculated by adding an offset to or
subtracting an offset from a base register. The result of this calculation may be written
back into the base register if ‘auto-indexing’ is required. If the contents of the base
not destroyed by other instructions, the continued use of LDR (or STR) with write b
will continually move the base register through memory in steps given by the index
value. Note that ! is invalid for post-indexed addressing, as write back is automatic
this case.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 55.

For register to register transfers, see the section Data processing on page 68, particularly
the MOV instruction.

Offsets and auto-indexing

The offset from the base may be either a 12 bit unsigned binary immediate value i
instruction, or a second register (possibly shifted in some way). The offset may be a
to (U=1) or subtracted from (U=0) the base register Rn. The offset modification may be
performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the base is used
as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base value
be kept (W=0). In the case of post-indexed addressing, the write back bit is redund
since the old base value can be retained by setting the offset to zero. Therefore
post-indexed data transfers always write back the modified base. The only use of t
bit in a post-indexed data transfer is in privileged mode code; depending on the
processor, setting the W bit either forces the TRANS pin to go LOW or forces
non-privileged mode for the transfer, allowing the operating system to generate a u
address in a system where the memory management hardware makes suitable use
hardware.

Shifted register offset

The 8 shift control bits are described in the section Data processing on page 68, but the
register specified shift amounts are not available in this instruction class.
88

CPU instruction set
Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an
ARM register and memory.

A byte load (LDRB) expects the data on bits 0 to 7 if the supplied address is on a word
boundary, on bits 8 to 15 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bits of the destination register, and the remaining bits of
the register are filled with zeroes.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across the
data bus. The external memory system should activate the appropriate byte subsystem to
store the data.

A word load (LDR) or word store (STR) should generate a word aligned address. Using
a non-word-aligned addresses has non-obvious and unspecified results.

Use of R15

These instructions will never cause the PSR to be modified, even when Rd or Rn is R15.

If R15 is specified as the base register (Rn), the PC is used without the PSR flags. When
using the PC as the base register you must remember that it contains an address 8 bytes
on from the address of the current instruction.

If R15 is specified as the register offset (Rm), the value presented will be the PC together
with the PSR.

When R15 is the source register (Rd) of a register store (STR) instruction, the value
stored will be the PC together with the PSR. The stored value of the PC will be 12 bytes
on from the address of the instruction. A load register (LDR) with R15 as Rd will change
only the PC, and the PSR will be unchanged.

Address exceptions

On an ARM2 or ARM3 processor, if the address used for the transfer (ie the unmodified
contents of the base register for post-indexed addressing, or the base modified by the
offset for pre-indexed addressing) has a logic one in any of the bits 26 to 31, the transfer
will not take place and the address exception trap will be taken.

Later versions of the ARM do not generate address exceptions when in a 32 bit
configuration (as used by RISC OS from very soon after reset), even when running in
26 bit modes.
89

Single data transfer (LDR, STR)
Note that it is only the address actually used for the transfer which is checked. A base
containing an address outside the legal range may be used in a pre-indexed transfer if the
offset brings the address within the legal range, and likewise a base within the legal
range may be modified by post-indexing to outside the legal range without causing an
address exception.

Data Aborts

A transfer to or from a legal address may still cause problems for a memory
management system. For instance, in a system which uses virtual memory the required
data may be absent from main memory. The memory manager can signal a problem by
taking the processor ABORT pin HIGH, whereupon the data transfer instruction will be
prevented from changing the processor state and the Data Abort trap will be taken. It is
up to the system software to resolve the cause of the problem, then the instruction can be
restarted and the original program continued.

32 bit operation

R15 must not be used as the register offset (Rm).

If R15 is specified as the base register (Rn), you must not use write-back – including
post indexing.

For a post-indexed LDR or STR, Rm and Rn must not be the same register.

When using write-back – including post indexing –Rd and Rn must not be the same
register.

Examples
STR R1,[BASE,INDEX]! ; store R1 at BASE+INDEX (both of

; which are registers) and write
; back address to BASE

STR R1,[BASE],INDEX ; store R1 at BASE and writeback
; BASE+INDEX to BASE

LDR R1,[BASE,#16] ; load R1 from contents of BASE+16.
; Don’t write back

LDR R1,[BASE,INDEX,LSL #2] ; load R1 from contents of
; BASE+INDEX*4

LDREQB R1,[BASE,#5] ; conditionally load byte at BASE+5
; into R1 bits 0 to 7, filling bits
; 8 to 31 with zeroes

STR R1,PLACE ;generate PC relative offset to
; address PLACE

More instructions
PLACE
90

CPU instruction set
Block data transfer (LDM, STM)

Instructions for loading or storing any subset of the currently visible registers

Instruction format

Assembler syntax

LDM|STM«cond» FD|ED|FA|EA|IA|IB|DA|DB Rn«!»,Rlist« ^»

LDM loads from memory into register(s).

STR stores from register(s) into memory.

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

Rn is an expression evaluating to a valid ARM register number.

0 ⇒ store to memory
1 ⇒ load from memory

31 28 27

Cond

25

Condition field
(see page 55)

L Rn Register list

20 19 16 15 0

Base register

Load/Store bit

1 0

24

P

23

U

22

S

21

W

0 ⇒ no write-back
1 ⇒ write address into base

Write-back bit

0 ⇒ do not load PSR or force user mode
1 ⇒ load PSR or force user mode

PSR & force user bit

0 ⇒ down: subtract offset from base
1 ⇒ up: add offset to base

Up/Down bit

0 ⇒ post: add offset after transfer
1 ⇒ pre: add offset before transfer

Pre/Post indexing bit

0

Register list
(see below)
91

Block data transfer (LDM, STM)
Rlist is either a comma-separated list of registers and/or of register ranges
indicated by hyphens, all enclosed in {} (e.g. {R0,R2-R7,R10});
or an expression evaluating to the 16 bit operand.

«!» if present sets the W bit to write-back the base register.

«^» if present sets the S bit to load the PSR with the PC, or forces storing
of user bank registers when in a non-user mode.

Addressing mode names

There are different assembler mnemonics for each of the addressing modes. There are
alternative forms for each mnemonic: one form is intended for use with stacks, and
describes the type of stack the addressing mode supports; the other form merely
describes the instructions functionality. The equivalencies between the names and the
values of the bits in the instruction are:

In the stacking forms of the mnemonics (FD, ED, FA and EA), the F and E refer to a full
or empty stack, and the A and D refer to an ascending or descending stack:

l A full stack is one in which the stack pointer points to the last data item written,
whereas an empty stack is one in which the stack pointer points to the first free slot.

l A descending stack is one which grows from high memory addresses to low ones,
whereas an ascending stack is one which grows from low memory addresses to high
ones.

The other forms of the mnemonics (IA, IB, DA and DB) simply mean Increment After,
Increment Before, Decrement After, and Decrement Before.

Name Stack Other L bit P bit U bit
pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0
92

CPU instruction set
Synopsis

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the
currently visible registers from or to memory. They support all possible stacking modes,
maintaining full or empty stacks which can grow up or down memory, and are very
efficient instructions for saving or restoring context, or for moving large blocks of data
around main memory.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 55.

The register list

The instruction can cause the transfer of any registers in the current bank (and non-user
mode programs can also transfer to and from the user bank, see below). The register list
is a 16 bit field in the instruction, with each bit corresponding to a register. A 1 in bit 0
of the register field will cause R0 to be transferred, a 0 will cause it not to be transferred;
similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is
that the register list must not be empty.

Addressing modes

The transfer addresses are determined by the contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U). The registers are stored such that the lowest
register is always at the lowermost address in memory, the highest register is always at
the uppermost address, and the others are stored in numerical order between them.

(As an aside, this means that instruction sequences such as:

STMIA R0,{R1,R2}
LDMIA R0,{R2,R1}

do not swap the contents of R1 and R2.)

By way of illustration, consider the transfer of R1, R5 and R7 in the case where
Rn=1000H and write back of the modified base is required (W=1). The figures below
show the sequence of register transfers, the addresses used, and the value of Rn after the
instruction has completed.

(In all cases, had write back of the modified base not been required (W=0), Rn would
have retained its initial value of 1000H unless it was also in the transfer list of a load
multiple register instruction, when it would have been overwritten with the loaded
value.)
93

Block data transfer (LDM, STM)
Figure 5.8 Post-increment addressing

Figure 5.9 Pre-increment addressing

100CH

1000H

0FF4H

Rn

(1)

100CH

1000H

0FF4H
(2)

100CH

1000H

0FF4H
(3)

100CH

1000H

0FF4H

Rn

(4)

R1

R1
R5

R1
R5
R7

100CH

1000H

0FF4H

Rn

(1)

100CH

1000H

0FF4H
(2)

100CH

1000H

0FF4H
(3)

100CH

1000H

0FF4H

Rn

(4)

R1

R1
R5

R1
R5
R7
94

CPU instruction set
Figure 5.10 Post-decrement addressing

Figure 5.11 Pre-decrement addressing

100CH

1000H

0FF4H

Rn

(1)

100CH

1000H

0FF4H
(2)

100CH

1000H

0FF4H
(3)

100CH

1000H

0FF4HRn
(4)

R1

R1
R5

R1
R5
R7

100CH

1000H

0FF4H

Rn

(1)

100CH

1000H

0FF4H
(2)

100CH

1000H

0FF4H
(3)

100CH

1000H

0FF4HRn
(4)

R1

R1
R5

R1
R5
R7
95

Block data transfer (LDM, STM)
Transfer of R15

Whenever R15 is stored to memory, the value transferred is the PC together with the
PSR flags. The stored value of the PC will be 12 bytes on from the address of the STM
instruction.

If R15 is in the transfer list of a load multiple (LDM) instruction the PC is overwritten,
and the effect on the PSR is controlled by the S bit. If the S bit is 0 the PSR is preserved
unchanged, but if the S bit is 1 the PSR will be overwritten by the corresponding bits of
the loaded value. In user mode, however, the I, F, M0 and M1 bits are protected from
change whatever the value of the S bit. The mode at the start of the instruction
determines whether these bits are protected, and the supervisor may return to the user
program, re-enabling interrupts and restoring user mode with one LDM instruction.

Forcing transfer of the user bank

For STM instructions the S bit is redundant as the PSR is always stored with the PC
whenever R15 is in the transfer list. For LDM instructions the S bit is redundant if R15
is not in the transfer list.

In both the above cases, the S bit is instead used to force transfers in non-user modes to
use the user register bank instead of the current register bank. This is useful for saving
and restoring the user state on process switches. You must not use write back of the base
when forcing user bank transfer.

For an LDM instruction, you must take care not to read from a banked register during
the following cycle; if in doubt insert a no-op.

Use of R15 as the base

When the base is the PC, the PSR bits will be used to form the address as well, so unless
all interrupts are enabled and all flags are zero an address exception will occur. Also,
write back is never allowed when the base is the PC (setting the W bit will have no
effect).

Inclusion of the base in the register list

When writeback is specified, the base is written back at the end of the second cycle of
the instruction. During a STM, the first register is written out at the start of the second
cycle. A STM which includes storing the base, with the base as the first register to be
stored, will therefore store the unchanged value, whereas with the base second or later in
the transfer order, will store the modified value. An LDM will always overwrite the
updated base if the base is in the list.
96

CPU instruction set
When the base register is in the list of registers
l The base register may be stored and if write back is not in operation, no problem

will occur.

l If write back is in operation, the STM is performed in the following order:

1 write lowest-numbered register to memory

2 perform the write back

3 write other registers to memory in ascending order.

Thus, if the base register is the lowest-numbered register in the list, its original
value is stored. Otherwise, its written back value is stored.

l If the base register is loaded the pop operation will continue successfully. The entire
block transfer runs on an internal copy of the base, and will not be aware that the
base register has been loaded with a new value.

Address exceptions

On an ARM2 or ARM3 processor, if the address of the first transfer falls outside the
legal address space (ie has a 1 somewhere in bits 26 to 31), an address exception trap
will be taken. The instruction will first complete in the usual number of cycles, though
an STM will be prevented from writing to memory. The processor state will be the same
as if a data abort had occurred on the first transfer cycle (see next section).

Only the address of the first transfer is checked in this way; if subsequent addresses
over- or under-flow into illegal address space they will be truncated to 26 bits but will
not cause an address exception trap.

Later versions of the ARM do not generate address exceptions when in a 32 bit
configuration (as used by RISC OS from very soon after reset), even when running in
26 bit modes.

Data Aborts

Some legal addresses may be unacceptable to a memory management system, and the
memory manager can indicate a problem with an address by taking the ABORT signal
HIGH. This can happen on any transfer during a multiple register load or store, and must
be recoverable if the ARM is to be used in a virtual memory system.

Aborts during STM instructions

If the abort occurs during a store multiple instruction, ARM takes little action until the
instruction completes, whereupon it enters the data abort trap. The memory manager is
responsible for preventing erroneous writes to the memory. The only change to the
97

Block data transfer (LDM, STM)

viour

ll as
what
internal state of the processor will be the modification of the base register if write-back
was specified, and this must be reversed by software (and the cause of the abort
resolved) before the instruction may be retried.

Aborts during LDM instructions

When ARM detects a data abort during a load multiple instruction, it modifies the
operation of the instruction to ensure that recovery is possible

l Overwriting of registers stops when the abort happens. The aborting load will not
take place, but earlier ones may have overwritten registers. The PC is always the
last register to be written, and so will always be preserved.

l The base register is restored, to its modified value if write-back was requested. This
ensures recoverability in the case where the base register is also in the transfer list,
and may have been overwritten before the abort occurred.

The data abort trap is taken when the load multiple has completed, and the system
software must undo any base modification (and resolve the cause of the abort) before
restarting the instruction.

32 bit operation

For an STM instruction where R15 is in the transfer list, the PC is stored, but the CPSR
is not stored to the current mode’s SPSR. (The intuitive extension of the 26 bit beha
would be for the CPSR to be stored.)

For an LDM instruction where R15 is in the transfer list, if the S bit is set then as we
overwriting the PC, the SPSR for the current mode is moved to the CPSR. This is
you would expect as an extension of the 26 bit behaviour.

The S bit must not be set for instructions that are to be executed in user mode.

You must not use R15 as the base register.

Examples
LDMFD SP!,{R0,R1,R2} ; unstack 3 registers

STMIA BASE,{R0-R15} ; save all registers

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMED SP!,{R0-R3,R14} ; save R0 to R3 to use as workspace
; and R14 for returning

BL somewhere ; this nested call will overwrite R14

LDMED SP!,{R0-R3,R15}^; restore workspace and return
; (also restoring PSR flags)
98

CPU instruction set

ot be
ed to
Single data swap (SWP)

Instruction for swapping atomically between a register and external memory

This instruction is not available on the ARM2 processor

Instruction format

Assembler syntax

SWP«cond»« B» Rd,Rm,[Rn]

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

«B» means to transfer a byte, otherwise a word is transferred.

Rd, Rm & Rn are expressions evaluating to a valid ARM register number.

Synopsis

The data swap instruction is used to swap atomically a byte or word quantity between a
register and external memory. It is implemented as a memory read followed by a
memory write to the same address, which are ‘locked’ together. The processor cann
interrupted until both operations have completed, and the memory manager is warn
treat them as inseparable. This instruction is particularly useful for implementing
software semaphores.

0 0

31 028 27

Cond

22

Condition field
(see page 55)

Rn Rd

21 20 19 16 15 12 11

Source register

Destination register

Rm1 0 0 10 1

8 7 4 3

B

23

0

Byte/Word bit
0 ⇒ transfer word quantity
1 ⇒ transfer byte quantity

0 0 0 0 0 0

Base register
99

Single data swap (SWP)
The swap address is determined by the contents of the base register (Rn). The processor
first reads the contents of the swap address. It then writes the contents of the source
register (Rm) to the swap address, and stores the old memory contents in the destination
register (Rd). The same register may be specified as both the source and destination; its
contents are correctly swapped with memory.

The LOCK output goes HIGH for the duration of the read and write operations to signal
to the external memory manager that they are locked together, and should be allowed to
complete without interruption. This is important in multi-processor systems, where the
swap instruction is the only indivisible instruction which may be used to implement
semaphores. Control of the memory must not be removed from a processor while it is
performing a locked operation.

The SWP instruction is not supported by the ARM2 processor, but is available in the
ARM3, in the ARM2aS macrocell (as used for the ARM250 chip in the Acorn A3010,
3020 and A4000), and on the ARM6 series and later.

Bytes and words

This instruction may be used to swap a byte (B=1) or a word (B=0) between a register
and memory. The SWP instruction is implemented as a LDR followed by a STR, and the
action of these is as described in Single data transfer (LDR, STR) on page 86.

Use of R15

You must not use R15 as an operand (Rd, Rn or Rm in a SWP instruction.

Data aborts

If the address used for the swap is unacceptable to a memory management system, the
internal MMU or external memory manager can flag the problem by driving ABORT
HIGH. This can happen on either the read or the write cycle (or both), and in either case,
the Data Abort trap will be taken. It is up to the system software to resolve the cause of
the problem. Once this has been done, the instruction can be restarted and the original
program continued.

Examples
SWP R0,R1,[R2] ; load R0 with the word addressed by R2,

; and then store R1 at the same address

SWPB R2,R3,[R4] ; load R2 with the byte addressed by R4,
; and then store bits 0 to 7 of R3 at the
; same address

SWPEQ R0,R0,[R1] ; conditionally swap the word addressed
; by R1 with the contents of R0
100

CPU instruction set
Software interrupt (SWI)

Instruction for entering supervisor mode in a controlled manner

Instruction format

Assembler syntax

SWI«cond» expression

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

expression is evaluated and placed in the comment field as a SWI number (which
is ignored by ARM).

Synopsis

The software interrupt instruction is used to enter supervisor mode in a controlled
manner. The instruction causes the software interrupt trap to be taken, which effects the
mode change. The PC is then forced to the SWI vector. If this address is suitably
protected (by external memory management hardware) from modification by the user, a
fully protected operating system may be constructed.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 55.

Return from the supervisor

The PC and PSR are saved in R14_svc upon entering the software interrupt trap, with
the PC adjusted to point to the word after the SWI instruction. MOVS R15,R14_svc
will return to the calling program, and restore the PSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use
software interrupts within itself it must first save a copy of the return address.

27

1 1 1

31 28

Cond

Condition field
(see page 55)

Comment field (ignored by ARM)

23 024

1

101

Software interrupt (SWI)
Comment field

The bottom 24 bits of the instruction are ignored by ARM, and may be used to
communicate information to the supervisor code. For instance, the supervisor may look
at this field and use it to index into an array of entry points for routines which perform
the various supervisor functions (as in RISC OS).

32 bit operation

The CPSR is saved in SPSR_svc. The MOVS R15,R14_svc instruction used to return
to the supervisor restores the CPSR from SPSR_svc. This is what you would expect as
an extension of the 26 bit behaviour.

Examples
SWI Read ; get next character from read stream

SWI WriteI+"k" ; output a "k" to the write stream

SWINE 0 ; conditionally call supervisor
; with 0 in comment field

The above examples assume that suitable supervisor code exists at the SWI vector
address, for instance:

B Supervisor ; SWI entry point

EntryTable ; addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn
...

Zero EQU 0
ReadC EQU 256
WriteI EQU 512

Supervisor

; SWI has routine required in bits 8-23, data (if any) in bits 0-7.
; Assumes R13_svc points to a suitable stack.

STM R13,{R0-R2,R14} ; Save work registers and return
; address

BIC R0,R14,#&FC000003 ; Clear PSR bits
LDR R0,[R0,#-4] ; Get SWI instruction
BIC R0,R0,#&FF000000 ; Clear top 8 bits
MOV R1,R0,LSR #8 ; Get routine offset
ADR R2,EntryTable ; Get start address of entry table
LDR R15,[R2,R1,LSL #2] ; Branch to appropriate routine

WriteIRtn ; Enter with character in R0 bits 0-7
...

LDM R13,{R0-R2,R15}^ ; Restore workspace and return.
102

CPU instruction set
Coprocessor data operations (CDP)

Instruction for telling a coprocessor to perform some internal operation

Instruction format

Assembler syntax

CDP«cond» CP#,operation ,CRd,CRn,CRm«,info»

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

CP# is the unique number of the required coprocessor, which must be a
symbol defined via the CP directive.

operation is evaluated to a constant and placed in the CP Opc field.

CRd, CRn, are expressions evaluating to a valid coprocessor register number,
& CRm which must be a symbol defined via the CN directive.

info where present is evaluated to a constant and placed in the CP field.

27

1 1 1

24

0

31 28

Cond

Condition field
(see page 55)

CP Opc

23 20

Coprocessor operand register

CRn

19 16

CRd

15 12

CP#

11 8

CP

7 5 4

0 CRm

3 0

Coprocessor information

Coprocessor number

Coprocessor destination register

Coprocessor operand register

Coprocessor operation code
103

Coprocessor data operations (CDP)
Synopsis

This instruction is used to tell a coprocessor to perform some internal operation. No
result is communicated back to ARM, and it will not wait for the operation to complete.
The coprocessor could contain a queue of such instructions awaiting execution, and their
execution can overlap other ARM activity, allowing the coprocessor and ARM to
perform independent tasks in parallel.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 55.

The coprocessor fields

Only bit 4 and bits 24 to 31 are significant to ARM; the remaining bits are used by
coprocessors. The above field names are used by convention, and particular
coprocessors may redefine the use of all fields except CP# as appropriate. The CP# field
is used to contain an identifying number (in the range 0 to 15) for each coprocessor, and
a coprocessor will ignore any instruction which does not contain its number in the CP#
field.

The conventional interpretation of the instruction is that the coprocessor should perform
an operation specified in the CP Opc field (and possibly in the CP field) on the contents
of CRn and CRm, and place the result in CRd.

Restriction

Current ARM chips have a fault in the implementation of CDP which will cause a
Software Interrupt to take the Undefined Instruction trap if the SWI is the next
instruction after the CDP. This problem only arises when a hardware coprocessor is
attached to the system, but if it is ever intended to add hardware to support a CDP (rather
than trapping to an emulator) the sequence CDP SWI should be avoided.

Examples
CDP p1,10,CR1,CR2,CR3 ; Request coprocessor 1 to do

; operation 10 on CR2 and CR3,
; and put the result in CR1.

CDPEQ p2,5,CR1,CR2,CR3,2 ; If Z flag is set, request
; coprocessor 2 to do operation 5
; (type 2) on CR2 and CR3,
; and put the result in CR1.
104

CPU instruction set
Coprocessor data transfers (LDC, STC)

Instructions for transferring data between the coprocessor and main memory

Instruction format
27

1

26

1

0 ⇒ store to memory
1 ⇒ load from memory

31 028

Cond

Condition field
(see page 55)

L Rn CRd Offset

20 19 16 15 12 11

Unsigned 8 bit immediate offset

Base register

Load/Store bit

24

P

23

U

22

N

21

W

0 ⇒ no write-back
1 ⇒ write address into base

Write-back bit

Transfer length

0 ⇒ down: subtract offset from base
1 ⇒ up: add offset to base

Up/Down bit

0 ⇒ post: add offset after transfer
1 ⇒ pre: add offset before transfer

Pre/Post indexing bit

25

0

8 7

CP#

Coprocessor source/destination register

Coprocessor number
105

Coprocessor data transfers (LDC, STC)
Assembler syntax

LDC|STC«cond»« L» CP#,CRd,address

LDC loads from memory to coprocessor (L=1).

