MICROVITEC

SERVICE MANUAL

SERIES - 3
 COLOUR DISPLAY MONITORS

MICROVITEC SERVICE MANUAL

INTRODUCTION

The contents of this manual are divided into several sections.

We will now look in some detail at the sections and explain how they are to be used to their best advantage.

Factory Pre-set Adjustments:

Some of these adjustments are very critical, not only from an operational point but also from a safety point. The manufacturer recommends that you read and understand the section fully before making any adjustments.

All pre-set adjustments are included in this section. You are given the prefix for example: Field Linearity VR312. If you are not sure of the location of any pre-set (or component) then you should refer to the section containing PCB or CRT base panel layouts. Once you have located the pre-set, you are then told what effect the adjustment will have on the display.

Removal/Installation (Mechanical Detail):

This section gives information (text and illustrated) on how to remove major service items such as: CRT, Main PCB and Tripler etc.

Description and Operation:

These sections will help you to understand the design concept of the Microvitec 'CUB' Monitor. They give very detailed descriptions of each part of the circuit. For example: Line Timebase. Field Timebase etc. It is very important that you read these sections before attempting any of the fault isolation and repair procedures.

Specification:

The first specification list (1431/1432) contains a full specification; subsequent lists contain only the areas that differ from the first list. For example: the supply is $180-265$ volts, $48-64 \mathrm{~Hz}$ (excluding 110 volt models). This will only be given on the first specification list. Therefore, unless otherwise stated, refer to specification 1.

Circuit Diagram and Parts Listing:

There are many model variants in the Microvitec 'CUB' range and obviously it would not be practical to supply all the circuit diagrams. We have therefore devised one circuit diagram for the main P.C.B. assembly (including Standard/Medium Resolution Tube Base assembly) and a separate circuit diagram for the High Resolution Tube Base assembly. In addition there are no component values on the circuit diagrams: you should refer to the Parts Listing.

Component location is another problem that you may encounter. To assist you in this matter we have also included a full P.C.B. layout.

Fault Isolation and Repair Procedure:

Configured in a boxed flow chart format, it represents repetitive faults encountered by our own Service Technicians. Each fault is accompanied by a series of boxes which will ask you to check a particular part of the equipment. After you have carried out the check a question is asked (refer to Fig. 1).

INTERMITTENT -
LINE SYNC

Fig. 1

From the result of the question you can then answer YES or NO.
If the answer is NO (as in this case) you must move onto the next box and carry out the next check.
If the answer is YES. the next box will be (refer to Fig. 2).

Fig. 2

Further into the Fault Isolation Procedure you may be asked to check a component: for example (refer to Fig. 3).

Fig. 3

In this case the best method of checking the Tripler Module would be substitution for a serviceable Tripler Module. This would establish very quickly the condition of the Tripler Module, in relation to the fault.

When all the known fault causes have been effected, the chart wil be terminated by a box reading: (refer to Fig. 4).

MONITOR REQUIRES
FURTHER CHECKS TO ESTABLISH CAUSE
OF FAULT
Fig. 4

If you have reached this stage you should use the circuit diagram and items of test equipment and adopt a logical method of fault isolation and repair.

Illustrated Parts Listing (I.P.L.)

This section contains ail current cabinet designs in the Microvitec 'CUB' monitor range. It is intended to show the service technician how to gain access to the equipment for repair purposes. In addition component part numbers accompany each illustration; this will assist you when ordering a component part.

TECHNICAL SPECIFICATIONS

1. MODELS - $\mathbf{1 4 3 1 / 1 4 3 2}$

SYSTEM	$1: 625$ lines, 50 fields interlaced
	or $312 / 313$ lines, 50 fields non interlaced
	$2 ; 525$ lines, 60 fields interlaced
	or 262,263 lines. 60 fields non-interlaced
	other non-standard systems may be suitable
consult MICROVITEC PLC.	

2. MODELS 1441 AND 1442 14" HIGH RESOLUTION

NOTE: As models 1431 and 1432, with the following exceptions:

CONVERGENCE ERROR (MAX)	0.3 mm screen center
	0.8 mm screen edge
	Approximately 24 KV
EHT	18 MHz
BANDWIDTH	$895(\mathrm{H}) \times 585(\mathrm{~V})$ elements, rectangular 333 mm (screen diagonal)
RESOLUTION	Automatic degausing at switch on. High focus voltage in-line gun.
	90 deg. diagonal deflection, 0.31 mm dot pitch black matrix
	screen with pigmented phosphors.
	0.31 mm
DOT PITCH	+ or -2%
POSITIONAL ERROR	0.8 mm screen edge
CONVERGENCE ERROR	

3. MODEL 1451

NOTE: As models 1431 and 1432, with the following exceptions:

