BRUCE SMITH
” Advanced
Sideways

RAM

for the MASTER and BBC Computers

=

VICTORY ' PUBLISHING

BRUCE SMITH

Advanced
Sideways

RAM

for the MASTER and BBC Computers

Editor
Tony Quinn

VICTORY ' PUBLISHING

PO Box 19
London
N1l 1DS

For more free 'classic' BBC Micro books visit:

www.brucesmith.info

(C) Bruce Smith 1986, 1987
Reprinted with revisions and updated 1987

All rights reserved No part of this publication may be
reproduced, stored 1in a retrieval system, or
transmitted, i1n any form or by any means, electronic,
photocopying, recording or otherwise, without prior
permission of Victory Publishing

ISBN 0 948938 00 5

Prnintedby A Wheaton&Co Ltd Exeter

Bruce
Typewriter

Bruce
Typewriter
For more free 'classic' BBC Micro books visit:

www.brucesmith.info

Bruce
Typewriter

Bruce
Typewriter

God bless all who sail in her

Contents

INTRODUCTION
Using this book

CHAPTER 1
What 1s Sideways RAM?
Sideways ROMs or RAMs
Why 'sideways'?
Memory maps

Getting your priorities right

Summary
Listings

CHAPTER 2

The Sideways Header
ROM types
Copyright offset
Version number
Title string
Version string
Tube relocation address
Standard header
Sideways writing

*SWRITE

Listings

CHAPTER 3
Service ROMs
Service call types table
SRAM utilities explained
*SRLOAD
*SRREAD
*SRSAVE
ROM copyright
Listings

CHAPTER 4
The Help Service
*HELP

Extended *HELP (service call 9)
Interactive help (service call 24)

Mask1ing
Listings

1v

HFHFONONO W
-
©

CHAPTER 5

Intepreters 48
Command action (service call 4) 48
Writing the interpreter 48
Debugging interpreters 52
Writing commands 53
Galning workspace 55
Listings 57

CHAPTER 6

OSBYTE and OSWORD 65
OSBYTE 66
OSWORD 67
Listings 71

CHAPTER 7

Extended Vectors 80
Working example 82
Listings 85

CHAPTER 8

Pot Pourri
Service call 5 90
Service call 6 91
Service call 11 91
Service call 12 92
Service call 15 93
Service call 16 93
Service call 17 93
Service call 18 93
Service call 21 94
Service call 37 95
Service call 38 95
Service call 39 95
Service call 254 96
Service call 255 96
About filing systems 96
Listings 98

CHAPTER 9

Configure and Status 105
Choosing the byte 105
It's a date 106
Extending status 106
Extending configure 109
The program 110
The right byte 110
Listings 112

CHAPTER 10

Boot1ng ROMs 119

Internal key numbers table
Entering the program
Listings

CHAPTER 11
Workspace
Hidden memory map
Static and Dynamic
Service call 36 (&24)
Service call 33 (&21)
Service call 34 (&22)
Service call 1
Service call 2
Using Private Workspace
Using Static Workspace
For the technically-inclined
Listings

CHAPTER 12

ROM Calls
Operating system read (OSRDRM)
ROM byte
OSBYTE &16 (*FX 22)
OSBYTE &17 (*FX 23)
OSBYTE &8D (*FX 141)
OSBYTE &8E (*FX 142)
OSBYTE &8F (*FX 143)
OSBYTE &A8 (*FX 168)
OSBYTE &AA (*FX 170)
OSBYTE &B3 (*FX 179)
OSBYTE &BA (*FX 186)
OSBYTE &BB (*FX 187)
OSBYTE &FC (*FX 252)
Listings

CHAPTER 13

ROM Fi1ling System (RFS)
Service call 13
Service call 14
The ROM 1image
ROM filing system vectors
ROM 1mage formatter
Using the formatter
Checking the 1image
The procedures
Listings

CHAPTER 14
Language ROMs
Absolute musts
Languages and the Tube
Master monitor MASMON

vl

120
122
123

128
128
129
129
130
130
132
132
132
133
134
136

142
143
144
144
144
144
144
144
168
145
145
145
145
145
146

147
148
149
150
151
152
152
153
156
157

l64
165
166
167

7

Service call 42
Listings

CHAPTER 15
Errors
Error message storage table
Service ROM errors
Language ROMs
ESCAPE
Error numbers
Listings

GLOSSARY

APPENDIX A
Hex and Binary
Number conversion table

APPENDIX B
BBC B/B+ Conversions and Compatibility
Assembler
Program compatibility table B/B+/B+128
Service calls

BBC B+128
BBC B and B+
OPT 4 to 7

APPENDIX C

Program Detalls
Listing 1 1 Sideways RAM demonstration
Listing 2 1 Read ROM table address
Listing 2 2 Form ROM header
Listing 3 1 Trace ROM
Listing 4 1 *HELP ROM
Listing 4 2 Praint number version on *HELP
Listing 4 3 Extended *HELP
Listing 4 4 Interactive *HELP
Listing 5 1 Test 1interpreter
Listing 5 2 Command coding
Listing 6 1 OSBYTE ROM
Listing 6 2 Test new OSBYTE ROM
Listing 6 3 OSWORD ROM
Listing 6 4 Test new OSWORD call
Listing 7 1 Extended vector ROM
Listing 8 1 Polling interrupt ROM
Listing 8 2 Print date on reset
Listing 9 1 Configure and status ROM

Listing 10 1 Auto-boot ROM

Listing 11 1 Private workspace ROM

Listing 12 1 Read title string from ROM

Listing 13 1 ROM filing system (RFS)
formatter

V1l

169
170

178
179
180
181
182
183
183

191

199
199

202
202
203
204
204
204
205

207
207
207
208

208
208
209
209

210
210

210
210
211

211
211
212
212

212

Listing 14 1 MASMON language ROM
Listing 15 1 BRK errors

Listing 15 2 Error test ROM

Listing 15 3 ErrorWise language ROM

APPENDIX D

Links (not relevant to Compact)
Link 18 setting for SRAM/ROM
Link 19 setting for SRAM/ROM
Link geography

APPENDIX E
Postscraipt
Interactive help
Language ROMs
OSWORD calls
OSBYTE calls
OSBYTE 68(&44) test RAM presence
OSBYTE 69(&45) test use of SRAM bank
* INSERT
*UNPL UG

INDEX
BIBLIOGRAPHY

ADDENDUM
Notes on first edition

DISC ORDER FORM
Master, Compact, BBC B/B+/B+128, Electron

PROGRAMS

Listing 1 1 Sideways RAM demonstration
Listing 2 1 Read ROM table address
Listing 2 2 Form ROM header

Listing 3 1 Trace ROM

Listing 4 1 *HELP ROM

Listing 4 2 Print number version on *HELP
Listing 4 3 Extended *HELP

Listing 4 4 Interactive *HELP

Listing 5 1 Test 1interpreter

Listing 5 2 Command coding

Listing 6 1 OSBYTE ROM

Listing 6 2 Test new OSBYTE ROM
Listing 6 3 OSWORD ROM

Listing 6 4 Test new OSWORD call
Listing 7 1 Extended vector ROM
Listing 8 1 Polling 1nterrupt ROM
Listing 8 2 Print date on reset

viii

213
213
213
213

214
215
215
215

216
216
216
216
218
218
218
218
218

219
228

229

230

Listing

Listing 1
Listing 1
Listing 1
Listing 1

Listing 1
Listing 1
Listing 1
Listing 1
Listing 1

FIGURES
Figure
Figure
Figure
Figure
Figure 5
Figure 11
Figure 13
Figure 14
Figure 15

TABLES

Table 2
Table 2
Table 3

Table 3
Table 7
Table 10
Table 11
Table 12

Table 12
Table 13
Table 13

Table Al
Table Bl

N

N

1

2

PRRRFOFWRN e

Configure and status ROM

Auto-boot ROM

Private workspace ROM

Read title string from ROM

ROM filing system (RFS)
formatter

Hex and ASCII dump facility

MASMON language ROM

BRK errors

Error test ROM

ErrorwWwise language ROM

bt bt e

WN=HND

Traditional memory map

Master memory map

Sideways ROM arrangement

Modern character font

Command table construction

Hidden memory map

Hexadecimal dump of ROM 1image

MASMON screen

Internal storage of an error
message

Format of the ROM header

ROM bank allocated address

Service call register
inltialisation

Service call types

Extended vectors

Internal key numbers

ROM workspace

Paged ROM - associated RAM
addresses

OSBYTE calls associated
wlth sideways ROMs

ROM filing system commands
and calls

ROM filing system vectors

Number conversion
Program compatability

1X

112
123
136
146

157
163
170
183
183
187

49
128
154
168

179

203

Preface to Second Edition

The contents of this book are fully applicable to the
Master Compact The Compact has one new feature plus
some changes which are discussed below There has been
much feedback on the first edition from readers and
friends for which I am most grateful Most of this has
been 1ncorporated, and those points which could not
be dealt with 1n the text are discussed on page 229

Bruce Smith November 1986

Master Compact

The most significant improvement 1s the addition of an
optional I (insert) parameter as part of the *SRLOAD
and *SRWRITE commands If I 1s specified (with or
without a Q parameter - see page 28), the ROM 1image
w1ll be automatically inserted into the ROM memory map
and be available for i1mmediate use Typical examples
of use of the I parameter are

*SRLOAD Rom 8000 7 I
*SRWRITE 5000+500 8000 6 QI

If the I option 1s left off, CTRL-BREAK must be used to
'insert' the ROM

The Compact comes with 64k of ROM supplied, whereas
the Master has 128k Hence *ROMS (page 20) shows that
only sockets &F, &E and &D contain ROM titles

&F UTILS 01
&E Basic 40
&D ADFS 10

The word 'RAM' will appear 1in sockets 4,5,6 and 7

The ROM slots occupy the lower right hand side of the
printed circuit board 1inside the Compact keyboard
These compare with the Master 128 as follows

Compact Max size Slot number Master 128 position

IC38 32k 0,1 Cartridge (sk3)
IC23 16k 2 Cartridge (sk4)
IC17 16k 3 Cartridge (sk4)
IC29 l6k 8 IC27

Appendix D link notes are not relevant to the Compact

Introduction
Using This Book

Sideways RAM 1s a philosophy central to the design of the
Master series of microcomputers Four sideways memory areas
are provided for you to load in ROM software images from
disc This facility not only allows you to keep copies of
ROM software on disc and avoid having to handle chips and
cartridges, but also, and even more exciting, to develop
your own software that can be accessed by * commands And
that 1s what this book 1s really all about - providing you
with the theory, backed up with tried and tested programs

Of course sideways RAM was not invented for the Master,
1ts predecessor the BBC B+128 also has the sideways RAM
avallable to use - and the other Acorn machines - BBC B,
BBC B+ and Electron can also be fitted with plug-in
sideways RAM boards which 1instantly open up this new world
for you If you're looking for a RAM board then consult
magazine reviews (typically that by Chris Drage in the May
1986 edition of Acorn User)

The practical approach of this book 1s emphasised by the
fact that there are over 25 listings, the majority of which
all form sideways RAM i1mages which will give you extra *
commands when they are loaded into a sideways RAM bank As
a reference guide, even the most devote sideways RAM
follower will find 1t invaluable and the full 1index will
allow you to locate information quickly and simply

Although programs are written with the Master 1n mind,
Appendix B contains full conversion details for the BBC B,
BBC B+, BBC B+128 and Electron microcomputers

The ROM Formatter program presented i1n chapter 13 1s
worth the price of the book alone' It will enable you to
format your favourite BASIC or machine code programs 1n

2 Introduction

such a way that they to can be used as a RAM image and
loaded 1in or run without the need to access disc or tape

For those of you who suffer from tired fingers after the
first three 1lines then a disc of the programs can be
obtained - details at the rear of this book

Listings

All the listings have been tried and tested before being
dumped to a printer The listings are written 1n BASIC 4
and will run on BASIC 2 with no correction - users of BASIC
I will need to doctor the 1listings slightly but full
details are provided In an effort to provide clarity a
daisywheel printer has been used to produce the listings
Note the difference between the following characters

number one I

small letter 'el' 1
number zero g

large letter 'oh' (0]
hash #

All the listings are dumped with LISTOI, WIDTH4g

The future

Sideways RAM has proved itself to be among the most popular
aspects of BBC computing - to continue this we at Victory
Publishing with your co-operation hope to provide a regular
newsletter on just this topic So let's hear your views,
your 1deas and see your programs

Acknowledgments

Many thanks to the following Linda Dhondy, Alex van
Someren, Steve Mansfield, Derek Coombes, Kitty Milne (keep
on Computing), and everyone on Acorn User

June 1986

Chapter One
What is
Sideways RAM?

Question What 1s sideways RAM?
Answer I'm not going to tell you! (Yet)

Now don't get me wrong, I'm not trying to be
difficult What I am going to do 1s first show you
Master owners what sideways RAM 1s -- and just how
useful 1t can be Then 1n the rest of this book I'll
explain how you can use 1t to further your own needs,
so that by the last page you'll feel confident 1n being
able to approach the task of writing your own software
in sideways format without too much troublé All you
have to know for the moment 1s that the sideways RAM 1s
ready and waiting in your Master and I'm going to prove
1t with a little demonstration

Type 1n listing 1 1 found at the end of the chapter
It's just 5@ lines long so shouldn't tax even the worst
typists Leave out the first five 1lines 1f you want
Once 1t has all been typed 1n, save the program to a
disc or tape before running 1t - just i1n case there's
an accident (If so you can load 1t back in)} Use the
filename 'DEMO' to save the program under, 1ie

SAVE DEMO'

Right, now for the moment of truth RUN the program 1If
you get any errors, correct them and save the program
again The most likely place for errors 1is 1in the DATA
lines For example

Out of data at line 14§

4 Sideways RAM

means you have missed out an 1item or i1tems of DATA 1n
lines 298 to 514 If you get the message

Data error - please check

then you have made a typing error within the data which
has been picked up by a checking routine 1in lines
I94-268 So look through it all again carefully If the
message persists then get someone else to check i1t for
you When everything 1s okay the usual cursor prompt
w1ll appear Remember, 1f you make any corrections to
the program, re-save 1t each time

All OK> Then congratulations, you have written a

s1deways RAM program Simple wasn't 1t? Writing
sideways RAM programs 1sn't normally as boring as
entering i1n rows of numbers - I've just done 1t that

way to make 1t easier for the time being The next
thing to do 1s to 1initialise the sideways RAM program -
in other words tell the micro it's there This 1s done
by performing a CTRL-BREAK (To do this, hold down the
CTRL key, press the Break key once and then release the
CTRL key) The Master will display 1ts normal start-up
message as when you first turn on Now type

*ROMS

A list similar to this should appear

ROM F TERMINAL g1
ROM E VIEW g4

ROM D Acorn ADFS 58
ROM C BASIC g4

ROM B Edit g1

ROM A ViewSheet #2
ROM 9 DFS g2

ROM 8 ?

ROM 7 ?

ROM 6 ?

ROM 5 7

ROM 4 Beep 1 g g1
ROM 3 ?

ROM 2 °

ROM 1 °

ROM g »

This lists the software held 1n the Master The seven
at the top of the list are standard and come with the
micro when you buy i1t We are 1interested in number 4

ROM 4 Beep 1 g g1

Si1deways RAM 5

What you have done 1s to put a program called 'Beep’
into an area of sideways RAM when you ran the DEMO
program above 'Beep' 1s designed to act as 1f 1t was
an actual ROM chip

The command *HELP lists the ROMs present 1in the
machine Try 1t now
*HELP
The result will look something like this

0s 3 24
MOS

TERMINAL 1 24

VIEW B3 #

EDIT 4

ViewSheet Bl #

SRAM 1 gg

Beep 1 £
So Beep 1 § has been added to the *HELP list Now type

NEW
followed by the following short program

18 FOR N%=1 TO 20

2 *BEEP

308 NEXT N$%
RUN this, and you'll get a continucus tone from the
speaker of your micro When the din stops try typing 1in
*BEEP This time you'll get a single beep

What the original program has done 1S to add a new

command to the Master's vocabulary - *BEEP If you
don't believe me turn the Master off for a few seconds,
then switch 1t back on and go through the *ROMS, *HELP

procedure and see where 1t gets you!

Sideways ROMs or RAMs

The terms sideways RAM and sideways ROM often go hand
in hand - but what 1s the difference between them?

6 Sideways RAM

Well, in short, sideways RAM 1s volatile (1e 1t can
change) while sideways ROM 1s non-volatile (1t can't)
RAM stands for Random Access Memory - vyou can read
1ts contents and you can also change them It 1s a
volatile medium in that 1ts contents are only preserved
while 1t has power supplied to 1t As soon as the power
source 1s removed the contents are lost They can be
restored by switching on the power and 1loading them
back 1in This was exemplified with the *BEEP example
The DEMO program wrote the code for this 1into the
correct area of RAM The *BEEP command was available to
us all the time the power was switched on As soon as
the power was removed, 1e by switching the micro off,
the code for *BEEP was lost It can be placed back 1into
the Master by loading and running the program again
ROM stands for Read Only Memory As 1ts name suggests
this memory can only be read from - 1t cannot be
written to ROMs are an example of a non-volatile
memory, their contents are not affected by power being
present or not The Master 1s fitted with a single ROM
chip when you buy 1t - the 'MegaROM' as 1t 1s called
in Acorn's user guides This contains all the machine
code that 1s required to run your micro - BASIC, the
MOS, View, Viewsheet, DFS, ADFS, Edit and Terminal
Sideways RAM and sideways ROM both have their pros
and cons The obvious advantage of sideways ROMs 1s
that they are always present within the machine - ready
for i1nstant use as soon as you switch the Master on
The disadvantage 1s that 1f you wish to add a new or
extra sideways ROM you need to take the 1lid of the
micro and physically fit 1t 1nto one of the ROM
sockets, or use a cartridge Sideways RAM does not
suffer from this disadvantage because you can just load
1t in from disc or tape 1Its other big advantage 1s
that 1t allows you to write and develop customised
software - a rewarding and possibly profitable hobby!
When a program 1s written to work in sideways RAM, 1it
1s converted into a 'ROM 1mage' Thas can be loaded
into a sideways RAM bank or saved to disc for Ffuture
loading Once the ROM 1mage 1s 1in sideways RAM we can
for all intents and purposes use 1t as 1f 1t were a
ROM, although strictly speaking 1it's not This
interchange of terms 1s quite common 1n books and
magazines, not to mention the Master 1itself, so don't
be put off - 1t's simply quicker and easier to say!

Why 'Sideways'?

The nagging question you may have at this moment 1is
what 1s the relevance of the term 'sideways'? To answer

Sideways RAM 7

this we need to understand something about the 65CI2
microprocessor at the heart of the Master The amount
of memory that any microprocessor can actually address
(1e write to or read from) at any one time depends on
the number of ‘'addressing lines' 1t has The address
lines, collectively called the address bus, are the
wires that radiate from the 65CI2 chip These lines
can have one of two states - either on or off The two
states can be indicated by the numeric values 1 and @
By switching on combinations of address 1lines we can
build up patterns of 1I's and f's You may already
realise that this forms what 1s termed a binary
number In computing however, rather than talk 1in
strings of ones and zeroes we convert to a special
number system called hexadecimal, based on 16 rather
than 18 You may already be familiar with this term -
1f not then take a look at Appendix A and the Glossary
before going any further

The 65CI2 chip has sixteen address 1lines, so the
maximum address of a byte of memory 1s when all the
lines are 'on' In binary terms this 1s represented as
TITIITIIT IIIIIIIl, which 1s &FFFF or 65535 decimal
Therefore there are 65536 addressable locations within
the Master (65536 because the first 1is at location £)
If we convert this figure into kilobytes by dividing
through 1624 we arrive at 64k Figure I I shows how
this is traditionally arranged The first 32k 1s given
over as RAM, the top 32k contains first the 16k BASIC
language and above this the 16k MOS (machine operating

system) But think about what your Master contains It
has 128k of RAM and 128k of ROM 1n 1ts standard
configuration - that's 256k 1in all, yet we have just

determined that the maximum addressable memory of the

64k &§FFFF
MOS
48k &CPgpP
BASIC
32k &8080
Program
memory
ok &05008

Figure I 1 The traditional memory map

ASR-B

8 Sideways RAM

&FFFF

MOS
&Cga8

SRAM bank
&8008

*SHADOW
screen

§3088 f-mmmmmmmeeee

SPEEP p~mmmmmmmm——
sppog

Figure 1 2 Software can be read 1nto SRAM bank
Memory for shadow screen sits alongside main
block

BASIC Term View ADFS Edit View DFS
Sheet

Figure 1 3 Sideways software can be 'paged' into
RAM bank

Master 1s a mere quarter of this! The answer lies 1n
having the extra memory present but ‘overlaying' 1t
into the main memory map as and when 1t 1s requested
For example you can galn extra programming memory 1n
that first 32k bank of RAM by selecting shadow memory
with the command *SHADOW When this command 1s executed
the Master intercepts any subsequent commands to do
with the screen and redirects 1t away from program
memory to the shadow RAM area In other words, the
contents are put to one side (figures I 2 and I 3)
That last word provides the clue to how the term
si1deways arose

The ROMs supplied 1n the MegaROM, with the exception
of the MOS, all occupy the same section or bank of
memory That 1s the I6k from &8@8@8 to &BFFF So 1n
figures I 2 and I 3 they appear to stretch s1deways
across the memory map when you use a particular
command, the MOS locates which ROM that command belongs
to and allows that ROM to take control of the 1I6k of
memory normally occupied by the BASIC language This
technique 1s often called 'paging' and gives rise to
the term 'paged ROM'

Sideways RAM 1s simply a bank of RAM that 1s treated
in exactly the same way - 1n fact the MOS cannot tell
the difference between sideways RAM and sideways ROM -

Sideways RAM 9

only we can' A total of 64k of the Master's RAM 1s
capable of being paged into this sideways slot As each
slot 1s 16k, that gives us a total of four sideways RAM
banks, 1e 4*I6k=64k

You may be wondering why only a I6k section of RAM
was provided as the slot for sideways RAM, and why the
whole of the 32k of memory above &8Pff 1s not used The
answer 1s straightforward The Master cannot operate
without the MOS present, because this handles all the
donkey work such as wraiting to the screen, reading the
keyboard and moving to and from other ROMs all that
sideways RAM, or ROM programs ever need to do to
perform such a task 1s to call the appropriate routine
within the MOS In fact 1n many instances 1t 1s done
automatically by the MOS without you ever knowing -
reading and displaying key presses for example

Getting your priorities right!

As we saw 1n the 1list of ROMs earlier, each sideways
ROM or RAM slot 1s given a number In fact the Master
has the capability to address T6 ROM or RAM sockets and
these are numbered from @ to I5 To keep 1n line with
normal computing tradition these sockets are normally
referred to by their hexadecimal equivalents, 1e & to
&F Of course I use the term socket for descriptive
purposes There are not I6 sockets physically 1inside
the case of the Master, but they are 1n theory

The MegaROM containing the standard software occupies
seven 'sockets', &9 to &F The four banks of sideways
RAM are overlaid into positions 4, 5, 6 and 7 Make a
mental note of these now as we will need to refer to
these positions constantly when wrataing si1deways RAM
programs

one final point 1is that the sideways RAM memory 1S
taken over when you use BASI28, the special version of
BASIC supplied on the Welcome disc to give you access
to 64k of RAM for programs Obviously, you cannot use
BASI28 and sideways RAM at the same time

Summary

So, sideways RAM 1s a special area of memory into which
we can place programs These programs are written to
special, but easy to follow rules which will be
explained 1n the next chapter Once 1in sideways RAM, a
program will behave as 1f 1t were 1n a ROM chip

As we have seen we can extend the Master's vocabulary
so 1t can carry out special tasks for us at the whim of
typing 1n a chosen command *BEEP was not exactly

14 Sideways RAM

earth-shattering stuff, but no matter how simple or
complex a command you decide to write, 1t will still
need to be implemented 1n the same way Incidentally,
the two-digit number given alongside the ROM name when
you type *HELP 1s the version number There'll be more
on this i1n the next chapter

The tutorial approach of this chapter wusing simple
programs as examples will be followed throughout thais
book The end result of some of the examples may be
mundane, but 1t's getting there and seeing how things
are done that counts Therefore the implementation will
be covered 1n depth while the example will be kept as
simple as possible to avoid confusion The programs are
not written for efficiency or to optimise speed and
space When you have mastered the basics then tacking
on your own routines will be a minor problem

Sideways RAaM

Listing I I Sideways RAM demonstration

REM A simple demo

REM DEMO

REM (C) Bruce Smith June I986
REM Advanced SRAM Guide

PROCread

PROCchecksum

*SRWRITE 4008 +72 8840 4
END

DEF PROCread
base=&40808

FOR loop=g TO II3
READ data
base?loop=data
NEXT loop

ENDPROC

DEF PROCchecksum

N3=40

FOR loop=# TO II3
Ng$=N%+base?loop

NEXT

IF N%=13477 THEN ENDPROC

vDU 7

PRINT Data error - please check
STOP

DATA #,%,8,76,23

paATA I128,138,I8,I,66
DATA I@I,Ipr,II2,32,49
DATA 46,48,8,8,48

DATA 67,41,8,72,201

DATA 9,248,6,201,4

DATA 248,33,104,96,152
pDATA 72,138,72,32,47
DATA I28,104,174,1064,168
DATA Ig4,96,32,23I,255
DATA I62,255,232,189,9
DATA 128,32,227,255,208
DATA 247,32,23I,255,96
DATA I52,72,I38,72,162
DATA 255,136,232,2808,177
DATA 242,41,223,221,189
DATA I28,248,245,189,I89
DATA I28,16,I5,28I,255
DATA 2#8,IT,169,7,32
DATA 227,255,184,184,104

Save as DEMO

11

12

Listing I I continued

494 DAaTA 169,0,96,104,178
5¢8 DATA Ip4,168,184,96,66
SIf DATA 69,69,88,255

Sideways RAM

Chapter Two
The Sideways Header

I mentioned in the first chapter that programs placed
in sideways RAM or ROM must conform to a specific
format for them to work correctly In this chapter
we'll 1look at the arrangement of this format, 1in
particular the couple of dozen bytes generally
referred to as the 'ROM header' We'll be using a few
terms that may well be new to you so I'll explain each
one as we go along The first six bytes of the header,
from &8888 to &8@@5, contain two entry points 1nto the
sideways ROM These are two sets of machine code
instructions arranged like this

&8000 JMP XxXX
%8083 JIMP yyyy

where xxxx and yyyy are hex addresses

The first three-byte address 1s the language entry
point and the second the service entry point With one
exception all ROMs have service entry points, but not
all ROMs have a language entry point

The service entry polnt causes a jump to a plece of
machine code designed to handle requests for
information given by the MOS For example, when you
type in *HELP, the MOS asks each ROM 1n turn to prant
out 1ts individual *HELP message Similarly, 1f the MOS
finds a command 1t does not know beginning with an
asterisk (eg *BEEP), 1t asks each ROM 1n turn 1f 1t
recpgnises the command The one exception to this rule
1s the BASIC ROM, which the M0OS recognises by 1its lack
of a service entry point The only ROMs that have
language entry points are, surprise, surprise, language

14 The Sideways Header

ROMs View, Viewsheet, and Edit are examples of
language ROMs, as well as more traditional names such
as Forth, Pascal, etc This lanquage entry point
provides the means for the sideways ROM to take control
of the Master as we shall see later on If a ROM 1s not
a language then 1t should leave these first three bytes
of the ROM 1image alone, setting them to zero

Table 2 I provides a brief 1list of the bytes at the
front of the ROM header which have a specific function

Byte Function
8990 Language entry point
8043 Service entry point
8406 ROM type (language or service)
8847 Copyright offset pointer
8008 Binary version number
8489 ASCII title string
(terminator byte &@gg)
8xxx ASCII version string
(terminator byte &@g)
8yyy ASCII Copyright straing
(terminator byte &@g)
8zzz Tube relocation address

Table 2 I Format of the ROM header

The first If bytes of the ROM header (88@@-8889) are
fixed and may always be found at a specific address
The bytes after the ASCII string title, though
important, may be of variable 1length These bytes
consist mainly of ASCII character strings that define
the ROM title and copyright labels Each of these ASCII
character strings ends with a zero (terminator byte)

While the language and service entry points 1into a
si1deways ROM are obviously important to the functioning
of the ROM, the information i1n the bytes following 1is
of equal 1importance The copyright string, and 1in
particular the C itself within the brackets, (C), 1s
most important as without 1t the ROM will not be
recognised as one! The byte at &8887 1s the 'copyright
string offset pointer' which contains the number of
bytes (called the 'offset') from the start of the ROM
to the &f@f byte r1mmediately prior to the copyright
string (see figure 2 TI)

When switched off, or after a CTRL-BREAK, the MOS
extracts the value of the offset and uses 1t as an
index to test for the presence of a copyright string
If there 1s one then the MOS 1s sure that a si1deways

The Sideways Header 15

&8009

JMP language
&8003

JMP service
8006

ROM type
8007

Offset pointer
&8p08

Version number
8009 offset

&90

Title string

Y7

Version string

&gp

Copyright string

&8P

Figure 2 1 Calculating the offset

ROM 1s present 1n that particular bank The next stage
1n the 1nitialisation process 1s to build a 'ROM type
table' by extracting the type byte from each ROM and
storing 1t in table form 1in memory for reference

(The ROM type table 1n the Master's MOS, version
3 g, 1s located from the 16 bytes starting at &2A1)
The address of the table can be read for other
operating systems using OSBYTE 178 Entering and
runaing listing I 2 will do this for you

1% REM Read ROM table address

20 As=179

30 X%=4

48 Y$=255

58 addrs=(USR(&FFF4)) AND &«FFFFP0
68 addri=addrs% DIV 256

78 PRINT ~addr$

Listing 2 I Reads ROM table Save as TABLE

Table 2 2 glves the address where the type number for
each ROM 1s stored Reading the address will tell you

16 The Sideways Header

what type of ROM software 1s 1n a particular sideways
ROM/RAM bank

ROM bank Address
[} &2AT
T &2A2
2 &2A3
3 &2A4
4 &2A5
5 &2A6
6 &2A7
7 &2A8
8 &2a9
9 &2AA

I8 &2AB
IT &2AC
T2 &2AD
I3 &2AE
I4 &2AF
IS &2Bg

Table 2 2 Address associated with each ROM bank

If any ROM banks are found to be ‘'empty' then a zero 1s
placed in the relevant table byte Thus 1f ROM 6 were
empty a zero byte would be placed at location &2A7
If a sideways ROM position contains a ROM, 1ts 'type
byte' 1s read and placed i1n the byte position 1in the
type table

ROM Types

The byte at &8f@86 contains the ROM type (table 2 I)
which gives the MOS information about the ROM Each
bit i1n the byte conveys the following information
Bit 7 Set 1f the ROM has a service entry, therefore
1t must always be set as all ROMs must have a service
entry point The ONLY exception to this rule 1s BASIC
Bit 6 Set 1f the ROM has a language entry point

Bit 5 Set .f the ROM has a second processor
relocation address, for example 1f the ROM contains a
'H1' version of a language For this to happen the

code 1n the ROM, bar the service entry coding, must
have been assembled for second processor addressing 1n
mind The service call coding 1s not coplied across the
Tube 1nterface to the second processor, and only
languages may be copied across the Tube

Bit 4 This bit 1s used by ROMs operating on the
Electron only (If set 1t controls the use of soft key

The Sideways Header 17

expansion allowing the Electron to implement function
key operations using the CTRL and SHIFT sequences, as
these are not normally avallable)

Bit 3 If set, ROM contains 280 code

Bit 2 If set, i1ndicates other processor code

Bit I Must always be set (only exception 1s BASIC)

Bit P Set to zero, but may be used as bit 2

The following short program will produce a list of
the ROM types 1n your machine

10 REM List ROM types
29 FOR N%=&2AI TO &2Bf
38 PRINT ~N% = “?N%
48 NEXT N%

On a standard Master 128 the list produced will look
like this (I have added the ROM names)

2T = @

202 = @

2R3 = #

2A4 = 8

285 = #§

286 = @

207 = @

288 = @

2h9 = ¢

2AA = 82 - DFS

2AB = C2 - Viewsheet
2AC = C2 - Edait

2AD = 64 - Basic

2AE = 82 - Acorn ADFS
2AF = C2 - View

2Bg = C2 - Terminal

The above list shows that the most common ROM type
numbers are &C2 and &82 Let's look at these 1in detail

&C2 = 1108 pA1S
L | bit T always set

bit 6 set for language entry
bit 7 set for service entry

We can see the ROM has language and service entry
points ROMs with this type number 1nclude View and
Viewsheet The other main ROM type 1s

&82 = 1088 APIP

showing that this ROM has only a service entry ROMs

18 The Sideways Header

with this type number include the DFS and ADFS The
BASIC ROM has the type number

60 = PIIP pPP8

This indicates 1t has a language entry point and a Tube
relocation address As already mentioned BASIC has no
service entry point In addition bit I 1s also clear,

which must normally be set

Copyright Offset

This byte at &8@f7 gives the number of bytes (the
offset) from the start of the ROM to the &@@ terminator
byte 1mmediately before the copyright string As
described earlier the copyright string 1s used to
1dentify a sideways ROM The following lines of code
could be used to test for the presence of a ROM (the
variable 'vector' 1s a zero page byte address vector

containing &8844)

LDY #7 \ offset at +7

LDA (vector),Y \ get offset

TAY \ move 1into Y register
INY \ add one

INY \ add one

LDA (vector),Y \ get byte

CMP #ASC('C") \ 1s 1t 'C' from (C)>
BNE norom \ 1f no, there's no ROM!

Of course 1t 1s possible to pick up ASCII C as garbage
from an empty bank (so says Murphy's 1law), so 1t 1s
worth testing the bytes either side of the C to ensure
that they are equal to the ASCII values for "(and
I)Il

IMPORTANT A capital C must be used for the copyright
indicator - a lower case c will not be recognised as

such!

Version Number

The version number 1s not used by the MOS at all It 1s
simply a byte provided for you to keep track of
software development The eight bit value should relate
to the version number of the software herein Thus 1if
the software was version 5 the byte here could contain
 This 1s the number displayed after the ROM name
when *ROMS 1s used

The Sidewdays Header 19

Title String

This 1s an ASCII string starting from &8689 and
terminated by a zero byte If the ROM 1s a language
then the MOS prints this string on the screen when the
ROM 1s 1nitialised This string 1s also normally the
one printed out when *HELP 1is performed

Version String

This ASCII string 1s optional It allows the user to
praint the version number of the ROM during the
processing of *HELP This string must be terminated by
a zero byte, If the ROM 1s a language then on
entry to 1t the error pointer vector at &FD and &FE
will be made to point to the version number 1f 1t 1s
present If the version string 1s not present the error
pointer will go to the copyright string

Tube Relocation Address

If bit 5 of the ROM type byte 1s set then the MOS
expects to find a Tube relocation address at this
point This 1s the address to which the ROM contents,
which will be a language, will be copied The code must
therefore be written with the second processor
relocation address borne 1n mind The service coding
should not though, and should assemble as normal Thas
1s because the service code 1s not copied across the
Tube, as discussed in Chapter I4

Standard Header

Writing all the above information 1into a BASIC or
assembler program s not difficult Program 2 I shows
just how simple 1t 1s Type 1t 1n and save 1t under
the name 'HEADER' RUN the program, and reply as you
wish to the two questions Here's how I fared

Enter ROM title Tester

Enter copyright string Bruce Smith
Assembling header

80080 -
8000

>

The program first asks you to enter the ROM title
string, I used 'Tester', followed by the copyright
string, my name Note that I did not enter the (C) as
this has already been 1incorporated 1into the program

28 The Sideways Header

The message 'Assembling header' 1s printed The two
numbers B8@@f show assembly of the code 1s underway

When the prompt returns the ROM header 1is 1in position

Type *ROMS to check 1t has happened My results were

ROM F TERMINAL f@T
ROM E VIEW g4

ROM D Acorn ADFS 58
ROM C BASIC g4

ROM B Edit @1

ROM A ViewSheet g2
ROM 9 DFS g2

ROM 8 ?

ROM 7 Tester @I
ROM 6 ?

ROM 5 ?

ROM 4 7

ROM 3 ?

ROM 2 ?

ROM T ?

