Thrust disassembly
Decryption routine

Thrust’s main file is called “Thrust3”. This loads at &1A00, is &3D6E bytes long and has an execution address of &5720. It is *RUNned by the loader, without any other aspects of the machine being set up in any particular way. It is possible to bypass the loader and simply *RUN THRUST3 provided you are in a mode which uses less than 10k for the screen.

To protect the code from hackers, it is encrypted from &1A00 to &56E9. The last bit is the decryption routine. It carries out the following:

· Changes to MODE 7
· Turns off the cursor

It then enters a decryption loop which has some interesting features. The decryption is achieved by EORing each byte with its predecessor. However, there seem to be several redundant activities going on, and also there appears to be no way out of the loop and hence no end to the decryption process.

The solution is that the decryption process corrupts the first byte of itself, and then when it loops back it finds that its first instruction has changed from what was originally a pointless LDA instruction (the result of which was immediately lost) into a branch instruction which takes it into the newly-generated code.

The decryption routine is as follows:

Page &56

	Main decryption loop

	EA
	lda #$FA
	This instruction is redundant. The first byte gets changed to BEQ when decrypted, providing a way out.

	EC
	jsr $575B
	Seemingly redundant routine

	EF
	lda ($80),Y: eor ($82),Y
	Load byte and EOR with the next one. No need really, as these results are later discarded.

	F3
	cmp $342F,Y
	No apparent reason for this

	F6
	beq $570E
	

	F8
	jsr $575B
	Seemingly redundant routine

	FB
	bcs $570E
	Skips next part if lower byte is > higher byte. No apparent reason why.

	FD
	lda $0202: sta $570C: lda $0203: sta $570D
	Save old contents of BRKV in 570C and 570D if low byte < high byte. No reason why.

	5709
	jmp $570E
	Jump over data in 570C and D

	0C
	EQUB 00,00
	Workspace

	0E
	Pla: sta ($82),Y
	Pull decrypted byte off stack and store it.

	11
	Iny: bne $5718: inc $81: inc $83
	Move through code one byte at a time

	18
	eor ($82),Y
	Entry point of decryption routine the first time around.

EOR the low byte with the high byte.

	1A
	Pha: ora #$01
	Save decrypted byte on stack.
Data is OR-red with 1 to make sure that accumulator is non zero when the routine escapes from itself at the end. At other times, A is irrelevant here as it is overwritten shortly afterwards at 56EA.

	1D
	jmp $56EA
	Loop back to beginning

Page & 57

	Initial entry point

	20
	jsr $575B
	Immediately go into pointless routine. When return, continue to 5723 below.

	Set up routine

	23
	ldx #$00
	Set up X pointer

	25
	lda $5732,X: cmp #$FF: beq $573F: jsr $FFEE: inx: bne $5725
	Send bytes to VDU

	32
	EQUB 16,07

EQUB 17,1,0,0,0,0,0,0,0,0

EQUB FF
	MODE 7

Cursor off

End marker

	3F
	lda #$00: sta $80: lda #$1A: sta $81: clc: lda $80: adc #$01: sta $82: lda $81: adc #$00: sta $83: ldy #$00
	Set &80/81 to point to &1A00 and &82/83 to point to &1A01.

	56
	lda ($80),Y: jsr $5718
	Enter decryption routine, starting off with the first byte (?&1A00).

	Pointless routine?

	5B
	lda ($80),Y: cmp ($82),Y: beq $576D: eor #$FA: sta $570C: iny: lda ($80),Y: sta $570D: dey: rts
	Believed to be a relic of an earlier decryption method. If the two bytes are non-equal then the low one is EORed with &FA and stored in 570C, and then stored in unadjusted form in 570D. NB &FA is the original value of &56EB.
NB: after decryption, 570C/D are set to zero anyway, so this routine does nothing.