STC stores from coprocessor to memory (L=0).

«L» when present perform long transfer (N=1), otherwise perform short
transfer (N=0).

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

CP# is the unique number of the required coprocessor, which must be a
symbol defined via the CP directive.

CRd is an expression evaluating to a valid coprocessor register number,
which must be a symbol defined via the CN directive.

address can be:

l An expression which generates an address:

expression

ObjAsm will attempt to generate an instruction using the PC as a
base and a corrected immediate offset to address the location
given by evaluating the expression. This will be a PC relative,
pre-indexed address. If the address is out of range, an error will be
generated.

l A pre-indexed addressing specification:

l A post-indexed addressing specification:

Rn is an expression evaluating to a valid ARM register number. Note
if Rn is R15 then ObjAsm will subtract 8 from the offset value to
allow for ARM pipelining.

«!» if present sets the W bit to write-back the base register.

[Rn] offset of zero

[Rn,#expression]«!» offset of expression bytes

[Rn],#expression offset of expression bytes
106

CPU instruction set

sor’s
s,
s

ept
f this

rred),
0
ll the

data

 and

 base
e
xplicit
ed.

 used
 is

 first
nsfer.
Synopsis

These instructions are used to load (LDC) or store (STC) a subset of the coproces
registers directly to memory. ARM is responsible for supplying the memory addres
and the coprocessor supplies or accepts the data and controls the number of word
transferred.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 55.

The coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or acc
the data, and a coprocessor will only respond if its number matches the contents o
field.

The CRd field and the N bit contain information for the coprocessor which may be
interpreted in different ways by different coprocessors, but by convention CRd is the
register to be transferred (or the first register where more than one is to be transfe
and the N bit is used to choose one of two transfer length options. For instance N=
could select the transfer of a single register, and N=1 could select the transfer of a
registers for context switching.

Addressing modes

ARM is responsible for providing the address used by the memory system for the
transfer, and the addressing modes available are a subset of those used in single
transfer instructions. Note, however, that the immediate offsets are 8 bits wide and
specify word offsets for coprocessor data transfers, whereas they are 12 bits wide
specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and added to (U=1) or
subtracted from (U=0) a base register (Rn); this calculation may be performed either
before (P=1) or after (P=0) the base is used as the transfer address. The modified
value may be overwritten back into the base register (if W=1), or the old value of th
base may be preserved (W=0). Note that post-indexed addressing modes require e
setting of the W bit, unlike LDR and STR which always write-back when post-index

The value of the base register, modified by the offset in a pre-indexed instruction, is
as the address for the transfer of the first word. The second word (if more than one
transferred) will go to or come from an address one word (4 bytes) higher than the
transfer, and the address will be incremented by one word for each subsequent tra
107

Coprocessor data transfers (LDC, STC)
Address alignment

The base address should normally be a word aligned quantity. The bottom 2 bits of the
address will appear on A[1:0] and might be interpreted by the memory system.

Use of R15

If Rn is R15, the value used will be the PC without the PSR flags, with the PC being the
address of this instruction plus 8 bytes. Write-back to the PC is inhibited, and the W bit
will be ignored.

Address exceptions

If the address used for the first transfer is illegal the address exception mechanism will
be invoked. Instructions which transfer multiple words will only trap if the first address
is illegal; subsequent addresses will wrap around inside the 26 bit address space.

Data aborts

If the address is legal but the memory manager generates an abort, the data abort trap
will be taken. The writeback of the modified base will take place, but all other processor
state will be preserved. The coprocessor is partly responsible for ensuring that the data
transfer can be restarted after the cause of the abort has been resolved, and must ensure
that any subsequent actions it undertakes can be repeated when the instruction is retried.

32 bit operation

If R15 is specified as the base register (Rn), you must not use write-back.

Examples
LDC p1,CR2,table ; Load CR2 of coprocessor 1 from

; address table, using a PC relative
; address.

STCEQL p2,CR3,[R5,#24]! ; Conditionally store CR3 of
; coprocessor 2 into an address
; 24 bytes up from R5, write this
; address back into R5, and use long
; transfer option (probably to store
; multiple words)

Note that though the address offset is expressed in bytes, the instruction offset field is in
words. ObjAsm will adjust the offset appropriately.
108

CPU instruction set
Coprocessor register transfers (MCR, MRC)

Instructions for communicating information between ARM and a coprocessor

Instruction format

Assembler syntax

MCR|MRC«cond» CP#,operation ,Rd,CRn,CRm«,info»

MCR moves from coprocessor to ARM register (L=1).

MRC moves from ARM register to coprocessor (L=0).

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

CP# is the unique number of the required coprocessor, which must be a
symbol defined via the CP directive.

operation is evaluated to a constant and placed in the CP Opc field.

Rd is an expression evaluating to a valid ARM register number.

27

1 1 1

24

0

31 28

Cond

Condition field
(see page 55)

CPOpc

23 21

Coprocessor operand register

CRn

19 16

Rd

15 12

CP#

11 8

CP

7 5 4

1 CRm

3 0

Coprocessor information

Coprocessor number

ARM source/destination register

Coprocessor source/destination register

Coprocessor operation code

20

L

0 ⇒ store to coprocessor
1 ⇒ load from coprocessor

Load/Store bit
109

Coprocessor register transfers (MCR, MRC)
CRn & CRm are expressions evaluating to a valid coprocessor register number,
which must be a symbol defined via the CN directive.

info where present is evaluated to a constant and placed in the CP field.

Synopsis

These instructions are used to communicate information directly between ARM and a
coprocessor. An example of a coprocessor to ARM register transfer (MCR) instruction
would be a FIX of a floating point value held in a coprocessor, where the floating point
number is converted into a 32 bit integer within the coprocessor, and the result is then
transferred to an ARM register. A FLOAT of a 32 bit value in an ARM register into a
floating point value within the coprocessor illustrates the use of an ARM register to
coprocessor transfer (MRC).

An important use of this instruction is to communicate control information directly from
the coprocessor into the ARM PSR flags. As an example, the result of a comparison of
two floating point values within a coprocessor can be moved to the PSR to control the
subsequent flow of execution.

Note that the ARM6 series and later have an internal coprocessor (#15) for control of
on-chip functions. Accesses to this coprocessor are performed during coprocessor
register transfers.

The instruction is only executed if the condition is true. The various conditions are
defined in section The condition field on page 55.

The coprocessor fields

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor
is being called upon to respond.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the
interpretation presented here is derived from convention only. Other interpretations are
allowed where the coprocessor functionality is incompatible with this one. The
conventional interpretation is that the CP Opc and CP fields specify the operation the
coprocessor is required to perform, CRn is the coprocessor register which is the source
or destination of the transferred information, and CRm is a second coprocessor register
which may be involved in some way which depends on the particular operation
specified.

Transfers to R15

When a coprocessor register transfer to ARM has R15 as the destination, bits 31, 30, 29
and 28 of the transferred word are copied into the N, Z, C and V flags (respectively) of
the PSR. The other bits of the transferred word are ignored, and the PC and other PSR
flags are unaffected by the transfer.
110

CPU instruction set
Transfers from R15

A coprocessor register transfer from ARM with R15 as the source register will store the
PC together with the PSR flags.

32 bit operation

Transfers to R15

When a coprocessor register transfer to ARM has R15 as the destination, bits 31, 30, 29
and 28 of the transferred word are copied into the N, Z, C and V flags (respectively) of
the CPSR. The other bits of the transferred word are ignored, and the PC and other PSR
flags are unaffected by the transfer. This is what you would expect as an extension of the
26 bit behaviour.

Transfers from R15

A coprocessor register transfer from ARM with R15 as the source register will store the
PC+12. Unlike the 26 bit behaviour, it does not store the CPSR to the coprocessor.

Examples
MRC 2,5,R3,CR5,CR6 ; Request Co-Proc 2 to perform

; operation 5 on CR5 and CR6, and
; transfer the (single 32 bit word)
; result back to R3.

MRCEQ 3,9,R3,CR5,CR6,2 ; Conditionally request Co-Proc 2 to
; perform operation 9 (type 2) on
; CR5 and CR6, and transfer the
; result back to R3.
111

Undefined instructions
Undefined instructions

Undefined instructions

Instruction format

Assembler syntax

At present ObjAsm has no mnemonics for generating these instructions. If they are
adopted in the future for some specified use, suitable mnemonics will be added to
ObjAsm. Until such time, these instructions should not be used.

Synopsis

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering these instructions to
any coprocessors which may be present, and all coprocessors must refuse to accept them
by letting CPA float HIGH.

(Note that some instruction codes are not defined but do not cause the Undefined
instruction trap to be taken, for instance a Multiply instruction with bit 5 or bit 6 changed
to a 1. These instructions should be avoided, as their action may change in future ARM
implementations.)

The instruction is only executed if the condition is true. The various conditions are
defined in section The condition field on page 55.

1

27

0

25

1

31 28

Cond

24 5 4

x x x x x x x x x x x x x x x x x 1

3 0

x x x xxxx
112

CPU instruction set
Instruction set summary

Instructions available on ARM, briefly summarised

Instruction formats

Assembler syntax

B|BL«cond» expression

MOV|MVN«cond»« S» Rd,op2
CMN|CMP|TEQ|TST«cond»« P» Rn,op2
ADC|ADD|AND|BIC|OR|ORR|RSB|RSC|SBC|SUB«cond»« S» Rd,Rn,op2

MRS«cond» Rd,psr
MSR«cond» psr ,Rm
MSR«cond» psrf ,Rm
MSR«cond» psrf ,#expression

31 028 27

Cond

26 25 24

I Opcode S Rn Rd Operand2

21 20 19 16 15 12 11

0 0

0 0Cond S Rd Rn Rs Rm1 0 0 10 0 0 0 A

Cond I L Rn Rd Offset0 1 P U B W

10 1Cond x x x x x x x x x x x x x x x x x 1 x x x xxxx

Cond L Rn Register list1 0 P U S W0

Cond L Offset1 0 1

1 1Cond L Rn CRd OffsetP U N W0 CP#

1 1 1 0Cond CP Opc CRn CRd CP# CP 0 CRm

1 1 1 0Cond CPOpc CRn Rd CP# CP 1 CRmL

1 1 1Cond Comment field (ignored by ARM)1

Data Processing,

Multiply

Single

Single

Undefined

Block

Branch

Coprocessor

Coprocessor

Coprocessor

Software

Data Transfer

Data Transfer

Register Transfer

Data Operation

Interrupt

PSR transfer

0 0Cond Rn Rd Rm1 0 0 10 1 B0 0 0 0 0 0 0 Data Swap

Data Transfer

0 0Cond S RdHi RdLo Rs Rm1 0 0 10 0 AU1 Multiply Long

23 22 8 7 5 4 3
113

Instruction set summary
MUL«cond»« S» Rd,Rm,Rs
MLA«cond»« S» Rd,Rm,Rs,Rn

UMULL|SMULL|UMLAL|SMLAL«cond»« S» RdLo,RdHi ,Rm,Rs

LDR|STR«cond»« B»«T» Rd,address

LDM|STM«cond» FD|ED|FA|EA|IA|IB|DA|DB Rn«!»,Rlist« ^»

SWP«cond»« B» Rd,Rm,[Rn]

SWI«cond» expression

CDP«cond» CP#,operation ,CRd,CRn,CRm«,info»

LDC|STC«cond»« L» CP#,CRd,address

MCR|MRC«cond» CP#,operation ,Rd,CRn,CRm«,info»

Parameters for the above, alphabetically sorted

address can be:

l An expression which generates an address:

expression

ObjAsm will attempt to generate an instruction using the PC as a
base and a corrected immediate offset to address the location
given by evaluating the expression. This will be a PC relative,
pre-indexed address. If the address is out of range, an error will be
generated.

l A pre-indexed addressing specification:

l A post-indexed addressing specification:

Rn and Rm are expressions evaluating to a valid ARM register
number. Note if Rn is R15 then ObjAsm will subtract 8 from the offset
value to allow for ARM pipelining.

[Rn] offset of zero

[Rn,#expression]«!» offset of expression bytes

[Rn,«+|-»Rm«,shift»]«!» offset of ±contents of index
register, shifted by shift
(not available for LDC/STC).

[Rn],#expression offset of expression bytes

[Rn],«+|-»Rm«,shift» offset of ±contents of index
register, shifted by shift
(not available for LDC/STC).
114

CPU instruction set

C
shift is a general shift operation (see the section Shift types on
page 59), but note that the shift amount may not be specified by a
register.

«!» if present sets the W bit to write-back the base register.

«B» means to transfer a byte, otherwise a word is transferred.

«cond» is a two-character condition mnemonic; see the section The condition
field on page 55.

CP# is the unique number of the required coprocessor, which must be a
symbol defined via the CP directive.

CRd, CRn, are expressions evaluating to a valid coprocessor register number,
& CRm which must be a symbol defined via the CN directive.

expression for B and BL is a program-relative expression describing the branch
destination, from which ObjAsm calculates the offset;
for SWI, it is evaluated and placed in the comment field as a SWI
number (which is ignored by ARM).

#expression is an expression symbolising a 32 bit value.

If #expression is used, ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field. If this is
impossible, it will give an error.

info where present is evaluated to a constant and placed in the CP field.

«L» when present perform long transfer (N=1), otherwise perform short
transfer (N=0).

op2 may be any of the operands that the barrel shifter can produce.

The syntax is Rm«,shift» or #expression

If #expression is used, ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field. If this is
impossible, it will give an error.

shift is shiftname Rs or shiftname #expression , or
RRX (rotate right one bit with extend). shiftname s are: ASL, LSL,
LSR, ASR, and ROR. (ASL is a synonym for LSL, and the two
assemble to the same code.) See Shift types on page 59.

operation is evaluated to a constant and placed in the CP Opc field.

«P» means to take the result of a CMN, CMP, TEQ or TST operation, and
move it to the bits of R15 that hold the PSR – even though the
instruction has no destination register. Bits corresponding to the P
are masked out, as are (in User mode) the I, F, and mode bits.
115

Instruction set summary

m
t
psr is CPSR, CPSR_all, SPSR or SPSR_all.

(CPSR and CPSR_all are synonyms, as are SPSR and SPSR_all.)

psrf is CPSR_flg or SPSR_flg. The most significant four bits of Rm or
#expression are written to the N, Z, C and V flags respectively.

Rd, RdLo, RdHi,
Rm, Rn & Rs are expressions evaluating to a valid ARM register number.

Rlist is either a comma-separated list of registers and/or of register ranges
indicated by hyphens, all enclosed in {} (e.g. {R0,R2-R7,R10});
or an expression evaluating to the 16 bit operand.

«S» means to set the PSR’s condition codes from the operation. ObjAs
forces this for CMN, CMP, TEQ and TST, provided the P flag is no
specified.

«T» means to set the W bit in a post-indexed instruction, forcing
non-privileged mode for the transfer cycle. T is not allowed when a
pre-indexed addressing mode is specified or implied.

«!» if present sets the W bit to write-back the base register.

«^» if present sets the S bit to load the PSR with the PC, or forces storing
of user bank registers when in a non-user mode.

Synopsis

For a detailed synopsis of the various instructions, see the following sections:

Section Page
Branch, Branch with Link (B, BL) 65

Data processing 68

PSR transfer (MRS, MSR) 77

Multiply and Multiply-Accumulate (MUL, MLA) 81

Multiply Long and Multiply-Accumulate Long
(UMULL, SMULL, UMLAL, SMLAL)

84

Single data transfer (LDR, STR) 86

Block data transfer (LDM, STM) 91

Single data swap (SWP) 99

Software interrupt (SWI) 101

Coprocessor data operations (CDP) 103

Coprocessor data transfers (LDC, STC) 105

Coprocessor register transfers (MCR, MRC) 109
116

CPU instruction set
Undefined instructions 112

Further instructions 118

Section Page
117

Further instructions

Asm
Further instructions

The above completes the description of all the basic ARM instructions. However,
ObjAsm understands a number of other instructions, which it translates into appropriate
basic ARM instructions.

Extended range immediate constants

Synopsis

In the case of an instruction such as

MOV R0,#VALUE

ObjAsm will evaluate the expression and produce a CPU instruction to load the value
into the destination register. This may not in fact be the machine level instruction known
as MOV, but the programmer need not be aware that an alternative instruction has been
substituted. A common example is

MOV Rn,#-1

which the CPU cannot handle directly (as –1 is not a valid immediate constant). Obj
will accept this syntax, but will convert it and generate object code for

MVN Rn,#0

which results in Rn containing –1. Such conversions also takes place between the
following pairs of instructions:

l BIC/AND

l ADD/SUB

l ADC/SBC

l CMP/CMN
118

CPU instruction set

 or

e.

ut of

to
The ADR instruction

Assembler syntax

ADR«cond» register ,expression

Synopsis

This produces an address in a register. ARM does not have an explicit ‘calculate
effective address’ instruction, as this can generally be done using ADD, SUB, MOV
MVN. To ease the construction of such instructions, ObjAsm provides an ADR
instruction.

The expression may be register-relative, program-relative or numeric:

l Register-relative: ADD|SUB register,register2,#constant

will be produced, where register2 is the register to which the expression is relativ

l Program-relative: ADD|SUB register,PC,#constant

will be produced.

l Numeric: MOV|MVN register,#constant

will be produced.

In all three cases, an error will be generated if the immediate constant required is o
range.

If the program has a fixed origin (that is, if the ORG directive has been used), the
distinction between program-relative and numeric values disappears. In this case,
ObjAsm will first try to treat such a value as program-relative. If this fails, it will try
treat it as numeric. An error will only be generated if both attempts fail.

The ADRL instruction

Assembler syntax

ADR«cond» L register ,expression

Synopsis

This form of ADR is provided by ADRL and allows a wider collection of effective
addresses to be produced. ADRL can be used in the same way as ADR, except that the
allowed range of constants is any constant specified as an even rotation of a value less
than &10000. Again program-relative, register relative and numeric forms exist. The
result produced will always be two instructions, even if it could have been done in one.
An error will be generated if the necessary immediate constants cannot be produced.
119

Literals
Literals

Assembler syntax

LDR register,=expression

Synopsis

Literals are intended to enable the programmer to load immediate values into a register
which might be out of range as MOV/MVN arguments.

ObjAsm will take certain actions with literals. It will:

l if possible, replace the instruction with a MOV or MVN,

l otherwise, generate a program-relative LDR and if no such literal already exists
within the addressable range, place the literal in the next literal pool.

Program-relative expressions and imported symbols are also valid literals. See the
section Organisational directives – END, ORG, LTORG and KEEP on page 145 for
further information.
120

6 Floating point instructions

he ARM has a general coprocessor interface. The first coprocessor available is one
Twhich performs floating point calculations to the IEEE standard. To ensure that T

programs using floating point arithmetic remain compatible with all Archimedes
ns
ode.
t

tions
h the
machines, a standard ARM floating point instruction set has been defined. This can be
implemented invisibly to the customer program by one of several systems offering
various speed performances at various costs. The current ‘bundled’ floating point
system is the software only floating point emulator module. Floating point instructio
may be incorporated into any assembler text, provided they are called from user m
These instructions are recognised by the Assembler and converted into the correc
coprocessor instructions.

Generally, programs do not need to know whether a coprocessor is fitted; the only
effective difference is in the speed of execution. Note that there may be slight varia
in accuracy between hardware and software – refer to the instructions supplied wit
coprocessor for details of these variations.
121

Programmer’s model

d.
ry,

tion is

 the

there
ient
ware

)

M
,

ch
pilers
Programmer’s model

The ARM IEEE floating point system has eight ‘high precision’ floating point registers,
F0 to F7. The format in which numbers are stored in these registers is not specifie
Floating point formats only become visible when a number is transferred to memo
using one of the formats described below.

There is also a floating point status register (FPSR) which, like the ARM’s combined
PC and PSR, holds all the necessary status and control information that an applica
intended to be able to access. It holds flags which indicate various error conditions, such
as overflow and division by zero. Each flag has a corresponding trap enable bit, which
can be used to enable or disable a ‘trap’ associated with the error condition. Bits in
FPSR allow a client to distinguish between different implementations of the floating
point system.

There may also be a floating point control register (FPCR); this is used to hold status
and control information that an application is not intended to access. For example,
are privileged instructions to turn the floating point system on and off, to permit effic
context changes. Typically, hardware based systems have an FPCR, whereas soft
based ones do not.

Available systems
Floating point systems may be built from software only, hardware only, or some
combination of software and hardware. The following terminology will be used to
differentiate between the various ARM floating point systems already in use:

System name System components
Old FPE Versions of the floating point emulator up to (but not including

4.00

FPPC Floating Point Protocol Convertor (interface chip between AR
and WE32206), WE32206 (AT&T Math Acceleration Unit chip)
and support code

FPE 400 Versions of the floating point emulator from 4.00 onwards

FPA ARM Floating Point Accelerator chip, and support code

The results look the same to the programmer. However, if clients are aware of whi
system is in use, they may be able to extract better performance. For example, com
can be tuned to generate bunched FP instructions for the FPE and dispersed FP
instructions for the FPA, which will improve overall performance
122

Floating point instructions

for

f any

bit

he

 one
The old FPE has two different variants. Versions up to (but not including) 3.40 do not
provide any hardware support, whereas versions 3.40 to 3.99 inclusive provide support
for the FPPC hardware – if it is fitted. All versions of the FPE 400 provide support
the FPA hardware.

Precision
All basic floating point instructions operate as though the result were computed to
infinite precision and then rounded to the length, and in the way, specified by the
instruction. The rounding is selectable from:

l Round to nearest

l Round to +infinity (P)

l Round to –infinity (M)

l Round to zero (Z).

The default is ‘round to nearest’; in the event of a tie, this rounds to ‘nearest even’. I
of the others are required they must be given in the instruction.

The working precision of the system is 80 bits, comprising a 64 bit mantissa, a 15
exponent and a sign bit. Specific instructions that work only with single precision
operands may provide higher performance in some implementations, particularly t
fully software based ones.

Floating point number formats
Like the ARM instructions, the floating point data processing operations refer to
registers rather than memory locations. Values may be stored into ARM memory in
of five formats (only four of which are visible at any one time, since P and EP are
mutually exclusive):
123

Floating point number formats
IEEE Single Precision (S)

Figure 6.1 Single precision format

l If the exponent is 0 and the fraction is 0, the number represented is ±0.

l If the exponent is 0 and the fraction is non-zero, the number represented is
±0.fraction × 2–126.

l If the exponent is in the range 1 to 254, the number represented is
±1.fraction × 2exponent – 127.

l If the exponent is 255 and the fraction is 0, the number represented is ±∞.

l If the exponent is 255 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

IEEE Double Precision (D)

Figure 6.2 Double precision format

l If the exponent is 0 and the fraction is 0, the number represented is ±0.

l If the exponent is 0 and the fraction is non-zero, the number represented is
±0.fraction × 2–1022.

l If the exponent is in the range 1 to 2046, the number represented is
±1.fraction × 2exponent – 1023.

l If the exponent is 2047 and the fraction is 0, the number represented is ±∞.

l If the exponent is 2047 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

Sign Exponent Fraction

31 30 23 22 0

msb lsb

Sign Exponent Fraction

31 30 20 19 0

msb lsb

Fractionmsb lsb

First word

Second word
124

Floating point instructions

en
the
ot
or

, to
e
er,
f
Double Extended Precision (E)

Figure 6.3 Double extended precision format

l If the exponent is 0, J is 0, and the fraction is 0, the number represented is ±0.

l If the exponent is 0, J is 0, and the fraction is non-zero, the number represented is
±0.fraction × 2–16382.

l If the exponent is in the range 0 to 32766, J is 1, and the fraction is non-zero, the
number represented is ±1.fraction × 2exponent – 16383.

l If the exponent is 32767, J is 0, and the fraction is 0, the number represented is ±∞.

l If the exponent is 32767 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

Other values are illegal and shall not be used (ie the exponent is in the range 1 to 32766
and J is 0; or the exponent is 32767, J is 1, and the fraction is 0).