ROM g »

Sure enough, ROM 7 contains the Tester title Let's
look at the assembly program 1in detail now to see what
happened and how

Lines 168 to I8g We cannot assemble our machine
code header directly into sideways RAM So we need to
assemble 1t elsewhere 1n memory, but make the assembler
think 1t's going 1into memory from &8f@% This can be
done using OPTs 1in the range 4 to 6 (or 7) and using
the 0% pointer 1in conjunction with P$ (If you are not
too familiar with this aspect of the assembler, then
refer to Appendix B) The pointer 0% points to &5888
which 1s where the machine code for the header 1is
actually assembled

Lines I9§8 to 2ff Assemble the language entry point
As there 1s no language entry, three zero bytes are
inserted using EQUB and EQUW

Line 2I@ Assembles the service entry point The
code 1s simply a direct JMP to the start of the service
polling code This 1s marked by the label 'service!
(line 324)

Line 228 Assembles the ROM type code The byte
assembled 1s the standard one for a service only ROM,
1e &82 Refer to text above for details

Line 238 Assembles the copyright offset pointer
Uses the MOD function to calculate the offset, which is
the remainder of the division by 256 (line 288)

Line 248 Assembles the binary version number of the
ROM coding, I 1in this case

The Sideways Header 21

Line 258 Label marking start of the ROM title
string

Lines 268 to 278 Assemble the ASCII title string
terminated by a zero byte

Line 288 Label marking 'offset’

Lines 298 to 318 Assemble the copyright string,
prefixed and terminated by a zero byte

Line 328 Label marking the start of the service
entry code

Line 334 The service entry coding here consists
simply of a return Any service calls to this ROM will
be returned without effect

Sideways Wrating

Once the code has been assembled, 1t needs to be
transferred across into a sideways RAM bank This 1s
done in line 94 by the command *SRWRITE This command
requires four 1tems of i1nformation to work on, thus

*SRWRITE(<start addr>+<length>)<relocated addr> <ROM 14>
Let's examine each parameter in turn

<start address> this 1s the start address of the
assembled code 1n memory

+<length> length, 1n bytes, of the
assembled code

<start address> start address to which code 1s
to be relocated in sideways RaAM

<ROM 14> number of the sideways RAM

bank 1nto which code 1s to be
copied, 1e, 4, 5, 6 or 7

The two start addresses are to be in hexadecimal Line
94 1n program 2 1 1s as follows

*SRWRITE S@g0 +208 8088 7

This shows that the start address of the assembled code
1s &5000, 1ts length 1s &208 bytes, and 1t 1s to be
relocated at &8864 1n sideways RAM bank number 7 The
length value can be substituted by the address +I of
the end of the code 1f so desired For example, 1f the
code started at &5800 and ended at &6I23, we could use

*SRWRITE 5080 6124 8848 7

The absence of the + sign before the second value
informs the MOS that the number following 1s an

22 The Sideways Header

address and not an offset Note that the second number
1s I greater that the actual end address of the code
and must follow on from the first value

There are several more sideways RAM utility commands
supplied with the Master and these wi1ll be examined in
the next chapter

The Sideways Header 23

Listing 2 I Reads ROM table address Save as TABLE

If4 REM Read ROM table address

28 A%=174

30 x%=0

4 Y%=255

Sg addr¥=(USR(&FFF4)) AND &FFFFEP0

6 addrg=addrs DIV 256

78 PRINT ~addr$
Listing 2 2 Produces standard ROM header Save as
HEADER

14 REM Form ROM header

378

ASR-C

REM (C) Bruce Smith June 1986
REM The Advanced SRAM Guide
REM

MODE 7

PROCgetstrings
PRINT''"Assembling header"''
PROCassemble

*SRWRITE 58080 +200 8008 7
END

DEF PROCassemble
osnewl=&FFE7
osasc1=&FFE3
FOR pass=4 TO 6 STEP 2
P3=58000 O¥=&5000
[
OPT pass
EQUB #
EQUW §
JMP service
EQUB &82
EQUB offset MOD 256
BQUB 1
title
EQUS title$
EQUB #
offset
EQUB #
EQUS "(C) “+copy$
EQUB @
service
RTS
]
NEXT
ENDPROC

24 The Sideways Header

Listing 2 2 continued

380 DEF PROCgetstrings

394 PRINT 'Enter ROM title ',

4988 INPUT "title$

4If PRINT "Enter copyright string .
424 INPUT " "copy$

438 ENDPROC

Chapter Three
Service ROMs

sideways ROMs, except BASIC, must
have a service entry point The machine code here will
depend on the sophistication of the software, but the
ROM must be capable of 1dentifying all the calls 1t
needs to function correctly Service calls that are of
no importance to 1t can be 1ignored by returning to the
MOS with an RTS instruction The coding to look after
service calls must include an 'intepreter' capable of
recognising individual commands, and acting on them

In all there are 3l possible service calls, though
most will not require processing by service-only ROMs

When a service call 1s made, the highest priority ROM
bank 1s polled first (ROM &F) and the call 1s then
passed down through the ROMs until one recognises the
call and acts on 1t When a service entry 1s required,
the three processor registers are used to pass the
service call details as shown in table 3 I

As we have seen, all

Register Service call information
Accumulator - Service type

X register - Number of current ROM

Y register - Any extra service parameter

Table 3 I Service call register 1initialisation

If the service call 1s not recognised by the current
ROM the service coding must restore all register values
and return using RTS In most 1nstances 1t will be the
MOS 1ssuing the service call, but other ROMs may issue

26 Service ROMs

a service call using an OSBYTE call as follows

LDA #&8F \ 1ssue ROM service call

LDX #type \ X contains service type requested
LDY #param \ Y contains any parameter

JSR OSBYTE \ execute

On return from the OSBYTE call, the Y register will
contain any resultant value so this should be checked
as required

Table 3 2 1lists all the service call types It 1s

Call Type
g (&f8) Call already provided
I (&4I) Claim absolute workspace 1n normal RAM
2 (&82) Claim praivate workspace 1n normal RAM
3 (&83) ROM auto boot
4 (&84) Command not recognised
5 (&85) Interrupt not recognised
6 (&@6) BRK
7 (&87) OSBYTE not recognised
8 (&@8) OSWORD not recognised
9 (&49) *HELP
I8 (&8R) Claim static workspace 1n normal RAM
IT (&@B) Release NMI
I2 (&8C) Claim NMI
I3 (&@D) Initiralise ROM filing system
T4 (&fE) Return byte from ROM filing system
I5 (&@F) Vectors claimed
I6 (&18) EXEC/SPOOL files about to close
I7 (&I1) Character set about to explode/implode
2T (&15) Polling interrupt
24 (&18) Interactive *HELP
33 (&21) Indicate static RAM 1in hidden RAM
34 (&22) Claim private workspace in hidden RAM
35 (&23) Tell top of static workspace in hidden
RAM
36 (&24) Private workspace requirements
37 (&25) Inform MOS of filing system name and
information
38 (&26) Close all files
39 (&27) Reset has occurred
48 (&28) Unknown *CONFIGURE option
4T (&29) Unknown *STATUS option
42 (&2A) ROM based language starting up
254 (&FE) Secondary Tube initialisation
255 (&FF) Main Tube initialisation

Table 3 2 Service call types

Service ROMs 27

not necessary to memorise Or understand these at
present as each will be explained later on as needed
In many instances full working examples will also be
provided The table 1s purely for reference
The service calls are not all dished out one by one by
the MOS 1In fact on a hard reset only IT calls are
1ssued by the MOS The others are 1ssued as and when
they are needed

Listing 3 I will allow you to see what service calls
are 1ssued by the MOS and when The service entry
coding simply contains a short routine that will prant
out the current service call number before returning
control back to the MOS As all service calls are
1ssued to every ROM, every service call number 1i1ssued
will be printed When you have typed 1in and saved the
program enter the following three lines directly at the
keyboard to check the accuracy of what you have typed

Ne=g
FOR X%$=&5088 TO &5@4B N%=N3%+7X% NEXT
PRINT N%

The value printed should be 6525 1f not then recheck
your laisting carefully Once the checksum value 1s
correct save the program under the filename "TRACE"

Once saved, simply RUN the program Then, as the
program does not contain a transfer routine, type this

in at the keyboard
*SRWRITE 5080+188 8898 7

Typing *ROMS should show that the code 1s 1nstalled

safely 1n position

To 1nitialise our Trace ROM we need to perform a
‘hard reset' by doing a CTRL-BREAK Once you have done
this, the Master should re-initialise 1tself and the
normal start-up messages w1ll be preceded by some

hexadecimal numbers as follows

gF 24 21 22 @1 #2 23 25 FE
Acorn MOS

27 acorn 1778 DFS
gF BASIC

>

These hex numbers are the service calls i1ssued by the
MOS during the hard reset, and there are IT of them

28 Service ROMs

Compare them to table 3 2 above to see what 1s

happening
Now try pressing just the BREAK key, and the screen

wi1ll clear as follows

25 FE
Acorn MOS

27 PF BASIC
>

This time Just four calls are 1ssued by the MOS,
clearly showing the major differences between a 'hard’
and 'soft' break, or reset

Assuming you're using a disc system, type

*CAT

Before the disc catalogue appears you'll see that
service calls @C and @B are 1ssued
Typing *HELP shows that requests @9 and I8 are

i1ssued
Play around for yourself to see what calls are i1ssued

when To remove the Trace ROM coding you'll need to
switch the Master off

SRAM Utilities Explained

When you type *HELP the last message you see 1s
SRAM I g¢

These are the sideways RAM utilities, and typing
*HELP SRAM

provides the following list

SRDATA <1id >

SRLOAD <filename> <sram address> (<id >) (Q)

SRREAD <dest start> <dest end> <sram start>
(<1d >)

SRROM <1id >

SRSAVE <filename> <sram start> <sram end> (<id >)
(Q)

SRWRITE <source start> <source end> <sram start>
(<1d >)

End addresses may be replaced by +<length>

Service ROMs 29

SRWRITE has been explained, and SRDATA and SRROM are
not directly applicable, so let's look at the others

*SRLOAD

This command 1s similar in action to *SRWRITE waith
which we are familiar However, 1nstead of writing a
block of memory into sideways RAM, 1t writes a file
from disc, tape or whatever filing system 1s 1n use

Let's try an example First load program 3 I, TRACE,
and RUN this to assemble the machine code Next we must
*SAVE this block of code 1in the normal manner

*SAVE R TRACE 5S@gg +148

The prefix R reminds us 1t 1s a ROM 1mage If your
filing system will not readily accept this name then
choose something suitable (eg RTRACE on networks)

To use *SRLOAD we need three 1tems of information
the filename, the memory address 1t 1s to be loaded to
and the RAM bank 1n which 1t 1s to be placed

*SRLOAD R TRACE 8gg4 7

We can specify an extra 1item of information, a Q
*SRLOAD R TRACE 8g88 7 Q

When the Q 1s seen by the routine 1t wlll perform a
Quick, that 1s fast, transfer It will load the file
into memory at PAGE and copy 1t straight across 1into
the RAM bank The advantage of this method 1s 1its
speed The disadvantage 1s that 1t will overwrite any
program or data 1in memory If you wish to keep memory
contents intact then use the former method and omit the
Q 1In such cases the routine saves the memory area from
corruption However 1t 1s considerably slower Try both
methods to see for yourself Don't forget to CTRL-BREAK
to 1nitialise the ROM 1mage once loaded

*SRREAD
Performs the reverse operation of *SRWRITE It reads
the contents of the specified ROM 1into memory starting

at a defined location For example, to read a ROM 1n
socket 7 1nto memory starting at &20f@ use

*SRREAD 2000 6808 8868 7

This command wi1ill obviously cause the contents of

38 Service ROMs

memory to be overwritten The first two addresses are
the start and end addresses 1n memory to which ROM data
1s to be transferred The third address (8888) 1s the
start address 1n RAM of the data to be transferred,
while finally the ROM 1dentity (1d) 1s specified

Therefore i1n this case, the data in ROM 7 starting at
&8088 will be transferred to &20f8 until &s6888 1s
reached

*SRSAVE

This command 1s 1like *SRREAD except that the ROM
contents are saved to the current filing system under
the specified filename For example, to save a ROM 1n
RAM bank 7 we could use

*SRSAVE R ROM 8888 cggg 7

The first two address specified are the start and end
addresses of the sideways RAM to be transferred The
final value 1s the ROM identity number Like *SRLOAD a
Q0 may be tagged onto the end of the command line for a
quick, but memory destroying, save

Note that 1t 1s not possible to save a ROM with an
1identity number greater than 8 (1e 9 to IS) This 1is to
prevent 1llegal copying of the ROMs in the Megabit ROM
An 1llegal address error will result 1f you try

ROM Copyright

It 1s apparent now that 1t would be advantageous to
have copies of ROMs on disc Using the above commands
1t 1s a simple process to do this A whole library of
ROM 1mages can be held on a single disc and loaded 1in
when needed - thus avoiding the need to continually get
inside the case to change chips or swap ROM cartridges
However, 1mages of some commerclally available ROMs
will not function 1in sideways RAM because of the
protection mechanisms employed by software houses to
prevent the abuse of such copying If a ROM 1image
hangs up or will simply not function then 1t 1s almost
certainly protected

Service ROMs

3I

Listing 3 I Traces service calls as they are 1ssued by
the MOS Save as TRACE

REM Service call Trace
REM (C) Bruce Smith June I986
REM The Advanced SRAM Guide

PROCassemble
END

DEF PROCassemble
oswrch=&FFEE

FOR pass=4 TO 7 STEP 3
pPs=68088 O0%=55000

{

OPT pass
EQUB 4

EQUW ¢

JMP service
EQUB &82
EQUB offset MOD 256
EQUB I
title

EQUS "Service Trace ROM"
EQUB #
offset
EQUB @

EQUS "(C) Bruce Smith"
EQUB #
service

PHA

PHA

LSR A

LSR A

LSR A

LSR A

JSR convert

PLA

AND #I5

JSR convert
LDA #32

JSR oswrch

PLA

RTS

convert
SED

CMP #Ig

ADC #&3f

CLD

JMP oswrch

32 Service ROMs

Listing 3 I continued

480]
490 NEXT
568 ENDPROC

Chapter Four
The Help Service

I don't

numeric order Some
than others, so 1I'll
*HELP

Wwhen the MOS

through 1ts ROM type
1t sees with service

this call by printing out
The equivalent 1n BASIC of the service coding 1s

intend to deal

encounters a

with each

start with the easiest,

*HELP command

table

IF A%=9 THEN PRINT title$ ELSE RETURN

In machine code thais

CMP #9
BEQ help
RTS
help
JSR osnewl
LDX #255
helploop
INX
LDA title,X
BEQ done
JSR osascl1
BRA helploop
done
JSR osnewl
RTS

S S s

becomes

1s 1t *HELP?
yes, process 1t
no, so return

print a new line
use X as 1index

increment 1index

get byte

1f zero, then finished
print byte

and repeat once more

print a new line
and return

service
are much more difficult to process

and polls each of the ROMs
call 9 All ROMs should respond to
at least their title string

34 The Help Service

The coding uses OSNEWL to print a blank line before
and after the title string for layout purposes The
main ROM title string 1s the one being printed out The
end of this 1s located by testing for the terminating
zero byte Note that this should not be printed 1itself
and an exit should be performed once 1t has been

1dentified Program 4T puts this simple *HELP
implementation 1into action Save the program under the
filename 'HELPI' You can see the machine code

described above 1n 1lines 278 to 438 inclusive The
title string and terminating byte are in lines 288-224

One very good reason for including a *HELP routine 1n
your software 1s to aid debugging By 1ssuing the
command 1t 1s i1mmediately evident whether your sideways
software 1s present If you have a working *HELP
service routine and 1t wi1ill not respond then there's
more likely to be a bug 1in your software - or perhaps
you've forgotten to load 1t 1nto sideways RAM
correctly (I've made that error on many an occasion!')

If you type *HELP you wi1ill notice that all of the
resident software 1n the Master print out a version
number as well as 1ts title strang This can be
important when you wish to see whether you are using
the latest version of your firmware and 1S not
difficult to do It simply 1nvolves 1inserting the ASCII
version string in the correct position (after the ASCII
title string) and terminating 1t with a zero byte Once
the service coding has printed out the title string, it
goes around once agaln to print the version number
This could be done by placing another praint loop at the
end of the ‘'helploop' routine, but 1t's 1inefficient
and by rewraiting the 'help' routine slightly a single
'helploop' can be used

help
JSR osnewl print new line
LDX #255 start index

print title string
print version string
print new line

and return

JSR helploop
JSR helploop
JSR osnewl
RTS

PP PP

Three new lines are needed to 1nsert a version string,
directly after the title string terminating byte

version
EQUS " I gg°
EQUB 4

You can use program 4 I as a base to work on If you

The Help Service 35

insert and change the relevant lines, then RENUMBER the
program, you should arrive at listing 4 2 Save this as
'HELP2' Once this has been RUN and 1initialised, typing
*HELP should give

Help Test ROM 1 ##

near the bottom of your *HELP list

Obviously 1t will help when debugging 1f, each time a
change 1s made to the ROM coding, you simply 1ncrement
the version number by g @I, resave 1t and make a note
1n a safe place detailing the change

Extended *HELP (Service Call 9)

Type *HELP again The resulting list on a Master I28
will look like this

*HELP

0S 3 28
MOS

TERMINAL 1 28
VIEW B3 @

Advanced DFS I 58
ADFS

EDIT 4

ViewSheet BI £

DFS 2 28
DFS
SRAM 1 @@

Some of the help strings have another line of
information set below them, i1ndented slightly For
example

0s 3 24
MOS

This shows that an extended help facility 1s provided
By typing *HELP followed by a space and the word on the
next line we can gain more 1information, normally a list

36 The Help Service

of the commands provided by that particular ROM Typilng
*HELP MOS gives

0s 3 28

CAT ADFS APPEND BASIC
BUILD CLOSE CONFIGURE CODE
CREATE DUMP DELETE EXEC
EX FX GOIO GO
HELP INFO IGNORE INSERT
KEY LOAD LIST LINE
LIBFS MOTOR MOVE OPT
PRINT RUN REMOVE ROM
ROMS SAVE SHADOW SHOW
SHUT SPOOL SPOOLON STATUS
TAPE TV TIME TYPE
UNPLUG X

Adding this facility to our own *HELP 1s a two-stage
affair First we need to print out the extra item(s) of
information below the title string when service call 9
1s processed Second, we need to be able to distinguish
between a straight *HELP and an extended *HELP The
first part 1s to just extend the printing routine For
example, suppose we wish to print out

Help Test ROM I @g
Commands

The coding for this would simply become

JSR help \ print title string and version
LDX #255 \ start X
details
INX \ 1ncrement 1index
LDA command,X \ get byte
BEQ donecom \ finish 1f 1t 1s zero
JSR osasci \ print 1t
BRA detalls \ do next byte
JSR osnewl \ print new line
RTS \ return
command
EQUS Commands"
EQUB #

The ‘'help' routine 1s as 1listed 1n the previous
program Checking for extended help 1s a two-stage
affair First we need to see 1f there 1s a command
after the *HELP or not If there 1s, we test to see 1if
1t's ours, 1e 'COMMAND'

Testing for the presence of an extra command involves

The Help Service 37

looking for a return character (ASCII I3 or &@D) If
there 1is one, the command 1s a straight *HELP 1f not,
there 1s an extended *HELP command present

The next question 1s how do we go about locating the
presence of a return® The answer lies 1n memory
locations &F2 and &F3 These two bytes, which I have
termed 'comline', contain the address of the first
non-space character after the help when combined with
the Y register using 1indirect 1indexed addressing In
other words the code

LDA (comline),Y

will load either a return character or the first letter
of the extended help into the accumulator If the
character 1s not a return, we need to test each
character from here against a copy of our ocwn This 1s
done by 1incrementing Y and comparing 1t with a copy of
the command using the X register, as in the following
example

LDA (comline),Y \ get byte after *HELP
CMP #I3 \ 1s 1t return?
BEQ out \ yes to return
LDX #&FF \ 1nitialise X 1ndex
DEY \ decrement Y index
agazin
INX \ 1increment X 1index
INY \ 1increment Y 1index
LDA (comline),Y \ get byte
AND #&DF \ force to upper case
CMP com,X \ compare agalnst table
BEQ agaln \ 1f same do again
LDA com,X \ get unlike byte from table
CMP #&FE \ 1s 1t end marker flag>
BEQ mlne \ yes go to print routine
RTS
com
EQUS "COMMANDS"
EQUB &FE

The first two i1nstructions test for a return character
- 1f this 1s encountered then a branch to an RTS 1s
made The X register 1is set to &FF and the Y regaister
decremented to make 1t point to the character before
the start of the extended help The label 'again' marks
the main loop Both 1ndex registers are incremented to
make them point at the fairst character 1in the extended
help and 'com' table The first byte 1s extracted from
after the *HELP Using &DF this byte 1s then forced

38 The Help Service

into an upper case, or capital, character (see note at
end of chapter) This 1s 1important as the protocols
allow us to enter

*HELP COMMANDS
*HELP commands
*HELP CoMmAnDs

or any such combination Forcing the byte to upper case
allows us simply to test 1t against a table of upper
case characters starting at 'com' 1If the bytes are the
same the loop 1s repeated until an unlike character 1s
encountered I have marked the end of the 'com' string
with a particular byte &FE This can then be tested
for 1If 1t 1s indeed &FE then we have identified the
string as COMMANDS and the relevant extra details can
be printed out If the unlike byte 1s not an &FE then
this 1s not our extended help and an RTS can be made

Or can 1t? The trouble now 1s that we have destroyed
the contents of all three index registers, so when the
MOS passes this call onto the next ROM some very
confusing things could happen So, to avoid this, on
entering the service coding push all three registers
onto the hardware stack, 1e

PHA - push accumulator
PHX - push X
PHY - push ¥

and restore them prior to returning, 1e

PLY - pull Y
PLX - pull X
PLA - pull accumulator

Listing 4 3 puts all this 1into operation Once ROUN,
type *HELP, then type *HELP COMMANDS This will respond
with

Help Test ROM I gg
COMPRESS
EXPAND

Where COMPRESS and EXPAND might be two commands
implemented by our ROM If you look through the listing
you can see the i1mportant new sections of code

Lines 34§ to 368 - save registers
Lines 378 to 388 - test for return
Line 398 - branch to check 1f extended *HELP

The Help Service 39

Lines 4f8 to 549
Lines 528 to 64§
Lines 658 to 748
Lines 720 to 784
Lines 8@% to 87§ printing routine

Lines 898 to 9648 print extended help information
Lines 978 to I@2@ - restore and return

Lines If3@ to Il4f - extended help details

print *HELP message

check for COMMANDS

restore registers and return
print *HELP messages

Interactive Help (Service Call 24)

Once the MOS has polled all ROMs with service call 9 1t
then polls them with service call 24 This allows your
ROM to take up and provide any more help information
required This will generally be an 'interactive help'
and the exact nature of the help may well depend on
answers to questions that are prompted by the ROM How
and what you do with this service call, 1f anything at
all, 1s up to you One example 1s seen on Econet
network machines fitted with the Advanced Network
Filing System (ANFS) When this service call 1s 1issued
the ANFS will look for a file called 'HELP on the
fileserver You could implement this from tape or disc
or even load in routines from the ROM 1itself

Program 4 4 shows how the service call can be trapped
to see 1f the user wished further 1information on
imaginary commands within the Help Test ROM 1In fact 1t
replaces the extended help detailed above

Save the listing under the filename 'HELP4' After
running and 1nitialising the ROM, type *HELP After the
standard help messages the following 1line will be
printed on the screen

Do you wish more help? (Y/N)
Pressing the Y key will display

The following commands are availlable
with the Master ROM
COMPRESS ~ compacts a graphics screen
EXPAND - unpacks a graphics screen

Pressing any key other than Y will cause the routine to
ex1t

Masking

In a few i1nstances above we used the byte &DF with the
AND command to force an ASCII character to 1ts upper
case component Let's examine how this works Consider

ASR-D

44 The Help Service

the ASCII and binary representation of the letters B
and b

&42
&62

pIpp pAIA
IIP PATH

The only difference between these two values at bit
level 1s that bit 5 1s either set or clear Therefore
by toggling bit 5 we can swap the case of an ASCII
alpha character To force lower case to capital we need
to ensure that every bit in the byte 1s set to I with
the exception of bit 5 1In binary the mask 1s

ASC("B")
ASC("b")

II@I IIIT = &DF

If the accumulator holds &62 (ASC"b') and this 1s ANDed
with &DF we get

ASC"b" = PIIf @AIP
&DF = IIfI IIIT
AND = @148 PPIB = &42 or ASC "B"

The Help Service 4T

Listing 4 I Traps service call 9 to output a simple

*HELP

460

message Save as HELPI

REM Simple *HELP

REM (C) Bruce Smith June I986
REM Advanced SRAM Guide
PROCassemble

*SRWRITE 5800 +1090 8800 6

END

DEF PROCassemble
osnewl=&FFE7

FOR pass=4 TO 7 STEP 3
P$=68008 O%=&5000
(
OPT pass
EQUB M
EQUW g
JMP service

EQUB &82
EQUB offset MOD 256
EQUB I

title
EQUS Help Test ROM"
EQUB £

offset

EQUB #

EQUS "(C) Bruce Smith"
EQUB ¢4

service
CMP #9
BEQ help
RTS
\

help
JSR osnewl
LDX #&FF

helploop

INX
LDA taitle, X
BEQ done
JSR &FFE3

BRA helploop

done
JSR osnewl
RTS

]
NEXT

ENDPROC

42 The Help Service

Listing 4 2 Gives version number as well as ROM string
title Save as HELP2 Developed from listing 4 I
(HELPI)

I REM *HELP with Version No
28 REM (C) Bruce Smith June 1986
38 REM Advanced SRAM Guide

58 PROCassemble
68 *SRWRITE 5040 +100 8408 6
78 END
84 DEF PROCassemble
98 osnewl=&FFE7
Iff FOR pass=4 TO 7 STEP 3
ITP pPe=68000 O0%=&5000
28 [
I38 OPT pass
T4 EQUB £
ISg EQUW g
I68 JMP service
I78 EQUB &82
I88 EQUB offset MOD 256
I94 EQUB I
208 taitle
2IP EQUS "Help Test ROM"
228 EQUB #
238 version
248 EQUS " 1 gg"
258 EQUB #
268 offset
278 EQUB @
284 EQUS "(C) Bruce Smith"
298 EQUB g
388 service
3I4 CMP #9
328 BEQ help
338 RTS
349 \
358 help
368 JSR osnewl
378 LDX #&FF
388 JSR helploop
394 JSR helploop
48% JSR osnewl
4T@ RTS
428 \
434 helploop
448 INX
458 LDA title,X

The Help Service 43

Listing 4 2 continued

468 BEQ done

478 JSR &FFE3
488 BRA helploop
498 done

508 RTS

518 1

52 NEXT

538 ENDPROC

Listing 4 3 Adds description of ROM commands to
*HELP message Save as HELP3 This program forms the
basis of many others in this book

I REM Extended *HELP
28 REM (C) Bruce Smith June I986
36 REM Advanced SRAM Guide

58 PROCassemble
60 *SRWRITE 58008 +200 80808 6
78 END
88 DEF PROCassemble
99 osnewl=&FFE7
I88 comline=&F2
IIP FOR pass=4 TO 7 STEP 3
I20 Ps=&8000 os=&5009
I3g [
I408 OPT pass
I58 EQUB #
168 EQUW £
I78 JMP service
I88 EQUB &82
198 EQUB offset MOD 256
284 EQUB 1
2Ig tatle
22 EQUS "Help Test ROM"
238 EQUB #
248 version
258 EQUS " 1 gg"
260 EQUB #
278 offset
284 EQUB #
298 EQUS "(C) Bruce Smith
388 EQUB @
3I8 service
328 CMP #9
338 BNE nothelp
344 PHA

44

Listing 4 3 continued

358
364
378
388
394
498
419
428
43g
448
458
460
478
48p
498
508
518
528
534
548
550
568
578
584
599
600
6198
628
638
640
6540
660
678
6840
699
7848
718
728
730
748
758
768
778
788
794
808
81g
824

PHX
PHY
LDA (comline),Y
CMP #I3
BNE check
JSR help
LDx #255
detalls
INX
LDA command,X
BEQ donecommand
JSR &FFE3
BRA details
donecommand
JSR osnewl
BRA restore
\
check
LDX #255
DEY
again
INX
INY
LDA (comline),Y
AND #&DF
CMP com,X
BEQ again
LDA com,X
CMP #&FE
BEQ mine
restore
PLY
PLX
PLA
nothelp
RTS
\
help
JSR osnewl
LDX #&FF
JSR helploop
JSR helploop
JSR osnewl
RTS
\
helplonp
INX
LDA title,X

The Help Service

The Help Service

Listing 4 3 continued

830
84p
854
868
878
88g
894
984
914
924
934
948
954
964
978
984
994
1888
I818
I828
1838
1048
1458
1460
1878
14848
1894
I8
IITP
II28
II38
IT4p
II58
ITe6p
1179

BEQ done
JSR &FFE3
BRA helploop
done
RTS
mine
JSR help
LDX #255
more
INX
LDA lists,X
BMI alldone
JSR &FFE3
BRA more
alldone
PLY
PLX
PLA
LDA #4
RTS
com
EQUS " COMMANDS
EQUB &FE
command
EQUS Commands '
EQUB £
lists
EQUS "™ COMPRESS"
EQUB I3
EQUS " EXPAND"
EQUB I3
EQUB &FF
]
NEXT
ENDPROC

Listing 4 4 Extra help information can be called by
the user Save as HELP4

REM Interactive *HELP
REM (C) Bruce Smith June I986
REM Advanced SRAM Guaide

PROCassemble
*SRWRITE S@@8 +208 80p8 6
END

45

46

Listing 4 4 continued

94
188
118
128
I38
T4p
Isg
6@
178
188
198
2089
219
228
238
248
258
268
278
288
294
389
3rg
328
339
349
3549
368
378
388
394
499
419
424
438
444
459
460
478
484
498
5008
518
524
538
540
550
568

DEF PROCassemble
osnewl=&FFE7
oswrch=&FFEE
osasc1=&FFE3
osrdch=&FFEfJ

FOR pass=4 TO 7 STEP 3
PY=8000 0%=&50008
[
OPT pass

EQUB #

EQUW 4

JMP service

EQUB &82

EQUB offset MOD 256
EQUB I

title

EQUS "Help Test ROM"
EQUB #

version

EQUS ' I @@’

EQUB ¢

offset

EQUB ¢

EQUS "(C) Bruce Smith"
EQUB #

service

CMP #9

BEQ help

CMP #24

BEQ interact

RTS

\

help

JSR osnewl

LDX #&FF

JSR helploop

JSR helploop

JSR osnewl
RTS
\

helploop

INX
LDA title,X
BEQ done
JSR &FFE3
BRA helploop

done
RTS

The Help Service

The Help Service

Listing 4 4 continued

578
584
594
680
61
624
638
640
658
660
670
680
698
784
718
728
739
748
758
760
778
788
798
884
81p
824
830
848
858
86
874
8s8g
894
988
914d
928
939
9244
950
964
978
984

\
interact
LDX #255
first
INX
LDA message,X
BEQ donel
JSR oswrch
BRA first
donel
JSR osrdch
AND #&DF
CMP #ASC('Y"™)
BEQ carryon
RTS
carryon
INX
LDA message,X
JSR osascl
BPL carryon
RTS
\
message
EQUS "Do you wish more "
EQUS 'help? (Y/N)"
EQUB #
EQUB I3
EQUS "The following commands "
EQUS "are available”
EQUB I3
EQUS "within the Master ROM "
EQUB I3
EQUS " COMPRESS - compacts a "
EQUS "graphics screen
EQUB I3
EQUS " EXPAND - unpacks a "
EQUS "graphics screen"”
EQUB I3
EQUB 255
]
NEXT
ENDPROC

47

Chapter Five
Interpreters

Command Action (service call 4)

When the MOS encounters an unrecognised command 1t
1ssues service call 4 to each ROM 1n turn As with
*HELP, the vector at &F2 (comvec) 1s used with the Y
register, and contains the start address of the
unrecognised command It does not point to the asterisk
but to the first character after the asterisk If the
ROM cannot recognise the command as one of i1ts own then
1t must restore all registers to their original values
and perform a simple RTS The command 1s then offered
to the disc or net filing systems If the command 1is
recognised, the service coding should jump to the
correct routine within Once complete the registers

need not be restored, but the accumulator MUST be
loaded with g

LDA #8
before an RTS 1s performed This tells the MOS the
command has been recognised and acted upon, so 1t will
not be offered to any of the other ROMs or filing
systems

Writing the Interpreter

What 1s an interpreter? In fact, 1t 1s no different
from i1ts linguistic counterpart - a device for
1denti1fying and translating, 1n this case commands
which are strings of characters 1n a certain order

The ROM 1image that we will construct in this chapter

Interpreters 49

will contain three commands, although only two will be
of immediate practical use The commands will be

*ITALICS - does nothing 1initially
*MODERN - selects a 'modern' style character font
*STANDARD - reselects the normal character font

*MODERN then will redefine the shape of the letters 1in
the Master's character font so they 1look 'modern' when
printed on the screen (except 1in mode 7) Figure 5 I
shows the appearance of the font I will use program
4 3 from Chapter 4 (saved as 'HELP3'), as the basis of
the 1nterpreter

This 15 the Modern char

434G
A

reErR (), -, /B123
4T IKLMEOPRRSTUbMLFZE
parstuswzgzi.}

Figure 5 1 Character style selected by *MODERN

We trap service call 4 by comparing and branching

CMP #4
BEQ unrecognised

Identifying the command 1s performed 1n a similar way
to trapping an extended *HELP command name It 1involves
comparing the unrecognised command against a table of
commands - the command table In BASIC this would be

INPUT 'Command" com$

addrs=g

REPEAT

addr$=addrs+1

READ table$

UNTIL table$=com$ OR table$="END"
ON addr$ GOTO 5@4, 684, 788, 80P
DATA "ITALICS"

DATA "MODERN"

DATA "STANDARD"

DATA 'END"

The command 1s found and compared against the command
table, until 1t 1s recognised or the end of the table
1s reached If the command 1s 1dentified then 1its
address must also be found - here a variable 1s used to

58 Interpreters

hold it which 1s 1incremented each time through the
REPEAT UNTIL loop

Translating this into code 1s not too hard but you
w1ll need to study the following assembler carefully

unrecognised
LDX #255 start command table index
DEY decrement comvec 1index
PHY keep a copy on the stack
1denta1fy
INX increment X index
INY increment Y index

LDA (comvec),Y get byte from unrecognised
command

force to upper case

compare against command table

1f 1t compares try next byte

AND #&DF
CMP comtable,X
BEQ 1dentify

PR AP APV S A A 4y

This code 1s very similar to the extended help facility
in chapter 4 Now consider the command table 1tself

comtable

EQUS "MODERN"

EQUB modern DIV 256
EQUB modern MOD 256
EQUS ITALICS"
EQUB 1italics DIV 256
EQUB 1talics MOD 256
EQUS "STaANDARD

EQUB standard DIV 256
EQUB standard MOD 256
EQUB &FF

This consists of the ASCII string of each command name,
minus the asterisk, followed by the address, high byte
first, of each command The command table 1is terminated
by &FF Figure 5 2 shows this diagramatically

MODERN

modern high byte
modern low byte
ITALICS

italics high byte
1talics low byte
STANDARD

standard high byte
standard low byte
&FF

Figure 5 2 Construction of command table

Interpreters 5I

As the execution address of any command 1s going to be
within a ROM, 1t will have a high byte of &8§ or
higher This 1s useful as 1t means that 1t will set the
negative flag when loaded 1nto the accumulator

Carrying on with the code from 'identify' above gives

LDA comtable,X \ get unlike byte from command
\ table
BMI address \ 1f negative must be address

Of course 1t may not be an address 1t may simply be
that comvec and comtable are not alike Therefore we
need a means of moving onto the start of the next
command 1n the command table The way to do this 1s by
finding the first address byte and incrementing the X
register by one

moveon

INX \ 1increment X

LDA comtable,X \ get next byte from table

BPL moveon \ 1f not negative do again

INX \ 1ncrease X by one

PLY \ restore original value of Y

PHY \ save once again for next time
\

JMP 1dentify and repeat 1identifying loop

The routine 'address' needs to test to see 1f the
negative byte 1s in fact &FF, the end of command table
marker If 1t 1s not then the accumulator will contain
the high byte of the command's execution address This
along with the low byte can be placed 1nto a zero page
vector and an 1indirect Jump to the interpreted
command's address performed

address

CMP #&FF \ 1s 1t top of command table?
BNE notFF \ branch 1f not

PLY \ else balance stack

BRA alldone \ and branch to return routine
notFF

STA &39 \ else save high byte

INX \ 1ncrement X

LDA comtable,X \ and get low byte

STA &38 \ and save

JMP (&38) \ and go to 1t!

I have made a habit of first testing 1interpreters
before actually adding the code that makes each
individual command To do this I give them all the same
execution address and then get the commands to do

52 Interpreters

something obvious such as make a beep on the speaker,
or print a letter on the screen

modern
1talics
standard
LDA #7
JMP osasci

Once the command has been executed, the stack, which
was previously pushed with the register contents, must
be pulled and the accumulator loaded with J]

found
PLY
PLY
PLX
PLA
LDA #8
RTS

The extra PLY 1s to balance the extra PHY made at the
start of 'unrecognised' and subsequently in 'moveon'
Listing 5 I puts all this into play Enter this and
save 1t under the filename 'INTERP' (We'll be using
this again later) RUN the program and 1initialise the

ROM Now try typing any of the commands and you should
get a beep on the speaker

Debugging Interpreters

As the programs herein all contain checksum calculators
1t should be easy for you to get programs running
correctly before they are transferred 1into si1deways
RAM The trouble starts when you write your own - no
checksums Debugging ROM 1images can be infuriating but
1s ultimately rewarding' So I'1ll provide some useful
pointers

Without doubt the most common cause of programs
crashing i1s bad stack management This shows up 1in two

main ways First, when you execute the command you get
a message something like

at line 238

on the screen Of course the line number will probably
be different and vary The second manifestation 1s that
you execute the command and nothing happens other than
a couple of returns are echoed to the screen 1In both
cases check your 1listing and ensure every push 1s

Interpreters 53

balanced by a pull I often keep using pushes 1instead
of oulls'

Always test your commands fully They may only crash
after a bit of continuous use I do this by putting
them 1nside a REPEAT UNTIL loop To test the above
interpreter I used

T# REPEAT

2@ *MODERN
38 *ITALICS
48 *STANDARD
58 UNTIL #

Once you set this running you'll get a continuous beep
And leave it running for a few minutes - have a coffee
- 1f 1t's sti1ll making a noise when you get back -
you're okay!'