Relocation routine
The decryption routine converts &1A00-&56EA, and then jumps to &56EA as it loops round again. It finds a BNE instruction at &56EA which is always executed because the ORA#01 instruction at 571B ensures the accumulator is never zero at this point. A series of JMPs takes the flow through to &5633.

At &5633, the old contents of BRKV are stored and the vector is set to point to the relocation routine. This appears to serve as a fall-back in the event of an error occurring in any of the code prior to the relocation, as typically the BRK routine is not called.

There is an interesting bit of code which appears to be a method for detecting hackers. It looks to see if the BYTEV vector has been redirected to RAM, and if so scrambles part of the code and exits.

Various setup processes take place, and then the code from &1A01 to &5701 is relocated to &0A60-&4760. NB – this also relocates some redundant parts such as the decryption routine, so in fact the useful code ends at &4691.
Page &56

	Second setup routine

	33
	lda $0202: sta $80: lda $0203: sta $81: lda #$9B: sta $0202: lda #$56: sta $0203
	Save BRKV in &80/&81.

Point vector to &569B (relocation routine) instead. NB this vector is never called if all goes to plan.

	47
	lda $020B: bpl $56CA
	Detect whether BYTEV points to RAM routine rather than ROM – if so jump to code scrambling routine then exit.

	4C
	lda #$00: ldx #$FF: ldy #$FF: jsr $FFF4: cpx #$00: beq $569B
	*FX0,255,255 – detects OS1.0.

If so – don’t bother with the rest of the setup code and instead jump straight to relocation routine.

	59
	Sei: lda $FFB7: sta $70: lda $FFB8: sta $71: ldy $FFB6: lda ($70),Y: sta $0200,Y: dey: bne $5667: cli
	Restore all vectors to their default values in ROM.

	70
	lda #$EA: ldx #$00: ldy #$00: jsr $FFF4
	*FX234,0,0 – reads whether the TUBE is active. Not obvious why, as the program does nothing about it.

	79
	lda #$8C: ldx #$0C: ldy #$00: jsr $FFF4
	*FX140,12 - *TAPE. Essential as the relocation of the code overwrites the disc system workspace.

	82
	lda #$C8: ldx #$03: ldy #$00: jsr $FFF4
	*FX200,3 – Disable ESCAPE, clear memory on BREAK.

	8B
	lda #$04: ldx #$01: jsr $FFF4
	*FX4,1 – disable cursor editing.

	92
	lda #$E1: ldx #$00: ldy #$00: jsr $FFF4
	*FX225,0,0 – Ignore soft keys

	Relocation routine

	9B
	lda $80: sta $0202: lda $81: sta $0203
	Puts BRKV back as it was (if necessary).

	A5
	lda #$01: sta $70: lda #$1A: sta $71: lda #$60: sta $72: lda #$0A: sta $73
	&70/71 = &1A01

&72/73 = &0A60

	B5
	ldx #$3D
	&3D pages to move.

	B7
	ldy #$00
	Start at beginning of page

	B9
	lda ($70),Y: sta ($72),Y: dey: bne $56B9: inc $71: inc $73: dex: bne $56B7
	Move bytes

	C7
	jmp $3C80
	Enter code

	Scramble code

	CA
	lda #$01: sta $70:lda #$1A: sta $71: ldx #$3D: lda ($70),Y: eor ($71),Y: sta ($70),Y: dey: bne $56D4: inc $71: dex: bne $56D4: rts
	Mess up code and exit.

	Redirection out of decryption routine

	E3

E6
	JMP &5633

JMP &56E3
	Jumps progressively backwards to &5633.

	E9
	EQUB &79
	Redundant byte – part of decoding process

	EA
	BNE &56E6
	Routine enters here

Memory movement and further setup
The game next jumps to &3C80, where some further minor setup work is done and substantial blocks of memory are shifted down further into memory. At this stage, remember, over &16 pages of game are still above &3000 and therefore “in the way” of a MODE 1 screen.

