Acorn Assembler
AMR draft (Version 10.06)

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:16 pm
Printed: 21 October, 1999 12:17 pm

Copyright © 1999 Acorn Computers Limited. All rights reserved.
Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

The product described in this manual is not intended for use as a critical component in
life support devices or any system in which failure could be expected to result in
personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product and its
use (including the information and particulars in this manual) are given by Acorn
Computers Limited in good faith. However, Acorn Computers Limited cannot accept
any liability for any loss or damage arising from the use of any information or
particulars in this manual.

If you have any comments on this manual, please complete the form at the back of the
manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your supplier
is available to help resolve any queries you might have.

ACORN, the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd.

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN 1 85250 167 7

Part number 0484,233

Issue 1, October 1999

Introduction 1

Assembler tools 2

Thisuser guide 2

Conventions used in this manual 3
Part 1 — Using the assembler 5
ObjAsm 7

Starting ObjAsm 7

The SetUp dialogue box 9

The SetUp menu 10

ObjAsm output 18

ObjAsm icon bar menu 20
Example ObjAsm session 21
ObjAsm command lines 22
Part 2 — Assembly language details 27
The ARM CPU 29

Introduction 29

Block diagram of core 31

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

26 bit architecture 32
32 bit architecture 36
Exceptions 40

ARM assembly language 49
General 49

Input lines 49

AREAs 49

ORG and ABS 51
Symbols 51

Labels 52

Local |abels 52
Comments 53
Constants 53

The END directive 53
CPU instruction set 55
The condition field 55
Instruction timings 56

Replace this page with a

monochrome copy of the
front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

The barrel shifter 57

Shift types 59

Coprocessor instructions 64

Branch, Branch with Link (B, BL) 65

Data processing 68

PSR transfer (MRS, MSR) 77

Multiply and Multiply-Accumulate (MUL, MLA) 81
Multiply Long and Multiply-Accumulate Long (UMULL, SMULL, UMLAL, SMLAL) 84
Single datatransfer (LDR, STR) 86

Block datatransfer (LDM, STM) 91

Single data swap (SWP) 99

Software interrupt (SWI) 101

Coprocessor data operations (CDP) 103

Coprocessor datatransfers (LDC, STC) 105
Coprocessor register transfers (MCR, MRC) 109
Undefined instructions 112

Instruction set summary 113

Replace this page with a

monochrome copy of the
front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

Further instructions 118

Extended range immediate constants 118
The ADR instruction 119

The ADRL instruction 119

Literals 120

Floating point instructions 121
Programmer’s model 122

Available systems 122

Precision 123

Floating point number formats 123
Floating point status register 128
Floating Point Control Register 132
Assembler directives and syntax 134
The instruction set 136

Finding out more... 142

Directives 143

Storage reservation and initialisation — DCB, DCW and DCD 143

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

Floating point store initialisation — DCFS and DCFD 144
Describing the layout of store —* and # 144

Organisational directives — END, ORG, LTORG and KEEP 145
Links to other object files — IMPORT and EXPORT 145

Links to other source files — GET/INCLUDE 146

Diagnostic generation — ASSERT and ! 146

Dynamic listing options — OPT 146

Titles — TTL and SUBT 147

Miscellaneous directives — ALIGN, NOFP, RLIST and ENTRY 147
Symbolic capabilities 149

Setting constants 149

Local and global variables — GBL, LCL and SET 150

Variable substitution — $ 151

Built-in variables 151

Expressions and operators 153

Unary operators 153

Binary operators 154

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

Conditional and repetitive assembly 157
Conditional assembly 157

Repetitive assembly 160

Macros 161

Syntax 162

Local variables 163

MEXIT directive 164

Default values 164

Macro substitution method 164

Nesting macros 165

A division macro 165

Part 3 — Developing software for RISC OS 169
Exception handling 171

RISC OS processor configuration and modes 171
The pre-veneers 171

Claiming the hardware vectors 172

Writing to the FIQ vector 172

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

Writing rel ocatable modules in assembler 175
Assembler directives 176

Example 176

Interworking assembler with C 179

Examples 179

Part 4 — Appendixes 183

Changes to the assembler 185

Error messages 187

Example assembler fragments 193

Using the conditional instructions 193
Pseudo-random binary sequence generator 194
Multiplication by a constant 195

Loading a word from an unknown alignment 196
Sign/zero extension of a half word 196

Return setting condition codes 196

Full multiply 197

Warnings on the use of ARM assembler 199

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

Restrictions to the ARM instruction set 200
Instructions and code sequences to avoid 201
Static ARM problems 212

Support for AAsm source 215

The -ABSolute option 215

Replace this page with a

monochrome copy of the
front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

Introduction

Acorn Assembler is a development environment for producing RISC OS desktop
applications and rel ocatable modules written in ARM assembly language. It
consists of anumber of programming tools which are RISC OS desktop applications.
These tools interact in ways designed to help your productivity, forming an extendable
environment integrated by the RISC OS desktop. Acorn Assembler may be used with
Acorn C/C++ (apart of this product) to provide an environment for mixed C, C++ and
assembler development.

This product includes tools to:

I edit program source and other text files

I search and examine text files

I examine some binary files

I assemble small assembly language programs

I assemble and construct more complex programs under the control of makefiles,
these being set up from a simple desktop interface

I sgueeze finished program images to occupy less disk space

I construct linkable libraries

I debug RISC OS desktop applications interactively

I design RISC OS desktop interfaces and test their functionality
| usethe Toolbox to interact with those interfaces.

Most of the toolsin this product are also of general use for constructing applicationsin
other programming languages, such as C and C++. These non-language-specific tools
are described in the accompanying Desktop Tools guide.

Installation

Installation of Acorn Assembler is described in the chapter Installing Acorn C/C++ on
page 7 of the accompanying Desktop Tools guide.

Assembler tools

Assembler tools
The assembler provided includes the following features:

1 full support of the ARM instruction set, for al versions up to and including the
ARMTM core

I global and local label capability

I powerful macro processing

I comprehensive expression handling

I conditional assembly

I repetitive assembly

I comprehensive symbol table printouts
I pseudo-opcodes to control printout.

Objasm

The Assembler ObjAsm creates object files which cannot be executed directly, but must
first be linked using the Link toal. It is often most efficient to construct larger programs
from several portions, assembling each portion with ObjAsm before linking them all
together with Link. Object files linked with those produced by ObjAsm may be
produced from some programming language other than assembler, for example C.

TheLink tool isdescribed in the chapter Link on page 137 of the accompanying Desktop
Tools guide.

This user guide

This document is areference guide to ObjAsm, which is the only tool in this product
which is not used for programming in other languages. The others are described in the
accompanying Acorn C/C++ and Desktop Tools guides. It is assumed that you are
familiar with other relevant Archimedes documentation, such as the:

I Welcome Guide supplied with your computer
I RISCOS3User Guide
I RISC OS 3 Programmer’s Reference Manual

Introduction

You may also find useful one or more of the following books:

I ARM Assembly Language Programming / P.J. Cockerell — Computer
Concepts/MTC, 1987.

Archimedes Assembly Language: A Dabhand Guide/ M. Ginns — Manchester, UK:
Dabs Press, 1988.

The ARM RISC Chip — A Programmer’s Guide van Someren and C. Atack —
Wokingham, UK: Addison-Wesley, 1993.

Note on program examples

Both general and specific examples of syntax and screen output are given, but there are
occasions where the full syntax of an instruction and its accompanying screen
appearance would obscure the specific points being made. It follows, therefore, that not
all the examples given in the text can be used directly since they are incomplete.

Conventions used in this manual

The Assembler has its own interpretations of the punctuation symbols and special
symbols which are available from the keyboard. These are:

! “ # $ % & A @ ()
[] { } | : : : ; +
- / * = < > ?

In order to distinguish between characters used in syntax and descriptive or explanatory
characters, typewriter style typeface is used to indicate both text which appears on the
screen and text which can be typed on the keyboard. This is so that the position of
relevant spaces is clearly indicated.

The following typographical conventions are used throughout this manual:

Convention Meaning

fil enane Text that you must replace with the name of a file, register,
variable or whatever is indicated.

&1C Hexadecimal numbers are preceded with an ampersand.

«instruction» Italic guillemots «» enclose optional itemsin the syntax.

For example, the Assembler ObjA sm accepts athree field source
line which may be expressed in the form:

«instruction» «label» «; comment»
ALI GN Text that you type exactly as it appearsin the manual. For
example:

L321 ADD Ra, Ra, Ra, LSL #1 ;multiply by 3

Part 1 — Using the assembler

2 ObjAsm

bjAsm isthe ARM assembler forming part of the Acorn C/C++ product. It
processes text files containing program source written in ARM assembly language
into linkable object files. Object files can be linked by the Link tool with each other or
with libraries of object filesto form executable image files or rel ocatable modules.
ObjAsm multitasks under the RISC OS desktop, allowing other tasks to proceed whileit
operates.

The sourcesfor large programs can be split into several files, each of which only need be
re-assembled to an object file when you have altered it.

An example use of ObjAsm would be to construct abinary imagefile! Runl mage ina
RISC OS desktop application from the two sourcefiless. i nt er f ace and

s. port abl e. ObjAsm processes the sourcefilestoformo. i nt er f ace and

0. port abl e, which the Link tool processesto form! Runl mage.

The controls of ObjAsm are similar to those of other non-interactive Desktop tools, with
the common features described in the chapter General features on page 101 of the
accompanying Desktop Tools guide. You adjust options for the next assembly operation
on a SetUp dialogue box and menu which by default appear when you click Select on
the main icon or drag a source file to it. Once you have set options you click on aRun
action icon and the assembly starts. While the assembly is running output windows
display any text messages from the assembler and allow you to stop the job if you wish.

There is no file type to double click on to start ObjAsm — it owns no file type unlike, for
example, Draw.

Starting ObjAsm

Like other non-interactive Desktop tools, ObjAsm can be used under the management of
Make, with its assembly options specified by thekefile passed to Make. For such
managed use, ObjAsm is started automatically by Make; you don't have to load ObjAsm
onto the icon bar.

To use ObjAsm directly, unmanaged by Make, first open a directory display on the
Acor nC_C++. Tool s directory, then double click Select on !|ObjAsm. The ObjAsm
main icon appears on the icon bar:

L LT

Starting ObjAsm

Clicking Select on thisicon or dragging an assembly language source file from a
directory display to thisicon brings up the ObjAsm SetUp dialogue box:

HE| DA
S-I:l.un:e|
inciude
'Ep'.'rl:rna
[Throwback _|Debug
Cancel | Rum |

Source will appear containing the name of the last filename entered there, or empty if
there isn’'t one.

Dragging a file on to the icon will bring up the dialogue box and automatically insert the
dragged filename as tt8aurce file.

Clicking Menu on the SetUp dialogue box brings up the Obj&sttp menu:

CtyAsm
Covmimand lns P-

Mo APCS regstierns
C sifngs
Upper mase
CRU [
Dnfing P
+ MaiCache
MaxCachs |2
Suppress wamings
Enmers in s r-
Listing r
Mo Tersa
Wit P
Langih I
Cross refernnos
« Work direciany I-
Cxhers |2

The SetUp dialogue box and menu specify the next assembly job to be done. You start
the next job by clickindRun on the dialogue box (or Command line menu dialogue

box). ClickingCancel removes the SetUp dialogue box and clears any changes you have
just made to the options settings back to the state before you brought up the SetUp box.
The options last until you adjust them again or !ObjAsm is reloaded. You can also save
them for future use with an option from the main icon menu.

ObjAsm

The SetUp dialogue box

When the SetUp dialogue box is displayed the Sour ce writable icon contains the name
of the sourcefile to be assembled. The sourcefile can be specified in two ways:

I If the SetUp box is obtained by clicking on the main ObjAsmicon, it comes up with
the sourcefile from the previous setting. This helps you repeat a previous assembly,
as clicking on the Run action icon repeats the last job if there was one.

If the SetUp box appears as a result of dragging a source file containing assembly
language text to the main icon, the source filewill be the same asthe dragged source
file.

When the SetUp box appears the Source icon has input focus, and can be edited in the
normal RISC OS fashion. If afurther sourcefileis selected in adirectory display and
dragged to Sour ce, its name replaces the one already there.

Include

The Include SetUp dialogue box icon adds directories to the source file search path so

that arguments to GET/INCLUDE directives (see page 146) do not need to be fully

qualified. The search rule used is similar to the ANSI C search rule — the current place
being the directory in which the current file was found.

The directories are searched in the order in which they are givenlincthee icon.

Options

TheThrowback option switches editor throwback on (the default) or off. When

enabled, if the DDEULils module and SrcEdit are loaded, any assembly errors cause the
editor to display an error browser. Double clicking Select on an error line in this browser
makes the editor display the source file containing the error, with the offending line
highlighted. For more details, see the chafiteEdit on page 71 of the accompanying
Desktop Tools guide.

TheDebug option switches on or off the production of debugging tables. When enabled,
extra information is included in the output object file which enables source level
debugging of the linked image (as long as Lirik&bug option is also enabled) by the
DDT debugger. If this option is disabled, any image file finally produced can only be
debugged at machine level. Source level debugging allows the current execution
position to be indicated as a displayed line of your source, whereas machine level
debugging only shows the position on a disassembly of memory.

The SetUp menu

The SetUp menu

The command line

The ObjAsm RISC OS desktop interface works by driving an ObjAsm tool underneath
with acommand line constructed from your SetUp options. The Command lineitem at
the top of the SetUp menu leads to a small dialogue box in which the command line
equivalent of the current SetUp optionsis displayed:

Command ina

BCSE:MHardy § App 'Sorap Sorapin a0 |
Mo APCS registers =
G sFings Fun |
Upper ace
CPLU r
Dafing P

+ Mo Cacha
Pl e T

Suppress warnings
Enes 10 filky
LEbng
o Teres
Wiith
Langih I
Cross relnrenca

< Wodk dirs ey
Chheers

The Run action icon in this dialogue box starts assembly in the same way asthat in the
main SetUp box. Pressing Return in the writable icon in this box has the same effect.
Before starting assembly from the command line box, you can edit the command line
textually, although thisis not normally useful.

Controlling syntax

10

The next few entries in the SetUp menu all control the acceptable syntax for the
Assembler:

No APCSregisters specifies whether the variant of the ARM Procedure Call Standard
used by RISC OSisin use, or the APCSisnot in useat al. By default the APCSisin
use, and ObjAsm pre-declares extra register names and variables, and also specifies
some attributes of code areas:

I Thefollowing extraregister names are pre-declared: al-a4,v1-v6, sl ,f p, and
i p.(Thisisin addition to the default pre-declared register names RO-R15,
r0-r15,sp,SP I r,LR pc and PC)

ObjAsm

The ObjAsm built-in variable { CONFI G is set to 26. This does not generate
particular ARM-specific code, but allows the Linker to warn of any mismatch
between files being linked, and also allows programs to use the standard built-in
variable { CONFI G to determine what code to produce.

I Codeareasare marked asusing sl for the stack limit register, following the APCS.

When this menu option is chosen (i.e. it has atick beside it), the APCSisnot in use, and
so the above points no longer hold.

You can specify other APCS variants using the - APCS option in the Other s writable
field at the bottom of the menu; see Specifying other command line options on page 18,
and Command line options not available from the desktop on page 23.

C strings, when enabled, allows the assembler to accept C style string escapes such as
‘\'n’. Cstringsis not enabled by default, as it results\incharacters in string constants
being interpreted in a different way compared to previous Acorn assemblers.

Upper case, when chosen, makes ObjAsm recognise instruction mnemonics only if they
are entirely in upper case. By defaulpper caseis not chosen, and ObjAsm recognises
mnemonics that are entirely in upper or lower case (but not a mixture of both).

This option is provided mainly to support old code that might have used lower case
versions of instruction mnemonics as macro names; it allows the macros to still be
recognised as such.

CPU sets the target ARM core. Currently this can take the values ARM6, ARM7 and
ARM7M, and defaults to ARM6. Some processor specific instructions will produce
warnings if assembled for the wrong ARM core:

s |
Command krs
Mo APCS megisters
G aFings
Lipper cazs [ARMCPU_ |
cru SR
D fimi r
+ MaCache
PollineC i ad
Suppress warnings
Emes i fike
LEstmg
Mo Terss
Lol o]
Langih
Cross minrerce

o ok dredinry
Cxhars

11

The SetUp menu

Predefining a variable

The next entry -Define — allows you to set an initial value for an assembler global
variable:

ObjAsm
Comimand lns F

Mo APCS registers
 airings
Upper mze
GPU L
+ Mo Cacha
Rl acihe F
Suppress warnings
Enes 10 fike I
LEbng I
M Teess
Wi I
Langth I
Cross refarsnce
+ Wioek dends iy F
Ciheers I

Syminol
Wersion SETA 44

You must give a valid variable name, followed bSETL, SETA or SETS directive,
followed by a value. The value may be a simple constant or a constant expression (in
ObjAsm syntax) of appropriate type — logical, arithmetic or stringEorL, SETA and
SETS respectively — provided that its value can be computed at the start of assembly.
The variable is set as if the directive occurs before the start of the source; an implicit
GBLL, GBLA or GBLS directive is also executed. In the cas&BT'S, quotation marks

are usually necessary around the value, since it is a string expression.; these must be
escaped by preceding each with a backslash (V).

Controlling cacheing

12

ObjAsm is a two pass assembler — it examines each source file twice. To avoid reading
each source file twice from disk the assembler can cache the source in memory, reading
it from disk for the first pass, then storing it in RAM for the second. This makes very
heavy use of memory, and so is unsuitable for smaller machines.

The next two menu options control this cacheing:

NoCache disables cacheing when chosen, which is the default. Wb€ache is
switched off, cacheing is enabled.

ObjAsm

MaxCache allows you to specify the maximum amount of RAM to be used for cacheing
source files, provided that NoCache is off. The maximum cacheis specified in
megabytes; the default is 8MB:

SEnAen

Comimand lins [

Fo APCS registers

i giings

Upper casse

CPU I

D finim I
+ MnCachs Cachn san

Suppress warnings

Ermoen i e 5
Listmg F
Mo Tarea

Width P
Langih F

Cross reforence
+ Work dirscioey L
Ceheirs L

Handling warnings and errors
The next menu options control handling of warnings and errors:

Suppress war nings, when chosen, turns off the warning messages that ObjAsm
generates. It is off by default (i.e. warning messages are generated).

13

The SetUp menu

Errorstofile allows you to specify afileto which error messages are output for later
inspection:

CbjAsm

Canmimand ks F
Mo APCS regishers
C arnge
Upper mse
GPU e
D fing LS
' MnCacha
R acke =
Suppress wiFnings
5SS MHardy i Tmp OASmETs
Lisbng e
Mo Tergs
W =
Langih
Cross mafarencs
L \ork dins iy
Diheprrs 13

-

-

Listings
The next options control whether or not a listing is produced, and its format:

The Listing option enables assembler source code to be sent to afile:

Coimimand s =
Mo APCS regisbers
C N
Upper mse
GPU I
Dafing B
L MniCache
Pl e "
Suppress warnings
E e i fila E (™ LT
EEr | G My § Tmp Obhsmlst
Mo Tergs
Widlh F
Langih F
Cross rafnrence
L Work dins cioey E
Ctheirs E

14

ObjAsm

This option turns on the Assembler listing, and during assembly the source code, object
code, memory addresses and reference line numbers will be sent to the named file.

Listing is off by default.

NoTer se modifies the listing that is output, which normally only includes the
conditionally assembled parts of your program. If you choose NoTer se, conditionally
non-assembled parts are listed as well. NoTer seis off by default.

Width sets the width, in characters, of thelisting that is outpuit:

SEA

Command lins
Mo APCS registers
C aFings
Upper mse
CRU
D

« MaCache
ManC achs
Suppess wamnings
Emoes ia fle
Lstng
Mo Teres

P

Width

Langih

Cross e nEncia
o Work dne oy

O

This should be between 1 and 254. The default widthis 131; awidth of 76 issuitable for

aMode 12 RISC OS window.

15

The SetUp menu

L ength sets the number of lines per page for printer output. At the end of each page
ObjAsm inserts aform feed character. The default length is 60:

LEnhsm

Command lins I
Mo APCS registers
C swings
Upper mase
CPU I
D fing I
+ MoCachs
Pl e r
SUpDMeST WIFnings
Emoes 10 fla F
Lisbng P
Mo Tergs
Wik F Lth
ErT—
Cross ralo rence
+ Work drsciney I
Diheprrs L

If you choose Cross reference, then after assembly ObjAsm outputs an al phabetically
sorted cross reference of all symbols encountered. Note that the text output may be very
large for abig program, and so this option may not function on amachine with restricted
memory. Cross reference is off by default.

16

ObjAsm

Choosing your work directory
Work directory allows you to specify the work directory:

Dojhsm
Command lns I

Mo APCS regisbers
G sFings
Uppsr mse
CPU I
D fing I
« MaCachs
MawCache L
Suppress warnings
Enmas i fla I-
Listing F
Mo Tersa
Lol ig] I
Langih I
Cross minrence Dingsctiory
f Work drectory | ;

Ciheirs ¥

The GET and LNK directives both result in the assembler loading source files specified
with the directive. The work directory is the place where these source files are to be
found. An exampleisasourcefile:

adf s: : HardDi sc4. $. Source. s. foo
containing the line:

GET S. macr os
If the work directory is” then thefile loaded is:

adf s: : Har dDi sc4. $. Source. s. *. s. mACr 0S
(i.e adf s: : Har dDi sc4. $. Sour ce. s. macr 0s)

The work directory must be given relative to the position of the source file containing
the GET or LNK, without atrailing dot.

The default work directory is”.

17

ObjAsm output

Specifying other command line options

The Other s option on the SetUp menu leads to awritable icon in which you can add an
arbitrary extra section of text to the command line to be passed to ObjAsm:

Cojdsm
Command lins E

Mo APCS registers

C: skings

Uppar mse

CPU I

Cafing P

L MG ache
Pl i P
Suppress warnings
Emoas i fle 3
Lsbng P
Mo Terss
Wik B
Langth I-
Cross refarsnce

< Woik dinschiey F

E—

1 |

Thisfacility isuseful if you wish to use any feature which is not supported by any of the
other entries on the SetUp dialogue box and menu. This may be because the feature is
used very little, or because it may not be supported in the future.

For afull description of command line options, see ObjAsm command lines on page 22.

ObjAsm output

ObjAsm outputs text messages asit proceeds. These include source listings and symbol
cross references (as described in the previous sections). By default any such text is
directed into a scrollable output window:

b f f
FO HES#m0lEr 4, arh Lamputers oy 4

=

18

ObjAsm

Thiswindow is read-only; you can scroll up and down to view progress, but you cannot
edit the text without first saving it. To indicate this, clicking Select on the scrollable part
of thiswindow has no effect.

The contents of the window illustrated above are typical of those you see from a
successful assembly; the titleline of the assembler with version number, followed by no
error messages.

Clicking Adjust on the close icon of the output window switches to the output summary
dialogue box. This presents areminder of the tool running (ObjAsm), the status of the
task (Running, Paused, Completed or Aborted), the time when the task was started, and
the number of lines of output that have been generated (ie those that are displayed by the
output window):

E | R &t 152718

Coghmm i Lings o cridgeat

Clicking Adjust on the close icon of the summary box returns to the output window.

Both the above ObjAsm output displays follow the standard pattern of those of all the
non-interactive Desktop tools. The common features of the non-interactive Desktop

tools are covered in more detail in the chapter General features on page 101 of the
accompanying Desktop Tools guide. Both ObjAsm output displays and the menus

brought up by clicking Menu on them offer the standard features, which allow you to

abort, pause or continue execution (if the execution hasn’'t completed), to save output
text to a file, or to repeat execution.

ObjAsm error messages appear in the output viewer, with copies in the editor error
browser when throwback is working. The apperigtisor messages on page 187 of this
manual contains a list of common ObjAsm error messages together with brief
explanations.

Assembly listings and cross references appearing in the output window are often very
large for assemblies of complex source files. The scrolling of the output window is
useful to view them. To investigate them with the full facilities of the source editor, you
can save the output text straight into the editor by dragging the output file icon to the
SrcEdit main icon on the icon bar.

19

ObjAsm icon bar menu

ObjAsm icon bar menu

20

The ObjAsm main icon bar menu follows the standard pattern for non-interactive
Desktop tools:

| ojaam |
Inkg P
Save opfons
Oprlions [
Help
Qi

Save options saves al the current ObjAsm options, including both those set from the
SetUp dialogue box and from the Optionsitem on this menu. When ObjAsm isrestarted
itisinitialised with these options rather than the defaults.

The Options submenu allows you to set the following options:

I Display specifies the output display as either atext window (default) or asa
summary box.

1 If Autorun isenabled, dragging a source file to the ObjAsm main icon
immediately starts an assembly with the current options rather than displaying the
SetUp box first. Auto run is off by default.

I If Auto saveisenabled output image files are saved to suitable places automatically
without producing a save dialogue box for you to drag the file from. Auto saveis
off by defaullt.

Clicking on Help on the main ObjAsm menu displays a short text summary of the
various SetUp options, in a scrollable read-only window:

i [

n
Furppse: AEM assembler owtpukting object Files

Satup:])
i AckiensHeaning
Spurge Hane of file to be as

clude

ObjAsm

Example ObjAsm session

The programming example Acor nC_C++. Exanpl es. AsnHel | o isanon-desktop
free standing command line program written in assembly language. It outputs the text
‘Hello World'.

The assembly language source is held irstkabdirectory, in the filélel | oW The
code demonstrates the ObjAsm directives needed for a free standing program;

To assembléfel | oWfirst run |Objasm and !Link by double clicking on them. Drag the
Hel | oWsource text file to the ObjAsm icon. TBetUp dialogue box of ObjAsm
appears. Check that the defdsdtUp options are enabled:

I CEfA
SU.F:EH Ca+ Exmmplen Aomaio s Helloly
inciude | |
'Ep'.il:n'-a
' Throwback __|Debug

Carcel | Aun

Click onRun to proceed, and save the object file produced i thebdirectory. Drag
the object file to the Link icon, arRRlun Link to produce an AlF executable image file,
the link having théHel | oWobject file as its only input file. Save the image file in
Acor nC_C++. Exanpl es. AsntHel | 0. ! Runl nage. The command line program
is now ready for use.

To run the program under the desktop, double click on it. A window appears with the
text ‘Hello World':

| Run SCSI: MHandy ! Acom G4+ Examples AsmHalio Sunlmage
wlla Horla

Frays BEFBIE or cliiok sewse bo caniisss

As the window instructs you to do, press the space bar or click on your mouse. The
window disappears.

21

ObjAsm command lines

ObjAsm command lines

22

ObjAsm, in common with the other non-interactive Desktop tools, can be driven with a
text command line without its RISC OS desktop interface appearing. This enables
ObjAsm to be driven by Make as specified in textual makefiles.

You can use ObjAsm outside the RISC OS desktop from its command line, in the same
way that it could be used in the previous Acorn Desktop Assembler product. However,
as dl the useful ObjAsm features can be more conveniently used from the RISC OS
desktop thereislittle reason for you to do this. The desktop removes the need for you to
understand the command line syntax.

The ObjAsm RISC OS desktop interface drives the ObjAsm tool underneath by issuing
acommand line constructed from your SetUp options. The Command line SetUp menu
option allows you to view the command line constructed in this way.

The Make tool alows you to construct makefiles with assembly operations specified
using the ObjAsm desktop interface (by following the Tool optionsitem of Make). You
can therefore construct makefiles without understanding the command line syntax of
ObjAsm.

The command to invoke ObjAsm takes either of the forms:

bj Asm «options» sourcefile objectfile
Obj Asm «options» - 0 objectfile sourcefile

The options are listed below, split into two sections: those for which thereis a direct
equivalent in the SetUp dialogue box or menu, and those others for which thereis no
equivalent. Upper case is used to show the allowable abbreviations. Note that to
understand what many of these options do it may be necessary to refer to some of the
documentation above.

Command line options available from the desktop

The table below shows the various command line options that correspond to the options
available from the SetUp dial ogue box and menu, together with areference to the
desktop equivalent, which you should see for full details of the option:

Command line option Desktop equivalent Page
-1 dir« , dir» Include writable icon in dialogue box 9

- Thr onBack Throwback option icon in dialogue box 9
-G Debug option icon in dialogue box 9
(See- Apcs below) No APCSregistersin menu 10
-Esc C stringsin menu 1

- Upper Case Upper case in menu 1

- CPU ARMcore CPU inmenu 1

ObjAsm

Command line option Desktop equivalent Page
-PreDefine directive Definein menu 12
- NOCache NoCachein menu 12
- MaxCache n MaxCache in menu 13
- NOWar n Suppresswarnings in menu 13
-ERRors errorfile Errorstofilein menu 14
-LIST Iistingfile Listing in menu 14
- NOTer se NoTersein menu 15
-Wdth n Width in menu 15
-Length n Length in menu 16
- Xr ef Crossreferencein menu 16
- Deskt op dirname Work directory in menu 17

Command line options not available from the desktop

The table below shows those command line options for which thereis no direct
equivalent in the SetUp dialogue box or menu. Should you need to use any of these more
esoteric options from the desktop, you can add them to the SetUp i@¢ner's option
(seeSpecifying other command line options on page 18).

Command line option Description

-Hel p Outputs a summary of the command line options.

-VIA filenane Reads in extra command line arguments from the
givenfilename.

-LIttl eend Assemble code suitable for a little-endian ARM, by
setting the built-in variableENDI AN} to
"little"

- Bl gend Assemble code suitable for a big-endian ARM, by

setting the built-in variableENDI AN} to "bi g".

23

ObjAsm command lines

Command line option
- Apcs option« | qualifier»«

/ REENTT ant

/ 32bi t

/ 26bi t

/| SWBTackcheck

/ NOsWst ackcheck

- Depend dependfile

- ABSol ut e

24

Description
[qualifier...»

Specifies whether the ARM Procedure Call Standard
isin use, and al so specifies some attributes of CODE
AREAsS. By default the register names R0-R15,
r0-r15,sp,SP,Ir,LR pc,and PCare
pre-declared. If the APCSisin use the following
register names are also pre-declared: al-a4,v1-v6,
sl,fp,andi p.

There are two APCS options: NONE and 3. The
SetUp menu'®No APCSregistersoption (page 10) —
when chosen — declares the APCS in udeGiNE.
The default behaviour is to use the

3/ 26bi t / SW5t ackcheck APCS variant used by
RISC OS

The qualifiers — which should only be used with
option3 — are as follows:

Sets the reentrant attribute for any code AREAs, and
predeclaresb (static base) in place ub.

Is the default setting and informs the Linker that the
code being generated is written for 32 bit ARMs. The
built-in variable{ CONFI G} is also set t@2.

Tells the Linker that the code is intended for 26 bit
ARMSs. The built-in variabl¢ CONFI G} is also set to
26.

Note that these options do not of themselves generate
particular ARM-specific code, but allow the Linker

to warn of any mismatch between files being linked,
and also allow programs to use the standard built-in
variable{ CONFI G} to determine what code to
produce.

Marks CODE AREAs as using sl for the stack limit
register, following the APCS (the default setting).
Marks CODE AREAs as not using software
stack-limit checking, and predeclares an additional
v-registery6 if reentranty 7 if not.

Saves source file dependency lists, which are suitable
for use with ‘make’ utilities.

Accepts AAsm source code to provide some
backwards compatibility in this release. See the
appendixSupport for AAsm source on page 215.

Command line option
-FRom fil enane

-TO fil enane
-Print

- Qui t

ObjAsm

Description

Supported, for backward compatibility with previous
release.

Supported, for backward compatibility with previous
release.

Supported, for backward compatibility with previous
release.

Recognised but ignored, for backward compatibility
with previous release.

25

26

Part 2 — Assembly language detalls

27

28

Introduction

The ARM CPU

he ARM (Advanced Risc Machine) is ageneral purpose32 bit single chip

microprocessor. The architecture is based on Reduced Instruction Set Computer
(RISC) principles, and the instruction set and related decode mechanism are greatly
simplified compared with microprogrammed Complex Instruction Set Computers. This
simplification results in a high instruction throughput and a good real-time interrupt
response from a small and cost-effective chip.

Bus widths

The ARM2 and ARM 3 have a 32 bit databus and a 26 bit address bus. On later versions
of the ARM, both the data bus and the address bus are afull 32 bits wide.

Instruction set

All instructions fit into one 32 bit word, and they can all be made conditional.

The ARM instruction set comprises ten basic classes of instruction:
I branches

| data operations between registers

I multiplies

I singleregister datatransfers

I multiple register data transfers

I single register data swaps

| supervisor cals

| coprocessor data operations

| coprocessor/memory transfers

| coprocessor/register transfers.
Two of these make use of the on-chip arithmetic logic unit (ALU), barrel shifter and
multiplier to perform high-speed operations on the datain the 32 bit registers. Three

instruction classes control the transfer of data between main memory and the register
bank, one optimised for flexibility of addressing, another for rapid context switching,

29

Introduction

and the third for swapping data. Two instruction classes control the flow and privilege
level of execution. The remaining three classes are dedicated to the control of external
coprocessors, which allow the functionality of theinstruction set to be extended off-chip
in an open and uniform way.

The ARM instruction set has proved to be agood target for compilers of many different
high-level languages. Where required for critical code segments, assembly code
programming is also straightforward, unlike some RISC processors which depend on
sophisticated compiler technology to manage complicated instruction
interdependencies.

Theinstruction set is detailed in the chapter CPU instruction set on page 55.

Pipelining
Pipelining is employed so that all parts of the processing and memory systems can
operate continuously.

The ARM uses a 3-stage instruction pipeline. This allowsit to execute one instruction,
and at the same time both to decode the following instruction, and to fetch the one after
that from memory.

Memory interface

The memory interface has been designed to allow the performance potential to be
realised without incurring high costs in the memory system. Speed critical control
signals are pipelined to allow system control functions to be implemented in standard
low-power logic, and these control signals facilitate the exploitation of the fast local
access modes offered by industry standard dynamic random access memories
(DRAMS).

Data types
The processor can access two types of data:
I bytes (8 hits)
I words (32 bits)
where words must be aligned to four byte boundaries.

Instructions are fetched as words, and so must be aligned to four byte boundaries. Data
operations (eg ADD) are only performed on word quantities. Load and store operations
can transfer either bytes or words, and can put afull 26 or 32 bit address (depending on
the processor variant) — with bits 0 and 1 set as required — on to the address bus.

30

Block diagram of core

ABE —
ALE —

The ARM CPU

A bus
j ﬁ {7 B/W R/W
Address Register = «
(e}
o
- .«
3 2
(@] Address |—§&
@ | Incrementer [— —
@ 3 -
T - |
Register Bank <
(32 bit Registers)
>
E _—
; \— Instruction
@ Decoder —»
g\ and
1 Multiplier CLont_rol L »
ogic
> —>
o
c
5 F
Barrel w >
Shifter w
LT
\ 32 bit ALU / Ly
R -
47
. . Instruction Pipeline
Write Data Register and Read Data Register

7

D bus

i

D bus

PH1

PH2

IRQ
FIQ

RESET

ABORT

OPC
TRANS

M bus

MREQ

SEQ

CPI
CPA

CPB

31

26 bit architecture

26 bit architecture

32

Figure3.1 ARM Core block diagram

This section describes the architecture of the ARM2 and ARM3 series, which only
supported a 26 bit address space. However, as we shall see in the section 32 bit
architecture on page 36, much of thisisalso relevant to later series of ARM when used
so asto provide backward-compatibility with the earlier 26 bit processors.

Processor modes

These older ARM series support four modes of operation:

User mode: the normal program execution state

Fast Interrupt mode (abbreviated to FIQ mode): designed to support a data transfer
or channel process

Interrupt mode (abbreviated to IRQ mode): used for general purpose interrupt
handling

Supervisor mode (abbreviated to SV C mode): a protected mode for the operating
system, also entered after adata or instruction prefetch abort, or when an undefined
instruction is executed.

M ode changes may be made under software control or may be brought about by external
interrupts or exception processing. Most application programs will execute in User
mode. The other modes, known as privileged modes, will be entered to serviceinterrupts
or exceptions or to access protected resources.

Registers

The ARM has anumber of 32 bit registers, 16 of which are visible to the programmer at
any time. This subset depends on the processor mode:

Normally the ARM operatesin User mode, with registers RO to R15 visible.

When in the other privileged modes (see the section Processor modes on page 32)
special privateregistersare switched in. If code running in these modes needsto use
any of the shared registers, it should save their contentsin memory using one of the
block data transfer instructions available for this purpose; see Block data transfer
(LDM, STM) on page 91.

The IRQ and SV C modes have two private registers mapped to R13 and R14 (R13_irq
and R14 irq, and R13_svc and R14_svc respectively).

The ARM CPU

The FIQ mode has more private registers so that FIQ code — which needs to respond
quickly — is less likely to need to use any of the shared registers, and so will be spared
the overhead of saving them to a stack. Its seven private registers are mapped to R8-R14

(R8_fig-R14_fi).

The register bank organisation is shown in the fi@érbit register organisation below:

User mode ‘ SVC mode ‘ IRQ mode ’ FIQ mode

RO
R1
R2
R3
R4
R5
R6
R7
R8 R8_fiq
R9 R9_fiq
R10 R10_fiq
R11 R11_fig
R12 R12_fiq
R13 R13 svc R13_irq R13_fiq
R14 R14_svc R14 irq R14_fiq

R15 (PC/PSR)

Figure 3.2 26 hit register organisation

All registers are general purpose and may be used to hold data or address values, except

for R15 and R14:

I R15 contains the Program Counter (PC) and the Processor Status Register (PSR).

