7’ The best name in memory

Cumana Ltd., Pines Trading Estate, Broad Street, Guildford, Surrey, England, GU3 3BH. Tel: Guildford (0483) 503121. Telex: 859380.



) - 0S-9/68000 . - .
: OPERATING SYSTEM; TR
TECHN!CAL MANUAL e o

Copyngm“ 1984, 1585, 1986'. eroware Syst.ems Corporation, AH Rights Rgscrved Reproduction of thk§

v &)cumeut 4in psrt or whole, by any weans;’ electncal or othermse is prohihltod except by wﬂtten pcrmissxo
“from Mltmware Systems Cor'pofanon Y

The mformatlon contained herenns béheved 1o be.accurate as of the date of puhhcauoﬁ hoWever Mu:roware R

-~ will net be liable for any damages.:ncludmg indirect or consequential, from use of the ©S:9 aperating system - o -

. or rehqnce «on the accuracy of this* docnrnentanon The ‘information mntam«d herem m subject to chsnge BE
% . without notice. .

.. 05-99 isa traoemark of Microware System Corp. and Motarola inc. .. ) -
k’ —‘f.-w 68000° i¢ a trademark of Microwar'e Systems Corp.” ’
N1X® i3 a teecomark of Bell Laboratories:

Revigion, l'l

. Pubhcanon date: June 1987 ... .
: Puhlxmtton Editor: Walden Milers [

Mlcmwue Systems Corporatmn L
1900 N:W.. I 14th Streef’
' Des Moines, Igwa 50322

(515)224-1929 @ - , B ' ' _ PMN-OST68-2.111



L

¢

\

-

R e

s

r_eﬂg‘ct‘st:?.l of the (S-9/68000 operating system, "




PREFACE

AN OVERVIEW

08S-9/68000 is an advanced multitasking, real-time operating system for the 68000
family of microprocessors. 0S-9 is well suited for a wide range of applications on 68000
computers of almost any size. It's main features are:

- Extensive management of all system resources: memory, /O and CPU time.
- A powerful user-friendly interface.

-True multiprogramming operétion.

- An erxpandable, device independent unified /O system.

- Full support for modular ROMed software.

This manual is intended to provide the information necessary to install, maintain,
expand and write assembly language software for OS-9 systems. It assumes that the
reader is familiar with the 68000 architecture and assembly language.

High Performance

The operating system has extremely high throughput. This is primarily due to two
factors:

1. The system architecture is extremely efficient, relying on re-entrant coding and
careful memory management infkad of disk-intensive functions.

2. The kernel, VO system modules and device drivers are carefully optimized
assembly-language system programs. Other parts of the system that are not speed
critical such as the Shell and the command set are written in the C language.

Modularity

0S-9 is a highly modular operating system. It has been designed so that each module
provides specific functions. The modularity of OS-9 allows individual modules to be
included or deleted in the system when OS-9 is configured for a specific computer
(depending on the functions that the operating system is to perform). For example, a
small, ROM based control computer does not need the disk related OS-9 modules.
The oyeratmg system also has extensive support for modular software techniques. It
..can be easily customized-ar.reconfigured by users,-It.can. also be readnly configured for use
on “dlmost any type. of system, from smali’smgle—board computers Up-te-large .multiuser

systems. 0S-9 is-alse. ROMable ana- mexwwyg_support for ROMnd applicatlon
software, :



0S9/68000 OPERATING-SYSTEM TECHNICAL MANUAL

UNKX and OS—9/6809 Compat.ibility

The OS- 9/68000 operatmg system is highly compatible with the extensive base of
0S-9/6809 software written in languages such as C and Microware Basic. Because 0S-9's
system interfaces are very similar to UNIX, 'most UNIX application software w:;zten inC
can be complled and run on 08-9/68000 with very minimal adaptation; it any.

[

1o

- o
v
S

L
<
<d
S
v

Lo

N R N T

AR SRR VAT
T e

.- "
Lo Bz
Sl 1
1
}‘
0
s
. Rt
"& v
e oL L a1l
3i
O I 1igss
Se o
e . asc .'..n
{ Lt i ; v
’ ro2
o
L
F 1
. B O - R ST
908 DECEVESNRTY B PN AR
. ot . [
HEel I NN e
[REY Lo ’
W
2 osan 0T g N

(



Preface PE
hh’qddcﬁoh ) —’O
. ‘ T 1 FL S HR BRI
SECTION 1 - THE KERNEL U ' R TS R S (
N R TP S R O T ! (TS T
Chapter 1 - Memory Management
Basic Functions Of The Kernel .. ... ... ... ... . .. 1-1
Kernel Memory Management Functions .. ..............0iiiiinennnn.. 1-1
The Basic Module Structure . .. ........ ..ttt iinenneeneennnnn. 1-2
Module Requirements .. ... ...ttt ittt i 13

Module Header Definitions . . .. ........cc0iiiiiiiineeieeeneennnns 14

Additional Header Fields For Individual Modules .. ................. 1-8
The CRCCheck Value ....... ... ... it iiiiiiiiiiiiiiennnnnnn 1-11
ROMed Memory Modules .. ... ... .. iitiiiiiiiiiiieiennnnnn 1-11
08S-9/68000 Memory Map .. ... ittt ittt it tiinnttnsnntannaans 1-12
System Memory Allocation . .. ... ... .. . itiiiiiiiiiniiiiiiiinneanan 1-13
Operating System Object Code . ...........coiiiniiiiiinnnnennn. 1-13
System Global Memory . .. ... ... . i i i 1-13
System Dynamic MEMOTY .. .. ...ttt enenennenernenaneenennnnn 1-13
User MmOy .. vttt ittt ittt iinaeeenneeaenoseeeneneenannnas 1-14
Memory Fragmentation . .. ..........iitiininineenerenenneanaennnans 1-14
Chapter 2 - INIT & SYSGO
System Initialization From Reset . .. ........ .. ..o it e 2-1
INIT: The Configuration Module .............. ... . iiiiiiiiennennn.. 2-1
SY S GO .o e e e e e et e e e, 2-5
Chapter 3 - System Calls
System State and User State .. .......coiiiitiiiiiiinr titinnrenennnes 3-1
Installing System State Routines .. ............. ... ... oo, 32
Kernel System Call Processing .. .......c..iiiiiiiiiiierninrnennnnnnn .. 33
IO From System State . ........oi ittt it iiitireenrennnennns 34
System State and Other System Calls............. ... ... .. ... ..., 34
Chapter 4 - MPU Management & Process Execution
Overview of Multitasking . . . ... . ittt ittt ittt teienenennnnns 4-1
Process Memory Areas . .........cuviiiinineeennennnnnneennnnnnns 4-2
Process Creation .................. ettt e 4-2
Process States . .. ... it ittt i i e i i e e et e, 4-3
Active State .. .. .ottt i i e i i ettt e 4-3
Waiting State . . ..ot ittt ittt ittt e 4-5
Sleeping State .. ..ottt i it i i i i e it e 4-5
Execution Scheduling . .. ... .. . i e 4-5

Preemptive Task Switching .. .......... ... ... ... . i i, 4-5



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Chapter 4 - MPU Management & Process Execution (continued)

Exception And Interrupt Processing .. ....... ... .. ... .. .. .. cceiiinrnn.. 4-6
Reset Vectors . ... .. . i i i it i i e 4-8
SE Error EXCeptions . . o v vvevnette ettt e iea it 4-8
@ " The Trace Exception . ....... e 4-9
RN "AutoVectored Interrupls . ... i ittt i 49
R User Traps...... O 49
Lt " "Vectored Interrupts........... e e e 4-9
SECTION 2 THE INPUT/OUTPUT SYSTEM
*r '; Introduct.mn bo Section 2 - 'I‘he OS-9 Umﬁed anuUOutput System
: A Chapter 5. File Managers »
i “ ‘File Managers . ........o.couu... S A AP 5-1
- " File Manager Organization And Funcuons e . 5-1
Functions of File Manager Routines . ..............co.ovinneeinnn.... 580752
‘ Chapt.er 6 - Device Driver Modules , :
R I/O Devnce Drlver Modules .. .. oo i i i i e it et e 6-1
b Basic Functional Requirements of Drivers............... e 6-1
‘ " Driver Module Format .. ....... SN R P 6-2
"Interruptsand DMA . ............ P 6-3
= ¥ - Device Descriptor Modules . ............ e e e e 64
- Path Descriptors . .......oouvvne... e eennseeeiasseraaneasanaaananns 6-7
/Chapt.er 7 - Random Block Flle Manager N
P RBFDescnptmn...................., ............................... 7-1
f stk File Physical Organization .. .. e e e e e e e 7-1
B Basic Disk Organization ...............coueunn... e 7-1
Identification Sector . ........... et e rae e 7-2
Allocation Map . . .vuiuvinni el e 7-3
o Root Directory ...... e e F 7-3
S Basnc File Structure .. ..ottt it et 7-3
gt "Segment ALOCALIOR . .. ..\ttt et 7-5
o Directory File Format ... ... ... i i, 7-5
¢ " " 'Raw Physical IO On Dbk 'I‘ype Devices................. e 7-6
;‘ " "'Record Locking ...,.........covviioaa... e e 7-6
b Record Lockmg and Unlockmg Nt 7-7
i Nonsharable Files. . ................ e e, 7-7
S End of File Lock .......... e Sl T8
- DeadLock Detection . . .... e e e 7-8
Record Locking Details for VO Functions .. ...........cciiieinreennnn... 7-9

File Security



TABLE OF CONTENTS

e | *
Chapter 7 - Random Block File Manager (continued)  *+ - " &7 .
RBF Device Descriptor Modules................ 0" . ... [
- RBF Definitions Of The Path Descriptor . . ... R
RBF Drivers .........iuiiiininennnnnnnin
RBF Device Driver Storage Deﬁmtlons I

Device Driver Tables................. e
RBF Device Driver Subroutines SRR

Chapter 8 - Sequential Character File Manager _ . C et G5

3
SCF Description . ............ [ ; N
SCF Line Editing ................ccoviu..... T
SCF Device Descriptor Modules ............. A T
SCF Definitions Of The Path Descriptor , .. '
SCEDIIVErS .. ovttttiieeeeeie e eiiieeennnnnaddan, S
SCF Device Driver Storage Definitions ...........cc.... 00 0oL 8-9
SCF Device Driver Subroutines ....... R TR PPRURS PP 8-13
Chapter 9 - Sequential Block File Manager L
SBF Deseription . .. .. oovu e eveiee e eeiinnen... Lada. SRS
Tape VO ..., e AN PR AP AP
Unbuffered VO .. ........0nvianennnn.. Wi W H
Buffered VO ............. B T
End-of-tape Processing .. .............. .l
SBF Device Descriptor Modules .. .......... c.oc.d@siiiinai i,
SBF Definitions Of The Path Descriptor....... e LTIl
SBF DIiVers ...ttt it it et P
SBF Device Driver Storage Definitions LN R
Device Driver Tables . .. ......... ... ... .. ... ... - : .
RBF Device Driver Subroutines ................o.. 0000 o000, 99
" Chapter 10 - Pipe File Manager = S
Pipeman: The Pipe File Manager................... T 10-1
Pipes.. ..ot O SIS 10-1
Named and Unnamed Pipes................ P D N A 10-1
CreatingPipes............................ AT 10-2
Opening Pipes .......................2 T 10-2
Read/Readln ............ gy e amhs il e, 103
Write/Writln .. ....... e eeesetiinea.a.. 10-8
Close ...........covu.. e [P PRt £ T A 10-4
Getstat/Setstat .................... T 104
Pipe Directories .......... e e it 10-5

Pipeman Definitions of the Path Descriptor ........... N 10-6



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Chapter 11 - Networking and The Network File Manager

Overview of Networking . .. ...ttt ittt it it i e iiineenns 11-1
Network Hardware Compatibility . .. ............ ... ... .. ....c.n. 11-1
V.t Requirements For Networking . .. ..... ... ... ... ... ... ... ..., 11-1 |
T CUser OVerview .. .. o it i i i i i it e e e e 11-2
Kowi . Multi-station Networkmg ...................................... 11-3
04t . .. Point-to-point Networking .. ..... ... ... .. i i 11-3
[ ~ - Multi-network Systems . .. ..ottt i e 11-3
Globio The Network Utilities .. ...ttt iiiineenns 11-3
i1t b Broadcast Overview ... ........coutiiiiiiii . e 114
:r-*i  Network Security and the " _Users"Module ............................ 11-5
:i.ui . .. BuildingaSecurity Module Entry ............o0iiiiniininnnnnnn 11-6
S -Example Entries .. .. ... .. i e 11-7
@iy o Error Troubleshooting . ..o . i i e e 11-8
ti--! NFM: The Network File Manager ... .. ... ... .. ... .iiuiimiuunennnnn. 11-10
i Tracing a User Request Througha Network . .......................... 11-10
Gt The OS-9/NET Device Driver .. .. ..o ittt ittt iieinnennns 11-13
gt NFM Device Descriptor Modules . . ...... ... ..o ittt 11-15
51 NFM Path Descriptors . .. ..ottt itienineeenrentaneaneennns 11-19
4 ; Node Name Data Module................. e e e, 11-20
IRV NFM Device Driver Static Storage and Subroutmes ..................... 11-22
S E.
Bl (‘hapt.er 12 - The Defs Files o ‘
R Usingthe Defs Files ... .. ittt ittt ecniaennnn. 12-1
Ci-t
[
Q‘ SECTION . 3: TRAP HANDLERS AND EVENTS
HEE
L< Chapter 13- User Trap Handler Modules
Trap Handlers .. . .. oottt e e e 13-1
Installing and Executing Trap Handlers .. .. .............. ... ... ..... 13-2
Two Examples: Callinga Trap Handler ............................... 13-3
An Example TrapHandler.......... ... ... ... . . i, 13-5
Trace of Example Two Using the Example Trap Handler.................. 13-4~

Chapt.er 14 - The Math Module

. . Standard Function Library Module . .. .......... e e 14-1
o Calling Standard Function Module Routines .. .......................... 14-1
el Data Formats ........couuiiniiniiiii ittt ittt 14-2
el The Math Module . . .. oottt e e ettt e et et 14-3
The Standard Math Functions (
T$Acs ArcCosine Function . ........... e et 14-5
T$Asn ArcSine Function . ... oot iiiin ittt e 14-5
T$Atn ArcTangentFunction . ............... ..ol ... 14-6

T$AtoD Ascii to Double-Precision Floating Point . .......... ... 14-6



i)

TABLE OF CONTENTS

Chapter 14 - The Math Module (continued)
The Standard Math Functions (continued)

T$AtoF
T$AtoL
T$AtoN
T$AtoU
T$Cos

T$DAdd -

T$DCmp
T$DDec
T$DDiv
T$DInc
T$DInt
T$DMul
T$DNeg
T$DNrm
T$DSub
T$DtoA
T$DtoF
T$DtoL
T$DtoU
T$DTrn
T$Exp
T$FAdd
T$FCmp
T$FDec
T$FDiv
T$FInc
T$FInt
T$FMul
T$FNeg
T$FSub
T$FtoA
T$FtoD
T$FtoL
T$FtoU
T$FTrn
T$LDiv
T$LMod
T$LMul
T$Log
T$Logl0
T$LtoA
T$LtoD
T$LtoF

Ascii to Single-Precision Floating Point ... ... Ceeeiiaa 14-7
Ascii to Long Conversion . ............cooeveunn.. c.o.. 1427
Ascii to Numeric Conversion ., ...........coivievnenn.. 14-8
Ascii to Unsigned Conversion . ...........vevvevnen... 14-9
Cosine Function . .. .... .. ..cieuinniinvinnnnnnnn. 149
Double Precision Addition .. ................ e 14-10
Double Precision Compare . ................... oVl . 14-10
Double Precision Decrement .. ................ veo... 14-11
Double Precision Divide .. .............coiiviinnn.. 14-11
Double Precision Increment .. ............. e aee e 14-12
Round Double Precision Floating Point Number . ... ..., 14-12
Double Precision Multiplication . .................... 14-13
Double Precision Negate . ..........couiiiiinenennn. 14-14
64-bit Unsigned to Double Precision .. ............... 14-15
Double Precision Subtraction . ...................... 14-15
Double Precision Floating Point to Ascii . ............. 14-16
Double to Single Floating Point .. .. .. ... ....... .. 1417
Double Precision to Signed Long Integer . .. ........... 14-17
Double Precision to Unsigned Long Integer............ 14-18
Truncate Double Precision Floating Point Number$ . :.+... 14-18
Exponential Function . ..................... eee... 1419
Single Precision Addition .. ........................ 14-19
Single Precision Compare .. ...............cociu.n. 14-20
Single Precision Decrement .. ..............cccu.... L. 14-20
Single Precision Division .. ......... ... ..ot 14-21
Single Precision Increment ........... . 14-21
Round Single Precision Floating Point Number ... ..... 14-22
Single Precision Multiplication ... ... PP ... 14-22
Single Precision Negate .............. e eeesnas e 14-23
Single Precision Subtraction.. ..................c0.... 14-24
Single Precision Floating Pointto Ascii . .............. 14-25
Single to Double Floating Point .. ................... 14-26
Single Precision to Signed Long Integer . ............. -. 14-26
Single Precision to Unsigned Long Integer ... ......... 14-27
Truncate Single Precision Floating Point Number. . .... 14-27
Long (signed) Divide . .. ........ ... ..iiiiiiinn. 14-28
Long (signed)Modulus . ........... ... ..o, 14-28
Long (signed) Multiplication........................ 14-29
Natural Logarithm Fuction . .............. .. ... ... 14-29
Comman Logarithm Function . ...................... 14-30
Signed Integer to Ascii Conversion . ..........c....c... 14-30
Signed Integer to Double Floating Point . ............. 14-31

Signed Integer to Single Floating Point . .. ............ 14-31



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Chapter 14 - The Math Module (continued)
’I‘he Standard Math Functions (continued)

T$Power PowerFunction ... ...........0iuuiinennnnnnnnnnn 14-32
T$Sin SinFunction .. ... ... . i i i 14-32
T$Sqrt Square Root Function .. .............. ... ... cciutn 14-33
T$Tan Tangent Function ............. ... ... .. ... .coou... 14-33
T$UDiv UnsignedDivide .. ............. .. .. iiiieeennn. 14-34
T$UMod UnsignedModulus............... ... .. ..coint. 14-34
T$UMul Unsigned Multiplication........................... 14-35
T$UtoA Unsigned Integer to Ascii Conversion . ............... 14-35

. T$UtoD Unsigned Long to Double Floating Point . .. ........... 14-36
T$UtoF Unsigned Long to Single Floating Point . .. ........... 14-36

Chapter 15 - Events

Events . ... e e e e i e e e et 15-1
Understanding Events . .. ... ... ittt 15-2
Events and the F$Event System Call .. ........ ... .. ... ... . ..., 15-3

SECTION 4: SYSTEM CALLS DESCRIPTIONS

Introduction to the System Call Descriptions

Chapter 16 - User State System Calls

F$AIllBit

¢ F$Chain

F$CmpNam
F$CpyMem
F$CRC
F$DatMod
F$DelBit
F$DExec
F$DExit
F$DFork
F$Exit
F$Fork
F$GModDr
F$GPrDBT
F$GPrDsc
F$ID
F$lcpt
F$Julian
F$Link
F$Load
F$Mem

Allocateinbitmap.......... ... ... .. i, 16-1
Chain processtonewmodule . ....................... 16-2
Compare tWo NAMES . . ..o .vvueieenennneeennennenn. 164
Copy external memory . ..........ooviiinnnnnnnen... 16-5
Generate CRC ...... ... ittt 16-6
Createadatamodule............................... 16-7
Deallocateinbitmap............... .o, 16-8
Execute debugged program . .. ........... ... ... ... 16-9
Exit debugged program . ........... ... ... ool 16-11
Fork process under control of debugger ............... 16-12
Terminate process .. ........ououviviiiiiniinunnnnnn. 16-13
Start NewW ProcessS . .. ..o vevien e e enaenenenns 16-15
Get module directory copy .. .......coiiiiiiiiin. 16-17
Get process descriptor block tablecopy .. .............. 16-18
Get process descriptor copy .. .. .....oiiii ... 16-19
ReturnprocessID...........c. i, 16-20
Set signal intercept . .. ....... ... ... il 16-21
Getjuliandate .. ........ .. iiiiiiiiiiiiiiennennn. 16-22
Linktomodule .......... ..., 16-23
Load module(s) fromfile............. ... .coiiiiit. 16-24

Setmemorysize .. ... ... ...ttt 16-25



TABLE OF CONTENTS

Chapter 16 - User State System Calls (continued)

F$PErr
F$PrsNam
F$RTE
F$SchBit
F$Send
F$SetCRC
F$SetSys
F$Sleep
F$SPrior
F$SRqMem
F$SRtMem
F$SSpd
F$STime
F3STrap
F3$SUser
F$SysDbg
F$Time
F$TLink
F$UnLink
F$UnLoad
F$Wait

Printerror message ... ..........iiitiinieennennnns 16-26 .
Parseapathname.... . .............. ... ..o uin.. 16-27
Return from interrupt exception .. ................... 16-28
Searchbitmap........ ... ... ... i, 16-29
Send signaltoprocess............. ..., 16-30
Generate valid CRCinmodule .. ..................... 16-31
Set/examine system glotal variables................. 16-32
Put calling process tosleep . .. ..........c.oiei.... 16-33
Set process priority . ...... ...ttt 16-34
System memory request ... ....oouvvuererenreeeanann 16-35
System memoryreturn .. ..........ouiiuenreeennnn. 16-36
Suspend process .. ...... ...t e 16-37
Setcurrenttime . ..........cciiiininirnnnnnnnnnnnn 16-38
Seterror Traphandler................ ... ... .. .... 16-39
SetuserIDnumber............... ... ... .. .. ... 1641
Call systemdebugger ................. ..., 16-42
Set currentdateand time . ......................... 1643
Install user Trap handlingmodule .. ................. 16-45
Unlinkmodule . ...... ... ... . ... ... ... ... ... 16-47
Unlink modulebyname . .......................... 16-48
Wait for child process to terminate . .. ................ 16-49

Chapter 17 - VO System Calls

I$Attach
I$ChgDir
I$Close
I$Create
I$Delete
[$Detach
I$Dup
I$GetStt
I$MakDir
1$Open
I$Read
1$ReadLn
1$Seek
I$SetStt
I$Write
I$WritLn

Attach /O device ...... ... . ... i, 17-1
Change working directory . .......................... 172
Closepath . .. ... ... ... .. . i 17-3
Createnewfile........ ... ... ... . ... ... 174
Deletefile .. ...... ... it 17-6
Detach VO device ...... ... . ... i iiininnnn. 17-7
Duplicatepath .. ...... ... ... .. ... i 17-8
Get file/devicestatus . . ...t 17-9
Makedirectoryfile .. ... ... ... .. it 17-13
Open a pathtoa fileordevice ....................... 17-14
Read data from a fileordevice . .. ......... ... .. ..... 17-16
Read lineof ASCHdata . ..............ciiiininn... 17-17
Change current position .. ......................... 17-18
Set file/device status .. .. ...ttt 17-19
Write data to fileordevice .. .. ................ . .... 17-29

Write line of ASCII data



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Chapter 18 - System State System Calls

F$AIIPD Allocate process/path descriptor . .....................
F$AllPrc Allocate process descriptor . .. ......coviiiitiiiiaenn
F$AProc Enter active processqueue ................ciiuenen.
F$FindPD Find process/path descriptor .. .......... ... ... .. ...,
F$I0Qu EnterVOqueue...........ciiuiiininninenneanennnn
F$IRQ Add or remove device fromIRQtable..................
F$Move Move data (lowbound first) ..........................
F$NProc Start NeXt Process . . ..vvvieeercrnernn e eaanns
F$RetPD Return process/path descriptor . ......................
F$SSve Service request table initialization .. .................

