
Building a Microcomputer with Associative Virtual
Memory

W P Cockshott

Glasgow University Computer Science Dept

ABST RAeT

This report describes the motivation for and design o(the poppy wm-
puter designed to support persistent programming languages. The com ru ter
uses a novel virtual memory architecture to support object addressing.

November 14, 1985

Building a Microcomputer with Associative Virtual
Memory

W P Cockshott

Glasgow University Computer Science Dept

1. Persistent Programming

Conventional programming languages like Basic, Pascal or C present the
programmer with two broadly different views of memory: program
vanables and files. The distinction between them arose because a com-
puter generally has two different types of physical store: RAM and
Disks.

Variables are used to store the working data of a program and are held
in RAM, whereas files are held on Disk and are used to transmit infor-
mation from one program to another. As most programmers know to
their cost, files are a lot more tedious to program with than variables. It
is not just that they are slower than variables, they are also a lot less
flexible.

In a language like Pascal, your variables are Typed and you can create
new types of data to handle new applications. For graphics work. you
can define types for PICTURES, WINDOWS, COLOURS etc, whose pro-
perties are optimised to suit the algorithms that they are going to be
used in. Your variables can also be structured using type constructors
such as arrays, sets, records and pointers. With these facilities you can
readily create arbitrarily complex data structures. The freedom that this
gives the programmer is even greater in those languages that allow the
dynamic creation of data on a heap. In addition, a modern program-
ming language will provide its variables with facilities for information
hiding by means of modules and scope rules.

Contrasting this with what we get from files we see that they come a
very poor second. They are untyped for a start. When you open a tile
you do not know what its internal structure is going to be. It may have
been written as a file of records, but you can open it as a tile of charac-
ters, so any type rules go out of the window.

Even worse, not all types of data in files. It is easy to build up a binary
tree or a linked list on the Pascal heap. If this is then written out to a
file of records, then all of the pointer structures get destroyed. If you
read the records back in, there is no way of linking them back together
again.

To cap it all, we find that files all appear to be "global". A tiJe crcated
by one module of a program can be read in any other module. making it
very difficult to implement information hiding between modules.

-2

With all these disadvantageswhy do we put up with files?

It aeemathat there are three reasons.The first is just historical inertia.
The dUtinction between filesand variables has been around so long that
it is part of the established paradigm of computing. It requires a con-
ceptuAl revolution to break away from it. Behind this there are
ecOnomic:and technical reasons. Ram chips are volatile. They do not
ItOI'einformation in the absence of a power supply, so that disk files
tend to be used for information that has to persist over long pcri<x1,.In
ac1c1itionthey are more e~nsive than disks. Small portable compllters
do \lie battery backed C OS Ram chips for persistent storage. but for= reMOnI the capacity on these is very small. However these

WIre problemaare by no means insuperable.

1.1. Vil"tul memory

Hardware designers were quick to see the possibilitiesinherent in rotat-
inJ ~etic stor~ devices. Virtual memory usin$ paging techni~ues
Was ldUeved by t Manchester University Atlas computer in I 60.
~ allOWIrotating storage devices to be seen as an extension to the

on Neumann) random accessstore.

In the quarter century since that basicadvance, software designers have
mac1eIUpprjaing~ little use of the potentialities of virtual memory. It
ha been eeen m ly as a way of being able to run big~er programs. An
area of dilk islet aside for page swapping, but this Inherits both the
advanta~. and the disadvantagesof conventional RAM. It is viewed as
both random access,and volatile. Persistent data is still kept in files.

1.2. Store mapping

Some of the relatively early virtual memory operating systems. like
Multicl and the lellget'known Edinburgh Multi AccessSystem provided
an advance, in that the~ allowed files to be mapped into the random
accell virtual memory. ersistent data could then be accessedas if it
were an array by the normal operations of a pro~amming language.
However, this approach was only supported in certain systems program-
ming languages and never came into wide use. The operating systems
still maintained two ~erate types of store, governed by different con-
ventions. There was t e file store which was public, hierarchically
organised and addressed associativelyvia long symbolic file names.Then
there was the virtual memory which was essentially private and organ-
ised as an array. One area of store could be partially mapped onto the
other, but that presupposedthat they were seen as different in the first
place.

