ICS

@ ELECTRONICS

division of Systems West Inc.

AB48-11

APPLICATION

BULLETIN

GPIB 101 - A TUTORIAL ABOUT THE GPIB BUS

INTRODUCTION

The purpose of this application note is to provide guidance and
understanding of the GPIB bus to new GPIB bus users or to
someone who needs more information on using the GPIB bus's
features. Thisapplication noteisdivided into short chapters. New
GPIB bus usersare encouraged to read all of the chapters. Experi-
enced users may want to skip to the chapter that deals with their
specific subject.

Application Note AB48-12, deal swith busextension problemsand
how to overcome the GPIB Bus limitations.

Please send all commentsto appsengr@icselect.com. Let usknow
if thereisasubject that needsmore coverageor if thereissomething
you feel we left out of this note.

CHAPTER 1-HISTORY AND CONCEPT

The GPIB bus was invented by Hewlett-Packard Corporation in
1974 to simplify the interconnection of test instruments with
computers. At that time, computerswere bulky devicesand did not
have standard interface ports. Instruments had a connector with
paralel BCD output lines that could be connected to a 10 to 20
column BCD printer. Datacollectionwasmainly doneby printing
the current reading as aline on the printer. Remote control of an
instrument waslimitedtoafew inputlineson arear panel connector
that selected a few functions or conversion ranges. A specid
computer interface had to be designed and built for each instrument
that theengineer wanted to add to histest system. Building eventhe
simplest automated test system was a several man-month project.

As conceived by HP, the new Hewlett-Packard Instrument Bus
(HP-1B) would use a standard cable to interconnect multiple
instruments to the computer. Each instrument would haveitsown
interface el ectronics and a standard set of responsesto commands.
The system would be easily expandable so multi-instrument test
systems could be put together by piggy backing cables from one
instrument to another. There were restrictions on the number of

instrumentsthat adriver could drive (14) and the length of the bus
cable (20 meters).

Hewlett-Packard proposed the concept to US and International
standards bodiesin 1974. It was adopted by the |[EC committeein
Europein 1975. Inthe United States, other instrument companies
objected to the HP-IB name and so a new name, the General
Purpose Instrument Bus (GPIB) was created. The GPIB buswas
formally adopted as the |IEEE-STD 488 in 1978.

The IEEE-488 concept of Controllers and Devices is shown in
Figure 1. Controllers have the ability to send commands, to talk
data onto the bus and to listen to data from devices. Devices can
have talk and listen capability. Control can be passed from the
activecontroller (Controller-in-charge) to any devicewith control-
ler capability. Onecontroller inthe systemisdefined asthe System
Controller and it istheinitial Controller-in-Charge (CIC).

Controller Device #1

Talk,
Listen

Control,
Talk, Listen

Device #n !

Talk,
Listen

Piggyback

i
I
Cables !

—

| EEE 488 Bus Concept

Figurel

Devices are addressable astalkers and listeners and haveto have a
way toset their address. Each devicehasaprimary addressbetween
0and30. Address3listheUnlistenor Untalk address. Devicescan
also have secondary addresses that can be used to address device
sub-functions or channels. An example is ICS's 4896 GPIB-to-
Quad Seria Interface which uses secondary addresses to address
each channel. Althoughthereare 31 primary addresses, | EEE 488
drivers can only drive 14 physical devices.

Revised 10-18-03

Somedevicescan besettotalk only or tolisten only. Thisletstwo
devices communicate without the need for a controller in the
system. AnexampleisaDVM that outputs readings and a printer
that prints the data.

INSTRUMENT
GPIB I: Interface Device
Interface Functions Functions

Figure2 |EEE-488 Instrument

The IEEE-488 Standard defined an instrument with interface and
device partitions as shown in Figure 2. Interface messages and
addresses are sent from the controller-in-charge to the device's
interfacefunction. Instrument particular commands such asrange,
mode etc., are data messages that are passed through the Interface
to the device.

Physical Bus Structure

Physically the GPIB busis composed of 16 low-true signal lines.
Eight of thelinesarebidirectional datalines, DIO1-8. Threeof the
lines are handshake lines, NRFD, NDAC and DAV, that transfer
datafrom thetalker to al deviceswho are addressed to listen. The
talker drivestheDAV line, thelistenersdrivetheNDACand NRFD
lines. The remaining five lines are used to control the bus's
operation.

ATN (attention) is set true by the controller-in-charge while it is
sendinginterfacemessagesor deviceaddresses. ATN isfalsewhen
the busis transmitting data.

EOI (end or identify) can be asserted to mark the last character of
amessageor assertedwiththe ATN signal to conduct aparallel poll.

| FC (interface clear) is sent by the system controller to unaddress
all devices and places the interface function in aknown quiescent
State.

REN (remote enable) issent by the system controller and used with
other interface messages or device addresses to select either local
or remote control of each device.

SRQ (service request) is sent by any device on the bus that wants
service.

