
HUGO V2.5
An Interactive Fiction Design System

PROGRAMMING MANUAL

Copyright © 1995-1999 by Kent Tessman

Revised April 1999

1.

TABLE OF CONTENTS

I. INTRODUCTION ...4

I.a. Legal Notes...4

I.b. (Less Legal Notes) ..5

I.c. Names and Acknowledgments..6

I.d. Packing List..6

I.e. Manual Conventions...7

I.f. Getting Started...8

I.g. Compiler Switches..9

I.h. Limit Settings ...9

I.i. Directories ..10

I.j. The Hugo Engine..11

II. A FIRST LOOK AT HUGO ..11

II.a. Hello, Sailor! ..12

II.b. Data Types ...12

II.c. Multiple Lines ..14

II.d. Comments...16

II.e. Compiler Errors...16

II.f. Compiler Directives..17
Example: Command-Line Compiling .. 20

III. OBJECTS..20

III.a. The Object Tree ...21

III.b. Attributes ...25

III.c. Properties ...27

III.d. Classes..32

IV. HUGO PROGRAMMING..35

IV.a. Variables...35

IV.b. Constants..36

IV.c. Printing Text ..38

IV.d. More Control Characters ..42
Example: Mixing Text Styles... 44

IV.e. Operators and Assignments ...45

IV.f. Efficient Operators...47

IV.g. Arrays and Strings...49

2.

Example: Managing Strings ... 53

IV.h. Conditional Expressions And Program Flow...54

V. ROUTINES AND EVENTS ..61

V.a. Routines..61

V.b. Property Routines ..64
Example: “Borrowing” Property Routines.. 67

V.c. Before and After Routines..68
Example: Building a Complex Object .. 71

V.d. Init and Main..72

V.e. Events...73
Example: Building a Clock Event .. 73

VI. FUSES, DAEMONS, AND SCRIPTS...74

VI.a. Fuses and Daemons ..74
Example: A Simple Daemon and a Simpler Fuse ... 76

VI.b. Scripts ..77

VI.c. A Note About the event_flag Global ...79

VII. GRAMMAR AND PARSING ..79

VII.a. Grammar Definition...80

VII.b. The Parser..84

VIII. JUNCTION ROUTINES...87

VIII.a. Parse...88

VIII.b. ParseError ...88

VIII.c. EndGame ...90

VIII.d. FindObject ...91

VIII.e. SpeakTo ...92

VIII.f. Perform ..93

XI. THE GAME LOOP ...94

X. ADVANCED FEATURES...95

X.a. The Display Object...95

X.b. Windows...96

X.c. Reading and Writing Files..97

XI. RESOURCES ..99

XI.a. Pictures..100

XI.b. Sound and Music...102

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS102

3.

APPENDIX B: THE LIBRARY (HUGOLIB.H) ...124

ATTRIBUTES ...124

GLOBALS, CONSTANTS, AND ARRAYS...124

PROPERTIES..127

ROUTINES ..131

APPENDIX C: LIMIT SETTINGS ...146

APPENDIX D: PRECOMPILED HEADERS ...148

APPENDIX E: THE HUGO DEBUGGER..149

4.

I. INTRODUCTION

Hugo is a system for designing, programming, and running sophisticated
interactive fiction, or text adventures. It is the result of an attempt to further extend
the concepts developed in earlier, similar systems in order to make interactive
fiction programming less cryptic and more accessible to designers. Hugo owes
much to the original Infocom format (particularly with regard to its internal data
tables) as well as to Graham Nelson’s publicly distributed Inform compiler (and its
syntactic interpretation of the Infocom format and straightforward grammar
definition).

The best advice to be given for learning Hugo is probably to print or otherwise
have handy the source listing of SAMPLE.HUG, and to refer to it throughout;
examples of almost all of Hugo’s features may be found in the source of the sample
game.

Author e-mail (The General Coffee Company Film Productions):
<generalcoffee@geocities.com>

Hugo Home Page:
http://www.geocities.com/hollywood/academy/5976/hugo.html

(As of this revision)

I.a. Legal Notes

Programs created using the Hugo Compiler are the property of the individual
author. Note, however, that the library files are copyright by Kent Tessman, the
creator of Hugo, as is the Hugo Engine.

The use of the Hugo library files and the distribution of the Hugo Engine are
authorized so long as all transactions are non-commercial and free of charge
(except in cases where any charge is to cover the cost of distribution), and that the
library files and engine are not distributed in a modified form.

For those interested in the commercial distribution of a program created with the
Hugo Compiler, please contact Kent Tessman for permission.

NOTE: Since the Hugo Compiler and Engine are provided free of charge, there is
no warranty for their use.

5.

I.b. (Less Legal Notes)

This supplementary, less-official section is meant to clarify my intentions as to legal
usage of Hugo, and what it means for users who may want to distribute their
games. First off, let me say that, yes, I do want to be able to maintain some
discretion over what is done with my work, and the above phrasing is intended to
reserve me that ability. Hugo is more than “just” a compiler--it’s a complete design
and runtime environment, so distribution may involve more than just a simple
.HEX file (which, even though it might have been built with the Hugo Library
written by me, isn’t really a cause for concern on my part).

Here’s a quick informal overview of how I see the various types of distribution:

1. Freeware. I don't really have any concerns, even if the Hugo Engine is being
distributed as part of a free package. (Although it might be nice to know about
this, just so far as wanting to help ensure that proper instructions, updated
information, etc. were included.) As far as using the Hugo Library goes: I wrote it
for this express purpose, so that people would use it in making their own games.
Freeware distribution is certainly something I fully encourage. The source to the
Hugo Library, of course, cannot be distributed in modified form unless it is
expressly indicated that it was a.) written by Kent Tessman, and b.) subsequently
modified and distributed by someone else.

2. Shareware. Again, I don’t think this really concerns me, either. (Although, again,
I would like to be aware of shareware distribution. My only real objection would
be to something that is entirely morally reprehensible--I probably don’t need to go
into details. In that case, I’d probably tell you to write your own damned library
and interpreter.) The shareware market for IF is sadly depressed, but writing a
good game takes a lot of talent and hard work--and if Hugo authors wanted to try
to generate some shareware revenues, I would wish them luck.

3. Commercial software. This is about the only sticking point I can think of, and it’s
not much of one. It’s unfortunately pretty unlikely that someone could market a
wildly successful piece of commercial Interactive Fiction. On the other hand, I do
believe that Hugo is capable of creating some pretty eye- (and ear-) catching games.
And on the other other hand, especially with commercial software, what you’d be
distributing would likely be more than half written by other people (i.e., me, the
library contributors, and any porter(s), since I’d be impressed if someone wrote a
game that, in its source-lines count, rivaled the 35,000+ lines of code in the engine
and the library). But even in a case like this, I would expect any individual license
to give the author the freedom to sell n copies of the game without involving me or
anyone else in any (however minor) participation.

6.

I.c. Names and Acknowledgments

Those who have taken upon themselves the (sometimes trying, I’m sure) task of
porting Hugo to various platforms--aside from the author’s own 16-bit DOS, 32-bit
DOS, and Windows ports--are:

David Kinder Amiga
Colin Turnbull Acorn Archimedes
Bill Lash Linux (plus Solaris OS, etc.)
Gerald Bostock OS/2

The author is considerably indebted to them, for all their work as well as for their
input on how to improve the compiler and engine by way of criticisms both
generous and deservedly direct.

More than a few words of appreciation must be given to Volker Blasius who (now
with help from David Kinder) has had the substantial responsibility of maintaining
the Interactive Fiction Archive at ftp://ftp.gmd.de--one of the key resources for Hugo
programmers and a primary hub of material for contributors to (and readers of) the
newsgroups rec.arts.int-fiction and rec.games.int-fiction.

Thanks also to those whose comments and suggestions have contributed to making
Hugo as useful and usable as it is: Dr. Jeff Jenness, Vikram Ravindran, Jesse
McGrew, Paolo Vece, Daniel Cardenas, Cam Bowes, Mark Bijster, Jose Luis
Cebrian, John Menichelli, Jerome Nichols, Jason Dyer, and Jason Brown.
Acknowledgment and thanks are also due Graham Nelson, whose Inform language
helped give shape to Hugo’s early syntax and structure.

Special thanks to Julian Arnold and Jim Newland, members of the ad hoc Hugo
What-If? Committee. They’ve both made numerous valuable contributions to
Hugo both in terms of suggestions for the language itself and for user library
improvements and extensions--to be more specific would surely be to overlook
something invaluable.

Finally, my brother Dean Tessman has been a well-used resource with his
willingness to test-drive multi-100K e-mail attachments of executables and to
engage in ongoing back-and-forth discussions on programming minutiae.

I.d. Packing List

A number of files are part of the basic Hugo package:

(NOTE: Throughout this manual, the default naming convention is for MS-
DOS/Windows. As Hugo becomes available for other systems, file naming conventions may
vary, and any machine-specific documentation should document those variations.)

7.

HC.EXE Hugo Compiler
HE.EXE Hugo Engine
HD.EXE Hugo Debugger
HDHELP.HLP Debugger help file

HUGOLIB.H Library definitions and routines
VERBLIB.H Standard verb routines
VERBLIB.G Standard verb grammar definitions
OBJLIB.H A library of useful object definitions

(included by HUGOLIB.H)

SAMPLE.HUG Sample game source code
SHELL.HUG Source code to build on

And two sets of files that, depending on user-specified settings, are optionally
included by HUGOLIB.H, VERBLIB.H and VERBLIB.G:

HUGOFIX.H Debugging routines
HUGOFIX.G Debugging grammar

VERBSTUB.H Additional verb routines
VERBSTUB.G Additional verb grammar

An additional Hugo source file demonstrates the ability to create precompiled
headers:

HUGOLIB.HUG To create a linkable version of HUGOLIB.H

The latest release of Hugo is available through anonymous FTP from ftp.gmd.de in
if-archive/programming/hugo. Distribution of any of the Hugo files is
authorized only with permission of the author as per Legal Notes, above.

The .HUG, .H, and .G files are text files and must be downloaded as such; the
executables are binary files.

(FORMATTING NOTE: The above files are properly formatted for a standard tab stop of 8
spaces; if the formatting appears incorrect, adjust the tab size on your editor.)

I.e. Manual Conventions

The following conventions are used in this manual:

<parameter> for required parameters

8.

[parameter] for optional parameters

FILE for specific filenames

FunctionName functions, etc.

'token' tokens, keywords

... for omissions

I.f. Getting Started

Type

hc

without any parameters to get a full listing of available compiler options and
specifications.

The MS-DOS syntax for running the compiler is

hc [-switches] <sourcefile[.HUG]> <objectfile>

It is not necessary to specify any switches, the name of the objectfile, or the
sourcefile extension. The bare-bones version of the compiler invocation is

hc <sourcefile>

With no other parameters explicitly described, the compiler assumes an extension
of .HUG. The default object filename is <sourcefile>.HEX.

Here’s how to compile the sample game. With the compiler executable, library
files, and sample game source code all in the current directory, type

hc -ls sample.hug

or simply

hc -ls sample

and after a few seconds (or more, or less, depending on your processor and
configuration) a screenful of statistical information will appear following the
completed compilation (because of the -s switch).

9.

The new file SAMPLE.HEX will have appeared in current directory. As well, the -l
switch wrote all compile-time output (which would have included errors, had there
been any) to the file SAMPLE.LST.

I.g. Compiler Switches

A number of switches may be selected via the invocation line. The available
options are:

-a Abort compilation on any error
-d compile as an .HDX debuggable executable
-e Expanded error format
-f Full object summaries
-h compile in .HLB precompiled Header format
-i display debugging Information
-l print Listing to disk as <sourcefile>.LST
-o display Object tree
-p send output to standard Printer
-s print compilation Statistics
-t Text to listfile for spellchecking
-u show memory Usage for objectfile
-v Verbose compilation
-x ignore switches in source code

Most Hugo programming will probably make us of the -l switch in order to record
compile-time errors.

The -z switch may, on some configurations, increase compilation speed by
inhibiting normal messaging (i.e., “Compiling...lines of...” and “...percent
complete”).

I.h. Limit Settings

Also included on the invocation line, after any switches and before the sourcefile,
may be one or more limit settings. These settings are for memory management,
and limit the number of certain types of program elements, such as objects and
dictionary entries.

To list the settings, type:

hc $list

To change a non-static limit, type:

10.

hc $<setting>=<new limit> <sourcefile>...

For example, to compile the sample game with the maximum number of dictionary
entries doubled from the default limit of 1024, and with the -l and -s switches set,

hc -ls $MAXDICT=2048 sample

If a compile-time error is generated indicating that too many symbols of a
particular type have been declared, it is probably possible to overcome this simply
by recompiling with a higher limit for that setting specified in the invocation line.

See Appendix C for a complete listing of valid limit settings.

I.i. Directories

It is possible to specify where the Hugo Compiler will look for different types of
files. This can be done in the command line via:

hc @<directory>=<real directory>

For example, to specify that the source files are to be taken from the directory
C:\HUGO\SOURCE, invoke the compiler with

hc @source=c:\hugo\source <filename>

Valid directories are:

source Source files
object Where the new .HEX file will be created
lib Library files
list .LST files
resource Resources for a “resource” list
temp Temporary compilation files (if any)

Advanced users may take advantage of the ability to set default directories using
environment variables. (The method for setting an environment variable may vary
from operating system to operating system.)

The HUGO_<NAME> environment variable may be set to the <name> directory. For
example, the source directory may be set with the HUGO_SOURCE environment
variable.

Command-line-specified directories take precedence over those set in environment
variables. In either case, if the file is not found in the specified directory, the
current directory is searched.

11.

I.j. The Hugo Engine

Having compiled the sample game, run it by invoking

he sample

at the command line. Again, it is not necessary to specify the extension. The
engine assumes .HEX if none is given.

(NOTE: The environment variable HUGO_OBJECT or HUGO_GAMES may hold the
directory that the Hugo Engine searches for the specified .HEX file. The location for save
files may be specified with HUGO_SAVE. All of these are optional.)

II. A FIRST LOOK AT HUGO

There are a couple of basic concepts to become oriented to in order to begin
working with Hugo.

First of all, most programming in Hugo will involve the creation of what are called
“objects”. Quite literally, these represent the “objects” or elements of the game
universe: people, places, and things.

The bulk of the rest of a Hugo program is comprised of “routines”. These are the
sections of code made up of commands or statements that facilitate the actual
behavior of the program at different points in the story. Routines are less
frequently (although more frequently in other languages) called “functions”--they
may be thought of as performing an operation or series of operations, and then
returning some kind of value as a result.

(The idea of return values is an important one and, while sometimes puzzling to
novices, is actually quite uncomplicated. Often a particular function will be
referred to as “returning true” or “returning false”--all this means is that it returns
either a non-zero value (usually 1) or a zero value, almost always to indicate
success or failure. A program will constantly be checking the return values of a
variety of routines and commands to determine if a particular operation was
successful in order to decide what to do next. Of course, a return value can be any
integer value; a routine that adds together two supplied values, a and b, may
return the sum a+b.)

For those familiar with the common programming languages C and BASIC, Hugo
strongly resembles a hybrid of the two. Individual objects and routines--as well as
conditional blocks--are enclosed in braces as in C, but unlike C (and like BASIC), a

12.

semicolon is not required at the end of each line, and the language itself is
considerably less cryptic. Keywords, variables, routine and object names, and
other tokens are not case-sensitive.

The goal in designing Hugo was to make programming as intuitive to facilitate
both initial development and subsequent debugging.

II.a. Hello, Sailor!

The grand tradition of programming texts has an introduction to a new
programming language detailing how to print the optimistic phrase “Hello, world”
as an example of the particular language’s form and substance.

In the equally grand tradition of interactive fiction, we’ll start with the rallying cry
“Hello, Sailor!”. Don’t worry too much about the syntax below; this is meant
mainly as a familiarization with what Hugo looks like.

routine main
{

print "Hello, Sailor!"
return

}

The entire program consists of one routine. (Two routines are normally required
for any Hugo program, the other being the Init routine, which is omitted in this
example since there isn’t much required in the way of initialization.)

The Main routine is automatically called by the engine. It from here that the
central behavior of any Hugo program is controlled. In this case the task at hand is
the printing of “Hello, Sailor!”, followed by an order to return from the routine
(i.e., exit it) so that we don’t strand the program waiting for an input, which is the
normal order of Hugo business.

II.b. Data Types

All data in Hugo is represented in terms of 16-bit integers, treated as signed (-32768
to 32767) or unsigned (0 to 65535) as appropriate. The name of any individual data
type may contain up to 32 alphanumeric characters (as well as the underscore ‘_’).

All of the following are valid data types:

Integer values 0, -10, 16800, -25005
(constant values that appear in Hugo source code as numbers)

13.

ASCII characters 'A', 'z', '7'

(constant values equal to the common ASCII value for a character; i.e., 65 for ‘A’)

Objects suitcase, emptyroom, player
(constant values representing the object number of the given object)

Variables a, b, score, TEXTCOLOR

(changeable value-holders that may be set to equal another variable or constant
value)

Constants true, false, BANNER

(constant--obviously--values that are given a name similarly to a variable, but are
non-modifiable)

Dictionary entries "a", "the", "basketball"
(The appearance of "the" in a line of code actually refers to the location in the
dictionary table where "the" is stored.)

Array elements ranking[1]

(a series of one or more changeable values that may be referenced from a common
base point)

Array addresses ranking
(the base point--see above)

Properties nouns, short_desc, found_in
(variable attachments of data relating specifically to objects)

Attributes open, light, transparent

(less complex attachments of data describing an object, which may be specified as
either having or not having the given attribute)

Most of these types are relatively straightforward, representing in most cases a
simple value. Dictionary entries are addresses in the dictionary table, with the null
string ““ having the value 0. Array addresses (as opposed to separate array
elements) represent the address at which the array begins in the array table.
Properties and attributes treated as discrete values represent the number of that
property or attribute, assigned sequentially as the individual property or attribute
is defined.

As mentioned, routines also return values, as do engine functions, so that

FindLight(room)

and

14.

parent(object)

are also valid integer data types.

Routine addresses are also stored as 16-bit integers. However, those versed in such
calculations will notice that if such a value was treated as an absolute address, then
any addressable executable code would be limited to 64K in size. Such is not the
case, since the routine address is actually an indexed representation of the absolute
address.

NOTE: The 16-bit format of a routine address (or the address of a property routine,
to be discussed below), can obtained via the address operator ‘&’, as in:

x = &Routine
x = &object.property

(where x is a variable).

II.c. Multiple Lines

If any single command is too long to fit on one line, it may be split across several
lines by ending all but the last with the control character ‘\’.

"This is an example string."

and

x = 5 + 6 * higher(a, b)

are the same as

"This is an example \
 string."

and

x = 5 + 6 * \
higher(a, b)

The space at the end of the first line is necessary because the compiler automatically
trims leading spaces from the second line.

String constants, such as in the above print statement, are an exception in that they
do not require the ‘\’ character at the end of each line.

print "The engine will properly
print this text, assuming a

15.

single space at the end of each
line."

will result in:

The engine will properly print this text, assuming
a single space at the end of each line.

Care must be taken, however, to ensure that the closing quotes are not left off the
string constant. Failing that, the compiler will likely generate a “Closing brace
missing” error when it overruns the object/routine/event boundary looking for a
resolution to the odd number of quotation marks.

Also, most lines ending in a comma, ‘and’, or ‘or’ will automatically fall through
to the next line (if they occur in a line of code). In other words,

x[0] = 1, 2, 3, ! array assignment x[0] through x[4]
4, 5

and

if a = 5 and
b = "tall"

translate into

x[0] = 1, 2, 3, 4, 5

and

if a = 5 and b = "tall"

This is provided primarily so that lengthy lines and complex expressions do not
have to run off the right-hand side of the screen during editing, nor do they
continually need to be extended using ‘\’ and the end of each line.

(NOTE: Multiple lines that are not strictly code, such as property assignments in
object definitions--to be discussed--must still be joined with ‘\’, as in

nouns "plant", "flower", "marigold", \
"fauna", "greenery"

and similar cases, even if they end in a comma.)

There is a complement to the ‘\’ line-control character: the ‘:’ character allows
multiple lines to be put together on a single line, i.e.

x = 5 : y = 1

16.

or

if i = 1: print "Less than three."

Which the compiler translates to

x = 5
y = 1

and

if i = 1
{print "Less than three."}

(See sections below on code formatting to see exactly what these constructions
represent.)

II.d. Comments

There are two types of comments. Comments on a single line begin with a ‘!’.
Anything following on the line is ignored. Multiple-line comments are begun with
‘!\’ and ended with ‘\!’.

! A comment on a single line

!\ A multiple-line
 comment \!

The ‘!\’ combination must come at the start of a line to be significant; it cannot be
preceded by any other statements or remarks. Similarly, the ‘\!’ combination must
come at the end of a line.

II.e. Compiler Errors

A compiler error is generally of one of two types. A fatal error looks like this:

Fatal error: <message>

and halts compiler execution.

A non-fatal error typically looks like:

<filename>(<line>): Error: <message>

17.

Also, the compiler may issue warnings in the form:

<filename>(<line>): Warning: <message>

Compilation will continue, but this is an indication that the compiler suspects a
problem at compile-time.

If the -e switch has been set during invocation to generate expanded-format errors,
error output looks like:

<FILENAME>: <LOCATION>
(Error-causing line)
"ERROR: <error message>"

It prints the section of code that caused the error, followed by an explanation of the
problem. Compilation will generally continue unless the -a switch has been set.