The FPPC system stores the sign bit in bit 15 of the first word, rather than in bit 31.

Storing a floating point register in ‘E’ format is guaranteed to maintain precision wh
loaded back by the same floating point system in this format. Note that in the past
layout of E format has varied between floating point systems, so software should n
have been written to depend on it being readable by other floating point systems. F
example, no software should have been written which saves E format data to disc
have then been potentially loaded into another system. In particular, E format in th
FPPC system varies from all other systems in its positioning of the sign bit. Howev
for the FPA and the FPE 400, the E format is now defined to be a particular form o
IEEE Double Extended Precision and will not vary in future.

Sign zeros Exponent

31 30 15 14 0

Fractionmsb lsb

First word

Second word

Fractionmsb lsbThird word

J

125

Floating point number formats

n

d so

nt of
340.)

ber

s 0,
Packed Decimal (P)

Figure 6.4 Packed decimal format

The sign nibble contains both the significand’s sign (top bit) and the exponent’s sig
(next bit); the other two bits are zero.

d18 is the most significant digit of the significand d, and e3 of the exponent e. The
significand has an assumed decimal point between d18 and d17, and is normalise
that for a normal number l≤ d18≤ 9. The guaranteed ranges for d and e are 17 and 3
digits respectively; d0, d1 and e3 may always be zero in a particular system. (By
comparison, an S format number has 9 digits of significand and a maximum expone
53; a D format number has 17 digits in the significand and a maximum exponent of

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation of ±∞ or a NaN (see below).

l If the exponent’s sign is 0, the exponent is 0, and the significand is 0, the num
represented is ±0.

Zero will always be output as +0, but either +0 or –0 may be input.

l If the exponent is in the range 0 to 9999 and the significand is in the range 1 to
9.999999999999999999, the number represented is ±d × 10±e.

l If the exponent is &FFFF (ie all the bits in e3 - e0 are set) and the significand i
the number represented is ±∞.

l If the exponent is &FFFF and d0 - d17 are non-zero, a NaN (not-a-number) is
represented. If the most significant bit of d18 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

Sign

31 0

First word e3 e1e2 e0 d18 d17 d16

d15Second word d14 d12d13 d11 d10 d9 d8

d7Third word d6 d4d5 d3 d2 d1 d0
126

Floating point instructions

n

d so

stem.

ber

 1 to

d is

r) is

u
Expanded Packed Decimal (EP)

Figure 6.5 Expanded packed decimal format

The sign nibble contains both the significand’s sign (top bit) and the exponent’s sig
(next bit); the other two bits are zero.

d23 is the most significant digit of the significand d, and e6 of the exponent e. The
significand has an assumed decimal point between d23 and d22, and is normalise
that for a normal number l≤ d23≤ 9. The guaranteed ranges for d and e are 21 and 4
digits respectively; d0, d1, d2, e4, e5 and e6 may always be zero in a particular sy
(By comparison, an S format number has 9 digits of significand and a maximum
exponent of 53; a D format number has 17 digits in the significand and a maximum
exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation of ±∞ or a NaN (see below).

l If the exponent’s sign is 0, the exponent is 0, and the significand is 0, the num
represented is ±0.

Zero will always be output as +0, but either +0 or –0 may be input.

l If the exponent is in the range 0 to 9999999 and the significand is in the range
9.99999999999999999999999, the number represented is ±d × 10±e.

l If the exponent is &FFFFFFF (ie all the bits in e6 - e0 are set) and the significan
0, the number represented is ±∞.

l If the exponent is &FFFFFFF and d0 - d22 are non-zero, a NaN (not-a-numbe
represented. If the most significant bit of d23 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

This format is not available in the old FPE or the FPPC. You should only use it if yo
can guarantee that the floating point system you are using supports it.

Sign

31 0

First word e6 e4e5 e3 e2 e1 e0

d23Second word d22 d20d21 d19 d18 d17 d16

d15Third word d14 d12d13 d11 d10 d9 d8

d7Fourth word d6 d4d5 d3 d2 d1 d0
127

Floating point status register

d
s the
pare

ontrol

ly.

t

ng
 byte,
Floating point status register
There is a floating point status register (FPSR) which, like ARM’s combined PC an
PSR, has all the necessary status for the floating point system. The FPSR contain
IEEE flags but not the result flags – these are only available after floating point com
operations.

The FPSR consists of a system ID byte, an exception trap enable byte, a system c
byte and a cumulative exception flags byte.

Figure 6.6 Floating point status register byte usage

System ID byte

The System ID byte allows a user or operating system to distinguish which floating
point system is in use. The top bit (bit 31 of the FPSR) is set for hardware (ie fast)
systems, and clear for software (ie slow) systems. Note that the System ID is read-on

The following System IDs are currently defined:

System System ID
Old FPE &00
FPPC &80
FPE 400 &01
FPA &81

Exception Trap Enable Byte

Each bit of the exception trap enable byte corresponds to one type of floating poin
exception, which are described in the section Cumulative Exception Flags Byte on
page 130.

Figure 6.7 Exception trap enable byte

If a bit in the cumulative exception flags byte is set as a result of executing a floati
point instruction, and the corresponding bit is also set in the exception trap enable
then that exception trap will be taken.

Currently, the reserved bits shall be written as zeros and will return 0 when read.

Exception Flags

7 0

System Control

15 8

Trap Enable

23 16

System ID

31 24

FPSR

Reserved

22

FPSR INX

20

UFL

19

OFL

18

DVZ

17

IVO

1623 21
128

Floating point instructions
System Control Byte

These control bits determine which features of the floating point system are in use.

Figure 6.8 System control byte

 By placing these control bits in the FPSR, their state will be preserved across context
switches, allowing different processes to use different features if necessary. The
following five control bits are defined for the FPA system and the FPE 400:

ND No Denormalised numbers
NE NaN Exception
SO Select synchronous Operation of FPA
EP Use Expanded Packed decimal format
AC Use Alternative definition for C flag on compare operations

The old FPE and the FPPC system behave as if all these bits are clear.

Currently, the reserved bits shall be written as zeros and will return 0 when read. Note
that all bits (including bits 8 - 12) are reserved on FPPC and early FPE systems.

ND – No denormalised numbers bit

If this bit is set, then the software will force all denormalised numbers to zero to prevent
lengthy execution times when dealing with denormalised numbers. (Also known as
abrupt underflow or flush to zero.) This mode is not IEEE compatible but may be
required by some programs for performance reasons.

If this bit is clear, then denormalised numbers will be handled in the normal
IEEE-conformant way.

NE – NaN exception bit

If this bit is set, then an attempt to store a signalling NaN that involves a change of
format will cause an exception (for full IEEE compatibility).

If this bit is clear, then an attempt to store a signalling NaN that involves a change of
format will not cause an exception (for compatibility with programs designed to work
with the old FPE).

Reserved

14

FPSR AC

12

EP

11

SO

10

NE

9

ND

815 13
129

Floating point status register

r
sted

 or

 in
 also
 that
SO – Select synchronous operation of FPA

If this bit is set, then all floating point instructions will execute synchronously and ARM
will be made to busy-wait until the instruction has completed. This will allow the precise
address of an instruction causing an exception to be reported, but at the expense of
increased execution time.

If this bit is clear, then that class of floating point instructions that can execute
asynchronously to ARM will do so. Exceptions that occur as a result of these
instructions may be raised some time after the instruction has started, by which time the
ARM may have executed a number of instructions following the one that has failed. In
such cases the address of the instruction that caused the exception will be imprecise.

The state of this bit is ignored by software-only implementations, which always operate
synchronously.

EP – Use expanded packed decimal format

If this bit is set, then the expanded (four word) format will be used for Packed Decimal
numbers. Use of this expanded format allows conversion from extended precision to
packed decimal and back again to be carried out without loss of accuracy.

If this bit is clear, then the standard (three word) format is used for Packed Decimal
numbers.

AC – Use alternative definition for C flag on compare operations

If this bit is set, the ARM C flag, after a compare, is interpreted as ‘Greater Than o
Equal or Unordered’. This interpretation allows more of the IEEE predicates to be te
by means of single ARM conditional instructions than is possible using the original
interpretation of the C flag (as shown below).

If this bit is clear, the ARM C flag, after a compare, is interpreted as ‘Greater Than
Equal’.

Cumulative Exception Flags Byte

Figure 6.9 Cumulative exception flags byte

Whenever an exception condition arises, the appropriate cumulative exception flag
bits 0 to 4 will be set to 1. If the relevant trap enable bit is set, then an exception is
delivered to the user’s program in a manner specific to the operating system. (Note

Reserved

6

FPSR INX

4

UFL

3

OFL

2

DVZ

1

IVO

07 5
130

Floating point instructions

 or
is
in the case of underflow, the state of the trap enable bit determines under which
conditions the underflow flag will be set.) These flags can only be cleared by a WFS
instruction.

Currently, the reserved bits shall be written as zeros and will return 0 when read.

IVO – invalid operation

The IVO flag is set when an operand is invalid for the operation to be performed. Invalid
operations are:

l Any operation on a trapping NaN (not-a-number)

l Magnitude subtraction of infinities, eg +∞ + –∞

l Multiplication of 0 by ±∞

l Division of 0/0 or ∞/∞

l x REM y where x = ∞ or y = 0

(REM is the ‘remainder after floating point division’ operator.)

l Square root of any number < 0 (but √(–0) = –0)

l Conversion to integer or decimal when overflow, ∞ or a NaN operand make it
impossible

If overflow makes a conversion to integer impossible, then the largest positive
negative integer is produced (depending on the sign of the operand) and IVO
signalled

l Comparison with exceptions of Unordered operands

l ACS, ASN when argument’s absolute value is > 1

l SIN, COS, TAN when argument is ±∞
l LOG, LGN when argument is ≤ 0

l POW when first operand is < 0 and second operand is not an integer, or first
operand is 0 and second operand is ≤ 0

l RPW when first operand is not an integer and second operand is < 0, or first
operand is ≤ 0 and second operand is 0.

DVZ – division by zero

The DVZ flag is set if the divisor is zero and the dividend a finite, non-zero number. A
correctly signed infinity is returned if the trap is disabled.

The flag is also set for LOG(0) and for LGN(0). Negative infinity is returned if the trap
is disabled.
131

Floating Point Control Register

 in

rs or

gest
.

 bit.
f loss

 loss
ctly

fter
OFL – overflow

The OFL flag is set whenever the destination format’s largest number is exceeded
magnitude by what the rounded result would have been were the exponent range
unbounded. As overflow is detected after rounding a result, whether overflow occu
not after some operations depends on the rounding mode.

If the trap is disabled either a correctly signed infinity is returned, or the format’s lar
finite number. This depends on the rounding mode and floating point system used

UFL – underflow

Two correlated events contribute to underflow:

l Tininess – the creation of a tiny non-zero result smaller in magnitude than the
format’s smallest normalised number.

l Loss of accuracy – a loss of accuracy due to denormalisation that may be greater
than would be caused by rounding alone.

The UFL flag is set in different ways depending on the value of the UFL trap enable
If the trap is enabled, then the UFL flag is set when tininess is detected regardless o
of accuracy. If the trap is disabled, then the UFL flag is set when both tininess and
of accuracy are detected (in which case the INX flag is also set); otherwise a corre
signed zero is returned.

As underflow is detected after rounding a result, whether underflow occurs or not a
some operations depends on the rounding mode.

INX – inexact

The INX flag is set if the rounded result of an operation is not exact (different from the
value computable with infinite precision), or overflow has occurred while the OFL trap
was disabled, or underflow has occurred while the UFL trap was disabled. OFL or UFL
traps take precedence over INX.

The INX flag is also set when computing SIN or COS, with the exceptions of SIN(0) and
COS(1).

The old FPE and the FPPC system may differ in their handling of the INX flag. Because
of this inconsistency we recommend that you do not enable the INX trap.

Floating Point Control Register
The Floating Point Control register (FPCR) may only be present in some
implementations: it is there to control the hardware in an implementation-specific
manner, for example to disable the floating point system. The user mode of the ARM is
not permitted to use this register (since the right is reserved to alter it between
implementations) and the WFC and RFC instructions will trap if tried in user mode.
132

Floating point instructions

ss
You are unlikely to need to access the FPCR; this information is principally given for
completeness.

The FPPC system

The FPCR bit allocation in the FPPC system is as shown below:

Figure 6.10 FPCR bit allocation in the FPPC system

Bit Meaning
31-8 Reserved – always read as zero
7 PR Last RMF instruction produced a partial remainder
6 SBd Use Supervisor Register Bank ‘d’
5 SBn Use Supervisor Register Bank ‘n’
4 SBm Use Supervisor Register Bank ‘m’
3 Reserved – always read as zero
2 AS Last WE32206 exception was asynchronous
1 EX Floating point exception has occurred
0 DA Disable

Reserved bits are ignored during write operations (but should be zero for future
compatibility.) The reserved bits will return zero when read.

The FPA system

In the FPA, the FPCR will also be used to return status information required by the
support code when an instruction is bounced. You should not alter the register unle
you really know what you’re doing. Note that the register will be read sensitive; even
reading the register may change its value, with disastrous consequences.

The FPCR bit allocation in the FPA system is provisionally as follows:

Figure 6.11 FPCR bit allocation in the FPA system

—FPCR

31 8

PR

7

SBd

6

SBn

5

SBm

4

—

3

AS

2

EX

1

DA

0

20

—

19 18 172122232425

EO

26

MO

27

IE

282930

RU

31

FPCR

OP

4 3 2 1 056

PR

7

EN

8

RE

9

AB

10

SB

11121314

OP

15

(cont’d)

16

— — OP S1

DS RM S2
133

Assembler directives and syntax
Bit Meaning
31 RU Rounded Up Bit
30 Reserved
29 Reserved
28 IE Inexact bit
27 MO Mantissa overflow
26 EO Exponent overflow
25, 24 Reserved
23-20 OP AU operation code
19 PR AU precision
18-16 S1 AU source register 1
15 OP AU operation code
14-12 DS AU destination register
11 SB Synchronous bounce: decode (R14) to get opcode
10 AB Asynchronous bounce: opcode supplied in rest of word
9 RE Rounding Exception: Asynchronous bounce occurred during

rounding stage and destination register was written
8 EN Enable FPA (default is off)
7 PR AU precision
6, 5 RM AU rounding mode
4 OP AU operation code
3-0 S2 AU source register 2 (bit 3 set denotes a constant)

Note that the SB and AB bits are cleared on a read of the FPCR. Only the EN bit is
writable. All other bits shall be set to zero on a write.

Assembler directives and syntax
The precision letter determines the format used to store the number in memory, as
follows:

Letter Precision Memory usage
S Single 1 word
D Double 2 words
E Extended 3 words
P Packed BCD 3 words
EP Extended Packed BCD 4 words

For details of these formats see the section Floating point number formats on page 123.
134

Floating point instructions

’ or
gits.

ken to
ingle
n in

sure
ccur

.

ry
ister
Floating point number input

A floating point number recognised by the assemblers consists of an optional sign,
followed by an optional mantissa part followed by an optional exponent part. One or
other of the mantissa part and the exponent part must be present. The mantissa part
consists of a sequence of zero or more decimal digits, followed by an optional decimal
point followed by a sequence of zero or more decimal digits. If present, the mantissa
must contain a non-zero number of digits overall. The exponent part begins with ‘e
‘E’, followed by an optional sign, followed by a sequence of one or more decimal di

Examples are:

1
0.2
5E9
E-2
-.7
+31.415926539E-1

The value generated represents the mantissa multiplied by ten to the power of the
exponent, where the mantissa is taken to be one if missing, and the exponent is ta
be zero if missing. All reading is done to double precision, and is then rounded to s
precision as required. The required precision is determined by the context as show
the sections Floating point store loading directives on page 136 and Floating point
literals on page 137.

NOFP directive

If you know that your code should not use floating point instructions and want to en
that you don’t accidentally include them, you can use the NOFP directive. It must o
before any floating point instructions or directives.

Syntax: NOFP

Floating point register equating: FN

The directive FN is used to assign a floating point register number 0-7 to a symbol

Syntax: label FN numeric expression

Floating point register numbers are taken to be constants when included in arbitra
expression, but only floating point register names are valid when a floating point reg
is required.
135

The instruction set

ly

onal

he
to

Floating point store loading directives

Directives DCFS and DCFD are provided to load store with respectively single and
double precision floating point numbers. Single precision floating point numbers occupy
one word of store, double precision floating point numbers occupy two words, but are
not constrained to be double word aligned.

Syntax: label DCFx floating point number« ,floating point number»

where the syntax of floating point numbers is defined in the section Floating point
number input above.

?label will have the value of the number of bytes of code generated by its defining
line in a way analogous to DCD.

The instruction set

Floating point coprocessor data transfer

op«condition»prec Fd,addr

op is LDF for load, STF for store

condition is one of the usual ARM conditions

prec is one of the usual floating point precisions

addr is [Rn]«,#offset» or [Rn,#offset]«!»
(«!» if present indicates that writeback is to take place.)

Fd is a floating point register symbol (defined via the FN directive).

Load (LDF) or store (STF) the high precision value from or to memory, using one of the
five memory formats. On store, the value is rounded using the ‘round to nearest’
rounding method to the destination precision, or is precise if the destination has
sufficient precision. Thus other rounding methods may be used by having previous
applied some suitable floating point data operation; this does not compromise the
requirement of ‘rounding once only’, since the store operation introduces no additi
rounding error.

The offset is in words from the address given by the ARM base register, and is in t
range –1020 to +1020. In pre-indexed mode you must explicitly specify writeback
add the offset to the base register; but in post-indexed mode the assembler forces
writeback for you, as without write back post-indexing is meaningless.

You should not use R15 as the base register if writeback will take place.
136

Floating point instructions

 –

lers,

ause

 FPE,

ires
ient
 the

ut the
 only
int
tion
Examples:

LDFS F0,[R0] ; load F0 from address held in R0
; (single precision)

STFP F1,[R2] ; store number held in F1 at R2
; as a packed decimal number

Floating point literals

LDFS and LDFD can be given literal values instead of a register relative address, and
the Assembler will automatically place the required value in the next available literal
pool. In the case of LDFS a single precision value is placed, in the case of LDFD a
double precision value is placed. Because the allowed offset range within a LDFS or
LDFD instruction is less than that for a LDR instruction (–1020 to +1020 instead of
4095 to +4095), it may be necessary to code LTORG directives more frequently if
floating point literals are being used than would otherwise be necessary.

Syntax: LDFx Fn, = floating point number

Floating point coprocessor multiple data transfer

The LFM and SFM multiple data transfer instructions are supported by the assemb
but are not provided by the FPPC system, or by some versions of the old FPE:

l versions 2.80 - 2.84 do not support them

l versions 2.85 - 3.39 do support them

l version 3.40 – which is effectively a version of 2.80 that also provides FPPC
hardware support – does not support these instructions.

Attempting to execute these instructions on systems that do not provide them will c
undefined instruction traps, so you should only use these instructions in software
intended for machines you are confident are using an appropriate version of the old
or the FPE 400, or the FPA system.

The LFM and SFM instructions allow between 1 and 4 floating point registers to be
transferred from or to memory in a single operation; such a transfer otherwise requ
several LDF or STF operations. The multiple transfers are therefore useful for effic
stacking on procedure entry/exit and context switching. These new instructions are
preferred way to preserve exactly register contents within a program.

The values transferred to memory by SFM occupy three words for each register, b
data format used is not defined, and may vary between floating point systems. The
legal operation that can be performed on this data is to load it back into floating po
registers using the LFM instruction. The data stored in memory by an SFM instruc
should not be used or modified by any user process.
137

The instruction set

e
out
The registers transferred by a LFM or SFM instruction are specified by a base floating
point register and the number of registers to be transferred. This means that a register set
transferred has to have adjacent register numbers, unlike the unconstrained set of ARM
registers that can be loaded or saved using LDM and STM. Floating point registers are
transferred in ascending order, register numbers wrapping round from 7 to 0: eg
transferring three registers with F6 as the base register results in registers F6, F7 then F0
being transferred.

The assembler supports two alternative forms of syntax, intended for general use or just
stack manipulation:

op«condition» Fd,count ,addr
op«condition»stacktype Fd,count ,[Rn]«!»

op is LFM for load, SFM for store.

condition is one of the usual ARM conditions.

Fd is the base floating point register, specified as a floating point register
symbol (defined via the FN directive).

count is an integer from 1 to 4 specifying the number of registers to be
transferred.

addr is [Rn]«,#offset» or [Rn,#offset]«!»
(«!» if present indicates that writeback is to take place).

stacktype is FD or EA, standing for Full Descending or Empty Ascending, the
meanings as for LDM and STM.

The offset (only relevant for the first, general, syntax above) is in words from the
address given by the ARM base register, and is in the range –1020 to +1020. In
pre-indexed mode you must explicitly specify writeback to add the offset to the bas
register; but in post-indexed mode the assembler forces writeback for you, as with
write back post-indexing is meaningless.

You should not use R15 as the base register if writeback will take place.

Examples:

SFMNE F6,4,[R0] ; if NE is true, transfer F6, F7,
; F0 and F1 to the address
; contained in R0

LFMFD F4,2,[R13]! ; load F4 and F5 from FD stack -
LFM F4,2,[R13],#24 ; equivalent to same instruction

; in general syntax
138

Floating point instructions
Floating point coprocessor register transfer

FLT«condition»prec«round» Fn,Rd
FLT«condition»prec«round» Fn,#value
FIX«condition»«round» Rd,Fn
WFS«condition» Rd
RFS«condition» Rd
WFC«condition» Rd
RFC«condition» Rd

«round» is the optional rounding mode: P, M or Z; see below.

Rd is an ARM register symbol.

Fn is a floating point register symbol.

The value may be of the following: 0, 1, 2, 3, 4, 5, 10, 0.5. Note that these values must
be written precisely as shown above, for instance ‘0.5’ is correct but ‘.5’ is not.