RESOLUTION	$652(\mathrm{H}) \times 585(\mathrm{~V})$
DOT PITCH	0.43 mm
CONVERGENCE ERROR	1.2 mm screen edge

4. MODEL 2030

NOTE: As models 1431 and 1432, with the following exceptions:
CONVERGENCE ERROR (MAX)
0.4 mm screen center 1.8 mm screen edge

RESOLUTION
505(H) $\mathrm{H} 585(\mathrm{~V})$ elements, 80 characters on 6 dot, wide matrix
DOT PITCH
CRT 0.8 mm

Rectangular 480mm (screen diagonal) 90 deg deflection precision in-line gun vertical stripe screen high voltage focus
POWER CONSUMPTION
5. MODEL 2040

NOTE: As models 1431 and 1432. with the following exceptions:

```
RESOLUTION
940(H)x705(V)
DOT PITCH
POSITIONAL ERROR
POWER CONSUMPTION
CONVERGENCE ERROR
0.47mm
+ or -4%
80 Watts approximately
1.0mm screen edge
```


ELECTRICAL SUPPLY

Warning
THIS APPARATUS MUST BE EARTHED.

Important
The wires in the mains lead are coloured in accordance with the following code:
GREEN AND YELLOW EARTH
BLUE
NEUTRAL
BROWN
LIVE
As the colours of the wires in the mains lead may not correspond with the coloured markings identifying the terminals in your plug, proceed as follows:

1. Earth

The wire 'ured GREEN and YELLOW must be connected to the terminal marked 'E' or by the safety earth symbol or coloured GREEN, or GREEN and YELLOW.

2. Neutral

The wire coloured BLUE must be connected to the terminal marked ' N ', or coloured BLACK.

3. Live

The wire coloured BROWN must be connected to the terminal marked ' L ', or coloured RED.

X-Ray Radiation

X-rays constitute a health hazard on prolonged exposure at dose range unless adequate shielding is provided.
Precautions must be exercised during servicing of display equipment to ensure that the anode voltage and other tube voltages are adjusted to the recommended values.

Replace with a tube of the same type number or recommended replacement to assure continued safety.

Implosion Protection

This tube employs integral implosion protection and must be replaced with a tube of the same type or a recommended replacement to assure continued safety.

Shock Hazard

The high voltage at which the tube is operated may be very dangerous. Extreme care should be taken in the servicing or adjustment of any high voltage circuit Caution must be exercised during the replacement or servicing of the tube since a residual electrical charge may be contained on the high voltage capacitor formed by the external and internal conductive coating of the tube funnel. To remove any undesirable residual high voltage charges from the tube, "bleed off" the charge by shorting the anode contact button, located in the funnel of the tube, to the external conductive coating before handling the tube.

Tube Handling

Wear heavy protective clothing, including gloves and safety goggles with side shields. Handle the tube with extreme care. Do not strike, scratch or subject the tube to more than moderate pressure. Particular care should be taken to prevent damage to the seal area.

OPERATING SAFETY

We recommend - after effecting any Service and/or replacement of any part of the monitor, or after any repair work - that the SAFETY CHECKS listed following are carried out.

Note

Ensure on re-assembly that ALL earth connections are replaced SECURELY; in particular safety earths and the 'P' band and dag earth 'CRT' earth connections.

Important!

Failure to observe the points noted could affect your own safety, the product's safety and ultimately, that the user.

SAFETY CHECKS

Earth Continuity Check

a) Using a suitable multimeter:

Check between 'Dag' earth on the CRT and mains plug earth pin, (safety earth connection). The reading should be less than 470Kohm (with tube discharged).
b) Check mains earth continuity between mains plug earth pin and:

1) CRT 'P' Band
2) PCB 'Earth' pin on main chassis
c) The final assembly/housing should be checked for continuity between the mains plug earth pin and ALL exposed metalwork.

Note

Tests b) and c) should have a resistance of less than 0.5 ohm.

High Voltage Isolation/Insulation Checks

a) On the mains supply 3 pin plug, — check between 'live' and 'neutral' to 'earth' for leakage breakdown.

This test should be made with 1.5 KV to 1.6 KV AC or DC equivalent.

On Test

1) No breakdown should occur.
2) Earth leakage should be less than 6 mA at 1.5 KV .
b) Insulation resistance should be greater than 2Megohms at 500V DC.

CAUTION

A MONITOR FAILING ANY OF THE ABOVE CHECKS MUST BE RESTORED TO SAFE WORKING CONDITION BEFORE BEING RETURNED TO THE USER.