Interface M essages

Tablelliststhe GPIB Interface Messagesand Addresseswith their
common mnemonics. MLA, LAD and UNL are listen addresses
withhexvaluesof 20to 3F. MTA, TAD and UNT aretalk addresses
with hex values of 40-5F. A device normally respondsto both talk
and listen addresses with the sasme value. i.e. LAD 4 and TAD 4.
Secondary addresses have hex values of 60-7F.

ICS Electronics .

7034 Commerce Circle, Pleasanton, CA 94588 .
2

Devicesaredesigned with different |IEEE 488 capabilitiessonot all
devices respond to all of the interface messages. Universal mes-
sagesarerecognized by all devicesregardlessof their addressstate.
Addressed commands are only recognized by devices that are
active listeners.

Tablel 488.1 Interface Messages and Addresses

Command Function
Address Commands
MLA My listen address (controller to self)
MTA My talk address (controller to self)
LAD Device listen address (0-30)
TAD Device talk address (0-30)
SAD Secondary Device address
(device optional address of 0-31)
UNL Unlisten (LAD 31)
UNT Listen (TAD 31)

Universal Commands (to all devices)

LLO Local Lockout

DCL Device Clear

PPU Parallel Poll Unconfigure

SPE Serial Poll Enable

SPD Serial Poll Disable
Addressed Commands (to addressed listeners only)

SDC Selected Device Clear

GTL Goto Loca

GET Device Trigger

PPC Parallel Poll Configure

TCT Take Control

The Standard also defined aStatus Bytein theinstrument that could
beread with a Seria Poll to determinethe device’ sstatus. Bit 6 of
the Status Byte was defined asthe Service Request bit that could be
set when other bitsin the Status Byte are set. The other bits were
user defined. The Service Request pulls the SRQ line low to
interrupt the controller. The Service Request is reset when the
deviceisSerial Polled or whentheservicereguest causeissatisfied.

488.2 STANDARD

The GPIB concept expressed in IEEE-STD 488 made it easy to
physically interconnect instruments but it did not make it easy for
aprogrammer to talk to each instrument. Some companies termi-
nated their instrument responseswith acarriagereturn, othersused
a carriage return-linefeed sequence, or just a linefeed. Number
systems, command names and coding depended upon the instru-
ment manufacturer. In an attempt to standardize the instrument
formats, Tektronix proposed aset of standard formatsin1985. This
wasthebasisfor the [EEE-STD 488.2 standard that was adopted in
1987. At the same time, the original |EEE-488 Standard was
renumbered to 488.1.

The new IEEE-488.2 Standard established standard instrument
message formats, a set of common commands, a standard Status
Reporting Structure and controller protocols that would unify the
control of instruments made by hundreds of manufacturers.

http://www.icselect.com

Thestandard instrument messageformat terminatesamessagewith
alinefeed and or by asserting EOI on the last character. Multiple
commandsinthesamemessageare separated by semicolons. Fixed
point data became the default format for numeric responses.

The common command set defined a subset of ten commands that
each |EEE-488.2 compatible instrument must respond to plus
additional optional commands for instruments with expanded ca-
pabilities. Therequired common commandssimplifiedinstrument
programming by giving the programmer a minimal set of com-
mands that he can count on being recognized by each 488.2
instrument. Table 2 liststhe 488.2 Common Commands and their
functions. Probably the most familiar Common Command is the
*IDN? query. This is a good first command to use with an
instrument as its response shows what the instrument is and
demonstrates that you have communication with the instrument.
The most of the remaining commands are used with the Status
Reporting Structure.

The |EEE-488.2 Standard Status Reporting Structure is shown in
Figure 3. The new Status Reporting Structure expanded on the
488.1 Status Byte by adding a Standard Event Status Register (ESR
Register) and an Output Queue. Enable registers and summation
logic was added to the Status Registers so that auser could enable
selected bitsin any status register.

The ESR Register reports standardized device statusand command
errors. Bit 6inthe ESR Register isnot used and can beassigned for
any use by the device designer. The Standard Event Status Enable
Register isused to select which event bits are summarized into the
Status Byte. When an enabled bit in the Event Status Register
becomes true, it is ORed into the summary output which sets the
ESB bit (bit 5) inthe Status Byte Register. Bitsinthe ESR Register
stay set until the register isread by the * ESR? query or cleared by
the * CLS command.

The Output Queue contains responses from the 488.2 queries. Its
status is reported in the MAV bit (bit 4) of the Status Byte.
Typically thishit is not enabled because the user normally follows
aquery by reading the response.

The 488.2 Status Byte contains the ESB and MAV hits plus five
user definable bits. Bit 6isstill the RQS bit but it now has a dual
personality. Whenthe StatusByteisread by aSerial Poll, the RQS
bitisreset. When the Status Byteisread by the* STB? query, the
MSShitisleft unchanged. Service Request generationisatwo step
process. When an enabled bit in the ESR Register is set, the
summary output setsthe ESB bit in the Status Byte Register. If the
ESB bit isenabled, then the RQS bit is set and a SRQ is generated.
Reading or clearing the ESR Register, drops the summary output
which in turn, resets the ESB bit in the Status Byte. If no other
enabled bitsin the Status Byte are true, bit 6 and the SRQ line will
be reset

Saving the Device Configuration

488.2 and SCPI compliant devicesaccept commandswhose values
are saved in an internal nonvolatile memory. The488.2*SAV 0

ICS Electronics . Phone: (925) 416-1000 .