See the sectioReg

ister R15 below.

R14 is used as the subroutine Link register, and receives a copy of the return PC and
PSR when a Branch and Link instruction is executed. See the sRegister R14

below.

R13 is also often used for a special purpose:

I R13is,by convention only, often used as a private stack pointer for a processor

mode.

33

26 bit architecture

The private copies of R13 and R14 allow each mode to have a private stack pointer and
link register. SV C and IRQ mode programs are expected to save the User state on their
respective stacks and then use the User registers, remembering to restore the User state
before returning.

Register R15

34

R15 contains 24 bits of program counter (PC) and 8 bits of processor status register
(PSR).

The program counter (PC) is 24 bits wide and counts to & FFFFFF. However, two
low-order bits (both zeros) are appended to the PC value and a 26 bit value is put on the
address bus, thus quadrupling the total count to & 3FFFFFC. The memory capacity of
the ARM processor is 64 Mbytes, or 16 Mwords. The PC is always a multiple of four
because of the two appended zeros, and so it follows that instructions must be aligned to
four byte boundaries.

Specia bitsin some instructions allow the PC and PSR to be treated together, or
separately, as required. The allocation of the bits within the register R15 is shown in the
figure The Program Counter (PC) and Process Satus Register (PSR) below.

31 30 29 28 27 26 25 2 1 0
N|Zz[|C|V|I|F Program counter (PC) M1| MO

LEAProcessor mode

00 O User mode
010 FIQ mode
10 O IRQ mode
11 O Supervisor mode

Program counter
(Word aligned)

FIQ disable
00 Enable
10 Disable

IRQ disable
00 Enable
10 Disable

Overflow

Carry/Not borrow/
Rotate extend

Zero

Negative/
Signed less than

Figure 3.3 The Program Counter (PC) and Process Satus Register (PSR)

The ARM CPU

The mnemonics for the four condition flags are derived as follows:

N Negative flag
z Zero flag
C Carry flag
\% Overflow flag

The condition flags may be altered in any mode. The |, F, and Mode flags can only be
changed directly in privileged modes; they are also modified when exceptions occur or
SWI instructions are executed.

Register R14

R14 is used as the subroutine Link register, and receives a copy of the return PC and
PSR when aBranch and Link instruction is executed (see page 65). It may be treated as
agenera purpose register at all other times. Similarly, R14_svc, R14 irq and R14 fiq
are used to hold the return values of R15 when interrupts and exceptions arise, or when
Branch and Link instructions are executed within supervisor or interrupt routines.

Changing operating modes

Inthe Assembler, the suffix PaddedtoaCMN, CMP, TEQ or TST instruction causesthe
instruction to change the PSR directly. Such instructions can be used to change the
ARM’s mode, for example:

TEQP R15, #2 changes to IRQ mode
TEQP R15, #0 changes to user mode.

The action is to Exclusive OR the first operand with a supplied immediate field. R15 is
the first operand. Whenever R15 is presented to the processor as the first operand,

24 bits are presented; the PSR bits are supplied as zero. The TEQ causes the immediate
field value to be written into the register, and the P causes the PSR bits (now altered by
the immediate field value) to be written back into R15. Since two of the PSR bits are the
mode control bits, the processor assumes its new mode.

As the mode control bits cannot be set in User mode, this technique will not work in
User mode. There are, however, two ways to pass from User mode to other modes:

I by receiving an external interrupt
I by making use of the SWI instruction.

Note: For more details of instructions executed immediately following a mode change
see the sectiorisorcing transfer of the user bank on page 96 andsing R15 as the
destination on page 74.

35

32 bit architecture

32 bit architecture

36

The ARM architecture changed significantly with the introduction of the ARM6 series.
This section describes the differences in behaviour of more recent ARM processors.

New features in ARM6

The most notable change made in the ARM6 serieswas to extend the program counter to
afull 32 bits. As aresullt:

I The PSR had to be separated from the PC into its own register, the CPSR (Current
Program Satus Register).

I The PSR can no longer be saved with the PC when changing processor modes;
instead, each privileged mode now has an extra register — the S&®&dRRrogram
Satus Register) — to hold the previous mode’s PSR.

I Instructions have been added to use these new status registers.

A further change was the addition of extra privileged processor modes, allowed by the

PSR now having a full 32 bits to use. These modes are used to handle Undefined
instruction and Abort exceptions. Consequently:

I Undefined instructions, aborts, and supervisor code no longer have to share the

same mode. This has removed restrictions on Supervisor mode programs which
existed on earlier ARMs.

Processor configuration

The availability of these features in the ARM6 series (and other later compatible chips)
is set by one of several on-chip control registers. One of tinoeessor configurations
can be selected:

26 bit program and data space. This configuration forces ARM to operate with a
26 bit address space. In this configuration only the four 26 bit modes are available
(seeProcessor modes below); it is impossible to select a 32 bit mode.

This configuration is set at reset on all current ARM6 and 7 series processors.

26 bit program space and 32 bit data space. This is the same as the 26 bit
program and data space configuration, except that address exceptions are disabled
to allow data transfer operations to access the full 32 bit address space.

32 bit program and data space. This configuration extends the address space to

32 bits, and introduces major changes to the programmer’s model. In this
configuration you can select any of the 26 bit and the 32 bit processor modes (see
Processor modes below).

The ARM CPU

Processor modes

When configured for a 32 bit program and data space, the ARM6 and ARM7 series
support ten overlapping processor modes of operation:

User mode: the normal program execution state — or

User26 mode: a 26 bit version of the above

FIQ mode: designed to support a data transfer or channel process — or
FIQ26 mode: a 26 bit version of the above

IRQ mode: used for general purpose interrupt handling — or

IRQ26 mode: a 26 bit version of the above

SVC mode: a protected mode for the operating system — or

SVC26 mode: a 26 bit version of the above

Abort mode (abbreviated to ABT mode): entered after a data or instruction prefetch
abort

Undefined mode (abbreviated to UND mode): entered when an undefined
instruction is executed.

The distinction between processnodes andconfigurations is important, and will be
rigidly adhered to in the rest of this manual.

The 26 bit processor modes

When in a 26 bit processor mode, the programmer’s model reverts to that of earlier
26 bit ARM processors. The behaviour is the same as that of the ARM2aS macrocell
with the following alterations:

Address exceptions are only generated by ARM when it is configured for 26 bit
program and data space.

In other configurations the OS may still simulate the behaviour of address
exception, using external logic such as a memory management unit to generate an
abort if the 64Mbyte range is exceeded, and converting that abort into an ‘address
exception trap’ for the application.

The new instructions to transfer data between general registers and the program
status registers remain operative. The new instructions can be used by the operating
system to return to a 32 bit mode after calling a binary containing code written for a
26 bit ARM.

When in a 32 bit program and data space configuration, all exceptions (including
Undefined Instruction and Software Interrupt) return the processor to a 32 bit mode,
so the operating system must be modified to handle them.

37

32 bit architecture

38

I If the processor attempts to write to alocation between &0 and & 1F inclusive (i.e.
the exception vectors), hardware prevents the write operation and generates a data
abort. This allows the operating system to intercept all changes to the exception
vectors and redirect the vector to some veneer code. The veneer code should place
the processor in a 26 bit mode before calling the 26 bit exception handler.

In all other respects, when operating in a 26 bit mode the ARM behaves as like a 26 bit
ARM. (Seethe section 26 bit architecture on page 32.) The relevant bits of the CPSR
appear to be incorporated back into R15 to form the PC/PSR with the | and F bitsin bits
27 and 26. The instruction set behaves like that of the ARM2aS macrocell, with the
addition of the MRS and M SR instructions.

RISC OS processor configuration and modes

For details, see the section RISC OS processor configuration and modes on page 171.

Registers

Theregisters available in the ARM6 and ARM7 series are:

The ARM CPU

User and SvC and IRQ and FIQ and
User26 SVC26 IRQ26 ABT mode | UND mode F1Q26
mode mode mode mode
RO
R1
R2
R3
R4
R5
R6
R7
R8 R8_fiq
R9 R9_fiq
R10 R10_fiq
R11 R11_fiq
R12 R12_fig
R13 R13_svc R13_irq R13_abt R13_und R13_fiq
R14 R14_svc R14_irq R14_abt R14_und R14 fiq
R15 (PC)
CPSR
SPSR_svc SPSR_irq SPSR_abt SPSR_und SPSR_fig

Figure 3.4 32 hit register organisation

These are similar to those available in the ARM2 and ARM 3 series registers. The key
differences are:

the PC isafull 32 bitswide

the PSR is held in its own register, the CPSR (see the section The CPSR and SPSR
registers below)

each privileged mode has a private SPSR register in which to save the CPSR

there are two new privileged modes, each of which has private copies of R13 and
R14.

39

Exceptions

The CPSR and SPSR registers

Exceptions

40

The alocation of the bits within the CPSR (and the SPSR registersto which it is saved)

is shown in the figure The Current Process Satus Register (CPSR) below.

31 30 29 28 27 7 6 5 4 3 2 1 O

8
Nl Z|C|V << I | F M4 M3 |M2|M1|MO

A A A A A A * * y * *

—— Processor mode
00000 User26 mode
00001 FIQ26 mode
00010 IRQ26 mode
00011 SVC26 mode
10000 User mode
10001 FIQ mode
10010 IRQ mode
10011 SVC mode
10111 ABT mode
11011 UND mode

FIQ disable
0] Enable
1] Disable

IRQ disable
0] Enable
1 O Disable

ODooooooooog

Overflow

Carry/Not borrow/
Rotate extend

Zero

Negative/
Signed less than

Figure3.5 The Current Process Satus Register (CPSR)

This last section of the chapter is mainly of interest to operating systems programmers —
for example when constructing relocatable modules. If you are writing applications, you
can skip forward to the chapt&RM assembly language on page 49.

This section describes the general behaviour of the ARM, rather than its behaviour under
RISC OS. For details specific to RISC OS youst also see the chaptException
handling on page 171.

The ARM CPU

Introduction

Exceptions arise whenever thereis a need for the normal flow of program execution to
be broken, so that (for instance) the processor can be diverted to handle an interrupt from
aperipheral. The processor state just prior to handling the exception must be preserved
so that the original program can be resumed when the exception routine has compl eted.
Many exceptions may arise at the same time.

ARM handles exceptions by making use of the banked registers to save state. The old
PC and PSR are copied, in a 26 bit configuration to the appropriate R14, or in a 32 bit
configuration to the appropriate R14 and SPSR. The PC and processor mode bits are
forced to a value which depends on the exception. Interrupt disable flags are set where
required to prevent otherwise unmanageabl e nestings of exceptions. In the case of a
re-entrant interrupt handler, R14 should be saved onto a stack in main memory before
re-enabling theinterrupt. When multiple exceptions ari se simultaneously afixed priority
determines the order in which they are handled.

FIQ (Fast interrupt request)

TheFIQ (Fast Interrupt reQuest) exception is externally generated by taking the FIQ pin
LOW. Thisinput can accept asynchronous transitions, and is delayed by one clock cycle
for synchronisation before it can affect the processor execution flow. It is designed to
support adatatransfer or channel process, and has sufficient private registersto remove
the need for register saving in such applications, so that the overhead of context
switching is minimised.

The FIQ exception may be disabled by setting the F flag in the PSR (but note that thisis
not possible from User mode). If the F flag is clear ARM checksfor aLOW level on the
output of the FIQ synchroniser at the end of each instruction.

When ARM is successfully FIQed it will:

1 SaveR15inR14 fig, and (for 32 bit configuration ARMSs) save the CPSR in
SPSR_fig.

2 Force the mode bits to FIQ mode and set the F and | bits in the PSR.
3 Forcethe PC to fetch the next instruction from address & 1C.

To return normally from FIQ use:
SUBS PC, R14_fi q, #4

Thiswill resume execution of the interrupted code sequence, and restore the original
mode and interrupt enable state.

41

Exceptions

42

IRQ (Interrupt request)

The IRQ (Interrupt ReQuest) exception isanormal interrupt caused by aLOW level on
the IRQ pin. Thisinput can accept asynchronous transitions, and is delayed by one clock
cyclefor synchronisation before it can affect processor execution. It has alower priority
than FIQ, and is masked out when a FIQ sequence is entered. Its effect may be masked
out at any time by setting the | bit in the PC (but note that thisis not possible from user
mode). If the | flag isclear ARM checks for aLOW level on the output of the IRQ
synchroniser at the end of each instruction.

When ARM is successfully IRQed it will:

1 SaveR15inR14 irq, and (for 32 bit configuration ARMs) save the CPSR in
SPSR_irq.

2 Force the mode hitsto IRQ mode and set the | bit in the PSR.
3 Forcethe PC to fetch the next instruction from address & 18.

To return normally from IRQ use:
SUBS PC, R14_irq, #4
Thiswill restore the original processor state and thereby re-enable IRQ.

Address exception trap

On a 32 hit configuration processor, address exceptions are never generated, and you
may therefore ignore this section for such processors.

Ona26 bit configuration processor, an address exception ariseswhenever adatatransfer

is attempted with a calcul ated address above & 3FFFFFF. The ARM address busis

26 bits wide, but an address calculation has a 32 bit result. If this result has a logic ‘1" in
any of the top 6 bits it is assumed that the address overflow is an error, and the address
exception trap is taken.

Note that a branch cannot cause an address exception, and a block data transfer

instruction which starts in the legal area but increments into the illegal area will not trap

(it wraps round to address 0 instead). The check is performed only on the address of the

first word to be transferred.

When an address exception is seen ARM will:

1 If the data transfer was a store, force it to load. (This protects the memory from
spurious writing.)

2 Complete the instruction, but prevent internal state changes where possible. The
state changes are the same as if the instruction had aborted on the data transfer.

3 Save R15in R14_svc.

4 Force the mode bits to SVC mode and set the | bit in the PSR.

Abort

The ARM CPU

5 Forcethe PC to fetch the next instruction from address & 14.

Normally an address exception is caused by erroneous code, and it is inappropriate to
resume execution. If areturnisrequired from thistrap, use SUBS PC, R14_svc, #4.
Thiswill return to the instruction after the one causing the trap.

The Abort signal comes from an external Memory Management system, and indicates
that the current memory access cannot be completed. For instance, in avirtual memory
system the data corresponding to the current address may have been moved out of
memory onto a disc, and considerable processor activity may be required to recover the
data before the access can be performed successfully. ARM checks for an Abort at the
end of the first phase of each bus cycle. When successfully Aborted ARM will respond
in one of three ways.

Abort during instruction prefetch

If abort is signalled during an instruction prefetch (a Prefetch abort), the prefetched
instruction is marked asinvalid; when it comesto execution, it is reinterpreted as bel ow.
(If theinstruction is not executed, for example as aresult of abranch being taken while
it isin the pipeline, the abort will have no effect.)

Then ARM will:

1 SaveR15inR14 svc, or (for 32 bit configuration ARMS) save R15in R14_abt and
save the CPSR in SPSR_abt.

2 Force the mode bitsto SVC mode or (for 32 bit configuration ARMs) ABT mode
and set the | bit in the PSR.

3 Force the PC to fetch the next instruction from address & OC.
To continue after a Prefetch abort use SUBS PC, R14, #4 (whereR14 isR14_svc or
R14_abt depending on the processor configuration). The ARM will then re-execute

the aborting instruction, so you should ensure that you have removed the cause of the
original abort.

Abort during data access
If the abort command occurs during a data access (a Data Abort), the action depends on
the instruction type.

I Single datatransfer instructions (LDR and STR) are aborted as though the
instruction had not executed.

Block data transfer instructions (LDM and STM) complete, and if writeback is set,
the base is updated. If the instruction would normally have overwritten the base
with data (ie LDM with the base in the transfer list), this overwriting is prevented.

43

Exceptions

44

All register overwriting is prevented after the Abort isindicated, which meansin
particular that R15 (whichisawayslast to betransferred) is preserved in an aborted
LDM instruction.

Then ARM will:

1 SaveR15inR14 svc, or (for 32 bit configuration ARMs) save R15in R14_abt and
save the CPSR in SPSR_aht.

2 Force the mode bitsto SVC mode or (for 32 bit configuration ARMs) ABT mode
and set the | bit in the PSR.

3 Forcethe PC to fetch the next instruction from address & 10.
To continue after a data abort, remove the cause of the abort, then reverse any
auto-indexing that the original instruction may have done, then return to the origina

instruction with SUBS PC, R14, #8 (whereR14 isR14_svc or R14_abt depending
on the processor configuration).

Abort during an internal cycle

The ARM ignores aborts signalled during internal cycles.

Using abortsto implement virtual memory systems

The abort mechanism allows a ‘demand paged virtual memory system’ to be

implemented when a suitable memory management unit (such as MEMC) is available.
The processor is allowed to generate arbitrary addresses, and when the data at an address
is unavailable the memory manager signals an abort. The processor traps into system
software which must work out the cause of the abort, make the requested data available,
and retry the aborted instruction. The application program needs no knowledge of the
amount of memory available to it, nor is its state in any way affected by the abort.

Software interrupt

The software interrupt instruction is used for getting into supervisor mode, usually to
request a particular supervisor function. ARM will;

1 Save R15in R14_svc, and (for 32 bit configuration ARMs) save the CPSR in
SPSR_svc.

2 Force the mode bits to SVC mode and set the | bit in the PSR.
3 Force the PC to fetch the next instruction from address &8.

To return from a SWI, uselVS PC, R14_svc. This returns to the instruction
following the SWI.

The ARM CPU

Undefined instruction trap

When ARM executes a coprocessor instruction or an undefined instruction, it offersit to
any coprocessorswhich may be present. If acoprocessor can perform thisinstruction but
isbusy at that moment, ARM will wait until the coprocessor is ready. If no coprocessor
can handle the instruction ARM will take the undefined instruction trap.

When the undefined instruction trap is taken ARM will:

1 SaveR15inR14 svc, or (for 32 bit configuration ARMSs) save R15in R14_und and
save the CPSR in SPSR_und.

2 Force the mode bits to SVC mode or (for 32 bit configuration ARMSs) UND mode
and set the | bit in the PSR.

3 Force the PC to fetch the next instruction from address & 4.

The undefined instruction trap may be used for software emulation of a coprocessor in a

system which does not have the coprocessor hardware; or for general purpose

instruction set extension by software emulation (the floating point instruction set is
implemented in software this way).

To return from thistrap (after performing a suitable emulation of the required function),
use MOVS PC, R14 (whereR14 isR14_svc or R14_und depending on the processor
configuration). Thiswill return to the instruction following the undefined instruction.

Reset

ARM can bereset by pulling its RESET pin HIGH. If this happens, ARM will stop the
currently executing instruction and start executing no-ops. When RESET goes LOW

again, it will:
1 SaveR15inR14 svc, and (for 32 bit configuration ARMS) save the CPSR in
SPSR_svc.

2 Force the mode bits to SV C mode and set the F and | bitsin the PSR.
3 Forcethe PC to fetch the next instruction from address & 0.

Vector summary

Thefirst eight words of store normally contain branch instructions pointing to the
relevant routines. The FIQ routine may reside at & 000001C onwards, and thereby avoid
the need for (and execution time of) a branch instruction.

Address Definition

& 0000000 Reset

& 0000004 Undefined instruction
& 0000008 Software interrupt

45

Exceptions

46

Address Definition

& 000000C Abort (prefetch)
& 0000010 Abort (data)

& 0000014 Address exception
& 0000018 IRQ

&000001C FIQ

Exception Priorities

When multiple exceptions arise at the same time, afixed priority system determinesthe
order in which they will be handled:

Reset (highest priority)

Address exception, Data abort

FIQ

IRQ

Prefetch abort

Undefined Instruction, Software interrupt (lowest priority)

o O~ W N P

Note that not all exceptions can occur at once. Address exception and data abort are
mutually exclusive, sinceif an addressisillegal the ARM will ignorethe ABORT input.
Undefined instruction and software interrupt are also mutually exclusive since they each
correspond to particular (non-overlapping) decodings of the current instruction.

If an address exception or data abort occurs at the sametime asaFIQ, and FIQs are
enabled (iethe F flag in the PSR is clear), ARM will enter the address exception or data
abort handler and then immediately proceed to the FIQ vector. A normal return from
FIQ will cause the address exception or data abort handler to resume execution. Placing
address exception and data abort at a higher priority than FIQ is necessary to ensure that
the transfer error does not escape detection, but the time for this exception entry should
be added to worst case FIQ latency calculations.

Interrupt latencies

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time
the request can take to pass through the synchroniser, plus the time for the longest
instruction (typically load multiple registers) to complete, plus the time for address
exception or data abort entry, plus the time for FIQ entry. At the end of thistime ARM
will be executing the instruction at 1CH.

The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ
has higher priority and could delay entry into the IRQ handling routine for an arbitrary
length of time.

The ARM CPU

The minimum latency for FIQ or IRQ consists of the shortest time the request can take
through the synchroniser, plus the time for FIQ or IRQ entry.

The above times can vary considerably between different versions of the ARM, and
obviously also depend on clock speeds. For more information you should see the
relevant datasheets.

47

Exceptions

48

General

Input lines

AREAs

ARM assembly language

RM Assembly Language is the language which ObjAsm parses and compilesto
produce object code in ARM Object Format. Information on ObjAsm command
line options are detailed in ObjAsm command lines on page 22. This chapter details
ARM Assembly Language, but does not give examples of its use.

Instruction mnemonics and register names may be written in upper or lower case (but
not mixed case). Directives must be written in upper case.

The general form of assembler input linesis:
«label» «instruction» «, comment»

A space or tab should separate the label, where one is used, and the instruction. If no
label is used the line must begin with a space or tab. Any combination of these three
itemswill produce avalid line; empty lines are also accepted by the assembler and can
be used to improve the clarity of source code.

Assembler sourcelines are allowed to be up to 255 characters long. To make sourcefiles

easier to read, along line of source can be split onto several lines by placing abackslash
character, ‘\', at the end of a line. The backslash must not be followed by any other
characters (including spaces or tabs). The backslash + end of line sequence is treated by
ObjAsm as white space. Note that the backslash + end of line sequence should not be
used within quoted strings.

AREAs are the independent, named, indivisible chunks of code and data manipulated by
the Linker. The Linker places each AREA in a program image according to the AREA
placement rules (i.e. not necessarily adjacent to the AREAs with which it was assembled
or compiled).

49

AREAs

50

Conventionally, an assembly, or the output of a compilation, consists of two AREAS,
one for the code (usually marked read-only), and one for the data which may be written
to. A reentrant object will generally have athird AREA marked BASED sb (see
below), which will contain relocatable address constants. This allowsthe code areato be
read-only, position-independent and reentrant, making it easily ROM-able.

In ARM assembly language, each AREA begins with an AREA directive. If the AREA
directive is missing the assembler will generate an AREA with an unlikely name

(| $3$$$$%|) and produce a diagnostic message to this effect. This will limit the
number of spurious errors caused by the missing directive, but will not lead to a
successful assembly.

The syntax of the AREA directiveis:
AREA namex, attr»« , attr»

You may choose any name for your AREAS, but certain choices are conventional. For
example, | C$$code| isused for code AREAS produced by the C compiler, or for code
AREA s otherwise associated with the C library.

Area attributes

AREA attributes are as follows:

ABS Absolute: rooted at a fixed address.

REL Relocatable: may be relocated by the Linker (the default).

PI C Position Independent Code: will execute where loaded without
modification.

CODE Contains machine instructions.

DATA Contains data, not instructions.

READONLY This areawill not be written to.

COVDEF Common area definition.

COVIVON Common area.

NO NI'T Data AREA initialised to zero: contains only space reservation
directives, with no initialised values.

REENTRANT The code AREA is reentrant.

BASED Rn Static base data AREA containing tables of address constants locating

static dataitems. Rn is aregister, conventionally R9. Any label
defined within this AREA becomes a register-relative expression

ARM assembly language

which can be used with LDR and STRinstructions. For full details see
the appendix ARM procedure call standard on page 249 of the
Desktop Tools guide.

ALl GN=expr essi on
The ALI GNsub-directive forcesthe start of theareato bealigned ona
power-of-two byte-address boundary. By default AREAS are aligned
on a 4-byte word boundary, but the expression can have any value
between 2 and 12 inclusive.

ORG and ABS
ORG base- addr ess

The ORG (origin) directive is used to set the base address and the ABS (absol ute)
attribute of the containing AREA, or of the following AREA if thereis no containing
AREA. In some circumstances this will create objects which cannot be linked. In
general it only makes sense to use ORGin programs consisting of one AREA, which
need to map fixed hardware addresses such as trap vector locations. Otherwise ORG
should be avoided.

Symbols

Numbers, logical values, string values and addresses may be represented by symbols.
Symbols representing numbers or addresses, logical values and strings are declared

using the GBL and LCL directives, and values are assigned immediately by SETA, SETL
and SETS directives respectively (see Local and global variables — GBL, LCL and SET
on page 150). Addresses are assigned by the Assembler as assembly proceeds, some
remaining in symbolic, relocatable form until link time.

Symbols must start with aletter in either upper or lower case; the assembler is
case-sensitive and treats the two forms as distinct. Numeric characters and the
underscore character may be part of the symbol name. All characters are significant.

Symbols should not use the same name as instruction mnemonics or directives. While
the assembler can distinguish between the uses of the term through their relative
positionsin the input line, a programmer may not always be able to do so.

Symbol length islimited by the 255 character line length limit.

If thereisaneed to use awider range of charactersin symbols, for instance when
working with other compilers, use enclosing barsto delimit the symbol name; for
example, | C$$code| . The bars are not part of the symbol.

51

Labels

Labels

Local labels

Labels are a special form of symbol, distinguished by their position at the start of lines.
The address represented by alabel is not explicitly stated but is calculated during
assembly.

Thelocal label, a subclass of 1abel, begins with anumber in the range 0-99. Local labels
work in conjunction with the ROUT directive and are most useful for solving the
problem of macro-generated labels. Unlike global 1abels, alocal 1abel may be defined
many times; the assembl er uses the definition closest to the point of reference. To begin
alocal label area use:

«label» ROUT

The label areawill start with the next line of source, and will end with the next ROUT
directive or the end of the program.

Local labels are defined as:
number«routinename»

although routinename need not be used; if omitted, it is assumed to match the label
of the last ROUT directive. It is an error to give aroutine name when no label has been
attached to the preceding ROUT directive.

References to local labels

52

A referenceto alocal label has the following syntax:
Yax»«y»n«routinename»

%introduces the reference and may be used anywhere where an ordinary label reference
isvalid.

x tellsthe assembler where to search for the label; use B for backward or F for forward.
If no direction is specified the assembler looks both forward and backward. However
searches will never go outside the local 1abel area (i.e. beyond the nearest ROUT
directives).

y provides the following options: Ato look at all macro levels, T to look only at this
macro level, or, if y isabsent, to look at all macro from the current level to the top level.

n isthe number of the local label.

routinename isoptional, but if present it will be checked against the enclosing
RQOUT's label.

ARM assembly language

Comments
The first semi-colon on aline marks the beginning of acomment, except where the
semi-colon appears inside a string constant. A comment aloneisavalid line. All
comments are ignored by the assembler.
Constants
Numbers
Numeric constants are accepted in three forms: decimal (e.g. 123), hexadecimal (e.g.
&7B), and n_xxx, where nisabase between 2 and 9, and xxx isanumber in that base.
Strings
Strings consist of opening and closing doubl e quotes, enclosing characters and spaces. If
double quotes or dollar signs are used within a string as literal text characters, they
should be represented by a pair of the appropriate character; e.g. $$ for $.
Boolean

The Boolean constants ‘true’ and ‘false’ should be writtehTd&RUE} and{ FALSE} .

The END directive
Every assembly language source must end with:
END

on a line by itself.

53

54

5 CPU Instruction set

his chapter describes the CPU instructions available in ObjAsm. It includes
instruction formats, assembler syntax, and a synopsis of each instruction.

The condition field

All ARM instructions are conditionally executed, which means that they will only be

executed if the N, Z, Cand V flagsin the PSR are in the correct state at the end of the

preceding instruction. The condition is encoded in afour bit condition field, held in bits

28 - 31 of an instruction. By default ObjAsm encodes the ‘always execute’ condition;
other conditions can be requested by appending a two-character condition mnemonic to
ObjAsm’s mnemonic for an instruction.

The figure below shows the condition codes, their mnemonics, and the corresponding
conditions under which the instruction is executed:

31 2827 0

Cond

—— Condition field
EQ

0000 O Z set (equal)

0001 O NE Z clear (not equal)

0010 O CS C set (unsigned higher or same)

0011 O cC C clear (unsigned lower)

0100 O Ml N set (minus — i.e. negative)

0101 O PL N clear (plus —i.e. positive or zero)

0110 O VS V set (overflow)

0111 O VvC V clear (no overflow)

1000 O HI C set and Z clear (unsigned higher)

1001 O LS C clear or Z set (unsigned lower or same)

1010 O GE N set and V set, or N clear and V clear (greater or equal)

1011 O LT N set and V clear, or N clear and V set (less than)

1100 O GT Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 O LE Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 O AL always execute (ignore flags)

1111 reserved

Figure5.1 The condition field

Note that ObjAsm implements HS (Higher or Same) and LO (LOwer than) as
synonymous with CS and CC respectively, giving it a total of 17 condition mnemonics.

55

Instruction timings

For example, suppose you had a CMP (compare) instruction followed by an instruction
with the EQ condition (so it is executed only if the Z flag is set):

I If the CMP instruction’s two operands were equal, it would set the Z flag, and so
your conditional instruction would be executed.

I If the CMP instruction’s two operands were different, it would clear the Z flag, and
so your conditional instruction would not be executed.

Conditional instruction sequence

Branches which are taken cause breaks in the pipeline. For this reason they often waste
time, and can sometimes be replaced by a suitable conditional instruction sequence.

As an example, the coding of IF A=4 THEN B:=A ELSE C:=D+E might be
conventionally achieved using five ARM instructions:

cwP R5, #4 ;test "A=4"
BNE LABEL ;if not equal goto LABEL
MoV R6, R ; do "B: =A"
B LAB2 ;junmp around the ELSE cl ause
LABEL ADD RO, R1, R2; do " C. =D+E"
LAB2 ;finish

whereas, using the condition testing instructions, the same effect may be achieved using
three instructions:

CWVP 5, #4 ;test "A=4"
MOVEQ R6,R5 ;if so do "B:=A"
ADDNE RO, R1, R2; el se do "C. =D+E".

If the condition tested is true, the instruction is performed. If it is false, the instruction is
skipped and the PC is advanced to the next memory word, which takes little processor
time. The first of the examples above takes about twice as long as the second.

After the instruction is obeyed, the arithmetic logic unit (ALU) will output appropriate
signals on the flag lines. On certain instructions, the flags set the condition code bits in
the PSR; for other instructions, the flags in the PSR are only altered if the programmer
permits them to be updated.

Instruction timings

56

Instruction timings can vary between versions of the ARM processor, and so we do not
detail them here. For code that is timing dependent, we advise that you consult the
datasheets for all ARM versions on which your code may run.

CPU instruction set

The barrel shifter

The arithmetic logic unit has a 32-bit barrel shifter capable of various shift and rotate
operations. Data involved in the data processing group of instructions (detailed in the
section Data processing on page 68) may pass through the barrel shifter, either asa

direct consequence of the programmer’s actions, or as a result of the internal
computations of ObjAsm. The barrel shifter also affects the index for the single data
transfer instructions (detailed in the sectingle data transfer (LDR, STR) on

page 86).

The barrel shifter has a carry in, which takes its input from the C flag of the PSR; and a
carry out, which may be latched back into the C bit of the PSR for logical data
operations (se€he Shit on page 72).

The shift mechanism can produce the following types of operand:

Unshifted register

Syntax: regi ster
For example: RO

Register shifted by a constant amount

A register shifted by a constant amount, in the range 0-31, 1-31 or 1-32 (depending on
shift type).

Syntax: regi ster, shift-type #anount
For example: RO, LSR #1

Value resulting from rotating register and carry bit one bit right

A value which is the result of rotating a register and the carry bit one bit right. Because
the carry is included in the shift, 33 bits (rather than 32 bits) are affected. The shift type
is known as rotate right extended.

Syntax: regi st er, RRX
For example: RO, RRX

Register shifted by n bits

A register shifted by bits, wheren is the least significant byte of a register. This form
is not valid as an index in a single register transfer.

Syntax: regi ster,shift-type register
For example: R1,LSL R2

57

The barrel shifter

8-bit constant rotated right by 2n bits

A constant constructed by rotating an 8-bit constant right by 2n bits, where nis a4-bit
constant. The shift type is always rotate right. Thisform is not valid asan index in a
single register transfer.

Syntax: #expressi on
For example: #&3FC

Note that the rotation isinvisible to the programmer, who should merely supply an
immediate value for the data processing instruction to use.

ObjAsm will evaluate the expression and reject any humber which cannot be expressed
as arotation by an even amount of a number in the range 0-255. If possible, ObjAsm
always constructsit as an unrotated value, even if there are other possibilities.

Examples of valid immediate constants are:

#1

#&FF

#&3FC Thisis & FF rotated right by 30
#&80000000 Thisis 2 rotated right by 2

#& FCO00003 Thisis & FF rotated right by 6.

Examples of invalid constants are:

#8101 cannot be obtained by rotating an 8-bit value
#&1FE an 8-bit value rotated by an odd amount — but not an 8-bit value
rotated by an even amount.

8-bit constant rotated right by 2n bits and specified explicitly

58

A constant constructed as in the point above, but specified explicitly. This form is not
valid as an index in a single register transfer.

Syntax: #constant, rotate anount
For example: #4, 2

The shift amount should be an even number in the range 0-30. This can be important for
setting the carry flag on an operation which would otherwise not update it.

For example:

MOVS RO, #4,2 produces the same result as
MOVS RO, #1

but because the first instruction does a rotate right of two bits the carry flag is cleared,
whereas it is not altered by the second instruction.

CPU instruction set

Shift types
Various instructions use the barrel shifter to shift register operands. The effects of such
shifts are detailed in this section, rather than being repeated for each instruction.
Mnemonics
There are six assembler mnemonics for shift types, used to control the barrel shifter.
These are;
LSL Logical Shift Left
ASL Arithmetic Shift Left
LSR Logical Shift Right
ASR Arithmetic Shift Right
ROR Rotate Right
RRX Rotate Right with Extend

The mnemonic ASL (arithmetic shift left) may be freely interchanged with LSL (logical
shift left).

Specification of the shift amount

The shift amount may either be specified in the instruction, or in aregister specified by
the instruction.

Instruction specified shift amount

When the shift amount is specified in theinstruction, it iscontained in a5 bit field which
may take any value from 0 to 31.

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift
amount.

If this byte is zero, the unchanged contents of Rm will be used as the second operand,
and the old value of the PSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an
instruction specified shift with the same value and shift operation.

If thevaluein the byteis 32 or more, the result will be alogical extension of the shifting
process. Thisis detailed for each mnemonic described bel ow.

59

Shift types

Logical shift left, or arithmetic shift left

.
RmLSL #nor Shift contents of R left by n bits, wheren is 0 to 31.
Rm ASL #n
LSL R S
Rm S of Shift contents of R left by the least significant byte oER
Rm ASL Rs

A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified
amount to amore significant position. The least significant bits of the result are filled

with zeroes. The high bits of Rmwhich do not map into the result are discarded — except
that the least significant discarded bit becomes the barrel shifter’s carry out.

For example, the effect of LSL #5 is:

31 28 27 26 Contents of Rm 0
Carry out v/

00000

31 Value of operand 2 54 0

Figure5.2 Alogical or arithmetic shift left by 5

Special cases
I LSL #0 or ASL #0, and LSL Ror ASL Rswhere Bis 0:

The barrel shifter’s result is the unchanged contentsmwfaRd its carry out is the
old value of the PSR C flag.

I LSL Rsor ASL Rswhere Ris 32:
The result is zero, and the carry out is bit 0 of R

I LSL Rsor ASL Rswhere R is greater than 32:
Both the result and the carry out are zero.

60

CPU instruction set

Logical shift right
Rm LSR #n Shift contents of R right byn bits, wheren is 1 to 32.
Rm LSR Rs Shift contents of Riright by the least significant byte o6R

A logica shift right (LSR) issimilar to alogical shift left, but the contents of Rm are
moved to less significant positionsin the result. LSR #5 has this effect:

31 Contents of Rm 543 0
\ Carry out

00000

31 27 26 Value of operand 2 0

Figure5.3 Alogical shift right by 5

Logical shift right zero is redundant asit is the same as logical shift left zero. The form
of the shift field which might be expected to correspond to L SR #0 is therefore used to
encode LSR #32. ObjAsm assembles L SR #0 (and ASR #0 and ROR #0) as LSL #0,
and allows you to specify LSR #32.

Special cases

[L SR #0:
Thisisassembled as LSL #0 (see page 60), which has the same effect as L SR #0.
LSR RswhereRsis0:

The barrel shifter’s result is the unchanged contentsrpfaRd its carry out is the
old value of the PSR C flag.

LSR #32, or LSR BRwhere B is 32:

The result is zero, and the carry out is bit 31 of RLSR #32 is encoded in the
format you would expect to correspond to LSR #0.)

LSR Rswhere R is greater than 32:
Both the result and the carry out are zero.