If the command executes but then accesses the disc or
filing system then you have forgotten to do a LDA ##
before the RTS

If all else fails you'll need the help of a machine
code monitor program, such as BBC Soft's Monitor ROM
This wi1ll enable you to steo through the program and
see (hopefully) just where 1it's going wrong

Writing Commands

There are three stages 1in writing commands for use 1n
si1deways format

Stage I Write 1t in BASIC where possible! This has
the advantage of being quick and allows you to
calculate tabs for screen printing etc, with the
minimum of fuss

Stage 2 Convert it to machine code, but get 1t
running 1in normal memory first Make sure you don't use
addresses within the code 1tself to store things (you
won't be able to do so once the program 1s 1n s1deways
RAM'!') and make 1t as self-contained and compact as
possible

Stage 3 add 1t to your sideways RAM assembly
listing

Now let's apply these rules to our ROM 1mage The
first steo 1s to design the modern character font with
a suirtable program Or pencil and paper Once this 1s
done, all the characters can be placed 1nto a BASIC
program 1n the form of VDU23 statements When run this
should, 1f correct, redefine the character font to take
a modern appearance

The *STANDARD command can now be tested To return to
the standard font, the character font needs to be

54 Interpreters

imploded using *FX24,8 To convert all this to machine
code, we need to create a 1loop to read in data 1tems
and send them to the VDU output stream using OSWRCH
The total length of data can be optimised by including
the 23 and ASCII character code inside the printing
loop

modern

LDA #data DIV 256 \ get high byte of data
STA &71 \ save 1t

LDA #data DIV 256 \ get low byte of data

STA &74 \ save 1t

LDA #33 \ start character 1is ASCIT 33
STA &72 \ save 1t

outerloop

LDY #8

LDX #8

LDA #23

JSR oswrch \ do VDU23

LDA &72 \ get character code

JSR oswrch \ send 1t to VDU stream
innerloop

LDA (&78),Y \ get data byte

JSR oswrch \ send it to VDU stream
INC &78 \ 1ncrement low byte address
BEQ nohi \ branch 1f not zero

INC &71 \ else increment high byte
nohi

INX \ 1increment counter

CPX #8 \ 8 bytes sent yet?

BNE innerloop \ branch 1i1f not

LDA &72 \ get character

INC A \ 1increment by one

STA &72 \ save result

CMP #127 \ all done yet>

BNE outerloop \ repeat until all done

The coding for *STANDARD 1s easy, and takes just a few
lines of assembler

standard
LDA #28
LDX #8
LDY ##8
JSR osbyte \ do *FX2¢,8

Listing 5 2 combines both of these segments Note that
line numbering starts at 2@@f This 1s because we can
use listing 5 I ('INTERP') as the basis, and cut down
on typing So enter this and *SPOOL it to a file Use

Interpreters 55

the filename SCOMMS - S for Spool, COMMS for Commands
In case you've forgotten, type 1n

*SPOOL SCOMMS
LIST
*SPOOL

The program will not run as it stands so don't try!' Now
reload 'INTERP' and make these additions and changes

Add line 55 PROCread

Change line 78 *SRWRITE 5488 +588 8088 6
Add laine II5 oswrch=&FFEE

Delete lines I798, I8gf8 and 1828

Add line I9I5 RTS

Delete lines 1928 to 2048 inclusive
Now *EXEC 1n the spooled listing
*EXEC SCOMMS

Save the program under the filename 'MODERN' RUN and
initialise as normal Then enter mode 6 and type

*MODERN
OLD
LIST

to see the effect *STANDARD makes everthing normal
again *ITALICS will still give a beep, though you can
of course extend 1t to give you 1italic text (The disc
which contains all the 1listings 1n this book also has
the VDU codes for this 1n case you don't feel 1like
designing your own)

Gaining Workspace

Your ROMs will at times require workspace -- areas of
memory in which they can place information You need to
choose this with care as it could be the space used by
other ROMs The *MODERN code used three locations 1in
zero page, &78, &7I and &72 These are of course in the
user area and are free for use, but 1t 1s not good
practice to go around changing locations that are meant
to be free and available to normal programs One way to
overcome this 1s to save the contents of memory
somewhere before using 1t and then restore 1t to 1its
original value before returning I tend to to save
memory from &78 to &8F on the very bottom of the
hardware stack from &Ifg The stack pointer should

ASR-E

56 Interpreters

never get this 1low -- I'd love to see a program that
does 1t! The two routines to push and pull are

pushzero
LDX #255 \ 1nitialise 1index
loop
INX \ 1ncrement 1index
LDA &78,X \ get byte
STA &144,X \ and save 1t
CPX #IF \ all done?
BNE loop \ no, continue
RTS \ and return
pullzero
LDX #255 \ 1initialise index
loop
INX \ 1ncrement 1ndex
LDA &140,X \ get byte
STA &764,X \ and save 1t
CPX #IF \ all done?
BNE loop \ no, continue
RTS \ and return

I tend to use both as subroutine calls, 1e using JSR
As a rule, call pushzero after you push the registers
and pullzero before you pull them

Interpreters 57

Listing 5 I Test interpreter (save as INTERP)

428
439
4498
458
460
478
484

REM Test Interpreter
REM (C) Bruce Smith June I986
REM Advanced SRAM Guide

PROCassemble
PROCchecksum

*SRWRITE 5880 +2080 8¢998 6
END

DEF PROCassemble
osnewl=&FFE7
osasc1=&FFE3
comline=&F2
FOR pass=4 TO 7 STEP 3
P%=&8008 O%=&5000
(
OPT pass
EQUB #
EQUW £
JMP service
EQUB &82
EQUB offset MOD 256
EQUB I
title
EQUS "Test Interpreter ROM"
EQUB #
version
EQUS " I gg"
EQUB #
offset
EQUB @
EQUS "(C) Bruce Smith"
EQUB g
service
PHA
PHX
PHY
CMP #9
BNE nothelp
LDA (comline),Y
CMP #I3
BNE check
JSR help
LDX #255
details
INX
LDA command,X
BEQ donecommand

’

58

Listing 5 I continued

494
589
5I@
520
539
548
558
560
578
584
598
640
619
628
638
640
658
664
679
688
698
788
718
7280
738
744
758
760
778
788
798
840
8Ip
824
830
84p
854
860
874
884
894
908
914
924
934
948
9598
96 4

JSR &FFE3
BRA detalls
donecommand
JSR osnewl
BRA restore
\

check

LDX #255
DEY

again

INX

INY

LDA (comline),Y

AND #&DF
CMP com,X
BEQ again
LDA com,X
CMP #&FE
BEQ mine
restore
PLY

PLX

PLA

RTS

\
nothelp

CMP #4

BEQ unrecognised

BRA alldone
\

help

JSR osnewl
LDX #&FF

JSR helploop
JSR helploop
JSR osnewl
RTS
\

helploop
INX
LDA title,X
BEQ done
JSR &FFE3
BRA helploop
done
RTS
\

mine

Interpreters

Interpreters

Listing 5 I continued

974
98¢
994
T80
1814
1924
1838
Ig4p

JSR help
LDX #255
more

INX

LDA lists,X
BMI alldone
JSR &FFE3
BRA more

I858 \

1g6gd
18798
Ig8g
1899
1149
ITIg
1129
1138
1149
II58
1168
1178
11889
II9g8
1209
1219
1228
1238
1248
1258
1269
1278
I284
1299
1348
1319
1328
T334
13489
1358
13648
1378
1388
1394
T449
T419
T428
1438
1448

alldone
PLY
PLX
PLA
RTS
\
com
EQUS "COMMANDS"
EQUB &FE
command
EQUS' Commands"
EQUB £
lists
EQUS "™ MODERN"
EQUB I3
EQUS ™ ITALICS"
EQUB I3
EQUS " STANDARD"
EQUB I3
EQUB &FF
\
unrecognised
LDX #255
DEY
PHY
i1dentaify
INX
INY
LDA (comline),Y
AND #&DF
CMP comtable,X
BEQ 1identaify
LDA comtable,X
BMI address
\
moveon
INX
LDA comtable,X
BPL moveon

59

60

Listing 5 I continued

I458 BNE notend

T468 PLY

I478 BRA alldone

T48g8 \

T498 notend

IS@8 INX

ISIg PLY

I528 PHY

I538 JMP i1dentify

1549 \

I558 address

IS68 CMP #&FF

I570 BNE notFF

1584 PLY

I598 BRA alldone

I648 notFF

I6Ig \

I620 sTA &39

I634 INX

I648 LDA comtable,X

1650 STA &38

I668 JMP (&38)

1678 \

1680 comtable

1694 EQUS "MODERN"

I788 EQUB modern DIV 256
I7I8 EQUB modern MOD 256
I724 EQUS "ITALICS"

I738 EQUB italics DIV 256
I748 EQUB italics MOD 256
I754 EQUS "STANDARD"
I768 EQUB standard DIV 256
I778 EQUB standard MOD 256
1788 EQUB &FF

I798 \

I8488 modern

I8I@ 1talics

I828 standard

I838 LDA #7

1844 JSR osasca

I854 \

I868 found

I878 PLY

I888 PLY

1894 PLX

1944 PLA

I9I8 LDA #§

1924 RTS

Interpreters

Interpreters 6I

Listing 5 I continued

1938)

1948 NEXT

1958 ENDPROC

1964

1978 DEF PROCchecksum
1988 X%=g0

T994 FOR N%=&5888 TO &5I36
2008 X¥=X%+?N%

2818 NEXT

2028 IF X%=359I5 THEN ENDPROC

2838 vDU 7

2048 PRINT"Assembler error - re check!'”
2p58 STOP

Listing 5 2 Font command code (these lines should be

saved as SCOMMS and SPOOLed onto listing 5 I, see text
for details)

55 PROCread
2888 standard
20T8 LDA #28
2028 LDX #8
2038 LDY #8
20848 ISR &FFF4
2858 JMP found
2868 \

2878 modern
2088 LDA #data DIV 256
2098 STA &71
2I1p8 LDA #data MOD 256
218 STA &78
2128 LDA #33
2138 STA &72
2I48 outerloop
2158 LDY #8

2168 LDX #£

2178 LDA #23
2188 JSR oswrch
2198 LDA &72
2288 JSR oswrch
2218 1innerloop
222p LDA (&78),Y
2238 JSR oswrch
2240 INC &78
2258 BNE noh1i
2268 INC &7I
2278 noha

62

Listing 5

2288
22949
2348
2318
2328
2334
2348
2358
2360
23748
2389
2398
2498
2418
2428
2438
2448
2458
2468
2478
2488
2498
2504
2519
2524
2538
2549
2558
2568
2578
2588
2598
2608
2618
2624
2638
2648
2658
2660
2678
26848
2694
2799
2718
2728
2738
2748
2758

INX
CPX
BNE
LDA
INC
STA
CMP
BNE
\
JMP
\
dat
]
NEXT
ENDP

DEF

REST
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

2 continued

#8
innerloop
&72

A

&72

#I27
outerloop

found

a

ROC

PROCread
ORE
12,12,12,12,12,4,12,0
46,46 ,46,9,9,8,4,9
23,23,63,23,63,23,23,8
6,31,44,31,3,63,I2,8
48,39,6,12,24,39,3,8
28,46,46,28,45,39,27,8
6,I2’24'¢lﬂlglﬂ1g
6,12,24,24,24,12,6,8
24,12,6,6,6,12,24,0
9,12,63,306,63,I2,0,8
g,12,12,63,12,12,0,9
ﬂ,ﬂ,ﬂ,g:ﬂrI21I2124
ﬂlﬂ'ﬂ163lﬂlﬂlﬂlﬂ
g,8,8,8,8,12,12,8
9,3,6,12,24,48,9,8
36,39,47,63,55,39,30,8
r2,28,12,12,12,12,63,0
38,39,3,6,12,24,63,8
36,39,3,14,3,39,34,8
6,14,390,46,63,6,6,0
63,48,62,3,3,39,38,8
I4,24,48,62,39,39,30,0
63,3,6,12,24,24,24,9
36,39,39,36,39,39,308,08
38,39,39,31,3,6,28,8
glﬂrrzlrzlﬂlIzlrzlﬂ
¢,8,12,12,8,12,12,24
6,12,24,48,24,12,6,8
$,8,63,8,63,8,0,8
24,12,6,3,6,12,24,8

-

Interpreters

Interpreters

Listing 5 2 continued

2768
2778
2789
2798
28048
2818

3I1P
3129
3138
3rag
3158
3168
3178
3188
31948
3208
3218
3228
3238

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

34,39,6,12,12,4,12,0
38,39,47,43,47,48,38,4
36,39,39,63,39,39,39,4
62,39,39,62,39,39,62,8
39,39,48,48,48,39,34,9
60,46,39,39,39,46,60,0
63,48,48,62,48,48,63,4
63,48,48,62,48,48,48,0
36,39,48,47,39,39,34,8
39,39,39,63,39,39,39,8
63,12,12,12,12,12,63,8
31,6,6,6,6,46,28,4
39,46,64,56,68,46,39,9
48,48,48,48,48,48,63,4
35,55,63,43,43,35,35,4
39,39,55,63,47,39,39,48
39,39,39,39,39,39,34,49
62,39,39,62,48,48,48,8
36,39,39,39,43,46,23,8
62,39,39,62,46,39,39,8
34,39,48,3p,3,39,30,8
63,12,12,12,12,12,12,8
39,39,39,39,39,39,34,8
39,39,39,39,39,38,I2,9
35,35,43,43,63,55,35,8
39,39,34,12,36,39,39,8
39,39,39,34,12,12,12,8
63,3,6,12,24,48,63,8
62,48,48,48,48,48,62,0
¢r48124rI2l613rﬂ1ﬂ
31,3,3,3,3,3,31,9
12,38,39,3,8,8,8,9
9,8,8,8,8,8,8,127
T4,23,24,62,24,24,63,8
8,08,39,3,31,39,31,8
48,48,62,39,39,39,62,4
$,8,38,39,48,39,38,8
3,3,31,39,39,39,31,8
9,8,38,39,63,48,38,8
14,24,24,62,24,24,24,8
#,4,31,39,39,31,3,38
48,48,62,39,39,39,39,4
12,04,28,12,12,12,38,8
12,¢,28,12,12,12,12,56
48,48,39,46,60,46,39,0
28,12,12,12,12,12,38,48
#,9,23,63,43,43,35,8
#,8,62,39,39,39,39,0

63

64 Interpreters

Listing 5 2 continued

3244 paTA #,9,398,39,39,39,34,0
3258 paTA 9,94,62,39,39,62,48,48
3264 paTA @4,94,31,39,39,31,3,3
3274 DATA 9,0,46,55,48,48,48,8
3284 DATA #,8,31,48,30,3,62,0
3298 DATA 24,24,62,24,24,24,14,8
3394 paTa 9,#4,39,39,39,39,3I,8
3318 paTa §,98,39,39,39,308,12,8
3324 paTa #,8,35,43,43,63,23,8
3338 DATA #,0,39,36,12,38,39,8
3348 para 9,4,39,39,39,31,3,38
33584 DATA #,£,63,6,12,24,63,8
3364 pDATA 6,12,12,56,12,I2,6,8
3379 DATA I2,12,12,4,12,12,I2,8
3380 DATA 24,12,12,7,12,12,24,8
3399 DATA 17,43,7,8,8,9,8,8
3449

3418 C3=p

3428 FOR R%=8 TO 751

3438 READ D%

3448 R%$?0%=D%

3450 C3=C%+D%

3460 NEXT

3478 IF C%=18388 THEN ENDPROC
3488 vDU 7

3498 PRINT "Error 1n data

3588 STOP

3519

3528 DEF PROCchecksum

3538 Nu=§

3548 FOR R%=&5888 TO &5I78

3550 N%=N%+°R%

3568 NEXT

3578 IF N%=44796 THEN ENDPROC
3584 vDU 7

3598 PRINT "Assembler error
3688 stop

Chapter Six
OSBYTE and OSWORD

Service calls 7 and 8 are provided to allow you to
implement your own OSBYTE and OSWORD calls This 1s a
great way to add clever little routines to your Master,
particularly those that you use regularly

For instance, I have over the past year or so been
adding to a ROM 1mage The ROM 1s a conversion ROM It
provides an 1ncreasing number of handy machine code
conversion routines, such as hex to decimal, floating
point and mathematical routines Rather than Kkeep
including them i1n each machine code program I write, I
just access an OSBYTE or OSWORD call The one major
disadvantage here 1s that without the conversion ROM
present the machine code won't work, and 1n many cases
I have to add the routines proper at a later stage -
but 1t does allow me to get on and get the task 1in hand
working correctly first without having to write long
assembler programs to do 1t

I have presented a couple of the routines here to
show how easy OSBYTE and OSWORD calls are to implement

Before starting you will need to find an unused
OSBYTE and OSWORD number to use If you are hoping to
sell your firmware commercially then you can ask Acorn
Computers to assign you a number officially Once this
has been done you are the bona fida user of that number
and no other commercial software should clash of
course 1t 1s unlikely that Acorn will give you a number
unless 1t 1s for commercial purposes, so Jjust choose
one that 1s not used by the Master or any of the
software running on it In the examples below I use &64
and &65

when the MOS encounters a new OSBYTE or OSWORD call

66 OSBYTE and OSWORD

1t 1ssues service call 7 or 8 respectively Before
doing this however 1t will place the contents of the
accumulator, X and Y registers 1n zero page locations,
thus

&EF accumulator
&Ff@ X register
&FI Y register

It 1s 1mportant to know this as both OSBYTE and OSWORD
calls use these registers to pass information

The first thing your polling routine should do 1s to
extract the contents of &EF and see 1if the call 1i1s for
you If 1t 1s then the index register contents can be
extracted from &Ff@ and &FI 1In the case of an OSWORD
call these two locations can be used as a vector to an
information parameter block On completion any
information that 1s to be returned should be placed
into the relevant registers and copied to the
respective zero page locations The accumulator should
be set to zero to tell the MOS that the service call
has been successful

OSBYTE

An OSBYTE call 1s made by placing the call number 1in
the accumulator and any further information required by
the call 1n the X and Y registers On return from the
call the 1index registers will contain any results or
information

Listing 6 I implements OSBYTE call &64, or *FXI@P 1f
you prefer It will convert the number passed to 1t 1in
the X register to 1its ASCII counterpart with the
character codes returned in the X and Y registers, high
and low bytes respectively For example, 1f X contained
255 then on return X and Y would contain &46, the ASCII
code for 'F', 1e 255=&FF The OSBYTE extraction code
can be found from line Il6g

osbyte

PHA \ push all registers
PHX
PHY
LDA &EF \ get call number
CMP #&64 \ 1s 1t us?

BEQ yes64 \ yes, branch
JMP restore \ else return
yes64

LDA &Fg \ get X register
PHA \ save 1t on stack

OSBYTE and OSWORD 67

LSR A \ move high nibble to low nibble
LSR A

LSR A

LSR A

JSR convert \ perform conversion

STA &Fg \ save high character in 'X’

PLA \ retrieve byte

JSR convert \ perform conversion on low nibble
STA &FI \ save low character in 'Y’

PLY \ balance stack

PLX

PLA

LDY &FI \ make sure registers match

LDX &Fg

LDA #f# \ signal to MOS

RTS \ and return

Listing 6 I 1s shown below 1in full If you have listing
4 3 from Chapter 4 ('HELP3') available then you can use
this as the base and make the following additions and
alterations

Change Lines 1@8,2208,T040,10870,11088,1128
Add lines 55 PROCchecksum
3IT CMP #7
3I2 BNE notseven
3I3 JMP osbyte
3I4 notseven
Delete lines II58 onwards
Add lines ITS5@ to I658 1nclusive

Listing 6 2 tests the new OSBYTE call provided by
listing 6 I and provides a tutorial by showing how
easy 1t 1s to use

OSWORD

OSWORD calls are performed by placing the call number
into the accumulator and then seeding an address 1into
the 1ndex registers before calling &FFFI The address
1s 1n fact that of a parameter block anywhere within
RAM that contains further information for the call to
manipulate Information 1s passed back to the calling
program via the parameter block As with OSBYTE,
locations &EF, &Ff and &FI contain the register
contents

If you box clever then a single OSWORD number can
meet all your needs as the listing below 1llustrates
You can use the first byte 1n the parameter block to
contaln a number which your OSWORD routine looks at

68 OSBYTE and OSWORD

before deciding what action to take In this way a
single OSWORD number, &65 1n this case, can be used to
call up to 256 different functions, simply by placing a
number from # to 255 in the first parameter block byte

If this 1s not enough, use the second byte as well

that'll give you over 64,000 possible functions!' I
don't quite go that far, but two functions are possible
here Placing a I or I29 in the first byte of the

parameter block will allow you to use the following two
routines

I - Convert two bytes 1into a four-byte hex ASCII
string

I29 - As above but print 1t as well

Before you write your OSWORD call, work out how the

parameter block will be constructed OSWORD &65
requires this set-up

Address Function
XY+g action byte
XY+I low byte to be converted
XY+2 high byte to be converted
XY+3 high order ASCII character
XY+4 ASCII character
XY+6 ASCII character
XY+7 low order ASCII character

For example, 1f XY+§ contained T and XY+I=80 and

XY+2=&FF, then on return from the call the parameter
block would look like this

Address Contents
XY+g@ I

XY+1I &8f
XY+2 &FF
XY+3 ASC"F"
XY+4 ASC'F’
XY+6 AsSC"8g"
XY+7 ascn g"

As with OSBYTE, the OSWORD coding 1s not difficult to
follow

osword

PHA \ save registers
PHX

PHY

LDA #&65 \ 1s 1t ours-?

BEQ yesé65 \ branch 1f so

OSBYTE

JMP

yes65

LDY

LDA(&F@),Y

AND #&7F

CcMP
BEQ
JMP

hexasci

INY
LDA

PHA
INY
LDA
JSR

PLA
JSR

LDY
LDA
BMI
JMP

You can

the number 1tself I'm interested 1in,

and OSWORD

restore

#9

#I
hexasci
restore

(&F0),Y

(&FQ),Y

hexconvert

hexconvert

#8
(&F@),Y
display

alldone

H SIS S s

now see why

1t has the top bit set

= &8I = IppP #PPI

This means that any of
the same piece of code
parameter block layout

I29

display

LDY

praint

LDA
JSR
INY
CPY
BNE
JMP

Both of

before 1f you have listing 4 3 ('HELP3')

#3

(&F@),Y
osascl

#7
print
alldone

VA A

these routines

else return

clear index

get action byte from parameter
block

mask off high (printing) bat
1s 1t a I?

continue 1f so

else return

increment 1index

get low byte from parameter
block

save 1t on stack

increment index

get high byte from parameter
block

convert and save 1n parameter
block

get low byte

convert and save 1n parameter
block

clear i1ndex again

get action byte again

1f negative then print ASCII
string

else return

chose I29 for prainting It's n

your routines can be printed

69

ot

but the fact that

by

1f they conform to the same

The printing routine 1is

first byte to print 1s at XY+3

get ASCII character
print 1t

bump index

four bytes done yet?
branch 1f not

else finish

can be seen 1n listing 6 3

As

handy you can

78

OSBYTE and OSWORD

use this as a base for the OSWORD listing by making the

following changes

Change lines
aAdd lines 55
3IT
312
313
314
II33
IT34

IIsg

Listing 6 4 puts OSWORD

Ip, 228, 194, 1878, I14P, II2f

PROCchecksum

CMP #8

BNE noteight

JMP osword
noteight

EQUS " XY+g=129
EQUB I3

to I928 inclusaive

Praint I

&65 1nto actaion

OSBYTE and OSWORD

Listing 6 I

10
24
34
40
54
55

428

ASR-F

REM Implement OSBYTE
REM (C) Bruce Smith June I986
REM Advanced SRAM Guide

PROCassemble
PROCchecksum
*SRWRITE 5800 +204 8488 6
END

DEF PROCassemble
osnewl=&FFE7
comline=&F2

FOR pass=4 TO 7 STEP 3
P3=&8004 0%=s5090
(
OPT pass

EQUB #

EQUW £

JMP service

EQUB &82

EQUB offset MOD 256
EQUB I

title
EQUS 'Osbyte Extension ROM"
EQUB #4

version

EQUS " I gg"

EQUB £

offset

EQUB #
EQUS "(C) Bruce Smith"
EQUB #

service
CMP #7
BNE notseven
JMP osbyte

notseven
CMP #9

BNE nothelp

PHA
PHX

PHY

LDA (comline),Y
CMP #I3

BNE check
JSR help

LDX #255

details

Implements new OSBYTE call &64 Save as
OSBYTE Use listing 4 3 (HELP3) as the basis for this

7I

72

Listing 6 I continued

438
449
458
46 9
478
488
499
588
SIg
528
530
544
558
5640
578
580
594
600
618
624
630
648
654
6640
678
680
6940
788
718
724
738
748
758
768
778
784
798
84g
814
824
839
844
859
868
874
884
894
agd

INX
LDA command,X
BEQ donecommand
JSR &FFE3
BRA details
donecommand
JSR osnewl
BRA restore
\

check

LDX #255

DEY

again

INX

INY

LDA (comline),Y
AND #&DF

CMP com,X
BEQ again
LDA com,X
CMP #&FE

BEQ mine
restore
PLY
PLX
PLA

nothelp
RTS
\

help
JSR osnewl
LDX #&FF
JSR helploop
JSR helploop
JSR osnewl
RTS
\

helploop
INX
LDA title,X
BEQ done
JSR &FFE3
BRA helploop
done
RTS

mine
JSR help

LDX #255

OSBYTE and OSWORD

OSBYTE and OSWORD

Listing 6 I continued

9T g
924
934
948
954
964
978
984
994
1988
1918
I929
1039
I8498
1858
1968
1879
Ip88
1699
ITgp

on L}

IITH
1126

I139
1140
1154
Ir6g
1174
1189
1198
1248
1218
1229
1238
1249
1258
1260
1278
1288
1294
1348
1314
1329
1339
I34p9
13548
1368

more

INX

LDA lists,X
BMI alldone
JSR &FFE3
BRA more
alldone
PLY

PLX

PLA

LDA #8
RTS

com
EQUS"OSBYTE"
EQUB &FE
command
EQUS" Osbyte
EQUB #

lists

EQUS " A=&64, X=byte for conversi

EQUB I3

EQUS " On completion

EQUB I3
EQUB &FF
\

osbyte
PHA
PHX
PHY

LDA &EF

CMP #&64
BEQ yes64
JMP restore
\

yes64

LDA &Fg
PHA

LSR A

LSR A

LSR A

LSR A

JSR convert
STA &F@
PLA

JSR convert
STA &FI

X=h1i, Y=lo

73

74

OSBYTE and OSWORD

Listing 6 I continued

1378
1389
I394
1408
1418
429
1438
T44p
I45¢9
I468
1478
I489
1494
1589
1519
1529
I539
I549
1558
I560
1579
I584
1599
1640
I61p
1624
1639
1640
1654

PLY

PLX

PLA

LDY &FI

LDX &Fd

LDA #p0

RTS

\
convert

AND #IS
CMP #1g
BCC over

ADC #6
over
ADC #48
RTS

]

NEXT
ENDPROC

DEF PROCchecksum

N3=g

FOR X%=&5088 TO &5127
N%$=N%+7°X$%

NEXT

IF N%=33496 THEN ENDPROC
vDU 7

PRINT"Assembler error"
STOP

Listing 6 2 Tutorial and test for new OSBYTE Save as

OSBTEST
If REM OSBYTE Tutorial
2f REM (C) Bruce Smith June I986
38 REM Advanced SRAM Guide
44
58 MODE 7
68 REPEAT
74 REPEAT
8¢ INPUT "Enter number 1in range I-255
'X%
90 UNTIL X$>0 AND X%<256
180 A%=s64 Y3$=4
IT# R¥=USR(&FFF4)
I28 X%=(R% AND &FF@@) DIV &FF
I34 Y$=(R% AND &FFFF@Q) DIV &FFFF

OSBYTE and OSWORD 75

Listing 6 2 continued

140 PRINT In hex that 1s " CHRS$(X%) C
HR$ (Y$)

150 PRINT

1608 UNTIL@

Listing 6 3 Creates OSWORD &65 to convert and praint
binary numbers as ASCII hex string Save as OSWORD
Can be built up from listing 4 3 (HELP3)

14 REM Implement OSWORD
20 REM (C) Bruce Smith June 1986
38 REM Advanced SRAM Guide

58 PROCassemble
55 PROCchecksum
60 *SRWRITE 5008 +200 8060 6
70 END
8/ DEF PROCassemble
90 osnewl=&FFE7 osascl1=&FFE3
180 comline=&F2
118 FOR pass=4 TO 7 STEP 3
120 Ps=s8008 0%=&5000
38 I
148 OPT pass
150 EQUB]
160 EQUW #
176 JMP service
180 EQUB &82
1948 EQUB offset MOD 256
200 EQUB 1
210 taitle
22 EQUS Osword Extension ROM"
234 EQUB #
24 version
258 EQUS ' 1 gg"
260 EQUB 4
278 offset
280 EQUB @
298 EQUS "(C) Bruce Smith'
308 EQUB #
314 service
31T CMP #8
312 BNE noteight
313 JMP osword
3I4 noteight
324 CMP #9
330 BNE nothelp

76

Listing 6 3 continued

348
358
3680
378
388
398
489
418
428
439
449
458
464
478
488
499
508
518
524
538
544
550
564
5748
588
590
604
61Ip
620
638
649
6540
660
670
684
694
788
718
724
734
748
758
768
778
788
798
848
81g

PHA
PHX
PHY
LDA (comline),Y
CMP #13
BNE check
JSR help
LDX #255
details
INX
LDA command,X
BEQ donecommand
JSR &FFE3
BRA details
donecommand
JSR osnewl
BRA restore
\
check
LDX #255
DEY
agaln
INX
INY
LDA (comline),Y
AND #&DF
CMP com,X
BEQ again
LDA com,X
CMP #&FE
BEQ mine
restore
PLY
PLX
PLA
nothelp
RTS
\
help
JSR osnewl
LDX #&FF
JSR helploop
JSR helploop
JSR osnewl
RTS
\
helploop
INX

OSBYTE and OSWORD

OSBYTE and OSWORD

Listing 6 3 continued

828
8348
849
858
868
879
889
894
999
91 g
924
934
948
954
964
9748
984
994
1808
1818
1428
1838
14844
185s8
Igegp
1878
1980
1898
1100
IIIg
11248
II38
I133
1134
IT48
1159
116
I178
1184
I119p
1248
1218
1228
1238
1249
1259
1268
1278

LDA title,X
BEQ done
JSR &FFE3
BRA helploop
done
RTS
mine
JSR help
LDX #255
more
INX
LDA lists,X
BMI alldone
JSR &FFE3
BRA more
alldone
PLY
PLX
PLA
LDA #8
RTS
com
EQUS "OSWORD"
EQUB &FE
command
EQUS' Osword'
EQUB 4
lists
EQUS " A=&65, XY+@=action byte"
EQUB I3
EQUS " XY+g=I Hex to ASCII'
EQUB I3
EQUS " XY+@=129 Print I
EQUB I3
EQUB &FF
\
osword
PHA
PHX
PHY
LDA &EF
CMP #&65
BEQ yes65
JMP restore
yes65
\
LDY#8
LDA (&F@),Y

77

78

Listing 6 3 continued

1288
1298
1398
1319
1320
1334
1348
1354
1368
1378
1389
1398
1449
141p
1428
1438
1449
T4598
T4698
1478
T48g
1498
15998
1519
1528
1539
15448
1558
1568
1578
1588
1594
I64p
1619
1624
1638
1648
1659
1664
1674
1688
1694
1798
1719
1728
1738
1744
1758

AND #&7F

CMP #I

BEQ hexascl
JMP restore

\

hexasci

INY

LDA (&F@),Y
PHA

INY

LDA (&Fg),Y
JSR hexconvert
PLA

JSR hexconvert
LDY#§

LDA (&Fg),Y
BMI display
JMP alldone

\

display

LDY#3

print
LDA (&Fg),Y
JSR osasci

INY
CPY #7
BNE print
JMP alldone
\

hexconvert
INY
PHA
LSR
LSR
LSR
LSR
JSR fairst
STA (&Ff@),Y
INY
PLA
JSR first
STA (&Ff@),Y
RTS

\

first
AND #I5
CMP #Ig

BCC over

>

OSBYTE and OSWORD

OSBYTE and OSWORD 79

Listing 6 3 continued

17648
1778
1789
1798
I800
I819
1824
1839
1844
1858
18649
1878
I88g
1894
19498
1914
1924

ADC #6
over

ADC #48
RTS

]

NEXT

ENDPROC

DEF PROCchecksum

N3=§

FOR X%=&5088 TO &5ISE
N$=N%+2X%

NEXT

IF N%=38567 THEN ENDPROC
vDU 7

PRINT"Assembler error!
STOP

Listing 6 4 Tutorial and test for new OSWORD call
Save as OSWTEST

I REM OSWORD Tutorial

28 REM (C) Bruce Smith June I986
33 REM Advanced SRAM Guide

4

58 MODE 7

64 REPEAT

78 REPEAT

88 INPUT "Enter number 1in range I-655

35 "RS$

94 UNTIL R$>F AND R%<65536
I38 A%=&65 Y3=4 Xe=&70
119 2&79=129
I28 2&7I=R% MOD 256

138
I48
I5¢8
I6g
178

?2&72=R% DIV 256
PRINT®"In hex that 1s "
CALL &FFFI

PRINT

UNTILZ

Chapter Seven
Extended Vectors

When designing ROM 1mages you might need to add
facilaties that are automatically accessed by the MOS
as and when required For example, when an error occurs
during program operation the Master will print out an
error message, 1t would be nice however to add a patch
that would call the routine 1in your sideways ROM to
print out the erroneous line and perhaps even highlight
the error itself

Similarly, filing system ROMs, such as disc filing
systems, must be accessible from the calling program or
command However, calls cannot be made directly by a
simple JSR command as the coding 1s held within a
sideways ROM What needs to take place 1s for the
current ROM to be switched out and for the new one to
be switched i1n then the JMP or JSR can be carried out
This sounds, and 1ndeed would be, a convoluted and
difficult job as 1t would mean keeping a machine code
patch 1in RAM to handle all the switching

A mechanism exists in the MOS called 'extended vector
entry' This allows the main operating system vectors
to point into the MOS and tell 1t to hand control over
to another ROM It will also handle transfer of control
from the current ROM to a routine in another ROM and
then switch back to the original ROM

Twenty seven such vectors are implemented on the
Master and each 1s allocated a number such that the
physical address of the vector 1s located at

&2f@8+2*<vector number>

Table 7 I lists all the information you'll need so you

Extended Vectors 8I

don't have to worry about having to calculate anything
yourself

To redirect a vector we need to point the vector
itself into a part of the MOS called the 'extended
vector processing area' The vector must have the
following address placed into 1t

&FF@P+3*<vector number>
Table 7 I lists the actual entry points each vector

must be made to point to so 1t will be processed
correctly

Vector Location Entry point Offset
USERV &200 &FFEQ g-2
BRKV &202 &FFQ3 3-5
IRQIV &284 &FFf6 6-8
IRQ2V &§206 &FF@9 9-IT
CLIV &208 &FF@C I2-1I4
BYTEV &20A &FFPF I5-17
WORDV &28C &FFI2 I8-28
WRCHV &20E &FFI5 2I-23
RDCHV &§218 &FFI8 24-26
FILEV &212 &FFIB 27-29
ARGSV &2I4 &FFIE 3g8-32
BGETV &2I6 &FF21 33-35
BPUTV &2I8 &FF24 36-38
GBPBV &2Ia &FF27 39-4T1
FINDV &2IC &FF2A 42-44
FSCV &21IE &FF2D 45-47
EVENTV &228 &FF30 48-58
UPTV &222 &FF33 5I-53
NETV &224 &FF36 54-56
vDUV &226 &FF39 57-59
KEYV &228 &FF3C 60-62
INSV &22A &FF3F 63-65
REMV &22C &FF42 66-68
CNPV &22E &FF45 69-71
INDIV &238 &FF48 72-74
IND2V &232 &FF4B 75-77
IND3V &234 &FF4E 78-88

Table 7 I Extended vectors

As table 7 I shows, each extended vector entry point 1s
offset by three bytes from the next, to allow the
instruction JSR &FF5I to be assembled (NB MOS3 # may
vary on other MOS's) This address marks the start of

82 Extended Vectors

the extended vector processing coding

The MOS needs to know which ROM to page 1n and which
address to call 1in 1t Space 1s provided 1n RAM for
this information 1in an area called the 'extended vector
space', the start address of which 1s ascertained by
1ssuing an OSBYTE call as follows

LDA #&A8
LDX #&@@
LDY #&FF
JSR osbyte

This call will return with the start address of the
extended vector space 1n the index registers 1In MOS3 §
this address 1s &D9F

Each vector 1s allocated three bytes 1n the extended
vector space, and the bytes corresponding to each are
found by calculating

Vector space+3*<vector number>

These bytes must have the following information poked
into them

I Low byte of address in ROM
2 High byte of address 1n ROM
3 ROM number - copied from &F4

Working example

All of what went on above may have seemed long-winded,
but as the following example of an extended vector
proves 1t really 1s straightforward - all you need to
do 1s to refer to table 7 I

The USERV 1s located at &2@f and &201> This 1s
normally associated with the two commands *LINE and
*CODE These are implemented solely to allow you to add
customised routines to the Master Try executing either
of these now type in *LINE or *CODE and you will get
the 'Bad command' error message This 1s because they
have not been assigned a task at present and currently
point directly to the error message

We can change this 1In this worked example we'll get
both of these commands to produce a bleep when called
Again, the action 1s not spectacular but 1t 1s kept
simple so that you can concentrate on the extended
vector coding

The first task 1is to save the current vector contents
as we will either need to restore them or jump onto the
vector once we have finished with it Here they are

Extended Vectors 83

stored at &8E and &8F Looking at table 7 I we see that
the USRV 1s located at &2@f and &28I, so

LDA &208 \ get low byte
STA &8E \ save 1t
LDA &28I \ get high byte
STA &8F \ save 1t

Remembér to preserve the low byte first so that you can
use &8E as a vector to jump through

The next step 1s to point the vector to the extended
vector processing code Again looking at table 7 I we
can see that this address 1s at &FF@f§ This 1s placed
in the vector thus

LDA #8 \ low byte of &FFf@§
STA &2089
LDA #&FF \ high byte of &FF@g
STA &2fI

The final action required 1s to place the address of
the new vector routine and the identity number of the
ROM 1t 1s contained in within the correct three bytes
in the extended vector space The extended vector space
starts at &D9F 1n MOS3 #§ Looking at table 7 I we see
that the offset into this area 1s at #,I and 2
Assuming the new USERV routine 1s at 'new' we get

LDA #new MOD 256 \ calculate low byte address
STA &D9F \ save 1t

LDA #new DIV 256 \ calculate high byte address
STA &DIF+1I \ save 1t

LDA &F4 \ get ROM 1identity

STA &D9F+2 \ save 1t

Location &F4 always contains the identity number of the
currently selected ROM And that's all there 1s to 1it!

