.

.
-

i mﬁwm\\\\w“\““““'""”' ; ‘ - - ;EE{B

o s
S




‘

EDITORIAL

REPLY TO THE MICRO USER

It is with some regret that we are forced to take up space in this
magazine to reply to an ugly and quite unjustified item in the normally
reputable journal 'The Micro User'. A news item in the June 1984 issue of
that magazine implied that BEEBUG was what it called a "PSEUDO USER GROUP",
and that we had attempted to "muscle in on the user group scene",
maintaining that we had been "expelled" by the Association of Computer Clubs
(ACC) because we were a commercial group with no amateur status.

In practice, although it is a fine point, we were not expelled; the ACC
was reconstituted with new rules in October 1983 and now requires all
affiliated clubs to be amateur. Like a number of other previously affiliated
clubs BEEBUG does not meet with this condition; though we are informed that
we could apply for so-called corporate status of the ACC if we so wished. To
say that we have been expelled is to give quite the wrong impression. We
have committed no misdemeanour, and are on good terms with members of the
ACC executive.

The article also implies that we are a "pseudo user group" because we are
not an amateur club. This is patent nonsense. A footballer does not become a
psuedo-footballer when he moves from amateur to professional status. Or to
take another example, the RAC (Royal Automobile Club - user support for car
owners) is not a "pseudo" motoring organisation because it is commercial. In

practice it is only by being commercial that the RAC can provide the service
that it does.

It is the same with BEEBUG. It is only possible to provide our current
level of support for BBC micro users by being commercial - by employing full
time editorial, software and production staff etc. At the same time however ,
we have great respect for the many non-commercial computer clubs and
societies; each has its own part to play in supporting microcomputer users.

We understand that the Micro User news item in question was published
without the knowledge of the editor Mike Bibby; and we have now received an
assurance by Derek Meakin, Managing Director of Database publications, that
the records will be "put straight".

NOTICEBOARD

Because of the space taken up by the editorial comment above, this
month's Noticeboard items appear on page 29.

BEEBUG JULY 1984 Volume-3 Issue




GENERAL CONTENTS

2 Editorial
4 BEEBUG Plays Bach
7 The Acorn 6502 Second Processor Reviewed
11 BEEBUG Workshop
Some Further String Handling Routines
13 Multi-Screen Slide Show
18 A Fast Colour Fill Routine
21 Beginners Start Here
Building a Procedure/Function library
23 A Printer Spooler Utility
28 Freezing and Saving Screen Displays
29 Noticeboard
30 Viewsheet and Ultracalc
Two Spreadsheet Packages for the Beeb
33 Snip Snap
36 Fortress — A Superb Game from Pace
37 Dive Bomber
41 Points Arising
HINTS, TIPS & INFO PROGRAMS
6 Function Key Listing of Envelopes 4 Bach Music
6 Quick Screen Fill 11 Workshop Routines
6 Undocumented OSWORD Calls in Acorn DFS 13 Multi-Screen Slide Show
22 Instant VDU Effects Using Control 18 Colour Fill Routine
27 LISTO Abbreviation 23 Printer Spooler Utility
32 Graphics Extension ROM Variables 28 Screen Freezer and Saver
32 Phase Selection in Micropower’s “Croaker” 33 Snip Snap Game
32 Relocate Program Function Key 37 Dive Bomber Game

36 Contemporary Improvisations

BEEBUG

JULY 1984 Volume-3 Issue 3



4

Tt on 350 =18" BEEBUG PLAYS BACH (32K)

by Brian Knott

In BEEBUG Vol.2 No.9 we published a program to play Bach's Cantata

No. 147, and here we follow that with a graphical,

musical,

as well as

version of Bach's Invention number 13. The author is the

winner of the Roman Numeral Brainteaser Competition with the program
'Stonemason’ that we also published in the March issue.

Due to the popular response to the
piece of Bach we published previously,
we present another, this time with a
delightful animated screen display. The
graphics are most amusing and depict
the kind of scene one might expect with
a virtuoso performance such as this.
The curtains are drawn back to reveal a
pianist sitting at a grand piano, and
while the music plays he taps his foot,
the candles flicker in the candelabra,
and from time to time he turns to face
the audience.

Once you have typed the program in,
taking particular care with the data
at the end, and saved it to cassette or
disc, you just need to run it and sit
back and enjoy the performance.

PROGRAM NOTES

Each note is held as a three
character string, with the data for the
notes starting at line 162@. The note
is read into DD$ in line 199 and then
decoded in lines 278 to 294. PP%
contains the channel number, which is
then passed to P% at line 260. The
envelope is determined in line 27@¢, the
pitch is set in line 280 and the
duration in line 299.

All in all this program is great fun
and the effort required to type it in
is very well rewarded.

19 REM PROGRAM BACH2

200 REM VERSION Bg.3

3% REM AUTHOR B.KNOTT
40 REM BEEBUG JULY 1984
50 REM PROGRAM SUBJECT TO COPYRIGHT
60 =

100 ON ERROR GOTO 1750
119 MODE1

126 VDU23,1,0;0;0;:0:

138 PROCchar

149 PROCloud

15¢ PROCpic

160 PROCxtra

170 REM *** MAIN ROUTINE ***

180 F3=120:G3=120:TIME=12

199 FORX%=1TOC%:READDS : PP$=VALLEFTS (D
$,1) :R$=MIDS (DS, 2,1) : S$=RIGHTS (DS, 1)

200 Y%= (12)+19: IFTIME>50 GCOL@,1:M
OVES544,320:VDU127, 2332 F$=X%: GCOLG, B2 TIM
E=0

210 IFX3=F%+2GCOLJ,1:MOVES44, 320 :VDUT
27,231:GC0LY, 0

220 IF X% MOD 110=@ MOVE444,576:VDU12
7,127,248,249,10,127,127, 250, 251 :G3=

230 IF X%=G%+7 AND RND(2)=1 MOVE444,57
6:VDU127,127,252,253,10,127,127,254, 255

240 IF X3=G3+15 MOVE444,576:VDU127,12
7,244,245,19,127,127,246,247

250 IFX% MOD Y%= MOVE644 ,614:VDU1 27,
235: MOVE612,622:VDU127,235: MOVES80,614:
VDU127,235:MOVE612,614:VDU234: MOVES580 , 6
22:VDU234:MOVE548,61 4:VDU234:GCOLG, 1:MO
VE612,614:VDU235:MOVESSS, 622: VDU235: MOV
E548,614:VDU235: GCOLY, 0

260 P3=PP+ (253ANDPPS>3) + (253ANDPPS>6)

27¢ IFRS="<" Q%=0 ELSEQ%=1

280 R%=(ASC(RS)~60) *4—11

290 S%=3* (ASC(S$)-59)

300 SOUNDP%,0%,R%,S%

310 NEXT

320 MOVE444,576:VDU1 27,127,248,249,10
£127,127,250,251

330 VDU26, 39, 4 )]

BEEBUG

JULY 1984

Volume-3 Issue 3



5

340 END
350 =

1099 DEFPROCloud

1810 REM *** SET VOLUME, ENVELOPE, COL
OURS, WINDOWS ***

1029 RESTORE1620:C%=579

1930 REPEAT:PRINTTAB(8,16) "WHAT VOLUME
LEVEL (1-4) ?":L%=GET-48:UNTIL L%>0 AN
D L%<5:ALA%=16+(L%*22) :ENVELOPE1,1,0,0,
9,9,9,9,127,-1,-1,-1,ALA%,0

1049 VvDU26,12,24,0;0;1279;256; :GCOL1G8
»128:CLG:VDU24,0;260;1279;1023;19,0,1;2
519,2,0:;0;

105¢ GCOL@,129:CLG

1060 ENDPROC

1979 =

1089 DEFPROCchar

1099 REM *** DEFINE CHARACTERS **%*
1199 vpDU23,239,9,9,9,0,15,15,15,15
1119 vpbU23,231,0,9,9,0,0,248,252,252
112¢ vDU23,233,0,9,0,56,248,248,192,0
1139 vDU23,234,16,16,56,56,124,124,56,
56
1140
1159
1160

vDU23,235,%,0,16,16,56,124,56,56
vDU23,240,9,7,8,16,32,32,65,73
VDU23,241,9,128,96,16,16,16,248,56
117¢ vDU23,242,83,83,75,67,39,31,31,31
1189 VDU23,243,248,252,224,240,128,224
,224,128

119¢ VDU23,244,0,9,9,3,4,4,8,8

1200 VDU23,245,%,0,224,24,4,4,2,2

121¢ vDU23,246,17,18,18,35,35,31,15,15
1220 VDU23,247,60,228,252,252,252,208,
224,224

123¢ vDU23,248,9,7,8,16,32,32,67,86
1240 VDU23,249,9,128,64,32,16,16,248,96
1250 vDU23,250,87,87,79,47,46,31,15,15
1260 VDU23,251,240,246,248,192,224,0,2
24,192

127¢ vDU23,252,0,7,8,16,32,32,79,83
1280 VDU23,253,0,128,64,32,16,16,200,40
1299 vDU23,254,95,95,92,63,59,28,15,15

1309 VDU23,255,232,232,232,240,112,224

,192,192 ¥
131@ ENDPROC

1320

133¢ DEFPROCpic

1340 REM *** DRAW SCENE ***

135¢ GCOL@,@:MOVE®, 256 :DRAW1280,256
1360 MOVE368,352:PLOT1,0,-64:PLOT1,16,
@:PLOT1,0,64:MOVE432,352:PLOT1,0,-64:PL
0T1,16,8:PLOT1,0,64:PLOT1,9,32:PLOT1,~8
@,9:PLOT1,@,-32:PLOT1,89,0

137¢ MOVE480,416:PLOT1,544,0:PLOT1,0,8
@:PLOT1,~496,0:PLOT1 ,0,-44 :PLOT1,-48,0:
PLOT1,@,-36:REM PIANO

1389 MOVES544,416:PLOT1,12,-128:PLOT1,2
4,0:PLOT1,12,128:MOVE944,416:PLOT1,12,~
128:PLOT1,24,0:PLOT1,12,128:REM LEGS

1399 MOVES92,496:PLOT1,0,76:PLOTY,-12,
4Q:VDU5,234:PLOT@,~64 ,~8:VDU234:PLOTJ ,~
20,-49:PLOT1,0,-32:PLOT1,64,0:PLOT1,0,3
2:PLOT@,~12,40:VDU234:REM CAND

1400 MOVE384,384:PLOT1,64,3sPLOT1,40,~
68:PLOT1,16,4:PLOT1,-24,88

1419 pLOT1,-48,12:PLOT1,0,8:PLOT1,4,~4
@:PLOTY,-4,40:PLOT1,~12,0:PLOT1,-16,20:
PLOT®,16,-20:PLOTY, 8,0

1420 PLOT1,48,0:PLOT1,Q,20:PLOT1,-42,0
$PLOT1,~-20,64

143¢ PLOT1,-20,0:PLOT1,-8,~8:PLOT1,-8,
-54:PLOT1,0,-54:PLOT1,8,~-8:REM MAN

1440 MOVE380,572:VDU24%,241,8,8,10,242
,243:REM HEAD

145¢ MOVE48@,320:VDU23%,231sREM FOOT

1460 REM *** OPEN CURTAINS *¥*¥

1470 GCOL4,1:FORI%=3TO56QSTEP4:MOVEG4Y
+1%,260:DRAW640+1%,896 :MOVE640~1%,260:D
RAW640-1%,896 :NEXT

1480 ENDPROC

1490 ¢

1500 DEFPROCxtra

1510 REM *** DETAILS OF SCENE *%%

1529 VvDU4,19,8@,3;@; :COLOUR130:COLOURG

1530 ?&360=15:7&34F=32:PRINTTAB (6,6) "J
.S.BACH"

1540 COLOUR3:PRINTTAB (4,9) "INVENTION 1
3“

1550 2&360=3:?&34F=16

1560 GCOL®,@:GCOLY, 130 o

157¢ MOVE592,512:PLOT1,0,76:PLOT@,-32,
-8:PLOT1,0,-323PLOT1,64,0:PLOT1,0,32

1580 GCOL®,1:MOVE480,32¢:VDU5,230,231:
GCOLJ, &

1590 MOVE444,576:VDU127,127,244,245,1¢
,127,127,246,247:MOVE612,614:VDU234:MOV
E580,622:VDU234:MOVES548,614:VDU234:GCOL
#,1:MOVE612,614:VDU235:MOVES8d,622:VDU2
35:MOVE548,614:VDU235:GCOLG, §

1600 ENDPROC

1610 ¢

1620 DATA4F<,5<<,4Y<,5<<,47<,5R?,1a<,1
Y <,1YK,47K,50=,1c<,4R<, 5a=, 1M<, 4R<, 5e<,
1U<,4T<, 5]1<, M, 4T<, 5e< , TW< , 47<, 5U0=, 1¥<
,47<,5R=,1a<,4"<,50<, 1Y<,4" <, 5M<, 1<, 4R
<,5a=, 1M<, 4R<, 57<,10<, 1T<, TM<, 1T<, 1W<, 4
<<, 50=,1e<,4a<

1630 DATASRS,1e<,47<,50<,1a<,4¥<,5R=,1
\<, 4W<, 52Z=, TR<, 4N<, 5°<, TR< , 4K< , 5¢<, 1NK,
4F<, 55>, 11<, THL, 0<; , 1<, 47 <, 5K<, 1<, 4\<
,5P<, 17 <, AWK, 5T>, 12<, 1Y<, 0<;5 , 1P<, 4M<, B\
<, 1P<,41<,5a<, 1ML, 4D<, 5e>, THS,, 1F<, 1a<, 4
"¢, 51<, 1a, 4R

1640 DATA5Z<, IN<,4H<,5¢>, 1K<, 1D<, 1<, 4
\<, 5HS, 17 <, 41K, 5Y<, 1M, 4F<, 5a>,11<, 1B<,
17<,42<,52<,17<, 4D<, 5=, 1P<, 4N<, 57 <, 1P<
41, 5a=, 1P<, 1U<, 1<, 1W<, 1P<, TWK , 12<, 4<
<,5Y=,1\<,4a<,50<, Te<, 4c<,5T<; 1\<, 4c<, 5
P<,1£<, 40K, 5e= »

BEEBUG

JULY 1984 . ’

Volume-3 Issue 3



1650 DATA1P<,4U<,5h<, 1Y<,4W<, 5 <, 1P<, 4
W<, 5h<, 12<, 4a<, 5Y=,1\<, 4a<, 50=, 1e<, 1c<,
T\<,1c<,1f<,1e<,1\<,4Y<,5a<,1\<,4U<,5h<
,1Y<,4P<,5e<,1T<,4m<,5R=,1j<,4e<,5U<,1j
<,4a<,5Y<,1e<,4“<,5\<,]a<,4[(,5c<,]‘<,4
W<, 59<,1[<,4RK

1660 DATAS53<, 1W<, 40<, 5m<, 1R<,41<,5P<, 1
h<,4c<,5T<, 1h<, 47 <, 51K, 1c<,4\<, 5[<,1°<,
4Y<,5a<,1\&, 40<, 5e<, 1Y<,4P<, 5h<, 10K, 4M<
751<,1P<,43<,50<,19<,4d<,5R<, 19<, 4 <, 5T
<,1d<,4[<,5%<,17¢, 44, 5\¢, 1¥<,40<,5h>, 1
¥<, 1R<, 40K, 5e<

1670 DATA4YL,5a<,4\<,5e<,4[<,57<, 1W< , 4
T<, 59>, 1W<, 1P<, 4T<, 5¢<, 4W< , 5% <, 4[<,5¢<,
4Y<,5\<, 10<, 4R<, 5e>, 1U<, 10<, 4R< , 5a<, 47<
750>, 1a<,1[<,4h<,57<,49<,50<, 4e<, 5R< , 44
<,5T=,19<,4" <, 5H<, 14K, 4M<, Se=, 1Y<, 1T<, 1
P<, 1M<, THS, 1D<

1680 DATATHK,4<<,5A=,1h<,4k<,5M<,1h<, 4
e<,5P<, 1h<,4b<,55<,1e<,4h<,57=,1e<, 1b<,
1e<, 17, 1\&, 12<, 1Y<, 4<<, BW=, 0<; , 1£<, 43<
7 5K<, 1<, 40K, 5NK , 1£<,47 <, 50K, 1c<, 4£<, 5H
=,10<,17<,1e<,1\&, 12<, 1¥<, 1W< , 4<<, 5U0=, 1
e<,4h<,51<,1e<

1690 DATA4a<,5M<,1e<,47<,50<,1a<,4d<,5
F=,1a<,17<,1a<, 1 [£,1Y<,1X<, 1V<, 5T=, 4<<,
1<, 4£<,5H<, 1<, 47 <, 5K<, 1<, 41 <, 5N, 1°<
240<,BE=,1"<,11<,1°<,1¥<, 1W<, 1U<, 17<, 4<
<,;50=,1¥<,47<,5R<,1a<,47<,50<,1¥<,47<,5
M<,1c<, 4R, 5a=

1700 DATATMK,4R<,5%<,10<,4T<,5]<,1M<, 4
T<,5Y<, WK, 47<, 50<, 4a<, 5¥<, 4e<,57<, 4a<,
5Y<,47<,50<,4a<,5Y<,4[<,5R<,4"<, 50<, 4a<
¢50<,47<, 5R<, 4 [<,50<,4 "<, 5R< , 4X<, 50< , 4a
<y5R<, 47 <, 50<,47<,50<,41<,5M=,1"<,4c<,5
0<,17<,41<,5T<

1710 DATAT"<,4W<,50<,12<,4]<,5M<,12<, 4
W<, 5H<, 12<, 4T<, 5E<, 12<,4Y<, 5A<, 1W< , 4U<,
5F=,1Y<,47<,5I<,1Y<,4U<,5M<, 1Y<,4R<, 5I<
»1U<, 4%<, 5F=,1U<, 4R<, 5I=,1U<, 40<,5@<, 1U
<, 1T<, TRK, 4<<, 50=,1T<,40<, 5" <, 1M<, 4K<, 5
1<,17<, 40<, 5¥<

1720 DATATK<,4<<,5I<,1Y<,47<,5M<, 1a<, 4
Y <, 5B, 1Y<, 4% <, 5M< , Te<, 4a<, 5F<, 17°< , 4a<,
50<, 1e<,4c<, 5H<, 17 <, 40K, 50K, 1£<, 4e<, 51<
s 1a<,4e<, 5RE, 1h<, 4£<,5K< , 1e<, 4c<, 58¢, 1a
<,p47<,50<, 1a<,4c<, 5N<, 1e<, 4£<, 5K<, 1<, 4
i<, 5H<, 1c<,41<

1730 DATASE<,1c<, 4a<,5F<, 13<,4£<,52<, 1
c<,47<, 58, 1c<,41<,5B=,1"<,4a<,5@=,1"<,
4Y<,58=,1"¢,4"<,5M=,1]<,4"<,5FC, 1¥<, 1U<
,1¥<, 1R?