SAFETY STANDARDS

SAFETY AND ISOLATION

UNDER NO CIRCUMSTANCES SHOULD ANY FORM OF REPAIR OR MAINTENANCE BE ATTEMPTED BY

 ANY PERSON OTHER THAN A QUALIFIED ENGINEER.
Switched Mode Power Supply

Although the outputs from the power supply are isolated from the incoming mains supply, the bridge rectifier and the ontrol and regulation circuit ARE NOT isolated. Therefore, when servicing the power supply section of the chassis assembly, the SMPSU should be supplied by a MAINS ISOLATION TRANSFORMER OF AT LEAST 300VA RATING.

HANDLING PRECAUTIONS HT

Electrical Charges

The power supply section remains charged with respect to chassis for $30-60$ seconds after switching off. Care should be taken when handling the chassis to avoid touching this area during this time.

EHT Charges - Horizontal (Line) Output Stage/CRT

Before handling or attempting adjustment or replacement on the horizontal (line) output stage or on CRT areas always discharge the final anode of the CRT - by using a suitable EHT probe only. Do this by connecting first to CRT dag earth coating/earth braid assembly, and then to CRT final anode/anode button 'poppy' connector.

Please Note

Very considerable electrical charges can be stored in these areas - even for lengthy periods of time after 'switch off'.

In the interests of your personal safety observe the precautions listed.

SAFETY CRITICAL COMPONENTS

Components marked

on the parts list and circuit diagram are safety approved types and they should be replaced only with components supplied or approved by our Service Department It is also recommended that the components not marked with the safety symbol should be replaced by parts of the type originally fitted, and this applies particularly to those resistors which are stood off the printed circuit boards.

HANDLING PRECAUTIONS - STATIC ELECTRICAL CHARGES

Depending on equipment type and model, the equipment may contain device ich may be damaged by static electrical charges during handling. Generally, these devices are indicated by a
symbol.

When replacing or handling these devices or PCBs containing such devices, care should be taken. Soldering irons should be earthed and personnel should use wrist straps earthed via a 1 Mohm resistor. If the latter is not practicable they should discharge themselves of any static electricity by touching an earthed point

Static sensitive devices should be packed in suitable conductive containers. Note
Electrostatic discharge does not necessarily 'kill' a component completely — more likely it will 'wound' it
Many static wounded devices will pass normal test both on site and in Service Workshops. In this respect PCBs containing such 'wounded' devices are a major cause of 'no fault found' problems.

It pays, therefore, to cultivate static safe ways when dealing with such static sensitive equipment

GENERAL

Preset controls are initially set up at the factory and normally do not require adjustment unless a change is required in the input configuration - for example, typically to install a different graphics adaptor card in the associated host system. Details of the preset controls with their use and adjustment is described following:

PRESET ADJUSTMENTS

TO PROTECT AGAINST ELECTRICAL SHOCK HAZARD AND TO PROTECT THE MONITOR AGAINST SHORT CIRCUIT AND DAMAGE - USE ONLY AN INSULATED NON-METALLIC TRIMMING TOOL TO MAKE ADJUSTMENTS TO THE PRESET CONTROLS.

Care should be taken when adjusting presets. Adjust only one at a time and note carefully the effects of the adjustment before proceeding on to other adjustments. In some cases, it may be advisable to take note of the original setting position of the preset BEFORE adjustment in case the need arises to return to the original setting.

INTERCONNECTION COMPATIBILITY

On installation and prior to preset adjustments, ensure that video and sync connections from the host system are compatible with:
a) The monitor.
b) The interconnecting lead assembly in use.

Having determined these points are correct, proceed with the adjustments required according to the details given in the accompanying table and descriptions following.

PRESET CONTROL SETTINGS

1. To set the preset controls, use a signal generating a display occupying as large a screen area as possible. For example a full page of upper case letter ' H ' would be suitable, or alternatively a suitable test card as appropriate.
2. Preset controls in the table following marked with an asterisk * may be adjusted if required.

However, normally this should not be necessary, as these presets are set accurately at the factory during manufacture.

NOTE: A circle is employed in the screen displays illustrated following, only to demonstrate more clearly the geometric effects of wrong settings.

PRESET LOCATIONS

The physical locations of most of the preset controls referred to in the descriptions following are shown in the illustration contained in the Section preceding.

Notable exceptions are preset controls contained on the TUBE BASE PCB assembly.
The positions of these presets are indicated on the individual PCB's by appropriate ident markings.