If you need to reset the vector to 1ts original
address simply transfer the contents of &8E and &8F
back to &2@8 and &2fI - there's no need to reset the
extended vector space

LDA &8E
STA &2088 \ reset low byte
LDA &8F
STA &24I \ reset high byte

Obviously 1t 1s important not to alter the contents of
&8E and &8F 1n any way
Listing 7 I puts all this 1nto action Once run and

84 Extended Vectors

initialised the commands *ON and *OFF turn the extended
vector on and off respectively Typing *ON and entering
*LINE or *CODE will cause a beep to be made Typing
*OFF w1ll mean you get the error message 'Bad command’
when you use either command
If you have listing 5 I ('INTERP') to hand you can
use this as the basis for this new 1listing ('VECTOR')
To do this make the following alterations
(]
Change lines Ig,258,1128,11506,1180,12008,1264
I699 to I778 inclusive, 1844,
I8Tg,I8208,1844
Delete lines I948 to 2#58 inclusive
Add new lines I948 onwards

Note that when you are changing the contents of a
vector 1in this way you should always disable interrupts
first with SEI and enable them with CLI after the
change This 1s to prevent the vector being used while
it 1s being changed which could be disastrous 1f only
one byte had been changed at the time! It 1s also a
good 1dea to save the status register on the stack at
this time as well for later restoration Hence use

PHP
SEI

prior to change, and

CLI
PLP

after revectoring

Extended Vectors 85

Listing 7 I How to use extended vector to point 1into
a sideways ROM Save as VECTOR Based on listing 5 I
(INTERP)

REM Extended Vector ROM
REM (C) Bruce Smith June I986
REM Advanced SRAM Guide

PROCassemble
PROCchecksum

*SRWRITE 5088 +508 8888 6
END

DEF PROCassemble
osnewl=&FFE7
osasc1=&FFE3
comline=&F2
FOR pass=4 TO 7 STEP 3
P%=&8088 O%=&5008
[
OPT pass
EQUB #
EQUW ¢
JMP service
EQUB &82
EQUB offset MOD 256
EQUB I
title
EQUS "Extended Vector ROM"
EQUB #
version
EQUS " I ﬂﬂ"
EQUB £
offset
EQUB #
EQUS "(C) Bruce Smith"
EQUB £
service
PHA
PHX
PHY
CMP #9
BNE nothelp
LDA (comline),Y
CMP #I3
BNE check
JSR help
LDX #255
details
INX

86

Listing 7 I continued

479
480
499
588
518
528
530
548
558
560
578
580
598
6040
610
620
638
6440
650
660
6708
680
6940
788
718
728
738
748
758
768
778

LDA command,X
BEQ donecommand
JSR &FFE3
BRA details
donecommand
JSR osnewl
BRA restore
\
check
LDX #255
DEY
agalin
INX
INY
LDA (comline),Y
AND #&DF
CMP com,X
BEQ again
LDA com,X
CMP #&FE
BEQ mine
restore
PLY
PLX
PLA
RTS
\
nothelp
CMP #4
BEQ unrecognised
BRA alldone

784 \

7949
8gg
81g
824
834
844
854
864
878
884
894
964
9rg
924
934
948

help
JSR osnewl
LDX #&FF
JSR helploop
JSR helploop
JSR osnewl
RTS
\
helploop
INX
LDA title,X
BEQ done
JSR &FFE3
BRA helploop
done
RTS

Extended Vectors

Extended Vectors

Listing 7 I continued

954

96 0

978

984

999
1988
T8I0
1828
1438
1848
1858
1968
1878
1480
1999
I199
IIIP
1128
ITI38
11448
1158
IT6g
1178
11840
I198
1200
T218
1228
1238
1248
12548
1268
1278
1284
1299
1308
318
1328
1338
1344
1350
1368
1378
1380
1394
14p8
T41g
14298

ASR-G

\
mine
JSR help
LDX #255
more
INX
LDA lists,X
BMI alldone
JSR &FFE3
BRA more
\
alldone
PLY
PLX
PLA
RTS
\
com
EQUS"VECTORS"
EQUB &FE
command
EQUS"™ Vectors"”
EQUB £
lists
EQUS " Redirects USERV at &24g8"
EQUB I3
EQUS ON"
EQUB I3
EQUS " OFF"
EQUB I3
EQUB &FF
\
unrecognised
LDX #255
DEY
PHY
ident1fy
INX
INY
LDA (comline),Y
AND #&DF
CMP comtable,X
BEQ identify
LDA comtable,X
BMI address
\
moveon
INX

87

88

Listing 7 I continued

1438
1449
1458
Ta6p
1478
1488
1498
Is948
I5I8
1529
5348
1548
1558
1560
1578
1588
1598
I649

LDA comtable,X
BPL moveon
BNE notend
PLY
BRA alldone
\
notend
INX
PLY
PHY
JMP 1dentify
\
address
CMP #&FF
BNE notFF
PLY
BRA alldone
notFF

I6Ig \

1620
1639
1640
1650
1668
1678
1684
1694
1708
1719
1728
1739
1748
1750
1768
1778
1788
1794
I80p
1819
1828
1834
1844
I854
1860
1878
1884
I894
1948

STA &39

INX

LDA comtable,X
STA &38

JMP (&38)

\

comtable

EQUS "ON"

EQUB on DIV 256
EQUB on MOD 256
EQUS "OFF"

EQUB off DIV 256
EQUB off MOD 256

EQUB &FF

found
PLY
PLY
PLX
PLA

Extended Vectors

Extended Vectors

Listing 7 I continued

1914 LDA #8

I928 RTS

938 \

1944 on

1958 LDA &288

1968 STA &8E

1978 LDA &28I

1988 STA &8F

1994 LDA #9

208p STA &208

2018 LDA #&FF

2028 STA &201

2038 LDA #new MOD 256
2848 STA &D9F

2058 LDA #new DIV 256
2068 STA &DIF+I

2078 LDA &F4

2488 STA &DIF+2

2098 CLI

2194 JMp found

2TIg \

2I28 new

2138 LDA #7

2149 JSR &FFEE

2I58 RTS

2T6g8 \

2178 off

21884 LDA &8E

2199 sTA &208

2208 LDA &8F

22I8 STA &24I

2228 JMP found

2238 1}

2240 NEXT

2258 ENDPROC

2268

2278 DEF PROCchecksum
2288 N%=g

2298 FOR X%=&5@08 TO &5ISD
2300 N3=N%+?X%

2314 NEXT

2328 IF N$=4828I THEN ENDPROC
2338 vDU 7

2348 PRINT"Assembler error!'"
2358 STOP

Chapter Eight
Pot Pourri

So far 1t's been quite easy to demonstrate the service
calls, but some are not that simple For example,
service call I2 allows a ROM to claim the non-maskable
1interrupts (NMIs) which effectively control the
operation of the Master Filing systems such as net and
disc are typical cases where you would want to claim
NMIs - but space doesn't allow me to include a filing
system program' In this chapter we will have a general
look at routines of this type, and briefly examine
writing a filing system Calls not covered here will be
dealt with 1n greater depth 1n chapters to come

Service Call 5

This call 1s 1ssued by the MOS when an interrupt
request (IRQ) that 1t does not recognise occurs If
your paged ROM makes use of the IRQ 1line then it
should be directed to a suitable interrupt request
polling routine and check any device(s) to find the
source of the IRQ Any ROM recognising the interrupt
should process 1t, set the accumulator to zero to
indicate that the interrupt has been serviced, and then
return with an RTS instruction and NOT an RTI as 1s
generally the norm when an IRQ has occurred The
following code shows how a suitable polling routine
might be instigated

CMP #5 \ 1s 1t unrecognised IRQ?

BNE next \ branch to next test 1f not

JSR polling \ execute IRQ polling

BCC notfound \ carry clear 1f IRQ not i1dentified

Pot Pourri 91

PLA \ pull stack to balance previous push
LDA #8 \ call serviced
RTS \ return
notfound
PLA \ put service code 1n accumulator
RTS \ and return

As usual, this code assumes that on entry the service
call type was preserved on the stack If an IRQ 1s not
identified by any of the ROMs then the MOS directs a
final call through the user vector IRQ2

Service Call 6

This service call is used to 1inform paged ROMs that a
BRK has occurred, before the MOS hands control over to
the current language ROM via the BRK vector (BRKV), to
process the BRK In many instances the BRK 1s used to
signal an error, and print an error message If the
service call does not 1intend to process the BRK, for
example to produce some extra fancy error messages and
pointers, the contents of all registers should be
preserved The vectored address at &FD and &FE points
to the error number 1n memory while the byte at &F§
contalns the value of the hardware stack pointer after
the BRK was executed As the BRK may have occurred 1in
a ROM other than the one currently processing the BRK,
1t 1s important to be able to ascertain in whaich ROM 1t
di1d occur To do this OSBYTE &BA should be called, and
the ROM number 1s returned in the X register As always
1f your ROM traps this call 1t should load the
accumulator with @ before returning to the MOS,
otherwise the service call number should be preserved
so that the MOS can poll other ROMs

Service Call 11

The major filing and networking systems on the BBC
micros make extensive use of non-maskable interrupts
(NMIs) This call should be used when the ROM system
currently using 1t (1e a DFS ROM) no longer needs to do
so and 1s prepared to release 1t When this service
call 1s 1ssued the Y register holds the number of the
ROM that was using the NMIs before the claim for them
was made Each ROM that recognises this call should
check the contents of the Y register with 1its own ROM
number, available in the X register and location &F4 at
the time of the service If 1t 1s the same then the
accumulator should hold zero on return from the service
call, otherwise all registers should be preserved The

92 Pot Pourra

following coding shows the general procedure for

handling this call 1f the ROM 1s making use of the
NMIs

CMP #I2 \ 1s 1t NMI release?
BNE next \ branch to next 1f not
TYA \ move last ROM number into
\ accumulator
CMP &F4 \ 1s 1t this ROM>
BNE notme \ branch 1f not
PLA \ balance previous push
LDA #§ \ recognised code
RTS \ and return
notme
PLA \ restore service call number
RTS

To return the use of the NMI to 1its previous user
OSBYTE I43 should be executed as follows

LDA #I43 \ OSBYTE code

LDX #IT \ service call code
LDY #255

JSR OSBYTE \ 1ssue request

As mentioned before, service call II will normally only
be trapped 1f the user 1is implementing a filing system
Care must be taken when wusing NMIs as all BBC micros
are 1nterrupt-driven and funny things can happen to
general housekeeping chores 1f they are not treated
with respect Note also that the zero page locations
associated with the filing system should not be used
during this service call's execution

Service Call I2

This call 1s 1ssued to claim use of the NMIs It 1s
called with OSBYTE 143 as follows

LDA #I43 \ OSBYTE code

LDX #I2 \ service call I2
LDY #255

JSR OSBYTE \ perform call

The ROM that currently has claim of the NMIs should
place 1ts ROM number 1into the Y register and store any
important data in 1ts own praivate storage area (covered
shortly) It should also inhibit any further use of
NMIs until 1t has reclaimed the NMI at a later stage

The claiming ROM should also store the ROM number of

Pot Pourri 93

the current NMI for use when releasing the NMI claim
If the ROM was not using the NMIs, then the Y register
must remain unaltered Once claimed the zero page area
associated with NMI handling from &Af to &A7 1is free
for use and the ROM's resident NMI service routine
should be copied to &D@f

Service Call IS5

Whenever a new filing system 1s 1nitialised 1t must
perform a number of operations One of these 1s to
repoint all vectors into the coding of the new filing
system After writing relevant addresses 1nto the
various filing system vectors, service call IS should
be 1ssued by the new filing system, to inform all other
paged software that a change 1in filing system has taken
place

Service Call 16

This call 1s performed to inform paged ROMs that may be
using SPOOL or EXEC files that a filing system change
1s being performed On receipt of this call any ROM
using such files should perform any required
housekeeping to tidy things up If a ROM wants a SPOOL
or EXEC file to remain open, a zero should be placed 1in
the accumulator before releasing the service call

Service Call 17

This call 1s 1ssued when the character font, 1e the
user definable character set, 1s about to explode or
implode On the Master of course the character font 1s
permanently exploded, so checking for a pending
explosion 1s not 1mportant - unless you also wish your
code to work on a BBC micro Checking for an implosion
may be of use however - perhaps 1in conjunction with the
Font ROM listing given earlier This service call 1s
therefore 1ssued when the MOS encounters OSBYTE &IS
(*FX28)

Service Call I8

This call 1s provided to allow filing systems to be
initialised without having to 1ssue any operating
system commands This 1s 1mportant as a program may
need to have files open 1n two or more filing systems

The filing system should check the contents of the Y
register to see 1f they agree with 1its operating system
filing system code as defined by OSARGS If the ROM

94 Pot Pourra

ldentifies as the called filing system 1t should
1nitialise 1tself and restore all the files that were
open at the time 1t was previously shut down

Service Call 21

This call allows you to process software-generated
interrupts It 1s 1ssued 100 times every second after
an OSBYTE &16 (*FX22) command has been used On
receipt of an OSBYTE &17 (*FX23) the MOS stops 1ssulng
the service call The call 1s effectively an interrupt
polling routine Its main use would be for control of
peripherals, and on receipt your ROM should check 1its
hardware accordingly Of course 1t can be used for
other things as the next example shows!

Listing 8 1 w1ll begin to 1increment a two-byte
counter after *FX22 has been 1ssued It will stop
incrementing the counter, held at &7¢ and &7, after
*FX23 The code requires nothing other than to catch
the service call and direct it to the polling routine
You can wuse listing 4 3 from Chapter 4 (saved as
'HELP3') as the base for the program and make the
following changes

Change lines I8, 2298, 1948, 1870,1108,1128
Add lines 55, 3I1, 312, 313, 314, 1158 to 1378
inclusive

To see the program 1n action, type *FX22 and enter this
one-liner

REPEAT P '&70 AND &FFFF UNTIL £

Pressing ESCAPE and typing *FX23 will stop the
interrupt polling

Obviously the ROM processing this call will need to
know 1f 1t should return with A= to terminate this
call, however other ROMs may also be using this call to
operate their own routines and as such the accumulator
should return with &15 to ensure the MOS passes the
service call onto other ROMs To this end the Y
register will always hold a number which should be
decremented by the number of claims made by your ROM
For example 1f you previously claimed this call twice
to poll devices, then the Y register should be
decremented twice on completion of the two polling
routines If Y 1s § then the accumulator should return
holding g else 1t should be re-set with the service
call number

Pot Pourrl 95

Service Call 37

This call should be trapped by filing system ROMs only
It 1s 1ssued as a request for 1nformation about the
filing systems 1installed in the micro If your filing
system ROM receives this call 1t should supply II bytes
of i1nformation as follows

8 bytes Filing system name padded out with spaces
I byte Lowest handle number used

I byte Highest handle number used

I byte The filing system number

This 1information should be stored at the address
pointed to by the vector at &F2 and &3 Y should be
set to zero and will end up incremented by II

servicel’
LDY ##
nextbyte
LDA 1info,Y \ get information byte
STA (&F2),Y \ write byte
INY \ 1ncrement 1ndex
CPY #II \ II bytes done-?
BNE nextbyte \ i1f not continue

As an example, the ADFS would return the following on
receipt of this service call

Decimal ASCII

96 a

Ip8 d

142 f

II5 s
32 <space>
32 <space>
32 <space>
32 <space>
45 Lowest handle used
57 Highest handle used
8 Fi1ling system number

Service Call 38

This 1s i1ssued to all ROMs when *SHUT 1s used

Service Call 39

Call 39 1s 1ssued on a hard reset, 1ie when the micro 1s
switched on or after CTRL-BREAK If you run the trace

96 Pot Pourri

program (listing 3 1 in Chapter 3), you will notice
that 1t 1s 1ssued 1immediately prior to the
initialisation of the Acorn DFS, and obviously directly
after the MOS has i1nitialised Intercepting this call
will allow you to 1initialise your own ROM as needs be

Program 8 2 does just that and prints the date onto the
screen It does this by intercepting call 39 (&27),
reads the CMOS clock with OSWORD &E, and then prints
Just the date onto the screen It uses memory from &74
for the OSWORD parameter block and you could print the
time as well simply by extending the 1loop from line
1294 You can wuse listing 4 3 as the base for the
program and adapt as follows

Change lines 18, 2208, 1948, 1670,1108,1128
Add lines 55, 31I, 312, 313, 314, 1158 to 1468
inclusive

Service Call 254

If the Tube 1interface 1is present this service call 1s
1ssued after OSHWM has been defined, to see 1f 1t 1s
active If 1t 1s then service call 255 will be i1ssued

Service Call 255

This call 1s 1ssued 1f a co-processor or second
processor 1s active It 1s 1ssued prior to final
setting of the OSHWM 1in the co- or second processor,
thus allowing languages and start-up messages to be
copled

About Filing Systems

A filing system ROM such as the Disc Filing System
(DFS), Advanced DFS (ADFS) or Network Filing System
(NFS) can be selected 1n a number of ways The most
obvious of these 1s via a MOS command such as *DISC
The MOS will i1ssue service call 4 here and the DFS ROM
w1ll recognise the command and muscle its way 1n as the
active filing system as described below

A filing system may be selected 1n two other ways
however, namely through service call 18 with the Y
register containing the filing system number, or via
service call 3 where a special recognised key 1s
pressed 1n conjunction with the BREAK key, eg D-BREAK
for Disc, N-BREAK for Net and so on

Because a filing system will never be required to run
directly 1in either a second or co-processor 1t should
always be written i1n the native code of the 65@82-series

Pot Pourri 97

microprocessor in the BBC micro or Master
All filing systems must be capable of responding to
the following service calls

1,2,3,4,9,19,15,16,18,33,34,36,37,38 and 39

When a filing system recognises that 1t has been
selected 1t should initialise 1tself 1in the following
stages

First, call OSFSC with A=6 thus enabling the outgoing
filing system to tidy up shop and shut 1itself down
This MOS call does not have a recognised vector entry
point so i1t should be called 1n a slightly convoluted
way to allow control to be restored to the point after
the JMP, this 1s done by performing a JSR to a place
which contains the instruction, JMP(&2IE), 1e

JSR dofsc
XX
XX
dofsc JMP (&2IE)

Second, set up the extended vectors required by the
filing system

Next, 1ssue service call I5 to inform other ROMs that
the filing system vectors have been altered

Finally, restore any files that remain open since the
filing system was last 1n use

In addition to 1ts own static workspace claimed, the
filing system has some other exclusive memory locations
free for use These are

&A@ to &A7 The NMI workspace - avairlable when
filing system has claimed NMIs

&A8 to &AF * workspace - for when * commands
are 1ssued

&Bg to &BF Temporary workspace Contents may
change between commands

&C# to &CF Private workspace Contents here do

not change between commands 1f
filing system does not change

&D@F to &DSF NMI service code space If ROM uses
NMIs the service code for them
should be loaded here (claim with
service call I2 fairst)

98

Pot Pourri

Listing 8 I Traps service call 2I which polls ROMs
Iff times a second Save as POLLING Adapt from listing
4 3 (HELP3)

REM Polling ROM
REM (C) Bruce Smith June I986
REM Advanced SRAM Guide

PROCassemble
PROCchecksum
*SRWRITE 58068 +2080 8088 7
END
DEF PROCassemble
osnewl=&FFE7
comline=&F2
FOR pass=4 TO 7 STEP 3
P$=68009 O%=&5000
[
OPT pass
EQUB #
EQUW #
JMP service
EQUB &82
EQUB offset MOD 256
EQUB I
title
EQUS "Polling Interrupt ROM"
EQUB #
version
EQUS " I gg"
EQUB #
offset
EQUB #
EQUS "(C) Bruce Smith"
EQUB #
service
CMP #&15
BNE tryhelp
JMP time
tryhelp
CMP #9
BNE nothelp
PHA
PHX
PHY
LDA (comline),Y
CMP #I3
BNE check
JSR help
LDX #255

Pot Pourri

Listing 8 I continued

428
438
448
458
46 9
478
488
4948
560
SIg
528
538
548
550
564
578
586
598
600
619

details
INX
LDA command,X
BEQ donecommand
JSR &FFE3
BRA detalls
donecommand
JSR osnewl
BRA restore
\
check
LDX #255
DEY
again
INX
INY
ILDA (comline),Y
BND #&DF
CMP com,X
BEQ again
LDA com,X
CMP #&FE
BEQ mine
restore
PLY
PLX
PLA
nothelp
RTS
\
help
JSR osnewl
LDX #&FF
JSR helploop
JSR helploop
JSR osnewl
RTS
\
helploop
INX
LDA title,X
BEQ done
JSR &FFE3
BRA helploop
done
RTS
mine
JSR help

929

149

Listing 8 I continued

940
9T g
928
939
940
954
960
978
984
994
1880
1410
1828
1430
1948
1458
1060
1878
1988
1694
1199

LDX #255

more
INX
LDA lists,X
BMI alldone
JSR &FFE3
BRA more
alldone
PLY
PLX
PLA
LDA #4
RTS

com
EQUS 'POLLING"
EQUB &FE
command
EQUS" Polling"
EQUB #

lists

EQUS " Start with *FX22

with *FXx23"

1119
1128
er at
1139
11448
11589
I16p
1178
1188
1199
1248
121
1228
23¢9
1244
1258
1264
1279
1288
1299
1348
I3Ip
1328
1338
1349
1354

EQUB I3

Cancel

EQUS Increments a two byte numb

&78"

EQUB I3
EQUB &FF
\

time
PHA
PHX
PHY

INC &78
BNE nohigh
INC &7I
nohigh
JMP restore
1
NEXT
ENDPROC

DEF PROCchecksum

N$=g

FOR X$%$=&58008 TO &5II4
N$=N%$+?2X%

NEXT

IF N%$=38581 THEN ENDPROC
vDU 7

Pot Pourri

Pot Pourri Igar

Listing 8 I continued

I368
1374

PRINT"Assembler error!'"
STOP

Listing 8 2 Traps service call 39 to print date on the
screen after a hard reset Save as TIME Developed from
listing 4 3 (HELP3)

REM Date on Reset
REM (C) Bruce Smith June I986
REM Advanced SRAM Guide

PROCassemble
PROCchecksum
*SRWRITE 50800 +2080 8000 6
END

DEF PROCassemble
osnewl=&FFE7
comline=&F2

FOR pass=4 TO 7 STEP 3
P%=58088 O%¥=&5000
{
OPT pass

EQUB £

EQUW £
JMP service

EQUB &82

EQUB offset MOD 256
EQUB I

title

EQUS "Date ROM"
EQUB #

version

EQUS " 1 g8

EQUB #

offset

EQUB @

EQUS "(C) Bruce Smith"
EQUB #

service
CMP #&27

BNE tryhelp
JMP time

tryhelp
CMP #9
BNE nothelp
PHA
PHX

182

Listing 8 2 continued

368 PHY

378 LDA (comline),Y
388 CMP #I3

398 BNE check
488 JSR help

4T@# LDX #255

42f details

430 INX

448 LDA command,X
458 BEQ donecommand
4608 JSR &FFE3
478 BRA details
488 donecommand
498 JSR osnewl
588 BRA restore
5I8 \

528 check

534 LDX #255

544 DEY

558 again

568 INX

570 INY

588 LDA (comline),Y
598 AND #&DF

688 CMP com,X
618 BEQ again
628 LDA com,X
638 CMP #&FE

644 BEQ mine

658 restore

668 PLY

674 PLX

684 PLA

698 nothelp

788 RTS

718 \

728 help

738 JSR osnewl
748 LDX #&FF

758 JSR helploop
768 JSR helploop
778 JSR osnewl
788 RTS

798 \

868 helploop
8If INX

824 LDA title,X
830 BEQ done

Pot Pourri

Pot Pourri I83

Listing 8 2 continued

848 JSR &FFE3
858 BRA helploop

868 done
878 RTS
884 mine

894 JSR help
988 LDX #255
9If more
924 INX
938 LDA lists,X
948 BMI alldone
958 JSR &FFE3
964 BRA more
978 alldone
984 PLY
998 PLX
1889 PLA
IgTI@ LDA #§
I828 RTS
Ig38 com
Ig4p EQUS"DATE"
Ig58 EQUB &FE
Ig68d command
Ig78 EQUS" Date"
1489 EQUB @
I#98 1lists
IIgF EQUS " Date 1s displayed on Reset

IIIg EQUB I3
II28 EQUS ™ Time string stored at &74"
II38 EQUB I3
1148 EQUB &FF
I158 \

IT6f8 time
II78 PHA

I184 PHX

1199 PHY

1289 LDA #I4
I2I4 LDX #&78
1228 LDY #8
1238 JSR &FFFI
1249 LDY #4
1258 date
1268 LDA &«78,Y
I278 JSR &FFE3
1288 INY

1298 CPY #I5
I3g88 BNE date

ASR~H

Iga

Listing 8 2 continued

I318
I32g
1339
1348
I35
1369
I374
13849
I394
1448
I418
424
438
449
4548
I4648

JSR &FFE7
JSR &FFE7
JMP restore
]

NEXT
ENDPROC

DEF PROCchecksum

Ny=g

FOR X%=&5888 TO &51@3
NE=N%$+2X%

NEXT

IF N%=30419 THEN ENDPROC
vDU 7

PRINT"Assembler error!'"
STOP

Pot Pourri

Chapter Nine
Configure and Status

The commands *CONFIGURE and *STATUS allow the Master
power-up and reset configuration to be defined by
writing to certain of the 58 bytes of battery-backed
CMOS RAM The allocation of these bytes 1s as follows

Byte numbers Allocation
g to I9 Configuration system
28 to 29 Acorn future use
38 to 38 Third party ROM use
39 to 49 User memory

Bytes 3§ to 38 are allocated for specific use of
si1deways RAM and ROM software

Service calls 48 and 41 are provided by the MOS to
allow extension of the range of *CONFIGURE and *STA1US
options by trapping each call as appropriate 1In the
examples that follow, the date printing on reset routine
from the last chapter 1s extended so 1t may be
switched on and off via the *CONFIGURE command Use of
*STATUS will enable the user to read the
currently-selected option at any time

Choosing the byte

First let us examine how we go about deciding which of
the reserved ROM bytes we can use Well, that's easy --
the choice 1s already made for us There are only eight
bytes available and these correspond directly with the
spare number of sideways ROM/RAM slots available For
example, ROM slot § corresponds with byte number 30,
slot T with byte number 3I slot 2 with byte number 32

146 Configure and Status

and so on To locate the byte associated with our ROM
slot we simply need to find which ROM slot the program
1s running 1n and add 1t to 3@, thus

CLC \ clear carry read to add
LDA &F4 \ get ROM slot number
ADC #3f \ add 1t to 34

The byte number 1s now held in the accumulator
Location &F4 always contains a copy of the selected ROM
bank

Once we know which byte 1s ours we need to be able to
read and wraite to 1t OSBYTE I6I and I62 allow us to
do this respectively The accumulator should hold the
OSBYTE number and the X register the byte in CMOS RAM
to be read from or written to In the case of a read
operation the Y register returns the data, 1in the
instance of a write 1t should contain the data to be
written

For example, to read the contents of our byte we
proceed as follows

TAX \ move byte number into X
LDA #I6I \ OSBYTE number
JSR &FFF4 \ and read byte

The Y register now holds the contents of the allocated
battery-backed byte

The allocation of a single byte may seem mean, but
remember that a single bit can be used to signal an
ON/OFF condition Therefore by conservative use your
own firmware could provide up to eight new options

It's a Date

The new status/configuration extension chosen here 1s
DATE ON/OFF

Typing
*CONFIGURE DATE ON

will cause the date to be printed on the screen
whenever a reset 1s made (ie on CTRL-BREAK) Likewise,

typing
*CONFIGURE DATE OFF

wi1ll disable this action and no date will be printed at

Configure and Status I87

a reset *STATUS DATE will print either ON or OFF
depending on the current configuration

The two straight commands *CONFIGURE and *STATUS must
also be catered for The former will print

DATE ON/OFF

and the latter will print, DATE followed by the current
configuration status

Just by defining these objectives we have really
already clarified what our new firmware must be capable
of and each 1tem can be coded (and tested 1if your are
writing your own specific items) in turn

The first action would be to extend the 'time'
routine given 1in the last chapter so that 1t first
reads the appropriate CMOS battery-backed byte as
already described By examining the contents of the Y
register the routine can determine whether to print the
date If a @ 1s returned the date 1s not printed
otherwise 1t 1s printed

CPY #4 \ 1s DATE OFF?
BNE carryon \ no, so read and praint
JMP restore \ yes, so return

Extending status

The MOS will 1ssue service call &29 (4I) on two
occasions First, 1f a straight *STATUS 1s encountered

This requires that a complete 1list of all options are
printed After printing the configuration status as
defined in bytes # to 1I9, the MOS 1issues the call to
allow other ROMs to respond Second, the call 1s 1issued
1f the status command 1s followed by an unknown option

This enables the current ROM to check to see 1f 1t 1s
famipliar with the option As with other * commands the
vector at &F2 1s used to point to the first unknown,
non-space, character after the *STATUS command The
first instance 1s easily checked, simply test directly
for a return character, 1e I3 (&PD) and branch to the
printing routine thus

LDA (&F2),Y \ get first non-space character
CMP #I3 \ 1s 1t a return?
BEQ dotime \ 1f yes then branch to print

If the character 1s not a return then we need to check
this against our own possible status options - just one
in this case — 1n a similar manner to checking for
exended help options as described 1in chapter 3

Igs Configure and Status

However, here's the routine to do just that

trytime
DEY
LDX #255 \ 1nitialise counters
loopt
INY
INX \ 1ncrement counters
CPX #4 \ only 4 letters in DATE
BEQ ours \ 1f here then 1t must be ours
LDA (&F2),Y \ get next byte
AND #&DF \ force to upper case
CMP string,X \ 1s 1t the same?
BEQ loopt \ 1f yes, try next byte
SEC \ set carry to signal failure
RTS \ and return to calling routine
ours
CLC \ set carry to signal success
RTS \ and return
string
EQUS"DATE"

This routine 1s written 1n the form of a subroutine,
called with JSR trytime, as 1t will be needed by the
configure routine to be discussed later The carry flag
1s used to i1ndicate whether the command i1s identified

A successful match 1s i1ndicated by clearing the carry
flag, while a failure sets 1t On return, the carry
flag can be tested and the necessary action taken

BCC end \ 1t's us, so branch to end routine
JMP restore \ not known, so return to MOS

Obviously we now need to find out which option to
praint, i1e 'ON' or 'OFF' This 1s done by reading the
ROM status byte within the CMOS RAM as already
described and printing the correct ASCII string

end
CLC
LDA &F4 get ROM number
ADC #38 calculate byte number
TAX move 1nto X register

\
\
\
LDA #I6I \ OSBYTE number
JSR &FFF4 \ get byte
CPY #§ \ 1s 1t 'off'?
BEQ off \ yes branch
LDY #5 \ no, 1t's 'on' so get new 1index
off
\

LDA onoff,Y get byte

Configure and Status 49

BEQ finished \ 1f zero then finished
JSR &FFE3 \ else print 1t

BRA off \ branch until finished
onoff

EQUS "OFF" \ 1i1ndex Y=§

EQUB I3

EQUB @

EQUS"ON" \ 1ndex Y¥Y=5

EQUB I3

EQUB #

Extending Configure

Service call 4§ 1s issued by the MOS whenever 1t
encounters an unknown configure option, such as,
*CONFIGURE DATE It 1s also put out to each ROM when a
simple *CONFIGURE 1s encountered, and 1in such 1nstances
the ROM should print the possible options In both
cases the code 1s not too different from that used
above for *STATUS A simple *CONFIGURE 1s indicated by
looking at the next byte and testing for a return
character The string to be printed 1s simply 'DATE"
followed by the two possible options separated by a
slash character The character strings at 'string' and
'onoff' can be used with the ASCII character for '/'
being printed at the appropriate point to give

DATE OFF/ON

The spaces between DATE and ON/OFF are deliberate to
keep to the format taken by the MOS options

To configure DATE we will specify two slightly
different command strings

*CONFIGURE DATE ON
*CONFIGURE DATE OFF

Oour ROM will receive the call with (&F2),Y pointing to
D oOur code must therefore test for DATE (using the
routine described above - ‘'trytime') and then, after
moving past any spaces, test for ON or OFF

7~

start after DATE

\ get next byte

CMP #32 \ 1s 1t a space?

BNE none \ carry on 1f not

INY \ else increment 1index
\
\

spaces
LDA (&F2),Y

BRA spaces and try again
none

AND #&DF force to upper case

114 Configure and Status

CMP #ASC("O") \ 1s 1t 0O?