Page &3C

	Further relocation and setup code

	80
	ldx #$FF: txs
	Set stack pointer to &1FF – ie, empty the stack. This will be useful later. NB this means that there is no going back from here, as the 6502 has lost all its return addresses.

	83
	ldx #$A7: lda #$00: sta $00,X: dex: bne $3C85
	Set all locations from &00 - &A7 to zero.

	8C
	ldy #$4F: ldx #$00: lda #$00: sta $70: sta $71: lda $70: sta $09C0,X: lda $71: sta $0A10,X: clc: lda $70: adc #$08: sta $70: lda $71: adc #$00: sta $71: inx: dey: bpl $3C96
	This basically builds a *8 multiplication table between &09C0 and &A5F. The difference is that all the low bytes are stored from &09C0-&0A0F and all the high bytes from &0A10-&0A5F.

	B1
	lda $020E: sta $3BF3: lda $020F: sta $3BF4: lda #$EE: sta $020E: lda #$3B: sta $020F
	Save old value of WRCHV at &3BF3/3BF4.

Set WRCHV to point to custom routine at &3BEE

	C7
	ldx #$00: lda $3E99,X: sta $07C8,X: lda $3EA1,X: sta $07D0,X: lda $3EA9,X: sta $07D8,X: lda $3EB1,X: sta $07E0,X: lda $3EB9,X: sta $07E8,X: lda $3EC1,X: sta $07F0,X: lda $3EC9,X: sta $07F8,X: lda $3ED1,X: sta $07C0,X: lda $3ED9,X: sta $0192,X: inx: cpx #$08: bne $3CC9
	Copy some 8-byte blocks of data as follows:

&3E99-&3ED0 to &07C8-&07FF

&3ED1-&3ED8 to &07C0-&07C7

&3ED9-&3EF0 to &0192-&019A

Page &7 is language workspace (ie free). Page &1 is the stack (which has been emptied).

Page &3D

	04
	ldx #$1F: lda $3F61,X: sta $0880,X: lda $3F81,X: sta $08A0,X: lda $3FA1,X: sta $0980,X: lda $3FC1,X: sta $09A0,X: dex: bpl $3D06
	Copy some 32-byte blocks of data as follows:
&3F61-&3FA0 to &0880-&08BF (printer buffer, ie free)

&3FA1-&3FE0 to &0980-&09BF (ext. envelope storage)

	21
	lda #$B3: sta $80: lda #$3D: sta $81: lda #$00: sta $82: lda #$04: sta $83
	&80/81 = &3DB3

&82/83 = &0400

	31
	ldy #$00: ldx #$03: lda ($80),Y: sta ($82),Y: iny: bne $3D35: inc $81: inc $83: dex: bne $3D35
	Relocate 3 pages from &3DB3-&40B2 to &400-&6FF.

Note this seems to move more data than is needed, as the bits at the end are part of the title screen.

	43
	lda #$08: ldx #$62: ldy #$3E: jsr $FFF1
	OSWORD 8 using data at &3E62.

ENVELOPE 1,2,251,253,251,2,3,50,126,249,249,244,126,0

	4C
	lda #$08: ldx #$70: ldy #$3E: jsr $FFF1
	OSWORD 8 using data at &3E70.

ENVELOPE 2,2,255,0,1,9,9,9,0,0,0,1,1,3

	55
	lda #$08: ldx #$7D: ldy #$3E: jsr $FFF1
	OSWORD 8 using data at &3E7D. NB overlaps with previous data in an unnecessary attempt to save memory.

ENVELOPE 3,4,0,0,0,1,1,1,126,252,254,252,126,110,4

	5E
	lda #$08: ldx #$8B: ldy #$3E: jsr $FFF1
	OSWORD 8 using data at &3E8B. NB overlaps with previous.