PRESET	WRONG X	RIGHT /
LINE FREQUENCY	PICTURE BREAKS UP ADJUST LFREQ.	 picture locked
FIELD FREQUENCY	PICTURE ROLLS ADJUST F.FREQ.	PICTURE LOCKED
HEIGHT	ADJUST HEIGHT	
WIDTH	ADJUST WIOTH	WIDTH SET
LINE PHASE*	PICTURE NOT CENTRAL ADJUST L PHASE	
FIELD LINEARITY* (VERTICAL LINEARITY)	BOTTOM (OR TOP) OF PICTURE COMPRESSED ADJUST F.LIN	
EAST/WEST* CORRECTION	PICTURE 'BARREL X SHAPED' OR 'PIN-CUSHION' SHAPED - ADJUST EN CORRECTION	
FIELD SHIFT	PICTURE NOT CENTRAL ADJUST FIELD SHIFT	

INPUT CONNECTIONS AND CUSTOMER CONTROLS 1. T.T.L.

Compatible/Linear input Selection

A. T.T.L. compatible or linear (0 to $4 \mathrm{~V}, 1500$ ohm) input level options can be selected by moving 3 links: (1) TL103 R,G,B located on main PCB: position 1 corresponds with linear levels position 2 with T.T.L. levels

NOTE: Contrast control VR111, inoperative when position 1 is selected.
2. Synchronisation - Input Options
A. Sync inputs must be T.T.L. compatible, the timing of sync pulses should approximately correspond with those used for broadcast purposes (refer to fig. 1 for available options.)
3. Inverse Video
A. To facilitate inversion of T.T.L. compatible video input signals by either moving link TL101 on main PCB to position 1, or removing TL101 and feeding a positive T.T.L. level in to pin 9 of PL101.

NOTE: Monitors are normally despatched wired in composite negative (going) syncs mode, with TL102 not fitted, and TL106 selected to position 1.

Signal input pin connections
Fig. 1

KEY
$1=+12 \mathrm{~V}$
2 = No connection
3 = Sync 3; -field sync
4 = Red video
5 = Sync 2; -field sync
6 = Green video
7 = Sync 1; composite
sync or line sync
8 = Blue video
9 = Normal/inverse
T.T.L. video

10 = Ground
4. Synchronisation Options

SYNC OPTIONS	INPUTS (PL101)	LINK POSITION
SYNC OPTIONS MIXED	INPUTS (PL101)	LINK POSITION
-ve going	pin 7	TL102 not fined TL106 in position 1
+ve going	pin 7	TL102 fitted TL106 in position 1
SEPARATE -ve line -ve field + +ve line +ve field -ve line +ve field	pin 7 pin 5 pin 7 pin 3 pin 7 pin 3	TL102 not fitted TL106 in position 1 TL102 fitted
TL106 in position 2		
TL102 not fitted		
TL106 in position 1		

5. Customer Controls

NOTE: On 'D' series monitors the controls listed below are located on the front of the monitor, concealed behind a downward hinging door.
A. ON/OFF Switch
(1) Mounted rear of the monitor, allows mains to be switched on and off without switching the mains supply off.
B. Contrast/Brilliance Adjustment (VR111)
(1) Mounted rear of main PCB, only active in T.T.L. mode, and allows video gain to be varied from maximum to minimum, at black level.
C. Brightness Adjustment (VR134 when fitted)
(1) Mounted rear of main PCB, next to VR111. Active in all modes of operation allowing brightness of display to be varied above or below cut off.
D. Volume/Audio Adjustment (when fitted)
(1) Mounted rear of the monitor, allows user to adjust volume/audio level of the monitor. Clockwise to increase, anti-clockwise to decrease.
E. Colour Saturation Control (when fitted)
(1) Mounted rear of the monitor, allows user to adjust the colour level of the monitor. Clockwise to increase, anti-clockwise to decrease.

FACTORY PRESET ADJUSTMENTS

NOTE: Certain preset adjustments can be from above or below main panel. Adjustments are best made on a static display, preferably a MICROVITEC test card, details of test equipment are available on application.

1. Set HT VR4
A. Adjusted accurately at the factory to give 124 V with a dark picture on, R138/137 (right hand side) 5 , and should not be re-adjusted.

WARNING: THIS IS A CRITICAL SAFETY ADJUSTMENT, FAILURE TO COMPLY WITH THE ABOVE WILL INVALIDATE THE WARRANTY.
2. Line Frequency VR218
A. Set free running oscillator frequency to almost frequency of incoming line syncs.
B. Adjust VR218, feed monitor with R,G,B video and interrupt the mixed sync information to line oscillator by removing sync information on PL101, (sync 1, 2 or 3 etc).
C. Adjust VR218, until picture almost stabilizes then re-connect via PL101 as required. Resulting in a stable picture lock.
3. Field Frequency VR307
A. Control of free running field oscillator frequency is achieved by VR307 being adjusted to give a stable picture lock. For effective lock VR307 should be set to centre of locked picture range.
4. Line Phase VR220
A. VR220, controls positioning of video information relative to raster in line scan direction. B. Ensure the following operations have been effected:
(1) The line frequency has been set (VR218)
(2) The picture width has been set (L202)
(3) The monitor is positioned in its place of use.