BEQ tryN \ branch 1f so

JMP restore \ else not us so restore
INY \ 1ncrement 1index

LDA (&F2),Y \ get next byte

AND #&DF \ force to upper case

CMP #ASC("N") \ 1s 1t N (for ON)

BNE tryF \ no try F

LDY #I \ get byte for ON

BRA write \ and branch to write 1t there
tryF

CMP #ASC("F") \ 1s 1t F (for OFF)

BEQ yesF \ branch 1f so

JMP restore \ else not us so restore
yesF

LDY #8 \ get OFF flag

All that 1s needed now 15 to write the relevant byte
into the correct byte for future reference The Y
register already contains the byte to be written so

write
CLC \ clear carry
LDA &F4 \ get ROM number
ADC #38 \ calculate byte number
TAX \ move 1nto X register
LDA #1162 \ write code number
JSR &FFF4 \ and call OSBYTE

In both specific *STATUS and *CONFIGURE instances, once
the call has been 1dentified and serviced the
accumulator should return to the MOS containing zero

The Program

Listing 9 I puts the above code into practice It uses
listing 8 2 ('TIME') as 1ts base, and the changes and
additions needed to adapt this are listed below Save
the program under the filename 'DATE'

Change lines 18, 68, 224, 328, 1448, 1978, 1180,

1128

Add lines 31r, 3r2, 3r3, 314, 315, 316, 317,
318 319, II31, 1132, IISP to 3138
i1nclusive

The Right Byte

In the examples above the numbers @ and I have been
loaded directly 1into the Y register before writing to

Configure and Status I1T

the battery-backed RAM As already mentioned however we
are only using a single bit in the assigned ROM byte
and we may wish to use more In such cases 1t 1s most
important that the status of the other bits 1n the byte
are preserved otherwise we will change options when not
wishing to To counteract this make good use of the AND
and OR operators to either mask or force bits 1n the
byte Look at the following byte, represented at bat
level

ITIT 1941

Suppose we wish to set bit 2 (third from the raight) to
a1 We need to logically OR the byte with

8008 #1898

to give
I1I1 1141

In assembler this would be

LDA byte \ get byte, 1e 1IIl 144I
ORA #4 \ OR with gggp p148
STA byte \ save result 1e IIIT IIQI

To clear or mask a byte the AND operator can be used
Assuming we now wish to clear the same bit we need to
AND the byte with

IIIT 1611

Bit 3 1s clear and will therefore be masked clear no
matter what 1ts original contents Set bits will be
preserved as I's are placed 1n every other position
The assembler 1s simply

LDA byte \ get byte, 1e IIIIl II@I
AND #&F7 \ OR with IIII 141l
STA byte \ save result 1e IIII I@AI

Compact Note

The technigues 1n this chapter are applicable to the
Compact and the listings which follow do work However,
they rely on the real-time clock which is present 1in
the Master but not the Compact Hence only the default
TIMES will be displayed

I12

Configure and Status

Listing 9 1 Adds date display to configure options
Save as DATE Based on listing 8 2 (TIME)

REM CONFIG and *STATUS
REM (C) Bruce Smith June 1986
REM Advanced SRAM Guide

PROCassemble
PROCchecksum
*SRWRITE 5800 +380 8088 6
END
DEF PROCassemble
osnewl=&FFL7
comline=&F2
FOR pass=4 TO 7 STEP 3
P%=580008 0%=4&5000
(
OPT pass
EQUB #
EQUW ¢
JMP service
EQUB &82
EQUB offset MOD 256
EQUB I
title
EQUS "Configure and Status ROM"
EQUB 4
version
EQUS [1] I ﬂﬂn
EQUB 4
offset
EQUB @
EQUS "(C) Bruce Smith"
EQUB §#
service
CMP #§27
BNE tryhelp
JMP time
tryhelp
CMP#41 BNE nextry
JMP status
nextry
CMP#40 BNE andnext
JMP configure
andnext CMP #9
BNE nothelp
PHA
PHX
PHY
LDA (comline),Y

Configure and Status

Listing 9 I continued

388
398
4p9
4Tp
428
A38
449
458
46
478
488
494
580
518
528
538
540
558
5680
578
588
598
608
61p
628
638
648

CMP #I3
BNE check
JSR help
LDX #255
details
INX
LDA command,X
BEQ donecommand
JSR &FFE3
BRA detalls
donecommand
JSR osnewl
BRA restore
\
check
LDX #255
DEY
agaln
INX
INY
LDA (comline),Y
AND #&DF
CMP com,X
BEQ agaln
LDA com,X
CMP #&FE
BEQ mine
restore
PLY
PLX
PLA
nothelp
RTS
\
help
JSR osnewl
LDX #&FF
JSR helploop
JSR helploop
JSR osnewl
RTS
\
helploop
INX
LDA title,X
BEQ done
JSR &FFE3
BRA helploop

II3

IT4

Listing 9 I continued

869

874

889
894

984

914

924

934

944

950

964

978

989

994
by)]
IgTg
Ig2p
1838
1048
Ig59
Ideg
I878
1488
1999
1189
I11p
11248
II3g
II3r
I132
II4p0
1158
ITe6g
1179
1188
1198
I249
1219
1228
1238
12449
T254
1268
12748
T284
12949
1344
I3rg

done
RTS

mine
JSR help
LDX #255
more

INX
LDA 1lists,X
BMI alldone
JSR &FFE3
BRA more
alldone
PLY
PLX
PLA

LDA #8

RTS

com

EQUS "DATE
EQUB &FE
command
EQUS" Date"
EQUB £
lists
EQUS '
EQUB I3
EQUS
EQUB I3
EQUs "
EQUB I3
EQUB &FF
\

time
PHA
PHX
PHY
CLC
LDA &F4
ADC #38
TAX
LDA #I6T
JSR &FFF4
CPY #§
BNE carryon
JMP restore
\

carryon
LDA #T4

*CONFIG DATE ON"
*CONFIG DATE OFF"

*STATUS DATE"

Configure and Status

Confaigure

Listing 9

I328
1338
348
1358
1368
1374
1384
1394
1489
TAIP
T4248
T438
T448
T458
T468
1478
T488
T498
1508
I5I9
1528
1538
1548
I558
1560
1578
15849
15948
Tegg
T6Ig
1628
T638
T648
1658
1668
1678
1684
1694
1744
1718
1728
I738
1748
1758
1768
1778
1788
1798

LDX
LDY
JSR
LDY
\

and Status

I continued

#5878
#p
&FFFI

#8

date

LDA
JSR
INY
CPY
BNE
JSR
JSR
JMP
\

&78,Y
&FFE3

#15
date
&FFE7
&FFE7
restore

status

PHA
PHX
PHY
LDA
CMP
BEQ
JSR
BCC
JMP
\

(&F2),Y
#I3
dotime
trytime
end
restore

itstime
dotime

LDX

#255

timeloop

INX
LDA
BEQ
JSR
BRA

end

CLC
LDA
ADC
TAX
LDA
JSR
CPY
BEQ
LDY

straing,X
end
&FFE3
timeloop

&F4
#38

#I61
&FFF4
#0
off
#5

off
LDA onoff,Y

BEQ finished

IIS

ITe

Listing 9 I continued

1848
1819
1828
1838
1849
185¢0
18680
1878
188¢0
1899
1908
1919
1924
19349
1948
19548
1968
1978
1988
1999
2008
2818
2028
2838
2948
2050
20640
2078
2084
2098
2108
2I1Q
2124
2138
2144
2158
21648
2178
2189
2199
2249
2219
2228
22348
2248
2258
22648
2278

JSR &FFE3
INY
BRA off
\

finished
PLY
PLX
PLA

LDA #8

RTS
\

string
EQUS 'DATE"
EQUD &20282029
EQUW &gg24
\

onoff

EQUS "OFF'
EQUB I3
EQUB £

EQUS "ON"
EQUB I3
EQUB #

\

configure
PHA

PHX
PHY

LDA (&F2),Y
CMP #I3

BNE notCR
LDX #255
conloop
INX
LDA string,X
BEQ condone
JSR &FFEE
BRA conloop
\

condone
INX
LDA straing,X
CMP#I3
BEQ nextcon
JSR &FFE3
BRA condone
\

nextcon

Configure and Status

Configure and Status

Listing 9 I continued

2288
2298
2388
2310
2324
2338
234p¢
2358
23640
2378
2384
23940
24848
241p
2428
243p¢
2448
2458
2468
2478
2488
2498
2500

INX
LDA #asc"/
JSR &FFE3
doon
INX
LDA string,X
BEQ thatsall
JSR &FFE3
BRA doon
\
thatsall
JMP restore
notCR
JSR trytime
BCC spaces
JMP restore
\
spaces
LbA (&F2),Y
CMP #32
BNE none
INY
BRA spaces

2518 \

2524
2538
2544
2558
2568
2578
2580
2594
2600
2610
2628
2638
2648
2658
2660
2678
2688
2698
2708
2718

none
AND #&DF
CMP #ASC"O"
BEQ tryN
JMP restore
\

tryN

INY
LDA(&F2),Y
AND #&DF
CMP #ASC"N"
BNE tryF
LDY #I

BRA write
\

tryF
CMP #ASC'F"
BEQ yesF
JMP restore

yesF

2728 \

2738
2748
27548

LDY ##
write
CLC

I17

II18

Listing 9 I continued

2768
2778
2788
2798
28040
2819
2828
2839
2844
2858
2860
2878
28849
28949
2940
2919
2924
2938
2944
2958
29648
2978
298¢
2999
3099
318
3928
3934
3949
3458
3g60
3078
3080
3698
3Ip9
3I1g
3129
3138

LDA &F4
ADC #30
TAX
LDA #I62
JSR &FFF4
JMP finished
\
trytime
DEY
LDX #255
loopt
INY
INX
CPX#4
BEQ ours
LDA (&F2),Y
AND #&DF
CMP string,X
BEQ loopt
SEC
RTS
\
ours
CLC
RTS
1
NEXT
ENDPROC

DEF PROCchecksum

N§=0

FOR X%=&5808 TO &520E
N$=N$+2X%

NEXT

IF N%=645I1 THEN ENDPROC
vDU 7

PRINT"Assembler error!"
STOP

N

Configure and Status

Chapter Ten
Booting ROMs

ROMs may be turned on at a ‘'hard reset' -- by depressing a
particular key while also pressing the CTRL and BREAK keys
together For example, holding the D key down while
pressing CTRL and BREAK together (written CTRL-D-BREAK)
and the disc filing system will be booted In a similar
manner, hold the A key down when pressing CTRL-BREAK
(CTRL-A-BREAK) to select the Advanced Disc Filing System
If you have an Econet board fitted then you can boot the
Advanced Network Filing System by pressing down the N key
with CTRL-BREAK (CTRL-N-BREAK) This auto selection does
not happen by magic - obviously the ROM concerned must look
to see 1f 1ts chosen key 1is being depressed at the same
time, and 1f so take the necessary action To facilitate
this a service call 1s provided - number 3 - and ROMs which
can take advantage of 1t should test for 1t and trap in the
normal fashion

Service call 3 1s not 1ssued by the MOS at every hard
reset When this occurs the MOS looks at the keyboard to
see 1f any other key(s) 1s being pressed Only 1f one 1s
wi1ll 1t 1ssue a service call 3

Once the service call 1s caught the first step 1s to
'look' at the keyboard to see what 'other' key was being
pressed This 1s performed by OSBYTE &7A which will return
the INTERNAL key number of any key detected 1in the X
register Note this 1s the internal key number as used by
the Master itself Table If I lists the internal number for
each key

Obviously you will need to choose a key that 1s not being
used to auto-boot another ROM so beware of choosing letters
such as D, A, N and F (which 1s also used by the ADFS)

In the example program detailed here two boot options are

ASR-1I

I2g Booting ROMs

Key ASCII INKEY Key ASCII INKEY
SPACE 32 &62 ' 44 &66
- 45 &17 46 &67
/ 47 &68 ') 48 &27
I 49 &30 2 7] &3
3 5T &IT 4 52 &I2
5 53 &I3 6 54 &34
7 55 &24 8 56 &I5
9 57 &25 58 &48
' 59 &57 64 &47
A 65 &4T B 66 &64
C 67 &52 D 68 &§32
E 69 &22 F 78 &43
G 71 &53 H 72 &54
I 73 &26 J 74 &45
K 75 &46 L 76 &56
M 77 &65 N 78 &55
0 79 &36 P 88 &37
Q 8T &1 R 82 &33
s 83 &51T T 84 &23
U 85 &35 \Y 86 &63
W 87 &21 X 88 &42
Y 89 &44 Z 94 &61
[9T &38 \ 92 &78
] 93 &58 - 94 &I8
_ 95 &28 ESCAPE 27 &70
TAB 9 &60 CAPSLK &48
CTRL &I SHIFTLK &50
SHIFT &g DELETE I27 &59
COPY &69 RETURN I3 &49
UP CRSR &39 DN CRSR &29
LT CRSR &I9 RT CRSR &79
£g &20 fI &71
f2 &72 £3 &73
f4 &14 £5 &74
fo &75 £7 &l6
£8 &76 £9 &77

Table If I 1Internal key numbers

provided The first allows you to catalogue a disc by
pressing CTRL-C-BREAK, and the second will instigate the
ROM Filing System (examined 1n Chapter I4) with
CTRL-R-BREAK

Therefore we need to test the X register for the internal
key codes for the letters C and R, that 1s &52 and &33

Booting ROMs I2T
respectively The coding to do this 1s given 1in the
following lines

boot

PHA \ save registers

PHX

PHY

LDA #&7A

JSR &FFF4 \ read keyboard

CPX #&52 \ was 1t a 'C'?

BEQ cat \ yes so do *CAT

CPX #&33 \ was 1t an 'R'?

BEQ rom \ yes so do *ROM

JMP restore \ else restore and return
If a 'C' 1s detected then before we can *CAT the disc, the
disc filing system must be selected To do this we place
the command *DISC (abbreviated to *DI) into the input
buffer using OSBYTE &8A X should contain # and the Y
register the ASCII value of the character to be 1inserted
Writing a return character (ASCII I3) will complete the
operation Before doing this the keyboard buffer should be
flushed with OSBYTE IS5 to remove any surplus keypresses

i LDA #I5
' JSR &FFF4 \ flush buffers

LDA #&8A \ character 1nsert code

LDX #§

LDY #ASC("*") \ 1nsert *

JSR &FFF4

LDY #ASC("D") \ 1insert D

JSR &FFF4

LDY #ASC("I™) \ 1insert I

JSR &FFF4

LDY #ASC(" ™) \ 1insert

JSR &FFF4

LDY #I3 \ do *DI

JSR &FFF4
The next action is to catalogue the disc using * as an

abbreviation for *CAT

LDA #&8A \ character insert code
LDX #@

LDY #ASC("*") \ 1nsert *

JSR &FFF4

LDY #ASC("™ ") \ 1insert

JSR &FFF4

LDY #I3 \ do *CAT

JSR &FFF4

~

I22 Booting ROMs

All that remains 1s for the stack to be pulled and the
accumulator loaded with zero to acknowledge a successful
boot

The *ROM coding 1s the same except that we 1nsert *ROM
into the keyboard buffer, remembering to flush i1t first of
all though

LDA #I5

JSR &FFF4 \ flush buffers
LDA #&8A \ character insert code
LDX #§

LDY #ASC("=*") \ 1insert *

JSR &FFF4

LDY #ASC("R") \ 1nsert R

JSR &FFF4

LDY #ASC("O") \ 1nsert O

JSR &FFF4

LDY #ASC("M") \ 1nsert M

JSR &FFF4

LDY #I3 \ do *ROM

JSR &FFF4

Before restoring the registers the routine prints a short
filing system message on to the screen to signify that the
ROM filing system 1s active

Entering the Program

You can use program 4 3 (saved as 'HELP3') as the basis for
listing I# I and make the changes and additions detailed
below Once complete save the program as 'BOOT'

Change lines Ip, 228, 1848, 1879, 1198, I128
Add lines 55, 3II, 3I2, 313, 3I4, IISF to I99g
inclusive

Booting ROMs I23

Listing If I Sets up two boot options CTRL-C-BREAK wi1ill
catalogue a disc, CTRL-R-BREAK will set up the ROM Filing
System Save as BOOT Can be adapted from listing 4 3
(HELP3)

I4 REM Autoboot ROM
2 REM (C) Bruce Smith June I986
3¢ REM BAdvanced SRAM Guide

58 PROCassemble
55 PROCchecksum
60 *SRWRITE 5800 +208 80890 6
78 END
8 DEF PROCassemble
98 osnewl=&FFE7
188 comline=&F2
ITP FOR pass=4 TO 7 STEP 3
129 pe=&8008 O%=&5004
I3 (
T48 OPT pass
IS8 EQUB #
I68 EQUW £
I78 JMP service
188 EQUB &82
I98 EQUB offset MOD 256
208 EQUB I
218 tatle
228 EQUS "CTRL Boot ROM'
234 EQUB #
24 version
258 EQUS " I g8
264 EQUB #
278 offset
2808 EQUB #
298 EQUS "(C) Bruce Smith"
398 EQUB #
3Ig service
3IT CcMP #3
3I2 BNE tryhelp
313 JMP boot
3I4 tryhelp
32 CMP #9
338 BNE nothelp
348 PHA
358 PHX
368 PHY
378 LDA (comline),Y
380 CMP #I3
398 BNE check
488 JSR help

I24 Booting ROMs

Listing If I continued

4T@ LDX #255

428 detalls

434 INX

440 LDA command,X
458 BEQ donecommand
468 JSR &FFE3
478 BRA detalls
488 donecommand
498 JSR osnewl
588 BRA restore
518 \

528 check

538 LDX #255

544 DEY

558 again

560 INX

578 INY

584 LDA (comline),Y
5908 AND #&DF

600 CMP com,X
6If BEQ again
628 LDA com,X
638 CMP #&FE

648 BEQ mine

658 restore

668 PLY

678 PLX

680 PLA

698 nothelp

788 RTS

7I8 \

728 help

738 JSR osnewl
748 LDX #&FF

758 JSR helploop
768 JSR helploop
778 JSR osnewl
788 RTS

798 \

808 helploop
8Ifg INX

828 LDA title,X
838 BEQ done

848 JSR &FFE3
858 BRA helploop
868 done

878 RTS

8840 mine

|

Booting ROMs I25

' Listing I8 I continued

894 JSR help
988 LDX #255
9T# more
924 INX
93g LDA lists,X
944 BMI alldone
9584 JSR &FFE3
968 BRA more
978 alldone
98¢ PLY
994 PLX
188 PLA
IPIP LDA #8
1828 RTS
I3 com
1848 EQUS"BOOT"
I459 EQUB &FE
Ig68 command
I478 EQUS"™ Boot"
I488 EQUB £
I998 1laists
IIf8 EQUS " CTRL-C-BREAK Catalogue D
isc”
IITI@ EQUB I3
II28 EQUS " CTRL-R-BREAK ROM Filing
System"
II38 EQUB I3
IT49 EQUB &FF
I158 \
Ir6d boot
I178 PHA
IT88 PHX
IT90 PHY
I288 LDA #&7A
I2I8 JSR &FFF4
1228 CPX #&52
1238 BEQ cat
1248 CPX #&33
1258 BEQ rom
1268 JMP restore
1278 \
1288 cat
1298 LDA #I5
1388 JSR &FFF4
I3Ip LDA #&8A
1320 LDX #§
I338 LDY #ASC("*")
1348 JSR &FFF4

I26 Booting ROMs

A

Listing I I continued -

1358 LDY #ASC("D")
1368 JSR &FFF4
I378 LDY #ASC("I")
1388 JSR &FFF4
1398 LDY #ASC(" ')
1480 JSR &FFF4
1418 LDY #I3

I428 ISR &FFF4
T438 LDA #&8A
I449 LDX #9

I458 LDY #ASC("*")
T468 JSR &FFF4
I478 LDY #ASC(")
I488 JSR &FFF4
1498 LDY #I3

I588 JSR &FFF4
ISIg JMP out

15298 \

I538 rom

1548 LDA #I5

I558 LDA #&8A
I560 LDX ##4

I578 LDY #ASC("#*")
1588 JSR &FFF4
I598 LDY #ASC("R")
I688 JSR &FFF4
I6I8 LDY #ASC('O")
I628 JSR &FFF4
I638 LDY #ASC("M")
1648 JSR &FFF4
1658 LDY #I3

1668 JSR &FFF4
1678 \

1688 LDX #255

1698 rfs

1788 INX

I7I8 LDA romfs,X
1720 BEQ out

I738 JSR &FFE3
I740 BRA rfs

I758 \

1768 out

1778 pPLY

17808 PLX

1794 pLA

1888 LDA #§

I8I@ RTS

8208 \

Booting ROMs

Listing I I continued

1839
1848
1858
I868
1878
1884
18949
1944
1914
1929
1934
19448
1954
1964
1974
1984
1999

romfs
EQUS "ROM Filing System"
EQUD &@D@D
EQUB #
]
NEXT
ENDPROC

DEF PROCchecksum
Ne=f

FOR X%=&5000 TO &5I83
Ng=N%+2X$

NEXT

IF N$ = 45718 THEN ENDPROC
vDU 7

PRINT"Assembler error!'"

STOP

I27

Chapter Eleven
Workspace

Finding workspace in which ROM software can perform
calculations and keep tabs on various values and
addresses can be problematic when writing service ROMs

Language ROMs are no problem as they are allowed a free
run of the memory map and need avoid only the space
allocated to the MOS and VDU drivers But service ROMs
are another matter They must interact with the current
language ROM and not corrupt any of 1ts or the MOS's
data One way was mentioned earlier - to use the zero
page user's area from &7f to &8F 1inclusive, preserving
1ts contents first by copying 1t onto the bottom of the

&DFFF
MOS workspace
&DD@g
Paged ROM
workspace
&Cgpp
&8FFF
Character font
&8990
VDU variables
&88040
VDU workspace
&8408
Soft key buffer
&8004

Figure IT I Hidden memory map

TN

Workspace I29

stack and restoring 1t by copying 1t back before
returning While this method works 1t does not provide
any permanent means of storing data across several
commands or actions However, there 1s a way by which
service ROMs can grab their own memory 1n steps of 256
bytes - a memory page at a time

Figure II I shows how the I2k of 'hidden' memory 1s
arranged This contains the function key definition
buffer, MOS drivers, exploded character fonts and, most
importantly, ROM workspace This ROM workspace 1s a
7 25k block that stretches from &C@B8 to &DCFF
inclusive - 29 pages of memory in all, which 1s free
for use by ROMs

However this 1s not all for our use remember that
the Master comes fitted with a host of firmware and two
of these, the DFS and the ADFS bite heavily 1into this -
but more on this in a moment

Static and Dynamic

There are two types of ROM workspace The first 1s the
'static' type, so called because 1t has fixed start and
end boundaries The start 1s &C@@P and the end can be
any value up to a maximum of &DBFF Static workspace 1s
open to all ROMs - generally to use as they wish,
although before doing so they must inform other ROMs of
their needs via service call If The second type of ROM
workspace 1s 'dynamic', which has a moveable boundary
and depends on a ROM or ROM's requirements Any ROM can
claim 1ts own 'private' workspace that only 1t has
access to Thus 1important data and information can be
stored away without fear of corruption by other ROMs or
the MOS

Obviously there 1s only a finite amount of private
workspace within the alloted 7 25k hidden RAM If this
1s exceeded then the ROM workspace 1S moved into the
user RAM starting at PAGE, which you mightn't notace,
but the user will when using a program where memory 1s
tight' As a general rule 1t should be considered as bad
form to exceed and break out of the hidden RAM
workspace

Now let's go through the the service calls associated
with this workspace

Service Call 36 (&24)

This 1s the second call 1ssued by the MOS after a hard
reset and 1t asks ROMs to 1indicate how much private
workspace they will require However, 1t does not
actually allocate any workspace

134 Workspace

On entry the Y register will contain the page number
of the current upper limit of the private workspace
All that ROMs need do 1s to increment the Y register by
the number of pages of memory required If one page 1s
required they increment 1t once, 1f two are required
then 1increment 1t twice and so forth On completion the
accumulator should be cleared, thus

call3e

INY \ only one page (256 bytes) needed
LDA ## \ acknowledge
RTS \ and return

Note how simple 1t 1s With all the «calls discussed
here 1t 1s wvitally important that the Y register 1is
treated with respect It must not be decremented, or a
crash 1s sure to result!

Service Call 33 (&21)

This 1s the next service call 1ssued Its action 1s
similar to the call above but 1s more concerned with
static workspace, that 1s, workspace that may be used
by ali ROMs, though only one at a time Static
workspace starts at &C@@f and has an upper limit of
&DBFF, which should not be exceeded Any ROM which
requires static workspace should check the contents of
the Y register on receiving the call If there 1S not
enough space then Y should be 1ncremented to the
desired value It should not go beyond &DB at any taime
For example, 1f a ROM requires static workspace from
&CPPP to &D6@P then 1f the contents of the Y register
are less than &D6, Y should be loaded with &D6 If the
contents are higher then they should not be altered in
any way

call33
CPY #&D6 \ 1s 1t~»

BCC loadit \ branch 1f less than
JMP return \ enough, so return

loadit
LDY #&Dé6 \ set Y to our requirements
JMP return

Service Call 34 (&22)

This call allows ROMs to 1locate their own private
workspace in hidden RAM The first two calls detailed
above allow the MOS to calculate where this begins, and
then use this call to inform each ROM Just where 1its

Workspace I3

own praivate workspace starts On 1ssuing the service
call the Y register contains the value of the first
free page If the ROM 1s claiming private workspace
1t must save the current contents of the Y register 1n
a special ROM workspace table that runs from &DF{
Table IT T details the byte associated with each ROM

ROM number Table byte

[} &DF g
T &DFI
2 &DF2
3 &DF3
4 &DF4
5 &DF5
6 &DF6
7 &DF7
8 &DF8
9 &DF9
18 &DFA
IT &DFB
I2 &DFC
13 &DFD
T4 &DFE
15 &DFF

Table IT I ROM workspace

ROM 6 would therefore place the Y register contents at
&DF6 However, firmware can be placed 1n any one of IS
slots, so the correct way to locate the correct ROM
table position 1is to use the X register as an 1ndex

LDX &F4 \ get ROM position
TYA \ move Y across
STA &DFf,X \ and save

The contents of the Y register can then be incremented
by the desired amount to make space for the current
ROM's private area before the 'new' base value 1s
passed back to the MOS It 1s important that you only
claim the number of pages specified during service call
36 (&24)

Whenever the praivate workspace 1is needed 1ts start
address can be obtained from the table and used with
indirect addressing as required Further detalls on
this along with a working program example can be found

below

I32 Workspace

Service Call I

This service call provides compatibility with standard
BBC micros and should be used by BBC B, B+ and B+I28
users Its purpose 1s akin to that of service call 36
in that 1t 1s trying to determine the total amount of
shared workspace required by ROMs The memory used for
this 1s not 1n private RAM but 1s claimed directly
above PAGE, 1e from &E@f, and as such will reduce the
amount of programming memory available to the user

When this service call 1s 1ssued the Y register
contains the page number of the present upper limit of
this absolute workspace This value should be checked
by a ROM requiring workspace If the value 1s less than
that required then the value of the Y register should
be 1ncremented until there 1s sufficient memory

As an example, consider that a ROM you are writing
requires two pages of RAM for workspace The coding to
check and implement this might look like this

CMP #T \ was 1t absolute claim?
BNE next \ branch 1if not
CPY #&l18 \ 1s 1t >= &E@F+&200>
BCC no \ branch 1f needs incrementing
RTS \ all okay so return
no
CPY #&f0E \ 1s 1t +I or +2°
BNE one \ branch 1f only one page
INY \ 1ncrement page value
one
INY \ 1ncrement page value
RTS \ and return

It 1s vatal that the wvalue 1n the Y register 1s not
decremented, as this could lead to corrupted programs

Service Call 2

This call 1s 1ssued after service call I has been
completed It allows ROMs to claim their very own
private workspace area above the static workspace area
This area of memory 1s exclusive to the ROM claiming 1t
and may not be used by any other ROM Trapping this
call and storing the Y register i1n the ROM table 1s
performed as described above when servicing call &22

Using Private Workspace

Because of the way the sideways RAM/ROM memory 1s
addressed, 1t 1s not possible to read and write

Workspace I33

directly to the area of memory designated as private
workspace for a particular ROM The reasons for this
are somewhat technical, but 1t 1s not necessary to
understand them to wuse the private workspace (The
reasons are discussed below for readers who are more
technically-minded) For the general reader 1t 1s
sufficient to know that before any 1information 1s
written to or read from private RAM the following code
must be performed

writeon
LDA #8
TSB &FE34

And on completion the following code

writeoff
LDA #&F7
TRB &FE34

IMPORTANT Once you have performed 'writeon' you cannot
use any of the regular MOS calls until 'writeoff' 1s
per formed

Listing IT 1 demonstrates the use of private RAM
workspace to implement two new commands, these are
*pUSH and *PULL *PUSH saves the contents of zero page
locations &78 to &8F to private workspace, while *PULL
wi1ill restore them This routine will allow you to use
these 1locations for workspace without fear of losing
the contents of this area

The two routines 'writeon' and 'writeoff' are used to
select and de-select the private workspace as described
above Of course these two routines need only be used
when private RAM 1s being used in the hidden RAM If
service calls I and 2 have been trapped then the
private workspace will be located 1in normal RAM above
&Ef@f# and this can be read from and written to 1in the
normal manner

The actual *PUSH and *PULL routines can be located 1n
lines 2828 to 2194 inclusive

Once entered, save the program as 'PRIVATE'

Using Static Workspace

Statlc workspace 1is straightforward to wuse, but before
you do you must inform the other ROMs in your computer
by 1ssuing service call If (&fA) This 1s done with
OSBYTE 143, with the X register holding the service
call number

134 Workspace

LDA #I43 \ OSBYTE code

LDX #18 \ service call number
LDY #255

JSR &FFF4

Once this has been done the ROM 1s free to use the
static workspace It 1s a good idea to keep a flag
within the ROM's private workspace so that the ROM can
determine whether 1t has use of the static workspace at
any time

Obviously a ROM that 1s capable of claiming stataic
workspace must also be capable of releasing 1t So
therefore the service call software must be capable of
trapping service call 1§ On receiving the call the ROM
should save any vital information in private
workspace, and generally close up shop Once this has
been done the accumulator should be loaded with zero
before returning

As with private workspace, static workspace can only
be used after 'writeon' has been performed No MOS
calls can be used until ‘'writeoff' has be completed
Similarly 1f the static RAM 1s located 1in normal memory
above &Eff then read-write can be performed directly

For the Technically Inclined

Location &FE34 1s the Access Control Latch, ACCCON
for short The state of individual bits within thais
latch determine what areas of memory are 1in use at any
time It effectively dictates the activity of two
regions of memory

1) &30088 to &7FFF
2) &C@PPS to &DFFF

It 1s the second area we are concerned with here - this
1s the static and private ROM workspace in the hidden
RAM

As our firmware 1s 1itself 1n paged memory 1t cannot
directly access the private and static workspace 1n the
hidden RAM which 1s mapped i1n a similar area What the
routine 'writeon' does 1s to overlay this area on the
MOS, so that 1t appears 'above' the firmware using 1t
It therefore 'covers' the MOS, and 1n particular the
VDU drivers which therefore cannot be seen It 1s for
this reason that firmware should not attempt to use
them, until the hidden RAM 1is removed from this area
by the 'writeoff' routine What these two routines do
1s to toggle bit 3 within ACCCON - this 1s the bit that
determines whether the hidden RAM 1s overlaid or not

Workspace I35

To overlay the hidden RAM this bit must be set, but do
not disturb the other bits in this latch which have
specific functions themselves

LDA #8 \ set bit 3, 1e 0000 1998
TSB &FE34 \ test and reset bit 1n latch

Removing the hidden RAM, thus giving access to the MOS
calls again, simply 1nvolves clearing bit 3 1n the
ACCCON latch Again the status of the other bits 1in the
latch must be preserved so the AND operator should be
used

LDA #&F7 \ clear bit 3, 1e IIII @III
TRB &FE34 \ test and reset bit 1n latch

ASR-J

I36

Listing IT I

*PULL

Save as PRIVATE

REM Private Workspace ROM
REM (C) Bruce Smith June I986
REM Advanced SRAM Guide

PROCassemble

PROCchecksum

*SRWRITE 5808 +200 8448 6
END

DEF PROCassemble
osnewl=&FFE7
osasc1=&FFE3
comline=&F2
FOR pass=4 TO 7 STEP 3
P%=58p08 O%=&5000
(
OPT pass
EQUB #
EQUW §
JMP service
EQUB &82
EQUB offset MOD 256
EQUB I
title
EQUS "Private Workspace ROM"
EQUB #
version
EQUS * I gg"
EQUB #
offset
EQUB ¢
EQUS "(C) Bruce Smith"
EQUB £
service
CMP #34
BNE try36
JMP 1ts34
try36
CMP #36
BNE tryhelp
JMP 1ts36
tryhelp
PHA
PHX
PHY
CMP #9

Workspace

Implements two new commands, *PUSH and
to demonstrate use of private RAM workspace

Workspace

Listing II I continued

478
488
499
508
518
524
534
5408
558
560
578
580
5940
600
610

BNE nothelp

LDA (comline),Y

CMP #I3

BNE check

JSR help

LDX #255
details

INX

LDA command,X
BEQ donecommand
JSR &FFE3

BRA details
donecommand
JSR osnewl

BRA restore

628 \

630
648
658
660
678
680
694
789
718
728
738
748
758
760
778
784
798
809
8rg
824

948

check
LDX #255
DEY
agaln
INX
INY
LDA (comline),Y
AND #&DF
CMP com,X
BEQ agaln
LDA com,X
CMP #&FE
BEQ mine
restore
PLY
PLX
PLA
RTS
\
nothelp
CMP #4
BEQ unrecognised
BRA alldone
\
help
JSR osnewl
LDX #&FF
JSR helploop
JSR helploop
JSR osnewl
RTS
\

I37

I38

Listing IT T continued

9548
96 9
978
98p
994

1448

I818

1620

1438

1949

1458

1068

1678

1988

1990

9y]

1118

1128

helploop
INX
LDA title,X
BEQ done
JSR &FFE3
BRA helploop
done
RTS
\
mine
JSR help
LDX #255
more
INX
LDA lists,X
BMI alldone
JSR &FFE3
BRA more

IT38 \

Ir4p
IIs5g9
IT6g
1179
I18g
I19g
1249
1219
1228
1238
1248
1258
1268
1278
128p0
1294
1349
I31Ip
1328
1338
348
358
1368
1378
1388
13989
Tagp
T4TlgH
T424

alldone
PLY
PLX
PLA
RTS
\
com
EQUS COMMANDS"
EQUB &FE
command
EQUS" Commands"
EQUB f#
lists
EQUS PUSH"
EQUB I3
EQUS " PULL"
EQUB I3
EQUB &FF
\
unrecognised
LDX #255
DEY
PHY
1identify
INX
INY
LDA (comline),Y
AND #&DF
CMP comtable,X

Workspace

Workspace

Listing ITI I continued

T43g9
T44p
1459
Taep
1479
1488
14989
15488
ISIg
1528
1538
1548
1554
15648
1578
1588
1598
I6gg
I6elg
16248
I638
Te64g
1658
668
1678
Te68g
1699
1789
1719
17248
1738
1749
1758
1768
1779
17849
1798
1848
1818
1828
1838
18448
1854
1864
1878
1888
1898
1944

BEQ 1
LDA c
BMI a
\
move
INX
LDA c

dentaify
omtable,X
ddress

on

omtable,X

BPL moveon

BNE n
PLY
BRA a
\
note
INX
PLY
PHY
JMP 1
\
addr

otend
lldone

nd

dentify

ess

CMP #&FF

BNE n
PLY
BRA a

OtFF

lldone

notFF

\
STA &
INX
LDA ¢
STA &
JMP (
\
comt
EQUS
EQUB
EQUB
EQUS
EQUB
EQUB
EQUB
\

39

omtable,X
38
&38)

able

"PUSH"

push DIV 256
push MOD 256
'PULL"

pull DIV 256
pull MOD 256
&FF

found

PLY
PLY
PLX
PLA
okay

LDA ##8

RTS

I39

49

Listing IT I continued

1919
1924
1938
19448
T954
1969
1978
1989
19948
2889

2019 \

2028
2830
2048
2058
2068
2878
2088
2994
2148
2118
2124
2138
2T4g
2159
2168
2179

\
1ts36
INY
BRA okay
\
1ts34
TYA LDX &F4
STA &DFg,X
INY
BRA okay

push

JSR writeon
LDX &F4

LDA &DF#,X
STA &39

LDY #8

STY &38

DEY

pushloop
INY

LDA &78,Y
STA (&38),Y
CPY #&IF

BNE pushloop
JSR writeoff
JMP found

2188 \

2199
2288
2218
2228
2238
2248
2258
2268
2278
2288
2298
2304
23149
23240
2338
2348
2358
2360
2378
2388

pull
JSR writeon
LDX &F4

LDA &DFf#,X
STA &39

LDY ##

STY &38

DEY

pullloop
INY

LDA (&38),Y
STA &78,Y
CPY #&IF

BNE pullloop
JSR writeoff
BRA found

\

writeon

LDA #8

ORA &FE34

Workspace

Workspace

Listing IT I continued

2394
2408

STA &FE34
RTS

2419 \

2428
2438
2448
2458
2468
2478
2488
2498
2588
2518
2528
2534
2548
2558
2568
2578
25840
25940

writeoff
LDA #&F7
AND &FE34
STA &FE34
RTS

]

NEXT
ENDPROC

DEF PROCchecksum

Ng=8

FOR X%=&5008 TO &5I7C
N$=N%+°X$%

NEXT

IF N%$=46643 THEN ENDPROC
vDU 7

PRINT"Assembler errort!"
STOP

I4r

Chapter Twelve
ROM Calls

The switch that controls which of the si1deways ROMs 1s
paged i1n at any time 1s software controlled In fact a
particular ROM 1s selected simply by writing the binary
representation of the ROM socket number, into the low four
bits of the paged ROM select register at &FE38 The MOS
also keeps a copy of this at location &F4 and this must
also be written to when you wish to select a particular ROM
in this way The coding required to select a particular
sideways ROM 1S very simple For example, to select the ROM
in ROM socket I5 the coding would be

LDX #I5 \ load X register with ROM number
STX &F4 \ write RAM copy
STX &FE3f8 \ write to ROM select register

Note the order in which the ROM slot number 1s written It
must be written to the RAM copy at &F4 first Performing
the operation in reverse could cause the Master to crash 1if
an 1nterrupt was to occur during the two write operations
Note also that &FE3f should never be read - always use &F4
when you wish to ascertain the ROM number Poking these
addresses directly from BASIC or any other language will
almost certainly result in the Master hanging up

In addition to location &F4 there are several other bytes
within zero page RAM that are associated with the ROM
system These are detailed in Table I2 I

We have already used the vectored address at &F2 several
times To recap, the MOS wuses 1t as a text pointer for
processing commands Normally 1t holds the address of the
first character after the asterisk in the command, and the
Y register holds the 'post indirect index' to the command

ROM Calls 143

Address Function

&F2 - &F3 Text pointer vector

&F4 Value of currently selected ROM
(copy of ROM select regilster)

&F¥6 - &F7 Vectored address of current position

1n paged ROM

Table I2 I Paged ROM associated RAM addresses

Finally, the vectored address at &F6 holds the exact
address of a position in a paged ROM (see Dbelow)
Manipulating any of these addresses 1including the paged ROM
select register must be done from machine code, otherwise
the Master will hang up

Operating System Read ROM Call (OSRDRM)

At &FFBY 1s the 'operating system read byte from paged ROM'
call - OSRDRM for short This call allows single bytes
within paged ROMs to be read from machine code or from
other paged ROMs On entry the Y register should contain
the number of the ROM to be read, while the vector at &F6
holds the address of the byte to be read Oon return from
OSRDRM the accumulator contains the byte 1tself Laisting
12 T 1llustrates how this call can be used to read the
BASIC title string The program begins by poking the
address vector at &F6 with the start address of the title
string, &8008 (lines 124 to 158) The print 'loop' 1s
entered at line 160 As we are entering the machine code
from BASIC 1tself then the ROM socket number of BASIC can
be extracted directly from &F4 (line 178) The low byte of

OSBYTE Function
&16 (22) Increment ROM polling semaphore
&17 (23) Decrement ROM polling semaphore

&8D (I41) Perform *ROM
&8E (142) Enter language ROM

&8F (I43) Issue service request

&A8 (I68) Read address of ROM pointer table

&AA (178) Read address of ROM information table
&B3 (179) Read/Write ROM polling semaphore

&BA (186) Read number of ROM active at last BRK/error
&BB (187) Read number of socket holding BASIC ROM
&FC (252) Read/write current language ROM number

Table 12 2 OSBYTE calls associated with sideways ROMs

144 ROM Calls

the address to be read 1s incremented (line 180), and the
byte 1s read (line 194) A zero byte will indicate the end
of the title string so this 1s tested for by 1line 204,
otherwise the byte 1n the accumulator is printed and th
loop re-executed (lines 218 to 224) If you have severa
sideways ROMs present then their title strings can b
printed simply by altering line 178

ROM Byte

There are several OSBYTE calls associated with the si1deways
ROM system, these are outlined here Table 12 2 1lists the
assoclrated calls

OSBYTE &16 (*FX 22)
This causes the MOS to begin 1ssuing service call number
&I5 (2I) 188 times every second See Chapter 8 for details

OSBYTE &17 (*PX 23)
Stops MOS 1ssuing service call number &15 (21) Chapter 8
has more detalls

OSBYTE &8D (*FX 141)

Allows the *ROM filing system to be selected There are no
set up entry parameters and the accumulator contents are
preserved See Chapter I3 for full details of the ROM
filing system

OSBYTE &8E (*FX 142)

This call will boot up a selected language ROM On entry
the X register contains the socket number of the language
to be entered To enter View from BASIC or any other
language, use

*FX 142,14
View being 1n socket number 14 (&E)

OSBYTE &8F (*FX143)

This call will cause the MOS to 1ssue a paged ROM service
request Thus any ROM can get the MOS to 1issue a particular
service call at any time 1t wishes The entry parameters
for this call are that the X register contalns the service
code and the Y register the service argument, 1f any On
ex1t the Y register may return a result 1if approprilate

OSBYTE &A8 (*FX 168)

This call returns the address of a ROM pointer table
containing vectored addresses for entry 1nto ROMs This
subject 1s dealt with in chapter 7 On exit from the call

ROM Calls I45

the 1ndex registers return the address of the pointer
table, low byte 1in X, high byte 1in Y For the 3 2@ MOS the
address returned 1is &D9F

OSBYTE &AA (*FX 178)

This call returns the address of a ROM 1information table
that contains detalls of types of sideways ROMs present 1in
the Master This 1information table 1s detailed in Chapter
IT The address 1s returned in the 1index registers - low
byte in X, high byte in Y For the 3 2@ MOS this address 1s
&2AT

OSBYTE &B3 (*FX 179)
Using this call 1t 1s possible to read or write the state
of the ROM polling semaphore

A=179 X=n Y=§ w1lll read the semaphore into X and set
the state to n
A=179 X=# Y=255 reads semaphore 1into X

Note that use of this call to set the state directly will
interfere with *FX22 and *FX23

OSBYTE &BA (*FX I86)

This call returns the number of the ROM that was active
when the last BRK error occurred The value 1s returned 1n
the X register

OSBYTE &BB (*FX 187)

This call reads the number of the ROM socket which contains
the BASIC ROM The number 1s returned in the X register
Chapter I4 contains details of 1ts use to re-boot BASIC to
exit from another language ROM

OSBYTE &FC (*FX 252)

This call returns the number of the ROM socket containing
the current language ROM 1in the X register It 1s written
to whenever a new language ROM 1s booted with OSBYTE &8E

146

Listing 12 1

OSRDRM Save as READ

REM Read title string from ROM
REM Advanced SRAM Guide
REM (C) Bruce Smith June 1986

osrdrm=§FFB9
osascl1=&FFE3
FOR pass=# TO 3 STEP 3
P%=5A00
(
OPT pass
readstring
LDA #&88
STA &F7
LDA #8
STA &F6
loop
LDY &F4
INC &F6
JSR osrdrm
BEQ out
JSR osasci
BNE loop
out
RTS
]
NEXT
CALL readstring

ROM Call

Reads BASIC title string to demonstrate

Chapter Thirteen
ROM Filing System

The ROM Filing System (RFS), may contain either BASIC,
or machine code programs and may be loaded, chained, or
run as normal Table I3 I 1lists the commands and
operating system calls with the RFS, which 1s selectled
by the *ROM command !