ENVELOPE 4,1,255,255,255,18,18,18,50,244,244,244,110,70

	67
	ldx #$00: lda $3EE1,X: sta $0100,X: inx: bpl $3D69
	Copy &3EE1-&3F60 to &100-&17F.
This is the high score table. Format:
8 entries of the following:

No. of 1000’s (in BCD format)

No. of 100,000’s (in BCD format)

3x spaces
10x characters for name (padded with spaces at end)

“00” termination byte.

	72
	ldx #$7D: lda $3FE1,X: sta $0900,X: dex: bpl $3D74
	Copy &3FE1-&405E to &0900-&097D.

These are the in-game messages.

	7D
	lda #$04: sta $35C1
	&35C1=4 Why? Number of lives?

	82
	lda #$5D: sta $80: lda #$40: sta $81
	&80/81 = &405D

	8A
	lda #$13: jsr $FFF4
	*FX19, wait for vsync

	8F
	ldy #$00: lda ($80),Y: cmp #$FF: beq $3DA2: jsr $3BF2: iny: bne $3D91: inc $81: jmp $3D91
	Read bytes from &405D onwards until &FF reached. Jump to &3BF2 with each one.

This actually reads in &1B4 bytes – the characters needed to create the MODE 7 intro screen.

Calling &3BF2 actually calls the normal OSWRCH routine – because &3BF3 and &3BF4 were used to save the old contents of the vector previously.

	A2
	lda #$0F: ldx #$00: jsr $FFF4: jsr $FFE0: cmp #$20: bne $3DA2: jmp $0400
	Flush all buffers.

Get a key. If space is pressed, enter game at &0400.

More memory movement and yet more setup routines

Starting at &400, the game moves more memory about in preparation for the change to MODE 1. It then changes mode by poking registers in the 6845 and ULA.

Page &4

	Yet more relocation and setup code

	00
	lda #$12: sta $80: lda #$42: sta $81: lda #$80: sta $82: lda #$3C: sta $83
	&80/81=&4212

&82/83=&3C80

	10
	ldy #$00: ldx #$05: lda ($80),Y: sta ($82),Y: iny: bne $0414: inc $81: inc $83: dex: bne $0414
	Copy &4212-&4712 to &3C80-&3F80.

Note this is 1280 bytes = 2 character rows in MODE 1.

This is effectively plotting the status bar at the top of the screen – although we are not in the right mode yet so we can’t see it.

	22
	jsr $39FB
	

	25
	lda #$13: jsr $FFF4
	*FX19, wait for vsync

	2A
	lda #$90: jsr $FFF4
	*FX144 – reads interlace status in Y register

	2F
	Tya: eor #$01: and #$01: sta $04A8
	Inverts interlace status and saves a copy in &4A8. This area contains a list of 6845 registers (to be fed to the 6845 shortly), so doing this ensures that the interlace setting is preserved.

	37
	lda #$90: jsr $FFF4
	*FX144 – write new (inverted) interlace state

	3C
	lda #$13: jsr $FFF4
	*FX19, wait for vsync. We are about to change mode.

	41
	ldx #$0D: stx $FE00: lda $04A0,X: sta $FE01: dex: bpl $0443
	Write 6845 registers R0-R13 as follows:

R0=&7F:R1=&48:R2=&5E:R3=&28:R4=&26:R5=&00:R6=&1E

R7=&21:R8=(inverse of whatever interlace state read previously)

R9=&07:R10=&67:R11=&08:R12=&07:R13=&90.

This is the same as MODE 1 except for:

· only 72 chars across, not 80

· screen pushed to right to compensate
· longer horizontal & vertical syncs

· Only 30 rows not 32.

· Vsync occurs at line 33 not 34

· Interlace based on inverse of previous setting

· Start address &3C80 not &3000.

The missing 2 character rows are at the top of the screen. By losing these 2 rows plus 2 characters at the left and right hand ends of each row, the screen size is 36x30 characters not 40x32. In pixels, 288x240.