NOTE: VR220 when adjusted will shift the picture, right or left.
5. Width L202

CAUTION: CARE SHOULD BE TAKEN WHEN ADJUSTING THIS COMPONENT DUE TO ITS PROXIMITY TO EHT SECTION. IN PARTICULAR, TRIPLER AND LINE OUTPUT TRANSFORMER.
A. Using a non-metalic trimming tool adjust L202, to effect picture width adjustment.
6. Height VR306
A. VR306. when adjusted will provide for raster under scan and over scan.
7. Field Linearity VR312
A. Adjust VR312, to give a linear picture in vertical direction.

NOTE: Best results are obtained by using a cross hatch type grid or MICROVITEC test generator.

8. Field Shift VR321

A. VR321, controls positioning of raster in field scan direction.

9. East-West Correction VR328

NOTE: Some models will not require this adjustment, because east-west correction is integral on certain types of CRT.
A. Adjustment of VR328 will achieve straight verticals on left and right hand sides of pictures.
10. Focus
A. Located on end of tripler module, set brightness control to normal viewing level, then make focus adjustment.

11. Adjust Colour Background Controls (black level)

NOTE: These controls are factory preset. If adjustment is necessary, an AVO 8 multimeter and/or oscilloscope will be required. However, best results are obtained by using an oscilloscope.
A. Prepare to adjust colour background controls
(1) Set customer contrast (VR111), brightness (VR134) and A1 (VR932) fully anti-clockwise
(2) Disconnect R, G, B, sync inputs
B. Adjust red, green and blue
(1) Adjust VR906 for red cathode (black level) volts
(2) Adjust VR914 for green cathode (black level) volts
(3) Adjust VR921 for blue cathode (black level) volts
(4) The above voltages are:
(a) 150V-14" monitor (TTL or Linear)
(b) 155V-20" monitor (TTL or Linear)
(c) 140V-12"/14" high res monitor (TTL or Linear)
C. Adjust A1 voltage
(1) Adjust VR932 until a raster is just visible.
(2) Raster colour may be neutral. However, it is very likely shaded towards-red, green, blue or a combination of any two colours.
(3) Establish raster colour shading as follows:
(a) Red and Green • Yellow
(b) Red and Blue - Magenta
(c) Blue and Green - Cyan
(4) Reduce black level of remaining one or two guns using VR906, VR914, VR921 or combination until a neutral raster is achieved.
(5) Re-adjust VR932 to just extinguish raster
(6) Input - R,G,B and sync signals, then adjust VR111 clockwise
(7) If correct white balance has not been achieved, repeat operations C. (1) thru (6).

12. Adjust Colour Gain Controls

CAUTION: MAKE THE FOLLOWING ADJUSTMENTS USING A DC COUPLED OSCILLOSCOPE ONLY. A.

Prepare to adjust colour gain controls
(1) Disable beam current limit circuit, by removing TL901 in series with CRT heaters on tube base panel.
(2) Provide a test pattern with peak white and black level information on red, green and blue.
(3) Ensure VR111 is fully clockwise to provide maximum drive voltages to video output stages.
B. Adjust red, green and blue gain controls
(3) Adjust VR903, for red peak to peak drive volts at R926.
(2) Adjust VR910, for green peak to peak volts at R925.
(3) Adjust VR916, for blue peak to peak volts at R924.
(4) Above voltages are:
(a) 70 V p-p on 14 " monitor - TTL mode
(b) 70 V p-p on 20 " monitor - TTL mode
(c) 60 V p-p on 14 "/20" monitor - medium and high resolution

WARNING: ENSURE MONITOR IS DISCONNECTED FROM MAINS ELECTRICAL SUPPLY BEFORE EFFECTING THE FOLLOWING OPERATIONS.

1. Main PCB Removal/Installation (Fig. 1)

A. Disconnect EHT lead (1) from CRT, to ensure no charge remains on tnpler connect to chassis metalwork.
B. Discharge CRT, final anode by connecting it to CRT dag.
C. Disconnect PL201 (2), PL1 (3) and on cabinet versions PL2 (4) (if fitted) and mains plug PL3.
D. Remove tube base panel and CRT earthing braid tag.
E. Remove 'P' band earthing tag (5) from main PCB, located next to tripler module.
F. Release in turn, each of the nylon self locking PCB support clips (6), lifting PCB slightly in each case.
G. Disconnect PL101 (7), PL102 (8), then disconnect tube base from CRT.
H. The main PCB may now be removed by lifting upwards, and withdrawing from the rear.
J. For installation effect the above operations in reverse order.