61

Shift types

62

Arithmetic shift right

Rm ASR #n Shift contents of Riright byn bits, wheren is 1 to 32.
Rm ASR Rs Shift contents of Riright by the least significant byte o6R

An arithmetic shift right (ASR) is similar to alogical shift right, except that the high bits
arefilled with bit 31 of Rminstead of zeroes. This preserves the sign in 2's complement
notation. For example, ASR #5:

31 30 Contents of Rm 54 3 0
\ k Carry out
' v w%
31 27 26 25 Value of operand 2 0

Figure5.4 An arithmetic shift right by 5

Arithmetic shift right zero is redundant as it is the same as logical shift left zero. The
form of the shift field which might be expected to correspond to ASR #0 is therefore

used to encode ASR #32. ObjAsm assembles ASR #0 (and LSR #0 and ROR #0) as
LSL #0, and allows you to specify ASR #32.

Special cases
I ASR #0:
This is assembled as LSL #0 (see page 60), which has the same effect as ASR #0.
I ASR Rswhere RBis 0:
The barrel shifter’s result is the unchanged contentsmwfaRd its carry out is the
old value of the PSR C flag.
I ASR #32, or ASR Rwhere Ris 32 or more:

Each bit of the result is equal to bit 31 ohRhe result is therefore all ones or all
zeroes. The carry out is also bit 31 ghRASR #32 is encoded in the format you
would expect to correspond to ASR #0.)

CPU instruction set

Rotate right

Rm ROR #n Rotate contents of Rm right by n bits, wherenis1 to 31.
Rm ROR Rs Rotate contents of Rm right by the least significant byte of Rs.

Rotate right (ROR) operations reuse the bits which ‘overshoot’ in a logical shift right
operation by reintroducing them at the high end of the result, in place of the zeroes used
to fill the high end in logical right operations. For example, ROR #5:

31 Contents of Rm 543 0
{
Carry out
>
31 30 27 26 Value of operand 2 0

Figure55 Arotateright by 5

Rotate right zero is redundant as it is the same as logical shift left zero. The form of the
shift field which might be expected to correspond to ROR #0 is therefore used to encode
rotate right extended (see the next section). ObjAsm assembles ROR #0 (and LSR #0
and ASR #0) as LSL #0.

Special cases
I ROR #0:
This is assembled as LSL #0 (see page 60), which has the same effect as ROR #0.
ROR Rswhere Ris 0:
The barrel shifter’s result is the unchanged contentsrpfaRd its carry out is the
old value of the PSR C flag.
ROR Rswhere Ris 32:
The result is equal torR and the carry out is bit 31 ofniR
ROR Rswhere R is greater than 32:

The result and carry out are the same as for ROR-<(H MOD 32 + 1) therefore
repeatedly subtract 32 from Rsuntil itsvalue isin the range 1 to 32, and then see
above.

63

Coprocessor instructions

Rotate right with extend
Rm RRX Rotate contents ofiRand the carry flag right by 1 bit only.

The form of the shift field which might be expected to give ROR #0 is used to encode a
special function of the barrel shifter, rotate right extended (RRX). Thisis arotate right
by one bit position of the 33 bit quantity formed by appending the PSR C flag to the
most significant end of the contents of Rm

31 Contents of Rm 10

Carry
out

Carry ™\
in

31 30 Value of operand 2 0

Figure5.6 Arotateright with extend

Coprocessor instructions

The ARM can work with up to 16 external coprocessors, which (if present) will execute
theinstructions listed below. If the requested coprocessor is absent, these instructions
will be regarded as undefined. The undefined instruction trap can then take appropriate
action (for example emulating the requested instruction in software or telling the user
that the program won't run in a machine without the coprocessor.)

The floating point coprocessor uses coprocessor numbers 1 and 2. If it's absent, the
floating point emulator traps the resulting undefined instructions and emulates them.
The coprocessor 15 instructions are used by ARM as instructions to control its own
operation (such as cache control, and 26/32 bit configuration).

ObjAsm provides support for coprocessors at two levels. Firstly, it provides a set of
generic coprocessor instructions, detailed below. Secondly, it recognises a standard set
of floating point instructions and translates them into the appropriate coprocessor
instructions; see the chapfdiating point instructions on page 121 for details.

All the generic coprocessor operations include a coprocessor number symbol and one or
more coprocessor register symbols. These should be defined using the CP and CN
directives respectively. (See the chaiéectives on page 143.)

All coprocessor instructions are conditional. Whether they are executed depends on the
ARM'’s condition flags, not on any coprocessor status register.

64

CPU instruction set

Branch, Branch with Link (B, BL)

Instructions for branching to an instruction other than the next one

Instruction format
31 28 27 252423 0

Cond |10 1|L Offset

Link bit
0] Branch
1] Branch with link

Condition field
(see page 55)

Assembler syntax

B«L»«cond» expression

where;

«L» requests the Branch with Link form of the instruction (see The link bit
below). If absent, R14 will not be affected by the instruction.

«cond» is atwo-character condition mnemonic; see the section The condition
field on page 55.

expression is a program-relative expression describing the branch
destination, from which ObjAsm calculates the offset.

Synopsis

These instructions branch to an instruction other than the next one, by altering the value
of the program counter (R15). The Branch with Link form of the instruction a so stores
areturn address in the link register (R14), so that program flow can branch to a
subroutine, and then return to the instruction immediately following the Branch with
Link instruction; for more details see The link bit below.

All branches take a signed 2’s complement 24 bit word offset. This is shifted left two
bits, and added to the program counter, with any overflow being ignored, giving an
offset of£32Mbytes. The branch can therefore reach any word aligned address within a
26 bit address space, since the calculation ‘wraps round’ between the top and bottom of
memory.

65

Branch, Branch with Link (B, BL)

66

When using this instruction with ObjAsm you should provide alabel, from which
ObjAsm will calculate the 24 bit offset.

The encoded offset must take account of the effects of pipelining and prefetching within
the CPU, which causesthe PC to be two words ahead of the current instruction. ObjAsm
automatically handles this for you. For example, the calculated jump offset in the
following piece of codeis 000000, even though the jump isto alabel two PC locations
ahead.

Code generated L abel Mnemonic Destination
EA000000 L1 BEQ L2
XXXXXXXX XXX

XXXXXXXX L2 XXX

Theinstruction is only executed if the condition specified in the condition field is true
(see the section The condition field on page 55).

The link bit

Branch with Link works in the same way as Branch, but it also writes the old PC and
PSR into the link register (R14) of the current bank. The PC value written isfirst
adjusted to allow for the prefetch, and contains the address of the instruction following
the branch and link instruction.

Thisform of theinstruction is often used for branching to subroutines. At the end of the
subroutine the program flow can return to the instruction immediately following the
Branch with Link instruction by writing the link register (R14) value back into the
program counter (R15). To do so, the subroutine should end with:

MoV PC, R14
if the link register has not been saved on a stack, or:
LDMxx Rn, {PC}

if the link register has been saved on a stack addressed by Rn. (xx is the stack type; see
the section Block data transfer (LDM, STM) on page 91.)

These methods of returning do not restore the original PSR. If the PSR does need to be
restored then

MOV PC, R14 can be replaced by MOVS PC, R14 or
LDMxx Rn, { PC} by LDMxx Rn, { PC}»

However, care should be taken when using these methods in modes other than user
mode, asthey will also restore the mode and the interrupt bits. In particular, restoring the
interrupt bits may interfere unintentionally with the interrupt system.

32 bit operation

Calculating the offset
In 32 bit operation, the offset is sign extended to 32 bits beforeit is added to the program

counter.

CPU instruction set

Branches beyond +32Mbytes must use an offset or an absolute destination which has
previously been loaded into aregister. In this case you should manually save the PC in
R14 if you require a Branch with Link type operation.

Thelink bit

Branch with Link does not save the CPSR with the PC. If you need to preserve the CPSR
over asubroutine, it isyour responsibility to explicitly save and restoreit, either on entry
to and exit from (respectively) the subroutine, or in the calling part of the program.

Examples
here BAL

BEQ
BL

ADDS

BLCC

here

there

R1, #0

fred

sub + ROM

R1, #1

sub

;. Assenbl es t o EAFFFFFE
; (note effect of PC offset)

; ALways condition used as default

; Conpare register 1 with zero
; Branch to fred if register 1 was zero,
; otherwi se continue to next instruction

; Unconditionally call subroutine at
; conput ed address

; Add 1 to register 1, setting PSR flags on
; the result

; Call subroutine if the Cflag is clear,

; which will be the case unless Rl contained
. FFFFFFFFH

; Ctherw se continue to next instruction

67

Data processing

Data processing

Instructions for performing arithmetic or logical operation on one or two operands

68

Instruction format

31 2827262524

212019

16 15

CPU instruction set

12 11 0

Cond |0 O] I

Opcode

S

Rn Rd

Operand2

A

y

Set condition codes

0 O
1 O

Operation code

0000

1110
1111

0 O

Shift applied to Rm

1]

Shift applied to Imm

,:estination register

—— 1st operand register

Immediate Operand

do not alter condition codes
set condition codes

O AND Rd:=RnAND Op2

O EOR Rd:=RnEOR Op2

O SuUB Rd:=Rn- Op2

O RSB Rd:= Op2-Rn

O ADD Rd:=Rn+ Op2

O ADC Rd:=Rn+ Op2 + Cflag

O SBC Rd:= Rn— Op2 - NOT(C flag)

O RSC Rd:= Op2 - Rn—- NOT(C flag)

O TST set condition codes on Rn AND Op2
O TEQ set condition codes on RnEOR Op2
O CMP set condition codes on Rn— Op2

O CMN set condition codes on Rn + Op2

O ORR Rd:=RnOR Op2

O MOV Rd:=0Op2

O BIC Rd:= Rn AND NOT Op2

O MVN Rd:=NOT Op2

Operand2 is a register
11 43 0

Shift Rm

f f

2nd operand register

Operand?2 is an immediate value
1 87 0

Rotate Imm

! !

Unsigned 8 bit
immediate value

Condition field

(see page 55)

69

Data processing

Assembler syntax

The data processing instructions use three different types of syntax, depending on
whether the opcode being used takes one or two operands, and whether or not it writes
the result into a destination register:

MOV and MVN - single operand

opcode«cond»« S» Rd, op2

CMN, CMP, TEQ and TST — no result written

opcode«cond»« P» Rn, op2

ADC, ADD, AND, BIC, OR, ORR, RSB, RSC, SBC, SUB - two operands

opcode«cond»« S» Rd, Rn, op2

Parameters

opcode

«cond»

«S»

«P»

Rd, Rn & Rm
op2

70

isamnemonic for the data processing operation to be performed; see
Opcodes below

is atwo-character condition mnemonic; see the section The condition
field on page 55.

means to set the PSR’s condition codes from the operation. ObjAsm
forces this for CMN, CMP, TEQ and TST, provided the P flag is not
specified. Se®pcodes below for a summary of the flags affected by
each opcode, arithe Shit on page 72 for more detail.

means to take the result of a CMN, CMP, TEQ or TST operation, and
move it to the bits of R15 that hold the PSR — even though the
instruction has no destination register. Bits corresponding to the PC
are masked out, as are (in User mode) the |, F, and mode bits.

are expressions evaluating to a valid ARM register number.

may be any of the operands that the barrel shifter can produce.
The syntax iRm« shift» or #expression

If #expression isused, ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field. If thisis
impossible, it will give an error.

shift isshiftname Rs or shifthame #expression ,or
RRX (rotate right one bit with extend). shiftname sare: ASL, LSL,
LSR, ASR, and ROR. (ASL isasynonym for LSL, and the two
assembl e to the same code.) See Shift types on page 59.

CPU instruction set

Opcodes
The opcodes supported are:
Assembler M eaning Operation Flags
Mnemonic affected
ADC Add with Carry RI:=Rn + op2 + C flag N,Z,CV
ADD Add Rd:=Rn + op2 N,z,C,V
AND And Rd:=Rn AND op2 N,Z,C
BIC Bit Clear RI:=Rn AND (NOT(op2)) N,z,C
CMN Compare Negated R+ op2 N,Z,C.V
CMP Compare R —op2 N,Z,C\V
EOR Exclusive Or B:=Rn EORop2 N,Z,C
MOV Move Rd:=op2 N,z,C
MVN Move Not Rd:=NOT op2 N,Z,C
ORR Logical Or RI:=Rn OR op2 N,Z,C
RSB Reverse Subtract dR-op2 — Rn N,Z,C.V
RSC Reverse Subtract with Carry d:Rop2 — Rn— N,Z,CV
NOT(C flag)
SBC Subtract with Carry R=Rn-op2 — N,Z,C.V
NOT(C flag)
SUB Subtract [:=Rn —op2 N,Z,C.V
TEQ Test Equivalence REOR 0p2 N,Z,C
TST TeST and mask RAND op2 N,Z,C
Synopsis

These instructions produce a result by performing a specified arithmetic or logical
operation on one or two operands.

The operation is performed between a source register Rn and an operand op2 —except
for MOV and MV N, where only the operand is needed (and for which the assembler sets
Rn to R0). The source register can be any one of the 16 registers. The operand can be
any operand that the barrel shifter can produce: i.e. a shifted register Rm, or arotated 8
bit immediate value Imm, according to the value of thel bit in the instruction. (See The
barrel shifteron page 57 and Shift typeson page 59.) Note that any shifting is done
before the operation is performed.

Thelogical operations (AND, BIC, EOR, MOV, MVN, ORR, TEQ, TST) perform the
logical action on al corresponding bits of the operand or operands to produce the result.
The arithmetic operations (ADC, ADD, CMP, CMN, RSB, RSC, SBC, SUB) treat each
operand as a 32 bit integer (either unsigned or 2's complement signed, the two are
equivalent). Some add the bit held in the ALU’s carry flag into the operation.

71

Data processing

The result of the operation is placed in the destination register Rd — except for CMN,

CMP, TEQ and TST, which are used only to perform tests and to set the condition codes
on the result (and for which the assembler sefttoRR0). The destination register may

be any one of the 16 registers.

The condition codes in the PSR may be preserved or updated as a result of this
instruction, according to the value of the S bit; SeeSbit below.

The instruction is only executed if the condition is true. The various conditions are
defined in the sectiomhe condition field on page 55.

The S bit

72

The instruction contains a one bit field called the S bit, standing for ‘set condition
codes’. The result of the operation in the ALU affects its N and Z flags, and may also
affect its C and V flags. However, the ALU doesn’t copy its flags to the relevant parts of
the PSR unless the S bit is set. ObjAsm always sets the S bit for the four instructions
CMN, CMP, TEQ and TST, since they would be meaningless unless their results were
copied to the PSR. In the case of the remaining 12 instructions, you may request that the
S bit be set by appending the letter S to the instruction mnemonic.

The way the PSR flags are altered differs for logical and arithmetic operations:

L ogical operations (AND, BIC, EOR, MOV, MVN, ORR, TEQ, TST)
I The V flag in the PSR will be unaffected.

I The C flag will be set to the last bit shifted out by the barrel shifter, or is unchanged
if no shifting took place.

I The Z flag will be set if and only if the result is all zeroes.
I The N flag will be set to the logical value of bit 31 of the result.

Arithmetic operations (ADC, ADD, CMP, CMN, RSB, RSC, SBC, SUB)

I The V flag in the PSR will be set if signed overflow occurs (i.e. if you regard the
operands as signed 32 bit integers, the signed result does not fit in a 32 bit integer);
this may be ignored if the operands were considered unsigned, but warns of a
possible error if the operands were 2's complement signed (the destination register
is set to the bottom 32 bits of the correct unsigned result).

I The C flag will be set to the carry out of bit 31 of the ALU, which for addition
indicates that 32 bit overflow occurred, and for subtraction indicates that 32 bit
underflow did not occur.

I The Z flag will be set if and only if the result was zero.

I The N flag will be set to the value of bit 31 of the result, indicating a negative result
if the operands are considered to be 2's complement signed.

The P flag

CPU instruction set

The P flag invokes a special form of the CMN, CMP, TEQ and TST operations, used to
update the PSR. The operation is carried out, and then the PSR is overwritten by the
corresponding bitsin the ALU result: so bit 31 of the result goesto the N flag, bit 30 to
the Z flag, bit 29 to the C flag, and bit 28 to the V flag. In user mode the other flags (I, F,
M1, MO) are protected from direct change, but in non-user modes these will also be
affected, accepting copies of bits 27, 26, 1 and 0 of the result respectively.

Thisistypically used to change modes. For example:

TEQP R15, #0

; Change to user

node.

Note the treatment of R15 asthe first operand, described in Using R15 asan operand on

page 74.

Thisform is encoded by setting the S bit, and setting the destination register to R15.

Shifts

When the second operand is specified to be a shifted register, the operation of the barrel
shifter is controlled by the Shift field in the instruction. This field indicates the type of
shift to be performed (logical |eft or right, arithmetic right or rotate right). The amount
by which the register should be shifted may be contained in an immediate field in the
instruction, or in the bottom byte of another register:

11 76 5 4

0

— Shift type
00 O

logical left

01 O logical right

10 O arithmetic right
1 O rotate right

Shift amount
5 bit unsigned integer

1 876 5 4

0

1

Figure5.7 Shifts
Shifts are detailed in the section Shift types on page 59.

— Shift type
00 O logical left

01 O logical right

10 O arithmetic right

1 O rotate right

Shift register
Shift amount specified in
bottom byte of Rs

Notethat the zero in bit 7 of an instruction with aregister controlled shift is compul sory;
aonein thisbit will cause the instruction to be a multiply or an undefined instruction.

73

Data processing

Immediate operand rotates

The immediate operand rotate field is a4 bit unsigned integer which specifies a shift
operation onthe 8 bitimmediate value. Theimmediate value is zero extended to 32 bits,
and then subject to arotate right by twice the value in therotate field. This enables many
common constants to be generated, for example all powers of 2. Another example isthat
the 8 bit constant may be aligned with the PSR flags (bits O, 1, and 26 to 31). All the
flags can thereby beinitialised in one TEQP instruction.

Immediate operand rotates are detailed in the section The barrel shifter on page 57.

Using R15 as the destination or operand

74

Note that the CPU takes certain actions whenever the destination or any operand is R15.
These are asfollows:

Using R15 asthe destination

If R15 isthe destination register, and the S bit is not set, the PC is overwritten, but not
the PSR.

If the Shit is set, then the PC is overwritten, and also al bits of the PSR that are
unprotected in the current mode; thusin User modethe N, Z, Cand V flags are
overwritten, whereas in other modes the entire PSR is overwritten.

Using R15 as an operand

R15 will always contain the value of the PC, which will be the address of the instruction,
plus 8 or 12 bytes due to instruction prefetching. If the shift amount is specified in the
instruction, the PC will be 8 bytes ahead. If aregister is used to specify the shift amount,
the PC will be 8 bytes ahead when used as Rs, and 12 bytes ahead when used as Rn or
Rm.

R15 may or may not contain the values of the PSR flags as they were at the completion
of the previous instruction, depending on which operand position it occupies:

I If R15isthefirst operand in atwo operand instruction, it is presented to the
arithmetic logic unit (ALU) with the PSR bits set to zero.

1 If the second or only operand is R15 (possibly shifted), it is presented to the barrel
shifter or ALU with the PSR bits unchanged.

1 If R15isthe shift register, it is presented to the barrel shifter with the PSR bits set to
zero.

CPU instruction set

32 bit operation

TEQP, TSTP, CMPP and CMNP

These opcodes should not be used in 32 bit modes. You should instead use the new PSR
transfer functions. When used in a privileged mode, TEQP moves the SPSR for the
current mode to the CPSR.

Using R15 asthe shift register
You must not use R15 as the shift register.

Using R15 asthe destination

If R15 isthe destination register, and the S bit is not set, the PC is overwritten, but not
the CPSR. Thisiswhat you would expect as an extension of the 26 bit behaviour.

If the destination register is R15 and the S bit is set, then as well as writing the result to
the PC, the SPSR for the current mode is moved to the CPSR. Thisis again what you
would expect as an extension of the 26 bit behaviour.

Examples

; Sinple use of a one operand instruction:
MN R2, R3 ;. R is set to the bitwi se inverse of the
; contents of R3.

; Sinple uses of instructions that does not wite a result:

CWP RO, R1 ; Conpare the contents of RO with R1
cwP RO, #&80 ; Conpare the contents of RO with &80
TEQS R4, #3 ; Test R4 for equality with 3

; (The Sis in fact redundant as the assenbler
; inserts it automatically)

; Sinple use of a two operand instruction:
ADD RO, R1, R2 ; RO=R1+R2

; Conditional execution of an instruction:
ADDEQ R2,R4,R5 ; If the Z flag is set make R2: =R4+R5

: Use of the S bit to alter the PSR
ADDS RO, R1, #1 ; RO=R1+1, and set N Z CV

; Use of a register specified shift:
SUB R4, R5, R7,LSR R2 ; Logical right shift R7 by the nunber in
; the bottom byte of R2, subtract the result
; fromR5, and put the answer into R4

; Use of an immediate shift:
MOV RO, R1, LSL#2 ; The contents of Rl are shifted left by
2 bits and transferred to RO.

75

Data processing

; Using ADC to inplement nulti-word additions. For exanple a 64 bit ADD:
ADDS R4, R2, RO ; Add least significant 32 bits updating carry
ADC R5, R3, R1 ; Add nost significant 32 bits and carry
; from previous

; Using SBC to inplement multi-word subtractions. For exanple:
SUBS R4, R2, RO ; Do least significant word of subtraction
SBC R5, R3, R1L ; Do npst significant word, taking account
; of the borrow. This does the 64 bit
; subtraction (R5,R4)=(R3, R2)-(R1, RO)

; Changing to user node and returning froma subroutine:

; Assume non-user node here

TEQP R15, #0 ; Change to user node and clear N, Z, C V,I,F
; NB R15 is here in the Rn position,
; so it comes without the PSR flags

MoV RO, RO ; No-op to avoid node change hazard

MoV PC, R14 ; Return from subroutine
; (R14 is a banked register)

; Returning froma subroutine and restoring the PSR
MOVS PC, R14 ; return from subroutine and restore the PSR

76

CPU instruction set

PSR transfer (MRS, MSR)

Instructions for accessing the CPSR and SPSR registers

Theseinstructions are not available on ARM2 and ARM 3 series processor s

Instruction format
MRS (transfer PSR contents to a register)
31 28 27 232221 16 15 121 0

Cond 00010RJ001111] Rd [0000000000O0O

[Destination register

Source PSR
0 O CPSR
1 O SPSR_current mode

Condition field
(see page 55)

MSR (transfer register contents to PSR)
31 28 27 232221 12 11 43 0

Cond 00010PR41010011111/00000000| Rs

L

Source register

Destination PSR
0 O CPSR
1 O SPSR_current mode

Condition field
(see page 55)

Assembler syntax

MRS«cond» Rd, psr
MSR«cond» psr, Rm
MBR«cond» psrf , Rm
MSR«cond» psrf , #expression

77

PSR transfer (MRS, MSR)

78

MSR (transfer register contents or immediate value to PSR flag bits only)

31 2827262524232221 121 0

Cond |00

10RPj1010001111 Source operand

Destination PSR
0 O CPSR
1] SPSR_current mode

Immediate Operand
0] Source operand is a register

1 43 0

00000000 Rm

!

Source register

1] Source operand is an immediate value
11 87 0

Rotate Imm
A A

Shift applied to Imm Unsigned 8 bit
immediate value

where:

«cond»

Rd & Rm

psr

psrf

#expression

Condition field
(see page 55)

is atwo-character condition mnemonic; see the section The condition
field on page 55.

are expressions evaluating to avalid ARM register number other than
R15.

isCPSR, CPSR_al | , SPSRor SPSR_al | .

(CPSRand CPSR_al | are synonyms, as are SPSRand SPSR_al | .)
isCPSR f | g or SPSR f | g. The most significant four bits of Rmor
#expression arewrittentothe N, Z, C and V flags respectively.
isan expression symbolising a 32 bit value.

If #expression isused, ObjAsm will attempt to match the

expression by generating a shifted immediate 8-bit field. If thisis
impossible, it will give an error.

CPU instruction set

Synopsis
These instructions allow access to the CPSR and SPSR registers:

I The MRS instruction moves the contents of the CPSR or SPSR_current mode
register to a general register.

The M SR instruction moves the contents of ageneral register to the CPSR or
SPSR_current mode register.

Alternatively, the M SR instruction can write to the condition code flags of the CPSR or
SPSR_current mode register without affecting its control bits:

I Inthis case the source may be either the contents of a general register or an
immediate value, and only its top four bits are used.

Theinstructions are encoded using the CMN, CMP, TEQ and TST instructions without
the Sflag set.

Theinstruction is only executed if the condition istrue. The various conditions are
defined in the section The condition field on page 55.

These instructions are not available on ARM2 and ARM 3 series processors.

On ARMG6 series processors and later, they are availablein all modes and configurations.
However, we recommend that you avoid using these instructions, as you will lose
backwards compatibility with older ARMs. Indeed, in the 26 bit modes used by

RISC OS (except when handling FIQs), you can access the PSR just as you always have
— for example, with TEQP.

Operand restrictions

In user mode, the control bits of the CPSR are protected from change, so only the
condition code flags of the CPSR can be changed. In other (privileged) modes the entire
CPSR can be changed.

R15 must not be specified as the source or destination register.

You must not attempt to access the SPSR in user mode, as no such register exists.

Reserved bits

Not all bits of the PSR are defined (e.g. only N, Z, C, V, |, F and M[4:0] are defined for
the ARM 6 and 7 series). The remaining ones (bits 27-8 and 5 in the ARM 6 and 7
series) are reserved for use in future versions of the ARM. The ensure future
compatibility, the following rules should be observed:

I You must preserve the reserved bits when changing the value in a PSR.

I When you are checking the PSR status, you must not rely on specific values from
the reserved bits, since they may read as one or zero in future processors.

79

PSR transfer (MRS, MSR)

You should therefore use a read-modify-write strategy when atering the control bits of
any PSR register. Thisinvolves transferring the appropriate PSR register to a general
register using the MRS instruction, changing only the relevant bits, and then transferring
the modified value back to the PSR register using the MSR instruction.

For example, to perform a mode change:

MRS RO, CPSR ; Take a copy of the PSR

BI C RO, R), #0x1F ; Clear the npde bits

ORR RO, RO, #new_node ; Set bits for new npde

MBR CPSR, RO ; Wite back the nodified CPSR,

; changi ng node

When you wish simply to change the condition flagsin a PSR, you can write an
immediate value directly to the flag bitswithout disturbing the control bits. For example,
the following instruction setsthe N, Z, C and V flags:

MVBR CPSR f I g, #0xFO000000 ; Set all the flags regardless
; of their previous state
; (does not affect any control bits)

You must not attempt to write an 8 bit immediate value into the whole PSR, since such
an operation cannot preserve the reserved hits.

Examples
In user mode the instructions behave as follows:

MVBR CPSR al | , Rm ; CPSR[31:28] <- Rni31:28]
MVBR CPSR fl g, Rm ; CPSR[31:28] <- Rni31:28]

MSR CPSR _f I g, #0xA0000000 ; CPSR[31:28] <- OxA
; (i.e. set NJC clear Z V)

MRS Rd, CPSR . RA[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MVBR CPSR al |, Rm : CPSR[31:0] <- Rn{31:0]
MSR CPSR flg, Rm ; CPSR[31:28] <- Rni31:28]
MSR CPSR _f I g, #0x50000000 ; CPSR[31:28] <- 0x5

; (i.e. set Z,V; clear N O
MRS Rd, SPSR ; Rd[31:0] <- SPSR] 31:0]
MBR SPSR_al | , Rm ; SPSR_<nobde>[31:0] <- Rn{31:0]
MSR SPSR flg, Rm ; SPSR_<node>[31: 28] <- Rn{ 31: 28]

MSR SPSR_f I g, #0xC0000000 ; SPSR_<nobde>[31: 28] <- 0xC
; (i.e. set N,Z; clear CV)

MRS Rd, SPSR : RA[31:0] <- SPSR <nmpde>[31: 0]

80

CPU instruction set

Multiply and Multiply-Accumulate (MUL, MLA)

Instructions for performing integer multiplication, giving a 32 bit result

Instruction format

31 28 27 22212019 16 15 12 11 87 43 0

Cond |00 00O0O0|A|S| Rd Rn Rs |1001 Rm
2

— Destination register

Operand registers

Set condition codes
0 O do not alter condition codes
1] set condition codes

Accumulate bit
0] multiply
1] multiply and accumulate

Condition field
(see page 55)

Assembler syntax

MJL «cond»« S» Rd, Rm Rs
M_A«cond»« S» Rd, Rm Rs, Rn

«cond» is atwo-character condition mnemonic; see the section The condition
field on page 55.

«S» means to set the PSR’s condition codes from the operation.

Rd, Rm Rs & Rnare expressions evaluating to a valid ARM register number.
(Rd must not be R15 and must not be the samevay R

Synopsis

The multiply and multiply-accumulate instructions use a 2 bit Booth’s algorithm to
perform integer multiplication. They give the least significant 32 bits of the product of
two 32 bit operands, and may be used to synthesize higher precision multiplications.

The multiply form of the instruction givesdRRmxRs. Rn is ignored, and should be set
to zero for compatibility with possible future upgrades to the instruction set.

81

Multiply and Multiply-Accumulate (MUL, MLA)

The multiply-accumulate form gives Rd:=RmxRs+Rn, which can save an explicit ADD
instruction in some circumstances.

The results of asigned multiply and of an unsigned multiply of 32 bit operands differ
only in the upper 32 bits; the low 32 hits are identical. As these instructions only
produce those low 32 bits, they can be used with operands which may be considered as
either signed (2's complement) or unsigned integers.

The instruction is only executed if the condition is true. The various conditions are
defined in the sectiomhe condition field on page 55.

PSR flags

Setting the PSR flags is optional, and is controlled by the S bit in the instruction. The N
and Z flags are set correctly on the result (N is equal to bit 31 of the result, Z is set if and
only if the result is zero), the V flag is unaffected by the instruction, and the C flag is set
to a meaningless value.

Operand restrictions

Because of the way the Booth’s algorithm has been implemented, you should avoid
certain combinations of operand registers. (ObjAsm will issue a warning if you overlook
these restrictions.)

The destination registerd@must not be the same as tha Bperand register, asdis
used to hold intermediate values, amd iR used repeatedly during the multiply.

The destination registerd@must also not be R15.

All other register combinations will give correct results, addmh and B may use the
same register when required.

32 bit operation
R15 must not be used as any af Rm, Rn or Rs.

Examples
MUL R1, R2, R3 ; RL: =R2*R3

MLAEQS R1,R2, R3, R4 ; conditionally Rl:=R2*R3+R4,
; setting condition codes

82

CPU instruction set

The multiply instruction may be used to synthesize higher precision multiplications, for
instance to multiply two 32 bit integers and generate a 64 bit result:

mul 64

MOV al, A LSR #16 ; al:= top half of A

MoV D, B, LSR #16 ; D:=top half of B

BI C A A al,LSL #16 ; A := bottomhalf of A

BI C B, B, D, LSL #16 : B := bottomhalf of B

MJL C AB ; Low section of result

MJL B,al, B ;) Mddle sections

MJUL A D A ;) of result

MJL D al, D ; High section of result

ADDS A B, A ; Add middle sections (couldn’t use
; MLA as we need C correct)

ADDCS D,D,#&10000 ; Carry from above add

ADDS C,C,ALSL #16 ; C is now bottom 32 bits of product

ADC D,D,ALSR #16 ; D is top 32 bits

(A, B areregisters containing the 32 bit integers; C, D are registers for the 64 bit result;
al isatemporary register. A and B are overwritten during the multiply.)

Note that more recent ARM processors have a single instruction to do just this; see the
next section.

83

Multiply Long and Multiply-Accumulate Long (UMULL, SMULL, UMLAL, SMLAL)

Multiply Long and Multiply-Accumulate Long
(UMULL, SMULL, UMLAL, SMLAL)

Instructions for performing integer multiplication, giving a 64 bit result

Thisinstruction isonly available in 32 bit mode on the ARM7M seriesor later

Instruction format

31 28 27 23222120 19 16 15 12 11 87 4 3 0
Cond |00 00 1|U|A[S| RdHi | RdLo Rs 1001 Rm
2 A A y y 2 2

L Operand registers
— Destination registers

Set condition codes
0 O do not alter condition codes
1 O set condition codes

Accumulate bit
0 O multiply
1 O multiply and accumulate

Unsigned bit
0 O unsigned
1 O signed

Condition field
(see page 55)

Assembler syntax

UMULL «cond»« S» RdLo, RdHi, Rm Rs
SMULL «cond»« S» RdLo, RdHi , Rm Rs
UMLAL «cond»« S» RdLo, RdHi, Rm Rs
SM_LAL «cond»« S» RdLo, RdHi , Rm Rs

«cond» is atwo-character condition mnemonic; see the section The condition
field on page 55.
«S» means to set the PSR’s condition codes from the operation.

RdLo,RdHi, are expressions evaluating to a valid ARM register number Bther
& Rs than R15.

84

CPU instruction set

Synopsis

The multiply long instructions perform integer multiplication on two 32 bit operands,
and produce a 64 bit result. The multiplication can be signed or unsigned, which — with
optional accumulate — gives rise to four variations.

The multiply forms of the instruction (UMULL and SMULL) give a 64 bit result of the
form RdHi,RdLo:=RmxRs.

The multiply-accumulate forms (UMLAL and SMLAL) givedRRmxRs+Rn, which
can save an explicit ADD instruction in some circumstances.

The lower 32 bits of the result and of the accumulator (where used) are helddn R
and the upper 32 bits indRli.

The unsigned forms of the instruction (UMULL and UMLAL) treat all four registers as
unsigned numbers. The signed forms (SMULL and SMLAL) treat the two operand
registers as 2's complement signed 32 bit numbers, and the two destination registers as a
2's complement signed 64 bit number.

The instruction is only executed if the condition is true. The various conditions are
defined in the sectiomhe condition field on page 55.

This instruction was first introduced on the ARM7M series of processor, and is only
available in 32 bit modes. This instruction is therefore unlikely to be of use under
RISC OS.

PSR flags

Setting the PSR flags is optional, and is controlled by the S bit in the instruction. The N
and Z flags are set correctly on the result (N is equal to bit 31 of the result, Z is set if and
only if the result is zero), and the V and C flags are set to a meaningless value.

Operand restrictions
R15 must not be used as any aHR RdLo, Rmor Rs.
RdHi, RdLo and Rn must all specify different registers.

Examples
UMULL R1, R4, R2, R3 ; R1, R4: =R2*R3

UMLALS R1,R5, R2, R3 ; Rl, R5: =R2*R3+R1, R5,
; also setting condition codes

85

Single data transfer (LDR, STR)

Single data transfer (LDR, STR)

Instructions for loading or storing single bytes or words of data

Instruction format
31 28 2726252423222120 19 16 15 12 11 0

Cond |0 1|I|P|UBW|L| Rn Rd Offset

[Source/Destination register

Base register
—— Load/Store bit
0

O store to memory
1 O load from memory

—— Write-back bit
0 O no write-back
1 O write address into base

L Byte/Word bit
0 O transfer word quantity
1 O transfer byte quantity

—— Up/Down bit
0 O down: subtract offset from base
1 O up: add offset to base

Pre/Post indexing bit
0 O post: add offset after transfer
1 O pre: add offset before transfer

Immediate offset
0 O offset is an immediate value

11 0

Immediate offset
A

Unsigned 12 bit immediate offset
1 O offset is a register
1 43 0

Shift Rm

!

Shift applied to Rm Offset register

(see below, and page 59)

Condition field
(see page 55)

86

Assembler syntax

CPU instruction set

LDR| STR«cond»« B»«T» Rd, address

LDR
STR

«cond»

«B»

«T»

Rd

address

loads from memory into a register.
stores from aregister into memory.

is atwo-character condition mnemonic; see the section The condition
field on page 55.

means to transfer a byte, otherwise aword is transferred.

means to set the W bit in a post-indexed instruction, forcing
non-privileged mode for the transfer cycle. T isnot allowed when a
pre-indexed addressing mode is specified or implied.

is an expression evaluating to avalid ARM register number.

can be:
I Anexpression which generates an address:
expression

ObjAsm will attempt to generate an instruction using the PC asa
base and a corrected immediate offset to address the location
given by evaluating the expression. Thiswill be a PC relative,
pre-indexed address. If the addressisout of range, an error will be
generated.

A pre-indexed addressing specification:

[Rn] offset of zero

[Rn, #expression] «! » offset of expression bytes

[Rn, «+| - »Rm« shift»] «! » offset of xcontents of index
register, shifted by shift

A post-indexed addressing specification:

[Rn] , #expression offset of expression bytes
[RN], «+| - »Rm« shift» offset of +contents of index
register, shifted by shift

Rn and Rmare expressions evaluating to avalid ARM register
number. Noteif Rnis R15 then ObjAsm will subtract 8 from the offset
valueto alow for ARM pipdining.

shift isagenera shift operation (see the section Shift typeson
page 59), but note that the shift amount may not be specified by a
register.

«! » if present setsthe W bit to write-back the base register.

87

Single data transfer (LDR, STR)

Synopsis

The single data transfer instructions are used to load or store single bytes or words of

data. The memory address used in the transfer is calculated by adding an offset to or
subtracting an offset from a base register. The result of this calculation may be written

back into the base register if ‘auto-indexing’ is required. If the contents of the base are
not destroyed by other instructions, the continued use of LDR (or STR) with write back
will continually move the base register through memory in steps given by the index
value. Note that ! is invalid for post-indexed addressing, as write back is automatic in
this case.