The screen requires only 16.875k not 20k.

Start address is &3C80 and end address &7FFF.

	4F
	lda #$9A: ldx #$D8: ldy #$00: jsr $FFF4
	*FX154,216

This writes R0 of the ULA, as follows:

· first flash colour selected

· no teletext

· 40 characters per line

· high frequency clock rate

· 2 bytes per cursor width

· large cursor

	58
	lda #$D8: sta $FE20
	Same as above, but direct poking of the value. Not obvious why both methods considered necessary

	5D
	lda $0204: sta $0190: lda $0205: sta $0191
	Save old contents of IRQ1V at &0190/191

	69
	Sei: lda #$D4: sta $0204: lda #$22: sta $0205: cli
	IRQ1V = &22D4

	75
	lda #$18: sta $FE4E
	Write to system VIA. Purpose not clear.

	7A
	ldx #$00: lda $048F,X: cmp #$FF: beq $0489: sta $FE21: inx: bne $047C
	Copy 16 bytes of data to palette register.

	89
	jsr $39FB
	

	8C
	jmp $35BE
	Start game

	8F
	EQUB 07, 17, 47, 57, 24, 34, 64, 74, 86, 96, 07, 17, 47, 57, 24, 34, 64, 74, 86, 96, c6, d6, a5, b5, e5, f5, ff
	Palette data

	A0
	EQUB 7f, 48, 5e, 28, 26, 00, 1e, 21, 01, 07, 67, 08, 07, 90, ff
	6845 register settings.

Memory layout

At this stage it is worth reviewing where everything has ended up! This is relevant because no more significant movements take place – the game is ready to go. The disassembly which follows from here is a complete disassembly of the relevant parts of the game which reside in memory at this point.
	Address

range
	Contents

	7FFF

3C80
	Screen memory

(of which first 2 character rows are a permanent status bar)

	3C80

0A60
	Game code

0A60 – More in game messages

1509-15C1: Character set

	0A5F

09C0
	*8 multiplication table (in strange format)

	09BF

0980
	Ballistics table 2

	097D

0900
	In-game messages (lower set)

	08BF

0880
	Ballistics table 1

	087F

0800
	Sound buffers

	07FF

07C0
	OSWORD 7 (sound) parameters

	07BF
0700
	Spare

	06FF

048D
	Junk

	048C

0400
	Setup code – now redundant

	03FF
0200
	Used by Operating System

	01FF

019B
	6502 stack

	019A

0192
	OSWORD 7 (sound) parameters

	0191

0190
	Copy of old IRQ1V destination

	018F

0180
	Spare

	017F

0100
	High score table

	00FF

0068
	Used by OS – although some spare bytes

	0067

0000
	Free

Routines

	0A5F-0B0E
	Data: end of level messages

	0B0F-0B1A
	Data: pixel masks – colour 3 1000, 0100, 0010, 0001, then colour 2 & colour 1

	0B1B-0B3E
	Data: pointers to ship sprite data

	0D83
	Do countdown

	0DD1
	Plot countdown

	119A-11E4
	Static sprite plot routine. Uses data at 334A-35BD.

The routine can only plot to byte accuracy.

?&7A used as an offset to set least sig bit of a set of flags starting at &2862.

&70 is used as plot base address.

Routine works by starting at top left corner of a sprite and working down lh edge. Offsets supply instructions as follows:

· top bit set = go down one line before plotting

· other bits = amount to add to base address, in multiples of 8, to plot other columns to the right of the first

· &FF = end of sprite

The data bytes are EORed to the screen directly.

Sprite selection is achieved by self modifying code changing the addresses in the routine.