1740 :

1750 ON ERROR OFF

1760 MODE7:IF ERR=17 END

1770 REPORT:PRINT "at line";ERL

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

FUNCTION KEY LISTING OF ENVELOPES - T.J.L.Young
This will set a function key to display the parameters of any desired envelope
(but will not work with 0.S. @.1). These are listed in the same order as in the
ENVELOPE instruction, but the envelope number is supplied in response to the prompts
*K. MO, 7 INP. "Number of envelope";N%:@%=0:P."Envelope ";N%;:F.t%=¢ TO 12:P,", "¢
=7 (&8CO+ (N2-1) *16+t3) s IF (t3>0 AND t%<4) OR (t%>6 AND t%<11) THEN IF E%>127 E%=
BE%-1:T%=E2EOR&FF:P."-"::P,T%;:N. P, :@% 10:EL. T%=E%:P.T%;: . 2P, 2@%=10|M =5

QUICK SCREEN FILL
If you want to quickly define the contents of the text screen try poking to
location &358, which is used to hold the character for blanking it out after a CLS
instruction. For example
?&358=ASC("*") :CLS
in Mode 7 will produce a display full of asterisks. This is true for any text window
that has been defined. =]

UNDOCUMENTED OSWORD CALLS IN ACORN DFS - A.Benham

In addition to OSWORD &7F (general disc read/write operations), the Acorn DFS
also acts on OSWORDs &7D and &7E. The first of these two returns the number of disc
write accesses, returned in the first byte of the parameter block (pointed to on
entry of the OSWORD routine by the X and Y registers). OSWORD &7E is potentially
more useful, returning the number of sectors expected on the disc.

The first and fourth byte of the parameter block are overwritten with &00. The
second byte contains the lower eight bits of the 1¢ bit number specifying the number
of sectors on the disc and the third byte contains the other 2 bits of the same 10
bit number. Neither call would appear to need parameters. =]

BEEBUG JULY 1984 Volume-3 Issue 3




THE ACORN 6502 SECOND PROCESSOR

Reviewed by David Fell

When they launched their 6582 Second Processor in March this year,

Acorn described it as "the most

important add-on for the Beeb so

far...". In this in-depth technical review, David Fell explains why
the fuss currently being made over the 6502 Second Processor may be
justified, and some of the snags that may catch the unwary user.

INTRODUCTION

One of the major criticisms of the
Beeb often levelled at Acorn is that
there 1is not sufficient memory. For
example, when using a disc-based Beeb
in one of the high resolution modes,
there is only about 6k of memory left
into which a Basic program and its data
must fit. If all of the user defined
characters are required, and some extra
memory is needed by other paged ROMs,
then fitting a program into  the
available memory becomes very difficult
indeed.

One solution, for £199.00 (inc.
Vat) , is the Acorn 6502 Second
Processor. This, and the associated
software that comes with it, allows the
user to run a Basic program that uses
any mode, and still have 44k for his
own program and data. Machine code
programs have a massive 61k available!

6502 SECOND PROCESSOR

The standard Beeb is referred to as
the I/0 processor (or Input/Output
processor) when it has a second
processor connected to it. This is
because any input or output, to any
peripheral that can be attached to a
Beeb, will be performed by the I/0
processor, and the processing of the
language, or whatever application, will
be performed by the second processor.

The Acorn 6502 Second Processor
comes in a box that matches the colour,
design and depth of the Beeb, but is
only half of the width (this being the
new standard for most of Acorn's

additions to the Beeb). The box

contains the 6502 Second Processor, 64k
of RAM, interface to the Tube and its
own power supply. There is a single
switch at the back,. a small fuse
holder, and an adequate length of mains
cable. When connected, the 6502 Second
Processor sits to the right of the Beeb

with a short ribbon cable connecting it
to the Tube port, the rightmost of the
- plethora of ports underneath the Beeb.

When not required, the second processor
can simply be switched off, and on
re-initialisation the system reverts to
a standard Beeb. The 6502 Second
Processor 1is supplied with two 16k
EPROMs. One of these = is essential for
the running of the high speed Tube
interface, which 1links the two
processors together.

The DNFS EPROM that is supplied with
the 6502 Second Processor contains the
Tube data-transfer routines and the
latest versions of Acorn's disc and
network filing systems (hence the
name) , and replaces any DFS or NFS ROMs
that you. may have in your machine.
Since DFS 0.90 (the only officially
released Acorn DFS), Acorn  have
produced a large number of internal
versions, and these have finally
culminated in DFS 1.20, which is the
version contained in the DNFS EPROM.
The NFS is version 3.34 (!), and
incorporates a few small improvements
over version 3,30 (says the manual).

The other EPROM is a new version of
Basic that provides another 14k for
your Basic programs (compared to the
memory available when running either

BEEBUG

JULY 1984

Volume-3 Issue 3



8

Basic I or II in the 6502 Second
Processor). With this new version of
Basic, called 'Hi-Basic', a total of
44k of memory is now available for
Basic programs and data irrespective of
the screen mode in wuse. Compared with
Basic II, this new version of Basic has
also had a small amount of recoding
done to some of its internal routines
(although the author stresses that
these are transparent to the user).

For example, it now recognises COLOR as
well as COLOUR, thus making it more
suitable for the American market (which
could feature heavily in the continued
success of the BBC Micro) .

FASTER PROCESSING

Although the 6502 Second Processor
~contains the same type of CPU as the
standard Beeb, it runs 5@% faster;
which theoretically means that a
program will run 5% faster. The actual
speed improvement varies considerably,
and the timings are related to the type
of work being carried out by the I/0
and second processors. One simple test
program, that was designed to draw
circles efficiently over the Tube,
showed a speed improvement of over
twice that of the standard Beeb (1.82
seconds on the Beeb, and .78 seconds
on a 6502 Second Processor system). In
general any improvements will depend on
how a program is organised. For

example, if a program is going to
output to the screen, it will run
faster if this is done as the results
are calculated, and not at the end of
the entire set of calculations (i.e.
interleave calculation with screen
output) .

DOES IT WORK OVER THE TUBE THOUGH?

A lot has been said upon the merits
of making a piece of software Tube
compatible, though there has, until
recently, been very little incentive to
pursue this ideal, and little
information from Acorn to help. Much of
the software already available runs
perfectly well on a standard Beeb (most
games for example), and there is little
point in  suppliers attempting to
achieve Tube compatibility for those
products., The availability of more
memory and greater speed is likely to
have most impact on more serious
software, particularly ROM based
applications such as word processing,
spreadsheets, and databases.

THE TUBE AND YOUR ROMS

When trying out ROM based software
with a 6502 Second Processor, it soon
becomes apparent that many existing
ROMs do not work over the Tube. Many
ROMs could benefit from the extra
memory and speed available using a 6502
Second Processor, and yet very few
appear to work correctly. The majority
of those that appear to work with no
problems, not surprisingly, originate
from Acorn and. Acornsoft. Many other
ROMs that we have tried do not work
over the Tube, though this may be a
result of Acorn not having released
adequate specifications rather than the
software writers producing  poor
software.

Some ROMs have been written with no
thought of Tube compatibility (e.g.
Wordwise). Such ROM software has often
been written with direct memory access
to gain extra processing speed. (Given
a relocated version of Wordwise that
was Tube compatible, there could be
about 5@k available for text!)

The following table shows the
results for the ROMs we have tested.
Note that . those marked as only partly
working were ROMs that managed to
perform some of their functions

BEEBUG

JULY 1984

Volume-3 Issue 3



9

correctly, but did not fully work.
Watford DFS did not manage its *EDIT
command, but the main routines all
worked, so I have classified this as
working.

COPYING ROMS

There 1is a chapter about copying
ROMs in the Acorn 6502 Second Processor
manual in which Acorn suggest that it
is easier to copy the bulk of your
language ROMs to disc, and then use,
say, *BASIC (or whatever filename was
given when the language was saved) to
load the language from disc. Once the
language is saved on disc, there is no
need to keep the ROM in your machine,
and so a socket can be vacated. (Is

this perhaps because Acorn officially-

don't use ROM expansion boards?)
However, there is a warning about
infringement of other people's
copyright, saying that specific

permission must be obtained if the
copyright material is not owned by
Acorn. Acorn's manual also says "Where
this copyright is owned by Acorn, the
programs may be copied from ROM in the
circumstances described in Acorn's
'Terms and Conditions of Sale and Use
of Software' but not otherwise."
Accessing languages in this way allows
you to avoid purchasing a ROM board if
you plan to use a 6502 Second
Processor . .

USING OTHER DISC FILING SYSTEMS

Since Acorn launched their DFS, a
number of alternatives have appeared on
the market. Some of these provided
facilities for more files per
directory, while others support double

density disc drives. Having created
lots of discs in special formats, it
would be nice to be able to use them
with a 6502 Second  Processor.
Unfortunately, there is only one
alternative DFS that appears to work
over the Tube, and that is the Watford
Electronics DFS. The main reasons for
using the Watford DFS are that it
allows you to create discs in a format
that allow 62 files per directory, and
it has a built in formatter and disc
verifier. I used my WDFS while
evaluating the 6502 Second Processor,
and encountered no problems, even when
using Bitstik.

If you are going to use the WDFS,
you need the DNFS EPROM installed as
well, because the Tube transfer
routines are still necessary. You can
select either system by pressing Break
and "D" for the Acorn DFS, or "W" for
Watford DFS.

BITSTIK - THE 6502 IN ACTION

Bitstik is a powerful graphics
design package from Acornsoft for the
6502 Second Processor user. It allows
for the design, rapid storage and easy
manipulation of complex pictures on the
Beeb, with screen dumps to the Acorn
JP191 Spark Jet printer. In order to
fully realise the power of Bitstik, a.
graphics plotter is very desirable, and
Acorn have a suitable package planned
for release later on. The bulk of the
software comes on an 89 track disc, but
there is an 8k EPROM that controls most
of the screen actions by directly
accessing the screen memory. One point
to note here is that if you place any
code into a ROM, and call it via a
“service call®, then it can be

guaranteed that execution will take

BEEBUG

JULY 1984

Volume-3 Issue 3



10

place in the I/0 processor, and thus it
is quite possible to access screen
memory directly.

[From what we saw, Bitstik is a very

WRITING TUBE COMPATIBLE PROGRAMS

When writing software to work over
the Tube, there are a few fundamentals
to follow, and I'll now outline these.

The basis of writing Tube compatible
software is to ensure that there is no
direct access to any memory in the I/0O

processor (unless performed by a piece
of code that is guaranteed to run in
the I/0 processor) . For example,
Wordwise (and some of the earlier

' Teletext adaptors) poke straight to the
Mode 7 screen, and thus, when run in
the second processor, nothing appears
on the screen. Direct access to
operating system variables should be
avoided, as should direct reading and
writing of the memory mapped areas.
There are sufficient calls to read and
write any necessary operating system
variables, and even OSBYTE calls to
read and write the memory mapped areas!

It should also be borne in mind that
any of the soft key definitions, the
soft character definitions, sound

fast system, and features some powerful
options. We will be carrying an
in-depth review of this exciting
product in a future issue. Ed.]

queues and disc/tape work space are
always within the I/0 processor, and
these should thus not be accessed
directly. Some people even use the
addresses within the operating system
of routines such as OSBYTE and OSWRCH
instead of vectoring. This is also not
Tube compatible, as it assumes an
address that is only valid when runnmg
in the I/0 processor.

These guidelines are, in general,
equally applicable to Basic, machine
code, and programs written in most
languages, e.g. BCPL. Finally, please
bear in mind that there is no point in
attempting to make a program Tube
compatible if there is no potential
gain since non-Tube-compatible software
can be run on a Tube based BBC micro
system simply by switching off the
second Processor. Virtually no
commercial games have been written in a
Tube compatible manner, but then they
function perfectly well without a
second processor. '




Tested on Basic I & II
and O.S. 1-2

11

BEEBUE

- Werkshep

'SOME FURTHER STRING HANDLING ROUTINES

by Surac

Last month, the workshop dealt with some simple string handling

techniques. Now, using some

excellent routines sent in by Alan

Dickinson, we will look at some further string functions in this
very important area of programming in Basic.

String handling (the processing of
characters) is probably the most
important and useful activity that many
micros are used for (for example in
word processing). Because this is such
a rich area, we have devoted a second
workshop to this subject. This time we
shall be looking at four functions; two
to provide left and right justification
of strings, and two useful additions to
the RIGHT, LEFT and MID functions that
are part of Basic. This month's
functions are all used in a similar
way; that is:

result$=FNaction (paraml ,param2,param3)

The type and number of the paramters
will depend on the function itself.

To illustrate the usefulness of the
first two functions ' imagine a program
to input a name, and print it at a
fixed postion on the screen. For the
sake of screen format, you may require
that the name will always occupy
exactly, say, ten characters. What is
needed is a function that can justify a
string to a given length with a
specific character, usually a space as
here (but altering the space in quotes
at line 1020 to "x" would allow the
function to pad out with character
"x"). When justifying like this in real
life, there is often a need to left
justify text (for example when printing
name and address labels), and right
justify numbers (especially money
sums). For this reason both left and
right Jjustify functions are provided.
Any numbers must be converted to string
form using the STR$ function (see page

LEFT AND RIGHT JUSTIFICATION FUNCTIONS

1000 DEF FNleft (AS$,N%)
1010 IF LEN(AS$)>N% THEN =AS
1020 =AS+STRINGS (N3-LEN(AS$) ," ™)

1100 DEF FNright (A$,N%)
1119 IF LEN(AS)>N% THEN =AS
1120 =STRINGS (N$~LEN (AS) ," ")+AS

The functions are called in the
following manner:
A$=FNleft (AS,10)

This would take the string AS$, and pad
it out to a string of 10 characters,
with spaces added to the right hand end
and, in this case, replace" the old
value of AS.

If the string supplied is longer
than the length requested, then the
routine exits without altering it. If
you always want the function to
deliberately truncate the string to the
specified length, then you could add
the following line:

IF LEN(AS)>N% THEN =LEFTS (AS,N3)
as the second line in each case.

To describe how the two routines
work, consider what needs to be done in
order to pad a string of four
characters up to a string of ten
characters. The number of characters
required to pad out the given string is
the difference between the string
length and the required length. In our
example therefore, six spaces will need
to be appended to either the left or

358 of the User Guide) before the right of the original string
attempting to justify them. depending on the function. i}
BEEBUG JULY 1984 Volume-3 Issue 3



12

DELETING AND INSERTING CHARACTERS

The next two functions that we'll
look at provide a couple of powerful
and useful string handling functions.
One of them allows you to remove a
substring from within a larger string,
with the remaining two parts closed up
together. The other performs the
reverse of this; i.e. it enables one
string to be inserted at a given
position within another.

STRING DELETION FUNCTION

1200 DEF FNdelete(AS,P%,L%)

121¢ LOCAL A%

1220 IF L%<1 =AS

1230 IF P%<1 P%=1

1240 A%=LEN (AS)

1250 IF A%<P% =AS$

1260 IF A%<P%+L% =LEFTS (AS,P%-1)
1270 =LEFTS (AS,P%-1)+MIDS (AS,P%+L3)

STRING INSERTION FUNCTION

1300 DEF FNinsert(AS$,P%,I1S)

1310 LOCAL A%

1320 IF P%<1 P%=1

1330 A3=LEN(AS)

1340 IF A%<P% =AS+STRINGS (P%-A%-1," ")
+I$

1350 =LEFTS$ (AS,P%-1)+IS+MIDS (AS,P%)

The delete function is used to
remove a specified group of characters
from a larger string, and then close up
the gap. Three parameters are required:
the original string, the position from
which the first character is to be
deleted, and the number of characters
to delete. For example:

AS=FNdelete(AS,3,5)

would take the string AS, and delete a
a 5 character string, starting at
position 3. If AS$="ABCDEFGHIJKL", then
the above operation would give
"ABHIJKL". This is the type of action
that takes place in word processing
when a letter or word is deleted.

The workings of the routine are as
follows. Lines 1219 and 1240 perform
some brief initialisation and 1lines
1220 and 1230 carry out two initial
checks for sensible parameter values.
Having established that the parameters
are valid, the routine needs  to
determines whether the deletion

operation will remove the entire
section after the starting character,
or merely a section in the middle of
the string. Line 125¢ checks to see if
an attempt is made to delete characters
past the end of the string, and exits
with the original string untouched if
this is the case. Line 1260 then
examines the effect of the deletion
required, and returns the string to the
left of the start postion if the
deletion would leave no  further
characters to the right of those
removed. If the routine has not already
terminated, then it means that a proper
substring is to be deleted, and the
righthand section concatenated to the
lefthand portion. Line 1270 performs
this action and then exits.

The second of the two functions
performs roughly the reverse of the
above function: it allows for a string
to be inserted into the middle of
another string at a specified point
(for example inserting a phrase or
paragraph into existing text). For
example, if AS$="123ABC", then

AS=FNinsert (AS$,4,"HI")
would give "123HIABC". The workings of
the insert function are similar in some
aspects to those of the delete
function. There are two possible
operations that the insert function
will perform, and these are dependent
upon whether or not the point at which
the substring is to be inserted is
actually within the main string, or
beyond the end of it. Line 1340 caters
for the second of these two
possibilties, and returns a string
consisting of the original string, a
group of spaces to extend the original
string to the necessary length, and
then the substring. Line 135@ returns
with the lefthand portion of the main
string, the substring and then the
remaining part of the main string,
appended together in that order.

The routines presented in these
workshops are designed for inclusion in
your own programs when needed. If you
have any small routines of your own,
then send them into Surac at the
address below. Next month we will be
looking at another topic.

SURAC, BEEBUG, P.O. Box 50
St. Albans, Herts.

=

BEEBUG

JULY 1984

Volume-3 Issue 3



.

13

ested on Basic
T a“d O.S. 1.

1s"  MULTI-SCREEN SLIDE SHOW (DFS)

by Tim Powys-Lybbe

Many programs available nowadays, such as ASTAAD in the March issue
of BEEBUG, and packages such as Design and Teletext Editor from
BEEBUGSOFT, allow screens to be designed and saved on disc or
cassette. This Slide Show program is a disc utility which enables
you to present a 'slide show' of screen designs, and provides very
flexible control over the order of presentation.

