HuGo V2.5
An Interactive Fiction Design System

PROGRAMMING MANUAL

Copyright © 1995-1999 by Kent Tessman

Revised April 1999

TABLE OF CONTENTS

INTRODUCTION
l.a. Legal Notes

I.b. (Less Legal Notes)
l.c. Names and Acknowledgments
I.d. Packing List
l.,e. Manual Conventions
I.f. Getting Started

l.g. Compiler Switches
I.Lh. Limit Settings
l.i. Directories

I.j. TheHugo Engine..................

A FIRST LOOK AT HUGO

I1.a. Hello, Sailor!

I1.b. Data Types

I1.c. Multiple Lines

I1.d. Comments

I1.e. Compiler Errors

I1.f. Compiler Directives,.. ...
Example: Command-Line Compiling

I11. OBJECTS

Il11.a. The Object Tree
Il.b. Attributes

I1l.c. Properties
I11.d. Classes

IV.c. Printing Text ...

IV.d. More Control Characters |
Example: Mixing Text Styles

IV.e. Operators and Assignments
IV.f. Efficient Operators

IV.g. Arraysand Strings

© © 0o N o o o~ b&

Example: Managing Strings
IV.h. Conditional Expressions And Program Flow
V. ROUTINES AND EVENTS

V.a. Routines

V.b. Property ROUINEScccccooviiniiiiniinnne,
Example: “Borrowing” Property Routines

V.c. Before and After Routines

VI.

Vl.a. Fuses and Daemons

Vi.b.
Vli.c.

VII.
Vil.a. Grammar Definition.. ...
VIl.b. The Parser

VIIL. JUNCTION ROUTINES
Vill.a. Parse

Scripts

A Note About the event_Tlag Global
GRAMMAR AND PARSING

VIll.d. FindObject
VIll.e. SpeakTo
VIILf. Perform

Xl. THE GAME LOOP

X.a. The Display Object
X.b. Windows

X.c. Reading and Writing Files
XI. RESOURCES

Xl.a. Pictures

APPENDIX B: THE LIBRARY (HUGOLI
ATTRIBUTES

B.H)

124
124
124
127
131
146
148
149

. INTRODUCTION

Hugo is a system for designing, programming, and running sophisticated
interactive fiction, or text adventures. It is the result of an attempt to further extend
the concepts developed in earlier, similar systems in order to make interactive
fiction programming less cryptic and more accessible to designers. Hugo owes
much to the original Infocom format (particularly with regard to its internal data
tables) as well as to Graham Nelson’s publicly distributed Inform compiler (and its
syntactic interpretation of the Infocom format and straightforward grammar
definition).

The best advice to be given for learning Hugo is probably to print or otherwise
have handy the source listing of SAMPLE. HUG and to refer to it throughout;
examples of almost all of Hugo’s features may be found in the source of the sample
game.

Author e-mail (The General Coffee Company Film Productions):
<generalcoffee@geocities.com>

Hugo Home Page:
http://www.geocities.com/hollywood/academy/5976/hugo.html

(As of this revision)

[la. Legal Notes

Programs created using the Hugo Compiler are the property of the individual
author. Note, however, that the library files are copyright by Kent Tessman, the
creator of Hugo, as is the Hugo Engine.

The use of the Hugo library files and the distribution of the Hugo Engine are
authorized so long as all transactions are non-commercial and free of charge
(except in cases where any charge is to cover the cost of distribution), and that the
library files and engine are not distributed in a modified form.

For those interested in the commercial distribution of a program created with the
Hugo Compiler, please contact Kent Tessman for permission.

NOTE: Since the Hugo Compiler and Engine are provided free of charge, there is
no warranty for their use.

[Lb. (Less Legal Notes)

This supplementary, less-official section is meant to clarify my intentions as to legal
usage of Hugo, and what it means for users who may want to distribute their
games. First off, let me say that, yes, | do want to be able to maintain some
discretion over what is done with my work, and the above phrasing is intended to
reserve me that ability. Hugo is more than “just” a compiler--it’s a complete design
and runtime environment, so distribution may involve more than just a simple
. HEX file (which, even though it might have been built with the Hugo Library
written by me, isn’t really a cause for concern on my part).

Here’s a quick informal overview of how I see the various types of distribution:

1. Freeware. | don't really have any concerns, even if the Hugo Engine is being
distributed as part of a free package. (Although it might be nice to know about
this, just so far as wanting to help ensure that proper instructions, updated
information, etc. were included.) As far as using the Hugo Library goes: | wrote it
for this express purpose, so that people would use it in making their own games.
Freeware distribution is certainly something | fully encourage. The source to the
Hugo Library, of course, cannot be distributed in modified form unless it is
expressly indicated that it was a.) written by Kent Tessman, and b.) subsequently
modified and distributed by someone else.

2. Shareware. Again, | don’t think this really concerns me, either. (Although, again,
| would like to be aware of shareware distribution. My only real objection would
be to something that is entirely morally reprehensible--1 probably don’t need to go
into details. In that case, I’d probably tell you to write your own damned library
and interpreter.) The shareware market for IF is sadly depressed, but writing a
good game takes a lot of talent and hard work--and if Hugo authors wanted to try
to generate some shareware revenues, | would wish them luck.

3. Commercial software. This is about the only sticking point | can think of, and it’s
not much of one. It’s unfortunately pretty unlikely that someone could market a
wildly successful piece of commercial Interactive Fiction. On the other hand, | do
believe that Hugo is capable of creating some pretty eye- (and ear-) catching games.
And on the other other hand, especially with commercial software, what you’d be
distributing would likely be more than half written by other people (i.e., me, the
library contributors, and any porter(s), since I’d be impressed if someone wrote a
game that, in its source-lines count, rivaled the 35,000+ lines of code in the engine
and the library). But even in a case like this, | would expect any individual license
to give the author the freedom to sell n copies of the game without involving me or
anyone else in any (however minor) participation.

l.c. Names and Acknowledgments |

Those who have taken upon themselves the (sometimes trying, I’'m sure) task of
porting Hugo to various platforms--aside from the author’s own 16-bit DOS, 32-bit
DOS, and Windows ports--are:

David Kinder Amiga

Colin Turnbull Acorn Archimedes

Bill Lash Linux (plus Solaris OS, etc.)
Gerald Bostock 0S/2

The author is considerably indebted to them, for all their work as well as for their
input on how to improve the compiler and engine by way of criticisms both
generous and deservedly direct.

More than a few words of appreciation must be given to Volker Blasius who (now
with help from David Kinder) has had the substantial responsibility of maintaining
the Interactive Fiction Archive at ftp://ftp.gmd.de--one of the key resources for Hugo
programmers and a primary hub of material for contributors to (and readers of) the
newsgroups rec.arts.int-fiction and rec.games.int-fiction.

Thanks also to those whose comments and suggestions have contributed to making
Hugo as useful and usable as it is: Dr. Jeff Jenness, Vikram Ravindran, Jesse
McGrew, Paolo Vece, Daniel Cardenas, Cam Bowes, Mark Bijster, Jose Luis
Cebrian, John Menichelli, Jerome Nichols, Jason Dyer, and Jason Brown.
Acknowledgment and thanks are also due Graham Nelson, whose Inform language
helped give shape to Hugo’s early syntax and structure.

Special thanks to Julian Arnold and Jim Newland, members of the ad hoc Hugo
What-If? Committee. They’ve both made numerous valuable contributions to
Hugo both in terms of suggestions for the language itself and for user library
improvements and extensions--to be more specific would surely be to overlook
something invaluable.

Finally, my brother Dean Tessman has been a well-used resource with his
willingness to test-drive multi-100K e-mail attachments of executables and to
engage in ongoing back-and-forth discussions on programming minutiae.

| I.d. Packing List

A number of files are part of the basic Hugo package:

(NOTE: Throughout this manual, the default naming convention is for MS-
DOS/Windows. As Hugo becomes available for other systems, file naming conventions may
vary, and any machine-specific documentation should document those variations.)

HC. EXE Hugo Compiler

HE. EXE Hugo Engine

HD. EXE Hugo Debugger

HDHELP. HLP Debugger help file

HUGOLI B. H Library definitions and routines

VERBLI B. H Standard verb routines

VERBLI B. G Standard verb grammar definitions

OBJLIB. H A library of useful object definitions
(included by HUGOLI B. H)

SAMPLE. HUG Sample game source code

SHELL. HUG Source code to build on

And two sets of files that, depending on user-specified settings, are optionally
included by HUGOLI B. H VERBLI B. Hand VERBLI B. G

HUGOFI X. H Debugging routines
HUGCFI X. G Debugging grammar
VERBSTUB. H Additional verb routines
VERBSTUB. G Additional verb grammar

An additional Hugo source file demonstrates the ability to create precompiled
headers:

HUGCLI B. HUG To create a linkable version of HUGOLI B. H

The latest release of Hugo is available through anonymous FTP from ftp.gmd.de in
i f-archive/ progranm ng/ hugo, Distribution of any of the Hugo files is

authorized only with permission of the author as per Legal Notes, above.

The - HUG . H and . G files are text files and must be downloaded as such; the
executables are binary files.

(FORMATTING NOTE: The above files are properly formatted for a standard tab stop of 8
spaces; if the formatting appears incorrect, adjust the tab size on your editor.)

|I.e. Manual Conventions

The following conventions are used in this manual:

<par anet er > for required parameters

[par anet er] for optional parameters
FI LE for specific filenames
FunctionName functions, etc.

't oken' tokens, keywords

for omissions

I.f. Getting Started

Type
hc

without any parameters to get a full listing of available compiler options and
specifications.

The MS-DOS syntax for running the compiler is

hc [-switches] <sourcefile[.HUG > <objectfil e>

It is not necessary to specify any switches, the name of the objectfile, or the
sourcefile extension. The bare-bones version of the compiler invocation is

hc <sourcefil e>

With no other parameters explicitly described, the compiler assumes an extension
of - HUG, The default object filename is <sour cef i | e>. HEX

Here’s how to compile the sample game. With the compiler executable, library
files, and sample game source code all in the current directory, type

hc -1s sanpl e. hug
or simply
hc -1s sanple

and after a few seconds (or more, or less, depending on your processor and
configuration) a screenful of statistical information will appear following the
completed compilation (because of the -s switch).

9.

The new file SAMPLE. HEX will have appeared in current directory. As well, the -I
switch wrote all compile-time output (which would have included errors, had there
been any) to the file SAMPLE. LST,

I.g. Compiler Switches

A number of switches may be selected via the invocation line. The available
options are:

-a Abort compilation on any error

-d conpil e as an . HDX debuggabl e execut abl e
-e Expanded error format

-f Full object summaries

-h compile in - HLB precompiled Header format
-1 display debugging Information

-l print Listing to disk as <sour cefil e>. LST
-0 display Object tree

-p send output to standard Printer

-S print compilation Statistics

-t Text to listfile for spellchecking

-u show memory Usage for objectfile

-V Verbose compilation

-X ignore switches in source code

Most Hugo programming will probably make us of the -l switch in order to record
compile-time errors.

The -z switch may, on some configurations, increase compilation speed by
inhibiting normal messaging (i.e., “Compiling...lines of..” and *...percent
complete”).

I.h. Limit Settings

Also included on the invocation line, after any switches and before the sourcefile,
may be one or more limit settings. These settings are for memory management,
and limit the number of certain types of program elements, such as objects and
dictionary entries.

To list the settings, type:

hc $li st

To change a non-static limit, type:

10.

hc $<setting>=<new limt> <sourcefile>. ..

For example, to compile the sample game with the maximum number of dictionary
entries doubled from the default limit of 1024, and with the -l and -s switches set,

hc -1's $MAXDI CT=2048 sanpl e
If a compile-time error is generated indicating that too many symbols of a
particular type have been declared, it is probably possible to overcome this simply
by recompiling with a higher limit for that setting specified in the invocation line.

See Appendix C for a complete listing of valid limit settings.

Li. Directories

It is possible to specify where the Hugo Compiler will look for different types of
files. This can be done in the command line via:

hc @xdirectory>=<real directory>

For example toCEpecify that the source files are to be taken from the directory
C: \ HUGO! SOURCE, invoke the compiler with

hc @ource=c:\ hugo\source <fil enane>

Valid directories are:

source Source files

obj ect Where the new - HEX file will be created
lib Library files

list . LST files

resource Resources for a “r esour ce” |ist

tenp Temporary compilation files (if any)

Advanced users may take advantage of the ability to set default directories using
environment variables. (The method for setting an environment variable may vary
from operating system to operating system.)

The HUGO_<NAME> environment variable may be set to the <name> directory. For
example, the source directory may be set with the HUGO_SOURCE environment
variable.

Command-line-specified directories take precedence over those set in environment
variables. In either case, if the file is not found in the specified directory, the
current directory is searched.

11.

L] The Hugo Engine

Having compiled the sample game, run it by invoking

he sanpl e

at the command line. Again, it is not necessary to specify the extension. The
engine assumes - HEX if none is given.

(NOTE: The environment variable HUGO_OBJECT or HUGO_GAMES may hold the
directory that the Hugo Engine searches for the specified . HEX file. The location for save
files may be specified with HUGO_SAVE, Al of these are optional.)

1. A FIRST LOOK AT HUGO

There are a couple of basic concepts to become oriented to in order to begin
working with Hugo.

First of all, most programming in Hugo will involve the creation of what are called
“objects”. Quite literally, these represent the “objects” or elements of the game
universe: people, places, and things.

The bulk of the rest of a Hugo program is comprised of “routines”. These are the
sections of code made up of commands or statements that facilitate the actual
behavior of the program at different points in the story. Routines are less
frequently (although more frequently in other languages) called “functions”--they
may be thought of as performing an operation or series of operations, and then
returning some kind of value as a result.

(The idea of return values is an important one and, while sometimes puzzling to
novices, is actually quite uncomplicated. Often a particular function will be
referred to as “returning true” or “returning false”--all this means is that it returns
either a non-zero value (usually 1) or a zero value, almost always to indicate
success or failure. A program will constantly be checking the return values of a
variety of routines and commands to determine if a particular operation was
successful in order to decide what to do next. Of course, a return value can be any
integer value; a routine that adds together two supplied values, a and b, may
return the sum a+b.)

For those familiar with the common programming languages C and BASIC, Hugo
strongly resembles a hybrid of the two. Individual objects and routines--as well as
conditional blocks--are enclosed in braces as in C, but unlike C (and like BASIC), a

12.

semicolon is not required at the end of each line, and the language itself is
considerably less cryptic. Keywords, variables, routine and object names, and
other tokens are not case-sensitive.

The goal in designing Hugo was to make programming as intuitive to facilitate
both initial development and subsequent debugging.

Il.a. Hello, Sailor!

The grand tradition of programming texts has an introduction to a new
programming language detailing how to print the optimistic phrase “Hello, world”
as an example of the particular language’s form and substance.

In the equally grand tradition of interactive fiction, we’ll start with the rallying cry
“Hello, Sailor!”. Don’t worry too much about the syntax below; this is meant
mainly as a familiarization with what Hugo looks like.

routi ne main

{
print "Hello, Sailor!"
return

}

The entire program consists of one routine. (Two routines are normally required
for any Hugo program, the other being the | ni t routine, which is omitted in this
example since there isn’t much required in the way of initialization.)

The Mai n routine is automatically called by the engine. It from here that the
central behavior of any Hugo program is controlled. In this case the task at hand is
the printing of “Hello, Sailor!”, followed by an order to return from the routine
(i.e., exit it) so that we don’t strand the program waiting for an input, which is the
normal order of Hugo business.

[lL.b. Data Types

All data in Hugo is represented in terms of 16-bit integers, treated as signed (-32768
to 32767) or unsigned (0 to 65535) as appropriate. The name of any individual data
type may contain up to 32 alphanumeric characters (as well as the underscore ‘_’).

All of the following are valid data types:

Integer values 0, -10, 16800, -25005
(constant values that appear in Hugo source code as numbers)

13.

ASCII characters ‘A,z T
(constant values equal to the common ASCII value for a character; i.e., 65 for ‘A”)

Objects sui tcase, enptyroom player

(constant values representing the object number of the given object)

Variables a, b, score, TEXTCOLOR

(changeable value-holders that may be set to equal another variable or constant
value)

Constants true, false, BANNER

(constant--obviously--values that are given a name similarly to a variable, but are
non-modifiable)

Dictionary entries ~"a", "the", "basketball"
(The appearance of "t he" in a line of code actually refers to the location in the
dictionary table where " t he" is stored.)

Array elements ranki ng[1]

(a series of one or more changeable values that may be referenced from a common
base point)

Array addresses ranki ng

(the base point--see above)

Properties nouns, short_desc, found_in
(variable attachments of data relating specifically to objects)

Attributes open, light, transparent

(less complex attachments of data describing an object, which may be specified as
either having or not having the given attribute)

Most of these types are relatively straightforward, representing in most cases a
simple value. Dictionary entries are addresses in the dictionary table, with the null
string ““ having the value 0. Array addresses (as opposed to separate array
elements) represent the address at which the array begins in the array table.
Properties and attributes treated as discrete values represent the number of that
property or attribute, assigned sequentially as the individual property or attribute
is defined.

As mentioned, routines also return values, as do engine functions, so that
Fi ndLi ght (r oom)

and

14.

par ent (obj ect)
are also valid integer data types.

Routine addresses are also stored as 16-bit integers. However, those versed in such
calculations will notice that if such a value was treated as an absolute address, then
any addressable executable code would be limited to 64K in size. Such is not the
case, since the routine address is actually an indexed representation of the absolute
address.

NOTE: The 16-bit format of a routine address (or the address of a property routine,
to be discussed below), can obtained via the address operator ‘&’, as in:

&Rout i ne
&obj ect . property

X
X

(where X is a variable).

|Il.c. Multiple Lines

If any single command is too long to fit on one line, it may be split across several
lines by ending all but the last with the control character ‘\.

"This is an exanple string."
and

x =5+ 6 * higher(a, b)
are the same as

"This is an exanple \
string."
and
X =5+ 6 *\
hi gher (a, b)

The space at the end of the first line is necessary because the compiler automatically
trims leading spaces from the second line.

String constants, such as in the above print statement, are an exception in that they
do not require the ‘\’ character at the end of each line.

print "The engine will properly
print this text, assumng a

15.

singl e space at the end of each
[ine."

will result in:

The engine will properly print this text, assum ng
a single space at the end of each |ine.

Care must be taken, however, to ensure that the closing quotes are not left off the
string constant. Failing that, the compiler will likely generate a “Closing brace
missing” error when it overruns the object/routine/event boundary looking for a
resolution to the odd number of quotation marks.

Also, most lines ending in a comma, ‘and’, or ‘Or’ will automatically fall through
to the next line (if they occur in a line of code). In other words,

x[0] =1, 2, 3, I array assignment x[O0] through Xx[4]
4, 5
and
if a=5and
b ="tall"

translate into

x[0] =1, 2, 3, 4, 5

and

if a 5 and b = "tall"

This is provided primarily so that lengthy lines and complex expressions do not
have to run off the right-hand side of the screen during editing, nor do they
continually need to be extended using ‘\’ and the end of each line.

(NOTE: Multiple lines that are not strictly code, such as property assignments in
object definitions--to be discussed--must still be joined with ‘\’, as in

nouns "plant", "flower", "marigold", \
"fauna", "greenery"

and similar cases, even if they end in a comma.)

There is a complement to the ‘\’ line-control character: the :’ character allows
multiple lines to be put together on a single line, i.e.

16.

or

if 1 =1: print "Less than three."

Which the compiler translates to

5
1

X
y
and

ifi =1
{print "Less than three."}

(See sections below on code formatting to see exactly what these constructions
represent.)

|Il.d. Comments

There are two types of comments. Comments on a single line begin with a ‘"
Anything following on the line is ignored. Multiple-line comments are begun with
‘I\” and ended with “\I'.

I A comment on a single line

I\ Amltiple-line
coment \!

The '\’ combination must come at the start of a line to be significant; it cannot be
preceded by any other statements or remarks. Similarly, the “\!” combination must
come at the end of a line.

Il.e. Compiler Errors

A compiler error is generally of one of two types. A fatal error looks like this:

Fatal error: <nessage>
and halts compiler execution.

A non-fatal error typically looks like:

<filename>(<line>): FError: <nessage>

17.

Also, the compiler may issue warnings in the form:
<filename>(<line>): Warning: <nessage>

Compilation will continue, but this is an indication that the compiler suspects a
problem at compile-time.

If the -e switch has been set during invocation to generate expanded-format errors,
error output looks like:

<FI LENAME>: <LOCATI O\>
(Error-causing line)
"ERROR: <error nessage>"

It prints the section of code that caused the error, followed by an explanation of the
problem. Compilation will generally continue unless the -a switch has been set.

NOTE: The section of offending code may not be printed exactly as it appears in the source,
since the compiler often paraphrases and rebuilds the source code into a more rigid format
before building the line.

I1.f. Compiler Directives

A number of special commands may be used to determine a.) how the source code
is read by the compiler, or b.) what special output will be generated at compile
time.

To set switches within the source code so that they do not have to be specified each
time the compiler is invoked for that particular program, the line

#sw t ches - <sequence>

will set the switches specified by <S€quence> where <Séquence=> js a string of
characters representing valid switches, without any separators between characters.

Many programmers may find it useful to make

#swi tches -ils

the first line in every new program, which will automatically print out debugging
information, a statistical summary, and any errors to the - LST list file.

Using

#versi on <version>[.<revision>]

18.

specifies that the file is to be used with version <Ver si on>. <r evi si on> of the
compiler. If the file and compiler version are mismatched, a warning will be
issued.

To include the contents of another file at the specified point in the current file, use

#i ncl ude "<fil ename>"

where <filename> js the full path and name of the file to be read. When
<fil ename> has been read completely, the compiler resumes with the statement

immediately following the #i ncl ude command.

(A file or set of files can be compiled into a precompiled header using the -h switch,
and then linked using #l i nk instead of #i ncl ude, See Appendix D on Precompiled
Headers.)

A useful tool for managing Hugo source code is the ability to use compiler flags for
conditional compilation. A compiler flag is simply a user-defined marker that can
control which sections of the source code are compiled. In this way, a programmer
can develop add-ons to a program that can be included or excluded at will. For
example, the library files HUGOLI B. H VERBLI B. H and VERBLI B. Gcheck to see if

a flag called DEBUG has been set previously (as it is in SAMPLE. HUG), Only if it has
do they include the HUGOFI X. Hand HUGOFI X. Gfiles.