NOTE: The section of offending code may not be printed exactly as it appears in the source,
since the compiler often paraphrases and rebuilds the source code into a more rigid format
before building the line.

II.f. Compiler Directives

A number of special commands may be used to determine a.) how the source code
is read by the compiler, or b.) what special output will be generated at compile
time.

To set switches within the source code so that they do not have to be specified each
time the compiler is invoked for that particular program, the line

#switches -<sequence>

will set the switches specified by <sequence>, where <sequence> is a string of
characters representing valid switches, without any separators between characters.

Many programmers may find it useful to make

#switches -ils

the first line in every new program, which will automatically print out debugging
information, a statistical summary, and any errors to the .LST list file.

Using

#version <version>[.<revision>]

18.

specifies that the file is to be used with version <version>.<revision> of the
compiler. If the file and compiler version are mismatched, a warning will be
issued.

To include the contents of another file at the specified point in the current file, use

#include "<filename>"

where <filename> is the full path and name of the file to be read. When
<filename> has been read completely, the compiler resumes with the statement
immediately following the #include command.

(A file or set of files can be compiled into a precompiled header using the -h switch,
and then linked using #link instead of #include. See Appendix D on Precompiled
Headers.)

A useful tool for managing Hugo source code is the ability to use compiler flags for
conditional compilation. A compiler flag is simply a user-defined marker that can
control which sections of the source code are compiled. In this way, a programmer
can develop add-ons to a program that can be included or excluded at will. For
example, the library files HUGOLIB.H, VERBLIB.H, and VERBLIB.G check to see if
a flag called DEBUG has been set previously (as it is in SAMPLE.HUG). Only if it has
do they include the HUGOFIX.H and HUGOFIX.G files.

To set and clear flags, use

#set <flagname>

and

#clear <flagname>

respectively.

Then, check to see if a flag is set or not (and include or exclude the specified block
of source code) by using

#ifset <flagname>
...conditional block of code...

#endif

or

#ifclear <flagname>
...conditional block of code...

#endif

19.

Conditional compilation constructions may be nested up to 32 levels deep.

(Note also that compiler flags can be specified in the invocation line as #<flag
name>.)

“#if set” and “#if clear” are the long form of “#ifset” and “#ifclear”,
allowing usage of “#elseif” for code such as:

#set THIS_FLAG
#set THAT_FLAG

#if clear THIS_FLAG
#message "This will never be printed."
#elseif set THAT_FLAG
#message "This will always be printed."
#else
#message "But not this if THAT_FLAG is set."
#endif

Use “#if defined <flag>” and “#if undefined <flag>” to test if objects,
properties, routines, etc. have previously been defined.

As seen above, the #message directive can be used as

#message "<text>"

to output <text> when (or if) that statement is processed during the first
compilation pass.

Including “error” or “warning” before “<text>” as in

#message error "<text>"

or

#message warning "<text>"

will force the compiler to issue an error or warning, respectively, as it prints
“<text>”.

It is also possible to include inline limit settings, such as

$<setting>=<limit>

in the same way as in the invocation line. However, an error will be issued if, for
example, an attempt is made to reset MAXOBJECTS if one or more objects have
already been defined.

20.

Example: Command-Line Compiling

On the author’s machine, running under MS-DOS, the compiler executable HC.EXE
is in a directory called C:\HUGO. The library files are in C:\HUGO\LIB, and the
source code for the game Spur is in C:\HUGO\SPUR.

It's possible to call the compiler to compile Spur with a number of different options,
including setting compiler flags to include the HugoFix debugging library and verb
stub routines (i.e., what could otherwise be accomplished with “#set DEBUG” and
“#set VERBSTUBS” in the source), and printing all debugging information, the
object tree, and statistics to a file. (Assume that the current directory is C:\HUGO
and that none of the switches or compiler flags are set in the source.)

hc -iols #debug #verbstubs @source=spur @lib=lib spur

This makes use of all the possible command-line option types, including multiple
switches, flag settings, and directory specifications.

III. OBJECTS

Objects are the building blocks of any Hugo program. Anything that must be
accessible to a player during the game--including items, rooms, other characters,
and even directions--must be defined as an object.

The basic object definition looks like this:

object <objectname> "object name"
{

...
}

As an example, a suitcase object might be defined as:

object suitcase "suitcase"
{}

The enclosing braces are needed even if the object definition has no body. The only
data attached to the suitcase object are--from right to left--a name, an identifier, and
membership in the basic object class.

The compiler assigns the object labeled <objectname> the next sequential object
number. That is, if the first-defined object is the “nothing” object (object 0), then
the next-defined object, whatever it is, is given the object number 1; the one after
that is 2, etc. This is academic, however, as a programmer need never know what

21.

object number a particular object is--except for certain debugging situations--and
can always refer to an object by its label <objectname>.

If no explicit “name” (or name property) is provided, the compiler automatically
gives it the name “(<objectname>)”, i.e., <objectname> in parentheses.

(The compiler automatically creates an object called “display” as the last defined
object. The display object can be used to get information about the engine’s output
display. See the section on the display object below under “Advanced Features”.)

III.a. The Object Tree

In order for objects to have a position in the game, i.e., to be in a room or contained
in another object or beside another object, they must occupy a position in the object
tree. The object tree is a map which represents the relationships between all objects
in the game. The total number of objects is held in the global variable objects.

The nothing object is defined in the library as object 0. This is the root of the object
tree, upon which all other objects are based.

When referring to object numbers, this manual is generally referring to the name
given the object in the source code: i.e., <objectname>. The compiler
automatically assigns each object an object number, and refers to it whenever a
specified <objectname> is encountered.

(NOTE: When using the standard library routines, ensure that no objects (or
classes, to be discussed later) are defined before HUGOLIB.H is included. Problems
will arise if the first-defined object--object 0--is not the “nothing” object.)

Here is an example of an object tree:

Nothing
|
Room
|
Table------Chair------Book------Player
| |
Bowl Bookmark
|
Spoon

A number of functions can be used to read the object tree.

parent
sibling
child
youngest

22.

elder
eldest (same as child)
younger (same as sibling)

and

children

Each function takes a single object as its argument, so that

parent(Table) = Room
parent(Bookmark) = Book
parent(Player) = Room
child(Bowl) = Spoon
child(Room) = Table
child(Chair) = 0 (Nothing)
sibling(Table) = Chair

sibling(Player) = 0 (Nothing)
youngest(Room) = Player
youngest(Spoon) = 0 (Nothing)
elder(Chair) = Table
elder(Table) = 0 (Nothing)

and

children(Room) = 4
children(Table) = 1
children(Chair) = 0

(In keeping with the above explanation of object numbers and <objectname>, the
functions in the first set actually return an integer number that refers to a particular
<objectname>.)

To better understand how the object tree represents the physical world, the table,
the chair, the book, and the player are all in the room. The bookmark is in the
book. The bowl is on the table, and the spoon is on the bowl. The Hugo library
will assume that the player object in the example is standing; if the player were
seated, the object tree might look like:

Nothing
|
Room
|
Table------Chair-----Book
| | |
... Player ...

and

23.

child(Chair) = Player
parent(Player) = Chair
children(Chair) = 1

(Try compiling SAMPLE.HUG with the -o switch in order to see the object tree for
the sample game. Or, if the DEBUG flag was set during compilation, use the
HugoFix command “$ot” or “$ot <object>” during play to view the current state of
the object tree during play. Compiling with the -d switch will generate a
debuggable (.HDX) version of the file--the object tree can then be viewed directly
from the debugger.)

Logical tests can also be evaluated with regard to objects and children. The
structure

<object> [not] in <parent>

will return true if <object> is in <parent> (or false if ‘not’ is used).

To initially place an object in the object tree, use

in <parent>

in the object definition, or, alternatively

nearby <object>

or simply

nearby

to give the object the same parent as <object> or, if <object> is not specified,
the same parent as the last-defined object.

If no such specification is given, the parent object defaults to 0--the nothing object
as defined in the library. All normal room objects have 0 as their parent.

Therefore, the expanded basic case of an object definition is

object <objectname> "object name"
{

in <parent object>
...

}

(Ensure that the opening brace ‘{‘ does not come on the same line as the ‘object’
specifier.

24.

object <objectname> "object name" {...

is not permitted.)

The table in the example presumably had a definition like

object table "Table"
{

in room
...

}

To put the suitcase object defined earlier into the empty room in SHELL.HUG:

object suitcase "suitcase"
{

in emptyroom
}

Objects can later be moved around the object tree using the ‘move’ command as in

move <object> to <new parent>

Which, essentially, disengages <object> from its old parent, makes the sibling of
<object> the sibling of <object>‘s elder, and moves <object> (along with all
its possessions) to the new parent.

Therefore, in the original example, the command

move bowl to player

would result in altering the object tree to this:

Nothing
|
Room
|
Table------Chair-----Book------Player
 | |
 Bookmark Bowl
 |
 Spoon

There is also a command to remove an object from its position in the tree:

remove <object>

which is the same as

25.

move <object> to 0

The object may of course be moved to any position later.

III.b. Attributes

Attributes are essentially qualities that every object either does or doesn’t have.
They are most useful for qualifying or disqualifying objects for or from
consideration in any given instance.

An attribute is defined as

attribute <attribute name>

Up to 128 attributes may be defined. Those defined in HUGOLIB.H include:

known if an object is known to the player
moved if an object has been moved
visited if a room has been visited
static if an object cannot be taken
plural for plural objects (i.e., some hats)
living if an object is a character
female if a character is female
unfriendly if a character is unfriendly
openable if an object can be opened
open if it is open
lockable if an object can be locked
locked if it is locked
light if an object is or provides light
readable if an object can be read
switchable if an object can be turned on or off
switchedon if it is on
clothing for objects that can be worn
worn if the object is being worn
mobile if the object can be rolled, etc.
enterable if an object is enterable
container if an object can hold other objects
platform if other objects can be placed on it

 (NOTE: container and platform are
 mutually exclusive)

hidden if an object is not to be listed
quiet if container or platform is quiet (i.e., the

 initial listing of contents is suppressed)
transparent if object is not opaque
already_listed if object has been pre-listed (i.e., before

26.

 a WhatsIn listing)
workflag for system use
special for miscellaneous use

Some of these attributes are actually the same attribute with different names. This
is accomplished via

attribute <attribute2> alias <attribute1>

where <attribute1> has already been defined. For example, the library equates
visited with moved (since, presumably, they will never apply to the same object),
so:

attribute visited alias moved

In this case, an object which is visited is also, by default, moved. It is expected that
attributes which are aliased will never both need to be checked under the same
circumstances.

Attributes are given to an object during its definition as follows:

object <objectname> "object name"
{

is [not] <attribute1>, [not] <attribute2>, ...
...

}

NOTE: The ‘not’ keyword in the object definition is important when using a class
instead of the basic object definition, where the class may have predefined
attributes that are undesirable for the current object.

Even if an object was not given a particular attribute in its object definition, it may
be given that attribute at any later point in the program with the command

<object> is [not] <attribute>

where the ‘not’ keyword clears the attribute instead of setting it.

Attributes can also be read using the ‘is’ and ‘is not’ structures. As a function,

<object> is [not] <attribute>

returns true (1) if <object> is (or is not, if ‘not‘ is specified) <attribute>.
Otherwise, it returns false (0).

To give the suitcase object the appropriate attributes, expand the object definition to
include

27.

object suitcase "suitcase"
{

in emptyroom
is openable, not open
...

}

Now, the following equations hold true:

suitcase is openable = 1
suitcase is open = 0
suitcase is locked = 0

III.c. Properties

Properties are considerably more complex than attributes. First, not every object
may have every property; in order for an object to have a property, it must be
specified in the object definition.

As well, properties are not simple on/off flags. They are sets of valid data
associated with an object, where the values may represent almost anything,
including object numbers, dictionary addresses, integer values, and addresses of
executable code. The maximum number of attached values is undefined, but
manageability and efficiency suggest eight or less.

These are some valid properties as they would appear in an object definition (using
property names defined in HUGOLIB.H):

nouns "tree", "bush", "shrub", "plant"

size 20

found_in livingroom, entrancehall

long_desc
{"Exits lead north and west. A door is set
 in the southeast wall."}

short_desc
{

"There is a box here. It is ";
if self is open

print "open";
else

print "closed";
print "."

}

28.

before
{

object DoGet
{

if Acquire(player, self)
{"You pick up ";

 print Art(self); "."}
else

return false
}

}

The nouns property contains 4 dictionary addresses; the size property is a single
integer value; the found_in property holds two object numbers; and the long and
short description properties are both single values representing the address of the
attached routine.

The before property is a special case. This complex property is defined by the
compiler and handled differently by the engine than a normal property routine. In
this case, the property value representing the routine address is only returned if the
globals object and verbroutine contain the object in question and the
address of the DoGet routine, respectively. If there is a match, the routine is
executed before DoGet. (There is also an after routine, which is checked after the
verb routine has been called.)

(Note for clarity: the Art routine from HUGOLIB.H prints the appropriate article, if
any, followed by the name of the object. The Acquire routine returns true only if
the first object’s holding property plus the size property of the second object
does not exceed the capacity property of the first object.)

All of this may be a little confusing for now. There will be more on property
routines later. For now, think of a property as simply containing a value (or set of
values).

A property is defined similiarly to an attribute as

property <property name>

A default value may be defined for the property using

property <property name> <default value>

where <default value> is a constant or dictionary word. For objects without a
given property, attempting to find that property will result in the default value. If
no default is explicitly declared, it is 0.

The list of properties defined in HUGOLIB.H is:

29.

name the basic object name
before pre-verb routines
after post-verb routines
noun noun(s) for referring to object
adjective adjective(s) for describing object
article “a”, “an”, “the”, “some”, etc.
preposition “in”, “inside”, “outside of”, etc.
pronoun appropriate for the object in question
short_desc basic “X is here” description
initial_desc supersedes short_desc (or long_desc

 for locations)
long_desc detailed description
found_in in case of multiple locations (virtual,

 NOT physical, parent objects)
type to identify the type of object
n_to
ne_to
e_to
se_to
s_to
sw_to (for rooms only, where an exit leads)
w_to
nw_to
u_to
d_to
in_to
out_to
cant_go message if a direction is invalid
size for holding/inventory
capacity “ “ “
holding “ “ “
reach for limiting object accessibility
list_contents for overriding normal listing
door_to for handling “Enter <object>“
key_object if lockable, the proper key
when_open supersedes short_desc
when_closed “ “
ignore_response for characters
order_response “ “
contains_desc instead of basic “inside X are...”
inv_desc for special inventory descriptions
desc_detail parenthetical detail for object listing
parse_rank for differentiating like-named objects
exclude_from_all for interpreting “all” in inputs
misc for miscellaneous use

30.

(For a detailed description of how each property is used, see Appendix B: The
Library.)

(The following properties are also defined and used exclusively by the display
object:

screenwidth width of the display, in characters
screenheight height of the display, in characters
linelength width of the current text window
windowlines height of the current text window
cursor_column horizontal and vertical position of
cursor_row the cursor in the current text window
hasgraphics true if the current display is graphics-

 capable
title_caption dictionary entry giving the full proper

 name of the program (optional)

statusline_height of the last-printed status line

Note that while some of these, namely screenwidth through title_caption,
are defined as constants in the library, they are still usable as property references,
since both property numbers and constants are simple integers.)

Property names may again be aliased by

property <property2> alias <property1>

where <property1> has already been defined.

The library aliases (among others) the following:

nouns alias noun
adjectives alias adjective
prep alias preposition
pronouns alias pronoun

A property is expressed as

<object>.<property>

The number of elements to a property with more than a single value can be found
via

<object>.#<property>

and a single element is expressed as

31.

<object>.<property> #<element number>

NOTE: “<object>.<property>“ is simply the shortened version of
“<object>.<property> #1”.

To add some properties to the suitcase object, expand the object definition to

object suitcase "big green suitcase"
{

in emptyroom ! done earlier
is openable, not open !

nouns "suitcase", "case", "luggage"
adjective "big", "green", "suit"
article "a"
size 25
capacity 100

}

Based on the engine rules for object identification, the suitcase object may now be
referred to by the player as “big green suitcase”, “big case”, or “green suitcase”
among other combinations. Even “big green” and “suit” may be valid, provided
that these don’t also refer to other objects within valid scope such as “a big green
apple” or “your suit jacket”.

(NOTE: The basic form for identification by the parser is

<adjective 1> <adj. 2> <adj. 3>...<adj. n> <noun>

where any subset of these elements is allowable. However, the noun must come
last, and only one noun is recognized, so that

<noun> <noun> and <noun> <adjective>

as in

“luggage case” and “suitcase green”

are not recognized.)

One occasional source of befuddling code that doesn’t behave the way the
programmer intended is not allowing enough slots for a property on a given object.
 That is, if an object is originally defined with the property

found_in kitchen

and later, the program tries to set

32.

<object>.found_in #2 = livingroom

it will have no substantial effect. That is, there will be no space initialized in
<object>‘s property table for a second value under found_in. Trying to read
<object>.found_in #2 will return a value of 0--a non-existent property--not the
number of the livingroom object. (Running the debugger with runtime warnings
enabled will help spot instances like this.)

To overcome this, if it is known that eventually a second (or third, or fourth, or
ninth) value is going to be set--even if only one value is defined at the outset--use

found_in kitchen, 0[, 0, 0,...]

in the object definition.

(A useful shortcut for initializing multiple zero values is to use

found_in #4

instead of

found_in 0, 0, 0, 0

in the object definition.)

As might be expected, combinations of properties are read left-to-right, so that

location.n_to.name

is understood as

(location.n_to).name

III.d. Classes

Classes are essentially objects that are specifically intended to be used as prototypes
for one or more similar objects. Here is how a class is defined:

class <classname> ["<optional name>"]
{

...
}

with the body of the definition being the same as that for an object definition,
where the properties and attributes defined are to be the same for all members of
the class.

33.

For example:

class box
{

noun "box"
long_desc

"It looks like a regular old box."
is openable, not open

}

box largebox "large box"
{

article "a"
adjectives "big", "large"
is open

}

box greenbox "green box"
{

article "a"
adjective "green"
long_desc

"It looks like a regular old box, only green."
}

(Beginning the long_desc property routine on the line below the property name
is understood by the compiler as:

long_desc
{

"It looks like a regular old box, only green."
}

Since the property is only one line--a single printing command--the braces are
unnecessary.)

The definition of an object in a class is begun with the name of the prototype object
instead of “object”. All properties and attributes of the class are inherited (except
for its position in the object tree), unless they have been explicitly defined in the
new object.

That is, although the box class is defined without the open attribute, the largebox
object will begin the game as open, since this is in the largebox definition. It will
begin the game as openable, as well, as this is inherited from the box class.

And while the largebox object will have the long_desc of the box class, the
greenbox object replaces the default property routine with a new description. (An
exception to this is an “$additive” property, to be discussed later, where new
properties are added to those of previous classes.)

34.

Since a class is basically an object, it is possible to define an object using a previous
object as a class even though the previous object was not explicitly defined as a
class. Therefore,

largebox largeredbox "large red box"
{

adjectives "big", "large", "red"
}

is perfectly valid.

Occasionally, it may be necessary to have an object or class inherit from more than
one previously defined class. This can be done using the “inherits” instruction.

<class1> <objectname> "name"
{

inherits <class2>[, <class3>,...]
...

}

or even

object <objectname> "name"
{

inherits <class1>, <class2>[, <class3>,...]
...

}

The precedence of inheritance is in the order of occurrence. In either example, the
object inherits first from <class1>, then from <class2>, and so on (or even
<object1>, <object2>, etc.).

The Hugo Object Library (OBJLIB.H) contains a number of useful class definitions
for things like rooms, characters, scenery, vehicles, etc. Sometimes, however, it
may be desirable to use a different definition for, say, the room class while keeping
all the others in the Object Library.

Instead of actually editing the OBJLIB.H file, use:

replace <class> ["<optional name>"]
{

(...completely new object definition...)
}

where <class> is the name of a previously defined object or class, such as “room”.
 All subsequent references to <class> will use this object instead of the previously
defined one. (Note that this means that the replacement must come BEFORE any
uses of the class for other objects.)

35.

IV. HUGO PROGRAMMING

IV.a. Variables

Hugo supports two kinds of variables: global and local. Either type simply holds a
16-bit integer, so a variable can hold a simple value, an object number, a dictionary
address, a routine address, or any other standard Hugo data type through an
assignment such as:

a = 1
nextobj = parent(obj)
temp_word = "the"

Global variables are visible throughout the program. They must be defined
similarly to properties and attributes as

global <global variable name>[= <starting value>]

Local variables, on the other hand, are recognized only within the routine in which
they are defined. They are defined using

local <local variable name>[= <starting value>]

Global variables must of course have a unique name, different from that of any
other data object; local variables, on the other hand, may share the names of local
variables in other routines.

In either case, global or local, the default starting value is 0 if no other value is
given. For example,

global time_of_day = 1100

is equal to 1100 when the program is run, and is visible at any point in the
program, by any object or routine. On the other hand, the variables

local a, max = 100, t

are visible only within the block of code where they are defined, and are initialized
to 0, 100, and 0, respectively, each time that section of code (be it a routine,
property routine, event, etc.) is run.