1.3. PS-algol

From the late '70s there have been breakthroughs in programmin3lan~ge design that enable us at last to get away from the 01
file variable paradigm. This has come through the incorporation of the
idea of persistence into a number of experimental programming

-3

languages. The first of these were Smalltalk and PS-al§ol. former
developed at Xerox PARCand the latter at Edinburgh and t-Andrews
universisties. Subse1uentlY the idea has been adopted in a number of
other languages: B rom the Mathmatical Centre in Amsterdam. Poly
from Cambridge University, and Amber from Bell Labs.

These lan~ges allow variables of any type to persist and have no
notion of es in the usual sense.

PS-algol for example supports a persistent heap. Data of any type
inc1udin~ procedures can be put on the heap, which will then persist
beyond t e time of execution of the program that created the data. The
im;;rtant thing that distinguishes a persistent heap is that pointers or
re erences to ol:)jectscan be made tocr;rsist, so that a linked list or tree
used by one .l?rogramcan be accesse weeks later by another. The PS-
algol system Itself hides the existence of different store models in the
underlying operating system but only at the C05t of considerable
software complexity and associatedperformance overheads. The various
teams implementing Smalltalk have also found that although a per-
sistent heap provides a superb programming environment. the complex
software needed to sustain it means that you need very fast proces..<;Qrs
to get an acceptableperformance.

1.4. Virtual Memory Micros

Over the last couple of years however, it has become possible to buy
microprocessorswith virtual memory. It should thus be possibleto build
a relatively cheap personal computer with hardware support for per-
sistent programming. The rest of this article describes the Poppy. a sin-
gle board computer with a virtual memory system optimised for per-
sistent programming languages.

What are the requirements of persistent programming that have made
it relatively difficult to support with purely software techniques?

Per~<>gramming systems, whether PS-algol or Smalltalk. are
object . Iiistead of viewing store as a uniform array of bytes. 1 hey
view it as a collection of ob~cts on a heap. Eachobject is addressed viiia
unique Persistent Identifier PlO).A PlO is valid not just for the ru n of
one pr0w,am like anormal store address, but for an indefinite perir>d.
Objects Identified in this way may migrate through the store lilvers
from RAM to disk and back again.

This means that there are potentially a very large number of PIDsand
secondly that since there is no fixed relationship between a PlO and a
store location, the underlying addressingmechanism is associativerather
than direct.

la o"JII\ arI •••.•• lall ••••••• llke PS-algol or Smalltalk objects may be simple things lik.
1trIa •••• am,. or 1he7""7 be more actiTe objects ca- pable of carrying ou' cornputation In
IIMIr owa rlPt. All ••••• ple of thIo might be an abstract object like a dic'ionary that
•••• ww* la _lall •••••• lIIto th_ of another. The following program fragment shows how
"..sp\ •••••tILtI _\ of oIIjoct ID PS-algol.

Ulint". _IQ' wIIa\ laterfa •• the dictionary object will present to the ouLsid. w{)rld. For
••••••••••••••• !Ia\ 1\ call. ·Structure Classes".

••••••• lcdo...-,(
JI'IIIc.trI.,.)ot.riJIs} tJ'aIII;
JI'IIIc.trIDJ,I\rIDs} delille
)

DII ••••• diet.., to be1ft object that hu two attributes., an ability to m'lp str1ng' !nh) ~tTin~

I
•• to •••••••••••••••••••• Itrinp.

a) W. _ lid ••• I CleMra10rPwIction that will manufacture dictionaries

lot maII8.dIcI• proe(- :>pntr)