The Slide Show program was produced
with four main objectives:

1. To give a computer based slide
show using 'slides' that were dumps of
screen memory in any mode.

2. To provide a fixed order of
slides that could be stepped through
either singly or by jumping forwards or
backwards.

3. To give an automatic show that
could be left to run unattended.

4. To work for screens in all modes, @
to 7.

The program allows any slide show to
comprise up to 99 slides, which is both
long enough for any show and more than
will fit even on four sides of 80 track
discs, except in Mode 7. The screens to
be used in a slide show must be saved
(*SAVE) as screen dumps on disc, with
the load address appropriate to the
screen mode in use (i.e. &3000 for
modes @, 1 and 2, &4000 for mode 3,
&5800 for modes 4 and 5, &60@0 for mode
6 and &7C0@ for mode 7).

The program works by creating a file
which contains the order and names of
the 'slides' to be used and the colours

for each slide. The colour changing
facility gives the impression, in a two
colour mode, of multiple colour
capability, adding to the appeal of
your show. The slide show file can be
edited to change anything, including
deletion or insertion of more slides.
The program will then run the slide
show using this file to control the
order of presentation. You can change
this by single key controls to show the
slides in any order.

The program starts with an initial
menu of three choices to Make, Edit or
Run a slide show. Whichever of these
three main choices you make, you will
also be asked for the disc drive on
which the slide show file is to be
saved or is to be found, and the name
of the slide show file.

The slide show file will
automatically be saved in disc
directory R (for Run). This avoids any
possible conflict between the name of a
slide show file, and the name of a
'slide' in that file. )

BEEBUG

JULY 1984

Volume-3 Issue 3



14

The Escape key is used to exit from
any of the Make, Edit or Run facilities
and to return to the start of the
program. The Escape key will not crash
the program or the slide show file, and
in fact the slide show file can only be
terminated by this means. Those parts
of the program that are vulnerable to
the use of the Escape key are protected
by having the Escape key disabled.

RUNNING THE SLIDE SHOW

Before the slide show starts, you
are asked for the time interval between
slides. If you want an automatic show,
enter a value of around 3¢ seconds -
the BBC's CEFFAX pages change every 25
seconds, which is long enough for most
people to read them. If you want total
manual control enter a large figure,
say 9999 seconds giving nearly 3
hours. Intervals of 6@ seconds and

upwards give a one line menu, displayed’
at the bottom of the screen, to show -

the controls available for stepping
through the show. These controls are

available with shorter intervals, but
the menu is not shown as it 1is less
likely to be needed for automatic
shows. On modes 2 and 5, the menu has
to be highly abbreviated to fit into
the 20 character width, so you are
advised to learn the various controls
in advance.

All the user .controls are single key
entries as follows:

When you reach the last slide the next
one will take you back to the start.

MAKING A SLIDE SHOW FILE

When you are creating a slide show
file, the relevant details of each
slide are displayed in column format on
the screen. The eight items required in
order, are:

1. Disc Drive Number. This is the
disc drive on which this saved screen
is to be found. Different slides can
be on different drives so that those
with twin double sided drives can use
all their disc memory for long slide
shows without changing discs.

2. Directory Letter. This is the
directory letter for the slide's file
name; it can be $ (the normal default),
a numeral or a letter but other
characters are inhibited.

3, Slide Name. This is the slide's
file name which can be any combination
of numerals and letters only. The same
slide can be used as many times as you
like, perhaps in different colours.

4, The screen mode in which the
slide was saved. Notice that each slide
can be in a different mode.

5 to 8. Colours. These are the
BBC's colour numbers as given in the
User Guide. Any number from @ to 99
can be entered and will be deciphered
on a base of 16 as usual. The first
nuwber is the background colour.
Two-colour modes will only allow entry
of two numbers and Mode 7 of course
will not allow any colour numbers as
colours are determined by the screen
contents. The availability of all 16
colour numbers means that you can have
flashing slides...

BEEBUG

JULY 1984

Volume-3 Issue 3



15

All entries must be followed by
pressing the Return key. Do not worry
if you make a mistake as you can edit
the entries later.

You exit from meking up the slide
show by pressing the Escape key. To
prevent any damage to the random access
file, Escape is disabled during each
slide entry. You are allowed two
seconds at the end of each slide to
press Escape. If you miss it, then
repeat the last entry and press Escape
immediately you get to the end of the
line. -Delete the extra entry with the
editing facility later if necessary.

Pressing Break can crash the slide
show file. You will not need to use

any key near Break so accidents are
unlikely.

EDITING A SLIDE SHOW FIL_E’

Full editing facilities are
provided. On entry the screen shows
the entries for the first 18 slides
together with a one line menu at the
bottom of the screen. All entries to
the editor must be followed by pressing
the Return key. The menu allows:

1. Escape to exit from the editor
back to the start of the program. This
can be done at any time and all your
amendments will be stored on the slide
show file.

2., P (Print). This provides a
printed copy on any 80 or more column
printer that is on line. Obviously you
need to have the *FX5, *FX6 and other
commands - set up suitably for your
printer. Escape will escape from any
problem.

3. S (Step). This steps the display
to the next 18 slides. If you have
reached the end of your file then it
starts again at the beginning.

4. Line number. This refers to the
number to the left of each 1line of
slide data. To get into the editing
facility proper, enter the line number
concerned. The line number, by the way,
is not stored in the file.

If a line number is entered, then a
new one line menu is displayed. - This
menu repeats the chosen line number at
the left and offers three choices (you
can also Escape back to the beginning
of the program):

E (Edit). This takes the cursor to
each successive item of data in turn on
the chosen line and deletes that item.
You can either enter whatever you want
or enter @ which will retain the
previous entry. When you have finished
editing that line, you can return to
the previous menu.

D (Delete). This deletes the line
number chosen and closes up the file so
that it is one slide shorter.

I (Insert)., This adds a duplicate
entry on the line chosen, moves the
original entry down one line,
continuing this through the file so
that it is one slide 1longer. You can
then edit the new line to put any slide
you want there. The reason for
duplicating the existing entry is to
ensure that the file has valid entries
everywhere and cannot crash.

ENTERING THE PROGRAM INTO THE MICRO

Some emphasis has been given to
ensuring that both the program and the
slide show files will not crash. This
means that the program has to include
several routines to ensure that nothing
can go wrong. Check the program
carefully as you type it in, and save
it on disc.

10 REM PROGRAM SLIDES

20 REM AUTHOR Tim Powys-Lybbe

30 REM VERSION B1.1

40 REM BEEBUG JUNE 84

5¢ REM PROGRAM SUBJECT TO COPYRIGHT

60

109 MODEZ

110 ON ERROR PROCError:MODE7:END H

BEEBUG

JULY 1984

Volume-3 Issue 3



16

120 PROCInitialise
130 PROCS1ideShow
140 PROCRun

145 END

150 :

100@ DEF PROCError

1919 ON ERROR OFF :*FX3

102¢ VDU3:PROCOpenCommand : PROCReset : *F
X4
193¢ IFERR=17 THENPRINTCRS"End/Start?
(e/s) ";:AS="ES":PROCInput(1) ELSEREPOR
T:PRINT" at ";ERL;:PROCCursorOn:END
1049 IFKS="S" THEN RUN
195@ ENDPROC
1069 :
107¢ DEF PROCInitialise
1080 PROCMode7Colours:PROCReset:VDU22,
7:PROCNoCursor : *FX4, 1
1099 DIMQ%4@:REM Space for operating s
ystem calls
1100 DIMC%(3): REM First four colours
1110 L%=35: REM Length of file entry f
or each slide
1126 ENDPROC ‘
1130 ¢
114¢ DEF PROCMode7Colours
1150 CR$=CHRS$129:CGS=CHR$130 :CYS=CHRS1
31:CZS=CHRS156 :CWS=CHRS157
1160 ENDPROC
1179 =
1180 DEF PROCReset
1199 CLOSE#0:m%=7:2%=0:ES$S="0123456789"
:F$="ABCDEFGHIJKLMNOPQRSTUVWXYZ" : PROCES
Con
1209 ENDPROC
1210 :

1220 DEF PROCS1ideShow
123¢ PROCHeading:PRINT''CGS"Do you wan
£ to"''CGS"™ 1"CRS"Run"CGS$"a slide show
WICGS"  2"CRS$"Make"CGS$"a slide show"'CG
8" 3"CRS$"EAit"CGS"a slide show"''CGS"E
nter your choice (1 to 3):"CRS;

124@ A$="123":PROCInput (1) :B%=C
1250 PRINT''CGS"What"CR$"disc drive"CG
$"do you want to use"'CG$"for the slide
show file (@ to 3)?"CRS;

1260 A$="@123":PROCInput (1) :D%=C
127¢ Y%=VPOS:REPEATPRINTTAB (8, Y%+2)CGS
"What is the"CR$"name"CGS$"of the slide"
'CGS"show f£ile?"CRS;

1280 A$=ES$+FS$:PROCInput (7) :BS=":"+STRS
2+" R, "+CS$: IFB%=2 THENPROCOS ("SAVE "+B
S+" 8000+1000")

1290 A=OPENUP (BS) : IFA=0 THENPROCOpenCo
mmand : PRINTCRS$"File not found. Try aga
in.";:VDU7,26

130@ UNTILA:PROCOpenCommand :VDU26

131¢ IFB%=1 THENPRINTTAB (@,Y%+5)CGS"Wh
at is the"CR$"maximum interval"CG$"betw

een”'CGS"slides in seconds (9999 for full"

'CG$"manual control) ?2"CRS; :AS$=ES:PRO

CInput (4) : T%=C:ENDPROC

1320 IFB%=2 THENPROCMake ELSEPROCEdit

1330 :

1340 DEF PROCMake

1350 CLS:PROCHeading:PRINT'CRS"ESC exi
ts for 2 secs at line end only"

1360 PROCHead:K%=0:PRINT#A,K%:REPEATKS
=K%+13PROCData (K%) : PROCEnd

1370 C=INKEY (20@) s PRINT : UNTILFALSE

1380 :

1399 DEF PROCEdit

1400 ES=ES+"@" :INPUT#A,K%:REPEATI%=0:P
TR#A=5: REPEATVDU26, 12: PROCHead ing : PROCH
ead:J%=1%sREPEATI%=I%+1:Y%=7+1%-J%: PROC
PrintSlide:UNTILI%=K% ORI%=J%+10:A$="re
starts":IFI%<K% AS$="continues"

1410 IFK%>10 PRINTTAB(8,21)CR$"S=Step
"As" 1ist.|l

1420 REPEAT:REPEAT:PROCOpenCommand : PRI
NTCRS"ESC=Exit P=Print S=Step OR line n
o: ";:AS=ES+"SpP"

1430 PROCInput (2) :UNTILKS="S" OR(C>J%
ANDC<=I%) ORKS$="P":IFK$S="S" THEN UNTIL
TRUE: UNTILI%=K%:UNTILFALSE

1440 IFKS="P" THENPROCPrint:UNTILTRUE:
UNTILTRUE:UNTILFALSE

145@ T%=C:PTR#A=(T%~1) *L.3+5: PRINT 'CRS"L
ine ";T%": E=Edit D=Delete I=Insert ";

1460 AS$="EDI":PROCInput (2)

1470 IFKS="E" THEN PRINT'CHRS136 TAR(1
1)CR$"@=Copy old entry";:VDU26,31,0,T%-
J%+7:PROCData (T%) s PTR#A=5+I%*L%: UNTILFA
LSE

1480 IFKS="I" THENPROCMore ELSEIFKS="D
" THENPROCLess

149¢ UNTIL TRUE:UNTIL TRUE:UNTIL FALSE

1500 -

1519 DEF PROCHead

1520 PRINT'CRSSPC(23)" Colours: (@-15)
"CRS$" Drive Dir Slide Scrn Back [ Fo
re ]"'CRS" No."SPC(7)"Name Mode @

'| 2 3"'

1530 ENDPROC

1540 :

1550 DEF PROCData (I%)

1560 Y=VPOS:PRINTTAB(@,Y)CGSTAB (3-LENS
TRSI%,Y);1%;

1570 RESTORE165% : PROCESCoff :FORI=0TO7:R
EADA%,B%:DS=STRINGS (B%," ") :AS=ES:IFJ=1
ORJ=2 THENA$=AS+FS:IFJ=1 THENAS=AS+"S"
1580 REPEATPRINTTAB (A%,Y)DSTAB (A%,Y);:
PROCInput (B%) :UNTILNOT (J=¢ ANDC>3) ANDN
OT (J=3 ANDC>7)

1590 IFCS="@"™ THENINPUT#A,CS:sPRINTTAB (
A%,Y)CS; ELSEPROCPrintRealData

1600 IFJ=3 THENm$=VALCS:PROCNoOfColours
1610 IFm%=7 ANDJ>2 THENDS=" ":PRINTHA
,D§,D§,D$,D$:J=7 »

BEEBUG

JULY 1984

Volume-3 Issue 3



17

1620 IFM%=1 ANDJ>4 THENPRINT#A,D$,D$:J
=7

1630 NEXT:PROCESCon

1640 ENDPROC

1650 DATAS,2,9,2,12,7,21,2,25,2,29,2,3
3,2,37,2

1660 :

1679 DEF PROCMore

1680 K%=K%+1:FORI%=1TOK%-T%:PTR#A=5+(K
$-~1-1%) *L.%: PROCMove (L%) 2 NEXT: PROCEnd

169¢ ENDPROC

1709 ¢

1710 DEF PROCLess

1720 IFK%<2 THENENDPROC .ELSEIFT%<K% TH
ENPTR#A=PTR#A+L% s REPEATPROCMove (-L%) :UN
TILFNEnd

1730 K%=K%-1:PROCEnd

1740 ENDPROC

1750 :

1760 DEF PROCEnd .

177¢ A%=PTR#A:PROCESCoff:PTR#A=0:PRINT
#A,K%: PROCESCon: PTR#A=A%

1780 ENDPROC :

1799 :

1800 DEFFNEnd

1810 IFPTR#A=5+K%*L% THEN=1 ELSE=0

1820 :

1830 DEF PROCMove (C%)

184@ PROCESCoff :FORI=QTO7:A%=PTR#A: INP
UT4A,AS$:B2=PTR#A : PTR#A=A%+C%: PRINT#A,AS

¢ PTR#A=B%: NEXT: PROCESCon

1850 ENDPROC

1860 :

187¢ DEF PROCOpenCommand

1880 MOVE®,36:DRAW1280,36:1%=39:IFZ% A
ND (m%=20Rm%=5) THEN1%=19

1890 n%=31:IFZ%=0 ORINSTR("367",STRSm3
)>@ THENn%=24

19¢@ VvDU28,9,n%,1%,n%,12

1910 ENDPROC

1920

193¢ DEF PROCInput (length)

1940 LOCALX,Y:X=P0S:Y=VPOS:CS$="":PRINT
TAB (X,Y) STRINGS (length,” *)STRINGS (leng
th,CHR$8) ; : PROCCursorOn: REPEATBS$=CGETS

1950 IFINSTR (AS,CHRS (ASCBS AND&DF))>@
ORINSTR(AS,BS)>@ THENCS=LEFTS$ (C$+BS,len
gth) :PRINTTAB (X,Y)CS;

1960 IFB$S=CHRS$127 ANDLENCS>@ THENCS=LE
FT$ (CS$,LENCS-1) :VDU127

197@ UNTILLENCS>@ AND(BS=CHR$13 ORleng
th=1) :C=VALCS :K$S=CHRS (ASCC$ AND&DF) :PRO
CNoCursor

1980 ENDPROC

1999 :

200@ DEF PROCOS (AS)

2019 LOCALX%,Y%:X%=0%:Y%=0Q3DIV256:$0%=
AS:CALL&FFF7

202@ ENDPROC

2039 =

2040 DEF PROCCursorOn

205@ VDU23;11,255;9;0;9;

2069 ENDPROC

2079 =

2080 DEF PROCNoCursor

2090 vDU23;11,0;0;0;0;

210¢ ENDPROC

2110 =

2120 DEF PROCColours

2130 IFm%<7 THENLOCALI%:FORI%=@TOM%:VD
U19,1%,C%(1I%);0; s NEXT

2140 ENDPROC

2150 =

216@ DEF PROCPrint

2170 *FX3,10

218¢ PRINT'" ","Drive Dir","slide","Sc
reenll Ve “CO].OuI'S" LRI 1] A IINo“ . “Nan\e“ ’ Ileell
,“ﬂ",“]“,"2“,“3“'

2190 PTR#A=5:FORI%=1TOK%: INPUT#A,AS:PR
INT; I%,A8" We s FORJ%=0TO6 : INPUT#A ,A
$:PRINTAS, ; sNEXT: PRINT : NEXT : VDU12: *FX3

22(0¢ ENDPROC

2219 :

2220 DEF PROCPrintSlide

2230 PRINTTAB (J,Y%)CGSTAB (3-LENSTRSI%,
Y%) ; 1%; :RESTORE165¢ :FORI=0TO7 : READA%,B%
s INPUT#A ,AS: PRINTTAB (A%, Y%)AS$; s NEXT

2240 ENDPROC

2250

2260 DEF PROCPrintRealData

227@ IFJ>1 THENCS=LEFTS (C$+D$,B%) ELSE
CS$=RIGHTS (CS$,1)

228@¢ PRINT#A,CS

229¢ ENDPROC

2300

2310 DEF PROCESCoff

2320 *FX22¢,200

233¢ ENDPROC

2349 :

235@ DEF PROCESCon

2360 *FX220,27

237¢ ENDPROC

2380 :

2390 DEF PROCRun

2400 7Z%=1:PROCNoCursor : INPUT#A,K% V%= (
K%-1) *L.%+5: REPEATPTR#A=5: REPEATINPUT#A ,
AS,BS,CS:DS="LOAD :"+AS+","+BS+"."+CS

2410 INPUT#A,CS:m%=VALCS:VDU22,m%:PROC
NoCursor s PROCNoOfColours :FORI=gTO03: INPU
TH#A,AS:C% (I)=VALAS : NEXT: PROCColours:PRO
COS (DS) :*FX15

242¢ PROCKeys :UNTILFNEnd :UNTILFALSE

2430 : ‘

2440 DEF PROCKeys

245@ REPEAT:IFT%<6¢ THENMOVE®, 36:PLOT7
,1280,36 ELSEPROCOpenCommand s PROCCursor
On:IFm%=2 ORm%=5 THENPRINT"Next/Back/L+
/J-/End"; ELSEPRINT"N=Next. B=Back. L=L
eapt. J=Jump-. E=End";

. Continued on page 27 ,’

BEEBUG

JULY 1984

Volume-3 Issue 3



Test?