The compiler defines a set of engine globals: global variables that are referenced
directly by the engine, but which may otherwise be treated like any other global
variables. These are:

36.

object direct object of a verb action
xobject indirect object
self self-referential object
words total number of words in command
player the player object
actor the player, or character obj. (for scripts)
verbroutine specified by the command
endflag if not false (0), run EndGame routine
prompt for input; default is “>“
objects the total number of objects
system_status after certain operations

The object and xobject globals are set up by the engine depending on what
command is entered by the player. The self global is undefined except when an
object is being referenced (as in a property routine). In that case, it is set to the
number of that object. The player variable holds the number of the object that the
player is controlling; the verbroutine variable holds the address of the routine
specified in the grammar table and corresponding to the entered command; the
endflag variable must be 0 unless something has occurred to end the game; and
the prompt variable represents the dictionary word appearing at the start of an
input line.

The objects variable can be set by the player, but to no useful effect. The engine
will reset it to the “real” value whenever referenced. (All object numbers range
from 0 to the value of objects.) The system_status variable may be read (after
a resource operation or a ‘system’ call; see the relevant sections for an explanation
of these functions) to check for an error value. See the section on “Resources” for
possible return values.

(NOTE: Setting endflag to a non-zero value forces an IMMEDIATE break from
the game loop. Statements following the endflag assignment even in the same
function are not executed; control is passed directly to the engine, which calls the
EndGame routine.)

IV.b. Constants

Constants are simply labels that represent a non-modifiable value.

constant FIRST_NAME "John"
constant LAST_NAME "Smith"

(Note the lack of an ‘=’ sign between, for example, FIRST_NAME and “John”.)

print LAST_NAME; ", "; FIRST_NAME

37.

outputs:

Smith, John

Constants can, like any other Hugo data type, be integers, dictionary entries, object
numbers, etc.

(It is not absolutely necessary that a constant be given a definite value if the
constant is to be used as some sort of flag or marker, etc. Therefore,

constant THIS_RESULT
constant THAT_RESULT

will have unique values from each other, as well as from any other constant
defined without a definite value.)

Sometimes it may be useful to enumerate a series of constants in sequence. Instead
of defining them all individually, it is possible to use:

enumerate start = 1
{

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY
}

giving:

MONDAY = 1, TUESDAY = 2, WEDNESDAY = 3, THURSDAY = 4,
FRIDAY = 5

The start value is optional. If omitted, it is 0. Also, it is possible to change the
current value at any point (therefore also affecting all following values).

enumerate
{

A, B, C = 5, D, E
}

gives: A = 0, B = 1, C = 5, D = 6, E = 7.

Finally, it is possible to alter the step value of the enumeration using the “step”
keyword followed by “+x”, “-x”, “*x”, or “/x”, where x is a constant integer value.
 To count by twos:

enumerate step *2
{

A = 1, B, C, D
}

38.

gives: A = 1, B = 2, C = 4, D = 8.

NOTE: Enumeration of global variables is also possible, using the ‘globals’
specifier, as in:

enumerate globals
{

<global1>, <global2>,...
}

Otherwise the specifier “constants” is implied as the default.

IV.c. Printing Text

Text can be printed using two different methods. The first is the basic ‘print’
command, the simplest form of which is

print "<string>"

where <string> consists of a series of alphanumeric characters and punctuation.

The backslash control character (“\”) is handled specially. It modifies how the
character following it in a string is treated.

\" inserts quotation marks
\\ insert a literal backslash character
_ insert a forced space, overriding left-justification for the rest of the

string
\n insert a forced newline

As usual, a single “\” at the end of a line signals that the line continues with the
following line.

Examples:

print "\"Hello!\""

"Hello!"

print "Print a...\n...newline"

Print a...
...newline

print "One\\two\\three"

39.

One\two\three

print " Left-justified"
print "_ Not left-justified"

Left-justified
 Not left-justified

print "This is a \
 single line."

This is a single line.

(Although

print "This is a
single line."

will produce the same result, since the line break occurs within quotation marks.)

NOTE: These control-character combinations are valid for printing only; they are
not treated as literals, as in, for example, expressions involving dictionary entries.

After each of the above print commands, a newline is printed. To avoid this,
append a semicolon (‘;’) to the end of the print statement.

print "This is a ";
print "single line."

This is a single line.

Print statements may also contain data types, or a combination of data types and
strings. The command

print "The "; object.name; " is closed."

will print the word located at the dictionary address specified by object.name, so
that if object.name points to the word “box”, the resulting output would be:

The box is closed.

To capitalize the first letter of the specified word, use the ‘capital‘ modifier.

print "The "; capital object.name; " is closed."

The Box is closed.

40.

To print the data type as a value instead of referencing the dictionary, use the
‘number’ modifier. For example, if the variable time holds the value 5,

print "There are "; number time; " seconds remaining."

There are 5 seconds remaining.

If ‘number’ were not used, the engine would try to find a word at the dictionary
address 5, and the result will likely be garbage.

NOTE: Mainly for debugging purposes, the modifier ‘hex’ prints the data type as
a hexadecimal number instead of a decimal one. If the variable val equals 127,

print number val; " is "; hex val; " in hexadecimal."

127 is 7F in hexadecimal.

The second way to print text is from the text bank, from which--if memory is in
short supply--sections are loaded from disk only when they are needed by the
program. This method is provided so that lengthy blocks of text--such as
description and narration--do not take up valuable space if memory is limited. The
command consists simply of a quoted string without any preceding statement.

"This string would be written to disk."

This string would be written to disk.

or

"So would this one ";
"and this one."

So would this one and this one.

Notice that a semicolon at the end of the statement still overrides the newline. The
in-string control-character combinations are still usable with these print statements,
but since each command is a single line, data types and other modifiers may not be
compounded. Because of that,

"\"Hello,\"" he said."

will write

“Hello,” he said.

to the .HEX file text bank, but

41.

"There are "; number time_left; " seconds remaining."

is illegal.

The color of text may be changed using the ‘color’ command (also usable with the
U.K. spelling “colour”). The format is

color <foreground>[, <background>[, <input color>]]

where the background color is not necessary. If no background color is specified,
the current one is assumed).

The input color is also not necessary--this refers to the color of player input.

The standard color set with corresponding values and constant labels is:

COLOR CONSTANT VALUE LABEL

Black 0 BLACK

Blue 1 BLUE

Green 2 GREEN

Cyan 3 CYAN

Red 4 RED

Magenta 5 MAGENTA

Brown 6 BROWN

White 7 WHITE

Dark gray 8 DARK_GRAY

Light blue 9 LIGHT_BLUE

Light green 10 LIGHT_GREEN

Light cyan 11 LIGHT_CYAN

Light red 12 LIGHT_RED

Light magenta 13 LIGHT_MAGENTA

Yellow 14 YELLOW

Bright white 15 BRIGHT_WHITE

Default foreground 16 DEF_FOREGROUND

Default background 17 DEF_BACKGROUND

Default statusline (fore) 18 DEF_SL_FOREGROUND

Default statusline (back) 19 DEF_SL_BACKGROUND

Match foreground 20 MATCH_FOREGROUND

(The labels are defined in HUGOLIB.H; when using the library, it is never necessary
to refer to a color by its numerical value.)

It is expected that, regardless of the system, any color will print visibly on any
other color. However, it is suggested for practicality that white (and less frequently

42.

bright while) be used for most text-printing. Blue and black are fairly standard
background colors.

Magenta printing on a cyan background is accomplished by

color MAGENTA, CYAN

or

color 5, 3 ! if not using HUGOLIB.H

A current line can be filled--with blank spaces in the current color--to a specified
column (essentially a tab stop) using the “print to...” structure as follows:

print "Time:"; to 40; "Date:"

where the value following ‘to’ does not exceed the maximum line length in the
engine global linelength.

The resulting output will be something like:

Time: Date:

Text can be specifically located using the ‘locate’ command via

locate <column>, <row>

where

locate 1, 1

places text output at the top left corner of the current text window. Neither
<column> nor <row> may exceed the current window boundaries--the engine will
automatically trim them as necessary.

IV.d. More Control Characters

As listed above, the following are valid control characters that may be embedded in
printed strings:

\" quotation marks
\\ a literal backslash character
_ a forced space, overriding left-justification for the rest of the string
\n a newline

43.

The next set of control characters control the appearance of printed text by turning
on and off boldface, italic, proportional, and underlined printing. Not all
computers and operating systems are able to provide all types of printed output;
however, the engine can be relied upon to properly process any formatting--i.e.,
proportionally printed text will still look fine even on a system that has only a
fixed-width font, such as MS-DOS (although, of course, it won’t be proportionally
spaced).

\B boldface on
\b boldface off
\I italics on
\i italics off
\P proportional printing on
\p proportional printing off
\U underlining on
\u underlining off

(Print style can also be changed using the Font routine in HUGOLIB.H. Font-
change constants can be combined as in:

Font(BOLD_ON | ITALICS_ON | PROP_OFF)

where the valid constants are BOLD_ON, BOLD_OFF, ITALICS_ON, ITALICS_OFF,
UNDERLINE_ON, UNDERLINE_OFF, PROP_ON, and PROP_OFF.)

Special characters can also be printed via control characters. Note that these
characters are contained in the Latin-1 character set; if a particular system is
incapable of displaying it, it will display the normal-ASCII equivalent. (The
following examples, appearing in parentheses, may not display properly on all
computers and printers.)

\` accent grave followed by a letter
e.g. “\`a” will print an ‘a’ with an accent
grave (à)

\’ accent acute followed by a letter
e.g. “\’E” will print an ‘E’ with an accent
acute (É)

\~ tilde followed by a letter
e.g. “\~n” will print an ‘n’ with a tilde (ñ)

\^ circumflex followed by a letter
e.g. “\^i” will print an ‘i’ with a
circumflex (î)

44.

\: umlaut followed by a letter
e.g. “\:u” will print a ‘u’ with an umlaut
(ü)

\, cedilla followed by c or C
e.g. “\,c” will print a ‘c’ with a cedilla (ç)

\< or \> Spanish quotation marks (« »)
\! upside-down exclamation point (¡)
\? upside-down question mark (¿)
\ae ae ligature (æ)
\AE AE ligature (Æ)
\c cents symbol (¢)
\L British pound (£)
\Y Japanese Yen (¥)
\- em dash (—)

\#xxx any ASCII character where xxx represents the three-digit ASCII
number of the character to be printed
e.g. “\#065” will print an ‘A’ (ASCII 65)

Example: Mixing Text Styles

! Sample routine to print various typefaces and colors:

#include "hugolib.h"

routine PrintingSample
{

print "Text may be printed in \Bboldface\b,
\Iitalics\i, \Uunderlined\u, or
\Pproportional\p typefaces."

color RED ! or color 4
print "\nGet ready. ";
color YELLOW ! color 14
print "Get set. ";
color GREEN ! color 2
print "Go!"

}

The output will be:

Text may be printed in boldface, italics, underlined, or
proportional typefaces.

Get ready. Get set. Go!

45.

with “boldface”, “italics”, “underlined”, and “proportional” printed in their
respective typefaces. “Get ready”, “Get set”, and “Go!” will all appear on the same
line in three different colors.

Note that not all computers will be able to print all typefaces. The basic MS-DOS
ports, for example, uses color changes instead of actual typeface changes, and does
not support proportional printing.

IV.e. Operators and Assignments

Hugo allows use of all standard math operators:

+ addition
- subtraction
* multiplication
/ integer division

Comparisons are also valid as operators, returning Boolean true or false (1 or 0) so
that

2 + (x = 1)
5 - (x > 1)

evaluate respectively to 3 and 5 if x is 1, and 2 and 4 if x is 2 or greater.

Valid relational operators are

= equal to
~= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

Logical operators (‘and’, ‘or’, and ‘not’) are also allowed.

(x and y) or (a and b)
(j + 5) and not ObjectisLight(k)

Using ‘and’ results in true (1) if both values are non-zero. Using ‘or’ results in true
if either is non-zero. ‘not’ results in true only if the following value is zero.

1 and 1 = 1
1 and 0 = 0
5 and 3 = 1

46.

0 and 9 = 0
0 and 169 and 1 = 0
1 and 12 and 1233 = 1

1 or 1 = 1
35 or 0 = 1
0 or 0 = 0

not 0 = 1
not 1 = 0
not 8 = 0

1 and 7 or (14 and not 0) = 1
(0 or not 1) and 3 = 0

Additionally, bitwise operators are provided:

1 & 1 = 1 (Bitwise and)
1 & 0 = 0
1 | 0 = 1 (Bitwise or)
1 | 1 = 1
~0 = -1 (Bitwise not/inverse)

(A detailed explanation of bitwise operations is a little beyond the scope of this
manual; programmers may occasionally use the ‘|’ operator to combine bitmask-
type parameters for certain library functions such as fonts and list-formats, but only
advanced users should have to worry about employing bitwise operators to any
great extent in practical programming.)

Any Hugo data type can appear in an expression, including routines, attribute
tests, properties, constants, and variables. Standard mathematical rules for order of
significance in evaluating an expression apply, so that parenthetical sub-
expressions are evaluated first, followed by multiplication and division, followed
by addition and subtraction.

Some sample combinations are:

10 + object.size ! integer constant and property
object is openable + 1 ! attribute test and constant
FindLight(location) + a ! return value and variable
1 and object is light ! constant, logical test,

! and attribute

Expressions can be evaluated and assigned to either a variable or a property.

<variable> = <expression>

<object>.<property> [#<element>] = <expression>

47.

In certain cases, the compiler may allow a statement where the left-hand side of the
assignment is non-modifiable. I.e.

Function() = <expression>

or

<object>.#<property> = <expression>

may be compiled, but such statements will force a run-time error from the Hugo
Engine.

IV.f. Efficient Operators

Something like

number_of_items = number_of_items + 1
if number_of_items > 10
{

print "Too many items!"
}

can be coded more simply as

if ++number_of_items > 10
{

print "Too many items!"
}

The ‘++’ operator increases the following variable by one before returning the value
of the variable. Similarly, ‘--’ can precede a variable to decrease the value by one
before returning it. Since these operators act before the value is returned, they are
called “pre-increment” and “pre-decrement”.

If ‘++’ or ‘--’ comes AFTER a variable, the value of the variable is returned and
then the value is increased or decreased, respectively. In these usages, the
operators are called “post-increment” and “post-decrement”.

For example,

while ++i < 5 ! pre-increment
{

print number i; " ";
}

will output:

48.

1 2 3 4

But

while i++ < 5 ! post-increment
{

print number i; " ";
}

will output:

1 2 3 4 5

Since in the second example, the variable is increased before getting the value,
while in the second example, it is increased after checking it.

It is also possible to use the operators ‘+=‘, ‘-=‘, ‘*=‘, ‘/=‘, ‘&=‘, and ‘|=‘. These can
also be used to modify a variable at the same time its value is being checked. All of
these, however, operate before the value in question is returned.

x = 5
y = 10
print "x = "; number x*=y; ", y = "; number y

Result:

x = 50, y = 10

When the compiler is processing any of the above lines, the efficient operator takes
precedence over a normal (i.e., single-character) operator.

For example,

x = y + ++z

is actually compiled as

x = y++ + z

since the ‘++’ is parsed first. To properly code this line with a pre-increment on the
z variable instead of a post-increment on y:

x = y + (++z)

49.

IV.g. Arrays and Strings

Prior to this point, little has been said about arrays. Arrays are sets of values that
share a common name, and where the elements are referenced by number. Arrays
are defined by

array <arrayname> [<array size>]

where <array size> must be a numerical constant.

An array definition reserves a block of memory of <array size> 16-bit words, so
that, for example,

array test_array[10]

initializes ten 16-bit words for the array.

Keep in mind that <array size> determines the size of the array, NOT the
maximum element number. Elements begin counting at 0, so that test_array,
with 10 elements, has members numbered from 0 to 9. Trying to access
test_array[10] or higher would return a meaningless value. (Trying to assign
it by mistake would likely overwrite something important, like the next-defined
array.)

To prevent such out-of-bounds array reading/writing, an array’s length may be
read via:

array[]

where no element number is specified. Using the above example,

print number test_array[]

would result in “10”.

Array elements can be assigned more than one at a time, as in

<arrayname> = <element1>, <element2>, ...

where <element1> and <element2> can be expressions or single values.

Elements need not be all of the same type, either, so that

test_array[0] = (10+5)*x, "Hello!", FindLight(location)

is perfectly legal (although perhaps not perfectly useful). More common is a usage
like

50.

names[0] = "Ned", "Sue", "Bob", "Maria"

or

test_array[2] = 5, 4, 3, 2, 1

The array can then be accessed by

print names[0]; " and "; names[3]

Ned and Maria

or

b = test_array[3] + test_array[5]

which would set the variable b to 4 + 2, or 6.

Because array space is statically allocated by the compiler, all arrays must be
declared at the global level. Local arrays are illegal, as are entire arrays passed as
arguments. However, single elements of arrays are valid arguments.

Significantly, it is possible to pass an array address as an argument, and the routine
can then access the elements of the array using the ‘array’ modifier. For example,
if items is an array containing:

items[0] = "apples"
items[1] = "oranges"
items[2] = "socks"

The following:

routine Test(v)
{

print array v[2]
}

can be called using

Test(items)

to produce the output “socks”, even though v is an argument (i.e., local variable),
and not an array. The line “print array v[2]” tells the engine to treat v as an
array address, not as a discrete value.

Array strings are also possible, and Hugo provides a way to store a dictionary
entry in an array as a series of characters using the ‘string’ command:

51.

string(<array address>, <dict. entry>, <max. length>)

(The <max. length> provision is required because the engine has no way of
checking for array boundaries.)

For example,

string(a, word[1], 10)

will store up to 10 characters from word[1] into a.

NOTE: It is expected in the preceding example that a would have at least 11
elements, since ‘string’ expects to store a terminating 0 or null character after the
string itself.

For example,

x = string(a, word[1], 10)

will store up to 10 characters of word[1] in the array a, and return the length of
the stored string to the variable x.

(The engine variables ‘parse$’ and ‘serial$’ may be used in place of the
dictionary entry address; see the section below on “Junction Routines: ParseError”
for a description.)

The library defines the functions StringCopy, StringEqual, StringLength,
and StringPrint, which are extremely useful when dealing with string arrays.

StringCopy copies one string array to another array.

StringCopy(<new array>, <old array>[, <length>])

For example,

StringCopy(a, b)

copies the contents of b to a, while

StringCopy(a, b, 5)

copies only up to 5 characters of b to a.

x = StringEqual(<string1>, <string2>)
x = StringCompare(<string1>, <string2>)

52.

StringEqual returns true only if the two specified string arrays are identical.
StringCompare returns 1 if <string1> is lexically greater than <string2>, -1 if
<string1> is lexically less than <string2>, and 0 if the two strings are identical.

StringLength returns the length of a string array, as in:

len = StringLength(a)

and StringPrint prints a string array (or part of it).

StringPrint(<array address>[, <start>, <end>])

For example, if a contains “presto”,

StringPrint(a)

will print “presto”, but

StringPrint(a, 1, 4)

will print “res”. (The <start> parameter in the first example defaults to 0, not 1--
the first numbered element in an array is 0.)

An interesting side-effect of being able to pass array addresses as arguments is that
it is possible to “cheat” the address, so that, for example,

StringCopy(a, b+2)

will copy b to a, beginning with the third letter of b (since the first letter of b is
b[0]).

It should also be kept in mind that string arrays and dictionary entries are two
entirely separate animals, and that comparing them directly is using
StringCompare is not possible. That is, while a dictionary entry is a simple value
representing an address, a string array is a series of values each representing a
character in the string.

The library provides the following to overcome this:

StringDictCompare(<array>, <dict. entry>)

which returns the same values (1, -1, 0) as StringCompare, depending on
whether the string array is lexically greater than, less than, or equal to the
dictionary entry.

(There is a complement to the ‘string’ command, the ‘dict’ function, that
dynamically creates a new dictionary entry at runtime. Its syntax is:

53.

x = dict(<array>, <maxlen>)
x = dict(parse$, <maxlen>)

where the contents of <array> or parse$ are written into the dictionary, to a
maximum of <maxlen> characters, and the address of the new word is returned.

However, since this requires extending the actual length of the dictionary table in
the game file, it is necessary to provide for this during compilation. Inserting

$MAXDICTEXTEND=<number>

at the start of the source file will write a buffer of <number> empty bytes at the end
of the dictionary. (MAXDICTEXTEND is, by default, 0.)

Dynamic dictionary extension is used primarily in situations where the player may
be able to, for example, name an object, then refer to that object by the new name.
In this case, the new words will have to exist in the dictionary, and must be written
using ‘dict’. However, a guideline for programmers is that there should be a limit
to how many new words the player can cause to be created, so that the total length
of the new entries never exceeds <number>, keeping in mind that the length of an
entry is the number of characters plus one (the byte representing the actual length).
 That is, the word “test” requires 5 bytes.)

Example: Managing Strings

#include "hugolib.h"

array s1[32]
array s2[10]
array s3[10]

routine StringTests
{

local a, len

a = "This is a sample string."
len = string(s1, a, 31)
string(s2, "Apple", 9)
string(s3, "Tomato", 9)

print "a = \""; a; "\""
print "(Dictionary address: "; number a; ")"
print "s1 contains \""; StringPrint(s1); "\""
print "(Array address: "; number s1;
print ", length = "; number len; ")"
print "s2 is \""; StringPrint(s2);
print "\", s3 is \""; StringPrint(s3); "\""

54.