To set and clear flags, use

#set <fl agnane>

and

#cl ear <fl agnane>
respectively.

Then, check to see if a flag is set or not (and include or exclude the specified block
of source code) by using

#i fset <flagnane>

...conditional block of code...
#endi f

or

#i fclear <flagnanme>

...conditional block of code...
#endi f

19.

Conditional compilation constructions may be nested up to 32 levels deep.

(Note also that compiler flags can be specified in the invocation line as #<f | ag
name>))

“#1f set” gnd “#i f clear” gre the long form of “#i f set ” and “#i fcl ear
allowing usage of “#el sei f ” for code such as:

#set TH S_FLAG
#set THAT_FLAG

#1f clear TH S _FLAG

#message "This will never be printed.”

#el seif set THAT_FLAG

#message "This wll always be printed.™

#el se

#message "But not this if THAT _FLAGis set."
#endi f

Use “#i f defined <flag>’and “#if undefined <flag>” to test if objects,
properties, routines, etc. have previously been defined.

As seen above, the #nmessage directive can be used as
#message "<t ext>"

to output <text> when (or if) that statement is processed during the first
compilation pass.

Including “€r r or ” or “war ni ng” pefore “<t ext >” as in
#message error "<text>"

or

#message war ni ng "<t ext>"

will force the compiler to issue an error or warning, respectively, as it prints
u<t ext >n.

It is also possible to include inline limit settings, such as
$<setting>=<lint>

in the same way as in the invocation line. However, an error will be issued if, for
example, an attempt is made to reset MAXOBJECTS if one or more objects have
already been defined.

20.

Example: Command-Line Compiling

On the author’s machine, running under MS-DOS, the compiler executable HC. EXE
is in a directory called C: \ HUGO The library files are in C:\ HUGO LI B and the
source code for the game Spur is in C: \ HUGO SPUR

It's possible to call the compiler to compile Spur with a number of different options,
including setting compiler flags to include the HugoFix debugging library and verb
stub routines (i.e., what could otherwise be accomplished with “#set DEBUG” and
“#set VERBSTUBS” in the source), and printing all debugging information, the
object tree, and statistics to a file. (Assume that the current directory is C: \ HUGO
and that none of the switches or compiler flags are set in the source.)

hc -iols #debug #verbstubs @ource=spur @i b=lib spur

This makes use of all the possible command-line option types, including multiple
switches, flag settings, and directory specifications.

1. OBJECTS

Objects are the building blocks of any Hugo program. Anything that must be
accessible to a player during the game--including items, rooms, other characters,
and even directions--must be defined as an object.

The basic object definition looks like this:

obj ect <obj ect nane> "obj ect nane”

{
}

As an example, a suitcase object might be defined as:

obj ect suitcase "suitcase"

{}

The enclosing braces are needed even if the object definition has no body. The only
data attached to the suitcase object are--from right to left--a name, an identifier, and
membership in the basic object class.

The compiler assigns the object labeled <0bj ect nane> the next sequential object
number. That is, if the first-defined object is the “nothing” object (object 0), then
the next-defined object, whatever it is, is given the object number 1; the one after
that is 2, etc. This is academic, however, as a programmer need never know what

21.

object number a particular object is--except for certain debugging situations--and
can always refer to an object by its label <obj ect name>,

If no explicit “name” (or name property) is provided, the compiler automatically
gives it the name “(<obj ect name>) » je., <obj ect name> in parentheses.

(The compiler automatically creates an object called “display” as the last defined
object. The display object can be used to get information about the engine’s output
display. See the section on the display object below under “Advanced Features™.)

I1l.a. The Object Tree

In order for objects to have a position in the game, i.e., to be in a room or contained
in another object or beside another object, they must occupy a position in the object
tree. The object tree is a map which represents the relationships between all objects
in the game. The total number of objects is held in the global variable objects.

The nothing object is defined in the library as object 0. This is the root of the object
tree, upon which all other objects are based.

When referring to object numbers, this manual is generally referring to the name
given the object in the source code: i.e. <Objectname> The compiler
automatically assigns each object an object number, and refers to it whenever a
specified <obj ect name> js encountered.

(NOTE: When using the standard library routines, ensure that no objects (or
classes, to be discussed later) are defined before HUGCLI B. His included. Problems
will arise if the first-defined object--object 0--is not the “nothing” object.)

Here is an example of an object tree:

Not hi ng

I?oom

ITabl e------ Chair------ Book------ Pl ayer
lBOV\A Isookrrar k

gpoon

A number of functions can be used to read the object tree.

par ent
si bling
child
youngest

22.

el der
el dest (same as chi | d)

younger (same as sibli ng)

and

chil dren

Each function takes a single object as its argument, so that

parent (Tabl €) = Room

par ent (Bookmar k) = Book
parent (Pl ayer) = Room
chil d(Bowl) = Spoon

chi | d(Room Tabl e
child(Chair) = 0 (Nothing)
sibling(Table) = Chair

sibling(Player) = 0 (Nothing)
youngest (Roonm) = Pl ayer
youngest (Spoon) = 0 (Nothing)
el der (Chair) Tabl e

el der (Tabl e) 0 (Nothing)

and

children(Room) = 4
chi | dren(Tabl e)
chil dren(Chair)

1
0
(In keeping with the above explanation of object numbers and <0bj ect name>, the

functions in the first set actually return an integer number that refers to a particular
<obj ect nane>)

To better understand how the object tree represents the physical world, the table,
the chair, the book, and the player are all in the room. The bookmark is in the
book. The bowl is on the table, and the spoon is on the bowl. The Hugo library
will assume that the player object in the example is standing; if the player were
seated, the object tree might look like:

Not hi ng
I

Room
I
Tabl e------ Chair----- Book

I I I
C Pl ayer C

and

23.

child(Chair) = Player
parent (Pl ayer) = Chair
children(Chair) =1

(Try compiling SAMPLE. HUG with the -0 switch in order to see the object tree for
the sample game. Or, if the DEBUG flag was set during compilation, use the
HugoFix command “$ot” or “$ot <object>"" during play to view the current state of
the object tree during play. Compiling with the -d switch will generate a
debuggable (- HDX) version of the file--the object tree can then be viewed directly
from the debugger.)

Logical tests can also be evaluated with regard to objects and children. The
structure

<object> [not] in <parent>
will return true if <0bj ect > js in <par ent > (or false if ‘N0t ’ is used).

To initially place an object in the object tree, use
i n <parent>

in the object definition, or, alternatively
near by <obj ect >

or simply
near by

to give the object the same parent as <0bj ect > or, if <obj ect > js not specified,
the same parent as the last-defined object.

If no such specification is given, the parent object defaults to 0--the nothing object
as defined in the library. All normal room objects have 0 as their parent.

Therefore, the expanded basic case of an object definition is
obj ect <obj ect nane> "obj ect nane”
i n <parent object>

}

(Ensure that the opening brace ‘{* does not come on the same line as the ‘obj ect’
specifier.

24.

obj ect <obj ectnane> "object nanme" {...
is not permitted.)

The table in the example presumably had a definition like

obj ect table "Table"
{

in room
}
To put the suitcase object defined earlier into the empty room in SHELL. HUG

obj ect suitcase "suitcase"

in enptyroom

}

Objects can later be moved around the object tree using the ‘MVE’ command as in

nove <object> to <new parent >

Which, essentially, disengages <0bj ect > from its old parent, makes the sibling of
<obj ect > the sibling of <0bj ect >‘s elder, and moves <0bj ect > (along with all

its possessions) to the new parent.

Therefore, in the original example, the command

move bowl to player

would result in altering the object tree to this:

Not hi ng

I?oom

ITabl e------ Chair----- Book------ Pl ayer
ISookrrar k iBovM

Spoon
There is also a command to remove an object from its position in the tree:

renove <object>

which is the same as

25.

nmove <object> to O

The object may of course be moved to any position later.

I1l.b. Attributes

Attributes are essentially qualities that every object either does or doesn’t have.
They are most useful for qualifying or disqualifying objects for or from
consideration in any given instance.

An attribute is defined as

attribute <attribute name>

Up to 128 attributes may be defined. Those defined in HUGOLI B. Hinclude:

known if an object is known to the player
moved if an object has been moved
visited if a room has been visited
static if an object cannot be taken

pl ural for plural objects (i.e., some hats)
[iving if an object is a character

femal e if a character is female
unfriendly if a character is unfriendly
openabl e if an object can be opened

open if itis open

| ockabl e if an object can be locked

| ocked if it is locked

l'i ght if an object is or provides light
readabl e if an object can be read

sw t chabl e
sw t chedon

if an object can be turned on or off
ifitison

cl ot hi ng for objects that can be worn

worn if the object is being worn

mobi | e if the object can be rolled, etc.

enterabl e if an object is enterable

cont ai ner if an object can hold other objects

platform if other objects can be placed on it
(NOTE: container and platform are
mutually exclusive)

hi dden if an object is not to be listed

qui et if container or platform is quiet (i.e., the

transpar ent

initial listing of contents is suppressed)
if object is not opaque

al ready_l i sted if object has been pre-listed (i.e., before

26.

aWhat sl n Jisting)

wor kf 1 ag for system use
speci al for miscellaneous use

Some of these attributes are actually the same attribute with different names. This
is accomplished via

attribute <attribute2> alias <attributel>

where <attri but e1> has already been defined. For example, the library equates
vi si t ed with moved (since, presumably, they will never apply to the same object),
o}

attribute visited alias noved

In this case, an object which is visited is also, by default, moved. It is expected that
attributes which are aliased will never both need to be checked under the same
circumstances.

Attributes are given to an object during its definition as follows:

obj ect <obj ect nane> "obj ect nane”

is [not] <attributel> [not] <attribute2>,
}

NOTE: The ‘not’ keyword in the object definition is important when using a class
instead of the basic object definition, where the class may have predefined
attributes that are undesirable for the current object.

Even if an object was not given a particular attribute in its object definition, it may
be given that attribute at any later point in the program with the command

<object>is [not] <attribute>

where the ‘Not’ keyword clears the attribute instead of setting it.

Attributes can also be read using the ‘i S and ‘i S not’ structures. As a function,
<object>is [not] <attribute>

returns true (1) if <0bj ect > is (or is not, if ‘NOt * is specified) <attri bute>,
Otherwise, it returns false (0).

To give the suitcase object the appropriate attributes, expand the object definition to
include

217.

obj ect suitcase "suitcase"
{

in enptyroom

i s openabl e, not open

}

Now, the following equations hold true:
suitcase is openable =1
suitcase is open =0

suitcase is | ocked 0

I1l.c. Properties

Properties are considerably more complex than attributes. First, not every object
may have every property; in order for an object to have a property, it must be
specified in the object definition.

As well, properties are not simple on/off flags. They are sets of valid data
associated with an object, where the values may represent almost anything,
including object numbers, dictionary addresses, integer values, and addresses of
executable code. The maximum number of attached values is undefined, but
manageability and efficiency suggest eight or less.

These are some valid properties as they would appear in an object definition (using
property names defined in HUGOLI B. H):

nouns "tree", "bush", "shrub", "plant”
size 20

found_in |ivingroom entrancehall

| ong_desc
{"Exits lead north and west. A door is set
in the southeast wall."}

short desc
"There is a box here. It is "
if self is open
print "open";
el se
print "closed";

print

28.

bef ore
obj ect DoCet
i f Acquire(player, self)
{"You pick up ";
print Art(self); "."}
el se
return fal se
}
}

The nouns property contains 4 dictionary addresses; the Si Ze property is a single
integer value; the f ound_i n property holds two object numbers; and the long and
short description properties are both single values representing the address of the
attached routine.

The bef or e property is a special case. This complex property is defined by the
compiler and handled differently by the engine than a normal property routine. In
this case, the property value representing the routine address is only returned if the
gl obal s object and verbroutine contain the object in question and the
address of the DoGet routine, respectively. If there is a match, the routine is
executed before DoGet . (There is also an af t r routine, which is checked after the
verb routine has been called.)

(Note for clarity: the Art routine from HUGCLI B. H prints the appropriate article, if
any, followed by the name of the object. The ACqui r € routine returns true only if
the first object’s hol di ng property plus the Si ze property of the second object
does not exceed the capaci ty property of the first object.)

All of this may be a little confusing for now. There will be more on property
routines later. For now, think of a property as simply containing a value (or set of
values).

A property is defined similiarly to an attribute as
property <property nane>
A default value may be defined for the property using
property <property nanme> <default val ue>
where <def aul t val ue> js a constant or dictionary word. For objects without a
given property, attempting to find that property will result in the default value. If

no default is explicitly declared, it is 0.

The list of properties defined in HUGCOLI B. His:

name

before
after

noun

adj ective
article
preposi tion
pronoun
ShOft_degc

initi a|_degc

long_desc
found in

type
n_to

ne to
eto

se to

s to

SW to
w_to

nw to

u_to

d to

in_to

out to
CanF_go
si ze
capacity
hol di ng
reach

l'i st contents
door to
key object
when open
when closed

i gnor e _response

order response
cont ai ns_desc

i NV_desc
desc_detail
parseé rank

excl ude from_all

m sc

29.

the basic object name

pre-verb routines

post-verb routines

noun(s) for referring to object

adjective(s) for describing object

“a”, “an”, “the”, “some”, etc.

“in”, “inside”, “outside of”, etc.

appropriate for the object in question

basic “X is here” description

supersedes short_desc (or long_desc
for locations)

detailed description

in case of multiple locations (virtual,
NOT physical, parent objects)

to identify the type of object

(for rooms only, where an exit leads)

message if a direction is invalid
for holding/inventory

for limiting object accessibility
for overriding normal listing
for handling “Enter <object>*
if lockable, the proper key
supersedes short_desc

for characters

instead of basic “inside X are...”

for special inventory descriptions
parenthetical detail for object listing
for differentiating like-named objects
for interpreting “all” in inputs

for miscellaneous use

30.

(For a detailed description of how each property is used, see Appendix B: The

Library.)

(The following properties are also defined and used exclusively by the display

object:

screenwi dth
scr eenhei ght
I inelength

w ndow i nes
cursor_col um

cursor_I ow
hasgr aphi cs

title_caption

statusli ne_height

width of the display, in characters
height of the display, in characters
width of the current text window
height of the current text window
horizontal and vertical position of
the cursor in the current text window
true if the current display is graphics-
capable
dictionary entry giving the full proper
name of the program (optional)

of the last-printed status line

Note that while some of these, namely Screenw dt h through title_caption,
are defined as constants in the library, they are still usable as property references,
since both property numbers and constants are simple integers.)

Property names may again be aliased by

property <property2> alias <propertyl>

where <proper t y1> has already been defined.

The library aliases (among others) the following:

nouns alias noun

adj ectives alias adjective
prep alias preposition
pronouns alias pronoun

A property is expressed as

<obj ect >. <property>

The number of elements to a property with more than a single value can be found

via

<obj ect >. #<property>

and a single element is expressed as

31.

<obj ect >. <property> #<el enent nunber>

NOTE: “<obj ect >. <property>*issimply the shortened version of
“<obj ect >. <property> #1»,

To add some properties to the suitcase object, expand the object definition to

obj ect suitcase "big green suitcase"

{
in enptyroom I done earlier
i s openabl e, not open !
nouns "suitcase", "case", "luggage"
adj ective "big", "green", "suit"
article "a"
size 25
capacity 100
}

Based on the engine rules for object identification, the suitcase object may now be
referred to by the player as “big green suitcase”, “big case”, or “green suitcase”
among other combinations. Even “big green” and “suit” may be valid, provided
that these don’t also refer to other objects within valid scope such as “a big green
apple” or “your suit jacket”.

(NOTE: The basic form for identification by the parser is
<adj ective 1> <adj. 2> <adj. 3>...<adj. n> <noun>

where any subset of these elements is allowable. However, the noun must come
last, and only one noun is recognized, so that

<noun> <noun> and <noun> <adjective>
asin
“luggage case” and ““suitcase green”
are not recognized.)
One occasional source of befuddling code that doesn’t behave the way the

programmer intended is not allowing enough slots for a property on a given object.
That is, if an object is originally defined with the property

found_in kitchen

and later, the program tries to set

32.

<object>. found_in #2 = |ivingroom

it will have no substantial effect. That is, there will be no space initialized in

<obj ect >‘s property table for a second value under found in. Trying to read
<obj ect>. found jn #2 will return a value of 0--a non-existent property--not the

number of the | i Vi ngr oomgobject. (Running the debugger with runtime warnings
enabled will help spot instances like this.)

To overcome this, if it is known that eventually a second (or third, or fourth, or
ninth) value is going to be set--even if only one value is defined at the outset--use

found_in kitchen, O[, O, O,...]
in the object definition.

(A useful shortcut for initializing multiple zero values is to use

found_in #4

instead of

found in O, O, O, O

in the object definition.)

As might be expected, combinations of properties are read left-to-right, so that
| ocati on. n_to. nane

is understood as

(location.n_to).nane

[111.d. Classes

Classes are essentially objects that are specifically intended to be used as prototypes
for one or more similar objects. Here is how a class is defined:

cl ass <cl assnane> ["<optional nane>"]

{
}

with the body of the definition being the same as that for an object definition,
where the properties and attributes defined are to be the same for all members of
the class.

33.

For example:
cl ass box
{
noun "box"
| ong_desc

"It looks like a regular old box."
i s openable, not open

box | argebox "l arge box"

article "a"
adj ectives "big", "large"
IS open

box greenbox "green box"

article "a"
adj ective "green"
| ong_desc
"It looks like a regular old box, only green.”

}

(Beginning the | ong_desc property routine on the line below the property name
is understood by the compiler as:

| ong_desc

"It looks like a regular old box, only green."”

}

Since the property is only one line--a single printing command--the braces are
unnecessary.)

The definition of an object in a class is begun with the name of the prototype object
instead of “object”. All properties and attributes of the class are inherited (except
for its position in the object tree), unless they have been explicitly defined in the
new object.

That is, although the box class is defined without the open attribute, the | ar gebox
object will begin the game as open, since this is in the | ar gebox definition. It will
begin the game as openabl e as well, as this is inherited from the boX class.

And while the | ar gebox object will have the | ong_desc of the box class, the
gr eenbox object replaces the default property routine with a new description. (An

exception to this is an “$addi ti ve” property, to be discussed later, where new
properties are added to those of previous classes.)

34.

Since a class is basically an object, it is possible to define an object using a previous
object as a class even though the previous object was not explicitly defined as a
class. Therefore,

| argebox | argeredbox "l arge red box"

adj ectives "big", "large", "red

is perfectly valid.

Occasionally, it may be necessary to have an object or class inherit from more than
one previously defined class. This can be done using the “i nher it s” jnstruction.

<cl ass1> <obj ect nane> "nane

i nherits <class2>[, <class3>,...]

}

or even

obj ect <obj ect nane> "nane

inherits <classl> <class2>[, <class3>, ...]

}

The precedence of inheritance is in the order of occurrence. In either example, the

objg_ct inherits first from <cl ass1> then from <cl ass2> and so on (or even
<obj ect 1> <obj ect 2> etc)).

The Hugo Object Library (OBJLI B. H) contains a number of useful class definitions
for things like rooms, characters, scenery, vehicles, etc. Sometimes, however, it
may be desirable to use a different definition for, say, the room class while keeping
all the others in the Object Library.

Instead of actually editing the OBJLI B. Hfile, use:

repl ace <cl ass> ["<optional nanme>"]

{
}

where <cl ass> js the name of a previously defined object or class, such as “r oonv.

All subsequent references to <Cl ass> will use this object instead of the previously
defined one. (Note that this means that the replacement must come BEFORE any
uses of the class for other objects.)

(...conpletely new object definition...)

35.

[IV. HUGO PROGRAMMING

[IV.a. Variables

Hugo supports two kinds of variables: global and local. Either type simply holds a
16-bit integer, so a variable can hold a simple value, an object number, a dictionary
address, a routine address, or any other standard Hugo data type through an
assignment such as:

a=1

next obj = parent (obj)
tenp_word = "t he"

Global variables are visible throughout the program. They must be defined
similarly to properties and attributes as

gl obal <gl obal variable nane> = <starting val ue>]

Local variables, on the other hand, are recognized only within the routine in which
they are defined. They are defined using

| ocal <local variable name>[= <starting val ue>]

Global variables must of course have a unique name, different from that of any
other data object; local variables, on the other hand, may share the names of local
variables in other routines.

In either case, global or local, the default starting value is 0 if no other value is
given. For example,

gl obal time_of _day = 1100

is equal to 1100 when the program is run, and is visible at any point in the
program, by any object or routine. On the other hand, the variables

local a, max = 100, t

are visible only within the block of code where they are defined, and are initialized
to 0, 100, and 0, respectively, each time that section of code (be it a routine,
property routine, event, etc.) is run.

The compiler defines a set of engine globals: global variables that are referenced
directly by the engine, but which may otherwise be treated like any other global
variables. These are:

36.

obj ect direct object of a verb action

xobj ect indirect object

sel f self-referential object

wor ds total number of words in command

pl ayer the player object

actor the player, or character obj. (for scripts)
ver broutine specified by the command

endf | ag if not false (0), run EndGame routine
pronpt for input; default is “>*

obj ects the total number of objects

system.status after certain operations

The obj ect and Xobj ect globals are set up by the engine depending on what
command is entered by the player. The sel f global is undefined except when an
object is being referenced (as in a property routine). In that case, it is set to the
number of that object. The Pl ayer variable holds the number of the object that the
player is controlling; the Ver brouti ne variable holds the address of the routine
specified in the grammar table and corresponding to the entered command; the
endf | ag variable must be 0 unless something has occurred to end the game; and
the Pronpt variable represents the dictionary word appearing at the start of an
input line.

The 0bj ect s variable can be set by the player, but to no useful effect. The engine
will reset it to the “real” value whenever referenced. (All object numbers range
from 0 to the value of Obj ect s)) The syst em st at us variable may be read (after
a resource operation or a ‘Syst em call; see the relevant sections for an explanation
of these functions) to check for an error value. See the section on “Resources” for
possible return values.

(NOTE: Setting endf | ag to a non-zero value forces an IMMEDIATE break from
the game loop. Statements following the endf | ag assignment even in the same

function are not executed; control is passed directly to the engine, which calls the
EndGane routine.)