4.

18

a8

- nasit
o B2

20

+°*'A FAST COLOUR FILL ROUTINE (16K)

by Stephen Todd

Here
whole variety of your programs.

area on the screen in any colour and

quickly indeed.,

The ability to colour in any
irregular area on the screen is a
feature of most commercial graphics
packages. 0.5 1.2 does allow some crude
£ill routines as versions of the PLOT
command (PLOT 77), but writing a
comprehensive fill routine is still
difficult, and in Basic the results are
slow. The machine code  routine
presented here is one that you can
readily incorporate in your own
programs (whether they be in Basic or
machine code), or load from disc or
cassette as required. The routine is
listed as part of a program FILL to
demonstrate just how versatile it is.

To see this demonstration, type in
the program, and after saving to
cassette or disc, just run the program.
The program draws a shape on the screen
and then fills this with a randomly
chosen colour, starting from a random
position.

The f£ill routine itself is contained

in the procedure PROCassemble, from
lines 1160 to 2260, and you may wish to
save this separately using *SPOOL (see
User Guide page 4¢2) for inclusion in
your own programs (using *EXEC). See
this month's article in the 'Beginners
Start Here' series for more information
on *SPOOL and *EXEC (also in the User
Guide page 402).

To use the routine, your program
must first call the procedure
PROCassemble to set up the machine code

routine, as in the demonstration

is an exceptionally useful utility that you could use in a
is a routine that will fill any
in any graphics mode very

program at line 130. To f£ill an area
you should select the colour using the
GCOL command and use MOVE to select a
suitable starting point within the area
to be coloured (lines 160 and 180@). The
£ill routine is then called by using
the command:

CaLL fill
As a simple example, try the
following after you have correctly

entered the FILL program:

DELETE 140,1150

146 GCOL 0,2

150 MOVE 300,300

160 DRAW 600, 300:DRAW 600,600

170 DRAW 309,6@89:DRAW 300,300

180 MOVE 400, 400:DRAW 500,400

190 DRAW 500 ,500:DRAW 400,500

200 DRAW 400,400:GCOL1T,1:MOVE35¢, 350
219 CALL £ill:GCOL1,3:MOVE 450,450
220/ CALL f£ill:END

The sequence of select colour (using
GCOL) , move  to starting point (using
MOVE), and then £ill is used twice in
lines 200 to 220.

There is another way to use this’
£ill routine, and that is by assembling

BEEBUG

JULY 1984

Volume-3 Issue 3



19

the machine code and then *SAVEing it
on cassette or disc. Then when you need
to use the routine, you can *LOAD it
back into memory and call the code at
the load address. To do this we need to
delete line 1170 and alter line 1180 to
P%=&2E00 (or any suitable address below
screen memory with 450 bytes to spare).
For example, if we wanted to use the
fill routine in mode 5, we could alter
line 1180 to P%=%5600 (mode 5 screen
memory starts at &5809 leaving 512
bytes), and then assemble the code.
Then we would save the code using:
*SAVE "f£ill" 5600 +450 5600 5600

When we want to use this fill
routine, we could include the following
lines in our program:

130 HIMEM=&5600

140 *LOAD fill

219 GCOL 1,2:MOVE X%,Y%:CALL &5600

Changing the value of HIMEM to the
same load address protects the fill
routine from being overwritten by any
data. The value of &5600 is appropriate
for both modes 4 and 5, while &2EQQ is
the corresponding figure for the other
graphics modes (4, 1 and 2).

10 REM PROGRAM FILL
20 REM VERSION B1.0
3¢ REM AUTHOR S.TODD
40 REM BEEBUG JULY 1984
50 REM PROGRAM SUBJECT TO COPYRIGHT
60 3
100 ON ERROR GOTO 2280
110 MODE2
120 VvDU23,1,0;0;0;0;
130 PROCassemble
146 GCOL@,1
15@ PROCbox
16¢ VDU19,1026;@;3:GCOL RND(8)+51,2
170 REPEAT:X%=RND (1279) sY%=RND (1023)
UNTILPOINT (X%,Y%)=0
180 MOVEX%,Y$%
181 CALL fill
182 END
199 ¢
1000 REM Demonstration shape
101¢ DEF PROCbox
1020 MOVE10@,25¢
1930 RESTORE 1070
1040 READ x,y:IF x=-1 GOTO 1140
1950 DRAW x,y:GOTO1048
1060

1079 DATA370,37¢,560,190,526,350,639,26
,940,290,1100,100,90,140,60,200, 80,400
1080 DATA90,350,250,500,10,499,19,10,1
270,20,1260,700,1000,1000,0,1023,0,500
109¢ DATA40,500,30,1000,1000,900,1050,
700,950,409 ,800,300,700,400,649,300,550
1100 DATAS00,900,400,660,700,600,650,5
3¢,780,780,659,1000,800,850,750,420,850
1110 DATA520,640,220,700,240,600,180,6
09,190,750,300,750,250,800,150,780,140
1120 DATA530,330,589,300,450,100,250
1138 DATA -1,-1

1140 ENDPROC

1158 :

1160 DEF PROCassemble

1170 DIM PT$% 450 :FORT$=0TO2 STEP2
1189 P%=PT% :

119¢ [OPT T%

1200 .£fill

1210 LDA #9:STA &76:LDA #12:STA &77:LD
A &76:SEC:SBC #1:STA &76

1220 BCS runit:DEC &77

1230 .runit

1249 LDA #0:STA &7E:LDA #&87 \ Make su
re we are in a graphics mode

1250 JSR &FFF4:TYA:TAX:LDA modetable,X
:BPL rightmode

1260 JMP wrongmode

127@ .rightmode

1280 STA &78

1290 LDY #0 \ Get the last graphics po
int into &70-&73

1300 LDX #&88:LDA #13:JSR &FFF1:LDX #4
1318 .again

1320 LDA &8B,X:STA &6F,X:DEX:BNE again
1339

1340 LDY #0:LDX #&7@:LDA #9:JSR &FFF1:
LDA &74:STA &7C

1350 BEQ repeatl \ If its background g
o colour fill in current GCOL

1360 .error

1370 LDA #7:JSR &FFEE:CLC:RTS \ else r
eturn. to the calling program

1380 .repeatl

1399 BIT &FF \ Test for ESCAPE key and
e xit if pressed

1409 BPL notescape

1410 LDA #&7E:JSR &FFF4:IMP error

1420 .notescape

1430 LDA #&FF \ Set draw/miss flags on
1440 STA &79:STA &7A

145¢ LDA #25 \ Do PLOT77,XC0Or,ycoor
1460 JSR &FFEESLDA #77:JSR &FFEE:LDX #0
147¢ .back

1480 LDA &70,X:JSR &FFEE: INX:CPX #4:BN
E back

1490 LDY #0 \ Get back the co-ordinate
s at the end of the PLOT77 line

1500 LDX #&88:LDA #13:JSR &FFF1:LDA &8
C:STA &70:LDA &8D:STA &71 »

BEEBUG

JULY 1984

Volume-3 Issue 3



20

1519 LDA &72 \ Up one pixel in the Y d
irection

1520 CLCsADC #4:STA &72:BCC repeat2:IN
C &73

1530 .repeat2

1540 LDY #0 \ Get the colour of that p
oint

1550 LDX #&70:LDA #9:JSR &FFF1:LDA &74
:BPL notpoint

1560 JMP point \ If the point was off
screen

157¢ .notpoint

1580 CMP &7C:BEQ checkl \ If its backg
round check the up draw flag

1590 LDA #&FF \ else set the up draw
flag

1600 STA &79:BNE nextx \ and try next
point along x axis

1610 .checkl

1620 LDA &79 \ If up flag unset dont d
raw line

1630 BEQ nextx

1640 JSR storepoint \ else remember th
is point

1650 LDA #8 \ and unset the draw flag
1660 STA &79

1670 .nextx

1680 LDA &7@ \ Work out the next x poi
nt and check if we have reached

1690 SEC:SBC &78:STA &7@ \ the end of
the line

1780 BCS nodecrement:DEC &71

1719 .nodecrement

1720 LDA &88:SEC:SBC &70:STA &75:LDA &
89:SBC &71:BNE repeat2

1730 LDA &75:CMP &78:BNE repeat2

1740 LDA &70 \ Now look below the line
and store any relevant points

175@ CLC:ADC &78:STA &70: BCC 18:INC &71
1769 .18

1770 LDA &72:SEC:SBC #8:STA &72:BCS no
ty:DEC &73

1788 .noty

1790 LDY #0@:LDX #&70:LDA #9: J&R &FFF1:
LDA &74:BMI point:CMP &7C

180@ BEQ check2:LDA #&FF:STA &7A:BNE i
ncrex

1819 .check2

1820 LDA &7A:BEQ increx:JSR storepoint
sLDA #0@:STA &7A

1830 .increx

1840 LDA &70:CLC:ADC &78:STA &7@:BCC n
oinzINC &71

185¢ .noin

1860 LDA &7@:SEC:SBC &8C:STA &75:LDA &
71:SBC &8D:BNE noty

1879 LDA &75:CMP &78:BNE noty

1880 .point

18909 JSR popstack \ Checked all of the
last drawn line so now get

1900 BCS endfill \ a new start point i
f any are left

1910 JMP repeatl

1920 .endfill

1930 CLC:RTS \ leave this program
1940 .popstack \ Pop the last item on
the stack adjusting the stack pointer
1950 LDA &7E:BNE pointhere:SEC:RTS
1960 .pointhere

1970 SEC:SBC #4:STA &7E:LDA &76:SEC:SB

C #4:STA &763BCS poppoint:DEC &77

1980 .poppoint

1990 LDY #4

2000 .reppop

2010 LDA (&76) ,Y:STA &6F,Y:DEY:BNE rep
pop:CLC:RTS

2020 .storepoint \ Push a point on the
stack if there is enough room

2030 LDA &7E:CMP #&FC:BEQ cantstore:CL
CsADC #4:STA &7E:LDY #4

2040 .repstore

2050 LDA &6F,Y:STA (&76),Y:DEY:BNE rep
store:LDA &76

2060 CLC:ADC #4:STA &76:BCC returnstor
esINC &77

2079 .returnstore

2080 RTS

2099 .cantstore

2109 JSR sound:RTS

2119 .sound \ Issue the error 'beep’
2120 LDA #7:LDX #sounddata MOD 256:LDY
#sounddata DIV 256:JSR &FFF1:RTS

2130

2140 ]

2150 :

2160 modetable=P%:REM Step size in the
x direction in all the modes

2170 |P%=&FFQ80402:P%!4=4FFFF0804

2180 :

219¢ sounddata=P%+8:REM Data for beep
2200 P%!8=sFFF70011:P%!12=5100FA

2210

2220 wrongmode=P%+16:REM error message
2230 P%?16=0:P%?17=&FF:$ (P%+18)="Not g
raphics mode"+CHRSO

2249

2250 NEXT

2260 ENDPROC

2270 :

2280 ON ERROR OFF

2290 MODE7:IF ERR=17 END

2300 REPORT:PRINT" at line ";ERL ==

BEEBUG

JULY 1984

Volume-3 Issue 3



21

: PROCEDURES |

BEGINNERS START HERE
BUILDING A PROCEDURE/FUNCTION
LIBRARY

by Peter Lewis

Our previous two articles for beginners have shown how useful
functions and procedures are in both designing and writing programs

in Basic. This month, Peter Lewis shows you how to put all your most
useful functions and procedures together to form a personal library.

In the previous two articles in
this series, I have described in some
detail how to write your own functions
and procedures, and how useful these
language features are in helping the
design and development of computer
programs. If you look at the listings
of many of the programs that you see
published in BEEBUG, you will see how
often the authors have made use of
these features. Our new BEEBUG
Workshop series also makes extensive
use of functions and procedures to
express many quite simple ideas.

Once you start writing your own
functions and procedures, you will soon
realise that many of them can be used
not Jjust in one program, but in many
different programs. In fact, the
shorter and more basic the procedure is
the more frequently you are likely to
find yourself dusting it off to use in
yet another program. Even where exactly
the same procedure is not appropriate,
much programming time can often be
saved by loading in an existing
procedure and modifying it to suit,
rather than programming from scratch.

In order to make the most of this
idea, we need to have some way of
saving all of our most useful
procedures  and functions, and of
course, of adding those we select to
any new program that we are developing.

Before proceeding further there is a
technical point that needs to be
explained. When you create a program by
typing lines of Basic into the
computer, the screen display always
consists entirely of ASCII characters

(see the appendix on page 486 of the
User Guide) corresponding to the
characters typed in from the keyboard.
Thus the program line:

100 PRINT"fred"

consists of a string of 15 characters
when displayed on the screen.

The same  instruction is stored
differently in the computer's memory to
save space. Line numbers are coded and
all Basic keywords are held in so
called 'tokenised' form (see User Guide
page 483). This has the advantage that
each Basic keyword can be stored in a
single byte of memory irrespective of
the length of the keyword. As a result,
the instruction given above would
occupy only 12 bytes of memory.

Now you may well be wondering about
the point of all this. Normally,
programs are saved and loaded, using
either cassette or disc, in a tokenised
form. But the commands SAVE and LOAD
only deal with whole programs. They do
not allow you to load a program into
memory and then append another program
(function or procedure) to the program
already loaded. This can only be done
using the commands *SPOOL and *EXEC,
and both of these use an ASCII, not
tokenised format.

SETTING UP AND USING A LIBRARY

All your main programs should be
saved and loaded in the usual way.
Whenever you have a function or
procedure which you think would be
worth adding to your library then
proceed as follows. First ensure that

BEEBUG

JULY 1984

Volume-3 Issue 3



22

only the instructions for defining the
function or procedure are left in
memory (starting with DEF). Suppose we
want to save this under the name

PROCFN. Type:
*SPOOL PROCFEN <return>
LIST <return>
*SPOOL <return>

This will save an ASCII version of the
function or procedure on either disc or
cassette. If at a later date you want
to add this to a new program which you
are developing type in the following
command, assuming that the new program
so far developed is already in memory.

*EXEC PROCEN

The procedure or function PROCEN will
then be added to the program already in
memory. In effect, the command *EXEC
enters the contents of the file PROCEN
(or whatever you select) into memory
just as though it was typed in from the
keyboard .

SOME PRACTICAL POINTS

One Important  practical point
concerns line numbers. When you save a
function or procedure in your library,
you will have no idea of the line
numbers you will be using in future
programs. Thus when you add a function
or procedure to a program there may be
an overlap of line numbers with the
program already in memory, and some of
the lines will be lost (just as they
would be if you typed in a line from
the keyboard that had the same Lline
number as an existing line).

You can't help this, but at least
if you are aware of the possibility you
can check, and if necessary renumber

the program in memory before adding the
function or procedure. You will also

find it helpful to number all your
library routines from, say, line 10000
upwards. This will leave plenty of room
in the earlier 1line numbers for the
main program. It may also be a good
idea to record the line number range
for each routine.

Another good idea is to allocate one
or more discs or cassettes for use as
your function and procedure library. If
you find that saving very short
functions or procedures is wasteful,
then you might like to save several
together as a single file., This
obviously makes most sense if the
individual functions and procedures are
related in some way, for example

graphics routines or string handling

routines. You may also choose to
designate different discs or cassettes
in the same thematic way. You will
clearly need to keep a record in
some form of where each function or
procedure is stored and what it does.

Building a library of all your most
useful functions and procedures is a
good way of organising your
programming, and one that many computer
professionals use as a matter of
course. As you develop  your
programming skills and become more
sophisticated, you may well find the
LINK utility published in BEEBUG Vol.2
No.7 and the Function/Procedure Overlay
utility in BEEBUG Vol.3 No.2 add
greatly to the value of your library,
though to make the most of these you
really need a disc system.

You may also decide that many of
the functions and procedures you see
published in BEEBUG are also worth
including in your 1library, and our
Workshop series should prove
particularly useful in this respect.

m
HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT!
INSTANT VDU EFFECTS USING CONTROL - A.Porter

It's possible to select any screen mode, foreground or background colour without
having to resort to lengthy VDU codes. Modes @ to 7 are easily selected by typing
Ctrl-v followed by the required mode number (though notice that HIMEM is not reset
to match the mode chosen). In mode 1 a control code sequence of 'Sg6090"
(equivalent to a VDU19 command) followed by 'S11900° will produce a cyan background
with red text. (This has been hinted at by several of our contributors as being a

very useful trick for adding colour to View text. This must be done whilst in
command mode) . =]

BEEBUG JULY 1984 Volume-3 Issue 3



23

by

s20s"A PRINTER SPOOLER UTILITY (16K)

by D.S. Peckett

Printing is a time consuming activity that all too often can tie up
your micro for a long period of time. The printer spooler described
here is a most useful utility which will allow you to carry on
working, and do your printing at the same time.

INTRODUCTION

It is a fact of computing life that
a system is never quite fast enough.
The Beeb is better than most micros but
still, as soon as you start printing,
your whole system is tied up while it
generates a listing of your latest
magnum opus. Wouldn't it be nice to be
able to carry on using the computer
while it was printing?

"professional™ computers (ie those
costing several thousand pounds plus)
often incorporate a "spooler", which is
a system allowing the computer to print
a file while it carries on with its
normal processing. An alternative is to
purchase a piece of hardware called a
buffer for your printer which allows
large amounts of text to be transferred
fast to the printer which deals with
this at its own speed leaving the
computer free for other work. But this
all costs money, up to £10¢ in fact.
The small buffer built into many
printers now available will hold very
little text (even a 2k buffer is not
that large).

This article describes a short
program which will add a software
spooler to a BBC micro, allowing it to
print text as a background task while
simultaneously processing a totally
different program as a foreground task.
The routine works with both tape and
disc-based systems, although it isn't
really too practical to use it with
tape. The program will work with all
printers connected via the Printer port
(this is the normal practice), but will
not work with printers that use the
RS423 connector to avoid potential
conflicts with other programs. It has
also not proved possible to provide a
spooler that will work concurrently
with Wordwise, though there is no other
problem in using it to print spooled
Wordwise files.