••••••
lIructun OIlIUtrla&name.<quiv;pntr left,right)
lot 1IIId:-al1

lot •• tor. pIOt(cpntr curr.cell.temp -> potr)__ 01

aurr.-II .1111: tatp
'-PC _) < ""rr.cell(name): bq:in

. aurr.-II(Wt) > enter(curr.cell(left),temp)
IIIn.-1I

end
temp(name) > ""rr.cell(name) : bqin

eun.-II(rtcht) > enter(""rr.cell(right),temp)
eun .••1I

end
daflult : ""ru,ell

dictionary(
proe(Cltrla&n ->string)
boJin

let P > head
whll. p - - Dlland n - - p(name) do
P > It " < p(name) then p(left) ebe p(right)

It p la cell then p(<quiv) ebe ·unknown"
ODcI,
proeUtrlng 11••2)
hood:••••ter<.11%11(0l,s2,nil.nlJ))
)

end

ThIs deAna make.dict to be • function that creates a diction.try with th~ func1ional d:tribute~ re
qulred IDddne and translate 'IIOrds.

3) We now clec:1areI cllc:ticmaryin the global environment:

let english.to.american - mate.dictO

The q1ilh.to.american dictionary wilt then !ast u lone u the e10bal cn\"ironmcnl 1it.. •• L\. ht- th~t
ICICODds or months.

4) We OlD then iDoertand lookup words:

""gUsh. to.amerlcaD(de6De)(" colour"." color" ,
""CUsh. to.amerlcu(cle6De)(" procramme"." program")
write engU.h.to.amerlcan(tr&DlX"cll vec!",

Box 1
Each object in the PS-algo1system has a unique identifier (
called a PID or Persistent IDentifier in PS-a1gol)and ad-
dres;ing has to be done in two parts, using an object ID.
and an offset into an object.

IPI~

.fF5~ .• fIELD

1.5. Persistent Address Spaces

How big is a big address space?

One is accustomed to think pf a 24 bit address space as large and a 32
bit addr~ space as huge. Once you go over to persistent programming,
'things look a bit different. For a start you have to divide the address
space up between different users. You could give every user their own
32 bit address space, but this would mean that they could not share
data, which would not be very satisfactory. On a large machine yotl
can easily have one or two hundred registered users. If you reserved a
byte of the address to specify a user number you find that you arC'
down to 16 megabytes per user. Remember that this has to hoJd not just
transitory data that is used during computations, but alJ the 10ng term
data that would normally go into the file store.

For most users at present 16 megabytes would be enough. but for some
it is already a bit tight and we know that with the develop men t of
computing the amount of store used has risen inexorably. If you start

holding digitised images or digitised voice online then you are going to
need a lot more memory. A 32 bit address space is likely to look rather
tight for persistent programming within the the next decade or so. But
just how big an adaressing system does persistent programming
demand?

In languages that use a heap, a great number of objects are cn'iHrd that
last only a short while. If each object were given a new object nUlTlhn.
object numbers will be used up faster than the accumulation "I f'U-
sistent objects would justify. Broadly there are two solutions to thts.
either you make the object space so big that you never run out. or)'pu
build in a garbage collector that is able to recover unused obJCct
numbers.

The first solution seems to be the better. Once you go to billions of
objects, conventional garbage collection techniques are likely to be too
expensive. A pointer following garbage collector would be far too slow
when working on a heap of this size. A reference count one would
impose an overhead cost on every pointer assignment and upon every
stack retraction. It is likely that on very large heaps it will be necessary
to use incremental garbage collections based upon local information to
tidy up local regions of tne global heap. Such techniques will hold onto
some things that could be discarded, but provided that we are not going
to run out of object numbers, this would be supportable. Infrequent1y
used objects would migrate onto optical archive store. Some objects in
archive store will never be reused because they are actually unreach-
able though the system does not know it, but it is in the nature of
archive stores to hold a lot junk that nobody is going to ever look. at
again.

How big does your object address space have to be so as not to TU n ou t
of object numbers?

Back of an envelope calculations indicate that a 48 bit object num ber is
lik.ely to be enough. A computer creating half a million objects per
second would take over 10 years to run out of object numbers, by
which point it is likely to have been scrapped. In the end, in order to
allow room to expand the address space accross a network, I chose a 64
bit PID (see box 2).