	11E5-14D9
	Data: sprites for 16 ship rotation positions

	14DA-1507
	Data: sprite data for circular shield

	1508-15C1
	Data: character set (compressed)

	15C2
	Next character

	15CE
	Backspace

	15FA
	Write character

	1648
	Delete character

	196B
	Lose a life

	197B
	Extra life

	1999
	Zero lives

	19A4
	Add A to score

	19D9
	Show lives

	19EA
	Plot score

	1A0A
	Set co ordinates for text plotting

	1A21
	Add fuel – collects 11 units at a time

	1A97
	Plot hiscore table

	1AE4
	Write “GAME OVER”

	1AE7
	Write “TOP EIGHT THRUSTERS”

	1AEA
	Write “CONGRATULATIONS”

	1AED
	Write “PLEASE ENTER YOUR NAME”

	1AF0
	Write “PRESS SPACE BAR TO START”

	1AF3
	Write “OUT OF FUEL”

	1AF5
	Plot message

Y=message offset, for messages in area 0900-097D

	1AF9
	As 1AF5 but setting A beforehand allows the use of different message blocks. Ie A=&0A allows use of 0A5F-0B0D.

	1B1F
	Write “IN”

	1B22
	Write “COMPLETE”

	1B25
	Write “FAILED”

	1B30
	Write “MISSION”

	1B33
	Write “BONUS”

	1B36
	Write “NO BONUS”

	1B39
	Write “PLANET DESTROYED”

	1B3C
	Write “REVERSE GRAVITY”

	1B3F
	Write “INVISIBLE LANDSCAPE”

	1E90-1F50
	Plot ship. Uses ship data at 11E5-1507.
Routine automatically mirrors ship orientation to obtain angles which face left, as required. Routine also plots shield ring.

Pixel accuracy. &75 is used to indicate the offset within each byte – 0,1,2 or 3. This is applied by ROLing the data.

Plot address given in (&72).

Collision detection is switched on (for ship plotting) or off (for shield plotting) by modifying the code.

	21F9-223E
	“Reward” routine with special messages and scrolling starfield.

	254C-26FD
	Data: terrain

	26FE-2861
	Data: object positions

	2D40-2D57
	Palette set

	2D58-2D5B
	Data: palette masks

	2EB1
	Random number generator – returns a random byte in A, with workspace &3A, 3B

	32E4
	Explosion

	32F2
	Run engine

	330A
	Own gun sound

	330F
	Hostile gun sound

	3314
	Collect pod/fuel sound

	3323
	Makesound

	3332
	Countdown sound

	333C
	Enter orbit sound

	3343
	Decrement &60

	334A-3599
	Data: static sprites. For plot routine at &119A
This is stored in the format of a block of plotting offsets followed by a block of data to plot. The start address for each block of offsets is stored in 359A-35AB and the data addresses 35AC-35BD.

Sprite order:

0 – gun up right

1 – gun down right

2 – gun up left

3 – gun down left

4 - fuel

5 – pod on stand

6 - generator

7 – door switch right

8 – door switch left

These index numbers are the same as used in the level data.

	359A-35AB
	Data: pointers to start of offset blocks for static sprites.

	35AC-35BD
	Data: pointers to start of data blocks for static sprites.

	39FB-3A42
	Clear screen and initialise

	
	

	3B37-3BE8
	New hiscore? – get input if so and update table

	3BE9-3BED
	OSWORD 0 control block for hiscore entry

	3BEE-3BF0
	JMP writecharacter

	3BF1
	RTS

	3BF2-3BF4
	JMP &FFFF

	3BF5-3C0C
	Print decimal (single byte)

	3C0D-3C5E
	Mission complete

Constants

	&101B
	Probability of gun turrets not firing

	&3BEB
	Maximum number of characters for hiscore entry

Variables

	&01
	Has values 0 and 1

	&22
	Indicates mission complete if non-zero

	&27
	Needs to be zero in order to allow engine sound

	&2A
	Collision flag true/false

	&3A/3B
	Workspace for random number generator 2EB1

	&60
	Needs to be zero in order to allow engine sound

Decrements to zero

Set to &1F just before explosion.

Timer?