As with any other filing system, eg tape, disc, ADFS,
files must be saved to a particular format In the case
of RFS they must be formatted as an 1mage that can be
loaded directly 1into sideways RAM or blown 1into an
EPROM The number of files stored per ROM 1mage 1s
limited only by the amount of space within the si1deways
RAM block Thus RFS-formatted 1mages may be up to Iék
in length

Just like any other software that 1s to be placed in
si1deways RAM, the RFS 1mage must contain a standard
header along with a service entry point and any
relevant coding In addition to any standard *HELP
messages, etc, that you may wish to include, service

LOAD

*CAT

*EXEC

*LLOAD

*RUN

OSARGS (filing system 1dentification only)
OSBGET

OSFILE (save 1s not possible)

OSFIND (output opening 1s not possible)

Table I3 I ROM Filing System commands and calls

I48 ROM Filing System

calls I3 (&gD) and I4 (&PE) must be caught and
processed as these inform the MOS of the RFS details

Service Call I3

This 1s the RFS 1initialisation call It 1s 1ssued by
the MOS when a filing system command 1s used while the
RFS 1s active It allows a ROM to inform the MOS that
1t contains a ROM 1image, along with the start address

The service call number 1s held in the accumulator on
entry and the Y register contains a number which i1s IS
minus the number of the next ROM to be scanned If
this value 1s less than the number of the current ROM
being 1investigated then the ROM should 1gnore the
service call as 1t has already been processed earlier
If not, the current ROM's number (at &F4) should be put
in the accumulator and placed 1in zero page location
&F5 This 1s an important step as 1t indicates to the
MOS that an RFS-formatted ROM 1s present

The final act of the ROM header coding should be to
place the start address of the ROM file data into the
vector at &F6 and &F7 To complete the call and inform
the MOS that the current ROM 1s now active the call
should return with the accumulator holding zero

entry
CMP #I3 service call I3?
BNE tryagain 1f not branch over
PHA push accumulator
TYA Y holds ROM number
EOR #I5 calculate (I5-ROM number)
CMP &F4 less than current ROM
number?
BCC return yes 1f carry clear so

return
low byte file start
address

LDA #filename MOD 256

PV P gV 4V 4V 4V P GV AV D P L AP L P

STA &F6 save 1n vector low byte

LDA #filename DIV 256 high byte file start
address

STA &F7 save 1n vector high byte

LDA &F4 get current ROM number

EOR #I5 restore ROM number on
entry

STA &F5 save the flag

JMP restore jJump to ex:it routine

return
PLA restore service type
RTS back to MOS

tryagain

ROM Filing System I49

The label 'filename' 1s used to mark the start of the
programs 1in RFS format In the formatting program
presented 1later on, I have in fact given this an
absolute address, namely &8I and have therefore

loaded these two bytes immediately into the accumulator
on both occasions

Service Call I4

This call 1s a simple RFS ‘'get byte' routine To
respond to this the current ROM must check location
&F5 If this byte 1s equal to I5-?&F4, then the current
ROM 1s i1ndicated The MOS uses this call to read bytes
from the ROM when performing filing system actions,
such as *CAT, LOAD etc

To extract the correct byte the Y register must be
cleared as used for post indirect address to peek the
byte held at the vectored address in &F6 The read byte
should be returned 11n the Y register with the
accumulator clear to indicate that the call has been

serviced correctly The ROM byte request 1s handled as
follows

tryagain \ entry
CMP #&0E \ 1s 1t ROM byte get?
BNE back \ 1f not then branch to back
PHA \ save service call
LDA &FS \ get 'current' ROM value
EOR #I5 \ calculate (I5-ROM number)
CMP &F4 \ 1s 1t same as this ROM number?
BNE return \ no, 1t's another ROM so return
LDY #8 \ clear 1ndexing register
LDA (&F6),Y \ read byte 1nto accumulator
TAY \ move 1into Y register
INC &F6 \ 1ncrement low byte vector
BNE restore \ branch 1f not zero
INC &F7 \ else increment high byte of
\ vector
restore
PLA \ pull service type off stack
LDA #£ \ clear accumulator to 1indicate
\ that service has been performed
RTS \ and back to MOS

Again, nothing too difficult in the coding The service
call handling routine 1s the minimum required It can
be expanded to include a *HELP service call, as 1in the
formatting program (listing I3 I) where the above code
can be seen 1in lines 1748 to I9I@ inclusive Standard
service ROM utility programs and languages can be mixed

I58 ROM Filing System

with RFS formatted programs, as long as there 1s enough
space and the correct service call coding 1s present

The ROM Image

The construction of the actual RFS program 1mage 1S
similar to the cassette filing system, using a block
structure Each block consists of a header followed by
the file data The header construction 1s important and
1s laid out as follows

I synchronisation byte, &2A (ASCII"*")

2 Filename, up to ten characters long

3 A filename terminating zero byte, &@f

4 File load address

5 File execution address

6 Two-byte block number

7 Two-byte block length

8 File flag

9 Address of first byte after end of file

I Two-byte header cyclic redundancy check (CRC)

The synchronisation byte must always be &2A (ASCII "*")
so that the filename always 1looks as though 1t was 1in
*RUN format, 1e, *FILENAME A filename cannot be a null
string so must contain a minimum of just one character
though 1t must not exceed ten characters in length
The filename 1s terminated with a zero byte The load
and execution addresses occupy four bytes, the low byte
being stored first The high two bytes provide space
for a second or co-processor relocation address The
block number and length details consist of two bytes
stored low byte fairst

The file flag provides details about the file stored
at bit level Three bits are used thus

Bit 7 If set, indicates this 1s the last block of
the current file

Bit 6 If set, indicates this block contains no
data

Bit # Protection bit If set, the file can only
be *RUN

The function of bit 6 may seem odd at first sight An
empty block can be created at ROM 1mage formation time
1f the file 1s opened for output and then closed before
any data can be written to 1t using BPUT

The header cyclic redundancy check (CRC) 1s contained
in two bytes, stored high byte first The CRC 1s an
error check against data corruption Each CRC 1is unique

ROM Filing System IST

to the 1tem 1t refers to as 1t 1s calculated from all
the data that 1t relates to' A suitable algorithm for
calculating the CRC of a piece of data would be

High Byte = data EOR high byte

For loop=l TO 8

Carry=§#

IF (msb of high byte=1l) THEN high and low bytes EOR
&84 cCarry=I

high and low bytes=(high and low bytes*2+carry) AND
&FFFF

NEXT loop

After the header comes the file block which 1s, for a
full block, 256 bytes The last block of a file may be
shorter 1f the file length 1s not exactly divisible by
256 The length of the block 1s specified 1n the two
header bytes, block length The file data 1is terminated
by the two CRC bytes as calculated for the header CRC

To save ROM space the header of file blocks, other
than the first and last file blocks, may be abbreviated
by a single character, the hash, '#' which 1s ASCII
&43 If a hash header 1s used the MOS assumes the
header detalls are the same as 1in the first file block

Finally, the end of the ROM 1mage, that 1s the byte
after the last file of the last program, 1s marked by
an end-of-ROM marker, typically '+', ASCII code &2B
This marker may be omitted only 1f the ROM 1image spans
over to another ROM which must be positioned as the
next ROM number 1in order of priority

ROM Fi1ling System Vectors

As 1s common on the Master micro, indirect entry to the
RFS processing 1s performed via the standard page two
vectors Table I3 2 1lists the vectors changed by
initialisation of the RFS and the address contained
within them for the 3 20 MOS

Vector Address Indirection address
FILEV &2T2 &FFIB
ARGSV 8214 &FFIE
BGETV &2I6 &FF2I
BPUTV &218 &FF24
GPPBV &2IA &FF27
FINDV &2IC &FF2A
FSCV &21E &FB69

Table I3 2 ROM Filing System Vectors

ASR-K

I52 ROM Filing System

Table I3 2 indicates that provision for a OSBPUT has
been 1ncluded in the RFS vectored entry, but this 1s
rather meaningless as a ROM may only be read from

ROM Image Formatter

Listing I3 T 1s a tried and tested ROM 1mage formatting
program Because of 1its use of random access filing, 1t
will not work effectively on a tape-based system, and
as such has been written with disc or net in mind The
program will read in specified files from the storage
medium 1in use and format them 1nto a ROM 1mage for use
with the RFS As wraitten the program assumes that a I6k
image 1s required though 1t may be any length up to
this value

If the total file image length will exceed I6k then
you are 1informed and the last file entered 1s not
accepted On completion, the ROM 1image may be saved to
the current filing system, written directly 1into
sideways RAM or left 1n memory

Using the Formatter

A brief description of the program can be found at the
end of this chapter Once you have entered the program
save 1t under the filename 'ROMFS' You can then go
ahead and use 1t as described below

The RFS formatter 1s simple to use First ensure that
you have all the programs that you wish to format to
hand, preferably on the same disc (or in the current
directory 1f running ADFS or ANFS)

On running the screen will clear and you will be
asked to enter the title of the ROM you wish to format
This 1s the string that will be printed out in response
to a *HELP After this you will be prompted for any
copyright string You need not enter anything 1f you so
wish, the obligatory '(C)' 1s entered by the program
Now you will be requested to enter the name of the
first faile Do this and press return The file will
then be read in and formatted The formatting process
may take several moments for a longish program Once
the file has been read 1in and formatted the amount of
memory remaining i1n the ROM 1image will be displayed
You will then be asked for the name of the next file
If the file size exceeds that of the space remaining oOr
the specified file cannot be found then an error will
be displayed and you will be asked for the next
filename once again

Once formatting 1s complete, simply press the return
key when the next filename prompt 1s 1ssued to complete

ROM Filing System I53

the construction of the ROM 1image You will then be
asked 1f you wish to

T) Quit
2) Save the ROM 1image
3) Wraite the 1mage to sideways RAM

Simply press the appropriate key to select 1In the case
of T and 2 you will be asked to enter either a filename
or the sideways RAM bank number respectively

Once 1n sideways RAM press CTRL-BREAK to 1initialise
the ROM Typing *ROM and then *CAT should show that all
1s 1in order Files can then be loaded in as normal

Checking the Image

Of course it 1s possible that your ROM 1mage will not
work correctly £first taime round The two possible
errors you could get are 'Bad Rom' and 'Data' The Bad
ROM error message means that your header coding 1s not
correct so recheck through lines I36§ to 2098 'Data’
infers that the problem lies elsewhere in the program
and will need to be checked thoroughly The following
pages details the formation and checking of a
‘standard' ROM i1mage If you are having problems, work
through what follows and try to locate where your
problem lies

The first step 1s to enter and save a short test
program

IPREM demo listing
2fREM for use with
36REM RFS format
4fREM program

It 1s important that the program 1s entered exactly as
shown, with no extra spaces The program should occupy
just 67 bytes, so ensure that the memory marker TOP
1s &E43 Check this by typing

PRINT ~TOP

If this 1s not the case ensure that you have not
entered any extra spaces at the end of a line Once you
are satisfied all 1s well save the program twice using
the filenames 'DEMOI' and 'DEMO2'

Access to a hexadecimal and ASCII dump routine 1S
vital If you have a suitable utility available in a
sideways ROM then all 1s well In case you don't,
program I3 2 1s 7Jjust such a routine Enter and test

154 ROM Filing System

this then save 1t to disc as 'DUMPER' The next stage
1s to enter the formatter, and clear the buffer using

FOR N%=&3008 TO &40 STEP 4 IN%=g NEXT

This process 1s not normally required but 1t will
enable us to see where the ROM 1image ends clearly The
next step 1s to run the formatter and use DEMO and TEST
(1n uppercase) as the title and copyright strings Now
enter DEMOI as the name of the first file to be
formatted Once this has been read 1in the number of
bytes remaining should be shown to be 16833 Enter
DEMO2 as the second file to be formatted After
formatting the bytes remaining should be 15938 Now
press return and select option I from the menu, 1e
Quit

The next stage 1in the process 1s to load the DUMPER
program Running this will produce a dump of the ROM
1mage as shown 1n figure 13 I This should be examined
closely byte by byte and the following description
should help

The bytes from &3860 to &306D contain the ROM service
call header as described earlier The title and
copyright strings can clearly be seen 1in the ASCII dump
section on the right hand side of the listing

3000 P8 PO B8P 4C 17 8P 82 @D L
3808 P8 44 45 4D 4F PP 28 43 DEMO (C
3818 29 28 54 45 53 54 gg C9) TEST
3618 49 F@ 3B C9 @D Df 1B 48 H
3028 98 49 gF C5 F4 99 IT A9 I

3828 gp 85 F6 A9 81 85 F7 A5

3838 F4 49 @F 85 FS 4C 52 8§ I LR
3638 68 68 C9 GE DP FB 48 AS h H
3648 FS 49 PF C5 F4 DJ FI A I

3848 @@ Bl F6 A8 E6 F6 Dg 82

358 E6 F7 68 A9 g0 608 DA 20 h

3458 E7 FF A2 FF E8 BD f9 84

3060 F@ f5 28 E3 FF 88 F5 20

368 E7 FF FA 4C 52 88 00 09 LR
Figure I3 1 Hexadecimal dump of ROM 1image

The bytes from 3870 to 3fFF should all contaln zero as
these are not used

The line starting 3Iff contains the synchronisation
byte, &2A, followed by the ASCII filename and then the
terminator byte, &g4@

3168 2A 44 45 4D 4F 3I g0 A9 *DEMOI

ROM Filing System ISS

The next four bytes, the last one, &g, 1n the above
dumped line and the first three in the line beginning
3I88 hold the program load address This 1s stored low
byte first It should show as being FFFFPE@S The next
four bytes hold the exection address, agailn low byte
first This should be FFFF882B The next two bytes (one
in this line and one first 1n the next line) are the
block number Both are zero as this 1s block zero

318 @E FF FF 2B 88 FF FF ## +
31T @9 43 P9 89 SF 81 g9 g9 c

The line beginning 3IIf contains the file length 1in the
second and third bytes, 43 @@ 1in this case, low byte
first The next byte, 88, 1s the block byte, followed
by four bytes holding the address of the byte after the
end of the current file, which should be as shown

The first two bytes in the line beginning at 3II8 1s
the header CRC The test program 1s then stored 1n
file form from 3IIA to 3I5C, with the last byte &FF
being the program TOP The next two bytes at 3I5D and
3I5E contain the file data CRC

3IT8 B8 AB @D @4 BA I2 F4 28
3128 64 65 6D 6F 28 6C 69 73 demo 1l1is
3I28 74 69 6E 67 @gD gg I4 I2 ting

3138 F4 28 66 6F 72 28 75 73 for us
3138 65 28 77 69 74 68 gD 29 e with
3748 IE IP F4 28 52 46 53 28 RFS
3148 66 6F 72 6D 6I 74 gD #8 format
3158 28 @D F4 28 78 72 6F 67 (prog

3I58 72 6I 6D #D FF 6C 5D 2A ram 1]1%*
The last byte 1n the 1line above 1s the synchronisation
byte for the second file DEMO2 This then follows the
same format and 1s listed below

3168 44 45 4D 4F 32 g9 g9 PE DEMO?2

3168 FF FF 2B 8¢ FF FF @@ g +
3r78 43 @g¢ 80 BE 8I gg g9 38 C 8
3I78 FS #D g0 BA I2 F4 20 64 |

3188 65 6D 6F 2@ 6C 69 73 74 emo list
3188 69 6E 67 @D §P I4 I2 F4 1ng

3198 20 66 6F 72 28 75 73 65 for use
3198 20 77 69 74 68 gD g9 IE with

3IAg IP F4 28 52 46 53 28 66 RFS £
3IA8 6F 72 6D 6I 74 gD g8 28 ormat ¢
3IBg @D F4 28 78 72 6F 67 72 progr

3IB8 6I 6D #D FF 6C 5D 2B g am 1]+

~

\~
IS6 ROM Filing System

The final byte 1n the ROM 1mage 1s the end of ROM
marker, &2B, located at &3IBE All bytes beyond this
should be set to zero

If your ROM 1mage 1s as shown then the program 1is
operating correctly If 1t will not function as a ROM
image then check that you are installing 1t 1into
sideways RAM correctly Because of space, the hash
headers are not checked, so i1f the formatter works for
small programs, but not longer ones, then the error
will almost certainly be i1n PROChash

The Procedures

The formatter includes eleven procedures which form
the basis of the program The function of each 1s as
follows

PROCformat This procedure first tests to see 1if
there 1s more than one block in a file If this 1s the
case then PROChandle 1s called On return from
PROChandle only the last block remains to be formatted
so this 1s undertaken by the call to PROCfilehead The
last action of this procedure 1s to close the open
reading channel

PROCf1ilehead Constructs a detailed block header for
the first and last blocks of a file, 1ncluding the
calculation of the header CRCs

PROCgetdata As 1ts name 1implies this procedure
reads each byte of data from a file and pokes 1t into
the correct position in the ROM image It also provides
the data CRC value

PROChash This procedure 1s called for all file
blocks except the first and last It creates the |
abbreviated hash header for the intermediary files and
also initialises each PROCgetdata call to fetch 256
bytes, 1in addition to keeping track of the block count

PROCassemble This simply assembles the machine code
that calculates the CRC for both headers and data
bytes

PROCromhead Assembles the ROM head details required
by the MOS and also the service call polling as
required These are assembled directly in the front of
the ROM 1image

PROChandle This creates the first block image of a
file and then controls the formatting of the
intermediate blocks but not the very last block of a
file

PROCnottape Reads the catalogue 1information of the
specified file from a disc using OSFILE

PROCsave Simple saves the ROM 1image to the current
filing medium

ROM Filing System

Listing I3 I RFS Formatter Save as RFS

REM ROM Filing System Formatter

28 REM (C) Bruce Smith June 1986

38 REM Advanced SRAM Guide

LY

58 ON ERROR GOTO 2798

60

78 MODE7

88 @®%=4

9¢ DIM block% 2f,name% 20,mcode% 258

180
114
129
138
T4g
I5¢8
164
178
184
I94

si1ze=&40008 flags=1
remain%$=16128

buffers=&3000 marker $=&3149
PROCassemble

PROCheading

PROCdetalls
PROCromhead(bufferg)

REPEAT
PRINTTAB(#,5),SPC(38)

28p PRINTTAB(f#,5),

214 PRINT Enter file name ' CHR$(I29)
’

228 INPUT" 'Sname$

238 IF $name%<> " THEN IF FNinfo THEN
PROCformat

249 IF flags% remaint=size-(nextfile%-&
84p8)

258 flags=I

26§ PRINT "Space remaining ",

278 PRINTremain%," bytes "

280 UNTIL S$Snameg%=""'

294
388
318
328
338
34p
350
364
378
384
394
app

’marker$=ASC("+")
finish%=marker%+1
PROCsave

VDU 26

CLS

END

DEF PROCformat

LOCAL block$

blocks=8

IF extent%>256 THEN PROChandle
PROCf1lehead (marker%,name%, loads, e

xecution%,blocks, &80 ,extent®)

418
428
439
449

CLOSE#channel$
ENDPROC

DEF FNinfo

157

—

I58 ROM Fi1ling System

Listing I3 I continued

458 LOCAL L$

460 Av=0 Ys=¢

478 channel%=0PENUP(S$name$%)

488 PROCnottape

490 nextfilet=&8@@P+markery~buffers+(L
EN(Sname$)+23)-(LEN(Sname%)+23)*(extent$
>256)-3*(extent®>5I2)*(((extent%-I) DIV
256)-I)+extent$

508 spacet=(nextfilet<s&8g@f+s1ze-1)AND

(channel%<>f)

5I8 IF NOT space% THEN PROCerror

528 =space$%

538

548 DEF PROCf1ilehead(positions, fi1les,1
address%,execaddr%,bcount%,flag%,length%
)

558 LOCAL pos$

568 2position$=ASC("*")

570 positiong=positions+1

580 $positions=$files

598 pos$=LEN($file%)+positions

608 2post=g

6I8 post'I=laddress%

620 pos%'!'S=execaddr$

638 pos%'!9=bcount$

640 pos%'!'Il=length$

650 pos¥?I3=flagh

660 pos%'ld=nextfiles

678 ®&84=post-position%+18

688 '&8f=position$

698 CALL docrc

788 pos3'I8=1§82

7I8 marker%=pos$+20

728 PROCgetdata(length$)

738 block%¥=block$+1

748 ENDPROC

758

768 DEF PROCgetdata(lengthg)

778 LOCAL pos$

788 FOR pos%=f TO lengthg%-I

798 marker$”pos$=BGET#channel$

808 NEXTpos$

8I8 '&8f=markers$

828 ?s&84=length$

838 CALL docrc

848 marker3%'length%='&82

858 extent®=extent%-lengths

860 markert=marker$+length®+2

ROM Filing System I59

Listing I3 I continued

878 ENDPROC
889
898 DEF PROChash
988 “marker®=ASC("#")
918 markers=marker%+1
924 PROCgetdata(&lfggd)
938 block%$=blocks+I
948 ENDPROC
958
968 DEF PROCassemble
978 address=&8f
988 crcl=&82
998 crc2=&83

I19@8P FOR pass=@ TO 2 STEP 2

I8 P%=mcode%

Ig2p [OPT pass

I@438 docrc

18480 LDA #8

Ig58 STA crcl

Ig68 STA crc2

1878 TAY

I488 next

1498 LDA crcl

IIfg8 EOR (address),Y

IIT@ sTA crcl

II28 LDX #8

Ir3g again

IT48 LDA crcl

II58 ROL A

IT68 BCC over

I178 LDA crcl

1184 EOR #8

II98 STA crcl

1288 LDA crc2

I2I8 EOR #&lg

1228 STA crc2

1238 over

1248 ROL crc2

I258 ROL crcl

I260 DEX

1274 BNE agalin

1288 INY

1298 CPY crc2+l

I388 BNE next

I3I8 RTS

I3298 1)

I338 NEXT pass

I34p ENDPROC

~

N
168 ROM Filing System

Listing I3 I continued

I358

I368 DEF PROCromhead (header%)
I378 FOR pass=4 TO 6 STEP 2
1388 P%¥=&8008 O%=headert
I398 [OPT pass

1498 EQUW #

T4T9 EQUB @

I428 JMP entry

I438 EQUB &82

I448 EQUB offset MOD 256
1458 EQUB @

T468 taitle

T478 EQUS titleS$

I488 offset

1498 EQUB @

IS@@ EQUS "(C) "+copy$
ISI@ EQUB @

I52¢8 entry

I538 CMP #9

I548 BEQ help

I558 CMP #I3

IS64 BNE tryagain

I574 PHA

I588 TYA

I594 EOR #I5

1688 CMP &F4

I61I8 BCC return

1620 LDA #8

I638 STA &F6

I648 LDA #&8T

I658 STA &F7

T668 LDA &F4

1678 EOR #I5

1688 STA &F5

1698 JMP restore

I788 return

I7I9 pLA

I728 back

1738 RTS

I74f tryagain

1758 CMP #&fE

I764 BNE back

1774 PHA

I78¢ LDA &F5

I798 EOR #I5

18480 CMP &F4

I8I8 BNE return

1828 LDY ##

s~

ROM Filing System

Listing I3 I continued

1838
1849
1858
18680
1878
1888
1898
1980
I9Tg
1924
1934
1949
1958
1968
1978
1988
1994
2088
2p19
2024
2834
2048
20858
2060
2078
2484
2098
2198
21TP
2128

LDA (&F6),Y
TAY
INC &F6
BNE restore
INC &F7
restore
PLA
LDA #8
RTS
\
help
PHX
JSR &FFE7
LDX #255
helploop
INX
LDA title,X
BEQ alldone
JSR &FFE3
BRA helploop
alldone
JSR &FFE7
PLX
JMP restore
]
NEXT
ENDPROC

DEF PROChandle
PROCfilehead(marker%,name%, loads,e

‘ xecution%,blocks,d,&1808)

2I3g9

IF extent%>256 THEN REPEAT PROChas

! h UNTIL extent%<=256

214p8
21548
2168
2178
2188
2198
2208
2218
2228
2238
2248
2258
2268
2278
2288

ENDPROC

DEF PROCnottape
'block$=name$

A%=5 X%=block% MOD 256
Y$=block%s DIV 256

CALL &FFDD
loads=block%!'2
execution¥=block$%!'!6
extents$=block%!'!'Ig
flens=extent$

ENDPROC

DEF PROCsave
CLS

Iel

162 ROM Filing System

Listing I3 I continued

2298 PRINT'Please select "

2388 PRINT' I) Quit"”

23If PRINT" 2) Save Formatted File"
232f PRINT" 3) Write Formatted File
2338 key%=GET

2340 IF key%=ASC("I) THEN ENDPROC

2358 IF key%=ASC(3") THEN GOTO 2428
23684 PRINT'®

2378 INPUT 'Enter filename title$
238P saveS$="SAVE "+titleS+"' 3440 +4880
2398 0OSCLI (save$)

2488 ENDPROC

2418

2428 PRINT'®

2438 INPUT "Enter RAM bank (4,5,6,7)
rb$

244p OSCLI ("SRWRITE 3880 +4900 8988 +
rb$)

2458 PRINT'"Press CTRL-BREAK to 1nitali
sell

2468 END

2478

2488 DEF PROCheading

2498 FOR N%=I TO 2

2588 PRINTCHRS(I38) CHR$(I4T) SPC(9),
2518 PRINT"RFS Formatter" |
2524 NEXT N%

2538 PRINT'CHR$(I29),SPC(6),

2548 PRINT "(C) Bruce Smith I986°

2558 PRINT TAB(f#,24),CHRS$(I3I) SPC(7)
2568 PRINT "Press RETURN to end', '
2578 PRINT TAB(d,5), l
2588 VDU 28,4,23,39,5 |
2598 ENDPROC

26049

26If DEF PROCdetalls

262 INPUT "Enter ROM title titleS$
2638 INPUT "Enter Copyright "copy$
2648 ENDPROC

2654

2668 DEF PROCerror

2678 PRINTTAB(@,8), ERROR"

2684 vDU 7

2698 PRINT File not found / File to big

2788 CLOSE#channel$ flagy=g
27If PRINT' 'Press any key to continue"”,
2728 REPEAT UNTIL GET

x4

Py

-

ROM Fi1ling System

Listing I3 I continued

2738
2749
2758
27680
2778
27848
2798
2808
2818
28248
2838
2844

PRINTTAB(®,8),SPC(38)
PRINTSPC(38)'SPC(38)"'SPC(38)
PRINTTAB(H,6)

ENDPROC

hkkkh ERROR HANDLER kkkkkkk
CLOSE #8

vDU 26,7

CLS

REPORT

PRINT"™ ERROR at line ",ERL
END

Listing I3 2 Hex and ASCII dump utility

DUMPER

Ie6g

REM Hex & ASCII Dump
REM (C) Bruce Smith June I986
REM Advanced SRAM Guide

MODE 7
=f
FOR P%$=&3088 TO &3IFF STEPS8

PRINT"PS% " ',

FOR N%=8 TO 7

IF P%?N%<I6 PRINT'@"

PRINT ~P%?N% " ,

NEXT

PRINT' ",

FOR N%=# TO 7

A%=P%?N%

IF A%<32 OR A%>I27 PRINT" ', ELSE

PRINTCHRS (A%),

178
I8p

NEXT
PRINT

I98 NEXT

Save as

I63

Chapter Fourteen
Language ROMs

The first three bytes of a paged ROM are referred to as 1ts
language entry point, the first byte will normally contain
the JMP opcode, &4C, followed by the two-byte address of
the beginning of the language coding If 1t 1s a service
ROM, these three bytes should be set to zero

The normal way in which a language 1s entered 1s to type
1n a command that the ROM will recognise For this purpose
all language ROMs must contaln a service entry point to an
interpreter that will attempt to recognise the command, fo
example, the command *FORTH might select a FORTH language
ROM The service entry interpreter must be capable o
recognising this command and then select i1tself as the ne
language ROM To do this the ROM must 1ssue OSBYTE &8E
with the X register containing the ROM number It 2
important to remember that this OSBYTE call returns through
the ROM's language entry point, so there 1s no real nee
to preserve registers as they are destroyed anyway' Th
coding to perform the language entry 1s

LDA #&8E
JSR &FFF4

The X register should already hold the ROM 1identity though
this can always be extracted from &F4 1f 1t 1s lost for
some reason

To start up the selected language the MOS notes the
number of the ROM so that 1t can reselect the language ROM
when a 'soft break' 1s performed, and then displays the ROM
title string to indicate the particular language 1s 1n use
The error message vector 1s pointed towards the copyright
message or version string i1f 1t 1s present, whereupon the

Language ROMs I65

language polnt 1s entered with the accumulator containing
the value I to indicate a normal start up

Once a language has been 1nitialised 1t has If24 bytes of
workspace free for private use running 11n a single block
from &488 to &8fF 1n addition to the =zero page locations
normally associated with a language ROM between &8§ to
&8F The language program space ex1ists between the
Operating System High Water Mark (OSHWM) and the bottom of
the currently selected screen mode

Language ROMs may also be entered by two other methods
First by 1ssuing an *FXI42 call This call must be
postfixed by a number which relates to the ROM socket
number containing the language to be switched in Thus to
select the language i1n ROM socket number I2, use

*FX I42,I2

A language may also be auto-booted by pressing the BREAK
key 1n combination with another specific key To do this
the service 1nterpreter must trap the auto-boot service
call, 3, issued by the MOS on BREAK, and test for 1its
particular auto-boot key (This technique 1s explained 1in
Chapter If)

Absolute Musts

There are three things a language must do, otherwise 1t
111 cause the Master to ‘hang up' First, 1interrupt
equests must be enabled for the MOS to continue to work
orrectly, a simple CLI will perform this Second, the BRK
ector, BRKV at &282, must also be set ready to handle

errors as they occur All language ROMs must include error
andling facilities, as even the simplest task such as an
SWRCH call can generate an error The technique of error
andling 1s examined 1in chapter I5 Finally the stack

pointer will be undefined so this should be re-initialised

These three tasks require a minimum of code

| CLI enable IRQs
LDX #&FF reset stack pointer
TXS

LDA #brkhandle MOD 256 get low byte error handing
entry

STA &242 store low-byte BRKV

LDA #brkhandle DIV 256 \ get high byte of same

STA &2§43 \ and poke 1nto BRKV high byte

s I

On entering a language, the accumulator will contain a
language entry code Normally these can be 1gnored though
two will be of interest 1f the language ROM 1s to be

I66 Language ROMs

compatible with the Electron The four entry codes are as
follows

Accumulator=§ There 1s no language present and the Tube
ROM 1s being called This call must not be 1intercepted
other than by the Tube ROM 1itself

Accumulator=I Normal entry to language

Accumulator=2 Request next byte of soft key expansion
The key number 1s set using a call with the accumulator
containing 3, and the byte result 1s i1n the Y register
This entry call 1s applicable on the Electron only

Accumulator=3 Requesting length of soft key expansion
The key number 1s held in the Y register and the length
should be substituted for 1t Again, an Electron-only call

Language entry calls 2 and 3 are Electron-specific and
should not be loocked at by Master or BBC-only firmware

Languages and the Tube

Because of the popularity of BBC model B second processors
and Master coprocessors 1t 1s essential that languages will
run across the Tube This simply means that they are
capable of relocating in the second processor and running
correctly If you write your languages ‘'correctly' this
1s automatic But what 1s correctly? Well, 1t simply means
that all the 1input/ouput processes should be performed
using the MOS commands and memory should not be peeked and
poked Thus the screen should be written to using OSWRCH
and not by poking the ASCII character of a code ther
directly For example, the 1letter A should be printed a
the current cursor position using

LDA #ASC("A)
JSR oswrch

and not by using poking such as

LDA #ASC(™A") |
STA screen+offset

To take advantage of the 1increased memory capacity offered
by the second processor, a 'Hi1i' version of the language you
are writing may be required This option 1s available
simply by assembling your language coding so that it will
run at a higher re-location address, &B8ffF for example as
with H1-BASIC The service entry point and 1ts assoclated
coding should remain assembled at the normal addresses ab
this 1s not copied across 1in the second processor by the
Tube ROM and 1s required to function within the Master

Such a Hi version of your language would not run 1in the
normal Master however due to the change 1n absolute

Language ROMs I67

addresses Changing the addressing 1s done simply by
resetting the value assigned to P% at the language entry,
as defined by the address given at the 1language entry
point For example

FOR pass=4 TO 7 STEP 3

os=&5000 REM assemble at &5808
PY=58000 REM service code at &8g08
[OPT pass

JMP language

JMP service

\ rest of service code 1s here

\
] REM ex1t at end of service code
P%=&B8AHH REM repoint P%
[OPT pass
language

\ language code here
\ assembled for &B8g#8
1

NEXT pass

Listing I4 I provides a very simple but working example of
a language ROM The listing forms the machine code for a
language that will give a hex and ASCII dump The language
1s called by *MASMON
When MASMON i1s entered, the screen clears and the title
and copyright strings are displayed A text window 1s set
p which ensures that these 1items remain on-screen
hroughout the languages operation You are then prompted
o enter a start and end address 1in hexadecimal format -
ote that the '&' 1is already provided so you need only
nter the hex digits themselves Once this has occurred,
he area of memory between these two addresses 1s dumped to
he screen The format for each 1line 1s current address,
ollowed by the eight bytes from this address displayed 1in
ﬁex, and then 1in ASCII form (figure I4 I) If the byte 1s
not displayable ASCII, a full stop 1s shown instead The
listing may be halted by the CTRL-SHIFT key combination 1in
the usual manner
' When the listing has completed, you will be asked 1f you
wish to display a further area of memory Pressing Y will
reset the language and the process will repeat, otherwise
BASIC will be re-entered
Having sa1d that redirecting the BRK vector into your own
language ROM 1s an absolute must, listing I4 I does not do
that! The reason for my madness will be 1looked at in the
chapter I5 where errors will be discussed As 1t stands,
the language 1s not capable of creating an error - although
pressing the ESCAPE key will 1lock the language up The

ASR-~L

I68 Language ROMs
Master Mon}tur

8000 4C 6B 80 4C 29 80 €2 18 Lk L>
8008 01 4D 61 73 74 65 72 20 Master
8010 4D 6F 6E 69 74 6F 72 00 Monitor
8018 00 28 43 29 20 42 72 75 (C) Bru
8020 63 65 20 53 6D 69 74 68 ce Smith
8028 00 48 C9 09 FO 06 C9 04 H

8030 FO 12 68 60 A2 FF E8 BD he
8038 09 80 20 E3 FF DO F7 20

8040 E7 FF 68 60 DA D5A R2 FF hg 2
8048 88 E8 C8 B1L F2 29 DF DD)
8050 64 80 FO F53 BD 64 80 30 d d 0

8058 04 7A FA 68 60 A9 8E A6 z hf
8060 F4 20 F4 FF 4D 41

8068 4F 4E FF 58 A2 FF 9A A9 ON X
8070 16 20 EE FF A9 07

8078 FF AO0 02 A2 FF E8 BD FA

8080 81 FO 05 20 E3 FF 80 F5

8088 A2 FF 88 DO FO E8 BD DE

Go again (Y/N)7?

Figure I4 I Screen dump of MASMON display

reasons why this happens are discussed 1n the next chapte
on errors

Now for a listing description PROCvars sets wup th
variables required by the 1language to operate, namely
operating system calls and zero page storage for vectore
addresses

The ROM header 1s assembled 1n 1lines 278 to 988 1It 1
much the same as for service ROMs, but there are som
differences A language entry jump address must b
assembled into the first three ROM header bytes (line 278)
the ROM type value must also be amended to include the now
set language bit, bit 6, therefore the byte to be assembled
1s 1108 0018, or &C2 hex Line 298 takes care of this A
service entry point, and therefore 1i1nterpreter, must also
be i1ncluded to handle any *HELP service requests and
unrecognised command requests This 1s assembled by lines
4p8 to 798 The unrecognised command we are trying to trap
1s MASMON This 1s assembled 1n lines 888 to 999 and looked
for by the interpreter assembled at 1lines 688 to 738 Once
recognised the language 1s entered through the language
entry point by executing OSBYTE &8E (lines 8If@ to 84f8)

anguage ROMs I69

The language entry point 1s entered via the JMP
instruction located at &8@gP, which 1s 1n effect a jump to
line 928 First things first, the MOS must be reset by
re-enabling interrupts with CLI, followed closely by
resetting of the stack (lines 938 to 958) To see how
important these processes are, try omiting these lines and
running the re-assembled code!