The rounding modes are:

Floating point coprocessor data operations

The formats of these instructions are:

binop«condition»prec«round» Fd,Fn,Fm
binop«condition»prec«round» Fd,Fn#value
unop«condition»prec«round» Fd,Fm
unop«condition»prec«round» Fd,#value

binop is one of the binary operations listed below

unop is one of the unary operations listed below

FLT Integer to Floating Point Fn := Rd

FIX Floating point to integer Rd := Fm

WFS Write Floating Point Status FPSR := Rd

RFS Read Floating Point Status Rd := FPSR

WFC Write Floating Point Control FPC := Rd Supervisor Only

RFC Read Floating Point Control Rd := FPC Supervisor Only

Mode Letter
Nearest (no letter required)

Plus infinity P

Minus infinity M

Zero Z
139

The instruction set
Fd is the FPU destination register

Fn is the FPU source register (binops only)

Fm is the FPU source register

#value is a constant, as an alternative to Fm. It must be 0, 1, 2, 3, 4, 5, 10 or
0.5, as above.

The binops are:

The unops are:

ADF Add Fd := Fn + Fm

MUF Multiply Fd := Fn × Fm

SUF Subtract Fd := Fn – Fm

RSF Reverse Subtract Fd := Fm – Fn

DVF Divide Fd := Fn / Fm

RDF Reverse Divide Fd := Fm / Fn

POW Power Fd := Fn to the power of Fm

RPW Reverse Power Fd := Fm to the power of Fn

RMF Remainder Fd := remainder of Fn / Fm
(Fd := Fn – integer value of (Fn / Fm) × Fm)

FML Fast Multiply Fd := Fn × Fm

FDV Fast Divide Fd := Fn / Fm

FRD Fast Reverse Divide Fd := Fm / Fn

POL Polar angle Fd := polar angle of Fn, Fm

MVF Move Fd := Fm

MNF Move Negated Fd := –Fm

ABS Absolute value Fd := ABS (Fm)

RND Round to integral value Fd := integer value of Fm

SQT Square root Fd := square root of Fm

LOG Logarithm to base 10 Fd := log Fm

LGN Logarithm to base e Fd := ln Fm

EXP Exponent Fd := e to the power of Fm

SIN Sine Fd := sine of Fm

COS Cosine Fd := cosine of Fm

TAN Tangent Fd := tangent of Fm

ASN Arc Sine Fd := arcsine of Fm

ACS Arc Cosine Fd := arccosine of Fm

ATN Arc Tangent Fd := arctangent of Fm
140

Floating point instructions

pute
 Note that wherever Fm is mentioned, one of the floating point constants 0, 1, 2, 3, 4, 5,
10, or 0.5 can be used instead.

FML, FRD and FDV are only defined to work with single precision operands. These
‘fast’ instructions are likely to be faster than the equivalent MUF, DVF and RDF
instructions, but this is not necessarily so for any particular implementation.

Rounding is done only at the last stage of a SIN, COS etc – the calculations to com
the value are done with ‘round to nearest’ using the full working precision.

The URD and NRM operations are only supported by the FPA and the FPE 400.

Floating point coprocessor status transfer

op«condition»prec«round» Fm,Fn

op is one of the following:

«condition» an ARM condition.

prec a precision letter

«round» an optional rounding mode: P, M or Z

Fm A floating point register symbol.

Fn A floating point register symbol.

Compares are provided with and without the exception that could arise if the numbers
are unordered (ie one or both of them is not-a-number). To comply with IEEE 754, the
CMF instruction should be used to test for equality (ie when a BEQ or BNE is used
afterwards) or to test for unorderedness (in the V flag). The CMFE instruction should be
used for all other tests (BGT, BGE, BLT, BLE afterwards).

URD Unnormalised Round Fd := integer value of Fm (may be abnormal)

NRM Normalise Fd := normalised form of Fm

CMF Compare floating compare Fn with Fm

CNF Compare negated floating compare Fn with –Fm

CMFE Compare floating with exception compare Fn with Fm

CNFE Compare negated floating with exception compare Fn with –Fm
141

Finding out more…
When the AC bit in the FPSR is clear, the ARM flags N, Z, C, V refer to the following
after compares:

Note that when two numbers are not equal, N and C are not necessarily opposites. If the
result is unordered they will both be clear.

When the AC bit in the FPSR is set, the ARM flags N, Z, C, V refer to the following
after compares:

In this case, N and C are necessarily opposites.

Finding out more…
Further details of the floating point instructions (such as the format of the bitfields
within the instruction) can be found in the Acorn RISC Machine family Data Manual.
VLSI Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ, USA:
ISBN 0-13-781618-9.

N Less than ie Fn less than Fm (or –Fm)

Z Equal

C Greater than or equal ie Fn greater than or equal to Fm (or –Fm)

V Unordered

N Less than

Z Equal

C Greater than or equal or unordered

V Unordered
142

7 Directives

his chapter describes the directives available in the assembler, which provide a

powerful range of extra features.T
torage reservation and initialisation – DCB, DCW and DCD
S
DCB Defines one or more bytes: can be replaced by =

DCW Defines one or more half-words (16-bit numbers)

DCD Defines one or more words: can be replaced by &

% Reserves a zeroed area of store

The syntax of the first three directives is:

«label» directive expression-list

DCD can take program-relative and external expressions as well as numeric ones. In the
case of DCB, the expression-list can include string expressions, the characters of which
are loaded into consecutive bytes in store. Unlike C-strings, ObjAsm strings do not
contain an implicit trailing NUL, so a C-string has to be fabricated thus:

C_string DCB "C_string",0

The syntax of % is:

«label» % numeric-expression

This directive will initialise to zero the number of bytes specified by the numeric
expression.

Note that an external expression consists of an external symbol followed optionally by a
constant expression. The external symbol must come first.
143

Floating point store initialisation – DCFS and DCFD
Floating point store initialisation – DCFS and DCFD

DCFS Defines single precision floating point values

DCFD Defines double precision floating point values

The syntax of these directives is:

«label» directive fp-constant« ,fp-constant»

Single precision numbers occupy one word, and double precision numbers occupy two;
both should be word aligned. An fp-constant takes one of the following forms:

«-»integer E«-»integer e.g. 1E3, -4E-9
«-»«integer» .integer« E«-»integer» e.g. 1.0, -.1, 3.1E6

E may also be written in lower case.

Describing the layout of store – ^ and #

^ Sets the origin of a storage map

Reserves space within a storage map

The syntax of these directives is:

^ expression« ,base-register»
«label» # expression

The ^ directive sets the origin of a storage map at the address specified by the
expression. A storage map location counter, @, is also set to the same address. The
expression must be fully evaluable in the first pass of the assembly, but may be
program-relative. If no ^ directive is used, the @ counter is set to zero. @ can be reset
any number of times using ^ to allow many storage maps to be established.

Space within a storage map is described by the # directive. Every time # is used its label
(if any) is given the value of the storage location counter @, and @ is then incremented
by the number of bytes reserved.

In a ^ directive with a base register, the register becomes implicit in all symbols defined
by # directives which follow, until cancelled by a subsequent ^ directive. These
register-relative symbols can later be quoted in load and store instructions. For example:

^ 0,r9
4

Lab # 4
LDR r0,Lab

is equivalent to:

LDR r0,[r9,#4]
144

Directives

of
M

 their

EP
ol
Organisational directives – END, ORG, LTORG and KEEP

END

The assembler stops processing a source file when it reaches the END directive. If
assembly of the file was invoked by a GET directive, the assembler returns and
continues after the GET directive (see Links to other source files – GET/INCLUDE on
page 146). If END is reached in the top-level source file during the first pass without any
errors, the second pass will begin. Failing to end a file with END is an error.

ORG numeric-expression

A program’s origin is determined by the ORG directive, which sets the initial value
the program location counter. Only one ORG is allowed in an assembly and no AR
instructions or store initialisation directives may precede it. If there is no ORG, the
program is relocatable and the program counter is initialised to 0.

LTORG

LTORG directs that the current literal pool be assembled immediately following it. A
default LTORG is executed at every END directive which is not part of a nested
assembly, but large programs may need several literal pools, each closer to where
literals are used to avoid violating LDR’s 4KB offset limit.

KEEP «symbol»

The assembler does not by default describe local symbols (i.e. non-exported symbols;
see Links to other object files – IMPORT and EXPORT on page 145) in its output object
file. However, they can be retained in the object file’s symbol table by using the KE
directive. If the directive is used alone all symbols are kept; if only a specific symb
needs to be kept it can be specified by name.

Links to other object files – IMPORT and EXPORT

IMPORT symbol« [FPREGARGS]»«,WEAK»
EXPORT symbol« [FPREGARGS,DATA,LEAF]»

IMPORT provides the assembler with a name (symbol) which is not defined in this
assembly, but will be resolved at link time to a symbol defined in another, separate
object file. The symbol is treated as a program address; if the WEAK attribute is given
the Linker will not fault an unresolved reference to this symbol, but will zero the
location referring to it. If [FPREGARGS] is present, the symbol defines a function
which expects floating point arguments passed to it in floating point registers.
145

Links to other source files – GET/INCLUDE
EXPORT declares a symbol for use at link time by other, separate object files.
FPREGARGS signifies that the symbol defines a function which expects floating point
arguments to be passed to it in floating point registers. DATA denotes that the symbol
defines a code-segment datum rather than a function or a procedure entry point, and
LEAF that it is a leaf function which calls no other functions.

Links to other source files – GET/INCLUDE

GET filename
INCLUDE filename

GET includes a file within the file being assembled. This file may in turn use GET
directives to include further files. Once assembly of the included file is complete,
assembly continues in the including file at the line following the GET directive.
INCLUDE is a synonym for GET.

Diagnostic generation – ASSERT and !

ASSERT logical-expression
! arithmetic-expression, string-expression

ASSERT supports diagnostic generation. If the logical expression returns {FALSE}, a
diagnostic is generated during the second pass of the assembly. ASSERT can be used
both inside and outside macros.

! is related to ASSERT but is inspected on both passes of the assembly, providing a more
flexible means for creating custom error messages. The arithmetic expression is
evaluated; if it equals zero, no action is taken during pass one, but the string is printed as
a warning during pass two; if the expression does not equal zero, the string is printed as
a diagnostic and the assembly halts after pass one.

Dynamic listing options – OPT

The OPT directive is used to set listing options from within the source code, providing
that listing is turned on. The default setting is to produce a normal listing including the
declaration of variables, macro expansions, call-conditioned directives and MEND
146

Directives
directives, but without producing a pass one listing. These settings can be altered by
adding the appropriate values from the list below, and using them with the OPT directive
as follows:

Titles – TTL and SUBT

Titles can be specified within the code using the TTL (title) and SUBT (subtitle)
directives. Each is used on all pages until a new title or subtitle is called. If more than
one appears on a page, only the latest will be used: the directives alone create blank lines
at the top of the page. The syntax is:

TTL title
SUBT subtitle

Miscellaneous directives – ALIGN, NOFP, RLIST and ENTRY

ALIGN «power-of-two« ,offset-expression»»

After store-loading directives have been used, the program counter (PC) will not
necessarily point to a word boundary. If an instruction mnemonic is then encountered,
the assembler will insert up to three bytes of zeros to achieve alignment. However, an
intervening label may not then address the following instruction. If this label is required,
ALIGN should be used. On its own, ALIGN sets the instruction location to the next

OPT n Effect
1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw: issues an immediate form feed and starts a new page.

8 Resets the line number counter to zero.

16 Turns on the listing of SET, GBL and LCL directives.

32 Turns off the listing of SET, GBL and LCL directives.

64 Turns on the listing of macro expansions.

128 Turns off the listing of macro expansions.

256 Turns on the listing of macro calls.

512 Turns off the listing of macro calls.

1024 Turns on the pass one listing.

2048 Turns off the pass one listing.

4096 Turns on the listing of conditional directives.

8192 Turns off the listing of conditional directives.

16384 Turns on the listing of MEND directives.

32768 Turns off the listing of MEND directives.
147

Miscellaneous directives – ALIGN, NOFP, RLIST and ENTRY

e

re for
e that

to be

try
word boundary. The optional power-of-two parameter – which is given in bytes – can b
used to align with a coarser byte boundary, and the offset expression parameter to define
a byte offset from that boundary.

NOFP

In some circumstances there will be no support in either target hardware or softwa
floating point instructions. In these cases the NOFP directive can be used to ensur
no floating point instructions or directives are allowed in the code.

RLIST

The syntax of this directive is:

label RLIST list-of-registers

The RLIST (register list) directive can be used to give a name to a set of registers
transferred by LDM or STM. List-of-registers is a list of register names or ranges
enclosed in {} (see Block data transfer (LDM, STM) on page 91).

ENTRY

The ENTRY directive declares its offset in its containing AREA to be the unique en
point to any program containing this AREA.
148

8 Symbolic capabilities

he assembler also has a range of symbolic capabilities, with which you can set up

symbols as constants or as variables. These are described below.T
etting constants
S
The EQU and * directives are used to give a symbolic name to a fixed or
program-relative value. The syntax is:

label EQU expression
label * expression

RN defines register names. Registers can only be referred to by name. The names
R0-R15, r0-r15, PC, pc, LR, lr, SP and sp are predefined. Names may also be
defined for the registers used by the ARM Procedure Call Standard; see Controlling
syntax on page 10.

FN defines the names of floating point registers. The names F0-F7 and f0-f7 are built
in. The syntax is:

label RN numeric-expression
label FN numeric-expression

CP gives a name to a coprocessor number, which must be within the range 0 to 15. The
names p0-p15 are pre-defined.

CN names a coprocessor register number; c0-c15 are pre-defined. The syntax is:

label CP numeric-expression
label CN numeric-expression
149

Local and global variables – GBL, LCL and SET
Local and global variables – GBL, LCL and SET

While most symbols have fixed values determined during assembly, variables have
values which may change as assembly proceeds. The assembler supports both global
and local variables. The scope of global variables extends across the entire source file
while that of local variables is restricted to a particular instantiation of a macro (see the
chapter Macros on page 161). Variables must be declared before use with one of these
directives.

GBLA Declares a global arithmetic variable. Values of arithmetic variables
are 32-bit unsigned integers.

GBLL Declares a global logical variable

GBLS Declares a global string variable

LCLA Declares and initialises a local arithmetic variable (initial state zero)

LCLL Declares and initialises a local logical variable (initial state false)

LCLS Declares and initialises a local string variable (initial state null string)

The syntax of these directives is:

directive variable-name

The value of a variable can be altered using the relevant one of the following three
directives:

SETA Sets the value of an arithmetic variable

SETL Sets the value of a logical variable

SETS Sets the value of a string variable

The syntax of these directives is:

variable-name directive expression

where expression evaluates to the value being assigned to the variable named.

(You can also declare and set the value of global variables at assembly time; see
Predefining a variable on page 12.)
150

Symbolic capabilities

’s

e its

e,

Variable substitution – $

Once a variable has been declared its name cannot be used for any other purpose, and
any attempt to do so will result in an error. However, if the $ character is prefixed to the
name, the variable’s value will be substituted before the assembler checks the line
syntax. Logical and arithmetic variables are replaced by the result of performing a
:STR: operation on them (see Unary operators on page 153); string variables are
replaced by their value.

Built-in variables

There are seven built-in variables. They are:

{PC} or . Current value of the program location counter.

{VAR} or @ Current value of the storage-area location counter.

{TRUE} Logical constant true.

{FALSE} Logical constant false.

{OPT} Value of the currently set listing option. The OPT directive can be
used to save the current listing option, force a change in it or restor
original value.

{CONFIG} Has the value 32 if the assembler is in 32-bit program counter mod
and the value 26 if it is in 26-bit mode.

{ENDIAN} Has the value "big" if the assembler is in big-endian mode, and the
value "little" if it is in little-endian mode.
151

152

9 Expressions and operators

xpressions are combinations of simple values, unary and binary operators, and

brackets. There is a strict order of precedence in their evaluation: expressions in E
brackets are evaluated first, then operators are applied in precedence order. Adjacent

unary operators evaluate from right to left; binary operators of equal precedence are
evaluated from left to right.

The assembler includes an extensive set of operators for use in expressions, many of
which resemble their counterparts in high-level languages.

Unary operators

Unary operators have the highest precedence (bind most tightly) so are evaluated first. A
unary operator precedes its operand, and adjacent operators are evaluated from right to
left.

Operator Usage Explanation
? ?A Number of bytes generated by line defining label

A.

BASE
INDEX

:BASE:A
:INDEX:A

If A is a PC-relative or register-relative
expression then BASE returns the number of its
register component, and INDEX the offset from
that base register.

BASE and INDEX are most likely to be of use
within macros.

LEN :LEN:A Length of string A

CHR :CHR:A ASCII string of A

STR :STR:A Hexadecimal string of A. STR returns an
eight-digit hexadecimal string corresponding to a
numeric expression, or the string T or F if used
on a logical expression.

+ +A Unary plus

- -A Unary negate.

+ and - can act on numeric, program-relative
and string expressions.
153

Binary operators
Binary operators

Binary operators are written between the pair of sub-expressions on which they operate.
Operators of equal precedence are evaluated in left to right order. The binary operators
are presented below in groups of equal precedence, in decreasing precedence order.

Multiplicative operators

These are the binary operators which bind most tightly and have the highest precedence:

These operators act only on numeric expressions.

String manipulation operators

In the two slicing operators LEFT and RIGHT, A must be a string and B must be a
numeric expression.

Shift operators

The shift operators act on numeric expressions, shifting or rotating the first operand by
the amount specified by the second. Note that SHR is a logical shift and does not
propagate the sign bit.

NOT :NOT:A Bitwise complement of A

LNOT :LNOT:A Logical complement of A

DEF :DEF:A {TRUE} if A is defined, otherwise {FALSE}

Operator Usage Explanation
* A*B Multiply

/ A/B Divide

MOD A:MOD:B A modulo B

Operator Usage Explanation
LEFT A:LEFT:B The leftmost B characters of A

RIGHT A:RIGHT:B The rightmost B characters of A

CC A:CC:B B concatenated on to the end of A

Operator Usage Explanation
ROL A:ROL:B Rotate A left B bits

ROR A:ROR:B Rotate A right B bits

SHL A:SHL:B Shift A left B bits

SHR A:SHR:B Shift A right B bits

Operator Usage Explanation
154

Expressions and operators
Addition and logical operators

The bitwise operators act on numeric expressions. The operation is performed
independently on each bit of the operands to produce the result.

Relational operators

The relational operators act upon two operands of the same type to produce a logical
value. Allowable types of operand are numeric, program-relative, register-relative, and
strings. Strings are sorted using ASCII ordering. String A will be less than string B if it is
either a leading substring of string B, or if the left-most character of A in which the two
strings differ is less than the corresponding character in string B. Note that arithmetic
values are unsigned, so the value of
0>-1 is {FALSE}.

Boolean operators

These are the weakest binding operators with the lowest precedence.

The Boolean operators perform the standard logical operations on their operands, which
should evaluate to {TRUE} or {FALSE}.

Operator Usage Explanation
AND A:AND:B Bitwise AND of A and B

OR A:OR:B Bitwise OR of A and B

EOR A:EOR:B Bitwise Exclusive OR of A and B

+ A+B Add A to B

– A–B Subtract B from A

Operator Usage Explanation
= A=B A equal to B

> A>B A greater than B

>= A>=B A greater than or equal to B

< A<B A less than B

<= A<=B A less than or equal to B

/= A/=B A not equal to B

<> A<>B A not equal to B

Operator Usage Explanation
LAND A:LAND:B Logical AND of A and B

LOR A:LOR:B Logical OR of A and B

LEOR A:LEOR:B Logical Exclusive OR of A and B
155

156

10 Conditional and repetitive
assembly

his chapter describes the features available within the Assembler for constructing

conditional assembly statements and conditional looping statements.T
onditional assembly
N…
C
The [and] directives mark the start and finish of sections of the source file which are to
be assembled only if certain conditions are true. The basic construction is IF… THE
ENDIF; however, ELSE is also supported, giving the full IF… THEN… ELSE…
ENDIF conditional assembly.

The start of the section is known as the IF directive:

[logical_expression or IF logical_expression

This is the ELSE directive:

| or ELSE

and this is the ENDIF directive:

] or ENDIF

A block which is being conditionally assembled can contain several [|] directives;
that is, conditional assembly can be nested.
157

Conditional assembly

y
Simple use of the IF and ENDIF directives

You can use the IF and ENDIF directives (without the ELSE directive) like this:

[logical_expression
..........
...code...
..........
]

The code will only be assembled if the logical expression is true; it will be skipped if the
logical expression is false.

Simple use of the IF, ELSE and ENDIF directives

Alternatively you can use all three directives, thus:

[logical_expression
.........................
...first piece of code...
.........................
|
..........................
...second piece of code...
..........................
]

If the logical expression is true, the first piece of code will be assembled and the second
skipped. If the expression is false, the first piece of code will be skipped and the second
assembled.

Conditional assembly and the NoTerse option

Lines conditionally skipped by these directives are not listed unless ObjAsm is switched
from its default terse mode. For desktop assembly, you must choose NoTerse from
ObjAsm’s menu (see Listings on page 14); for command line usage, you must specif
the -NoTerse command line option (see page 22).
158

Conditional and repetitive assembly
An example

An example of a notional data storage routine is given below. This routine can either use
a disc or a tape data storage system. To assemble the code for tape operation, the
programmer prepares the system by altering just one line of code, the label SWITCH.

DISC * 0
TAPE * 1
SWITCH * DISC

...code...
. [SWITCH=TAPE

...tape interface code...
]
[SWITCH=DISC
...disc interface code...
]
...code continues...

or alternatively:

DISC * 0
TAPE * 1
SWITCH * DISC

...code...
[SWITCH=TAPE
...tape interface code...
|
...disc interface code...
]
...code continues...

The IF construction can be used inside macro expansions as easily as it is used in the
main program.
159

Repetitive assembly

LE…

rrors):

 that
Repetitive assembly
It is often useful for program segments and macros to produce tables. To do this, they
must be able to have a conditional looping statement. The Assembler has the WHI
WEND construction. This produces an assembly time (not runtime) loop.

The syntax is:

WHILE logical_expression

to start the repetitive block, and:

WEND

to end it.

For example:

GBLA counter
counter SETA 100

WHILE counter >0
DCD &$counter

counter SETA counter-1
WEND

produces the same result as the following (but is shorter and less prone to typing e

DCD 100
DCD 99
DCD 98
DCD 97
:
DCD 2
DCD 1

Since the test for the WHILE condition is made at the top of the loop, it is possible
the source within the loop will not generate any code at all.

Listing of conditionally skipped lines is as for conditional assembly.
160

11 Macros

acros give you a means of placing a single instruction in your source which will be
T expanded at assembly time to several assembler instructions and directives, just M

as if you’d written those instructions and directives within the source at that point.
ke
at
iven
rite

s.

his is

gister
As an example, we will define a TestAndBranch instruction. This would normally ta
two ARM instructions. So we tell the Assembler, by means of a macro definition, th
whenever it meets the TestAndBranch instruction, it is to insert the code we have g
it in the macro definition. This is of course a convenience; we could just as easily w
the relevant instructions out each time, but instead we let the Assembler do it for u

The Assembler determines the destination of the branch with a macro parameter. T
a piece of information specified each time the macro is coded; the macro definition
specifies how it is used. In the TestAndBranch example, we might also make the re
to be tested a parameter, and even the condition to be tested for. Thus our macro
definition might be:

MACRO
$label TestAndBranch $dest,$reg,$cc ; This is called the macro prototype

; statement
$label CMP $reg,#0 ; These two lines are the ones that

B$cc $dest ; will be substituted in the source.
MEND ; This says the macro definition is

; finished

A use of the macro might be:

Test TestAndBranch NonZero,R0,NE
:
:
:

NonZero

The result, as far as the Assembler is concerned, is:

Test CMP R0,#0
BNE NonZero
:
:
:

NonZero
161

Syntax
Syntax
The fact that a macro is about to be defined is given by the directive MACRO in the
instruction field:

MACRO

This is immediately followed by a macro prototype statement which takes the form:

«$label» macroname «$parameter»« ,$parameter»« ,$parameter» …

«$label» if present, it is treated as an additional parameter.