	&62/63
	Text output address

	&6A
	Planet destroyed flag (+ve if destroyed)
?

	&70
	Counter of rows within character

	&71
	Offset from screen plot address for sprites

	&72/73
	Screen plot address for sprites

	&75
	Pixel offset within byte

	&76
	Ship rotation (lower 5 bits). If negative, indicates that shields are on.

Values &00=straight up, through to &08=right and &10=straight down.

&11-&1E are mirrored versions of &0F-&01

The actual sprite number &11 is the shield.

	&80/81
	Pointer into hiscore table

Also used as general pointer for various activities

	&82/83
	Pointer into hiscore table

	&84
	Rank in hiscore table

	&85/86
	Pointer to hiscore input buffer

	&87
	Has a special routine for adding to it.

&30 (48) is added just before collecting either a pod or fuel.

Could be score – fuel is worth 300 points.

	&A6/A7
	Gravity

	&180/1/2
	Score

	&7FC
	Some sort of mode flag?

Values 2 and 5.

	&1508
	Colour for text plotting

	&16AA
	Temp location for text output

	&16AB
	Cursor on/off flag (TRUE/FALSE)

	&1ADF-

&1AE1
	Fuel (BCD)

	&1AE2
	Fuel flag – if non-zero then fuel has run out

	&1AE3
	Lives

	&2BC3
	Score multiplier. (?&2BC3+5)*40 is bonus if planet survives. (?&2BC3+10)*40 if planet destroyed.

	&3C74
	Set to zero when mission has failed

	&3C75
	Mission number

	&3C76
	Invisible landscape/reverse gravity toggles.

Colour 0 = Black (always)

Colour 1 = Yellow (the colour of the spaceship)
Colour 2 = Red (on level 1) - ground
Colour 3 = Green (on level 1) – shield colour, gun colour, pod colour
Data

Ballistics tables

0880 : 80 8D B1 EC 3C 9D 0C 84

0888 : 00 7C F4 63 C4 14 4F 73

0890 : 80 73 4F 14 C4 63 F4 7C

0898 : 00 84 0C 9D 3C EC B1 8D

08A0 : FD FD FD FD FE FE FF FF

08A8 : 00 00 00 01 01 02 02 02

08B0 : 02 02 02 02 01 01 00 00

08B8 : 00 FF FF FE FE FD FD FD

0980 : 00 3E 7A B1 E2 0A 27 39

0988 : 40 39 27 0A E2 B1 7A 3E

0990 : 00 C2 86 4F 1E F6 D9 C7

0998 : C0 C7 D9 F6 1E 4F 86 C2

09A0 : 00 00 00 00 00 01 01 01

09A8 : 01 01 01 01 00 00 00 00

09B0 : 00 FF FF FF FF FE FE FE

09B8 : FE FE FE FE FF FF FF FF
In game messages

0900 :
50 58 F0 47 61 6D 65 20

4F 76 65 72 FF
: &5850, colour 2, “Game Over”

090D :
40 48 FF 54 6F 70 20 45

69 67 68 74 20 54 68 72

75 73 74 65 72 73 FF
: &4840, colour 3, “Top Eight Thrusters”

0925 :
60 48 FF 43 6F 6E 67 72

61 74 75 6C 61 74 69 6F
6E 73 FF
: &4860, colour 3, “Congratulations”

0938 :
30 63 F0 50 6C 65 61 73
65 20 65 6E 74 65 72 20

79 6F 75 72 20 6E 61 6D

65 FF
: &6360, colour 2, “Please enter your name”

0952 :
D0 60 F0 50 72 65 73 73

20 53 50 41 43 45 20 42

41 52 20 74 6F 20 73 74

61 72 74 FF
: &60D0, colour 2, “Press SPACE BAR to start”
096E:
C0 53 0F 4F 75 74 20 6F
66 20 66 75 65 6C FF : &53C0, colour 1, “Out of fuel”