The instruction is only executed if the condition is true. The various conditions are
defined in the sectiofihe condition field on page 55.

For register to register transfers, see the sebtaaprocessing on page 68, particularly
the MOV instruction.

Offsets and auto-indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in the
instruction, or a second register (possibly shifted in some way). The offset may be added
to (U=1) or subtracted from (U=0) the base registeriRe offset modification may be
performed either beforgie-indexed, P=1) or aftergost-indexed, P=0) the base is used

as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base value may
be kept (W=0). In the case of post-indexed addressing, the write back bit is redundant,
since the old base value can be retained by setting the offset to zero. Therefore
post-indexed data transfers always write back the modified base. The only use of the W
bit in a post-indexed data transfer is in privileged mode code; depending on the
processor, setting the W bit either forcesTRANS pin to go LOW or forces

non-privileged mode for the transfer, allowing the operating system to generate a user
address in a system where the memory management hardware makes suitable use of this
hardware.

Shifted register offset

The 8 shift control bits are described in the sedbata processing on page 68, but the
register specified shift amounts are not available in this instruction class.

88

CPU instruction set

Bytes and words

This instruction class may be used to transfer a byte (B=1) or aword (B=0) between an
ARM register and memory.

A byteload (LDRB) expects the data on bits 0 to 7 if the supplied addressis on aword
boundary, on bits 8 to 15 if it is aword address plus one byte, and so on. The selected
byteis placed in the bottom 8 bits of the destination register, and the remaining bits of
the register are filled with zeroes.

A byte store (STRB) repeats the bottom 8 bits of the source register four times acrossthe
data bus. The external memory system should activate the appropriate byte subsystem to
store the data.

A word load (LDR) or word store (STR) should generate aword aligned address. Using
a non-word-aligned addresses has non-obvious and unspecified results.

Use of R15
These instructions will never cause the PSR to be modified, even when Rd or RnisR15.

If R15 is specified as the base register (Rn), the PC is used without the PSR flags. When
using the PC as the base register you must remember that it contains an address 8 bytes
on from the address of the current instruction.

If R15is specified asthe register offset (Rm), the value presented will be the PC together
with the PSR.

When R15 is the source register (Rd) of aregister store (STR) instruction, the value
stored will be the PC together with the PSR. The stored value of the PC will be 12 bytes
on from the address of theinstruction. A load register (LDR) with R15 as Rd will change
only the PC, and the PSR will be unchanged.

Address exceptions

Onan ARM2 or ARM3 processor, if the address used for the transfer (ie the unmodified
contents of the base register for post-indexed addressing, or the base modified by the
offset for pre-indexed addressing) has alogic one in any of the bits 26 to 31, the transfer
will not take place and the address exception trap will be taken.

Later versions of the ARM do not generate address exceptions when in a 32 bit
configuration (as used by RISC OS from very soon after reset), even when running in
26 bit modes.

89

Single data transfer (LDR, STR)

90

Note that it is only the address actually used for the transfer which is checked. A base
containing an address outside the legal range may be used in apre-indexed transfer if the
offset brings the address within the legal range, and likewise a base within the legal
range may be modified by post-indexing to outside the legal range without causing an
address exception.

Data Aborts

A transfer to or from alegal address may still cause problems for a memory
management system. For instance, in a system which uses virtual memory the required
data may be absent from main memory. The memory manager can signal a problem by
taking the processor ABORT pin HIGH, whereupon the data transfer instruction will be
prevented from changing the processor state and the Data Abort trap will be taken. It is
up to the system software to resol ve the cause of the problem, then the instruction can be
restarted and the original program continued.

32 bit operation

R15 must not be used as the register offset (Rm).

If R15 is specified as the base register (Rn), you must not use write-back — including
post indexing.

For a post-indexed LDR or STRpRand R must not be the same register.

When using write-back — including post indexingd-&hd R must not be the same
register.

Examples

STR R1, [BASE, | NDEX] ! ; store RL at BASE+|I NDEX (both of
; which are registers) and wite
; back address to BASE

STR R1, [BASE], | NDEX ; store Rl at BASE and writeback
; BASE+|I NDEX t 0 BASE

LDR R1, [BASE, #16] : load R1L from contents of BASE+16.
; Don’t write back

LDR R1,[BASE,INDEX,LSL #2] ;load R1 from contents of
; BASE+INDEX*4

LDREQB R1,[BASE,#5] ; conditionally load byte at BASE+5
; into R1 bits 0 to 7, filling bits
; 8 to 31 with zeroes

STR R1,PLACE ;generate PC relative offset to
; address PLACE

More instructions

PLACE

CPU instruction set

Block data transfer (LDM, STM)

Instructions for loading or storing any subset of the currently visible registers

Instruction format

31 2827 252423222120 19 16 15 0
Cond |1 0 O|P|U[SW|L| Rn Register list
A A

i

—— Base register

Load/Store bit
0 O store to memory
1] load from memory

Write-back bit
0] no write-back
1 O write address into base

PSR & force user bit
0 O do not load PSR or force user mode
1] load PSR or force user mode

Up/Down bit
0 O down: subtract offset from base
1] up: add offset to base

Register list
(see below)

Pre/Post indexing bit
0] post: add offset after transfer
1] pre: add offset before transfer

Condition field
(see page 55)

Assembler syntax
LDM STM«cond» FD| ED| FA| EA| | A | B| DA| DB Rn«! », Rlist« "~ »

LDM loads from memory into register(s).

STR stores from register(s) into memory.

«cond» is atwo-character condition mnemonic; see the section The condition
field on page 55.

Rn isan expression evaluating to avalid ARM register number.

91

Block data transfer (LDM, STM)

92

Rl i st is either acomma-separated list of registers and/or of register ranges
indicated by hyphens, al enclosedin {} (e.g. { RO, R2- R7, R10});
or an expression evaluating to the 16 bit operand.

«l » if present sets the W bit to write-back the base register.

«» if present setsthe S bit to load the PSR with the PC, or forces storing
of user bank registers when in a non-user mode.

Addressing mode names

There are different assembler mnemonics for each of the addressing modes. There are
alternative forms for each mnemonic: one form is intended for use with stacks, and
describes the type of stack the addressing mode supports; the other form merely
describes the instructions functionality. The equivalencies between the names and the
values of the bitsin the instruction are:

Name Sack Other L bit Pbit U bit
pre-increment load LDMED LDMIB 1 1 1
post-increment load LDMFD LDMIA 1 0 1
pre-decrement load LDMEA LDMDB 1 1 0
post-decrement load LDMFA LDMDA 1 0 0
pre-increment store STMFA STMIB 0 1 1
post-increment store STMEA STMIA 0 0 1
pre-decrement store STMFD STMDB 0 1 0
post-decrement store STMED STMDA 0 0 0

In the stacking forms of the mnemonics (FD, ED, FA and EA), the F and E refer to a full
or empty stack, and the A and D refer to an ascending or descending stack:

I A full stack is onein which the stack pointer points to the last data item written,
whereas an empty stack is onein which the stack pointer pointsto the first free slot.

I A descending stack is one which grows from high memory addresses to low ones,
whereas an ascending stack is one which grows from low memory addressesto high
ones.

The other forms of the mnemonics (1A, IB, DA and DB) simply mean Increment After,
Increment Before, Decrement After, and Decrement Before.

CPU instruction set

Synopsis
Block datatransfer instructions are used to load (LDM) or store (STM) any subset of the
currently visible registers from or to memory. They support all possible stacking modes,
maintaining full or empty stacks which can grow up or down memory, and are very
efficient instructions for saving or restoring context, or for moving large blocks of data
around main memory.

Theinstruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 55.

The register list

Theinstruction can cause the transfer of any registersin the current bank (and non-user
mode programs can al so transfer to and from the user bank, see below). The register list
isa 16 bit field in the instruction, with each bit corresponding to aregister. A 1Linbit 0
of theregister field will cause RO to betransferred, a0 will causeit not to be transferred;
similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is
that the register list must not be empty.

Addressing modes

The transfer addresses are determined by the contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U). The registers are stored such that the lowest
register is always at the lowermost address in memory, the highest register is always at
the uppermost address, and the others are stored in numerical order between them.

(Asan aside, this means that instruction sequences such as:

STMA RO, {Rl, R2}
LDMA RO, {R2, R1}

do not swap the contents of R1 and R2.)

By way of illustration, consider the transfer of R1, R5 and R7 in the case where
Rn=1000H and write back of the modified base is required (W=1). The figures below
show the sequence of register transfers, the addresses used, and the value of Rn after the
instruction has compl eted.

(In all cases, had write back of the modified base not been required (W=0), Rn would
have retained itsinitial value of 1000H unlessit was aso in the transfer list of aload
multiple register instruction, when it would have been overwritten with the loaded
value.)

93

Block data transfer (LDM, STM)

100CH

Rn —»| 1000H R1
OFF4H

@ @

100CH Rn —»

R7

R5 R5

R1 1000H R1
OFF4H

©) 4

Figure5.8 Post-increment addressing

100CH

R1
Rn —», 1000H
OFF4H

@ @

100CH Rn —» R7

R5 R5

R1 R1
1000H
OFF4H

94

®)

Figure5.9 Pre-increment addressing

4)

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

CPU instruction set

100CH 100CH
Rn —» 1000H 1000H
R1
OFF4H OFF4H
@) @)
100CH 100CH
1000H R7 1000H
R5 R5
R1 R1
OFF4H Rn —» OFF4H

@) (4)

Figure5.10 Post-decrement addressing

100CH 100CH
Rn —»| 1000H 1000H
OFF4H R1 OFF4H
1))
100CH 100CH
1000H 1000H
R7
R5 R5
R1 OFF4H Rn —» R1 OFF4H

@) (4)

Figure5.11 Pre-decrement addressing

95

Block data transfer (LDM, STM)

96

Transfer of R15

Whenever R15 is stored to memory, the value transferred is the PC together with the
PSR flags. The stored value of the PC will be 12 bytes on from the address of the STM
instruction.

If R15isin the transfer list of aload multiple (LDM) instruction the PC is overwritten,
and the effect on the PSR is controlled by the Shit. If the Shit isO0the PSR is preserved
unchanged, but if the Shit is 1 the PSR will be overwritten by the corresponding bits of
the loaded value. In user mode, however, the |, F, MO and M1 bits are protected from
change whatever the value of the S bit. The mode at the start of the instruction
determines whether these bits are protected, and the supervisor may return to the user
program, re-enabling interrupts and restoring user mode with one LDM instruction.

Forcing transfer of the user bank

For STM instructions the S hit is redundant as the PSR is aways stored with the PC
whenever R15 isin the transfer list. For LDM instructions the S bit is redundant if R15
isnot in the transfer list.

In both the above cases, the S bit isinstead used to force transfersin non-user modes to
use the user register bank instead of the current register bank. Thisis useful for saving
and restoring the user state on process switches. You must not use write back of the base
when forcing user bank transfer.

For an LDM instruction, you must take care not to read from a banked register during
the following cycle; if in doubt insert a no-op.

Use of R15 as the base

When the baseisthe PC, the PSR bits will be used to form the address aswell, so unless
all interrupts are enabled and all flags are zero an address exception will occur. Also,
write back is never allowed when the base is the PC (setting the W bit will have no
effect).

Inclusion of the base in the register list

When writeback is specified, the base is written back at the end of the second cycle of
theinstruction. During a STM, the first register iswritten out at the start of the second
cycle. A STM which includes storing the base, with the base as the first register to be
stored, will therefore store the unchanged value, whereas with the base second or later in
the transfer order, will store the modified value. An LDM will aways overwrite the
updated base if the baseisin thelist.

CPU instruction set

When the base register is in the list of registers
I The base register may be stored and if write back is not in operation, no problem
will occur.
If write back isin operation, the STM is performed in the following order:
1 writelowest-numbered register to memory
2 perform the write back
3 write other registers to memory in ascending order.

Thus, if the base register is the lowest-numbered register in the list, its original
valueis stored. Otherwise, its written back value is stored.

If the base register is|oaded the pop operation will continue successfully. The entire
block transfer runs on an internal copy of the base, and will not be aware that the
base register has been loaded with a new value.

Address exceptions

On an ARM2 or ARM3 processor, if the address of the first transfer falls outside the
legal address space (ie has a1l somewhere in bits 26 to 31), an address exception trap
will be taken. The instruction will first complete in the usual number of cycles, though
an STM will be prevented from writing to memory. The processor state will be the same
asif adata abort had occurred on the first transfer cycle (see next section).

Only the address of the first transfer is checked in thisway; if subsequent addresses
over- or under-flow into illegal address space they will be truncated to 26 bits but will
not cause an address exception trap.

Later versions of the ARM do not generate address exceptions when in a 32 bit
configuration (as used by RISC OS from very soon after reset), even when running in
26 bit modes.

Data Aborts

Some legal addresses may be unacceptabl e to a memory management system, and the
memory manager can indicate a problem with an address by taking the ABORT signal
HIGH. This can happen on any transfer during amultiple register load or store, and must
be recoverable if the ARM isto be used in avirtual memory system.

Abortsduring STM instructions

If the abort occurs during a store multiple instruction, ARM takes little action until the
instruction completes, whereupon it enters the data abort trap. The memory manager is
responsible for preventing erroneous writes to the memory. The only change to the

97

Block data transfer (LDM, STM)

internal state of the processor will be the modification of the base register if write-back
was specified, and this must be reversed by software (and the cause of the abort
resolved) before the instruction may be retried.

Abortsduring LDM instructions
When ARM detects a data abort during aload multiple instruction, it modifies the
operation of the instruction to ensure that recovery is possible

I Overwriting of registers stops when the abort happens. The aborting load will not
take place, but earlier ones may have overwritten registers. The PC is always the
last register to be written, and so will always be preserved.

I Thebaseregister isrestored, to its modified value if write-back was requested. This
ensures recoverability in the case where the base register is also in the transfer list,
and may have been overwritten before the abort occurred.

The data abort trap is taken when the load multiple has completed, and the system
software must undo any base modification (and resolve the cause of the abort) before
restarting the instruction.

32 bit operation

For an STM instruction where R15 isin the transfer list, the PC is stored, but the CPSR
is not stored to the current mode’s SPSR. (The intuitive extension of the 26 bit behaviour
would be for the CPSR to be stored.)

For an LDM instruction where R15 is in the transfer list, if the S bit is set then as well as
overwriting the PC, the SPSR for the current mode is moved to the CPSR. This is what
you would expect as an extension of the 26 bit behaviour.

The S bit must not be set for instructions that are to be executed in user mode.

You must not use R15 as the base register.

Examples
LDVWD SP!, {RO,Rl1, R2} ; unstack 3 registers
STM A BASE, { R0O- R15} ; save all registers

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMED SP!',{RO-R3,R14} ; save RO to R3 to use as workspace
; and R14 for returning

BL sonewher e ; this nested call will overwite R14

LDMED SP!, {RO- R3, R15}”"; restore workspace and return
; (also restoring PSR fl ags)

98

CPU instruction set

Single data swap (SWP)

Instruction for swapping atomically between aregister and external memory

Thisinstruction is not available on the ARM 2 processor

Instruction format

31 28 27 2322212019 16 15 121 87 43 0
Cond |[00010|B|00| Rn Rd |0000(1001 Rm
2 2 2 2

i

Source register
Destination register
Base register
B)(/)te/Word bit

O transfer word quantity
1 O transfer byte quantity

Condition field

(see page 55)
Assembler syntax
SWP«cond»« B» Rd, Rm [Rn]
«cond» is atwo-character condition mnemonic; see the section The condition
field on page 55.
«B» means to transfer a byte, otherwise aword is transferred.

Rd, Rm& Rn are expressions evaluating to avalid ARM register number.

Synopsis

The data swap instruction is used to swap atomically a byte or word quantity between a
register and external memory. It isimplemented as a memory read followed by a

memory write to the same address, which are ‘locked’ together. The processor cannot be
interrupted until both operations have completed, and the memory manager is warned to

treat them as inseparable. This instruction is particularly useful for implementing
software semaphores.

99

Single data swap (SWP)

100

The swap addressis determined by the contents of the base register (Rn). The processor
first reads the contents of the swap address. It then writes the contents of the source
register (Rm) to the swap address, and stores the old memory contents in the destination
register (Rd). The same register may be specified as both the source and destination; its
contents are correctly swapped with memory.

The LOCK output goes HIGH for the duration of the read and write operationsto signal
to the external memory manager that they are locked together, and should be allowed to
complete without interruption. This isimportant in multi-processor systems, where the
swap instruction is the only indivisible instruction which may be used to implement
semaphores. Control of the memory must not be removed from a processor whileit is
performing alocked operation.

The SWP instruction is not supported by the ARM2 processor, but is availablein the
ARM3, in the ARM2aS macrocell (as used for the ARM250 chip in the Acorn A3010,
3020 and A4000), and on the ARM®6 series and later.

Bytes and words

This instruction may be used to swap abyte (B=1) or aword (B=0) between a register
and memory. The SWPinstructionisimplemented asaL DR followed by a STR, and the
action of these is as described in Sngle data transfer (LDR, STR) on page 86.

Use of R15
You must not use R15 as an operand (Rd, Rn or Rmin a SWP instruction.

Data aborts

If the address used for the swap is unacceptable to a memory management system, the
internal MMU or external memory manager can flag the problem by driving ABORT
HIGH. This can happen on either the read or the write cycle (or both), and in either case,
the Data Abort trap will be taken. It is up to the system software to resolve the cause of
the problem. Once this has been done, the instruction can be restarted and the original
program continued.

Examples

S RO, R1, [R2] ; load RO with the word addressed by R2,
; and then store Rl at the sane address

SWPB R2, R3, [R4] ; load R2 with the byte addressed by R4,
; and then store bits 0 to 7 of R3 at the
; sane address

SWPEQ RO, RO, [R1] ; conditionally swap the word addressed
; by RL with the contents of RO

CPU instruction set

Software interrupt (SWI)

Instruction for entering supervisor mode in a controlled manner

Instruction format

31 28 27 24 23 0

Cond (1111 Comment field (ignored by ARM)

Condition field
(see page 55)

Assembler syntax

SW «cond» expression

«cond» is atwo-character condition mnemonic; see the section The condition
field on page 55.
expression is evaluated and placed in the comment field as a SWI number (which

isignored by ARM).

Synopsis
The software interrupt instruction is used to enter supervisor mode in a controlled
manner. The instruction causes the software interrupt trap to be taken, which effects the
mode change. The PC is then forced to the SWI vector. If this addressis suitably

protected (by external memory management hardware) from modification by the user, a
fully protected operating system may be constructed.

Theinstruction is only executed if the condition istrue. The various conditions are
defined in the section The condition field on page 55.

Return from the supervisor

The PC and PSR are saved in R14_svc upon entering the software interrupt trap, with
the PC adjusted to point to the word after the SWI instruction. MOVS R15, R14_svc
will return to the calling program, and restore the PSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use
software interrupts within itself it must first save a copy of the return address.

101

Software interrupt (SWI)

Comment field

The bottom 24 bits of the instruction are ignored by ARM, and may be used to
communicate information to the supervisor code. For instance, the supervisor may ook
at thisfield and useit to index into an array of entry points for routines which perform
the various supervisor functions (asin RISC OS).

32 bit operation

The CPSRissavedin SPSR_svc. TheMOVS R15, R14_svc instruction used to return
to the supervisor restores the CPSR from SPSR_svc. Thisis what you would expect as
an extension of the 26 bit behaviour.

Examples
SwW
SW
SW NE

Read
Witel +"k"
0

get next character fromread stream
output a "k" to the wite stream

conditionally call supervisor
with O in comment field

The above examples assume that suitable supervisor code exists at the SWI vector
address, for instance:

B
EntryTabl e
DCD
DCD
DCD
Zero EQU
ReadC EQU
Witel EQU
Super vi sor

Super vi sor

ZeroRt n
ReadCRt n
WitelRn

256
512

SW entry point

addr esses of supervisor routines

; SW has routine required in bits 8-23, data (if any) in bits 0-7.
; Assumes R13_svc points to a suitable stack.

STM

BI C
LDR
BI C
MOV
ADR
LDR

WitelRn

LDM

102

R13, { RO- R2, R14}

RO, R14, #&FC000003
RO, [RO, #- 4]

RO, RO, #&FF000000
R1, RO, LSR #8

R2, EntryTabl e

R15, [R2, R1, LSL #2]

R13, { RO- R2, R15} "

Save work registers and return
addr ess

Clear PSR bits

Get SW instruction

Clear top 8 bits

Get routine offset

Get start address of entry table
Branch to appropriate routine

Enter with character in RO bits 0-7

Rest ore wor kspace and return.

CPU instruction set

Coprocessor data operations (CDP)

Instruction for telling a coprocessor to perform some internal operation

Instruction format

31 28 27 24 23 20 19 16 15 12 11 87 543 0

Cond (11 10|CPOpc| CRn CRd CP# | CP |0 CRm
A

LCoprocessor operand register

—— Coprocessor information
Coprocessor number

Coprocessor destination register

Coprocessor operand register

Coprocessor operation code

Condition field
(see page 55)

Assembler syntax
CDP«cond» CP#, operation , CRd, CRn, CRm« info»

«cond» is atwo-character condition mnemonic; see the section The condition
field on page 55.

CP# is the unique number of the required coprocessor, which must be a
symbol defined viathe CP directive.

operation is evaluated to a constant and placed in the CP Opc field.

CRd, CRn, are expressions eval uating to a valid coprocessor register number,

& CRm which must be a symbol defined viathe CN directive.

info where present is evaluated to a constant and placed in the CP field.

103

Coprocessor data operations (CDP)

104

Synopsis

Thisinstruction is used to tell acoprocessor to perform some internal operation. No
result is communicated back to ARM, and it will not wait for the operation to compl ete.
The coprocessor could contain aqueue of such instructions awaiting execution, and their
execution can overlap other ARM activity, allowing the coprocessor and ARM to
perform independent tasksin parallél.

Theinstruction is only executed if the condition istrue. The various conditions are
defined in the section The condition field on page 55.

The coprocessor fields

Only hit 4 and bits 24 to 31 are significant to ARM; the remaining bits are used by
coprocessors. The above field names are used by convention, and particular
coprocessors may redefine the use of al fields except CP# as appropriate. The CP#field
is used to contain an identifying number (in the range 0 to 15) for each coprocessor, and
a coprocessor will ignore any instruction which does not contain its number in the CP#
field.

The conventional interpretation of theinstruction isthat the coprocessor should perform
an operation specified in the CP Opc field (and possibly in the CP field) on the contents
of CRn and CRm, and place the result in CRd.

Restriction

Current ARM chips have afault in the implementation of CDP which will cause a
Software Interrupt to take the Undefined Instruction trap if the SWI is the next
instruction after the CDP. This problem only arises when a hardware coprocessor is
attached to the system, but if it is ever intended to add hardware to support a CDP (rather
than trapping to an emulator) the sequence CDP SWI should be avoided.

Examples

CDP pl, 10, CR1, CR2, CR3 ; Request coprocessor 1 to do
; operation 10 on CR2 and CR3,
; and put the result in CRIL.

CDPEQ p2,5,CR1,CR2,CR3, 2 ; If Zflag is set, request
; coprocessor 2 to do operation 5
; (type 2) on CR2 and CR3,
; and put the result in CRL.

CPU instruction set

Coprocessor data transfers (LDC, STC)

Instructions for transferring data between the coprocessor and main memory

Instruction format
31 28 2726252423222120 19 16 15 12 11 87 0

Cond |1 1 O|P|UIN\W|L| Rn CRd CP# Offset

17

LUnsigned 8 bit immediate offset
—— Coprocessor number

—— Coprocessor source/destination register

Base register
Load/Store bit

0] store to memory
1] load from memory

Write-back bit
0 O no write-back
1] write address into base

Transfer length
Up/Down bit
0

O down: subtract offset from base
1 O up: add offset to base

Pre/Post indexing bit
0 O post: add offset after transfer
1] pre: add offset before transfer

Condition field
(see page 55)

105

Coprocessor data transfers (LDC, STC)

Assembler syntax
LDC| STC«cond»« L» CP#, CRd, address

LDC loads from memory to coprocessor (L=1).

STC stores from coprocessor to memory (L=0).

«L» when present perform long transfer (N=1), otherwise perform short
transfer (N=0).

«cond» is atwo-character condition mnemonic; see the section The condition
field on page 55.

CP# is the unique number of the required coprocessor, which must be a
symbol defined viathe CP directive.

CRd is an expression evaluating to avalid coprocessor register number,
which must be a symbol defined viathe CN directive.

address can be:
I An expression which generates an address:

expression

ObjAsm will attempt to generate an instruction using the PC asa
base and a corrected immediate offset to address the location
given by evaluating the expression. Thiswill be a PC relative,
pre-indexed address. If the addressisout of range, an error will be

generated.
I A pre-indexed addressing specification:
[RN offset of zero
[Rn, #expression] «! » offset of expression bytes

I A post-indexed addressing specification:
[Rn] , #expression offset of expression bytes

Rn isan expression evaluating to avalid ARM register number. Note
if Rnis R15 then ObjAsm will subtract 8 from the offset value to
allow for ARM pipelining.

«! » if present sets the W bit to write-back the base register.

106

CPU instruction set

Synopsis

These instructions are used to load (LDC) or store (STC) a subset of the coprocessor’s
registers directly to memory. ARM is responsible for supplying the memory address,
and the coprocessor supplies or accepts the data and controls the number of words
transferred.

The instruction is only executed if the condition is true. The various conditions are
defined in the sectiomhe condition field on page 55.

The coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or accept
the data, and a coprocessor will only respond if its number matches the contents of this
field.

The CRl field and the N bit contain information for the coprocessor which may be
interpreted in different ways by different coprocessors, but by conventidnsGRe

register to be transferred (or the first register where more than one is to be transferred),
and the N bit is used to choose one of two transfer length options. For instance N=0
could select the transfer of a single register, and N=1 could select the transfer of all the
registers for context switching.

Addressing modes

ARM is responsible for providing the address used by the memory system for the
transfer, and the addressing modes available are a subset of those used in single data
transfer instructions. Note, however, that the immediate offsets are 8 bits wide and
specify word offsets for coprocessor data transfers, whereas they are 12 bits wide and
specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and added to (U=1) or
subtracted from (U=0) a base registen)Rhis calculation may be performed either

before (P=1) or after (P=0) the base is used as the transfer address. The modified base
value may be overwritten back into the base register (if W=1), or the old value of the
base may be preserved (W=0). Note that post-indexed addressing modes require explicit
setting of the W bit, unlike LDR and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used
as the address for the transfer of the first word. The second word (if more than one is
transferred) will go to or come from an address one word (4 bytes) higher than the first
transfer, and the address will be incremented by one word for each subsequent transfer.

107

Coprocessor data transfers (LDC, STC)

Address alignment

The base address should normally be aword aligned quantity. The bottom 2 bits of the
address will appear on A[1:0] and might be interpreted by the memory system.

Use of R15

If RnisR15, the value used will be the PC without the PSR flags, with the PC being the
address of thisinstruction plus 8 bytes. Write-back to the PC isinhibited, and the W bit
will be ignored.

Address exceptions

If the address used for thefirst transfer isillegal the address exception mechanism will
be invoked. Instructions which transfer multiple words will only trap if the first address
isillegal; subsequent addresses will wrap around inside the 26 bit address space.

Data aborts

If the addressislegal but the memory manager generates an abort, the data abort trap
will be taken. The writeback of the modified base will take place, but all other processor
state will be preserved. The coprocessor is partly responsible for ensuring that the data
transfer can be restarted after the cause of the abort has been resolved, and must ensure
that any subsequent actions it undertakes can be repeated when the instruction is retried.

32 bit operation
If R15 is specified as the base register (Rn), you must not use write-back.

Examples
LDC pl, CR2, t abl e ; Load CR2 of coprocessor 1 from
; address table, using a PC rel ative
; address.
STCEQL p2, CR3, [R5, #24]! ; Conditionally store CR3 of

; coprocessor 2 into an address

; 24 bytes up fromR5, wite this

; address back into R5, and use |ong
; transfer option (probably to store
; multiple words)

Note that though the address offset is expressed in bytes, the instruction offset field isin
words. ObjAsm will adjust the offset appropriately.

108

CPU instruction set

Coprocessor register transfers (MCR, MRC)

Instructions for communicating information between ARM and a coprocessor

Instruction format

31 28 27 2423 212019 16 15 12 11 87 543 0

Cond (1110

CPOpqL| CRn Rd CP# CP |1| CRm

3

I

Coprocessor operand register
Coprocessor information

Coprocessor number

ARM source/destination register

Coprocessor source/destination register

Load/Store bit
0 0 store to coprocessor
1] load from coprocessor

Coprocessor operation code

Assembler syntax

Condition field
(see page 55)

MCR| MRC«cond» CP#, operation , Rd, CRn, CRm« info»

MCR
MRC

«cond»

CP#

operation
Rd

moves from coprocessor to ARM register (L=1).
moves from ARM register to coprocessor (L=0).

is atwo-character condition mnemonic; see the section The condition
field on page 55.

is the unique number of the required coprocessor, which must be a
symbol defined viathe CP directive.

is evaluated to a constant and placed in the CP Opc field.

isan expression evaluating to avalid ARM register number.

109

Coprocessor register transfers (MCR, MRC)

CRn & CRm are expressions evaluating to a valid coprocessor register number,
which must be a symbol defined viathe CN directive.

info where present is eval uated to a constant and placed in the CP field.

Synopsis

These instructions are used to communicate information directly between ARM and a
coprocessor. An example of a coprocessor to ARM register transfer (MCR) instruction
would be aFIX of afloating point value held in a coprocessor, where the floating point
number is converted into a 32 bit integer within the coprocessor, and the result is then
transferred to an ARM register. A FLOAT of a 32 hit valuein an ARM register into a
floating point value within the coprocessor illustrates the use of an ARM register to
coprocessor transfer (MRC).

Animportant use of thisinstruction isto communicate control information directly from
the coprocessor into the ARM PSR flags. As an example, the result of acomparison of
two floating point values within a coprocessor can be moved to the PSR to control the

subsequent flow of execution.

Note that the ARM®6 series and later have an internal coprocessor (#15) for control of
on-chip functions. Accesses to this coprocessor are performed during coprocessor
register transfers.

Theinstruction is only executed if the condition istrue. The various conditions are
defined in section The condition field on page 55.

The coprocessor fields

The CP#field isused, asfor al coprocessor instructions, to specify which coprocessor
is being called upon to respond.

The CP Opc, CRn, CP and CRmfields are used only by the coprocessor, and the
interpretation presented here is derived from convention only. Other interpretations are
allowed where the coprocessor functionality isincompatible with this one. The
conventional interpretation is that the CP Opc and CP fields specify the operation the
coprocessor is required to perform, CRn is the coprocessor register which is the source
or destination of the transferred information, and CRmis a second coprocessor register
which may be involved in some way which depends on the particular operation
specified.

Transfers to R15

When a coprocessor register transfer to ARM has R15 as the destination, bits 31, 30, 29
and 28 of the transferred word are copied into the N, Z, C and V flags (respectively) of
the PSR. The other bits of the transferred word are ignored, and the PC and other PSR
flags are unaffected by the transfer.

110

CPU instruction set

Transfers from R15

A coprocessor register transfer from ARM with R15 as the source register will store the
PC together with the PSR flags.

32 bit operation

Transfersto R15

When a coprocessor register transfer to ARM has R15 as the destination, bits 31, 30, 29
and 28 of the transferred word are copied into the N, Z, C and V flags (respectively) of

the CPSR. The other bits of the transferred word are ignored, and the PC and other PSR
flags are unaffected by the transfer. Thisiswhat you would expect as an extension of the
26 bit behaviour.

Transfersfrom R15

A coprocessor register transfer from ARM with R15 as the source register will store the
PC+12. Unlike the 26 bit behaviour, it does not store the CPSR to the coprocessor.

Examples

MRC 2,5, R3, CR5, CR6 ; Request Co-Proc 2 to perform
; operation 5 on CR5 and CR6, and
; transfer the (single 32 bit word)
; result back to R3.

MRCEQ 3,9, R3, CR5, CR6, 2 ; Conditionally request Co-Proc 2 to
; performoperation 9 (type 2) on
; CR5 and CR6, and transfer the
; result back to R3.

111

Undefined instructions

Undefined instructions

Undefined instructions

Instruction format

31 2827 2524 543 0

Cond 01 IXXXXXXXXXXXXXXXXXXXX|[1[XxXXX

Assembler syntax

At present ObjAsm has ho mnemonics for generating these instructions. If they are
adopted in the future for some specified use, suitable mnemonics will be added to
ObjAsm. Until such time, these instructions should not be used.

Synopsis
If the condition is true, the undefined instruction trap will be taken.
Note that the undefined instruction mechanism involves offering these instructions to

any coprocessors which may be present, and all coprocessors must refuse to accept them
by letting CPA float HIGH.

(Note that some instruction codes are not defined but do not cause the Undefined
instruction trap to be taken, for instance aMultiply instruction with bit 5 or bit 6 changed
to al. Theseinstructions should be avoided, as their action may change in future ARM
implementations.)

The instruction is only executed if the condition is true. The various conditions are
defined in section The condition field on page 55.

112

CPU instruction set

Instruction set summary

Instructions available on ARM, briefly summarised

Instruction formats
31 28 2726252423222120 19 16 15 12 11 8 7 54 3 0

Cond |0 0|1|Opcode|S| Rn Rd Operand2 Eg}gtﬁ’;%g?;sing,

Cond [0000O0O0|A Rd Rn Rs 1001 Rm Multiply

Cond 0000 1|U

RN Rd (00001001 Rm | oed%uaep

S

A|S| RdHi | RdLo Rs 1001 Rm Multiply Long
Cond (00010(B|0O

W[L

Cond |0 1|1 |P|u|B Rn | Rd Offset Dgle ansfer
Cond 011X XXXXXXXXXXXXXXXXXXX|1{XX X X| Undefined
Cond |1 0 O|P[UISW|L| Rn Register list gggknansfer
Cond (101|L Offset Branch

Cond |11 0|P[UINWL| Rn | CRd | CP# Offset Stleor
Cond |1110|CPOpc| CRn | CRd | CP# | CP (0| CRm | SaliSessti
Cond |1110CPOpdL| CRn | Rd | CP# | CP [1| CRm | RonoeeSonster
Cond (1111 Comment field (ignored by ARM) onare

Assembler syntax
B| BL«cond» expression

MOV| MVN«cond»« S» Rd, op2
CWN| CWP| TEQ TST«cond»« P» Rn, op2
ADC| ADD| AND| BI C| OR| ORR| RSB| RSC| SBC| SUB«cond»« S» Rd, Rn, op2

MRS«cond» Rd, psr
MBR«cond» psr , Rm
MBR«cond» psrf , Rm
MBR«cond» psrf , #expression

113

Instruction set summary

114

MJL «cond»« S» Rd, Rm Rs
M_A«cond»« S» Rd, Rm Rs, Rn

UMULL| SMULL| UMLAL| SMLAL «cond»« S» RdLo, RdHi, Rm Rs
LDR| STR«cond»« B»«T» Rd, address

LDM STM«cond» FD| ED| FA| EA| | Al | B| DA| DB Rn«! », Rlist« "»
SWP«cond»« B» Rd, Rm [Rn]

SW «cond»

expression

CDP«cond» CP#, operation , CRd, CRn, CRm« info»
LDC| STC«cond»« L» CP#, CRd, address

MCR| MRC«cond»

CP#, operation , Rd, CRn, CRm« info»

Parametersfor the above, alphabetically sorted

address

can be:

An expression which generates an address:
expression

ObjAsm will attempt to generate an instruction using the PC asa
base and a corrected immediate offset to address the location
given by evaluating the expression. Thiswill be a PC relative,
pre-indexed address. If the addressisout of range, an error will be
generated.

A pre-indexed addressing specification:

[RN offset of zero
[Rn, #expression | «! » offset of expression bytes
[Rn, «+| - »Rm« shift»] «! » offset of +contents of index
register, shifted by shift
(not available for LDC/STC).

A post-indexed addressing specification:

[Rn] , #expression offset of expression bytes

[RN], «+| - »Rm« shift» offset of +contents of index
register, shifted by shift
(not available for LDC/STC).

Rn and Rmare expressions evaluating to avalid ARM register
number. Noteif RnisR15 then ObjAsm will subtract 8 from the offset
value to allow for ARM pipelining.

CPU instruction set

shi ft isagenera shift operation (see the section Shift typeson
page 59), but note that the shift amount may not be specified by a
register.

«! » if present setsthe W bit to write-back the base register.

«B» means to transfer a byte, otherwise aword is transferred.

«cond» is atwo-character condition mnemonic; see the section The condition
field on page 55.

CP# is the unique number of the required coprocessor, which must be a
symbol defined viathe CP directive.

CRd, CRn, are expressions eval uating to a valid coprocessor register number,

& CRm which must be a symbol defined viathe CN directive.

expression for B and BL is a program-relative expression describing the branch

destination, from which ObjAsm calculates the offset;
for SWI, it is evaluated and placed in the comment field as a SWI
number (which isignored by ARM).

#expression isan expression symbolising a 32 bit value.
If #expression isused, ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field. If thisis
impossible, it will give an error.

info where present is evaluated to a constant and placed in the CP field.