1.6. What chip to choose

There are now several microprocessors supporting virtual memory: the
Intel 286 used in the IBM PC/AT, the Motorola 68020, the [ntel 432
and the National Semiconductor 32000 series. Which one is most suit-
able for an associative, object oriented virtual memory?

Examination of all of these architectures, led me to the conclLL~ion that
only the NatSemi 32000 series met all of the requirements. At first this
may seem paradoxical, as the 32000 series (like the 68000 series) hiL~-

Box 2
An obvious extension to the idea of a large persisten t add res.~
space is to allow the address space to be distributed over several
machines. This requires a further extension of the addres.~ spacr,
If we allow for a local area network with 64000 machines, we find that
a 64 bit key would uniquely identify every object ever cTrated "n any
machine on the network.

the classic Von Neumann view of memory as a uniform array of words.
whereas the Intel machines are explicitly object oriented. Both of them
have serious limitations. The 286 allows far too few objects: each user
only has access to 8192 object descriptors, this comes from it being ba~i-
cally a 16 bit machine. The intel 432 is a more serious proposition.
Again it was rejected as having too small an address space. Other disad-
vantages of the 432 were its low speed and the lack. of affordab1c com-
pilers for it.

The National Semiconductor 32016 turned out to be nexib1c enough I-"r
some quite simple additional hardware to turn its flat, paged, virtual
memory into an associative object oriented virtual memory.

1.7. Programmers view of Poppy

To the machine level programmer, the Poppy's store is divided into 3
parts:
1 Machine registers make up the fastest store, it has 8 floating point

registers, 8 general purpose registers and 8 special purpose registers.
2 Temporary values that will not fit into registers are stored on a

stack.
3 Data of longer duration is held on a vast heap, made up of a practi-

cally inexaustible number of named objects.
The Poppy instruction set is an extended version of the NS32000 archi-
tecture. Certain of the machines addressing modes to enable them 10
dereference 64 bit object keys rather than 24 bit virtual add res,<;(':-;.

The basic NS32000 architecture supports a 24 bit virtual addr{'s.~ space,
which was well described in the April 1983 edition of Byte. Most
addressing modes on the Poppy still operate using this space.
1 Register

The general purpose and floating point registers serve iL~ the
operands in Register address mode.

2 Register Relative

A general purpose re~r contains a 24 bit virtual address. to
which a displacement IS added to derive the effective address.

3 Memory Space

This is similar to the RegisterRelative address mode but usesone of
the dedicated high level language regiaters PC,sP,FP,sB pIus an
offset to get to the operand. These register again all contain 24 bit
pointers.

4 Object Dereference

This is the new addressing mode added by the PSm to the basic
NS32000. It allows a 64 Dit PID in memory to be derefenced. An
offset is added to the start of the object refered to by the pointer to
obtain the operand, it is explained in box 3.

5 Immediate

The operand is encodedwithin the instruction.
6 Absolute

An absolute addrelll within the 24 bit virtual address space is
speci.1l.ed.

7 Top of stack.

The operand is Pushed (Poped)onto (from) the top of the stack.
8 Indexing

Any of the addrelllmodesother than theRegister or Immediate may
be further qualified by an index. Indexing has the effect of calcu-
lating an "aI'ective address· (in virtual memory) and then mu\-
tipying one of the general purpose registers by 1,2,4,or8 and then
adding it to the total to get the final Effective address of the
operand. The indexing option thus allows for arrays of bytes, short
integers, integers, and PIDsor reals.

1.8. Poppy Hardware architecture

The Poppy is a single board virtual memory computer based upon the
National Semicondutor 32000 series chipset, with a custom additional
memory management unit. The overall logicalstructure of the processor
is shown in the following diagram:

1.8.1. Processor

The ProcelllOris made up of 4 National Semiconductor chips. a timer. a
CPU, a memory management unit or MMU and a floating point unit.
These are connected via a 16 bit multiplexed private address/data bus.
In normal operation the CPU outputs a virtual address onto the

Diagram on object addressingmode

multiplexed bus during the first time interval of a store cycle. This is
latched into the MMU which tranlates it into a physical addres'<;which
is output on the next store cycle.