IV.b. Constants

Constants are simply labels that represent a non-modifiable value.

constant FI RST_NAME "John"
constant LAST_NAME "Sm th"

(Not e t he Jack of an ‘=’ sign between, for example, FI RST_NAVME and “John”.)
print LAST NAME; ", ": FIRST_NAME

37.

outputs:
Smith, John

Constants can, like any other Hugo data type, be integers, dictionary entries, object
numbers, etc.

(It is not absolutely necessary that a constant be given a definite value if the
constant is to be used as some sort of flag or marker, etc. Therefore,

constant THI S_RESULT
constant THAT_RESULT

will have unique values from each other, as well as from any other constant
defined without a definite value.)

Sometimes it may be useful to enumerate a series of constants in sequence. Instead
of defining them all individually, it is possible to use:

enunerate start =1

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRI DAY

}

giving:
MONDAY = 1, TUESDAY = 2, WEDNESDAY = 3, THURSDAY = 4,
FRI DAY = 5

The start value is optional. If omitted, it is 0. Also, it is possible to change the
current value at any point (therefore also affecting all following values).

enuner at e

A B C=5 D E
}

gives: A=0 B=1, C=5 D=6, E=7,

Finally, it is possible to alter the step value of the enumeration using the “step”
keyword followed by “+x’, “-x, “*x”, or “/X”, where X is a constant integer value.
To count by twos:

enunerate step *2

A=1 B C D

38.
gives;Azl, B=2 C=4 D=8,

NOTE: Enumeration of global variables is also possible, using the ‘gl obal s’
specifier, as in:

enuner ate gl obal s

<gl obal 1>, <gl obal 2>, ...

Otherwise the specifier “const ant s” js implied as the default.

IV.c. Printing Text

Text can be printed using two different methods. The first is the basic ‘Pri nt-
command, the simplest form of which is

print "<string>"
where <st ri ng> consists of a series of alphanumeric characters and punctuation.

The backslash control character (*“\) is handled specially. It modifies how the
character following it in a string is treated.

\" inserts quotation marks

\\ insert a literal backslash character

_ insert a forced space, overriding left-justification for the rest of the
string

\'n insert a forced newline

As usual, a single “\” at the end of a line signals that the line continues with the
following line.

Examples:
print "\"Hellot\""
"Hello!
print "Print a...\n...newine"

Print a...
...newline

print "One\\two\\three"

39.

One\two\three
print " Left-justified"
print "\ _ Not left-justified"
Left-justified

Not left-justified

print "This is a \
single line."

This is a single line.

(Although

print "This

s
single |i

a
ne."
will produce the same result, since the line break occurs within quotation marks.)

NOTE: These control-character combinations are valid for printing only; they are
not treated as literals, as in, for example, expressions involving dictionary entries.

After each of the above print commands, a newline is printed. To avoid this,
append a semicolon (‘; *) to the end of the Pr i nt statement.

print "This is a ";
print "single line."

This is a single line.

Print statements may also contain data types, or a combination of data types and
strings. The command

print "The "; object.nanme; " is closed.™

will print the word located at the dictionary address specified by 0bj ect. nane, so
that if 0bj ect . name points to the word “box”, the resulting output would be:

The box is closed.

To capitalize the first letter of the specified word, use the ‘capi t al * modifier.

print "The "; capital object.nane; " is closed."”

The Box is closed.

40.

To print the data type as a value instead of referencing the dictionary, use the
‘nunber * modifier. For example, if the variable t i e holds the value 5,

print "There are "; nunber tine; " seconds remaining."
There are 5 seconds remaining.

If ‘nunber were not used, the engine would try to find a word at the dictionary
address 5, and the result will likely be garbage.

NOTE: Mainly for debugging purposes, the modifier ‘h€X’ prints the data type as
a hexadecimal number instead of a decimal one. If the variable val equals 127,

print nunmber val; " is "; hex val; " in hexadecinal."
127 is 7F in hexadecimal.

The second way to print text is from the text bank, from which--if memory is in
short supply--sections are loaded from disk only when they are needed by the
program. This method is provided so that lengthy blocks of text--such as
description and narration--do not take up valuable space if memory is limited. The
command consists simply of a quoted string without any preceding statement.

"This string would be witten to disk."
This string would be written to disk.

or

"So would this one ";
"and this one."

So would this one and this one.
Notice that a semicolon at the end of the statement still overrides the newline. The
in-string control-character combinations are still usable with these print statements,

but since each command is a single line, data types and other modifiers may not be
compounded. Because of that,

"\"Hello,\"" he said."
will write
“Hello,” he said.

to the - HEX file text bank, but

41.

"There are "; nunber tine |eft; " seconds renaining."
is illegal.

The color of text may be changed using the ‘0l or * command (also usable with the
U.K. spelling “colour”). The format is

col or <foreground>[, <background>[, <input col or>]]

where the background color is not necessary. If no background color is specified,
the current one is assumed).

The input color is also not necessary--this refers to the color of player input.

The standard color set with corresponding values and constant labels is:

COLOR CONSTANT VALUE LABEL

Black 0 BLACK

Blue 1 BLUE

Green 2 GREEN

Cyan 3 CYAN

Red 4 RED

Magenta 5 MAGENTA

Brown 6 BROMWN

White 7 VH TE

Dark gray 8 DARK _GRAY

Light blue 9 LI GHT_BLUE

Light green 10 LI GHT_GREEN

Light cyan 11 LI GHT_CYAN

Light red 12 LI GHT_RED

Light magenta 13 LI GHT_MAGENTA
Yellow 14 YELLOW

Bright white 15 BRI GHT_WHI TE
Default foreground 16 DEF_FOREGROUND
Default background 17 DEF_BACKGROUND
Default statusline (fore) 18 DEF_SL_FOREGROUND
Default statusline (back) 19 DEF_SL_ BACKGROUND
Match foreground 20 MATCH_FOREGROUND

(The labels are defined in HUGOLI B. H: when using the library, it is never necessary
to refer to a color by its numerical value.)

It is expected that, regardless of the system, any color will print visibly on any
other color. However, it is suggested for practicality that white (and less frequently

42,

bright while) be used for most text-printing. Blue and black are fairly standard
background colors.

Magenta printing on a cyan background is accomplished by
col or MAGENTA, CYAN
or

color 5, 3 I if not using HUGOLIB. H

A current line can be filled--with blank spaces in the current color--to a specified
column (essentially a tab stop) using the “print to...” structure as follows:

print "Time:"; to 40; "Date:"

where the value following ‘t 0’ does not exceed the maximum line length in the
engine global | i nel engt h,

The resulting output will be something like:
Time: Date:

Text can be specifically located using the ‘| ocat € command via
| ocate <col um>, <row>

where

|l ocate 1, 1

places text output at the top left corner of the current text window. Neither
<col um> nor <r ow> may exceed the current window boundaries--the engine will

automatically trim them as necessary.

IV.d. More Control Characters

As listed above, the following are valid control characters that may be embedded in
printed strings:

\" quotation marks
\\ aliteral backslash character
\ a forced space, overriding left-justification for the rest of the string

\n anewline

43.

The next set of control characters control the appearance of printed text by turning
on and off boldface, italic, proportional, and underlined printing. Not all
computers and operating systems are able to provide all types of printed output;
however, the engine can be relied upon to properly process any formatting--i.e.,
proportionally printed text will still look fine even on a system that has only a
fixed-width font, such as MS-DOS (although, of course, it won’t be proportionally
spaced).

\B Dboldface on

\b boldface off

\ italics on

\i italics off

\P proportional printing on
\'p proportional printing off
\U underlining on

\Uu underlining off

(Print style can also be changed using the Font routine in HUGOLI B. H Font-
change constants can be combined as in:

Font (BOLD ON | | TALICS ON | PROP_OFF)

where the valid constants are BOLD_ON BOLD_OFF | TALI CS_ON | TALI CS_OFF,
UNDERLI NE_ C]\I UNDERLI NE_ C]:F PRCP C]\I and PRCP C]:F)

Special characters can also be printed via control characters. Note that these
characters are contained in the Latin-1 character set; if a particular system is
incapable of displaying it, it will display the normal-ASCIl equivalent. (The
following examples, appearing in parentheses, may not display properly on all
computers and printers.)

\ accent grave followed by a letter
e.g. “\'a” will print an ‘a’ with an accent
grave (a)

\’ accent acute followed by a letter
e.g. “\’E” will print an ‘E’ with an accent
acute (E)

\ ~ tilde followed by a letter
e.g. “\~n” will print an ‘n’ with a tilde (1)

\ A circumflex followed by a letter
eg. “\” will print an ‘i’ with a
circumflex (1)

44,

\: umlaut followed by a letter
e.g. “\:u” will print a ‘u’ with an umlaut
(@)

\, cedilla followed by c or C

e.g. “\,c” will print a ‘c’ with a cedilla (¢)

\<or\> Spanish quotation marks (« »)

\! upside-down exclamation point 0

\? upside-down question mark ()

\ae ae ligature (&)

\ AE AE ligature (/)

\c cents symbol (¢)

\L British pound (£)

\'Y Japanese Yen ¥

\- em dash (—)

\ #XXX any ASCII character where xxx represents the three-digit ASCI|I

number of the character to be printed
e.g. “\ #065” will print an ‘A’ (ASCII 65)

Example: Mixing Text Styles

I Sanple routine to print various typefaces and col ors:
#i ncl ude "hugolib. h"

routine PrintingSanple

{
print "Text may be printed in \Bbol df ace\b,
\litalics\i, \Uunderlined\u, or
\ Pproportional\p typefaces."”
col or RED ! or color 4
print "\nGet ready. ";
col or YELLOW I color 14
print "Get set. ";
col or GREEN I color 2
print "Go!"
}

The output will be:

Text may be printed in boldface, italics, underlined, or
proportional typefaces.

Get ready. Get set. Go!

45,

with “boldface”, “italics”, “underlined”, and “proportional” printed in their
respective typefaces. “Get ready”, “Get set”, and “Go!” will all appear on the same
line in three different colors.

Note that not all computers will be able to print all typefaces. The basic MS-DOS
ports, for example, uses color changes instead of actual typeface changes, and does
not support proportional printing.

IV.e. Operators and Assignments

Hugo allows use of all standard math operators:

+ addition

- subtraction

* multiplication
/ integer division

Comparisons are also valid as operators, returning Boolean true or false (1 or 0) so
that

VoIl

2 + (x 1)
5 - (x 1)

evaluate respectively to 3and 5if x is 1, and 2 and 4 if x is 2 or greater.

Valid relational operators are

= equal to

~= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

Logical operators (‘and’ ‘or’ and ‘not *) are also allowed.

(x and y) or (a and b)
(j +5) and not QpjectisLight(k)

Using ‘and’ results in true (1) if both values are non-zero. Using ‘Of ’ results in true
if either is non-zero. ‘NOt’ results in true only if the following value is zero.

1 and 1 =1
1 and O =0
5and 3 =1

46.

and 9 = 0
and 169 and 1 =0
and 12 and 1233 =

OO

1

lor 1-=1
35 0or 0 =1
Oor 0O=0

1
0
0

not O
not 1
not 8

1 and 7 or (14 and not 0) =1
(0 or not 1) and 3 =0

Additionally, bitwise operators are provided:

(Bitwise and)

(Bitwise or)

P RR R
T T R R
R OO R

L | I VI |

1
0
1
1

l
o
I
1

(Bitwise not/inverse)

(A detailed explanation of bitwise operations is a little beyond the scope of this
manual; programmers may occasionally use the ‘| > operator to combine bitmask-
type parameters for certain library functions such as fonts and list-formats, but only
advanced users should have to worry about employing bitwise operators to any
great extent in practical programming.)

Any Hugo data type can appear in an expression, including routines, attribute
tests, properties, constants, and variables. Standard mathematical rules for order of
significance in evaluating an expression apply, so that parenthetical sub-
expressions are evaluated first, followed by multiplication and division, followed
by addition and subtraction.

Some sample combinations are:
10 + object. size I integer constant and property
object is openable + 1 I attribute test and constant
Fi ndLi ght (Il ocation) + a ! return value and variable
|
|

1 and object is light constant, |ogical test,
and attribute

Expressions can be evaluated and assigned to either a variable or a property.
<vari abl e> = <expressi on>

<obj ect >. <property> [#<el enent>] = <expression>

47,

In certain cases, the compiler may allow a statement where the left-hand side of the
assignment is non-modifiable. l.e.

Function() = <expression>
or
<obj ect >. #<property> = <expressi on>

may be compiled, but such statements will force a run-time error from the Hugo
Engine.

IV.f. Efficient Operators

Something like
nunber _of itenms = nunber_of itens + 1
i f nunber_of _itens > 10

{
}

can be coded more simply as

print "Too many itens!"

i f ++nunber _of itens > 10

{
}

The *++’ operator increases the following variable by one before returning the value
of the variable. Similarly, ‘- -’ can precede a variable to decrease the value by one
before returning it. Since these operators act before the value is returned, they are
called “pre-increment” and “pre-decrement”.

print "Too many itens!"

If “++" or ‘- -’ comes AFTER a variable, the value of the variable is returned and
then the value is increased or decreased, respectively. In these usages, the
operators are called “post-increment” and “post-decrement”.

For example,
while ++i < 5 I pre-increnent
{

print nunber i; ;

will output:

48.

1234

But

while i++ < 5 I post-increnent

{
}

print nunber i; ;

will output:
12345

Since in the second example, the variable is increased before getting the value,
while in the second example, it is increased after checking it.

It is also possible to use the operators “+=*, - = * = /= &= and ‘| =*. These can
also be used to modify a variable at the same time its value is being checked. All of
these, however, operate before the value in question is returned.

X =5

y = 10

print "x ="; nunber x*=y; ", y ="; nunber y
Result:

x=50,y =10

When the compiler is processing any of the above lines, the efficient operator takes
precedence over a normal (i.e., single-character) operator.

For example,
X =y + ++z
is actually compiled as
X = y++ + z

since the ‘“++’ is parsed first. To properly code this line with a pre-increment on the
z variable instead of a post-increment on y:

X =y + (++2)

49,

IV.g. Arrays and Strings

Prior to this point, little has been said about arrays. Arrays are sets of values that
share a common name, and where the elements are referenced by number. Arrays
are defined by

array <arraynane> [<array size>]
where <array si ze> must be a numerical constant.

An array definition reserves a block of memory of <array si ze> 16-bit words, so
that, for example,

array test _array[10]
initializes ten 16-bit words for the array.

Keep in mind that <array size> determines the size of the array, NOT the
maximum element number. Elements begin counting at 0, so that test_array,

with 10 elements, has members numbered from 0 to 9. Trying to access
test_array[10] or higher would return a meaningless value. (Trying to assign

it by mistake would likely overwrite something important, like the next-defined
array.)

To prevent such out-of-bounds array reading/writing, an array’s length may be
read via:

array|]

where no element number is specified. Using the above example,

print number test_array[]
would result in “10”.

Array elements can be assigned more than one at a time, as in

<arraynane> = <el enment 1>, <el enent 2>,
where <el enment 1> agnd <el enent 2> can be expressions or single values.
Elements need not be all of the same type, either, so that

test _array[0] = (10+5)*x, "Hello!", FindLight(location)

is perfectly legal (although perhaps not perfectly useful). More common is a usage
like

50.

names[0] = "Ned", "Sue", "Bob", "Maria"
or

test _array[2] =5, 4, 3, 2, 1
The array can then be accessed by

print nanmes[0]; " and "; nanes[3]

Ned and Maria

or

b = test _array[3] + test_array[5]
which would set the variable b to 4 + 2, or 6.
Because array space is statically allocated by the compiler, all arrays must be
declared at the global level. Local arrays are illegal, as are entire arrays passed as
arguments. However, single elements of arrays are valid arguments.
Significantly, it is possible to pass an array address as an argument, and the routine

can then access the elements of the array using the ‘array’ modifier. For example,
if items is an array containing:

itens[0] = "appl es”
itens[1l] = "oranges"
itens[2] = "socks"

The following:
routi ne Test(v)

print array v[?2]
}

can be called using

Test (i tens)

to produce the output “socks™, even though V is an argument (i.e., local variable),
and not an array. The line “print array v[2]” tells the engine to treat V as an
array address, not as a discrete value.

Array strings are also possible, and Hugo provides a way to store a dictionary
entry in an array as a series of characters using the ‘St r1 N9’ command:

51.

string(<array address>, <dict. entry> <max. |ength>)

(The <mex. | ength> provision is required because the engine has no way of
checking for array boundaries.)

For example,
string(a, word[1], 10)
will store up to 10 characters from Wor d[1] into a.

NOTE: It is expected in the preceding example that a would have at least 11
elements, since ‘St 'l NG’ expects to store a terminating 0 or null character after the
string itself.

For example,
X = string(a, word[1], 10)

will store up to 10 characters of Wor d[1] in the array @, and return the length of
the stored string to the variable X.

(The engine variables ‘parse$’ and ‘serial $ may be used in place of the
dictionary entry address; see the section below on “Junction Routines: ParseError”
for a description.)

The library defines the functions StringCopy, StringEqual, StringlLength,
and StringPrint which are extremely useful when dealing with string arrays.

St ri ngCopy copies one string array to another array.
StringCopy(<new array>, <old array>[, <length>])
For example,
StringCopy(a, b)
copies the contents of b to @, while
StringCopy(a, b, 5)
copies only up to 5 characters of b to &,

X
X

StringEqual (<stringl> <string2>)
StringConpare(<stringl> <string2>)

52.
StringEqual returns true only if the two specified string arrays are identical.

StringConpar e returns 1 if <st ri ng1> js lexically greater than <string2> -1 if
<stringl>is lexically less than <St ri ng2> and 0 if the two strings are identical.

St ringLengt h returns the length of a string array, as in:
len = StringLength(a)
and StringPrint prints a string array (or part of it).

StringPrint(<array address>[, <start>, <end>])
For example, if a contains “presto”,

StringPrint(a)
will print “presto”, but

StringPrint(a, 1, 4)

will print “res”. (The <start> parameter in the first example defaults to 0, not 1--
the first numbered element in an array is 0.)

An interesting side-effect of being able to pass array addresses as arguments is that
it is possible to “cheat” the address, so that, for example,

StringCopy(a, b+2)

\6v[ila]copy b to @, beginning with the third letter of b (since the first letter of b is
).

It should also be kept in mind that string arrays and dictionary entries are two

entirely separate animals, and that comparing them directly is wusing
St ri ngConpar e js not possible. That is, while a dictionary entry is a simple value
representing an address, a string array is a series of values each representing a
character in the string.

The library provides the following to overcome this:

StringDi ct Conpare(<array>, <dict. entry>)
which returns the same values (1, -1, 0) as StringConpare, depending on
whether the string array is lexically greater than, less than, or equal to the

dictionary entry.

(There is a complement to the ‘String’ command, the ‘di ct’ function, that
dynamically creates a new dictionary entry at runtime. Its syntax is:

53.

X
X

di ct (<array>, <maxlen>)
di ct (parse$, <maxl en>)

where the contents of <array> or parse$ are written into the dictionary, to a
maximum of <max| en> characters, and the address of the new word is returned.

However, since this requires extending the actual length of the dictionary table in
the game file, it is necessary to provide for this during compilation. Inserting

$MAXDI CTEXTEND=<nunber >

at the start of the source file will write a buffer of <number> empty bytes at the end
of the dictionary. (MAXDI CTEXTEND js, by default, 0.)

Dynamic dictionary extension is used primarily in situations where the player may
be able to, for example, name an object, then refer to that object by the new name.

In this case, the new words will have to exist in the dictionary, and must be written
using ‘di ct’. However, a guideline for programmers is that there should be a limit
to how many new words the player can cause to be created, so that the total length
of the new entries never exceeds <number > keeping in mind that the length of an
entry is the number of characters plus one (the byte representing the actual length).
That is, the word “test” requires 5 bytes.)

Example: Managing Strings

#i ncl ude "hugolib. h"

array slf 32]
array s2[10]
array s3[10]

routine StringTests

{

local a, len

a ="This is a sanple string."
len = string(sl, a, 31)
string(s2, "Apple", 9
string(s3, "Tomato", 9)

print "a =\""; a; "\""

print "(Dictionary address: "; nunber a; ")"
print "sl1l contains \""; StringPrint(sl); "\""
print "(Array address: "; nunber sli;

print ", length ="; nunber len; ")"

print "s2 is \""; StringPrint(s2);

print "\", s3is \""; StringPrint(s3); "\""

54.

"\ nStringConpare(sl, s2) =";

pr|nt nunber StrlngConpare(sl s2)

"StringConpare(sl, s3) =";

print nunmber StringConpare(sl, s3)
}

The output will be:

a ="This is a sample string."
(Dictionary address = 887)

sl contains "This is a sample string."
(Array address = 1625, length = 24)
s2 is "Apple", s3is "Tomato"

StringCompare(sl, s2) =1
StringCompare(sl, s3) = -1

As is evident above, a dictionary entry does not need to be a single word; any piece
of text which must be treated as a value gets entered into the dictionary table.

The argument 31 in the first call to the ‘St r'i Ng’ function allows up to 31 characters
from a to be copied to sl1, but since the length of a is only 24 characters, only 25
values (including the terminating 0) get copied, and the string length of sl is
returned in len.

Since “A(pple)” is lexically less than “T(his...)”, comparing the two returns -1. As
“To(mato)” is lexically greater than “Th(is...)”, St r i ngConpar e returns 1.

|IV.h. Conditional Expressions And Program Flow

Program flow can be controlled using a variety of constructions, each of which is
built around an expression that evaluates to false (zero) or non-false (non-zero).

The most basic of these is the ‘I f ’ statement.

i f <expression>
{...conditional code block...}

NOTE: The enclosing braces are not necessary if the code block is a single line.
Note also that the conditional block may begin (and even end) on the same line as
the ‘i f’ statement provided that braces are used.

i f <expression>
.single line...

i f <expression> {...conditional code block...}

55.

If braces are not used for a single line, the compiler automatically inserts them,
although special care must be taken when constructing a block of code nesting
several single-line conditionals.

While

i f <expressionl>
i f <expression2>
...conditional code bl ock..

may be properly interpreted,

i f <expressionl>
for (...<expression2>...)
i f <expression3>
...conditional code bl ock..

will not be.