"\nStringCompare(s1, s2) = ";
print number StringCompare(s1, s2)
"StringCompare(s1, s3) = ";
print number StringCompare(s1, s3)

}

The output will be:

a = "This is a sample string."
(Dictionary address = 887)
s1 contains "This is a sample string."
(Array address = 1625, length = 24)
s2 is "Apple", s3 is "Tomato"

StringCompare(s1, s2) = 1
StringCompare(s1, s3) = -1

As is evident above, a dictionary entry does not need to be a single word; any piece
of text which must be treated as a value gets entered into the dictionary table.

The argument 31 in the first call to the ‘string’ function allows up to 31 characters
from a to be copied to s1, but since the length of a is only 24 characters, only 25
values (including the terminating 0) get copied, and the string length of s1 is
returned in len.

Since “A(pple)” is lexically less than “T(his...)”, comparing the two returns -1. As
“To(mato)” is lexically greater than “Th(is...)”, StringCompare returns 1.

IV.h. Conditional Expressions And Program Flow

Program flow can be controlled using a variety of constructions, each of which is
built around an expression that evaluates to false (zero) or non-false (non-zero).

The most basic of these is the ‘if’ statement.

if <expression>
{...conditional code block...}

NOTE: The enclosing braces are not necessary if the code block is a single line.
Note also that the conditional block may begin (and even end) on the same line as
the ‘if’ statement provided that braces are used.

if <expression>
...single line...

if <expression> {...conditional code block...}

55.

If braces are not used for a single line, the compiler automatically inserts them,
although special care must be taken when constructing a block of code nesting
several single-line conditionals.

While

if <expression1>
if <expression2>

...conditional code block...

may be properly interpreted,

if <expression1>
for (...<expression2>...)

if <expression3>
...conditional code block...

will not be.

(Technically speaking, the compiler will misunderstand the end of the ‘for’ loop
construction because the enclosing conditional code block expects to end with the
‘for’ expression. In turn the ‘for’ expression does not properly differentiate the
end of the conditional loop. The result would likely be a stack overflow error in
the engine because the engine will continually nest the execution of recursive ‘for’
loops until it runs out of stack space.)

The proper way to structure that same section of code would be:

if <expression1>
{

for (...<expression2>...)
{

if <expression3>
...conditional code block...

}
}

NOTE: The best advice is to rely on braces to clarify code structure whenever
using such complex constructions. This applies particularly to mixing ‘if’, ‘for’,
‘while’ and “do-while” expressions, especially when recursive function calls are
involved. While the results may appear as intended, the method to produce them
is incorrect, and any long-running such construction is almost guaranteed to crash
the stack.

More elaborate uses of ‘if’ involve the use of ‘elseif’ and ‘else’.

if <expression1>

56.

...first conditional code block...
elseif <expression2>

...second conditional code block...
elseif <expression3>

...third conditional code block...
...
else

...default code block...

In this case, the engine evaluates each expression until it finds one that is true, and
then executes it. Control then passes to the next non-if/elseif/else statement
following the conditional construction. If no true expression is found, the default
code block is executed. If, for example, <expression1> evaluates to a non-false
value, then none of the following expressions are tested.

Of course, all three (‘if’, ‘elseif’, and ‘else’) need not be used every time, and
simple “if-elseif” and “if-else” combinations are perfectly valid.

In certain cases, the ‘if’ statement may not lend itself perfectly to clarity, and the
“select-case” construction may be more appropriate. The general form is:

select <var>
case <value1>[, <value2>, ...]

...first conditional code block...
case <value3>[, <value4>, ...]

...second conditional code block...
...
case else

..default code block...

In this case, the engine quickly performs an evaluation that is essentially

if <var> = <value1> [or <var> = <value2> ...]

There is no limit on the number of values (separated by commas) that can appear
on a line following ‘case’. The same rules for bracing multiple-line code blocks
apply as with ‘if’ (as well as for every other type of conditional block).

NOTE: Cases do not “fall through” to the following case. Think of cases following
the first as being ‘elseif’ statements rather than ‘if’ statements; once a true case
has been found, subsequent cases are ignored.

Basic loops may be coded using ‘while’ and “do-while”.

while <expression>
...conditional code block...

do
...conditional code block...

57.

while <expression>

Each of these executes the conditional code block as long as <expression> holds
true. It is assumed that the code block somehow alters <expression> so that at
some point it will become false; otherwise the loop will execute endlessly.

while x <= 10
x = x + 1

do
{x = x + 1
print “x is “; number x}

while x <= 10

The only difference between the two is that if <expression> is false at the outset,
the ‘while’ code block will never run. The “do-while” code block will run at
least once even if <expression> is false at the outset.

The most complex loop construction uses the ‘for’ statement.

for (<assignment>; <expression>; <modifier>)
...conditional code block...

For example:

for (i=1; i<=15; i=i+1)
print "i is "; number i

First, the engine executes the assignment setting “i = 1”. Then, it executes the
print statement. Next, it checks to see if the expression holds true (if i is less than
or equal to 15). If it does, it executes the print statement and the modifying
assignment that increments i. It continues the loop until the expression tests false.

Not all elements of the ‘for’ construction are necessary. For example, the
assignment may be omitted, as in

for (; i<=15; i=i+1)

and the engine will simply use the existing value of i.

With

for (i=1;;i=i+1)

The loop will execute endlessly, unless some other means of exit is provided.

The modifying expression does not have to be an expression. It may be a routine
that modifies a global variable, for example, which is then tested by the ‘for’ loop.

58.

(A second form of the ‘for’ loop is:

for <var> in <object>
...conditional code block...

which loops through all the children of <object> (if any), setting the variable
<var> to the object number of each child in sequence, so that

for i in suitcase
print i.name

will print the names of each object in the suitcase object.)

The easiest way to picture the first form of a Hugo ‘for’ loop is that

for (<assignment>; <expression>; <modifier>)
...conditional code block...

translates to the equivalent of

<assignment>
[while] <expression>
{

...conditional code block...
<modifier>

}

which in turn translates the equivalent of

<assignment>
:<label1>
[if] <expression>
{

...conditional code block...
<modifier>
jump <label1>

}

(On the other hand, that isn’t a particularly easy way to picture anything, and, in its
awkwardness, perhaps justifies the existence of non-threatening ‘while’,
“do-while”, and ‘for’ loops.)

The benefit in knowing how a Hugo loop breaks down into a slip knot of ‘if’ and
‘jump’ statements is that it is easier to monitor program flow using the Hugo
Debugger (see Appendix E).

As is now obvious by the above (possibly confusing) illustration, Hugo supports
‘jump’ commands and labels. A label is simply a user-specified token preceded by

59.

a colon (‘:’) at the beginning of a line. The label name must be a unique token in
the program. (Care should also be taken with using ‘jump’--it is generally far
preferable to use alternatives, as there exists a potential for overflowing the
engine’s stack when not using standard looping constructions.)

It is also important to recognize--particularly with ‘select’ and ‘while’ or
“do-while” statements--that the expression is tested each time the loop executes,
or, in the case of a ‘select’ statement, for each corresponding case. The
significance of this is seen in the following example

select test.prop_routine
case 1

{...}
case 2

{...}
case 3

{...}

where prop_routine returns a value from 1 to 3. The property routine will be
executed 3 separate times, once for each ‘case’ statement. If prop_routine has
some other effect, such as modifying a global variable or printing output, then this
will also occur 3 times.

If such an effect would be undesirable, try

local test_val ! set up a local variable
test_val = test.prop_routine ! and assign it
select test_val

case 1
{...}

...

so that test.prop_routine is called only once.

A similar case would be where

select random(3)
case 1: {...}
case 2: {...}
case 3: {...}

would result in something akin to:

if random(3) = 1: {...}
if random(3) = 2: {...}
if random(3) = 3: {...}

In other words, a different random value would be evaluated each time. A better
choice would be:

60.

local b
b = random(3)
select b

case 1: {...}
...

One final keyword is important in program flow, and that is ‘break’. At any point
during a loop, it may be necessary to exit immediately (and probably prematurely).
 ‘break’ passes control to the statement immediately following the current loop.

In the example

do
{

while <expression2>
{

...
if <expression3>

break
...

}
...

}
while <expression1>

the ‘break’ causes the immediately running ‘while’ <expression2> loop to
terminate, even if <expression2> is true. However, the external “do-while”
<expression1> loop continues to run.

It has been previously stated that lines ending in ‘and’ or ‘or’ are continued onto
the next line in the case of long conditional expressions. A second useful provision
is the ability to use a comma to separate options within a conditional expression.
As a result,

if word[1] = "one", "two", "three"
while object is open, not locked
if box not in livingroom, garage
if a ~= 1, 2, 3

are translated into

if word[1]="one" or word[1]="two" or word[1]="three"
while object is open and object is not locked
if box not in livingroom and box not in garage
if a ~= 1 and a ~= 1 and a ~= 3

respectively.

61.

Note that with an ‘=‘ or ‘in’ comparison, a comma results in an ‘or’ comparison.
With ‘~=‘ or an attribute comparison, the result is an ‘and’ comparison.

V. ROUTINES AND EVENTS

V.a. Routines

Routines are blocks of code that may be called at any point in a program. A routine
may or may not return a value, and it may or may not require a list of parameters
(or arguments). (A number of routines have occurred in previous examples, but
here is the formal explication.)

A routine is defined as

routine <routinename> [(<argument1>, <argument2>, ...)]
{

...
}

once again ensuring the the opening brace (‘{‘) comes on a new line following the
‘routine’ specifier.

(NOTE: To substitute a new routine for an existing one with the same name (such
as in a library file), define the new one using ‘replace’ instead of ‘routine’.

replace <routinename> [(<argument1>, <argument2>, ...)]

For example,

routine TestRoutine(obj)
{

print "The "; obj.name; " has a size of ";
print obj.size; "."
return obj.size

}

takes a single value as an argument, assigns it to a local variable obj, executes a
simple printing sequence, and returns the property value: obj.size. The
‘return’ keyword exits the current routine, and returns a value if specified.

Both

return

62.

and

return <expression>

are valid. If no expression is given, the routine returns 0. If no ‘return’ statement
at all is encountered, the routine continues until the closing brace (‘}’), then returns
0.

TestRoutine can be called several ways:

TestRoutine(suitcase)

will (assuming the suitcase object as been defined as previously illustrated) print

“The big green suitcase has a size of 25.”

The return value will be ignored. On the other hand,

x = TestRoutine(suitcase)

will print the same output, but will assign the return value of TestRoutine to the
variable x.

Now, unlike C and similar languages, Hugo does not require that routines follow a
strict prototype. Therefore, both

TestRoutine

and

TestRoutine(suitcase, 5)

are valid calls for the above routine.

In the first case, the argument obj defaults to 0, since no value is passed. The
parentheses are not necessary if no arguments are passed. In the second case, the
value 5 is passed to TestRoutine, but ignored.

Arguments are always passed by value, not by reference or address. A local
variable in one routine can never be altered by another routine. What this means is
that, for example, in the following routines:

routine TestRoutine
{

local a

a = 5

63.

Double(a)
print number a

}

routine Double(a)
{

a = a * 2
}

Calling TestRoutine would print “5” and not “10” because the local variable a in
Double is only a copy of the variable passed to it as an argument.

These two routines would, on the other hand, print “10”:

routine TestRoutine
{

local a

a = 5
a = Double(a)
print number a

}

routine Double(a)
{

return a * 2
}

The local a in TestRoutine is reassigned with the return value from Double.

An interesting side-effect of a null (0) return value can be seen using the ‘print’
command. Consider the The routine in HUGOLIB.H, which prints an object’s
definite article (i.e., “the”, if appropriate), followed by the object’s name property.

print "You open "; The(object); "."

might result in

You open the suitcase.

Note that the above ‘print’ command itself really only prints

"You open "

and

"."

It is the The routine that prints

64.

the suitcase

Since The returns 0 (the null string, or ““), the ‘print’ command is actually
displaying

"You open ", "", and "."

where the null string (““) is preceded on the output line by The’s printing of “the “
and the object name.

V.b. Property Routines

Property routines are slightly more complex than those described so far, but follow
the same basic rules. Normally, a property routine runs when the program
attempts to get the value of a property that contains a routine.

That is, instead of

size 10

an object may contain the property

size
{

return x + 5
}

Trying to read object.size in either case will return an integer value.

Here’s another example. Normally, if <object> is the current room, then
<object>.n_to would contain the object number of the room to the north. The
library checks <object>.n_to to see if a value exists for it; if none does, the move
is invalid.

Consider this:

n_to office

and

n_to
{“The office door is locked.”}

or

65.

n_to
{

“The office door is locked. “;
return false

}

In the first case, an attempt on the part of the player to move north would result in
parent(player) being changed to the office object. In the second case, a
custom invalid-move message would be displayed. In the third case, the custom
invalid-move message would be displayed, but then the library would continue as
if it had not found a n_to property for <object>, and it would print the standard
invalid-move message (without a newline, thanks to the semicolon):

“The office door is locked. You can’t go that way.”

NOTE: While normal routines return false (or 0) by default, property routines
return true (or 1) by default.

(For those wondering why the true return value in the second case doesn’t prompt
a move to object number 1, the library DoGo routine assumes that there will never
be a room object numbered one.)

Property routines may be run directly using the ‘run’ command:

run <object>.<property>

If <object> does not have <property>, or if <object>.<property> is not a
routine, nothing happens. Otherwise, the property routine executes. Property
routines do not take arguments.

Remember that at any point in a program, an existing property may be changed
using

<object>.<property> = <value>

A property routine may be changed using

<object>.<property> =
{

...
}

where the new routine must be enclosed in braces.

It is entirely possible to change what was once a property routine into a simple
value, or vice-versa, providing that space for the routine (and the required number
of elements) was allowed for in the original object definition. Even if a property

66.

routine is to be assigned later in the program, the property itself must still be
defined at the outset in the original object definition. A simple

<property> 0

or

<property> {return false}

will suffice.

There is, however, one drawback to this re-assignment of property values to
routines and vice-versa. A property routine is given a “length” of one 16-bit word,
which is the property address. When assigning a value or set of values to a
property routine, the engine behaves as if the property was originally defined for
this object with only one word of data, since it has no way of knowing the original
length of the property data.

For example, if the original property specification in the object definition was:

found_in bedroom, livingroom, garage

and at some point the following was executed:

found_in = {return basement}

then the following would not subsequently work:

found_in #3 = attic

because the engine now believes <object>.found_in to have only one 16-bit
word of data--a routine address--attached to it.

Finally, keep in mind that whenever calling a property routine, the global variable
self is normally set to the object number. To avoid this, such as when
“borrowing” a property from another object from within a different object,
reference the property via

<object>..<property>

using ‘..’ instead of the normal property operator.

Example: “Borrowing” Property Routines

Consider a situation where a class provides a particular property routine.
Normally, that routine is inherited by all objects defined using that class. But there

67.

may arise a situation where one of those objects must have a variation or expansion
on the original routine.

class food
{

bites_left 5
eating
{

self.bites_left = self.bites_left - 1
if self.bites_left = 0

remove self ! all gone
}

}

food health_food
{

eating
{

actor.health = actor.health + 1
run food..eating

}
}

(Assuming that bites_left, eating, and health are defined as properties, with
eating being called whenever a food object is eaten.)

In this case, it would be inconvenient to have to retype the entire food.eating
routine for the health_food object just because the latter must also increase
actor.health. Using ‘..’ calls food.eating with self set to health_food,
not the food class, so that food.eating affects health_food. This also allows
changes to be made to any property, attribute, or property routine in a class, and
that change will be reflected in all objects built from that class.

V.c. Before and After Routines

The Hugo Compiler predefines two special properties: before and after. They
are unique in that not only are they always routines, but they are much more
complex (and versatile) than a standard property routine.

Complex properties like before and after are defined with

property <property name> $complex <default value>

as in:

property before $complex
property after $complex

68.

Here is the syntax for the before property:

before
{

<usage1> <verbroutine1>[, <verbroutine2>,...]
{

...
}
<usage2> <verbroutine3>[, <verbroutine4>,...]
{

...
}
...

}

(The after property is the same, substituting ‘after’ for ‘before’.)

The <usage> specifier is a value against which the specified object is matched.
Most commonly, it is “object”, “xobject”, “location”, “actor”,
“parent(object)”, etc. The <verbroutine> is the name of a verb routine to
which the usage in question applies.

If <object>.before is checked, with the global verbroutine set to one of the
specified verbroutines in the before property, and <usage> in that instance is
“object”, then the following block of code is executed. If no match is found,
<object>.before returns false.

Here is a clearer example using the suitcase object we have been developing:

before
{

object DoEat
{

"You can’t eat the suitcase!"
}

}

after
{

object DoGet
{

"With a vigorous effort, you pick up
the suitcase."

}
xobject DoPutIn
{

"You put ";
The(object)
" into the suitcase."

}
}

69.

Each of these examples will return true, thereby overriding the engine’s default
operation (see the section on “The Game Loop”). In order to fool the engine into
continuing normally, as if no before or after property has been found, return
false from the property routine.

after
{

object DoGet
{"Fine. ";
return false}

}

will result in:

>get suitcase
Fine. Taken.

Since the after routine returns false, and the library’s default response for a
successful call to DoGet is “Taken.”

It is important to remember that, unlike other property routines, before and
after routines are additive; i.e., a before (or after) routine defined in an
inherited class or object is not overwritten by a new property routine in the new
object. Instead, the definition for the routine is--in essence--added onto. An
additive property is defined using the ‘$additive’ qualifier, as in:

property <property name> $additive <default value>

All previously inherited before/after subroutines are carried over. However,
the processing of a before/after property begins with the present object,
progressing backward through the object’s ancestry until a usage/verbroutine
match is found; once a match is made, no further preceding class inheritances are
processed (unless the property routine in question returns false).

NOTE: To force a before or after property routine to apply to ANY
verbroutine, do not specify a verbroutine.

For example,

before
{

xobject
{

...
}

}

70.

The specified routine will be run whenever the object in question is the xobject of
ANY valid input.

If this non-specific block occurs before any block(s) specifying verbroutines, then
the following blocks, if matched, will run as well so long as the block does not
return true. If the non-specific block comes after any other blocks, then it will run
only if no other object/verbroutine combination is matched.

A drawback of this non-specification is that all verbroutines are matched--both
verbs and xverbs. This can be particularly undesirable in the case of location
before/after properties, where a non-specific response will be triggered even
for ‘save’, ‘restore’, etc.

To get around this, the library provides a function AnyVerb, which takes an object
as its argument and returns that object number if the current verbroutine is not
within the group of xverbs; otherwise it returns false. Therefore, it can be used via:

before
{

AnyVerb(location)
{

...
}

}

instead of

before
{

location
{

...
}

}

The former will execute the conditional block of code whenever the location global
matches the current object and the current verbroutine is not an xverb. The latter
(without using AnyVerb), will run for verbs and xverbs. (The reason for this,
simply put, is that the location global always equals the location global(!).
But AnyVerb(location) will only equal the location global if the verbroutine
is not an xverb.)

Example: Building a Complex Object

At this point, enough material has been covered to develop a comprehensive
example of a functional object that will serve as a summary of concepts introduced

71.

so far, as well as providing instances of a number of common properties from
HUGOLIB.H.

object woodcabinet "wooden cabinet"
{

in emptyroom
article "a"
nouns "cabinet", "shelf", "shelves", \

"furniture", "doors", "door"
adjectives "wooden", "wood", "fine", "mahogany"

short_desc
"A wooden cabinet sits along one wall."

when_open
"An open wooden cabinet sits along one wall."

long_desc
{

"The cabinet is made of fine mahogany wood,
hand-crafted by a master cabinetmaker. In
front are two doors (presently ";
if self is open

print "open";
else: print "closed";
print ")."

}
contains_desc

"Behind the open doors of the cabinet you
can see"; ! note semicolon--no line feed

key_object cabinetkey ! a cabinetkey object
! must also be created

holding 0 ! starts off empty
capacity 100

before
{

object DoLookUnder
{"Nothing there but dust."}

object DoGet
{"The cabinet is far too heavy
to lift!"}

}
after
{

object DoLock
{"With a twist of the key, you lock the
cabinet up tight."}

}

is container, openable, not open
is lockable, static

}

72.

And for a challenge: how could the cabinet be converted into, say, a secret passage
into another room?

ANSWER: Add a door_to property, such as:

door_to secondroom ! a new room object

The cabinet can now be entered via: “go cabinet”, “get into cabinet”, “enter
cabinet”, etc.

V.d. Init and Main

At least two routines are typically part of every Hugo problem: “Init” and
“Main”. (The latter is required. The compiler will issue an error if no Main
routine exists.)

Init, if it exists, is called once at the start of the program (as well as during a
‘restart’ command). The routine should configure all variables, objects, and
arrays needed to begin the game.

Main is called every turn. It should take care of general game management such as
moving ahead the counter, as well as running events and scripts.

V.e. Events

Events are useful for bringing a game to life, so that little quirks, behaviors, and
occurrences can be provided for with little difficulty.

Events are also routines, but their special characteristic is that they may be attached
to a particular object, and they are run as a group by the ‘runevents’ command.

Events are defined as

event
{

...
}

for global events, and

event [in] <object>
{

...
}

73.

for events attached to a particular object. (The ‘in’ is optional, but may be useful
for legibility.) If an event is attached to an object, it is run only when that object has
the same grandparent as the player object (where grandparent refers to the last
object before 0, the nothing object).

NOTE: If the event is not a global event, the self global is set to the number of the
object to which the event is attached.