Table2 488.2 Common Commands

Command Function

Required common commands are:

*CLS Clear Status Command

*ESE Standard Event Status Enable Command

*ESE? Standard Event Status Enable Query

*ESR? Standard Event Status Register Query (0-255)

*|DN? I dentification Query (Company, model, serial
number and revision)

*OPC Operation Complete Command

*OPC? Operation Complete Query

*RST Reset Command

*SRE Service Request Enable Command

*SRE? Service Request Enable Query (0-255)

*STB? Status Byte Query Z (0-255)

*TST? Self-Test Query

*WAI Wait-to-Continue Command

Devices that support parallel polls must support the following three
commands:

*|ST? Individual Status Query?
*PRE Parallel Poll Register Enable Command
*PRE? Parallel Poll Register Enable Query

Devicesthat support Device Trigger must support the following com-
mands:

*TRG Trigger Command

Controllers must support the following command:
*PCB Pass Control Back Command

Devicesthat saveand restore settingssupport thefollowing commands:

*RCL
*SAV

Recall configuration
Save configuration

Devices that save and restore enable register settings support the
following commands:

*PSC Saves enable register values and enables/
disables recall
*PSC? PSC value query

command is used to save the values. The device may also saveits
current output settings along with the configuration values so be
surethat all outputsareinthedesired statebeforesending thedevice
the*SAV 0 command.

Saving the Enable Register Settings

The enable register settings cannot be saved with the *SAV 0
command. The 488.2 Standard defined a PSC flag which enables
clearing the ESE and SRE registers at power turn-on. Theenable
registers are restored to a 0 value at power turn-on when the PSC
flagisset on. The* PSC 0command disablesthe PSC flag and saves
theenableregister values. Thefollowingexamplesavesthecurrent
SRE and ESE settings. e.g.

Fax: (925) 416-0105 . http://www.icselect.com

Standard
Event Status
Register
*ESR?

Queue
Not-Empty

Standard
Event Status :
Enable

Register
*ESE <NRf>
*ESE? 1

Output Queue

<o read by Serial Poll

OI Status Byte Register

R read by *STB?

@ vy
&

CT) Service Request

S
w ®
=]
— L. Q@ ° o
~ 2 588 = E
[%) = = O [o
o W g s = o O
s g =] c @ e O c
O o g S 10O % S
= X £ 5 @ LT
1< — o L a‘ > —
=S o £E @S © T ©
O W O x L o O o
o D O Wwoooxx o
7]6]5]a3]2]1 0|
<. é
o <&
O |- 4\---@
E P U R R A
o
o [©
Sl
‘
I A A ﬁ>
7]6]5 oI
Service
Capabilities Request
Generation
A

OI Enable Register
*SRE <NRf>

*SRE?

Figure3 488.2 Status Reporting Structure

ESE 192; SRE 32; *PSC 0'saves ESE and
SRE settings as the
power on settings.

Note that a later *PSC 1 command sets the PSC flag which will
causetheregistersto becleared at the next power turn-onand revert
to their default values.

ICS Electronics .
4

7034 Commerce Circle, Pleasanton, CA 94588 .

488.2 differences from 488.1

The 488.2 Standard downgraded the use of the Device Clear
command so that it does not reset a device's outputs and internal
memory asmight beexpected for a488.1device. Instead, check the
device’'s manual and wuse an *RST or an
*RCL 0commandtoreset a488.2 deviceand restoreitspower turn-
on condition.

http://www.icselect.com

Common Controller Protocols

The 488.2 Standard defined several protocolsthat a488.2 compli-
ant GPIB controller would execute. The protocols are essentially
subroutinesthat operateon all of the GPIB devicesconnected to the
system. These protocols operate in systems that contain 488.2
compliant devices. Table 3 lists the 488.2 Common Controller
Protocols. The Reset protocol and the AllSpoll protocol are
mandatory for all 488.2 GPIB Controllers. FindLstnisprobably the
most used protocol asit findsand listsall of the deviceson the bus.
FindLstnistypically used at the start of aprogram to verify that the
needed devices are connected to the system.

SCPI COMMANDS

The488.2 Standard had madeit easier to communicatewithaGPI B
instrument but each instrument still had a uniqgue command set
Even in a family of instruments from the same manufacturer,
different instruments often had different command sets, reflecting
theideas of theinstrument designer. The US Air Force recognized
this problem in the early 1980s and initiated Project Mate to try to
overcome this problem. The Mate Project concept was to create
TranglationModule Adapters(TMAS) to convert instrument unique
commands into the Air Force's CIIL language. The TMAs could
beexternal hardwareadaptersor internal firmware converters. The
Air Force' sCIIL languagewasasubset of Atlas. ltsdrawback was
that it did not address the instrument model and it had very clumsy
construction. Theother part of the problem wasthat CIIL language
instruments, when devel oped, didnot sell well enoughtojustify the
development costs.