Fig. 2
2. CRT Removal/Installation (Fig. 2)
A. Effect operations 1.A. thru G., then position monitor so that the CRT is face down on two padded support blocks.
B. Remove two earthing screws (1), then refer to the illustrated mechanical parts section and remove the base of the monitor.
C. Remove the four nuts (2) and large washers (3) securing CRT to cabinet facia (4).
D. Carefully withdraw CRT vertically.
E. Transfer degauss coil (5) and earthing braid (6) and scan coil lead assembly (7) to new CRT.
F. Install main PCB assembly by effecting operations 1.A. thru G., in reverse order.
G. CRT installation safety checks.
(1) Check for correct fitting of CRT earthing braid (6).
(2) Ensure black lead from CRT earth braid to tube base panel is connected.
(3) Check 'P' band earth pin has been connected to main PCB.
3. Line Output Transistor (TR202) and SMPSU Output Transistor (TR2) - Removal/Installation (Fig. 3)
A. Remove Transistor
(1) Remove two M3 screws (1) securing transistor and heatsink to main PCB.
(2) Unsolder base and emitter connections on PC3, then withdraw transistor heatsink (4).
(3\} Separate transistor from heatsink, retaining insulating bushes (3) and mica washer (2) for refitment.
B. Install Transistor
(1) Coat underside of transistor with thermally conductive heatsink compound.
(2) Effect operations 3.A.(1) thru (3), in reverse order.

Line Output Transistor (TR202) and SMPSU Output Transistor - Removal/Installation Fig. 3
4. Tripler - Removal/Installation (Fig. 4)
A. Tripier Removal
(1) Remove EHT lead from CRT and discharge CRT final anode to the earth braid.
(2) Unsolder the following: Lead from line output transformer overwind (1) focus lead (2) to tube base panel at the tripler end.
(3) Unsolder from main PCB: Earth return (3) from focus control, clamp diode earth return (4)
(4) Loosen, but do not remove tripler securing screws (5), then withdraw tripler module (6) from main PCB.
B. Tripler Module - Installation
(1) Position tripler module (6) on main PCB assembly and secure with screws (5).
(2) Solder on main PCB: Earth return (3) from focus control, clamp diode earth return (4).
(3) Solder
: Lead from line output transformer overwind (1) focus lead (2) to tube base panel at the tripler end replace insulation sleeve on connection (2).

NOTE: Ensure all soldered connections are smooth and connecting wires kept as short as possible, to guarantee adequate voltage clearances.
(4) Connect EHT lead to CRT final anode.

NOTE: Replace the insulation
sleeve on connection (2)
Tripler Removal/Installation
Fig. 4

CONTROL

Note: All tyraps to be fully tight
(1) Remove TR1 (BC337) and replace with TIP 120 as shown.
(2) Remove R1 (6 K8) and replace with 8K2 $1 / 4$ watt 5%.
(3) Race a 10 microfarad 35 V electrolytic as follows: (i) negative side, to top of existing C4 position (ii) positive side, mechanically wrapped around and soldered to left side of R3.

SWITCH MODE POWER SUPPLY - DESCRIPTION AND OPERATION

The power supply is a variable frequency, self oscillating, switching flyback convertor type, providing mains isolation and three stabilised voltages, of $18 \mathrm{~V}, 124 \mathrm{~V}$ and 200 V .

1. Control Circuit - Description

A. Operating Normally In A Ready State
(1) TR2 turns on a step voltage whose amplitude depends on the instantaneous value of rectified mams across T2 primary.
(2) Current in winding and TR2 collector increases in a linear fashion from zero, in which time energy is stored as flux in the transformer.
(3) During this time D22, D23 and D24 are reverse biased and any load energy is supplied by C27, C28. C31 and C26, from previous cycle.
(4) TR1 performs a control function, supplied from a reference winding on transformer (nominal +30 V).
(5) During 'ON' time of TR2. the emitter of TR1 is held at a constant with regard to reference rail from D18.
(6) The base of TR1 is fed directly from the reference rail, via R3, VR4 and R5, any voltage change on the reference arising from a change of voltage at the main output will vary causing the constant current source, used to charge C16, to vary in sympathy.
(7) C16 charges on the current available from R10. The voltage across C16 increases until it reaches the gate trigger voltage of TY1. Then TY1 conducts and 'crow bars' base drive to TR2.
(8) TR2 ceases conduction and its collector voltage becomes positive. The dV/dT at TR2 collector, is limited by C17, R12 and D17. As this occurs D22. D23, D24 and D21 become forward biased and stored energy within the transformer is transferred into output capacitors, and their respective loads.
(9) Eventually voltages on D6, D21. D22. D23 and D24 anodes, collapses. TY1 is forced off prior to this stage by negative anode voltage, allowing TR2 to turn on. Full base drive is then sustained by R16.