The screen set-up routine and hex/ASCII dump output 1s
controlled in a standard manner by lines 968 to 2I6f#, using
machine code subroutines based at lines 2298 to 3I##

BASIC 1s re-entered by locating 1ts ROM socket number via
OSBYTE &BB OSBYTE &8E 1s used to select 1t 1n the standard
way (lines 22If to 225#)

Service Call 42 (&23)

The MOS 1ssues service call 42 (&2A) before a ROM-based
language starts up This gives other languages including
the current one, plus service ROMs, the chance to do any
ecessary house-keeping

178

Language ROM

Listing I4 I Master machine code hex and ASCII dump
Save as MASMON

REM Implement a language ROM

REM (C) Bruce Smith June I986
REM Advanced SRAM Guaide
PROCvars

PROCassemble

PROCchecksum

*SRWRITE 5890 +384 8888 7

END

DEF PROCvars

mshigh=&58 mslow=&5I
lshi1gh=&52 lslow=&53
temp=&54

hibyte=&63 lobyte=&62
hibegin=&6I lobegin=&6f
osrdch=&FFEf osbyte=&FFF4
oswrch=&FFEE osnewl=&FFE7
osasc1=&FFE3

comline=&F2

ENDPROC

DEF PROCassemble
FOR Pass=4 TO 7 STEP 3
P3=48008 O%=&5009
(
OPT Pass
JMP language
JMP service
EQUB &C2
EQUB offset MOD 256
EQUB I
title
EQUS "Master Monitor™"
EQUB #
offset
EQUB #
EQUS "(C) Bruce Smith
EQUB #

service
PHA

CMP #9

BEQ help

CMP #4

BEQ unrecognised
PLA

RTS

Language ROMs I71

Listing I4 I continued

4889
498 help
S5@8 LDX #&FF
5IF helploop
528 INX
538 LDA title,X
548 JSR osasci
558 BNE helploop
568 JSR osnewl
578 PLA
580 RTS
594

| 688 unrecognised
6If PHX
624 PHY
630 LDX #&FF
648 DEY
658 ctloop
668 INX
678 INY
680 LDA (comline),Y
698 AND #&DF
788 CMP table,X
7I8 BEQ ctloop
728 LDA table,X
738 BMI found
748 \
758 nothisrom
768 PLY
778 PLX
788 PLA
798 RTS
804 \
8Ig found
820 LDA #&8E
838 LDX &F4
840 JSR &FFF4
858 \ No return!
864 \
878 \ set up Command Table
884 table
894 EQUS MASMON"
988 EQUB &FF

9Ig
928 language
938 CLI

944 LDX #&FF
958 TXS

I72 Language ROMSs

Listing I4 I continued

968 LDA #22

978 JSR oswrch

984 LDA #7

994 JSR oswrch
1998 LDY #2
I@I@ LDX #&FF
Ig28 langloop
If38 INX
1944 LDA heading,X
I458 BEQ out
Ig6e JSR osasci
I874 BRA langloop
1488 out
Ig98 \
IT48 LDX #&FF
ITT@ DEY
ITI28 BNE langloop
1138 \
IT48 copyloop
I158 INX
IT64 LDA copyright,X
II70 BEQ out2
II88 JSR osasci
IT98 BRA copyloop
I249 \
I2I4 out2
I228 LDA #28
I23f JSR oswrch
1244 LDA #9
1258 JSR oswrch
I268 LDA #24
1278 JSR oswrch
1288 LDA #39
1298 JSR oswrch
I388 LDA #5
I3I4 JSR oswrch
I328 LDX #&FF
I338 \
I349 stloop
I358 INX
I364 LDA start,X
I378 JSR osasci
1388 BNE stloop
I394 JSR 1inputaddr
I488 LDA hibyte
I4Ip STA hibegin
I428 LDA lobyte
I438 STA lobegin

Language ROMs

Listing I4 I continued

T448
T458
Ta6g
T478
1488
I494
I588
I518
1528
1538
1544
15549
1564
1578
1588
1599
Tegg
Telg
I628
1638
T64g
I654
1668
1678
Te68g
1698
1788
1718
1728
1738
1748
1758
1768
1778
1788
1794
1809
I81g
1829
1839
I84g
1858
I8649
1879
I88¢
1899
1949
1919

\
LDX

#&FF

endloop

INX
LDA
JSR
BNE
JSR
LDA
JSR
\

end,X
osascl
endloop
inputaddr
#I3
osascl

nextline

JSR
LDY
LDX

address
#0
#7

hexloop

LDA
JSR
JSR
INY
DEX
BPL
LDA
JSR
\

LDY
LDX

(lobegin),Y
hexout
space

hexloop
#I134
oswrch

#p
£7

ascloop

LDA
CMP
BCC
CMP
BCC
\

(lobegin),Y
#32

spot

#128
Jjumpover

spot

LDA

#ASC(" ")

jumpover

JSR
INY
DEX
BPL
\

LDA
JSR
CLC
LDA
ADC
STA

oswrch

ascloop

#&PD

osascl

lobegin
#8
lobegin

I73

174

Language ROMs

Listing I4 I continued

1924
1938
1948
1958
19649
1978
19849
1999
2008
2018
20248
2638
2049
2059
2068
2878
20840
2994
2194
2118
2128
2138
2T4g
2159
2168
2178
2189
2194
2208
2218
2228
2238
2248
2258
2268
2278
2284
2298
23449
2318
2328
2338
2348
2354
2364
2378
2388
2398

BCC
INC

nocarry
hibegin

nocarry

LDA
CMP
BCC
LDA
CMP
BCC
\

JSR
LDX

lobegin
lobyte
nextline
hibegin
hibyte
nextline

osnewl
#&FF

goonloop

INX
LDA
JSR
BNE

continue,X
oswrch
goonloop

testkey

JSR
CMP
BNE
JMP

osrdch
#ASC("Y")
skipover
language

skipover

CMP
BNE
\

LDA
JSR
LDA
JSR
LDA
JSR
LDA
JMP

\ machine code subroutines

#ASC("N")
testkey

#26
oswrch
#I2
oswrch
#&BB
osbyte
#&8E
osbyte

inputaddr

JSR
Lba
JSR
ASL
ASL
ASL
ASL
STA
LDA
JSR

characters
mshigh
check

anguage ROMs 175

Listing I4 I continued

2488 ORA temp
241 STA hibyte
2428 LDA 1lshigh
243 JSR check
2440 ASL A
24508 ASL A
2468 ASL A
2478 ASL A
2488 STA temp
LDA lslow
JSR check
ORA temp
STA lobyte
RTS
\
characters
JSR osrdch
JSR osascl
STA mshigh
JSR osrdch
STA mslow
JSR osascl
JSR osrdch
JSR osasci
STA 1lshigh
JSR osrdch
JSR osasci
STA lslow
RTS
\

check
CMP #58
BCS atof
AND #I5
RTS

atof

SBC #55
RTS
\

space

LDA #32
JMP oswrch

address
LDA #I29
JSR oswrch
LDX #lobegin
oA I,X

I76

Listing I4 I continued

2889
28949
2944
2919
2929
2934
2949
2954
2968
2974
2989
2994
3008
3010
3020
3638
3849
30598
3860
3078
3488
3699
3198
3IIg
3128
3138
3T4p
3158
3160
3178
31849
3194
3240
321¢
3228
3238
3248
3258
3268
3278
32890
3298
3380
3318
3328
3339
334¢
3358

JSR hexout
LbA #,X
JSR hexout
LDA #I3g
JSR oswrch
RTS
\

hexout
PHA
LSR A
LSR A
LSR A
LSR A
JSR 4
PLA

digit
AND #I5
CMP #1p
BCC no
ADC #6

no
ADC #48
JMP oswrch

1g1t

\ ASCII string storage area

copyright

EQUD &20202886
EQUW &2828
EQUS "(C) Bruce Smith I986"
EQUB I3

EQUB #

heading

EQUB I4T

EQUB I3

EQUD &2@2082p24
EQUD &28282828
EQUS Master Monitor
EQUB I3

EQUB #

EQUB I4r

start

EQUB I34

EQUS "Start &"
EQUB 129

EQUB #

end

EQUB I3g

Language ROM

anguage ROMs

Listing I4 I continued

3369
3378
3380
3398
3448
3418
3428
3438
3448
3458
3469
3478
488
99
2

40

EQUS " End &"
EQUB I29
EQUB £
continue
EQUB I38
EQUS "Go again (Y/N)> "
EQUB #
]
NEXT
ENDPROC

DEF PROCchecksum

Ng=g

FOR X%=&5008 TO &5248
N3=N3+?X%

NEXT

IF N%=7£332 THEN ENDPROC
vDbU 7

PRINT"Assembler error!'"
STOP

I77

Chapter 15
Errors

When writing any sideways ROM format program that ne
input from the user, other than Just entering
command name, the ROM code must be capable of
identi1fying what 1s acceptable and what 1s not In the
latter case 1t must signal the fact to the user 1in the
way of an error message

For example, consider the two-line program

I MODE 2
2§ MOVE

When BASIC interprets this program 1t expects to find a
number after the MODE command It looks to find one
that 1s acceptable so performs a mode 2 command It
moves onto the next line and 1identifies the MOVE
command which 1t expects to be followed by two numbers,
varlables or expressions for evaluation In this case
it finds none, just a carriage return Obviously this
1s not acceptable, so 1t signals the error message

No such variable at line 28

The BRK command 1s used on the Master to print error
messages When the MOS sees a BRK 1t tries to print the
string following on the screen until 1t encounters
another BRK Listing IS I shows how the technique
works Enter and run the program

Lines 5@ and 68 simply signal an error with a
customary beep Line 7§ assembles the first BRK Line
80 assembles the error number that you are assigning to
the error line 94 assembles the error message and

Errors I79

finally 1line 1g9 the final BRK 1instruction In fact
we're not so much interested in BRK as 1ts opcode, &84,
so EQUB f 1s equally as effective as BRK for that
purpose Figure 15 1 shows how the error message 1S
stored 1n memory

Address Contents Description
&3000 &A9 LDA#Z
&3001 &B7 7
&3002 &20 JSR
&3083 &EE &FFEE
&3004 &FF

&3805 &09 BRK
&3006 &28 Error code
&30087 &54 ASC"T
&3008 &68 ASC"h
&3009 &69 ASC'1"
&300A &73 ASC's'
&300B &20 ASC" '
&3p0C &69 ASC"1
&380D &73 ASC's"
&300E &2 asc"
&300F &61 ASC"a
&3019 &6E ASC"n
&3011 &20 ASC' !
&§3012 &§65 ASC e"
&3013 &§72 ASC"r"
&3014 &§72 ASC"r'
&3015 - &6F ASC'o
&3016 &72 ASC'r
&3017 &0 BRK

Figure 15 1 Error message storage

When the Master executes a BRK instruction the
following events take place The address of the BRK
instruction plus 2 1s pushed onto the hardware stack,
high byte first The status register 1s pushed onto the
stack Interrupts are disabled and the BRK flag 1s set,
1e bit 4 of the status register Execution continues
from the address found at &FFFE and &FFFF (In Master
3 28 MOS this 1s &E59E)

Once here, the following action takes place First
the accumulator 1is saved 1n location &FC The stack 1is
then pulled 1into the accumulator - this will be the
status register It 1s then pushed back to leave a copy
in the accumulator This 1s then ANDed with &If to
1solate bit four If the result 1s not zero then a BRK
has occurred - otherwise 1t was an IRQ and an

184 Errors

appropriate jump to IRQIV 1s made The previously
pushed address 1s removed from the stack, has one
subtracted from i1t and stored in locations &FD and &FE
This address now points to the error number, stored
directly before the error message Location &F4 1s read
to get the currently active ROM and this 1s copied into
&24A Service call 6 1s then 1ssued to each of the ROMs
present On return the currently active language ROM 1s
re-enabled, 1nterrupts are re-enabled and a jump to
BRKV 1s performed

Service ROM Errors

Errors within service ROMs are easy to process, however
we must bear 1in mind that the currently active language
ROM at this time (BASIC say) would be responsible for
handling this error and as such would not expect t
find 1t within another paged ROM So what the servi
ROM must do 1s to copy the error details down 1into
area of RAM that the language ROM can access The ar
of memory reserved for this 1s in fact the erro
message buffer 1located at the very bottom of the
hardware stack, &1l@f upwards This 1s easy to do

LDY #£ \ BRK opcode

STY &1040 \ put 1t at &1gg
errorloop

LDA message,Y \ get character

STA &l41,Y \ save 1t on stack

BEQ 1fdone \ exit 1f @ bt |

INY \ 1ncrement 1index

BRA errorloop \ do next byte
1fdone

JMP &188 \ execute BRK
message

EQUB 24 \ error number

EQUS "Error" \ error message

EQUB @ \ terminating BRK

Listing 15 2 sets up a service ROM with a single
command, *CONVERT This w1ll convert the hexadecimal
value following 1t into binary and store the result 1in
zero page locations &7f and &71 Two error conditions
can occur here First, the number may not be a
legitimate hex value - this 1s signalled with the 'Bad
hex' error message Second, only numbers 1in the range £
to &FFFF are allowed and so numbers bigger than this
must be signalled and rejected with a 'Too big' error

Enter the program and save as 'ERRORI' Try the program
yourself, the hex number should not be prefixed with &

Errors I8I

*CONVERT - gilves no error
*CONVERT DS - gives 'Bad hex' error
*CONVERT FFFFFF gives 'too big' error
*CONVERT EF - 1s legitimate

If you use this command from within a BASIC program you
will notice that BASIC will add 'at line xx' onto the
end of the error message This shows that BASIC 1s
extending your error message to make 1t more explicit
and 1s an example of the sort of responsibility
language ROMs can take

LLanguage ROMs

As already mentioned, 1t 1s the responsibility of the
urrent language ROM to handle any errors that occur
1thin 1t This 1s normally done by pointing BRKV at
p2 and &2#3 to the appropriate handling routine
hat a language ROM does when 1t recelves an error 1s
to you As a rule however, 1t should print out the
error message after a BRK so the user at least has some
1dea as to what 1s wrong and second to re-initialise
the stack pointer

As we have seen, the vector at &FD 1s set by the MOS
to point to the data immediately after the BRK that
caused the error, so printing the error message 1S
straightforward

error
LDY #8 \ 1nitialise 1index
LDA (&FD),Y \ get error number
STA errno \ and save where appropriate
loop
INY \ 1increment Y
LDA (&FD),Y \ get character
BEQ 1fdone \ branch 1f done
JSR &FFEE \ print 1t
’ BRA loop \ do next byte
1fdone

’ The stack pointer should be 1initialised as follows

LDX #255
TSX

Listing I5 3 produces a language ROM that expects an
error' Baslcally anything other than a RETURN or an "an
1s an error, with a suitable message printed out 1f
you type 1n an asterisk, the language, suitably called

I82 Errors

ErrorWise, will expect you to enter a star command,
such as *HELP and will pass 1t to the command 1line
interpreter Save the program as 'ERROR2' and enter the
language with *ERRORWISE

ESCAPE

When you write any sort of ROM software you must look
to see 1f the ESCAPE key 1s pressed This 1s even more
important 1f you are looking at the keyboard for data
If you don't then your ROM will lock up, crash 1if you
prefer All escapes must be acknowledged with an OSBYTE
I26

LDA #I26
JSR &FFF4

There are two ways in which the ESCAPE key can
tested The best way 1s to use OSRDCH at &FFEf to re
the keyboard If ESCAPE 1s pressed then the carry fl
wi1ll be set on return so that

BCS escape
as 1n line If28 of 1listing I5 3 1s acceptable Less
acceptable 1s to look at location &FF If bit 7 1s set
then ESCAPE has been pressed

BIT &FF
BMI escape

Error Numbers

If writing a language ROM, you can choose and use your
own error numbers Service ROMs should be more discrete
however and use numbers not used by the MegaROM, 1e
Basic, DFS and ADFS These can be found in the Advanced
Reference Guide published by Acorn

Errors I83

Listing I5 I Shows how error codes and messages are
stored in ROMs

I8 REM BRK error demo

28

38 Pe=&3000

a8 [

S@# LDA #7

68 JSR &FFEE

78 BRK

88 EQUB 32

94 EQUS "This 1s an error"
I88 BRK
119

]
12§ CALL &3988

sting I5 2 Prainting error messages from within a
vice ROM

I# REM Error Test ROM
28 REM (C) Bruce Smith June I986
3§ REM Advanced SRAM Guide

58 lo=&78 hi=&71

64 PROCassemble

78 PROCchecksum

80 *SRWRITE 5688 +2008 8888 7
98 END

IIP DEF PROCassemble

128 osnewl=&FFE7

I3p FOR pass=4 TO 7 STEP 3
140 pPs=a8000 0%=&5008
Isg [

I68 OPT pass

178 EQUB #

184 EQUW £

198 JMP service

20 EQUB &82

28 EQUB offset MOD 256
228 EQUB I

238 title

248 EQUS "Error Test ROM"
258 EQUB #

26 version

278 EQUs " I gg4°

280 EQUB ¢

298 offset

368 EQUB £

ASR-M

I84 Errors

Listingl5 2 continued

318 EQUS "(C) Bruce Smith"
324 EQUB ¢

338 service

349 CMP #9

358 BEQ help

368 CMP #4

378 BEQ unrecognised
388 RTS

398 \

4088 help

4T@# JSR osnewl
428 LDX #&FF

438 JSR helploop
448 JSR helploop
458 JSR osnewl
460 RTS

479 \

488 helploop
498 INX

588 LDA title,X
SI# BEQ finish
528 JSR &FFE3
534 BRA helploop
548 finish

558 RTS

5640

578 exit

588 PLY

594 PLX

6448 PLA

618 RTS

620 \

638 complete
644 PLY

658 PLX

664 PLA

678 LDA #g

688 RTS

698 \

788 convert

718 EQUS 'CONVERT"
728 \

738 unrecognised
748 PHA

758 PHX

768 PHY

778 LDX #8

788 1loop

Errors I85

Listing 15 2 continued

798 LDA (&F2),Y
808 AND #&DF

8If CMP convert,X
828 BNE ex1it

834 INY

844 INX

850 CPX #7

860 BNE loop

874 \

888 STZ lo

894 STZ ha

988 \

91@# JSR spaces
928 \

934

nextchar
LDA (&F2),Y
CMP #I3
BEQ complete
CMP #asSC" "
984 BEQ end

994 CMP #ASC'@'
1488 BCC bad
I4IP CMP #&3A
If28 BCC digit
I4348 CMP #ASC"A"
Ig4p BCC bad
Igs@ CMP #ASC"G"
Iged BCS bad
Ip78 SBC #&36
Ig8g \
1998 digit
1198 ASL A

IIIg ASL A

IT28 ASL A
II38 ASL A

IT48 LDX #4

I158 \

IT6gd aslrol
I174 ASL A

I184 ROL 1lo

I194 ROL hi

I288 BCS large
1218 DEX

1228 BNE aslrol
1238 INY

I248 BNE nextchar
1258 \

1268 end

I86 Errors

Listingi5 2 continued

1278 JSR spaces
1288 CMP #I3

298 BEQ complete
1348 LDX ##

I3I4 BEQ skuipl
1328 bad

I338 LDX #badnum-size
I348 BNE skipl
I358 \

I364 large

1378 LDX ##

I384 skipI

1398 LDY #§

T44p STY &1@P
I418 \

T428 transfer
1438 LDA size,X
I44p STA &I@T,Y
I458 BEQ done
I460 INX

I478 INY

I488 BNE transfer
I4990 \

I588 done

ISI@ JMP &148
I528 \

I538 size

I544 EQUB 24

I558 EQUS "ErrorROM Too big"
I568 EQUB #

I578 badnum

I588 EQUB 28

I5S94 EQUS "ErrorROM Bad Hex
I6p0 EQUB #

I6lg

1628 loop2

I634 INY

I648 spaces

I658 LDA (&F2),Y
I668 CMP#AscC"™ *
I678 BEQ loop2
1688 RTS

1698

1788 1

I7I8 NEXT pass
I728 ENDPROC

1738

1748 DEF PROCchecksum

Errors I87

Listing I5 2 continued

1758 N%=8
1768 FOR X%=&5088 TO &5I1@@
I778 N$=N%+2X$%

1788 NEXT

1794 IF N%$=28888 THEN ENDPROC
1868 vDU 7

1818 PRINT"Assembler errort
828 STOP

Listing I5 3 Demonstration of printing and handling
errors from within a ROM

I¥ REM ErrorWise Language ROM
28 REM (C) Bruce Smith June I986
38 REM Advanced SRAM Guaide

58 osrdch=&FFEJ buffer=&3809

68 brklo=&282 brkhi1=&283

78 PROCassemble

88 PROCchecksum

94 *SRWRITE S@gg +204 8988 7
T84 END

129 DEF PROCassemble
138 osnewl=&FFE7

T4 FOR pass=4 TO 7 STEP 3
159 rPy=&8000 os=&50089
I68 (

I79 OPT pass

I8g8 JMP language

198 JMP service

288 EQUB &C2

214 EQUB offset MOD 256
228 EQUB T

238 taitle

248 EQUS "ErrorWise"
258 EQUB #

268 version

278 EQUS " 1 gg"

288 EQUB £

298 offset

38 EQUB #

3% EQUS "(C) Bruce Smith"
328 EQUB §

338 service

348 CMP #9

358 BEQ help

I88

Listing I5 3 continued

368
378
388
3948
499
418
428
438
44p
458
464
478
480
498
588
5I8
528
538
548
558
568
578
580
5998
688
610
628
6380
648
650
660
678
684
690
788
719
728
738
748
758
769
778
788
798
8pp
81g
829
8348

CMP #4
BEQ unrecognised
RTS
\
help
JSR osnewl
LDX #&FF
JSR helploop
JSR helploop
JSR osnewl
RTS
\
helploop
INX
LDA title,X
BEQ finish
JSR &FFE3
BRA helploop
finish
RTS

ex1it
PLY
PLX
PLA
RTS
\
command
EQUS "ERRORWISE"
\
unrecognised
PHA
PHX
PHY
LDX #8
loop
LDA (&F2),Y
AND #&DF
CMP command,X
BNE ex:it
INY
INX
CPX #9
BNE loop
\

LDX &F4
LDA #I42

Errors

Errors

Listing I5 3 continued

844
858
860
878
88g
894
949
9T g
924
934
944
954
9648
978
984
994
byJJ)
IATP
1428
T30
1640
14548
Igegd
T878
1988
18998
II48
IIIP
I128
1139
IT48
1158
IT6g
1178
1188
1199
1248
1218
1228
1238
1248
1258
1268
1278
1284
1298
1389
1318

JMP

&FFF4

language

LDA #error DIV 256

STA

LDA #error MOD 256

STA

brkhi

brklo

stackset

LDX
TXS
CLI
JSR

#255

&FFE7

mainloop

LDA
JSR
JSR
BCS
CMP
BEQ
CMP
BNE
JSR
BRA

#BSC"="
&FFEE
osrdch
escape
#ASC"*"
star

#I3
doerror
&FFE7
mainloop

star

JSR
LDA
JSR
LDY
LDX
LDA
JSR
BCS

LDY
LDX
JSR
JMP

&FFE7
#RSC"*"
&FFEE

#blk DIV 256
#blk MOD 256

#8
&FFFI
escape

#buffer DIV 256
#buffer MOD 256

&FFF7
mainloop

escape

LDA
JSR
BRK

#I26
&FFF4

EQUB I

EQUS "ErrorROM Escape"

EQUB #

I89

199 Errors

Listing IS 3 continued

1324

1338 doerror

I348 BRK

I358 EQUB 2

I36# EQUS "ErrorROM Illegal Command"
I374 EQUB &

13849

1398

1488 error

T4Ig LDY #I

T424 JSR &FFE7

I438 loop

I449 LDA (&FD),Y

I458 BEQ end

I468 JSR &FFEE

I478 INY

1480 BNE loop

T494 end

I588 JSR &FFE7

ISI@ JMP stackset

1529

I538 blk

I548 EQUB buffer MOD 256
I558 EQUB buffer DIV 256
I568 EQUB 28

IS78 EQUB 32

I588 EQUB I27

I598

Tegg 1

I6If NEXT pass

1628 ENDPROC

1638

1640 DEF PROCchecksum
1658 Ne=g

I668 FOR X%=&5008 TO &51g48
I678 N$=N3%+2X%

I688 NEXT

1698 IF N%=31281 THEN ENDPROC
I788 PRINT"Assembler error!'"
I718 vDU 7

I7284 stoP

Glossary

absolute address
absolute
workspace
accumulator

ADFS

ANFS
assembler

auto-boot

ASCII

bank

battery-backed

an exact address, 1e &288@ 1is an
absolute address

workspace given over to ROMs which
may be used freely by all ROMs

the main register of the 6582/65I2
microprocessor

Advanced Disc Filing System
Advanced Network Filing System
mnemonlc language 1n which assembly
language programs may be written
Part of the BASIC

ROM which converts assembler
mnemonlcs into machine code
pressing the SHIFT and BREAK keys
together will allow a previously-
written 'BOOT file to be run
directly

American Standard Code for
Information Interchange - the
character coding scheme whereby
each number, letter or symbol key
has 1ts own special code that may
be printed to display the
character

a sideways RAM bank - one of
several areas of memory simllar 1n
s1ze and memory address

memory that has a charge applied by
a small battery when the machine 1s
turned off thereby preserving 1ts
contents

192

binary

bit
boot

branch

BRK

BRKV
buffer

bump
byte

carry (flag)

channel

checksum

CMOS

configure
co-processor

crash

CRC

debugging
DFS
directory

DNFS

Glossary

a numbering system to a base of 2
using only the I and # digits

a single digit in a binary number
to 1nitialise/start-up a

computer or program

to move the operation of a program
to another point, normally
calculated as an offset from the
current position

the assembler mnemonic for the BRK
(break) operation

vector through which control 1s
passed when the computer executes
a BRK 1instruction

area of memory used to store
incoming/outgoing information

to i1ncrement by one

the smallest area of memory -
capable of holding a number in the
range # to 255 1inclusive

flag i1n the status register used to
i1ndicate overflow or underflow
during addition or subtraction
memory path along which information
1s passed

utility which counts the number of
commands 1n a program This can be
compared to a given value
Complementary Metal Oxide
Semiconductor - a family of chips
with low power consumption

to define a system to personal needs
board which fits 1nside the main casc
and takes over the computer's main
tasks

to cease operating as expected,
normally caused by a program
malfunction

cyclic redundancy check - a common
error detecting code

process of weeding out errors 1in a
program

Disc Filing System controls access
of micro to disc drive

a speclally-defined area of a disc
into which files can be saved

Disc Network Filing System - a
combined DFS and NFS chip

Glossary
dump

dynamic
workspace

entry point

EPROM

EQUB/EQUW

error number

execution address

explode

extended vector

entry

filing system

firmware
flag

font

garbage

handle

I3

paper copy (usually) or screen
display of memory or file contents
memory claimed by ROM for 1its

own use The amount claimed will
vary from ROM to ROM and the memory
boundary will move, 1e, 1s dynamic

point 1n a program where control 1s
transferred to, 1e from where 1t
begins 1ts operation
Erasable/Programable Read Only
Memory - a chip which may be
programmed with an EPROM
programmer The contents are
permanent unless erased by an

ultra violet light source

commands used by the

assembler in BASIC 2 and later
versions, to assemble specific
items of data

code number which defines the last
error that occurred Obtained with
PRINT ERR

the point at which control 1is
transferred to carry out the task
of the program or command

to load the character set from ROM
1nto maln user memory thus allowing
1t to be changed

a means whereby a vector may be
redirected into ROMs other than the
current language thus enabling them
to perform tasks along with the
current language ROM

ROM chip that controls the flow of
data to and from storage medium
such as disc, net or cassette
programs supplied in chip form
a byte, bit or variable that 1s
used to signal that a condition
or has not be met with

design of the letters in a
character set,

eg standard, 1italic,

has

bold etc
undefined or random memory contents

number assigned to the current file
by the filing system

I94

hash header

hex

high-level
language

hang-up

header

Hi language

hidden RAM

high byte

housekeeping

1d

image
implode
increment
1nitialise
internal key

number
lnterpreter

interrupt

IRQ

JMP/JSR

Glossary

an abbreviated form of header used
1in the ROM Filing System, so called
because 1t uses the # symbol
hexadecimal - a number system based
on I6

language not written in the

native language of the computer (1ie
not machine code)

micro becomes unresponsive unless
the BREAK or CTRL-BREAK keys are
pressed to reset the system

section of code containing a CRC
and file information at the start
of a file stored on a filing medium
languages that have been customised
to run in a second or co-processor,
eg H1-BASIC

I2k area of memory that 1s used

by the MOS and ROMs It 1s not
available for normal use and hence
1s 'hidden'

the upper, higher value byte in a
two-byte number

to tidy up and do chores required
to keep operation smooth running

identifier each ROM slot has an 1d
number associated with 1t

copy of a ROM on disc or cassette,
etc

opposite of explode, 1e, to use the
ROM-based character set

add one to the contents of a number
or register

reset/set before continuing

each ASCII character has a specific
number for the micro's own use
section of machine code that 1is
capable of recognising/ identifying
a sequence of ASCII characters
signal generated by a chip or
external device that stops the
microprocessor's operation
Interrupt Request - an interrupt
that may be i1gnored by the
processor under certain conditions

assembler mnemonics JMP 1s JuMP
to a given address, JSR 1is Jump
Save Return, a form of GOSUB

>ssary I9s

anguage ROM ROM containing a language
ow byte lower value byte of a
two-byte number

achine code native language of all
M1Croprocessors

ain Tube main routine used to set up and

initialisation define the operation of the Tube

asking technique whereby the bits within a

byte may be manipulated using a
logical operator, eg, AND

egaROM main sideways ROM within the Master
containing all of the ROMs
supplied Referred to as the
Megabit ROM because of 1ts I28k
si1ze (I million bits)

onitor watch, observe and alter the
contents of memory Software used
to watch the operation of a machine
code program

0S Machine Operating System ~ the
firmware that controls the micro

et network filing systems, eg Econet,
whereby machines are linked
together via a series of cables and
share one main disc draive

FS Network Filing System

ibble group of 4 bits, half a byte

MI Non-Maskable Interrupt - this may
not be 1gnored by the microprocessor

ffset pointer index which, when added to an

absolute address, will point to a
selected address

pcode term given to the operation code
for a byte of machine code
PT variable used to assign the output

required during the assembly of a
machine code program

SHWM Operating System High Water Mark -
usually the same value as PAGE, but
the first byte free for use above
the workspace stored at the
beginning of memory

AGE address at which a program will be
stored
aged ROM another term for sideways ROM

yag ing process of selecting and

I96

parameter block

peek
poke
polling interrupt

power-up
private RAM

pull
push

RAM

RAM bank
register

reset

second processor
service call

service entry
point
service ROM

si1deways RAM

soft reset

stack

static workspace

Glossary

deselecting sideways ROMs

area of memory into which
information 1s stored to pass 1t to
the MOS when an 0S call 1s used
examine memory contents

alter memory contents

process of ascertaining which device
caused an 1nterrupt by asking each
one 1n turn

switching on the micro

memory used privately by a ROM - no
other ROM may use the private
workspace

remove an 1tem of data from a stack
place an i1tem of data on a stack

Random Access Memory - volatile
memory used to store programs and
information for use by the computer
The contents are erased when power
1s removed

see bank

speci1al location within the
microprocessor

initialise the system

see co-processor
message 1ssued by the MOS The
resulting action 1s defined by

a code number in the

accumulator

point 1n a ROM through which a
service call 1s processed

ROM that 1i1s only capable of
actioning service calls, 1e 1t does
not have a language - only

* commands are recognised
technique whereby ROM 1mages can be
switched 1n and out of the same
area of memory

reset that i1s only partial

Happens when BREAK key 1s pressed
area of memory onto which data can
be pushed and pulled in the form of
a linear list which appears to move
up and down on each push and/or
pull

reserved memory that does not
change 1n size and 1s available for
use by all ROMs (1e the Master

Glossary

table

toggle

TOP

transfer routine

Tube

type table

USERV
vector

volatile (RAM)

workspace

X register

Y register

zero page

6502 serles

I97

version of BBC micro's absolute
workspace 1n hidden RAM)

list of commands, addresses or data
for use by a program

single command that works like a
switch Use of the command will set
or reset depending on the current
status, 1e 1f set 1t will reset and
vice versa

BASIC's variable that stores the
address of the next free byte after
the program

small program or subroutine that
will move data from one point to
another

registered trademark of Acorn used
to describe the connection
mechanism between computer and
second or co-processor

table stored in memory 1n which the
ROM type 1s held by the MOS

USER Vector address

two-byte location which contains an
address

contents are erased when power 1s
removed

area of memory 1in which ROMs may
perform calculations

store 1n the 6582/6512
microprocessor used by assembler

store 1n the 6582/65I2
microprocessor used by assembler

area of memory whose address runs
from &g@8 to &FF

family of microprocessors which
includes the 6582 and 65I2 chips
used in the BBC and Master series

Appendix A
Hex and Binary

This book makes no attempt to teach assembly language to
readers, and those who are unclear on this topic should
look to the books 1n the reference 1list However, as a
grasp of assembler and binary techniques 1s necessary to
make the most of this book, a brief summary 1is given here

Computers work by manipulating numbers, though in mos
instances this 1s transparent to the user, especially 1
high level languages such as BASIC However, the numberin
system used by computers 1s not a decimal one It 1s base
on the binary number system

In binary there are only two numbers, namely § and I A
first sight this seems to be a severe limitation Bu
consider a number system that you are familiar with - th
decimal system Here there are 3Jjust ten digits, § to
inclusave However we can form larger numbers by formin
groups of numbers, for example, I2, 345 and 5678 are large
numbers, using the base numbers, # to 9, as buildain
blocks In the same way we can use the base digits # and
to form larger binary numbers, for example, @I, IgIg
gBaIPAT and so forth

The next step 1s to 1learn how these numbers of binar
digits, or bits, are read Again consider the decima
system and the number I234 As we are working to a base o
If, the value of each digit 1increases ten fold as we mov
from right to left Therefore reading from right to left w
have

units, or 4*I=4

tens, or 3*(Ig*l)=3g

hundreds, or 2*(Ig*Ig+I)=200
thousand, or I*(Ig*Ig*Ig*I)=1408

HMD WS

appendix A Hex and Binary I99

adding this together gives
IA88+200+38+4=1234

It 1s no different 1n binary except that we are now working
to a base of 2, therefore numbers increase by a factor of
two as we move from right to left Consider the bainary
number II@I Reading from right to left we have

I unit, or I*I=I

'] twos, or @*(2*I)=§

I fours, or I*(2%2*I)=4

I eights, or I*(2%2%2*I)=8

adding these together gives
8+4+g+1=13

therefore IIBI 1s I3 in decimal

Each piece of computer memory, into which an 1tem of data
can be stored 1s called a byte There are eight binary
digits 1n a single byte, or 1in the jargon, eight bits 1n a
byte Therefore the largest binary value that can’be stored
1n a single byte 1is

ITTIITII

If you multiply this out as above you find that this 1s 255
decimal

Decimal Binary Hexadecimal

80P
2881
ga18
gA1I
184
141
gIIg
gIIT
1889
1941
Ip 1918
IT IpII
I2 I149
I3 IIgI
14 ITI@
15 ITII

VONOOUTEEWNDHS

HEOOQAODP OOV WN HS

Table AI Number conversion

ASR-N

208 Appendix A Hex and Binary

As you can imagine when dealing with computers using a
numbering system that 1s simply 1lines of ones and
zeroes 1s somewhat long-winded and very prone to error So
a numbering system called hexadecimal was introduced Th
hexadecimal system 1s calculated to a base of I'6¢ This 1
not as difficult as 1t may at first seem

First, we cannot just use the numbers § to 9 to represent
all possible I6 digits So to represent the decimal
equivalents of If to IS we use the letters A to F
inclusive Table AI sumarises the decimal, binary and
hexadecimal equivalents

Table AL will enable you to convert any binary number to
hexadecimal and vice versa, believe it or not!