Hewlett-Packard worked on the problem and in 1990, proposed a
Test Measurement Language (TML) that was based on an instru-
ment model. It wasatree-branch type of languagethat allowed the
samecommandsto beused for instrumentsfrom different manufac-
turers. TML included major command branchesthat could control
virtually al of aninstrument’ ssubsystems. It wasan open structure
so that other manufacturers could add commands they felt neces-
sary. HP offered to licensed TML to any instrument manufacturer
for asmall feeand apledgeto obey the TML specification. Almost
immediately, Tektronix and some other companies objected to HP
controlling the TML specification. HP promptly offered it to a
consortium which rechristened it as Standard Commands for Pro-
grammable Instruments (SCPI).

SCPI commands use common command words (keywords) and
programming syntax to give all instruments a common "look and
feel". Control of any instrument capability that isdescribedin SCPI
should be implemented exactly as specified. Guidelines are in-
cluded for adding new commands in the future without causing
programming problems.

Theobviousbenefit of SCPI for the ATE programmer isinreducing
of the learning time for programming multiple SCPI instruments
since they all use a common command language and syntax. A
second benefit of SCPI isthat its English like structure and words
areself documenting, eliminating the needsfor commentsexplain-
ing cryptic instrument commands. A third benefit is the inter-

ICS Electronics . Phone: (925) 416-1000 .

5

Table3 488.2 Common Controller Protocols

Keyword Function

ALLSPOLL Serial polls all devices on the bus
FINDLSTN Finds and lists al of the devices on the bus
FINDRQS Finds the first device asserting SRQ
PASSCTL Passes control of the bus

REQUESTCLT Requests control of the bus

RESET Resets all bus devices
SETADD Sets adevices's GPIB bus address
TESTSYS Self-tests the system

changeability of newer SCPI instruments for older models or for
another manufacturer’ sinstrument with the same capabilities, and
areduction in programming maintenance when devices wear out
and need replacement.

SCPI Command Structure and Examples

SCPI commands are based on a hierarchical structure that elimi-
nates the need for most multi-word mnemonics. Each key wordin
the command steps the device parser out along the decision branch
- similar to a squirrel hopping from the tree trunk out on the
branchesto theleaves. Subsequent keywords are considered to be
at the same branch level until a new complete command is sent to
the device. SCPI commands may be abbreviated as shown by the
capital lettersin Figure 4 or thewhole key word may be used when
entering acommand. Figure4 showssome single SCPI commands
for setting up and querying a serial interface.

SYSTem:COMMunicate:SERial:BAUD 9600 <nl>
‘ Sets the baud rate to 9600 baud

SYST:COMM:SER:BAUD? <nl> ‘Queries the baud rate
SYST:COMM:SER:BITS 8 <nl> ‘Sets 8 data bits
Figure 4 SCPI Command Examples

Adventurous users may concatenate multiple SCPI commands
together onthesamelineusing semi colonsascommand separators.
The first command is always referenced to the root node. Subse-
guent commands are referenced to the same tree level as the
previouscommand. Starting thesubsequent commandwithacolon
putsit back at theroot node. |EEE 488.2 common commands and
queries can be freely mixed with SCPI messages in the same
program messagewithout affectingtheaboverules. Figure5 shows
some compound command exampl es.

SYST:COMM:SER:BAUD 9600; BAUD? <nl>

SYST:COMM:SER:BAUD 9600; :SYST:COMM:SER:
BITS 8 <nl>

SYST:COMM:SER:BAUD 9600; BAUD?; BITS 8;
BITS?; PACE XON; PACE?<nl>

Figure5 Compound Command Examples

Fax: (925) 416-0105 . http://www.icselect.com

A typical responseto thelast command examplein Figure 5 would
be: 9600;8; XON<n|>

The response includes three items because the command contains
three queries. The first item is 9600 which is the baud rate, the
second itemis 8 (bits/word) whichisthe current setting. Thethird
item XON means that XON is active. It isawaysagood ideato
check the devices' error light or read its ESR register with the
*ESR? query whenfirst using acompound command with adevice
to be sure that it was accepted by the device's parser.

SCPI Variablesand Channel Lists

SCPI variablesareseparated by aspacefromthelast keywordinthe
SCPI command. The variables can be numeric values, boolean
values or ASCII strings. Numeric values are typically decimal
numbersunlessotherwisestated. When setting or querying register
values, the decimal variable represents the sum of the binary bit
weightsfor thebitswithalogic'l' value. e.g. adecimal valueof 23
represents 16 + 4 + 2 + 1 or 0001 0111 in binary. Boolean values
can be either O or 1 or else OFF or ON. ASCI|I strings can be any
legal ASCII character between 0 and 255 decimal except for 10
which isthe Linefeed character.