(Technically speaking, the compiler will misunderstand the end of the ‘f or’ loop

construction because the enclosing conditional code block expects to end with the
‘f or* expression. In turn the ‘f of* expression does not properly differentiate the
end of the conditional loop. The result would likely be a stack overflow error in
the engine because the engine will continually nest the execution of recursive ‘f or’
loops until it runs out of stack space.)

The proper way to structure that same section of code would be:
i f <expressionl>

for (...<expression2>...)

{
i f <expression3>
...condi tional code bl ock..

}

NOTE: The best advice is to rely on braces to clarify code structure whenever

using such complex constructions. This applies particularly to mixing ‘i f’, for’,
‘whi T e’ and “do- whi | e” expressions, especially when recursive function calls are

involved. While the results may appear as intended, the method to produce them
is incorrect, and any long-running such construction is almost guaranteed to crash
the stack.

More elaborate uses of ‘i f* involve the use of ‘el sei f’ and ‘el se’,

i f <expressionl>

56.

...first conditional code block...
el sei f <expression2>
...second conditional code bl ock...
el sei f <expressi on3>
...third conditional code block...
el se
...default code bl ock. ..
In this case, the engine evaluates each expression until it finds one that is true, and
then executes it. Control then passes to the next non-i f /el sei f el se statement
following the conditional construction. If no true expression is found, the default
code block is executed. If, for example, <€Xpr essi onl> evaluates to a non-false
value, then none of the following expressions are tested.

Of course, all three (‘i f’, ‘@l sei f’ and ‘el s€’) need not be used every time, and
simple “i f - el sei f and “i f - el se” combinations are perfectly valid.

In certain cases, the ‘i f’ statement may not lend itself perfectly to clarity, and the
“sel ect - case” construction may be more appropriate. The general form is:

sel ect <var>
case <val uel>[, <value2>, ...]
...first conditional code bl ock...
case <val ue3>[, <value4>, ...
...second conditional code block...

ééée el se
..default code bl ock. ..

In this case, the engine quickly performs an evaluation that is essentially

i f <var> = <valuel> [or <var> = <value2> ...]

There is no limit on the number of values (separated by commas) that can appear
on a line following ‘Case’. The same rules for bracing multiple-line code blocks
apply as with ‘i f’ (as well as for every other type of conditional block).

NOTE: Cases do not “fall through™ to the following case. Think of cases following
the first as being ‘€l sei f’ statements rather than ‘i f’ statements; once a true case
has been found, subsequent cases are ignored.

Basic loops may be coded using ‘Whi | e’ and “do- whi | e~

whi | e <expressi on>
...condi tional code bl ock..

do
...condi tional code bl ock...

57.

whi | e <expressi on>

Each of these executes the conditional code block as long as <eéxpr _essi 0oNn> holds
true. It is assumed that the code block somehow alters <€XpPr €ssi on> so that at
some point it will become false; otherwise the loop will execute endlessly.

while x <= 10
X =X +1

do

{x =x +1

print “x is “; nunber x}
while x <= 10

The only difference between the two is that if <€Xxpr e_ssi on=> js false at the outset,
the ‘whi | e’ code block will never run. The «“do- whi | e” code block will run at
least once even if <€Xpr essi on> js false at the outset.

The most complex loop construction uses the ‘f Or * statement.

for (<assignnment>; <expression>; <nodifier>)
...conditional code block...

For example:
for (i=1; i<=15; i=i+1)
print "i is "; nunber i
First, the engine executes the assignment setting “i = 1”. Then, it executes the

print statement. Next, it checks to see if the expression holds true (if I is less than
or equal to 15). If it does, it executes the Pri nt statement and the modifying
assignment that increments | . It continues the loop until the expression tests false.

Not all elements of the ‘fOr’ construction are necessary. For example, the
assignment may be omitted, as in

for (; 1<=15; i=i+l)
and the engine will simply use the existing value of i .
With
for (i=1;;i=i+l)
The loop will execute endlessly, unless some other means of exit is provided.

The modifying expression does not have to be an expression. It may be a routine
that modifies a global variable, for example, which is then tested by the ‘f or * loop.

58.

(A second form of the ‘f Or * loop is:

for <var> in <object>
...condi tional code bl ock...

which loops through all the children of <obj ect > (if any), setting the variable
<var > to the object number of each child in sequence, so that

for i in suitcase
print i.name

will print the names of each object in the Sui t case object.)

The easiest way to picture the first form of a Hugo “f or ’ loop is that

for (<assignnent>; <expression>; <nodifier>)
...conditional code block...

translates to the equivalent of

<assi gnnent >
[whil e] <expression>

{

...conditional code bl ock...
<nodi fi er>

}

which in turn translates the equivalent of

<assi gnnent >
: <l abel 1>
[if] <expression>

...conditional code bl ock..
<nodi fi er>
junp <l abel 1>

(On the other hand, that isn’t a particularly easy way to picture anything, and, in its

awkwardness, perhaps justifies the existence of non-threatening “While’,
“do- whi | 7 and ‘f or ’ Joops.)

The benefit in knowing how a Hugo loop breaks down into a slip knot of ‘i f* and
‘} unp’ statements is that it is easier to monitor program flow using the Hugo

Debugger (see Appendix E).

As is now obvious by the above (possibly confusing) illustration, Hugo supports
‘' unp’ commands and labels. A label is simply a user-specified token preceded by

59.

a colon (*’) at the beginning of a line. The label name must be a unique token in
the program. (Care should also be taken with using ‘j UNpP’--it is generally far
preferable to use alternatives, as there exists a potential for overflowing the
engine’s stack when not using standard looping constructions.)

It is also important to recognize--particularly with ‘sel ect’ and ‘while’ or
“do- whi | e” statements--that the expression is tested each time the loop executes,

or, in the case of a ‘Sel ect’ statement, for each corresponding case. The
significance of this is seen in the following example

sel ect test.prop_routine

case 1
{...}

case 2
{...}

case 3
{...}

where Prop_routi ne returns a value from 1 to 3. The property routine will be
executed 3 separate times, once for each ‘Case’ statement. If Prop_routi ne has
some other effect, such as modifying a global variable or printing output, then this
will also occur 3 times.

If such an effect would be undesirable, try

| ocal test_val I set up a local variable
test val = test.prop_routine ! and assign it
sel ect test_val
case 1
{...}

so that test.prop_routine is called only once.

A similar case would be where

sel ect random(3)

case 1: {...}
case 2: {...}
case 3: {...}

would result in something akin to:

i f random(3)
i f random(3)
i f random(3)

1: {..
2. {...}
3 {...}

In other words, a different random value would be evaluated each time. A better
choice would be:

60.

| ocal b
b = random(3)
select b

case 1: {...}

One final keyword is important in program flow, and that is ‘br eak’, At any point
during a loop, it may be necessary to exit immediately (and probably prematurely).
‘br eak’ passes control to the statement immediately following the current loop.

In the example

do
{ whi | e <expressi on2>
if'<expression3>
br eak
}
| e

whi | e <expressionl>

the ‘break’ causes the immediately running ‘whil e’ <expressi on2> |oop to

terminate, even if <€xpressi on2> js true. However, the external “do-whi | e»
<expr essi onl> |oop continues to run.

It has been previously stated that lines ending in ‘and’ or ‘or’ are continued onto
the next line in the case of long conditional expressions. A second useful provision
is the ability to use a comma to separate options within a conditional expression.
As a result,

if word[1] = "one", "two", "three"
whil e object is open, not |ocked
if box not in livingroom garage
if a~=1, 2, 3

are translated into

if word[1] ="one" or word[1]="two" or word[1l]="three"
whil e object is open and object is not | ocked

if box not in livingroomand box not in garage

if a~=1and a~=1and a ~= 3

respectively.

61.

Note that with an “=* or ‘i N’ comparison, a comma results in an ‘Of * comparison.
With ‘~=* or an attribute comparison, the result is an ‘and’ comparison.

|V. ROUTINES AND EVENTS

IV.a. Routines

Routines are blocks of code that may be called at any point in a program. A routine
may or may not return a value, and it may or may not require a list of parameters
(or arguments). (A number of routines have occurred in previous examples, but
here is the formal explication.)

A routine is defined as

routi ne <routinenane> [(<argunentl>, <argunent2>, ...)]

{
}

once again ensuring the the opening brace (‘{ ©) comes on a new line following the
‘rout I ne’ specifier.

(NOTE: To substitute a new routine for an existing one with the same name (such
as in a library file), define the new one using ‘T epl ace’ instead of ‘r outi ne’,

repl ace <routinenane> [(<argunentl>, <argunent2>, ...)]
For example,
routi ne Test Routi ne(obj)
{
print "The "; obj.nanme; " has a size of ";
print obj.size; "."
return obj.size
}

takes a single value as an argument, assigns it to a local variable Obj | executes a

simple printing sequence, and returns the property value: ©ODbj.size The
‘ret ur n’ keyword exits the current routine, and returns a value if specified.

Both

return

62.
and

return <expression>

are valid. If no expression is given, the routine returns 0. If no ‘r et ur n’ statement
at all is encountered, the routine continues until the closing brace (‘}’), then returns
0.

Test Rout i ne can be called several ways:

Test Routi ne(sui tcase)
will (assuming the Sui t case object as been defined as previously illustrated) print
“The big green suitcase has a size of 25.”

The return value will be ignored. On the other hand,

X = Test Routine(suitcase)

will print the same output, but will assign the return value of Test Rout i ne to the
variable X,

Now, unlike C and similar languages, Hugo does not require that routines follow a
strict prototype. Therefore, both

Test Rout i ne

and

Test Routi ne(suitcase, 5)
are valid calls for the above routine.

In the first case, the argument 0bj defaults to 0, since no value is passed. The
parentheses are not necessary if no arguments are passed. In the second case, the
value 5 is passed to Test Rout | ne put ignored.

Arguments are always passed by value, not by reference or address. A local
variable in one routine can never be altered by another routine. What this means is
that, for example, in the following routines:

routi ne Test Routi ne
| ocal a

a=>5

63.

Doubl e(a)
print nunber a
}
routi ne Doubl e(a)
{
a=a*?2
}

Calling Test Rout i ne would print “5” and not “10” because the local variable 2 in
Doubl e js only a copy of the variable passed to it as an argument.

These two routines would, on the other hand, print “10”:

routi ne Test Routi ne

| ocal a
a=>5
a = Doubl e(a)
print nunber a
}
routi ne Doubl e(a)
{
return a * 2
}

The local @ in Test Rout i ne js reassigned with the return value from Doubl e
An interesting side-effect of a null (0) return value can be seen using the ‘print’

command. Consider the The routine in HUGOLI B. H which prints an object’s
definite article (i.e., “the”, if appropriate), followed by the object’s Nanme property.

print "You open "; The(object);

might result in
You open the suitcase.

Note that the above ‘Pr i nt’ command itself really only prints
"You open "

and

It is the The routine that prints

64.

the suitcase

Since The returns 0 (the null string, or “), the ‘Pri nt’ command is actually
displaying

"You open ", ", and ".

where the null string (“**) is preceded on the output line by The’s printing of “the
and the object name.

V.b. Property Routines

Property routines are slightly more complex than those described so far, but follow
the same basic rules. Normally, a property routine runs when the program
attempts to get the value of a property that contains a routine.

That is, instead of

size 10

an object may contain the property

si ze

{
}

Trying to read 0bj ect . si ze jn either case will return an integer value.

return x + 5

Here’s another example. Normally, if <object> js the current room, then
<obj ect >. n_t 0 would contain the object number of the room to the north. The

library checks <obj ect >. n_t 0 to see if a value exists for it; if none does, the move
is invalid.

Consider this:

n_to office

and

n_to
{“The office door is |ocked.”}

or

65.

“The office door is |ocked. “;
return fal se

}

In the first case, an attempt on the part of the player to move north would result in
parent (pl ayer) being changed to the of Ti Ce object. In the second case, a

custom invalid-move message would be displayed. In the third case, the custom
invalid-move message would be displayed, but then the library would continue as
if it had not found a N_t O property for <obj ect > and it would print the standard
invalid-move message (without a newline, thanks to the semicolon):

“The office door is locked. You can’t go that way.”

NOTE: While normal routines return false (or 0) by default, property routines
return true (or 1) by default.

(For those wondering why the true return value in the second case doesn’t prompt
a move to object number 1, the library DOG0 routine assumes that there will never
be a room object numbered one.)

Property routines may be run directly using the ‘r un’ command:
run <obj ect>. <property>

If <obj ect > does not have <property> or if <obj ect>. <property> js not a
routine, nothing happens. Otherwise, the property routine executes. Property
routines do not take arguments.

Remember that at any point in a program, an existing property may be changed
using

<obj ect >. <property> = <val ue>
A property routine may be changed using

<obj ect >. <property> =

}

where the new routine must be enclosed in braces.

It is entirely possible to change what was once a property routine into a simple
value, or vice-versa, providing that space for the routine (and the required number
of elements) was allowed for in the original object definition. Even if a property

66.

routine is to be assigned later in the program, the property itself must still be
defined at the outset in the original object definition. A simple

<property> 0
or

<property> {return fal se}
will suffice.

There is, however, one drawback to this re-assignment of property values to
routines and vice-versa. A property routine is given a “length” of one 16-bit word,
which is the property address. When assigning a value or set of values to a
property routine, the engine behaves as if the property was originally defined for
this object with only one word of data, since it has no way of knowing the original
length of the property data.

For example, if the original property specification in the object definition was:
found_in bedroom 1ivingroom garage
and at some point the following was executed:

found_in = {return basenent}

then the following would not subsequently work:

found_in #3 = attic

because the engine now believes <obj ect >. found_i n to have only one 16-bit
word of data--a routine address--attached to it.

Finally, keep in mind that whenever calling a property routine, the global variable
sel f "is normally set to the object number. To avoid this, such as when

“borrowing” a property from another object from within a different object,
reference the property via

<obj ect >. . <property>

using ‘- - " instead of the normal property operator.

Example: “Borrowing” Property Routines

Consider a situation where a class provides a particular property routine.
Normally, that routine is inherited by all objects defined using that class. But there

67.

may arise a situation where one of those objects must have a variation or expansion
on the original routine.

cl ass food

bites left 5
eating

self.bites_left = self.bites_left - 1
if self.bites left =0

renmove self I all gone
}
}
food heal th_food
{
eating
actor.health = actor.health + 1
run food..eating
}
}

(Assuming that bi tes_l eft eating, and heal t h are defined as properties, with
eat i ng being called whenever a f 00d object is eaten.)

In this case, it would be inconvenient to have to retype the entire f 0ood. eati ng

routine for the heal t h_f ood object just because the latter must also increase
actor. heal th, Using *- -’ calls f ood. eati ng with self set to heal th_f ood

not the f 00d class, so that f 00d. eat i ng affects heal t h_f ood, This also allows
changes to be made to any property, attribute, or property routine in a class, and
that change will be reflected in all objects built from that class.

V.c. Before and After Routines

The Hugo Compiler predefines two special properties: before and after, They
are unique in that not only are they always routines, but they are much more
complex (and versatile) than a standard property routine.

Complex properties like before and after are defined with
property <property nane> $conpl ex <default val ue>
as in:

property before $conpl ex
property after $conpl ex

68.

Here is the syntax for the bef or e property:

bef ore

{
<usagel> <verbroutinel>[, <verbroutine2>,...]
{
} _ :
<usage2> <verbroutine3>[, <verbroutine4>, ...]
}

}

(The af t er property is the same, substituting ‘af ter’ for ‘before’)

The <usage> gspecifier is a value against which the specified object is matched.
Most commonly, it is “object~” «xobject” «l ocation” «actor”
“par ent (obj ect) », etc. The <verbroutine> js the name of a verb routine to
which the usage in question applies.

If <obj ect >. bef or e s checked, with the global Ver br outi ne set to one of the

specified verbroutines in the before property, and <usage> in that instance is

“obj ect ” then the following block of code is executed. If no match is found,
<obj ect >. bef or e returns false.

Here is a clearer example using the Sui t case gbject we have been developing:

bef ore

obj ect DoEat
{

}

"You can’'t eat the suitcase!"
}
after
obj ect DoCet

"Wth a vigorous effort, you pick up
the suitcase."

}
xobj ect DoPutln
"You put ";

The(obj ect)
" into the suitcase."”

69.

Each of these examples will return true, thereby overriding the engine’s default
operation (see the section on “The Game Loop™). In order to fool the engine into
continuing normally, as if no before or after property has been found, return
false from the property routine.

after
{
obj ect DoCet
{"Fine. ";
return fal se}
}

will result in:

>get suitcase
Fine. Taken.

Since the after routine returns false, and the library’s default response for a
successful call to DoGet s “Taken.”

It is important to remember that, unlike other property routines, before and
after routines are additive; i.e., a before (or after) routine defined in an

inherited class or object is not overwritten by a new property routine in the new
object. Instead, the definition for the routine is--in essence--added onto. An
additive property is defined using the ‘$addi ti ve’ qualifier, as in:

property <property nanme> $additive <default val ue>

All previously inherited bef orezaf t er subroutines are carried over. However,
the processing of a beforeyzafter property begins with the present object,
progressing backward through the object’s ancestry until a usage/verbroutine
match is found; once a match is made, no further preceding class inheritances are
processed (unless the property routine in question returns false).

NOTE: To force a before or after property routine to apply to ANY
verbroutine, do not specify a verbroutine.

For example,

bef ore

{

xobj ect

70.

The specified routine will be run whenever the object in question is the xobject of
ANY valid input.

If this non-specific block occurs before any block(s) specifying verbroutines, then
the following blocks, if matched, will run as well so long as the block does not
return true. If the non-specific block comes after any other blocks, then it will run
only if no other object/verbroutine combination is matched.

A drawback of this non-specification is that all verbroutines are matched--both

verbs and xverbs. This can be particularly undesirable in the case of location
bef orezaft er properties, where a non-specific response will be triggered even
for ‘save’ ‘restore’ etc.

To get around this, the library provides a function AnyVer b, which takes an object
as its argument and returns that object number if the current verbroutine is not
within the group of xverbs; otherwise it returns false. Therefore, it can be used via:

bef ore

AnyVer b(| ocati on)
{

}

}

instead of

bef ore
| ocati on
{
}

}

The former will execute the conditional block of code whenever the location global
matches the current object and the current verbroutine is not an xverb. The latter
(without using AnyVer b) will run for verbs and xverbs. (The reason for this,
simply put, is that the | ocati on global always equals the | ocati on global(!).
But AnyVer b(| ocat i on) will only equal the | ocat i on global if the verbroutine
is not an xverb.)

Example: Building a Complex Object

At this point, enough material has been covered to develop a comprehensive
example of a functional object that will serve as a summary of concepts introduced

71.

SO fanlas well as providing instances of a number of common properties from

HUGOLI B

obj ect woodcabi net "wooden cabi net™

{

in enptyroom
article "a"

nouns "cabinet", "shelf", "shelves", \
"furniture", "doors", "door"
adj ectives "wooden", "wood", "fine", "mahogany"

short desc

"A wooden cabinet sits along one wall."
when_open

"An open wooden cabinet sits along one wall."
| ong_desc

"The cabinet is nmade of fine mahogany wood,
hand-crafted by a master cabi netrmaker. 1In
front are two doors (presently ";
if self is open

print "open";
el se: print "closed";
print ")."

cont ai ns_desc
"Behi nd the open doors of the cabinet you

can see"; ! note semcolon--no line feed
key_obj ect cabi net key I a cabi netkey object
I nust al so be created
hol ding O I starts off enpty
capacity 100
bef ore
{

obj ect DoLookUnder
{"Nothing there but dust."}

obj ect DoCet
{"The cabinet is far too heavy
to lift!"}

after

obj ect DolLock
{"Wth a twi st of the key, you |lock the
cabinet up tight."}

}

cont ai ner, openabl e, not open
I

is
is |ockable, static

72.

And for a challenge: how could the cabinet be converted into, say, a secret passage
into another room?

ANSWER: Add a door _t 0 property, such as:
door _to secondroom I a new room obj ect

The cabinet can now be entered via: “go cabinet”, “get into cabinet”, “enter
cabinet”, etc.

V.d. Init and Main

At least two routines are typically part of every Hugo problem: “lnit” and
“Mal n”. (The latter is required. The compiler will issue an error if no Mai n
routine exists.)

I ni t | if it exists, is called once at the start of the program (as well as during a
‘restart’ command). The routine should configure all variables, objects, and

arrays needed to begin the game.

Mai n js called every turn. It should take care of general game management such as
moving ahead the counter, as well as running events and scripts.

V.e. Events

Events are useful for bringing a game to life, so that little quirks, behaviors, and
occurrences can be provided for with little difficulty.

Events are also routines, but their special characteristic is that they may be attached
to a particular object, and they are run as a group by the ‘r unevent s’ command.

Events are defined as

event

{
}

for global events, and

event [in] <object>

73.

for events attached to a particular object. (The ‘i N’ is optional, but may be useful
for legibility.) If an event is attached to an object, it is run only when that object has

the same grandparent as the player object (where grandparent refers to the last
object before 0, the not hi ng object).

NOTE: If the event is not a global event, the Sel f global is set to the number of the
object to which the event is attached.

Example: Building a Clock Event

Suppose that there is a clock object in a room. Here is a possible routine:

event in clock

{
| ocal m nutes, hours
hours = counter / 60
m nutes = counter - (hours * 60)
if mnutes =0
{
print "The clock chines ";
sel ect hour
case 1: print "one";
case 2: print "tw";
case 3: print "three"
case 12: print "twelve"
print " o'clock."
}
}

Whenever the player and the clock are in the same room (when a runevents
command is given), the event will run.

Now, suppose the clock should be audible throughout the entire house--i.e., at any
point in the game map. Simply changing the event definition to

event I no object is given

{
}

will make the event a global one. (In this case, the Sel f global is not altered.)

74.

VI. FUSES, DAEMONS, AND SCRIPTS

While all of the above mentioned elements of Hugo are programmed into the
internal code of the engine, the means of running fuses, daemons, and scripts are
written entirely in Hugo itself and contained in the library (HUGCOLI B. H),

Vl.a. Fuses and Daemons

A daemon is the traditional name for a recurring activity. Hugo handles daemons
as special events attached to objects that may be activated or deactivated (i.e.,
moved in and out of the scope of I unevent s),

Since the daemon class is defined in the library, define a daemon itself using

daenobn <nane>

{}

The body of the daemon definition is empty. It is only needed to attach the
daemon event to, so the daemon definition must be followed by

event [in] <nane>

}

Activate it by

Acti vat e(<nane>)
which moves the specified daemon object into scope of the player. This way,

whenever a ‘runevent s’ command is given (as it should be in the Mai n routine),
the event attached to <nanme= will run.