F$VModul Validatemodule . ....... ... ... .. i

| SECTION 5: APPENDICES & INDEX
" Appendix A - System Call Index
l .Appendix B - Examples

:Appendix C - Error Codes

' Index



Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:

Figure 23:

TABLE OF CONTENTS

0S-9 Module Organization .. ..........c.tutti i ennereennennns ii
Basic Memory Module Format ............ ... ...t iinienennnn 1-2
Module Header Standard Fields .. ............ ... .0 o iiuiann.. 1-7
Additional Header Fields for Individual Modules ................... 1-10
Typical 0S-9/68000 Memory Map .. .......c.cvitiiienennennnnenn. 1-12
Additional Fields for the INITModule .. .................ccouiunn.. 24
New Process Initial Memory Map and Register Contents . ............. 44
Beginning of a Sample File Manager Module .. ..................... 5-2
Sample Driver Module Header Format . ........................... 6-3
Additional Standard Header Fields For Device Descriptors . ........... 6-6
Universal Path Descriptor Definitions.............ccoiiiiinnennn. 6-8
Identification Sector Description . .. ....... ... .. i, 7-2
File Descriptor Content Description . ... .......coviiuiinenennnnnn.. 74
Initialization Table For RBF Device Descriptor Modules .. ........... 7-15
Option Table For RBF Path Descriptor . .. ............coiiiiiunn. 7-17
RBF Static Storage Allocation . .......... ... ..ottt 7-20
RBF Device Driver Table Format . ............................... 7-21
SCF Device Descriptor Initialization Table .. ....................... 8-6
Path Descriptor Module Option Table For /O Editing . ............... 8-8
Static Storage Allocation for SCF Device Drivers . .................. 8-10
Initialization Table for SBF Device Descriptor Modules .. ............. 9-2
Option Table For SBF Path Descriptor Modules .. ................... 9-4

SBF Static Storage Allocation .. ..... ... ..ot i, 9-7



Figure 24:
.- Figure 25:
Figure 26:
Figure 27:
g Figure 28:

Figure 29:
) Figure 30:

Figure 31:

-t

0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

SBF Device Driver Table Format .. .................oiiiiiiana.. 9-8
Path Descriptor PD__ OPT forPipeman .............ccccivuuvnnan.. 10-6
Tracing a user request through thenetwork ...................... 11-12
Message between drivers through hardware network line . .......... 11-14
NFM Device Descriptor Initialization Table .. .................... 11-15
NFM Path Descriptor OptionTable . ............................ 11-19
Example Node Name Module .. ..................ciiiiian. ... 11-21

NFM Device Driver StaticStorage ........coueverninennnnnnnen... 11-22



INTRODUCTION

0S-9 has four levels of modularity. These are described below and are shown in
Figure 1.

Level 1 - The KERNEL, the CLOCK Module and the INIT Module

The KERNEL provides basic system services. These consist of /O management
multi-tasking, memory management and linking all other system Modules.

The CLOCK Module is a software handler for the specific real-time-clock hardware.
INIT is an initialization table used by the KERNEL during system startup. It specxfies
initial table sizes, initial system device names, etec.

Level 2 - File Managers (RBF, SCF, SBF, PIPEMAN and NFM)

File Managers perform IO request processing for similar classes of /O devices. The
Random Block File Manager (RBF) processes all disk-type device functions. The
Sequential Character File Manager (SCF) handles all non-mass storage devices. These
basically operate a character at a time (i.e. printers or terminals). The Sequential Block
File Manager (SBF) handles tape devices. PIPEMAN handles interprocess
communication, using memory buffers for data transfer. The Network File Manager
(NFM) processes data requests over the OS-9 network.

Level 3 - Device Drivers

Device Drivers handle the basic physical VO functions for specific O controllers.
Standard OS-9 systems are typically supplied with a disk driver, a serial port driver for
terminals and serial printers, and a driver for parallel printers. Many users add
customized drivers of their own design or purchase drivers from a hardware vendor.

Level 4 - Device Descriptors

Device Descriptor Modules are small tables that associate specific /O ports with their
logical name, device driver and file manager. These modules also contain the physical
address of the port and initialization data. By use of device descriptors, only one copy of
each driver is required for each specific type of VO device regardless of how many devices
the system uses.

NOTES: One important component not shown is the Shell, which is the command
interpreter. It is technically a program and not part of the operating system itself and is
described fully in "Using Professional 0S-9" and "Using Personal 0S-9." You can see
what modules make up OS-9 by using the IDENT utility on the OS9Boot file.

Even though all modules can be resident in ROM, generally only the system bootstrap
module is ROMed in disk-based systems. All other modules are loaded into RAM during
system startup.



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Figure 1: 0S-9 MODULE ORGANIZATION

INIT —-‘_ ._I— MATH
C10
CLOCK 0S-9 KERNEL C Library
l I User Trap
VD! Handlers
Pipe Network Disk Tape Char
File File File File File
Manager: Manager: Manager: Manager: Manager:
PIPEMAN NFM RBF SBF SCF
Pipe Network Floppy Hard Tape Serial ACRTC
Driver Driver Disk Disk Driver and/or Graphics
(Null) Driver Driver Parallel Driver
Driver
ipe| [Pipe N1 || N2 Do || D1 HO | | H1 TO| IMT1 T1 || P1 T2 || P2
Pipe Network RBF Device SBF Device SCF Device

Descriptors  Descriptors Descriptors Descriptors Descriptors

ii



SECTION 1 - THE KERNEL

- Memory Management

- INIT & SYSGO

- System Calls

- MPU Management & Process Execution



THE KERNEL - MEMORY MANAGEMENT

BASIC FUNCTIONS OF THE KERNEL
The nucleus of OS-9 is the kernel, which serves as the system administrator,
supervisor and resource manager. It is a relatively compact module written in 68000
assembly language. It is position-independent and directly ROMable.
The kernel's main functions are:
1. Service request (system call) processing.
2. Memory management.
3. System initialization after reset.
4. MPU management (multiprogramming).
5. Input/Output management.

6. Exception and Interrupt processing.

When a system call is made, a user trap to the kernel occurs. The kernel determines
what type of system call the user wants to perform.

0S-9 has two general types of system calls: calls that perform Input/Output (such as
reads and writes) and calls that perform system functions, such as memory allocation and
multiprogramming.

The system call functions are processed directly by the kernel. /O calls are passed to
other parts of OS-9 and are not executed by the kernel. The OS-9 system calls are
discussed in detail in Chapters 16, 17 and 18.

KERNEL MEMORY MANAGEMENT FUNCTIONS

Memory management is an important operating system function. OS-9 is unique in
that it manages both the physical assignment of memory to programs and the logical
contents of memory by using memory modules.

Memory modules are the foundation of 0S-9's modular software environment. In order
for any object (a program, constant table, etc.) to be loaded into memory it must use the
standard OS-9 memory module format. This allows OS-9 to maintain a directory which
contains the name, address and other related information about each module in memory.

Page 1-1



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

The operating system keeps track of modules that are in memory by the use of a
module directory. When modules are loaded into memory they are added to the module
directory. Each directory entry contains the address and a count of processes that are
using the module. This count is called the link count.

When a process links to a module in memory, its link count is incremented by one.
When a process unlinks from a module the link count is decremented by one. When a
module is no longer needed (a link count of 0) its memory is deallocated and it is removed
from the module directory.

The Basic Module Structure

Each module has three parts: a module header, a module body and a CRC value (see
Figure 2):

1. The module header contains information that describes the module and its
use. It is defined in assembly language by a psect directive. The header is
created by the linker at link-time. The information contained in the module
header includes the module's name, size, type, language, memory require-
ments and entry point.

2. The module body contains initialization data, program instructions, constant
tables, etc. :

3. The last three bytes of the module hold a CRC value (Cyclic Redundancy
Check value) used to verify the module's integrity.

MODULE HEADER

PROGRAM/CONSTANTS

CRC CHECK VALUE

Figure 2--Basic Memory Module Format

Page 1-2



THE KERNEL - MEMORY MANAGEMENT

Module Requirements

There are several different kinds of modules. Each type has a different use and
function. Modules do not have to be complete programs, or even written in machine
language. The main requirements are that modules do not modify themselves and that
they be position-independent. This allows OS-9 to load them wherever memory space is
available.

The 68000 instruction set supports a style of programming called re-entrant code.
Modules that do not modify themselves are called re-entrant modules. This allows the
exact same "copy" of a module to be shared by two or more different processes
simultaneously. The processes will not affect each other, providing that each "copy" of the
module has an independent memory area for its variables.

Almost all OS-9 family software is re-entrant and consequently makes most efficient
use of memory. For example: Scred requires 26K bytes of memory to load. A request to
run Scred is made while another user (process) is running it. OS-9 allows both processes
to share the same copy, thus saving 26K of memory.

0S-9 automatically keeps track of how many processes are using each program module
by its link count. It deletes a module, freeing its memory, when the module's link count
becomes 0. This happens when all processes using the module have terminated.

Re-entrant code must be non-self-modifying. If one user changes a memory location,
the data in that location will change for all the users of the program.

NOTE: Data modules are an exception to the "no modification" restriction. Careful
coordination is required, however, for several processes to update a shared data module
simultaneously.

Position-independent code means that a program does not know where it will be loaded
in memory. In many operating systems, you must specify a load address of where the
program is to be placed in memory. OS-9 determines an appropriate load address only
when the program is run. OS-9 compilers and interpreters generate position-independent
code automatically. In assembly language programming, however, the programmer must
insure position-independence by avoiding addressing modes that refer to absolute
addresses.  Alternatives to absolute addressing are described in the "0OS-9/68000
Assembler / Linker / Debugger User's Manual."”

Page 1-3



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Module Header Definitions

Definitions of the standard set of fields in the module header are shown in Figure 3
and the following table.

NAME UTILIZATION
MSID Sync Bytes ($4AFC).
These constant bytes are used to locate modules during the startup memory
search.
M$SysRev System revision identification.
This identifies the format of a module.
M$Size Size of module.
This is the overall size of the module in bytes including header and CRC.
M$Owner Owner ID.
This is the group/user ID of the module's "owner".
M$Name  Offset to Module Name.
The address of the module name string relative to the start (first sync byte) of
the module is located here. The name string can be located anywhere in the
module and consists of a string of ASCII characters terminated by a null
(zero) byte.
MS$Accs Access Permissions.

These define the allowable use and access to the module by its owner or by
other users. The module access permissions are divided into four sections:

reserved (4 bits)
public (4 bits)

group (4 bits)
owner (4 bits)

The three non-reserved permission fields are defined as follows:
bit 3: reserved
bit 2: execute permission

bit 1: write permission
bit 0: read permission

The total field is displayed as follows:

~-=——@Wr-ewr-ewr

Page 14



THE KERNEL - MEMORY MANAGEMENT

NAME UTILIZATION
MS$Type Module Type Code.
Module type values are found in the "oskdefs.d" file, and describe the
module type code as below:
Name Description
0 = Not Used (Wild Card value in system calls)
Prgm 1 = Program Module
Sbrtn 2 = Subroutine Module
Multi 3 = Multi-Module*
Data 4 = Data Module
5-10 = Reserved*
TrapLib 11 = User Trap Library
Systm 12 = System Module (0S-9 Component)
Fimgr 13 = File Manager Module
Drivr 14 = Physical Device Driver
Devic 15 = Device Descriptor Module
16-up = User Definable
* reserved for future use
M$Lang Language.

Module language codes are found in the "oskdefs.d" file. They describe
whether the module is executable and which language the run-time system
requires for execution (if any):

Name Description

0

Objct 1
ICode 2
PCode 3
CCode 4
Cb1Code 5
FrtnCode 6
7-15

16-255

*

= Unspecified Language
("Wild Card" value in system calls)
= 68000 machine language
Basic I-code
Pascal P-code
C I-code*
Cobol I-code
Fortran I-code*
Reserved*
User Definable

reserved for future use

NOTE: Not all combinations of modﬁle type codes and languages necessarily

make sense.

Page 1-5



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME UTILIZATION

MSAttr Attributes.
Bit 7 indicates that the module is re-entrant (shareable by multiple tasks).

Bit 6 indicates that the module is a “ghost™ module. A ghost module is retained in
memory when its link count becomes zero. The module is removed from memory
when its link count becomes -1 or memory is required for another use.

Bit 5 indicates that the module is a “system state” module.

M$Revs Revision Level.
This indicates the revision level. If two modules having the same name and
type are found in the memory search or are loaded into memory, only the
module with the highest Revision Level is kept. This allows easy
substitution of modules for update or correction, especially ROMed modules.

MSEdit Edition.
This indicates the software release level for maintenance. Not used by OS-9.
Every time a program is revised (even for a small change) this number
should be increased. It is suggested that internal documentation within the
source program be keyed to this system.

M$Usage Comments.
Reserved for offset to module usage comments.

M$Symbol Symbol table offset.
Reserved for future use.

M$Parity Header Parity Check.

This is the one's complement of the exclusive-OR of the previous header
"words". It is used by OS-9 for a quick check of the module's integrity.

Page 1-6



THE KERNEL - MEMORY MANAGEMENT

NOTE: The term "offset" refers to the location of a module field, relative to the starting
address of the module. Module offsets are resolved in assembly code by using the names
shown here and linking the module with the relocatable library, "sys." or "usr.l".

Offset Usage
$00 MS$ID Sync Bytes ($4AFC)
$02 M$SysRev Revision ID
$04 M$Size Module Size
$08 M$Owner Owner ID
$0C M$Name Module Name Offset *
$10 M$Accs Access Permissions
$12 MS$Type Module Type
$13 M$Lang Module Language
$14 MSAttr Attributes
$15 MS$Revs Revision Level
$16 MS$Edit Edit Edition
$18 M$Usage Usage Comments Offset *
$1C M$Symbol Symbol Table
$20 RESERVED
$2E M$Parity Header Parity Check
$30-up Module Type Dependent
Module Body
CRC Check

* These fields are offset to strings

Figure 3: Module Header Standard Fields
Page 1-7



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Additional Header Fields For Individual Modules

Certain types of modules have additional standard header fields following the
universal offsets. These additional fields are shown in Figure 4 and the following table.

A common type of module is the "program module” (type: Prgrm, language: Objct). It
is executable as an independent process by the "F$Fork" or "F$Chain" system calls. This
type of module is produced by the assembler and C compilers. It is the module type of
most OS-9 commands. It has six fields in addition to the universal set.

Trap handler modules are discussed in detail in Chapter 13. File Manager modules
are discussed in Chapters 5. Device Drivers are discussed in Chapter 6.

NAME UTILIZATION

(The following two fields are used by Program, Trap Handler, Device Driver, File
Manager and System Module Headers.)

. M$Exec Execution Offset.

This is the offset to the program's starting address, relative to the starting
address of the module.

M$Excpt  Default user trap execution entry point.
This is the relative address of a routine to be executed if an uninitialized
user trap is called.

(The following field is used by Program, Trap Handler and Device Driver Module
Headers)

M$Mem Memory Size.

This is the required size of the program's data area (storage for program
variables).

(The following three fields are used by Program and Trap Handler Module Headers)

M3$Stack  Stack Size.
This is the minimum required size of the program's stack area.

MS$IData  Initialized Data Offset.
This is the offset to the initialization data area's starting address. This area
contains values to be copied to the program's data area. All constant values
declared in "vsects" are placed here by the linker. The first 4 byte value is
the offset from the beginning of the data area to which the initialized data is

copied. The next 4-byte value is the number of initialized data bytes to
follow.

Page 1-8



NAME

THE KERNEL - MEMORY MANAGEMENT

UTILIZATION

MS$IRefs

MS$IRefs

Initialized References Offset.

This is the offset to a table of values to locate pointers in the data area.
Initialized variables in the program's data area may contain values that
are pointers to absolute addresses. Code pointers must be adjusted by
adding the absolute starting address of the object code area. The data
pointers must be adjusted by adding the absolute starting address of the
data area. This effective address calculation is done automatically by
the F$Fork system call at execution time using tables created in the
module which contain the following information:

Initialized References Offset. (continued)

The first word of each table is the most significant (MS) word of the off-set to
the pointer. The second word is a count of the number of least significant
(LS) word offsets to be adjusted. The adjustment is made by combining the
MS word with each LS word entry. This offset locates the pointer in the data
area. The pointer is adjusted by adding in the absolute starting address of
the object code or the data area (for code pointers or data pointers
respectively). It is possible after exhausting this first count that another MS
word and count are given. This continues until a MS word of zero and a
count of zero is found.

(The following two fields are used by Trap Handler Module Headers)

M$Init

M$Term

Initialization Execution Offset.

Termination Execution Offset.

Page 1-9



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NOTE: The term "offset" refers to the location of a module field, relative to the starting
address of the module. Module offsets are resolved in assembly code by using the names
shown here and linking the module with the relocatable library: 'sys.l" or "usr.l".

Individual Module Use Offset
$30
File Manager $34
System

-
Device Driver $38

|
$3C
$40
Prolgmm $44
$48
Trap Handlers $4C

L

Usage
M$Exec Execution Offset
MS$Excpt Default User Trap Execution
' Entry Point
M$Mem Memory Size
M$Stack Stack Size
M$IData Initialized Data Offset
MS$IRefs Initialized References Offset
M$Init Initialized Execution Offset
M$Term Termination Execution Offset

Figure 4: Additional Header Fields for Individual Modules

Page 1-10




THE KERNEL - MEMORY MANAGEMENT

The CRC Check Value

At the end of all modules is a CRC or Cyclical Redundancy Check value. The CRC is
an error checking method used frequently in data communications and storage systems.
It is used to check the validity of the entire module. It is also a vital part of the ROM
memory module search technique. It provides a very high degree of confidence that
programs in memory are intact before execution. It serves as an almost foolproof backup
for the error detection systems of disk drives, memory systems, etc.

In OS-9, a 24-bit CRC value is computed over the entire module starting at the first
byte of the module header and ending at the byte just before the CRC itself. OS-9 family
compilers and assemblers automatically generate the module header and CRC values. If
required, a user program can use the F$CRC system call to compute a CRC value over any
specified data-bytes. For a full description of how F$CRC computes a module's CRC, refer
to the F$CRC system call description.

0S-9 will not recognize a module with an incorrect CRC value. For this reason, you
must update the CRC value of any module "patched" or otherwise modified in any way, or
the module can not be loaded from disk or found in ROM. The OS-9 utility, FIXMOD, can
be used to update the CRC's of patched modules.

ROMed Memory Modules

When OS-9 starts after a system reset, the kernel searches for modules in ROM. It
detects them by looking for the module header sync code ($4AFC). When this byte pattern
is detected, the header parity is checked to verify a correct header. If this test succeeds,
the module size is obtained from the header and a 24 bit CRC is computed over the entire
module. If the computed CRC is valid, the module is entered into the module directory.
The chances of detecting a "false module" are virtually nil.

0OS-9 links to any of its component modules that were found during the search. All
ROMed modules present in the system at startup are automatically included in the system
module directory. This allows partially or completely ROM-based systems to be created.
ROMs containing non-system modules that are found are also included. This allows

user-supplied software to be located during the start-up process and entered into the
module directory.

Page 1-11



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

0S-9/68000 MEMORY MAP

0OS-9 uses a software memory management system where all memory is contained
within a single memory map. Therefore, all user tasks share a common address space.

A map of a typical 0S-9/68000 memory space is shown in Figure 5. The various
sections shown for ROM, RAM, L/O, etc., are not required to be at specific addresses
(except where noted). We recommend that each section be kept in contiguous reserved
blocks arranged in an order that facilitates future expansion. It is always advantageous
for RAM to be physically contiguous as much as possible.

« Highest Memory Address
Bootstrap ROM and/or Optional ROMs < Bootstrap ROM located here
For System or Application Software with first 8 bytes (reset vectors)
also mapped to vector locations
I/0 Device Addresses 000000-000007.-
Unused: Available For Future
RAM or ROM Expansion
« RAM in multiples of 8K
RAM contiguous, expanded upward.
128K minimum
256K recommended
(the more the better)
« Address 000400
ROM or RAM For Exception Vectors
« Address 000008
ROM Reset Vectors
« Address 000000

Figure 5: Typical 0S-9/68000 Memory Map

Page 1-12



THE KERNEL - MEMORY MANAGEMENT

SYSTEM MEMORY ALLOCATION

During the OS-9 start-up sequence, blocks of RAM and ROM are found by an
automatic search function in the Boot Rom. Some RAM is reserved by OS-9 for its own
data structures. ROM blocks are searched for valid 0S-9 ROM modules.

The amount of memory required by OS-9 is variable. Actual requirements depend on
the system configuration and the number of active tasks and open files. The following
sections describe approximate amounts of memory used by various parts of OS-9.

Operating System Object Code

A complete set of typical operating system component modules (kernel, /O managers,
device drivers, etc.) occupies about 24K to 32K bytes of memory. These modules are
normally bootstrap loaded into RAM on disk-based systems. OS-9 does not dynamically
load overlays or swap system code so no additional RAM is required for system code.

Alternatively, OS-9 can also be placed in ROM for non-disk systems. The typical
operating system object code size for ROM-based, non-disk systems is about 20K - 24K
bytes.

System Global Memory

0S-9 uses an 8K section of RAM memory for internal use. This memory area is
usually located at the lowest RAM memory addressed. It contains an exception jump
table and system global variables. Variables in this area are symbolically defined in the
"sys.l" library using name prefixes of "D__".
WARNING: Despite the temptation, user programs should never directly access these
variables. System calls are provided to allow user programs to read the information in
this area.

System Dynamic Memory

0S-9 maintains dynamic-sized data structures (such as I/O buffers, path descriptors,
process descriptors, etc.) which are allocated from the general RAM area when needed.
Pointers to the addresses of these data structures are kept in the System Global Memory
area. On a typical small system, the RAM memory used will be approximately 16K.
Exact sizes of all the system's data structure elements can be found by studying a listing
of the source files that make up the "sys.l" library file.

Page 1-13



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

User Memory

All unused RAM memory is assigned to a free memory pool. Memory space is removed
and returned to the pool as it is allocated or deallocated for various purposes. 0S-9
automatically assigns memory from the free memory pool whenever any of the following
occur:

1. When modules are loaded into RAM.
2. When new processes are created.
3. When processes request additional RAM.

4. When 0S-9 needs more /O buffers or its internal data structures must be
expanded.

Storage for user program object code modules and data space is dynamically allocated
from and deallocated to the free memory pool. User object code modules are also
automatically shared if two or more tasks execute the same object program. User object
code application programs can also be stored in ROM memory.

The total memory needed for user memory largely depends on the application software
to be run. It is suggested that a system minimum of at least 128K plus an additional 64K
per user be available. Alternatively, a small ROM-based control system might only need
32K of memory.

MEMORY FRAGMENTATION

Once a program is loaded it must remain at the address at which it was originally
loaded. Even though position independent programs can be initially placed at any
address where free memory is available, program modules can not be relocated
dynamically afterwards. This characteristic can lead to a sometimes troublesome
phenomenon called "memory fragmentation”.

When programs are loaded, they are assigned the first sufficiently large block of
memory at the highest address possible in the address space. If a number of program
modules are loaded, and subsequently one or more non-contiguous modules are
"unlinked", several fragments of free memory space will exist. The total free memory
space may be quite large. But because it is scattered, not enough space will exist in a
single block to load a particular program module.

End of Chapter 1

Page 1-14



P )

THE KERNEL - INIT & SYSGO

SYSTEM INITIALIZATION FROM RESET

After a hardware reset, the kernel (located in ROM or loaded from disk, depending on
the system involved) is executed by the "bootstrap” ROM. The kernel then initializes the
system. This includes locating ROM modules and running the system startup task
(usually SYSGO).

- INTT: THE CONFIGURATION MODULE

INIT is a module that contains system startup parameters. It is a table used during
startup to specify initial table sizes and system device names. It must be in memory when
the kernel is executed and usually resides in the OS9Boot file.

INIT is a non-executable module. It has the module type: "Systm" (code $0C). 0S-9
uses INIT to configure itself during startup. It is always available to determine system
limits. The module begins with a standard module header (Figure 3 in Chapter 1) and the
additional fields shown in Figure 6 and the following table.

NOTE: See Appendix B for an example program listing of the INIT module. Offset names
are defined in the relocatable library "sys.1".

NAME DESCRIPTION

M$PollSz Number of entries in the IRQ polling table.
This is the number of entries in the IRQ polling table. One entry is required
for each interrupt generating device control register.

M3$DevCnt Device table size.
This is the number of entries in the system device table. One entry is
required for each device in the system.

M$Procs  Initial process table size.
This indicates the initial number of active processes allowed in the system.
If this table becomes full, it will automatically expand as needed.

M$Paths  Initial path table size.
This is the initial number of open paths in the system. If this table becomes
full, it will automatically expand as needed.

M$SParam Offset to parameter string for startup module

This is the offset to the parameter string (if any) to be passed to the first
executable module.

Page 2-1



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME DESCRIPTION

M$SysGo First executable module name offset.
This is the offset to the name string of the first executable module; usually
SYSGO or Shell.

M$SysDev Default directory name offset.
This is the offset to the initial default directory name string (usually /D0 or
/HO0). The sysem initially does a "chd" to this device and expects to find a
directory named "CMDS" and a file named "startup” on it. If the system does
not use disks this offset must be zero.