Example: Building a Clock Event

Suppose that there is a clock object in a room. Here is a possible routine:

event in clock
{

local minutes, hours

hours = counter / 60
minutes = counter - (hours * 60)

if minutes = 0
{

print "The clock chimes ";
select hour

case 1: print "one";
case 2: print "two";
case 3: print "three";
.
.
.
case 12: print "twelve";

print " o’clock."
}

}

Whenever the player and the clock are in the same room (when a runevents
command is given), the event will run.

Now, suppose the clock should be audible throughout the entire house--i.e., at any
point in the game map. Simply changing the event definition to

event ! no object is given
{

...
}

will make the event a global one. (In this case, the self global is not altered.)

74.

VI. FUSES, DAEMONS, AND SCRIPTS

While all of the above mentioned elements of Hugo are programmed into the
internal code of the engine, the means of running fuses, daemons, and scripts are
written entirely in Hugo itself and contained in the library (HUGOLIB.H).

VI.a. Fuses and Daemons

A daemon is the traditional name for a recurring activity. Hugo handles daemons
as special events attached to objects that may be activated or deactivated (i.e.,
moved in and out of the scope of runevents).

Since the daemon class is defined in the library, define a daemon itself using

daemon <name>
{}

The body of the daemon definition is empty. It is only needed to attach the
daemon event to, so the daemon definition must be followed by

event [in] <name>
{

...
}

Activate it by

Activate(<name>)

which moves the specified daemon object into scope of the player. This way,
whenever a ‘runevents’ command is given (as it should be in the Main routine),
the event attached to <name> will run.

Deactivate the daemon using

Deactivate(<name>)

which removes the daemon object from scope.

It can be seen here that a daemon is actually a special type of object which is moved
in and out of the scope of ‘runevents’, and that it is the event attached to the
daemon that actually contains the code.

75.

A fuse is the traditional name for a timer--i.e., any event set to happen after a
certain period of time. The fuse itself is a slightly more complex version of a
daemon object, containing two additional properties as well as in_scope:

timer - the number of turns before the fuse event runs
tick - a routine that decrements timer and returns the number of

turns remaining (i.e., the value of timer)

Similarly to a daemon, define a fuse in two steps

fuse <name>
{}

event [in] <name>
{

...
if not self.tick
{

...
}

}

and turn it on or off by

Activate(<name>, <setting>)

or

Deactivate(<name>)

where <setting> is the initial value of the timer property.

Note that it is up to the event itself to run the timer and check for its expiration.
The line

if not self.tick

runs the tick property--which decrements the timer--and executes the following
conditional block if self.timer is 0.

Example: A Simple Daemon and a Simpler Fuse

The most basic daemon would be something like a sleep counter, which measures
how far a player can go beginning from a certain rested state.

Assume that the player’s amount of rest is kept in a property called rest, which
decreases by 2 each turn.

76.

daemon gettired
{}

event in gettired
{

player.rest = player.rest - 2
if player.rest < 0

player.rest = 0

select player.rest
case 20

"You’re getting quite tired."
case 10

"You’re getting \Ivery\i tired."
case 0

"You fall asleep!"
}

Start and stop the daemon with Activate(gettired) and
Deactivate(gettired).

Now, as for a fuse, why not construct the most obvious example: that of a ticking
bomb? (Assume that there exists another physical bomb object; tickingbomb is
only the countdown fuse.)

fuse tickingbomb
{}

event in tickingbomb
{

if not self.tick
{

if Contains(location, bomb)
"You vanish in a nifty KABOOM!"

else
"You hear a distant KABOOM!"

remove bomb
}

}

Start it (with a countdown of 25 turns) and stop it with Activate(tickingbomb,
25) and Deactivate(tickingbomb).

VI.b. Scripts

Scripts are considerably more complex than fuses and daemons. The purpose of a
script (also called a character script) is to allow an object--usually a character--to
follow a sequence of actions turn-by-turn, independent of the player.

77.

Up to 16 scripts may be running at once. It is up the programmer not to overflow
this limit.

A script is represented by two arrays: scriptdata and setscript. The latter
was named for programming clarity rather than for what it actually contains.
Here’s why:

To define a script, use the following notation:

setscript[Script(<obj>, <number>)] = &CharRoutine, obj,
&CharRoutine, obj,
...

(remembering that a hanging comma at the end of a line of code is a signal to the
compiler that the line continues onto the next unbroken.)

Notice that “setscript” is actually an array, taking its starting element from the
return value of the Script routine, which has <object> and <number> as its
arguments.

Script returns a pointer within the large “setscript” array where the <number>
steps of a script for <object> may reside. A single script may have up to 32 steps.
A step in a script consists of a routine and an object--both are required, even if the
routine does not require an object. (Use the nothing object (0); see the CharWait
routine in HUGOLIB.H for reference.)

The custom in HUGOLIB.H is that character script routines use the prefix “Char”
although this is not required. Currently, routines provided include:

CharMove (requiring a direction object)
CharWait (using the nothing object)
CharGet (requiring a takeable object)
CharDrop (requiring an object held by the character)

as well as the special routine

LoopScript (using the nothing object)

which indicates that a script will continually execute. (It is the responsibility of the
programmer to ensure that the ending position of the character or object is suitable
to loop back to the beginning if LoopScript is used. That is, if the script consists
of a complex series of directions, the character should always return to the same
starting point.)

78.

The sequence of routines and objects for each script is stored in the setscript
array.

Scripts are run using the RunScripts routine, similar to runevents, the only
difference being that runevents is an engine command while RunScripts is
contained entirely in HUGOLIB.H.

The line

RunScripts

will run all active object/character scripts, one turn at a time, freeing the space used
by each once it has run its course.

Here is a sample script for a character named “Ned”:

setscript[Script(ned, 4)] = &CharMove, s_obj,
&CharGet, cannonball,
&CharMove, n_obj,
&CharWait, 0,
&CharDrop, cannonball

Ned will go south, retrieve the cannonball object, bring it north, wait a turn, and
drop it. (The character script routines provided in the library are relatively basic;
for example, CharGet assumes that the specified object will be there when the
character comes to get it.)

Other script-management routines in HUGOLIB.H include:

CancelScript(obj) to immediately halt execution of the script for
<obj>

PauseScript(obj) to temporarily pause execution of the script for
<obj>

ResumeScript(obj) to resume execution of a paused script

SkipScript(obj) skips the script for <obj> during the next call to
RunScripts only

The RunScripts routine also checks for before and after properties. It
continues with the default action--i.e., the character action routine specified in the
script--if it finds a false value.

To override a default character action routine, include a before property for the
character object using the following form:

79.

before
{

actor CharRoutine
{

...
}

}

where CharRoutine is CharWait, CharMove, CharGet, CharDrop, etc.

VI.c. A Note About the event_flag Global

The library routines--particularly the DoWait... verb routines--expect the
event_flag global variable to be set to a non-false value if something happens
(i.e., in an event or script) so that the player may be notified and given the
opportunity to quit waiting. For instance, the character script routines in
HUGOLIB.H set event_flag whenever a character does something in the same
location as the player.

If HUGOLIB.H is to be used, the convention of setting event_flag after every
significant event should be adhered to.

VII. GRAMMAR AND PARSING

VII.a. Grammar Definition

Every valid player command must specified. More precisely, each usage of a
particular verb must be detailed in full by the source code.

Grammar definitions must always come at the start of a program, preceding any
objects or executable code. That is, if several additional grammar files are to be
included, or new grammar is to be explicitly defined in the source code, it must be
done before any files containing executable code are included, or any routines,
objects, etc. are defined.

The syntax used is:

[x]verb "<verb1>" [, "<verb2>", "<verb3>",...]
* <syntax specification 1> <VerbRoutine1>
* <syntax specification 2> <VerbRoutine2>
...

80.

Now, what does that mean? Here are some examples from the library grammar file
VERBLIB.G:

verb "get"
* DoVague
* "up"/"out"/"off" DoExit
* "outof"/"offof"/"off" object DoExit
* "in"/"on" object DoEnter
* multinotheld "from"/"off" parent DoGet
* multinotheld "offof"/"outof" parent DoGet
* multinotheld DoGet

verb "take"
* DoVague
* "off" multiheld DoTakeOff
* multiheld "off" DoTakeOff
* multinotheld DoGet
* multinotheld "from"/"off" parent DoGet
* multinotheld "offof"/"outof" parent DoGet

xverb "save"
* DoSave
* "game" DoSave

verb "read", "peruse"
* DoVague
* readable DoRead

verb "unlock"
* DoVague
* lockable DoUnLock
* lockable "with" held DoUnLock

Each ‘verb’ or ‘xverb’ header begins a new verb definition. An ‘xverb’ is a
special signifier that indicates that the engine should not call the Main routine after
successful completion of the action. ‘xverb’ is typically used with non-action,
housekeeping-type verbs such as saving, restoring, quitting, and restarting.

Next in the header comes one or more verb words. Each of the specified words
will share the following verb grammar exactly. This is why “get” and “take” in the
above examples are defined separately, instead of as

verb "get", "take"

In this way, the commands

get up

and

81.

take off hat

are allowable, while

take up

and

get off hat

won’t make any sense.

Each line beginning with an asterisk (‘*’) is a separate valid usage of the verb being
defined. (Every player input line must begin with a verb. Exceptions, where a
command is directed to an object as in

Ned, get the ball

will be dealt with later.)

Up to two objects and any number of dictionary words may make up a syntax line.
 The objects must be separated by at least one dictionary word.

Valid object specifications are:

object any visible object (the direct object)
xobject the indirect object
attribute any visible object that is <attribute>
parent an xobject that is the parent of the object
held any object possessed by the player object
notheld an object explicitly not held
anything any object, held or not, visible or not
multi multiple visible objects
multiheld multiple held objects
multinotheld multiple notheld objects
number a positive integer number
word any dictionary word
string a quoted string
(RoutineName) a routine name, in parentheses
(objectname) a single object name, in parentheses

(If a number is specified in the grammar syntax, it will be passed to the verbroutine
in the object global. If a string is specified, it will be passed in the engine’s
parse$ variable, which can then be turned into a string array using the ‘string’
function.)

82.

Dictionary words that may be used interchangeably are separated by a slash (‘/’).

Two or more dictionary words in sequence must be specified separately. That is, in
the input line:

take hat out of suitcase

the syntax line

* object "out" "of" container

will be matched, while

* object "out of" container

would never be recognized, since the engine will automatically parse “out” and
“of” as two separate words; the parser will never find a match for “out of”.

Regarding object specification within the syntax line: Once the direct object has
been found, the remaining object in the input line will be stored as the xobject.
That is, in the example immediately above, a valid object in the input line with the
attribute container will be treated as the indirect object by the verb routine.

NOTE: An important point to remember when mixing dictionary words and
objects within a syntax line is that, unless directed differently, the parser may
confuse a word-object combination with an invalid object name. Consider the
following:

verb "pick"
* object DoGet
* "up" object DoGet

This definition will result in something like

>pick up box
You haven’t seen any "up box", nor are you likely to in the near future even
if such a thing exists.

(assuming that “up” has been defined elsewhere as part of a different object name,
as in OBJLIB.H), because the processor processes the syntax

* object

and determines that an invalid object name is being used; it never gets to

* "up" object

83.

The proper verb definition would be ordered like

verb "pick"
* "up" object DoGet
* object DoGet

so that both “pick <object>“ and “pick up <object>“ are valid player commands.

To define a new grammar condition that will take precedence over an existing one-
-such as in VERBLIB.G--simply define the new condition first (i.e., before
including VERBLIB.G).

NOTE: As a rule, unless you need to preempt the library’s normal grammar
processing, include any new grammar after the library files. (The reason for this is
that the library grammar is fairly carefully tuned to handle situations exactly like
that described above.)

A single object may be specified as the only valid object for a particular syntax:

verb "rub"
* (magic_lamp) DoRubMagicLamp

will produce a “You can’t do that with...” error for any object other than the
magic_lamp object.

Using a routine name to specify an object is slightly more involved: the engine
calls the given routine with the object specified in the input line as its argument; if
the routine returns true, the object is valid--if not, a parsing error is expected to
have been printed by the routine. If two routine names are used in a particular
syntax, such as

* (FirstRoutine) "with" (SecondRoutine)

then FirstRoutine validates the object and SecondRoutine validates the
xobject.

VII.b. The Parser

Immediately after an input line is received, the engine calls the parser, and the first
step taken is to identify any invalid words, i.e., words that are not in the dictionary
table.

NOTE: One non-dictionary word or phrase is allowed in an input line, providing it
is enclosed in quotation marks (““). If the command is successfully parsed and
matched, this string is passed to parse$. More than one non-dictionary word or
phrase (even if the additional phrases are enclosed in quotes) are not allowed.

84.

The next step is to break the line down into individual words. Words are separated
by spaces and basic punctuation (including “!” and “?”) which are removed. All
characters in an input line are converted to lower case.

The next step is to process the three types of special words which may be defined
in the source code.

REMOVALS are the simplest. These are simply words that are to be automatically
removed from any input line, and are basically limited to words such as “a” and
“the” which would, generally speaking, only make grammar matching more
complicated and difficult.

The syntax for defining a removal is:

removal "<word1>"[, "<word2>", "word<3>",...]

as in

removal "a", "an", "the"

PUNCTUATION is similar to a removal, except it specifies the removal of
individual characters instead of whole words:

punctuation "<character1>[<character2>...]

as in

punctuation "$%"

SYNONYMS are slightly more complex. These are words that will never be found
in the parsed input line; they are replaced by the specified word for which they are
a synonym.

synonym "<synonym>" for "<word>"

as in

synonym "myself" for "me"

The above example will replace every occurrence of “myself” in the input line with
“me”. Usage of synonyms will likely not be extensive, since of course it is possible
to, particularly in the case of object nouns and adjectives specify synonymous
words which are still treated as distinct.

COMPOUNDS are the final type of special word, specified as:

85.

compound "<word1>", "<word2>"

as in

compound "out", "of"

so that the input line

get hat out of suitcase

would be parsed to

get hat outof suitcase

Depending on the design of grammar tables for certain syntaxes, the use of
compounds may make grammar definition more straightforward, so that by using
the above compound,

verb "get"
* multinotheld "outof"/"offof"/"from" parent

is possible, and likely more desirable to

verb "get"
* multinotheld "out"/"off" "of" parent
* multinotheld "from" parent

When the parser has finished processing the input line, the result is a specially
defined (by the Hugo Engine) array called word, where the number of valid
elements is held in the global variable words.

Therefore, in

get the hat from the table

the parser--using the removals defined in HUGOLIB.H--will produce the following
results:

word[1] = "get"
word[2] = "hat"
word[3] = "from"
word[4] = "table"

words = 4

NOTE: Multiple-command input lines are also allowed, provided that the
individual commands are separated by a period (“.”).

86.

get hat. go n. go e.

would become

word[1] = "get"
word[2] = "hat"
word[3] = ""
word[4] = "go"
word[5] = "n"
word[6] = ""
word[7] = "go"
word[8] = "e"
word[9] = ""

words = 9

(See the Parse routine in HUGOLIB.H for an example of how

get hat then go n

is translated into:

word[1] = "get"
word[2] = "hat"
word[3] = ""
word[4] = "go"
word[5] = "n")

A maximum of thirty-two words is allowed. The period is in each case converted
to the null dictionary entry (““, address = 0), which is a signal to the engine that
processing of the current command should end here.

NOTE: The parsing and grammar routines also recognize several system words,
each in the format “~word”. These are:

~and referring to: multiple specific objects
~all “ “ multiple objects in general
~any “ “ any one of a list of objects
~except “ “ an excluded object
~oops to correct an error in the previous input line

To allow an input line to access any of these system words, a synonym must be
defined, such as

synonym "and" for "~and"

The library defines several such synonyms.

87.

VIII. JUNCTION ROUTINES

Because, simply put, the engine is unaware of such things as attributes, properties,
and objects in anything but a technical sense, there are provided a number of
routines to facilitate communication between the engine and the program proper.

Along with these junction routines are certain global variables and properties that
are pre-defined by the compiler and accessed by the engine. They are:

GLOBALS:
object the direct object of a verb
xobject the indirect object
self self-referential object
words total number of words
player the player object
location location of the player
verbroutine the verb routine address
endflag if not false (0), call EndGame
prompt for input line
objects total number of objects
system_status after certain operations

PROPERTIES:
name basic object name
before pre-verb routines
after post-verb routines
noun noun(s) for referring to object
adjective adjective(s) for referring to object
article “a”, “an”, “the”, “some”, etc.

(As well as the aliases nouns and adjectives for noun and
adjective, respectively, are defined by the library.)

Junction routines are not required. The engine has built-in default routines,
although these will likely not be satisfactory for most programmers. Therefore,
HUGOLIB.H contains each of the following routines which fully implement all the
features of the library. If a different routine is desired in place of a provided one,
the routine should be substituted using ‘replace’.

88.

VIII.a. Parse

The Parse routine, if one exists, is called by the engine parser. Here, the program
itself may modify the input line before grammar matching is attempted. What
happens is:

1. The input line is split into words (by the engine).
2. The Parse routine, if it exists, is called.
3. Control returns to the engine for grammar matching.

For example, the Parse routine in HUGOLIB.H takes care of such things as
pronouns (“he”, “she”, “it”, “them”) and repeating the last legal command (with
“again” or simply “g”).

Returning true from the Parse routine calls the engine parser again; returning
false continues normally. This is useful in case the Parse routine has changed the
input line substantially, requiring a reconfiguration of the already split words.

NOTE: Since the library’s Parse routine is rather extensive, a provision is made
for a PreParse routine--which in the library is defined as being empty--which
may more easily be replaced for additional parsing.

VIII.b. ParseError

The ParseError routine is called whenever a command is invalid. ParseError
is called in the form

ParseError(<errornumber>, <object>)

where <object> is the object number (if any) of the object involved in the error.

NOTE: The engine also sets up a special variable called ‘parse$’, usable only in a
print statement (or in conjunction with ‘string’), which represents the illegal
component of an input line, whether it is the verb itself, an object name, a partial
object name, or any other word combination. For example:

print "The illegal word was: "; parse$; "."

The default responses provided by the engine parse error routine are:

ERROR NUMBER RESPONSE

0 “What?”

1 “You can’t use the word <parse$>.”

89.

2 “Better start with a verb.”

3 “You can’t <parse$> multiple objects.”

4 “Can’t do that.”

5 “You haven’t seen any <parse$>, nor are you likely to in
the near future even if such a thing exists.”

6 “That doesn’t make any sense.”

7 “You can’t use multiple objects like that.”

8 “Which <parse$> do you mean,...?”

9 “Nothing to <parse$>.”

10 “You haven’t seen anything like that.”

11 “You don’t see that.”

12 “You can’t do that with the <parse$>.”

13 “You’ll have to be a little more specific.”

14 “You don’t see that there.”

15 “You don’t have that.”

16 “You’ll have to make a mistake first.”

17 “You can only correct one word at a time.”

The ParseError routine in HUGOLIB.H provides customized responses that take
into account such things as, for example, whether the player is first or second-
person, whether or not an object is a character or not, and if so, if it is male or
female, etc.

If the ParseError routine does not provide a response for a particular
<errornumber>, it should return false. Returning false is a signal that the engine
should continue with the default message. Returning 2 is a signal to reparse the
entire existing line (useful in cases where a peculiar syntax is trapped as an error,
changed, and must then be reparsed).

90.

NOTE: If custom error messages are desired for user parsing routines, replace the
routine CustomError with a new routine (called with the same parameters as
ParseError), providing that <errornumber> is greater than or equal to 100.

VIII.c. EndGame

The EndGame routine is called immediately whenever the global variable endflag
is non-zero, regardless of whether or not the current function has not yet been
terminated.

HUGOLIB.H’s EndGame routine behaves according to the value to which endflag
is set:

endflag RESULT

 1 Player wins

 2 Player’s demise

 (3 Other ending--not provided for by default PrintEndGame
routine)

Returning false from Endgame terminates the game completely; returning non-false
restarts.

NOTE: To modify only the message displayed at the end of the game (defaults:
“*** YOU’VE WON THE GAME! ***” and “*** YOU ARE DEAD ***”), replace the
PrintEndGame routine. Other than being non-false, the various values of
endflag are insignificant except to PrintEndGame

VIII.d. FindObject

The FindObject routine takes into account all the relevant properties, attributes,
and object hierarchy to determine whether or not a particular object is available.
For example, the child of a parent object may be available if the parent is a
platform, but unavailable if the parent is a container (and closed)--although
internally, the object hierarchy is the same.

FindObject is called via:

FindObject(<object>, <location>)

91.

where <object> is the object in question, and <location> is the object where its
availability is being tested. (Usually <location> is a room, unless a different
parent has been specified in the input line.)

FindObject returns true (1) if the object is available, false (0) if unavailable. It
returns 2 if the object is visible but not physically accessible.

The FindObject routine in HUGOLIB.H considers not only the location of
<object> in the object tree, but also tests the attributes of the parent to see if it is
open or closed. As well, it checks the found_in property, in case <object> has
been assigned multiple locations instead of an explicit parent, and then scans the
in_scope property of the object (if one exists).

Finally, the default behavior of the library’s FindObject requires that a player
have encountered an object for it to be valid in an action, i.e., it must have the
known attribute set. To override this, replace the routine ObjectisKnown with a
routine that returns an unconditional true value.