TR2 BASE Fuse in

TR2 BASE START-UP Fuse out
(10) HT stabilisation
(a) HT stabilisation is achieved by controlling the duty cycle of the switching transistor. (b) Increasing load = increased duty cycle and peak collector current.
(c) Increasing mains supply *increased operating frequency.
(d) HT adjustment is made by VR4.
(e) Extra damping for C14. R6 and D7. are required to limit Vce of TR2. 015 and D16 provide negative off drive and base current tracking, L2 optimises storage time of TR2 for minimum switching losses.
(11) Max available power is determined by measuring, peak collector current of TR2, and is sensed by R15. If voltage across R15 exceeds voltage across TY1 gate cathode, then TY1 conducts turning TR2 off.

NOTE: This sequence occurs during start-up, at low mains and under fault conditions. 2. Start-
Up Procedure
A. Current required at start-up is small compared with base drive current under normal operating conditions.
B. When turn on of TR2 occurs in this manner (once every 20 ms) the oscillation becomes self sustaining. R8 continues to supply current, but is swamped by forward base drive from R16.

TR2 COLLECTOR Fuse in
3. Over Voltage Protection
A. Controlled by a second feedback loop attached to TY1, consisting of:
(1) A zener diode which senses the reference rail voltage and HT voltage proportionally.
(2) If this reference exceeds zener voltage. 020 conducts, fires TY1 and terminates drive to TR2. During which time enough volts are developed across TY2 gate-cathode to cause conduction, and latch on.
(3) Drive to TR2 is stopped until C23 is fully discharged (10ms).
(4) Power supply is off until the next mains start-up pulse.
4. Short Circuit Protection
A. Short circuit or over current on any output rail represents an increase in stored energy required from T2. therefore an increase in collector current through TR2. detected by R15. Thus TY1 is fired and TR2 turned off.
B. Now operating in 'Burst Mode', that is, the power supply is initiated under normal start-up conditions, but only operates for a few switching cycles when the over current protection comes into operation terminating drive to TR2.

VIDEO INPUT INTERFACE CIRCUIT - DESCRIPTION AND OPERATION

INPUT: Connections are made at PL101-red, green and blue video, sync options 1, 2, 3 and TTL video normal/invert. All inputs are flashover protected by, resistors and diodes. R,G,B drives are split in two ways:

1. Test selectable links TL103, R,G,B.
2. To IC101

Select Position 1: The input stage is in the linear mode, the video is buffered and level shifted by emitter output stages. These provide temperature tracking with TR103, 104 and 105 resulting in a stable black level.

NOTE: In the linear mode only brightness variations of the video information are possible using VR314.
Select Position 2: TR103, 104 and 105 bases are driven by IC101. This option is used when driving from TTL video sources offering primary/secondary colour and black and white drives.

NOTE: In the TTL mode, signal to noise immunity of system is very good. IC101 can be used with negative TTL level video drives (R, G, B), in order to invert video information.

Video inversion is achieved by toggling video polarity select line at. PL101 pin 2 or TL101:
Normal - 0 V
Invert -+5 V

TTL Mode: Contrast of video information is tracked by varying available potential across open collector load resistors, R114, 115 and 116 which are supplied by TR101 from +12 V , the base being driven from the contrast control slider VR111, R112. C101 form a low pass fitter and ensure smooth operation of contrast control.

CRT Beam Current: Information is fed to D117, 118, from a constant current source derived from 124V main HT rail. As CRT beam current increases D117, 118 junctions become more negative thus; D117 conducts more heavily causing voltage to TR106 base to decrease. R136, C105 filter the signal, the derived voltage is emitter followed and supplies TR103, 104 and 105 emitters directly. Hence increases in CRT beam current, above a preset limit achieving an automatic reduction in picture brightness.

NOTE: CRT beam limiting is preset depending on monitor model.
Brightness of display in all modes is adjusted by. VR134 enabling parallel adjustment of R,G,B and black levels within a + or -20V range from nominal:

400uA - High and medium resolution 700 uA - 14"
standard resolution TTL/Linear 900uA - 20" standard
resolution TTL/Linear

TR102: A fast switching transistor used to derive mixed blanking pulses for flyback blanking of video information. The base is driven from a potential divider/mixer network, from a line flyback pulse and a frame flyback pulse. Line flyback is advanced in phase with C225, to allow for transistor switching delays. D107, holds TR102 in a semi-saturation state.

TR102 COLLECTOR with 10 to 1 scope probe

IC101 is also used to provide the following sync options:

Composite negative sync: Fed in on PL101, pin 7, ensure TL102 in non-active position, allowing pin 2 of IC101, to be pulled high where upon IC101 performs a sync inversion and provides an attenuated positive sync waveform for driving sync separators of IC201, via R201 and TL106.