M$Consol Initial /O pathlist name offset.
This is the offset to the initial /O pathlist string (usually /TERM). This
pathlist is opened as the standard path for the initial startup module. It is
generally used to set up the initial /O paths to and from a terminal. This
offset may contain zero if it not used.

MS$Extens Customization module name offset.
This is the offset to the name string of a customization module (if any). A
customization module is intended to be used to complement or change the
existing standard system calls used by 0S-9. This module is searched for at
startup, and if found executed in system state. Typically it is found in the
bootfile.  The default name string to be searched for is "OS9P2".

MS$Clock  Clock module name offset.
This is the offset to the clock module name string.

M$Slice Timeslice.
The number of clock ticks per timeslice.

M$Instal  Offset to installation name.

This is the offset to the installation name string.

M$CPUTyp Cpu Type.

Cpu type: 68000, 68008, 68010, 68020.

Page 2-2



THE KERNEL - INIT & SYSGO

NAME DESCRIPTION

MS$OS9Lv]l Level, Version and Edition.
This four byte field is divided into three parts:
level: 1 byte version: 2 bytes edition: 1 byte
For example, level 2, version 2.0, edition 0 would be 2200.

M$OS9Rev Revision offset.
This is the offset to the OS-9 level/revision string.

M3SysPri  Priority.
This is the system priority that the first module (usually SYSGO or Shell) is
executed at. This is generally the base priority that all processes start at.

M3$MinPty Minimum Priority.
This is the initial system minimum executable priority. For a complete
discussion on Minimum Priority, see Chapter 4 on execution scheduling and
Chapter 17 (F$SetSys). ‘

M$MaxAge Maximum Age.
This is the initial system maximum natural age. For a complete discussion
on Maximum Age, see Chapter 4 on execution scheduling and Chapter 17
(F$SetSys).

MS$Events Number of Entries in the Events Table
This is the initial number of entries allowed in the events table. If the table
becomes full, it will automatically expand as needed. See Chapter 16 on
Events for discussion of event usage.

MS$Compat Revision Compatability

This byte is used for revision compatibility. The following bits are curréntly defined:
Bit 0 set to save all registers for IRQ routines

Bit 1 set to ignore “ghost” bit in module headers
Bit 2 set to prevent the kernal from using “stop™ instructions

Page 2-3



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NOTE: The term "offset" refers to the location of a module field, relative to the starting
address of the module. Module offsets are resolved in assembly code by using the names

shown here and linking the module with the relocatable library:

Offset
$30

- $34

$36

$38

$3A

$3C

$3E

$40

$42

$44

$46

Usage
Reserved
M$Pollsz  # IRQ Polling
Table Entries
M$DevCnt Device Table Size
M$Procs Initial Process
Table Size
M$Paths Initial Path Table
Size
M$SParam Parameter String
For Startup Module
(Usually Sysgo)
M$SysGo First Executable
Module *
M$SysDev Default Directory *
M$Consol Initial Standard
I/O Path *
M$Extens Customization
Module Name *
M$Clock Clock Module

Name *

* These fields are offsets to name strings.
The strings themselves follow the 28-byte reserved section.

Figure 6: Additional Fields For The INIT Module

Offset

$48

$4A

$50

$52

$56

$5A

$5C
$5E

$60
$62

$66

$68

$69

Page 2-4

"sys.I" or "usr.l."

Usage
M$Slice Ticks per
Time Slice
Reserved
MS$Instal Installation
Name *

MS$CPUTyp CPU Type

MS$OS9Lvl Operating System
Level

M$0S9Rev Revision Name *

M$SysPri  Initial System
Priority

M$MinPty Minimum Priority

M$MaxAge Maximum Age

Reserved

M$Events Initial Event Table
Size

MS$Compat Revision
Compatibility

Reserved (28 bytes)




THE KERNEL - INIT & SYSGO

SYSGO

SYSGO is the first user process started after the system startup sequence. Its standard
/O will be on the system console device. It usually performs the following functions:

1. SYSGO does additional high level system initialization. For example,
SYSGO will call the Shell to process the startup shell procedure file.

2. SYSGO starts the console Shell (or other program).

- 3. SYSGO remains in a wait state during system operations. This acts as
insurance against all processes terminating, leaving the system halted. For
example, if the console terminal process terminates, SYSGO generally
restarts it.

The standard SYSGO module for disk systems can not be used on non-disk systems.
However, it is easy to customize SYSGO if necessary.

SYSGO may be eliminated entirely by specifying "shell" as the initial startup module
and specifying a parameter string similar to:

o startup; ex tsmon /term

See Appendix B for an example source listing of the SYSGO module.

End of Chapter 2

Page 2-5



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NOTES

Page 2-6



THE KERNEL - SYSTEM CALLS

SYSTEM STATE AND USER STATE

Before discussing OS-9's system calls, two terms must be understood: User state and
System state. These are the two distinct OS-9 environments in which object code can be
executed:

User State: User state is the normal program environment in which processes
are executed. Generally, user state processes never deal directly
with the specific hardware configuration of the OS-9 machine.

System State: The OS-9 system calls and interrupt service routines run in system
state. On 68000-family processors, this is synonymous with
"supervisor" state. System state routines often deal with physical
hardware present on a system.

Functions that execute in system state have several distinct advantages over those
running in user state:

1. A system state routine has access to the entire capabilities of the processor. For
example, on memory protected systems, a system state routine may access any
memory in the system. It may mask interrupts, alter OS-9 internal data
structures or take direct control of hardware interrupt vectors if necessary.

2. There is a group of OS-9 system calls that are accessible only from system state.

3. System state routines are never timesliced. Once a process has entered system
state, no other process will execute until the system state process has finished.
Only if the system state process goes to sleep (i.e. F$Sleep waiting for I/O), will
other processes execute. The only processing that may pre-empt a system state
routine is interrupt servicing.

The characteristics of system state make it the only way to provide certain types of
programming functions. For example, it is almost impossible to provide direct VO to a
physical device from user state. For this reason, users occasionally wonder why all pro-
grams are not run in system state. There are several reasons why this should not be done:

1. In a multi-user environment, it is important to ensure that each user receives a
fair share of the CPU time. This is the basic function of time-slicing.

2. Memory protection prevents user state routines from directly accessing /O
devices, but it also prevents user state routines from accidentally damaging data
structures they do not own.

3. A user state process may be aborted. If a system state routine loses control, the
entire system almost always crashes.

Page 3-1



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

4, It is far more difficult and dangerous to debug system state routines than user
state routines. The user state debugger can be used to find most user state
problems. Some system state problems are much more difficult to find.

5. User programs almost never have to be concerned with physical hardware; they
are essentially isolated from it. This makes user state programs more portable
and easily written.

" Installing System State Routines

With direct access to all system hardware, any system state routine has the power to
completely take over the entire machine. This much power can be dangerous. In a system
state routine, it is often a challenge to keep from crashing or hanging up the system. For
this reason, the methods. of creating routines that operate in system state have been
limited.

On 0S-9, there are four obvious ways of providing system state routines:

1. Install an "OS9P2" module in the system bootstrap file (or in ROM). During
cold start, the OS-9 kernel will link to this module, and if found, call its
execution entry point. The most likely thing for such a module to do is install
new system call codes. There is one drawback to this method: the OS9P2
module must be in memory when the system is bootstrapped.

2. Use the /O system as an entry into system state. File managers and device
drivers are always executed in system state. In fact, the most obvious reason to
write system state routines is to provide support for new hardware devices. It is
possible to write a dummy device driver and use the I$GetStt or I$SetStt
routines to provide a gateway to the driver. Once the driver is called, it can of
course install new 0S-9 system calls if it likes.

3. Write a trap handler module that executes in system state. For routines of
limited use that are to be dynamically loaded and unlinked, this is perhaps the
most convenient method. In many cases, it is practical to debug most of the trap
handler routines in user state and then convert the trap module to system state.
To make a trap handler execute in system state, it is necessary to set the
"supervisor" state bit in the module attribute byte and create the module as
super user. When the user trap is executed, it will be in system state.

4. A program will ‘execute in system state if the "supervisor" state bit in the
module's attribute/revision word is set and if the module is owned by the super
user. In some rare instances, this can be useful.

IMPORTANT REMINDER: System state routines are not timesliced, and therefore
should be written as short and fast as possible.

Page 3-2



THE KERNEL - SYSTEM CALLS

KERNEL SYSTEM CALL PROCESSING

All OS-9 service requests (system calls) are processed through the kernel. Service
requests are used to communicate between OS-9 and assembly language programs for
such things as allocating memory or creating processes. In addition to VO and memory
management functions, there are other service request functions that include interprocess
control and timekeeping.

The system wide relocatable library files, "sys.l" and "usr.l" define symbolic names for
all service requests. The files are linked with hand-written assembly language or

compiler-generated code. The OS-9 Assembler has a built-in macro to generate system
calls:

0s9 I$Read

This is recognized and assembled to produce the same code as:

TRAP #0
dc.w I$Read

In addition, the C Compiler standard library includes standard functions to access
nearly all user mode OS-9 system calls from C programs.

Parameters for system calls are usually passed and returned in registers. System calls
are divided into three categories:

1. User State System Calls These functions perform memory management,
multiprogramming and other functions for user programs. These are mainly
processed by the kernel. The symbolic names for this category begin with
"F$". For example, the system call to link a module is called F$Link.

2. I/O System Calls: These requests perform various I/O functions and are
processed in the File Manager and Device Driver for a particular device. The
symbolic names for this category begin with "I$". For example, the "read”
service request is called "I$Read".

3. System State System Calls: These requests are special system calls that can
only be used by system software in system state. They usually operate on
internal OS-9 data structures. They are system calls instead of subroutines
in order to preserve the 0S-9's modularity. These calls can not be accessed
by user state programs. They are documented in this manual for
programmers who may use them when writing system modules such as
device drivers. The symbolic names for these system calls begin with "F$".

Page 3-3



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

/O From System State

All of the /O system calls may be used from a system state routine. They have one
slight difference than when executed in user state. The difference is that all path
numbers used in system state are "system" path numbers. Each process descriptor has a
path number that is used to convert process local path numbers into system path numbers.
The system itself has a global path number table used to convert system path numbers

-into actual addresses of path descriptors. System state /O system calls must be made
using system path numbers.

For example, the OS-9 F$PErr system call prints an error message on the caller's
standard error path. To do this, it may not simply perform output on path number two.
Instead it must examine the caller's process descriptor and extract the system path
number from the third entry (0, 1, 2, ...) in the caller's path table.

When a user state process exits with /O paths open, they are automatically closed by
the F$Exit routine. This is possible because OS-9 has kept track of the open paths in the
process' path table. In system state, the I$Open and I$Create system calls return a system
path number. It is not recorded in the process path table or anywhere else by 0S-9. This
makes it the responsibility of the system state routine that opens any I/O paths to ensure
that they eventually become closed. This is true even if the underlying process is
abnormally terminated.

System State And Other System Calls

In general, system state routines may use any of the ordinary (user state) system calls.
Care must be taken, however, to avoid making system calls at inappropriate times. For
example, an interrupt service routine should avoid /O calls, timed sleep requests and
other calls that can be particularly time consuming (F$CRC).

Any memory requested in system state is not recorded in the process descriptor
memory list. This makes it the responsibility of the requester to ensure that the memory
is returned to the system before the process terminates.

WARNING: System state routines should avoid the F$TLink and F$Icpt system calls.
Certain portions of the C library may be inappropriate for use in system state.

End of Chapter 3

Page 3-4



THE KERNEL - MPU MANAGEMENT & PROCESS EXECUTION

OVERVIEW OF MULTITASKING

0S-9 is a multitasking operating system which allows several independent programs
called processes or tasks to be executed simultaneously. All OS-9 programs are run as
processes. Each process can have access to any system resource by issuing appropriate
service requests to 0S-9.

CPU time is a finite resource that must be allocated efficiently to maximize the
computer's throughput. Characteristically, many programs spend much unproductive
time waiting for various events to occur (such as an input/output operation).

A good example is an interactive program which communicates with a person at a
terminal. While the program waits for a line of characters to be typed or displayed, it
(typically) can not do any useful processing and may waste valuable CPU time.

An efficient multiprogramming operating system such as OS-9 automatically assigns
CPU time to only those programs that can effectively use the time. To accomplish this,
0S-9 uses a technique called timeslicing.

Timeslicing allows processes to share CPU time with all other active processes. It is
implemented by using both hardware and software functions.

The system's CPU is interrupted by a real time clock at a regular rate of (usually) 100
times each second. This basic time interval is called a "tick". Therefore, the interval
between ticks is usually 10 milliseconds.

At any occurrence of a tick, OS-9 can suspend execution of one program and begin
execution of another. The starting and stopping of programs is done in a manner that
does not affect the program's execution.

Processes that are active (not waiting for some event) are run for a specific system
assigned period called a time slice. How often a process receives a time slice depends on a
process' priority value relative to the priority of all other active processes. Many OS-9
service requests are available to create, terminate and control processes.

This technique is called timeslicing because each second of CPU time is sliced up to be
shared among several processes. Timeslicing happens so rapidly that to a human
observer, all processes appear to execute continuously (unless the computer becomes
overloaded with processing).

If overloading does occur, a noticeable delay in response to terminal input may result
or "batch" programs may take much longer to run than they ordinarily do.

Page 4-1



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Process Memory Areas

All processes are divided into two logically separate memory areas: one area for code
and one for data. This dichotomy provides OS-9's modular software capabilities.

A program must be in the form of an executable memory module (described in detail in
Chapter 1) in order to be run. In this form, it is called the primary module. It may link to
and execute code in other modules. It is position-independent and ROMable, and the

" memory it occupies is considered to be "read-only".

The process’ data area is a separate memory space where all of the program's variables
are kept. The top part of this area is used for the program's stack. The actual memory
addresses that are assigned to the data area are not known at the time the program is

written. A base address is kept in a register (usually a6 by convention) to access the data
area. This area can be read or written to.

If a program uses variables that require initialization, the initializing values must be
copied from the read-only program area to the data area where the variables actually
reside. The OS-9 linker builds appropriate initialization tables which are used by 0S-9 to
initialize the variables.

Process Creation

New processes are created by the F$Fork ("fork") system call. The most important
parameter passed in the fork system call is the name of the "primary module" that the
new process is to initially execute. The creation process is outlined as follows:

1. Locate or Load the Program. OS-9 first tries to find the module in memory.
If it can not be found, OS-9 loads into memory a mass-storage file using the
requested module name as a file name.

2. Allocate and Initialize a Process Descriptor. Once the primary module has
been located, a data structure called a process descriptor is assigned to the
new process. The process descriptor is a table that contains information
about the process, its state, memory allocation, priority, /O paths, etc. The
process descriptor is automatically initialized and maintained by OS-9. The

process need not be concerned about the descriptor's existence or what it
contains.

3. Allocate the Stack and Data Areas. The primary module's module header
contains a data and stack size. 0S-9 allocates a contiguous memory area of
the required size from the free memory space.

Page 4-2



THE KERNEL - MPU MANAGEMENT & PROCESS EXECUTION

4. Initialize the Process. The new process' registers are set up to the proper
addresses in the data area and object code module (see Figure 7). If the
program uses initialized variables and/or pointers, they are copied from the
object code area to the proper addresses in the data area.

If any of these steps can not be performed, creation of the new process is aborted, and
the process that originated the "fork" is informed of the error. Otherwise, the new process
is added to the active process queue for execution scheduling,

The new process is also assigned a unique number called a Process ID which is used as
itsidentifier. Other processes can communicate with it by referring to its ID in various
system calls. The process also has an associated Group ID and User ID which are used to
identify all processes and files belonging to a particular user and group of users. The IDs
are inherited from the parent process.

Processes terminate when they execute an "F$Exit" system service request or when
they receive fatal signals or errors. The process termination closes any open paths,
deallocates its memory, and unlinks its primary module.

PROCESS STATES
At any instant, a process can be in one of three states:
ACTIVE  The process is active and ready for execution.

WAITING The process is inactive until a child process terminates or a
signal is received.

SLEEPING The process is inactive for a specific period of time or until a
signal is received.

There is a queue for each process state. Each queue is a linked list of process
descriptors corresponding to all processes with the same process state. State changes are
performed by moving a process descriptor from its current queue to another queue.

The Active State

The active state includes all executable processes. These processes are given time slices
for execution according to their relative priority with respect to all other active processes.
The scheduler uses a method that involves using an age comparison with each active
process in the queue. It gives all active processes some CPU time, even if they have a
very low relative priority (see the following section on Execution Scheduling).

Page 4-3



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

PRIMARY MODULE REGISTER CONTENTS
HIGHEST CRC Check Value
ADDRESS
Initialization Data
Executable Object Code
« pc = module entry point
Module Header
« (a3) = module starting address
DATA AREA
« (al) = top of memory pointer
el Parameters
« (a5)/(a7) = parameter starting
Stack address/stack top
LOWEST
ADDRESS Variables
« (a6) = data area base address
(lowest address)
Registers passed to the new process:
sr = 0000 (a0) = undefined
pc = module entry point (al) = top of memory pointer
d0.w = process ID (a2) = undefined
dl.1 = group/user 1D (a3) = primary module pointer
d2.w = priority (ad) = undefined
d3.w = # of 1/0 paths inherited (a5) = parameter pointer
d4.1 = undefined (a6) = static storage (data area) base
d5.1 = parameter size pointer
d6.1 = total initial memory allocation (a7) = stack pointer (same as a5)
d7.1 = undefined :

NOTE: (a6) is always biased by $8000 to allow object programs to access 64K of data
using indexed addressing. Usually this bias can be ignored because the Linker
automatically adjusts for it.

Figure 7: New Process Initial Memory Map And Register Contents

Page 44



THE KERNEL - MPU MANAGEMENT & PROCESS EXECUTION

The Waiting State

The wait state is entered when a process executes a F§Wait system service request.
The process remains inactive until any of its descendant processes terminates or until it
receives a signal.

The Sleeping State

Sleep state is entered when a process executes an F$Sleep service request. The
F$Sleep request specifies a time interval for which the process is to remain inactive.
Processes often do this to avoid wasting CPU time while waiting for some external event
(such as the completion of I/O). Zero ticks specifies an infinite period of time. The process
remains asleep until the specified time has elapsed or until a signal is received.

EXECUTION SCHEDULING

The kernel is responsible for allocation of CPU time to active processes. OS-9 uses a
scheduling algorithm that ensures all processes get some execution time.

All active processes are members of the active process queue, which is kept sorted by
process age. Process age is a count of how many process switches have occurred since the
process entered the queue, plus the process' initial priority.

When a process is moved to the active process queue, its age is initialized by setting it
equal to the process' assigned priority. Processes having relatively higher priority are
placed in the queue with an artificially higher age. Whenever a new process is placed in
the active queue the ages of all other processes are incremented. Ages are never
incremented beyond $FFFF.

Upon conclusion of the currently executing process' time slice, the scheduler selects the
process having the highest age to be executed next. Because the queue is kept sorted by
age, the oldest process will be at the head of the queue.

Pre-emptive Task Switching

During critical real-time applications, fast interrupt response time is sometimes
necessary. OS-9 provides this by pre-empting the currently executing process when a
process with a higher priority becomes active. The lower priority process loses the
remainder of its time slice. It is then re-inserted into the active queue.

Task switching is affected by two system global variabless D_ MinPty and

D__ MaxAge. Both variables are accessible by users with a group ID of zero (super users)
through the F$SetSys system call.

Page 4-5



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

D__MinPty defines a minimum priority below which processes are neither aged nor
considered candidates for execution. D__MinPty is usually set to zero on most systems.
When it is set to some priority level, all processes running below that level are stopped
completely while the critical task (or tasks) runs to completion.

This is potentially dangerous because if the minimum system priority is set above the
priority of all running tasks, the system will be completely shut down and can only be
recovered by a reset. It is crucial to restore D__MinPty to a normal level when the critical
task finishes.

D__MaxAge defines a maximum age that processes are not allowed to mature above.
Usually, this variable is set to zero, but when it is activated, D_ MaxAge essentially
divides tasks into two classes: low and high priority. Low priority tasks stop aging at the
MaxAge cutoff. The high priority task (or tasks) will receive the entire available CPU
time. High priority tasks are never aged. All low priority tasks will be run only when
the high priority task(s) are inactive.

The exception to these rules is that any process that is performing a system call will
not be pre-empted until the call is finished, unless it voluntarily gives up its timeslice.
This exception is made because these processes may be executing critical routines that
affect shared system resources and therefore could be blocking other unrelated processes.

EXCEPTION AND INTERRUPT PROCESSING

One of 0S-9/68000's nicer features is its extensive support of the 68000's advanced
exception/interrupt system. Routines to handle a particular exception can be installed
using various OS-9 system calls for the different types of exceptions.

Vector Related
Number 0S-9 Call Assignment
0 none reset initial SSP
1 none reset initial PC
2 F$STrap bus error
3 F$STrap address error *
4 F$STrap illegal instruction *
5 F$STrap zero divide *

* See section heading "Error Exceptions"

Page 4-6



THE KERNEL - MPU MANAGEMENT & PROCESS EXECUTION

Vector Related
Number 0S-9 Call Assignment

6 F$STrap CHK instruction

7 F$STrap TRAPYV instruction

8 F$STrap privilege violation *

9 F$DFork trace

10 F$STrap line 1010 emulator *

11 F$STrap line 1111 emulator *

12-13 none (reserved) *

14 none (reserved) format error *

15 none uninitialized interrupt *

16-23  none (reserved) *

24 none spurious interrupt *

25-31 F$IRQ level 1-7 interrupt autovectors

32 F$0S9 user TRAP #0 instruction
(0S-9 call)

33-47 F$TLink user TRAP #1 - #15
instruction vectors

48 F$STrap FPCP Branch or set on
unordered condition *

49 F$STrap FPCP Inexact result *

50 F$STrap FPCP Divide by zero *

51 F$STrap FPCP Underflow error *

* see section heading "Error Exception"

Page 4-7



059/68000 OPERATING SYSTEM TECHNICAL MANUAL

Vector Related

Number 0S-9 Call Assignment
52 F$STrap FPCP Operand Error *
53 F$STrap FPCP Overflow error *
54 F$STrap FPCP NAN signaled *
55-63  none reserved
64-255 F$IRQ vectored interrupts

* see section heading "Error Exception"
Reset Vectors: vectors 0, 1

The reset initial SSP vector contains the address loaded into the system's stack pointer
at startup. There must be 4k of RAM below and at least 4k of RAM above this address for
system global storage. Each time any exception occurs, OS-9 uses this vector to find the
base address of system global data.

The reset initial PC is the coldstart entry point to OS-9. Its only use after startup is to
reset after a catastrophic failure.

WARNING: User programs should not use or alter either of these vectors.
Error Exceptions: vectors 2-8, 10-24, 48-63

These exceptions are usually considered fatal program errors and cause a user program
to be unconditionally terminated. If F$DFork created the process, the process resources
will remain intact and control will return to the parent debugger to allow a post-mortem
examination.

The F$STrap system call may be used to install a user subroutine to catch the errors in
this group that are considered non-fatal.

When an error exception occurs, the routine is executed in user state, with a pointer to
the normal data space used by the process and all user registers stacked. The exception
handler must decide whether and where to continue execution.

If any of these exceptions occur in system state, it usually means a system call has
been passed bad data and an error is returned. In some cases, system data structures can
be damaged by passing nonsense parameters to system calls.

Page 4-8



THE KERNEL - MPU MANAGEMENT & PROCESS EXECUTION

NOTE: Vectors 48-53 occur only on 68020 systems with a floating point 68881 math
COprocessor.

The Trace Exception: vector 9

The trace exception occurs when the status register trace bit is set. This allows the
MPU to single step instructions. 0S-9 provides the F§DFork, F$DExec and F$DExit
system calls to control program tracing.

AutoVectored Interrupts: vectors 25-31

These exceptions provide interrupt polling for IO devices that do not generate vectored
interrupts. Internally, they are handled exactly like vectored interrupts.

WARNING: Level 7 interrupts should not normally be used, because they are
non-maskable and can interrupt the system at dangerous times. Level 7 interrupts may
be used for "software refresh” of dynamic RAMs or similar functions. The IRQ service
routine for this vector may not use any OS-9 system calls or system data structures.

User Traps: vectors 32-47

The system reserves user trap zero (vector 32) for standard OS-9 system service
requests. The remaining 15 user traps provide a method to link to common library
routines at execution time.