1.8.2. Memory

The physical address is latched and output to the demultiplexed address
bus to which the· memory is connected. This memory is made up of
both nonvolatile RAM and more conventional volatile Dynamic RAM.
The nonvolatile RAM is made of high speed CMOS static ram with
lithium battery backup to provide 10 year data retention. The dynamic
ram can be made up of either 64k or 256k chips. To save board area
the dynamic RAM IS mounted on 256k or 1 Meg SIPs, enabling either
512k bytes or 2 Mega bytes to fit into an area of 4.8" by 2.2". This way
of mounting chips looks like becoming a a standard for dynamic rams
since it gives about 4 times the density of conventional OIls. Data COIl1-

ming from or going to the memory travels along the demultipJexed data

bus.

1.8.3. PID Translate Unit

Between the muItiplexed address/data bus and the demultiplcxed buses
is the PlO translate unit (PTU). This unit supports the new ob~'ll
addressing mode. Logically it is a 512 word associative cache Il1cmory
mapping PIDs to virtual addresses.

B.ffer---------- ----------
Diagram of the logical structure of the PTU

When the Processor uses the Object Indirect mode of addressing. the
CPU thinks that it is just trying to fetch a 32 bit pointer from memory
as per the NS32000 memory relative addressig mode. Instead of allow-
ing this to happen, the PTU traps this, and fetches not a 32 bit pointer
but a 64 bit PID from memory. It looks this up in the associative cache
and returns the virtual address corresponding to the PlO. The proces,<;or
"thinks" it is using the old memory relative addressing mode. when in
fact there is an associative operation going on behind the scenes.

How does this associative memory work?

A true associative memory chip is a set of entries each made up of M
bits of tag and N bits of data. When the chip is presented with an M bit
pattern on its inputs, it simultaneously compares this with the tag fields
of all the entries and if one of them matches, the correspondin$ N bits
of data are returned. Because of technical difficulties in producmg such
chips they are not readily available, and practical associative memories
in applications like Mini or Mainframe cache memories have to be built
out of conventional RAM chips.

These work on a modification of the hashing techniques used for
software table lookup applications. Two banks of fast static RAM are
used, the tag RAM which is M bits wide and the N bit wide data RAM.
The input pattern is hashed to provide an address in the tag RAM and
then the tag at that address is compared with the input tag, if they
match then the data at the corresponding address in the data ram is
returned.

This is the technique used in the Poppy, except that for reasons of econ-
omy the tags and the data are held on the same chips. The PTU archi-
tecture is shown in Box 5 . It sits between the processor's private multi-
plexed address/data bus and the main address and data busses going to
memory. It is made up of:

Buffer

Between the databus and the private address/data bus are a 16 hit
bidirectional buffer and a 16 bit comparator connected in parallel.
This buffer can be opened to allow the passage of data to and from
the private bus. The comparator detects whether the contents of
the two buses is the same.

The buffer is implemented wit 7415245 s and the comparator with
a pair of 74f52l s.

Memory-Address-Registers

The private bus is connected to the address bus via two memory
address rel!;isters, the Data Address Register and the Pid Address
Register. These are implemented by using 2 of the 4 registers in a
set of 7415670s.

Cache

The cache is made up of 8192 by 16 bit words of CMOS static
RAM.

Cache-Address-Register

The low order 3 address bit of the cache come from the main
address bus, but the mid order bits come from a separate 8 bit Hash
register, and the high order bits come from the control unit.

Control-Unit

This unit monitors the CPU bus transactions and steers da tiI
between the various busses and registers.

During a normal memory fetch the address is latched into the Data
Address Register which is then output onto the address bus. During an
object indirect instruction, the following sequence of events takes place:
1 The CPU outputs the virtual address of a PID on the stack, simul-

taneously the Status Monitoring unit spots that this is an Object
Indirect addressing mode and puts the

2 The MMU translates this to a physical address
3 The PIU senses that this is a PID fetch and takes hold of the bLL~

and latches the physical address of the PID into the Pid Add ress
Register.