«L» when present perform long transfer (N=1), otherwise perform short
transfer (N=0).

op2 may be any of the operands that the barrel shifter can produce.

The syntax isRm« shift» or #expression

If #expression isused, ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field. If thisis
impossible, it will give an error.

shift isshiftname Rs or shifthame #expression ,or
RRX (rotate right one bit with extend). shifthame sare: ASL, LSL,
LSR, ASR, and ROR. (ASL isasynonym for LSL, and the two
assembl e to the same code.) See Shift types on page 59.

operation is evaluated to a constant and placed in the CP Opc field.

«P» means to take the result of a CMN, CMP, TEQ or TST operation, and
move it to the bits of R15 that hold the PSR — even though the
instruction has no destination register. Bits corresponding to the PC
are masked out, as are (in User mode) the |, F, and mode bits.

115

Instruction set summary

116

psr isCPSR, CPSR_al | , SPSRor SPSR_al | .
(CPSRand CPSR_al | are synonyms, as are SPSRand SPSR_al | .)
psrf isCPSR f I g or SPSR f | g. Themost significant four bits of Rmor
#expressi on arewrittentothe N, Z, C and V flags respectively.
Rd, RdLo, RdH ,

RmRn & Rs are expressions evaluating to avalid ARM register number.

Rl i st is either acomma-separated list of registers and/or of register ranges
indicated by hyphens, al enclosedin {} (e.g. { RO, R2- R7, R10});
or an expression evaluating to the 16 bit operand.

«S» means to set the PSR’s condition codes from the operation. ObjAsm
forces this for CMN, CMP, TEQ and TST, provided the P flag is not
specified.

«T» means to set the W bit in a post-indexed instruction, forcing

non-privileged mode for the transfer cycle. T is not allowed when a
pre-indexed addressing mode is specified or implied.

« » if present setsthe W bit to write-back the base register.

™ » if present sets the S bit to load the PSR with the PC, or forces storing
of user bank registers when in a non-user mode.

Synopsis
For a detailed synopsis of the various instructions, see the following sections:
Section Page
Branch, Branch with Link (B, BL) 65
Data processing 68
PSR transfer (MRS, MSR) 77
Multiply and Multiply-Accumulate (MUL, MLA) 81
Multiply Long and Multiply-Accumulate Long 84
(UMULL, SMULL, UMLAL, SMLAL)
Single datatransfer (LDR, STR) 86
Block datatransfer (LDM, STM) 91
Single data swap (SWP) 99
Software interrupt (SWI) 101
Coprocessor data operations (CDP) 103
Coprocessor datatransfers (LDC, STC) 105
Coprocessor register transfers (MCR, MRC) 109

CPU instruction set

Section Page
Undefined instructions 112
Further instructions 118

117

Further instructions

Further instructions

The above completes the description of all the basic ARM instructions. However,
ObjAsm understands a number of other instructions, which it translates into appropriate
basic ARM instructions.

Extended range immediate constants

Synopsis
In the case of an instruction such as
MoV RO, #VALUE

ObjAsm will evaluate the expression and produce a CPU instruction to load the value
into the destination register. Thismay not in fact be the machine level instruction known
as MOV, but the programmer need not be aware that an aternative instruction has been
substituted. A common exampleis

MOV Rn, #-1

which the CPU cannot handle directly (as —1 is not a valid immediate constant). ObjAsm
will accept this syntax, but will convert it and generate object code for

MVN Rn, #0

which results in R containing —1. Such conversions also takes place between the
following pairs of instructions:

I BIC/AND

I ADD/SUB
I ADC/SBC
I CMP/CMN

118

CPU instruction set

The ADR instruction

Assembler syntax

ADR«cond» register , expression

Synopsis

This produces an address in a register. ARM does not have an explicit ‘calculate
effective address’ instruction, as this can generally be done using ADD, SUB, MOV or
MVN. To ease the construction of such instructions, ObjAsm provides an ADR
instruction.

The expression may be register-relative, program-relative or numeric:

I Register-relative: ADD| SUB regi ster, regi ster2, #const ant
will be produced, whereegister2 is the register to which the expression is relative.
Program-relative: ADD| SUB regi ster, PC, #const ant
will be produced.
Numeric: MOV| WN regi ster, #const ant

will be produced.

In all three cases, an error will be generated if the immediate constant required is out of
range.

If the program has a fixed origin (that is, if the ORG directive has been used), the
distinction between program-relative and numeric values disappears. In this case,
ObjAsm will first try to treat such a value as program-relative. If this fails, it will try to
treat it as numeric. An error will only be generated if both attempts fail.

The ADRL instruction

Assembler syntax
ADR«cond» L register , expression

Synopsis
Thisform of ADR is provided by ADRL and allows awider collection of effective
addresses to be produced. ADRL can be used in the same way as ADR, except that the
allowed range of constantsis any constant specified as an even rotation of avalueless
than & 10000. Again program-relative, register relative and numeric forms exist. The
result produced will always be two instructions, even if it could have been donein one.
An error will be generated if the necessary immediate constants cannot be produced.

119

Literals

Literals

Assembler syntax
LDR regi ster, =expressi on

Synopsis
Literals are intended to enable the programmer to load immediate values into aregister
which might be out of range as MOV/MVN arguments.
ObjAsm will take certain actions with literals. It will:
I if possible, replace the instruction withaMQOV or MVN,

I otherwise, generate a program-relative LDR and if no such literal already exists
within the addressable range, place the literal in the next literal pool.

Program-rel ative expressions and imported symbols are also valid literals. See the
section Organisational directives — END, ORG, LTORG and KEBRpage 145 for
further information.

120

Floating point instructions

he ARM has a general coprocessor interface. The first coprocessor available is one

which performs floating point cal culations to the | EEE standard. To ensure that
programs using floating point arithmetic remain compatible with all Archimedes
machines, a standard ARM floating point instruction set has been defined. This can be
implemented invisibly to the customer program by one of several systems offering
various speed performances at various costs. The current ‘bundled’ floating point
system is the software only floating point emulator module. Floating point instructions
may be incorporated into any assembler text, provided they are called from user mode.
These instructions are recognised by the Assembler and converted into the correct
coprocessor instructions.

Generally, programs do not need to know whether a coprocessor is fitted; the only
effective difference is in the speed of execution. Note that there may be slight variations
in accuracy between hardware and software — refer to the instructions supplied with the
coprocessor for details of these variations.

121

Programmer’s model

Programmer’s model

The ARM IEEE floating point system has eight ‘high precisftwdting point registers,

FO to F7. The format in which numbers are stored in these registers is not specified.
Floating point formats only become visible when a number is transferred to memory,
using one of the formats described below.

There is also 8oating point status register (FPSR) which, like the ARM’s combined

PC and PSR, holds all the necessary status and control information that an application is
intended to be able to access. It hdldgs which indicate various error conditions, such

as overflow and division by zero. Each flag has a correspotidipgnable bit, which

can be used to enable or disable a ‘trap’ associated with the error condition. Bits in the
FPSR allow a client to distinguish between different implementations of the floating
point system.

There may also befbpating point control register (FPCR); this is used to hold status

and control information that an application is not intended to access. For example, there
are privileged instructions to turn the floating point system on and off, to permit efficient
context changes. Typically, hardware based systems have an FPCR, whereas software
based ones do not.

Available systems

Floating point systems may be built from software only, hardware only, or some
combination of software and hardware. The following terminology will be used to
differentiate between the various ARM floating point systems already in use:

System name System components

Old FPE Versions of the floating point emulator up to (but not including)
4.00
FPPC Floating Point Protocol Convertor (interface chip between ARM

and WE32206), WE32206 (AT&T Math Acceleration Unit chip),
and support code

FPE 400 Versions of the floating point emulator from 4.00 onwards

FPA ARM Floating Point Accelerator chip, and support code
The results look the same to the programmer. However, if clients are aware of which
system is in use, they may be able to extract better performance. For example, compilers

can be tuned to generate bunched FP instructions for the FPE and dispersed FP
instructions for the FPA, which will improve overall performance

122

Precision

Floating point instructions

The old FPE has two different variants. Versions up to (but not including) 3.40 do not
provide any hardware support, whereas versions 3.40 to 3.99 inclusive provide support

for the FPPC hardware — if it is fitted. All versions of the FPE 400 provide support for
the FPA hardware.

All basic floating point instructions operate as though the result were computed to
infinite precision and then rounded to the length, and in the way, specified by the
instruction. The rounding is selectable from:

I Round to nearest

I Round to +infinity (P)
I Round to —infinity (M)
I Round to zero (2).

The default is ‘round to nearest’; in the event of a tie, this rounds to ‘nearest even'. If any
of the others are required they must be given in the instruction.

The working precision of the system is 80 bits, comprising a 64 bit mantissa, a 15 bit
exponent and a sign bit. Specific instructions that work only with single precision
operands may provide higher performance in some implementations, particularly the
fully software based ones.

Floating point number formats

Like the ARM instructions, the floating point data processing operations refer to
registers rather than memory locations. Values may be stored into ARM memory in one
of five formats (only four of which are visible at any one time, since P and EP are
mutually exclusive):

123

Floating point number formats

124

IEEE Single Precision (S)

31 30 2322 0

Sign Exponent msb Fraction Isb

Figure6.1 Sngle precision format
If the exponent is O and the fraction is 0, the number represented is 0.

If the exponent is O and the fraction is non-zero, the number represented is
+0.fraction x 27126

If the exponent isin the range 1 to 254, the number represented is
+1.fraction x 2&wponent - 127

If the exponent is 255 and the fraction is O, the number represented is +co.

If the exponent is 255 and the fraction is non-zero, aNaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is anon-trapping
NaN; otherwise it is atrapping NaN.

IEEE Double Precision (D)

31 30 2019 0
First word | Sign Exponent msb Fraction Isb
Second word | msb Fraction Isb

Figure 6.2 Double precision format
If the exponent is 0 and the fraction is 0, the number represented is +0.

If the exponent is O and the fraction is non-zero, the number represented is
+0.fraction x 271022

If the exponent is in the range 1 to 2046, the number represented is
+1 fraction x 2&Ponent — 1023

If the exponent is 2047 and the fraction is 0, the number represented is +co.

If the exponent is 2047 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is anon-trapping
NaN; otherwise it is atrapping NaN.

Floating point instructions

Double Extended Precision (E)

31 30 1514 0

First word | Sign zeros Exponent
Secondword| J | msb Fraction Isb
Third word | msb Fraction Isb

Figure 6.3 Double extended precision format
I If theexponent is 0, Jis 0, and the fraction is 0, the number represented is +0.

I If theexponent is0, Jis 0, and the fraction is non-zero, the number represented is
+0.fraction x 2716382

If the exponent isin the range 0 to 32766, Jis 1, and the fraction is non-zero, the
number represented is +1.fraction x 28xponent — 16383

I If the exponent is 32767, Jis O, and the fraction is 0, the number represented is +co.

I If the exponent is 32767 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is anon-trapping
NaN; otherwiseit isatrapping NaN.

Other values are illegal and shall not be used (ie the exponent isin the range 1 to 32766
and Jis0; or the exponent is 32767, Jis 1, and the fraction is 0).

The FPPC system stores the sign bit in bit 15 of the first word, rather than in bit 31.

Storing a floating point register in ‘E’ format is guaranteed to maintain precision when
loaded back by the same floating point system in this format. Note that in the past the
layout of E format has varied between floating point systems, so software should not
have been written to depend on it being readable by other floating point systems. For
example, no software should have been written which saves E format data to disc, to
have then been potentially loaded into another system. In particular, E format in the
FPPC system varies from all other systems in its positioning of the sign bit. However,
for the FPA and the FPE 400, the E format is now defined to be a particular form of
IEEE Double Extended Precision and will not vary in future.

125

Floating point number formats

126

Packed Decimal (P)
31 0

First word | Sign e3 e2 el e0 di8 di7 di6

Second word| d15 di4 di3 di2 dil di0 d9 ds

Third word | d7 dé d5 d4 d3 d2 dl do

Figure6.4 Packed decimal format

The sign nibble contains both the significand’s sign (top bit) and the exponent’s sign
(next bit); the other two bits are zero.

d18 is the most significant digit of the significashdand e3 of the exponeatThe

significand has an assumed decimal point between d18 and d17, and is normalised so
that for a normal numberd d18< 9. The guaranteed ranges bande are 17 and 3

digits respectively; dO, d1 and e3 may always be zero in a particular system. (By
comparison, an S format number has 9 digits of significand and a maximum exponent of
53; a D format number has 17 digits in the significand and a maximum exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation afeo or a NaN (see below).

I If the exponent’s sign is 0, the exponent is 0, and the significand is 0, the number
represented is0.
Zero will always be output as +0, but either +0 or —0 may be input.

I If the exponent is in the range 0 to 9999 and the significand is in the range 1 to
9.999999999999999999, the number representedi*s10™©.

I If the exponent is &FFFF (ie all the bits in e3 - e0 are set) and the significand is 0,
the number representedti®.

I If the exponent is &FFFF and dO - d17 are non-zero, a NaN (not-a-number) is
represented. If the most significant bit of d18 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

Floating point instructions

Expanded Packed Decimal (EP)
31 0

First word | Sign e6 eb ed e3 e2 el e0

Second word| d23 d22 d21 d20 d19 dis d17 d16

Third word | d15 di4 d13 diz di1 d1o0 do ds

Fourth word| d7 dé d5 d4 d3 d2 di do

Figure6.5 Expanded packed decimal format

The sign nibble contains both the significand’s sign (top bit) and the exponent’s sign
(next bit); the other two bits are zero.

d23 is the most significant digit of the significashdand e6 of the exponeatThe

significand has an assumed decimal point between d23 and d22, and is normalised so
that for a normal numberd d23< 9. The guaranteed ranges tbande are 21 and 4

digits respectively; dO, d1, d2, e4, e5 and e6 may always be zero in a particular system.
(By comparison, an S format number has 9 digits of significand and a maximum
exponent of 53; a D format number has 17 digits in the significand and a maximum
exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation afeco or a NaN (see below).

I If the exponent’s sign is 0, the exponent is 0, and the significand is 0, the number
represented is0.

Zero will always be output as +0, but either +0 or -0 may be input.

If the exponent is in the range 0 to 9999999 and the significand is in the range 1 to
9.99999999999999999999999, the number representeiokid 0*°.

If the exponent is &FFFFFFF (ie all the bits in €6 - e0 are set) and the significand is
0, the number representedtis.

If the exponent is &FFFFFFF and dO - d22 are non-zero, a NaN (not-a-number) is
represented. If the most significant bit of d23 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

This format is not available in the old FPE or the FPPC. You should only use it if you
can guarantee that the floating point system you are using supports it.

127

Floating point status register

Floating point status register

128

There is a floating point status register (FPSR) which, like ARM’s combined PC and
PSR, has all the necessary status for the floating point system. The FPSR contains the
IEEE flags but not the result flags — these are only available after floating point compare
operations.

The FPSR consists of a system ID byte, an exception trap enable byte, a system control
byte and a cumulative exception flags byte.

31 2423 1615 87 0

FPSR System ID Trap Enable System Control | Exception Flags

Figure6.6 Floating point status register byte usage

System ID byte

The System ID byte allows a user or operating system to distinguish which floating
point system is in use. The top bit (bit 31 of the FPSR) is séfalware (ie fast)
systems, and clear feoftware (ie slow) systems. Note that the System ID is read-only.

The following System IDs are currently defined:

System System ID
Old FPE &00
FPPC &80
FPE 400 &01
FPA &81

Exception Trap Enable Byte

Each bit of the exception trap enable byte corresponds to one type of floating point
exception, which are described in the sec@amulative Exception Flags Byte on
page 130.

23 22 21 20 19 18 17 16

FPSR Reserved INX UFL OFL DvZ IVO

Figure 6.7 Exception trap enable byte

If a bit in the cumulative exception flags byte is set as a result of executing a floating
point instruction, and the corresponding bit is also set in the exception trap enable byte,
then that exception trap will be taken.

Currently, the reserved bits shall be written as zeros and will return 0 when read.

Floating point instructions

System Control Byte
These control bits determine which features of the floating point system arein use.

15 14 13 12 11 10 9 8

FPSR Reserved AC EP SO NE ND

Figure 6.8 System control byte

By placing these control bitsin the FPSR, their state will be preserved across context
switches, allowing different processes to use different featuresif necessary. The
following five control bits are defined for the FPA system and the FPE 400:

ND No Denormalised numbers

NE NaN Exception

SO Select synchronous Operation of FPA

EP Use Expanded Packed decimal format

AC Use Alternative definition for C flag on compare operations

The old FPE and the FPPC system behave asiif all these bits are clear.

Currently, the reserved bits shall be written as zeros and will return O when read. Note
that all bits (including bits 8 - 12) are reserved on FPPC and early FPE systems.

ND — No denormalised numbers bit

If thisbit is set, then the software will force all denormalised numbersto zero to prevent
lengthy execution times when dealing with denormalised numbers. (Also known as
abrupt underflow or flush to zero.) This mode is not IEEE compatible but may be
required by some programs for performance reasons.

If this bit is clear, then denormalised numbers will be handled in the normal
| EEE-conformant way.
NE — NaN exception bit

If this bit is set, then an attempt to store asignalling NaN that involves a change of
format will cause an exception (for full IEEE compatibility).

If this bit is clear, then an attempt to store a signalling NaN that involves a change of
format will not cause an exception (for compatibility with programs designed to work
with the old FPE).

129

Floating point status register

130

SO - Select synchronous operation of FPA

If thishit is set, then all floating point instructions will execute synchronously and ARM
will be made to busy-wait until theinstruction has completed. Thiswill allow the precise
address of an instruction causing an exception to be reported, but at the expense of
increased execution time.

If thisbit is clear, then that class of floating point instructions that can execute
asynchronously to ARM will do so. Exceptions that occur as aresult of these
instructions may be raised some time after the instruction has started, by which time the
ARM may have executed a number of instructions following the one that has failed. In
such cases the address of the instruction that caused the exception will be imprecise.

The state of thisbit isignored by software-only implementations, which always operate
synchronously.

EP — Use expanded packed decimal format

If this bit is set, then the expanded (four word) format will be used for Packed Decimal
numbers. Use of this expanded format allows conversion from extended precision to
packed decimal and back again to be carried out without loss of accuracy.

If this bit is clear, then the standard (three word) format is used for Packed Decimal
numbers.

AC — Use alternative definition for C flag on compare operations

If this bit is set, the ARM C flag, after a compare, is interpreted as ‘Greater Than or
Equal or Unordered’. This interpretation allows more of the IEEE predicates to be tested
by means of single ARM conditional instructions than is possible using the original
interpretation of the C flag (as shown below).

If this bit is clear, the ARM C flag, after a compare, is interpreted as ‘Greater Than or
Equal'.

Cumulative Exception Flags Byte

7 6 5 4 3 2 1 0

FPSR Reserved INX UFL OFL Dvz IVO

Figure 6.9 Cumulative exception flags byte

Whenever an exception condition arises, the appropriate cumulative exception flag in
bits 0 to 4 will be set to 1. If the relevant trap enable bit is set, then an exception is also
delivered to the user’s program in a manner specific to the operating system. (Note that

Floating point instructions

in the case of underflow, the state of the trap enable bit determines under which
conditions the underflow flag will be set.) These flags can only be cleared by a WFS
instruction.

Currently, the reserved bits shall be written as zeros and will return O when read.

IVO — invalid operation

ThelVOflagisset when an operand isinvalid for the operation to be performed. Invalid
operations are:

Any operation on atrapping NaN (not-a-number)

Magnitude subtraction of infinities, eg +oo + —0

Multiplication of 0 by+co

Division of 0/0 oreo/co

X REMy where x o ory =0

(REM is the ‘remainder after floating point division’ operator.)
Square root of any number < 0 (bl{t-0) = -0)

Conversion to integer or decimal when overflomor a NaN operand make it
impossible

If overflow makes a conversion to integer impossible, then the largest positive or
negative integer is produced (depending on the sign of the operand) and IVO is
signalled

Comparison with exceptions of Unordered operands
ACS, ASN when argument’s absolute value is > 1
SIN, COS, TAN when argument iso

LOG, LGN when argument is 0

POW when first operand is < 0 and second operand is not an integer, or first
operand is 0 and second operand &

RPW when first operand is not an integer and second operand is < 0, or first
operand i< 0 and second operand is 0.

DVZ — division by zero

The DVZ flag is set if the divisor is zero and the dividend a finite, non-zero number. A
correctly signed infinity isreturned if the trap is disabled.

Theflag isalso set for LOG(0) and for LGN(0). Negative infinity is returned if the trap
isdisabled.

131

Floating Point Control Register

OFL — overflow

The OFL flag is set whenever the destination format’s largest number is exceeded in
magnitude by what the rounded result would have been were the exponent range
unbounded. As overflow is detected after rounding a result, whether overflow occurs or
not after some operations depends on the rounding mode.

If the trap is disabled either a correctly signed infinity is returned, or the format's largest
finite number. This depends on the rounding mode and floating point system used.

UFL — underflow

Two correlated events contribute to underflow:

I Tininess — the creation of a tiny non-zero result smaller in magnitude than the
format’'s smallest normalised number.

I Lossof accuracy — a loss of accuracy due to denormalisation ittt be greater
than would be caused by rounding alone.

The UFL flag is set in different ways depending on the value of the UFL trap enable bit.

If the trap is enabled, then the UFL flag is set when tininess is detected regardless of loss
of accuracy. If the trap is disabled, then the UFL flag is set when both tininess and loss
of accuracy are detected (in which case the INX flag is also set); otherwise a correctly
signed zero is returned.

As underflow is detected after rounding a result, whether underflow occurs or not after
some operations depends on the rounding mode.

INX — inexact

The INX flag is set if the rounded result of an operation is not exact (different from the
value computable with infinite precision), or overflow has occurred while the OFL trap
was disabled, or underflow has occurred while the UFL trap was disabled. OFL or UFL
traps take precedence over INX.

TheINX flagisalso set when computing SIN or COS, with the exceptions of SIN(0) and
COs(2).

The old FPE and the FPPC system may differ in their handling of the INX flag. Because
of this inconsistency we recommend that you do not enable the INX trap.

Floating Point Control Register

132

The Floating Point Control register (FPCR) may only be present in some
implementations: it is there to control the hardware in an implementation-specific
manner, for example to disable the floating point system. The user mode of the ARM is
not permitted to use this register (since theright is reserved to alter it between
implementations) and the WFC and RFC instructions will trap if tried in user mode.

Floating point instructions

You are unlikely to need to access the FPCR; thisinformation is principally given for

compl eteness.

The FPPC system

The FPCR bit allocation in the FPPC system is as shown below:

31 8 7 6 5 4 3 2 1 0
FPCR — PR [SBd|SBn|SBm| — | AS | EX | DA
Figure 6.10 FPCRbit allocation in the FPPC system
Bit Meaning
31-8 Reserved — always read as zero
7 PR Last RMF instruction produced a partial remainder
6 SBd Use Supervisor Register Bank ‘d’
5 SBn Use Supervisor Register Bank ‘n’
4 SBm Use Supervisor Register Bank ‘m’
3 Reserved — always read as zero
2 AS Last WE32206 exception was asynchronous
1 EX Floating point exception has occurred
0 DA Disable

Reserved bits are ignored during write operations (but should be zero for future

compatibility.) The reserved bits will return zero when read.

The FPA system

In the FPA, the FPCR will also be used to return status information required by the
support code when an instruction is bounced. You should not alter the register unless
you really know what you're doing. Note that the register will be read sensitiere;
reading theregister may changeitsvalue, with disastrous consequences.

The FPCR bit allocation in the FPA systenpigvisionally as follows:

31 30 29 28 27 26

25 24 23 22 21 20 19 18 17 16

FPCR|RU| — IE [MO|EO| — OoP — S1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
(cont'd)| OP DS SB|AB|RE|(EN|PR| RM |OP S2

Figure6.11 FPCRbit allocation in the FPA system

133

Assembler directives and syntax

Bit M eaning

31 RU Rounded Up Bit
30 Reserved

29 Reserved

28 IE Inexact bit

27 MO Mantissa overflow
26 EO Exponent overflow
25,24 Reserved

23-20 OP AU operation code

19 PR AU precision

18-16 S1 AU sourceregister 1

15 OoP AU operation code

14-12 DS AU destination register

11 SB Synchronous bounce: decode (R14) to get opcode

10 AB Asynchronous bounce: opcode supplied in rest of word

9 RE Rounding Exception: Asynchronous bounce occurred during
rounding stage and destination register was written

8 EN Enable FPA (default is off)

7 PR AU precision

6,5 RM AU rounding mode

4 OP AU operation code

30 2 AU sourceregister 2 (bit 3 set denotes a constant)

Note that the SB and AB bits are cleared on aread of the FPCR. Only the EN bit is
writable. All other bits shall be set to zero on awrite.

Assembler directives and syntax
The precision letter determines the format used to store the number in memory, as

follows:
Letter Precision Memory usage
S Single 1 word
D Double 2 words
E Extended 3 words
P Packed BCD 3 words

EP Extended Packed BCD 4 words

For details of these formats see the section Floating point number formats on page 123.

134

Floating point instructions

Floating point number input

A floating point number recognised by the assemblers consists of an optional sign,

followed by an optional mantissa part followed by an optional exponent part. One or

other of the mantissa part and the exponent part must be present. The mantissa part

consists of a sequence of zero or more decimal digits, followed by an optional decimal

point followed by a sequence of zero or more decimal digits. If present, the mantissa

must contain a non-zero number of digits overall. The exponent part begins with ‘e’ or
‘E’, followed by an optional sign, followed by a sequence of one or more decimal digits.

Examples are:

1

0.2

5E9

E-2

-7

+31. 415926539E- 1

The value generated represents the mantissa multiplied by ten to the power of the
exponent, where the mantissa is taken to be one if missing, and the exponent is taken to
be zero if missing. All reading is done to double precision, and is then rounded to single
precision as required. The required precision is determined by the context as shown in
the section$-loating point store loading directives on page 136 anBloating point

literals on page 137.

NOFP directive

If you know that your code should not use floating point instructions and want to ensure
that you don't accidentally include them, you can use the NOFP directive. It must occur
before any floating point instructions or directives.

Syntax:NOFP

Floating point register equating: FN
The directive FN is used to assign a floating point register number 0-7 to a symbol.
Syntax:/ abel FNnuneri c expressi on

Floating point register numbers are taken to be constants when included in arbitrary
expression, but only floating point register names are valid when a floating point register
is required.

135

The instruction set

Floating point store loading directives

Directives DCFS and DCFD are provided to load store with respectively single and
double precision floating point numbers. Single precision floating point numbers occupy
one word of store, double precision floating point numbers occupy two words, but are
not constrained to be double word aligned.

Syntax: | abel DCFx floating point number« , floating point number»

where the syntax of floating point numbersis defined in the section Floating point
number input above.

?1 abel will have the value of the number of bytes of code generated by its defining
linein away analogousto DCD.

The instruction set

Floating point coprocessor data transfer

136

op«condition»prec Fd, addr

op isLDF for load, STF for store

condition is one of the usual ARM conditions

prec is one of the usual floating point precisions
addr is[Rn] «, #offset» or [Rn, #offset | «! »

(«! » if present indicates that writeback is to take place.)
Fd isafloating point register symbol (defined viathe FN directive).

Load (LDF) or store (STF) the high precision value from or to memory, using one of the

five memory formats. On store, the value is rounded using the ‘round to nearest’
rounding method to the destination precision, or is precise if the destination has
sufficient precision. Thus other rounding methods may be used by having previously
applied some suitable floating point data operation; this does not compromise the
requirement of ‘rounding once only’, since the store operation introduces no additional
rounding error.

The offset is in words from the address given by the ARM base register, and is in the
range —1020 to +1020. In pre-indexed mode you must explicitly specify writeback to
add the offset to the base register; but in post-indexed mode the assembler forces
writeback for you, as without write back post-indexing is meaningless.

You should not use R15 as the base register if writeback will take place.

Floating point instructions

Examples:

LDFS FO, [RO] ; load FO from address held in RO
; (single precision)

STFP F1, [R2] ; store nunber held in F1 at R2

; as a packed deci mal nunber

Floating point literals

LDFS and LDFD can be given literal valuesinstead of aregister relative address, and

the Assembler will automatically place the required value in the next available literal

pool. In the case of LDFS asingle precision value is placed, in the case of LDFD a

double precision value is placed. Because the allowed offset range within a LDFS or

LDFD instruction is less than that for a LDR instruction (—1020 to +1020 instead of —
4095 to +4095), it may be necessary to code LTORG directives more frequently if
floating point literals are being used than would otherwise be necessary.

Syntax:.LDFx Fn, = floating poi nt nunber

Floating point coprocessor multiple data transfer

The LFM and SFM multiple data transfer instructions are supported by the assemblers,
but are not provided by the FPPC system, or by some versions of the old FPE:

I versions 2.80 - 2.84 do not support them
I versions 2.85 - 3.39 do support them

I version 3.40 — which is effectively a version of 2.80 that also provides FPPC
hardware support — does not support these instructions.

Attempting to execute these instructions on systems that do not provide them will cause
undefined instruction traps, so you should only use these instructions in software
intended for machines you are confident are using an appropriate version of the old FPE,
or the FPE 400, or the FPA system.

The LFM and SFM instructions allow between 1 and 4 floating point registers to be
transferred from or to memory in a single operation; such a transfer otherwise requires
several LDF or STF operations. The multiple transfers are therefore useful for efficient
stacking on procedure entry/exit and context switching. These new instructions are the
preferred way to preserve exactly register contents within a program.

The values transferred to memory by SFM occupy three words for each register, but the
data format used is not defined, and may vary between floating point systems. The only
legal operation that can be performed on this data is to load it back into floating point
registers using the LFM instruction. The data stored in memory by an SFM instruction
should not be used or modified by any user process.

137

The instruction set

138

The registers transferred by aLFM or SFM instruction are specified by a base floating
point register and the number of registersto be transferred. This meansthat aregister set
transferred has to have adjacent register numbers, unlike the unconstrained set of ARM
registers that can be loaded or saved using LDM and STM. Floating point registers are
transferred in ascending order, register numbers wrapping round from 7 to O: eg
transferring three registers with F6 as the base register resultsin registers F6, F7 then FO
being transferred.

The assembler supports two alternative forms of syntax, intended for general use or just
stack manipulation:

op«condition» Fd, count , addr

op«condition»stacktype Fd, count , [Rn] «! »

op isLFM for load, SFM for store.

condition is one of the usual ARM conditions.

Fd isthe base floating point register, specified as afloating point register
symbol (defined viathe FN directive).

count is an integer from 1 to 4 specifying the number of registersto be
transferred.

addr is[Rn] «, #offset» or[Rn, #offset] «! »

(«! » if present indicates that writeback is to take place).

stacktype isFD or EA, standing for Full Descending or Empty Ascending, the
meanings as for LDM and STM.

The offset (only relevant for the first, general, syntax above) isin words from the

address given by the ARM base register, and is in the range —1020 to +1020. In
pre-indexed mode you must explicitly specify writeback to add the offset to the base
register; but in post-indexed mode the assembler forces writeback for you, as without
write back post-indexing is meaningless.

You should not use R15 as the base register if writeback will take place.

Examples:
SFMNE F6, 4, [RO] ; if NEis true, transfer F6, F7,
; FO and F1 to the address
; contained in RO
LFMFD F4, 2, [R13]! ; load F4 and F5 from FD stack -
LFM F4,2, [R13],#24 ; equivalent to same instruction

; in general syntax

Floating point instructions

Floating point coprocessor register transfer

FLT«condition»prec«round» Fn, Rd
FLT«condition»prec«round» Fn, #value
Fl X«condition»«round» Rd, Fn

WFS«condition» Rd
RFS«condition» Rd
WFC«condition» Rd
RFC«condition» Rd

«round» isthe optional rounding mode: P, M or Z; see below.
Rd isan ARM register symbol.
Fn is afloating point register symbol.

The value may be of the following: 0, 1, 2, 3, 4, 5, 10, 0.5. Note that these values must
be written precisely as shown above, for instance ‘0.5’ is correct but .5’ is not.

FLT Integer to Floating Point Fn:=Rd

FIX Floating point to integer Rd:=Fm

WFS Write Floating Point Status FPSR :=Rd

RFS Read Floating Point Status Rd := FPSR

WFC Write Floating Point Control FPC :=Rd Supervisor Only
RFC Read Floating Point Control Rd :=FPC Supervisor Only

The rounding modes are:

Mode Letter

Nearest (no letter required)
Plusinfinity P

Minusinfinity M

Zero Z

Floating point coprocessor data operations

The formats of these instructions are:

binop«condition»prec«round» Fd, Fn, Fm
binop«condition»prec«round>» Fd, Fn#value
unop«condition»prec«round» Fd, Fm
unop«condition»prec«round» Fd, #value

binop is one of the binary operations listed bel ow
unop is one of the unary operations listed below

139

The instruction set

Fd isthe FPU destination register

Fn isthe FPU source register (binops only)

Fm isthe FPU source register

#val ue isaconstant, as an alternativeto Fm. It must be 0, 1, 2, 3, 4, 5, 10 or
0.5, as above.

The binops are:

ADF Add Fd:=Fn+Fm

MUF Multiply Fd:=FnxFm

SUF Subtract Fd:=Fn—-Fm

RSF Reverse Subtract Fd:=Fm-Fn

DVF Divide Fd:=Fn/Fm

RDF Reverse Divide Fd:=Fm/Fn

POW Power Fd :=Fnto the power ofFm

RPW Reverse Power Fd := Fmto the power ofFn

RMF Remainder Fd := remainder oFn/Fm
(Fd := Fn — integer value offn / Fm) x Fm)

FML Fast Multiply Fd:=FnxFm

FDV Fast Divide Fd:=Fn/Fm

FRD Fast Reverse Divide Fd:=Fm/Fn

POL Polar angle Fd := polar angle oFn, Fm

The unops are:

MVF Move Fd:=Fm

MNF Move Negated Fd:=-+Fm

ABS Absolute value Fd := ABS Fm)

RND Round to integral value Fd :=integer value ofFm

SQT Square root Fd := square root ofm

LOG Logarithm to base 10 Fd :=logFm

LGN Logarithm to base e Fd:=InFm

EXP Exponent Fd := e to the power dfm

SIN Sine Fd := sine offFm

COS Cosine Fd := cosine ofFm

TAN Tangent Fd := tangent ofFm

ASN Arc Sine Fd := arcsine ofFm

ACS Arc Cosine Fd := arccosine oFm

ATN Arc Tangent Fd := arctangent dfm

140

Floating point instructions

URD Unnormalised Round Fd := integer value of Fm (may be abnormal)
NRM Normalise Fd := normalised form of Fm

Note that wherever Fmis mentioned, one of the floating point constants 0, 1, 2, 3, 4, 5,
10, or 0.5 can be used instead.

FML, FRD and FDV are only defined to work with single precision operands. These
‘fast’ instructions are likely to be faster than the equivalent MUF, DVF and RDF
instructions, but this is not necessarily so for any particular implementation.

Rounding is done only at the last stage of a SIN, COS etc — the calculations to compute
the value are done with ‘round to nearest’ using the full working precision.

The URD and NRM operations are only supported by the FPA and the FPE 400.

Floating point coprocessor status transfer
op«condition»prec«round» Fm Fn

op is one of the following:

CMF Compare floating compare Fn with Fm
CNF Compare negated floating compare Fn with -Fm
CMFE Compare floating with exception comp&mrewith Fm
CNFE Compare negated floating with exception compareith -+m

«condition» an ARM condition.

prec aprecision letter

«round» an optional rounding mode: P, M or Z
Fm A floating point register symbol.

Fn A floating point register symbol.

Compares are provided with and without the exception that could arise if the numbers
are unordered (ie one or both of them is not-a-number). To comply with |EEE 754, the
CMF instruction should be used to test for equality (ie when a BEQ or BNE isused
afterwards) or to test for unorderedness (inthe V flag). The CMFE instruction should be
used for all other tests (BGT, BGE, BLT, BLE afterwards).

141

Finding out more...

When the AC hit in the FPSR is clear, the ARM flags N, Z, C, V refer to the following
after compares.

N Lessthan ie Fn lessthan Fm (or -Fm)

z Equal

C Greater than or equal en greater than or equal Eam (or -Fm)
Y Unordered

Note that when two numbers are not equal, N and C are not necessarily opposites. If the
result is unordered they will both be clear.

When the AC bit inthe FPSR is set, the ARM flags N, Z, C, V refer to the following
after compares:

N Less than

z Equal

C Greater than or equal or unordered
V Unordered

Inthis case, N and C are necessarily opposites.

Finding out more...

Further details of the floating point instructions (such as the format of the bitfields
within the instruction) can be found in the Acorn RISC Machine family Data Manual.
VLS| Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ, USA:

ISBN 0-13-781618-9.

142

7 Directives

his chapter describes the directives available in the assembler, which provide a
powerful range of extrafeatures.

Storage reservation and initialisation — DCB, DCW and DCD

DCB Defines one or more bytes: can be replaced by =
DCW Defines one or more half-words (16-bit numbers)
DCD Defines one or more words: can be replaced by &
% Reserves a zeroed area of store

The syntax of thefirst three directivesis:
«label» directive expression-list

DCD can take program-relative and external expressions as well as numeric ones. Inthe
case of DCB, the expression-list can include string expressions, the characters of which
are loaded into consecutive bytesin store. Unlike C-strings, ObjAsm strings do not
contain an implicit trailing NUL, so a C-string has to be fabricated thus:

C string DCB "C string",0
The syntax of %is:
«label» % numeric-expression

This directive will initialise to zero the number of bytes specified by the numeric
expression.