«$parameter» Parameters are passed to the macro as strings and substituted before
syntax analysis. Any number of them may be given.

The purpose of the macro prototype statement is to tell the Assembler the name of the
macro being defined. The name of the macro is found in the opcode field of the macro
prototype statement.

The macro prototype statement also tells the Assembler the names of the parameters, if
any, of the macro. Parameters may occur in two places in the macro prototype statement.
A single optional parameter may occur in the label field, shown as $label above. This
is normally used if the macro expansion is to contain a program label, and is merely an
aid to clarity, as can be seen in the TestAndBranch example. Any number of parameters,
separated by commas, may occur in the operand field. All parameter names begin with
the character $, to distinguish them from ordinary program labels.

The macro prototype statement can also tell the Assembler the default values of any of
the parameters. This is done by following the parameter name by an equals sign, and
then giving the default value. If the default value is to begin or end with a space then it
should be placed within quotes. For example:

$reg = R0
$string = " a string "

It is not possible to give a default value for the parameter in the label field.

For example:

MACRO
$label MACRONAME $num,$string,$etc

.............

.............
$label ...lots of...

.....code....
= $num
= $string
= "the price is $etc"
= 0
MEND
162

Macros
l MACRONAME is the name of this particular macro and $num, $string and $etc
are its parameters. Other macros may have many more parameters, or even none at
all.

l The body of the macro follows after MACRONAME, with $label being optional
even if it was given in the macro prototype statement.

l $etc will be substituted into the string "the price is " when the macro is
used.

l The macro ends with MEND.

The macro is called by using its name and any missing parameters are indicated by
commas, or may be omitted entirely if no more parameters are to follow. Thus,
MACRONAME may be called in various ways:

MACRONAME 9,"disc",7

or:

MACRONAME 9

or:

MACRONAME ,"disc",

Local variables
Local variables are similar to global variables, but may only be referenced within the
macro expansion in which they were defined. They must be declared before they are
used. The three types of local variable are arithmetic, logical and string. These are
declared by:

New values for local variables are assigned in precisely the same way as new variables
for global variables: that is, using the directives SETA, SETL and SETS.

Syntax: variable_name SETx expression

Directive Local variable type Initial state
LCLA Arithmetic zero

LCLL Logical FALSE

LCLS String null string.

Directive Local variable type
SETA Arithmetic

SETL Logical

SETS String
163

MEXIT directive

 then

 to the
acro

tic
al
MEXIT directive
Normally, macro expansion terminates on encountering the MEND directive, at which
point there must be no unclosed WHILE/WEND loops or pieces of conditional assembly.
Early termination of a macro expansion can be forced by means of the MEXIT directive,
and this may occur within WHILE/WEND loops and conditional assembly.

Default values
Macro parameters can be given default values at macro definition time, using the syntax:

$parameter=default_value

In the example of the macro MACRONAME already used:

MACRO
$label MACRONAME $num,$string,$etc

.............

.............
$label ...lots of...

.....code....
= $num
= $string
= "the price is $etc"
= 0
MEND

you could instead write $num=10 in the macro prototype statement. Then, when calling
the macro, a vertical bar character ‘|’ will cause the default value 10 to be used rather
than the value $num. For example:

MACRONAME |,"disc",7

will be equivalent to:

MACRONAME 10,"disc",7

Note that this default is not used when the macro argument is omitted – the value is
empty.

Macro substitution method
Each line of a macro is scanned so it can be built up in stages before being passed
syntax analyser. The first stage is to substitute macro parameters throughout the m
and then to consider the variables. If string variables, logical variables and arithme
variables are prefixed by the $ symbol, they are replaced by a string equivalent. Norm
syntax checking is performed upon the line after these substitutions have been
performed.
164

Macros

ins
 the
cters

ble to
 or

nsion
p to a
An important exception to these values is that vertical bar characters (‘|’) prevent
substitution from taking place in some circumstances. To be specific, if a line conta
vertical bars, substitution will be turned off after this first vertical bar, on again after
second one, off again after the third, and so on. This allows the use of dollar chara
in symbols and labels (see the section Symbols on page 51 for details).

In certain circumstances, it may be necessary to prefix a macro parameter or varia
a label. In order to ensure that the Assembler can recognise the macro parameter
variable, it can be terminated by a dot ‘.’ The dot will be removed during substitution.

For example:

MACRO
$T33 MACRONAME

.............

.............
$T33.L25...lots of...

.....code....
MEND

If the dot had been omitted, the Assembler would not have related the $T33 part of the
label to the macro statement and would have accepted $T33L25 as a label in its own
right, which was not the intention.

Nesting macros
The body of a macro can contain a call to another macro; in other words, the expa
of one macro can contain references to macros. Macro invocation may be nested u
depth of 255.

A division macro
As a final example, the following macro does an unsigned integer division:

; A macro to do unsigned integer division. It takes four parameters, each of
; which should be a register name:
;
; $Div: The macro places the quotient of the division in this register -
; ie $Div := $Top DIV $Bot.
; $Div may be omitted if only the remainder is wanted.
; $Top: The macro expects the dividend in this register on entry and places
; the remainder in it on exit - ie $Top := $Top MOD $Bot.
; $Bot: The macro expects the divisor in this register onentry. It does not
; alter this register.
; $Temp:The macro uses this register to hold intermediate results. Its initial
; value is ignored and its final value is not useful.
;
; $Top, $Bot, $Temp and (if present) $Div must all be distinct registers.
; The macro does not check for division by zero; if there is a risk of this
; happening, it should be checked for outside the macro.
165

A division macro
MACRO
$Label DivMod $Div,$Top,$Bot,$Temp

ASSERT $Top <> $Bot ; Produce an error if the
ASSERT $Top <> $Temp ; registers supplied are
ASSERT $Bot <> $Temp ; not all different.
["$Div" /= ""
ASSERT $Div <> $Top
ASSERT $Div <> $Bot
ASSERT $Div <> $Temp
]

$Label MOV $Temp,$Bot ; Put the divisor in $Temp
CMP $Temp,$Top,LSR #1 ; Then double it until

90 MOVLS $Temp,$Temp,LSL #1 ; 2 * $Temp > $Top.
CMP $Temp,$Top,LSR #1
BLS %b90
["$Div" /=""
MOV $Div,#0 ; Initialise the quotient.
]

91 CMP $Top,$Temp ; Can we subtract $Temp?
SUBCS $Top,$Top,$Temp ; If we can, do so.
["$Div /= ""
ADC $Div,$Div,$Div ; Double $Div & add new bit
]
MOV $Temp,$Temp,LSR #1 ; Halve $Temp,
CMP $Temp,$Bot ; and loop until we’ve gone
BHS %b91 ; past the original divisor.
MEND

The statement:

Divide DivMod R0,R5,R4,R2

would be expanded to:

ASSERT R5 <> R4 ; Produce an error if the
ASSERT R5 <> R2 ; registers supplied are
ASSERT R4 <> R2 ; not all different
ASSERT R0 <> R5
ASSERT R0 <> R4
ASSERT R0 <> R2

Divide MOV R2,R4 ; Put the divisor in R2.
CMP R2,R5,LSR #1 ; Then double it until

90 MOVLS R2,R2,LSL #1 ; 2 * R2 > R5.
CMP R2,R5,LSR #1
BLS %b90
MOV R0,#0 ; Initialise the quotient.

91 CMP R5,R2 ; Can we subtract R2?
SUBCS R5,R5,R2 ; If we can, do so.
ADC R0,R0,R0 ; Double R0 & add new bit.
MOV R2,R2,LSR #1 ; Halve R2,
CMP R2,R4 ; and loop until we’ve gone
BHS %b91 ; past the original divisor.
166

Macros

r

Similarly, the statement:

DivMod ,R6,R7,R8

would be expanded to:

ASSERT R6 <> R7 ; Produce an error if the
ASSERT R6 <> R8 ; registers supplied are
ASSERT R7 <> R8 ; not all different.
MOV R8,R7 ; Put the divisor in R8.
CMP R8,R6,LSR #1 ; Then double it until

90 MOVLS R8,R8,LSL #1 ; 2 * R8 > R6.
CMP R8,R6,LSR #1
BLS %b90

91 CMP R6,R8 ; Can we subtract R8?
SUBCS R6,R6,R8 ; If we can, do so.
MOV R8,R8,LSR #1 ; Halve R8,
CMP R8,R7 ; and loop until we’ve gone
BHS %b91 ; past the original divisor.

Note:

l Conditional assembly is used to reduce the size of the assembled code (and increase
its speed) in the case where only the remainder is wanted.

l Local labels are used to avoid multiply defined labels if DivMod is used more than
once in the assembler source.

l The letter ‘b’ is used in the local label references (indicating that the Assemble
should search backwards for the corresponding local labels) to ensure that the
correct local labels are found.
167

168

Part 3 – Developing software
for RISC OS
169

170

12 Exception handling

his chapter describes the processor configuration and modes used by RISC OS when

running on 32 bit architecture ARMs (i.e. ARM6 series and later), and the ways in T
which this affects exception handling. If you are writing any exception handler that you
into
er the

ten

ng
2 bit
tion
es a

 PSR
. It
hips
eer
ch as

ged on
wish to run on such a processor, you must read both this chapter and the chapter The
ARM CPU on page 29, especially the section Exceptions.

RISC OS processor configuration and modes
Early in its startup code, RISC OS writes to the ARM’s control register to change it
the 32 bit program and data space configuration, where it remains. You must not alt
processor’s configuration yourself when writing code for RISC OS.

Although RISC OS runs under a 32 bit configuration, it remains in 26 bit modes for
normal operation, providing a high degree of backward compatibility with code writ
to run on earlier 26 bit processors.

However, because the processor is in a 32 bit configuration, all exceptions (includi
Undefined Instruction and Software Interrupt) force the processor to a privileged 3
mode appropriate to the exception. There are therefore some differences in excep
handling between 26 and 32 bit architecture ARM chips, although RISC OS provid
considerable degree of backward compatibility by faking 26 bit behaviour on 32 bit
architecture chips in most circumstances. For full details, see the next section.

The pre-veneers
To ensure easy backward compatibility, 32 bit aware versions of RISC OS install a
pre-veneer on all hardware vectors apart from FIQ (see the section Writing to the FIQ
vector on page 172) and address exception (which is never generated by a 32 bit
configured ARM). Each pre-veneer first sets up R14 to contain a combined PC and
that will return the processor to the 26 bit mode it was in when the exception arose
then places the processor in the privileged 26 bit mode used by the earlier 26 bit c
for that exception. It thus effectively fakes the earlier chips’ behaviour. The pre-ven
is called before any exception handlers that are installed with software interfaces su
OS_ChangeEnvironment, so you can usually use such exception handlers unchan
all versions of RISC OS (hardware dependencies excepted).
171

Claiming the hardware vectors

nd
dlers

,
Entering 32 bit modes

One consequence of this is that you may not enter a 32 bit mode with IRQs enabled.
Were you to do so, and an IRQ were to occur, the IRQ pre-veneer would be entered; then
the IRQ handler would return you to a 26 bit mode, rather than the 32 bit mode you were
in at the time of the IRQ.

Claiming the hardware vectors
Under earlier versions of RISC OS, you could also claim the hardware vectors directly,
by overwriting the existing instruction on the vector, and replacing it afterwards. It was
your responsibility to do any housekeeping, in particular checking for subsequent
claimants before restoring the original instruction.

Under 32 bit aware versions of RISC OS, if you attempt to write to any hardware vector
other than FIQ a data abort is generated. You must instead call the new SWI
OS_ClaimProcessorVector (page 5-46 of the RISC OS 3 Programmer’s Reference
Manual), passing it the address of your exception handler. The handler is installed on the
vector, and is called directly, before the pre-veneers. Such handlers are therefore entered
in a 32 bit mode.

For handlers installed directly on the vector to work across all versions of RISC OS, you
must therefore change the method of claiming and releasing the vector depending on the
version of RISC OS:

l On versions up to RISC OS 3.1, you must write directly to the vector, doing any
appropriate housekeeping yourself

l On later versions you must call OS_ClaimProcessorVector.

Your handler must also cope with running in both 26 bit and 32 bit modes.

Writing to the FIQ vector
On a 32 bit architecture ARM, the FIQ vector is entered in FIQ mode (i.e. the 32 bit
form of the mode). There are no pre-veneers to simulate 26 bit behaviour. To install a
FIQ handler, you must write directly to the FIQ vector, just as always.

The sample code below is the recommended way to write to the FIQ vector on both 26
and 32 bit configured processors – you can use the same code on all versions of
RISC OS. Obviously the handler you install must cope with running in both 26 bit a
32 bit FIQ modes. In practice this is unlikely to be a problem, and most existing han
will run unchanged once installed.

In the code, comments that are prefixed by ‘32:’ apply to a 32 bit configured processor
and comments that are prefixed by ‘26:’ apply to a 26 bit configured processor.
172

Exception handling
; We assume that at this point, you are already in a privileged 26 bit mode.

; 26: Does not alter processor mode. Reads as follows:
; NOP ; 26: Encodes a NOP (TST Ra,R0)
; Push Ra ; 26: Pushes entry Ra onto stack
; ORR Ra, Ra, #2_11000000 ; 26: Corrupts Ra
; NOP ; 26: Encodes a NOP (TEQ R9,Ra)
; ORR Ra, Ra, #2_10000 ; 26: Corrupts Ra
; NOP ; 26: Encodes a NOP (TEQ R9,Rb)

; 32: Switch to _32 mode with IRQs and FIQs off.
; 32: Must switch interrupts off before switching mode as there can be
; 32: an interrupt after the MSR instruction but before the next one.
MRS Ra, CPSR_all ; 32: Read privileged 26 bit mode,
Push Ra ; 32: and push it onto the stack
ORR Ra, Ra, #2_11000000 ; 32: Set IRQ and FIQ disable bits
MSR CPSR_all, Ra ; 32: Disable IRQs and FIQs
ORR Ra, Ra, #2_10000 ; 32: Set M4 bit (for 32 bit mode)
MSR CPSR_all, Ra ; 32: Change to 32 bit mode

; Now do a NOP, to let things settle down:
NOP ; e.g. MOV R0,R0

; Now in a suitable mode to write FIQ handler code to FIQ vector
; (&1C-&FC incl.), whatever the processor configuration.
; Code written should be able to run in both fiq_32 and fiq_26 modes,
; and should end with a SUBS PC,R14,#4 to return normally.
; For example we might write the handler code like this:

; Assume Rb already points to location from which to copy the handler.

MOV LR, #FIQVector ; Get address of FIQ vector

40 LDR Ra, [Rb], #4 ; Get opcode.
TEQS Ra, #0 ; All done?
STRNE Ra, [LR], #4 ; No, so copy to FIQ area...
BNE %BT40 ; ...and repeat for next opcode.

; The above may not be optimal, and is for illustration only.

; Having written FIQ vector, now need to restore the original
; privileged 26 bit mode.

; 26: Does not alter processor mode. Reads as follows:
; PULL Ra ; 26: Pull entry Ra from stack
; NOP ; 26: Encodes a NOP (TST Ra,R0)

PULL Ra ; 32: Pull saved CPSR, and
MSR CPSR_all, Ra ; 32: Restore privileged 26 bit mode

; Now back where we started, except Ra and Rb should be treated as corrupted.
; (We must assume neither is preserved, because we don’t know the processor
; configuration.)
173

174

13 Writing relocatable modules in
assembler

elocatable modules are the basic building blocks of RISC OS and the means by

which RISC OS can be extended by a user.R
The relocatable module system provides mechanisms suitable for

ress
ents it
ent
bug.

ed to
e the
l providing device drivers

l extending the set of RISC OS *commands

l providing shared services to applications (eg the shared C library)

l implementing ‘terminate and stay resident’ (TSR) applications.

All these projects require code either to be more persistent than standard RISC OS
applications or to be used by more than one application, hence resident in the add
space of more than one application. If your program does not have these requirem
is not recommended to put it in modules, as relocatable modules are more persist
consumers of system resources than applications, and are also more difficult to de

This chapter is not intended to provide a complete set of the technical details you ne
know to construct any relocatable module. For more information on such details, se
RISC OS 3 Programmer’s Reference Manual. The points covered here are intended to
provide help for constructing relocatable modules specifically in assembly language.

For more details of memory management in relocatable modules, you should again see
the RISC OS 3 Programmer’s Reference Manual.

Unlike the construction of relocatable modules in high level languages, no tools are
provided to generate substantial standard portions of code. This means that you have to
construct the module header table, workspace routines, etc. yourself.

Note that some of the relocatable module entry points are called in SVC mode. Such
routines may use SWIs implemented by other parts of RISC OS, but unlike being in user
mode, SWIs corrupt R14, so this must be stored away. Floating point instructions should
not be used from SVC mode.
175

Assembler directives

 call
ces
e

vides
and to

o
Assembler directives
ObjAsm can be used to assemble a module from a set of source files, a link step being
required to join the output object files to form the usable module. The separation of
routines into separately assembled files has several advantages.

It can be a good idea to construct a module with the module header and the small
routines/data associated with it in one source file, to be linked with the code forming the
body of the module.

Such a module header file must be linked so that it is placed first in the module binary.
To do this it should contain an AREA directive at its head such as:

AREA |!!!Module$$Header|, CODE, READONLY

Areas are sorted by type and name; a name beginning with ‘!’ is placed before an
alphabetic name, so the above can be used to ensure first placing.

The module header source needs to contain IMPORT directives making available any
symbols referenced in the module body. In addition, the initialisation routine should
__RelocCode, a routine added by the linker which relocates any absolute referen
to symbols when the module is initialised. If the module header source contains th
initialisation routine, it must use the IMPORT directive to make __RelocCode
available.

The module header must be preceded by the ENTRY directive:

ENTRY

Module_BaseAddr
DCD RM_Start -Module_BaseAddr
DCD RM_Init -Module_BaseAddr
DCD RM_Die -Module_BaseAddr
DCD RM_Service -Module_BaseAddr
DCD RM_Title -Module_BaseAddr
DCD RM_HelpStr -Module_BaseAddr
DCD RM_HC_Table -Module_BaseAddr

Example
This product is supplied with the source for an example relocatable module that pro
an extra soft screen mode: Mode 63. This has to be done via service call handling,
be useful must be persistent, so providing a typical use of relocatable modules.

There are two source files held in AcornC_C++.Examples.AsmModule.s:

l The ModeExHdr file produces the module header, and may be useful for you t
copy and edit to form headers for your own modules.
176

Writing relocatable modules in assembler
l The other file, ModeExBody, is the source for the main module body.

To build the module, use ObjAsm to assemble the source. Then link the resultant object
files using Link, remembering first to set the Module option on its Setup dialogue box.

The module is specific to VIDC1 and VIDC1a, and so will not work on Acorn
computers that are fitted with later versions of VIDC – such as the Risc PC.
177

178

14 Interworking assembler with C

nterworking assembly language and C – writing programs with both assembly

language and C parts – requires using both ObjAsm and C/C++.I
S
Interworking assembly language and C allows you to construct top quality RISC O

oints
ke
he
r
s of

 that

 and
 and

nput
attern

pendix

ning
applications. Using this technique you can take advantage of many of the strong p
of both languages. Writing most of the bulk of your application in C allows you to ta
advantage of the portability of C, the maintainability of a high level language, and t
power of the C libraries and language. Writing critical portions of code in assemble
allows you to take advantage of all the speed of the Archimedes and all the feature
the machine (eg the complete floating point instruction set).

The key to interworking C and assembler is writing assembly language procedures
obey the ARM Procedure Call Standard (APCS). This is a contract between two
procedures, one calling the other. The called procedure needs to know which ARM
floating point registers it can freely change without restoring them before returning,
the caller needs to know which registers it can rely on not being corrupted over a
procedure call. Additionally both procedures need to know which registers contain i
arguments and return arguments, and the arrangement of the stack has to follow a p
that debuggers, etc. can understand. For the specification of the APCS, see the ap
ARM procedure call standard on page 249 of the accompanying Desktop Tools guide.

Examples
The following examples are provided to demonstrate how to write programs combi
assembly language and C.

PrintLib

The directory AcornC_C++.Examples.PrintLib.s contains three source files
from which you can build a library: PrintStr, PrintHex and PrintDble. These
are the assembly language sources for three screen printing routines: print_string,
print_hex and print_double. These respectively print null terminated strings,
integers in hexadecimal, and double precision floating point numbers in scientific
format.
179

Examples

ll C

ved
d by
Each routine is written to obey the APCS, so it can be called from assembler, C, or any
other high level language obeying the APCS. The sources for PrintLib illustrate several
aspects of the APCS, such as the distinction between leaf and non-leaf procedures, and
how floating point arguments are passed into a procedure.

Compiling the CTestPrLib example

To show you that you can call the routines in PrintLib from C, we’ve supplied a sma
program in AcornC_C++.Examples.PrintLib.c.CTestPrLib. To build this
example, you must:

1 Build the PrintLib library; you’ll find instructions for this in the section Assembler
example on page 134 of the Desktop Tools guide.

2 Start CC if you’ve not already got it loaded.

3 Drag the CTestPrLib file to the CC icon, which will display its Setup dialogue
box with CTestPrLib already entered as the source to compile.

4 Add the full pathname of the PrintLib library to the list of Libraries on the Setup
menu.

5 Click on Run to compile and link the program.

6 Save the program to disc.

To run the program, double click on its icon in the directory display to which you sa
it. A standard RISC OS command line output window appears containing text printe
the assembly language library routines as a result of arguments passed from C:
180

Interworking assembler with C

orm a

en

r and

nd
nt
Compiling and linking CTestPrLib in separate stages

If you prefer, you can instead use the Compile only option of CC to compile
CTestPrLib to an object file.

You can then use Link to link this object file with the libraries it uses. As well as the
PrintLib library, it also uses the C library, so you must link three files: the object code for
CTestPrLib, the library built from the PrintLib source, and the C library stubs held in
AcornC_C++.Libraries.clib.o.stubs.

(In the above section Compiling the CTestPrLib example, the C library stubs were linked
in because they were already in the Setup menu’s default list of Libraries.)

CStatics

The directory AcornC_C++.Examples.CStatics gives an example of accessing
C static variables from both assembler and C source code. The example builds to f
relocatable module providing a single * Command: *CStatics.