There is one special case in which the engine expects the FindObject routine to be
especially helpful: that is if the routine is called with <location> equal to 0. This
occurs whenever the engine needs to determine if an object is available at all--
regardless of any rules normally governing object availability--such as when an
‘anything’ grammar token is encountered, or the engine needs to disambiguate
two or more seemingly identical objects.

(Also, FindObject may be called by the engine with both <object> and
<location> equal to 0 to reset any library-based object disambiguation.)

VIII.e. SpeakTo

The SpeakTo routine is called whenever an input line begins with a valid object
name instead of a verb. This is so the player may direct commands to (usually)
characters in the game. For example:

Professor Plum, drop the lead pipe

It is up to the SpeakTo routine to properly interpret the instruction.

SpeakTo is called via:

SpeakTo(<character>)

where <character> in the above example would be the Professor Plum object.

92.

The globals object, xobject, and verbroutine are all set up as normal. For
the above example, then, these would be

object leadpipe
xobject nothing
verbroutine &DoDrop

when SpeakTo is called.

HUGOLIB.H’s SpeakTo routine provides basic interpretation of questions, so that

Professor Plum, what about the lead pipe?

may be directed to the proper verb routine, as if the player had typed:

ask Professor Plum about the lead pipe

Imperative commands are, such as

Colonel Mustard, stand up

are first directed to the order_response property of the character object in
question. It is subsequently up to <character>.order_response to analyze
verbroutine (as well as object and xobject, if applicable) to see if the request
is a valid one. If no response is provided, order_response should return false.

order_response
{

if verbroutine = &DoGet
"I would, but my back is too sore."

else
return false

}

VIII.f. Perform

The Perform routine is what is called by the engine in order to execute the
appropriate verbroutine with the given object(s) and/or indirect object, if either or
both are applicable. It is the responsibility of Perform to do the appropriate
checking of before routines to determine if execution actually gets to the
verbroutine.

Perform is called as:

Perform(<verbroutine>, <object>, <xobject>, <queue>)

93.

The first three arguments represent the match verb (always), object (if given), and
indirect object, i.e., the xobject (if given). The <queue> is 0 unless the verbroutine
is being called more than once for multiple objects. (As a special case, <queue> is
–1 if object or xobject is a number supplied in the input as one or more digits,
in order to signal Perform not to do normal before/after routine calling.)

For example, the various player commands might (approximately, depending on
verbroutine and object names) result in the routine calls:

>i
Perform(&DoInventory, 0, 0, 0)

>get key
Perform(&DoGet, key_object, 0, 0)

>put the key on the table
Perform(&DoGet, key_object, 0, 0)

>turn the dial to 127
Perform(&DoTurn, dial, 127, -1)

>get key and banana
Perform(&DoGet, key_object, 0, 1)
Perform(&DoGet, banana, 0, 2)

(If no Perform routine exists, the engine performs a default calling of
player.before, location.before, xobject.before, and object.before,
then finally verbroutine if none of those returns true.)

XI. THE GAME LOOP

This the paradigm that the Hugo Engine follows during program execution. (Also
mentioned are the calling of before routines and the verbroutine by Perform
in HUGOLIB.H. While not necessarily part of the game loop--since they may or
may not be included in a program--they are mentioned here because they are
relevant to any Hugo program that uses the standard Hugo Library.)

(INIT: The Init routine is called only when the program is first run, or
when a ‘restart’ command is issued.)

MAIN: At the start of the game loop, the engine calls the Main routine. The
routine should--as in the provided sample programs--take care of
advancing the turn counter, executing the ‘runevents’ command,
and calling such library routines as RunScripts and
PrintStatusLine.

94.

INPUT: Keyboard input is received.

PARSING: The input line is checked for validity, synonyms and other special
words are checked, and the user Parse routine (if any) is called.

GRAMMAR MATCHING:
The engine attempts to match the input line with a valid verb and
syntax in the grammar table. If no match is found, the engine loops
back to INPUT.

Otherwise, a successful grammar match results in at least the
verbroutine global being set, as well as potentially object and
xobject.

BEFORE ROUTINES (as called by Perform in HUGOLIB.H):
If any objects were specified in the input line, their before
properties are checked in the following order, for each object:

player.before
location.before
xobject.before (if applicable)
object.before (if applicable)

If any of these property routines returns true, the engine skips
the verb routine.

VERB ROUTINE (as called by Perform in HUGOLIB.H):
If no before property routine returns true, the verb
routine is run.

If an action is successfully completed, the verb routine
should return true. Returning false negates any
remaining commands in the input line.

Perform does not run any after property routines for
object or xobject; that is up to the verb routine. It
does run both player.after and location.after if
the verbroutine returns true.

(Control returns from the library Perform routine to the engine)

When finished, the engine loops back to MAIN, calling the Main routine only if the
last verb matched was not an xverb.

95.

Setting the global endflag at any point to a non-zero value will terminate the game
loop and run the EndGame junction routine.

NOTE: Undo information recalled by ‘undo’ is saved each turn only during the
Main routine (including any commands or functions called within, such as events,
fuses and daemons, or character scripts) and verb routines (unless the verb was an
xverb). It is therefore recommended that no other routines change any significant
game data, because it will not be recoverable with ‘undo’.

X. ADVANCED FEATURES

X.a. The Display Object

The engine provides access to the following read-only properties (although the
names themselves are defined in HUGOLIB.H):

screenwidth width of the display, in characters
screenheight height of the display, in characters
linelength width of the current text window
windowlines height of the current text window

cursor_column horizontal and vertical position of
cursor_row the cursor in the current text window

The Hugo Library also defines the normal read/writable:

statusline_height of the last-printed status line

In order for the engine to properly identify the display object, it selects the object (if
any) with the textual name “(display)”, i.e., an object that is defined as

object display
{

...
}

with no explicit textual name. This is how the Hugo Library defines the display
object, so that the various display object properties are readable as
display.screenheight, display.cursor_column, etc.

96.

X.b. Windows

It is possible to create an enclosing window within the full-screen display for text
output. Cursor position, line-wrapping, etc. are trimmed to the boundaries of the
current window. Cursor positioning and window boundaries are always
calculated in fixed-width character dimensions. Various syntaxes for the ‘window’
statement are:

window 0 Restores full-screen output

window n Creates a window of n lines, bordering
{...} on the top edge and sides of the full-screen

window l, t, r, b Creates a window with the top-left
{...} corner (l, t) and the bottom-right corner (r, b),

where these coordinates are character coordinates
on the full-screen

window Redraws the last-defined window
{...}

Each of these usages except “window 0” is followed by a block of code during
which, normally, text is output to the window.

The window (i.e., its boundaries) exists for the duration of the “{...}” block.
After it finishes, the top of the main text window is redefined as being immediately
below the lowest-drawn window. To clear the record of any window and restore
the main text window to the full-screen, use “window 0”.

An windowing library file exists called WINDOW.H which defines a window_class
and the associate properties so a window object can be created via:

window_class <window name> "title"
{

win_position <screen column>, <screen row>
win_size <columns>, <rows>

win_textcolor <text color>
win_backcolor <background color>
win_titlecolor <title text>
win_titleback <title background>

}

The window_class also incorporates the property routines win_init,
win_clear, and win_end.

97.

NOTE: It may be important to keep in mind that measures such as
display.screenwidth may change during execution, particularly in a graphical
user interface windowing environment which allows resizing of the Hugo program
window. For this reason, it is wise to resample display.<property> whenever
a window is to be drawn instead of basing the coordinates on, for example, a set of
boundaries calculated during program initialization.

X.c. Reading and Writing Files

There may be times when it will be useful to store data in a file for later recovery.
The most basic way of doing this involves

x = save

and

x = restore

where the ‘save’ and ‘restore’ functions return a true value to x if successful, or
a false value if for some reason they fail. In either case, the entire set of game data--
including object locations, variable values, arrays, attributes, etc.--is saved or
restored, respectively.

Other times, it may be desirable to save only certain values. For example, a
particular game may allow a player to create certain player characteristics or other
“remembered data” that can be restored in the same game or in different games.

To accomplish this, use the ‘writefile’ and ‘readfile’ operations.

The structure

writefile <filename>
{

...
}

will, at the start of the writefile block, open <filename> for writing and
position <filename> to the start of the (empty) file. (If the file exists, it will be
cleared/erased.) At the conclusion of the block, the file will be closed again.

Within a writefile block, write individual values using

writeval <value1>[, <value2>, ...]

where one or more values can be specified.

98.

To read the file, use the structure

readfile <filename>
{

...
}

which will contain the assignment

x = readval

for each value to be read, where x can be any storage type such as a variable,
property, etc.

For example,

local count, test

count = 10
writefile "testfile"
{

writeval count, "telephone", 10
test = FILE_CHECK
writeval test

}
if test ~= FILE_CHECK ! an error has occurred
{

print "An error has occurred."
}

will write the variable count, the dictionary entry “telephone”, and the value 10 to
“testfile”. Then,

local a, b, c, test

readfile "testfile"
{

a = readval
b = readval
c = readval
test = readval

}
if test ~= FILE_CHECK ! an error has occurred
{

print "Error reading file."
}

If the readfile block executes successfully, a will be equal to the former value
count, b will be “telephone”, and c will be 10.

99.

The constant FILE_CHECK, defined in HUGOLIB.H, is useful because writefile
and readfile provide no explicit error return to indicate failure. FILE_CHECK is
a unique two-byte sequence that can be used to test for success.

In the writefile block, if the block is exited prematurely due to an error, test
will never be set to FILE_CHECK. The ‘if’ statement following the block tests for
this.

In the readfile block, test will only be set to FILE_CHECK if the sequence of
readval functions finds the expected number of values in “testfile”. If there are
too many or too few values in “testfile”, or if an error forces an early exit from the
readfile block, test will equal a value other than FILE_CHECK.

XI. RESOURCES

The engine allows a Hugo program to access external data (called resources)
compiled into a specially formatted file called a resourcefile. A resourcefile is
created using:

resource "<resourcefile>"
{

"<resource1>"
"<resource2>"
...

}

The <resourcefile> name must be 8 or fewer alphanumeric characters which
will automatically be converted to all-uppercase. (The reason for this is to
maximize portability across different platforms and filenaming systems--
unfortunately not everyone adheres to the same conventions, so this restriction is
intended to reduce filenaming to the lowest common denominator.)

Currently v2.5 supports JPEG graphic files, RIFF/WAV audio samples, and
MOD/S3M/XM music modules as resources.

For example, here is an imaginary example resourcefile compiled on a Windows
95/NT platform:

resource "gameres1"
{

"c:\hugo\graphics\logo.jpg"
"h:\data\scenic panorama.jpg"
"h:\data\background.jpg"
"c:\music\intro_theme.s3m"
"c:\music\theme2.xm"
"c:\sounds\sample1.wav"

100.

"c:\sounds\sample2.wav"
}

It doesn’t matter that the nomenclature within a resource definition is non-portable.
 In the above “gameres1”, for example, the filenaming is specific to Windows
95/NT, since that’s where the original files will be found. The resources, however,
are accessed only by their filenames as entries in the resourcefile index. Therefore,
after “gameres1” is created, the three pictures are referred to as “logo”, “scenic
panorama” and “background” within the resourcefile “gameres1”. (Note that any
drive/path or extension specification is removed and not included in the index. As
a result, two resources with the same name but different paths/extensions cannot
be written into the same resourcefile.)

Because of the relative non-portability of resourcefiles (plus the additional time it
may take on slower machines to index and consolidate potentially hundreds of
kilobytes of data), it is recommended that resources be compiled from separate
source files than the rest of a Hugo game.

The library extension RESOURCE.H provides useful routines for managing
resources in a Hugo program.

It also defines the following potential values for system_status, which may be
tested after a resource operation. If system_status is non-zero (signifying
normal status), it will contain one of the following values:

-1 STAT_UNAVAILABLE
101 STAT_NOFILE
102 STAT_NORESOURCE
103 STAT_LOADERROR

XI.a. Pictures

A picture is displayed as a resource in a resourcefile using:

picture "<resourcefile>", "<picture>"

For example,

picture "gameres1", "logo"

(It is also possible to enter the path of a picture directly, such as

picture "c:\hugo\graphics\logo.jpg"

but since this path/filename is obviously operating-system-specific, it should be
used for testing only. If the named picture is not found in the given resourcefile,

101.

the engine will similarly try to load the picture as an independent file from the
current search path(s).)

The picture will be displayed in the currently defined text window. If the picture is
smaller than the current window, it will be centered. If larger, it will be shrunk to
fit. If the particular version of the Hugo Engine being used is not graphics-enabled,
‘picture’ will have no effect.

If the picture is not found or a recoverable error occurs during loading, normal
engine execution continues uninterrupted.

RESOURCE.H provides a couple of useful routines for managing graphics:

LoadPicture("resourcefile", "picture")
LoadPicture("picture")

PictureinText("file", "pic", width, height, preserve)
PictureinText("picture", width, height, preserve)

LoadPicture is essentially a simple wrapper for the ‘picture’ statement,
providing the additional service of checking display.hasgraphics to ensure
that graphics display is available.

PictureinText is slightly more complex. It allows a picture to be displayed in
the normal flow of text in the main window. The <width> and <height>
arguments give the fixed-width character dimensions of the display area. (Because
displays differ in their character dimensions, it is recommended to calculate these
based on display.screenwidth and display.screenheight instead of
passing absolute values.) The <preserve> parameter, if given, ensures that one or
more lines at the top of the screen are protected from scrolling off.

(Either LoadPicture or PictureinText can be called with only a picture, i.e.,
with no resourcefile named. In this case, RESOURCE.H will attempt to find the
resource in the last used resourcefile, stored in the last_resource_file global.
Because of the potential inaccuracy of this method, it is generally recommended to
always specify the resourcefile name.)

XI.b. Sound and Music

Sounds and music are played using the Hugo statements:

sound [repeat] <resourcefile>, <resource>[, <vol>]
music [repeat] <resourcefile>, <resource>[, <vol>]

The repeat keyword is optional; if supplied, it forces the engine to repeatedly
play the sound/music resource until further notice (i.e., until it is stopped or a new

102.

sound/music resource is played). The <vol> argument is optional. If given, it
gives a volume percentage (0-100) for playback.

Currently playing sound or music can be stopped using:

sound 0
music 0

RESOURCE.H provides a pair of wrapper functions to manage playing of audio
resources:

PlaySound(resourcefile, sample, loop, force)
PlayMusic(resourcefile, song, loop, force)

In either case, if <loop> is true, it has the same effect as using the repeat token
after ‘sound’ or ‘music’. If <force> is true, the sample or song is restarted even if
that same sample or song is already playing (otherwise the PlaySound or
PlayMusic call will have essentially no effect).

To stop a sample or song from playing via the library interface, use:

PlaySound(SOUND_STOP)
PlayMusic(MUSIC_STOP)

(where SOUND_STOP and MUSIC_STOP are constants defined in RESOURCE.H).

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

AND

DESCRIPTION: Logical and.

SYNTAX: x = <value1> and <value2>

RESULT: x will be true if <value1> and <value2> are both non-
zero, false if one or both is zero.

ANYTHING

DESCRIPTION: Object specifier in grammar syntax line,
indicating that any nameable object in the object
tree is valid.

103.

ARRAY

DESCRIPTION: When used as a data type modifier, specifies that
the following value is to be treated as an array
address.

EXAMPLE: <var1> = array <var2>[5]

The variable <var2> will be treated as an array address.

BREAK

DESCRIPTION: Terminates the immediate enclosing loop.

EXAMPLE: while <expression1>
{

while <expression2>
{

if <expression3>
break

...
}
...

}

The break statement, if encountered, will terminate the
innermost loop.

CALL

DESCRIPTION: Calls a routine indirectly, i.e., when the routine
address has been stored in a variable, object
property, etc.

SYNTAX: call <value>[(<arg1>, <arg2>,...)]

or

x = call <value>(...)

where <value> is a valid data type holding the routine
address.

VALUE: When used as a function, returns the value returned by
the specified routine.

104.

CAPITAL

DESCRIPTION: Print statement modifier, indicating that the next
word should be printed with the first letter
capitalized.

SYNTAX: print capital <address>

where <address> is any dictionary word, such as, for
example, an object.name property.

CASE

DESCRIPTION: Specifies a conditional case in a ‘select’
structure.

SYNTAX: select <val>
case <case1>[, <case2>,...]

...
case <case3>[, <case4>,...]

...

where <val> is value such as a variable, routine return
value, object property, array element, etc., and each
<case> is a single value for comparison (not an
expression).

CHILD

SYNTAX: x = child(<parent>)

RETURN VALUE: The object number of the immediate child object
of <parent>, or 0 if <parent> has no children.

CHILDREN

SYNTAX: x = children(<parent>)

RETURN VALUE: The number of child objects possessed by
<parent>.

CLS

105.

DESCRIPTION: Clears the current text window repositions the
output coordinates at the bottom left of the text
window.

SYNTAX: cls

COLOR (or COLOUR)

DESCRIPTION: Sets the display colors for text output.

SYNTAX: color <foreground>[, <background>]

where <background> is optional

PARAMETERS: Standard color values for <foreground> and
<background> (from HUGOLIB.H) are:

0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 White
8 Dark gray
9 Light blue
10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Light yellow
15 Bright white

DICT

DESCRIPTION: Dynamically creates a new dictionary entry at
runtime.

SYNTAX: x = dict(<array>, <maxlen>)

x = dict(parse$, <maxlen>)

106.

where <array> or parse$ holds the string to be
written into the dictionary, and <maxlen> represents
the maximum number of characters to be written.
Returns the new dictionary address. (NOTE: Space
should be reserved for any dictionary entries to be
created at runtime using the $MAXDICTEXTEND setting
during compilation.)

DO

DESCRIPTION: Marks the starting point of a do-while loop.

SYNTAX: do
{

...
}
while <expr>

The loop will continue to run as long as <expr> holds
true.

ELDER

SYNTAX: x = elder(<object>)

RETURN VALUE: The object number of the object preceding
<object> on the same branch in the object tree.
The reverse of ‘sibling’.

ELDEST

Same as ‘child’.

ELSE

DESCRIPTION: In an if-elseif-else conditional block,
indicates the default operation if no previous
condition has been met.

SYNTAX: if <condition>
...

else
...

107.

ELSEIF

DESCRIPTION: In an if-elseif-else conditional block,
indicates a condition that will be checked only if
no preceding condition has been met.

SYNTAX: if <condition1>
...

elseif <condition2>
...

elseif <condition3>
...

FALSE

DESCRIPTION: A predefined constant value: 0.

FOR

DESCRIPTION: Loop construction.

SYNTAX: for (<initial>; <test>; <mod>)
{

...
}

for <var> in <object>
{

...
}

For the first form, where <initial> is the initial
assignment expression (e.g. a = 1), <test> is the test
expression (e.g. a < 10), and <mod> is the modifying
expression (e.g. a = a + 1). The loop will execute as
long as <test> holds true.

The second form loops through all the children of
<object> (if any), setting <var> to each child object in
sequence.

HELD

108.

DESCRIPTION: Object specifier in grammar syntax line,
indicating that any single object possessed by the
player object is valid.

HEX

DESCRIPTION: Print statement modifier signifying that the
following value is not a dictionary address, but
should be printed as a hexadecimal number.

SYNTAX: print hex <var>

where, for example, <var> is equal to 26, will print
“1A”.

IF

DESCRIPTION: A conditional expression.

SYNTAX: if <condition>
...

where <condition> is an expression or value, will run
the following statement block only if <condition> is
true.

IN

DESCRIPTION: When used in an object definition, places the
object in the object tree as a possession of the
specified parent. When used in an expression,
returns true if the object is in the specified parent.

SYNTAX: in <parent>

or, for example:

if <object> [not] in <parent>
...

INPUT

109.

DESCRIPTION: Receive input from keyboard, storing the
dictionary addresses of the individual words in
the word array. Unrecognized words are given a
value of 0.

SYNTAX: input

IS

DESCRIPTION: Attribute assignment/testing.

SYNTAX: <object> is [not] <attribute>

USAGE: When used as an assignment on its own, will set (or
clear, if ‘not’ is used) the specified attribute for the
given object. May also be used in an expression.

RETURN VALUE: When used in an expression, returns true if
<object> has the specified attribute set (or
cleared, if ‘not’ is used). Otherwise, it returns
false.

JUMP

DESCRIPTION: Jumps to a specified label.

SYNTAX: jump <label>

where a unique <label> exists on a separate line
somewhere in the program, in the form:

:<label>

LOCAL

DESCRIPTION: Defines one or more variables local to the current
routine.

SYNTAX: local <var1>[, <var2>, <var3>,...]

LOCATE

110.

DESCRIPTION: Sets the cursor position within the current text
window.

SYNTAX: locate(<row>, <column>)

NOTE: The maximum horizontal/vertical cursor position is
constrained by the boundaries of the current text
window. The cursor position is calculated in fixed-
width character coordinates.

MOVE

DESCRIPTION: Moves an object with all its possessions to a new
parent.

SYNTAX: move <object> to <new parent>

MULTI

DESCRIPTION: Object specifier in grammar syntax line,
indicating that multiple available objects are
valid.

MULTIHELD

DESCRIPTION: Object specifier in grammar syntax line,
indicating that multiple objects possessed by the
player object are valid.

MULTINOTHELD

DESCRIPTION: Object specifier in grammar syntax line,
indicating that multiple objects explicitly not held
by the player object are valid.

MUSIC

DESCRIPTION: Load and play a song (if audio output is
available).