Note that an external expression consists of an external symbol followed optionally by a
constant expression. The external symbol must come first.

143

Floating point store initialisation — DCFS and DCFD

Floating point store initialisation — DCFS and DCFD

DCFS Defines single precision floating point values
DCFD Defines double precision floating point values
The syntax of these directivesis:

«label» directive fp-constant« | fp-constant»

Single precision numbers occupy one word, and double precision numbers occupy two;
both should be word aligned. An fp-constant takes one of the following forms:

«- »integer E«- »integer eg. 1E3,-4E-9
« »«integer» . integer« E«- »integer» eg.1.0,-.1,3. 1E6

E may also be written in lower case.

Describing the layout of store — and #

144

A Setsthe origin of a storage map
Reserves space within a storage map
The syntax of these directivesis:

N expression« , base-register»
«label» # expression

The " directive sets the origin of a storage map at the address specified by the
expression. A storage map location counter, @, is also set to the same address. The
expression must be fully evaluable in the first pass of the assembly, but may be
program-relative. If no ” directive is used, the @ counter is set to zero. @ can be reset
any number of times using to allow many storage maps to be established.

Space within a storage map is described by the # directive. Every time# isused itslabel
(if any) is given the value of the storage location counter @, and @ is then incremented
by the number of bytes reserved.

Ina” directive with abase register, the register becomesimplicit in all symbols defined
by # directives which follow, until cancelled by a subsequent ” directive. These
register-relative symbols can later be quoted in load and store instructions. For example:

N 0,19

4
Lab # 4

LDR r 0, Lab
isequivalent to:

LDR r0, [r9, #4]

Directives

Organisational directives — END, ORG, LTORG and KEEP
END

The assembler stops processing a source file when it reaches the END directive. If
assembly of the file was invoked by a GET directive, the assembler returns and
continues after the GET directive (see Links to other source files — GET/INCLUDEA
page 146). If END isreached in the top-level sourcefile during thefirst passwithout any
errors, the second pass will begin. Failing to end afile with END is an error.

ORG numeri c- expressi on

A program’s origin is determined by the ORG directive, which sets the initial value of
the program location counter. Only one ORG is allowed in an assembly and no ARM
instructions or store initialisation directives may precede it. If there is no ORG, the
program is relocatable and the program counter is initialised to 0.

LTORG

LTORG directs that the current literal pool be assembled immediately following it. A
default LTORG is executed at every END directive which is not part of a nested
assembly, but large programs may need several literal pools, each closer to where their
literals are used to avoid violating LDR’s 4KB offset limit.

KEEP «symbol»

The assembler does not by default describe local symbols (i.e. non-exported symbols;
seeLinks to other object files — IMPORT and EXPQdRpage 145) in its output object

file. However, they can be retained in the object file’s symbol table by using the KEEP
directive. If the directive is used alone all symbols are kept; if only a specific symbol
needs to be kept it can be specified by name.

Links to other object files — IMPORT and EXPORT

| MPORT symbol« [FPREGARGS] »«, WEAK»
EXPORT symbol« [FPREGARGS, DATA, LEAF] »

IMPORT provides the assembler with a name (symbol) which is not defined in this
assembly, but will be resolved at link time to a symbol defined in another, separate
object file. The symbol is treated as a program address; if the WEAK attribute is given
the Linker will not fault an unresolved reference to this symbol, but will zero the
location referring to it. If [FPREGARGS] is present, the symbol defines afunction
which expects floating point arguments passed to it in floating point registers.

145

Links to other source files — GET/INCLUDE

EXPORT declares a symbol for use at link time by other, separate object files.
FPREGARGS signifies that the symbol defines a function which expects floating point
arguments to be passed to it in floating point registers. DATA denotes that the symbol
defines a code-segment datum rather than a function or a procedure entry point, and
LEAF that it isaleaf function which calls no other functions.

Links to other source files — GET/INCLUDE

GET fil enane
| NCLUDE fil enane

GET includes afile within the file being assembled. This file may in turn use GET
directives to include further files. Once assembly of the included file is complete,
assembly continues in the including file at the line following the GET directive.
INCLUDE isasynonym for GET.

Diagnostic generation — ASSERT and !

ASSERT [ogi cal - expressi on
I arithmetic-expression, string-expression

ASSERT supports diagnostic generation. If the logical expression returns { FALSE}, a
diagnostic is generated during the second pass of the assembly. ASSERT can be used
both inside and outside macros.

lisrelated to ASSERT but isinspected on both passes of the assembly, providing amore
flexible means for creating custom error messages. The arithmetic expression is
evaluated; if it equals zero, no action istaken during pass one, but the string is printed as
awarning during pass two; if the expression does not equal zero, the string is printed as
adiagnostic and the assembly halts after pass one.

Dynamic listing options — OPT

146

The OPT directive is used to set listing options from within the source code, providing
that listing is turned on. The default setting is to produce anormal listing including the
declaration of variables, macro expansions, call-conditioned directives and MEND

Directives

directives, but without producing a pass one listing. These settings can be altered by
adding the appropriate values from the list bel ow, and using them with the OPT directive

asfollows:

OPT n Effect

1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw: issues an immediate form feed and starts a new page.
8 Resets the line number counter to zero.

16 Turnson the listing of SET, GBL and LCL directives.
32 Turns off thelisting of SET, GBL and LCL directives.
64 Turns on the listing of macro expansions.

128 Turns off the listing of macro expansions.

256 Turns on the listing of macro calls.

512 Turns off the listing of macro calls.

1024 Turns on the pass one listing.

2048 Turns off the pass one listing.

4096 Turns on the listing of conditional directives.

8192 Turns off the listing of conditional directives.

16384 Turns on the listing of MEND directives.
32768 Turns off the listing of MEND directives.

Titles — TTL and SUBT

Titles can be specified within the code using the TTL (title) and SUBT (subtitle)
directives. Each is used on all pages until anew title or subtitleis called. If more than
one appears on apage, only thelatest will be used: the directives alone create blank lines
at the top of the page. The syntax is:

TTL title
SUBT subtitle

Miscellaneous directives — ALIGN, NOFP, RLIST and ENTRY

ALI GN «power-of-two« , offset-expression»»

After store-loading directives have been used, the program counter (PC) will not
necessarily point to aword boundary. If an instruction mnemonic is then encountered,
the assembler will insert up to three bytes of zerosto achieve alignment. However, an
intervening label may not then address the following instruction. If thislabel isrequired,
ALIGN should be used. On its own, ALIGN sets the instruction location to the next

147

Miscellaneous directives — ALIGN, NOFP, RLIST and ENTRY

148

word boundary. The optional power-of-two parameter — which is given in bytes — can be
used to align with a coarser byte boundary, andftiet expression parameter to define
a byte offset from that boundary.

NOFP

In some circumstances there will be no support in either target hardware or software for
floating point instructions. In these cases the NOFP directive can be used to ensure that
no floating point instructions or directives are allowed in the code.

RLI ST
The syntax of this directive is:
| abel RLIST |ist-of-registers

The RLIST (register list) directive can be used to give a name to a set of registers to be
transferred by LDM or STMList-of-registersis a list of register names or ranges
enclosed if{ } (seeBlock data transfer (LDM, STM) on page 91).

ENTRY

The ENTRY directive declares its offset in its containing AREA to be the unique entry
point to any program containing this AREA.

8 Symbolic capabillities

he assembler also has arange of symbolic capabilities, with which you can set up
symbols as constants or as variables. These are described bel ow.

Setting constants

The EQU and * directives are used to give a symbolic name to a fixed or
program-relative value. The syntax is:

| abel EQU expression
| abel * expression

RN defines register names. Registers can only be referred to by name. The names
RO-R15,r 0-r 15, PC, pc, LR | r, SP and sp are predefined. Names may also be
defined for the registers used by the ARM Procedure Call Standard; see Controlling
syntax on page 10.

FN definesthe names of floating point registers. The names FO-F7 and f O-f 7 are built
in. The syntax is:

I abel RN nuneric-expression
| abel FN nuneric-expression

CP gives aname to a coprocessor number, which must be within the range 0 to 15. The
names p0-p15 are pre-defined.

CN names a coprocessor register number; c0-c 15 are pre-defined. The syntax is:

| abel CP nuneric-expression
| abel CN nuneric-expression

149

Local and global variables — GBL, LCL and SET

Local and global variables — GBL, LCL and SET

150

While most symbols have fixed values determined during assembly, variables have
values which may change as assembly proceeds. The assembler supports both global
and local variables. The scope of global variables extends across the entire source file
while that of local variablesis restricted to a particular instantiation of a macro (see the
chapter Macros on page 161). Variables must be declared before use with one of these
directives.

GBLA Declares aglobal arithmetic variable. Values of arithmetic variables
are 32-bit unsigned integers.

GBLL Declares aglobal logical variable

GBLS Declares aglobal string variable

LCLA Declares and initialises alocal arithmetic variable (initial state zero)

LCLL Declares and initialises alocal logical variable (initia state false)

LCLS Declares and initialises alocal string variable (initial state null string)

The syntax of these directivesis:
directive vari abl e- nane

The value of avariable can be altered using the relevant one of the following three
directives:

SETA Sets the value of an arithmetic variable
SETL Setsthe value of alogical variable
SETS Setsthe value of astring variable

The syntax of these directivesis:
vari abl e-nane directive expression
where expression evaluates to the value being assigned to the variable named.

(You can also declare and set the value of global variables at assembly time; see
Predefining a variable on page 12.)

Symbolic capabilities

Variable substitution — $

Once a variable has been declared its name cannot be used for any other purpose, and

any attempt to do so will result in an error. However, if the $ character is prefixed to the
name, the variable’s value will be substituted before the assembler checks the line’s
syntax. Logical and arithmetic variables are replaced by the result of performing a

: STR operation on them (se&énary operators on page 153); string variables are
replaced by their value.

Built-in variables
There are seven built-in variables. They are:
{PC} or. Current value of the program location counter.

{VAR} or@ Current value of the storage-area location counter.

{ TRUE} Logical constant true.
{ FALSE} Logical constant false.
{ OPT} Value of the currently set listing option. The OPT directive can be

used to save the current listing option, force a change in it or restore its
original value.

{ CONFI G Has the valu@2 if the assembler is in 32-bit program counter mode,
and the valu@é if it is in 26-bit mode.

{ ENDI AN} Has the valuebi g" if the assembler is in big-endian mode, and the
value littl e"ifitisin little-endian mode.

151

152

9 Expressions and operators

Xpressions are combinations of simple values, unary and binary operators, and
brackets. Thereisastrict order of precedence in their evaluation: expressionsin
brackets are evaluated first, then operators are applied in precedence order. Adjacent
unary operators evaluate from right to left; binary operators of equal precedence are
evaluated from left to right.

The assembler includes an extensive set of operators for use in expressions, many of
which resemble their counterparts in high-level languages.

Unary operators

Unary operators have the highest precedence (bind most tightly) so are evaluated first. A
unary operator precedes its operand, and adjacent operators are evaluated from right to

left.

Operator Usage Explanation

? ?A Number of bytes generated by line defining label
A

BASE : BASE: A If AisaPC-relative or register-relative

| NDEX : 1 NDEX: A expression then BASE returns the number of its
register component, and | NDEX the offset from
that base register.
BASE and | NDEX are most likely to be of use
within macros.

LEN :LEN: A Length of string A

CHR :CHR A ASCII string of A

STR :STR A Hexadecimal string of A. STRreturns an
eight-digit hexadecimal string correspondingtoa
numeric expression, or the string T or F if used
on alogical expression.

+ +A Unary plus

- -A Unary negate.
+and - can act on numeric, program-relative
and string expressions.

153

Binary operators

Operator Usage Explanation

NOT :NOT: A Bitwise complement of A

LNOT : LNOT: A Logical complement of A

DEF : DEF: A { TRUE} if Alisdefined, otherwise { FALSE}

Binary operators

Binary operators are written between the pair of sub-expressions on which they operate.
Operators of equal precedence are evaluated in left to right order. The binary operators
are presented below in groups of equal precedence, in decreasing precedence order.

Multiplicative operators
These are the binary operators which bind most tightly and have the highest precedence:

Operator Usage Explanation
* A*B Multiply

/ A B Divide
MCoD A: MOD: B A modulo B

These operators act only on numeric expressions.

String manipulation operators

Operator Usage Explanation

LEFT A: LEFT: B The leftmost B characters of A

Rl GHT A:RIGHT: B Therightmost B characters of A
CcC A:CC. B B concatenated on to the end of A

In the two slicing operators LEFT and RI GHT, A must be a string and B must be a
numeric expression.

Shift operators

Operator Usage Explanation

ROL A:ROL: B Rotate A |eft B bits
ROR A:ROR B Rotate A right B bits
SHL A: SHL: B Shift A left B bits
SHR A: SHR B Shift Aright B bits

The shift operators act on numeric expressions, shifting or rotating the first operand by
the amount specified by the second. Note that SHRisalogical shift and does not
propagate the sign bit.

154

Expressions and operators

Addition and logical operators

Operator Usage Explanation

AND A: AND: B Bitwise AND of Aand B

R A-OR B Bitwise OR of Aand B

EOR A EOR B Bitwise Exclusive OR of A and B
+ A+B AddAtoB

- A-B Subtract B from A

The bitwise operators act on numeric expressions. The operation is performed
independently on each bit of the operands to produce the result.

Relational operators

Operator Usage Explanation

= A=B Aegqual to B

> A>B Agreater than B

>= A>=B Agreater than or equal to B
< A<B Alessthan B

<= A<=B Alessthan or equal to B

/= A/=B A not equal to B

<> A<>B Anot equal to B

The relational operators act upon two operands of the same type to produce alogical
value. Allowable types of operand are numeric, program-rel ative, register-relative, and
strings. Strings are sorted using ASCII ordering. String Awill be lessthan string Bif itis
either aleading substring of string B, or if the left-most character of A inwhich thetwo
strings differ isless than the corresponding character in string B. Note that arithmetic
values are unsigned, so the value of

0>-1is{FALSE}.

Boolean operators
These are the weakest binding operators with the lowest precedence.

Operator Usage Explanation

LAND A:LAND:B Logical AND of Aand B

LOR A:LOR:B Logical OR of Aand B

LEOR A:LEOR:B Logical Exclusive OR of Aand B

The Boolean operators perform the standard logical operations on their operands, which
should evaluateto { TRUE} or { FALSE} .

155

156

10 Conditional and repetitive
assembly

his chapter describes the features available within the Assembler for constructing
conditional assembly statements and conditional looping statements.

Conditional assembly

The[and] directives mark the start and finish of sections of the sourcefile which areto

be assembled only if certain conditions are true. The basic construction is IF... THEN...
ENDIF; however, ELSE is also supported, giving the full IF... THEN... ELSE...

ENDIF conditional assembly.

The start of the section is known as the IF directive:

[/ogical _expression or | F | ogi cal _expression
This is the ELSE directive:

| or ELSE

and this is the ENDIF directive:

] or ENDI F

A block which is being conditionally assembled can contain sejvetal] directives;
that is, conditional assembly can be nested.

157

Conditional assembly

Simple use of the IF and ENDIF directives
You can use the IF and ENDIF directives (without the EL SE directive) like this:

[Iogical _expression

The code will only be assembled if thelogical expression istrue; it will be skipped if the
logical expressionisfalse.

Simple use of the IF, ELSE and ENDIF directives
Alternatively you can use al three directives, thus:

[logical _expression

If the logical expression istrue, the first piece of code will be assembled and the second
skipped. If the expression isfalse, the first piece of code will be skipped and the second
assembled.

Conditional assembly and the NoTerse option

Lines conditionally skipped by these directives are not listed unless ObjAsm is switched
from its default terse mode. For desktop assembly, you must choose NoTer se from
ObjAsm’s menu (sekistings on page 14); for command line usage, you must specify
the- NoTer se command line option (see page 22).

158

Conditional and repetitive assembly

An example

An example of anotional data storage routine is given below. Thisroutine can either use
adisc or atape data storage system. To assemble the code for tape operation, the
programmer prepares the system by altering just one line of code, the label SW TCH.

DI SC * 0
TAPE * 1
SWTCH * DI SC
...code. ..
[SW TCH=TAPE

...tape interface code. ..

]
[SW TCH=DI SC
...disc interface code.. .

]

...code continues. ..
or aternatively:

DI SC * 0
TAPE * 1
SWTCH * DI SC
...code. ..
[SW TCH=TAPE
...tape interface code. ..

...disc interface code.. .

]

...code continues...

The IF construction can be used inside macro expansions as easily asit isused in the
main program.

159

Repetitive assembly

Repetitive assembly

160

It is often useful for program segments and macros to produce tables. To do this, they
must be able to have a conditional looping statement. The Assembler has the WHILE...
WEND construction. This produces an assembly time (not runtime) loop.

The syntax is:

VWHI LE [/ ogi cal _expression
to start the repetitive block, and:
VEND

to end it.

For example:

GBLA counter
counter SETA 100

WHI LE counter >0

DCD &count er
counter SETA counter-1
VEND

produces the same result as the following (but is shorter and less prone to typing errors):

DCD 100
DCD 99
DCD 98
DCD 97
DCD 2
DCD 1

Since the test for the WHILE condition is made at the top of the loop, it is possible that
the source within the loop will not generate any code at all.

Listing of conditionally skipped lines is as for conditional assembly.

11

Macros

acros give you ameans of placing asingleinstruction in your source which will be
expanded at assembly time to several assembler instructions and directives, just
as if you'd written those instructions and directives within the source at that point.

As an example, we will define a TestAndBranch instruction. This would normally take
two ARM instructions. So we tell the Assembler, by means of a macro definition, that
whenever it meets the TestAndBranch instruction, it is to insert the code we have given
it in the macro definition. This is of course a convenience; we could just as easily write
the relevant instructions out each time, but instead we let the Assembler do it for us.

The Assembler determines the destination of the branch with a macro parameter. This is
a piece of information specified each time the macro is coded; the macro definition
specifies how it is used. In the TestAndBranch example, we might also make the register
to be tested a parameter, and even the condition to be tested for. Thus our macro
definition might be:

MACRO
$l abel Test AndBranch $dest, $reg, $cc ; This is called the nmacro prototype
; statenent
$l abel CWP $reg, #0 ; These two lines are the ones that
B$cc $dest ; Will be substituted in the source.
MEND ; This says the macro definition is
; finished

A use of the macro might be:

Test Test AndBr anch NonZer o, RO, NE

NonZer o
The result, as far as the Assembler is concerned, is:

Test CWP RO, #0
BNE NonZer o

NonZer o

161

Syntax

Syntax

162

The fact that amacro is about to be defined is given by the directive MACROin the
instruction field:

MACRO

Thisisimmediately followed by a macro prototype statement which takes the form:
«$label» macroname «$parameter»« , $parameter»« , $parameter»
«$label» if present, it istreated as an additional parameter.

«$parameter» Parameters are passed to the macro as strings and substituted before
syntax analysis. Any number of them may be given.

The purpose of the macro prototype statement is to tell the Assembler the name of the
macro being defined. The name of the macro isfound in the opcode field of the macro
prototype statement.

The macro prototype statement also tells the Assembler the names of the parameters, if
any, of the macro. Parameters may occur in two placesin the macro prototype statement.
A single optional parameter may occur in the label field, shown as$/abel above. This
isnormally used if the macro expansion isto contain a program label, and is merely an

aid to clarity, as can be seen in the TestAndBranch example. Any number of parameters,
separated by commas, may occur in the operand field. All parameter names begin with

the character $, to distinguish them from ordinary program labels.

The macro prototype statement can also tell the Assembler the default values of any of
the parameters. Thisis done by following the parameter name by an equals sign, and
then giving the default value. If the default value isto begin or end with a space then it
should be placed within quotes. For example:

RO
" a string "

$reg
$string

It is not possible to give a default value for the parameter in the label field.

For example:

MACRO
$l abel MACRONAME $num $string, $etc

$l abel .../ots of..

$num

$string

"the price is $etc"
0

% o u

ND

Local variables

Macros

MACRONANME is the name of this particular macro and $num $st ri ng and $et ¢
areits parameters. Other macros may have many more parameters, or even none at
al.

The body of the macro follows after MACRONAME, with $I abel being optional
even if it was given in the macro prototype statement.

$et c will be substituted into the string "t he price is " whenthemacrois

used.
I The macro ends with MEND.
The macro is called by using its name and any missing parameters are indicated by

commas, or may be omitted entirely if no more parameters are to follow. Thus,
MACRONAME may be caled in various ways:

MACRONAVE 9,"disc",7
or:

MACRONAVE 9

or:

MACRONAVE , "disc",

Local variables are similar to global variables, but may only be referenced within the
macro expansion in which they were defined. They must be declared before they are
used. The three types of local variable are arithmetic, logical and string. These are
declared by:

Directive Local variabletype Initial state
LCLA Arithmetic zero

LCLL Logicd FALSE
LCLS String null string.

New values for local variables are assigned in precisely the same way as new variables
for global variables: that is, using the directives SETA, SETL and SETS.

Syntax: vari abl e_name SETx expression

Directive Local variabletype
SETA Arithmetic

SETL Logicd

SETS String

163

MEXIT directive

MEXIT directive

Default values

Normally, macro expansion terminates on encountering the MEND directive, at which
point there must be no unclosed WHI LE/MEND loops or pieces of conditional assembly.
Early termination of amacro expansion can be forced by means of the MEXI T directive,
and this may occur within WHI LE/VEND loops and conditional assembly.

Macro parameters can be given default values at macro definition time, using the syntax:
$par anet er=def aul t _val ue

In the example of the macro MACRONANME already used:

MACRO
$l abel MACRONAME $num $string, $etc

$l abel ...lots of..

$num

$string

"the price is $etc"
0

% o u

ND

you could instead write $num=10 in the macro prototype statement. Then, when calling
the macro, a vertical bar character will cause the default valug0 to be used rather
than the valu&num For example:

MACRONAME |, " di sc”, 7
will be equivalent to:
MACRONAME 10, "di sc", 7

Note that this default is not used when the macro argument is omitted — the value is then
empty.

Macro substitution method

164

Each line of a macro is scanned so it can be built up in stages before being passed to the
syntax analyser. The first stage is to substitute macro parameters throughout the macro
and then to consider the variables. If string variables, logical variables and arithmetic
variables are prefixed by tifesymbol, they are replaced by a string equivalent. Normal
syntax checking is performed upon the line after these substitutions have been
performed.

Macros

An important exception to these values is that vertical bar charagdtgrprévent

substitution from taking place in some circumstances. To be specific, if a line contains
vertical bars, substitution will be turned off after this first vertical bar, on again after the
second one, off again after the third, and so on. This allows the use of dollar characters
in symbols and labels (see the secgmbolson page 51 for details).

In certain circumstances, it may be necessary to prefix a macro parameter or variable to
a label. In order to ensure that the Assembler can recognise the macro parameter or
variable, it can be terminated by a dotThe dot will be removed during substitution.

For example:

$T33 MACRONAVE

If the dot had been omitted, the Assembler would not have relat&d 88part of the
label to the macro statement and would have acc&it@d@L25 as a label in its own
right, which was not the intention.

Nesting macros

The body of a macro can contain a call to another macro; in other words, the expansion
of one macro can contain references to macros. Macro invocation may be nested up to a
depth of 255.

A division macro
As a final example, the following macro does an unsigned integer division:

; A macro to do unsigned integer division. It takes four parameters, each of
; which should be a register name:

; $Div: The macro places the quotient of the division in this register -

; ie $Div : = $Top DIV $Bot.

; $Div may be omitted if only the renminder is wanted.

; $Top: The macro expects the dividend in this register on entry and pl aces

; the remainder in it on exit - ie $Top : = $Top MID $Bot .

; $Bot: The macro expects the divisor in this register onentry. It does not

; alter this register.

; $Tenp: The nacro uses this register to hold internmediate results. Its initial
; value is ignored and its final value is not useful.

; $Top, $Bot, $Tenp and (if present) $Div nust all be distinct registers.

; The macro does not check for division by zero; if there is a risk of this
; happening, it should be checked for outside the macro.

165

A division macro

MACRO

$Label DivMod $Div, $Top, $Bot, $Tenp
ASSERT $Top <> $Bot ; Produce an error if the
ASSERT $Top <> $Tenp ; registers supplied are
ASSERT $Bot <> $Tenp ; not all different.

["$Div" /= ""
ASSERT $Div <> $Top
ASSERT $Div <> $Bot
ASSERT $Div <> $Tenp

$Label MOV $Tenp, $Bot ; Put the divisor in $Tenp
CcwP $Tenp, $Top, LSR #1 ; Then double it until
90 MOVLS $Tenp, $Tenp, LSL #1 ;2 * $Tenp > $Top.
Cc\WP $Tenp, $Top, LSR #1
BLS %90
["$Div" [=""
MOV $Di v, #0 ; Initialise the quotient.
]
91 CcwWP $Top, $Tenp ; Can we subtract $Tenp?
SUBCS $Top, $Top, $Tenp ; If we can, do so.
["$Div /= ""
ADC $Div, $Di v, $D v ; Double $Div & add new bit
]
MOV $Tenp, $Tenp, LSR #1 ; Halve $Tenp,
CwWP $Tenp, $Bot ; and loop until we've gone
BHS %b91 ; past the original divisor.
MEND
The statement:

Divide DivMod RO,R5,R4,R2

would be expanded to:

ASSERT R5<>R4 : Produce an error if the
ASSERT R5<>R2 ; registers supplied are
ASSERT R4 <>R2 : not all different

ASSERT RO <>R5
ASSERT RO <>R4
ASSERT RO <>R2

Divide MOV R2,R4 ; Put the divisor in R2.
CMP R2,R5,LSR #1 : Then double it until

90 MOVLS R2,R2,LSL #1 1 2*R2 > R5.
CMP R2,R5,LSR #1
BLS %b90
MOV RO,#0 ; Initialise the quotient.

91 CMP R5,R2 ; Can we subtract R2?
SUBCS R5,R5,R2 ; If we can, do so.
ADC RO,R0O,RO ; Double RO & add new bit.
MOV R2,R2,LSR #1 ; Halve R2,
CMP R2,R4 ; and loop until we've gone
BHS %b91 ; past the original divisor.

166

Macros

Similarly, the statement:
D vMod |, R6, R7, R8

would be expanded to:

ASSERT R6 <> R7 : Produce an error if the
ASSERT R6 <> R8 ; registers supplied are
ASSERT R7 <> R8 ; not all different.
MOV R8, R7 ; Put the divisor in R8.
cwP R8, R6, LSR #1 ; Then double it until
90 MOVLS R8, R8, LSL #1 ;2 * R8 > R6.
CWP R8, R6, LSR #1
BLS %90
91 CwWP R6, R8 ;. Can we subtract R8?
SUBCS R6, R6, R8 ; If we can, do so.
MoV R8, R8, LSR #1 ; Halve R8,
cwP R8, R7 ; and loop until we've gone
BHS %b91 ; past the original divisor.

Note:

I Conditional assembly is used to reduce the size of the assembled code (and increase
its speed) in the case where only the remainder is wanted.

Local labels are used to avoid multiply defined labelsif Di vMod is used more than
once in the assembler source.

The letter b’ is used in the local label references (indicating that the Assembler
should search backwards for the corresponding local labels) to ensure that the
correct local labels are found.

167

168

Part 3 — Developing software
for RISC OS

169

170

12 Exception handling

his chapter describesthe processor configuration and modes used by RISC OSwhen

running on 32 bit architecture ARMs (i.e. ARM6 series and | ater), and the ways in
which this affects exception handling. If you are writing any exception handler that you
wish to run on such a processor, you must read both this chapter and the chapter The
ARM CPU on page 29, especially the section Exceptions.

RISC OS processor configuration and modes

Early in its startup code, RISC OS writes to the ARM'’s control register to change it into
the 32 bit program and data space configuration, where it remains. You must not alter the
processor’s configuration yourself when writing code for RISC OS.

Although RISC OS runs under a 32 bit configuration, it remains in 26 bit modes for
normal operation, providing a high degree of backward compatibility with code written
to run on earlier 26 bit processors.

However, because the processor is in a 32 bit configuration, all exceptions (including
Undefined Instruction and Software Interrupt) force the processor to a privileged 32 bit
mode appropriate to the exception. There are therefore some differences in exception
handling between 26 and 32 bit architecture ARM chips, although RISC OS provides a
considerable degree of backward compatibility by faking 26 bit behaviour on 32 bit
architecture chips in most circumstances. For full details, see the next section.

The pre-veneers

To ensure easy backward compatibility, 32 bit aware versions of RISC OS install a
pre-veneer on all hardware vectors apart from FIQ (see the s@¢fidmg to the FIQ

vector on page 172) and address exception (which is never generated by a 32 bit
configured ARM). Each pre-veneer first sets up R14 to contain a combined PC and PSR
that will return the processor to the 26 bit mode it was in when the exception arose. It
then places the processor in the privileged 26 bit mode used by the earlier 26 bit chips
for that exception. It thus effectively fakes the earlier chips’ behaviour. The pre-veneer

is called before any exception handlers that are installed with software interfaces such as
OS_ChangeEnvironment, so you can usually use such exception handlers unchanged on
all versions of RISC OS (hardware dependencies excepted).

171

Claiming the hardware vectors

Entering 32 bit modes

One consequence of thisisthat you may not enter a 32 bit mode with |RQs enabled.
Were you to do so, and an IRQ were to occur, the IRQ pre-veneer would be entered; then
the IRQ handler would return you to a 26 bit mode, rather than the 32 bit mode you were
in at the time of the IRQ.

Claiming the hardware vectors

Under earlier versions of RISC OS, you could also claim the hardware vectors directly,
by overwriting the existing instruction on the vector, and replacing it afterwards. It was
your responsibility to do any housekeeping, in particular checking for subsequent
claimants before restoring the original instruction.

Under 32 bit aware versions of RISC OS, if you attempt to write to any hardware vector
other than FIQ a data abort is generated. You must instead call the new SWI
OS_ClaimProcessorVector (page 5-46 of the RISC OS 3 Programmer’s Reference
Manual), passing it the address of your exception handler. The handler isinstalled on the
vector, and is called directly, before the pre-veneers. Such handlers are therefore entered
ina32 bit mode.

For handlersinstalled directly on the vector to work acrossall versions of RISC OS, you
must therefore change the method of claiming and releasing the vector depending on the
version of RISC OS;

I Onversions up to RISC OS 3.1, you must write directly to the vector, doing any
appropriate housekeeping yourself

I On later versions you must call OS_ClaimProcessorVector.

Your handler must also cope with running in both 26 bit and 32 bit modes.

Writing to the FIQ vector

172

On a 32 hit architecture ARM, the FIQ vector is entered in FIQ mode (i.e. the 32 bit
form of the mode). There are no pre-veneers to simulate 26 bit behaviour. To install a
FIQ handler, you must write directly to the FIQ vector, just as always.

The sample code below is the recommended way to write to the FIQ vector on both 26
and 32 bit configured processors — you can use the same code on all versions of

RISC OS. Obviously the handler you install must cope with running in both 26 bit and
32 bit FIQ modes. In practice this is unlikely to be a problem, and most existing handlers

will run unchanged once installed.

In the code, comments that are prefixed3..*’ apply to a 32 bit configured processor,

and comments that are prefixed B! ' apply to a 26 bit configured processor.

; We assune that at this point,

; 26: Does not alter

processor rmde

Ra, Ra, #2_11000000 ;

Ra, Ra, #2_10000 ;

26:
26:
26:
26:
26:
26:

Exception handling

you are already in a privileged 26 bit node.

Reads as foll ows:

Encodes a NOP (TST Ra, RO)
Pushes entry Ra onto stack
Corrupts Ra

Encodes a NOP (TEQ R9, Ra)
Corrupts Ra

Encodes a NOP (TEQ R9, Rb)

_32 node with IR and FI Qs off.

Mist switch interrupts off before switching node as there can be
an interrupt after the IVSRlnstructlon but before the next one.

Ra, Ra, #2_11000000 ;

Ra, Ra, #2_10000 ;

; NOP

; Push Ra

;. ORR

;. NOP

;. ORR

;. NOP

; 32: Switch to

. 32:

;o 32:

MRS Ra, CPSR all
Push Ra

ORR

MSR CPSR all, Ra
ORR

MSR CPSR all, Ra
: Now do a NOP,

NOP

32:
32:
32:
32:
32:
32:

Read privileged 26 bit node,
and push it onto the stack
Set IRQ and FIQ disable bits
Di sable IRQs and FI s

Set M4 bit (for 32 bit node)
Change to 32 bit node

to let things settle down:

e.g. MOV RO, RO

; Nowin a suitable node to wite FIQ handl er code to FIQ vector

; (&1C-&FC incl.), whatever the processor configuration.

; Code written should be able to run in both fig_32 and fig_26 nodes,
; and should end with a SUBS PC, R14,#4 to return nornally.

; For exanple we might wite the handler code like this:

; Assume Rb already points to location fromwhich to copy the handler.

MoV

40 LDR
TEQS
STRNE
BNE

; The above may not be optinmal,

LR, #FI Qvect or ;

Ra, [Ro],

Ra, #0

Ra, [LR],

%B8T40

#4

#4

; Having witten FIQ vector,

; privileged 26 bit node.

; 26: Does not alter

; PULL Ra

;. NOP

PULL Ra

MBR CPSR al |,

Ra

;. Now back where we started,

; configuration.)

Get address of FIQ vector

Get opcode.
Al done?
No, so copy to FIQ area. ..

.and repeat for next opcode.

and is for illustration only.

now need to restore the original

processor rmde

26:
26:

32:
32:

Reads as fol | ows:
Pull entry Ra from stack
Encodes a NOP (TST Ra, RO)

Pul | saved CPSR, and
Restore privileged 26 bit node

except Ra and Rb should be treated as corrupted.
; (We must assume neither is preserved, because we don’t know the processor

173

174

13

Writing relocatable modules Iin
assembler

elocatable modules are the basic building blocks of RISC OS and the means by
which RISC OS can be extended by a user.

The relocatable modul e system provides mechanisms suitable for

I providing device drivers

I extending the set of RISC OS * commands

I providing shared services to applications (eg the shared C library)

I implementing ‘terminate and stay resident’ (TSR) applications.

All these projects require code either to be more persistent than standard RISC OS
applications or to be used by more than one application, hence resident in the address
space of more than one application. If your program does not have these requirements it
is not recommended to put it in modules, as relocatable modules are more persistent
consumers of system resources than applications, and are also more difficult to debug.

This chapter is not intended to provide a complete set of the technical details you need to
know to construct any relocatable module. For more information on such details, see the
RISC OS 3 Programmer’s Reference Mantidk points covered here are intended to

provide help for constructing rel ocatable modules specifically in assembly language.

For more detail s of memory management in relocatable modules, you should again see
the RISC OS 3 Programmer’s Reference Manual

Unlike the construction of relocatable modulesin high level languages, no tools are
provided to generate substantial standard portions of code. This means that you have to
construct the module header table, workspace routines, etc. yourself.

Note that some of the rel ocatable module entry points are called in SV C mode. Such
routines may use SWIsimplemented by other parts of RISC OS, but unlike being in user
mode, SWIs corrupt R14, so this must be stored away. Floating point instructions should
not be used from SV C mode.

175

Assembler directives

Assembler directives

ObjAsm can be used to assemble amodule from a set of source files, alink step being
required to join the output object files to form the usable module. The separation of
routines into separately assembled files has several advantages.

It can be a good ideato construct a module with the module header and the small
routines/data associated with it in one sourcefile, to be linked with the code forming the
body of the module.

Such amodule header file must be linked so that it is placed first in the module binary.
To do thisit should contain an AREA directive at its head such as:

AREA |!!! Modul e$$Header |, CODE, READONLY

Areas are sorted by type and name; a name beginning!withplaced before an
alphabetic name, so the above can be used to ensure first placing.

The module header source needs to comt®PORT directives making available any
symbols referenced in the module body. In addition, the initialisation routine should call
__Rel ocCode, a routine added by the linker which relocates any absolute references
to symbols when the module is initialised. If the module header source contains the
initialisation routine, it must use theVPORT directive to make Rel ocCode

available.

The module header must be preceded byEERY directive:
ENTRY

Modul e_BaseAddr

DCD RM St art - Mbdul e_BaseAddr
DCD RM_I ni t - Modul e_BaseAddr
DCD RM Di e - Mbdul e_BaseAddr
DCD RM Ser vi ce - Modul e_BaseAddr
DCD RMTitle - Mbdul e_BaseAddr
DCD RM Hel pStr - Mbdul e_BaseAddr
DCD RM HC Tabl e - Mbdul e_BaseAddr

Example

This product is supplied with the source for an example relocatable module that provides
an extra soft screen mode: Mode 63. This has to be done via service call handling, and to
be useful must be persistent, so providing a typical use of relocatable modules.

There are two source files heldAsor nC_C++. Exanpl es. Asnivbdul e. s:

I TheMbdeExHdr file produces the module header, and may be useful for you to
copy and edit to form headers for your own modules.

176

Writing relocatable modules in assembler

I The other file, ModeExBody, is the source for the main module body.

To build the module, use ObjAsm to assembl e the source. Then link the resultant object
files using Link, remembering first to set the M odule option on its Setup dialogue box.