The program occupies only one page
of memory and, once loaded, can be used
repeatedly. It makes use of the
computer's "Event" system in order to
interleave time allocated to spooling
and time allocated to the foreground
task in a way that makes both appear to
take place concurrently. It is capable
of running at the same time as other
Event-driven routines, though this is
partly dependent on how they are
written.

SETTING UP THE SPOOLER

As with all programs that involve
machine code, take great care when
typing the program in, and make sure
that you save it before rumning it in
case the program should become
corrupted. If you want to save some
time when typing in the program, you
can omit any text that follows a "\"
character, as these are only comments.

Lines 108 and 293¢ to 3008 specify
where in memory the program is to go,
and the version supplied in the
magazine contains a section of code to
decide whether your Beeb is a disc or
tape based machine, and to locate the
code accordingly. If you find that the
area allocated is not suitable, then by
altering FNcode, in line 104, to a
specific memory address (e.g. 100
code=&900) , then the program can be
assembled to any area of your choice.
Note that the tape/disc comment will no
longer be valid, but the save addresses
will be.

For disc, the program will assemble
from address &AQ8 onwards. As this is
the cassette input buffer, this area is
not normally used on a disc system, and
so is a good place to hide this sort of
code. However, you will sometimes find
that this clashes with other programs
which have the same idea. For instance,
TOOLKIT uses Page &A.

BEEBUG

JULY 1984

Volume-3 Issue 3



24

You can avoid such clashes if you
assemble the program in Page 9; this
will, however, prevent your using
speech, envelopes 5-16, the RS423
buffer (but the spooler doesn't support
the serial port anyway) or the cassette
output buffer. These may or not be
serious limitations to you.

For tape, the code is assembled at
&D0J onwards, which is only used by
disc and other filing system ROMs.
Again the alternative is Page &9 as
described above.

When you set up the program, you
must also set "linefeed", at line 1290,
to fit your printer's requirements. Set
it to FALSE if your printer provides
its own 1linefeeds after a Carriage
Return, or to TRUE if the computer has
to supply it. If you normally need a
*FX6,0 before you can print, your
printer needs the extra linefeed.

Once you have entered and debugged
the routine, you can save it directly
as a machine-code file. To do this, run
the program and then *SAVE it using the
parameters as specified by the program
itself (you can use an alternative to
the name PRINT if you wish). When you
load - it in future, you only need to
type either:

*LOAD PRINT

if you want to be able to CALL the
spooler from within a Basic program,
or:

*RUN PRINT

if you just want dump a single text
file.

USING THE SPOOLER

The spooler always assumes that it
is going to print an already-formatted
(or pure ASCII) file; it cannot, for
example, make sense of a Basic program
which has been stored in its normal
"tokenised" form. You must therefore
prepare the file in advance by, for
instance, *SPOOLing a program listing.
If you are going to print a Wordwise
file, use Option 8 to prepare it as
spooled, formatted text, on disc or
tape.

Once you have set up and saved the
text you wish to print, load the
spooler program, if it's not in memory
already, and start it running by using
a CALL command from Basic. For
instance, if it has been assembled to
Page &A, (as it would be for disc) use:

CALL &A20 <return>

If, on the other hand, you were
using tape when you assembled it, use:

CALL &D20 <return>

If you have assembled the program
into memory by running the original
program (as listed), rather than
loading it from tape or disc as a
machine-code file, you have another way
of calling the spooler. During assembly
the computer is set up so that you can
call the routine directly by the
command

*CODE <return>

The advantage is that you can run the
program from within other languages.
These usually allow you to give "V
commands but do not necessarily allow
"CALL"s.

Whichever way you choose to call the
spooler, the program will ask you for
the name of the file you wish to print
~ enter it in the usual way and leave
the spooler to do its job. You can
carry on using your computer in almost
any way you wish while the printer
mutters away in the background. Every
so often, the spooler will read another
block of data from the file; while it
is doing this, the foreground program
will freeze, starting up again as soon
as the next block of text has been
loaded, The intermittent freezing is
hardly noticeable if you are using
discs, but is  enough to cause
inconvenience with tape.

It is for this reason that I only
recommend the spooler for disc systems.
Although it works perfectly well with
tape, it cannot really be any more than
a novelty, unless the foreground
program is not bothered by frequent 1.5
second pauses. Don't try it with
Planetoid! With a disc system,
however, you can even read and write

BEEBUG

JULY 1984

Volume-3 Issue 3



25

other data to and from disc while the
spooler is busy.

POINTS TO NOTE

You should note that, unfortunately,
the spooler is not compatible with
Wordwise, so that although you can
spool out Wordwise files without any
problem at all, the spooler will not
work from within Wordwise. This is a
pity, since it would be useful to be
able to continue to edit text etc while
printing goes on, but is apparently
unavoidable. It seems that Wordwise
insists on closing the file that the
spooler has opened, with the result
that it cannot read the data!l

When running, the routine ignores
the Escape key, should it be pressed;
this allows you to run programs which
use this key for their own control. To
stop the spooler in mid-print, you must
press the Break key.

Despite its (relatively minor)
limitations, the spooler is a very
useful program. Once you have tried
using it, I think that you will agree
with me that it definitely falls into
the "don't know how I managed before"
category.

PROGRAM DESCRIPTION

The routine is driven by the
'yertical sync' event. The spooler
should be compatible with the vast
majority of programs, both Basic and
machine-code, If you want to know more
about events, I thoroughly recommend
the article in BEEBUG Vol.2 No.6 (Nov
83). The spooler written in assembler,
is  contained in the  procedure
PROCassem, This first sets up all the
constants and variables used by the
spooler before determining the name of
the file to be spooled.

Using the event mechanism, the
spooler is called every 20 msec when
it checks to see whether the next
character can yet be sent to the
printer, There will also be an
occasional pause as the filing system
loads the next data Dblock from tape or
disc, but this is unavoidable. This
delay occurs when all of the data from
the current block has been written to
the printer. Once spooling is complete,
the spool file is closed and the event

mechanism disabled. The spooler will
then remain dormant until called again.
The program is well anotated through—-
out for those who are interested in its
detailed workings.

10 REM Program SPOOLER
20 REM Version B1.1
3¢ REM Author David Peckett
40 REM Parallel printers only
5¢ REM BEEBUG JULY 1984
60 REM Program subject to Copyright
70
100 code=FNcode
110 PROCassem
12¢ ?USERV=init MOD 256
13¢ REM SETUP *CODE ENTRY POINT
140 USERV?1=init DIV 256
15¢ PRINT'"Printer spooler installed.”
160 PRINT"Use *SAVE PRINT “; code"‘ "
:7P%; " ;7 (codet&20)
17¢ PRINT"to save the spooler."
180 PRINT"*CODE will spool when the B
asic program"
19¢ PRINT"has just been RUN."
200 PRINT"*RUN PRINT calls the spoole
r from ";
21¢ IF code=&AQ00 PRINT"disc.”' ELSE P
RINT"tape."'
220 END
230 @
1000 DEF PROCassem
1010 REM Set up constants
1020 OSASCI=&FFE3
1930% OSBGET=&FFD7
1040 OSBYTE=&FFF4
195@ OSFIND=&FFCE
1060 OSWORD=&FFF'1
1079 EVNTV=&220
1980 USERV=&200
1099 REM Printer VIA addresses
1100 ora=&FE61
1119 pcr=&FE6C
1120 ifr=&FE6D
1130 ier=&FE6E
1140 name=code:REM Space for file name
1150 bufferparams=code+12:REM Buffer f
or name input
1160 REM Program variables
1170 temp=codet17
1180 channel=code+18
119¢ tempier=code+19
1200 temppcr=code+20
1219 tempevntv=code+21
1220 needlf=codet+23
1230 REM Set up info for name input
1240 bufferparams!@=name i)

BEEBUG

JULY 1984

Volume-3 Issue 3



26

1250 bufferparams?2=12:REM Max of 12 ¢ 1830 JSvIA{» OSBYTE \ Enable vertical sync

hars Event

1260 bufferparams?3=32 184¢ CLI \ Interrupts back on
1270 bufferparams?4=126 1850 RTS \ Back to user

1280 REM Set flags 1860 \

12990 linefeed=FALSE:REM TRUE if printe 1870 \ Actual spooler routine
r needs linefeed 1882 \

1300 ?needlf=0 1899 .spool

1310 FOR pass=@ TO 2 STEP 2 1900 \ Save system variables

1320 P%=codet+&20 1919 \ (Not absolutely essential:
1330 [OPT pass 1920 \ see Beebug Vol.2 No.8,
1340 \ 1930 \ but ensures routine

1350 .init 194@ \ is re-entrant)

1360 LDX #LEN (Smessage) 1950 PHP:STA temp:PHA

1370 LDY #0 1960 TXA:PHA

1380 \ 1970 TYA:PHA

139¢ .type \ Print message 1980 LDA temp \ Event number

1409 LDA message,Y 1990 CMP #4 \ Was it vert. sync?
1419 JSR OSASCI 2009 BNE exit \ if not

1420 INY 2010 \ Monitor Printer VIA

1430 DEX 202¢ LDA ifr \ Check printer flag
1440 BNE type 2030 AND #2 \ Handshake complete?
1450 \ 2040 BEQ exit \ If not, done
146¢ \ Read file name 2050 \ )

1470 LDA #0 2060 \ Disable Event 4 for file read
1480 LDX #bufferparams MOD 256 2070 LDA #13:LDX #4

1490 LDY #bufferparams DIV 256 2080 JSR OSBYTE

1508 JSR OSWORD 2090 ]

1510 BCC openfile \ Test for ESCAPE 2100 :

1520 RTS \ Exit if ESCAPE 2110 REM Option for extra linefeed
1530 \ 2120 REM to be sent to the printer.
1540 .openfile 2130 REM Select appropriate bit
1550 LDA #&40 2149 REM of ccde.

1560 LDX #name MOD 256 2150

157¢ LDY #name DIV 256 \ Point to name ° 2160 IF linefeed THEN PROCaddlf ELSE P
1580 JSR OSFIND \ Open file ROCnolf

1599 STA channel 2170 :

1609 BNE spoolstart \ Did it open? 2180 REM Resume normal assembly
1610 RTS \ Return if not 2190 :

1620 \ 2200 [OPT pass

1639 \ Set up the Event mechanism 2210 \

1649 .spoolstart 222¢ .nolinefeed

1650 SEI \ Block interrupts 2230 \ Re-enable Event 4

1660 LDA ier 2240 LDA #14:LDX #4

1679 STA tempier \ Save VIA mode.. 2250 JSR OSBYTE

1680 LDA pcr 2260 JMP exit

1699 STA temppcr \..and handshake 2279 \

1709 LDA #&7F 2280 .finished

1710 STA ier \ Disable VIA interrupts 2290 \ Event 4 always disabled
1720 LDA #&0A ) 2308 \ when we get here

173@ STA pcr \ Set handshake mode 2310 LDA #0:LDY channel

1740 LDA ora \ Dummy to start system 2320 JSR OSFIND \Close file

1750 \ Save Event vector 2330 SEI \ Block interrupts

1760 LDA EVNTV:STA tempevntv . 2340 LDA tempier

1770 LDA EVNTV+1:STA tempevntv+l 235¢ STA ier \ Restore VIA..

1780 LDA #spool MOD 256 2360 LDA temppcr

1790 STA EVNTV 2376 STA pcr \..as original

1800 LDA #spool DIV 256 2380 \ Restore Event vector

1810 STA EVNTV+1 \ Set spooler vector 2390 LDA tempevntvsSTA EVNTV
1820 LDA #14:LDX #4 2400 LDA tempevntv+1:STA EVNTV+] )i}

BEEBUG JULY 1984 Volume-3 Issue 3



27

2410 CLI \ Re-enable interrupts
2420 \

2430 .exit

2440 PLA:TAY

2450 PLA:TAX

2460 PLA:PLP \ Restore system
247¢ \ Continue Event handling
2480 JMP (tempevntv)

2490 \

2500 \ Message for file opening
2519 \

2520 .message

2539 ]

2540 S$P%=CHRS7+"FILE? "

2550 NEXT

2560 ENDPROC

25790

2580 REM Code for when extra linefeed
needed

2590 DEF PROCaddlf

2600 [OPT pass

2610 LDA needlf \ linefeed required th

is time?

2620 BEQ getch \ If not, continue
2630 LDX #0:8TX needlf \ Clear flag
2640 BEQ nogetch

2650 \

2660 .getch

2679 \ Read a char from file
268¢ LDY channel

2690 JSR OSBGET \ Get next char
270@ BCS finished \ EOF?

2710 \

2720 .nogetch

273@ STA ora \ Output to printer

2740 CMP #13 \ Was it a CR?

2750 BNE nolinefeed \ If not, continue

2760 LDA #10:STA needlf \ Set flag

2778 1

2780 ENDPROC

2790

2800 REM Code for printers with autoli
nefeed

2810 DEF PROCnolf

2820 [OPT pass

2830 \ Get next char

2840 LDY channel

2850 JSR OSBGET

2860 BCS finished \ EOF?

2870 \

288¢ \ Print it

2890 STA ora

2900 }

2919 ENDPROC

2929 :

2930 DEF FNcode

2940 LOCAL A%,Y%

2950 ‘A%=0:Y%=0

2960 A%=(USR&FFDA)AND&FF@O00 DIV &10000
2979 IF A%=1 OR A%=2 Y%=&DOO

2980 IF A%=4 Y3=&A00

2990 IF Y%=¢ PRINT'"The spooler is des
igned to work with"'"tape or disc filin
g systems only!"':END

3000 =Y%

=

LISTO ABBREVIATION

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

The BBC User Guide has a list (p.483) of keywords and their abbreviated forms,
except for LISTO. It documents LIST as being shortened to L., so the conclusion that
shortening LISTO to L.O would do the trick, is quite correct. For example L.O1 will
list a program with a space inserted between the line number and the program text.
(See User Guide, p.290 and remember to use a capital '0O' not zero here).

BEEBUG

JULY 1984

T

Volume-3 Issue 3



Tested OF dOS \.’Z

28

FREEZING AND SAVING SCREEN DISPLAYS

by Alan Webster

Have you ever wanted to save your Beeb's display in the middle of

any program on to cassette or disc? Well now you have the chance
with this event driven program, that combines a screen freezer and a

routine to save the display.

As you may gather, there are two
parts to this program. The first part
is a screen freezer (based on the
program by David Graham in BEEBUG Vol.2
No.7 Page 17), and the second part will
optionally save the screen display.
Both parts will work with most machine
code programs, as well as with programs
in Basic - so you can, for example,
take screen dumps of machine code games
to record high scores.

The program works by using the 'Key
Pressed' event. When you press the @
key, a machine code routine at &D@g is
executed. This freezes the Beeb until
one of two things occurs.

1. Press the @ key again to return the
Beeb to its normal state, or

2. Save the screen by pressing the
minus (-) key.

After saving the screen, disc users
may find that the computer 'locks up'.
This is because some programs need the
disc workspace to run, and will become
corrupted.

Type the program in as listed and,
before running, save a copy to cassette
or disc. Then type:

RUN <return>
This sets up the machine code. Now you
can load and run the program whose
screen displays you wish to save.
Please remember not to press Break at
any time, otherwise you will have to
start all over again.

When you have saved a screen on to
cassette or disc, you can now reload
that into memory by typing:

MODE n <return>
where n 1is the mode of the screen
display, and then:

*LOAD SCREENx <return>
where ¥ is a letter from A to 3%,
according to the filename that was
saved.

PROGRAM NOTES

The program as listed is for
cassette users. To alter the program to
run on a disc system delete 1lines 345
and 435, and change line 108 to:

100 Code%=&A00

You can also change the address in
line 108 to allow the freeze/save
routine to reside in a different area
of memory, if that specified area
happens to be used by the game program.

The line at 599 is an Operating
System command which *SAVEs the screen
display as the file SCREENA. The first
value after this is the start of screen
memory and has to be altered

appropriately for different screen
modes .

Once the file SCREENA has been
saved, the program automatically
updates the filename to SCREENB, and
then to SCREENC and so on.

One final note about saving on
cassette. There will not be any visible
signs = that the Beeb is saving the
screen as all messages are temporarily
disabled. You should press ‘'Play' and
'Record' on your cassette recorder
immediately before pressing '-' to save
the screen, though you can, however,
watch the cassette motor LED to see
when it has finished recording.

BEEBUG

JULY 1984

Volume-3 Issue 3



29

19 REM PROGRAM Freezer / Saver

20 REM AUTHOR Alan R Webster

3¢ REM VERSION Bl.1

40 REM BEEBUG JULY 1984

5¢ REM PROGRAM SUBJECT TO COPYRIGHT

(J'H 319 JSR key 530 PLA:TAY

190 Code%=&D0OU 320 BNE exit 540 PLA:TAX

118 osc=Code%+&80 330 JMP rell 55¢ PLA:PLP

120 file=osc+11 340 .save 560 RTS

130 FOR T%=¢ TO 3.STEP 3 35¢ LDA #139 579 .key

140 P%=Code% 360 LDX #1 58¢ LDA #129

15@ [OPT T% 370 LDY #0 590 LDX #184

160 .begin 380 JSR &FFF4 600 LDY #255

170 PHP:PHA 390 CLC 619 JSR &FFF4

180 TXA:PHA 40¢ LDX #0sc AND 255 620 TYA

190 TYA:PHA 41¢ LDY #osc DIV 256 630 RTS

200 CPY #ASC "@" 420 LDA #0 640 ]

210 BNE exit 430 JSR &FFEF7 650 NEXT

220 .rell 449 CILC 6602

230 JSR key 45¢ LDA file 670 CS="SAVE SCREENA 7C00 800"
240 BNE rell 460 ADC #1 680 C$S=CS+CHRS13

25@¢ LDA #129 47¢ STA file 690 Sosc=C$

260 LDX #232 48¢ LDA #139 700 2&220=Code% AND 255
270 LDY #255 490 LDX #1 710 ?&221=Code% DIV 256
280 JSR &FFF4 5¢¢ LDY #1 720 *FX14,2

290 CPY #255 51¢ JSR &FFF4 730 END

3¢% BEQ save 520 .exit =

W

TICE BOARD NOTICE BOARD NOTICE BOARD NOTICE BOAI

TESTING OUT YOUR MICRO

This month's issue of BEEBUG carries an in-depth review of Acorn's 6502 Second
Procesor. As a result, space is very much at a premium, and the next part in our
series 'Tesing Out Your Micro' has had to be carried over to next month.

HINT WINNERS
This month the £10 prize goes to A.Porter and the £5 prize to A.Benham. Thanks
for all your hints. Keep them rolling in (what about Second Processors?) .