The files in the directory are as follows:

l c.CInit is the C source code. It declares two variables: extern int var1,
which is provided by and initialised to 0 in s.AsmInit (see below), and
int var2, which it initialises as 0. It prints the values of the two variables. It th
calls the routine Asm_Change_Vars provided by s.AsmInit (see below),
which changes the values of the two variables. Finally it prints the new values.

l cmhg.Header is the CMHG description file for the module. hdr.CVars is an
assembler source file that contains a series of macros used by s.AsmInit. You
will find these useful if you too ever need to share static data between assemble
C.

l MakeFile is the make file for the CStatics module.

l o is an empty directory used to hold the object files created when making the
CStatics module.

l s.AsmInit is the assembler source code. It initialises the variable var1 to 0 a
exports it; it also imports the variable var2. It also provides an APCS conforma
routine Asm_Change_Vars which adds 10 to var1 and subtracts 10 from var2.
All this code makes heavy use of the macros in hdr.CVars.

To build the CStatics module, simply double click on the MakeFile.
181

Examples
When Make has completed, you can see the example in use. Load the resultant
CStatics module by double clicking on it, then type CStatics at the command
line. You will get this output:

var1 = 0
var2 = 0
var1 = 10
var1 = -10

If you repeat the *CStatics command you will see the variables change again:

var1 = 10
var2 = -10
var1 = 20
var1 = -20

and so on, every time you repeat the command.
182

Part 4 – Appendixes
183

184

Appendix A: Changes to the assembler

his release of the assembler replaces the product Acorn Assembler Release 2. It has

seen the following major changes:T
l The product has been merged with the C compiler.
lease

 of
nying
l ObjAsm has added support for the ARM6, ARM7 and ARM7M versions of the
processor. All new instructions are implemented, and there is also support for other
new features such as big- and little-endian memory systems.

l ObjAsm now accepts instruction mnemonics in lower case; this feature can be
disabled for backward compatibility.

l ObjAsm now supports many more options through its Setup menu.

l The AAsm tool is no longer supplied, but has been replaced – at least for this re
– by a backward compatible mode.

l The Toolbox has been added to the product, to facilitate the design and coding
consistent user interfaces for RISC OS desktop applications. See the accompa
User Interface Toolbox guide.
185

186

Appendix B: Error messages

his appendix lists most of the common error messages that you may get when using

the assembler, and gives an explanation for each one of the circumstances that may T
provoke the error.
l ADRL can’t be used with PC
The destination register of an ADRL opcode cannot be PC.

l Area directive missing
An attempt has been made to generate code or data before the first AREA directive.

l Area name missing
The name for the area has been omitted from an AREA directive.

l Bad alignment boundary
An alignment has been given which is not a power of two.

l Bad area attribute or alignment
Unknown attribute or alignment not in the range 2-12.

l Bad based number
A digit has been given in a based number which is not less than the base, for
example: 7_8.

l Bad exported name
The wording following the EXPORT directive is syntactically not a name.

l Bad exported symbol type
The exported symbol is not a program-relative symbol.

l Bad expression type
For example, a number was expected but a string was encountered.

l Bad floating point constant
The only allowed floating point constants are 0, 1, 2, 3, 5, 10 and 0.5. They must be
written in exactly these forms.

l Bad global name
An incorrect character appears in the global name.

l Bad hexadecimal number
The & introducing a hexadecimal number is not followed by a valid hexadecimal
digit.

l Bad imported name
The wording following the IMPORT directive is syntactically not a name.
187

Error messages

 has
l Bad local label number
A local label number must be in the range 0-99.

l Bad local name
An incorrect character appears in the local name.

l Bad macro parameter default value

l Bad opcode symbol
A symbol has been encountered in the opcode field which is not a directive and is
syntactically not a label.

l Bad operand type
For example, a logical value was supplied where a string was required.

l Bad operator
The name between colons is not an operator name.

l Bad or unknown attribute
Faulty attribute on an IMPORT directive.

l Bad register list symbol
An expression used as a register set definition (eg in LDM or STM) was not
understood or of the wrong type.

l Bad register name symbol
A register name is wrong. Note that all register names must be defined using the RN
directive.

l Bad register range
A register range from a higher to a lower register has been given; for example,
R4-R2 has been typed.

l Bad rotator
The rotator value supplied must be even and in the range 0-30.

l Bad shift name
Syntax error in shift name.

l Bad string escape sequence
A C style escape character sequence (beginning with ‘\’) within a string was
incorrect.

l Bad symbol
Syntax error in a symbol name.

l Bad symbol type
This will occur after a # or * directive and means that the symbol being defined
already been assumed to be of a type which cannot be defined in this way.

l Branch offset out of range
The destination of a branch is not within the ARM address space.
188

Error messages

.

l Code generated in data area
An opcode has been found in an area which is not a code area.

l Coprocessor number out of range

l Coprocessor operation out of range

l Coprocessor register number out of range

l Data transfer offset out of range
The immediate value in a data transfer opcode must be in the range:
–4095 ≤ e ≤ +4095

l Decimal overflow
The number exceeds 32 bits.

l Division by zero
Entry address already set
This is the second or subsequent ENTRY directive.

l Error in macro parameters
The macro parameters do not match the prototype statement in some way.

l Error on code file
An error occurred while writing the output file.

l External area relocatable symbol used
A symbol which is an address in another area has been used in a non-trivial
expression.

l Externals not valid in expressions
An imported symbol has been used in a non-trivial expression.

l Floating point register number out of range

l Floating point overflow

l Floating point number not found

l Global name already exists
This name has already been used in some other context.

l Hexadecimal overflow
The number exceeds 32 bits.

l Illegal combination of code and zero initialised
An object file area cannot be declared both to be code and zero initialised data

l Illegal label parameter start in macro prototype

l Illegal line start should be blank
A label has been found at the start of a line with a directive which cannot be
labelled.
189

Error messages

e
l Immediate value out of range
An immediate value in a data processing instruction cannot be obtained by rotating
an 8-bit value by an even amount.

l Imported name already exists
The name has already been defined or used for something else.

l Incorrect routine name
The optional name following a branch to a local label or on a local label definition
does not match the routine’s name.

l Invalid line start
A line may only start with a letter character (the first letter of a label), a digit (th
first character of a local label), a semi-colon or a space.

l Invalid operand to branch instruction

l Label missing from line start
The absence of a label where one is required; for example, in the * directive.

l Local name already exists
A local name has been defined more than once.

l Locals not allowed outside macros
A local variable has been defined in the main body of the source file.

l MEND not allowed within conditionals
A MEND has been found amongst [|] or WHILE/WEND directives.

l Missing close bracket
A missing close bracket or too many opening brackets.

l Missing close quote
No closing quote at the end of a string constant.

l Missing close square bracket
A] is absent.

l Missing comma
Syntax error due to missing comma.

l Missing hash
The hash (#) preceding an immediate value has been forgotten.

l Missing open bracket
A missing open bracket or too many closing brackets.

l Missing open square bracket

l Multiply or incompatibly defined symbol
A symbol has been defined more than once.

l Multiply destination equals first source
190

Error messages

l.
l No current macro expansion
A MEND, MEXIT or local variable has been encountered but there is no
corresponding MACRO.

l Non-zero data within uninitialised area

l Numeric overflow
The number exceeds 32 bits.

l Register occurs multiply in LDM/STM list

l Register symbol already defined
A register symbol has been defined more than once.

l Register value out of range
Register values must be in the range 0-15.

l Shift option out of range
The range permitted is 0-31, 1-32 or 1-31 depending on the shift type.

l String overflow
Concatenation has produced a string of more than 256 characters.

l String too short for operation
An attempt has been made to manipulate a string using :LEFT: or :RIGHT: which
has insufficient characters in it.

l Structure mismatch
Mismatch of] with [or |, or WEND and WHILE.

l Substituted line too long
During variable and macro parameter substitution the line length has exceeded 256
characters.

l Symbol missing
An attempt has been made to reference the length attribute of a symbol but the
symbol was omitted or the name found was not recognised as a symbol.

l Syntax error following directive
An operand has been provided to a directive which cannot take one, for example:
the ‘|’ directive.

l Syntax error following label
A label can only be followed by spaces, a semi-colon or the end-of-line symbo

l Syntax error following local label definition
A space, comment, or end-of-line did not immediately follow the local label.

l Too late to define symbol as register list
A register list was defined for a symbol already used for another purpose.

l Too late to ban floating point

l Too late to set origin now
The ORG must be set before the Assembler generates code.
191

Error messages
l Too many actual parameters
A macro call is trying to pass too many parameters.

l Translate not allowed in pre-indexed form
The translate option may not be specified in pre-indexed forms of LDR and STR.

l Unable to close code file

l Unable to open code file

l Undefined exported symbol
The symbol exported is undefined.

l Undefined symbol
A symbol has not been given a value.

l Unexpected characters at end of line
The line is syntactically complete, but more information is present. The semi-colon
prefixing comments may have been omitted.

l Unexpected operand
An operand has been found where a binary operator was expected.

l Unexpected operator
A non-unary operator has been found where an operand was expected.

l Unexpected unary operator
A unary operator has been found where a binary operator was expected.

l Unknown opcode
A name in the opcode field has been found which is not an opcode, a directive, nor
a macro.

l Unknown operand
An operand in the bracketed format {PC} {VAR} {OPT} {TRUE} {FALSE} is not
of the correct form.

l Unknown or wrong type of global/local symbol
Type mismatch, for example, attempting to set or reset the value of a local or global
symbol as logical, where it is a string variable.

l Unknown shift name
Not one of the six legal shift mnemonics.
192

Appendix C: Example assembler
fragments

he following example assembly language fragments show ways in which the basic

ARM instructions can combine to give efficient code. None of the techniques T
illustrated save a great deal of execution time (although they all save some), mostly they

just save code.

Note that, when optimising code for execution speed, consideration to different
hardware bases should be given. Some changes which optimise speed on one machine
may slow the code on another. An example is unrolling loops (eg divide loops) which
speeds execution on an ARM2, but can slow execution on an ARM3, which has a cache.

Using the conditional instructions

Using conditionals for logical OR
CMP Rn,#p ; IF Rn=p OR Rm=q THEN GOTO Label
BEQ Label
CMP Rm,#q
BEQ Label

can be replaced by:

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try
BEQ Label ; another test.

Absolute value
TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2’s complement if necessary.

Combining discrete and range tests
TEQ Rc,#127 ; discrete test
CMPNE Rc,#" "-1 ; range test
MOVLS Rc,#"." ; IF Rc<#" " OR Rc=CHR$127 THEN Rc:="."
193

Pseudo-random binary sequence generator

Division and remainder
; Enter with dividend in Ra, divisor in Rb.
; Divisor must not be zero.

MOV Rd,Rb ; Put the divisor in Rd.
CMP Rd,Ra,LSR #1 ; Then double it until

Div1 MOVLS Rd,Rd,LSL #1 ; 2 * Rd > divisor.
CMP Rd,Ra,LSR #1
BLS Div1
MOV Rc,#0 ; Initialise the quotient

Div2 CMP Ra,Rd ; Can we subtract Rd?
SUBCS Ra,Ra,Rd ; If we can, do so
ADC Rc,Rc,Rc ; Double quotient and add new bit
MOV Rd,Rd,LSR #1 ; Halve Rd.
CMP Rd,Rb ; And loop until we’ve gone
BHS Div2 ; past the original divisor,

; Now Ra holds remainder, Rb holds original divisor,
; Rc holds quotient and Rd holds junk.

Pseudo-random binary sequence generator
It is often necessary to generate (pseudo-) random numbers, and the most efficient
algorithms are based on shift generators with a feedback rather like a cyclic redundancy
check generator. Unfortunately, the sequence of a 32 bit generator needs more than one
feedback tap to be maximal length (that is, 232–1 cycles before repetition). A 33 bit shift
generator with taps at bits 20 and 33 is required.

The basic algorithm is:

l new bit := bit 33 EOR bit 20

l shift left the 33 bit number

l put in new bit at the bottom.

l Repeat for all the 32 new bits needed.

All this can be done in five S cycles:

; Enter with seed in Ra (32 bits),Rb (1 bit in Rb lsb)
; Uses Rc

TST Rb,Rb,LSR #1 ; top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!)

; New seed in Ra, Rb as before
194

Example assembler fragments
Multiplication by a constant

Multiplication by 2n (1,2,4,8,16,32…)
MOV Ra,Ra,LSL #n;

Multiplication by 2 n+1 (3,5,9,17…)
ADD Ra,Ra,Ra,LSL #n.

Multiplication by 2 n-1 (3,7,15…)
RSB Ra,Ra,Ra,LSL #n

Multiplication by 6
ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL #1 ; and then by 2.

Multiply by 10 and add in extra number
AD Ra,Ra,Ra,LSL #2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL #1 ; Multiply by 2 and add in next digit

General recursive method for Rb := Ra ×C, C a constant

If C even, say C = 2n×D, D odd:

D=1 : MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

If C MOD 4 = 1, say C = 2n×D+1, D odd, n>1:

D=1 : ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n.

If C MOD 4 = 3, say C = 2n×D–1, D odd, n>1:

D=1 : RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n.
195

Loading a word from an unknown alignment
This is not quite optimal, but close. An example of its non-optimal use is multiply by 45
which is done by:

RSB Rb,Ra,Ra,LSL #2 ; Multiply by 3
RSB Rb,Ra,Rb,LSL #2 ; Multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL #2 ; Multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL #3 ; Multiply by 9
ADD Rb,Rb,Rb,LSL #2 ; Multiply by 5*9 = 45

Loading a word from an unknown alignment
There is no instruction to load a word from an unknown alignment. To do this requires
some code (which can be a macro) along the following lines:

; Enter with 32-bit address in Ra
; Uses Rb, Rc; result in Rd
; Note d must be less than c

BIC Rb,Ra,#3 ; Get word-aligned address
LDMIA Rb,{Rd,Rc} ; Get 64 bits containing answer
AND Rb,Ra,#3 ; Correction factor in bytes
MOVS Rb,Rb,LSL #3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; If not aligned, produce bottom

; of result word
RSBNE Rb,Rb,#32 ; Get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; Combine two halves to get result

Sign/zero extension of a half word
MOV Ra,Ra,LSL #16 ; Move to top,
MOV Ra,Ra,LSR #16 ; and back to bottom

; Use ASR to get sign extended version

Return setting condition codes
CFLAG * &20000000

BICS PC,R14,#CFLAG ; Returns clearing C flag
; from link register

ORRCCS PC,R14,#CFLAG ; Conditionally returns setting C flag

This code should not be used except in user mode, since it will reset the interrupt mode
to the state which existed when the R14 was set up. This rule generally applies to
non-user mode programming.
196

Example assembler fragments

s
hether

ng

rm
For example in supervisor mode:

MOV PC,R14

is safer than

MOVS PC,R14

However, note that MOVS PC,R14 is required by the ARM Procedure Call Standard,
used by code compiled from the high level language C. Such code, of course, runs in
user mode.

Full multiply
The ARM’s multiply instruction multiplies two 32 bit numbers together and produce
the least significant 32 bits of the result. These 32 bits are the same regardless of w
the numbers are signed or unsigned.

To produce the full 64 bits of a product of two unsigned 32 bit numbers, the followi
code can be used:

; Enter with two unsigned numbers in Ra and Rb.
MOVS Rd,Ra,LSR #16 ; Rd is ms 16 bits of Ra
BIC Ra,Ra,Rd,LSL #16 ; Ra is ls 16 bits
MOV Re,Rb,LSR #16 ; Re is ms 16 bits of Rb
BIC Rb,Rb,Re,LSL #16 ; Rb is ls 16 bits
MUL Rc,RA,Rb ; Low partial product
MUL Rb,Rd,Rb ; First middle partial product
MUL Ra,Re,Ra ; Second middle partial product
MULNE Rd,Re,Rd ; High partial product - NE

; condition reduces time taken
; if Rd is zero

ADDS Ra,Ra,Rb ; Add middle partial products -
; could not use MLA because we
; need carry

ADDCS Rd,Rd, #&10000 ; Add carry into high partial
; product

ADDS Rc,Rc,Ra,LSL #16 ; Add middle partial product
ADC Rd,Rd,Ra,LSR #16 ; sum into low and high words

; of result
; Now Rc holds the low word of the product, Rd its high word,
; and Ra, Rb and Re hold junk.

Of course, the ARM7M core provides the Multiply Long class of instructions to perfo
a 64 bit signed or unsigned multiply or multiply-accumulate (see Multiply Long and
Multiply-Accumulate Long (UMULL, SMULL, UMLAL, SMLAL) on page 84).
197

198

Appendix D: Warnings on the use of ARM
assembler

he ARM processor family uses Reduced Instruction Set (RISC) techniques to

maximise performance; as such, the instruction set allows some instructions and T
code sequences to be constructed that will give rise to unexpected (and potentially

r)

se
g.
erroneous) results. These cases must be avoided by all machine code writers and
generators if correct program operation across the whole range of ARM processors is to
be obtained.

In order to be upwards compatible with future versions of the ARM processor family
never use any of the undefined instruction formats:

l those shown in the section Undefined instructions on page 112, which the processor
traps;

l those which are not shown in the manual and which don’t trap (for example, a
Multiply instruction where bit 5 or 6 of the instruction is set).

In addition the condition code 1111 (which was given the mnemonic ‘NV’, i.e. neve
should not be used. We recommend that you use the instruction ‘MOV R0,R0’ as a
general purpose no-op.

This appendix lists the instructions and code sequences to be avoided. It is strongly
recommended that you take the time to familiarise yourself with these cases becau
some will only fail under particular circumstances which may not arise during testin

For more details on the ARM chip and its instruction set see the chapters The ARM CPU
on page 29 and CPU instruction set on page 55, and the datasheets for the different
versions of the ARM chip.
199

Restrictions to the ARM instruction set

STC

ror).

rs. If,
Restrictions to the ARM instruction set
There are three main reasons for restricting the use of certain parts of the instruction set:

l Dangerous instructions
Such instructions can cause a program to fail unexpectedly, for example:

LDM R15,Rlist

uses PC+PSR as the base and so can cause an unexpected address exception.

l Useless instructions
It is better to reserve the instruction space occupied by existing ‘useless’
instructions for instruction expansion in future processors. For example:

MUL R15,Rm,Rs

only serves to scramble the PSR.

This category also includes ineffective instructions, such as a PC relative LDC/
with writeback; the PC cannot be written back in these instructions, so the
writeback bit is ineffective (and an attempt to use it should be flagged as an er

l Instructions with undesirable side-effects
It is hard to guarantee the side-effects of instructions across different processo
for example, the following is used:

LDR Rd,[R15,#expression]!

the PC writeback will produce different results on different types of processor.
200

Warnings on the use of ARM assembler

sing a
r
R7,

ade

de

g
Instructions and code sequences to avoid

The instructions and code sequences are split into a number of categories. Each category
starts with an indication of which of the two main ARM variants (ARM2, ARM3) it
applies to, and is followed by a recommendation or warning. The text then goes on to
explain the conditions in more detail and to supply examples where appropriate.

Unless a program is being targeted specifically for a single version of the ARM
processor family, all of these recommendations should be adhered to.

TSTP/TEQP/CMPP/CMNP: Changing mode

Applicability: ARM2

When the processor’s mode is changed by altering the mode bits in the PSR u
data processing operation, care must be taken not to access a banked registe
(R8-R14) in the following instruction. Accesses to the unbanked registers (R0-
R15) are safe.

The following instructions are affected, but note that mode changes can only be m
when the processor is in a non-user mode:

TSTP Rn,Op2
TEQP Rn,Op2
CMPP Rn,Op2
CMNP Rn,Op2

These are the only operations that change all the bits in the PSR (including the mo
bits) without affecting the PC (thereby forcing a pipeline refill during which time the
register bank select logic settles).

The following examples assume the processor starts in Supervisor mode:

a) TEQP PC,#0
 MOV R0,R0 Safe: NOP added between mode change and
 ADD R0,R1,R13_usr access to a banked register (R13_usr)

b) TEQP PC,#0
 ADD R0,R1,R2 Safe: No access made to a banked register

c) TEQP PC,#0
 ADD R0,R1,R13_usr Fails: Data not read from Register R13_usr!

The safest default is always to add a NOP (e.g. MOV R0,R0) after a mode changin
instruction; this will guarantee correct operation regardless of the code sequence
following it.
201

Instructions and code sequences to avoid

ck
LDM/STM: Forcing transfer of the user bank (Part 1)

Applicability: ARM2, ARM3

Do not use writeback when forcing user bank transfer in LDM/STM.

For STM instructions the S bit is redundant as the PSR is always stored with the PC
whenever R15 is in the transfer list. In user mode programs the S bit is ignored, but in
other modes it has a second interpretation; S=1 is used to force transfers to take values
from the user register bank instead of from the current register bank. This is useful for
saving the user state on process switches.

Similarly, in LDM instructions the S bit is redundant if R15 is not in the transfer list. In
user mode programs, the S bit is ignored, but in non-user mode programs where R15 is
not in the transfer list, S=1 is used to force loaded values to go to the user registers
instead of the current register bank.

In both cases where the processor is in a non-user mode and transfer to or from the user
bank is forced by setting the S bit, writeback of the base will also be to the user bank
though the base will be fetched from the current bank. Therefore don’t use writeba
when forcing user bank transfer in LDM/STM.

The following examples assume the processor to be in a non-user mode and Rlist not
to include R15:

 STMxx Rn!,Rlist Safe: Storing non-user registers with write
back to the non-user base register

 LDMxx Rn!,Rlist Safe: Loading non-user registers with write
back to the non-user base register

 STMxx Rn,Rlist^ Safe: Storing user registers, but no base
write-back

 STMxx Rn!,Rlist^ Fails: Base fetched from non-user register,
but written back into user register

 LDMxx Rn!,Rlist^ Fails: Base fetched from non-user register,
but written back into user register
202

Warnings on the use of ARM assembler
LDM: Forcing transfer of the user bank (Part 2)

Applicability: ARM2, ARM3

When loading user bank registers with an LDM in a non-user mode, care must be
taken not to access a banked register (R8-R14) in the following instruction.
Accesses to the unbanked registers (R0-R7,R15) are safe.

Because the register bank switches from user mode to non-user mode during the first
cycle of the instruction following an LDM Rn,Rlist^, an attempt to access a banked
register in that cycle may cause the wrong register to be accessed.

The following examples assume the processor to be in a non-user mode and Rlist not
to include R15:

 LDM Rn Rlist^
 ADD R0,R1,R2 Safe: Access to unbanked registers after

LDM^

 LDM Rn,Rlist^
 MOV R0,R0 Safe: NOP inserted before banked register
 ADD R0,R1,R13_svc used following an LDM^

 LDM Rn,Rlist^
 ADD R0,R1,R13_svc Fails: Accessing a banked register

immediately after an LDM^ returns the
wrong data

 ADR R14_svc, saveblock
 LDMIA R14_svc, {R0 - R14_usr}^
 LDR R14_svc, [R14_svc,#15*4] Fails: Banked base register
 MOVS PC, R14_svc (R14_svc) used immediately

after the LDM^

 ADR R14_svc, saveblock
 LDMIA R14_svc, {R0 - R14_usr}^
 MOV R0,R0 Safe: NOP inserted before
 LDR R14_svc, [R14_svc,#15*4] banked register
 MOVS PC, R14_svc (R14_svc) used

Note: The ARM2 and ARM3 processors usually give the expected result, but cannot be
guaranteed to do so under all circumstances, therefore this code sequence should be
avoided in future.
203

Instructions and code sequences to avoid

f the

it is
WI

n

ext

etch
e

as a

e
n
fined
ready
 loop

 a
 pass
ial

SWI/Undefined Instruction trap interaction

Applicability: ARM2

Care must be taken when writing an undefined instruction handler to allow for an
unexpected call from a SWI instruction. The erroneous SWI call should be
intercepted and redirected to the software interrupt handler.