The module is specific to VIDC1 and VIDC1a, and so will not work on Acorn
computers that are fitted with later versions of VIDC — such as the Risc PC.

177

178

14

Examples

Interworking assembler with C

nterworking assembly language and C — writing programs with both assembly
language and C parts — requires using both ObjAsm and C/C++.

Interworking assembly language and C allows you to construct top quality RISC OS
applications. Using this technique you can take advantage of many of the strong points
of both languages. Writing most of the bulk of your application in C allows you to take
advantage of the portability of C, the maintainability of a high level language, and the
power of the C libraries and language. Writing critical portions of code in assembler
allows you to take advantage of all the speed of the Archimedes and all the features of
the machine (eg the complete floating point instruction set).

The key to interworking C and assembler is writing assembly language procedures that
obey the ARM Procedure Call Standard (APCS). This is a contract between two
procedures, one calling the other. The called procedure needs to know which ARM and
floating point registers it can freely change without restoring them before returning, and
the caller needs to know which registers it can rely on not being corrupted over a
procedure call. Additionally both procedures need to know which registers contain input
arguments and return arguments, and the arrangement of the stack has to follow a pattern
that debuggers, etc. can understand. For the specification of the APCS, see the appendix
ARM procedure call standard on page 249 of the accompanyibgsktop Tools guide.

The following examples are provided to demonstrate how to write programs combining
assembly language and C.

PrintLib

The directoryAcor nC_C++. Exanpl es. Pri nt Li b. s contains three source files
from which you can build a librarfr i nt St r, Pri nt Hex andPr i nt Dbl e. These
are the assembly language sources for three screen printing roptines:_st r i ng,
print _hex andpri nt _doubl e. These respectively print null terminated strings,
integers in hexadecimal, and double precision floating point numbers in scientific
format.

179

Examples

180

Each routine is written to obey the APCS, so it can be called from assembler, C, or any
other high level language obeying the APCS. The sources for PrintLib illustrate several
aspects of the APCS, such as the distinction between leaf and non-leaf procedures, and
how floating point arguments are passed into a procedure.

Compiling the CTestPrLib example

To show you that you can call the routines in PrintLib from C, we’ve supplied a small C
program inAcor nC_C++. Exanpl es. Pri nt Li b. ¢c. CTest Pr Li b. To build this
example, you must:

1 Build the PrintLib library; you'll find instructions for this in the secti@ssembler
example on page 134 of thBesktop Tools guide.

2 Start CC if you've not already got it loaded.

Drag theCTest Pr Li b file to the CC icon, which will display itSetup dialogue
box withCTest Pr Li b already entered as the source to compile.

4 Add the full pathname of the PrintLib library to the list.abraries on the Setup
menu.

5 Click on Run to compile and link the program.
6 Save the program to disc.
To run the program, double click on its icon in the directory display to which you saved

it. A standard RISC OS command line output window appears containing text printed by
the assembly language library routines as a result of arguments passed from C:

I Fuan SC51C WHardy § Aconvls C4 & Exgmpiss. Prinil b OT a5t Prib

o

SERGE L

PFress EENLE or olick mewyse Eo sond i

Interworking assembler with C

Compiling and linking CTestPrLib in separ ate stages

If you prefer, you can instead use the Compile only option of CC to compile
CTest Pr Li b to an object file.

You can then use Link to link this object file with the libraries it uses. Aswell asthe
PrintLib library, it also usesthe C library, so you must link threefiles: the object code for
CTest Pr Li b, thelibrary built from the PrintLib source, and the C library stubsheldin
AcornC C++. Li braries.clib.o.stubs.

(Inthe above section Compiling the CTestPrLib example, the C library stubswere linked
in because they were already in the Setup menu’s default Lisbicdries.)

CStatics

The directoryAcor nC_C++. Exanpl es. CSt at i cs gives an example of accessing
C static variables from both assembler and C source code. The example builds to form a
relocatable module providing a single * Commanh@St at i cs.

The files in the directory are as follows:

c. Cl ni t isthe C source code. It declares two varialdes:ern i nt var 1,

which is provided by and initialised to 0s$n Asni ni t (see below), and

i nt var 2, which itinitialises as 0. It prints the values of the two variables. It then
calls the routindsm Change_Var s provided bys. Asmi ni t (see below),

which changes the values of the two variables. Finally it prints the new values.

cmmhg. Header is the CMHG description file for the moduledr . CVar s is an
assembler source file that contains a series of macros useddbyri ni t . You

will find these useful if you too ever need to share static data between assembler and
C.

MakeFi | e is the make file for the CStatics module.

o is an empty directory used to hold the object files created when making the
CStatics module.

s. Asnl ni t is the assembler source code. It initialises the variable varl to 0 and
exports it; it also imports the variable var2. It also provides an APCS conformant
routineAsm Change_Var s which adds 10 tear 1 and subtracts 10 frormar 2.

All this code makes heavy use of the macrdsdn. CVar s.

To build the CStatics module, simply double click on the MakeFile.

181

Examples

When Make has completed, you can see the examplein use. Load the resultant
CSt at i ¢cs module by double clicking on it, then type CSt at i ¢s at the command
line. You will get this output:

varl = 0
var2 = 0
varl = 10
varl = -10

If you repeat the * CSt at i ¢s command you will see the variables change again:

varl = 10
var2 = -10
varl = 20
varl = -20

and so on, every time you repeat the command.

182

Part 4 — Appendixes

183

184

Appendix A: Changes to the assembler

his release of the assembler replaces the product Acorn Assembler Release 2. It has
seen the following major changes:

I The product has been merged with the C compiler.

I ObjAsm has added support for the ARM6, ARM7 and ARM7M versions of the
processor. All new instructions are implemented, and there is also support for other
new features such as big- and little-endian memory systems.

ObjAsm now accepts instruction mnemonics in lower case; this feature can be
disabled for backward compatibility.

I ObjAsm now supports many more options through its Setup menu.

I TheAAsm tool is no longer supplied, but has been replaced — at least for this release
— by a backward compatible mode.

The Toolbox has been added to the product, to facilitate the design and coding of
consistent user interfaces for RISC OS desktop applications. See the accompanying
User Interface Toolbox guide.

185

186

Appendix B: Error messages

his appendix lists most of the common error messages that you may get when using

the assembler, and gives an explanation for each one of the circumstances that may

provoke the error.

ADRL can’t be used with PC
The destination register of an ADRL opcode cannot be PC.

Area directive missing
An attempt has been made to generate code or data before the first AREA directive.

Area name missing
The name for the area has been omitted from an AREA directive.

Bad alignment boundary
An alignment has been given which is not a power of two.

Bad area attribute or alignment
Unknown attribute or alignment not in the range 2-12.

Bad based number

A digit has been given in a based number which is not less than the base, for
example: 7_8.

Bad exported name

The wording following the EXPORT directive is syntactically not a name.

Bad exported symbol type
The exported symbol is not a program-relative symbol.

Bad expression type
For example, a number was expected but a string was encountered.

Bad floating point constant
The only allowed floating point constantsare 0, 1, 2, 3, 5, 10 and 0.5. They must be
written in exactly these forms.

Bad global name
An incorrect character appearsin the global name.

Bad hexadecimal number

The & introducing a hexadecimal number is not followed by avalid hexadecimal
digit.

Bad imported name

The wording following the IMPORT directive is syntactically not a name.

187

Error messages

188

Bad | ocal |abel nunber
A local label number must be in the range 0-99.

Bad | ocal nane
An incorrect character appears in the local name.

Bad macro paraneter default val ue

Bad opcode synbol
A symbol has been encountered in the opcode field which is not adirectiveand is
syntactically not alabdl.

Bad operand type
For example, alogical value was supplied where a string was required.

Bad oper at or
The name between colons is not an operator name.

Bad or unknown attribute
Faulty attribute on an IMPORT directive.

Bad register list symbol
An expression used as a register set definition (eg in LDM or STM) was not
understood or of the wrong type.

Bad regi ster nanme symnbol
A register nameiswrong. Notethat all register names must be defined using the RN
directive.

Bad regi ster range
A register range from a higher to alower register has been given; for example,
R4-R2 has been typed.

Bad rot at or
The rotator value supplied must be even and in the range 0-30.

Bad shift name
Syntax error in shift name.

Bad string escape sequence
A C style escape character sequence (beginning with \') within a string was
incorrect.

Bad synbol
Syntax error in a symbol name.

Bad synbol type
This will occur after a # or * directive and means that the symbol being defined has
already been assumed to be of a type which cannot be defined in this way.

Branch of fset out of range
The destination of a branch is not within the ARM address space.

Error messages

Code generated in data area
An opcode has been found in an areawhich is not a code area.

Coprocessor number out of range
Coprocessor operation out of range
Coprocessor register nunber out of range

Data transfer offset out of range
The immediate value in a data transfer opcode must be in the range:
—4095< e< +4095

Deci mal overfl ow
The number exceeds 32 bits.

Di vi sion by zero
Entry address al ready set
This is the second or subsequent ENTRY directive.

Error in macro paraneters
The macro parameters do not match the prototype statement in some way.

Error on code file
An error occurred while writing the output file.

External area relocatable synmbol used
A symbol which is an address in another area has been used in a non-trivial
expression.

Externals not valid in expressions
An imported symbol has been used in a non-trivial expression.

Fl oating point regi ster nunmber out of range
Fl oating point overflow
Fl oati ng poi nt number not found

G obal nane al ready exists
This name has already been used in some other context.

Hexadeci mal overfl ow
The number exceeds 32 bits.

Il egal conbination of code and zero initialised
An object file area cannot be declared both to be code and zero initialised data.

Il egal |abel paranmeter start in macro prototype

Il'legal line start should be bl ank
A label has been found at the start of a line with a directive which cannot be
labelled.

189

Error messages

190

| nredi at e val ue out of range
Animmediate value in a data processing instruction cannot be obtained by rotating
an 8-bit value by an even amount.

| mported nanme al ready exists
The name has already been defined or used for something else.

I ncorrect routine nane
The optional name following a branch to alocal l1abel or on alocal 1abel definition
does not match the routine’s name.

Invalid |ine start
A line may only start with a letter character (the first letter of a label), a digit (the
first character of a local label), a semi-colon or a space.

Invalid operand to branch instruction

Label mssing fromline start
The absence of a label where one is required; for example, in the * directive.

Local nane already exists
A local name has been defined more than once.

Local s not all owed outside nacros
A local variable has been defined in the main body of the source file.

MEND not al |l owed wi thin conditionals
A MEND has been found amongst [|] or WHILE/WEND directives.

M ssing cl ose bracket
A missing close bracket or too many opening brackets.

M ssing cl ose quote
No closing quote at the end of a string constant.

M ssing cl ose square bracket
A]is absent.

M ssi ng coma
Syntax error due to missing comma.

M ssi ng hash
The hash (#) preceding an immediate value has been forgotten.

M ssi ng open bracket
A missing open bracket or too many closing brackets.

M ssi ng open square bracket

Multiply or inconpatibly defined synbol
A symbol has been defined more than once.

Multiply destination equals first source

Error messages

No current macro expansi on
A MEND, MEXIT or local variable has been encountered but there is no
corresponding MACRO.

Non-zero data within uninitialised area

Nuneric overfl ow
The number exceeds 32 hits.

Regi ster occurs nultiply in LDM STM |i st

Regi ster symbol already defined
A register symbol has been defined more than once.

Regi ster val ue out of range
Register values must be in the range 0-15.

Shift option out of range
The range permitted is 0-31, 1-32 or 1-31 depending on the shift type.

String overfl ow
Concatenation has produced a string of more than 256 characters.

String too short for operation
An attempt has been made to manipulate a string using :LEFT: or :RIGHT: which
has insufficient charactersin it.

Structure msnatch
Mismatch of] with [or |, or WEND and WHILE.

Substituted line too | ong

During variable and macro parameter substitution the line length has exceeded 256
characters.

Synmbol mi ssing

An attempt has been made to reference the length attribute of a symbol but the
symbol was omitted or the name found was not recognised as a symbol.

Syntax error follow ng directive
An operand has been provided to a directive which cannot take one, for example:
the ‘|’ directive.

Syntax error follow ng | abel
A label can only be followed by spaces, a semi-colon or the end-of-line symbol.

Syntax error follow ng |ocal |abel definition
A space, comment, or end-of-line did not immediately follow the local label.

Too late to define synbol as register |ist
A register list was defined for a symbol already used for another purpose.

Too late to ban floating point

Too late to set origin now
The ORG must be set before the Assembler generates code.

191

Error messages

192

Too many actual paraneters
A macro call istrying to pass too many parameters.

Transl ate not allowed in pre-indexed form
The tranglate option may not be specified in pre-indexed forms of LDR and STR.

Unabl e to close code file
Unabl e to open code file

Undefi ned exported symnbol
The symbol exported is undefined.

Undefi ned symnbol
A symbol has not been given avalue.

Unexpected characters at end of |ine
Thelineis syntactically complete, but moreinformation is present. The semi-colon
prefixing comments may have been omitted.

Unexpect ed operand
An operand has been found where a binary operator was expected.

Unexpect ed oper ator
A non-unary operator has been found where an operand was expected.

Unexpect ed unary oper ator
A unary operator has been found where a binary operator was expected.

Unknown opcode
A name in the opcode field has been found which is not an opcode, a directive, nor
amacro.

Unknown oper and
An operand in the bracketed format { PC} { VAR} { OPT} { TRUE} {FALSE} isnot
of the correct form.

Unknown or wong type of global/local synbol
Type mismatch, for example, attempting to set or reset the value of alocal or global
symbol aslogical, whereit isastring variable.

Unknown shift name
Not one of the six legal shift mnemonics.

Appendix C: Example assembler
fragments

he following example assembly language fragments show ways in which the basic

ARM instructions can combine to give efficient code. None of the techniques
illustrated save agreat deal of execution time (although they all save some), mostly they
just save code.

Note that, when optimising code for execution speed, consideration to different
hardware bases should be given. Some changes which optimise speed on one machine
may slow the code on another. An example is unrolling loops (eg divide loops) which
speeds execution on an ARM2, but can slow execution on an ARM 3, which has a cache.

Using the conditional instructions

Using conditionals for logical OR

cawP Rn, #p ; |F Rn=p OR Rmeq THEN GOTO Label
BEQ Label

cawP Rm #q

BEQ Label

can be replaced by:

CWP Rn, #p

CWPNE Rm #q ; If condition not satisfied try
BEQ Label ; another test.

Absolute value

TEQ Rn, #0 ; Test sign
RSBM Rn, Rn, #0 ; and 2's complement if necessary.

Combining discrete and range tests

TEQ Rc,#127 ; discrete test
CMPNE Rc#""-1 ; range test
MOVLS Rc#"" ; IF Re<#" " OR Rc=CHR$127 THEN Rc:="."

193

Pseudo-random binary sequence generator

Division and remainder

Enter with dividend in Ra, divisor in Rb.
Di vi sor nmust not be zero.

MoV Rd, Rb ; Put the divisor in Rd.
CWVP Rd, Ra, LSR #1 ; Then double it until
D vl MOVLS Rd, Rd, LSL #1 ;2 * Rd > divisor.
cwP Rd, Ra, LSR #1
BLS D vl
MoV Rc, #0 ; Initialise the quotient
Di v2 Ccwp Ra, Rd ; Can we subtract Rd?
SUBCS Ra, Ra, Rd ; If we can, do so
ADC Rc, Rc, Re ; Doubl e quotient and add new bit
MoV Rd, Rd, LSR #1 ; Halve Rd.
CWVP Rd, Rb ; And loop until we've gone
BHS Div2 ; past the original divisor,

; Now Ra holds remainder, Rb holds original divisor,
; Rc holds quotient and Rd holds junk.

Pseudo-random binary sequence generator

It is often necessary to generate (pseudo-) random numbers, and the most efficient
algorithms are based on shift generators with afeedback rather like a cyclic redundancy
check generator. Unfortunately, the sequence of a 32 bit generator needs more than one
feedback tap to be maximal length (that is, 232—1 cycles before repetition). A 33 bit shift
generator with taps at bits 20 and 33 is required.

The basic algorithm is:
I new hit := bit 33 EOR bit 20
1 shift left the 33 bit number
I put innew bit at the bottom.
I Repeat for all the 38ew bits needed.
All this can be done in five S cycles:
Enter with seed in Ra (32 bits),Rb (1 bit in Rb Isbh)

Uses Rc
TST Rb, Rb, LSR #1 ; top bit into carry
MOVS Rc, Ra, RRX ; 33 bit rotate right
ADC Rb, Rb, Rb ; carry into Isb of Rb
EOR Rc, Rc, Ra, LSL#12 ; (invol ved!)
EOR Ra, Rc, Rc, LSR#20 ; (simlarly involved!)

New seed in Ra, Rb as before

194

Example assembler fragments

Multiplication by a constant

Multiplication by 2" (1,2,4,8,16,32...)
MOV Ra, Ra, LSL #n;

Multiplication by 2 "*1(3,5,9,17...)
ADD Ra, Ra, Ra, LSL #n.

Multiplication by 2 "1 (3,7,15...)
RSB Ra, Ra, Ra, LSL #n

Multiplication by 6

ADD Ra, Ra, Ra, LSL #1 ; Miltiply by 3
MOV Ra, Ra, LSL #1 ; and then by 2.

Multiply by 10 and add in extra number

AD Ra, Ra, Ra, LSL #2 ; Miltiply by 5
ADD Ra, Rc, Ra, LSL #1 ; Multiply by 2 and add in next digit

General recursive method for Rb := Ra xC, C a constant
If C even, say C =2"xD, D odd:

D=1 : MoV Rb, Ra, LSL #n
D<>1: {Rb := Ra*D}
MoV Rb, Rb, LSL #n

If CMOD 4 =1, say C=2"xD+1, D odd, n>1:

D=1 : ADD Rb, Ra, Ra, LSL #n
D<>1: {Rb := Ra*D}
ADD Rb, Ra, Rb, LSL #n.
If CMOD 4 =3, say C=2"xD-1, D odd, n>1:
D=1 : RSB Rb, Ra, Ra, LSL #n
D<>1: {Rb := Ra*D}
RSB Rb, Ra, Rb, LSL #n.

195

Loading a word from an unknown alignment

Thisisnot quite optimal, but close. An example of its non-optimal useis multiply by 45
which is done by:

RSB Rb, Ra, Ra, LSL #2 ; Miltiply by 3

RSB Rb, Ra, Rb, LSL #2 ; Miltiply by 4%3-1 = 11

ADD Rb, Ra, Rb, LSL #2 ; Multiply by 4*11+1 = 45
rather than by:

ADD Rb, Ra, Ra, LSL #3 ; Miltiply by 9

ADD Rb, Rb, Rb, LSL #2 ; Multiply by 5*9 = 45

Loading a word from an unknown alignment

Thereis no instruction to load aword from an unknown alignment. To do this requires
some code (which can be a macro) along the following lines:

; Enter with 32-bit address in Ra
; Uses Rb, Rc; result in Rd
: Note d nust be less than ¢

BI C Rb, Ra, #3 ; Get word-aligned address
LDM A Rb, {Rd, Rc} ; Get 64 bits containing answer
AND Rb, Ra, #3 ; Correction factor in bytes
MOVS Rb, Rb, LSL #3 ; ...nowin bits and test if aligned
MOVNE Rd, Rd, LSR Rb ; If not aligned, produce bottom
; of result word
RSBNE Rb, Rb, #32 ; Get other shift anount
ORRNE Rd, Rd, Rc, LSL Rb ; Conbine two halves to get result

Sign/zero extension of a half word

MOV Ra, Ra, LSL #16 ; Move to top,
MoV Ra, Ra, LSR #16 ; and back to bottom
; Use ASR to get sign extended version

Return setting condition codes

CFLAG * &20000000
BI CS PC, R14, #CFLAG ; Returns clearing C flag
; fromlink register
ORRCCS PC, R14, #CFLAG ; Conditionally returns setting C flag

This code should not be used except in user mode, since it will reset the interrupt mode
to the state which existed when the R14 was set up. Thisrule generally appliesto
non-user mode programming.

196

Full multiply

Example assembler fragments

For examplein supervisor mode:
MoV PC, R14

is safer than
MWVS PC, Rl4

However, note that MOVS PC, R14 isrequired by the ARM Procedure Call Standard,
used by code compiled from the high level language C. Such code, of course, runsin
user mode.

The ARM’s multiply instruction multiplies two 32 bit numbers together and produces
the least significant 32 bits of the result. These 32 bits are the same regardless of whether
the numbers are signed or unsigned.

To produce the full 64 bits of a product of two unsigned 32 bit numbers, the following
code can be used:

; Enter with two unsigned nunbers in Ra and Rb.

MOVS Rd, Ra, LSR #16 ; Rdis ms 16 bits of Ra

Bl C Ra, Ra, Rd, LSL #16 ; Rais |s 16 bits

MoV Re, Rb, LSR #16 ; Reis ms 16 bits of Rb

BI C Rb, Rb, Re, LSL #16 : Rois |s 16 bits

MJL Rc, RA, Rb ; Low partial product

ML Rb, Rd, Rb ; First mddle partial product

MJL Ra, Re, Ra ; Second niddle partial product

MULNE Rd, Re, Rd ; High partial product - NE
; condition reduces tine taken
; if Rdis zero

ADDS Ra, Ra, Rb ; Add mddl e partial products -
; could not use MLA because we
; need carry

ADDCS Rd, Rd, #&10000 ; Add carry into high partial
; product

ADDS Rc, Rc, Ra, LSL #16 ; Add m ddl e partial product

ADC Rd, Rd, Ra, LSR #16 ; suminto | ow and high words
; of result

; Now Rc holds the low word of the product, Rd its high word,
; and Ra, Rb and Re hold junk.

Of course, the ARM7M core provides the Multiply Long class of instructions to perform
a 64 bit signed or unsigned multiply or multiply-accumulate [#ekiply Long and
Multiply-Accumulate Long (UMULL, SMULL, UMLAL, SMLAL) on page 84).

197

198

Appendix D: Warnings on the use of ARM
assembler

he ARM processor family uses Reduced Instruction Set (RISC) techniques to

maximise performance; as such, the instruction set allows some instructions and
code sequences to be constructed that will give rise to unexpected (and potentially
erroneous) results. These cases must be avoided by all machine code writers and
generatorsif correct program operation across the whole range of ARM processorsisto
be obtained.

In order to be upwards compatible with future versions of the ARM processor family
never use any of the undefined instruction formats:

I those shown in the section Undefined instructions on page 112, which the processor
traps,
those which are not shown in the manual and which don't trap (for example, a
Multiply instruction where bit 5 or 6 of the instruction is set).

In addition the condition code 1111 (which was given the mnemonic ‘NV’, i.e. never)
should not be used. We recommend that you use the instruction ‘MOV RO,R0Q’ as a
general purpose no-op.

This appendix lists the instructions and code sequences to be avoidett.ohdgbty
recommended that you take the time to familiarise yourself with these cases because
some will only fail under particular circumstances which may not arise during testing.

For more details on the ARM chip and its instruction set see the ch@ipeXBM CPU
on page 29 an@PU instruction set on page 55, and the datasheets for the different
versions of the ARM chip.

199

Restrictions to the ARM instruction set

Restrictions to the ARM instruction set
There are three main reasons for restricting the use of certain parts of the instruction set:

200

Dangerousinstructions

Such instructions can cause a program to fail unexpectedly, for example:
LDM R15, Rl i st

uses PC+PSR as the base and so can cause an unexpected address exception.

Uselessinstructions

It is better to reserve the instruction space occupied by existing ‘useless’
instructions for instruction expansion in future processors. For example:

MJL R15, Rm Rs
only serves to scramble the PSR.
This category also includes ineffective instructions, such as a PC relative LDC/STC
with writeback; the PC cannot be written back in these instructions, so the
writeback bit is ineffective (and an attempt to use it should be flagged as an error).
Instructions with undesir able side-effects
It is hard to guarantee the side-effects of instructions across different processors. If,
for example, the following is used:

LDR Rd, [R15, #expression] !
the PC writeback will produce different results on different types of processor.

Warnings on the use of ARM assembler

Instructions and code sequences to avoid

Theinstructions and code sequences are split into anumber of categories. Each category
starts with an indication of which of the two main ARM variants (ARM2, ARM3) it
appliesto, and is followed by arecommendation or warning. The text then goes on to
explain the conditions in more detail and to supply examples where appropriate.

Unless aprogram is being targeted specifically for a single version of the ARM
processor family, all of these recommendations should be adhered to.

TSTP/ITEQP/CMPP/CMNP: Changing mode
Applicability: ARM2
When the processor’s mode is changed by altering the mode bits in the PSR using a
data processing operation, care must be taken not to access a banked register

(R8-R14) in the following instruction. Accesses to the unbanked registers (RO-R7,
R15) are safe.

The following instructions are affected, but note that mode changes can only be made
when the processor is in a non-user mode:

TSTP Rn, (p2

TEQP Rn, Q2
CWPP Rn, p2
CMNP Rn, (p2

These are the only operations that change all the bits in the PSR (including the mode
bits) without affecting the PC (thereby forcing a pipeline refill during which time the
register bank select logic settles).

The following examples assume the processor starts in Supervisor mode:
a) TEQP PC, #0

MOV RO, RO Safe: NOP added between mode change and

ADD RO, R1, R13_usr access to a banked register (R13_usr)
b) TEQP PC, #0

ADD RO, R1, R2 Safe: No access made to a banked register

c) TEQP PC, #0
ADD RO, R1, R13_usr Fails: Datanot read from Register R13_usr!

The safest default is always to add a NOP (e.g. MOV RO,R0) after a mode changing
instruction; this will guarantee correct operation regardless of the code sequence
following it.

201

Instructions and code sequences to avoid

LDM/STM: Forcing transfer of the user bank (Part 1)

Applicability: ARM2, ARM3
Do not use writeback when forcing user bank transfer in LDM/STM.

For STM instructions the S hit is redundant as the PSR is aways stored with the PC
whenever R15 isin the transfer list. In user mode programs the S bit isignored, but in
other modes it has a second interpretation; S=1 is used to force transfers to take values
from the user register bank instead of from the current register bank. Thisis useful for
saving the user state on process switches.

Similarly, in LDM instructions the S bit is redundant if R15 is not in the transfer list. In
user mode programs, the S bit isignored, but in non-user mode programs where R15 is
not in the transfer list, S=1 is used to force |oaded values to go to the user registers
instead of the current register bank.

In both cases where the processor isin anon-user mode and transfer to or from the user

bank isforced by setting the S bit, writeback of the base will also be to the user bank

though the base will be fetched from the current bank. Therefore don't use writeback
when forcing user bank transfer in LDM/STM.

The following examples assume the processor to be in a non-user made axtdnot
to include R15:

STMkx Rn!', Rl i st Safe: Storing non-user registers with write
back to the non-user base register

LDMkx Rn!, Rl i st Safe: Loading non-user registers with write
back to the non-user base register

STMkX Rn, Rl i st™ Safe; Storing user registers, but no base
write-back

STMkx Rn!', RIjst? Fails. Base fetched from non-user register,

but written back into user register

LDMkx Rn!, Rl ist" Fails. Base fetched from non-user register,
but written back into user register

202

Warnings on the use of ARM assembler

LDM: Forcing transfer of the user bank (Part 2)

Applicability: ARM2, ARM3
When loading user bank registers with an LDM in a non-user mode, care must be
taken not to access a banked register (R8-R14) in the following instruction.
Accesses to the unbanked registers (RO-R7,R15) are safe.

Because the register bank switches from user mode to non-user mode during the first
cycle of the instruction followingan LDM Rn, R/ i st an attempt to access a banked
register in that cycle may cause the wrong register to be accessed.

The following examples assume the processor to bein anon-user modeand R/ i st not
toinclude R15:

LDM Rn R jst?

ADD RO, R1, R2 Safe: Access to unbanked registers after
LDMA

LDM Rn, R i st™

MOV RO, RO Safe: NOP inserted before banked register

ADD RO, R1, R13_svc used following an LDM#

LDM Rn, Rl i st™

ADD RO, R1, R13_svc Fails: Accessing a banked register
immediately after an LDM” returns the
wrong data

ADR R14_svc, savebl ock

LDM A R14_svc, {RO - R14_usr}”"

LDR R14_svc, [Rl4_svc, #15*4] Fails: Banked base register

MOVS PC, R14 _svc (R14 svc) used immediately
after the LDM”

ADR R14_svc, savebl ock
LDM A R14_svc, {RO - R14_usr}*

MV RO, RO Safe: NOPinserted before
LDR R14_svc, [Rl4_svc, #15*4] banked register
MOVS PC, Rl14 _svc (R14 svc) used

Note: The ARM2 and ARM3 processors usually give the expected result, but cannot be
guaranteed to do so under all circumstances, therefore this code sequence should be
avoided in future.

203

Instructions and code sequences to avoid

204

SWi/Undefined Instruction trap interaction

Applicability: ARM2
Care must be taken when writing an undefined instruction handler to allow for an
unexpected call from a SWI instruction. The erroneous SWI call should be
intercepted and redirected to the software interrupt handler.

The implementation of the CDP instruction on ARM2 may cause — under certain
circumstances — a Software Interrupt (SWI) to take the Undefined Instruction trap if the
SWI was the next instruction after the CDP. For example:

SIN FO
SW &11 Fails: ARM2 may take the undefined instruction
trap instead of software interrupt trap.

All Undefined Instruction handler code should check the failed instruction to see if it is
a SWI, and if so pass it over to the software interrupt handler by branching to the SWiI
hardware vector at address 8.

Undefined instruction/Prefetch abort trap interaction

Applicability: ARM2, ARM3
Care must be taken when writing the Prefetch abort trap handler to allow for an
unexpected call due to an undefined instruction.

When an undefined instruction is fetched from the last word of a page, where the next
page is absent from memory, the undefined instruction will cause the undefined
instruction trap to be taken, and the following (aborted) instructions will cause a prefetch
abort trap. One might expect the undefined instruction trap to be taken first, then the
return to the succeeding code will cause the abort trap. In fact the prefetch abort has a
higher priority than the undefined instruction trap, so the prefetch abort handler is
entered before the undefined instruction trap, indicating a fault at the address of the
undefined instruction (which is in a page which is actually present). A normal return
from the prefetch abort handler (after loading the absent page) will cause the undefined
instruction to execute and take the trap correctly. However the indicated page is already
present, so the prefetch abort handler may simply return control, causing an infinite loop
to be entered.

Therefore, the prefetch abort handler should check whether the indicated fault is in a
page which is actually present, and if so it should suspect the above condition and pass
control to the undefined instruction handler. This will restore the expected sequential
nature of the execution sequence. A normal return from the undefined instruction
handler will cause the next instruction to be fetched (which will abort), the prefetch
abort handler will be re-entered (with an address pointing to the absent page), and
execution can proceed normally.

Warnings on the use of ARM assembler

Single instructions to avoid

Applicability: ARM2, ARM3

The following single instructions and code sequences should be avoided in writing
any ARM code.

Any instruction that usesthe 1111 condition code

Avoid using the condition code 1111 (which was given the mnemonic ‘NV’, i.e. never):
opcodeNV . ..

i.e. any operation wherecond» = NV

By avoiding the use of the ‘NV’ condition cod€®anstructions become free for future
expansion.

Note: It is recommended that the instructMV RO, RO be used as a general purpose
NOP.

Data processing
Avoid using R15 in the Rposition of a data processing instruction:

MOV| MWN«cond»« S» Rd, Rm shiftname R15

CWP| CWN| TEQ TST«cond»« P» Rn, Rm shiftname R15

ADC| ADD| SBC. . . | ECR«cond»« S» Rd, Rn, shiftname R15
Shifting aregister by an amount dependent upon the code position should be avoided.

Multiply and multiply-accumulate

Do not specify R15 as the destination register as only the PSR will be affected by the
result of the operation:

MJL «cond»« S» R15, Rm Rs
M_A«cond»« S» R15, Rm Rs, Rn

Do not use the same register in the Rd and Rm positions, as the result of the operation
will beincorrect:

MJL «cond»« S» Rd, Rd, Rs
M_A«cond»« S» Rd, Rd, Rs

205

Instructions and code sequences to avoid

Singledata transfer

Do not use a PC relative load or store with base writeback as the effects may vary in
future processors:

LDR| STR«cond»« B»«T» Rd, [RL5, #expression]!
LDR| STR«cond»« B»«T» Rd, [RL5, «- »Rm« shift»]!

LDR| STR«cond»« B»«T» Rd, [RL5], #expression
LDR| STR«cond»« B»«T» Rd, [R15], «- »Rm« shift»

Note: It is safe to use pre-indexed PC relative loads and stores without base writeback.

Avoid using R15 asthe register offset (Rm) in single datatransfers as the val ue used will
be PC+PSR which can lead to address exceptions:

LDR| STR«cond»« B»«T» Rd, [Rn, «- »R15«, shift»] «! »
LDR| STR«cond»« B»«T» Rd, [Rn] , «- »R15«, shift»

A byteload or store operation on R15 must not be specified, as R15 containsthe PC, and
should always be treated as a 32 bit quantity:

LDR| STR«cond» B«T» R15, address

A post-indexed LDR|STR where Rm=Rn must not be used (thisinstruction is very
difficult for the abort handler to unwind when late aborts are configured — which do not
prevent base writeback):

LDR| STR«cond»« B»«T» Rd, [Rn], «- »Rn«, shift»

Do not use the same register in the Rd and Rm positions of an LDR which specifies (or
implies) base writeback; such an instruction is ambiguous, asit is not clear whether the
end value in the register should be the loaded data or the updated base:

LDR«cond»« B»«T» Rn, [Rn, #expression]!
LDR«cond»« B»«T» Rn, [Rn, «- »Rm« shift»]!

LDR«cond»« B»«T» Rn, [Rn] , #expression
LDR«cond»« B»«T» Rn, [Rn], «- »Rmg shift»

206

Warnings on the use of ARM assembler

Block datatransfer

Do not specify base writeback when forcing user mode block data transfer as the
writeback may target the wrong register:

STM«cond» <FD| ED. . . | DB> Rn!, Rlist *
LDMkcond» <FD| ED. . . | DB> Rn!, Rlist *

where Rlist does not include R15.
Note: Theinstruction:

LDMkcond» <FD| ED. . . | DB> Rn!, <Rlist , R15>"
does not force user mode data transfer, and can be used safely.

Do not perform a PC relative block datatransfer, as the PC+PSR is used to form the base
address which can lead to address exceptions:

LDM STM«cond» <FD| ED. . . | DB> R15«! », Rlist« "»

Single data swap

Do not perform a PC relative swap as its behaviour may changein the future:
SWP«cond»« B» Rd, Rm [R15]

Avoid specifying R15 as the source or destination register:
SWP«cond»« B» R15, Rm [Rn]
SWP«cond»« B» Rd, R15, [Rn]

Coprocessor datatransfers

When performing a PC relative coprocessor datatransfer, writeback to R15is prevented
so the W bit should not be set:

LDC| STC«cond»« L» CP#, CRd, [R15] !
LDC| STC«cond»« L» CP#, CRd, [RL5, #expression]!
LDC| STC«cond»« L» CP#, CRd, [R15] #expression !

207

Instructions and code sequences to avoid

208

Undefined instructions

ARM 2 has two undefined instructions, and ARM3 has only one (the other ARM2
undefined instruction has been defined as the Single data swap operation).

Undefined instructions should not be used in programs, asthey may be defined as a new
operation in future ARM variants.

Register access after an in-line mode change

Care must be taken not to access a banked register (R8-R14) in the cycle following an
in-line mode change. Thus the following code sequences should be avoided:

1 TSTP| TEQP| CVPP| CMNP«cond» Rn, Op2
2 any instruction that uses R8-R14 initsfirst cycle.

Register access after an LDM that forces user mode data transfer

The banked registers (R8-R14) should not be accessed in the cycle immediately after an
LDM that forces user mode data transfer. Thus the following code sequence should be
avoided:

1 LDWcond» <FD| ED. . .| DB> Rn, Rlist *
where Rlist doesnot include R15

2 any instruction that uses R8-R14 initsfirst cycle.

Other points to note

This section highlights some obscure cases of ARM operation which should be bornein
mind when writing code.

Useof R15

Applicability: ARM2, ARM3
Warning: When the PC is used as a destination, operand, base or shift register,
different resultswill be obtained depending on theinstruction and the exact usage of
R15.

Full details of the value derived from or written into R15+PSR for each instruction class
isgiven in the chapter CPU instruction set on page 55. Care must be taken when using
R15 because small changesin theinstruction can yield significantly different results. For
example, consider data operations of the type:

opcode«cond»« S» Rd, Rn, Rm
or opcode«cond»« S» Rd, Rn, Rm shiftname Rs

Warnings on the use of ARM assembler

When R15 is used in the Rm position, it will give the value of the PC together with
the PSR flags.

When R15is used in the Rn or Rs positions, it will give the value of the PC without
the PSR flags (PSR bits replaced by zeros).

MOV RO, #0
ORR R1, RO, R15 ; RL=PC+PSR (bits 31:26,1:0 reflect PSR flags)
ORR R2, R15, RO ; R2:=PC (bits 31:26,1:0 set to zero)

Note: Therelevant instruction description in the chapter CPU instruction set on page 55
should be consulted for full details of the behaviour of R15.

STM: Inclusion of thebasein theregister list

Applicability: ARM2, ARM3
Warning: In the case of a STM with writeback that includes the base register in the
register list, the value of the base register stored depends upon its position in the
register list.