Channel listsare used asaway of listing multiple values. Channel
lists are enclosed in parenthesis and start with the ASCII '@
character. Thevaluesareseparated withcommas. Thelength of the
channel list is determined by the device. A range of values can be
indicated by the two end values separated by acolon. Thereisa
space between the* @' and thefirst value. e.g.

(@1,2,3,4) ‘lists sequential values
(@ 1:4) ‘shows a range of sequential values
(@ 1,5,7,3, 4) ‘lists random values

Figure6 Channel List Examples
SCPI Error Reporting

SCPI provides a means of reporting errors by responses to the
SYST:ERR? query. If the SCPI error queue is empty, the unit
respondswith O, "No error" message. Theerror queueiscleared at
power turn-on, by a*CL S command or by reading all current error
messages. The error messages and numbers are defined by the
SCPI specification and are the same for all SCPI devices.

ICS Electronics .

7034 Commerce Circle, Pleasanton, CA 94588 .
6

CHAPTER 2-GETTING STARTED

Now that you have a background on the GPIB bus you probably
want to know how to use the GPIB bus to get things done. This
Chapter deal swith somegeneral suggestionsfor putting the system
together.

BusControllers

Most GPIB Bus controllers now are PCs with an add-on GPIB
Controllers. These add-on controllers take the following forms:
1. ISA or PCI Cardsinstalled in PCs
2. PCMCIA Cardsin Portable PCs
2. Serial Port to GPIB Controllers
3. USB to GPIB Controllers

Cardsinstalledin PCshavethebenefit of being thelowest cost form
of the GPIB Controller. This category includes|SA, AT, and PCI
buscards. PCI cardsarethe most popular asthereisno longer any
demandfor ISA and AT buscards. GPIB Controller cardsare aso
availablefor the PC/104 bus. Cardscan be obtained from Hewlett-
Packard, ICS Electronics, |0tech, Measurement Computing and
National Instruments.

PCMCIA cards are available for portable or laptop computers.
There popularity iswaning asthe cable connectors are too delicate
for rugged applications. The USB to GPIB Controllers are now
more popular than the PCMCIA cards. PCMCIA Card GPIB
Controllers can still be obtained from Agilent, ICS Electronics,
| Otech, Measurement Computing and National Instruments.

Serial-to GPIB Controllerscan be connected toaComputer’ SCOM
port or run at remote location by being connected to amodem and
phone line. Some Serial-to GPIB Controllers have RS-422/RS-
485 interfaces and can berun at the end of avery long serial cable.
These Serial-to GPIB Controllersareconvenient for addingaGPIB
controller to a older portable computer that does not have a
PCMCIA dlot. Serial-to-GPIB Controllers can be obtained from
ICS Electronics, 10tech, and National Instruments.

ICS and National Instruments make GPIB-to-Serial Converters
that can beturned around and used in a serial-to-GPIB (S) modeto
control a single device. This converter is not recommend for
general use since it has only limited control over only one GPIB
device. They are okay for one-on-one use or in an embedded
applications.

USB to GPIB Controllers can be connected to the USB connector
onthenewer Desktop PCsand portable PCs. Requirementsarethat
the computer must be running Windows 98 or Windows 95B (an
OEM version of Windows95). USB Controllersareavailablefrom
ICS Electronics, Agilent and National Instrumentsin 1999.

Whichever GPIB controller you have selected, now is the time to

install it. Install and test it in accordance with the manufacturer’s
instructions.

http://www.icselect.com

GPIB Bus Cables

Standard GPIB cables can be obtained from a number of sources
including your GPIB Controller card manufacturer. They are
available with the standard piggyback connectors at both ends or
withastraight-in cableconnector on oneend of thecable. Usegood
quality multi-shielded cables to avoid EMI/RFI problems. If in
doubt, ask your GPIB cable provider if the cableshave passed aCE
test. If so, they should be ableto provide you with a CE certificate.

Total GPIB cablelength in a system should not exceed 20 meters.
For maximum datatransfer rates, cable length should not exceed 2
meters between devices.

GPIB cablesare often shipped with a* brightener’ on the connector
contracts. This*brightener’ isawaxy organic substanceto keepthe
contacts bright. If you start getting bad data, clean the GPIB
connector contacts. Useamild soap solution (‘acouple of drops of
adish detergent in acup of water) to wash off the brightener. Clean
the contacts with alcohol and blow dry the connector.

Device Addresses

GPIB devices can be assigned any primary address between 0 and
30. Assign adifferent addressto each GPIB device. Avoid using
addresses 0 and 21 as these may be used by the GPIB controller.
GPIB controllershavetheir own GPIB address. (TheGPIB address
issoftwareset andis not the GPIB controller card’ sinternal PC bus
address). National Instruments’ controllers typically use GPIB
address 0. HP and I CS Electronics controllerstypically use GPIB
address21. Alsodon't use address 31 asa GPIB device address as
31 isthe Unlisten and Untalk address.