Deactivate the daemon using
Deacti vat e(<nane>)
which removes the daemon object from scope.
It can be seen here that a daemon is actually a special type of object which is moved

in and out of the scope of ‘runevents’ and that it is the event attached to the
daemon that actually contains the code.

75.

A fuse is the traditional name for a timer--i.e., any event set to happen after a
certain period of time. The fuse itself is a slightly more complex version of a
daemon object, containing two additional properties as well as | N_SCOpe€;

t I mer - the number of turns before the fuse event runs
tick - a routine that decrements t 1 nmer _and returns the number of
turns remaining (i.e., the value of t I Imer)

Similarly to a daemon, define a fuse in two steps

fuse <name>

{}

event [in] <nane>

illl"not self.tick

{

}
}

and turn it on or off by
Acti vat e(<nanme>, <setting>)
or
Deacti vat e(<nane>)
where <set ti ng> js the initial value of the t i Mer property.

Note that it is up to the event itself to run the t i Mer and check for its expiration.
The line

if not self.tick

runs the tick property--which decrements the timer--and executes the following
conditional block if sel f. timer jso.

Example: A Simple Daemon and a Simpler Fuse

The most basic daemon would be something like a sleep counter, which measures
how far a player can go beginning from a certain rested state.

Assume that the player’s amount of rest is kept in a property called I €St | which
decreases by 2 each turn.

76.

daenon gettired

{}

event in gettired
pl ayer.rest = player.rest - 2
if player.rest <O
pl ayer.rest =0

sel ect player.rest

case 20

"You' re getting quite tired."
case 10

"You' re getting \lvery\i tired."
case O

"You fall asleep!”

Start and stop the daemon with Activate(gettired) and
Deactivate(gettired)

Now, as for a fuse, why not construct the most obvious example: that of a ticking
bomb? (Assume that there exists another physical bomb opject; t i cki ngbonb js
only the countdown fuse.)

fuse tickingbonb

{}
event in tickingbonb
{
if not self.tick
i f Contains(location, bonb)
"You vanish in a nifty KABOOM "
el se
"You hear a di stant KABOOM "
renove bonb
}
}

Start it (with a countdown of 25 turnr% and stop it with Acti vat e(ti cki ngbonb,
25) and Deacti vat e(ti cki ngbonb) .

|VI.b. Scripts

Scripts are considerably more complex than fuses and daemons. The purpose of a
script (also called a character script) is to allow an object--usually a character--to
follow a sequence of actions turn-by-turn, independent of the player.

77.

Up to 16 scripts may be running at once. It is up the programmer not to overflow
this limit.

A script is represented by two arrays: SCriptdata and setscript, The latter
was named for programming clarity rather than for what it actually contains.
Here’s why:

To define a script, use the following notation:

setscript[Script(<obj> <nunber>)] = &CharRouti ne, obj,
&Char Rout i ne, obj,

(remembering that a hanging comma at the end of a line of code is a signal to the
compiler that the line continues onto the next unbroken.)

Notice that “set scri pt ” js actually an array, taking its starting element from the
return value of the Script routine, which has <obj ect> and <nunber> jzs ijts
arguments.

Script returns a pointer within the large “Set scri pt ” array where the <number >
steps of a script for <0bj ect > may reside. A single script may have up to 32 steps.
A step in a script consists of a routine and an object--both are required, even if the
routine does not require an object. (Use the not hi ng object (0); see the Char Wi t
routine in HUGOLI B. Hfor reference.)

The custom in HUGOLI B. H is that character script routines use the prefix “Char”
although this is not required. Currently, routines provided include:

Char Mbve (requiring a direction object)

Char Wi t (using the not hi ng object)

Char Cet (requiring a takeable object)

Char Dr op (requiring an object held by the character)

as well as the special routine
LoopScri pt (using the not hi ng object)

which indicates that a script will continually execute. (It is the responsibility of the
programmer to ensure that the ending position of the character or object is suitable
to loop back to the beginning if LOOpScri pt is used. That is, if the script consists
of a complex series of directions, the character should always return to the same
starting point.)

78.

The sequence of routines and objects for each script is stored in the setscri pt
array.

Scripts are run using the RunScri pt's routine, similar to runevents, the only
difference being that runevents js an engine command while RunScripts js
contained entirely in HUGOLI B. H

The line

RunScri pts

will run all active object/character scripts, one turn at a time, freeing the space used
by each once it has run its course.

Here is a sample script for a character named “Ned”:

setscript[Script(ned, 4)] = &Char Move, s_obj,
&Char Get, cannonbal |,
&Char Move, n_obj,
& CharWai t, O,
&Char Dr op, cannonbal |

Ned will go south, retrieve the cannonball object, bring it north, wait a turn, and
drop it. (The character script routines provided in the library are relatively basic;
for example, Char Get assumes that the specified object will be there when the
character comes to get it.)

Other script-management routines in HUGOLI B. Hinclude:

Cancel Script(obj) to l:i)mmediately halt execution of the script for
<obj >

PauseScri pt (obj) temporarily pause execution of the script for

to
<obj
ResumeScri pt (obj) to resume execution of a paused script

Ski pScri pt (obj) skips the script for <0bj > during the next call to
RunScri pt's only

The RunScripts routine also checks for before and after properties. It
continues with the default action--i.e., the character action routine specified in the
script--if it finds a false value.

To override a default character action routine, include a bef or e property for the
character object using the following form:

79.

bef ore

{
actor Char Routi ne
{
}

}

where Char Rout i ne js Char Wai t Char Move, Char Get | Char Dr op, etc,

|Vl.c. A Note About the event _f | ag Global

The library routines--particularly the DoVWit... wverb routines--expect the
event _fl ag global variable to be set to a non-false value if something happens

(i.e., In an event or script) so that the player may be notified and given the
0 ortunitX| to quit waiting. For instance, the character script routines in
APE;O—' B. H set event _fl ag whenever a character does something in the same
location as the player.

If HUGCOLI B. H is to be used, the convention of setting event _fl ag after every
significant event should be adhered to.

|VII. GRAMMAR AND PARSING

|VII.a. Grammar Definition

Every valid player command must specified. More precisely, each usage of a
particular verb must be detailed in full by the source code.

Grammar definitions must always come at the start of a program, preceding any
objects or executable code. That is, if several additional grammar files are to be
included, or new grammar is to be explicitly defined in the source code, it must be
done before any files containing executable code are included, or any routines,
objects, etc. are defined.

The syntax used is:

[X]verb "<verbl>" [, "<verb2>", "<verb3>",...
* <syntax specification 1> <Ver bRout i nel>
* <syntax specification 2> <Ver bRout i ne2>

80.

Now, what does that mean? Here are some examples from the library grammar file

VERBLI B. G
verb "get"
* DoVague
* "up"/"out"/"of f" DoExi t
* "outof"/"offof"/"of f" object DoExi t
* "in"/"on" object DoEnt er
* multinotheld "froni/"of f" parent
* multinotheld "offof"/"outof" parent DoGet
* mul tinotheld DoCet
verb "take"
* DoVague
* "off" multiheld DoTakeO f
* multiheld "of f" DoTakeO f
* mul tinotheld DoCet
* multinotheld "froni/"of f" parent
* multinotheld "offof"/"outof" parent DoGet
xverb "save"
* DoSave
* "ganme" DoSave
verb "read", "peruse"
* DoVague
* readabl e DoRead
verb "unl ock"
* DoVague
| ockabl e DoUnLock
* | ockable "with" held DoUnLock

Each ‘verb’ or *xverb’ header begins a new verb definition. An ‘xverb’ js a
special signifier that indicates that the engine should not call the Mai n routine after
successful completion of the action. ‘XVerb’ is typically used with non-action,
housekeeping-type verbs such as saving, restoring, quitting, and restarting.

Next in the header comes one or more verb words. Each of the specified words

will share the following verb grammar exactly. This is why “get” and “take” in the
above examples are defined separately, instead of as

verb "get", "take"
In this way, the commands

get up

and

81.

take off hat
are allowable, while
take up
and
get off hat
won’t make any sense.

ok

Each line beginning with an asterisk (‘") is a separate valid usage of the verb being
defined. (Every player input line must begin with a verb. Exceptions, where a
command is directed to an object as in

Ned, get the ball

will be dealt with later.)

Up to two objects and any number of dictionary words may make up a syntax line.
The objects must be separated by at least one dictionary word.

Valid object specifications are:

obj ect any visible object (the direct object)
xobj ect the indirect object

attribute any visible object that is <at t ri but e>
par ent an xobject that is the parent of the object
hel d any object possessed by the player object
not hel d an object explicitly not held

anyt hi ng any object, held or not, visible or not
mul ti multiple visible objects

mul tihel d multiple held objects

mul tinothel d multiple notheld objects

number a positive integer number

wor d any dictionary word

string a quoted string

(RoutineNane) aroutine name, in parentheses
(obj ectnane) asingle object name, in parentheses

(If a number is specified in the grammar syntax, it will be passed to the verbroutine

in the Obj ect global. If a string is specified, it will be passed in the engine’s
par se$ variable, which can then be turned into a string array using the ‘St ri ng’

function.)

82.

Dictionary words that may be used interchangeably are separated by a slash (*/).

Two or more dictionary words in sequence must be specified separately. That s, in
the input line:

take hat out of suitcase

the syntax line

* object "out of " cont ai ner

will be matched, while

* object "out of" container

would never be recognized, since the engine will automatically parse “out” and
“of” as two separate words; the parser will never find a match for “out of”.

Regarding object specification within the syntax line: Once the direct object has
been found, the remaining object in the input line will be stored as the xobject.
That is, in the example immediately above, a valid object in the input line with the
attribute cont ai ner will be treated as the indirect object by the verb routine.

NOTE: An important point to remember when mixing dictionary words and
objects within a syntax line is that, unless directed differently, the parser may
confuse a word-object combination with an invalid object name. Consider the
following:

verb "pick"
* obj ect DoGet
* "up" object DoGet

This definition will result in something like

>pick up box
You haven’t seen any "up box", nor are you likely to in the near future even
if such a thing exists.

(assuming that “up” has been defined elsewhere as part of a different object name,
as in OBJLI B. H), because the processor processes the syntax

* obj ect
and determines that an invalid object name is being used; it never gets to

* "up" object

83.

The proper verb definition would be ordered like

verb "pick"
"up" obj ect DoGet
* obj ect DoGet

so that both “pick <object>* and “pick up <object>* are valid player commands.

To define a new grammar condition that will take precedence over an existing one-
-such as in VERBLIB. G-simply define the new condition first (i.e., before
including VERBLI B. G),

NOTE: As a rule, unless you need to preempt the library’s normal grammar
processing, include any new grammar after the library files. (The reason for this is
that the library grammar is fairly carefully tuned to handle situations exactly like
that described above.)

A single object may be specified as the only valid object for a particular syntax:

verb "rub"
* (magi c_| anp) DoRubMagi cLanp

will produce a “You can’t do that with...” error for any object other than the
magi c_| anp object.

Using a routine name to specify an object is slightly more involved: the engine
calls the given routine with the object specified in the input line as its argument; if
the routine returns true, the object is valid--if not, a parsing error is expected to
have been printed by the routine. If two routine names are used in a particular
syntax, such as

* (FirstRoutine) "wth" (SecondRouti ne)

then FirstRoutine vyalidates the object and SecondRoutine validates the
xobject.

VIl.b. The Parser

Immediately after an input line is received, the engine calls the parser, and the first
step taken is to identify any invalid words, i.e., words that are not in the dictionary
table.

NOTE: One non-dictionary word or phrase is allowed in an input line, providing it
is enclosed in quotation marks (“*). If the command is successfully parsed and
matched, this string is passed to par se$, More than one non-dictionary word or
phrase (even if the additional phrases are enclosed in quotes) are not allowed.

84.

The next step is to break the line down into individual words. Words are separated
by spaces and basic punctuation (including “!” and “?””) which are removed. All
characters in an input line are converted to lower case.

The next step is to process the three types of special words which may be defined
in the source code.

REMOVALS are the simplest. These are simply words that are to be automatically
removed from any input line, and are basically limited to words such as “a” and
“the” which would, generally speaking, only make grammar matching more
complicated and difficult.

The syntax for defining a removal is:

renoval "<wordl>"[, "<word2>", "word<3>",...]
asin

renoval "a", "an", "the"

PUNCTUATION is similar to a removal, except it specifies the removal of
individual characters instead of whole words:

punct uati on "<character1>[<character2>...]
asin
punct uati on "$%

SYNONYMS are slightly more complex. These are words that will never be found
in the parsed input line; they are replaced by the specified word for which they are
a synonym.

synonym "<synonyn®" for "<word>"
asin
synonym "nysel f" for "nme"

The above example will replace every occurrence of “myself” in the input line with
“me”. Usage of synonyms will likely not be extensive, since of course it is possible
to, particularly in the case of object nouns and adjectives specify synonymous
words which are still treated as distinct.

COMPOUNDS are the final type of special word, specified as:

85.

conpound "<word1>", "<word2>"
asin
conpound "out", "of"
so that the input line
get hat out of suitcase
would be parsed to
get hat outof suitcase
Depending on the design of grammar tables for certain syntaxes, the use of

compounds may make grammar definition more straightforward, so that by using
the above compound,

verb "get"
* multinotheld "outof"/"offof"/"from' parent

is possible, and likely more desirable to

verb "get"
* multinotheld "out"/"off" "of" parent
* multinotheld "froni parent

When the parser has finished processing the input line, the result is a specially
defined (by the Hugo Engine) array called word, where the number of valid
elements is held in the global variable words.

Therefore, in

get the hat from the table

the parser--using the removals defined in HUGOLI B. H--will produce the following
results:

word[1] = "get"
word[2] = "hat"
word[3] = "front
word[4] = "table"
words = 4

NOTE: Multiple-command input lines are also allowed, provided that the
individual commands are separated by a period (*.”).

86.

get hat. gon. goe.

would become

word[1] = "get"
word[2] = "hat"
word[3] =""
word[4] = "go"
word[5] = "n"
word[6] = ""
word[7] = "go"
word[8] = "e"
word[9] = ""
words = 9

(See the Parse routine in HUGOLI B. Hfor an example of how
get hat then go n

is translated into:

word[1] = "get"
word[2] = "hat"
word[3] = ""

word[4] = "go"
word[5] = "n")

A maximum of thirty-two words is allowed. The period is in each case converted
to the null dictionary entry (“*, address = 0), which is a signal to the engine that
processing of the current command should end here.

NOTE: The parsing and grammar routines also recognize several system words,
each in the format “~wor d”. These are:

~and referring to: multiple specific objects

~al | “oow multiple objects in general
~any o any one of a list of objects
~except “ooo« an excluded object

~00ps to correct an error in the previous input line

To allow an input line to access any of these system words, a synonym must be
defined, such as

synonym "and" for "~and"

The library defines several such synonyms.

87.

VIIl. JUNCTION ROUTINES

Because, simply put, the engine is unaware of such things as attributes, properties,
and objects in anything but a technical sense, there are provided a number of
routines to facilitate communication between the engine and the program proper.

Along with these junction routines are certain global variables and properties that

are pre-defined by the compiler and accessed by the engine. They are:

GLOBALS:
obj ect the direct object of a verb
xobj ect the indirect object
sel f self-referential object
wor ds total number of words
pl ayer the player object
| ocation location of the player
ver broutine the verb routine address
endfl ag if not false (0), call EndGane
pr onpt for input line
obj ect's total number of objects
system status after certain operations
PROPERTIES:
name basic object name
before pre-verb routines
after post-verb routines
noun noun(s) for referring to object
adj ective adjective(s) for referring to object
article “a”, “an”, “the”, “some”, etc.

(As well as the aliases nouns and adj ectives for noun and
adj ecti ve, respectively, are defined by the library.)

Junction routines are not required. The engine has built-in default routines,
althou?h these will likely not be satisfactory for most programmers. Therefore,
HUGCLT B. H contains each of the following routines which fully implement all the
features of the library. If a different routine is desired in place of a provided one,
the routine should be substituted using ‘r €pl ace’,

88.

Vlll.a. Parse

The Par se routine, if one exists, is called by the engine parser. Here, the program
itself may modify the input line before grammar matching is attempted. What
happens is:

1. The input line is split into words (by the engine).
2. The Par se routine, if it exists, is called.
3. Control returns to the engine for grammar matching.

For example, the Parse routine in HUGOLI B. H takes care of such things as
pronouns (“he”, “she”, “it”, “them”) and repeating the last legal command (with
“again” or simply “g”).

Returning true from the Parse routine calls the engine parser again; returning
false continues normally. This is useful in case the Par se routine has changed the
input line substantially, requiring a reconfiguration of the already split words.

NOTE: Since the library’s Par se routine is rather extensive, a provision is made
for a PreParse routine--which in the library is defined as being empty--which
may more easily be replaced for additional parsing.

VIll.b. ParseError

The Par seError routine is called whenever a command is invalid. Par seError
is called in the form

Par seError (<errornunber>, <object>)

where <0bj ect > js the object number (if any) of the object involved in the error.

NOTE: The engine also sets up a special variable called ‘Par se$’, usable only in a
print statement (or in conjunction with ‘str1ng’), which represents the illegal

component of an input line, whether it is the verb itself, an object name, a partial
object name, or any other word combination. For example:

print "The illegal word was: "; parse$;
The default responses provided by the engine parse error routine are:

ERROR NUMBER RESPONSE

0 “What?”

1 “You can’t use the word <parse$>.”

10

11

12

13

14

15

16

17

“Better start with a verb.”
“You can’t <parse$> multiple objects.”
“Can’t do that.”

“You haven’t seen any <parse$>, nor are you
the near future even if such a thing exists.”

“That doesn’t make any sense.”

“You can’t use multiple objects like that.”
“Which <parse$> do you mean,...?”
“Nothing to <parse$>.”

“You haven’t seen anything like that.”
“You don’t see that.”

“You can’t do that with the <parse$>.”
“You’ll have to be a little more specific.”
“You don’t see that there.”

“You don’t have that.”

“You’ll have to make a mistake first.”

“You can only correct one word at a time.”

89.

likely to in

The Par seError routine in HUGOLI B. H provides customized responses that take
into account such things as, for example, whether the player is first or second-
person, whether or not an object is a character or not, and if so, if it is male or

female, etc.

If the ParseError

routine does not provide a response for a particular

<errornunber > jt should return false. Returning false is a signal that the engine
should continue with the default message. Returning 2 is a signal to reparse the
entire existing line (useful in cases where a peculiar syntax is trapped as an error,
changed, and must then be reparsed).

90.

NOTE: If custom error messages are desired for user parsing routines, replace the

routine Cust onError with a new routine (called with the same parameters as
Par seEr ror), providing that <er r or nunber > js greater than or equal to 100.

VIll.c. EndGame

The EndGane routine is called immediately whenever the global variable endf | ag

is non-zero, regardless of whether or not the current function has not yet been
terminated.

HUGOLI B. H's EndGane routine behaves according to the value to which endf | ag
is set:

endflag RESULT

1 Player wins

2 Player’s demise

3 Other ending--not provided for by default Print EndGane
routine)

Returning false from Endgane terminates the game completely: returning non-false
restarts.

NOTE: To modify only the message displayed at the end of the game (defaults:
“*** YOU'VE WON THE GAME! ***” and “*** YOU ARE DEAD ***”), replace the

Print EndGame routine. Other than being non-false, the various values of
endf | ag are insignificant except to Pri nt EndGane

VIIl.d. FindObject

The Fi ndQbj ect routine takes into account all the relevant properties, attributes,
and object hierarchy to determine whether or not a particular object is available.
For example, the child of a parent object may be available if the parent is a
platform, but unavailable if the parent is a container (and closed)--although
internally, the object hierarchy is the same.

Fi ndQObj ect s called via:

Fi ndObj ect (<obj ect>, <l ocation>)

91.

where <0Dbj ect > is the object in question, and <l ocati on> is the object where its
availability is being tested. (Usually <l ocati on> js a room, unless a different
parent has been specified in the input line.)

Fi ndObj ect returns true (1) if the object is available, false (0) if unavailable. It
returns 2 if the object is visible but not physically accessible.

The FindQbject routine in HUGOLI B. H considers not only the location of
<obj ect > jn the object tree, but also tests the attributes of the parent to see if it is

open or closed. As well, it checks the f ound_i n property, in case <0bj ect > has

been assigned multiple locations instead of an explicit parent, and then scans the
I N_SCOope property of the object (if one exists).

Finally, the default behavior of the library’s Fi ndQbj ect requires that a player
have encountered an object for it to be valid in an action, i.e., it must have the
known attribute set. To override this, replace the routine Qoj ect i sknown with a
routine that returns an unconditional true value.

There is one special case in which the engine expects the Fi ndQoj ect routine to be
especially helpful: that is if the routine is called with <l ocati on>equal to 0. This
occurs whenever the engine needs to determine if an object is available at all--
regardless of any rules normally governing object availability--such as when an
‘anyt hi ng’ grammar token is encountered, or the engine needs to disambiguate
two or more seemingly identical objects.

(Also, FindObj ect may be called by the engine with both <object> and
<l ocat i on>equal to 0 to reset any library-based object disambiguation.)

|V1ll.e. SpeakTo |

The SpeakTo routine is called whenever an input line begins with a valid object
name instead of a verb. This is so the player may direct commands to (usually)
characters in the game. For example:

Professor Plum, drop the lead pipe
It is up to the SpeakTo routine to properly interpret the instruction.
SpeakTo js called via:

SpeakTo(<char act er >)

where <char act er > jn the above example would be the Professor Plum object.

92.

The globals obj ect | xobj ect and verbroutine are all set up as normal. For
the above example, then, these would be

obj ect | eadpi pe

xobj ect not hi ng
ver brouti ne &DoDr op

when SpeakTo js called.
HUGOLI B. H's SpeakTo routine provides basic interpretation of questions, so that
Professor Plum, what about the lead pipe?
may be directed to the proper verb routine, as if the player had typed:
ask Professor Plum about the lead pipe
Imperative commands are, such as
Colonel Mustard, stand up
are first directed to the or der _response property of the character object in
question. It is subsequentlg_ up to <charact er>. order_response to analyze
ver brouti ne (as well as 0bj ect and xobj ect | jf applicable) to see if the request
is a valid one. If no response is provided, Or der _r esponse should return false.
order _response

i f verbroutine = &DoGCet

"l would, but ny back is too sore."
el se

return fal se

|VIII.f. Perform

The Perform routine is what is called by the engine in order to execute the
appropriate verbroutine with the given object(s) and/or indirect object, if either or
both are applicable. It is the responsibility of Performto do the appropriate
checking of before routines to determine if execution actually gets to the
verbroutine.