4 The memory returns the first 16 bits of the PID, which pass
through the bus buffers and a hashing function is performed to

- 14-

produce an 8 bit result. This is latched into the Hash Address Regis-
ter.

5 The bus buffers are disabled and the PID cache outputs the first 16
bits of the PID found in the cache onto the private bus.

6 This is compared with the corresponding 16 bits of the PID being
read from main memory.

7 If they are equal the next 16 bits of the PID in memory and the
PID in the cache are compared, and so on until all 64 bits of the
PID from memory are shown to correspond to the pid in the cache.

8 If the two PIDs differed, then an address fault interupt is gen-
erated, otherwise the cache returns to the CPU the virtual address
at which the object corresponding to the PID is located. The proces-
sor then adds the contents of an index register to the virtual
address to find the field within object that the instruction wanL~.

1.8.4. Input Output

The board has two 10 interfaces. There are iSBX bus sockets and there
is the BBC tube. Both of these are proprietary interfaces. The two of
them are under the control of DMA and interrupt controler chips, the
NSC 16203 and NSC 16202 respectively. The NSC 16203 provides 4
DMA channels and the NSC 16202 provides either 8 or 16 interrupt
channels.

The iSBX bus is a simple 10 bus developed by Intel for their multi bus
series of boards. It allows small daughter boards to be mounted on a
CPU board. Each of these boards may contain one or two 10 devices.
Several manufacturers produce these boards and the interface was
chosen for its simplicity and the cheapness of the boards. Examples of
the sort of functions that are available on iSBX boards are serial inter-
faces, parallel interfaces, floppy disk controlers, SASI interfaces and
graphics boards. .

There are two iSBX bus sockets on the board. Each looks like a set of 16
memory mapped byte wide registers. Eaeh socket also has associated
with it a DMA channel and an interrupt channel.

The Tube is alroprietary high speed 10 interface using custom VLSI
chips develope for the BBC microcomputer, manufactured by Acorn
Computers. Along with carefully designed software protocols it allows
the Poppy to defe$ate all terminal, network, and disk 10 to the BBC
microcomputer. High level commands are passed to the BBC machine
which then executes the 10 operation concurrently with the Poppy,
allowing the Poppy to continue with computation. The tube is con-
nected to a DMA and an interrupt channel on the Poppy.

The BBC micro can control floppy disks and winchester disks and pro-
vides a bit mapped graphics display, with the option of a mouse inter-
face.

- 15 -

1.8.5. Database Assist Hardware

Two additional pieces of circuitry have been included to speed up data-
base searches on the persistent store. One of these is the PF474 string
search processor described in the November 1984 edition of Byte. The
other is a special hashing unit that is intended to be used for computing
the indices of relational databases in persistent store ...

1.9. Storage management

Storage management software on the Poppy has to cooperatc with the
hardware in presenting the programmer with a view of single. large.
object addressed store within which all distinctions between differen l

storage media and the geographical location of these media are effaced.
The storage system can be viewed from 3 levels:

Object store
Paged virtual memory
Physical store made up of:

Non volatile RAM
Volatile RAM
Rotating store

1.9.1. Object store

The object store is made up of up to 2 to the power of 64 distinct
objects. In principle each of these should be able to contain from 1 to 4
gigabytes of data. However for reasons to do with the restriction of the
acfdressin~ of early models of the National Semiconductor 16032 series.
the practJ.callimit for the size of each object is somewhat under 8 mega-
bytes.

Each object is mapped onto the paged virtual memory of the processor as
it is used, in a way analogous to the mapping of virtual pages onto phy-
sical pages in a conventional virtual memory system. On occasions
objects have to be unmapped from the virtual memory of the 16032 in
order to prevent the virtual memory becoming too full.

At run time the PTU will translate PIDs to virtual addresses provided
that the appropriate PID/address pairs are loaded into the cache. If the
PID is not found in the cache a PID/missing interrupt is generated and a
software procedure is invoked to locate the object refered to by the PID
and load the PID/address pair into the cache. The PID which caused the
address fault has had its physical address stored in the PID Address
Register. Indirection on this register enables the value of the PID itself
to De located.

