

Stand Alone Generator
& Maths Functions

User Guide

Beebug

Copyright © Beebug Limited 1987

All rights reserved

This user guide was written by John Wallace and David Allison.

No part of this product may be reproduced in whole or part by any means
without written permission of the publisher. Unauthorised hiring, renting,
loaning, public performance or broadcasting of this product or its constituent
parts is prohibited.

While every care is taken, the publisher cannot be held responsible for any
errors in this product, or for the loss of any data or consequential effects from
the use of this package.

FIRST EDITION 1987

Published by Beebug Limited, Dolphin Place, Holywell Hill,
 St. Albans, Herts. ALl lEX, England. Telephone (0727) 40303

Contents

Section 1 Introduction 4

Section 2 Getting Started 5

Section 3 Stand Alone Generator 6
 The STANDALONE qualifier 6
 Running the object code 6
 Setting the origin 7
 The DEBUG qualifier 7
 Passing arguments to C 7
 Run-time qualifiers 8
 Error messages 8

Section 4 Maths Functions 9
 Header file h.math 9
 Example program 15

Appendices
 Appendix A Summary of Maths Functions 16

1. Introduction

The accompanying dual-format disc contains the Beebug C Stand Alone
Generator, and a new version of the library rtlib containing a range of maths
functions.

Normally the Beebug C Linker produces code which is only executable from
within C, by the run-time interpreter. This means that in order to execute
programs produced by the compiler, the Beebug C ROMs must be installed in
the computer. The Stand Alone Generator provides the facility to produce
code which may be run as a 6502 machine-code program without any special
hardware or firmware requirements. This allows C programs to be executed
from any language, and on any BBC or Master computer even if C is not
installed (memory permitting). The Linker was designed with this facility in
mind, and it is only necessary to have a special file called rtsys in the current
library directory in order to use it.

The new library rtlib contains the following additional mathematical
functions:

SIN COS TAN LOG LOGlO EXP POW RAD DEG FTOI IPOW
SQRT LDEXP MODF CElL FABS FLOOR FMOD FPEXP ITOF

A full description of each function is given in section 4 of this user guide. To
use these new functions the new files rtlib and h.math must replace the earlier
versions on your program disc.

2. Getting Started

The Stand Alone Generator disc contains the following files:
 rtsys - Stand Alone Generator (Run Time SYStem)
 rtlib - new function library (Run Time LIBrary)
 h.math - new mathematics header file
 c.sinwave - mathematics example program

They should be copied to your C program disc, replacing the earlier versions
(in the case of rtlib and h.math), Please note that rtsys and rtlib must be copied
into the library directory of your C program disc (this is usually $).

Please note that the Stand Alone Generator disc is produced using a special
dual-format, and cannot be backed-up in the usual way with *BACKUP. To
make a copy of the disc use the *COPY command to copy all files in
directories $, H and C.

3. Stand Alone Generator
The STANDALONE qualifier
To produce C stand-alone code, simply compile the program in the usual way,
then link using the STANDALONE qualifier. For example:

COMPILE welcome
LINK/STANDALONE welcome

will produce stand-alone code for the program welcome. As usual the
executable code will be stored in directory E, but will be approximately 6.5K
longer than that produced by a normal LINK command. Please note that the
file rtsys must be present in the the current library directory. Further details
about the LINK command and its qualifiers may be found in the C user guide
on page 25.

Running the object code
The code produced by the Stand Alone Generator may now be executed as a
machine code program:

*RUN e.welcome

The program will execute exactly as it would if executed by the Beebug C RUN
command. You may like to arrange things such that the executable code is
saved in the $ directory as follows:

LINK/ STANDALONE/EXECUTABLE$ welcome welcome

or using abbreviations:

L/S/E=$.welcome welcome

The code produced can be executed by typing:

*RUN welcome

If the library directory is set to $ (which it usually is), then executing the
program can be simplified to:

*welcome

Setting the origin
The load and execute address of the executable code is set by default to
OSHWM (PAGE), but may be set as required by using the optional qualifier
ORIGIN (see user guide page 28). For example, to produce executable code
that loads at &2500, enter:

LINK/STANDALONE/ORIGIN=&2 500 welcome

This feature is useful for producing code that will run on different systems
which may have different PAGE settings. It may also be used to reserve space
in the memory map for machine-code programs etc. In the example above,
memory between PAGE and &2500 is free for other uses.