The implementation of the CDP instruction on ARM2 may cause – under certain
circumstances – a Software Interrupt (SWI) to take the Undefined Instruction trap i
SWI was the next instruction after the CDP. For example:

 SIN F0
 SWI &11 Fails: ARM2 may take the undefined instruction

trap instead of software interrupt trap.

All Undefined Instruction handler code should check the failed instruction to see if
a SWI, and if so pass it over to the software interrupt handler by branching to the S
hardware vector at address 8.

Undefined instruction/Prefetch abort trap interaction

Applicability: ARM2, ARM3

Care must be taken when writing the Prefetch abort trap handler to allow for a
unexpected call due to an undefined instruction.

When an undefined instruction is fetched from the last word of a page, where the n
page is absent from memory, the undefined instruction will cause the undefined
instruction trap to be taken, and the following (aborted) instructions will cause a pref
abort trap. One might expect the undefined instruction trap to be taken first, then th
return to the succeeding code will cause the abort trap. In fact the prefetch abort h
higher priority than the undefined instruction trap, so the prefetch abort handler is
entered before the undefined instruction trap, indicating a fault at the address of th
undefined instruction (which is in a page which is actually present). A normal retur
from the prefetch abort handler (after loading the absent page) will cause the unde
instruction to execute and take the trap correctly. However the indicated page is al
present, so the prefetch abort handler may simply return control, causing an infinite
to be entered.

Therefore, the prefetch abort handler should check whether the indicated fault is in
page which is actually present, and if so it should suspect the above condition and
control to the undefined instruction handler. This will restore the expected sequent
nature of the execution sequence. A normal return from the undefined instruction
handler will cause the next instruction to be fetched (which will abort), the prefetch
abort handler will be re-entered (with an address pointing to the absent page), and
execution can proceed normally.
204

Warnings on the use of ARM assembler

er):

e
Single instructions to avoid

Applicability: ARM2, ARM3

The following single instructions and code sequences should be avoided in writing
any ARM code.

Any instruction that uses the 1111 condition code

Avoid using the condition code 1111 (which was given the mnemonic ‘NV’, i.e. nev

 opcodeNV ...

i.e. any operation where «cond» = NV

By avoiding the use of the ‘NV’ condition code, 228 instructions become free for future
expansion.

Note: It is recommended that the instruction MOV R0,R0 be used as a general purpos
NOP.

Data processing

Avoid using R15 in the Rs position of a data processing instruction:

MOV|MVN«cond»« S» Rd,Rm,shiftname R15

CMP|CMN|TEQ|TST«cond»« P» Rn,Rm,shiftname R15

ADC|ADD|SBC...|EOR«cond»« S» Rd,Rn,shiftname R15

Shifting a register by an amount dependent upon the code position should be avoided.

Multiply and multiply-accumulate

Do not specify R15 as the destination register as only the PSR will be affected by the
result of the operation:

MUL«cond»« S» R15,Rm,Rs
MLA«cond»« S» R15,Rm,Rs,Rn

Do not use the same register in the Rd and Rm positions, as the result of the operation
will be incorrect:

MUL«cond»« S» Rd,Rd,Rs
MLA«cond»« S» Rd,Rd,Rs
205

Instructions and code sequences to avoid

 not
Single data transfer

Do not use a PC relative load or store with base writeback as the effects may vary in
future processors:

LDR|STR«cond»« B»«T» Rd,[R15,#expression]!
LDR|STR«cond»« B»«T» Rd,[R15,«-»Rm«,shift»]!

LDR|STR«cond»« B»«T» Rd,[R15],#expression
LDR|STR«cond»« B»«T» Rd,[R15],«-»Rm«,shift»

Note: It is safe to use pre-indexed PC relative loads and stores without base writeback.

Avoid using R15 as the register offset (Rm) in single data transfers as the value used will
be PC+PSR which can lead to address exceptions:

LDR|STR«cond»« B»«T» Rd,[Rn,«-»R15«,shift»]«!»
LDR|STR«cond»« B»«T» Rd,[Rn],«-»R15«,shift»

A byte load or store operation on R15 must not be specified, as R15 contains the PC, and
should always be treated as a 32 bit quantity:

LDR|STR«cond» B«T» R15,address

A post-indexed LDR|STR where Rm=Rn must not be used (this instruction is very
difficult for the abort handler to unwind when late aborts are configured – which do
prevent base writeback):

LDR|STR«cond»« B»«T» Rd,[Rn],«-»Rn«,shift»

Do not use the same register in the Rd and Rm positions of an LDR which specifies (or
implies) base writeback; such an instruction is ambiguous, as it is not clear whether the
end value in the register should be the loaded data or the updated base:

LDR«cond»« B»«T» Rn,[Rn,#expression]!
LDR«cond»« B»«T» Rn,[Rn,«-»Rm«,shift»]!

LDR«cond»« B»«T» Rn,[Rn],#expression
LDR«cond»« B»«T» Rn,[Rn],«-»Rm«,shift»
206

Warnings on the use of ARM assembler
Block data transfer

Do not specify base writeback when forcing user mode block data transfer as the
writeback may target the wrong register:

STM«cond» <FD|ED...|DB> Rn!,Rlist ^
LDM«cond» <FD|ED...|DB> Rn!,Rlist ^

where Rlist does not include R15.

Note: The instruction:

LDM«cond» <FD|ED...|DB> Rn!,<Rlist ,R15>^

does not force user mode data transfer, and can be used safely.

Do not perform a PC relative block data transfer, as the PC+PSR is used to form the base
address which can lead to address exceptions:

LDM|STM«cond» <FD|ED...|DB> R15«!»,Rlist« ^»

Single data swap

Do not perform a PC relative swap as its behaviour may change in the future:

SWP«cond»« B» Rd,Rm,[R15]

Avoid specifying R15 as the source or destination register:

SWP«cond»« B» R15,Rm,[Rn]
SWP«cond»« B» Rd,R15,[Rn]

Coprocessor data transfers

When performing a PC relative coprocessor data transfer, writeback to R15 is prevented
so the W bit should not be set:

LDC|STC«cond»« L» CP#,CRd,[R15]!

LDC|STC«cond»« L» CP#,CRd,[R15,#expression]!

LDC|STC«cond»« L» CP#,CRd,[R15]#expression !
207

Instructions and code sequences to avoid
Undefined instructions

ARM2 has two undefined instructions, and ARM3 has only one (the other ARM2
undefined instruction has been defined as the Single data swap operation).

Undefined instructions should not be used in programs, as they may be defined as a new
operation in future ARM variants.

Register access after an in-line mode change

Care must be taken not to access a banked register (R8-R14) in the cycle following an
in-line mode change. Thus the following code sequences should be avoided:

1 TSTP|TEQP|CMPP|CMNP«cond» Rn,Op2

2 any instruction that uses R8-R14 in its first cycle.

Register access after an LDM that forces user mode data transfer

The banked registers (R8-R14) should not be accessed in the cycle immediately after an
LDM that forces user mode data transfer. Thus the following code sequence should be
avoided:

1 LDM«cond» <FD|ED...|DB> Rn,Rlist ^
where Rlist does not include R15

2 any instruction that uses R8-R14 in its first cycle.

Other points to note

This section highlights some obscure cases of ARM operation which should be borne in
mind when writing code.

Use of R15

Applicability: ARM2, ARM3

Warning: When the PC is used as a destination, operand, base or shift register,
different results will be obtained depending on the instruction and the exact usage of
R15.

Full details of the value derived from or written into R15+PSR for each instruction class
is given in the chapter CPU instruction set on page 55. Care must be taken when using
R15 because small changes in the instruction can yield significantly different results. For
example, consider data operations of the type:

opcode«cond»« S» Rd,Rn,Rm
or opcode«cond»« S» Rd,Rn, Rm,shiftname Rs
208

Warnings on the use of ARM assembler

 of

l When R15 is used in the Rm position, it will give the value of the PC together with
the PSR flags.

l When R15 is used in the Rn or Rs positions, it will give the value of the PC without
the PSR flags (PSR bits replaced by zeros).

 MOV R0,#0
 ORR R1,R0,R15 ; R1:=PC+PSR (bits 31:26,1:0 reflect PSR flags)
 ORR R2,R15,R0 ; R2:=PC (bits 31:26,1:0 set to zero)

Note: The relevant instruction description in the chapter CPU instruction set on page 55
should be consulted for full details of the behaviour of R15.

STM: Inclusion of the base in the register list

Applicability: ARM2, ARM3

Warning: In the case of a STM with writeback that includes the base register in the
register list, the value of the base register stored depends upon its position in the
register list.

During an STM, the first register is written out at the start of the second cycle of the
instruction. When writeback is specified, the base is written back at the end of the
second cycle. An STM which includes storing the base, with the base as the first register
to be stored, will therefore store the unchanged value, whereas with the base second or
later in the transfer order, it will store the modified value.

For example:

 MOV R5,#&1000
 STMIA R5!,{R5-R6} ; Stores value of R5=&1000

 MOV R5,#&1000
 STMIA R5!,{R4-R5} ; Stores value of R5=&1008

MUL/MLA: Register restrictions

Applicability: ARM2, ARM3

Given MUL Rd,Rm,Rs
or MLA Rd,Rm,Rs,Rn

Then Rd & Rm must be different registers
Rd must not be R15

Due to the way the Booth’s algorithm has been implemented, certain combinations
operand registers should be avoided. (The assembler will issue a warning if these
restrictions are overlooked.)

The destination register (Rd) should not be the same as the Rm operand register, as Rd is
used to hold intermediate values and Rm is used repeatedly during the multiply. A MUL
will give a zero result if Rm=Rd, and a MLA will give a meaningless result.
209

Instructions and code sequences to avoid
The destination register (Rd) should also not be R15. R15 is protected from modification
by these instructions, so the instruction will have no effect, except that it will put
meaningless values in the PSR flags if the S bit is set.

All other register combinations will give correct results, and Rd, Rn and Rs may use the
same register when required.

LDM/STM: Address Exceptions

Applicability: ARM2, ARM3

Warning: Illegal addresses formed during a LDM or STM operation will not cause
an address exception.

Only the address of the first transfer of a LDM or STM is checked for an address
exception; if subsequent addresses over-flow or under-flow into illegal address space
they will be truncated to 26 bits but will not cause an address exception trap.

The following examples assume the processor is in a non-user mode and MEMC is
being accessed:

 MOV R0,#&04000000 ; R0=&04000000
 STMIA R0,{R1-R2} ; Address exception reported

: (base address illegal)

 MOV R0,#&04000000
 SUB R0,R0,#4 ; R0=&03FFFFFC
 STMIA R0,{R1-R2} ; No address exception reported

: (base address legal)
; code will overwrite data at address &00000000

Note: The exact behaviour of the system depends upon the memory manager to which
the processor is attached; in some cases, the wraparound may be detected and the
instruction aborted.

LDC/STC: Address Exceptions

Applicability: ARM2, ARM3

Warning: Illegal addresses formed during a LDC or STC operation will not cause an
address exception (affects LDF/STF).

The coprocessor data transfer operations act like STM and LDM with the processor
generating the addresses and the coprocessor supplying/reading the data. As with
LDM/STM, only the address of the first transfer of a LDC or STC is checked for an
address exception; if subsequent addresses over-flow or under-flow into illegal address
space they will be truncated to 26 bits but will not cause an address exception trap.

Note that the floating point LDF/STF instructions are forms of LDC and STC.
210

Warnings on the use of ARM assembler
The following examples assume the processor is in a non-user mode and MEMC is
being accessed:

 MOV R0,#&04000000 ; R0=&04000000
 STC CP1,CR0,[R0] ; Address exception reported

: (base address illegal)

 MOV R0,#&04000000
 SUB R0,R0,#4 ; R0=&03FFFFFC
 STFD F0,[R0] ; No address exception reported

: (base address legal)
; code will overwrite data at address &00000000

Note: The exact behaviour of the system depends upon the memory manager to which
the processor is attached; in some cases, the wraparound may be detected and the
instruction aborted.

LDC: Data transfers to a coprocessor fetch more data than expected

Applicability: ARM3

Data to be transferred to a coprocessor with the LDC instruction should never be
placed in the last word of an addressable chunk of memory, nor in the word of
memory immediately preceding a read-sensitive memory location.

Due to the pipelining introduced into the ARM3 coprocessor interface, an LDC
operation will cause one extra word of data to be fetched from the internal cache or
external memory by ARM3 and then discarded; if the extra data is fetched from an area
of external memory marked as cacheable, a whole line of data will be fetched and placed
in the cache.
211

Static ARM problems
A particular case in point is that an LDC whose data ends at the last word of a memory
page will load and then discard the first word (and hence the first cache line) of the next
page. A minor effect of this is that it may occasionally cause an unnecessary page swap
in a virtual memory system. The major effect of it is that (whether in a virtual memory
system or not), the data for an LDC should never be placed in the last word of an
addressable chunk of memory: the LDC will attempt to read the immediately following
non-existent location and thus produce a memory fault.

The following example assumes the processor is in a non-user mode, FPU hardware is
attached and MEMC is being accessed:

 MOV R13,#&03000000 ; R13=Address of I/O space
 STFD F0,[R13,#-8]! ; Store F.P. register 0 at top of physical memory

: (two words of data transferred)
 LDFD F1,[R13],#8 ; Load F.P. register 1 from top of physical

; memory, but three words of data are
; transferred, and the third access will read
; from I/O space which may be read sensitive

Static ARM problems
The static ARM is a variant of the ARM processor designed for low power consumption,
that is built using static CMOS technology. (The difference between it and the standard
ARM is similar to that between SRAM and DRAM.)

The static ARM exhibits different behaviour to ARM2 and ARM3 when executing a PC
relative LDR with base writeback. This class of instruction has very limited application,
so the discrepancy should not be a problem, but if you wish to use any of the following
instructions in your code you are advised to contact Acorn Computers.

LDR Rd,[PC,#expression]!
LDR Rd,[PC],#expression
LDR Rd,[PC,{-}Rm{,shift}]!
LDR Rd,[PC],{-}Rm{,shift}

Note: A PC relative LDR without writeback works exactly as expected.

Provided that this instruction class is unused, it is likely that writeback to the PC on LDR
and STR will be disabled completely in the future. The fewer incidental ways there are
to modify the PC the better.

Unexpected Static ARM2 behaviour when executing a PC relative LDR with
writeback

The instructions affected are:-

l LDR Rd,[PC,#expression]!
212

Warnings on the use of ARM assembler
l LDR Rd,[PC],#expression

Case 1: LDR Rd,[PC,#expression]!

Expected result: Rd ← (PC+8+expression)
PC ← PC+8+expression

…so execution continues from PC+8+expression

Actual ARM2 result: Rd ← Rd {no change}
PC ← PC+8+expression+4

…so execution continues from PC+12+expression

Case 2: LDR Rd,[PC],#expression

Expected result: Rd ← (PC+8)
PC ← PC+8+expression

…so execution continues from PC+8+expression

Actual ARM2 result: Rd ← Rd {no change}
PC ← PC+8+expression+4

…so execution continues from PC+12+expression
213

214

Appendix E: Support for AAsm source

Asm was an alternative variant of the assembler supplied with previous releases of

this product. It has been removed from this product, but to ease porting source code A
written for AAsm, some limited support has been added to ObjAsm. This support for
 is
,

is
r, the

ule
r
ed

:

acro
AAsm may be removed in future releases of Acorn Assembler.

To enable this support you must pass the new -ABSolute option to ObjAsm. There is
no option on the Setup menu directly corresponding to this option; the best way to pass
the option from the desktop is to include it in the Setup menu’s Others option (see
Specifying other command line options on page 18).

The -ABSolute option
The new -ABSolute option makes ObjAsm accept AAsm source code. This option
provided to simplify the use of code originally developed using AAsm. Unlike AAsm
the output format produced is AOF, as for any ordinary assembly operation, and th
must be linked by the linker as usual, in order to create an absolute image. Howeve
contents of the AOF file will be marked as having an absolute address (if either theORG
or LEADR directive is used), and the linker, given suitable options, can produce an
image file equivalent to that previously generated directly by AAsm. The following
changes to normal ObjAsm input syntax apply:

l There is an implicit AREA declaration before the start of the source. The normal r
that there must be an AREA directive in the source before use of any instruction o
data generating statements does not apply. The implicitly declared area is call
ABS$$BLOCK, and has the new ABS attribute (see Area attributes on page 50)
implying that it must be loaded at a fixed absolute base address.

l The directive LEADR is accepted. (Previously only AAsm implemented this;
ObjAsm did not.)

l The ORG directive, if used within the source file, will apply to the implicitly
declared current area.

l The following directives are not recognised (since they were not available with
AAsm), and may be used for any other purpose, in particular as macro names
AREA, IMPORT, EXPORT, STRONG, ENTRY, KEEP, AOF, AOUT.

This change is important, since ObjAsm recognises directives before it does m
names.
215

216

Symbols
 155
! 146
– 153, 155
144
$ 151, 164
% 52, 143
* 149, 154
+ 153, 155
. 151
/ 154
/= 155
< 155
= 155
> 155
>= 155
? 153
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

@ 151
[157–159
] 157–159
^ 144
__RelocCode 176
| 157–159
A
AAsm 24, 185, 215
Abort mode see ABT mode
aborts 43–44

see also data aborts and prefetch aborts
ABS 50, 51, 139–141, 215
ABS$$BLOCK 215
ABT mode 37, 39, 43, 44
ACS 139–141
ADC 69–76, 118
ADD 69–76, 118, 119
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

address bus 29, 31, 34, 42
address exceptions 36, 37, 42–43, 46, 89, 97, 171, 210–211
addressing 92–97, 106, 107
ADF 139–141
ADR 119
ADRL 119
ALIGN 51, 147
ALU 29, 31, 56
an see registers (names)
AND 69–76, 118, 155
AOF 215
AOUT 215
APCS 10, 24, 149, 179, 180
AREA 50, 176, 215
AREAs 49–51, 148

|$$$$$$$| 50
|C$$code| 50
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

attributes 10, 50
code 24, 50
data 50
relocatable address constants 50

arithmetic logic unit see ALU
Arithmetic Shift Left see ASL
Arithmetic Shift Right see ASR
ARM

configuration 24
core 31
CPU 29–47
versions 2, 11, 32, 36, 171

ARM Procedure Call Standard see APCS
ARM2 29, 32–35, 77, 99
ARM250 100
ARM3 29, 32–35, 77, 100
ARM6 11, 36, 39, 100, 171, 185
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

ARM7 11, 36, 39, 100, 171, 185
ARM7M 11, 36, 84, 185, 197
ASL 60
AsmHello example 21
AsmModule example 176
ASN 139–141
ASR 62
assembly language 27–167

examples 193–197
ASSERT 146
ATN 139–141
B
B 65–67
barrel shifter 29, 31, 57–58

carry in 57
carry out 57

BASE 153
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

BASED Rn 50
bibliography 3
BIC 69–76, 118
BL 65–67
booleans see constants
buttons see application (button name)
C
C flag 35, 57, 72, 79–80
C language 179–182

static variables 181–??
cacheing see ObjAsm (cacheing)
Carry flag see C flag
case sensitivity 11, 49, 51, 185
CC 154
CDP 103–104, 204
changes 185
CHR 153
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Clanguage
static variables ??–182

CMF 141–142
CMFE 141–142
CMN 35, 69–76, 79, 118, 201
CMNP see CMN
CMP 35, 69–76, 79, 118, 201
CMPP see CMP
CN 64, 149
CNF 141–142
CNFE 141–142
CODE 50
COMDEF 50
comments 53
COMMON 50
condition codes 29, 35, 55–56, 193–194, 196–197, 199, 205
conditional assembly 15, 157–159
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

CONFIG 11, 24, 151
configurations 36, 37, 42, 171–172
constants 53, 149

immediate 58
conventions 3
coprocessors 30, 45, 64, 103–111, 149

floating point 64
COS 139–141
CP 64, 149
CPSR 36, 38, 39, 40, 41, 67, 77–80
CStatics example 181–182
C-strings 143
current program status register see CPSR
D
DATA 50, 145
data aborts 38, 43–44, 46, 90, 97–98, 100, 108, 172
data bus 29, 31
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

data types 30
DCB 143
DCD 143
DCFD 136, 144
DCFS 136, 144
DCW 143
DDT 9
debugging 9

machine level 9
source level 9
tables 9

DEF 154
dependency lists 24
dialogue boxes see application (dialogue box name)
directives 49, 51, 143–148, 215

see also directive name
DVF 139–141
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

E
ELSE 157–159
END 53, 145
ENDIAN 23, 151
ENDIF 157–159
ENTRY 147, 176, 215
EOR 69–76, 155
EQU 149
errors 9, 13, 19, 146, 187–192

browser 9, 19
escapes 11
exception vectors see hardware vectors
exceptions 35, 37, 40–46, 171–173

priority system 46
see also exception names

EXP 139–141
EXPORT 145, 215
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

expressions 153–155
F
FALSE 53, 151
Fast Interrupt mode see FIQ mode
FDV 139–141
FIQ 41, 46, 171, 172–173

latency 46
FIQ disable flag 35, 38, 41, 45
FIQ mode 32, 33, 37, 41, 172
FIX 139
flags see flag names
floating point 121–142, 148, 175

available systems 122
C flag 130, 142
denormalised numbers 129
division by zero 131
double extended precision 125
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

expanded packed decimal 127, 130
exponents 124–127
IEEE double precision 124
IEEE single precision 124
inexact results 132
infinities 124–127, 131
invalid operations 131
NaNs 124–127, 129, 131
number formats 123–127
number input 135
overflow 132
packed decimal 126, 130
precision 123
rounding 139
store loading directives 136
synchronous operation 130
underflow 132
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

writeback 138
FLT 139
FML 139–141
FN 135, 149
fp see registers (names)
FPREGARGS 145
FRD 139–141
G
GBL 12, 51, 150
GET 9, 17, 145, 146
H
hardware vectors 38, 172

see also exceptions
I
icons see application (icon name)
IF 157–159
image files 7, 9, 21
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

immediate constants see constants (immediate)
IMPORT 145, 176, 215
INCLUDE 9, 146
include file searching 9
INDEX 153
initialising memory see memory (initialising)
installation 1
instruction set 29–30
instructions

block data transfer 30, 32, 42, 43, 91–98
branches 33, 35, 42, 65–67
conversions 118
coprocessor data operations 103–104
coprocessor data transfers 105–108
coprocessor register transfers 109–111
data processing 30, 35, 57, 68–76, 201, 205
floating point coprocessor data operations 139–141
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

floating point coprocessor data transfer 136–137
floating point coprocessor multiple data transfer 137–138
floating point coprocessor register transfer 139
floating point coprocessor status transfer 141–142
further 118–120
multiplies 81–85, 112, 199
PSR transfer 36, 37, 38, 77–80
single data swap 99–100
single data transfer 30, 43, 51, 57, 86–90
software interrupt 35, 37, 44, 101–102, 104, 175
SWI 35
timings 56
undefined 37, 45, 46, 64, 104, 112, 137, 199, 204, 208