1.9.2. Pidlam

This software procedure uses a data structure termed the PIDLA M
which is short for Persistent IDentifier to Local Address Map. The
PIDLAM is a hash table in virtual memory with the structure shown in
Box 7. Entries are found by Hashing a PID and then if necessary.

The Pidlam
chasing down an overflow chain until an entry with the same pid IS
found.

There is an entry in the PIDLAM for each object currently mapped
onto virtual memory. Therefore, if an object is resident in virtual
memory, the PID/missing interrupt can be met by searching the
PIDLAM. Otherwise the object must be taken from rotating store and
mapped or moved into virtual memory.

1.9.3. Paged Store

The pa~ed virtual memory is accessed via two level page tables as
shown In Box 8. The 24 bit virtual address of the NS16032 provides 16
megabytes of virtual address space.

For reasons of efficiency, we divide objects into two great cla.'~'cs - the
pa~d and the non-paged. Large objects are paged, small ObjcCl~ are no\.
This distinction arises from a desire to make the best wish or the two
types of virtual memory technology on the POPPY. We have paging
hardware and object addressing hardware.

Pal"ed Virtual Memorv on the POPPY

The object addressing hardware maps objects to virtual addre&~es. the
paging hardware maps virtual pages to physical pages. The simplest way
to use these would be to allocate a range of vitual addreses for a heap.
and map a working set of objects onto this heap. When an objc'ct w'as
addressed and found not to be present, it would be copied from disk
into the heap. This is what happens with existing software impleJl1(,11
tations of PS-algol.

This approach has a the drawbacks that if we are dealing with very
large objects then we may be faced with the overhead of bringing in a
lot more data than we actual need. If we ~t alter one word of a [0000
element array, the whole array is still COptedin to the heap.

To overcome this, we chose to COpy small objects onto the heap. but to
MAP large objects onto to virtual memory.

A mapped object need not all be resident in physical memory, instead it
occupies a range of virtual pages individual members of which are
brought into physical memory on demand. Non-paged objects are copied
into a heap on demand. To the extent that the heap into which they are
coppied is itself paged, then they also need not be physically resident.
However, it does seem reasonable to keep the virtual size of the heap
sufficiently small as to ensure that most of the heap is likely to remain
in in physical RAM Otherwise, we would be faced with having two
swappmg mechanisms competing with one another.

Only one copy of each object is ever present so that all transactions that
can access the object work on the same copy. The definition of the loca·
tion of an object in virtual memory is handled by the PIDLAM (Per.
sistent ID to I.:.oca1 Address Map).

1.10. Making Object Oriented Languages really rtm

At least initially, the Poppy will be a single language machine, the
software will consist of an interactive PS-algol complIer and its run
time support. Any data declared at the outermost level of the system.
whatever its type will persist indefinitely.

For some time PS-algol has been running on the ICL/Three Rivers Perq
computer, which is a workstation in the same general class as the Xerox
star. Because this lacks the necessryassociative addressing hardware. the
language runs slowly. The experience of Smalltalk implementations too
is tl1at it is difficult to get a satisfactory performance unless you have a
very high powered machine like the Dorado (which costs tens of
thousands of dollars). Hopefully, the type of simple associative
hardware used on the Poppy should enable these sophisticated languages
to be run fast on the next generation of cheap personal computers.

Poppy Physical Memory Map

Poppy Virtual Memory map and Standard Page Tables
This shows how the uhYSical resources are maured onto virtual

	page1
	titles
	Building a Microcomputer with Associative Virtual

	images
	image1

	page2
	images
	image1

	page3
	tables
	table1
	table2

	page4
	titles
	••••••• lcdo...-,(
)
	•• to •••••••••••••••••••• Itrinp.
	Box 1
	IPI~
	1.5. Persistent Address Spaces

	images
	image1

	page5
	images
	image1

	page6
	images
	image1

	page7
	images
	image1
	image2

	page8
	images
	image1

	page9
	page10
	images
	image1
	image2

	page11
	images
	image1

	page12
	images
	image1
	image2