Per f or mijs called as:

Per f or m(<ver brouti ne>, <object>, <xobject> <queue>)

93.

The first three arguments represent the match verb (always), object (if given), and
indirect object, i.e., the xobject (if given). The <qUeU€> js 0 unless the verbroutine
is being called more than once for multiple objects. (As a special case, <queue= js
—1 if obj ect or xobj ect js a number supplied in the input as one or more digits,
in order to signal Per f or mnot to do normal bef or ezaf t er routine calling.)

For example, the various player commands might (approximately, depending on
verbroutine and object names) result in the routine calls:

>i
Per f or m(&Dol nventory, 0, 0, 0)

>get key
Per f or m(&DoGet, key_ object, 0, 0)

>put the key on the table
Per f or m(&DoGet, key object, 0, 0)

>turn the dial to 127
Perform &oTurn, dial, 127, -1)

>get key and banana
Per f or m(&DoGet, key object, 0, 1)
Perform &DoGet, banana, 0, 2)

(If no Perform routine exists, the engine performs a default calling of
pl ayer. before | ocation. before xobject. before and obj ect. before

then finally Ver br out i ne if none of those returns true.)

Xl. THE GAME LOOP

This the paradigm that the Hugo Engine follows during program execution. (Also
mentioned are the calling of bef or e routines and the ver brouti ne py Perform
in HUGOLI B. H While not necessarily part of the game loop--since they may or
may not be included in a program--they are mentioned here because they are
relevant to any Hugo program that uses the standard Hugo Library.)

(INIT: The I nit routine is called only when the program is first run, or
when a ‘restart’ command is issued.)

MAIN: At the start of the game loop, the engine calls the Mai n routine. The
routine should--as in the provided sample programs--take care of
advancing the turn counter, executing the ‘runevents’ command,

and calling such library routines as RunScripts and
Print St at usLi ne,

94.

INPUT: Keyboard input is received.

PARSING: The input line is checked for validity, synonyms and other special
words are checked, and the user Par se routine (if any) is called.

GRAMMAR MATCHING:
The engine attempts to match the input line with a valid verb and
syntax in the grammar table. If no match is found, the engine loops
back to INPUT.

Otherwise, a successful grammar match results in at least the

verbroutine global being set, as well as potentially 0bj ect and
xobj ect |

BEFORE ROUTINES (as called by Per f or mjn HUGCLI B. H:
If any objects were specified in the input line, their before
properties are checked in the following order, for each object:

pl ayer. bef ore
| ocati on. before

xo_bj ect. before (if applicable)
obj ect. before (if applicable)

If any of these property routines returns true, the engine skips
the verb routine.

VERB ROUTINE (as called by Per f or mjn HUGCLI B. H.
If no before property routine returns true, the verb
routine is run.

If an action is successfully completed, the verb routine
should return true. Returning false negates any
remaining commands in the input line.

Per f or mdoes not run any af t er property routines for
obj ect or xobj ect : that is up to the verb routine. It

does run both pl ayer. after gnd ! ocati on. after jf
the verbroutine returns true.

(Control returns from the library Per f or mroutine to the engine)

When finished, the engine loops back to MAIN, calling the Mai n routine only if the
last verb matched was not an xverb.

95.

Setting the global endflag at any point to a non-zero value will terminate the game
loop and run the EndGane junction routine.

NOTE: Undo information recalled by ‘undo’ is saved each turn only during the
Mai n routine (including any commands or functions called within, such as events,

fuses and daemons, or character scripts) and verb routines (unless the verb was an
xverb). It is therefore recommended that no other routines change any significant
game data, because it will not be recoverable with ‘undo’.

|X. ADVANCED FEATURES

|X.a. The Display Object

The engine provides access to the following read-only properties (although the
names themselves are defined in HUGOLI B. H):

screenw dt h width of the display, in characters
screenhei ght height of the display, in characters

l'i nel ength width of the current text window

wi ndow i nes height of the current text window
cursor_col um horizontal and vertical position of
cursor_row the cursor in the current text window

The Hugo Library also defines the normal read/writable:
statusline_hei ght of the last-printed status line

In order for the engine to properly identify the display object, it selects the object (if
any) with the textual name “(display)”, i.e., an object that is defined as

obj ect di spl ay
{

}

with no explicit textual name. This is how the Hugo Library defines the display

object, so that the various display object properties are readable as
di'spl ay. screenhei ght di spl ay. cursor_col um etc.

96.

X.b. Windows

It is possible to create an enclosing window within the full-screen display for text
output. Cursor position, line-wrapping, etc. are trimmed to the boundaries of the
current window. Cursor positioning and window boundaries are always
calculated in fixed-width character dimensions. Various syntaxes for the ‘window’
statement are:

w ndow O Restores full-screen output
w ndow n Creates a window of N lines, bordering
{...} on the top edge and sides of the full-screen

window |, t, r, b Createsawindow with the top-left

{...} corner (I,) and the bottom-right corner (', b),
where these coordinates are character coordinates
on the full-screen

w ndow Redraws the last-defined window

(...

Each of these usages except “W ndow 0~ js followed by a block of code during
which, normally, text is output to the window.

The window (i.e., its boundaries) exists for the duration of the “{. .-} block.
After it finishes, the top of the main text window is redefined as being immediately
below the lowest-drawn window. To clear the record of any window and restore
the main text window to the full-screen, use “Wi ndow 0~

An windowing library file exists called W NDON Hwhich defines a Wi ndow_cl ass
and the associate properties so a window object can be created via:

wi ndow_cl ass <w ndow nanme> "title"

{
W n_position <screen colum>, <screen row>
W n_size <col ums>, <rows>
W n_t extcol or <text col or>
wi n_backcol or <background col or >
wntitlecolor <title text>
W n_titleback <title background>

}

The W ndow_class also incorporates the property routines W n_init,
W n_cl ear and W n_end,

97.

NOTE: It may be important to keep in mind that measures such as
di spl ay. screenw dt h may change during execution, particularly in a graphical

user interface windowing environment which allows resizing of the Hugo program
window. For this reason, it is wise to resample di spl ay. <property> whenever
a window is to be drawn instead of basing the coordinates on, for example, a set of
boundaries calculated during program initialization.

X.c. Reading and Writing Files

There may be times when it will be useful to store data in a file for later recovery.
The most basic way of doing this involves

X = save

and

X restore

where the ‘save’ and ‘r est or e’ functions return a true value to X if successful, or
a false value if for some reason they fail. In either case, the entire set of game data--
including object locations, variable values, arrays, attributes, etc.--is saved or
restored, respectively.

Other times, it may be desirable to save only certain values. For example, a
particular game may allow a player to create certain player characteristics or other
“remembered data” that can be restored in the same game or in different games.

To accomplish this, use the ‘wri tefil e’ and ‘readfil e’ operations.

The structure

witefile <fil enane>

{
}

will, at the start of the writefile block, open <filename> for writing and
position <fi | enane> to the start of the (empty) file. (If the file exists, it will be
cleared/erased.) At the conclusion of the block, the file will be closed again.

Withinawr i tefil e plock, write individual values using

witeval <valuel>[, <value2> ...]

where one or more values can be specified.

98.

To read the file, use the structure

readfile <fil enane>

{
}

which will contain the assignment

X = readval

for each value to be read, where X can be any storage type such as a variable,
property, etc.

For example,

| ocal count, test

count = 10
witefile "testfile"

{

writeval count, "tel ephone", 10

test = FI LE _CHECK

witeval test
if test ~= FILE_CHECK I an error has occurred
{

print "An error has occurred.”
will write the variable count, the dictionary entry “telephone”, and the value 10 to
“testfile”. Then,

local a, b, c, test

readfile "testfile"

{

a = readval

b = readval

¢ = readval

test = readval
if test ~= FILE_CHECK I an error has occurred
{

print "Error reading file."

If the readfil e block executes successfully, @ will be equal to the former value
count | b will be “telephone”, and ¢ will be 10.

99.

The constant FI LE_CHECK, defined in HUGOLI B. H, is useful because writefile
and r eadf i | e provide no explicit error return to indicate failure. FI LE_CHECK js
a unique two-byte sequence that can be used to test for success.

In the wri tefile block, if the block is exited prematurely due to an error, t €st
will never be set to FI LE_CHECK. The ‘i f* statement following the block tests for
this.

In the readf il e plock, t est will only be set to FI LE_CHECK if the sequence of
readval functions finds the expected number of values in “testfile”. If there are

too many or too few values in “testfile”, or if an error forces an early exit from the
readf i I"e block, t st will equal a value other than FI LE_CHECK

Xl. RESOURCES

The engine allows a Hugo program to access external data (called resources)
compiled into a specially formatted file called a resourcefile. A resourcefile is
created using:

resource "<resourcefile>"

{

"<resourcel>"
"<resource2>"

}

The <resourcefil e> name must be 8 or fewer alphanumeric characters which
will automatically be converted to all-uppercase. (The reason for this is to
maximize portability across different platforms and filenaming systems--
unfortunately not everyone adheres to the same conventions, so this restriction is
intended to reduce filenaming to the lowest common denominator.)

Currently v2.5 supports JPEG graphic files, RIFF/WAYV audio samples, and
MOD/S3M/ XM music modules as resources.

For example, here is an imaginary example resourcefile compiled on a Windows
95/NT platform:

resource "ganeresl"”

{

:\ hugo\ gr aphi cs\ | ogo. j pg"
-\ dat a\ sceni ¢ panorana. | pg"
:\ dat a\ backgr ound. j pg"
\nmusic\intro_t hene. s3nt
“\nusi c\t heme2. xnt'

-\ sounds\ sanpl el. wav"

OO0 TSO

100.

"c:\sounds\ sanpl e2. wav"

}

It doesn’t matter that the nomenclature within a resource definition is non-portable.
In the above “ganeresl” for example, the filenaming is specific to Windows
95/NT, since that’s where the original files will be found. The resources, however,
are accessed only by their filenames as entries in the resourcefile index. Therefore,
after “gamer esl” js created, the three pictures are referred to as “logo”, “scenic
panorama” and “background” within the resourcefile “gamer es1” (Note that any
drive/path or extension specification is removed and not included in the index. As
a result, two resources with the same name but different paths/extensions cannot
be written into the same resourcefile.)

Because of the relative non-portability of resourcefiles (plus the additional time it
may take on slower machines to index and consolidate potentially hundreds of
kilobytes of data), it is recommended that resources be compiled from separate
source files than the rest of a Hugo game.

The library extension RESOURCE. H provides useful routines for managing
resources in a Hugo program.

It also defines the following potential values for syst em st at us, which may be
tested after a resource operation. If systemstatus jis non-zero (signifying
normal status), it will contain one of the following values:

-1 STAT_UNAVAILABLE
101 STAT_NOFILE

102 STAT_NORESOURCE
103 STAT_LOADERROR

Xl.a. Pictures

A picture is displayed as a resource in a resourcefile using:

pi cture "<resourcefile>", "<picture>"
For example,
pi cture "ganeresl", "l ogo"

(It is also possible to enter the path of a picture directly, such as
pi cture "c:\hugo\graphics\logo.jpg"

but since this path/filename is obviously operating-system-specific, it should be
used for testing only. If the named picture is not found in the given resourcefile,

101.

the engine will similarly try to load the picture as an independent file from the
current search path(s).)

The picture will be displayed in the currently defined text window. If the picture is
smaller than the current window, it will be centered. If larger, it will be shrunk to
fit. If the particular version of the Hugo Engine being used is not graphics-enabled,
‘pi ct ur e’ will have no effect.

If the picture is not found or a recoverable error occurs during loading, normal
engine execution continues uninterrupted.

RESOURCE. H provides a couple of useful routines for managing graphics:

LoadPi cture("resourcefile", "picture")
LoadPi cture("picture")

PictureinText("file", "pic", width, height, preserve)
PictureinText ("picture", wdth, height, preserve)

LoadPi cture js essentially a simple wrapper for the ‘Pi cture’ statement,
providing the additional service of checking di spl ay. hasgraphi cs to ensure
that graphics display is available.

Pi ct urei nText js slightly more complex. It allows a picture to be displayed in
the normal flow of text in the main window. The <W dt h> gnd <hei ght >
arguments give the fixed-width character dimensions of the display area. (Because
displays differ in their character dimensions, it is recommended to calculate these
based on display.screenwi dth gnd displ ay. screenhei ght jnstead of
passing absolute values.) The <pr eser ve> parameter, if given, ensures that one or
more lines at the top of the screen are protected from scrolling off.

(Either LoadPi ct ure or Pi cturei nText can be called with only a picture, i.e.,
with no resourcefile named. In this case, RESOURCE. H will attempt to find the
resource in the last used resourcefile, stored in the | ast _resource_fi | e global.
Because of the potential inaccuracy of this method, it is generally recommended to
always specify the resourcefile name.)

Xl.b. Sound and Music

Sounds and music are played using the Hugo statements:

sound [repeat] <resourcefile> <resource>[, <vol>]
musi ¢ [repeat] <resourcefile> <resource>[, <vol>]

The repeat keyword is optional; if supplied, it forces the engine to repeatedly
play the sound/music resource until further notice (i.e., until it is stopped or a new

102.

sound/music resource is played). The <vol > argument is optional. If given, it
gives a volume percentage (0-100) for playback.

Currently playing sound or music can be stopped using:

sound O
music O

RESOURCE. H provides a pair of wrapper functions to manage playing of audio
resources:

Pl aySound(resourcefile, sanple, |oop, force)
Pl ayMusi c(resourcefile, song, |oop, force)

In either case, if <l 00p> is true, it has the same effect as using the repeat token
after ‘sound’ or ‘nusi c’, |f <f or ce> js true, the sample or song is restarted even if

that same sample or song is already playing (otherwise the Pl aySound or
Pl ayMuisi ¢ call will have essentially no effect).

To stop a sample or song from playing via the library interface, use:

Pl ay Sound(SOUND_STOP)
Pl ayMusi c(MUSI C_STOP)

(where SOUND_STOP and MJSI C_STOP are constants defined in RESOURCE. H),

|APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

AND
DESCRIPTION: Logical and.
SYNTAX: X = <val uel> and <val ue2>
RESULT: X will be true if <val uel>and <val ue2> are both non-
zero, false if one or both is zero.
ANYTHING

DESCRIPTION: Object specifier in grammar syntax line,
indicating that any nameable object in the object
tree is valid.

ARRAY

BREAK

CALL

103.

DESCRIPTION: When used as a data type modifier, specifies that
the following value is to be treated as an array
address.

EXAMPLE: <varl> = array <var2>[5]

The variable <var 2> will be treated as an array address.

DESCRIPTION: Terminates the immediate enclosing loop.

EXAMPLE: Wwhil e <expressionl>
whi | e <expressi on2>

i f <expression3>
br eak

}

The br eak statement, if encountered, will terminate the
innermost loop.

DESCRIPTION: Calls a routine indirectly, i.e., when the routine
address has been stored in a variable, object
property, etc.

SYNTAX: call <value>[(<argl> <arg2>, ...)]
or
x = call <value>(...)

where <val ue> js a valid data type holding the routine
address.

VALUE: When used as a function, returns the value returned by
the specified routine.

CAPITAL

CASE

CHILD

CHILDREN

CLS

104.

DESCRIPTION: Print statement modifier, indicating that the next
word should be printed with the first letter
capitalized.

SYNTAX: print capital <address>

where <addr ess> is any dictionary word, such as, for
example, an 0bj ect . nanme property.

DESCRIPTION: Specifies a conditional case in a ‘select’
structure.

SYNTAX: sel ect <val >
case <casel>[, <case2>,...]

case <case3>[, <case4>,...]

where <val > js value such as a variable, routine return

value, object property, array element, etc., and each
<case> js a single value for comparison (not an

expression).

SYNTAX: X = child(<parent>)

RETURN VALUE: The object number of the immediate child object
of <par ent > or 0 if <par ent > has no children.

SYNTAX: X = children(<parent>)

RETURN VALUE: The number of child objects possessed by
<par ent >,

105.

DESCRIPTION: Clears the current text window repositions the
output coordinates at the bottom left of the text
window.

SYNTAX: ¢cls

COLOR (or COLOUR)
DESCRIPTION: Sets the display colors for text output.
SYNTAX: color <foreground>[, <background>]

where <backgr ound> js optional

PARAMETERS: Standard color values for <foreground> and
<backgr ound> (from HUGOLI B. Hj are:

Black

Blue

Green

Cyan

Red
Magenta
Brown
White

Dark gray
Light blue
10 Light green
11 Light cyan
12 Light red

13 Light magenta
14 Light yellow
15 Bright white

O©oo~NO Ul wWNEFO

DICT

DESCRIPTION: Dynamically creates a new dictionary entry at

runtime.
SYNTAX: X = dict(<array>, <nmaxlen>)
x = dict(parse$, <maxlen>)

DO

ELDER

ELDEST

ELSE

106.

where <array> or parse$ holds the string to be
written into the dictionary, and <max| en> represents
the maximum number of characters to be written.
Returns the new dictionary address. (NOTE: Space
should be reserved for any dictionary entries to be
created at runtime using the $MAXDI CTEXTEND setting
during compilation.)

DESCRIPTION:

SYNTAX: ?0

Marks the starting point of a do- whi | & |oop.

whi |l e <expr>

The loop will continue to run as long as <€XpPr > holds

true.

SYNTAX: X =

RETURN VALUE:

Same as ‘chi | d’,

DESCRIPTION:

el der (<obj ect >)

The ob{ect number of the object preceding
<obj ect > on the same branch in the object tree.

The reverse of ‘Si bl i ng’,

In an if-elseif-else conditional block,
indicates the default operation if no previous
condition has been met.

SYNTAX: i f <condition>

el se

ELSEIF

FALSE

FOR

HELD

107.

DESCRIPTION: In an if-elseif-else conditional block,
indicates a condition that will be checked only if
no preceding condition has been met.

SYNTAX: i f <conditionl>
elseif'%condition2>

elseif'%condition3>

DESCRIPTION: A predefined constant value: 0.

DESCRIPTION: Loop construction.

SYNTAX: or (<initial> <test> <nod>)

or <var> in <object>

— ~— —h — ~~— —h

For the first form, where <initial> js the initial
assignment expression (e.g. & = 1), <test> js the test
expression (e.g. @ < 10), and <mod> is the modifying
expression (e.g. @ = @ + 1), The loop will execute as
long as <t est > holds true.

The second form loops through all the children of
<obj ect > (if any), setting <var > to each child object in

sequence.

108.

DESCRIPTION: Object specifier in grammar syntax line,
indicating that any single object possessed by the
player object is valid.

HEX
DESCRIPTION: Print statement modifier signifying that the
following value is not a dictionary address, but
should be printed as a hexadecimal number.
SYNTAX: print hex <var>
where, for example, <var=> is equal to 26, will print
“lA11.
IF
DESCRIPTION: A conditional expression.
SYNTAX: i f <condition>
where <condi ti on> is an expression or value, will run
the following statement block only if <condi tion> js
true.
IN

DESCRIPTION: When used in an object definition, places the
object in the object tree as a possession of the
specified parent. When used in an expression,
returns true if the object is in the specified parent.

SYNTAX: 1n <parent>
or, for example:

if <object> [not] in <parent>

INPUT

1S

JUMP

LOCAL

LOCATE

109.

DESCRIPTION: Receive input from keyboard, storing the
dictionary addresses of the individual words in
the word array. Unrecognized words are given a
value of 0.

SYNTAX: input

DESCRIPTION: Attribute assignment/testing.
SYNTAX: <object> is [not] <attribute>
USAGE: When used as an assignment on its own, will set (or

clear, if ‘NOt’ is used) the specified attribute for the
given object. May also be used in an expression.

RETURN VALUE: When used in an expression, returns true if
<obj ect> has the specified attribute set (or

cleared, if ‘nOt’ js used). Otherwise, it returns
false.

DESCRIPTION: Jumps to a specified label.
SYNTAX: junp <l| abel >

where a unique <l abel> exists on a separate line
somewhere in the program, in the form:

: <| abel >
DESCRIPTION: Defines one or more variables local to the current
routine.
SYNTAX: local <varl>[, <var2>, <var3>,...]

110.

DESCRIPTION: Sets the cursor position within the current text

window.
SYNTAX: |ocate(<row>, <colum>)
NOTE: The maximum horizontal/vertical cursor position is

constrained by the boundaries of the current text
window. The cursor position is calculated in fixed-
width character coordinates.

MOVE
DESCRIPTION: Moves an object with all its possessions to a new
parent.
SYNTAX: nhobve <object> to <new parent >
MULTI
DESCRIPTION: Object specifier in grammar syntax line,
indicating that multiple available objects are
valid.
MULTIHELD
DESCRIPTION: Object specifier in grammar syntax line,
indicating that multiple objects possessed by the
player object are valid.
MULTINOTHELD
DESCRIPTION: Object specifier in grammar syntax line,
indicating that multiple objects explicitly not held
by the player object are valid.
MUSIC

DESCRIPTION: Load and play a song (if audio output is
available).

SYNTAX: nusic [repeat] "file", "song"[, vol]
music O

NEARBY

NEWLINE

NOT

111.

where <file> s a compiled Hugo resourcefile, and
<s0oNng> is a music module in MOD, S3M, or XM format.

The optional <vol > argument, if given, ranges from 0
to 100 and gives a percentage of volume for playback. If
the ‘r epeat ’ token is used, the song continues to loop
until either a new song is played, or the current song is
stopped (using “nmusi ¢ 07),

DESCRIPTION: Used in an object definition to place the object in

SYNTAX:

the specified position in the object tree.
near by <obj ect >

Gives the current object the same parent as <obj ect >,

near by

Gives the current object the same parent as the last-
defined object.

DESCRIPTION: Print statement modifier, indicating that a line

SYNTAX:

feed and carriage return should be issued if the
current output position is not already at the start
of a blank line.

print newine

DESCRIPTION: Logical not.