MAGAZINE CASSETTE AND DISC

This month all the programs in this issue of BEEBUG are available on both
cassette and disc. Each of the string handling routines from the BEEBUG Workshop
has been expanded to provide a full demonstration program in each case. The magazine
disc will cost £4.75 and there are arrangemnts for subscribers to the magazine
cassette to convert this to a disc subscription. See the member's price 1list for
full details.

ACORN 7Z8@ SECOND PROCESSOR

Hard on the heels of their 6502 Second Processor, Acorn have now launched the Z80
Second Processor. This is a comprehensive small business system, with many
applications packages included in the price of £299 (plus VAT), including word
processing, database and spreadsheet. The system uses the well known CP/M operating
system to provide access to a wealth of business software. We hope to include a
review of this next month.

ACORNSOFT'S VIEW AND VIEWSHEET
The Viewsheet package, reviewed in this issue, should be availble in ROM format
from early July. At the same time Acornsoft will be releasing Version 2.1 of the

View word processing package to supercede the previous version 1.4. More
information on View next month.

BEEBUG JULY 1984 Volume-3 Issue 3



30

VIEWSHEET AND ULTRACALC TWO
SPREADSHEET PACKAGES FOR THE BEEB

Reviewed by David Otley

Following the article last month, which described the function of
spreadsheet programs, David Otley continues with a review of two
packages that are likely to be major contenders in the spreadsheet

market for the Beeb.

INTRODUCTION

Bo ViewSheet and Ultracalc are
supplied on 16K EPROMs and in this
form, are only suitable for use on
Model B machines. They both come
supplied in similar packages; AS boxes,
each with a stout manual and the ROM
containing the spreadsheet program
itself. As the version of ViewSheet,
kindly loaned to BEEBUG by Acornsoft,
was a pre-release copy, it is not
possible to comment on the quality of
the documentation due to its incomplete
nature. Previous releases, like the
View word processor package, have had
accompanying manuals and text that have
been excellent. Hopefully, one can
expect the same in this instance.

The manual for Ultracalc was very
good indeed. However, the packaging was
a little suspect for such a costly item
of software. When the copy for review
arrived, ' the ROM was loose inside the
box and required delicate surgery to be
performed on its legs before being
used. Selection is made with a '*CAIC!
command. (Similarly for - ViewSheet but
the command is '*SHEET').

A COMPARISON »

Last month's article introduced the
important principles of spreadsheet
packages and you may wish to refresh
your memory on this before continuing
to read this review.

ViewSheet offers a potentially
larger worksheet (255 rows x 255
columns) than Ultracalc (255 rows by 63
colums), but as the available memory

oW oSt
CONTENTS:

RS Jan: FehiHa
HALIRY:

il
Barclay M
BarrettP:
Bell;R
Benbley; ¥

limits total model size to around 1600
cells (Mode 7), this is hardly
significant.

Much more  important is the
capability of ViewSheet to operate in
any screen mode, whereas Ultracalc is
fixed in the 40 character width of
Mode 7. This 1limits the number of
columns that can be displayed on the
screen t6 five or six. In Mode 3,
ViewSheet can cope with up to twelve
colums satisfactorily, although a
monitor is essential for clarity. The
ability to see a good-sized chunk of a
sheet is useful, especially when it is
large; unfortunately, in  Mode 3
ViewSheet has limited memory available
(I just managed to squeeze a 17 column
by 36 row model into Mode 3), making a

second processor a desirable addition

[ViewSheet does work across the tube -
see the 6502 2nd processor review
elsewhere in this issue-Ed].

However , Ultracalc allows colum
widths to be specified individually,
whereas ViewSheet requires all columns
to be the same width, This restriction
is particularly irksome, although it
can be partially compensated for by the
ability to set row labels into the

BEEBUG

JULY 1984

\
AN

\ Volume-3 Issue 3



31

e e T 2 B S o L U AT

screen  border (itself of variable
width), and by the use of screen
windows,

These 'windows' are unique to

ViewSheet and allow up to ten different
sections of the spreadsheet to be
displayed on the screen at once, each
in their own format. Thus, on a large
sheet, only data entry and final result
rows might be displayed, allowing the
impact of changes in data to Dbe
oObserved - without having to move the
screen window. Windows are also used in
order to define areas of the model to
be printed out. Ultracalc is less
complicated in this respect allowing
only one specified rectangular block of
the sheet to be printed at a time, and
so is easier to use with simple
applications.

Ultracalc also permits individual
entries to be made in different
foreground and background colours -
useful in highlighting important
results - and negative numbers may be
optionally displayed in red. Both
programs allow negative numbers to be
shown in brackets rather than with a
minus sign, again indicative of the
business applications envisaged.

The screen borders and data entry
line are displayed in green by
Ultracalc. This 1is acceptable on a
colour display but slightly dim on a
monochrome screen. It would appear that
Ultracalc is better suited to the user
with a colour TV while ViewSheet is
comfortably used with any kind of
monitor, monochrome included. Its
display is white on black, but both
foreground and background colours can
be altered in all modes but Mode 7.
This is particularly useful in Mode 3
where changing the main background
colour leaves lines across the screen
between rows which help to guide the
eye.

For some reason the two programs
calculate in different directions.
ViewSheet calculates row by row,
whereas Ultracalc goes column by
column. This usually doesn't matter,
but both methods have their advantages
in  specific applications (eg. when
totals or closing balances from one
row/col have to be transferred to form

17:MAY 1984

E=lsm s

STOCK ‘CHECK:

T Y

LITERMINIT UM STOCK
STOCK

0 TOTALS!

the opening figure in the next
row/col). Most spreadsheets give the
user the option of specifying which
method should be used; not to have this
capability is annoying, although
alternative sheet layouts can be
devised to cope with this problem.

Despite their many similar
facilities, the programs feel rather
different to use. ViewSheet makes
extensive use of the function keys in a
similar way to the View word processor.
In Ultracalc commands are entered more
directly, prefaced by a '/ character
(familiar to users of Supercalc) to
distinguish them from values or labels.
In terms of setting up a spreadsheet to
perform a specific job, Ultracalc has
slightly more versatile facilities in
replication, display formatting and
model protection. It also has a 'net
present value' (NPV) command invaluable
to those involved in financial
modelling but which inexplicably, is
not mentioned in the manual, except in
a summary list of commands. Finally
Ultracalc's lookup tables allow for
text as well as numeric entries.

Although both programs can deal with
similarly sized models (around 1600
cells in Mode 7), Ultracalc is slower
in recalculation (15secs compared with
5 secs) and much slower in saving to
and loading from disc (greater than 66
secs compared with less than 14 secs
for a maximum sized model on
ViewSheet). However, an overwhelming
advantage of ViewSheet is that any
selected screen or printer output can
be written to a data file and

BEEBUG

JULY 1984

Volume-3 Issue 3



32

transferred into a word processor for
incorporation into a report or . other
document. It is designed to be
compatible with the View word
processor, but files can also be
transferred into Wordwise (although I
would suggest that final formatting of
the text is completed before inserting
ViewSheet tables due to a slight
problem with the ends of lines). As far
as I could establish, there is no
similar - facility available in
Ultracalc. !

CONCLUSIONS

In many ways Ultracalc is the more
attractive program, especially for the
home user. The commands are logical and
easy to use without reference to key
headings. It has most of the
operational features of ViewSheet and a
few useful extensions (variable column
width, block copying, protection and
formatting, lookup tables using labels
and an NPV function). But it has two
severe disadvantages.

Firstly, it uses only a 40 character
screen which drastically limits the
amount of a sheet that can be viewed at
one time. However, it should be noted

R T R )
that ViewSheet has the same limitation
for models using more than 9K of memory
(unless a second processor is used).

Secondly, it has no facility for
transferring results directly into a
word processor. Here ViewSheet, with
its highly versatile screen and print
windows, can produce almost any type of
display that is required, albeit with
some necessary set-up effort, and is
clearly superior.

Both programs are adequate for
serious use and represent an important
addition to available software. They
are both comparable with Visicalc,
although it is perhaps surprising that
they offer no substantial advance on
its capabilities (probably due to
memory limitations). Despite the
internal advantages of Ultracalc, the
display and file transfer advantages of
ViewSheet would sway the balance for
me. If Acornsoft now produce the
promised data-base management system in
a form that integrates with both View
and ViewSheet, then BBC micro users
will have a total data management
package that compares well with that
available for any micro in its class. =

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

GRAPHICS EXTENSION ROM VARIABLES - M. Chang Sing Pang

Use LOCAL variables within procedures and functions to drive the Computer
Concepts Graphics ROM from Basic to ensure that system variables A% to E% are not
interfered with by your program. This is necessary because the GROM makes use of

=

them itself.

PHASE SELECTION IN MICROPOWER'S "CROAKER" - J.Brunyee & J.Spinks

If you find Program Power's Croaker too easy to start with, then during the part
of the program that displays which phase of the game you are starting, press Escape
as many times as the phase that you wish to play. o=

RELOCATE PROGRAM FUNCTION KEY - M.C.Behrend
This procedure can be added to a program to move itself down, when it's run, and
back up again, afterwards. If this is stored, using *SPOOL, as a text file it can
then be merged into a program with *EXEC. Note that it makes use of the variable 2%
for the duration of the program. (As listed, it will relocate to and from &E@@).
1 PROCdown (&E00Q)
32765 DEFPROCup (L%) P$=PA. : T%=TOP:D%=P%~L%:U%=T%~D% : IFD%<PFORM%=U%-USMODATOLSSTEP
-4 ¢ IM%=M% ID%:NEXT: PA.=L%: END
32766 PROCup(Z%)
32767 DEFPROCdown (L%)P%$=PA, : T%=TOP:D%=P%-L%:U%=T%-D%: IFD%>JFORMS=L.3TOUSSTEP4 : | M%
=M% ID3:NEXT :Z2%=P%:PA.=L%:218=U%MOD256:?19=U%DIV256: RUN: ELSEENDPROC
Your own program should occupy lines between 1 and 32765. ?]

BEEBUG JULY 1984 Volume-3 Issue 3




33

it SNIP SNAP (32K)

and by D.J. Pilling

In recent months, we have published two splendid games from
D.J.Pilling, He has now produced a very different game for your
delight and entertainment. SNIP SNAP is great fun, and quite short

to type in.

The game of SNIP SNAP has a number
of features typical of many computer
games of the 'Snapper' type. You have
to guide a 'man' around the screen,
eating up the dots as you go while
trying to avoid the exploding apples
chasing after you. What adds an extra
dimension of thought to this game is
the way the grid changes at random
intervals between horizontal rows and
vertical columns. One moment you can
feel quite safe, and the next an apple
(hardly Golden Delicious despite the
colour) is poised to destroy you.

If you manage to eat one of the
special ‘cross' dots, you can then
chase and destroy the apples (shown by
a change of screen colour) but be ready
to run away again as soon as the screen
reverts to its normal colour. Destroy
the apples and you gain extra lives.

The program should be typed in with
care and saved to cassette or disc.
When run, it displays full instructions
on the screen. The main controls, as
usual, are 'z' and 'X' for left and
right, and '*' and '?' for up and down.
Have  fun (and send us your high score
too) .

NOTE FOR DISC USERS

You will need to set PAGE to &120¢
before loading and running SNIP SNAP,
or use *MOVE 120¢ from TOOLKIT, or
make use of the 'movedown' routine
printed elsewhere in this issue.

19 REM PROGRAM SNIP SNAP

20 REM VERSION B@.4

3¢ REM AUTHOR D.J.PILLING

40 REM BEEBUG JULY 1984

5@ REM PROGRAM SUBJECT TO COPYRIGHT

i s

iSteer your man ‘around’ the chén?ing” aze
eatingithe dots as you ?o anditryin o
avoidithe exploding applesichasing yo

T¢ you eat one of the special cross
dotisiithen you can chase theiapples:
Tfigou catchione you get an extra man.

'Tbeycontrolé uged are as follows:
= Le
i X - Right

* P
2= Down

Wou caniselect the number of .apples
chasing you Cbetween 1:and 3),pp

tuaber fof apples >

s 138 DIM ML$ (1) MRS (1) ,MUS (1) MDS (1) ,D
(2)

140 DIM A%(2) ,B%(2)

15¢ PROCCHAR$PROCS:PROCI

160 REPEAT

179 REPEAT

180 SH%=SH%+1:PROCT

190 8%=1

200 UP%=1¢-SH%:IF UP%<2 UP%=2

210 IF N$=@ M1%=-1:M2%=-1:GOT0240

220 IF N%=1 M1%=UP%DIV2:M2%=-1:G0T0240

230 M1%=(UP%+1)DIV3:M2%=2*M1%

240 REPEAT

25¢ PROCCM(@)

260 FOR L%=0 TO UP%

270 IF FNH PROCE:L%=UP%

280 PROCMAN

29¢ IF L%=M1% PROCCM(1)

300 IF L%=M2% PROCCM(2)

310 K%=K%~1

320 IF K3>0 GOTO340

330 S%=-S%:K%=10+RND(5) *5: SOUND3,-15,
40,3:S0UND3,-15,80,43IF S3>0 vDU19,1,4,
9,%,6:vDU19,2,1,0,9,0 ELSE VDU19,1 1.9,
9,9:vDU19,2,0,9,0,0

340 NEXT

350 UNTIL OVER%

360 CLS

37¢ UNTIL MEN3%=0

380 UNTIL FNEG

60 : 390 MODE 7

100 ON ERROR GOTO 410 391 END

11¢ MODE1 400 3

120 DIM D% 1200 413 ON ERROR OFF ,’
s
BEEBUG JULY 1984 Volume-3 Issue 3



34

420 MODE 7:IF ERR=17 END
43¢0 REPORT:PRINT" at line “;ERL
449 END
450
1000 DEFPROCCHAR
101¢ vDU23,241,255,126,60,8,16,60,126,
255
1920 vpU23,242,9,255,255,255,255,255,2
55,9 .
193¢ vDU23,243,255,255,255,255,255,255
+255,255
1040 vDU23,244,31,16,16,124,254,254,25
4,124
1050 vDU23,246,9,0,60,60,60,69,0,0
1060 vDU23,247,66,195,195,195,195,255,
255,126
1878 vDU23,248,126,255,255,195,195,195
;195,66
1080 VDU23,%49,126,255;224,224,224,224
+255,126 ' )
1490 VvDU23,250,126,255,7,7,7,7,255,126
110¢ vDU23,251,102,231,231,231,255,255
+255,126 :
1116 vDU23,252,126,255,255, 255,231,231
»231,102
1120 vDU23,253,126,255,255,249, 240,255
+255,126
1130 vDU23,254,126,255,255,15,15,255,2
55,126
1140 ENDPROC
1159
116@ DEFPROCT
1170 CLS
1180 vDU23,1,8;0;0;0;
119¢ VvDU19,3,3,9,9,%:COLOUR3
1200 vDU19,1,9,0,0,0:VDU19,2,1,0,0,0
1210 PRINTTAB(2,2) STRINGS (37,CHRS243)
1220 PRINTTAB(2,30) STRINGS (37,CHRS243)
1230 FOR I%=3T029:PRINTTAB (2, I%)CHRS24
; ¢PRINTTAB (38,1%) CHR$243; : NEXT
1240 FORI%=3TO29 STEP2:PRINTTAB(3,I%)S
TRINGS (35,CHRS246) :NEXT
125¢ COLOUR2:COLOUR129:FOR I%=4TO36STE
P2:PRINTTAB(I%,3)STRINGS (13,CHRS$243+CHR
$8+CHRS10+CHRS241 ++CHRS8+CHRS10) CHRS243
¢ NEXT ¢COLOUR1 :COLOUR1 28
1260 FOR I1%=3TO37STEP2:PRINTTAB(I1%,4)S
TRINGS (13,CHR$242+CHRS8+CHRS10+CHRS10) =
NEXT
127¢ COLOUR3
128¢ vDU19,1,0,0,
1290 M%=1:X%=3:Y%
(1);
130@ RESTORE
1310 FOR Z%=0TONR:READ A% (Z%) ,B%(Z%):P
RINTTAB (A% (Z%) ,B% (Z%) ) CHR$244 ; e NEXT
1320 FOR I%=@TO1147STEP4:! (D%+I%)=&010
19191 :NEXT

3,9
=3:PRINTTAB (X%, Y%)MLS

1330 FOR K%=0TO4:I%=3+2*RND (16) :J%=5+2
*RND (12) £? (D%+I1%+J%*37) =2: PRINTTAB (1%,J
%) WLl NEXT

1340 SS%=SC%

1350 PRINTTAB (@,0) "SCORE ";SC%;TAB(12)
"HI-SCORE ";HSC%;TAB (30) "SHEET ";SH%;

1360 PRINTTAB(5,1)"FLEE "

1370 IF MEN%>28 I%=28 ELSE I%=MEN%

1380 PRINTTAB (12,1) STRINGS (I1%,CHR$249);

1390 OVER%=FALSE:CF%=FALSE

1400 ENDPROC

1410 :

1420 DATA37,3,37,29,3,29

14390 s

1440 DEFPROCS

1450 MLS$ (@) =CHR$250 sMLS (1) =CHRS254

1460 MRS (9) =CHR$249:MRS (1) =CHR$253

147¢ MUS (@) =CHRS$247:MUS (1) =CHRS$251

1480 MDS$ (@) =CHR$248:MDS$ (1) =CHRS$252

1490 DS (0)=" ":D$(1)=CHRS246:DS$(2)="1+"

1500 HSC%=0:SC%=0 :MEN%=3:SH%=0:S5%=0

1519 ENDPROC

1520 : .