Library routines are similar to program object code modules, and are allocated their
own static storage when installed by the F$TLink service request. The execution entry
point is executed whenever the user trap is called. In addition, trap handlers have
initialization and termination entry points, which are executed when linked and at
process termination.

Vectored Interrupts: vectors 64-255

The 192 vectored interrupts provide a minimum amount of system overhead in calling
a device driver module to handle an interrupt. Interrupt service routines are executed in
system state without any associated current process. The device driver must provide an
error entry point for the system to execute if any error exceptions occur during interrupt
processing. The F$IRQ system call is used to install a handler in the system's interrupt
tables. Multiple devices may be used on the same vector if necessary.

End of Chapter 4

Page 4-9



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NOTES

Page 4-10



SECTION 2 - THE INPUT/OUTPUT SYSTEM

- File Managers

- Device Driver Modules

- Random Block File Manager

- Sequential Character File Manager
-- Sequential Block File Manager

- Pipe File Manager

- Network File Manager

- The Defs Files



INTRODUCTION TO SECTION 2

THE 0S-9 UNIFIED INPUT/OUTPUT SYSTEM

0S-9 features a versatile unified, hardware-independent /O system. The /O system is
modular. It can be easily expanded or customized by the user.

The kernel performs some I/O processing (such as allocating data structures), and then
calls an appropriate file manager module, which may in turn call a device driver module.
The file manager, device driver and device descriptor modules are standard memory
modules that can be installed and removed dynamically while the system is running.

The kernel provides the first level of service for /O system calls by routing data
between processes and the appropriate file managers and device drivers. It maintains
two important internal OS-9 data structures: the device table and the path table.

When a path is opened, the kernel attempts to link to a memory module having the
device name given (or implied) in the pathlist. The module to be linked to is the device's
descriptor, which contains the names of the device driver and file manager for the device.
The information in the device descriptor is saved by the kernel so subsequent system calls
can be routed to these modules.



FILE MANAGERS

FILE MANAGERS

The function of a file manager is to process the raw data stream to or from device
drivers for a class of similar devices. The file manager makes a device driver conform to
the 0S-9 standard /O and file structure by removing as many unique device operational
characteristics as possible from /O operations. File managers are also responsible for

mass storage allocation and directory processing if applicable to the class of devices they
service.

File managers usually buffer the data stream and issue requests to the kernel for
dynamic allocation of buffer memory. They may also monitor and process the data
stream. For example, they may add line feed characters after carriage return characters.

The file managers are re-entrant. One file manager may be used for an entire class of

devices having similar operational characteristics. OS-9 systems can have any number of
File Manager modules.

File managers should have the system state bit set in the attribute byte of module header. OS-9 does

not make use of this currently, however future revisions will erquire File managers to be system state
modules. V

The four file managers which are included in typical systems are:

1. RBF (Random Block File Manager): This manager operates random-access,
block-structured devices such as disk systems.

2. SCF (Sequential Character File Manager): This manager is used with
single-character-oriented devices such as CRT or hardcopy terminals,
printers and modems.

3. PIPEMAN (Pipe File Manager): This manager supports interprocess
communication through memory buffers called "pipes".

4. SBF (Sequential Block File Manager): This manager is used with sequential
block-structured devices such as tape systems.

Page 5-1



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

FILE MANAGER ORGANIZATION AND FUNCTIONS

A file manager is a collection of major subroutines accessed through an offset table.
The table contains the starting address of each subroutine relative to the beginning of the
table. The location of the table is specified by the execution entry point offset in the
module header. A sample listing of the beginning of a file manager module is listed in
Figure 8.

" When the individual file manager routines are called, standard parameters are passed
in the following registers:

(al) Pointer to Path Descriptor

(a4) Pointer to current Process Descriptor

(a5) Pointer to User's Register Stack; User registers pass/receive parameters as
shown in the system call description section

(a6) Pointer to system Global Data area

* Sample File Manager

* Module Header declaration
Type_Lang equ (F1Mgr<<8)+0bjct
Attr Revs equ (ReEnt+Supstat«8)+0

psect FileMgr,Type_Lang,Attr_Revs,Edition,0,Entry pt

* Entry Offset Table

Entry pt dc.w Create-Entry_pt
dc.w Open-Entry pt
dc.w MakDir-Entry pt
dc.w ChgDir-Entry_pt
dc.w Delete-Entry pt
dc.w Seek-Entry_pt
dc.w Read-Entry_pt
dc.w Write-Entry pt
dc.w ReadlLn-Entry_pt
dc.w Writeln-Entry pt
dc.w GetStat-Entry pt
dc.w SetStat-Entry pt
dc.w Close-Entry pt

* Individual Routines Start Here

Figure 8: Beginning Of A Sample File Manager Module

Page 5-2



FILE MANAGERS

FUNCTIONS OF FILE MANAGER ROUTINES
Create, Open

Open and Create are responsible for opening or creating a file on a particular device.
This typically involves allocating any buffers required, initializing path descriptor
variables, and parsing the path name. If the file manager controls multi-file devices
(RBF), directory searching is performed to find or create the specified file.

Makdir

Makdir creates a directory file on multi-file devices. Makdir is neither preceded by a
Create nor followed by a Close. File managers that are incapable of supporting
directories, return with the carry bit set and an appropriate error code in (d1l.w).

ChgDir

On multi-file devices, ChgDir searches for a file which must be a directory file. If the
directory is found, the address of the directory is saved in the caller's process descriptor at
P$DIO.

Specifically, the RBF File Manager saves the address of the directory's file descriptor
sector. Open/Create begins searching in this directory when the caller's pathlist does not
begin with a "/ character.

File managers that do not support directories return with the carry bit set and an
appropriate error code in (d1.w).

Delete

Multi-file device managers usually do a directory search that is similar to Open and,
once found, remove the file name from the directory. Any media that was in use by the
file is returned to unused status.

File managers that do not support multi-file devices simply return an error.
Seek

File managers that support random access devices use Seek to position file pointers of
the already open path to the byte specified. Typically, this is a logical movement and does
not affect the physical device. No error is produced at the time of the seek, if the position
is beyond the current "end of file".

File managers that do not support random access usually do nothing, but do not return
an error.

Page 5-3



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Read

Read is responsible for returning the number of bytes requested to the user's data
buffer. It returns an EOF error, if there is no data available. Read must be capable of
copying pure binary data, and generally performs no editing on the data. Usually, the file
manager will call the device driver to actually read the data into a buffer. It then copies
data from the buffer into the user's data area. This method helps keep file managers
device independent.

Write

The Write request, like Read, must be capable of recording pure binary data without
alteration. Usually, the routines for read and write are almost identical with the
exception that Write uses the device driver's output routine instead of the input routine.
Writing past the end of file on a device expands the file with new data.

RBF and similar random access devices that use fixed-length records (sectors) must
often pre-read a sector before writing it unless the entire sector is being written.

ReadLn

ReadLn differs from Read in two respects. First, ReadLn is expected to terminate
when the first end-of-line character (carriage return) is encountered. Second, ReadLn
performs any input editing that is appropriate for the device.

Specifically, the SCF File Manager performs editing that involves handling backspace,
line deletion, echo, etc.

WriteLn

WriteLn is the counterpart of ReadLn. It calls the device driver to transfer data up to
and including the first (if any) carriage return encountered. Appropriate output editing

also is performed. After a carriage return, for example, SCF usually outputs a line feed
character and nulls (if appropriate).

Getstat, Setstat

The Getstat (Get Status) and Setstat (Set Status) system calls are wild card calls
designed to provide a method of accessing features of a device (or file manager) that are
not generally device independent.

The file manager may perform some specific function such as setting the size of a file to a given value.
Status calls that are unknown by the file manager are passed on to the driver to provide a further
means of device independance. For example, a SetStat call to format a disk track may behave
differently on different types od disk controllers.

Page 54



FILE MANAGERS

Close
Close is responsible for ensuring that any output to a device is completed (writing out
the last buffer if necessary), and releasing any buffer space allocated when the path was

opened. It does not execute the device driver's terminate routine, but may do specific
end-of-file processing if necessary, such as writing end-of-file records on tapes.

End of Chapter 5

Page 5-5



059/68000 OPERATING SYSTEM TECHNICAL MANUAL

NOTES

Page 5-6



DEVICE DRIVER MODULES

/O DEVICE DRIVER MODULES

/O Driver modules perform basic low-level physical input/output functions. For
example, a disk driver module's basic functions are to read or write a physical sector. The
driver is not concerned about files, directories, etc., which are handled at a higher level by
the OS-9 file manager. Device driver modules are re-entrant so one copy of the module
can simultaneously support multiple devices that use identical /O controller hardware.

This section describes the function and general design of OS-9 device driver modules to
aid programmers in modifying existing drivers or writing new ones. ‘In order to present
this information in an understandable manner, only basic drivers for character-oriented
(SCF-type) and disk-oriented (RBF-type) devices are discussed. It is suggested that you
study this section in conjunction with a source listing of a sample device driver.
Basic Functional Requirements of Drivers

A driver module is actually a package of seven subroutines that are called by a file
manager in system state. Their functions are:

1. Initialize the device controller hardware and related driver variables as
required.

2. Read a standard physical unit (a character or sector, depending on the device
type).

3. Write a standard physical unit (a character or sector, depending on the
device type).

4. Return a specified device status.
5. Set a specified device status.

6. De-initialize the device. It is assumed that the device will not be used again
unless re-initialized.

7. Process an error exception generated during driver execution.

When written properly, a single physical driver module can handle multiple identical
hardware interfaces. The specific information for each physical interface (port address,
initialization constants, etc.) is given in a small device descriptor module.

Page 6-1



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL
Driver Module Format .

All drivers must confirm to the standard OS-9 memory module format. The module type code is
“Drivr”. Drivers should have the system state bit set in the attribute bute of the module header. OS-9
does not make use of this currently, however future revisions will require all device drivers to be
system state modules. A sample assembly language header is shown in Figure 9.

The execution offset in the module header (M$Exec) gives the address of an offset
table, which specifies the starting address of each of the seven driver subroutines.

The static storage size (M$Mem) specifies the amount of local storage required by the
driver. This is the sum of the storage required by the file manager (V__xxx variables)
plus any variables and tables declared in the driver.

The driver subroutines are called by the associated file manager through the offset
table. The driver routines are always executed in system state. Regardless of the device
type, the standard parameters listed below are passed to the driver in registers. Other
parameters that depend on the device type and subroutine called may also be passed.
These are described in individual chapters concerning file managers.

INTTIALIZE and TERMINATE:

(al) the address of the device descriptor module.

(a2) the address of the driver's static variable storage.

(a4) the address of the process descriptor requesting the I/O function.
(a6) the address of the system global variable storage area.

READ, WRITE, GETSTAT and SETSTAT:

(al) the address of the path descriptor.

(a2) the address of the driver's static variable storage.

(ad) the address of the process descriptor requesting the /O function.
(a5) a pointer to the calling process' register stack

(a6) the address of the system global variable storage area.

ERROR: This entry point should be defined as the offset to exception handling code or zero if no

handler is available is available. This entry point is currently not used by the kernal.
However, in future revisions this will be accessed.  6-2

Each subroutine is terminated by an RTS instruction. Error status is returned using
the CCR carry bit with an error code returned in register d1.w.

Page 6-2



DEVICE DRIVER MODULES

* Module Header

Type_Lang equ (Drivr<<8)+0bjct
Attr_Revs equ (ReEnt<<8)+0

psect Acia,Typ_Lang,Attr_Rev,Edition,0,AciaEnt
* Entry Point Offset Table

AciakEnt dc.w Init Initialization routine offset
dc.w Read Read routine offset
dc.w MWrite Write routine offset
dc.w GetStat Get dev status routine offset
dc.w SetStat Set dev status routine offset
dc.w TrmNat Terminate dev routine offset
dc.w Error Error handler routine offset

Figure 9: Sample Driver Module Header Format

Interrupts and DMA

Because OS-9 is a multitasking operating system, optimum system performance will
be obtained when all /O devices are set up for interrupt-driven operation.

For character-oriented devices, the controller should be set up to generate an interrupt
upon the receipt of an incoming character and at the completion of transmission of an

out-going character. Both the input data and the output data should be buffered in the
driver.

In the case of RBF-type device, the controller should be set up to generate an interrupt
upon the completion of a sector read or a sector write operation. It is not necessary for the
driver to buffer data because the driver is passed the address of a complete buffer. DMA
sector fransfers improve data transfer speed significantly.

Usually, the INIT routine adds the relevant device interrupt service routine to the
0S-9 interrupt polling system using the F$IRQ system call. The controller interrupts are
enabled and disabled by the READ and WRITE routines as may be required.

The following interrupt priority levels are recommended:

Real-Time Clock Level 6
Terminal/Printer Ports Level 4
Disk Controllers Level 3
1/0 Processors Level 2

Page 6-3



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

DEVICE DESCRIPTOR MODULES

Device descriptor modules are small, non-executable modules that provide information
that associates a specific /O device with its logical name, hardware controller address(es),
device driver name, file manager name and initialization parameters.

Device drivers and file managers both operate on general classes of devices, not
specific /O ports. The device descriptor modules tailor their functions to a specific VO
" device. One device descriptor module must exist for each /O device in the system.
However, one device may also have several device descriptors with different initialization
constants.

The name of the module is used as the logical device name by the system and user (i.e.
it is the device name given in pathlists). Its format consists of a standard module header
that has a type code of "device descriptor" (Devic). The remaining header fields are shown
in Figure 10, and described in the following table.

NOTE: These fields are standard for all Device Descriptor Modules. They are followed by
a device specific initialization table (see Chapters 7 through 11 for the File Manager
specific Device Descriptor Module tables).

NAME UTILIZATION

M$Port Port address.
This is the absolute physical address of the hardware controller.

M$Vector Trap Vector.
25-31 for an autovectored interrupt.
64-255 for a vectored interrupt.

MS$IRQLvl 'TRQ Hardware Interrupt Level.

M$Prior IRQ Polling Priority.
Smaller numbers are polled first if more than one device is on the same

vector. A priority of zero indicates that the device requires exclusive use of
the vector.

M$Mode Device Mode Capabilities
This byte is used to validity check a caller's access mode byte in I$Create or
I30pen calls. If a bit is set, the device is capable of performing the
corresponding function. The ISize__bit is usually set, because is it usu-ally
handled by the file manager or ignored. If the Share_ bit (Single User bit) is
set here, the device will be non-sharable. This is useful for printers.

Page 6-4



DEVICE DRIVER MODULES

NAME UTILIZATION

M$FMgr  File Manager Name offset.
This is the offset to the name string of the File Manager module to be used.

MS$PDev Device Driver Name offset.
This is the offset to the name string of the Device Driver Module to be used.

M$DevCon Device Configuration.
Reserved.

M$Opt Table Size.
This contains the size of the initialization table.

M$DTyp  Initialization table.
This table is Device specific. M$DTyp must be the first byte of the option
table. It is a code to indicate what type of device this is. M$DTyp values
usually correspond to a particular file manager.

The initialization table is copied into the "option section" of the path descriptor when a
path to the device is opened. The values in this table may be used to define the operating
parameters that are accessible by the I$GetStat and I$SetStat system calls. For example,
a terminal's initialization parameters define which control characters are used for
backspace, delete, etc. The maximum size of the initialization table is 128 bytes.

You may wish to add additional devices to your system. If an identical device
controller already exists, all you need to do is add the new hardware and another device
descriptor. Device descriptors can be in ROM, in the boot file, or loaded into RAM from
mass-storage files while the system is running.

Page 6-5



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NOTE: The term "offset" refers to the location of a module field, relative to the starting
address of the module. Module offsets are resolved in assembly code by using the names
shown here and linking with the relocatable library: "sys.l" or "usr.l."

Offset Usage

$30 M$Port Port Address

$34 M$Vector Trap Vector Number

$35 MS$IRQLvI IRQ Interrupt Level

$36 MS$Prior IRQ Polling Priority

$37 M$Mode . Device Mode Capabilities
$38 MS$FMgr File Manager Name Offset
$3A MS$PDev Device Driver Name Offset
$3C M$DevCon Device Configuration Offset
$3E Reserved

$46 M$O0pt Initialization Table Size
$48 M$DTyp Device Type

Figure 10: Additional Standard Header Fields For Device Descriptors

Page 6-6



DEVICE DRIVER MODULES

PATH DESCRIPTORS

Every open path is represented by a data structure called a path descriptor ("PD"). It
contains information required by file managers and device drivers to perform IO
functions. Path descriptors are dynamically allocated and deallocated as paths are opened
and closed.

PDs have three sections: the first section is defined universally for all file managers
and device drivers, as shown in the Figure 11:

The section called "PD__FST" is reserved for and defined by each type of file manager
for file pointers, permanent variables, etc.

The 128 byte section called "PD__OPT" is used as an "option" area for
dynamically-alterable operating parameters for the file or device. These variables are
initialized at the time the path is opened by copying the initialization table contained in
the device descriptor module, and can be examined or altered later by user programs by
means of the GETSTAT and SETSTAT system calls.

Current definitions of the option area for specific-type devices are given in the
description of the particular file manager. These are included in the "sys.l" or "usr.l"
library file, and are linked into programs that need them.

Page 6-7



059/68000 OPERATING SYSTEM TECHNICAL MANUAL

NOTE: The term "offset" refers to the location of a module field, relative to the starting
address of the module. Module offsets are resolved in assembly code by using the names
shown here and linking the module with the relocatable libraries, "sys.l", or "usr.L."

Offset Usage

$00 PD_PD Path Number

$02 PD__MOD Access Mode (R W E S D)

$03 PD_CNT # of Paths using this PD

$04 PD__DEV Address of Related Device Table Entry
$08 PD__CPR Requester's Process ID

$0A PD_RGS Address of Caller's MPU Register Stack
$0E PD__BUF Address of Data Buffer

$12 PD__USER Group/User ID of Original Path Owner
$16 PD__FST File Manager Working Storage

$80 PD__OPT Option Table

Figure 11: Universal Path Descriptor Definitions

End of Chapter 6

Page 6-8



RANDOM BLOCK FILE MANAGER

RBF DESCRIPTION

The Random Block File Manager (RBF) is a re-entrant subroutine package for /O
service requests to random-access devices. Specifically, RBF is a file manager module
that supports random-access, block-oriented mass storage devices (disk systems, bubble
memory systems, and high-performance tape systems). RBF can handle any number or
type of such systems simultaneously. It is responsible for maintaining the logical and
physical file structures.

RBF is designed to support a wide range of devices having different performance and
storage capacities. Consequently, it is highly parameter driven.

The physical parameters it uses are stored on the media itself. On disk systems, this
information is written on the first few sectors of track number zero. The device drivers
also use this information, particularly the physical parameters stored on sector 0. These
parameters are written by the "FORMAT" program that initializes and tests the media.

DISK FILE PHYSICAL ORGANIZATION

The RBF file manager supports a tree structured file system. The physical disk
organization was designed to be efficient in use of disk space, highly resistant to
accidental damage, and to allow fast file access. The system also has the advantage of
relative simplicity.

Basic Disk Organization

The OS-9 standard sector size is 256-byte sectors. If a disk system is used that can not
directly support 256-byte sectors, the driver module must divide or combine sectors as
required to simulate 256-byte size.

Most disks are physically addressed by track number, surface number and sector
number. In order to eliminate hardware dependencies, OS-9 uses a logical sector number
(LSN) to identify each sector without regard to track and surface numbering.

It is the responsibility of the disk driver module or the disk controller to map logical
sector numbers to track/surface/sector addresses. OS-9's file system uses LSNs from 0 to
n-1 ("n" = the total number of sectors on the drive). All sector addresses discussed in this
section refer to LSNs.

The FORMAT utility is used to initialize the file system on blank or recycled media by
creating the track/surface/sector structure. In the process, the media is tested for bad
sectors which are automatically excluded from the file system.

Page 7-1



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Every 0S-9 disk has the following basic structure:

The Identification Sector is located in Logical Sector Zero (LSN 0). It contains a
description of the physical and logical format of the storage volume (disk media).

The Disk allocation Map usually begins in Logical Sector One. This indicates
which disk sectors are free and available for use in new or expanded files.

The Root Directory of the volume begins immediately after the allocation map.

Identification Sector

LSN zero always contains the identification sector (see Figure 12). It describes the
physical format of the disk and the location of the other parts of the file system (allocation
map and root directory). It also contains the volume name, date and time of creation, etc.
If the disk is a bootable system disk it will also have the starting LSN and size of the
"OS9Boot" file.

Addr Size Name Description
$00 3 DD_TOT Total number of sectors on media
$03 1 DD_TKS Track size in sectors
$04 2 DD_MAP Number of bytes in allocation map
$06 2 DO_BIT Number of sectors/bit (cluster size)
$08 3 DD_DIR LSN of root directory file descriptor
$08 2 DD_OWN Owner ID
$0D 1 DD_ATT Attributes
$0E 2 DD_DSK Disk ID
$10 1 DD_FMT Disk Format; density/sides
Bit 0: 0 = single side
1 = double side
Bit 1: 0 = single density
1 = double density
Bit 2: 0 = single track (48 TPI)
1 = double track (96 TPI)
$11 2 DD_SPT Sectors/track (two byte value DD_TKS)
$13 2 DD_RES Reserved for future use
$15 3 DD_BT System bootstrap LSN
$18 2 D0_BSZ Size of system bootstrap
$1A 5 DD_DAT Creation date
$1F 32 DD_NAM Volume name
$3F 32 DD_OPT Path descriptor options

Figure 12: Identification Sector Description

Page 7-2



RANDOM BLOCK FILE MANAGER

Allocation Map

The allocation map shows which sectors have been allocated to files and which are free
for future use.

Each bit in the allocation map represents a sector on the disk or a cluster of sectors. If
a bit is set, the sector is considered to be in use, defective or non-existent. The allocation
map usually starts at. LSN one and uses a variable number of sectors according to how
many bits are needed for the map. DD__MAP (see Figure 12) specifies the actual number
of bytes used in the map.

Each bit in the map corresponds to a cluster of sectors on the disk. The number of
sectors per cluster is specified by the DD__Bit variable and is always an integral power of
two.

Multiple sector allocation maps allow the number of sectors per cluster to be as small
as possible for high volume media. The Format utility sets the size of the allocation map
depending on the size and number of sectors per cluster. The number of sectors per cluster
can be selected on the command line when the Format utility is invoked.

Root Directory

This file is the parent directory of all other files and directories on the disk. It is the
directory accessed using the physical device name (such as "/D1"). Usually, it
immediately follows the allocation map. The location of the root directory FD is specified
in DD__DIR (see Figure 12).

Basic File Structure

OS-9 uses a multiple-contiguous-segment type of file structure. Segments are
physically contiguous sectors used to store the file's data. If all the data can not be stored
in a single segment (because a file is expanded after creation, or a sufficient number of
contiguous free sectors are not available), additional segments are allocated to the file.

The OS-9 segmentation method was designed to keep a file's data sectors in as close
physical proximity as possible in order to minimize disk head movement. Frequently,
files (especially small files) will have only one segment. This will result in the fastest
possible access time. Therefore it is good practice to initialize the size of a file to its
expected maximum size during or immediately after its creation. This will allow OS-9 to
optimize its storage allocation.

Page 7-3



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

All files have a sector called a file descriptor sector (or FD). An FD contains a list of
the data segments; their starting LSNs and sizes. It is also where information such as the
file attributes, owner and time of last access is stored. This sector is used only by the
system and is not directly accessible by the user. The table in Figure 13 describes the
contents of a file descriptor.

NOTE: The term "offset" refers to the location of a field, relative to the starting address of
‘the File Descriptor. Offsets are resolved in assembly code by using the names shown here
and linking the module with the relocatable library: "sys.l" or "usr.L"

Offset  Size Name Description

$00 1 FD_ATT File Attributes: D S PE PW PR E W R
$01 2 FD_OWN Owner's User ID

$03 5 FD_DAT Date Last Modified: YMD HM

$08 1 FD_LNK Link Count

$09 4 FD_SIZ File Size (number of bytes)

$0D 3 FD_CREAT Date Created: Y M D

$10 240 FO_SEG Segment List: see below

Figure 13: File Descriptor Content Description

The attribute byte (FD__ATT) contains the file permission bits. Bit 7 is set to indicate
a directory file, bit 6 indicates a non-sharable file, bit 5 is public execute, bit 4 is public
write, etc.

The segment list (FD__SEG) consists of up to 48 five byte entries that have the size
and address of each block of storage used by the file in logical order. Each entry has a
three byte logical sector number that specifies the beginning of the block and a two byte
block size (in sectors). Unused segments must be zero.