SYNTAX:

RESULT:

X = not <val ue>

<object> is not <attribute>

In the first example, X will be true if <val ue> js false, or
false if <val ue> js true.

NOTHELD

NUMBER

OBJECT

OR

112.

In the second, the specified attribute will be cleared for
<obj ect > when used alone as an assignment. As part

of an expression, it will return true only if <obj ect>
does not have <at t ri but e> get.

DESCRIPTION: Object specifier in grammar syntax line,

indicating that a single object explicitly not held
by the player object is valid.

DESCRIPTION: When used in a grammar syntax line, indicates

SYNTAX:

that a single positive integer number is valid.

When used as a Print statement modifier,
indicates that the following value is not a
dictionary address, but should be printed as a
positive integer number.

(for usage as a Pr i nt statement modifier)
print nunber <val >
where, for example, <val > js equal to 100, will print

“100” instead of the word beginning at the address 100
in the dictionary table.

DESCRIPTION: Global variable holding the object number of the

direct object, if any, specified in the input line.

When used in a grammar syntax line, indicates
that a single available object is valid.

DESCRIPTION: Logical or.

SYNTAX:

X = <val uel> or <val ue2>

PARENT

PARSE$

PAUSE

PICTURE

113.

RESULT: X will be true if either <val uel> or <val ue2> js non-
false, or false if both are false.

(Usage 1)

SYNTAX: x = parent(<object>)

RETURN VALUE: The object number of <0bj ect >‘s parent object.

(Usage 2)

DESCRIPTION: When used in a grammar syntax line, indicates
that the domain for validating the availability of
the specified direct object should be set to the
parent object specified in the input line.

DESCRIPTION: Read-only engine variable that contains either the
offending portion of an invalid input line or any
section of the input line enclosed in quotes.

DESCRIPTION: Pauses until a key is pressed. The ASCII value of
the key is stored in wor d[0]

DESCRIPTION: Load and display a picture in the current text
window (if graphics are available).

SYNTAX: picture "<resourcefile>", "<picture>"

pi cture "<picturefile>"

where, while <resourcefil e> js optional, it is very
highly recommended (otherwise, <pi ct ur efi | e> will
likely not be named in a cross-platform portable
format).

PLAYBACK

PRINT

PRINTCHAR

QUIT

RANDOM

114.

DESCRIPTION: Plays back recorded commands from a file in
place of keyboard input.

SYNTAX: X = playback

RETURN VALUE: True if successful, false if not.

DESCRIPTION: Print text output.

SYNTAX: print <output>

where <out put> can consist of both test strings
enclosed in quotation marks (“...”), and values
representing dictionary addresses, such as object names.
Separate components of <out put > are separated by a
semicolon (‘7 7). Each component may also be preceded
by a modifier such as ‘capi tal * ‘hex’ or ‘number’,

DESCRIPTION: Prints a character or series of characters at the
current cursor position. No newline is printed.

SYNTAX: printchar <val 1>[, <val 2>,...]

DESCRIPTION: Terminates the game loop.

SYNTAX: quit

DESCRIPTION: Engine function which generates a random
number.

SYNTAX: X = randon(<val >)

READFILE

READVAL

RECORDOFF

RECORDON

115.

RETURN VALUE: Where <val > js a positive integer number, will
return a random number between 1 and <val >,
inclusively.

DESCRIPTION: A structure that aIIo_ws values to be read from a
file written usingwitefile,

SYNTAX: readfile <fil enane>
{

}

The file is opened and positioned to the start at the
beginning of the r eadf i | plock, and closed at the end.

DESCRIPTION: Reads a value in ar eadfi | e plock.
SYNTAX: X = readval

VALUE: The value read, or 0 in the case of an error. Use the
FI LE_CHECK constant defined in HUGCOLIB. H to

determine if a readfile block has been executed
successfully. See the section above on “Reading and
Writing Files”.

DESCRIPTION: Ends recording commands to a file.

SYNTAX: X = recordoff

VALUE: True if successful, false if not.

DESCRIPTION: Begins recording commands to a file.

SYNTAX: X = recordon

REMOVE

RESTART

RESTORE

RETURN

RUN

116.

VALUE: True if successful, false if not.

DESCRIPTION: Removes an object from the object tree.

SYNTAX: renove <object>

(The same as: Move <object> to 0)

DESCRIPTION: Reloads the initial game data and calls the | ni t
routine.

SYNTAX: X = restart
NOTE: ‘Restart’ does not technically restart the engine; the
game loop continues uninterrupted after | NI t is called,

only with the game data restored to its initial state.

VALUE: True if successful, false if not.

DESCRIPTION: Restores a saved game’s state data by calling the
engine’s restore routine.

SYNTAX: X = restore

VALUE: True if successful, false if not.

DESCRIPTION: Returns from a called routine.

SYNTAX: return [<expression>]

RETURN VALUE: Returns <€xpressi on> if provided, otherwise
returns false.

RUNEVENTS

SAVE

SCRIPTOFF

SCRIPTON

117.

DESCRIPTION: Runs an object property routine if one exists.

SYNTAX: run <object>. <property>

RETURN VALUE: None; any value returned by the property routine
is discarded.

DESCRIPTION: Calls all events which are either global or
currently within the event scope of the player
object.

SYNTAX: runevents

DESCRIPTION: Saves the current game state by calling the
engine’s save routine.

SYNTAX: X = save

VALUE: True if successful, false if not.

DESCRIPTION: Turns transcription off.
SYNTAX: X = scriptoff

VALUE: True if successful, false if not.

DESCRIPTION: Turns transcription (i.e., recording output to a file
or to a printer) on by calling the engine’s
transcription routine.

SYNTAX: X = scripton

VALUE: True if successful, false if not.

SELECT

SERIALS$

SIBLING

SOUND

118.

DESCRIPTION: Specifies the value for comparison in a Sel ect -
case conditional structure.

SYNTAX: sel ect <val >
case <casel>[, <case2>,...]

case <case3>[, <case4>,...]

where <val > js value such as a variable, routine return
value, object property, array element, etc., and each
<case> js a single value for comparison (not an
expression).

DESCRIPTION: Read-only engine variable that contains the serial
number as written by the compiler.

SYNTAX: X = sibling(<object>)

RETURN VALUE: The number of the object next to <obj ect> on
the same branch of the object tree.

DESCRIPTION: Load and and play an audio sample (if waveform
audio output is available).

SYNTAX: sound [repeat] "file", "sanple"[, vol]
sound O

where <file> js a compiled Hugo resourcefile, and
<sanpl e> js a waveform sample in RIFF/WAYV format.

The optional <vol > argument, if given, ranges from 0
to 100 and gives a percentage of volume for playback. If
the ‘r epeat ’ token is used, the sample continues to loop
until either a new sample is played, or the current
sample is stopped (using “sound 07),

STRING

SYSTEM

TEXT

119.

DESCRIPTION: When used in a grammar syntax line, indicates
that a string array enclosed in quotation marks is
valid.

When used as a function, stores a dictionary entry
in a string array.

SYNTAX: X string(<array>, <dict> <nmaxlen>)

X string(<array>, parse$, <maxlen>)
where <array> js an array address, stores the either the

dictionary entry given by <di ct> or the contents of

parse$ as a series of characters, to a maximum of
<mex| en> characters. Returns the length of the string

stored in <array>,

DESCRIPTION: Built-in function to call low-level system

functions.
SYNTAX: systen(<function>)
Function Label Description
11 READ_KEY Read keypress (key value)
21 NORMALIZE RANDOM

Make random values predictable

22 INIT_RANDOM Restore “random’ random values
31 PAUSE_SECOND Pause for one second
32 PAUSE_100TH_SECOND

Pause for 1/100th of a second
(Labels are defined as a constants in SYSTEM H))

If <function> js unavailable, the engine may set System st at us
to -1 (STAT_UNAVAILABLE).

TO

TRUE

UNDO

VERB

WHILE

120.

text to <val > Sends text to the array table, beginning at address

<val >,

text to O Restores normal printing.

DESCRIPTION: In a Print statement, prints blank spaces in the
current background color to the specified
position.

SYNTAX: print to <val >

where <val > js a positive integer less than or equal to
the maximum column position

DESCRIPTION: Predefined constant: 1.

DESCRIPTION: Attempts to recover the state of the game data
before the last player command.

SYNTAX: X = undo

VALUE: True if successful, false if not.

DESCRIPTION: Begins definition of a regular verb. Upon
returning true from the verb routine, Mal n js
called.

SYNTAX: verb "<wordl>"[, "<word2>",...]

DESCRIPTION: Component of While or do-while Joop
construct.

121.

SYNTAX: While <expr>

(or)
do
mhile'%éxpr>

where the loop will run as long as <€XPr > holds true.

WINDOW
DESCRIPTION: Switches output to the status window.
SYNTAX: \{M ndfw a[, b, c, d]
or
w ndow
{...}
or
wi ndow O
If only a single value <a> is given, a window of <a=>
lines from the top of the screen is created. If more
values are given, a window from top-left (&, b) to
bottom-right (C, d) is created. If no values are given, the
last-defined window is recreated. The new boundaries
apply for the length of the following “{---}” code
block.
“w ndow 0~ restores full-screen display. There is no
following code block.
WRITEFILE

DESCRIPTION: A structure that writes values to a file that may be
read using r eadfil e,

SYNTAX: witefile <fil enane>
{

WRITEVAL

XOBJECT

XVERB

YOUNGER

YOUNGEST

122.

}

The file is opened and positioned to the start at the
beginning of the writefile plock, and closed at the
end.

DESCRIPTION: Writes one or more values inaW i tefil e plock.

SYNTAX: witefile valuel[, valuez2, ...]

DESCRIPTION: Global variable holding the object number of the
indirect object, if any, specified in the input line.

When used in a grammar syntax line, indicates
that a single available object is valid.

DESCRIPTION: Begins definition of non-action verb. Upon
returning from the verb routine, Mal N js not
called.

SYNTAX: Xxverb "<wordl>"[,"<word2>",...]

Same as ‘si bli ng’,

SYNTAX: X = youngest (<parent>)

RETURN VALUE: The number of the object most recently added to
parent <par ent >,

123.

|APPENDIX B: THE LIBRARY (HUGOLIB.H)

sw t chabl e
sw t chedon

|ATTRIBUTES
known if an object is known to the player
moved if an object has been moved
visited if a room has been visited
static if an object cannot be taken
pl ural for plural objects (i.e., some hats)
[iving if an object is a character
femal e if a character is female
unfriendly if a character is unfriendly
openabl e if an object can be opened
open if itis open
| ockabl e if an object can be locked
| ocked if it is locked
l'i ght if an object is or provides light
readabl e if an object can be read

if an object can be turned on or off
ifitison

cl ot hi ng for objects that can be worn

worn if the object is being worn

mobi | e if the object can be rolled, etc.

enterabl e if an object is enterable

cont ai ner if an object can hold other objects

platform if other objects can be placed on it
(NOTE: cont ai ner and pl at f or mare
mutually exclusive)

hi dden if an object is not to be listed

qui et if container or platform is quiet (i.e., the

t ranspar ent

al ready_listed

wor kf | ag
speci al

initial listing of contents is suppressed)
if object is not opaque
if object has been pre-listed (i.e., before,
for example, a What sl n |isting)
for system use
for miscellaneous use

GLOBALS, CONSTANTS, AND ARRAYS

GLOBALS:

The first 10 globals are pre-defined by the compiler:

obj ect
xobj ect
sel f

wor ds

pl ayer
act or

| ocation
ver broutine
endf | ag
pr onpt
obj ects

pl ayer person
MAX_SCORE
MAX RANK
FORMAT
DEFAULT_FONT
STATUSTYPE
TEXTCOLOR
BGCOLOR
BOLDCOLOR
SL_TEXTCOLOR
SL_BGCOLOR

| NDENT _SI ZE
AFTER_PERI OD
count er
score
verbosity
list _nest

I i ght _source
event fl ag
speaki ng

ol d_l ocation
| ast _obj ect
obstacl e

best parse_rank

direct object of a verb action

indirect object

self-referential object
total number of words

the player object

player, or another char. (for scripts)
location of the player object

the verb routine

if not false (0), run EndGane

for input line

the total number of objects

first (1), second (2), or third (3)

total possible score

up to X levels of player ranking

specifies text-printing format

initially 0; could be, for example, PROP_ON
0=none, 1=score/turns, 2=time

normal text color

normal background color

color for boldface printing
statusline text color

statusline background color

for paragraph indenting

string of spaces following a full-stop
elapsed turns (or time, as desired)
accumulated score

for room descriptions
used by Li st Obj ect s

in location

set when something happens

if the player is talking to a char.
whenever location changes

set by Per f or mto value of obj ect
if something is stopping the player

for differentiating like-named objects

custonerror _fl ag

need_new i ne

override_i ndent

i t_obj
t hem obj
hi m_obj

t rue once Cust onkrr or s called
true when newline should be printed

_ true if no indent should be printed
nunber _scri pts number of active character scripts
to reference objects via pronouns

124.

125.

her obj
gener al for general use
ARRAYS:
repl ace_pronoun[4] for it_obj, him_obj, etc.
ol dwor d[MAX_WORDS] for “again” command
scri ptdatal 48] for object scripts
array setscript[1024] the actual scripts
array ranking[10] in tandem with scoring
CONSTANTS:
BANNER should be printed in every game header
MAX_SCRI PTS that may be active at one time
MAX_WORDS in a parsed input line

Color constants:

BLACK DARK GRAY
BLUE LI GHT_BLUE

GREEN LI GHT_GREEN

CYAN LI GHT_CYAN

RED LI GHT_RED

MAGENTA LI GHT_MAGENTA

BRON YELLOW

WHI TE BRI GHT _WHI TE
DEF_FOREGROUND DEF_BACKGROUND

DEF_SL_FOREGROUND DEF_SL_BACKGROUND
MATCH FOREGROUND

Printing format masks (for setting FORMAT global):

LI ST_F print itemized lists, not sentences
NORECURSE_F do not recurse object contents

NO NDENT_F do not indent listings

DESCFORM_F alternate room description formatting
GROUPPLURALS_F list plurals together where possible

Font style masks (for use with the Font routine):

BOLD_ON BOLD_OFF boldface
| TALI C_ON | TALI C_OFF italics
UNDERLI NE_ON UNDERLI NE_OFF underline

126.
PROP_ON PROP_OFF proportional printing

Additional constants:

UP_ARROW LEFT_ARROW for reading keystrokes
DOMNN ARROW ENTER KEY

RI GHT _ARROW ESCAPE_KEY

AND_ WORD (“and”) | N_WWORD (“in™)

ARE_WORD (“are”) IS WORD (“js”)

HERE_ \WORD (“here”) ON_WORD (“on”)

FI LE_CHECK for verifyingw i tefil e/readfil e operations

(The following are used only by specific routines:

ARRAYS:
_tenp_array[256] used by string manipulation functions
menui t enf 11] required by the Menu function
GLOBALS:
MENU_TEXTCOLOR normal menu text color
MENU_BGCOLOR normal menu background color

MENU_SELECTCOLOR menu highlight color
MENU_SELECTBGCOLOR menu highlight background color)

PROPERTIES

The first 6 properties are pre-defined by the compiler:

name basic object name
before pre-verb routines
after post-verb routines

noun (nouns) noun(s) for referring to object
adj ective (adjectives)

adjective(s) describing object
article “a”, “an”, “the”, “some”, etc.

preposition (prep)
“in”, “inside”, “outside of”, etc., used generally for
room objects in order to give a grammatically correct

pronoun

short desc

initial _desc

| ong_desc

found_in

type

si ze

capacity

hol di ng

reach

list_contents

I n_scope

127.

description if necessary; also for containers and
platforms

“he”, “him”, “his” or equivalent, so that an object is
properly referred to

routine; basic “X is here” description

routine; same as above, but if object has not been moved

aﬂd an initial_desc exists, it is called in place of
short desc

routine; detailed description

in case of multiple virtual (not “physical”) parents,
found_i n may hold one or more object numbers; in

this case, an “i n <obj ect > specifier should not be
included in the object definition, since f ound_i n values
are unrelated to “object in parent” relationships

to identify the type of object, used primarily by class
definitions in OBJLI B. H

for holdingZinventory purposes, contains a value
representing the size of an individual object

contains a value representing the capacity of a
cont ai ner orpl atform

contains a value representing the current encumbrance
of acontai ner gorplatform

for enterable objects such as chairs, vehicles, etc., if the
accessibility of objects outside the object in question is
limited, reach contains a list of the objects which may be
accessed; if access is limited to the object in question
only, reach must still contain at least one non-false value
(i.e., the parent object itself)

a routine that overrides the normal contents listing for a
room or object; normal listing is only carried out if it
returns false

contains a list of actors or objects to which the object is
accessible beyond the use of the object tree or the
found_in property; generally contains either the player

128.

object (or, less commonly, another character) and is set
or cleared using Put | nScope or RenoveFr onfScope

par se_r ank when there is ambiguity between similarly named

objects, the parser will choose the one with a higher
parse_rank over one with a lower (or non-existant)

value--used when Fi ndObj ect (<obj >, 0) is called
exclude_from all

returns true if the object should be excluded from

actions such as “get all”

m sc miscellaneous use

For room objects only:

nto If a player can move to another

ne_to room object in direction X, then

e_to X_t 0 holds the new room object

se to

s to

sw_to

wto

nw_ to

u to

dto

into

out _to

cant_go routine; message instead of default “You can’t go
that way.”

For non-room objects only:

door _to for handling “Enter <object>, holds the object
number of the object to which an object enters
(where the latter behaves as a door or portal)

key_obj ect if | ockabl e, contains the object number of the
key
when_open routines; short descriptions for

when_cl osed openabl e objects

i gnor e_response

order _response

cont ai ns_desc

i nv_desc

desc_det ai |

129.

If they exist, the appropriate When_open or

when_cl osed routine is called instead of
short_desc (if an initial_desc does not

exist, or if the object has been moved)

for characters, a routine that runs if the character
ignores a player’s question, request, etc., instead
of the default “X ignores you.”

also for characters, a routine that processes an
imperative command addressed to the character
by the player; it should return false if no response
is provided

a routine that prints the introduction to a list of
child objects, instead of the default “Inside
<object> are..” or “<character> has..”;
cont ai ns_desc should always conclude with a
semicolon (*; *) instead of a new line

a routine that prints a special description when
the object is listed as part of the player’s
inventory; i nv_desc should conclude with a
semicolon (3 ")

a routine that prints a parenthetical detail
following an object listing, such as: “ (which is
open)”; the leading space is expected, as are the
parentheses, and the print statement should
conclude with a semicolon (*; ’)

NOTE: It is recommended for property routines that print a description--such as
short _desc, initial _desc, etc.--that the routine not simply return true without

printing anything as a means of “hiding” the object; such a method may throw text
formatting into disarray. The proper means of omitting an object from a list is to

set the hi dden attribute.
For the display object only:
Read-only:

screenw dth
scr eenhei ght

I inelength

w ndow i nes
cursor _col um

width of the display, in characters
height of the display, in characters
width of the current text window

height of the current text window
horizontal and vertical position of

130.

cursor_row the cursor in the current text window
hasgr aphi cs true if the current display is graphics-
capable

Read/writable:

title_caption dictionary entry giving the full proper
name of the program (optional)

Defined in HUGCLI B. H;
statusline_height of the last-printed status line

(While screenwi dth through title_caption are technically defined by
HUGOLI B. H as constants, they are used as property numbers to reference data on
the display object.)

ROUTINES

VERB ROUTINES:

VERBLI B. H (included by HUGOLI B. H) contains a fairly extensive set of basic
actions, each of which takes the form Do<ver b> so that the action for taking an
object is DoGet | the action for basic player movement is DoGo, etc.

Each is called by the engine when a grammar syntax line specifying the particular
verb routine is matched. Globals 0bj ect and Xobj ect are set up by the engine,
and the routine is called with no parameters.

Here is a list of the provided verb routines for action verbs:

DoAsk, DoAskQuestion, DoCl ose, DoDrop, DoEat, DoEnter,
DoExit, DoGet, DoG ve, DoCGo, DoHit, Dol nventory,

DoLi sten, DoLock, DoLook, DoLookAround, DoLookl n,
DoLookThr ough, DoLookUnder, DoMove, DoOpen, DoPutl n,
DoShow, DoSwi tchOFf, DoSwitchOn, DoTakeOf, DoTal k,
DoTel I, DoUnl ock, DoVague, DoWait, DoWiitforChar,

DoVWai tUntil, DoWear

Here are the non-action verb routines:

DoBrief, DoQuit, DoRestart, DoRestore, DoSave, DoScore,
DoScri ptOnOf, DoSuperbrief, DoVerbose

(NOTE: A set of verb stub routines is also available, including the actions:

131.

DoBurn, Dodinb, DoCut, DoDi g, DoFoll ow, DoHel p, DoJunp,
DoKi ss, DoNo, DoPull, DoPush, DoSearch, DoSl eep, DoSnell,
DoSorry, DoSwim DoThrowAt, DoTie, DoTouch, DoUntie,
DoUse, DoWake, DoWakeCharacter, DoWave, DoWaveHands,
DoYel |, DoYeg

The default response for each of these stub routines is a more colorful variation of
“Try something else.” Any more meaningful response must be incorporated into
before property routines.

To use these verbs, set the VERBSTUBS flag before compiling HUGCOLI B. H,

UTILITY ROUTINES, ETC.:

Routines may be treated as procedures or functions, given the idea that procedures
are more like commands, while functions are expected to return a value, as in:

Procedure(a, b)
X = Function(y)
if Function()...

Library routines that do not return a value are generally meant to be treated as
procedures; those that do return a value may be treated as either functions or
procedures.

First, the junction routines:

EndGane called by the engine via:
EndGame(end_t ype)

If end_t ype =1, the game is won; if 2, the game is lost.
(Since endflag may be any value, a value of, for
example, 3 will still call EndGanme, put with no
additional effects via the default PrintEndGane
routine.) The global endf | ag is cleared upon calling.
Returning false from EndGane terminates the Hugo
Engine.

Also calls: Print EndGane gnd Pri nt Scor e

Fi ndQoj ect called by the engine via:
Fi ndObj ect (obj ect, | ocation)

Returns true (1) if the specified object is available in the
specified location, or false (0) if it is not. Returns 2 if the
object is visible but not physically accessible.