GPIB Devicestypically useadip switch with fiverockersto set the
GPIB address. Therocker bit weightsare 16, 8, 4, 2, and 1. Other
rockersmay settalk-only or listen-only modesand should bel eft of f
for usein asystem with a GPIB Bus Controller. Alwaysreset the
instrument or power it off and back on after changing its address
Setting.

Some GPIB devices use front panel controls to set their GPIB
addresses. These devices save the GPIB address in a nonvolatile
memory. Follow the manufacturer’ s instructions when changing
their GPIB address setting.

Somenewer GPIB deviceslikel| CS sMinibox interfaces use SCPI
commands to change and set their GPIB bus address. Use the
‘SYST:COMM:GPIB:ADDR aa command where aa is the new
GPIB addressto change the address setting. The address changeis
immediate. Next, send the device the ‘**SAV 0’ command at its
new GPIB address to save the new address.

Interactive Keyboard Control Programs

Keyboard control programs are programsthat let you interactively
control and query a GPIB device by entering device related com-
mands on the PC keyboard. The better programs do most of the
work for you soyou do not haveto know the GPI B command syntax
ICS Electronics . Phone: (925) 416-1000 .

7

to use them. Some GPIB Controllers are supplied with these kind
of programs If you have one, use it to check out your GPIB
controller and devices before writing your program.

ICS s GPIBkybd programisagraphical Windows program that et
the user control GPIB devices by simply entering adevice specific
messageinatext box and by clicking on buttonsto send themessage
and/or perform asimple command like Serial Poll or DeviceClear.
ICS sGPIBKyhd program runsthe 488.2 FindL stn protocol tofind
your GPIB device(s) when the program is started. The found
devices are listed in the Response box and the program sets the
deviceaddresstothelowest found deviceaddress. ICS sGPIBKybd
program interfaces with the GPIB32.DLL so it can operate GPIB
controllers cards from | CS Electronics, Measurement Computing,
National Instruments and any other manufacturer who suppliesan
equivalent GPIB-32.DLL. Youcandownload afreecopy of ICS's
GPIBKybdprogramfrom|CS swebsiteat http://www.icsel ect.com/
prgupdates.html.

Older control programslikeNational Instruments’ ibic programare
low level, DOS command line programs that use NI’'s older ib
commands to control GPIB devices. National Instruments' ibic
program requiresyou enter thecontroller card’s‘ib’ type command
to communicate with the device.

Using a Keyboard Control Program

Thebest way to start withaKeyboard Controller programisto start
withaknowngooddevice. ltsbestif itisan| EEE-488.2 compatible
device.

1. Turn on the device and start the program

2. Set the program to the same address as the test device.
ICS's GPIBKyhd program should have found the device
when it was started. For NI'sibic, do anibfind to get the
device handle.

3. Send the device an IFC to clear the GPIB interface by
clicking the IFC button. For NI's‘ibic’, do aibsre(0,1)
and a Sendl FC(0).

4. Send the device the *idn? query and read back the device
response. If thereisno response, the device is probably
not 488.2 compatible.

5. Perform a Serial Poall to seeif the device can respond the
GPIB controller. Repeat the serial poll one moretime if
thefirst response was not 0.

6. Once you have proved that you have communication
with the GPIB device, you can send it device specific
commands and read back its responses. The device
specific commands are found in the programming
section of the device's instruction manual.

Fax: (925) 416-0105 . http://www.icselect.com

CHAPTER 3- WRITING GPIB PROGRAMS

GPIB programs are simple programs with three major sections:
Initialization, main body and the closing. Most programs use just
6 to 8 commands so it is not necessary to learn all of the GPIB
commandsto develop agood GPIB program. Program complexity
increases with the number of devicesbeing controlled and number
of tests. Programs can bewrittenin C/C++ orinVisua Basic. Test
programs can also be devel oped with graphical languages such as
National Instrument’sLabVIEW, Agilent’s VEE or Measurement
Computing’s SoftWire.

This chapter providesdirectionsfor initializing the GPIB Control-
ler and busand for sending datato or reading databack fromaGPI B
device. Program examples are shown in BASIC syntax with ICS
Electronics and with National Instruments’ style commands. (NI
commands include their original 488 command set and the newer
488.2 command set.) Thedirections given can be applied to other
manufacturer’ s command sets.

GPIB Command Concept

GPIB commandsin aprogram are like the layers of an onion. The
inner layer isthe device specific command that you want the device
to have. i.e.

*RST, *IDN? or SYST:COMM:SERIAL:BAUD 9600

The next layer is the command required by your GPIB controller
card to send or receive data or carry out some action on the GPIB
bus. Examples are:

ieOutput(DevAddr%, “*RST")
ieEnter(DevAddr%, Rdg$)
or ieTrigger(DevAddr%o)

The third layer is the calling convention that your programming
language or programming style dictates. Some commands can be
called with the standard CALL command. Other commands or
languages equate an error variableto areturn valuethat indicatesif
the command was successfully executed. Some examples are:

CALL ieOutput(DevAddr%, OutputStr$, Len)
ioerr% = ieOutput(DevAddr%, OutputStr$, Len)

Error Processing

Most GPIB command librarieshave away of determining whether
the command was successfully executed by the GPIB controller.
This does not mean that the device did what you wanted, just that
the GPIB controller got the command to the device.