The RBF file manager is responsible for maintaining the file pointer, logical
end-of-file, etc., used by application software, and converting them to the logical disk
sector number using the data in the segment list.

The user does not have to be concerned with physical sectors at all. OS-9 provides fast
random access to data stored anywhere in the file. All the information required to map
the logical file pointer to a physical sector number is packaged in the file descriptor sector.
This makes 0S-9's record-locking functions very efficient.

Page 7-4

-~



RANDOM BLOCK FILE MANAGER

Segment Allocation

Each device descriptor module has a value called a "segment allocation size" (see
Figure 14). This parameter specifies the minimum number of sectors to allocate to a new
segment. The goal is to avoid a large number of tiny segments when a file is expanded. If
your system uses a small number of large files, this number should be set to a relatively
high value, and viceversa.

When a file is created, it initially has no data segments allocated to it. Write
operations past the current end-of-file (the first write is always past the end-of-file) cause
additional sectors to be allocated to the file. Subsequent expansions of the file are also
generally made in minimum allocation increments.

NOTE: An attempt is made to expand the last segment used when possible rather than
adding a new segment.

When the file is closed, if not all of the allocated sectors are used, the segment will be
truncated and any unused sectors deallocated in the bitmap. This strategy does not work
very well for random-access data bases that expand frequently by only a few records. The
segment list rapidly fills up with small segments. A provision has been added to prevent
this from being a problem.

If a file (opened in write or update mode) is closed when it is not at end of file, the last
segment of the file will not be truncated. In order to be effective, all programs that deal
with the file in write or update mode must insure that they do not close the file while at
end of file, or the file will lose any excess space it may have. The easiest way to insure
this, is to do a seek(0) before closing the file. This method was chosen since random
access files will frequently be at some other place than end of file, and sequential files are
almost always at end of file when closed.

Directory File Format

Directory files have the same physical structure as other files with one exception. RBF
must impose a convention for the logical contents of a directory file.

A directory file consists of an integral number of 32-byte entries. The end of the
directory is indicated by the normal end-of-file. Each entry consists of a field for the file
name and a field for the address of the file.

The file name field (DIR__NM) is 28 bytes long (bytes 0-27 of the entry) and has the
sign bit of the last character of the file name set. The first byte is set to zero to indicate a
deleted or unused entry. The address field (DIR__FD) is 3 bytes long (bytes 29-31 of the
entry) and is the LSN of the file's FD sector. Byte 28 is not used and must be zero.

Page 7-5



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

RAW PHYSICAL I/O ON DISK-TYPE DEVICES

An entire disk can be opened as one logical file. This allows any byte(s) or sector(s) to
be accessed by physical address without regard to the normal file system. This feature is
provided for diagnostic and utility programs that must be able to read and write to
ordinarily non-accessible disk sectors.

. A device is opened for physical /O by appending the character "@" to the device name.
For example, the device "/d2" can be opened for raw physical /'O under the pathlist
ll/d2@|l.

Standard open, close, read, write and seek system calls are used for physical /O. A
seek system call positions the file pointer to the actual disk physical address of any byte.
To read a specific sector, perform a seek to the address computed by multiplying the LSN
by 256. For example, to read physical disk sector 3, a seek is performed to address 768
(256*3) followed by a read system call, requesting 256 bytes.

If the number of tracks per sector of the disk is known or read from the Identification

Sector, any track/sector address can be readily converted to a byte address for physical
Lo.

WARNING: Improper physical /O operations can corrupt the file system. Take great
care when writing to a raw device. Physical I/O calls also bypass the file security system.
For this reason, only super users are allowed to open the raw device for write permit.
Non-super users are only permitted to read the identification sector (LSN 0) and the
allocation bitmap. Attempts to read past this return an end-of-file error.

RECORD LOCKING
Record locking is a general term that refers to mechanisms that are designed to
preserve the integrity of files that can be accessed by more than one user or process. 0S-9
record locking is designed to be as invisible as possible to application programs. Most

programs may be written without special concern for multi-user activity.

Simply stated, record locking involves:

1. Recognizing when a process is trying to read a record that another process
may be modifying.

2. Deferring the read request until the record is "safe".

This is referred to as conflict detection and prevention. RBF record locking also
handles non-sharable files and deadlock detection.

Page 7-6



RANDOM BLOCK FILE MANAGER

Record Locking and Unlocking

Conflict detection must determine when a record is in the process of being updated.
RBF provides true record locking on a byte basis. A typical record update sequence is:

0S9 I$Read program reads record RECORD IS LOCKED
: program updates record

OSQ.ISSeek reposition to record
0S9 I$Write record is rewritten RECORD IS RELEASED

When a file is opened in update mode, ANY read will cause the record to be locked out
because RBF does not know in advance if the record will be updated. The record remains
locked until the next Read, Write or Close occurs. Reading files that are opened in read or
execute modes does not cause record locking to occur because records can not be updated
in these two modes.

A subtle but nasty problem exists for programs that interrogate a data base and
occasionally update its data. When a user looks up a particular record, the record could be
locked out indefinitely if the program neglects to release it. The problem is characteristic
of record locking systems and can be avoided by careful programming.

It should be noted that only one portion of a file may be locked out at one time. If an
application requires more than one record to be locked out, multiple paths to the same file
may be opened each having its own record locked out. RBF will notice that the same
process owns both paths and will keep them from locking each other out. Alternately, the
entire file may be locked out, the records updated and the file released.

Non-Sharable Files

File locking may be used when an entire file is considered unsafe to be used by more
than one user. Sometimes (rarely), it is necessary to create a file that can never be
accessed by more than one process at a time (non-sharable). This is done by setting the
single user (S) bit in the file's attribute byte. The bit can be set when the file is created,
or later using the ATTR utility.

Once the single user bit has been set, only one process may open the file at a time. If
another process attempts to open the file, an error (#253) will be returned.

More commonly, a file will need to be non-sharable only during the execution of a

specific program. This is accomplished by opening the file with the single user bit set in
the access mode parameter.

Page 7-7



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

One example might be when the file is being sorted. If the file is opened as a
non-sharable file, it will be treated exactly as though it had a single user attribute. If the
file has already been opened by another process, an error (#253) will be returned.

A necessary quirk of non-sharable files is that they may be duplicated using the I$Dup
system call, or inherited. A non-sharable file could therefore actually become accessible
to more than one process at a time. Non-sharable only means that the file may be opened

-once. It is usually a very bad idea to have two processes actively using any disk file
through the same (inherited) path.

End of File Lock

An EOF lock occurs when a user reads or writes data at the end of file. The user keeps
the end of file locked until a read or write is performed that is not at the end of the file.
EOF Lock is the only case that a write call automatically causes any of the file to be
locked out. This avoids problems that could otherwise occur when two users want to
simultaneously extend a file.

An interesting and extremely useful side effect occurs when a program creates a file
for sequential output. As soon as the file is created, EOF Lock is gained, and no other
process will be able to "pass" the writer in processing the file.

For example, if an assembly listing is redirected to a disk file, a spooler utility can
open and begin listing the file before the assembler has written even the first line of
output. Record locking will always keep the spooler "one step behind" the assembler,
making the listing come out as desired.

DeadLock Detection

A deadlock can occur when two processes attempt to gain control of the same two disk
areas at the same time. If each process gets one area (locking out the other process), both
processes would be stuck permanently, waiting for a segment that can never become free.

This situation is a general problem that is not restricted to any particular record locking
method or operating system.

If this occurs, a deadlock error (#254) is returned to the process that caused it to be
detected. It is easy to create programs that, when executed concurrently, generate lots of
deadlock errors. The easiest way to avoid them is to access records of shared files in the
same sequences in all processes that may be run simultaneously. For example, always
read the index file before the data file, never the other way around.

When a deadlock error does occur, it is not sufficient for a program to simply re-try the
operation "in error”. If all processes used this strategy, none would ever succeed. It is

necessary for at least one process to release its control over a requested segment for any
to proceed.

Page 7-8



Open/Create:

Read/ReadLine

A Write/WriteLine

Seek

SetStatus

RANDOM BLOCK FILE MANAGER

RECORD LOCKING DETAILS FOR VO FUNCTIONS

The most important guideline to follow when opening files is: Do not
open a file for update if you only intend to read. Files open for read
only will not cause records to be locked out, and they will generally
help the system to run faster. If shared files are routinely opened for
update on a multi-user system, users may sometimes become
hopelessly record-locked for extended periods of time.

The special "@" file should be used in update mode with extreme care.
To keep system overhead low, record locking routines only check for
conflicts on paths opened for the same file. The "@" file is considered
different from any other file, and therefore will only conform to record
lockouts with other users of the "@" file.

Read and ReadLine cause records to be locked out only if the file is
open in update mode. The locked out area includes all bytes starting
with the current file pointer and extending for the number of bytes
requested.

For example, if a ReadLine call is made for 256 bytes, exactly 256
bytes will be locked out, regardless of how many bytes are actually
read before a carriage return is encount- ered. EOF Lock will occur if
the bytes requested also includes the current end-of-file.

A record will remain locked until any of the following occur: another
read is performed, a write is performed, the file is closed, or a record
lock SetStat is issued. Releasing a record does not normally release
EOF Lock. Any Read or Write of zero bytes will release any record
lock, EOF lock or File Lock.

Write calls always release any record that has been locked out. In
addition, a write of zero bytes releases EOF Lock and File Lock.
Writing usually does not lock out any portion of the file unless it
occurs at end of file when it will gain EOF Lock.

Seek does not effect record locking.

Two setstat codes have been included for the convenience of record
locking. They are SS__Lock, for locking or releasing part of a file; and
SS__Ticks, for setting the length of time a program is willing to wait
for a locked record. See the I3SETSTT section (chapter 16) for a
description of the codes.

Page 7-9



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

FILE SECURITY

Each file has a group/user ID that identifies the file's owner. These are copied from
the current process descriptor when the file is created. Usually a file's owner ID is never
changed.

An attribute byte is also specified when a file is created. The file's attribute byte tells
RBF in which modes a file may be accessed. Together with the file's owner ID, the
attribute byte provides (some) file security.

The attribute byte has two sets of bits that indicate whether a file may be opened for
read, write or execute by the owner or the public. In this context, the file's "owner" is any
user having the same group ID as the file's creater. "Public" means any user with a
different group ID.

Whenever a file is opened, access permissions are checked on all directories specified in
the pathlist, as well as the file itself. If you do not have permission to read a directory,
you may not read any files in that directory either.

Any super user (a user with group ID = 0) may access any file in the system. Files
that are owned by the super user can not be accessed by any other user regardless of the
group ID. Files containing modules that are owned by the super user must also be owned
by the super user. If not, the modules contained within the file will not be loaded.

CAVEAT: Care should be taken by the system Manager when assigning group/user IDs.
The RBF File Descriptor stores the group/user ID in a two byte field (FD__OWN). The
group/user ID that resides in the password file is permitted 2 bytes for the group ID and
two bytes for the user ID. RBF will only read the low order byte of both the group and

user ID. Consequently a user with the ID of 256.512 will be mistaken for the super user
by RBF.

Page 7-10



RANDOM BLOCK FILE MANAGER

RBF DEVICE DESCRIPTOR MODULES

This section describes the definitions of the initialization table contained in device
descriptor modules for RBF-type devices. The table immediately follows the standard
Device Descriptor Module Header fields (see Chapter 6 for full descriptions). A graphic
representation of the table is shown in Figure 14. The size of the table is defined in the
M$Opt field. For an example of an actual RBF descriptor, see Appendix B.

NAME  UTILIZATION
PD_DTP Device class
(0=SCF 1=RBF 2=PIPE 3=SBF 4=NET)
PD_DRV Drive number
This location is used to associate a one byte integer with each drive that a
controller will handle. Each controller's drives should be numbered 0 to n-1
(n = the maximum number of drives the controller can handle). This
number also defines how many drive tables are required by the driver and
RBF.
PD_STP  Step rate
(Floppy disks) This location contains a code that sets the head stepping rate
that will be used with the drive. The step rate should be set to the fastest
value that the drive is capable of to reduce access time. Below are the values
commonly used:
STEP CODE 5" Disks 8" Disks
0 30ms 15ms
1 20ms 10ms
2 12ms 6ms
3 6ms 3ms
PD_TYP Disk Type device type (these parameters are format specific)

bit 0 -- 000
001

5" floppy disk
8" floppy disk

1,2,3,4 -- reserved

5 -- 0 = Standard 0S-9 format (track O single density)
1 = Non-standard format (track O double density)
7 -- 0 = Floppy disk
1 = Hard disk

Page 7-11



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME UTILIZATION

PD_DN  Density byte *
Density capabilities (Floppy disk only):

bit 0 -- 0 = Single bit density (FM)
1 = Double bit density (MFM)
bit 1 -- 0 = Single track density (5", 48 TPI)
1 = Double track density (5". 96 TPI)
bit 2 -- 1 = Reserved for Quad density

(currently not supported)

PD__CYL Cylinders-TrkOff number of cylinders (TRACKS) *
This is the number of cylinders per disk.

PD_SID Heads or Sides *

This indicates the number of heads for a hard disk (Heads) or the number of
surfaces for a floppy disk (Sides).

PD__ VFY Verify or NoVerify
0 = verify disk write 1 = no verification
Write verify operations are generally performed on floppy disks but not hard
disks because of the lower soft error rate of hard disks.

PD_SCT Default sectors/track *
This is the number of sectors per track.

PD_TOS Default Sectors/Track (Track 0) *

This is the number of sectors per track for track 0. This may be different
than PD_ SCT (depending on specific disk format).

PD_SAS Segment allocation size

This value specifies the default minimum number of sectors to be allocated
when a file is expanded.

PD_ILV  Sector interleave factor *
Sectors are arranged on a disk in a certain sequential order (1, 2, 3, etc. 1, 3,
5, etc). The interleave factor determines the arrangement. For example, if
the interleave factor is 2, the sectors would be arranged by 2's (1, 3, 5, etc)
starting at the base sector (see Sectoffs).

* These parameters are format specific.

Page 7-12



NAME

RANDOM BLOCK FILE MANAGER

UTILIZATION

PD_TFM

PD__TOffs

PD__SOffs

PD_SSize

PD_ Cntl

PD_ Trys

DMA transfer mode

Direct Memory Access. This is hardware specific. If available the byte can
be set for use of DMA mode. DMA requires only a single interrupt for each
block of characters transferred in an /O operation. It is much faster than
methods that interrupt for each character transferred.

Track base offset *
This is the offset to the first accessable track number. Because Track 0 is
often a different density, Track 0 is sometimes not used as the base track.

Sector base offset *
This is the offset to the first accessable sector number. Sector 0 is sometimes
not the base sector.

Sector Size
This is the sector size in bytes. The default sector size is 256 bytes. .
PD__SSize is currently not used. '

Control Word
This is the format control word. It may currently contain the following:

bit 0 clear = format enable
bit 0 set format inhibit
bit 1 set multi-sector 1/0 capability

bit 2-7 reserved for future use

flowon

Number of Tries
This is the number of times a device will try to access a disk before returning
an error. Currently, only two values are permitted:

0 = default (a driver will try several times to access a
disk before returning an error; this is driver depen-
dent)

1 = one try (no retries)
Any other value will allow the default number of retries. In future

implementation, this value will represent the number of tries that will be
made.

* These parameters are format specific.

Page 7-13



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME UTILIZATION

PD__LUN Logical Unit Number of SCSI Drive
This number is the value which will be used in the SCSI command block
to identify the drive to the controller. This may be different from the
PD__ DRV number, so that the drive tables need not have unused entries.
For example: If the SCSI unit number is 7, the PD__DRV value could be
0. Consequently only one entry would be needed in the drive table
instead of 8 (if PD__ DRV is 7).

PD__WPC First Cylinder to Use Write Precompensation
This is the number used to determine at which cylinder to begin write
precompensation. ’

PD__RWR First Cylinder to Use Reduced Write Current
This is the number used to determine at which cylinder to begin reduced
write current.

PD_ Park Cylinder Used to Park Head
This is the cylinder at which to park the hard disk's head, when the drive
is to be shut down.

PD__LSNOffs Logical Sector Offset
This is the offset to be used when accessing a partitioned SCSI drive.

PD__TotCyls Total Cylinders On Device
This value is the actual number of cylinders on a partitioned drive. It is
used by the driver, so that the drive may be correctly initialized.

PD_ CtrirID  SCSI Controller ID

This is the ID number of the controller attached to the drive. The driver
uses this number when communicating with the controller.

Page 7-14



RANDOM BLOCK FILE MANAGER

NOTE: The term "offset" refers to the location of a module field, relative to the starting
address of the static storage area. Offsets are resolved in assembly code by using the
names shown here and linking the module with the relocatable library, "sys.l".

Offset

£

9

b

EELEEES

$50

$51

$56

$58

$59

$5A

Usage Offset
PD_DTP Device Class $5B
PD_DRV Drive Number $5C
PD_STP Step Rate
$5E
PD_TYP Device Type
PD_DNS Density
$60
Reserved
PD__CYL # of Cylinders $61
PD_SID  # of Heads/Sides
$62
PD__VFY Disk Write
Verification
PD_SCT Default $64
Sectors/Track
PD_TOS Default
Sectors/Track 0 $66
PD_SAS Segment
Allocation Size $68
PD_ILV  Sector Interleave
Factor
$6C
PD_TFM DMA Transfer
Mode
PD__TOffs Track Base $6E
Offset

Usage

PD__SOffs

Sector Base Offset

PD__SSize

Sector Size
(in bytes)

PD_ Cntl

Control Word
0 = format enable
1 = format inhibit

PD_ Trys

# of Tries
1 = no retry

_LUN

SCSI Unit Number|
of Drive

PD__WPC

Cylinder to
Begin Write
Precompensation

_RWR

Cylinder to Begin
Reduced Write
Current

PD_ Park

Cylinder to Park
Disk Head

PD__LSNOfIs

Logical Sector
Offset

PD__TotCyls

# of Cylinders
On Device

PD__CtrirID

SCSI Controller ID

Figure 14: Initialization Table for RBF Device Descriptor Modules

Page 7-15




0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

RBF DEFINITIONS OF THE PATH DESCRIPTOR

The first 19 fields of the reserved section (PD__OPT) of the path descriptor used by
RBF are copied directly from the device descriptor initialization table. These fields can be
updated by using GetStat and SetStat system calls. The final 7 fields are not copied from

the device descriptor module and can not be updated. The RBF Path descriptor option
table is shown below.

For descriptions of the first 19 fields, see the previous section on RBF device
descriptors. The final 7 fields are not copied from the device descriptor and can not be
updated using GetStat or SetStat system calls. Their description follows:

NAME UTILIZATION

PD__ATT File Attributes
(DSPEPWPRE WR)

PD_FD File Descriptor

The LSN (Logical Sector Number) of the file is written here.

PD__DFD Directory File Descriptor
. The LSN of the file's directory is written here.

PD__DCP File's Directory Entry Pointer

PD__NAME  File Name

Page 7-16



Offset

$81
$82

$83

$85

$88

$89

$8C

$8E

$30

$91

$92
$93

$94

RANDOM BLOCK FILE MANAGER

Usage
PD_DTP Device Class
PD_DRV Drive Rate
PD_STP Step Rate
PD_TYP 'Device Type
PD_DNS Density
Reserved
PD_CYL # of Cylinders
PD_SID  # of Heads/Sides
PD_VFY Write Disk
Verification
PD_SCT Default
Sector/Track
PD_TOS Default
Sector/Track 0
PD_SAS Segment
Allocation Size
PD_ILV  Sector Interleave
Factor
PD_TFM DMA Transfer
Mode
PD__TOffs Track Base Offset
PD__SOffs Sector Base Offset
PD__SSize Sector Size
(in bytes)

Offset

$96
$98

$99

$9A

$9C

$9E

$A0

$A4

$A6
$A7
$B5
$B6

$BA

$BE

$C6

$EO

Usage

PD_ Cntl

Control Word

PD_Trys

# of Tries

PD_LUN

SCSI Unit Number
of Drive

PD__WPC

Cylinder to Begin
Write Precompen.

PD_RWR

Cylinder to Begin
Begin Reduced
Write Current

PD__ Park

Cylinder to Park
Disk Head

PD__LSNOffs Logical Sector

Offset

PD__TotCyls # of Cylinders

On Device

PD__CtrirID

SCSI Controller 1D

Reserved

PD_ATT

File Attributes

PD_FD

File Descriptor LSN

PD__DFD

Directory File
Descriptor LSN

PD__DCD

File Directory
Entry Pointer

Reserved

PD__NAME

File Name

Figure 15: Option Table For RBF Path Descriptor

Page 7-17



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

RBF DRIVERS

RBF-type device drivers are designed to support any random access storage device
which reads and writes data in fixed size blocks (for example, disks or bubble memories).

0S-9 reads and writes in standard 256 byte sectors. The file manager takes care of all
file system processing and passes the driver a 256-byte data buffer and a logical sector
number (LSN) for each read or write operation.

Read calls to the driver initiate the sector read operation (and a prior "seek"” operation
if required). For interrupt driven systems, the controller will generate an interrupt when
the data has been read into the buffer. The driver must suspend itself until the interrupt
occurs. DMA (Direct Memory Access) operation is preferred if available.

Write calls to the driver initiates the sector write operation (and a prior "seek"
operation if required). For interrupt driven systems, the controller generates an interrupt
when the data has been written from the buffer onto the disk. The driver must suspend
itself until the interrupt occurs. DMA operation is preferred if available. If the "verify"
flag is set in the path descriptor (PD__VFY), the sector should be read back and verified.

Drivers for hard disks are relatively simple because the driver typically works with an
intelligent controller, and because the disk format is fixed. For example, most SASI
(SCSI) type hard disk controllers directly accept OS-9's logical sector number as the
physical sector address.

Floppy disk drivers are more complicated because they work with less capable disk
controllers and often must handle a variety of disk sizes (3", 5", 8") and physical formats
(density, number of sides, track spacing).

0OS-9 uses an access system for floppy disks that attempts to automatically adapt to all
formats the drives and controllers are physically capable of using. For example, a system
that can read double-sided/double-density floppy disks can usually read and write
single-sided/double density or double-sided/single-density disks.

Disk drivers keep a table in their static variable storage area that contains current
track addresses and disk format information for each drive (unit). The track addresses are
used for controllers that have explicit "seek" commands to determine if the head must be
moved prior to a read or write operation. The format data part of each table entry is used
to select density, number of sides, etc.

The INIT routine obtains some initialization data from the device descriptor module.
Each disk media has similar format information recorded on LSN zero (the FORMAT
utility puts it there). Whenever sector zero of a floppy disk is read, the drive's table entry
is updated with the information actually read. This is how the driver automatically
adapts to different disk formats.

Page 7-18



RANDOM BLOCK FILE MANAGER

Initialization of the table must occur prior to access of any other sector on the drive.
RBF Device Driver Storage Definitions

RBF type device driver modules contain a package of subroutines that perform sector
oriented /O to or from a specific hardware controller. Because these modules are
re-entrant, one "copy" of the module can simultaneously run several identical /O
controllers.

The kernel will allocate a static storage area for each device (which may control
several drives). The size of the storage area is given in the device driver module header
(M$Mem). Some of this storage area is required by the kernel and RBF. The device
driver may use the remainder in any manner. Information on device driver static storage
required by the operating system can be found in the "rbfstat.a” and "drvstat.a” DEFS
files. Static storage is used as follows:

NAME UTILIZATION

V_PORT Device base port address.

V_LPRC Last active process ID.
This contains the process ID is the last process to use the device. While this

field is required for all device descriptors by the kernel, it is not used by
RBF.

V_BUSY Current active process.
This contains the process ID of the process currently using the device.
(0 = not busy)

V_WAKE Process ID to awaken.
This contains the process ID of any process that is waiting for the device to
complete 'O (0 = no process waiting). Maintained by device driver.

V_PATHS Linked List of Open Paths, :
This is a singly-linked list of all paths currently open on this device. It is
maintained by the kernel.

V_NDRV Number of drives.
This contains the number of drives that the controller can use. It is defined
by the device driver as the maximum number of drives that the controller
can work with, RBF will assume that there is a drive table for each drive.

Drive Tables
This contains one table per drive that the controller will handle. RBF will
assume there are as many tables as specified in V__NDRV.

Page 7-19



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NOTE: The term "offset" refers to the location of a module field, relative to the starting
address of the static storage area. Offsets are resolved in assembly code by using the
names shown here and linking the module with the relocatable library, "sys.l".