SYNTAX: music [repeat] "file", "song"[, vol]
music 0

111.

where <file> is a compiled Hugo resourcefile, and
<song> is a music module in MOD, S3M, or XM format.
 The optional <vol> argument, if given, ranges from 0
to 100 and gives a percentage of volume for playback. If
the ‘repeat’ token is used, the song continues to loop
until either a new song is played, or the current song is
stopped (using “music 0”).

NEARBY

DESCRIPTION: Used in an object definition to place the object in
the specified position in the object tree.

SYNTAX: nearby <object>

Gives the current object the same parent as <object>.

nearby

Gives the current object the same parent as the last-
defined object.

NEWLINE

DESCRIPTION: Print statement modifier, indicating that a line
feed and carriage return should be issued if the
current output position is not already at the start
of a blank line.

SYNTAX: print newline

NOT

DESCRIPTION: Logical not.

SYNTAX: x = not <value>

<object> is not <attribute>

RESULT: In the first example, x will be true if <value> is false, or
false if <value> is true.

112.

In the second, the specified attribute will be cleared for
<object> when used alone as an assignment. As part
of an expression, it will return true only if <object>
does not have <attribute> set.

NOTHELD

DESCRIPTION: Object specifier in grammar syntax line,
indicating that a single object explicitly not held
by the player object is valid.

NUMBER

DESCRIPTION: When used in a grammar syntax line, indicates
that a single positive integer number is valid.

When used as a print statement modifier,
indicates that the following value is not a
dictionary address, but should be printed as a
positive integer number.

SYNTAX: (for usage as a print statement modifier)

print number <val>

where, for example, <val> is equal to 100, will print
“100” instead of the word beginning at the address 100
in the dictionary table.

OBJECT

DESCRIPTION: Global variable holding the object number of the
direct object, if any, specified in the input line.

When used in a grammar syntax line, indicates
that a single available object is valid.

OR

DESCRIPTION: Logical or.

SYNTAX: x = <value1> or <value2>

113.

RESULT: x will be true if either <value1> or <value2> is non-
false, or false if both are false.

PARENT

(Usage 1)

SYNTAX: x = parent(<object>)

RETURN VALUE: The object number of <object>‘s parent object.

(Usage 2)

DESCRIPTION: When used in a grammar syntax line, indicates
that the domain for validating the availability of
the specified direct object should be set to the
parent object specified in the input line.

PARSE$

DESCRIPTION: Read-only engine variable that contains either the
offending portion of an invalid input line or any
section of the input line enclosed in quotes.

PAUSE

DESCRIPTION: Pauses until a key is pressed. The ASCII value of
the key is stored in word[0].

PICTURE

DESCRIPTION: Load and display a picture in the current text
window (if graphics are available).

SYNTAX: picture "<resourcefile>", "<picture>"
picture "<picturefile>"

where, while <resourcefile> is optional, it is very
highly recommended (otherwise, <picturefile> will
likely not be named in a cross-platform portable
format).

114.

PLAYBACK

DESCRIPTION: Plays back recorded commands from a file in
place of keyboard input.

SYNTAX: x = playback

RETURN VALUE: True if successful, false if not.

PRINT

DESCRIPTION: Print text output.

SYNTAX: print <output>

where <output> can consist of both test strings
enclosed in quotation marks (“...”), and values
representing dictionary addresses, such as object names.
 Separate components of <output> are separated by a
semicolon (‘;’). Each component may also be preceded
by a modifier such as ‘capital’, ‘hex’, or ‘number’.

PRINTCHAR

DESCRIPTION: Prints a character or series of characters at the
current cursor position. No newline is printed.

SYNTAX: printchar <val1>[, <val2>,...]

QUIT

DESCRIPTION: Terminates the game loop.

SYNTAX: quit

RANDOM

DESCRIPTION: Engine function which generates a random
number.

SYNTAX: x = random(<val>)

115.

RETURN VALUE: Where <val> is a positive integer number, will
return a random number between 1 and <val>,
inclusively.

READFILE

DESCRIPTION: A structure that allows values to be read from a
file written using writefile.

SYNTAX: readfile <filename>
{

...
}

The file is opened and positioned to the start at the
beginning of the readfile block, and closed at the end.

READVAL

DESCRIPTION: Reads a value in a readfile block.

SYNTAX: x = readval

VALUE: The value read, or 0 in the case of an error. Use the
FILE_CHECK constant defined in HUGOLIB.H to
determine if a readfile block has been executed
successfully. See the section above on “Reading and
Writing Files”.

RECORDOFF

DESCRIPTION: Ends recording commands to a file.

SYNTAX: x = recordoff

VALUE: True if successful, false if not.

RECORDON

DESCRIPTION: Begins recording commands to a file.

SYNTAX: x = recordon

116.

VALUE: True if successful, false if not.

REMOVE

DESCRIPTION: Removes an object from the object tree.

SYNTAX: remove <object>

(The same as: move <object> to 0)

RESTART

DESCRIPTION: Reloads the initial game data and calls the Init
routine.

SYNTAX: x = restart

NOTE: ‘Restart’ does not technically restart the engine; the
game loop continues uninterrupted after Init is called,
only with the game data restored to its initial state.

VALUE: True if successful, false if not.

RESTORE

DESCRIPTION: Restores a saved game’s state data by calling the
engine’s restore routine.

SYNTAX: x = restore

VALUE: True if successful, false if not.

RETURN

DESCRIPTION: Returns from a called routine.

SYNTAX: return [<expression>]

RETURN VALUE: Returns <expression> if provided, otherwise
returns false.

RUN

117.

DESCRIPTION: Runs an object property routine if one exists.

SYNTAX: run <object>.<property>

RETURN VALUE: None; any value returned by the property routine
is discarded.

RUNEVENTS

DESCRIPTION: Calls all events which are either global or
currently within the event scope of the player
object.

SYNTAX: runevents

SAVE

DESCRIPTION: Saves the current game state by calling the
engine’s save routine.

SYNTAX: x = save

VALUE: True if successful, false if not.

SCRIPTOFF

DESCRIPTION: Turns transcription off.

SYNTAX: x = scriptoff

VALUE: True if successful, false if not.

SCRIPTON

DESCRIPTION: Turns transcription (i.e., recording output to a file
or to a printer) on by calling the engine’s
transcription routine.

SYNTAX: x = scripton

VALUE: True if successful, false if not.

118.

SELECT

DESCRIPTION: Specifies the value for comparison in a select-
case conditional structure.

SYNTAX: select <val>
case <case1>[, <case2>,...]

...
case <case3>[, <case4>,...]

...

where <val> is value such as a variable, routine return
value, object property, array element, etc., and each
<case> is a single value for comparison (not an
expression).

SERIAL$

DESCRIPTION: Read-only engine variable that contains the serial
number as written by the compiler.

SIBLING

SYNTAX: x = sibling(<object>)

RETURN VALUE: The number of the object next to <object> on
the same branch of the object tree.

SOUND

DESCRIPTION: Load and and play an audio sample (if waveform
audio output is available).

SYNTAX: sound [repeat] "file", "sample"[, vol]
sound 0

where <file> is a compiled Hugo resourcefile, and
<sample> is a waveform sample in RIFF/WAV format.
 The optional <vol> argument, if given, ranges from 0
to 100 and gives a percentage of volume for playback. If
the ‘repeat’ token is used, the sample continues to loop
until either a new sample is played, or the current
sample is stopped (using “sound 0”).

119.

STRING

DESCRIPTION: When used in a grammar syntax line, indicates
that a string array enclosed in quotation marks is
valid.

When used as a function, stores a dictionary entry
in a string array.

SYNTAX: x = string(<array>, <dict>, <maxlen>)

x = string(<array>, parse$, <maxlen>)

where <array> is an array address, stores the either the
dictionary entry given by <dict> or the contents of
parse$ as a series of characters, to a maximum of
<maxlen> characters. Returns the length of the string
stored in <array>.

SYSTEM

DESCRIPTION: Built-in function to call low-level system
functions.

SYNTAX: system(<function>)

Function Label Description
11 READ_KEY Read keypress (key value)
21 NORMALIZE_RANDOM

Make random values predictable
22 INIT_RANDOM Restore “random” random values
31 PAUSE_SECOND Pause for one second
32 PAUSE_100TH_SECOND

Pause for 1/100th of a second

(Labels are defined as a constants in SYSTEM.H.)

If <function> is unavailable, the engine may set system_status
to -1 (STAT_UNAVAILABLE).

TEXT

120.

text to <val> Sends text to the array table, beginning at address
<val>.

text to 0 Restores normal printing.

TO

DESCRIPTION: In a print statement, prints blank spaces in the
current background color to the specified
position.

SYNTAX: print to <val>

where <val> is a positive integer less than or equal to
the maximum column position

TRUE

DESCRIPTION: Predefined constant: 1.

UNDO

DESCRIPTION: Attempts to recover the state of the game data
before the last player command.

SYNTAX: x = undo

VALUE: True if successful, false if not.

VERB

DESCRIPTION: Begins definition of a regular verb. Upon
returning true from the verb routine, Main is
called.

SYNTAX: verb "<word1>"[, "<word2>",...]

WHILE

DESCRIPTION: Component of while or do-while loop
construct.

121.

SYNTAX: while <expr>
...

(or)

do
...

while <expr>

where the loop will run as long as <expr> holds true.

WINDOW

DESCRIPTION: Switches output to the status window.

SYNTAX: window a[, b, c, d]
{...}

or

window
{...}

or

window 0

If only a single value <a> is given, a window of <a>
lines from the top of the screen is created. If more
values are given, a window from top-left (a, b) to
bottom-right (c, d) is created. If no values are given, the
last-defined window is recreated. The new boundaries
apply for the length of the following “{...}” code
block.

“window 0” restores full-screen display. There is no
following code block.

WRITEFILE

DESCRIPTION: A structure that writes values to a file that may be
read using readfile.

SYNTAX: writefile <filename>
{

...

122.

}

The file is opened and positioned to the start at the
beginning of the writefile block, and closed at the
end.

WRITEVAL

DESCRIPTION: Writes one or more values in a writefile block.

SYNTAX: writefile value1[, value2, ...]

XOBJECT

DESCRIPTION: Global variable holding the object number of the
indirect object, if any, specified in the input line.

When used in a grammar syntax line, indicates
that a single available object is valid.

XVERB

DESCRIPTION: Begins definition of non-action verb. Upon
returning from the verb routine, Main is not
called.

SYNTAX: xverb "<word1>"[,"<word2>",...]

YOUNGER

Same as ‘sibling’.

YOUNGEST

SYNTAX: x = youngest(<parent>)

RETURN VALUE: The number of the object most recently added to
parent <parent>.

123.

APPENDIX B: THE LIBRARY (HUGOLIB.H)

ATTRIBUTES

known if an object is known to the player
moved if an object has been moved
visited if a room has been visited
static if an object cannot be taken
plural for plural objects (i.e., some hats)
living if an object is a character
female if a character is female
unfriendly if a character is unfriendly
openable if an object can be opened
open if it is open
lockable if an object can be locked
locked if it is locked
light if an object is or provides light
readable if an object can be read
switchable if an object can be turned on or off
switchedon if it is on
clothing for objects that can be worn
worn if the object is being worn
mobile if the object can be rolled, etc.
enterable if an object is enterable
container if an object can hold other objects
platform if other objects can be placed on it

 (NOTE: container and platform are
 mutually exclusive)

hidden if an object is not to be listed
quiet if container or platform is quiet (i.e., the

 initial listing of contents is suppressed)
transparent if object is not opaque
already_listed if object has been pre-listed (i.e., before,

 for example, a WhatsIn listing)
workflag for system use
special for miscellaneous use

GLOBALS, CONSTANTS, AND ARRAYS

GLOBALS:

The first 10 globals are pre-defined by the compiler:

124.

object direct object of a verb action
xobject indirect object
self self-referential object
words total number of words
player the player object
actor player, or another char. (for scripts)
location location of the player object
verbroutine the verb routine
endflag if not false (0), run EndGame
prompt for input line
objects the total number of objects

player_person first (1), second (2), or third (3)
MAX_SCORE total possible score
MAX_RANK up to x levels of player ranking
FORMAT specifies text-printing format
DEFAULT_FONT initially 0; could be, for example, PROP_ON
STATUSTYPE 0=none, 1=score/turns, 2=time
TEXTCOLOR normal text color
BGCOLOR normal background color
BOLDCOLOR color for boldface printing
SL_TEXTCOLOR statusline text color
SL_BGCOLOR statusline background color
INDENT_SIZE for paragraph indenting
AFTER_PERIOD string of spaces following a full-stop
counter elapsed turns (or time, as desired)
score accumulated score
verbosity for room descriptions
list_nest used by ListObjects
light_source in location
event_flag set when something happens
speaking if the player is talking to a char.
old_location whenever location changes
last_object set by Perform to value of object
obstacle if something is stopping the player
best_parse_rank

for differentiating like-named objects
customerror_flag

true once CustomError is called
need_newline true when newline should be printed
override_indent

true if no indent should be printed
number_scripts number of active character scripts
it_obj to reference objects via pronouns
them_obj
him_obj

125.

her_obj
general for general use

ARRAYS:

replace_pronoun[4] for it_obj, him_obj, etc.
oldword[MAX_WORDS] for “again” command
scriptdata[48] for object scripts
array setscript[1024] the actual scripts
array ranking[10] in tandem with scoring

CONSTANTS:

BANNER should be printed in every game header
MAX_SCRIPTS that may be active at one time
MAX_WORDS in a parsed input line

Color constants:

BLACK DARK GRAY
BLUE LIGHT_BLUE
GREEN LIGHT_GREEN
CYAN LIGHT_CYAN
RED LIGHT_RED
MAGENTA LIGHT_MAGENTA
BROWN YELLOW
WHITE BRIGHT_WHITE

DEF_FOREGROUND DEF_BACKGROUND
DEF_SL_FOREGROUND DEF_SL_BACKGROUND
MATCH_FOREGROUND

Printing format masks (for setting FORMAT global):

LIST_F print itemized lists, not sentences
NORECURSE_F do not recurse object contents
NOINDENT_F do not indent listings
DESCFORM_F alternate room description formatting
GROUPPLURALS_F list plurals together where possible

Font style masks (for use with the Font routine):

BOLD_ON BOLD_OFF boldface
ITALIC_ON ITALIC_OFF italics
UNDERLINE_ON UNDERLINE_OFF underline

126.

PROP_ON PROP_OFF proportional printing

Additional constants:

UP_ARROW LEFT_ARROW for reading keystrokes
DOWN_ARROW ENTER_KEY
RIGHT_ARROW ESCAPE_KEY

AND_WORD (“and”) IN_WORD (“in”)
ARE_WORD (“are”) IS_WORD (“is”)
HERE_WORD (“here”) ON_WORD (“on”)

FILE_CHECK for verifying writefile/readfile operations

(The following are used only by specific routines:

ARRAYS:

_temp_array[256] used by string manipulation functions
menuitem[11] required by the Menu function

GLOBALS:

MENU_TEXTCOLOR normal menu text color
MENU_BGCOLOR normal menu background color
MENU_SELECTCOLOR menu highlight color
MENU_SELECTBGCOLOR menu highlight background color)

PROPERTIES

The first 6 properties are pre-defined by the compiler:

name basic object name
before pre-verb routines
after post-verb routines
noun (nouns) noun(s) for referring to object
adjective (adjectives)

adjective(s) describing object
article “a”, “an”, “the”, “some”, etc.

preposition (prep)
“in”, “inside”, “outside of”, etc., used generally for
room objects in order to give a grammatically correct

127.

description if necessary; also for containers and
platforms

pronoun “he”, “him”, “his” or equivalent, so that an object is
properly referred to

short_desc routine; basic “X is here” description

initial_desc routine; same as above, but if object has not been moved
and an initial_desc exists, it is called in place of
short_desc

long_desc routine; detailed description

found_in in case of multiple virtual (not “physical”) parents,
found_in may hold one or more object numbers; in
this case, an “in <object>” specifier should not be
included in the object definition, since found_in values
are unrelated to “object in parent” relationships

type to identify the type of object, used primarily by class
definitions in OBJLIB.H

size for holding/inventory purposes, contains a value
representing the size of an individual object

capacity contains a value representing the capacity of a
container or platform

holding contains a value representing the current encumbrance
of a container or platform

reach for enterable objects such as chairs, vehicles, etc., if the
accessibility of objects outside the object in question is
limited, reach contains a list of the objects which may be
accessed; if access is limited to the object in question
only, reach must still contain at least one non-false value
(i.e., the parent object itself)

list_contents a routine that overrides the normal contents listing for a
room or object; normal listing is only carried out if it
returns false

in_scope contains a list of actors or objects to which the object is
accessible beyond the use of the object tree or the
found_in property; generally contains either the player

128.

object (or, less commonly, another character) and is set
or cleared using PutInScope or RemoveFromScope

parse_rank when there is ambiguity between similarly named
objects, the parser will choose the one with a higher
parse_rank over one with a lower (or non-existant)
value--used when FindObject(<obj>, 0) is called

exclude_from_all
returns true if the object should be excluded from
actions such as “get all”

misc miscellaneous use

For room objects only:

n_to If a player can move to another
ne_to room object in direction X, then
e_to x_to holds the new room object
se_to
s_to
sw_to
w_to
nw_to
u_to
d_to
in_to
out_to

cant_go routine; message instead of default “You can’t go
that way.”

For non-room objects only:

door_to for handling “Enter <object>“, holds the object
number of the object to which an object enters
(where the latter behaves as a door or portal)

key_object if lockable, contains the object number of the
key

when_open routines; short descriptions for
when_closed openable objects

129.

If they exist, the appropriate when_open or
when_closed routine is called instead of
short_desc (if an initial_desc does not
exist, or if the object has been moved)

ignore_response for characters, a routine that runs if the character
ignores a player’s question, request, etc., instead
of the default “X ignores you.”

order_response also for characters, a routine that processes an
imperative command addressed to the character
by the player; it should return false if no response
is provided

contains_desc a routine that prints the introduction to a list of
child objects, instead of the default “Inside
<object> are...” or “<character> has...”;
contains_desc should always conclude with a
semicolon (‘;’) instead of a new line

inv_desc a routine that prints a special description when
the object is listed as part of the player’s
inventory; inv_desc should conclude with a
semicolon (‘;’)

desc_detail a routine that prints a parenthetical detail
following an object listing, such as: “ (which is
open)”; the leading space is expected, as are the
parentheses, and the print statement should
conclude with a semicolon (‘;’)

NOTE: It is recommended for property routines that print a description--such as
short_desc, initial_desc, etc.--that the routine not simply return true without
printing anything as a means of “hiding” the object; such a method may throw text
formatting into disarray. The proper means of omitting an object from a list is to
set the hidden attribute.

For the display object only:

Read-only:

screenwidth width of the display, in characters
screenheight height of the display, in characters
linelength width of the current text window
windowlines height of the current text window
cursor_column horizontal and vertical position of

130.

cursor_row the cursor in the current text window
hasgraphics true if the current display is graphics-

 capable

Read/writable:

title_caption dictionary entry giving the full proper
 name of the program (optional)

Defined in HUGOLIB.H:

statusline_height of the last-printed status line

(While screenwidth through title_caption are technically defined by
HUGOLIB.H as constants, they are used as property numbers to reference data on
the display object.)

ROUTINES

VERB ROUTINES:

VERBLIB.H (included by HUGOLIB.H) contains a fairly extensive set of basic
actions, each of which takes the form Do<verb>, so that the action for taking an
object is DoGet, the action for basic player movement is DoGo, etc.

Each is called by the engine when a grammar syntax line specifying the particular
verb routine is matched. Globals object and xobject are set up by the engine,
and the routine is called with no parameters.

Here is a list of the provided verb routines for action verbs:

DoAsk, DoAskQuestion, DoClose, DoDrop, DoEat, DoEnter,
DoExit, DoGet, DoGive, DoGo, DoHit, DoInventory,
DoListen, DoLock, DoLook, DoLookAround, DoLookIn,
DoLookThrough, DoLookUnder, DoMove, DoOpen, DoPutIn,
DoShow, DoSwitchOff, DoSwitchOn, DoTakeOff, DoTalk,
DoTell, DoUnlock, DoVague, DoWait, DoWaitforChar,
DoWaitUntil, DoWear

Here are the non-action verb routines:

DoBrief, DoQuit, DoRestart, DoRestore, DoSave, DoScore,
DoScriptOnOff, DoSuperbrief, DoVerbose

(NOTE: A set of verb stub routines is also available, including the actions:

131.

DoBurn, DoClimb, DoCut, DoDig, DoFollow, DoHelp, DoJump,
DoKiss, DoNo, DoPull, DoPush, DoSearch, DoSleep, DoSmell,
DoSorry, DoSwim, DoThrowAt, DoTie, DoTouch, DoUntie,
DoUse, DoWake, DoWakeCharacter, DoWave, DoWaveHands,
DoYell, DoYes

The default response for each of these stub routines is a more colorful variation of
“Try something else.” Any more meaningful response must be incorporated into
before property routines.

To use these verbs, set the VERBSTUBS flag before compiling HUGOLIB.H.

UTILITY ROUTINES, ETC.:

Routines may be treated as procedures or functions, given the idea that procedures
are more like commands, while functions are expected to return a value, as in:

Procedure(a, b)
x = Function(y)
if Function()...

Library routines that do not return a value are generally meant to be treated as
procedures; those that do return a value may be treated as either functions or
procedures.