The DEBUG qualifier
The NODEBUG qualifier removes debugging information from object files
before generating executable code. This has the effect of producing more
compact code, at the expense of detailed error messages. In most programs,
especially thoses containing a lot of functions, a fairly significant amount of
memory can be saved. The qualifier is used as follows:

LINK/STANDALONE/NODEBUG welcome

or simply:

L/S/NOD welcome

Further details about the DEBUG qualifier may be found in the C user guide
pages 22 and 28.

Passing arguments to C
A number of string arguments may be passed to the program by listing them
after the name of the executable code. For example:

*RUN argtest argl arg2 arg3 ... argn

will pass the strings argl, arg2, arg3 etc. to the C program argtest. As
usual the arguments are passed to the array argv, and the number of
arguments to the integer argc. An example showing how a C program
interprets these arguments is given on page 30 of the C user guide.

Run-time qualifiers
All the usual qualifiers to the RUN command are available for the stand-alone
code, except that they are identified by a slash character (/) followed by only a
single letter. Thus, the qualifiers /TRACEBACK, /INPUT, /OUTPUT and
/ERROR are specified by /T, /I, /0 and /E. The following table summarises
the run-time qualifiers.
 optional qualifiers default setting
 /[NO]T no traceback
 /INPUT input from keyboard
 /[NO]0 output to VDU
 /[NO]E error stream to VDU

Effectively, a qualifier is a special case of a program parameter which is
intercepted by the run-time system and is not assigned to the argv array. For
example:

*utilityl /O=newfile red green blue

will execute the program utilityl, passing the arguments red, blue and
green. The output stream is re-directed by the /0 qualifier to the file
newfile. Further details about the run-time qualifiers can be found in the C
user guide, pages 31-34.

Error messages
There are two error messages produced by the stand-alone run-time system
which are not present normally in Beebug C.

Input file not found
The file specified by the /1 qualifier cannot be found.

Bad qualifier
A invalid qualifier has been found on the command line.

4. Maths Functions
Header file h.math
The Stand Alone Generator disc contains a new header file called h.math
which declares the maths functions in the new library rtlib. Both these files
should replace the earlier versions on your program disc. For completeness,
the list below includes the constants HUGE_VAL and PI, which were in the
original library and are also documented in the C user guide.

ceil
Type :function
Synopsis :#include <h.math>
 double ceil(double x);
Description :The ceil function returns the smallest integer not less than x,
expressed as a double.

cos
Type :function
Synopsis :#include <h.math>
 double cos (double x);
Description :The cos function computes the cosine of x (measured in
radians). A large magnitude argument may yield a result with little or no
significance. The cos function returns the cosine value.

deg
Type :function
Synopsis :#include <h.math>
 double degidouble x);
Description :The deg function converts the floating-point number x from
radian measure to degrees.

exp
Type :function
Synopsis :#include <h.math>
 double exp(double x);
Description :The exp function computes the exponential function of x. This is
the value of the mathematical constant e (2.718282) raised to the power of
x. A range error error occurs if the value of x is too large (returns 0 if x is
negative, and HUGE_VAL if positive).

fabs
Type :function
Synopsis :#include <h.math>
 double fabs(double x);
Description :The fabs function computes the absolute value of the floating-
point number x.

floor
Type :function
Synopsis :#include <h.math>
 double floor(double x);
Description :The floor function computes the largest integer not greater
than x.

fmod
Type function
Synopsis :#include <h.math>
 double fmod(double x, double y);
Description :The fmod function computes the floating-point remainder of
x/y. The result is a number with the same sign as x, and a magnitude less than
y.

frexp
Type :function
Synopsis :#include <h.math>
 double frexp(double value, mt *exp);
Description :The frexp function breaks a floating-point number into a
normalised fraction, and an integral power of 2. It stores the integer in the mt
object pointed to by exp. It returns the value x, such that x is a double with
magnitude in the range 0.5 to 1, or zero, and value equals x times 2 raised to
the power *exp. If value is zero, both parts of the result are zero.

ftoi
Type :function
Synopsis :#include <h.math>
 int ftoi(double x);
Description :The ftoi function converts the floating-point number x to an
integer.

HUGE_VAL
Type :macro
Synopsis :#include <h.math>
 #define HUGE_VAL l.7014118e38
Description :Expands to the positive double expression 1.7014118e38. This
value is returned by maths functions if a range value occurs.