1530 DEFPROCMAN

1540 FORI%=1T020@:NEXT

1550 IF M%=0 M%=1 ELSE M3%=0

1560 IF S%=1 GOTO 1600

157¢ IFINKEY-67 IF X%<36 PRINTTAB(X%,Y
%) " "M:X%=X%+2:PRINTTAB (X%, Y%) MRS (M%) : SO
UND1,-15,53,1

1580 IFINKEY-98 IF X%>4 PRINTTAB (X%,Y%
)" M eX%=X%-2:PRINTTAB (X%, Y%)MLS (M%) : SOU
ND1,-15,53,1

1590 GOTO1620

1600 IFINKEY-73 IF Y%>4 PRINTTAB (X%,Y%
)" MeY%=Y%-2:PRINTTAB (X%, Y%)MUS (M2) : SOU
ND1,-15,53,1

1610 IFINKEY-105 IF Y%<29 PRINTTAB (X%,
¥Y3)" ":Y¥%=Y%+2:PRINTTAB (X%,¥Y%)MDS (M%) ¢ S
OUND1,-15,53,1

»

BEEBUG

JULY 1984

Volume-3 Issue 3



35

1620 IF 2 (D%+X%+¥Y%*37)=1 SC%=SC%+5:? (D
$4X%+Y2*37) =0 PRINTTAB (9, 9) "SCORE ";SC%
; ELSE IF ?(D%+X3+Y%%37)=2 ?(D%+X%+Y%*3
7)=0:1F NOT CF% PROCCHASE

1630 IFSC%-SS%=1235 IFNOTOVER%:$OVER%=T
RUE3 SOUND3,-15,26,10

1640 ENDPROC

1650 ¢

1660 DEFPROCCM(Z%)

1679 IF S$%=1 GOTO1710

1680 IF A% (Z%)<X% PRINTTAB(A%(2%) ,B%(Z
%) )DS$(? (DI+A% (2%) +B% (2%) *37) ) :A% (Z%) =A%
(Z%)+2:PRINTTAB (A% (2%) ,B% (Z%) )CHR$244:5
OUND2,~15,2@,1:ENDPROC

169¢ IF A% (Z%)>X% PRINTTAB (A% (2%) ,B%(Z
2))DS (? (D3+A% (2%) +B% (Z%) *37) ) :A% (2%) =A%
(Z%)~2:PRINTTAB (A% (2%) ,B% (2%) )JCHRS$244:S
OUND2,-15,2@, 1 : ENDPROC

17@@ ENDPROC

1710 IF B%(Z%)<Y¥% PRINTTAB (A% (Z%) ,B%(Z
%) )DS(? (D%+A% (23) +B% (2%) *37) ) :B% (2%) =B%
(2%)+2: PRINTTAB (A% (2%) ,B% (2%) )CHR$244:S
OUND2,-15,20,1:ENDPROC

1720 IF B%(Z%)>Y% PRINTTAB (A% (Z%) ,B%(Z
2))DS$ (? (D%+A% (Z%) +B% (2%) *37) ) :BY(Z%) =B%
(2%)-2:PRINTTAB (A% (Z%) ,B% (2%) ) CHR$244:S
OUND2,~-15,20,1:ENDPROC

1739 ENDPROC
1740

175¢ DEFFNH= (A% (¥) =X3ANDBS% (#) =Y%) OR (A%
(1)=X% SANDBS (1) =Y¥%) OR (A% (2) =X%ANDBS (2) =Y
%)

1760 :

1770 DEFPROCE

178@ SOUND@,-15,4,25

179¢ PRINTTAB(5,1) "BANG" :MEN%=MEN%-1:0
VER%=TRUE:SS%=5SC%

180@ GCOLZ,3

1810 FOR V%=@TO20:MOVE X%*32+16,1008-Y
%*32:DRAW (X%+4-RND(6)) *32+16,1008~ (¥3+
4-RND(6) ) *32:NEXT

1820 TX$=TIME:REPEAT UNTIL TIME>TX%+100

183@ ENDPROC

1840 :

185¢0 DEFPROCCHASE

1860 SOUND3,-15,40,3:SOUND3,-15,60,2:S
OUND3,-15,80,2

1870 CF%=TRUE:PRINTTAB(5,1) "CHASE"

1880 K%=@:L3=UP%:KA%=0

1899 FOR G%=0TO15

1900 PROCEM (@)

1919 FOR LA%=0 TO UP%:IF KA%)G GOTO1949

1920 KA%=10+RND(5) ¥5:5%=-5%:IF S%>0 VD
U19,1,0,0,8,0:VDU19,2,4,9,0,9 ELSE vDU1
9,1,4,9,0,9:vD019,2,9,9,9,0

1930 SOUNDB,—]5,2@,4:SOUND3,-15,7!21,3

194¢ IF LA%=M1% PROCFM(1)

195@ IF LA%=M2% PROCFM(2)

1960 PROCMAN:KA%=KA%-1

1970 IF FNH PROCW:LA%=UP%:G%=15

1980 NEXT:NEXT

199¢ CF$=FALSE:PRINTTAB(5,1)"FLEE "
2009 ENDPROC

2010

2020 DEFPROCFM(Z%)

2039 IF S%=1 GOTO02070

2040 IF A%(Z%)<=X% IF A% (Z%)>4 PRINTTA
B(A%(2%) ,B% (2% %) )D$(? (D%+A% (2%) +37*B% (2%
))) :A% (2%) =A% (Z%) -2 PRINTTAB (A% (23) ,B% (
%))CHR$244:SOUND2,—15,1Gﬂ,]:ENDPROC
2050 IF A%(2%)>=X% IF A% (Z%) <36PRINTTA
B (A% (2%) ,B% (Z%) ) DS (? (D%+A% (2% )Y+37*B% (2%
))) :A%(2%) =A% (2%) +22 PRINTTAB (A% (2%) ,B% (
7%) ) CHR$244 3 SOUND2,-15,10@,1: ENDPROC
2060 ENDPROC

20779 IF B%(Z%)<=Y% IF B%(Z%)>4PRINTTAB
(A% (Z2%) Bs(Z9))D$(7(D%+As(Z%)+37*B%(Z9)
}) :B% (2%) =B% (2%) -2: PRINTTAB (A% (23) ,B% (Z
%) YCHR$244:SOUND2,-15,100¢,1:ENDPROC
2080 IF B%(Z%)>=Y% IF B%(Z%)<29PRINTTA
B(A%(2%) ,B% (2%) ) DS (? (D%+A% (2%) +37*B% (2%
))) sB% (2%)=B% (Z2%) +2: PRINTTAB (A% (2%) ,B% (
7%) )CHR$244 3 SOUND2,-15,100, 1 : ENDPROC
209¢ ENDPROC

2109 =

2110 DEFPROCW

2120 SOUND@,~15,4,20:SOUND1,0,d,20:S00
ND1,-15,53,1@:SOUND1,-15,65,10:SOUND1 ,~
15,85,10

2130 MEN%=MEN%+1:PRINTTAB (5,1) "CAUGHT"
2140 IF MEN%<29 PRINTTAB(11+MEN%,1)CHR
$249;

2150 TX%=TIME:REPEAT UNTIL TIME>TX%+3
4]

2160 RESTORE

217¢ FOR Z%=@TON%:PRINTTAB (A% (Z%) ,B%(Z
2))" ":READ A%(Z%),B%(Z%) :PRINTTAB(A%(Z
%) ;,B% (2%) ) CHR$244; : NEXT

2180 X%=3:Y%=3:PRINTTAB (3,3)MRS (M%)
219¢ ENDPROC

2200 :

221¢ DEFFNEG

2220 CLS:PRINTTAB(5,5) "GAME OVER"

223¢ PRINT'TAB (5) "YOUR SCORE -> ";SC%
224¢ PRINT'TAB(5)"HIGH SCORE -> ";HSC%
2250 IF SC%>HSC% HSC%=SC%

2260 SC%=0:MEN%=3:SH%=0:S5%=0

2270 *FX15,0

228@ PRINT'''TAB(5) "ANOTHER GAME Y/N "
2290 IS$=GET$

23¢9 IF I$="Y" =FALSE ELSE IF IS$="N" =
TRUE ELSE GOT02290
2319 DEFPROCI
2320 vDU19,3,6,4,0
2339 VDU19,1,2,9,9,
2340 CLS:COLOUR3:PR
NAP GAME"

235¢ PRINTTAB(8)" "

v

2360 COLOUR2 b

.9
[}
RINT'*TAB(11) "SNIP S

BEEBUG

JULY 1984

Volume-3 Issue 3



36

2370 PRINT"HOW TO PLAY"':COLOUR 1

2380 PRINT"Steer your man around the ¢
hanging maze"'"eating the dots as you g
o and trying to"'"avoid the exploding a
pples chasing you."

2390 PRINT'"If you eat one of the spec
ial cross"'"dots then you can chase the

2419 PRINT"You can select the number o
f apples"'"chasing you (between 1 and 3

2429 COLOUR2

243@ PRINT'"Input number of apples > ";
2440 N%=GET-ASC"@"

2450 IF N%>0 AND N%<4 N%=N%-~1 ELSE GOT

apples.”"'"If you catch one you get an
extra man."™'

240@ PRINT"The controls used are as fo
llows:"'TAB(14)"Z -~ Left"'TAB(14)"X - R
ight"'TAB(14) "™ - Up"'TAB(14)"? - Down"
Ty

02449
2460 ENDPROC

‘IN HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

CONTEMPORARY IMPROVISATIONS - R.Tobin

Type G.0:G.0:G.0:G.0:G.0:....etc., until you've filled the buffer (about 6 lines
in Mode 7). Then hit return. You will of course get the error 'No such line' but it

also has other effects... E
BEEBUG JULY 1984 Volume-3 Issue 3



n B2
Tes‘e;‘“% os. 12

37

sicd &

DIVE BOMBER (32K)

by N. Mallinson

Just imagine the thrill as you speed
your way to your target, your scarf
blowing in the wind, with the smut from
the spluttering engine clouding your
vision through your goggles. Your:,
mission is simple, but dangerous. It is -
to destroy as many targets as possible
whilst avoiding the flak from the guns :
on the ground.

Well it's not quite Biggles, but in
this game you do have to destroy the
various fuel and ammunition dumps,
while under fire from the anti-aircraft
guns. There are a hundred targets on
each mission, after which you may land.
If you have reached the required score
for that mission, then you are sent out- - .-
on a new sortie, but otherwise that's "~
the end of the game. One warning
though, on each successive mission your

[z

p

ceiling will not be as high as it was

before, forcing a lower and
hazardous approach to each target.

more

You have three controls:
: - up
/ - down
z - release bomb.

Take care when typing the program
into your micro, particularly with the
section of assembler code included from
lines 1300 to 1560. Also remember to
save a copy to tape or disc before
running it, in case of any mistakes.

Note that bombs may only be released
once the plane has achieved a good
dive. You will find that bombing runs
can be made more accurately from a low
level approach, but then you will have
to be nimble fingered to avoid
crashing; and the anti-aircraft
batteries are a good deal more accurate

when you are flying low.

Good luck Biggles!

10 REM PROGRAM DIVE BOMBER
2¢ REM AUTHOR N.MALLINSON
3¢ REM VERSION Bl.1

40 REM BEEBUG JULY 1984

50 REM PROGRAM SUBJECT TO COPYRIGHT
603

103 ON ERROR GOTO 2760

119 MODE 5

12¢ VDU 23,1,0;0;0;0;

130 PROCtitle
140 MODE 4

158 VDU 19,0,4,0,0,0

b

BEEBUG JULY 1984

Volume-3 Issue 3



38

Use your:. annc-a(t to bonb enemy
vianstallations)

_sUPPLY. pume ‘ u 2e
. Aa GUN ; v 40

canhuurcnrmus CENTRE: . . B8

COMMAND CENTRE ‘ 4 168

If you reach o surpass the required
. score, ‘you will get: another

‘Successlue runs becane harder 2= the
eds ndithe ground:
5 &Come hxgher, thh an xncrease xn
. therequired Score

. T§ you crash ‘or iare shot doun the
9ame ends Iy

CAIRCRAFT CLIMB  7:7
ATRCRAFT DIVE e -
RELEASE(BOMB 727 Cuwhen in dive)
Press the Space bar to .continueii

160 PROCinit

176 PROCinstructions

180 PROCnewgame

190 REPEAT

20Q MODE 4

219 vDU 19,0,4,9,0,0

229 VDU 23,1,0;0;9;0;:CLS

230 PROCnewrun

240 PRINTTAB(1,7)"PRESS SPACE BAR TO
START"

250 REPEAT:VDU 7:UNTIL GET=32

260 PRINTTAB(1,7)"TAKE OFF !";SPC(14)
VDU 7

273 REPEAT

28¢ IF F%=0 GOTO 320

290 IF ?(22775+320*F%)<>@ THEN PROCbo
mbhit:GOTO 329

300 F$=F%+1:IF?(22775+320*F%)<>0 THEN
PRCCbombhit:GOTO 320

31¢ PRINTTAB (30,F%-1) ; SPC1; TAB(30,F%)
;CHRS (227)

3201IF X%=@ THEN L%=225 ELSE X%=X%-1:S
OUND&19,-10,1,5:IF X%=0 THEN PRINTTAB(1
»7) ;SPC(24) : PRINTTAB (30,K%) ;CHRS (225) :G
OTO 51¢ ELSE GOTO 510 )

330 IF INKEY(-73) AND K%>6 THEN L[$=22
4:N%=K%-1

340 IF INKEY(-105) THEN L%=226:N%=K%+1

350 IF 2(22775+320*N%)<>@ THEN PROCpl
anehit (N%) :GOTO 690

360 PRINTTAB (30 ,K%) ; SPC1;TAB(30,N%) ;C
HRS (L%) :K%=N%

370 SOUND&11,-1,130+40% (L%-224) ,1:50U
NDch%,-8,3,5

380 IF INKEY(-98) AND F%=0 AND L%=226 _

THEN F%=K%+1 ELSE GOTO 41¢

390 IF ?(22775+320*F%)<>@ THEN PRCCbo
mbhit:GOTO 410

40¢ PRINTTAB (30 ,F%) ;CHRS (227)

419 IF T%=0 AND U%>@ THEN U%=U%+1

420 IF U%>30 OR V%<7 THEN PRINTTAB (U$
V%) ;SPC1:T%=0: U%=l

430 IF T%=1 THEN PRINTTAB (U%,V%);:SPC1
¢IF V%>6 AND U%<31 THEN U%=U%+1:V%=V3%-1
: PRINTTAB (U%, V%) ;CHRS (240)

440 IF U%>0 AND T%=0 AND 27-U%+I%<=V3%
-K% THEN T%=1:PRINTTAB (U%,V%) ;CHRS (240)
:SOUND ch%,2,6,5

450 IF G%=232 AND U%=
U%=1:V3=H%-1:I%=RND (5)

460 IF D%=@ AND B%>@ THEN B%=B%+1

473 IF B%>30 OR C%<7 THEN PRINTTAB(B%
+C%) ;SPC1:D%=0:B%=0

480 IF D%=1 THEN PRINTTAB (B%,C%);SPC1
:IF C%>6 AND B%<31 THEN B%=B%+1:C%=C%~1
¢ PRINTTAB (B%,C%) ;CHRS (240)

490 IF B%>@ AND D%=0 AND 28-B%+E%<=C%
-K%+ (14+C%-K%) * (225-L%) THEN D%=1:PRINTT
AB (B%,C%) ;CHRS (240) : SOUNDch%,2,6,5

500 IF G%=232 AND B%=@ THEN B%=1:C%=H
%-1:E%=RND(3)

510 A%=0:IF Z%<1 THEN G%=237:2%=Z%-1:
GOTO 610

520 IF G%=235 THEN A%=A%-1

53¢ IF H%>28 THEN G%=235:GOTO 590

540 IF H%<Y% THEN G%=234:A%=A%+1:G0TO

59¢

55¢ R%=RND(127) :G%=229

560 REPEAT:R%=R% DIV 2:G%=G%+1:UNTIL
R%=0

578 IF G%=235 THEN G%=G%-RND(4) DIV 4

580 IF G%=234 THEN A%=A%+1

590 H%=H%+A%

600 IF G%<234 AND Z%>0 THEN Z%=2%-1:P
RINTTAB(31,5) ;Z2%;SPC1

610 CALL SCRLR

620 PRINTTAB (@,H%) ;CHRS (G%)

630 IF X%<>0 GOTO 680

640 IF ?(22775+320*K%)<>¢ THEN PROCpl
anehit (K%) :GOTO 690

650 IF D%=1 THEN PRINTTAB (B%,C%);SPC1
:IF C%>6 AND B%<31 THEN B%=B%+1:C%=C%-1
¢ PRINTTAB (B%,C%) ;CHRS (240)

660 IF T%=1 THEN PRINTTAB(U%,V%) ;SPC1
s IF V¥>6 AND U%<31 THEN U%=U%+1:V3%=V%-1
:PRINTTAB (U%,V%) ;CHRS (240)

67¢ IF J%>0@ THEN J%=J%~1:IF J%<1 THEN
ch%=g10

680 FOR M%=1 TO DL%:NEXT

690 UNTIL Z%<-40

700 IF Z%>-50 THEN PROClanding ELSE I
F L[%=242 THEN PRINTTAB(1,7)"SHOTDOWN !"

ELSE PRINTTAB(1,7)“CRASHED "

710 TIME=@:REPEAT UNTIL TIME>100

72¢ *FX 15,0

73@ UNTIL 2%=-50

749 PROChighscores:PRINTTAB (3,M%) "ANO
THER GAME (Y/N) 2%

750 VDU 7:I$=GETS$:IF I$="Y" THEN CLS:
GOTO 189

760 IF ISOUN" GOTO 750

779 *FX15,08 )

¢ AND B%>0 THEN

BEEBUG

JULY 1984

Volume-3 Issue 3



39

GRHE REQD RUN HAGH:
STEORE: 28680 288 5128 G
G RUNE2E : TARGET S, 83

783 MODE 7

790 END

800

1000 DEF PROCbombhit

1010 IF ?(22774+320%F%)=32 THEN PRINTT
AB(3¢,F%) ; SPC1:GOTO 1990

1020 IF ?(22774+320*F%) <100 THENSOUND&
10,-10,6,4:3%=1:GOTO 1879

1030 Q%=10%7? (22769+320*F%)

1040 W3=W%+Q%:S%=5%+0%

195¢ PRINTTAB (7,3);5%;TAB(25,3) ;W%

1060 SOUND&1@,3,6,40:3%=5

1070 PRINTTAB (30,F%) ;CHRS (228)

198¢ ch¥=&11

109¢ IF F%-1<>K% THEN PRINTTAB (30,F%-1
) 3SPC1

1100 F%=0

111¢ ENDPROC

11202

1130 DEF PROClanding

1140 IF F%>0 THEN PRINTTAB(30,F%);SPC1
: SOUND&13,9,9,1

1150 PRINTTAB(1,7) "LANDING 1"

1160 REPEAT

1170 IF K%<H%-1 THEN K%=K%+1:PRINTTAB(
30,K%~1) ;SPC1; TAB (30,K3%) ;CHRS (226) s SOUN
D&19,-8,2,5

1180 FOR M%=1 TO 2*DL%:NEXT

1199 IF K%=H%-1 THEN PRINTTAB (30,K%);C
HRS (243)

120@ UNTIL K%=H%-1

121¢ IF W%>=RS% THEN PRINTTAB(1,7)"MIS
SION ACCOMPLISHED !" ELSE PRINTTAB(1,7)
"FAILED REQUIRED SCORE,":Z%=-50

1220 $%=S%+100:PRINTTAB(7,3) ;5%

1230 FOR M%=0 TO 10000 :NEXT

1240 ENDPROC

1250

1260 DEF PROCinit

127¢ DIM SET 400

1280 FOR PASS=¢ TO 1

1290 P%=SET

1300 [OPT PASS*2

1319 .SET LDA #&38:STA &74:LDA #&72:
STA &75\set start

1320 LDX #39:LDA #@\clear base
move store

1330 .clear STA SET+300,X:DEX

13490 BPL clear:RTS\end when all
done

135¢ .SCRLR STA SET+300\store A% move
1360 LDA &74:STA &70:LDA &75:ST
A &71\low base=start