During an STM, the first register is written out at the start of the second cycle of the
instruction. When writeback is specified, the base is written back at the end of the
second cycle. An STM which includes storing the base, with the base asthe first register
to be stored, will therefore store the unchanged value, whereas with the base second or
later in the transfer order, it will store the modified value.

For example:

MOV RS, #&1000
STM A R5!, { R5- R6} ; Stores value of R5=& 1000

MOV RS, #&1000
STM A R5!, { R4- R5} ; Stores value of R5=& 1008

MUL/MLA: Register restrictions
Applicability: ARM2, ARM3

Given MJL Rd, Rm Rs
or MLA Rd, Rm Rs, Rn
Then Rd & Rm must be different registers
Rd must not be R15

Due to the way the Booth’s algorithm has been implemented, certain combinations of
operand registers should be avoided. (The assembler will issue a warning if these
restrictions are overlooked.)

The destination register iRshould not be the same as tha éperand register, agiiis
used to hold intermediate values armd B used repeatedly during the multiply. A MUL
will give a zero result if R=Rd, and a MLA will give a meaningless result.

209

Instructions and code sequences to avoid

210

The destination register (Rd) should also not be R15. R15 is protected from modification
by these instructions, so the instruction will have no effect, except that it will put
meaningless values in the PSR flags if the Sbit is set.

All other register combinations will give correct results, and Rd, Rn and Rs may use the
same register when required.

LDM/STM: Address Exceptions

Applicability: ARM2, ARM3
Warning: Illegal addresses formed during aLDM or STM operation will not cause
an address exception.

Only the address of the first transfer of aLDM or STM is checked for an address
exception; if subseguent addresses over-flow or under-flow into illegal address space
they will be truncated to 26 bits but will not cause an address exception trap.

The following examples assume the processor isin anon-user mode and MEMC is
being accessed:

MOV RO, #&04000000 ; R0=& 04000000
STM A RO, { R1- R2} ; Address exception reported
(base addressiillegal)

MOV RO, #&04000000
SUB RO, RO, #4 ; RO=& O3FFFFFC
STM A RO, { R1- R2} ; No address exception reported
(base address legal)
; code will overwrite data at address & 00000000

Note: The exact behaviour of the system depends upon the memory manager to which
the processor is attached; in some cases, the wraparound may be detected and the
instruction aborted.

LDC/STC: Address Exceptions

Applicability: ARM2, ARM3
Warning: lllegal addressesformed during aLDC or STC operation will not cause an
address exception (affects LDF/STF).

The coprocessor data transfer operations act like STM and LDM with the processor
generating the addresses and the coprocessor supplying/reading the data. Aswith
LDM/STM, only the address of the first transfer of aLDC or STC is checked for an
address exception; if subsequent addresses over-flow or under-flow into illegal address
space they will be truncated to 26 bits but will not cause an address exception trap.

Note that the floating point LDF/STF instructions are forms of LDC and STC.

Warnings on the use of ARM assembler

The following examples assume the processor isin anon-user mode and MEMC is
being accessed:

MOV RO, #&04000000 ; R0=& 04000000
STC CP1, CRO, [RO] ; Address exception reported
(base addressillegal)

MOV RO, #&04000000
SUB RO, RO, #4 ; R0=& 03FFFFFC
STFD FO, [RO] ; No address exception reported
. (base address legal)
; code will overwrite data at address & 00000000

Note: The exact behaviour of the system depends upon the memory manager to which
the processor is attached; in some cases, the wraparound may be detected and the
instruction aborted.

LDC: Datatransfersto a coprocessor fetch more data than expected

Applicability: ARM3
Data to be transferred to a coprocessor with the LDC instruction should never be
placed in the last word of an addressable chunk of memory, nor in the word of
memory immediately preceding a read-sensitive memory location.

Due to the pipelining introduced into the ARM 3 coprocessor interface, an LDC
operation will cause one extraword of data to be fetched from the internal cache or
external memory by ARM3 and then discarded; if the extradatais fetched from an area
of external memory marked as cacheable, awholeline of datawill be fetched and placed
in the cache.

211

Static ARM problems

A particular casein point isthat an LDC whose data ends at the last word of a memory
page will load and then discard the first word (and hence the first cache line) of the next
page. A minor effect of thisisthat it may occasionally cause an unnecessary page swap
inavirtua memory system. The major effect of it isthat (whether in avirtual memory
system or not), the data for an LDC should never be placed in the last word of an
addressable chunk of memory: the LDC will attempt to read the immediately following
non-existent location and thus produce a memory fault.

The following example assumes the processor isin a non-user mode, FPU hardware is
attached and MEMC is being accessed:

MOV R13, #&03000000 ; R13=Addressof 1/O space

STFD FO, [R13, #-8]! ; Store F.P. register O at top of physical memory
. (two words of data transferred)
LDFD F1,[R13], #8 ; Load F.P. register 1 from top of physical

; memory, but three words of data are
; transferred, and the third access will read
; from I/O space which may be read sensitive

Static ARM problems

The static ARM isavariant of the ARM processor designed for low power consumption,
that is built using static CM OS technol ogy. (The difference between it and the standard
ARM issimilar to that between SRAM and DRAM.)

The static ARM exhibits different behaviour to ARM2 and ARM 3 when executing a PC
relative L DR with base writeback. This class of instruction has very limited application,
so the discrepancy should not be a problem, but if you wish to use any of the following
instructions in your code you are advised to contact Acorn Computers.

LDR Rd, [PC, #expressi on] !
LDR Rd, [PC], #expressi on
LDR Rd, [PC, {-}Rm{, shift}]!
LDR Rd, [PC],{-}Rm{, shift}

Note: A PC relative LDR without writeback works exactly as expected.

Provided that thisinstruction classisunused, it islikely that writeback to the PC on LDR
and STR will be disabled completely in the future. The fewer incidental ways there are
to modify the PC the better.

Unexpected Static ARM2 behaviour when executing a PC relative LDR with
writeback

212

The instructions affected are:-
I LDR Rd, [PC, #expression] !

Warnings on the use of ARM assembler

I LDR Rd, [PC], #expressi on

Case 1: LDR Rd,[PC #expression]!

Expected result: Rd ~ (PC+8+expression)
PC —~ PC+8+expression
...S0 execution continues from PC+8+expression

Actual ARM2 resullt: Rd —~ Rd{no change}
PC ~ PC+8+expression+4
...S0 execution continues from PC+12+expression

Case 2: LDR Rd,[PC],#expression

Expected result: Rd — (PC+8)
PC — PC+8+expression
...S0 execution continues from PC+8+expression

Actual ARM2 resullt: Rd —~ Rd{no change}
PC ~ PC+8+expression+4
...S0 execution continues from PC+12+expression

213

214

Appendix E: Support for AAsm source

Asm was an alternative variant of the assembler supplied with previous releases of
this product. It has been removed from this product, but to ease porting source code
written for AAsm, some limited support has been added to ObjAsm. This support for
AAsm may beremoved in future releases of Acorn Assembler.

To enable this support you must pass the new - ABSol ut e option to ObjAsm. Thereis
no option on the Setup menu directly corresponding to this option; the best way to pass
the option from the desktop is to include it in the Setup méditkisr s option (see
Soecifying other command line options on page 18).

The -ABSolute option

The new ABSol ut e option makes ObjAsm accept AAsm source code. This option is
provided to simplify the use of code originally developed using AAsm. Unlike AAsm,

the output format produced is AOF, as for any ordinary assembly operation, and this
must be linked by the linker as usual, in order to create an absolute image. However, the
contents of the AOF file will be marked as having an absolute address (if eit@RGhe

or LEADR directive is used), and the linker, given suitable options, can produce an
image file equivalent to that previously generated directly by AAsm. The following
changes to normal ObjAsm input syntax apply:

I There is an impliciAREA declaration before the start of the source. The normal rule
that there must be &REA directive in the source before use of any instruction or
data generating statements does not apply. The implicitly declared area is called
ABS$$BLOCK, and has the neABS attribute (seévrea attributes on page 50)
implying that it must be loaded at a fixed absolute base address.

The directiveLEADR is accepted. (Previously only AAsm implemented this;
ObjAsm did not.)

The ORGdirective, if used within the source file, will apply to the implicitly
declared current area.

The following directives are not recognised (since they were not available with
AAsm), and may be used for any other purpose, in particular as macro names:
AREA, | MPORT, EXPORT, STRONG ENTRY, KEEP, ACF, ACUT.

This change is important, since ObjAsm recognises directives before it does macro
names.

215

216

Symbols
155

1146

— 153, 155
144

$ 151, 164
% 52, 143
* 149, 154
+ 153, 155
. 151
/154
/=155
<155
=155

> 155

>= 155

? 153

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

@ 151
[157-159
] 157-159
144
__RelocCode 176
| 157-159
A
AAsm 24, 185, 215
Abort modesee ABT mode
aborts 43-44
see also data abortand prefetch aborts
ABS 50, 51, 139-141, 215
ABS$$BLOCK 215
ABT mode 37, 39, 43, 44
ACS 139-141
ADC 69-76, 118
ADD 69-76, 118, 119

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

address bus 29, 31, 34, 42
address exceptions 36, 37, 42—-43, 46, 89, 97, 171, 210-211
addressing 92-97, 106, 107
ADF 139-141
ADR 119
ADRL 119
ALIGN 51, 147
ALU 29, 31, 56
an see registers (names)
AND 69-76, 118, 155
AOF 215
AOUT 215
APCS 10, 24, 149, 179, 180
AREA 50, 176, 215
AREAs 49-51, 148
|$$$$$$$| 50
|C$$code| 50

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

attributes 10, 50

code 24, 50

data 50

rel ocatable address constants 50
arithmetic logic unit see ALU
Arithmetic Shift Left see ASL
Arithmetic Shift Right see ASR
ARM

configuration 24

core 31

CPU 29-47

versions 2, 11, 32, 36, 171
ARM Procedure Call Standasde APCS
ARM2 29, 32-35, 77, 99
ARM250 100
ARM3 29, 32-35, 77, 100
ARMG6 11, 36, 39, 100, 171, 185

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

ARMY7 11, 36, 39, 100, 171, 185

ARM7M 11, 36, 84, 185, 197

ASL 60

AsmHello example 21

AsmModule example 176

ASN 139-141

ASR 62

assembly language 27-167
examples 193-197

ASSERT 146

ATN 139-141

B

B 65-67

barrel shifter 29, 31, 57-58
carry in 57
carry out 57

BASE 153

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

BASED Rn 50
bibliography 3
BIC 69-76, 118
BL 65-67
booleanssee constants
buttonssee application (button name)
C
C flag 35, 57, 72, 79-80
C language 179-182

static variables 181-??
cacheingsee ObjAsm (cacheing)
Carry flagsee C flag
case sensitivity 11, 49, 51, 185
CC 154
CDP 103-104, 204
changes 185
CHR 153

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

Clanguage
static variables ??7-182
CMF 141-142
CMFE 141-142
CMN 35, 69-76, 79, 118, 201
CMNP see CMN
CMP 35, 69-76, 79, 118, 201
CMPPsee CMP
CN 64, 149
CNF 141-142
CNFE 141-142
CODE 50
COMDEF 50
comments 53
COMMON 50
condition codes 29, 35, 55-56, 193-194, 196-197, 199, 205
conditional assembly 15, 157-159

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

CONFIG 11, 24, 151
configurations 36, 37, 42, 171-172
constants 53, 149
immediate 58
conventions 3
coprocessors 30, 45, 64, 103-111, 149
floating point 64
COS 139-141
CP 64, 149
CPSR 36, 38, 39, 40, 41, 67, 77-80
CStatics example 181-182
C-strings 143
current program status regissee CPSR
D
DATA 50, 145
data aborts 38, 43-44, 46, 90, 97-98, 100, 108, 172
data bus 29, 31

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

data types 30
DCB 143
DCD 143
DCFD 136, 144
DCFS 136, 144
DCW 143
DDT 9
debugging 9
machine level 9
source level 9
tables 9
DEF 154
dependency lists 24
dialogue boxes see application (dialogue box name)
directives 49, 51, 143-148, 215
see also directive name
DVF 139-141

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

E

ELSE 157-159

END 53, 145

ENDIAN 23, 151

ENDIF 157-159

ENTRY 147, 176, 215

EOR 69-76, 155

EQU 149

errors 9, 13, 19, 146, 187-192
browser 9, 19

escapes 11

exception vectorsee hardware vectors

exceptions 35, 37, 40-46, 171-173
priority system 46
see al so exception names

EXP 139-141

EXPORT 145, 215

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

expressions 153-155

F

FALSE 53, 151

Fast Interrupt modsee FIQ mode

FDV 139-141

FIQ 41, 46, 171, 172-173
latency 46

FIQ disable flag 35, 38, 41, 45

FIQ mode 32, 33, 37,41, 172

FIX 139

flags see flag names

floating point 121-142, 148, 175
available systems 122
Cflag 130, 142
denormalised numbers 129
division by zero 131
double extended precision 125

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

expanded packed decimal 127, 130
exponents 124-127

IEEE double precision 124
IEEE single precision 124
inexact results 132
infinities 124-127, 131
invalid operations 131
NaNs 124-127, 129, 131
number formats 123-127
number input 135

overflow 132

packed decimal 126, 130
precision 123

rounding 139

store loading directives 136
synchronous operation 130
underflow 132

Replace this page with a

monochrome copy of the
front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

writeback 138

FLT 139

FML 139-141

FN 135, 149

fp see registers (names)

FPREGARGS 145

FRD 139-141

G

GBL 12, 51, 150

GET 9, 17, 145, 146

H

hardware vectors 38, 172
see also exceptions

I

iconssee application (icon name)

IF 157-159

image files 7, 9, 21

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

immediate constants see constants (immediate)

IMPORT 145, 176, 215

INCLUDE 9, 146

include file searching 9

INDEX 153

initialising memory see memory (initialising)

installation 1

instruction set 29-30

instructions
block data transfer 30, 32, 42, 43, 91-98
branches 33, 35, 42, 65-67
conversions 118
coprocessor data operations 103-104
coprocessor data transfers 105-108
coprocessor register transfers 109-111
data processing 30, 35, 57, 68-76, 201, 205
floating point coprocessor data operations 139-141

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

floating point coprocessor data transfer 136-137
floating point coprocessor multiple data transfer 137—138
floating point coprocessor register transfer 139
floating point coprocessor status transfer 141-142
further 118-120
multiplies 81-85, 112, 199
PSR transfer 36, 37, 38, 77-80
single data swap 99-100
single data transfer 30, 43, 51, 57, 86-90
software interrupt 35, 37, 44, 101-102, 104, 175
SWI 35
timings 56
undefined 37, 45, 46, 64, 104, 112, 137, 199, 204, 208
Interrupt modesee IRQ mode
interrupts 35
ip see registers (names)
IRQ 42,172

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

latency 46
IRQ disableflag 35, 38, 41, 42, 43, 44, 45, 172
IRQ mode 32, 34, 37, 42
K
KEEP 145, 215
L
labels 49, 52
local 52
LAND 155
layout of memory see memory (laying out)
LCL 51, 150, 163
LDC 105-108, 207, 210, 211-212
LDF 136-137, 210
LDM 91-98, 148, 200, 202-203, 207, 208, 210
LDR 86-90, 120, 200, 206, 212-213
LDRB see LDR
LEADR 215

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

LEAF 145

LEFT 154

LEN 153

LEOR 155

LFM 137-138

LGN 139-141

libraries 7

Link 2, 7, 24, 49
Debug 9
Module 177

link registersee LR

listings 14-16, 158
options 146

literals 120, 145
floating point 137

LNK 17

LNOT 154

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

LOG 139-141
Logical Shift Leftsee LSL
Logical Shift Righsee LSR
LOR 155
LR 33, 35, 41, 65-67, 171, 175
LSL 57, 60
LSR 57, 61
LTORG 137, 145
M
MACRO 162-163
macros 159, 161-167, 215
labels 52
names 11
nesting 165
parameters 162, 164—-165
prototype statements 162—-163
Make 7, 22, 24

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

MCR 109-111
memory
initialising 143-144
interface 30
laying out 144
reserving 143
MEND 146, 163
menussee application (menu name)
MEXIT 164
MLA 81-83, 205, 209
MNF 139-141
MOD 154
modes 32, 36, 37, 171-172
changing 35, 73, 80, 201
flags 35, 41
privilegedsee privileged modes
see also mode names

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

modules 7, 40, 175-177

MOV 69-76, 118, 119, 120

MRC 109-111

MRS 77-80

MSR 77-80

MUF 139-141

MUL 81-83, 200, 205, 209

multiplication 195-196, 197
see also instructions (multiplies)

multiplier 29, 31

MVF 139-141

MVN 69-76, 118, 119, 120

N

N flag 35, 72, 79-80

Negative flagsee N flag

NOFP 135, 147

NOINIT 50

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

no-op 199, 205
NOT 154
NRM 139-141
numberssee constants
@)
ObjAsm 2, 7-25
Auto run 20
Auto save 20
C strings 11
cacheing 12
command line 18, 22-25
Command line (menu option) 10
CPU 11
Cross reference 16
Debug 9
Define 12
Display 20

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

Errorstofile 14

Help 20

icon bar menu 20
Include 9

Length 16

Listing 14

MaxCache 13

No APCS registers 10
NoCache 12

NoTerse 15, 158
Options 20

Others 18

output 18-19

Run 8, 9, 10

Save options 20
SetUp dialogue box 7, 8-9
SetUp menu 8

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

Source 8, 9
Suppress warnings 13
Throwback 9
Upper case 11
Width 15
Work directory 17
object files 7, 21, 49, 145
operators 153-155
addition and logical 155
binary 154-155
boolean 155
multiplicative 154
precedence 153, 154
relational 155
shifts 154
string manipulation 154
unary 153-154

Replace this page with a

monochrome copy of the
front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

OPT 146, 151

OR 155

ORG 51, 119, 145, 215

origin 145

ORR 69-76
OS_ChangeEnvironment 171
OS_ClaimProcessorVector 172
output 18, 20

Overflow flagsee V flag

P

PC 33, 34-35, 36, 38, 39, 41, 65-67, 74, 89, 110, 147, 151, 171, 201, 202, 205, 206, 208-20
PIC 50

pipeline 30, 31, 56, 66, 201, 211
POL 139-141

POW 139-141

prefetch aborts 43, 204
pre-veneers 171

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

PrintLib example 179-181
privileged modes 32, 36, 39
user bank transfer 96, 202—203
processor configuratiorsee configurations
processor modesxe modes
processor status registee PSR
program countesee PC
PSR 34-35, 38, 41, 56, 57, 66, 72, 82, 85, 171, 201, 202
R
R13see SP
R14see LR
R15see PCand PSR
random numbers 194
RDF 139-141
READONLY 50
REENTRANT 50
registers 31, 32-35, 39-40

Replace this page with a

monochrome copy of the
front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

bank organisation 33, 39
floating point 122
floating point control 122, 132—-134
floating point status 122, 128-132
names 10, 24, 49, 149
see also register names
REL 50
relocatable modulesee modules
repetitive assembly 160
reserving memorgee memory (reserving)
resets 45
RFC 139
RFS 139
RIGHT 154
RISC OS 169-182
RLIST 147
RMF 139-141

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

RN 149

Rn and rn see registers (names)
RND 139-141

ROL 154

ROR 63, 154

Rotate Rightee ROR

Rotate Right with Extengee RRX
rotates 57-64, 74

ROUT 52

RPW 139-141

RRX 57, 64

RSB 69-76

RSC 69-76

RSF 139-141

S

saved program status registee SPSR
SBC 69-76, 118

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

semaphores 99
SET 12, 51, 150, 163
SFM 137-138
shift types 59-64
shifts 57-64, 73
amount 59
mnemonics 59
SHL 154
SHR 154
sign extension 196
SIN 139-141
sl see registers (names)
SMLAL 84-85, 197
SMULL 84-85, 197
software interrupts 44, 46
source files 146
line length 49

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

SP 33

SPSR 36, 39, 40, 41, 77-80
SQT 139-141

SrcEdit 19

stack pointesee SP
stack-limit checking 24
stacks 92-95, 137

STC 105-108, 207, 210
STF 136-137, 210

STM 91-98, 148, 202-203, 207, 209, 210
STR 86-90, 151, 153, 206
STRBsee STR

stringssee constants
STRONG 215

SUB 69-76, 118, 119
subroutines 66

SUBT 147

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

SUF 139-141
summary 19, 20
Supervisor modeee SVC mode
SVC mode 32, 34, 37, 42, 43, 44, 45, 101, 175
SWI 101-102, 104, 175, 204
SWP 99-100, 207
symbols 16, 51, 120, 145, 149-151
external 143
length 51
local 145
T
TAN 139-141
TEQ 35, 69-76, 79, 201
TEQPsee TEQ
throwback 19
titles 147
tools 5-25

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

common features 7, 19
TRUE 53, 151
TST 35,6976, 79, 201
TSTPsee TST
TTL 147
typographic conventionsee conventions
U
UMLAL 84-85, 197
UMULL 84-85, 197
UND mode 37, 39, 45
undefined instructionsee instructions (undefined)
Undefined modeee UND mode
URD 139-141
User mode 32, 35, 37
Vv
V flag 35, 72, 79-80
VAR 151

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

variables 10, 12, 149-151
global 150
local 150, 163
see also variable names
vn see registers (names)
w
warnings 13
WEAK 145
WEND 160, 164
WFC 139
WFS 139
WHILE 160, 164
work directory 17
Z
Z flag 35, 72, 79-80
Zero flagsee Z flag

Replace this page with a
monochrome copy of the

front cover for the guide

Last changed: 21 October, 1999 12:17 pm
Printed: 21 October, 1999 12:17 pm

Reader’'s Comment Form

Acorn Assembler, Issue 1
0484,233

We would gresatly appreciate your comments about this Manual, which will be taken into account for the next
issue:

Did you find the infor mation you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

How would you classify your experience with computers?

Used computersbefore Experienced User Programmer Experienced Programmer

Cut out (or photocopy) and post to: Your name and address:
Dept RC, Technical Publications
Acorn Computers Limited
Acorn Housg, Vision Park

HIStOI’], Cambrldge CB44AE This information will only be used to get in touch with you in case we wish to explore your
England comments further

	Acorn Assembler
	AMR draft (Version 10.06)

	1 Introduction
	Installation
	Assembler tools
	Objasm

	This user guide
	Note on program examples

	Conventions used in this manual

	Part�1 – Using the assembler
	2 ObjAsm
	Starting ObjAsm
	The SetUp dialogue box
	Include
	Options

	The SetUp menu
	The command line
	Controlling syntax
	Predefining a variable
	Controlling cacheing
	Handling warnings and errors
	Listings
	Choosing your work directory
	Specifying other command line options

	ObjAsm output
	ObjAsm icon bar menu
	Example ObjAsm session
	ObjAsm command lines
	Command line options available from the desktop
	Command line options not available from the desktop

	Part�2 – Assembly language details
	3 The ARM CPU
	Introduction
	Bus widths
	Instruction set
	Pipelining
	Memory interface
	Data types

	Block diagram of core
	Figure 3.1� ARM Core block diagram

	26�bit architecture
	Processor modes
	Registers
	Figure 3.2� 26�bit register organisation

	Register R15
	Figure 3.3� The Program Counter (PC) and Process Status Register (PSR)

	Register R14
	Changing operating modes

	32�bit architecture
	New features in ARM6
	Processor configuration
	Processor modes
	The 26�bit processor modes

	RISC�OS processor configuration and modes
	Registers
	Figure 3.4� 32�bit register organisation

	The CPSR and SPSR registers
	Figure 3.5� The Current Process Status Register (CPSR)

	Exceptions
	Introduction
	FIQ (Fast interrupt request)
	1 Save R15 in R14_fiq, and (for 32�bit configuration ARMs) save the CPSR in SPSR_fiq.
	2 Force the mode bits to FIQ mode and set the F and I bits in the PSR.
	3 Force the PC to fetch the next instruction from address &1C.

	IRQ (Interrupt request)
	1 Save R15 in R14_irq, and (for 32�bit configuration ARMs) save the CPSR in SPSR_irq.
	2 Force the mode bits to IRQ mode and set the I�bit in the PSR.
	3 Force the PC to fetch the next instruction from address &18.

	Address exception trap
	1 If the data transfer was a store, force it to load. (This protects the memory from spurious wri...
	2 Complete the instruction, but prevent internal state changes where possible. The state changes ...
	3 Save R15 in R14_svc.
	4 Force the mode bits to SVC mode and set the I�bit in the PSR.
	5 Force the PC to fetch the next instruction from address &14.

	Abort
	Abort during instruction prefetch
	1 Save R15 in R14_svc, or (for 32�bit configuration ARMs) save R15 in R14_abt and save the CPSR i...
	2 Force the mode bits to SVC mode or (for 32�bit configuration ARMs) ABT mode and set the I�bit i...
	3 Force the PC to fetch the next instruction from address &0C.

	Abort during data access
	1 Save R15 in R14_svc, or (for 32�bit configuration ARMs) save R15 in R14_abt and save the CPSR i...
	2 Force the mode bits to SVC mode or (for 32�bit configuration ARMs) ABT mode and set the I�bit i...
	3 Force the PC to fetch the next instruction from address &10.

	Abort during an internal cycle
	Using aborts to implement virtual memory systems

	Software interrupt
	1 Save R15 in R14_svc, and (for 32�bit configuration ARMs) save the CPSR in SPSR_svc.
	2 Force the mode bits to SVC mode and set the I�bit in the PSR.
	3 Force the PC to fetch the next instruction from address &8.

	Undefined instruction trap
	1 Save R15 in R14_svc, or (for 32�bit configuration ARMs) save R15 in R14_und and save the CPSR i...
	2 Force the mode bits to SVC mode or (for 32�bit configuration ARMs) UND mode and set the I�bit i...
	3 Force the PC to fetch the next instruction from address &4.

	Reset
	1 Save R15 in R14_svc, and (for 32�bit configuration ARMs) save the CPSR in SPSR_svc.
	2 Force the mode bits to SVC mode and set the F and I�bits in the PSR.
	3 Force the PC to fetch the next instruction from address &0.

	Vector summary
	Exception Priorities
	1 Reset (highest priority)
	2 Address exception, Data abort
	3 FIQ
	4 IRQ
	5 Prefetch abort
	6 Undefined Instruction, Software interrupt (lowest priority)

	Interrupt latencies

	4 ARM assembly language
	General
	Input lines
	AREAs
	Area attributes

	ORG and ABS
	Symbols
	Labels
	Local labels
	References to local labels

	Comments
	Constants
	Numbers
	Strings
	Boolean

	The END directive

	5 CPU instruction set
	The condition field
	Figure 5.1� The condition field
	Conditional instruction sequence

	Instruction timings
	The barrel shifter
	Unshifted register
	Register shifted by a constant amount
	Value resulting from rotating register and carry bit one bit right
	Register shifted by n bits
	8-bit constant rotated right by 2n bits
	8-bit constant rotated right by 2n bits and specified explicitly

	Shift types
	Mnemonics
	Specification of the shift amount
	Instruction specified shift amount
	Register specified shift amount

	Logical shift left, or arithmetic shift left
	Figure 5.2� A logical or arithmetic shift left by 5
	Special cases

	Logical shift right
	Figure 5.3� A logical shift right by 5
	Special cases

	Arithmetic shift right
	Figure 5.4� An arithmetic shift right by 5
	Special cases

	Rotate right
	Figure 5.5� A rotate right by 5
	Special cases

	Rotate right with extend
	The form of the shift field which might be expected to give ROR�#0 is used to encode a special fu...
	Figure 5.6� A rotate right with extend

	Coprocessor instructions
	Branch, Branch with Link (B, BL)
	Instruction format
	Assembler syntax
	Synopsis
	The link bit
	32�bit operation
	Calculating the offset
	The link bit

	Examples

	Data processing
	Instruction format
	Assembler syntax
	MOV and MVN – single operand
	CMN, CMP, TEQ and TST – no result written
	ADC, ADD, AND, BIC, OR, ORR, RSB, RSC, SBC, SUB – two operands
	Parameters
	Opcodes

	Synopsis
	The S�bit
	Logical operations (AND, BIC, EOR, MOV, MVN, ORR, TEQ, TST)
	Arithmetic operations (ADC, ADD, CMP, CMN, RSB, RSC, SBC, SUB)

	The P�flag
	Shifts
	Figure 5.7� Shifts

	Immediate operand rotates
	Using R15 as the destination or operand
	Using R15 as the destination
	Using R15 as an operand

	32�bit operation
	TEQP, TSTP, CMPP and CMNP
	Using R15 as the shift register
	Using R15 as the destination

	Examples

	PSR transfer (MRS, MSR)
	Instruction format
	Assembler syntax
	Synopsis
	Operand restrictions
	Reserved bits
	Examples

	Multiply and Multiply-Accumulate (MUL, MLA)
	Instruction format
	Assembler syntax
	Synopsis
	PSR flags
	Operand restrictions
	32�bit operation
	Examples

	Multiply Long and Multiply-Accumulate Long (UMULL,�SMULL,�UMLAL,�SMLAL)
	Instruction format
	Assembler syntax
	Synopsis
	PSR flags
	Operand restrictions
	Examples

	Single data transfer (LDR, STR)
	Instruction format
	Assembler syntax
	Synopsis
	Offsets and auto-indexing
	Shifted register offset
	Bytes and words
	Use of R15
	Address exceptions
	Data Aborts
	32�bit operation
	Examples

	Block data transfer (LDM, STM)
	Instruction format
	Assembler syntax
	Addressing mode names

	Synopsis
	The register list
	Addressing modes
	Figure 5.8� Post-increment addressing
	Figure 5.9� Pre-increment addressing
	Figure 5.10� Post-decrement addressing
	Figure 5.11� Pre-decrement addressing

	Transfer of R15
	Forcing transfer of the user bank
	Use of R15 as the base
	Inclusion of the base in the register list
	When the base register is in the list of registers
	1 write lowest-numbered register to memory
	2 perform the write back
	3 write other registers to memory in ascending order.

	Address exceptions
	Data Aborts
	Aborts during STM instructions
	Aborts during LDM instructions

	32�bit operation
	Examples

	Single data swap (SWP)
	Instruction format
	Assembler syntax
	Synopsis
	Bytes and words
	Use of R15
	Data aborts
	Examples

	Software interrupt (SWI)
	Instruction format
	Assembler syntax
	Synopsis
	Return from the supervisor
	Comment field
	32�bit operation
	Examples

	Coprocessor data operations (CDP)
	Instruction format
	Assembler syntax
	Synopsis
	The coprocessor fields
	Restriction
	Examples

	Coprocessor data transfers (LDC, STC)
	Instruction format
	Assembler syntax
	Synopsis
	The coprocessor fields
	Addressing modes
	Address alignment
	Use of R15
	Address exceptions
	Data aborts
	32�bit operation
	Examples

	Coprocessor register transfers (MCR, MRC)
	Instruction format
	Assembler syntax
	Synopsis
	The coprocessor fields
	Transfers to R15
	Transfers from R15
	32�bit operation
	Transfers to R15
	Transfers from R15

	Examples

	Undefined instructions
	Instruction format
	Assembler syntax
	Synopsis

	Instruction set summary
	Instruction formats
	Assembler syntax
	Parameters for the above, alphabetically sorted

	Synopsis

	Further instructions
	Extended range immediate constants
	Synopsis

	The ADR instruction
	Assembler syntax
	Synopsis

	The ADRL instruction
	Assembler syntax
	Synopsis

	Literals
	Assembler syntax
	Synopsis

	6 Floating point instructions
	Programmer’s model
	Available systems
	Precision
	Floating point number formats
	IEEE Single Precision (S)
	Figure 6.1� Single precision format

	IEEE Double Precision (D)
	Figure 6.2� Double precision format

	Double Extended Precision (E)
	Figure 6.3� Double extended precision format

	Packed Decimal (P)
	Figure 6.4� Packed decimal format

	Expanded Packed Decimal (EP)
	Figure 6.5� Expanded packed decimal format

	Floating point status register
	Figure 6.6� Floating point status register byte usage
	System ID byte
	Exception Trap Enable Byte
	Figure 6.7� Exception trap enable byte

	System Control Byte
	Figure 6.8� System control byte
	ND – No denormalised numbers bit
	NE – NaN exception bit
	SO – Select synchronous operation of FPA
	EP – Use expanded packed decimal format
	AC – Use alternative definition for C flag on compare operations

	Cumulative Exception Flags Byte
	Figure 6.9� Cumulative exception flags byte
	IVO – invalid operation
	DVZ – division by zero
	OFL – overflow
	UFL – underflow
	INX – inexact

	Floating Point Control Register
	The FPPC system
	Figure 6.10� FPCR bit allocation in the FPPC system

	The FPA system
	Figure 6.11� FPCR bit allocation in the FPA system

	Assembler directives and syntax
	Floating point number input
	NOFP directive
	Floating point register equating: FN
	Floating point store loading directives

	The instruction set
	Floating point coprocessor data transfer
	Floating point literals

	Floating point coprocessor multiple data transfer
	Floating point coprocessor register transfer
	Floating point coprocessor data operations
	Floating point coprocessor status transfer

	Finding out more…

	7 Directives
	Storage reservation and initialisation – DCB, DCW and DCD
	Floating point store initialisation – DCFS and DCFD
	Describing the layout of store – ^ and #
	Organisational directives – END, ORG, LTORG and KEEP
	Links to other object files – IMPORT and EXPORT
	Links to other source files – GET/INCLUDE
	Diagnostic generation – ASSERT and !
	Dynamic listing options – OPT
	Titles – TTL and SUBT
	Miscellaneous directives – ALIGN, NOFP, RLIST and ENTRY

	8 Symbolic capabilities
	Setting constants
	Local and global variables – GBL, LCL and SET
	Variable substitution – $
	Built-in variables

	9 Expressions and operators
	Unary operators
	Binary operators
	Multiplicative operators
	String manipulation operators
	Shift operators
	Addition and logical operators
	Relational operators
	Boolean operators

	10 Conditional and repetitive assembly
	Conditional assembly
	Simple use of the IF and ENDIF directives
	Simple use of the IF, ELSE and ENDIF directives
	Conditional assembly and the NoTerse option
	An example

	Repetitive assembly

	11 Macros
	Syntax
	Local variables
	MEXIT directive
	Default values
	Macro substitution method
	Nesting macros
	A division macro

	Part 3 – Developing software for RISC�OS
	12 Exception handling
	RISC�OS processor configuration and modes
	The pre-veneers
	Entering 32�bit modes

	Claiming the hardware vectors
	Writing to the FIQ vector

	13 Writing relocatable modules in assembler
	Assembler directives
	Example

	14 Interworking assembler with C
	Examples
	PrintLib
	Compiling the CTestPrLib example
	1 Build the PrintLib library; you’ll find instructions for this in the section Assembler example ...
	2 Start CC if you’ve not already got it loaded.
	3 Drag the CTestPrLib file to the CC icon, which will display its Setup dialogue box with CTestPr...
	4 Add the full pathname of the PrintLib library to the list of Libraries on the Setup menu.
	5 Click on Run to compile and link the program.
	6 Save the program to disc.

	Compiling and linking CTestPrLib in separate stages

	CStatics

	Part 4 – Appendixes
	Appendix�A: Changes to the assembler
	Appendix�B: Error messages
	Appendix�C: Example assembler fragments
	Using the conditional instructions
	Using conditionals for logical OR
	Absolute value
	Combining discrete and range tests
	Division and remainder

	Pseudo-random binary sequence generator
	Multiplication by a constant
	Multiplication by 2n (1,2,4,8,16,32…)
	Multiplication by 2n+1 (3,5,9,17…)
	Multiplication by 2n-1 (3,7,15…)
	Multiplication by 6
	Multiply by 10 and add in extra number
	General recursive method for Rb := Ra¥C, C a constant

	Loading a word from an unknown alignment
	Sign/zero extension of a half word
	Return setting condition codes
	Full multiply

	Appendix�D: Warnings on the use of ARM assembler
	Restrictions to the ARM instruction set
	Instructions and code sequences to avoid
	TSTP/TEQP/CMPP/CMNP: Changing mode
	LDM/STM: Forcing transfer of the user bank (Part 1)
	LDM: Forcing transfer of the user bank (Part 2)
	SWI/Undefined Instruction trap interaction
	Undefined instruction/Prefetch abort trap interaction
	Single instructions to avoid
	Any instruction that uses the 1111 condition code
	Data processing
	Multiply and multiply-accumulate
	Single data transfer
	Block data transfer
	Single data swap
	Coprocessor data transfers
	Undefined instructions
	Register access after an in-line mode change
	1 TSTP|TEQP|CMPP|CMNP«cond» Rn,Op2
	2 any instruction that uses R8-R14 in its first cycle.

	Register access after an LDM that forces user mode data transfer
	1 LDM«cond»<FD|ED...|DB> Rn,Rlist^ where Rlist does not include R15
	2 any instruction that uses R8-R14 in its first cycle.

	Other points to note
	Use of R15
	STM: Inclusion of the base in the register list
	MUL/MLA: Register restrictions
	LDM/STM: Address Exceptions
	LDC/STC: Address Exceptions
	LDC: Data transfers to a coprocessor fetch more data than expected

	Static ARM problems
	Unexpected Static ARM2 behaviour when executing a PC relative LDR with writeback
	Case 1: LDR Rd,[PC,#expression]!
	Case 2: LDR Rd,[PC],#expression

	Appendix�E: Support for AAsm source
	The -ABSolute option
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