First, the junction routines:

EndGame called by the engine via:
EndGame(end_type)

If end_type = 1, the game is won; if 2, the game is lost.
 (Since endflag may be any value, a value of, for
example, 3 will still call EndGame, but with no
additional effects via the default PrintEndGame

routine.) The global endflag is cleared upon calling.
Returning false from EndGame terminates the Hugo
Engine.

Also calls: PrintEndGame and PrintScore

FindObject called by the engine via:
FindObject(object, location)

Returns true (1) if the specified object is available in the
specified location, or false (0) if it is not. Returns 2 if the
object is visible but not physically accessible.

132.

The <location> argument is 0 during object
disambiguation performed by the engine.

Also calls: ObjectisKnown, ExcludeFromAll

Parse called by the engine via:
Parse()

Returning true forces the engine to re-parse the
modified input line.

Also calls: PreParse, AssignPronoun and
SetObjWord

ParseError called by the engine via:
ParseError(errornumber, object)

Returning false signals the engine to print the default
error message. Return 2 to force the existing line to be
reparsed as is.

May also call: CustomError

SpeakTo called by the engine via:
SpeakTo(character)

Globals object, xobject, and verbroutine are set
up as in a normal verb routine call.

Also calls: AssignPronoun

And the routines for grammatically-correct printing:

The calling form: The(object)

Prints the definite article form of the object name, e.g.
“the apple”

Art calling form: Art(object)

Prints the indefinite article form of the object name, e.g.
“an apple”

CThe calling form: CThe(object)

133.

Prints the capitalized definite article form of the object
name, e.g. “The apple”

CArt calling form: CArt(object)

Prints the capitalized indefinite article form of the object
name, e.g. “An apple”

IsorAre calling form: IsorAre(object[, formal])
where the parameter formal is optional

Depending on whether or not the specified object is
plural or singular, prints “‘re” or “‘s”, respectively (or
“ are” or “ is” if the formal parameter is specified as
true).

MatchPlural calling form: MatchPlural(object, w1, w2)

Prints the dictionary entry given by w1 if the supplied
object is not plural, or w2 if it is.

MatchSubject calling form: MatchSubject(object)

Matches a verb to the given subject <object>. If the
object is plural, nothing is printed; if the object is
singular, an “s” is printed.

NOTE: None of the above printing routines prints a carriage return, and all
return 0 (the null string). Therefore, either of the following usages are valid:

CThe(apple)
print “ is here.”

or

print CThe(apple); “ is here.”

Other routines:

Acquire calling form:
Acquire(parent, object)

Checks to see if parent.capacity is greater
than or equal to parent.holding plus

134.

object.size. If so, it moves object to the
specified parent, and returns true. If the object
cannot be moved, Acquire returns false.

Also calls: CalculateHolding

AnyVerb calling form:
AnyVerb(object)

Returns object if the current verbroutine is not an
xverb; otherwise it returns false.

AssignPronoun calling form:
AssignPronoun(object)

Sets the appropriate global it_obj, them_obj,
him_obj, or her_obj to the specified object.

CalculateHolding calling form:
CalculateHolding(object)

Properly recalculates object.holding based on
the sizes of all held objects.

CenterTitle calling form:
CenterTitle(text[, lines])

Clears the screen and centers the text given by the
specified dictionary entry in the top window.
The default height of the title (i.e., one line) can
be overridden with a second argument given the
number of lines.

CheckReach calling form:
CheckReach(object)

Checks to see if the specified object is within
reach of the player object. Returns true if
accessible; returns false--and prints an
appropriate message--if not.

Contains calling form:
Contains(parent, object)

Returns <object> if the specified object is
present as a possession of the specified parent,
even as a grandchild, otherwise returns false.

135.

CustomError calling form:
CustomError(errornumber, object)

Replace if custom error messages are desired. Is
called by ParseError whenever errornumber
is greater than or equal to 100, specifying a user
parser error. Should return false if no user
message is found.

DarkWarning calling form:
DarkWarning

Is called by MovePlayer whenever the player
object is moved into a location without a light
source. The default library routine simply prints
a message; for a more sinister response or action,
such as the death of the player, replace the
default with a new DarkWarning routine.

DeleteWord calling form:
DeleteWord(wordnumber[, number])

Deletes the number of words given by the second
argument--or only one word if no second
argument is given--starting with
word[wordnumber]. Returns the number of
words deleted.

DescribePlace calling form:
DescribePlace(location[, long])

Prints the location name and, when appropriate, a
location description (i.e., its long_desc).
Including a non-false long parameter will always
force a location description.

ExcludeFromAll calling form:
ExcludeFromAll(object)

Returns true if, based on the current
circumstances (verbroutine, etc.), the supplied
object should be excluded from actions using
“all”--such as multi, multiheld, and
multinotheld grammar tokens.

FindLight calling form:

136.

FindLight(location)

Checks to see if a light source is available in the
player’s location; if so, it sets the global
light_source to the object number of the
source and returns that value.

Also calls: ObjectIsLight

Font calling form:
Font(bitmask)

Sets the current font attributes as specified by
bitmask, where bitmask is one or more
font-style constants (see library constants, above)
combined with ‘|’ or ‘+’.

GetInput calling form:
GetInput([prompt string])

Receives input from the keyboard, storing
individual words in the word array; unknown
words--i.e., those that are not in the dictionary--
are assigned the null string, 0 or ““. If an
argument is passed, it is assumed to be a
dictionary address for the prompt string. If no
argument is passed, no prompt is printed.

HoursMinutes calling form:
HoursMinutes(counter[, military])

Prints the time in hh:mm format given that the
global counter represents the time in minutes
from 12:00 a.m. If the optional military value
is given as a true value, time is in 24-hour
“military” format.

Indent calling form:
Indent

If the NOINDENT_F bit is not set in the FORMAT
mask, Indent prints two spaces without printing
a newline

InList calling form:
InList(object, property, value)

137.

If <value> is in the list of values held in
<object>.<property>, returns the element
number of the (first) property element equal to
<value>; otherwise returns 0.

InsertWord calling form:
InsertWord(wordnumber[, number])

Makes space for either the number of words
given by the number argument--or one word if
no second argument is given--if possible, at
word[wordnumber], shifting upward all words
from that point to the end of the input line.
Returns the number of words inserted.

ListObjects calling form:
ListObjects(object)

Lists all the possessions of the specified object in
the appropriate form (according to the global
FORMAT). Possessions of possessions are listed
recursively if FORMAT does not contain the
NORECURSE_F bit. Format masks are combined,
as in:

FORMAT = LIST_F | NORECURSE_F | ...

Also calls: WhatsIn

Menu calling form:
Menu(number, [width[, selection]])

Prints a menu, given that the possible choices (up
to 10) are contained in the menuitem array, with
menuitem[0] is the title of the menu. A starting
selection number is optional. Returns the
number of the item selected, or 0 if none is
chosen.

Also calls: CenterTitle

Message calling form:
Message(&routine, num, a, b)

Used by most routines in HUGOLIB.H for text
output, so that the bulk of the library text is

138.

centralized in one location. Message number num
for the specified routine is printed; a and b are
optional parameters that may represent objects,
dictionary entries, or any other value.

(NOTE: Similar routines are provided in
VMessage in VERBLIB.H and OMessage in
OBJLIB.H.)

MovePlayer calling form:
MovePlayer(loc[, silent[, none]])
MovePlayer(dir[, silent[, none]])

Moves the player to the new location, properly
setting all relevant variables and attributes. If
<silent> is specified (as a true value), no room
description is printed following the move.

A direction object (i.e., n_obj, d_obj) may be
specified instead of a location; in this instance,
MovePlayer moves in that direction from the
player object’s present location.

If <none> is true, before/after routines are
not run.

Can be checked in a location’s before or after
property as “location MovePlayer” to catch a
player’s exit from or entrance to a location.

Returns the object number of the player object’s
new parent.

NOTE: MovePlayer does not check to see if a
move is valid; that must be done before calling
the routine.

May also call: DarkWarning

NumberWord calling form:
NumberWord(number[, true])

Prints a number in non-numerical word format,
where <number> is between -32768 to 32767.
Always returns 0 (the null string). If a second

139.

(true) argument is supplied, the word is
capitalized.

ObjectIs calling form:
ObjectIs(object)

Lists certain attributes, such as providing light
or being worn, of the given object in parenthetical
form.

ObjectisKnown calling form:
ObjectisKnown(object)

Returns true if the object is known to the player.

ObjectisLight calling form:
ObjectisLight(object)

Returns true if the object or one of its visible
possessions is providing light. If so, it also sets
the global light_source the object number of
the source.

ObjWord calling form:
ObjWord(word, object)

Returns either adjective or noun (i.e., the property
number) if the given is either an adjective or
noun of the specified object.

PreParse calling form:
PreParse

Provided so that, if needed, this routine may be
replaced instead of the more extensive library
Parse routine. The default routine defined in
the library is empty.

PrintEndGame calling form:
PrintEndGame(end_type)

Depending on whether end_type is 1 or 2, prints
“*** YOU’VE WON THE GAME! ***” or “*** YOU
ARE DEAD ***”.

PrintScore calling form:
PrintScore(end_of_game)

140.

Prints the score in the appropriate form,
depending on whether or not end_of_game is
true.

PrintStatusLine calling form:
PrintStatusLine

Prints the statusline in the appropriate format,
according to the global STATUSTYPE.

PropertyList calling form:
PropertyList(obj, property)

Lists the objects held in obj.property (if any),
returning the number of objects listed.

PutInScope calling form:
PutInScope(object, actor)

Makes <object> accessible to <actor>,
regardless of their respective locations, and
providing that the in_scope property of
<object> has at least one empty slot--i.e., one
that equals 0. Returns true if successful.

RemoveFromScope calling form:
RemoveFromScope(object, actor)

Removes <object> from the scope of <actor>.
 Returns true if successful, or false if <object>
was never in scope of <actor> to begin with.

SetObjWord calling form:
SetObjWord(position, object)

Inserts the specified object in the word array in
the format:

“adjective1 adjective2...noun”

ShortDescribe calling form:
ShortDescribe(object)

Prints the short description (short_desc) of the
given object, first checking to see if it should run
initial_desc, when_open, or when_closed,

141.

as appropriate. Then, if no short_desc

property exists, it prints a default “X is here.”

Also calls: WhatsIn

SpecialDesc calling form:
SpecialDesc(object)

Checks each child object of <object>, running
any appropriate initial_desc or inv_desc
property routines (depending on the calling
situation). Sets the global variable list_count
to the number of remaining (i.e., non-listed)
objects.

WhatsIn calling form:
WhatsIn(parent)

Lists the possessions of the specified parent,
according the form given by the global FORMAT.
Returns the number of objects listed.

Also calls: SpecialDesc, ListObjects

YesorNo calling form:
YesorNo

Checks to see if the just-received input is “yes”,
“y”, “no”, or “n”. If none of the above, it
prompts for a yes or no answer. Once a valid
answer is received, it returns true (if yes) or false
(if no).

AUXILIARY MATH ROUTINES:

abs calling form:
abs(a)

Returns the absolute value of <a>.

higher calling form:
higher(a, b)

Returns the higher number of <a> or .

142.

lower calling form:
lower(a, b)

Returns the lower number of <a> or .

mod calling form:
mod(a, b)

Returns the remainder of <a> divided by .

pow calling form:
pow(a, b)

Returns <a> to the power of . (The return
value is unpredictable if the result is outside the
boundary of -32768 to 32767.)

STRING ARRAY ROUTINES:

StringCompare calling form:
StringCompare(array1, array2)

Returns 1 if <array1> is lexically greater than
<array2>, -1 if <array1> is lexically less than
<array2>, and 0 if the strings are identical.

StringCopy calling form:
StringCopy(new, old[, len])

Copies the contents of the array at the address
given by <old> to the array at <new>, to a
maximum of <len> characters if <len> is given,
or the length of <old> if it isn’t.

StringDictCompare calling form:
StringDictCompare(array, dictentry)

Performs a StringCompare-like comparison of
a string array given by <array> and the
dictionary entry <dictentry>, returning 1, -1,
or 0 if <array> is lexically greater than, less
than, or equal to <dictentry>, respectively.

StringEqual calling form:
StringEqual(array1, array2)

143.

Returns true only if <array1> and <array2>
are identical.

StringLength calling form:
StringLength(array)

Returns the length of the string stored as
<array>.

StringPrint calling form:
StringPrint(array[, start, end])

Prints the string stored as <array>, beginning
with <start> and ending with <end> if given.

FUSE/DAEMON ROUTINES:

(See the earlier section on fuses and daemons for more information.)

Activate calling form:
Activate(object[, setting])

Activates the specified fuse or daemon object.
The setting value is only specified for fuses,
where it represents the initial value of the timer
property.

Deactivate calling form:
Deactivate(object)

Deactivates the specified fuse or daemon object.

CHARACTER SCRIPT ROUTINES:

(See the earlier section on character scripts for more information.)

CancelScript calling form:
CancelScript(character)

Immediately cancels the character script
associated with the object <character>.
Returns true if successful, i.e., if a script for
<character> is found.

PauseScript calling form:

144.

PauseScript(character)

Temporarily pauses the character script
associated with the object <character>.
Returns true if successful.

ResumeScript calling form:
ResumeScript(character)

Resumes execution of a paused script. Returns
true if successful.

SkipScript calling form:
SkipScript(character)

Skips execution of the script for <character>
during the next call to RunScripts only.

Script calling form:
Script(character, steps)

Initializes space for the requested number of
steps in the setscript array, sets up the data
for the script in the scriptdata array, and
returns the location of the script in setscript.
Returns -1 if MAX_SCRIPTS is exceeded.

RunScripts calling form:
RunScripts

Runs all active scripts, calling them in the form:

CharRoutine(character, object)

CHARACTER ACTION ROUTINES:

As a starting point, the library also provides a limited number of routines for
character objects to use in scripts. They are:

&CharWait, 0

&CharMove, direction_object (requires OBJLIB.H)

&CharGet, object

&CharDrop, object

145.

and

&LoopScript, 0

CONDITIONAL COMPILATION:

A number of compiler flags may be set which exclude certain portions of
HUGOLIB.H from compilation if these functions or objects are not required.

FLAG: EXCLUDES:

NO_AUX_MATH Auxiliary math routines
NO_FUSES Fuses and daemons
NO_MENUS Use of the Menu function
NO_OBJLIB OBJLIB.H
NO_RECORDING Command recording functions
NO_SCRIPTS Character scripting routines
NO_STRING_ARRAYS String array functions
NO_VERBS All action verbs
NO_XVERBS All non-action verbs

APPENDIX C: LIMIT SETTINGS

NOTE: The default settings for the complete set of limits may be obtained by
invoking the compiler via:

hc $list

(The following limits are static and non-modifiable, since they reflect the internal
configuration of the Hugo Engine:

MAXATTRIBUTES The maximum number of definable attributes,
not counting aliases

MAXGLOBALS The maximum number of definable global
variables

MAXLOCALS The maximum number of local variables allowed
in a routine, including arguments passed to the
routine)

The following are the modifiable settings, which may be setting using:

146.

$<setting>=<new limit>

either in the invocation line or in the source code.

MAXALIASES The maximum number of aliases that may be
defined for attributes and/or properties

MAXARRAYS The maximum number of arrays that may be
defined (not the total array space, which is
automatically reserved)

MAXCONSTANTS The maximum number of constants

MAXDICT The maximum number of entries that the
compiler can enter into the dictionary table

MAXDICTEXTEND The total number of bytes (not the total number
of entries) available for dynamic dictionary
extension during runtime

MAXEVENTS The maximum number of global or object-linked
events

MAXFLAGS The maximum number of compiler flags that may
be set at one time to control conditional
compilation

MAXLABELS The maximum number of labels that may be
defined in an entire program

MAXOBJECTS The maximum number of objects and/or classes
that may be created

MAXPROPERTIES The maximum number of properties that may be
defined

MAXROUTINES The maximum number of stand-alone routines
(not property routines) that may be defined

APPENDIX D: PRECOMPILED HEADERS

It is possible to compile files that would normally be included using the #include
directive into a precompiled header file that may be linked using #link, as in:

147.

#link "<filename.HLB>"

The advantage of doing this is primarily one of faster compilation speed; files that
are used over and over again without alteration (such as HUGOLIB.H) may be
precompiled so that they are not recompiled every time.

The #link directive must come after any grammar, but before any definitions of
attributes, properties, globals, objects, synonyms, etc. Grammar is illegal in a
precompiled header.

To create a precompiled header, use the -h directive when invoking the Hugo
Compiler. The file HUGOLIB.HUG serves as a good example. Compile it via

hc -h hugolib.hug

in order to generate HUGOLIB.HLB.

Next, change occurrences of

#include "hugolib.h"

in Hugo programs to

#link "hugolib.hlb"

Change the definition for the main routine from

routine main
{...

to

replace main
{...

since HUGOLIB.HUG contains a temporary main routine.

NOTE: Any conditional compilation flags set in the Hugo program will have no
effect on the compiled code in HUGOLIB.HLB, since the routines included in or
excluded from HUGOLIB.HLB are determined by the flags set in HUGOLIB.HUG. It
is recommended that a Hugo user using precompiled headers compile a version of
HUGOLIB.HUG that includes HUGOFIX.H and/or VERBSTUB.H as desired.

It is generally not possible to include multiple precompiled .HLB headers compiled
in separate passes via subsequent #links in the same source file. Because of the
absolute references assigned to data such as dictionary addresses, attribute

148.

numbers, etc., such an attempt will produce an “Incompatible precompiled
headers” error.

However, for games that are composed of separate sections that can be combined
into distinct files, it may make sense to precompile one .HUG file containing all the
common elements that will be used by the separate sections--such as the player
object, etc.--and which #includes or #links the library in it. Then, this new
.HLB file can be #linked in each of the separate sections during development and
testing. Of course, each of the separate sections will have to be #included in a
single master file for building the full release version.

Finally, it is advisable that precompiled headers be used only in building .HEX
files during the design/testing stage in order to facilitate faster development. The
reason is that the linker does not selectively include routine calls; the entire .HLB
file is loaded during the link phase. As a result, Hugo files produced using
precompiled headers--especially if existing routines in the .HLB file are replaced in
the source--tend to be larger and therefore less economical in their memory usage.
For this reason, it is recommended that #include be used for building release
versions instead of #linking the corresponding precompiled header.

APPENDIX E: THE HUGO DEBUGGER

The Hugo Debugger is a valuable part of the Hugo design system. It allows a
programmer to monitor all aspects of program execution, including watching
expressions, modifying values, moving objects, etc.--all things expected of a
modern source-level debugger.

The Hugo Debugger is not technically a source-level debugger, however. During
its development, its author has referred to it as a source(ish) level debugger--what
the debugger does, in effect, is to “decompile” compiled code into the tokens and
symbols that comprise each line of code. The result is a nearly exact approximation
of the original source code.

In order to be used with the debugger, a Hugo program must be compiled using
the -d switch in order to create an .HDX debuggable file with additional data such
as names for objects, variables, properties, etc.

(Note that .HDX files can be run by the engine, but .HEX files cannot be run by the
debugger because of the additional data required.)

The MS-DOS convention for running the debugger is:

hd <filename>

149.

The debugger will begin on the debugging screen. Switch back-and-forth from the
actual game screen by pressing Tab.

At this point, it is probably best to select “Shortcut Keys” from the Help menu,
since the actual keystrokes for running the debugger may vary from system to
system. (It is possible to operate the debugger entirely through menus, but this
soon becomes tedious for operations like stepping line-by-line.)

The file HDHELP.HLP should be in the same directory as HD.EXE--this is the online
help file for the debugger, containing information on such things as:

Printing

Windows and Views, including:

Code Window - Showing the current program exactly as
executed, in (almost) source-level format

Watch Window - Allowing any variable expression to be
watched/evaluated at any time during execution

Calls - Giving the sequence of nested routine calls at
any given point

Breakpoints - Listing all active breakpoints

Local Variables - Listing all local variables, as values, objects,
dictionary entries, etc.

Property/Attribute Aliases

Auxiliary Window

Output

Running a program, including:

Finish Routine - While stepping, continues execution without
stepping to the end of the current routine

Stepping Through Code
- Allows line-by-line execution

Skipping Over Code

150.

- Allows the next statement to be passed over
without executing

Stepping Backward - Allows retracing of code execution, possibly
after values are changed, etc.

Searching Code - Searches the record of executed code for any
given string

Watch Expressions - Allows watching multiple variable values or
expressions, and to set a breakpoint should a
desired value/expression evaluate non-false

Setting or Modifying Values
- Any variable, property, array value, or object
attribute can be set or reset to a valid value at any
point during execution

Breakpoints - A code address, routine, or property routine can
be given--control is then passed to the debugger
on encountering a breakpoint

Object Tree - At any point, the entire object tree (or just a
branch of it) may be displayed

Moving Objects - It is possible to dynamically move objects
around the object tree

Runtime Warnings - Optional runtime warnings instruct the
debugger to alert the user to common causes of
problem code which, while syntactically valid
and therefore acceptable to the compiler, is in
context probably not what was intended.

Setup - Allowing changes in color scheme (if
applicable), printer, etc.

Hugo Compiler, Engine, Debugger, Library, and the Hugo Manual
Copyright © 1995-1998 by Kent Tessman

<generalcoffee@geocities.com>
http://www.geocities.com/hollywood/academy/5976/hugo.html