Offset Usage

$00 V__PORT Device base port address

$04 V_LPRC Last active process ID

$06 V__BUSY Current active process

$08 V_WAKE Process ID to awaken

$0A V__PATHS Linked List of Open Paths

$2E V_NDRV Number of Drives

$2F RESERVED

$36 Drive Tables

Figure 16: RBF Static Storage Allocation

Page 7-20



RANDOM BLOCK FILE MANAGER

Device Driver Tables

After the driver INIT routine has been called, RBF will request the driver to read the
identification sector (LSN 0) from the drive. At this time the driver must initialize the
corresponding drive table. It does this by copying the first 21 bytes of sector 0 (through
DD__RES) into the appropriate table. The format of each drive table is given below:

Offset ‘Usage Offset Usage

$00 DD_TOT Total Number $18 V__FileHd Open File List
of Sectors For Disk

$03 DD_TKS Track Size $1C V__DiskID Disk ID
(in sectors)

$1E V__BMapSz Bitmap Size
$04 DD _MAP # of BytesIn

Allocation Map $20 V_MapSct Lowest Bitmap
Byte To Search
$06 DD_BIT  # of sectors/bit
(cluster size) $22 V_BMB  Bitmap In Use
Flag
$08 DD_DIR LSN of Root
Directory FD $24 V__ScZero Pointer To Sector 0
$0B DD_OWN Owner ID $28 V__ZeroRd Sector 0 Read Flag
$0D DD__ATT Attributes $29 V__Init Drive Initialized
Flag

$OE DD_DSK Disk ID

$2A V_Resbit Reserved Bitmap

$10 DD__FMT Disk Format: Sector Number
Density/Sides
$2C V_SoftEr # Of Recoverable
$11 DD_SPT Sectors/Track Errors
$13 Reserved $30 V__HardEr # Of Non-

Recoverable Errors
$16 V__TRAK Current Track

Number $34 Reserved
(32 bytes)

Figure 17: RBF Device Driver Table Format:
there must be as many tables as were specified in NDRV

Page 7-21



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

RBF Device Driver Subroutines

As with all device drivers, RBF device drivers use a standard executable memory
module format with a module type of "Drivr" (code $E0).

The execution offset address in the module header points to a branch table that has
seven entries. Each entry is the offset of a corresponding subroutine. The branch table is
as follows:

ENTRY dc.w INIT initialize device
dc.w READ reads character
dc.w- WRITE writes character

dc.w GETSTA gets device status
dc.w SETSTA sets device status
dc.w TERM terminates device

dc.w TRAP handles 11legal exception

Each subroutine should exit with the condition code register carry bit cleared if no
error occurred. Otherwise the carry bit should be set and an appropriate error code
returned in dl.w. The following pages give a description of each subroutine.

The TRAP entry should be defined. It should be set to an offset to exception handling code. It should
be set to zero if no exception handler is available. This entry point is currently not used by the kernal.
However, in future revisions this will be accessed.

The following pages give a description of each subroutine.

Page 7-22



RANDOM BLOCK FILE MANAGER

NAME: INIT

INPUT: (al) = address of the device descriptor module
(a2) = address of device static storage
(ad) = process descriptor pointer
(a6) = system globel data pointer

OUTPUT: None

.cc = carry bit set
dl.w = error code

ERROR OUTPUT:
FUNCTION: INITIALIZE DEVICE AND ITS STATIC STORAGE AREA
The INIT routine must:

1. Initialize the device's permanent storage. This minimally consists of:

A. Initializing V__NDRYV to the number of drives that the controller will
work with,

B. Initializing DD__TOT in the drive table to a non-zero value so that sector
zero may be read or written to.

C. Initializing V__TRAK to $FF so that the first seek will find track zero.
2. Initialize device control registers (enable interrupts if necessary).

3. Place the IRQ service routine on the IRQ polling list by using the 0S9 F$IRQ
service request.

NOTE: Prior to being called, the device permanent storage will be cleared (set to zero)
except for V__PORT which will contain the device address. The driver should initialize
each drive table appropriately for the type of disk the driver expects to be used on the
corresponding drive.

Page 7-23



0S59/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME: READ

INPUT: d0.1 = number of contiguous sectors to read

d2.1 = disk logical sector number to read
(al) = address of path descriptor

(a2) = address of device static storage
(ad) = process descriptor pointer

(a5) = caller's register stack pointer
(a6) =

system global data storage pointer
OUTPUT: sector(s) returned in the sector buffer

ERROR OUTPUT: cc = carry bit set
dl.w = Appropriate error code

FUNCTION: READ SECTOR(S)
The READ routine must:

1. Get the sector buffer address from PD__BUF in the path descriptor.

2. Verify the drive number from PD__DRYV in the path descriptor.

3. Compute the physical disk address from the logical sector number.

4. Seek to the physical track requested.

5. Read sector(s) from the disk into the sector buffer.

6. Copy V__BUSY to V__WAKE. The driver then goes to sleep and waits for the
/O to complete (the IRQ service routine is responsible for sending a wake up
signal and clearing V__WAKE). After awakening, it must test V__ WAKE to

see if it is clear. If not, it goes back to sleep.

If the disk controller can not be interrupt driven it will be necessary to perform
programmed L/O.

NOTE: Whenever logicul sector zero is read, the first part of it must be copied into the
appropriate drive table. PD__DTB contains a pointer to the proper drive table entry. The
number of bytes to copy is DD__SIZ.

If bit number 1 in the PD__Cntl field is clear, RBF will only request one sector
READS. If the bit is set, RBF may request up to 255 contiguous sectors to be read.

Page 7-24



RANDOM BLOCK FILE MANAGER

d0.1 = number of contiguous sectors to write
d2.1 = disk logical sector number

(al) = address of the path descriptor

(a2) = address of the device static storage area
(ad) = process descriptor pointer

(a8) = caller's register stack pointer

(a6) = system global data storage pointer

OUTPUT: The sector buffer is written to disk

- ERROR OUTPUT:

Carry bit set

cc =
dl.w = Appropriate error code

FUNCTION: WRITE SECTOR(S)

The WRITE routine must:

1.

Get the sector buffer address from PD__BUF in the path descriptor.

Verify the drive number from PD__DRV in the path descriptor.

. Compute the physical disk address from the logical sector number.

Seek to the physical track requested.
Write sector buffer(s) to the disk.

Copy V_BUSY to V__WAKE. The driver then goes to sleep and waits for
the /O to complete (the IRQ service routine is responsible for sending the
wakeup signal and clearing V_WAKE). Test V__ WAKE after awakening,
to see if it is clear. If not, then the driver goes back to sleep.

If PD__VFY in the path descriptor is equal to zero, read the sector back and
verify that it is written correctly. It is recommended that the compare loop

be as short as possible to keep the necessary sector interleave value to a
minimum,

If the disk controller can not be interrupt-driven, it will be necessary to perform a
programmed L/O transfer. .

2.
-_

3

4.

5.

6.
-

1.
Y

If bit number 1 in the PD__Cntl field is clear, RBF will only request one sector
WRITES. If the bit is set, RBF may request up to 255 contiguous sectors to be written.

Page 7-25



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME: GETSTAT/SETSTAT

INPUT: d0.w = status code

(al) = address of the path descriptor

(a2) = address of the device static storage area
(ad) = process descriptor pointer

(a5) = caller's register stack pointer

(a6) = system global data storage pointer

"OUTPUT: Depends on the function code.

ERROR OUTPUT: cc = Carry bit set
dl.w = Appropriate error code
FUNCTION: GET/SET DEVICE STATUS

These routines are wild card calls used to get (set) the device's operating parameters as
specified for the OS9 I$GetStt and I$SetStt service requests.

It may be necessary to examine or change the register stack which contains the values
of MPU registers at the time the I$GetStt or I$SetStt service request was made.

Typical RBF drivers have routines to handle the "SS__ WTrk" and "SS__Reset" SetStat

codes. Usually all GetStat codes and other SetStat codes return with an "E$UnkSvc"
(UnKnown Service Request) error.

Page 7-26



RANDOM BLOCK FILE MANAGER

NAME: TERMINATE

address of the device descriptor module
Address of device static storage area

0S-9 system global static storage -

INPUT: (al)
(a2)
(a6)

OUTPUT: None
ERROR OUTPUT: None
FUNCTION: TERMINATE DEVICE

This routine is called when a device is no longer in use in the system. This is defined
as when the link count of its device table entry becomes zero (see I$Attach and I$Detach).

The TERM routine must:
1. Wait until any pending /O has completed.
2. Disable the device interrupts.

3. Remove the device from the IRQ polling list.

Page 7-27



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME: IRQ SERVICE ROUTINE

INPUT: (a2)
(a3)
(a6)

static storage address
port address

system global static storage

nouon

FUNCTION: SERVICE DEVICE INTERRUPTS

Although this routine is not included in the device driver module branch table and is

not called directly by RBF, it is a key routine in interrupt-driven device drivers. Its
function is to:

1. Poll the device. If the interrupt is not caused by this device, the carry bit
must be returned set with an RTS instruction as quickly as possible.

2. Service device interrupts.

3. Send a wake up signal to the process whose process ID is in V.WAKE, when
the /O is complete. Also, clear V__ WAKE as a flag to the mainline program
that the IRQ has indeed occurred.

4. When the IRQ service routine finishes servicing an interrupt it must clear
the carry and exit with an RTS instruction.

NOTE: IRQ service routines may destroy the following registers only: d0, d1, a0, a2,

a3 and a6. All other registers used must be preserved or unpredictable system errors (i.e.
system crashes) will occur.

End of Chapter 7

Page 7-28



SEQUENTIAL CHARACTER FILE MANAGER

SCF DESCRIPTION

The Sequential Character File Manager (SCF) is the OS-9 file manager module that
supports devices which operate on a character by character basis: terminals, printers and
modems. SCF can handle any number or type of character oriented devices. SCF is a
reentrant subroutine package called for /O service requests to SCF-type devices. It
includes the extensive input and output editing functions that are typical of line-oriented
operations such as backspace, line delete, repeat line, auto line feed, screen pause and
return delay padding. -

SCF LINE EDITING

The I$Read and I$Write service requests to SCF-type devices pass data to/from the
device without any modification. Specifically, carriage returns are not automatically
followed by line feeds or nulls, and the high order bits are passed as sent/received. If X-on
and X-off are enabled, these characters are intercepted by the device driver and not
processed by SCF.

The I$ReadLn and I$WritLn service requests to SCF-type devices perform full line
editing of all functions enabled for the particular device.

These functions are initialized when a path is first opened by copying the option table
from the device descriptor associated with that device into the path descriptor. They may
be altered afterwards by assembly language programs using the I$SetStt and 1$GetStt
service requests or from the keyboard using TMODE.

SCF DEVICE DESCRIPTOR MODULES

Device descriptor modules for SCF-type devices contain the device address and an
initialization table which defines initial values for the /O editing features, as listed
below. The initialization table immediately follows the standard Device Descriptor
Module Header fields (see chapter 6 for full descriptions). The size of the table is defined
in the M$Opt field. The initialization table is graphically shown in Figure 18 and the
following table. See Appendix B for an example SCF device descriptor.

NOTE: It is possible to change or disable most of these special editing functions by
changing the corresponding control character in the path descriptor. This can be done
with the I13SetStt service request or by the TMODE utility. A more permanent solution
may be to change the corresponding control character value in the device descriptor
module. Device descriptors may be easily changed using the XMODE utility.

Page 8-1



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME UTILIZATION

PD_DTP Device class
(0=SCF 1=RBF 2=PIPE 3=SBF 4=NET)

PD__UPC Letter case

If PD__UPC is not equal to zero, then input or output characters in the range
"a..z" are made "A..Z"

PD_BSO Destructive Backspace
If PD__BSO is zero when a backspace character is input, SCF will echo
PD__BSE (backspace echo character). If PD__BSO is non-zero, SCF will echo
PD_ BSE, space, PD__BSE.

PD_DLO Delete '
If PD__DLO is zero, SCF will delete by backspace-erasing over the line. If

PD__DLO is unequal to zero, SCF will delete by echoing a carriage
return/line feed.

PD__EKO Echo

If PD__EKO is not zero, then all input bytes are echoed, except undefined
control characters which are printed as a "." If PD__EKO is zero, input
characters are not echoed.

PD__ALF Automatic line feed

If PD__ALF is not zero, then carriage returns are automatically followed by
line feeds.

PD__NUL End of line null count

PD__NUL is a count of the number of NULL padding bytes (always $00) to
be sent after a CR/LF character.

PD_PAU End of page pause

If PD__PAU is non-zero, an auto page pause will occur upon reaching a full
screen of output. See PD__PAG for setting page length.

PD__PAG Page length
This contains the number of lines per screen (or page).

PD__BSP Backspace "input” character

This is the input character recognized as backspace. See also PD__BSE and
PD__BSO.

Page 8-2



SEQUENTIAL CHARACTER FILE MANAGER

NAME UTILIZATION

PD__DEL Delete line character
This is the input character recognized as the delete line function. See also
PD__DLO

PD_EOR End of record character
The PD__EOR character is the last character on each line entered
(I$ReadLn). An output line is terminated (I$WritLn) when this character is
sent. Normally PD_ EOR should be set to $0D. Warning: If it is set to zero,
SCF's ReadLn will NEVER terminate, unless an EOF occurs.

PD__EOF End of file character
PD__EOF defines the end of file character. SCF will return an end-of-file
error on I$Read or I$ReadLn if this is the first (and only) character input. It
can be disabled by setting its value to zero.

PD__RPR Reprint line character

. 'When this character is input, SCF (I$ReadLn) will reprint the current input

line. A carriage return is also inserted in the input buffér for PD__DUP (see
below). This makes correcting typing errors more convenient.

PD_DUP Duplicate last line character
If this character is input, SCF (I$ReadLn) will duplicate whatever is in the
input buffer through the first "PD__EOR" character. Normally, this will be
the previous line typed.

PD__PSC Pause character
If this character is typed during output, output is suspended before the next
end-of-line. This will also delete any "type ahead" input for I$ReadLn.

PD_INT Keyboard interrupt character
If PD__INT is input, a keyboard interrupt signal is sent to the last user of
this path. It will terminate the current /O request (if any) with an error
identical to the keyboard interrupt signal code. PD__INT normally is set to a
control-C character.

PD__QUT Keyboard abort character

When this character is input, a keyboard abort signal is sent to the last user
of this path. It will terminate the current /O request (if any) with an error
code identical to the keyboard interrupt signal code. This value is normally
a control-E character.

Page 8-3



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME UTILIZATION

PD_BSE Backspace "output” character (echo character)
This is the backspace character to echo when PD__BSP is input. See
PD__ BSP and PD__BSO.

PD_OVF Line overflow character
If I$ReadLn has satisfied its input byte count, SCF ignores any further input
characters until an end-of-line (PD__EOR) character is received. It echoes
the PD__OVF character for each byte ignored. PD__OVF is usually set to the
terminal's bell character.

PD__PAR Parity code, number of stop bits & bits/character
Bits 0 and 1 set the parity as follows:

0 = no parity
1 = odd parity
3 = even parity

Bits 2 and 3 set the number of bits per character as follows:

5 bits/character
6 bits/character
7 bits/character
8 bits/character

oO~NWw
nouonou

Bits 4 and 5 set the number of stop bits as follows:

0 =1 stop bit
1=11/2 stop bits
2 = 2 stop bits

Bits 6 and 7 are reserved.

PD__BAU Software adjustable baud rate
This one byte field sets the baud rate as follows:

0 = 50 baud 6 = 600 baud C = 4800 baud
1 =75 baud 7 = 1200 baud D = 7200 baud
2 = 110 baud 8 = 1800 baud E = 9600 baud
3 = 134.5 baud 9 = 2000 baud F = 19200 baud
4 = 150 baud A = 2400 baud FF = External

5 = 300 baud B8 = 3600 baud

Page 8-4



SEQUENTIAL CHARACTER FILE MANAGER

NAME UTILIZATION

PD__D2P Offset to output device descriptor name string
SCF sends output to the device named in this string. Input comes from the
device named by the M$PDev field. This permits two separate devices ( i.e.,
a keyboard and video display) to be one logical device. Usually PD__D2P
refers to the name of the same device descriptor it appears in.

PD__XON X-on character
See PD__XOFF below.

PD__XOFF X-off character
When this character is received, output from an SCF device is immediately
stopped until an X-on character is received. This is required for software
handshaking for some devices.

PD_Tab Tab character
In I$WritLn calls, SCF will expand this character into spaces to make tab
stops at column intervals specified by PD__Tabs. NOTE: SCF does not know
the effect of control characters on particular terminals. It can expand tabs
incorrectly if they are used.

PD_ Tabs Tab field size
See PD__Tab.

Page 8-5



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NOTE: The term "offset" refers to the location of a module field, relative to the starting
address of the module. Module offsets are resolved in assembly code by using the names

shown here and linking the module with the relocatable library:

Offset
$48
849
$4A
$4B

$4C

$4D

S4E

$4F
$50

$51

$52

$53

$55

Usage

PD__DTP

Device Type

PD__UPC

Ubpper Case Lock

PD__BSO

Backspace Option

PD_DLO

Delete Line
Character

PD__EKO

Echo

PD_ALF

Automatic Line
Feed

PD_NUL

End Of Line
Null Count

PD_PAU

End Of Page Pause

PD_PAG

Page Length

PD_ BSP

Backspace Input
Character

PD_ DEL

Delete Line
Character

PD_EOR

End Of Record
Character

PD__EOF

End Of File
Character

PD_RPR

Reprint Line
Character

Figure 18: Device Descriptor Initialization Table

"sys.l" or "usr.l."

Offset Usage

$56 PD_DUP Duplicate Line
Character

$57 PD_PSC Pause Character

$58 PD_INT Keyboard
Interrupt
Character

$59 PD__QUT Keyboard Abort
Character

$5A PD__BSE Basckspace Output

$5B PD__OVF Line Overflow
Character (bell)

$5C PD_PAR Parity Code
# of Stop Bits and
# of Bits/Character|

$5D PD__BAU Adjustable Baud
Rate

$5E PD__D2P Offset To Output
Device Name

$60 PD__XON X-ON Character

$61 PD_ XOFF X-OFF Character

$62 PD__TAB Tab Character

$63 PD__TABS Tab Column Width

Page 8-6



SEQUENTIAL CHARACTER FILE MANAGER

SCF DEFINITIONS OF THE PATH DESCRIPTOR

The first 27 fields of the reserved section (PD__OPT) of the SCF path descriptor are
copied directly from the SCF device descriptor initialization table. The table is shown in
Figure 19.

These fields can be changed or disabled with the I$SetStt Service request, or the
TMODE utility. A more permanent change may be to change the device descriptor table
using the XMODE utility.

The SCF editing functions may be disabled by setting the corresponding control
character value to zero. For example, by setting PD__INT to zero, there would be no
"keyboard interrupt" character.

NOTE: Full definitions for the fields copied from the device descriptor are available in
the previous section.

NOTE: The term "offset" in Figure 19 refers to the location of a module field, relative to
the starting address of the module. Module offsets are resolved in assembly code by using
the names shown here and linking the module with the relocatable library: "sys.l" or
"usr.l."

Page 8-7



Offset

$87
$88

$89

$8B

$8C

$8D

$8F

0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Usage

PD__DTP

Device Type

PD__UPC

Upper Case Lock

PD_BSO

Backspace Option

PD_DLO

Delete Line
Character

PD__EKO

Echo

PD_ALF

Automatic Line
Feed

PD_NUL

End Of Line
Null Count

PD_ PAU

End Of Page Pause

PD_PAG

Page Length

PD_BSP

Backspace Input
Character

PD_ DEL

Delete Line
Character

PD_EOR

End Of Record
Character

PD_EOF

End Of File
Character

PD_RPR

Reprint Line
Character

PD__DUP

Duplicate Line
Character

PD_PSC

Pause Character

Offset

$90

$91

$92

$93

$94

$95

$96

$98
$99
$9A
$9B
$9C
$A0

$A2

$A3

Usage
PD_INT Keyboard
Interrupt
Character
PD_QUT Keyboard Abort
Character
PD__BSE Basckspace Output
PD__OVF Line Overflow
Character (bell)
PD_PAR Parity Code
# of Stop Bits and
# of Bits/Character
PD_ BAU Adjustable Baud
Rate
PD__D2P Offset To Output
Device Name
PD_XON X-ON Character
PD_ XOFF X-OFF Character
PD__TAB Tab Character
PD__TABS Tab Column Width
Reserved
PD__COL Current Column
ED__ERR Most Recent

Error Status

Reserved

Figure 19: Path Descriptor Module Option Table For /O Editing

Page 8-8



SEQUENTIAL CHARACTER FILE MANAGER

SCF DRIVERS

SCF-type device drivers support I/O devices that read and write data a single character
at a time, such as serial devices.

Generally, the input data (usually from a keyboard) is buffered. Each READ system
call returns a single character at a time from the circular FIFO buffer. If the buffer is
empty when a READ occurs, the driver must generate interrupts and suspend the calling
process until an input character is received.

The GetStat system call permits an application program to test if the buffer contains
any data. By checking first, the program will not be suspended if no data is available.

The driver may optionally handle full input buffer conditions using XON/XOFF or
similar protocols. The input routine must also handle the special pause, abort and quit
control characters. All other control characters (such as backspace, line delete, etc.) are
handled at the file manager level.

The output data may or may not be buffered, depending on the physical characteristics
of the output device. If the device is a memory-mapped viden display driven by the main
CPU, buffering and interrupts are not needed.

If the device is a serial interface, buffering and interrupts should be used. Each
WRITE call passes a single output character to the driver which is placed in a circular
FIFO output buffer. The output interrupt routine takes output characters from this
buffer. If the buffer is full after a WRITE call, the driver should suspend the calling
process until the buffer empties sufficiently.

SCF Device Driver Storage Definitions

SCF device driver modules contain a package of subroutines that perform raw I/'O
transfers to or from a specific hardware controller. Because these modules are re-entrant,
one copy of the module can simultaneously run several identical /O controllers.

An individual static storage area is allocated for each copy of the device driver. The
kernel determines that a new copy of the device driver is needed when an attach occurs
for a device with a new port address.

The size of this storage area is given in the device driver module header (M$§MEM).
Some of this storage area is required by SCF. The device driver may use the remainder
for variables and buffers.

The static storage required by SCF is defined in "scfstat.a" in the DEFS directory. It is
usually included in the device static storage requirements by linking the file "scfstat.r"
with the device driver relocatable file. SCF static storage is used as follows:

Page 8-9



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NOTE: The term "offset" refers to the location of a module field, relative to the starting
address of the static storage area. Offsets are resolved in assembly code by using the
names shown here and linking the module with the relocatable library: "sys.l" or "usr.1."

Offset Usage

$00 V_PORT Device base address

$04 V_LPRC Last active process ID

$06 1 V_BUSY Active process ID

$08 V_WAKE Process ID to awaken

$0A V_Paths Linked list of open paths

$OE Reserved

$2E V_DEV2 Address of attached device
static storage

$32 V_TYPE Device type or parity

$33 V_LINE Lines left until end of page

$34 V_PAUS Pause request

$35 V_INTR Keyboard interrupt character

$36 V_QUIT Keyboard abort character

$37 V_PCHR Pause character

$38 V_ERR  Error accumulator

$39 V_XON  X-on character

$3A V_XOFF X-off character

$3C Reserved

$54 Device Driver Variables Begin Here

Figure 20: Static Storage Allocation for SCF Device Drivers
Page 8-10



SEQUENTIAL CHARACTER FILE MANAGER

NAME UTILIZATION

V_PORT Device base address
This field is initialized by the kernel from the device port address.

V_LPRC Last active process ID
This contains the process ID of the last process to use the device. The IRQ
service routine sends this process the proper signal when a "interrupt" or
"quit" character is received.

V_BUSY Active process ID (0 = not busy)
This contains the process ID of the process currently using the device. This is
used by SCF to prevent more than one process from using the device at the
same time. V__BUSY is always equal to V__LPRC or 0.

V_WAKE Process ID to reawaken
This contains the process ID of any process that is waiting for the device to
complete /O (zero means there is no process waiting).

V_Paths Linked list of open paths
This is used by the kernel to determine if a non-sharable device is already in
use.

V_DEV2 Attached device static storage
This contains the address of the ECHO (output) device's static storage area.
Typically a device is it's own echo device. However, it may not be, as in the
case of a keyboard and a memory mapped video display.

V_TYPE Device type or parity
This value is copied from PD__PAR in the path descriptor by SCF. It is
typically used as a value to initialize the device control register, for parity,
etc.

V_LINE Lines left until end of page
This contains the number of lines left until the end of the page. Paging is
handled by SCF.