The error variable is set when the command is executed. The
variable can be set by equating it to the command because the
command returns the error variable. In other cases, the error is a
separate variable that can be checked. It isagood plan to test the
error variable after every command to be sure there were no
problems with the command or with the device. Thisis done by
adding a conditional test to the program after each instruction.

ICS Electronics .

7034 Commerce Circle, Pleasanton, CA 94588 .
8

CALL ieOutput(DevAddr%, OutputStr$, Len)
ioerr% = ieOutput(DevAddr%, OutputStr$, Len)
Call ProcessError(ioerr%)

In the above example, the subroutine ProcessError tests the vari-
able. Ifioerr%isnot zero, ProcessError will displaystheappropri-
ateerror messageinabox totheuser. Examplesof theProcessError
routine are found in ICS's example Visual Basic programs.

Call = Send(Bd, Addr, OutString$, EOTMode)
If (ibsta AND EERR) then

Call ReportError(Addr, “ Did not respond”)
End If

In this example, the test was done in the program. If the error
variable, ibsta, wastrue, then ReportError wascalled to display the
error.

GPIB Controller Initialization

The GPIB Controller Card is initialized to be sure that it is the
System Controller and Controller-in-charge of thebus. Thebusis
initialized to be sure that all of the devices are in a non-addressed
state after their power turn-on. This is done by having the GPIB
Controllerissuean Interface Clear command (I FC pul se) and assert
the REN line. Itisalsoagoodideato check or set the bustimeout.
Thebustimeout istheamount of timethat the program will wait for
a device to respond to a command before proceeding.

In the 488-PC2 Command Set, this is done with the following
commands:

ioerr% =ielnit(IOPort, MyAddr, Setting) 'initializes the
Driver

'sends IFC, sets REN on
'sets bus timeout

ioerr% =ieAbort
ioerr% = ieTimeOut (Time)

The 488-PC2 Command Set returns an error status value in the
ioerr% variable when it is finished. If the value is zero, the
command was successfully executed. A nonzero value meansthe
command was not executed correctly and that the device probably
was not there and/or did not receive the Output String. When error
variables are used, each command should be followed with a step
that calls aroutine to check the error variable. i.e.

ioerr% =ieAbort
Call ProcessError (ioerr%)

'sends IFC, sets REN on
‘checks the error variable

In the NI 488.2 Command Set, the initialization is done with the
following commands:

'sends IFC
‘'sets REN on
'sets Timeout to 3 seconds

Call SendIFC(Bd%)
Call ibsre(Bd%, 1)
Call ibtmo(Bd%, T3s)

TheNI 488 command, ibsre, isused to set REN becausethereisnot
an equivalent NI 488.2 command. The NI 488 command, ibtmo, is
used to set the timeout because there is not equivalent NI 488.2
command. T3sisapredefined constant for 3 seconds. |If timeout
isset to O (or TNONE), the GPIB bus (and your program) will be

http://www.icselect.com

held aslong asit takesfor adeviceto completeitsinstruction. The
0 setting is not recommended except when debugging hardware.

NI 488 commands can be included in an NI 488.2 program when
there is not an equivalent NI 488.2 function. The NI 488.2
Command Set returnserrorsinthe command statusiniberr and sets
ibsta. ibsta should be checked after every command to be sure the
command was executed correctly.

Sending Datato a Device

Data or device commands are normally sent to a device as strings
of ASCII characters. Typica device commands are DVM setup
commands, baud rate commandsto a GPIB-to-Serial converter, or
digital datato a Parallel interface.

Inthe488-PC2 Command Set, ASCI I dataissent by first specifying
the string and then calling the ieOutput command:

Outstring$ = "Command to be sent"
L = Len(Outstring$)
ioerr% = ieOutput(DevAddr, OutString$, L)

Inthe NI 488.2 Command Set, ASCI| datais sent by specifying the
Output String and then calling the Send command.

Outstring$ = "Command to be sent"
Call = Send(Bd, Addr, OutString$, EOTMode)

Y ou can aso embed the command string in the call line. e.g.
Call = Send(Bd, Addr, "Command to be sent", EOTMode)

EOTModeisaflag that tells the Send command how to terminate
the command string. All IEEE 488 command strings need to be
terminated with alinefeed character or by asserting the EOI lineon
the last character. If the output datais binary data, terminate the
output by only asserting EOI on the last character. NLend is a
predefined constant that sendsalinefeed with EOI asserted after the
last data character. The above command then becomes:

Call = Send(Bd, Addr, OutString$, NLend)

Reading Data from a Device

ASCII data strings are read from a device by first specifying an
empty string and then reading the datainto the string. Dataisread
until aterminator isfound or thedefined I nput stringisfull. Typical
terminators are linefeed or EOI asserted on the last character. An
example in the 488-PC2 Command Set is:

Instring$ = String$(Lin, 32) fills the string with spaces
ioerr% = ieEnter(DevAddr, Instring$, Lin)

whereLinisthelength of theinput buffer. The488-PC2 Command
Set uses the ieEOL command to set the input terminator. The
ieEOL command defaultsto LF or EOI sensed.