1379 LDX #39\index for 39 squar
es

1380 .sqr  LDA #0:LDY #7\blank out sg
uare

1390 .blank STA(&70),Y:DEY:BPL blank
1400 LDA SET+300,X:STA SET+301,
X\shift move up store

1419 BEQ level:BMI up\detect mo
ve

1420 LDA &7@:CLC:ADC #&38:STA &
70\move down

1439 LDA &713ADC #1:STA &71:CLC
:BCC ind ‘

1440 .up LDA &70:SEC:SBC #&48:STA &
7¢\move up

1450 LDA &71:SBC #1:STA &71:CLC
:BCC ind

1460 .level LDA &7@:SEC:SBC #8:STA &70
\back one square

1479 LDA &71:SBC #0:STA &71

1480 .ind  DEX:BPL sethb:RTS\end if i
ndex neg

1490 .sethb LDA &70:CLC:ADC #8:STA &72
\high base=low base+8

1500 LDA &71:ADC #@:STA &73
1510 CPX #38:BNE trans\far righ
t square?

1520 LDA &72:STA &74:LDA &73:ST

A &75:\yes~start=high base

1530 .trans LDY #7\transfer data

154¢ .byte LDA(&70),Y:STA(&72),Y:DEY:
BPL byte

1550 BMI sqgr\go do next square
1560 1

1579 NEXT

1580 CLS

159¢ vDU23,224,0,80,40,16,8,5,2,0:REM
climb plane

1600 vDU23,225,0,9,9,0,97,255,0,0:REM
level plane

1610 VDU23,226,4,2,4,40,80,32,64,0:REM
dive plane

1620 vDU23,227,0,16,8,20,32,64,0,0:REM
bomb

1630 VvDU23,228,0,146,84,56,254,56,84,1
46:REM expl

1640 vDU23,230,16,16,16,16,254,198,254
7 255:REM cmd cen

B

BEEBUG

JULY 1984

Volume-3 Issue 3



40

165¢ vDpU23,231,8, 8 8,8,8,232,232,255:R
EM cms cen

1660 vDU23,232,2,4,104,48,120,248,112,
255:REM gun

1670 vDU23,233,0,2,102,102,102,102,102
;255:REM dump

1689 vDU23,234,1,2,4,8,16,32,64,128:RE
M gnd down

1696 vDU23,235,128,64,32,16,8,4,2,1:RE
M gnd up

1709 vDU23,236,9,0,9,0,9,0,0,255:REM g
nd level

171¢ vDU23,237,255,129,129,129,129,129
+65,129:REM runway

1729 vDU23,249,9,0,9,9,9,0,32,64:REM s
hot

173¢ vpu23,241,8,8,8,8,8,8,0,0:REM tra
il

1740 vDU23,242,24,8,8,8,8,24,24,8:REM
hit plane

175¢ vDU23,243,0,9,0,9,9,97,255,72:REM
taxi plane

1760 REM * define envelopes *

177@ ENVELOPE 1,139,5,3,5,50,60,7%9,%,0
+9,9,9,0

178¢ ENVELOPE 2,128,19,0,0,6,0,9,9,9,0
+9,9,0

1799 DIM HSC% (6) ,NAMES (6)

1800 FOR M%=0 TO 6:HSC% (M%)=0:NAMES (M%
) =STRINGS (11,CHRS32)

1810 ENDPROC

1820:

1830 DEF PROCnewgame

1840 DL%=392:5%=0:Y%=21

1850 RS%=700 :RN%=0

1860 ENDPROC

1874:

1880 DEF PROCnewrun

1899 FOR M%=¢ TO 38

1990 PRINTTAB (M3%,5) ;CHRS (236) ; TAB (M3, 2
@) ;CHRS (237)

1910 NEXT

1920 CALL SET

1930 IF RS%<2500 THEN RS%=RS%+100

1940 IF DL%>2 THEN DL%=DL%-30

1950 RN%=RN%+1

1960 IF Y%$>10 THEN Y%=Y%-1

1970 G%=236:H%=20:K%=19:L3=243:N%=K%
1980 F%=0:B%=0:D%=0:U%=0:T%=0

1990 J%=0:ch%=&10:W=0:2%=100:X%=15

200% PRINTTAB(7,1)"GAME";TAB(17,1)"REQ
D.";TAB(25,1) "RUN"; TAB (32, 1) "HIGH" ; TAB (
@,3) "SCORE" ; TAB(7,3) ;S%; TAB(17,3) ;RS%;
AB(25,3) ;W%; TAB(32,3) ;HSC% (9)

2010 PRINTTAB(3,5)" RUN ";RN%;SPC1;TA
B(21,5)" TARGETS ";Z%;SPCI

202¢) PRINTTAB (30,K3) ;CHRS (L3)

2060 DEF PROCplanehit (k%)

2070 7%=-50

2080 IF ?(22775+320%k%)<>64 THEN PRINT
TAB(39,k%+225-L%) ;SPC1; TAB (30 ,k%) ;CHRS (
228) :SOUND&18, 3,6, 40 : ENDPROC

209¢ SOUND&11,-1,255,1

2100 L%=242

2110 REPEAT .

2120 PRINTTAB (30,k%) ;CHRS (242) ; TAB (30,

%—-1) ;CHRS (241)

2130 k%=k%+1:pk%=?(22775+320*k%)

2149 FOR M%=1 TO 10@@:NEXT

2150 UNTIL pk3<>@ AND pk3<>64

2160 PRINTTAB (30,k%) ;CHRS (228) ; TAB (30,
k%-1) ;CHRS (241)

2170 SOUND&11,-12,3,-1:SOUND&19,-12,3,
-1

2180 ENDPROC

2190:

220¢ DEF PROCinstructions

2219 CLS

222¢ PRINT'TAB(2)"Use your aircraft to

bomb enemy";SPC(9) ;"installations, and

score:"

223¢ PRINT'TAB (4) "SUPPLY DUMP";SPC(13)
5 sCHRS (233) ;" 20"

2240 PRINT'TAB(4)"AA GUN";SPC(18) ;CHRS
(232);" 4g»

2250 PRINT'TAB(4) "COMMUNICATIONS CENTR
E";SPC(3) ;CHRS (231) ;" 89"

2260 PRINT'TAB (4) "COMMAND CENTRE";SPC(
19) ;CHRS (230) ;" 160"

227¢ PRINT'TAB(2)"If you reach or surp
ass the required";SPC(4);"score, you wi
11 get another run."

2280 PRINT'TAB (2) "Successive runs beco
me harder as the";SPC(4);"game speeds u
p, and the ground may";SPC(6);"become h
igher, with an increase in";SPC(6);"the

required score."

2299 PRINT'TAB(2)"If you crash or are
shot down, the";SPC(6);"game ends.”

2309 PRINT'TAB(4)"AIRCRAFT CLIMB";SPC(
3); LAPSL

2310 PRINT'TAB(4)"AIRCRAFT DIVE":SPC(4
) ; "o /l 11

2320 PRINT'TAB(4)"RELEASE BOMB";SEC(5)
;%'Z2' (when in dive)"

2330 PRINT TAB(2,29);"Press the Space
bar to continue :";

2340 REPEAT UNTIL GET=32

2350 ENDPROC

23602

2379 DEF PROCtitle

2380 COLOUR 1

2390 FOR M%=6 TO 10 STEP 4

2400 PRINTTAB (5,M%) ; STRINGS (11,CHRS (61

2039 R%=RND(~-TIME) ) ) eNEXT

2040 ENDPROC 2419 COLOUR 2

20592 242 PRINTTAB(5,8) ; "DIVE~-BOMBER" b
BEEBUG JULY 1984 Volume-3 Issue 3




4]

2430@ COLOUR 1

2440 PRINTTAB(10,16) "by"

245¢ COLOUR 3

2460 PRINTTAB(5,18)"N.Mallinson"

247¢ TIME=Q:REPEAT UNTIL TIME>200

2480 ENDPROC

2490

2500 DEF PROCphstable

2510 CLS

2520 PRINTTAB(10,4) "HiGH SCORE TABLE"
253¢ PRINTTAB(6,8) "No.";TAB(13,8) "NAME
" TAB(25,8) "SCORE"

2540 M%=-

2550 REPEAT

2560 M%=M%+1

2570 IF HSC% (M%)=0 THEN UNTIL TRUE=TRU
E ELSE PRINTTAB(6,11+2*M2) ;M3%+1;TAB(12,
11+2%M3) ; NAMES (M%) ; TAB (25, 1142*M3) ;HSCS
(M%) :UNTIL M%=5

2580 IF HSC%(@)=@ THEN PRINTTAB(12,16)
"NO SCORE YET "

2590 IF 2%=@ THEN PRINTTAB(3,27)"INSTR
UCTIONS (Y/N) 2"

2600 ENDPROC

2610z

2620 DEF PROChighscores

2630 M%=6

2640 REPEAT

2650 M%=M%-1

2660 IF S%>HSCS% (M%) THEN HSCS (M3+1)=HS
C% (M%) :NAMES (M%+1) =NAMES (M%) s UNTIL M%=
ELSE M%=M%+1:UNTIL TRUE=TRUE

2670 IF M%>5 THEN M%=9:ENDPROC

2680 CLS

2699 PRINTTAB(1,7)"YOU ARE ON THE HIGH

SCORE TABLE 17

2708 PRINTTAB(3,12)"PLEASE INPUT YOUR
NAME™' 'TAB (5) " (max. 10 letters)®

2719 REPEAT:VDU7:PRINTTAB(1¢,17);SPC(1
5) : INPUT TAB(10,17)"? "N$:UNTIL LEN(NS)
<11

2720 HSC% (M%)=S%:NAMES (M%) =N$

2733 PROCphstable:M%=27

2749 ENDPROC

27503

2760 ON ERROR OFF :MODE 7

2770 IF ERR<>17 REPORT:PRINT" at line
" ERL

2780 END

=

__ POINTS ARISING

TELETEXT ADAPTOR REVIEW

In the review of the Acorn Teletext Adaptor in BEEBUG Vol.2 No.10 it was stated
that the TFS (Teletext Filing System) chip automatically grabbed extra memory even

when the adaptor was not switched on.

from the 1MHz bus, but the chip acts in an

is true if the adaptor is disconnected
intelligent way if the adaptor is

connected and only resets PAGE when the adaptor is switched on. However, if you move
your Beeb from its normal place of work without the Teletext adaptor you will have
to remove the TFS chip as well, or reset PAGE every time you switch the machine on
or press Break. Thanks to Dick Orton for pointing this out.

MACHINE CODE GRAPHICS AGAIN

In part 3 of this series in BEEBUG Vol.2 No.1§ there are two small errors of
detail. At the bottom of page 28 the correct code for 'magenta and cyan' is 54 and

not 53, while the data lines 2010, 2020 and 2030, near the bottom of page 29 should
contain the same figures. Thus line 2010 should contain. 26 and not 28 as printed.
You will very probably have realised that the table of colour codes at the bottom of
page 28 was for mode 2 and not mode 1 as stated. We apologise for these errors.

TELETEXT MODE SCREEN DUMP
The mode 7 screen dump included on the magazine cassette for April (Vol.2 No.19)
assumes that the Epson FX80 printer is not set to produce a Linefeed automatically
following receipt of a Carriage return (i.e. *FX6,0 is normally set). If the FX80 is
set to do this, then the screen dump produces double line spacing. You can of course
change the setting of your printer, or change the '1¢' in line 1800 to '¢' to read:
1809 DATA 3,192,1,94,27,8,13

SPITFIRE AEROPLANE DISPLAY

We were very disappointed that a hiccup during production resulted in an error
occurring in the data for our Spitfire aeroplane. In line 180, the second number
should be -50 and not just 5@. You may have noticed that several numbers in this

area were touched up, unfortunately this one incorrectly. ==
BEEBUG JULY 1984 Volume-3 Issue 3



Software Help Line
St.Albans
(9727) 60263
Manned Mon-Fri

1pm-4pm

All rights reserved. No part of this publication may be reproduced without prior written permission of
the Publisher. The Publisher cannot accept any responsibility, whatsoever, for errors in articles,
programs, or advertisements published. The opinions expressed on the pages of this journal are those of
the authors and do not necessarily represent those of the Publisher, BEEBUG Publications Limited.

. BEEBUG Publications Ltd (c) 1984,
BEEBUG MAGAZINE is produced by BEEBUG Publications Ltd.
Editor: Mike Williams.
Production Editor: Phyllida Vanstone.
Technical Assistants: David Fell, Nigel Harris and Alan Webster.
Managing Editor: Lee Calcraft.
Thanks are due to Sheridan Williams, Adrian Calcraft, John Yale, and Tim Powys-Lybbe
for assistance with this issue.

BEEBUG NEW ROM OFFER

1.2 OPERATING SYSTEM

A special arrangement has been agreed between Acorn and BEEBUG whereby BEEBUG members may obtain the 1.2 operating system
in ROM at the price of £5.85 including VAT and post and packing.

The ROM will be supplied with fitting instructions to enable members to install it in their machine.

If the computer does not subsequently operate correctly, members may take their machine to an Acorn dealer for the upgrade to be
tested, which will be done at a charge of £6.00 plus VAT. This charge will be waived if the ROM is found to have been defective. If the
computer has been damaged during the installation process, the dealer will make a repair charge.

Qg’ NEW ROMS FOR OLD
g@' EXCHANGE YOUR 1.0 FOR THE 1.2
We can now exchange your old 1.0 operating system for the new 1.2, free of charge. To take advantage of this offer, please send your 1.0
(supplied on eprom with a carrier board), in good condition to the address below.
£5 FOR YOUR OLD 1.0

If you have the 1.0 operating system and have already bought a 1.2, we will exchange the 1.0 (supplied on eprom with a carrier board) for
a £5 voucher. This voucher may be used against any purchase from BEEBUGSOFT.

ADDRESS FOR 1.2 OS:-
ROM Offer, BEEBUG, PO Box 109, High Wycombe, Bucks, HP11 2TD, HP1¢ 8HQ.




BEEBUGSOFT

ATPL’S SIDEWAYS ROM EXPANSION BOARD

SPECIAL PRICE TO MEMBERS £39.88 inc.
Save £5.78 on normal price of £44.79

™
* Simply plugs into the BBC Micro . come | feoms | Jrome
* No soldering necessary 15 [ N O LJ
* Increases the sideways ROM capacity @ o @ @ ®
to 16 :
* Fully buffered - allows all sockets Ron 7| (ROM | |ROMS | [RONTO) - JROMY
to be used
* Complete with full and detailed @ —Qj ﬁ o
instruction booklet.
RAM / (RAM /
* Accepts 16K RAM in special sockets ROM1Z| |ROMI3 | |ROMIL|  |ROMTS [RONTSE
* Battery back up facility for RAM L1 L L—__‘ = =
(parts available directly from lSidEWiS BJ 03 fon
ATPL at extra cost) "[D“ SIDEWAYS ROMIRAM EX PANSION ——\
» @‘:‘,’ R
* As used at BEEBUG — %?Ijm Gl
S S|
. . —
* Reviewed in BEEBUG vol.2 number 6 L
@&;:‘)”.3‘22 1311
EE§ EG) B
F0000
PR

HOW TO ORDER

Please send your order with a cheque / postal order made payable to BEEBUG, and
enclose your membership number. We are unable to supply the board to overseas
members.

The address for SIDEWAYS is:
BEEBUGSOFT, PO Box 109, High Wycombe, Bucks. HP1@ 8HQ.

BEEBUG JULY 1984 Volume-3 Issue 3



MAGAZINE EHSSETTE OFFER

To save wear and tear on fingers and
brain, we offer, each month, a
cassette of the programs featured in
the latest edition of BEEBUG. The
first program on each tape is a menu
program, detailing the tape's
contents, and allowing the selection
of individual programs. The tapes are
produced to a high technical standard
by the process used for the
BEEBUGSOFT range of titles. Ordering
information, and details of currently
available cassettes are given below.

All previous magazine cassettes (from
Vol.1 No.19) are available.

Mag Cassette

o [IEE o
BEEBUGSOFT

MRGAZINE CASSETTE SUBSCRIPTION

We are able to offer members
subscription to our magazine
cassettes. Subscriptions will be for
a period of one year and are for ten
consecutive issues of the cassette.
If required, subsriptions may be
backdated as far as Vol.1 No.1d,
which was the first issue available
on cassette. This offer is available
to members only, so when applying for
subscription please write to the
address below, quoting your

membership number and the issue from
which you would like your
subscription to start.

CASSETTE SUBSCRIPTION ADDRESS:

Please send a sterling cheque with
order, together with your membership
number and the date from which the
subscription is to run, to:

BEEBUG, PO Box 109, High Wycombe,
Bucks, HP1g 8HQ.

CASSETTE SUBSCRIPTION PRICE:

UK £33 inc VAT and p&p

OVERSEAS (inc Eire) £39 inc psp
(no VAT payable).

BEEBUG MAGAZINE BIVDER OFFER

A hard—backed binder for
magazine is available. These binders
are dark blue in colour with 'BEEBUG'
in gold lettering on the spine,

allow you to store the ‘whole of one3w
volume of the magazlne as a s1ngley o
reference book. Individual issues mayf,‘

be easily added or removed,
provw‘lmg ideal storage'

BINDER PRICE

| 7
BEEBUG  Europe £4.90 inc p&p

U.K. £3.90 inc b&p~ and VAT., :

(no VAT payablﬂ)

- Elsewhere £5.90 inc p&p

(no VAT payable)

fMake cheques payable to BEEBUG. A
Send  to Binder Offer, BEEBU . PO Box
199, .

High fwyc

Printed in England by Staples Printers St Albans Limited at The Priory Press.