V_PAUS Pause request

This is a flag used to signal SCF that a pause character has been received.
Setting its value to anything other than 0 will cause SCF to stop
transmitting characters at the end of the next line. Device driver input
routines must set V__PAUS in the ECHO device's static storage area. SCF
will check this value in the ECHO device's static storage when output is sent.

Page 8-11



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME UTILIZATION

V_INTR Keyboard interrupt character
This value is copied from PD__INT in the path descriptor by SCF.

V_QUIT Quit character
This value is copied from PD__QUT in the path descriptor by SCF.

‘V_PCHR Pause character
This value is copied from PD__PSC in the path descriptor by SCF.

V_ERR Error accumulator
This location is used to accumulate /O errors. Typically, it is used by the
IRQ service routine to record errors so that they may be reported later when
SCF calls one of the device driver routines.

V_XON X-on character

This character is copied from the PD__XON field of the path descriptor. See
V__XOFF below.

V_XOFF X-off character
This character is copied from the PD__XOFF field of the path descriptor.
When an X-off character is received, the driver should immediately disable
output interrupts and stop sending characters. Output interrupts are
enabled only when the V__XON character is received. Both V__XON and

V__XOFF are "eaten" by the device driver and NOT put into the circular
FIFO buffer.

Page 8-12



SEQUENTIAL CHARACTER FILE MANAGER

SCF DEVICE DRIVER SUBROUTINES

As with all device drivers, SCF device drivers use a standard executable memory
module format with a module type of "device driver” (Drivr).

The execution offset address in the module header points to a branch table that has
seven entries. Each entry contains the offset of the corresponding subroutine. The entry

table is as follows:

ENTRY dc.w
dc.w
dc.w
dc.w
dc.w
dc.w

dc.w

INIT
READ
WRITE
GETSTA
SETSTA
TERM

TRAP

initialize device
read character
write character
get device status
set device status
terminate device

handles illegal exception

Each subroutine should exit with the condition code register Carry bit cleared if no
error occurred. Otherwise, the Carry bit should be set and an appropriate error code
returned in the least significant word of register d1.

The TRAP entry should be defined as the offset to exception handling code or zero if no handler is
available. This entry pointis currently not used by the kernal. However, in future revisions this will be

accessed.

The following pages contain descriptions of each subroutine's functions and param-

eters.

Page 8-13



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME: INIT

INPUT: (al) = address of device descriptor module
(a2) = address of device static storage
(ad) = process descriptor pointer
(a6) = system global data pointer

OUTPUT: None

ERROR OUTPUT:

Carry bit set
= Error code

cc =
dl.w
FUNCTION: INITIALIZE DEVICE AND ITS STATIC STORAGE
The INIT routine must:
1. Initialize the device static storage.

2. Initialize the device control registers.

3. Place the driver IRQ service routine on the IRQ polling list by using the 0S9
F$IRQ service request.

4. Enable interrupts if necessary.

NOTE: Prior to being called, the device static storage will be cleared (set to zero) except

for V__PORT which will contain the device port address. Do not initialize the portion of
static storage used by SCF.

Page 8-14



SEQUENTIAL CHARACTER FILE MANAGER

address of path descriptor

(a2) = address of device static storage
(ad) = process descriptor pointer
(a6) = system global data pointer

OUTPUT: d0.b = input character
ERROR OUTPUT: cc = Carry bit set
dl.w = Error code
FUNCTION: GET NEXT CHARACTER

This routine gets the next character from the input buffer. If there is no data ready,
this routine copies its process ID from V__BUSY into V_WAKE and then uses the
F$Sleep service request to put itself to sleep indefinitely.

When an input character is received, the IRQ service routine should put the data in
the buffer. It then checks V__ WAKE to see if any process is waiting for the device to
complete /O. If so, the IRQ service routine sends a wakeup signal to the waiting process
and clears V__WAKE.

NOTE: Data buffers for queueing data between the main driver and the IRQ service
routine are NOT automatically allocated. They should be defined in the device's static
storage area.

Page 8-15



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

INPUT: d0.b = char to write

(al) = address of the path descriptor
(a2) = address of device static storage
(ad) = process descriptor pointer
(a6) = system global data pointer
OUTPUT: None
ERROR OUTPUT: cc = Carry bit set
dl.w = Error code

FUNCTION: OUTPUT A CHARACTER

This routine places a data byte into an output buffer and enables the device output
interrupt. If the data buffer is already full, this routine should copy its process ID from
V_BUSY into V__WAKE and then put itself to sleep.

When the IRQ service routine transmits a character and makes room for more data in
the buffer, it checks V__WAKE to see if there is a process waiting for the device to
complete I/O. If there is, it sends a wake up signal to that process and clears V__ WAKE.

NOTE: This routine must ensure that output interrupts are enabled if necessary. After
an interrupt is generated the IRQ service routine will continue to transmit data until the
data buffer is empty, and then it should disable the device's "ready to transmit"
interrupts.

NOTE: Data buffers or queues between the main driver and the IRQ routine used are
defined in the device's static storage.

Page 8-16



SEQUENTIAL CHARACTER FILE MANAGER

NAME: GETSTAT/SETSTAT

INPUT: d0.w = function code

(al) = address of path descriptor
(a2) = address of device static storage
(ad) = process descriptor pointer
(a6) = system global data pointer

OUTPUT: Depends upon function code

ERROR OUTPUT: cc = Carry bit set
dl.w = Error code
FUNCTION: GET/SET DEVICE STATUS

These routines are a wild card calls used to get (set) the device parameters specified in
the I$GetStt and I$SetStt service requests. Many SCF-type requests are handled by the
kernel or SCF. Any codes not defined by them will be passed to the device driver.

In writing getstat/setstat codes, it may be necessary to examine or change the register
stack which contains the values of the 68000 registers at the time the OS-9 service
request was issued. The address of the register packet may be found in PD__RGS, which
is located in the path descriptor.

If a status report is made to a unrecognized device driver, E$UnkSve (Unknown
Service Request) should be returned as an error.

Page 8-17



059/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME: TERMINATE

device descriptor pointer

INPUT: (al)
(a2 ptr to device static storage

nouwun

(a4) = process descriptor pointer
(a6) = system global data pointer
OUTPUT: None
ERROR OUTPUT:

Carry bit set

cc =
dl.w = Appropriate error code

FUNCTION: TERMINATE DEVICE

This routine is called when a device is no longer in use. This is defined as when the
link count of its device table entry becomes zero. It must perform the following:

1. Wait until the output buffer has been emptied (by the IRQ service routine).

2. Disable device interrupts.

3. Remove device from the IRQ polling list.

Page 8-18



SEQUENTIAL CHARACTER FILE MANAGER

NAME: IRQ SERVICE ROUTINE

INPUT:

.

(a2) = static storage
(a3) = port address
(a6) = system global static storage

FUNCTION: SERVICE DEVICE INTERRUPTS

Although this routine is not included in the device drivers branch table and not called
directly from SCF, it is an important routine in interrupt-driven device drivers. Its

function is:

1.

6.

Poll the device. If the device did not cause the interrupt, exit immediately
with an RTS instruction and the carry bit set. This section should be as fast
as possible.

Service the device interrupts (receive data from device or send data to it).
This routine should put its data into and get its data from buffers which are
defined in the device static storage.

. Wake up any process waiting for O to complete by checking to see if there is

a process ID in V__WAKE (non-zero). If so, send a wakeup signal to that
process and clear V__ WAKE.

. If the device is ready to send more data and the output buffer is empty,

disable the device's "ready to transmit" interrupts.

If a pause character is received, set V__PAUS in the attached device static
storage to a non-zero value. The address of the attached device static storage
isin V__DEV2,

If a keyboard abort or interrupt character is received, signal the process in
V__LPRC (last known process) if any.

When the IRQ service routine finishes servicing an interrupt, it must clear the carry
and exit with an RTS instruction.

NOTE: IRQ service routines may destroy the following registers only: d0, d1, a0, a2,
a3 and a6. All other registers used must be preserved or unpredictable system errors (i.e.
system crashes) will occur. ’

End of Chapter 8

Page 8-19



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NOTES

Page 8-20



SEQUENTIAL BLOCK FILE MANAGER

SBF DESCRIPTION

The sequential Block File Manager (SBF) is a re-entrant subroutine package for O
service requests to sequential block-oriented mass storage devices (tape systems). SBF
can handle any number or type of such systems simultaneously.

TAPE VO

SBF is designed t.o support both buffered and unbuffered I/O. It is capable of handling
variable block sizes. If the PD__NumBIlk field of the path descriptor is set to 0, unbuffered
IO is specified. If the field is set to a positive number, buffered /O is used.

Unbuffered 'O
Unbuffered I/O is initiated by Read or Write service requests.

A Read request must specify a byte count greater than or equal to the size of the block
used on the tape device. The block of data from the tape is read directly into the user's
buffer.- The byte count returned by the system call is the size of the block read.

Attempting to read a block with a byte count less than the tape block size will return a
read error (#244).

Buffered /O

All buffered VO is initiated asyncronously by an auxiliary process created by SBF.
SBF uses a "pool" of buffers to accomplish this. The number of buffers to be used is
specified by the PD__NumBlk field of the path descriptor. The size of the buffer to be used
is specified by the PD__ BlkSiz field of the path descriptor.

Read requests will cause SBF to copy data from the buffer containing the block read.
If the buffer is not yet available, SBF will allocate a new buffer and pass it to the
auxiliary process. SBF then waits for the auxiliary process to return the buffer
containing the next block. Multiple buffers (up to the number specified by PD_ NumBIlk)
may be allocated, thus allowing SBF to be copying data from one buffer while the
auxiliary process is reading data into others.

Write requests cause SBF to copy data into a buffer and return to the user
immediately. When a buffer fills, SBF passes it to the auxiliary process for writing. If
another buffer is required before the auxiliary process has had time to write the previous
buffer, SBF allocates a new buffer and copies data to it. This allows SBF to be copying
data into one buffer while the auxiliary process is writing from others.

Page 9-1



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

End-Of-Tape Processing

There is no "end-of-tape"” error on Read requests. Consequently, SBF requires an end
of file mark to be present or the user process to handle the situation (i.e. knowing the size
of the file or through the use of an end of data record).

Write requests will return a media full error (E$Full) when end-of-tape is reached. All
prior writes will have completed; no other data may be written other than file marks
after the end-of-tape has been reached.

SBF DEVICE DESCRIPTOR MODULES

This section describes the definitions of the initialization table contained in device
descriptor modules for SBF-type devices. The table immediately follows the standard
Device Descriptor Module Header fields (see Chapter 6 for full descriptions). A graphic
representation of the table is shown in Figure 21. The size of the table is defined in the
M$Opt field. For an example of an actual SBF descriptor, see Appendix B.

NOTE: The term "offset" refers to the location of a module field relative to the starting

address of the module. Module offsets are resolved in assembly code by using the names
shown here and linking the module with the relocatable library: "usr.1".

Offset Usage

$48 PD_DTP Device Class

$49 PD__TDrv Tape Drive Number

$4A PD__SBF Reserved

$4B PD_NumBIK Maximum Number of Blocks to Allocate

$4C PD__BIkSiz Size of Blocks Allocated

$50 PD__Prior Driver Process Priority

$52 PD__Flags Drive Capability Flags

Figure 21: Initialization Table for SBF Device Descriptor Modules

Page 9-2



SEQUENTIAL BLOCK FILE MANAGER

NAME UTILIZATION

PD_ DTP Device class
(0=SCF 1=RBF 2=PIPE 3=SBF 4=NET)

PD__TDrv Tape Drive number
This location is used to associate a one byte integer with each drive that a
controller will handle. Each controller's drives should be numbered 0 to
n-1 (n = the maximum number of drives the controller can handle). This
number also defines how many drive tables are required by the driver and
SBF.

PD_ NumBlk Number of Buffers/Blocks Used For Buffering
This field specifies the maximum number of buffers to be allocated by
SBF for use by the auxiliary process in buffered I/O. If this field is set to
0, unbuffered I/O is specified.

PD_ BlkSiz  Size of Buffer/Block Used For 1/0
This field specifies the size of the buffer to be allocated by SBF. This
buffer size is used when allocating multiple buffers used in buffered I/O.

PD_ Prior Driver Process Priority
This is the priority at which SBF's auxiliary process will run. This value
is used during initialization. Changing this value after initialization will
have no affect.

PD_ Flags Drive Capability Flags

This field specifies the capabilities of the tape controller used on the
individual system. The flag definitions possible are:

(f_rest_b) bit O set
(f_off1_b) bit 1 set
(f_eras_b) bit 2 set

rewind on close flag
offline on close flag
erase to end of tape on close flag

This field is used by the SBF driver.

Page 9-3



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

SBF DEFINITIONS OF THE PATH DESCRIPTOR

The reserved section (PD__OPT) of the path descriptor used by SBF is copied directly
from the initialization table of the device descriptor. The following table is provided to
show the offsets used in the path descriptor. For a full explanation of the path descriptor
fields, refer to the previous pages.

NOTE: The term "offset” refers to the location of a module field relative to the starting
address of the module. Module offsets are resolved in assembly code by using the names
shown here and linking the module with the relocatable library: "usr.l".

Offset Usage

$80 PD__DTP Device Class

$81 PD__TDrv Tape Drive Number

$82 PD__SBF Reserved

$83 PD_NumBlk Maximum Number of Blocks Allocated

$84 PD__BIkSiz Size of blocks Allocated

$88 PD__Prior Driver Process Priority

$3A PD__Flags Drive Capability Flags
Fig

Figure 22: Option Table for SBF Path Descriptor Modules

Page 94



SEQUENTIAL BLOCK FILE MANAGER

SBF DRIVERS

SBF-type device drivers are designed to support any sequential storage device which
reads and writes data in fixed size blocks (i.e tapes).

Because SBF is intended for sequentially accessed files, it does not support a directory
structure or provide a byte oriented file positioning mechanism. Consequently, I$Makdir,
I$ChgDir, I$Delete and I$Seek return the error E§UnkSve.

SBF Device Driver Storage Definitions

SBF type device driver modules contain a package of subroutines that perform block
oriented /O to or from a specific hardware controller. Because these modules are
re-entrant, one "copy" of the module can simultaneously run several identical /O
controllers.

The kernel will allocate a static storage area for each device (which may control
several drives). The size of the storage area is given in the device driver module header
(M$Mem). Some of this storage area is required by the kernel and SBF. The device
driver may use the remainder in any manner. SBF does not reserve any memory for drive
tables. Each driver is responsible for reserving enough memory for the appropriate
number of tables. Information on device driver static storage required by the operating

system can be found in the "sbfstat.a" and "drvstat.a" DEFS files. Static storage is used
as follows:

NAME UTILIZATION

V_PORT Device base port address.

V__LPRC Last active process ID.
This contains the process ID is the last process to use the device. While

this field is required for all device descriptors by the kernel, it is not used
by SBF.

V__BUSY Current active process.
This contains the process ID of the process currently using the device.
(0 = not busy)

V_WAKE Process ID to awaken. _
This contains the process ID of any process that is waiting for the device
to complete /'O (0 = no process waiting). Maintained by device driver.

Page 9-5



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME UTILIZATION

V__PATHS Linked List of Open Paths.
This is a singly-linked list of all paths currently open on this device. It is
maintained by the kernel.

SBF_NDRV  Number of drives.
This contains the number of drives that the controller can use. It is
defined by the device driver as the maximum number of drives that the
controller can work with. SBF will assume that there is a drive table for
each drive.

SBF__Flag Driver Flags

SBF_ Drvr Driver Module Pointer

SBF_ DPrc Driver Process Pointer

SBF_ IPrc Interrupt Process Pointer
Drive Tables

This contains one table per drive that the controller will handle. SBF will
assume there are as many tables as specified in SBF__NDRYV.

Page 9-6



SEQUENTIAL BLOCK FILE MANAGER

NOTE: The term "offset" refers to the location of a module field, relative to the starting
address of the static storage area. Offsets are resolved in assembly code by using the
names shown here and linking the module with the relocatable library, "sys.l".

Offset Usage

$00 V__PORT Device base port address

$04 | V_LPRC Last active process ID

$06 V__BUSY Current active process

$08 V_WAKE Process ID to awaken

$0A V_PATHS Linked List of Open Paths

$2E Reserved

$30 SBF__NDRV  Number of Drives

‘831 Reserved

$32 SBF_ Flag Driver Flags

$34 SBF_ Drvr Driver Module Pointer

$38 SBF__DPrc Driver Process Pointer

$3C SBF__IPrc Interrupt Process Pointer

$40 Reserved

$80 Drive Tables

Figure 23: SBF Static Storage Allocation

Page 9-7



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Device Driver Tables

The format of each drive table is given below:

Offset
$00
$02
$04
$08
$0C
$10
$14
$18
$1C

$20

Usage
SBF__DFlg Drive Flag
SBF__NBuf Buffer Count
SBF_IBH  Pointer to Top of Input Buffer List
SBF__IBT Pointer to End of Input Buffer List
SBF__OBH Pointer to Top of Output Buffer List
SBF__OBT Pointer to End of Output Buffer List
SBF__Wait Pointer to Waiting Process
SBF_SErr # of Recoverable Errors
SBF_HErr # of Non-Recoverable Errors

Reserved

Figure 24: SBF Device Driver Table Format:
there must be as many tables as were specified in NDRV

Page 9-8




SEQUENTIAL BLOCK FILE MANAGER

SBF Device Driver Subroutines

As with all device drivers, SBF device drivers use a standard executable memory
module format with a module type of "Drivr" (code $EO0).

The execution offset address in the module header points to a branch table that has
seven entries. Each entry is the offset of a corresponding subroutine. The branch table is
as follows:

ENTRY  dc.w INIT initialize device

dc.w READ reads character
dc.w WRITE writes character

dc.w GETSTA gets device status
dc.w SETSTA sets device status
dc.w TERM terminates device

dc.w TRAP handles illegal exception

Each subroutine should exit with the condition code register carry bit cleared if no
error occurred. Otherwise the carry bit should be set and an appropriate error code
returned in dl.w. The following pages give a description of each subroutine.

The TRAP entry should be defined as the offset to exception handling code or zero if no handler is
available. This entry point is currently not used by kenal. However, in future revisions this will be
accessed.

The following pages give a description of each subroutine.

Page 9-9



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME: INIT

INPUT: (al)
(a2)

(a6)

address of the device descriptor module
address of device static storage

system global data pointer

W oun

OUTPUT: None

ERROR OUTPUT: carry bit set

cc =
dl.w = error code
FUNCTION: INITIALIZE DEVICE AND ITS STATIC STORAGE AREA

The INIT routine must:

1. Initialize the device's permanent storage. This minimally consists of initializing
SBF_NDRY two'the number of drives that the controller will work with.

2. Place the IRQ service routine on the IRQ polling list by using the OS9 F$IRQ
service request.

3. Initialize device control registers (enable interrupts if necessary).

NOTE: Prior to being called, the device permanent storage will be cleared (set to zero)
except for V__PORT which will contain the device address.

Page 9-10



SEQUENTIAL BLOCK FILE MANAGER

INPUT: d0.1 = buffer size

(a0) = address of buffer

(a2) = address of device static storage
(a3) = drive table

(ad) = process descriptor pointer

(a6) = system global data storage pointer

OUTPUT: d1.l = block size read

ERROR OUTPUT: cc = carry bit set
dl.w = Appropriate error code

FUNCTION: READ SECTOR(S)
The READ routine must:
1. Verify the drive number from PD__DRYV in the path descriptor.

2. Initiate the read of block from the tape into the buffer.
Deactivate process pending completion of read.

4. After being reactivated by the IRQ service routine, return size of block read
indl.

Page 9-11



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

buffer size

address of buffer

address of the device static storage area
(a3) = drive table

(ad) = process descriptor pointer

(a6) = system global data storage pointer

—~
-
(=]
~

T T T}

" OUTPUT: The buffer is written to tape as one block

ERROR OUTPUT: cc = Carry bit set
dl.w = Appropriate error code

FUNCTION: WRITE SECTOR(S)
The WRITE routine must:
1. Verify the drive number from PD__DRV in the path descriptor.
2. Initiate the write of buffer to the tape as one block.
3. Deactivate process pending completion of write.

4. After being reactivated by the IRQ service routine, return error status.

Page 9-12



SEQUENTIAL BLOCK FILE MANAGER

NAME: GETSTAT/SETSTAT

INPUT: d0.w = status code

(a2) = address of the device static storage area
(a3) = drive table

(a4) = process descriptor pointer

(a6) = system global data storage pointer

OUTPUT: Depends on the function code.
ERROR OUTPUT: cc = Carry bit set
dl.w = Appropriate error code
FUNCTION: GET/SET DEVICE STATUS

These routines are wild card calls used to get (set) the device's operating parameters as
specified for the OS9 I$GetStt and I$SetStt service requests.

Typical SBF drivers have routines to handle the following SetStat codes:

SS_Reset: rewind tape

SS _Feed: Erase

SS_SQo: Offline drive

SS_WFM: Write tape mark(s)
SS_RMM: Skip past tape mark(s)
SS_Skip:  Skip block(s)

Usually all GetStat codes and other SetStat codes return with an "E$UnkSvc"
(UnKnown Service Request) error.

Page 9-13



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NAME: TERMINATE

INPUT: (al) = address of the device descriptor module
(a2) = Address of device static storage area
) =0

S-9 system global static storage

. ERROR OUTPUT: None

FUNCTION: TERMINATE DEVICE

This routine is called when a device is no longer in use in the system. This is defined
as when the link count of its device table entry becomes zero (see I$Attach and I$Detach).

The TERM routine must:
1. Wait until any pending /O has completed.
2. Disable the device interrupts.
3. Remove the device from the IRQ polling list.

4. Return driver process.

Page 9-14



SEQUENTIAL BLOCK FILE MANAGER

NAME: IRQ SERVICE ROUTINE

INPUT: (a2)
(a6)

static storage address
system global static storage

FUNCTION: SERVICE DEVICE INTERRUPTS

Although this routine is not included in the device driver module branch table and is
not called directly by SBF, it is a key routine in interrupt-driven device drivers. Its
- function is to:

1. Poll the device. If the interrupt is not caused by this device, the carry bit
must be returned set with an RTS instruction as quickly as possible.

2. Service device interrupts.
3. Reactivate any process that was waiting for this interrupt.

4. When the IRQ service routine finishes servicing an interrupt it must clear
the carry and exit with an RTS instruction.

End Of Chapter 9

Page 9-15



0S9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NOTES

Page 9-16



PIPES AND THE PIPE FILE MANAGER

PIPEMAN: THE PIPE FILE MANAGER

Pipeman is the OS-9 file manager that supports interprocess communication through
the use of "pipes." Pipes enable concurrently executing processes to communicate data:
the output of one process (the writer) is read as input by a second process (the reader).
Communication through pipes eliminates the need for an intermediate file to hold data.

Pipeman is a re-entrant subroutine package that is called for /O service requests to a
device named "/pipe." Even though no physical device is used in pipe communications, a
driver must be specified in the pipe descriptor module. A "null” driver (a driver that does
nothing) is used, but actually never gets called by Pipeman.

Pipes

A pipe is constructed as a first in first out (FIFO) buffer that usually contains 256
bytes. Typically, two processes share the pipe path: one writing and one reading.
However, multiple processes can access the same pipe simultaneously. Pipeman coordinates the
processes. The reader waits for the data to become available and the writer waits for the buffer to
empty.

Pipes are generally thought of as a one way data path between two processes, but any
number of processes can share a single path. A single pipe can even send data to itself.
This might be used to simplify type conversions by printing data into the pipe and
reading it back using a different format.

Data transfer through pipes is extremely efficient. Pipes can be used much like
signals to coordinate processes with each other, but with these distinct advantages:

1. Longer (than 16 bits) messages

2. Queued messages

3. Determination of pending messages

4. Easy process-independent coordination (using named pipes)

Named and Unnamed Pipes

08S-9 supports both named and unnamed (anonymous) pipes. Unnamed pipes are used
extensively by the Shell to construct program “pipelines.” They may be freely used by
user programs as well. Unnamed pipes may be opened only once. Independent processes
may communicate through them only if the pipeline was constructed by a common parent
to the processes. This is accomplished by making each process inherit the pipe path as one
of its standard /O paths.

Page 10-1



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

The main difference between named and unnamed pipes is the same named pipe may
be opened by several independent processes. This simplifies pipeline construction. In
almost all other respects, named and unnamed pipes function identically. Specific
differences are noted in the sections that follow.

Creating Pipes

~ The I$Create system call is used with the pipe file manager to create new named or
unnamed pipe files.