Interrupt mode see IRQ mode
interrupts 35
ip see registers (names)
IRQ 42, 172
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

latency 46
IRQ disable flag 35, 38, 41, 42, 43, 44, 45, 172
IRQ mode 32, 34, 37, 42
K
KEEP 145, 215
L
labels 49, 52

local 52
LAND 155
layout of memory see memory (laying out)
LCL 51, 150, 163
LDC 105–108, 207, 210, 211–212
LDF 136–137, 210
LDM 91–98, 148, 200, 202–203, 207, 208, 210
LDR 86–90, 120, 200, 206, 212–213
LDRB see LDR
LEADR 215
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

LEAF 145
LEFT 154
LEN 153
LEOR 155
LFM 137–138
LGN 139–141
libraries 7
Link 2, 7, 24, 49

Debug 9
Module 177

link register see LR
listings 14–16, 158

options 146
literals 120, 145

floating point 137
LNK 17
LNOT 154
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

LOG 139–141
Logical Shift Left see LSL
Logical Shift Rightsee LSR
LOR 155
LR 33, 35, 41, 65–67, 171, 175
LSL 57, 60
LSR 57, 61
LTORG 137, 145
M
MACRO 162–163
macros 159, 161–167, 215

labels 52
names 11
nesting 165
parameters 162, 164–165
prototype statements 162–163

Make 7, 22, 24
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

MCR 109–111
memory

initialising 143–144
interface 30
laying out 144
reserving 143

MEND 146, 163
menus see application (menu name)
MEXIT 164
MLA 81–83, 205, 209
MNF 139–141
MOD 154
modes 32, 36, 37, 171–172

changing 35, 73, 80, 201
flags 35, 41
privileged see privileged modes
see also mode names
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

modules 7, 40, 175–177
MOV 69–76, 118, 119, 120
MRC 109–111
MRS 77–80
MSR 77–80
MUF 139–141
MUL 81–83, 200, 205, 209
multiplication 195–196, 197

see also instructions (multiplies)
multiplier 29, 31
MVF 139–141
MVN 69–76, 118, 119, 120
N
N flag 35, 72, 79–80
Negative flag see N flag
NOFP 135, 147
NOINIT 50
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

no-op 199, 205
NOT 154
NRM 139–141
numbers see constants
O
ObjAsm 2, 7–25

Auto run 20
Auto save 20
C strings 11
cacheing 12
command line 18, 22–25
Command line (menu option) 10
CPU 11
Cross reference 16
Debug 9
Define 12
Display 20
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Errors to file 14
Help 20
icon bar menu 20
Include 9
Length 16
Listing 14
MaxCache 13
No APCS registers 10
NoCache 12
NoTerse 15, 158
Options 20
Others 18
output 18–19
Run 8, 9, 10
Save options 20
SetUp dialogue box 7, 8–9
SetUp menu 8
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

Source 8, 9
Suppress warnings 13
Throwback 9
Upper case 11
Width 15
Work directory 17

object files 7, 21, 49, 145
operators 153–155

addition and logical 155
binary 154–155
boolean 155
multiplicative 154
precedence 153, 154
relational 155
shifts 154
string manipulation 154
unary 153–154
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

08–209
OPT 146, 151
OR 155
ORG 51, 119, 145, 215
origin 145
ORR 69–76
OS_ChangeEnvironment 171
OS_ClaimProcessorVector 172
output 18, 20
Overflow flag see V flag
P
PC 33, 34–35, 36, 38, 39, 41, 65–67, 74, 89, 110, 147, 151, 171, 201, 202, 205, 206, 2
PIC 50
pipeline 30, 31, 56, 66, 201, 211
POL 139–141
POW 139–141
prefetch aborts 43, 204
pre-veneers 171
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

PrintLib example 179–181
privileged modes 32, 36, 39

user bank transfer 96, 202–203
processor configurations see configurations
processor modes see modes
processor status register see PSR
program counter see PC
PSR 34–35, 38, 41, 56, 57, 66, 72, 82, 85, 171, 201, 202
R
R13 see SP
R14 see LR
R15 see PC and PSR
random numbers 194
RDF 139–141
READONLY 50
REENTRANT 50
registers 31, 32–35, 39–40
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

bank organisation 33, 39
floating point 122
floating point control 122, 132–134
floating point status 122, 128–132
names 10, 24, 49, 149
see also register names

REL 50
relocatable modules see modules
repetitive assembly 160
reserving memory see memory (reserving)
resets 45
RFC 139
RFS 139
RIGHT 154
RISC OS 169–182
RLIST 147
RMF 139–141
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

RN 149
Rn and rn see registers (names)
RND 139–141
ROL 154
ROR 63, 154
Rotate Right see ROR
Rotate Right with Extend see RRX
rotates 57–64, 74
ROUT 52
RPW 139–141
RRX 57, 64
RSB 69–76
RSC 69–76
RSF 139–141
S
saved program status register see SPSR
SBC 69–76, 118
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

semaphores 99
SET 12, 51, 150, 163
SFM 137–138
shift types 59–64
shifts 57–64, 73

amount 59
mnemonics 59

SHL 154
SHR 154
sign extension 196
SIN 139–141
sl see registers (names)
SMLAL 84–85, 197
SMULL 84–85, 197
software interrupts 44, 46
source files 146

line length 49
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

SP 33
SPSR 36, 39, 40, 41, 77–80
SQT 139–141
SrcEdit 19
stack pointer see SP
stack-limit checking 24
stacks 92–95, 137
STC 105–108, 207, 210
STF 136–137, 210
STM 91–98, 148, 202–203, 207, 209, 210
STR 86–90, 151, 153, 206
STRB see STR
strings see constants
STRONG 215
SUB 69–76, 118, 119
subroutines 66
SUBT 147
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

SUF 139–141
summary 19, 20
Supervisor mode see SVC mode
SVC mode 32, 34, 37, 42, 43, 44, 45, 101, 175
SWI 101–102, 104, 175, 204
SWP 99–100, 207
symbols 16, 51, 120, 145, 149–151

external 143
length 51
local 145

T
TAN 139–141
TEQ 35, 69–76, 79, 201
TEQP see TEQ
throwback 19
titles 147
tools 5–25
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

common features 7, 19
TRUE 53, 151
TST 35, 69–76, 79, 201
TSTP see TST
TTL 147
typographic conventions see conventions
U
UMLAL 84–85, 197
UMULL 84–85, 197
UND mode 37, 39, 45
undefined instructions see instructions (undefined)
Undefined mode see UND mode
URD 139–141
User mode 32, 35, 37
V
V flag 35, 72, 79–80
VAR 151
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

variables 10, 12, 149–151
global 150
local 150, 163
see also variable names

vn see registers (names)
W
warnings 13
WEAK 145
WEND 160, 164
WFC 139
WFS 139
WHILE 160, 164
work directory 17
Z
Z flag 35, 72, 79–80
Zero flag see Z flag
Last changed: 21 October, 1999 12:17 pm

Printed: 21 October, 1999 12:17 pm

Replace this page with a
monochrome copy of the
front cover for the guide

#

Reader’s Comment Form
Acorn Assembler, Issue 1

0484,233

We would greatly appreciate your comments about this Manual, which will be taken into account for the next
issue:

How would you classify your experience with computers?

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

Used computers before Experienced ProgrammerExperienced User Programmer

Cut out (or photocopy) and post to: Your name and address:
This information will only be used to get in touch with you in case we wish to explore your
comments further
Dept RC, Technical Publications
Acorn Computers Limited
Acorn House, Vision Park
Histon, Cambridge CB4 4AE
England

	Acorn Assembler
	AMR draft (Version 10.06)

	1 Introduction
	Installation
	Assembler tools
	Objasm

	This user guide
	Note on program examples

	Conventions used in this manual

	Part�1 – Using the assembler
	2 ObjAsm
	Starting ObjAsm
	The SetUp dialogue box
	Include
	Options

	The SetUp menu
	The command line
	Controlling syntax
	Predefining a variable
	Controlling cacheing
	Handling warnings and errors
	Listings
	Choosing your work directory
	Specifying other command line options

	ObjAsm output
	ObjAsm icon bar menu
	Example ObjAsm session
	ObjAsm command lines
	Command line options available from the desktop
	Command line options not available from the desktop

	Part�2 – Assembly language details
	3 The ARM CPU
	Introduction
	Bus widths
	Instruction set
	Pipelining
	Memory interface
	Data types

	Block diagram of core
	Figure 3.1� ARM Core block diagram

	26�bit architecture
	Processor modes
	Registers
	Figure 3.2� 26�bit register organisation

	Register R15
	Figure 3.3� The Program Counter (PC) and Process Status Register (PSR)

	Register R14
	Changing operating modes

	32�bit architecture
	New features in ARM6
	Processor configuration
	Processor modes
	The 26�bit processor modes

	RISC�OS processor configuration and modes
	Registers
	Figure 3.4� 32�bit register organisation

	The CPSR and SPSR registers
	Figure 3.5� The Current Process Status Register (CPSR)

	Exceptions
	Introduction
	FIQ (Fast interrupt request)
	1 Save R15 in R14_fiq, and (for 32�bit configuration ARMs) save the CPSR in SPSR_fiq.
	2 Force the mode bits to FIQ mode and set the F and I bits in the PSR.
	3 Force the PC to fetch the next instruction from address &1C.

	IRQ (Interrupt request)
	1 Save R15 in R14_irq, and (for 32�bit configuration ARMs) save the CPSR in SPSR_irq.
	2 Force the mode bits to IRQ mode and set the I�bit in the PSR.
	3 Force the PC to fetch the next instruction from address &18.

	Address exception trap
	1 If the data transfer was a store, force it to load. (This protects the memory from spurious wri...
	2 Complete the instruction, but prevent internal state changes where possible. The state changes ...
	3 Save R15 in R14_svc.
	4 Force the mode bits to SVC mode and set the I�bit in the PSR.
	5 Force the PC to fetch the next instruction from address &14.

	Abort
	Abort during instruction prefetch
	1 Save R15 in R14_svc, or (for 32�bit configuration ARMs) save R15 in R14_abt and save the CPSR i...
	2 Force the mode bits to SVC mode or (for 32�bit configuration ARMs) ABT mode and set the I�bit i...
	3 Force the PC to fetch the next instruction from address &0C.

	Abort during data access
	1 Save R15 in R14_svc, or (for 32�bit configuration ARMs) save R15 in R14_abt and save the CPSR i...
	2 Force the mode bits to SVC mode or (for 32�bit configuration ARMs) ABT mode and set the I�bit i...
	3 Force the PC to fetch the next instruction from address &10.

	Abort during an internal cycle
	Using aborts to implement virtual memory systems

	Software interrupt
	1 Save R15 in R14_svc, and (for 32�bit configuration ARMs) save the CPSR in SPSR_svc.
	2 Force the mode bits to SVC mode and set the I�bit in the PSR.
	3 Force the PC to fetch the next instruction from address &8.

	Undefined instruction trap
	1 Save R15 in R14_svc, or (for 32�bit configuration ARMs) save R15 in R14_und and save the CPSR i...
	2 Force the mode bits to SVC mode or (for 32�bit configuration ARMs) UND mode and set the I�bit i...
	3 Force the PC to fetch the next instruction from address &4.

	Reset
	1 Save R15 in R14_svc, and (for 32�bit configuration ARMs) save the CPSR in SPSR_svc.
	2 Force the mode bits to SVC mode and set the F and I�bits in the PSR.
	3 Force the PC to fetch the next instruction from address &0.

	Vector summary
	Exception Priorities
	1 Reset (highest priority)
	2 Address exception, Data abort
	3 FIQ
	4 IRQ
	5 Prefetch abort
	6 Undefined Instruction, Software interrupt (lowest priority)

	Interrupt latencies

	4 ARM assembly language
	General
	Input lines
	AREAs
	Area attributes

	ORG and ABS
	Symbols
	Labels
	Local labels
	References to local labels

	Comments
	Constants
	Numbers
	Strings
	Boolean

	The END directive

	5 CPU instruction set
	The condition field
	Figure 5.1� The condition field
	Conditional instruction sequence

	Instruction timings
	The barrel shifter
	Unshifted register
	Register shifted by a constant amount
	Value resulting from rotating register and carry bit one bit right
	Register shifted by n bits
	8-bit constant rotated right by 2n bits
	8-bit constant rotated right by 2n bits and specified explicitly

	Shift types
	Mnemonics
	Specification of the shift amount
	Instruction specified shift amount
	Register specified shift amount

	Logical shift left, or arithmetic shift left
	Figure 5.2� A logical or arithmetic shift left by 5
	Special cases

	Logical shift right
	Figure 5.3� A logical shift right by 5
	Special cases

	Arithmetic shift right
	Figure 5.4� An arithmetic shift right by 5
	Special cases

	Rotate right
	Figure 5.5� A rotate right by 5
	Special cases

	Rotate right with extend
	The form of the shift field which might be expected to give ROR�#0 is used to encode a special fu...
	Figure 5.6� A rotate right with extend

	Coprocessor instructions
	Branch, Branch with Link (B, BL)
	Instruction format
	Assembler syntax
	Synopsis
	The link bit
	32�bit operation
	Calculating the offset
	The link bit

	Examples

	Data processing
	Instruction format
	Assembler syntax
	MOV and MVN – single operand
	CMN, CMP, TEQ and TST – no result written
	ADC, ADD, AND, BIC, OR, ORR, RSB, RSC, SBC, SUB – two operands
	Parameters
	Opcodes

	Synopsis
	The S�bit
	Logical operations (AND, BIC, EOR, MOV, MVN, ORR, TEQ, TST)
	Arithmetic operations (ADC, ADD, CMP, CMN, RSB, RSC, SBC, SUB)

	The P�flag
	Shifts
	Figure 5.7� Shifts

	Immediate operand rotates
	Using R15 as the destination or operand
	Using R15 as the destination
	Using R15 as an operand

	32�bit operation
	TEQP, TSTP, CMPP and CMNP
	Using R15 as the shift register
	Using R15 as the destination

	Examples

	PSR transfer (MRS, MSR)
	Instruction format
	Assembler syntax
	Synopsis
	Operand restrictions
	Reserved bits
	Examples

	Multiply and Multiply-Accumulate (MUL, MLA)
	Instruction format
	Assembler syntax
	Synopsis
	PSR flags
	Operand restrictions
	32�bit operation
	Examples

	Multiply Long and Multiply-Accumulate Long (UMULL,�SMULL,�UMLAL,�SMLAL)
	Instruction format
	Assembler syntax
	Synopsis
	PSR flags
	Operand restrictions
	Examples

	Single data transfer (LDR, STR)
	Instruction format
	Assembler syntax
	Synopsis
	Offsets and auto-indexing
	Shifted register offset
	Bytes and words
	Use of R15
	Address exceptions
	Data Aborts
	32�bit operation
	Examples

	Block data transfer (LDM, STM)
	Instruction format
	Assembler syntax
	Addressing mode names

	Synopsis
	The register list
	Addressing modes
	Figure 5.8� Post-increment addressing
	Figure 5.9� Pre-increment addressing
	Figure 5.10� Post-decrement addressing
	Figure 5.11� Pre-decrement addressing

	Transfer of R15
	Forcing transfer of the user bank
	Use of R15 as the base
	Inclusion of the base in the register list
	When the base register is in the list of registers
	1 write lowest-numbered register to memory
	2 perform the write back
	3 write other registers to memory in ascending order.

	Address exceptions
	Data Aborts
	Aborts during STM instructions
	Aborts during LDM instructions

	32�bit operation
	Examples

	Single data swap (SWP)
	Instruction format
	Assembler syntax
	Synopsis
	Bytes and words
	Use of R15
	Data aborts
	Examples

	Software interrupt (SWI)
	Instruction format
	Assembler syntax
	Synopsis
	Return from the supervisor
	Comment field
	32�bit operation
	Examples

	Coprocessor data operations (CDP)
	Instruction format
	Assembler syntax
	Synopsis
	The coprocessor fields
	Restriction
	Examples

	Coprocessor data transfers (LDC, STC)
	Instruction format
	Assembler syntax
	Synopsis
	The coprocessor fields
	Addressing modes
	Address alignment
	Use of R15
	Address exceptions
	Data aborts
	32�bit operation
	Examples

	Coprocessor register transfers (MCR, MRC)
	Instruction format
	Assembler syntax
	Synopsis
	The coprocessor fields
	Transfers to R15
	Transfers from R15
	32�bit operation
	Transfers to R15
	Transfers from R15

	Examples

	Undefined instructions
	Instruction format
	Assembler syntax
	Synopsis

	Instruction set summary
	Instruction formats
	Assembler syntax
	Parameters for the above, alphabetically sorted

	Synopsis

	Further instructions
	Extended range immediate constants
	Synopsis

	The ADR instruction
	Assembler syntax
	Synopsis

	The ADRL instruction
	Assembler syntax
	Synopsis

	Literals
	Assembler syntax
	Synopsis

	6 Floating point instructions
	Programmer’s model
	Available systems
	Precision
	Floating point number formats
	IEEE Single Precision (S)
	Figure 6.1� Single precision format

	IEEE Double Precision (D)
	Figure 6.2� Double precision format

	Double Extended Precision (E)
	Figure 6.3� Double extended precision format

	Packed Decimal (P)
	Figure 6.4� Packed decimal format

	Expanded Packed Decimal (EP)
	Figure 6.5� Expanded packed decimal format

	Floating point status register
	Figure 6.6� Floating point status register byte usage
	System ID byte
	Exception Trap Enable Byte
	Figure 6.7� Exception trap enable byte

	System Control Byte
	Figure 6.8� System control byte
	ND – No denormalised numbers bit
	NE – NaN exception bit
	SO – Select synchronous operation of FPA
	EP – Use expanded packed decimal format
	AC – Use alternative definition for C flag on compare operations

	Cumulative Exception Flags Byte
	Figure 6.9� Cumulative exception flags byte
	IVO – invalid operation
	DVZ – division by zero
	OFL – overflow
	UFL – underflow
	INX – inexact

	Floating Point Control Register
	The FPPC system
	Figure 6.10� FPCR bit allocation in the FPPC system

	The FPA system
	Figure 6.11� FPCR bit allocation in the FPA system

	Assembler directives and syntax
	Floating point number input
	NOFP directive
	Floating point register equating: FN
	Floating point store loading directives

	The instruction set
	Floating point coprocessor data transfer
	Floating point literals

	Floating point coprocessor multiple data transfer
	Floating point coprocessor register transfer
	Floating point coprocessor data operations
	Floating point coprocessor status transfer

	Finding out more…

	7 Directives
	Storage reservation and initialisation – DCB, DCW and DCD
	Floating point store initialisation – DCFS and DCFD
	Describing the layout of store – ^ and #
	Organisational directives – END, ORG, LTORG and KEEP
	Links to other object files – IMPORT and EXPORT
	Links to other source files – GET/INCLUDE
	Diagnostic generation – ASSERT and !
	Dynamic listing options – OPT
	Titles – TTL and SUBT
	Miscellaneous directives – ALIGN, NOFP, RLIST and ENTRY

	8 Symbolic capabilities
	Setting constants
	Local and global variables – GBL, LCL and SET
	Variable substitution – $
	Built-in variables

	9 Expressions and operators
	Unary operators
	Binary operators
	Multiplicative operators
	String manipulation operators
	Shift operators
	Addition and logical operators
	Relational operators
	Boolean operators

	10 Conditional and repetitive assembly
	Conditional assembly
	Simple use of the IF and ENDIF directives
	Simple use of the IF, ELSE and ENDIF directives
	Conditional assembly and the NoTerse option
	An example

	Repetitive assembly

	11 Macros
	Syntax
	Local variables
	MEXIT directive
	Default values
	Macro substitution method
	Nesting macros
	A division macro

	Part 3 – Developing software for RISC�OS
	12 Exception handling
	RISC�OS processor configuration and modes
	The pre-veneers
	Entering 32�bit modes

	Claiming the hardware vectors
	Writing to the FIQ vector

	13 Writing relocatable modules in assembler
	Assembler directives
	Example

	14 Interworking assembler with C
	Examples
	PrintLib
	Compiling the CTestPrLib example
	1 Build the PrintLib library; you’ll find instructions for this in the section Assembler example ...
	2 Start CC if you’ve not already got it loaded.
	3 Drag the CTestPrLib file to the CC icon, which will display its Setup dialogue box with CTestPr...
	4 Add the full pathname of the PrintLib library to the list of Libraries on the Setup menu.
	5 Click on Run to compile and link the program.
	6 Save the program to disc.

	Compiling and linking CTestPrLib in separate stages

	CStatics

	Part 4 – Appendixes
	Appendix�A: Changes to the assembler
	Appendix�B: Error messages
	Appendix�C: Example assembler fragments
	Using the conditional instructions
	Using conditionals for logical OR
	Absolute value
	Combining discrete and range tests
	Division and remainder

	Pseudo-random binary sequence generator
	Multiplication by a constant
	Multiplication by 2n (1,2,4,8,16,32…)
	Multiplication by 2n+1 (3,5,9,17…)
	Multiplication by 2n-1 (3,7,15…)
	Multiplication by 6
	Multiply by 10 and add in extra number
	General recursive method for Rb := Ra¥C, C a constant

	Loading a word from an unknown alignment
	Sign/zero extension of a half word
	Return setting condition codes
	Full multiply

	Appendix�D: Warnings on the use of ARM assembler
	Restrictions to the ARM instruction set
	Instructions and code sequences to avoid
	TSTP/TEQP/CMPP/CMNP: Changing mode
	LDM/STM: Forcing transfer of the user bank (Part 1)
	LDM: Forcing transfer of the user bank (Part 2)
	SWI/Undefined Instruction trap interaction
	Undefined instruction/Prefetch abort trap interaction
	Single instructions to avoid
	Any instruction that uses the 1111 condition code
	Data processing
	Multiply and multiply-accumulate
	Single data transfer
	Block data transfer
	Single data swap
	Coprocessor data transfers
	Undefined instructions
	Register access after an in-line mode change
	1 TSTP|TEQP|CMPP|CMNP«cond» Rn,Op2
	2 any instruction that uses R8-R14 in its first cycle.

	Register access after an LDM that forces user mode data transfer
	1 LDM«cond»<FD|ED...|DB> Rn,Rlist^ where Rlist does not include R15
	2 any instruction that uses R8-R14 in its first cycle.

	Other points to note
	Use of R15
	STM: Inclusion of the base in the register list
	MUL/MLA: Register restrictions
	LDM/STM: Address Exceptions
	LDC/STC: Address Exceptions
	LDC: Data transfers to a coprocessor fetch more data than expected

	Static ARM problems
	Unexpected Static ARM2 behaviour when executing a PC relative LDR with writeback
	Case 1: LDR Rd,[PC,#expression]!
	Case 2: LDR Rd,[PC],#expression

	Appendix�E: Support for AAsm source
	The -ABSolute option
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