ICS Electronics . Phone: (925) 416-1000 .

In the NI 488.2 Command Set the input exampleis:

Instring$ = String$(Lin, 32) fills the string with spaces
ioerr% =Receive(Bd, Addr, Instring$, Term)

Term or Termination is the flag used to signal the end of the data.
Term can beset to any ASCII character between 0 and FF HEX and
the Receive process will stop when that character is detected. |If
Term is set to the predefined STOPend constant, the Receive
process stops when EOI is detected.

Clearing a Device

Some devices have buffers that accumulate unwanted data and it
occasionally becomes necessary to clear out the old data or return
adeviceto aknown condition. Thisisdone by sending the device
the Device Clear Command. In the 488-PC2 Command Set thisis
done with:

ioerr% = ieDevClr(DevAddr)
In the NI 488.2 Command Set, thisis done with :

Call DevClear(Bd, Addr)

Reading the Device Status

Sometimesitisdesirableto read the device's Status Register to see
if it has data, has a problem or has completed some task. Devices
report their status (Status Register contents) in response to Serial
polls. 488.2 devices aso report their status in response to the
*STB? query. Consult the device's instruction manual for the
meaning of the bitsin its Status Register.

Inthe488-PC2 Command Set, thestatusregister isserial polled and
the value placed in the DevStatus variable by:

DevStatus = ieSPoll(DevAddr)
For the NI 488.2 Command Set use:

Call ReadStatusByte(Bd, Addr, DevStatus)

Sending Bus I nterface M essages and Addressesto a
Device

Sometimes it is necessary to send Bus Interface Messages or
Address commandsto adeviceto addressadevice asataker or as
a listener or to enter a special configuration mode. Interface
Messagesor Addressesare sent to adevicewith ATN on. They can
berepresented by an equivalent ASCI I character. Refer to Chapter
1 for alist of these commands.

The 488-PC2 Command Set uses the I nterface M essage mnemon-
ics. Theuser specifiesthecommand string and then callstheieSend
command. The ieSend command interprets the mnemonics and
converts them into GPIB bus bytes. In the following example,
CmdStr$ is set to the escape sequence used with some of ICS's
Miniboxesto put them in their command mode. Consult the GPIB

Fax: (925) 416-0105 . http://www.icselect.com

Controller’sCommand Reference section for theieSend command
mnemonics.

CmdStr$ = "UNL LISTEN 4 UNL LISTEN 4 UNL"
L = Len (CmdStr$)
ioerr% = ieSend(DevAddr, CmdStr$, L)

In the NI 488.2 Command Set, the Interface Messages and Ad-
dressesare sent by specifying the equivalent ASCII characters. i.e.

CmdStr$ = Chr$(&H3F) + CHR$(Addr + 32)+ Chr$(&H3F)
+ CHR$(Addr + 32) + Chr$(&H3F)
Call SendCmds(Bd, CmdStr$)

Where Addr is the device's address. The NI 488.2 SendCmds
command outputs the bytes passed to it in CmdStr$ without the
interpretation done by ICS'sieSend command.

Device Addresses

The format of the device addressin ICS's command set depends
upontheoperating system. In DOS, thedeviceaddressformat ispp
or ppsswhereppisaprimary addressand ssisasecondary address.
Valid addresses are:

0to 30
100 to 3030

for pp
for pp ss

InWindows, thedeviceaddressalsoincludesthe card number. The
format becomes cardno pp or cardno pp ss. ICS adopted the
Hewlett-Packard convention and numbered the first card as 7.
Subsequent cards are numbered 6 down to 4. Valid device ad-
dresses are:

700 to 730 for cardno pp
70000 to 73030 for cardno pp ss

To address a device at primary address 4,
Address= 7 & 04 =704

To address a device with a primary address of 4 at secondary
address 2,

Address=17 & 04 & 02 = 70402

The NI 488.2 Commands use two variables, Bd and Address to
express the device address. Bd contains the Card number and is 0
for the first card. Addressisa 16 bit variable with the secondary
addressinthe upper byteand the primary addressin thelower byte.

Address = [ss + 96]*256 + pp
To address a device at primary address 4,

Address= 0+4=4

ICS Electronics .
10

7034 Commerce Circle, Pleasanton, CA 94588 .

To address a device with a primary address of 4 at secondary
address 2,

Address=[02+96] *256 + 4
=[98]*256 + 4
=25088 +4 =25092

Program Closing

Some GPIB Controller DLLs require that you issue a close com-
mand when exiting the program to cleanup the computer’ smemory
and/or to unlock the GPIB controller card for use by another
application. Follow the program rules for your GPIB Controller
card to end your GPIB program.

http://www.icselect.com