Pipes may be created using the pathlist "/pipe" (for unnamed pipes, "pipe" is the name
of the pipe device descriptor) or "/pipe/ <name>" (<name> is the logical file name being
created). If a pipe file with the same name already exists, an error (E$CEF) is returned.
Unnamed pipes can not return this error.

All processes connected to a particular pipe share the same physical path descriptor.
Consequently, the path is automatically set to "update" mode regardless of the mode
specified at create. Access permissions may be specified, and are handled similar to RBF.

The size of the default fifo buffer associated with a pipe is specified in the pipe device
descriptor. This may be overridden when creating a pipe by setting the initial file size bit
of the mode byte and passing the desired "file size" in register d2. If no default or
overriding size is specified, a small fifo buffer inside the path descriptor will be used. This
buffer is currently 90 bytes.

Opening Pipes

When accessing unnamed pipes, I§Open works in the same way as I$Create. It opens a
new anonymous pipe file. With named pipes, open searches for the specified name
through a linked list of named pipes associated with a particular pipe device. If the pipe
is found, the path number returned will refer to the same physical path that was allocated
when the pipe was created. Internally, this works in a similar fashion to the I$Dup
system call.

Opening an unnamed pipe is simple. A bit more complex is the method allowing
another process to share the pipe. If you simply opened a new path to “/pipe” for the
second process, the new path would be independent of the old one.

The only way for more than one process to share the same unnamed pipe is through
the inheritance of the standard /O paths through the F$Fork call. As an example, the
outline given on the folowing page describes a method the shell might use to construct a
pipeline for the command "dir -u ! gsort". Assume paths 0,1 are already open.

Page 10-2



PIPES AND THE PIPE FILE MANAGER

StdInp = I1$Dup(0) save the shell's standard input
StdOut = I$Dup(1l) save shell's standard output
I$Close(l) close standard output

I1$0pen(" /pipe") open the pipe (as path 1)
I$Fork ("dir","-u") fork “dirY with pipe as standard output

1$Close(0) free path 0

1$Dup(1) copy the pipe to path 0

I$Close(1) make path available

I$0up(Stdout) restore original standard out

I$Fork ("qsort") fork qsort with pipe as standard input
1$Close(0) get rid of the pipe

I$Dup(Stdinp) restore standard input

I$Close (StdInp) close temporary path
I$Close (StdOut) close temporary path

The main advantage of using named pipes is that several processes may communicate
through the same named pipe, without having to inherit it from a common parent process.
For example, the above steps can be approximated by "dir -u >/pipe/temp & gsort
</pipe/temp".

NOTE: The OS-9 shell always constructs its pipelines using the unnamed "/pipe"
descriptor.

Read/ReadLn

The I$Read and I$RéadLn system calls return the next bytes in the pipe FIFO buffer.
If there is not enough data ready to satisfy the request, the process reading the pipe is put
into a sleep state until more data becomes available.

The end-of-file is recognized when the number of processes waiting to read the pipe is
equal to the number of users on the pipe. If any data is read before end-of-file is reached,
an end-of-file error is not returned. The byte count returned however will be the number
of bytes actually transferred.

NOTE: The Read and Write system calls are faster than ReadLn and WritLn because
pipeman does not have to check for carriage returns and the loops moving data are
tighter.

Write/WritLn

The I$Write and I$WritLn system calls work in almost the same way as I$Read and
I$ReadLn. Instead of end-of-file being recognized, a pipe error (E$Write) occurs when
data is written that can never be read (writing to a full pipe).

When named pipes are being used, pipeman never returns the E$Write error. If a
named pipe becomes full before a process that receives data from the pipe has opened it,
the process writing to the pipe is put to sleep until a process reads the pipe.

Page 10-3



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Close

When a pipe path is closed, its path count is decremented. If no paths are left open on
an unnamed pipe, its memory is returned to the system. With named pipes, its memory is
returned only if the pipe is empty. A non-empty pipe (with no open paths) is artificially
kept open, waiting for another process to open and read from the pipe. This permits pipes
to be used as a type of a temporary, self-destructing "RAM disk file".

Getstat/Setstat

Pipeman supports a wide range of status codes, to allow pipes to be inserted between
processes where an RBF or SCF device would normally be used. For this reason, most
RBF and SCF status codes are implemented to do something without returning an error.
The actual function may differ slightly from the other file managers, but it is usually
compatible.

GETSTAT STATUS CODES
NAME FUNCTION
SS__Opt This reads the 128 byte option section of the path descriptor. It can

be used to obtain: path type, data buffer size, name of pipe.

SS__Ready This tests whether data is ready. It returns the number of bytes in
the buffer.

SS__Size This returns the size of the pipe buffer.

SS__EOF This tests for end-of-file.

SS_FD This returns a pseudo-file descriptor image.

Other codes are passed to the device driver.

SETSTAT STATUS CODES
NAME FUNCTION
SS_ Opt This does‘nothing, but returns without error.
SS_Size This sets the file size; resets the pipe buffer if the specified size is
zero. Otherwise, it has no effect, but returns without error.

Page 104




PIPES AND THE PIPE FILE MANAGER

SETSTAT STATUS CODES
NAME FUNCTION
SS_FD This does nothing, but returns without error.
SS__Attr This changes the pipe file's attributes.
SS__SSig This sends a signal when the data becomes available.
SS__Relea This releases the device from the SS__SSig processing before data
becomes available.

Other codes are passed to the device driver.

The Makdir and Chgdir service requests are illegal service routines on pipes. They
will return E$UnkSvc (unknown service request).

Pipe Directories

Opening an unnamed pipe in the "Dir" mode allows it to be opened for reading. In this
case, pipeman allocates a pipe buffer and pre-initializes it to contain the names of all open
named pipes on the specified device. Each name is null-padded to make a 32-byte record.
This allows utilities, that normally read an RBF directory file sequentially, to work with
pipes as well.

NOTE: Remember that pipeman is not a true directory device, so commands like "chd" or
"makdir" do not work with /pipe.

The head of a linked list of named pipes is in the static storage of the pipe device driver
(usually a "null” driver). If there are several pipe descriptors on a system, each having a
different default pipe buffer size, the I/O system will notice that the same file manager,
device driver, and port address (usually zero) are being used. It will not allocate new
stalic storage for each pipe device and all named pipes will be on the same list.

For example, if two pipe descriptors exist, a directory of either device will reveal all the
named pipes for both devices. If each pipe descriptor has a unique port address (0,1,...),
the VO system will allocate different static storage for each pipe device. This will produce
more expected results.

Page 10-56



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

PIPEMAN DEFINITIONS OF THE PATH DESCRIPTOR

The table shown below describes the option section (PD__OPT) of the path descriptor
used by PIPEMAN.

NOTE: The term "offset” refers to the location of a module field, relative to the starting
address of the module. Module offsets are resolved in assembly code by using the names
_shown here and linking the module with the relocatable library: "sys.I" or "usr.L"

OFFSET USAGE

$80 DV_DTP device type

$81 Reserved

$82 PD__BufSz Default pipe buffer size
$86 PD__IOBuf Reserved /O buffer
$E0 PD__Name Pipe file name

Figure 25: Path Descriptor PD__OPT for PIPEMAN

NAME UTILIZATION

DT_DTP Device type
0 =SCF 1 =RBF 2 =PIPE 3 = SBF 4 = NET

PD__BufSz Default pipe buffer size
This contains the default size of the FIFO buffer used by the pipe. If no
default size is specified and no size is specified when creating the pipe,
PD__IOBuf will be used.

PD__IOBuf Reserved I/O buffer
This contains the small /O buffer to be used by the pipe if no other buffer is
specified.

PD__Name Pipe file name (if any)

End Of Chapter 10

Page 10-6



NETWORKING AND THE NETWORK FILE MANAGER

OVERVIEW OF NETWORKING

OS-9/NET is an optional extension for the 0S-9 operating system which provides a
powerful software-based network architecture. A key feature of the system is that the
user interface is at the normal OS-9 file system level.

The networking system is based on a new Network File Manager (NFM) module which
provides the same functions as the standard OS-9 disk file manager (RBF). Networking
works with any /O device (RBF, SCF, SBF, etc.). This allows files resident on remote
systems to be accessed in an identical manner as if they were resident on a local disk.

~ Each system connected to the network ("node") has a logical name. Files or devices
accessed are "opened" from a remote system by simply adding the logical system name to
a standard OS-9 pathlist. For example, a command to list a file on a remote system
(called "sys5") would look like:

1ist /net/sys5/d1/textfile

The network file managers on the local and remote nodes automatically and
transparently convert all input/output requests to the necessary internal logical and
physical network protocols. All disk-type file operation functions are supported, including
creation and deletion of files and directories, changing working directories, and so on.

An additional level of file security positively controls network access to files on each
node.

Network Hardware Compatibility

OS-9/NET was designed to be hardware-independent and compatible with all popular
networking hardware such as OMNINET, ETHERNET, ARCNET and similar systems.
All hardware dependencies are kept within a network device driver module. Therefore,
adapting OS-9/NET to new networking hardware is similar to installing a new type of
disk drive on an OS-9 system.

Requirements for Networking

To implement OS-9/NET, 0S-9/68000 Version 1.2 (or later) is required.

Like all standard SCF/RBF devices, OS-9/NET requires both device drivers and device
descriptors. In addition, if “"multi-node" networking is being implemented, a "Node-ID

Table" data module is required. This table describes the relationship between the
physical station ID (node ID) and the corresponding station name (node name).

Page 11-1



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

USER OVERVIEW

OS-9/NET allows access to all types of devices through the networking line. Each
device is accessed by the standard OS-9 pathlist format:

/<network name>/<node name>/<device path>
For example:

/net/systeml /h0/doc/manual
/net/system2/d2/backup/file

"/net" specifies that the device to be accessed is on the network. "systeml"” is the "node
name" or station name. Like other OS-9 devices, the name of the network and the node
itself is not "fixed". This allows a computer to be connected to more than one network.
For example, you might name two types of network hardware connected to your system
"/NET" and "/MODEM" and the nodes accessed by them system45, Hugo, Howard, Heckel

and Jeckel. Following the node name is a full OS-9 pathlist beginning with the root
directory (i.e. /h0/...).

CAVEAT: There exists one minor problem in using the "chd" built-in Shell command
over network lines. A "chd pathlist" may only include one network station. For example:

chd /n0/heckle/h0
chd /nl/jeckle/h0/backups

The above commands will change your directory to /hO/backups on the remote station
"jeckle". The following command will return no error itself, but any subsequent command
(other than chd) will return an error:

chd /n0/heckle/nl/jeckle/hO/backups
To recover from this situation, execute a "single network chd" command. for example:

chd /nl/jeckle/h0/backups

chd /h0

All other OS-9 commands will work across multi-network boundaries. For example,
the following command wil] list the specified file:

1ist /n0/heckle/nl/jeckle/h0/backups/myfile

Page 11-2



NETWORKING AND THE NETWORK FILE MANAGER

Multi-station Networking

Networks can be built using any combination of appropriate 68000 computers. Access
to the different stations require the full network pathlist as shown previously. Because of
OS-9/NET's hardware independence, most available networking hardware (OMNINET,
ETHERNET, etc.) can be used.

NOTE: "Multi-station" networking requires the PD HD’I‘yp field in the device descriptor
to be set to a non-zero value.

Point-to-point Networking

Point-to-point networking is the networking of two systems by way of RS-232 cables.
Using this type of set-up, networking pathlists may be shortened:

/<network name>/<device path>

NOTE: Point-to-point networking requires the PD__HDTyp field in the device descriptor
to be set to zero.

Multi-Network Systems

By adding more networking hardware (each with a unique device name), you may
create a "multi-network" system. The Network File Manager and device drivers are
re-entrant, as are all OS-9 File Managers and device drivers. This allows you the ability
to add more networking ports simply by adding device descriptors corresponding to the
added network hardware.

The Network Utilities

Two utilities are provided to allow easier use of 0S-9/68000 Networking: Nmon and
Ndir. Nmon is the system entry supervisor. It allows a station to enter or leave the
network. Ndir is the network directory command. It displays the network stations
currently running on the network. Both of these utilities are fully detailed in "Using
Professional 0S-9" and "Using Personal 0S-9".

Page 11-3



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

BROADCASTING OVERVIEW

Broadcasting is available through most commonly available networks (i.e. OMNINET,
ARCNET, ETHERNET, etc.). It allows each station connected through the network to
send out information to all currently running stations on the network. This is done when
entering or leaving the network.

: There are three types of broadcast messages used by OS-9/NET:

1. RESET: This message is broadcast when a station runs "nmon -u". This
includes the station ID.

2. DOWN: This message is broadcast when a station runs "nmon -d". This also
in_cludes the station ID.

3. RECONFIGURATION: This message is broadcast from outlying stations
upon receiving a RESET message. The newly reset station will receive a
RECONFIGURATION message from each outlying station on the network.

When a station enters the network (runs "nmon -u"), it broadcasts the RESET
message. Each station that receives this message will search its NET_ _Nodes module for
the new station ID. If it is found, the receiving station first checks to see if there are any
previously open paths from the new station. If so, the paths will be closed immediately.
Any open paths from the receiving station to the new station will return a #173 error.
Once this path protocol is finished, the receiving station will return a RECONFIG-
URATION message and the Nd__ Actv field for the new station is set to TRUE (-1). Once
Nd__Actv is set, Ndir will display this station.

If the new station is not found in the receiving stations NET__Nodes module, the
RESET message is ignored. This prevents any station from entering the network that is
not specified by NET__Nodes.

When a station leaves the network, it broadcasts the DOWN message. Each station
that receives this message will search its NET__Nodes module for the station ID. If it is
found, the receiving station again checks for open paths between the two stations. Any
open paths between the stations will return a #173 error. Open paths from outlying
stations will be closed on the system going down. Once this is finished, the Nd__Actv field
is set to FALSE (0). Ndir will no longer display this station. If the new station is not
found in the receiving stations NET__Nodes module, the message is ignored.

Page 11-4



NETWORKING AND THE NETWORK FILE MANAGER

NOTE: Powering down without running "nmon -d" first or resetting the system without
running "nmon -u" immediately is extemely discourteous and very annoying. If a system
is reset or turned off without running "nmon -d", other systems on the network will still
display the reset system as "active". All open paths from other stations will wait until the
powered down or reset system is turned on again and/or "nmon -u" is run. If you know a
system is down, but it is still listed as "active” by the ndir display, run "nmon -d" and
"nmon -u" on your system to display an accurate network configuration.

NETWORK SECURITY AND THE "__ USERS"™ MODULE

Commonly, small systems are only accessed by one user. This is the super-user. When
small systems and large systems are networked together, the default security for 0S-9
would allow the small system super-user access to all files on the large system. It would
also shut out all non-super-users from the small system. This is not usually in the best
interests of a network. Consequently, a security module can be made to allow and deny
access to specified users.

OS-9/NET searches for the security module at startup. The security module must be
named in the following manner:

<network name> + *_users®

If the module is found, it will stay in memory during all network activity. All
incoming requests are checked against entries in the security module for file access. The
requests are consequently denied or allowed. If denied, the appropriate OS-9 error code is
returned to the requester.

The security module is in standard OS-9 data module format:

Module Header (including offset to 1st entry)

1st entry

2nd entry

0 (terminator)

module CRC

Page 11-5



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Each entry in the security module is made up of six 16-bit fields. There is no
limitation to the number of fields allowed. All other parts of the module (header, CRC,
offset to 1st entry) are generated by the linker. Each field has the following format:

Station Group User Group User Access
D ID ID ID ID ID
[— Station/Group/User ID —I L Requester's file access —I

of the Requester Permissions and IDs on System

The Msg__Src and Msg__User fields of an incoming message are compared to the first
three fields of each entry. If a match is found, the next three fields are used as the
Requester's respective ID and access permissions. This is checked before allowing access
to any device on the system receiving the incoming message. If the requester's
station/group/user ID is not found in the table, access is denied.

NOTE: If the security module does not exist, all network file access will depend solely on
group/user IDs.

Building A Security Module Entry

Requester Station ID: This may contain the requester's logical station ID or U__ANY, If
U__ANY is specified, there are no restrictions set for the station ID. U__ ANY is defined
in net.l. Do not redefine it in the source code file.

Requester Group/User ID: This may contain the requester's group/user ID on their own
system or U__ANY. If U__ANY is specified, there are no restrictions set for group/user
ID. This is useful for default entries.

Assigned Group/User ID: This may contain specific group/user IDs that the requester will
have on the system receiving the request. This field may also contain U__DFT or
U_NODE. U_DFT assigns the requester's own group/user ID for system access.
U__NODE assigns the requester's station ID as their group or user ID. U__NODE would
be helpful, for example, in knowing the network origin of newly created files.

Assigned File Access Permissions: This may contain either "0" (indicating no access) or
any combination of the following:

READ _

WRITE__
EXEC__

Page 11-6



NETWORKING AND THE NETWORK FILE MANAGER

It is important to note that certain commands require these permissions, but are not
commonly associated with them. For example, "chd" needs "WRITE__" permission, "load"
and "chx" need "EXEC__" permission, etc.

Example Entries

The Security Module table is read from left to right and from top to bottom. Placement
of entries is important. As the table is checked, the first entry that will agree with the
message IDs will be used for assigning access permissions. Consequently, default access
permissions should appear at the end of the table.

The following are example entries in a security module and descriptions of their effect
on system access:

U_Start
dc.w U _ANY,0,0,U NODE,U_ NODE,O0
dc.w U ANY,0,U_ANY,77,U_NODE,Read
dc.w U ANY,5,U ANY,U DFT,U_NODE ,Read +Write_
dc.w U _ANY,U ANY,U ANY,U DFT,U_NODE,Read +Exec_
dcw O

The first entry in the table above denies all super-users (0.0) access to the system. The
second entry allows all "group 0" users (except 0.0) Read access with the group/user ID
77.U_NODE. The third entry allows all "group 5" users Read and Write access with the
group/user ID 5.U__NODE. The fourth entry allows all other users (not previously
specified) Read and Execution access with their own group ID and the user ID of
U__NODE.

U_Start
dc.w 69,0,0,U NODE,U_NODE,O
dc.w U_ANY,0,U_ANY,0,U NODE,Read
dc.w O

The first entry denies access to any super-user from station "69". The second entry
allows Read access to all users with group "0". It should be noted that if these two entries
were reversed, user 0.0 from station "69" would be allowed Read access.

All security module tables end with "dc.w 0". It is possible to create an empty table by

including only this line. This would allow no access to the station, but allow requests to
originate from it.

Page 11-7



0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

ERROR TROUBLESHOOTING

The following reference shows the error number returned when accessing /NETY... and
possible reasons for its occurrence.

ERROR POSSIBLE CAUSES

#1173 1. Nmon was killed on the station you were accessing.

2. The station was reset and a new "nmon -u" was.exectuted on the
station you were accessing.

#201 1. The "netserv" process was not found on the requested station.
This may be caused by connecting a broadcasting system with a
non-broadcasting system and one of the systems is reset while
paths are open on the other. Another reason for not finding
"netserv" is that it was killed for some reason. Check "procs" on
the requested station.

#215 1. Check your pathlist for incorrect spellings or illegal characters.

2. Make sure your pathlist is neither incomplete nor incorrect:

/net incomplete
/net/<station name> incomplete
/net /<station name>/<non-root directory> incorrect
/net /<non-root directory> incorrect

3. The station name in the pathlist is not specified in the
NET__Nodes mcaule. Check "ndir"

#221 1. "NET__node" module is not found by "ndir".

2. The device on the requested system is not found or is incorrect.

Page 11-8




NETWORKING AND THE NETWORK FILE MANAGER

ERROR POSSIBLE CAUSES
#246 1. The device on the requested system is really not ready. Try
again.
2. "nmon" is not running on your system. Check "procs”
3. The requested station is not on the network. Check "ndir
/<net>"
4. The requested station's "nmon" or "eio" process was killed for
some reason. Check "procs” on the requested station. Run
"nmon -d" and then "nmon -u" on the requested station.
#250 1. The network device is busy. This frequently occurs with
CSMA/CD type network configurations. This may also occur if
the cable is disconnected, depending on controller character-
istics.
2. "nmon -u" was invoked a second time.

Page 11-9




0S-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

NFM: THE NETWORK FILE MANAGER

The Network File Manager is a re-entrant subroutine package for I/O service requests
across network lines. NFM can handle any number or type of networking systems
simultaneously.

The internal functions of the Network File Manager are roughly divided into two

parts. These co-operate with each other to allow the system to communicate through the
network:

1. The "Request Sender" sends I/O requests to the network. It is the standard
interface between the File Manager and the kernel/user. It receives a user /O
request, builds a message and sends it over the network. It then receives a service
response from the node that received the message and reports the node's status
and/or data to the user program. The Request Sender uses the device driver's
"WRITE" entry point, regardless of type of /O request.

NOTE: This is only invoked when a user program executes an I/O system call.

2. The "Background Monitor/Server": This part acts as the network's incoming
message monitor/server and response sender. It receives and parses incoming
messages from other stations on the network. It then invokes a system process to
execute the requested service on its associated system and returns the status/data to
the requester over the network. If the incoming message is a response to a request,
the message is passed to the Request Sender. The Monitor/Server uses the driver's
"READ" entry point to allow the system to get responses from requests as well as
receive requests from other systems,

NOTE: This is invoked by the program "Nmon".

These functions are divided into several smaller functions, which are discussed in the
next section.
TRACING A USER REQUEST THROUGH A NETWORK
To illustrate the interaction of NFM, the NFM device driver and the OS-9 kernel, it is
useful to trace a user request through a simple network system. A graphic representation

of the request is shown in Figure 26 and explained below.

1. User: the user program executes a service request to be given status and data (if
available).

Page 11-10



NETWORKING AND THE NETWORK FILE MANAGER

2. OS-9 kernel: Upon receiving the service request, the kernel dispatches it to the
correct I/O handling modules (in some cases RBF or SCF is called). With 0S-9,
networking is handled exactly like any other device handling. The kernel does
not care about the request destination. The Network File Manager is called if
the request is outside the originating system. Consequently, the OS-9 network
device is transparent to the system/user.

3. Network File Manager: The "Request Sender" receives specialized /O requests
from the kernel and builds a logical message in general OS-9/NET format. It
handles the physical device controls and calls the device driver. It then waits
for the message to complete transmission. Upon reception of the response from
the driver, the "Request Sender" returns the status/data back to the kernel. In
the background, the "Background Monitor/Server" receives two types of
incoming logical messages from the Device Driver:

1. Responses to previously sent requests are dispatched to waiting processes.

2. Logical message/requests from outlying stations are invoked as separate
service processes, which recursively calls the kernel, as necessary. After
the process' completion, a message is sent back to the requester through
the device driver.

All system requests originating outside the system are processed by the Back-
ground Monitor/Server.

4. Device Driver: Upon receiving a logical message from the Network File
Manager, the device driver sends it out onto the network line according to its
physical characteristics. This could range from RS-232C, HDLC or EtherNet to
large scale network communication lines.

Usually a specialized hardware level protocol is used for communication as well
as the physical method for accomplishing it. Data encryption and decryption are
also done at this time.

Incoming logical messages from outer stations are sent to the Network File
Manager without touching their content. Interrupt driven or hardware level
monitoring for the incoming messages must be done after the system is brought
up. '

NOTE: The Device Driver never looks into the message contents; it merely
passes them to the appropriate destination.

Page 11-11



05-9/68000 OPERATING SYSTEM TECHNICAL MANUAL

Outgoing Path Of Request SYSTEM 1 Return Path of Request

Requests Data/status USER Receives data/status
l 1

Receives request from user. Dis- O0S-9  The kernel works with NFM to

patches request to appropriate
File Manager. The kernel is
unaware of networking.

KERNEL

process and transfer returning
data to the user.

|

t

Receives request from the ker- NFM NFM coordinates the return
nel. Builds a message. Calls message with the waiting pro-
the Device Driver. Waits for re- cess, which returns to the
turn message. kernel level.

l t
Receives message from NFM. DRIVER Receives message from the net-
Dispatches message on network work line. Dispatches message
line. to NFM.

| |

3
Network Hardware
SYSTEM 2

Receives message from the net- DRIVER Receives return message from
work line. Dispatches message NFM. Dispatches message on
to NFM. the network line.

i 1
Receives message from Device NFM  Builds return message and calls

Driver. Processes message and
invokes kernel if necessary.

Device Driver.

Figure 26: Tracing a user request through the network

Page 11-12




NETWORKING AND THE NETWORK FILE MANAGER

THE OS-9/NET DEVIC<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>