Par se

Par seError

SpeakTo

132.
The <location> argument is 0 during object
disambiguation performed by the engine.

Also calls;: Qbj ecti sknown, Excl udeFr omAl |

called by the engine via:
Par se()

Returning true forces the engine to re-parse the
modified input line.

Also_, .calls: PreParse, AssignPronoun and
Sethjc\%rd

called by the engine via:
Par seError (errornunber, object)

Returning false signals the engine to print the default
error message. Return 2 to force the existing line to be
reparsed as is.

May also call: Cust onEr r or

called by the engine via:
SpeakTo(character)

Globals obj ect xobj ect and verbroutine agre set
up as in a normal verb routine call.

Also calls; Assi gnPronoun

And the routines for grammatically-correct printing:

The

CThe

calling form: The(obj ect)

Prints the definite article form of the object name, e.g.
“the apple”

calling form: Art (obj ect)

Prints the indefinite article form of the object name, e.g.
“an apple”

calling form: CThe(obj ect)

CArt

| sor Are

Vat chPl ur al

Mat chSubj ect

133.

Prints the capitalized definite article form of the object
name, e.g. “The apple”

calling form: CArt (obj ect)

Prints the capitalized indefinite article form of the object
name, e.g. “An apple”

calling form: | sor Are(object[, formal])
where the parameter f or mal s optional

Depending on whether or not the specified object is
pl ural or singular, prints “‘re” or “‘s”, respectively (or

“ are” or “ is” if the formal parameter is specified as
true).

calling form: Mat chPl ural (object, wl, w2)

Prints the dictionary entry given by W1 if the supplied
object is not pl ural or W2 if it is.

calling form: Mat chSubj ect (obj ect)
Matches a verb to the given subject <0bj ect > If the

object is Pl ural nothing is printed; if the object is
singular, an “s” is printed.

NOTE: None of the above printing routines prints a carriage return, and all
return 0 (the null string). Therefore, either of the following usages are valid:

CThe(appl e)

print *

or

is here.”

print CThe(apple); “ is here.”

Other routines:

Acquire

calling form:
Acqui re(parent, object)

Checks to see if parent.capacity is greater
than or equal to parent.holding plus

AnyVer b

Assi gnPr onoun

Cal cul at eHol di ng

CenterTitle

CheckReach

Cont ai ns

134.

obj ect.size. |If so, it moves Obj ect to the
specified parent, and returns true. If the object
cannot be moved, Acqui r € returns false.

Also calls: Cal cul at eHol di ng

calling form:
AnyVer b(obj ect)

Returns object if the current verbroutine is not an
xverb; otherwise it returns false.

calling form:
Assi gnPr onoun(obj ect)

Sets the appropriate global it _obj them obj
hi m_obj or her _obj to the specified object.

calling form:
Cal cul at eHol di ng(obj ect)

Properly recalculates 0bj ect . hol di ng based on
the sizes of all held objects.

calling form:
CenterTitle(text[, lines])

Clears the screen and centers the text given by the
specified dictionary entry in the top window.
The default height of the title (i.e., one line) can
be overridden with a second argument given the
number of lines.

calling form:
CheckReach(obj ect)

Checks to see if the specified object is within
reach of the player object. Returns true if
accessible; returns false--and prints an
appropriate message--if not.

calling form:
Cont ai ns(parent, object)

Returns <obj ect> jf the specified object is
present as a possession of the specified parent,
even as a grandchild, otherwise returns false.

Cust onErr or

Dar k\W\r ni ng

Del et eWrd

Descri bePl ace

Excl udeFr omAl |

Fi ndLi ght

135.

calling form:
Cust onError (errornunber, object)

Replace if custom error messages are desired. Is
called by ParseError whenever error nunber
is greater than or equal to 100, specifying a user
parser error. Should return false if no user
message is found.

calling form:
Dar k\W\r ni ng

Is called by MovePl ayer whenever the player
object is moved into a location without a light
source. The default library routine simply prints
a message; for a more sinister response or action,
such as the death of the player, replace the
default with a new Dar KVr ni ng routine.

calling form:
Del et eWor d(wor dnunber [, nunber])

Deletes the number of words given by the second
argument--or only one word if no second
argument IS given--starting with
wor d[wor dnunber] | "Returns the number of
words deleted.

calling form:
Descri bePl ace(l ocation[, |ong])

Prints the location Name and, when appropriate, a
location description (i.e., its |ong_desc),
Including a non-false long parameter will always
force a location description.

calling form:
Excl udeFr omAl | (obj ect)

Returns true if, based on the current
circumstances (verbroutine, etc.), the supplied
object should be excluded from actions using
“all”--such as multi ~— multiheld and
mul ti not hel d grammar tokens.

calling form:

Font

Cet | nput

Hour sM nut es

| ndent

| nLi st

136.
Fi ndLi ght (I ocati on)

Checks to see if a light source is available in the
|o_layer’s location; if so, it sets the global

i ght _source to the object number of the
source and returns that value.

Also calls: Obj ect | sLi ght

calling form:
Font (bi t mask)

Sets the current font attributes as specified by
bi t mask, where bitmask js one or more

font-style constants (see library constants, above)
combined with | * or “+’.

calling form:
Cet I nput ([pronpt string])

Receives input from the keyboard, storing
individual words in the word array; unknown
words--i.e., those that are not in the dictionary--
are assigned the null string, 0 or ““. If an
argument is passed, it is assumed to be a
dictionary address for the pronpt string. If no
argument is passed, no prompt is printed.

calling form:
Hour sM nut es(counter[, mlitary])

Prints the time in hh:mm format given that the
global count er represents the time in minutes
from 12:00 a.m. If the optional M litary value
is given as a true value, time is in 24-hour
“military” format.

calling form:
| ndent

If the NO NDENT_F bit is not set in the FORVAT
mask, | ndent prints two spaces without printing
a newline

calling form:
I nLi st (obj ect, property, val ue)

| nsertWwrd

Li st Obj ect s

Menu

Message

137.

If <value> jis in the list of values held in
<obj ect >. <property> returns the element

number of the (first) property element equal to
<val ue>: otherwise returns 0.

calling form:
| nsert Wor d(wor dnunber [, nunber])

Makes space for either the number of words
given by the nunber argument--or one word if

no second argument is given--if possible, at
wor d[wor dnunber] | shifting upward all words

from that point to the end of the input line.
Returns the number of words inserted.

calling form:
Li st Obj ect s(obj ect)

Lists all the possessions of the specified object in

the I\a}lg;r)ropriate form (according to the global
FORMAT), * Possessions of possessions are listed

recursively if FORMAT does not contain the
NORECURSE_F bit. Format masks are combined,

asin;:
FORVAT = LI ST_F | NORECURSE F |

Also calls;: What sl n

calling form:
Menu(nunber, [width[, selection]])

Prints a menu, given that the possible choices (up

to 10) are contained in the MeNui t emarray, with

menui t enf 0] is the title of the menu. A starting
sel ection number is optional. Returns the

number of the item selected, or 0 if none is
chosen.

Alsocalls: CenterTitle

calling form:
Message(& outine, num a, b)

Used by most routines in HUGOLI B. H for text
output, so that the bulk of the library text is

MovePl ayer

Nunmber Wor d

138.

centralized in one location. Message number NUM
for the specified routine is printed; @ and b are
optional parameters that may represent objects,
dictionary entries, or any other value.

(NOTE: Similar routines are provided in
VMessage in VERBLIB.H agnd Owessage in
OBJLI B H)

calling form:
MovePl ayer (1 oc[, silent[, none]])
MovePl ayer (dir[, silent[, none]])

Moves the player to the new location, properly

setting all relevant variables and attributes. If
<si | ent > js specified (as a true value), no room

description is printed following the move.

A direction object (i.e., N_obj , d_obj) may be

specified instead of a location; in this instance,
vePl ayer moves in that direction from the

player object’s present location.

If <none> js true, beforeyzafter routines are
not run.

Can be checked in a location’s bef ore or af t er
property as “l ocati on MovePl ayer ” to catch a
player’s exit from or entrance to a location.

Returns the object number of the player object’s
new parent.

NOTE: MovePl ayer does not check to see if a
move is valid; that must be done before calling
the routine.

May also call: Dar k\War ni ng

calling form:
Nunmber Wor d(nunber [, true])

Prints a number in non-numerical word format,
where <nunber > js petween -32768 to 32767.
Always returns 0 (the null string). If a second

bj ectls

(bj ect i sknown

hj ect i sLi ght

bj Wor d

Pr ePar se

Pri nt EndGane

Pri nt Score

139.

(true) argument is supplied, the word is
capitalized.

calling form:
(bj ect | s(obj ect)

Lists certain attributes, such as providing | i ght
or being WOr n_ of the given object in parenthetical
form.

calling form:
(bj ect i sknown(obj ect)

Returns true if the object is KNown to the player.

calling form:
bj ect i sLi ght (obj ect)

Returns true if the object or one of its visible
possessions is providing | 1 ght | If so, it also sets
the global | i ght _sour ce the object number of
the source.

calling form:
Cbj Word(word, object)

Returns either adjective or noun (i.e., the property
number) if the given is either an adjective or
noun of the specified object.

calling form:
Pr ePar se

Provided so that, if needed, this routine may be
replaced instead of the more extensive library
Parse routine. The default routine defined in
the library is empty.

calling form:
Pri nt EndGanme(end_t ype)

Depending on whether énd_t ype is 1 or 2, prints
“** YOU'VE WON THE GAME! ***” or *“*** YOU
ARE DEAD ***”,

calling form:
Print Score(end_of gane)

Pri nt St at usLi ne

PropertylLi st

Put | nScope

RenmoveFr onScope

Set Cbj Word

Short Descri be

140.

Prints the SCOre in the appropriate form,
depending on whether or not end_of _gane js
true.

calling form:
Print St at usLi ne

Prints the statusline in the appropriate format,
according to the global STATUSTYPE,

calling form:
PropertylLi st(obj, property)

Lists the objects held in Obj . property (if any),
returning the number of objects listed.

calling form:
Put | nScope(obj ect, actor)

Makes <object> accessible to <actor>
regardless of their respective locations, and

providing that the 1n_scope property of
<obj ect> has at least one empty slot--i.e., one
that equals 0. Returns true if successful.

calling form:
RenoveFr onScope(obj ect, actor)

Removes <0bj ect > from the scope of <actor>,
Returns true if successful, or false if <obj ect >
was never in scope of <act or > to begin with.

calling form:
Set Cbj Word(position, object)

Inserts the specified object in the Wor d array in
the format:

“adjectivel adjective2...noun”

calling form:
Short Descri be(obj ect)

Prints the short description (sShort _desc) of the

given object, first checking to see if it should run
I'nitial_desc, when_open, or when_cl osed

Speci al Desc

VWhat sl n

Yesor No

141.

as appropriate. Then, if no short_desc
property exists, it prints a default “X is here.”

Also calls;: What sl n

calling form:
Speci al Desc(obj ect)

Checks each child object of <obj ect > running
any appropriate i nitial _desc or i nv_desc
property routines (depending on the calling
situation). Sets the global variable | i st _count
to the number of remaining (i.e., non-listed)
objects.

calling form:
What sl n(par ent)

Lists the possessions of the specified parent,
according the form given by the global FORVAT,
Returns the number of objects listed.

Also calls: Speci al Desc Li st Objects

calling form:
Yesor No

Checks to see if the just-received input is “yes”,
“y”, “no”, or “n”. If none of the above, it
prompts for a yes or no answer. Once a valid
answer is received, it returns true (if yes) or false
(if no).

AUXILIARY MATH ROUTINES:

abs

hi gher

calling form:
abs(a)

Returns the absolute value of <a=>,

calling form:
hi gher (a, b)

Returns the higher number of <a> or ,

| ower

mod

pow

STRING ARRAY ROUTINES:

St ri ngConpare

St ri ngCopy

StringDi ct Conpar e

St ri ngEqual

142.

calling form:
| owner (a, b)

Returns the lower number of <a> or ,

calling form:
nmod(a, b)

Returns the remainder of <a@> divided by .

calling form:
pow(a, b)

Returns <a> to the power of (The return
value is unpredictable if the result is outside the
boundary of -32768 to 32767.)

calling form:
StringConpare(arrayl, array2)

Returns 1 if <arrayl> is lexically greater than
<array2> -1 jf <arrayl> js lexically less than
<array2> and 0 if the strings are identical.

calling form:
StringCopy(new, old[, len])

Copies the contents of the array at the address
given by <ol d> to the array at <new> to a
maximum of < en> characters if <I en> js given,
or the length of <ol d> if it isn’t.

calling form:
StringDi ct Conpare(array, dictentry)

Performs a St ri ngConpar e-like comparison of
a string array given by <array> and the
dictionary entry <di ctentry> returning 1, -1,
or 0 if <array> is lexically greater than, less
than, or equal to <di ct ent r y> respectively.

calling form:
StringEqual (arrayl, array?2)

StringLength

StringPrint

FUSE/DAEMON ROUTINES:

143.

Returns true only if <arrayl> and <array2>
are identical.

calling form:
StringLengt h(array)

Returns the length of the string stored as
<array>,

calling form:
StringPrint(array[, start, end])

Prints the string stored as <array=> peginning
with <st art > and ending with <end> if given.

(See the earlier section on fuses and daemons for more information.)

Acti vate

Deacti vat e

calling form:
Activate(object[, setting])

Activates the specified f use or daenon opject.
The setting value is only specified for fuses,
where it represents the initial value of the timer

property.

calling form:
Deact i vat e(obj ect)

Deactivates the specified f use or daenon gbject.

CHARACTER SCRIPT ROUTINES:

(See the earlier section on character scripts for more information.)

Cancel Scri pt

PauseScri pt

calling form:
Cancel Scri pt (character)

Immediately cancels the character script
associated with the object <character>

Returns true if successful, i.e., if a script for
<char act er > js found.

calling form:

144.

PauseScri pt (character)

Temporarily pauses the character script
associated with the object <character>
Returns true if successful.

ResunmeScri pt calling form:
ResuneScri pt (character)

Resumes execution of a paused script. Returns
true if successful.

Ski pScri pt calling form:
Ski pScri pt (character)

Skips execution of the script for <Character >
during the next call to RunScri pt's only.

Scri pt calling form:
Script(character, steps)

Initializes space for the requested number of
steps in the setscript array, sets up the data
for the script in the scriptdata array, and
returns the location of the script in Setscript
Returns -1 if MAX_SCRI PTS is exceeded.

RunScri pts calling form:
RunScri pts

Runs all active scripts, calling them in the form:

Char Rout i ne(char acter, object)

CHARACTER ACTION ROUTINES:

As a starting point, the library also provides a limited number of routines for
character objects to use in scripts. They are:

& CharWait, O
&Char Move, direction_object (requires OBJLI B. H)

&Char Get, obj ect
&Char Dr op, obj ect

145.

and

&LoopScript, O

CONDITIONAL COMPILATION:

A number of compiler flags may be set which exclude certain portions of
HUGCLI B. H from compilation if these functions or objects are not required.

FLAG: EXCLUDES:
NO_AUX_NMATH Auxiliary math routines
NO_FUSES Fuses and daemons
NO_MENUS Use of the Menu function

NO OBJLI B oBJLIB. H

NO_RECORDI NG Command recording functions
NO_SCRI PTS Character scripting routines
NO_STRI NG_ARRAYS String array functions
NO_VERBS All action verbs

NO_XVERBS All non-action verbs

APPENDIX C: LIMIT SETTINGS

NOTE: The default settings for the complete set of limits may be obtained by
invoking the compiler via:

hc $li st

(The following limits are static and non-modifiable, since they reflect the internal
configuration of the Hugo Engine:

MAXATTRI BUTES The maximum number of definable attributes,
not counting aliases

MAXGLOBALS The maximum number of definable global
variables

MAXLOCALS The maximum number of local variables allowed
in a routine, including arguments passed to the
routine)

The following are the modifiable settings, which may be setting using:

146.

$<setting>=<new limt>

either in the invocation line or in the source code.

MAXALI ASES

MAXARRAYS

MAXCONSTANTS

MAXDI CT

MAXDI CTEXTEND

MAXEVENTS

MAXFLAGS

MAXLABELS

MAXOBJECTS

MAXPROPERTI ES

MAXROUTI NES

The maximum number of aliases that may be
defined for attributes and/or properties

The maximum number of arrays that may be
defined (not the total array space, which is
automatically reserved)

The maximum number of constants

The maximum number of entries that the
compiler can enter into the dictionary table

The total number of bytes (not the total number
of entries) available for dynamic dictionary
extension during runtime

The maximum number of global or object-linked
events

The maximum number of compiler flags that may
be set at one time to control conditional
compilation

The maximum number of labels that may be
defined in an entire program

The maximum number of objects and/or classes
that may be created

The maximum number of properties that may be
defined

The maximum number of stand-alone routines
(not property routines) that may be defined

APPENDIX D: PRECOMPILED HEADERS

It is possible to compile files that would normally be included using the #i ncl ude
directive into a precompiled header file that may be linked using #l i nk as in:

147.

#link "<fil enane. HLB>"

The advantage of doing this is primarily one of faster compilation speed; files that
are used over and over again without alteration (such as HUGOLI B. H) may be
precompiled so that they are not recompiled every time.

The #l i nk directive must come after any grammar, but before any definitions of
attributes, properties, globals, objects, synonyms, etc. Grammar is illegal in a
precompiled header.

To create a precompiled header, use the -h directive when invoking the Hugo
Compiler. The file HUGOLI B. HUG serves as a good example. Compile it via

hc -h hugolib. hug
in order to generate HUGOLI B. HLB,

Next, change occurrences of
#i ncl ude "hugolib. h"
in Hugo programs to
#l i nk "hugol i b. hl b"
Change the definition for the main routine from

routi ne main

(...
to

replace main

(...

since HUGOLI B. HUG contains a temporary main routine.

NOTE: Any conditional compilation flags set in the Hugo program will have no
effect on the compiled code in HUGCOLI B. HLB, since the routines included in or
excluded from HUGOLI B. HLB are determined by the flags set in HUGOLI B. HUG, |t

is recommended that a Hugo user usin%precompiled headers compile a version of
HUGOLI B. HUG that includes HUGOFI X. Hand/or VERBSTUB. H as desired.

It is generally not possible to include multiple precompiled - HLB headers compiled
in separate passes via subsequent #l i nks in the same source file. Because of the
absolute references assigned to data such as dictionary addresses, attribute

148.

numbers, etc., such an attempt will produce an “Incompatible precompiled
headers” error.

However, for games that are composed of separate sections that can be combined
into distinct files, it may make sense to precompile one - HUGfile containing all the
common elements that will be used by the separate sections--such as the player
oHect, etc.--and which #i ncl udes or #l i nks the library in it. Then, this new
. HLB file can be #l i nked in each of the separate sections during development and
testing. Of course, each of the separate sections will have to be #i ncl uded in a
single master file for building the full release version.

Finally, it is advisable that precompiled headers be used only in building - HEX
files during the design/testing stage in order to facilitate faster development. The
reason is that the linker does not selectively include routine calls; the entire . HLB
file is loaded during the link phase. As a result, Hugo files produced using
precompiled headers--especially if existing routines in the - HLB file are replaced in
the source--tend to be larger and therefore less economical in their memory usage.
For this reason, it is recommended that #i ncl ude pe used for building release
versions instead of #l i NKing the corresponding precompiled header.

APPENDIX E: THE HUGO DEBUGGER

The Hugo Debugger is a valuable part of the Hugo design system. It allows a
programmer to monitor all aspects of program execution, including watching
expressions, modifying values, moving objects, etc.--all things expected of a
modern source-level debugger.

The Hugo Debugger is not technically a source-level debugger, however. During
its development, its author has referred to it as a source(ish) level debugger--what
the debugger does, in effect, is to “decompile” compiled code into the tokens and
symbols that comprise each line of code. The result is a nearly exact approximation
of the original source code.

In order to be used with the debugger, a Hugo program must be compiled using
the -d switch in order to create an .HDX debuggable file with additional data such
as names for objects, variables, properties, etc.

(Note that - HDX files can be run by the engine, but . HEX files cannot be run by the
debugger because of the additional data required.)

The MS-DOS convention for running the debugger is:

hd <fil ename>

149.

The debugger will begin on the debugging screen. Switch back-and-forth from the
actual game screen by pressing Tab.

At this point, it is probably best to select “Shortcut Keys” from the Help menu,
since the actual keystrokes for running the debugger may vary from system to
system. (It is possible to operate the debugger entirely through menus, but this
soon becomes tedious for operations like stepping line-by-line.)

The file HDHELP. HLP should be in the same directory as HD. EXE--this is the online
help file for the debugger, containing information on such things as:

Printing
Windows and Views, including:

Code Window - Showing the current program exactly as
executed, in (almost) source-level format

Watch Window

Allowing any variable expression to be
watched/evaluated at any time during execution

Calls - Giving the sequence of nested routine calls at
any given point

Breakpoints - Listing all active breakpoints

Local Variables - Listing all local variables, as values, objects,
dictionary entries, etc.

Property/Attribute Aliases
Auxiliary Window

Output

Running a program, including:

Finish Routine - While stepping, continues execution without
stepping to the end of the current routine

Stepping Through Code
- Allows line-by-line execution

Skipping Over Code

Stepping Backward

Searching Code

Watch Expressions

150.

- Allows the next statement to be passed over
without executing

- Allows retracing of code execution, possibly
after values are changed, etc.

- Searches the record of executed code for any
given string

- Allows watching multiple variable values or
expressions, and to set a breakpoint should a
desired value/expression evaluate non-false

Setting or Modifying Values

Breakpoints

Object Tree

Moving Objects

Runtime Warnings

Setup

- Any variable, property, array value, or object
attribute can be set or reset to a valid value at any
point during execution

- A code address, routine, or property routine can
be given--control is then passed to the debugger
on encountering a breakpoint

- At any point, the entire object tree (or just a
branch of it) may be displayed

- It is possible to dynamically move objects
around the object tree

- Optional runtime warnings instruct the
debugger to alert the user to common causes of
problem code which, while syntactically valid
and therefore acceptable to the compiler, is in
context probably not what was intended.

- Allowing changes in color scheme (if
applicable), printer, etc.

Hugo Compiler, Engine, Debugger, Library, and the Hugo Manual
Copyright © 1995-1998 by Kent Tessman

<generalcoffee@geocities.com>

http://www.geocities.com/hollywood/academy/5976/hugo.html