If you look at the binary column you will see that I have
always used four digits This 1s because the largest single
hex (short for hexadecimal) digit 1s represented 1n four
bits, 1e F=IIII I mentioned above that a byte 1s eight
bits wide, therefore the value of a byte can be represented
by just two hex digits, simply by converting the byte into
two halfs and using the above table

Consider the binary number, IIgggrgr Break this into
two halves of four bits, called nibbles, and we have

IT@P and gIgr
Use the above table and we see that

ITgP = C and gIPI = 5
therefore IIBPPIPI 1in binary 1S C5 1in hex To distinguis
that 1t 1s a hex number we place an & in front of it, &C5

To convert a hex number 1into binary we work in th
opposite direction Thus the number &DA simplifies to

D Irg:
A = 1919
therefore &DA = IIQIIgIg

Converting between hex and decimal and vice versa 1s less
straightforward It can be done using the Master For
example, typing

PRINT &DA

would cause the Master to print the decimal equivalent of
&DA Typing

PRINT ~I23

would print the hexadecimal value of the decimal I23

appendix A Hex and Binary 24T

Obviously we have just dealt with single-byte numbers
But multibyte numbers are converted 1n exactly the same
fashion Just break the number down 1into single bytes and
then proceed as normal As an example the number &CAFE

becomes

1108
1818
ITII
IIIgQ

Therefore &CAFE = IIg@§ ISI@ IIITI III§ Note that the number
1s split into 1ts basic nibbles This makes reading and
manipulating 1t that much easier on the eyes'!

mEY» O
nwan

Appendix B
Conversions and
Compatibility:
BBC and Electron

The techniques contained in this book are primarily wraitten
for the Master series of computers However, bearing
in mind that the BBC series of computers 1s an evolutionar
one and that compatibility i1s an important feature of tha
evolution, many programs will run with minimal changes
Certainly the techniques discussed are applicable Th
notes that follow will point out the main areas o
lncompatibility with solutions where possible Table B
lists the programs that wi1ll work providing suitabl
adaptations, as detailed below, are performed

Assembler

The Master 1s based on the 65CI2 microprocessor chip This
has a slightly better machine code instruction set than th
6502 ard 65I2 microprocessors that form the heart of th
BBC B and BBC B+ micros The assembler listings presente
here are written to take advantage of the 1increased
instruction set

Instructions used within listings that are not supported

by the 6582 and 65I2 microprocessors 1in the BBC B, BBC B
and BBC B+128 micros are

PHX - Push X onto stack
PHY - Push Y onto stack
PLX - Pull X from stack
PLX Pull Y from stack
STZ - Store zero at location

appendix B BBC Conversions

283

i Program BBC B+I28k BBC B+ BBC B
IT Yes Yes Yes
21T Yes Yes Yes
2 2 Yes Yes Yes
31 Yes Yes Yes
4T Yes Yes Yes
4 2 Yes Yes Yes
4 3 Yes Yes Yes
4 4 No No No
5 I Yes Yes Yes
5 2 Yes * Yes* Yes *
6 I Yes Yes Yes
6 2 Yes Yes Yes
6 3 Yes Yes Yes
6 4 Yes Yes Yes
71 Yes Yes Yes
8 I No No No
8 2 No No No
9 I No No No
Ig 1 Yes Yes Yes
ITI Yes Yes Yes
I3 I Yes Yes Yes
I4 1 Yes Yes Yes
IS T Yes Yes Yes
IS5 2 Yes Yes Yes

* Character font must be exploded with *FX28,6

each are

Master

PHX

PHY

PLX

PLY

STZ location

However, these are simple to

Table BI Program compatibility

BBC B,B+,B+128

TXA PHA
TYA PHA
PHA TAX
PHA TAY

simulate,

the equivalents of

PHA LDA #8 STA location PHA

‘Assembler options 4 to 7 rely on
machines The only easy way to simulate these in BASIC I 1s
to add an offset to all absolute addresses

I8 ds=&3069 P¥=&5000

Ig8 STA base+d$

‘would ensure address 1n the &8808

BASIC

range

2 1n non-Master

(detai1ls later)

204 Appendix B BBC Conver51ons,
/

Important Note Altering assembler listings will alter
the checksum value calculated, so giving an 'Assemble

error'' message This should be i1gnored or the checksuv
calculation routine left out of the program

Service Calls

The following service calls are unique to the Master
serlies !

&I5 - Polling 1interrupt

&18 - Interactive *HELP

&2I - Indicate static workspace in hidden RAM
&22 - Claim private workspace

&23 - Top of static workspace

&24 - Indicate workspace requirements

&25 - Inform MOS of filing system details
&26 - Close all files

&27 - Reset has occurred

&28 - Unknown *CONFIGURE

&29 - Unknown *STATUS

&2A - ROM language starting up

Calls &24 and &22 have direct equivalents in calls &I an
&2 1n the BBC B series computers and these should be use
instead, claiming normal RAM as static and private RAM

It 1s likely that Acorn may release an upgraded versio
of the MOS to include these calls at a future date 1
such a case the above calls may well be of use

BBC B+ I28k

This micro has the same memory arrangements as the Master
except that the hidden RAM 1s not wused as per the Master
Refer to your User Guide for possible applications for th:i
space As the BBC B+ I28k contains four 1I6k banks o
sideways RAM, the sideways RAM utilities descibed, 1
*SRWRITE, *SRLOAD, *SRREAD and *SRSAVE are all implemented
However the ROM 1identities are different, sideways R
banks have identities W, X, Y and Z Thus references to RO
1dentities 4,5,6 and 7 1in text and listings should b
changed to W, X, Y or 2

BBC B and B+

These micros need to have sideways RAM fitted Consult
magazine reviews and advertisements for details on the
types available The sideways RAM utilities detailed above
are not present, however your RAM board should explain ho
to transfer ROM 1images from disc 1nto the RAM In addition

appendix B BBC Conversions 245

to assembler changes you will need to alter the line
containing the sideways RAaM utilaity, typically *SRWRITE
his need just be changed to a simple *SAVE to save the
ode generated by the assembly listing Thus

*SAVE name <start addr> <end addr>

where 'name' 1s the assigned filename The file can then be
loaded into sideways RAM with the appropriate utility Some
si1deways RAM boards allow you to assemble directly into the
sideways RAM 1itself In such cases *SAVE 1s not necessary
% can be set directly to &88¢f, O% can be omitted and the
TUPT parameters can be adapted to # and 3 thus

FOR pass=# TO 3 STEP 3

For assembling in this manner you will need to use a
special routine to read the ROM 1mage back 1nto memory
prior to saving 1t to tape or disc Again your ROM board
instruction manual should contain details If not, simply
place the OSRDRM routine at &«FFB9 1in a suitable loop
Details of this call can be found in Chapter I2

Electron

There are some SRAM boards available for the Electron,
notably those marketed by Advanced Computer Products (ACP)
and Solidisk (incorporated with their Electron DFS - EFS)
Both of these require the PlusI to be fitted

To convert the programs to run then follow the conversion
notes above for the BBC B micro BASIC 2 1s fitted on the
Electron therefore both OPT and EQU functions are present

OPT 4 to 7

BASIC version 4 as supplied with the Master series, and
BASIC version 2 as supplied with later versions of the BBC
B, B+ and B+ 128k micros contain extra assembly options
that cater directly for offset assembly

It 1s not normally possible to assemble ROM 1mages into
sideways RAM Straight assembly 1into other areas of memory
1s of 1little use as all absolute addresses will not be
correct Consider the following short segment of assembler

FOR pass=§ TO 3 STEP 3
P¥=&50040
[OPT pass
start
JMP language
JMP service

246 Appendix B BBC Conversions

service
] NEXT pass

If the label service was offset from start by &52 byte
then the code assembled by JMP service will be the
equivalent of l

JMP &5852

This could not be used correctly within sideways RAM The
address that should be assembled, needs to be

JMP &8652 |
|
|
One way around this 1s to add an offset to all absolute
addresses, thus the above code becomes

FOR pass=f TO 3 STEP 3
P¥=55008 D¥=&80f0-P%
[OPT pass

start
JMP language+D%
JMP service+D%

service
) NEXT pass

Now when JMP service 1s evaluated it will have &3@8@g8 adde
to 1t to give the correct address

This 1s not an elegant and friendly solution The BASIC
assembler now caters for this OPTs 4, 5, 6, and 7 are the
direct equivalents of OPTs g, I, 2, and 3 except that
offset assembly takes place Now code 1s listed on the
screen as though i1t 1s assembling to P% but in actual fact
1t 1s being assembled at the location pointed to by 0%

FOR pass=4 TO 7 STEP 3
Ps=&8040 0%=5&5000
[OPT pass

start
JMP language
JMP service

service
] NEXT pass

In the above program machine code 1is generated correctly
for &8@@#, but 1s i1n fact stored at &5g80

Appendix C
Listings Details

Details of the 25 programs contained 1in this book are
listed below, along with any special commands or
procedures they include which could be used i1n your own
programs The suggested save names 1n the chapters are
also given 1in brackets

Listing I I Simple sideways RAM demonstration (DEMO)
This listing shows just how easy 1t can be to produce
a sideways RAM 1mage It does not wuse assembler,
instead 1t uses machine code as DATA statements

Commands added *BEEP produces a beep on the speaker
*HELP processes a simple *HELP message
Procedures PROCread reads DATA
PROCchecksum checks program entered
Other features First use of *SRWRITE command

Listing 2 I Read ROM table address (TABLE)
Demonstrates use of OSBYTE 17§ to read start address of
ROM table in RAM

Listing 2 2 Form ROM header (HEADER)
Illustrates how a standard ROM header 1s produced

Commands added *HELP processes a simple *HELP
message

Procedures PROCgetstraing inputs title
and copyright strings
PROCassemble assembles header using
above information

Other features Illustrates use of service entry

208 Appendix C Program Details

Listing 3 I Trace ROM (TRACE)
Forms sideways ROM image to show what service calls are
being 1ssued by the MOS as and when they are

Other features Binary to ASCII hexadecimal string
conversion routine to print service
call number as a two-digit hex number

Listing 4 I Simple *HELP ROM (HELPT)

Shows how service call 9 1s trapped to output a
standard *HELP message defined by the title string of
the ROM

Commands added *HELP processes a simple *HELP message
Other features Provides standard print routine for
*HELP response Outputs ROM title string

Listing 4 2 Print version number on *HELP (HELP2)
Enhanced version of listing 4 I It praints the ASCII
version number 1n addition to the standard *HELP
message

Commands added *HELP processes a simple *HELP
Other features Recodes *HELP printing algorithm more
efficiently

Listing 4 3 Extended *HELP (HELP3)

Shows how to make *HELP response more informative 1In
addition to printing title string message, 1t prints
a string called ‘'Command' When *HELP COMMAND 1s
entered the ROM will respond with a description of
commands that would be contained within the ROM 1mage

Commands added *HELP prints title message version
number
*HELP COMMANDS prints details of
commands that may be held within that
ROM

Other features 1Illustrates use of a simple one-command
interpreter Shows how characters may
be forced to upper case Uses MOS
vector at &F2 Shows how marker bytes
may be used Demonstrates how to
preserve and restore processor
registers This listing 1s the
basis for many in the book

Appendix C Program Details 269

Listing 4 4 Interactive *HELP (HELP4)

Shows how service call 24 may be trapped to provide
interactive *HELP messages, perhaps to print more
information should 1t be required by the user

Commands added *HELP prints title string and version
number

Other features Traps service call 24 Asks 1f you wish
more detalls about the ROM If reply 1is
Y then more information 1s printed by
the print routine, else ROM returns
control

Listing 5 I Test interpreter (INTERP)

Shows how three new commands can be added Thais
demonstrates the standard way of 1interpreting commmands
entered at the keyboard ‘

commands added *MODERN bleeps speaker 1initially
*STANDARD bleeps speaker 1nitially
*ITALICS bleeps speaker
*HELP praints title string, version
*HELP COMMANDS prints extended help

Other features First use of service call 4 trapping
Shows construction of command and
address table Illustrates use of
marker bytes and use of status register
flags to indicate where you are 1in the
command table Provides interpreter
routine Uses search and compare
routine to compare command entered with
commands 1n the command table Provides
'move on' routine to search for next
command 1n table Shows how command
execution address may be extracted from
command table and jumped to

Listing 5 2 Command coding (MODERN)

This listing 1s added to 1lasting 5 I and provides you
with a 'modern' style character font that can be used
in all modes except mode 7

commands added *MODERN selects modern characters
*STANDARD reselects standard font
*ITALICS produces bleep on speaker
*HELP prints title string, version
number

Other features Shows how look-up and data tables can
be used Routines provided to save and
restore zero page workspace onto stack

219 Appendix C Program Detalls

Listing 6 I OSBYTE ROM (OSBYTE)

Implements a new OSBYTE call number &64 to convert the
binary value 1n X to a two-digit ASCII hex value
returned 1n X and Y

Commands added *HELP prints title and version number
*HELP OSBYTE prints OSBYTE call
details

Other features Traps service call 7 Uses binary to
ASCII hex conversion routine

Listing 6 2 Test new OSBYTE call (OSBTEST)
This routine shows how easy 1t 1s to use the new OSBYTE
call provided by listing 6 I

Listing 6 3 OSWORD ROM‘ (OSWORD)

Implements new OSWORD call, number &65, to convert,
and, 1f required, print two binary numbers into a ASCII
hex strang

Commands added *HELP praints title string, version
number
*HELP OSWORD prints OSWORD call
details

Other features Two-byte binary to ASCII hex
conversion routine Illustrates how to
place and extract details from a
parameter block How to use sign bytes
1n parameter block

Listing 6 4 Test new OSWORD call (OSWTEST)
Shows how to use new OSWORD call provided by listing
6 3

Listing 7 I Extended vector ROM (VECTOR)
Demonstrates how to set up an extended vector to point
into a sideways ROM It resets USERV

Commands added *HELP prints title string and version
number
*HELP VECTORS prints extended vector
details
*ON turns extended vector on
*OFF turns extended vector off

Other features Shows use of ROM extended vector table
Illustrates resetting of MOS vectors to
point 1nto a sideways ROM, and how to
reset them again

Appendix C Program Details 2IT

Listing 8 I Polling interrupt ROM (POLLING)
Shows how to trap service call 2I after *FX22 1ssued

commands added *HELP prints title string and version
number
*HJELP POLLING praints polling details
Other features Shows how i1nterrupts can be caught Ifg
times per second to increment a
counter
Shows how to increment two-byte number

Listing 8 2 Print date on reset (TIME)

Traps reset service call, number 39, and uses 1t to
print the date onto the screen Thus each time a hard
reset 1s performed the date will be displayed as well
as the standard start-up messages

Ccommands added *HELP praints title string, version
number
*HELP DATE prints date details

Other features Reads real time clock using OSWORD &E
Illustrates trapping of service call
39

Listing 9 I Configure and status ROM (DATE)

This program adds a new *CONFIGURE and *STATUS option
to the ones already existing Namely whether or not to
display the date on a reset as detairled above

Commands added *HELP prants title string and version
*HELP DATE prints configure/status
detalils
*CONFIGURE DATE ON/OFF configures date
option so 1t 1s either on or off
*STATUS DATE displays current date
status

Other features Shows use of service calls 48
and 4 and how to use battery-backed
bytes allocated to sideways ROM Use of
OSWORD &E to read real-time clock

Listing I8 I Auto-boot ROM (BOOT)
How ROMs may be booted to perform specific tasks by
pressing another key 1in addition to SHIFT-BREAK

commands added *HELP prints title string and version
*HELP BOOT prints Boot options
avallable

Other features Shows use of service call 3 Provides
boot facilities for choosing ROM filing

212

Appendix C Program Detalls

system and to catalogue disc How to
use OSBYTE &8A to i1nsert commands 1into
input buffer

Listing II I Private workspace ROM (PRIVATE)
Claiming and using private ROM workspace in hidden RaM

Commands added

Other features

*HELP prints title string and version
*HELP COMMANDS prints command detalls
*PUSH saves locations &78 to &8F 1in
private ROM workspace
*PULL transfers *PUSHed bytes from
private ROM workspace back 1into
locations &78 to &8F
Shows use of service calls 34 and 36
How to claim 256 bytes of private ROM
workspace within hidden RAM Shows how
to use private ROM workspace
and ROM workspace table Routines
'‘writeon' and 'writeoff' supplied to
enable hidden RAM workspace to be used

Listing I2 I Read title string from ROM (READ)
Demonstrates OSRDRM

Listing I3 I ROM Filing System (RFS) formatter (ROMFS)
Converts any BASIC programs into a I6k ROM 1image

Programs can be

loaded from sideways RAM directly 1nto

memory using the ROM filing system (RFS)

Commands added
Other features

Procedures

*HELP prints title string and version
Shows use of service calls I3 and 14
How to calculate header and program
checksum values Formatting of BASIC
programs into RFS format

PROCformat controls main formatting
PROChandle formats multi-block code
PROCfi1lehead forms block header and
calculates header check (CRC)
PROCgetdata reads program from disc
and places 1t in ROM 1image

PROChash creates hash header
PROCassemble assembles machine code to
calculate CRC

PROCromhead assembles ROM header with
service calls

PROCnottape reads file catalogue
PROCsave saves ROM 1mage to disc, etc

Listing I3 2 Hex and ASCII dump utility (DUMPER)

Appendix C Program Details 2I3

Listing I4 I MASMON language ROM (MASMON)

How to write a simple language ROM The example 1s
MASMON the Master Monitor, a machine code hex and ASCII
dump program

commands added *HELP prints title string and version
*MASMON enters the larguage ROM

Other features Shows use of language entry point Use
of OSBYTE &8E Hex and ASCII dump
routine How to convert ASCII hex
string into a two-byte binary number

Listing I5 I BRK errors (BRK)
Small assembly language program showing how error codes
and error messages are stored within ROMs

Listing I5 2 Error test ROM (ERRORI)
How to print error messages from within a service ROM

commands added *HELP prints title string and version
*CONVERT converts following hex number
into a two-byte binary value

Oother features Supplies two new errors
ErrorROM Too Big, greater than &FFFF
ErrorROM Bad Hex, number not hex
Sets up error table and shows use of
error numbers Uses stack as error
buffer and provides routine to copy
message from ROM onto stack

Listing I5 3 Errorwise language ROM (ERROR2)
How to print and handle errors from within a language

Ccommands added *HELP praints title string and version
*ERRORWISE enters language ROM

Other features Shows how to claim BRKV
How to restore ROM after an error
How to implement OSCLI within a ROM
Further example of a language ROM

Program Disc

Note that all these programs are avallable on a disc
from Victory Publishing Please turn to order form
after the Index

Appendix D
Links

When you receive your Master, the sideways RAM 1s set
up and ready to use However, 1f you wish to use any of
the internal ROM sockets this can only be done at the
loss of some SRAM The option you decide to take up 1s
defined by the position of two 1links 1inside the
Master's case on the main circuit board The links are
LKI8 and LKI9

To change the links you will need to remove the top
of the Master case - this 1s done by undoing the four
fixing screws marked 'fix' on the underside With the
114 removed and the keyboard facing you the four ROM
slots can be clearly seen to the right side immediately

NORTH
Chip Mega ROM
LkI9 = ROM slot IC37
Chip
ROM slot IC27
LkI8 =
= LkI2 ROM slot ICA4I

Top of keyboard PCB

SOUTH

Figure DI Position of links on circuit board

Appendix D Links 2I5

above the keyboard The MegaROM can be clearly seen 1n
the topmost of these sockets Link LKI9 can be found to
the left and slightly below the MegaROM while link LKIS8
1s to the left of the bottom most 'empty' ROM socket,
and above link LKI2 The links are marked on the main
circult board in white Take a look at figure DI

Link I8

Wwhen fitted 1n the WEST position, this link cause
I6k of RAM to appear 1in each of the SRAM memory slots
numbers 6 and 7 When fitted in the EAST position, a
ROM up to 32k 1n size occupylng slots 4 and 5 may be
plugged into the socket labelled IC4I

Link I9

When fitted in the WEST position, this link will allow
T6k of SRAM to appear in slots 4 and 5 When fitted in
the EAST position a ROM up to 32k may be plugged 1in
socket IC37 The ROM will occupy slots 6 and 7

Link Geography

Link settings are referred to by points of the compass
With the keyboard facing you, south 18 nearest, north
1s to the rear, west 1s to the left and east 1s to the
right Most links consist of three pins and a shortang
link of two pins 1s placed across the central pin to
one on either side If a link 1s made WEST then the
shorting link 1s placed on the west or leftmost of the
three pins Similarly 1f a link 1s made east, the
shorting pins are placed across the rightmost of the
three links Figure D2 shows this

o o o Link made 1n the WEST position

o o o Link made 1in the EAST position

Figure D2 Link settings

Note also that all the chips on the circuit board are
placed with the half-moon at one end facing north

ASR-0

Appendix E
Postscript

Since writing and preparing this text the following
items have come to light prior to goling to press

Interactive Help

This service call 1s primarily intended for use with
networks On receiving the call, the ANFS will 1look at
the fileserver for a file called 'HELP and run this
With the ANFS installed the service call may not get
passed to sideways ROMs of a lower priority

Language ROMs

If you try to boot a language ROM that does not conform
strictly to the protocols defined in this book then the
MOS will respond with the error message

'This 1s not a Language'

and refuse to boot the ROM The most common culprit 1is
the use of a lower-case 'c' rather that the required
upper-case 'C' to form the copyright string

OSWORD Calls

Two OSWORD calls are provided to allow emulation of
*SRREAD, *SRWITE, SRLOAD and SRSAVE from machine code
programs -~ details are as follows

OSWORD 66 (&42) Block transfer to/from SRAM
(performs *SRREAD and *SRWRITE)
Parameter block
XY+8 bit7 - @ to read SRaM
bit7 - I to write to SRAM

Appendix E Postscript 217

bi1té - § for absolute addressing
bité - I for psuedo addressing
bits #-5 - all at @

XY+l <LSB of start address>

XY+2

XY+3

XY+4 <MSB of start address>

XY+5 <LSB of block length>

XY+6 <MSB of block length>

XY+7 <ROM 1d>

XY+8 <LSB of sideways address>

XY+9 <MSB of sideways address>

On exit, the parameter block remains unchanged Note
that ROM 1ds W,X,Y and 2 for the BBC B+128 are denoted
by the values &If@, &II, &I2, &I3 respectively
NB LSB = least significant byte
MSB = most significant byte

OSWORD 67(&43) Block save to/from SRAM
(performs *SRLOAD and *SRSAVE)
Parameter bock
AY+8 bit7 - f to save from SRAM
bit7 - I to load into SRAM
bité - @ for absolute addressing
bit6é - I for pseudo addressing
XY+l <LSB of file name address>
XY+2 <MSB of file name address>
XY+3 <ROM 1d>
XY+4 <LSB of start address>
XY+5 <MSB of start address>
XY+6 <LSB of file length> - save only
XY+7 <MSB of file length>
XY+8 <LSB of buffer start address>
XY+9 <MSB of buffer start address>
XY+18 <LSB of buffer length>
XY+IT <MSB of buffer length>

On ex1it, the parameter block remains unaltered unless
the buffer addresses cause 1t to be overwritten during
file transfer The buffer relates to the area of memory
used to save file blocks during the transfer to or from
the filing system If the bytes at XY+If and XY+II are
set to zero then the default buffer 1s used, using any
start address specified in XY+8 and XY+9 - this 1s the
equivalent operation of *SRLOAD or *SRSAVE without
specifying a Q parameter, 1e a slow transfer 1is
performed If the value 1in XY+If and XY+II 1s a value
between I and 32768 then the specified number of bytes
are used for the buffer starting at the buffer start

218 Appendix E Postscript

address given 1n XY+8 and XY+9 If the value in XY+Ig
and XY+IT 1s greater than 32768 then a buffer that runs
from OSHWM to 3Just below the screen 1s used for the
transfer This 1s the equivalent of specifying a Q
parameter

As with OSWORD 66 ROM 1ds W, X, Y and 2 are
represented by &I, &II, &I2 and &I3 respectively

OSBYTE Calls

Two OSBYTE calls are implemented for use with SRaM,
these are calls 68 and 69

OSBYTE 68(&44) Test RAM presence
This call simply allows you to test if each of the four
SRAM banks are present, 1e if they can be used SRAM
cannot be used i1f PCB links are altered (Appendix D)
Entry parameters none
Exit parameters the X register returns a value 1n
the least significant four bits to indicate which banks
are present If the bit 1s set the bank 1is present, 1f
clear 1t 1s absent The corresponding bits are

b

t bank

whH® -
NoOU e

OSBYTE 69(&45) Test use of SRAM bank
This call allows use of each of the four SRAM banks, 1e
1f they are being used 1in pseudo or absolute mode

Entry parameters None

Exi1t parameters the X register returns a value in
the least significant four bits to indicate the
operation mode If the bit 1s set pseudo addressing 1is

being used, 1f clear, absolute addressing The
corresponding bits are

b1t bank

WS-
U

*INSERT and *UNPLUG

To prevent clashes of ROM commands 1t 1s possible to
'remove' ROMs under software control -~ this 1s done
with *UNPLUG The command should be followed by the ROM
1d, l1e *UNPLUG 7 *INSERT will 'plug’ the ROM back in -
*INSERT 7 A CTRL-BREAK will complete the process

Index

absolute workspace 132

ACCCON 134

Access Control Latch 134

Acorn Computers 65

ADFS 18,96,119,129,152

Advanced Disc Filing System 119
advanced Network Filing System 39, 119, 152
AND 111

ANFS 39, 119, 152

ASCII dump routine 154

asterisk 13

bad command 84

error message 83
BASIC 17,25,33,49,53,142,143,146,169,178,180
BASIC ROM 13,18,144
BBC B 204
BBC B+ 204
BBC B+128 204
BOOT 123
booting ROMs 119,229
BRA 229
BREAK 27,165
BRK 91,92,145,178,179
BRK flag 179
BRK vector 91,165,167
BRKV 91,165,179,181
bug 34

change in filing system 93
character font 53,54,93
claim use of the NMIs 92

220 Index

CLI 84,165
CMOS

clock 96

RAM 105,106,108
command 13

action 48

name 51

table 50,51
Compact x, 111
COMPRESS 38
CONFIGURE 105
copyright 30
copyright offset 14, 18
copyright string 14, 18
co-processor 96,166

relocation address 14
CRC 150,151
CTRL-A-BREAK 119,229
CTRL-BREAK 27,29,96,229
CTRL-C-BREAK 120,229
CTRL-N-BREAK 120,229
CTRL-R-BREAK 120,229
current language ROM 91
current ROM 25
cyclic redundancy check 150,151

DATE 110

debugging 35,53
Interpreters 53

designing ROM 1images 80

DFS 17,91,96,129

disable interrupts 84

disc filing systems 81,96

DUMPER 154

dynamic 129

Econet 39

Edit 14,20

Electron 16,17,166,205,229

end-of-ROM marker 151

entry points 13

EPROM 147

error message 80,922,180
number 91,180,182
pointer 19
vector 164

ERROR1 181,183

ERROR2 182,187

Errors 178

ESCAPE 182

Index 221

EXEC files 94
execution address 51
EXPAND 38
explode 93
character fonts 128,129
extended help facility 35,229
extended vector 80,81,83
entry 80,81
processing area 8l
space 82,83
extended *HELP 35,36
extending CONFIGURE 109
extending STATUS 107
extra service parameter 25

filing system 93
change 93
number 96,97
ROM 80,95
vectors 93
format 13
Forth 14,164
function key definition buffer 128,129

gaining workspace 55

hangs up 30
hard reset 26,27,96
hash header 151
header 13,19,151
Help Test ROM 35,38
HELP1 34,41
HELP2 35,42
HELP3 43
HELP4 39,45
hexadecimal to binary 180
Hi 16
hidden memory map 128
RAM 129,133
RAM workspace 129

I (1nsert) option X

1id 29

1llegal 229

1llegal address error 30
implode 54,93

indicate private workspace 130
information parameter block 66
interpreter 25,164

interactive help 39

222

internal key number 120

INTERP 52,57

interrupt polling routine 94
request 90

IRQ 90,91,180

IRQ1V 180

IRQ2 91

language 16

entry point 13,14,16,18,164
language ROM 14, 144, 164,167,181,182
links x,214

mask 111

masking 39,40

MASMON 167

Master 14,17

Megabit ROM 30,182
MODERN 55

monitor 167

Monitor ROM (BBC Soft) 53
MOS drivers 129

negative flag 51

network 39

Network Filing System 96
(see ANFS)

networking 92

NMI
handling 92
service code 98
service routine 92
workspace 97
NMIs 91,92

non-maskable interrupts 91,92

of fset 14

operating system read ROM call (OSRDRM)
operating system vectors 81
OR 111

ORA 111

OSARGS 93

OSBYTE calls 144

OSBYTE 15 121

OSBYTE 126 182

OSBYTE 143 92,134

OSBYTE 170 15

OSBYTE &l15 94

OSBYTE &l16 (*FX 22) 94, 144
OSBYTE &17 (*FX 23) 94, 144

43

Index

Index 223

OSBYTE &64 67

OSBYTE &7A 121

OSBYTE &8A 121

OSBYTE &8D (*FX 141) 144,229
OSBYTE &8E 164,168,169
OSBYTE &8E (*FX 142) 144
OSBYTE &8F (*FX143) 144,229
OSBYTE &A8 (*FX 168) 145,229
OSBYTE &AA (*FX 170) 145
OSBYTE &B3 (*FX 179) 145
OSBYTE &BA (*FX 186) 145
OSBYTE &BB 169

OSBYTE &BB (*FX 187) 145
OSBYTE &FC (*FX 252) 145
OSFSC 97,229

OSHWM 96,165

OSNEWL 34

OSRDCH 182

OSRDRM 143

OSWORD 65,66,68,69

OSWORD number 66

OSWORD &65 68

OSWORD &E 96

OSWRCH 166

PAGE 129,132
parameter block 68
Pascal 14
polled 25
print title string 34
print version string 34
PRIVATE 132,133
private RAM 132,133
workspace 98 131,132,133,134
protection 30

bit 150
pull 56
push 56

Q (guick) option x,29

RAM bank 21

redirect a vector 81
relocation address 16
re-location address 166
REPORT 229

224

RFS 147
1mage 147
initialisation call 148
formatted ROM 148

ROM 13,14
banks 16
calls 142

copyright 30
file data 148
filing system 121,147
filing system vectors 151
header 13,14
1dent1ity 29
i1mage 14,29,48
Image Formatter 152
polling semaphore 145
select register 142,143
title 14,15
title string 33
type 16,17,19
type table 15,33
types 17
workspace 129,131

ROMFS 152

ROMs on disc 30

SCOMMS 55
second processor 16,96,166
SEI 84
selected ROM 84
service 27
service call 16,25
call &22 130
coding 33
entry 13,16,17,25
entry coding 26
entry point 13,18,25,148,164
register initialisation 25
ROM 182
type 25,26
workspace 130
service calls

1 132,229
229

3 119

4 48,96,229

5 90

6 91

9 33,34,35,36,39,229
10 (&0A) 133

Index

Index 225

service calls continued

11 92

12 92,93,97
13 148

14 149

15 93,229
16 93,229
17 93

18 93

21 94

24 38,45

33 (&21) 129
34 (&22) 130,229

36 129,229

37 95,229

38 95,229

39 95,96,229

40 109

42 (&27) 169,229
254 96

255 96

si1deways format 53

si1deways RAM utilities 28
si1deways ROM 14

si1deways writing 21

simple *HELP 33
software-generated i1nterrupts 94
soft break 27

SRAM utilities explained 28
SRSAVE 30

stack 56,165,179,181

stack management 53

stack pointer 91

standard header 19

start-up messages 27

static workspace 97,129,130,132,133,134
static type 129

status 105

status register 179
synchronisation byte 150

terminator byte 14

testing 1nterpreters 52

text pointer vector 143

title string 19,33,164

TRACE 27,31,95

Trace ROM 27,28

Tube 16,19,96,166

Tube relocation address 14,18,19
type byte 15,16

226

type number 15

unrecognised command 48
user definable character set
USERV 82,83,84

VDU23 54

vector 85

vector entry 97

version number 14,18,19, 34
version string 14,19,34
View 14,17,144

Viewsheet 14,17

workspace 128,129
writing commands 54
writing the interpreter 49

zero page 56

280 17

'HELP 39
&C000 130
&D00 93

&D9F 229
&E00 132,133
&EF 66,68
&F0 66,68,92
&F1 66,68

&F2 36,49,95,107,109,143
&F3 36,95
&F4 106,142,148, 180

&F5 148

&F6 143,148
&F7 148

&FC 179

&FD 92,180,181
&FE 92,180
&FE30 134,142
&FF 182

&FFB9 143

* 121,229
*BEEP 13

*CAT 121,229
*CODE 82

*CONFIGURE 105,110
*CONFIGURE DATE 106,109
*CONVERT 180,181

93

Index

Index 227

*DISC 97,121,229
*ERRORWISE 182

*FX100 66
*FX142 165
*FX20 93

*FX20,0 54

*FX22 94,145

*FX23 94,145

*JELP 13,19,28,33,49,229
*HELP COMMANDS 37

*HELP MOS 35

*HELP service routine 34
*ITALICS 49,56

*LINE 82

*MASMON 167

*MODERN 49,56

*OFF 84
*ON 84
*PULL 133

*PUSH 133,229

*ROM 122,229

*ROM command 147
*ROM filing system 144
*ROMS 18,20

*SHUT 95

*SPOOL 55

*SRLOAD 28,29
*SRREAD 28,29
*SRWRITE 21,27,28,29
*STANDARD 49,55,56
*STATUS 105,107,110
*STATUS DATE 107

228

Bibliography

The following books and articles are recommended

reading

Title
Author
Publisher
Price
Comments

‘Chatting with a chip' by David Atherton

The Advanced Disc User Guide
Colin Pharo
Cambridge
£14 95

Good detailed description of the Acorn DFS
Contents apply to 8271 disc controller chip

Microcomputer Centre

Details

differences between 8271 and 1770 disc controllers
Published 1n Acorn User July 1986 Pages 143, 144,145

Back 1ssues avallable from Redwood Publishing,
Drury Lane,

141-143
London, WC2B 5TF Describes how the 1770 works

and 1n particular 1its 8271 emulation

Title
Author
Publisher
Price
Comments

Title
Author
Publisher
Price
Comments

Title
Authors
Publisher
Price
Comments

Title
Author
Publisher
Price

Mastering Practical Interpreters and Compilers
Bruce Smaith

BBC Publications

£14 95 (published April 1987)

A book describing the writing of languages and
compllers Practical examples are given
throughout and include a graphics language
(Grafrite) and a compiler that will compile to
stand-alone machine code

BASIC ROM User Guide

Mark Plumbley

Adder Publishing

£9 95

A good description of how BASIC works Contents
are limited to BASIC 1 and 2, but are applicable
to later versions of BASIC though the routine
addresses will have changed

Advanced User Guide

Bray, Dickens and Holmes

Cambridge Microcomputer Centre

£14 95

Limited to BBC B but sti1ll a useful guide

Mastering Assembly Language
Richard Vialls

BBC Publications

£8 95

Addendum 229

Addendum

Chapter 4 All ROMs should respond to the command
*HELP and provide full extended help details and lists

Chapter 7 Location &D9F 1s used (page 83) to gain
the start address for extended vectors The 'legal’
way to do this 1s to use OSBYTE &A8 However, since
Acorn uses &D9F 1in ROMs I feel 1t 1s safe to use the
'1llegal' method!

Chapter 9 See note on page 111

Chapter 10 It 1s not necessary to press the CTRL key
when auto-booting ROMs, with a key-BREAK combination
Pressing key-BREAK 1s sufficient Page 121 and 122
*DISC could be selected more elegantly using OSBYTE
&8F, Y=&12, X=4 Similarly *CAT wvia the OSFSC vector
with A=5 (page 97) *ROM can be done with OSBYTE &8D

Chapter 11 The use of memory from &100 upwards (1e
the error message buffer) to act as a temporary store
for the contents of memory &70 to &8F by listing 11 1
has been described as 'untidy', and that 1t would be
better to push the contents onto the top of the stack
directly This 1s not necessarily so - pushing directly
onto the stack creates problems 1in that the command
*PUSH could not be used from within a subroutine as
the top of stack contents will have changed Error
messages when 1ssued by service ROMs will overwrite the
pushed data, but as the program will exit this 1s of no
importance Of course the effect of a *PUSH would be to
render REPORT usless However, I would remind readers
of the philosophy of this book (page 10)

Listing 11 1 uses memory locations &38 and &39 as a
vector Tiis 1s fine when BASIC 1s the maln language
resident or 1f you are writing your own language ROM
However, 1t should be avoided in service ROMs The user
locations &70 to &8F 1i1nclusive are an alternative Use
of sF2 and &F3 1s acceptable or better still the
tofficiral' workspace locations &A8 to &AF

Appendix B The BRA 1nstruction can be replaced with
JMP to run on a BBC B or Electron

General

Some confusion has occurred over the clearing of the
accumulator after a service call 1s trapped In
general the accumulator should only be cleared with
zero (1e LDA £0) 1f the service call 1s not to be
passed onto another ROM (1ie 1f a command 1s 1dentified
on service call 4) On the other hand, 1t should not be
cleared on service calls 1,2,9,15,16,34,35,36,37,38,39
and 42

230 Disc orders

Discs

Long listings mean tired eyes and fingers So avoid the
strain and the pain and treat yourself to a copy of
the programs listing disc The Master 128 and Compact
discs contain several extra listings showing the new
OSBYTE and OSWORD calls in action All discs
(1ncluding the BBC version) 1include a ROM 1mage
combining many of listings into a single ROM image The
following versions are available

Master 5 251n DFS £7 95 (1nclusive)
BBC B/B+ 5 25in DFS £7 95
Electron 5 251n DFS £7 95
Electron 3 Sin ADFS £9 95
Compact 3 51n ADFS £9 95

For overseas orders, please add £1 to these prices

The 5 251n discs can be loaded on 40 and 80-track
drives

Please state which version you require and send your
cheque or postal order, payable to Victory Publishing,
to Victory Publishing, PO Box 19, London N1l 1DS

Note that all mail orders are processed using a
database which 1s kept solely for the use of Victory
Publishing If you do not wish to be included in thais,
please i1nform us and we will delete your name

Please send me the 1listing disc for the Advanced
Sideways RAM Guide I require the version for

a micro on -in disc 1n format

I enclose a cheque for ¢ made payable to Victory
Publishing

Name

Address

SIDEWAYS RAM is a technique central to the
philosophy of Acorn’s new MASTER sgries of computers.
It allows you to load in software from disc or cassette
which is designed to behave as if it were part of the
machine, and is always on tap to the user. This book.
allows you to exploit SIDEWAYS RAM to the full. V\{ntten
by BRUCE SMITH, the foremost author on this subject, the
book is backed up with tried and tested software for you to
use straight away or adapt to your needs (and for readers
with less nimble fingers it's available on disc).

The secrets of Acorn’s ROM Filing System (RFS) are
laid open to you and explained in full with numerous
examples—there’s even a ROM Formatter, developed by
the author for use on commercial software, ready for you
totypeinand use.

The many features of this book include:

M 25 tried and tested programs and routines
demonstrating the use of SIDEWAYS RAM.

B Compatibility tables and conversion notes for the BBC
and Electron micros.

B Checking routines built into all major programs.

B ROM Formatter to convert BASIC programs on disc to
be treated as ROM software.

B Writing languages and interpreters.

M Details of all the SIDEWAYS RAM utilities built into the’
MASTER.

M Service calls explained and illustrated.

B Routines, programs and text extensively indexed.

BRUCE SMITH is the Technical Editor of the best-
selling magazine Acorn User and has already written
11 books on the BBC Microcomputer, including
The BBC Micro ROM Book, and Mastering Practical
Interpreters and Compilers.

£9.95 ISBN 0948938005

VICTORY PUBLISHING