Ipow
Type :function
Synopsis :#include <h.math>
 double ipow(double x, int y);
Description :The ipow function computes x raised to the power y, where x is
a floating-point number and y is an integer, This function is more efficient
than the pow function, and should be used when y is an integer.

itof
Type :function
Synopsis :#include <h.math>
 double itof(int x);
Description :The itof function converts the integer x to floating-point
representation.

ldexp
Type :function
Synopsis :#include <h.math>
 double ldexp(double x, int exp);
Description :The ldexp function multiplies the floating-point number x by
the integral 2exp. It returns the value of x times 2 raised to the power exp.

log
Type :function
Synopsis :#include <h.math>
 double log(double x);
Description :The log function computes the natural logarithm of x. A
negative argument will result in the value HUGE_VAL being returned.

loglO
Type :function
Synopsis :#include <h.math>
 double loglO(double x);
Description :The loglO function computes the base-ten logarithm of x. A
negative argument will result in the value HUGE_VAL being returned.

modf
Type :function
Synopsis :#Include <h.math>
 double modf (double value, double *lptr);
Description :The modf function breaks the argument value into integral and
fractional parts, each of which has the same sign as the argument. It stores the
integral part as a double in the object pointed to by iptr. It returns the signed
fractional part of value.

PI
Type macro
Synopsis :#include <h.math>
 #deflne PI 3.141593
Description :Expands to the value of PI.

pow
Type :function
Synopsis :#Include <h.math>
 double pow(double x, double y);
Description :The pow function computes x raised to the power of y, where
both x and y are floating point numbers.

rad
Type :function
Synopsis :#include <b.rnath>
 double rad(double x);
Description The rad function converts the floating-point number x from
degrees to radian measure.

sin
Type :function
Synopsis :#include <h.math>
 double sin(double x);
Description :The sin function computes the sine of x (measured in radians).
A large magnitude argument may yield an inaccurate result.

sqrt
Type :function
Synopsis :#include <h.math>
 double sqrt(double x);
Description :The sqrt function computes the non-negative square root of x
using the Newton-Ralphson method of approximations. Zero is returned if is
negative.

tan
Type :function
Synopsis :#include <h.math>
 double tan(double x);
Description :The tan function computes the tangent of x (measured in
radians). A large magnitude argument may yield an inaccurate result. A range
error occurs if the value is not computable (e.g. x = P1/2 radians). In this case
the value of the macro HUGE_VAL is returned.

Example program
The following program illustrates the use of two of the above functions by
drawing a sine wave on the screen. The source code for this program is
supplied on disc, and is called c. sinwave.

/* Beebug C Sine Wave */

#include <h.math>
#include <h.stdlib>

void main (void)
{

int i;

mode (4);
for (i = 0; ± < 1280; i++)

plot (69, 1, sin(rad(i)) * 500 + 500);
}

To produce stand-alone code for this program type:

COMPILE sinwave
LINK/S/NOD/E=$. sinwave sinwave

The program can now be run using:

*s inwave

This assumes that the current directory is $.

Note that the above from relies on the function prototype facilities of Beebug
C, to enable conversions from int to float for the rad function, and from
float to int for the plot function. For this reason, it will not work on other
C systems which do not support the ANSI/ISO function prototype extension.

Appendix A

Summary of Maths Functions
Listed below is an alphabetical list of all the maths functions and macros
available in Beebug C. Each function or macro is listed together with its file
type, the header file which declares it, and a brief description.

Function Type Header Description Page

ceil f h.math return the smallest integer 9

cos f h.math return the cosine value 9

deg f h.math convert from radian measure to degrees 9

exp f h.math compute the exponential function 10

fabs f h.math compute absolute value of FP number 10

floor f h.math return the largest integer 10

fmod f h.math compute the floating-point remainder 10

frexp f h.math break number into fraction and power 11

ftoi f h.math convert FP number to an integer 11

HUGE_VAL rn h.math the maximum positive double 11

ipow f h.math compute an integer power 11

itof f h.math convert integer to floating-point 12

ldexp f h.math multiply FP number by 2exp 12

log f h.math compute the matural logarithm 12

log10 f h.math compute base-lO logarithm 12

modf f h.math break riumber into integer and fraction 13

PI rn h.math constant PI (3.141593) 13

pow f h.math raise FP number to FP power 13

rad f h.math convert from degree measure to radians 13

sin / h.math compute the sine value 14

sqrt f h.math compute the square root value 14

tan f h.math compute the tangent value 14