Composite positive sync: Fed in on PL101, pin 7 with TL102 in its grounded position. IC101, now provides an output in phase with input and of suitable amplitude for driving IC201 directly, via R201 and TL106.

Separate negative line and field syncs: Ensure TL102 in non-active position, line syncs are fed in on PL101, pin 5. IC101, performs an exclusive OR function, the output being an inverted composite sync waveform.

Separate positive line and field syncs: Fed in on PL101, pin 7 in its grounded position. TL106, is switched over to inverse field option. IC101, provides an attenuated and buffered line sync feed for IC201, via R201. Positive field sync information is fed directly PL101, pin 3 "sync3" input by, TL106(B) and R202.

LINE TIMEBASE - DESCRIPTION AND OPERATION

1. Line Timebase
A. Line oscillator function is based on IC201, providing three outputs:
(1) Horizontal drive pulses for control of line output stage.
(2) Vertical sync pulses compatible with synchronisation of IC301 field output IC.
(3) A sandcastle pulse providing burst gate and clamping information.

NOTE: This facility is only used with IC TDA3301, currently required by '1 volt 75 ohm' linear/PAL input monitors.
2. Sync Separator
A. IC (TDA1180P), incorporates separate noise gated sync separators for line/field syncs, which accepts positive going sync pulses (or negative going composite video) on pins 8 and 9.
B. Output pulses from the line sync separator are used in conjunction with a sync gate to synchronise line oscillator in a phase locked loop circuit.

3. Line Oscillator - Phase Detectors

A. The line oscillator is timed by a network of resistors and capacitors on pins 14 and 15 of IC201, used to derive a pulse of suitable mark space ratio for driving line output stages.
B. IC201 contains two basic control loops, each containing a phase detector.
(1) The first phase detector compares output of the line oscillator with the incoming line sync pulse. Phase detector output on pin 13, is filtered and fed to the voltage control input of the oscillator on pin 15.
(2) The second phase detector, compensates for delays introduced by the line output stage and compares line flyback pulses at pin 6 , with oscillator output. Phase detector output consists of a bidirectional current source used to charge/discharge C213 on pin 5. Voltage derived from C213 is used to control a phase shifter, which regulates the phase of the output pulse on pin 3 . Pin 5 also provides a 'line shift' function, by offsetting voltage developed across C213. charged from VR220, R221 and R222 allowing phase shift of + or -1uS, between line scan and video information.
(3) A 7uS gate pulse from the line oscillator, whose phase position is centred around the horizontal sync pulse. The gated pulse is used to control the arrival of sync pulses at the sync phase detector for a duration of 7 uS , allowing latching and de-latching of line oscillator. Obtained by a coincidence detector which compares the phase gate pulse with that of incoming syncs.
(4) When the two signals are not aligned, the coincidence detector is used to switch p.I.I. filter into a short time constant mode, giving a high input impedance at pin 12, thus increasing sensitivity and loop gain of oscillator. The phase locked loop now has a low noise immunity but has a very wide capture range. When aligned coincidence detector activates the time constant switch, causing low impedance on pin 12, achieving a lower sensitivity and loop gain, but providing a high degree of noise immunity. During the 'locked' condition the p.I.l. operates with a long time constant.

NOTE: A short time constant mode, can be achieved manually by connecting the output of the coincidence detector on pin 11, to ground. Allowing the oscillator to follow rapid fluctuations in line period, which may occur on some non-standard signals.

4, Line Driver Stage

A. Horizontal drive pulses from pin 3 (IC201), are D.C. coupled to TR2Q1 and used to control driver transformer (T201), providing the impedance conversion necessary to provide 600mA forward base current, for saturation of line output transistor (TR202). Ringing is damped by R225 and C214 at TR201 turn off, thus limiting its Vce to a safe value. HT supply to the line driver comes from main HT supply rail, prior to R231 and HT scan interlock (PL201 pins 5/6; allowing its operation to be checked independently of the line output stage.

IC201 PIN 3 with 10 to 1 scope probe

TR202 COLLECTOR with 100 to 1 scope probe

5. Vertical Sync Output

A. Output of field sync separator is used to drive vertical sync output stage on pin 10 (IC201).
B. In addition, this pulse is used internally to inhibit the first phase detector during the field sync period, thus preventing 'top flutter' as a result of equalising pulses.
6. Sandcastle Pulse
A. Sandcastle pulse is on pin 7 (IC201), used on models with linear interface PCB assembly consisting of two sections.
(1) Upper portion, suitable for burst gate and clamping operations from the horizontal oscillator, thus ensuring an accurate phase relationship with the video information.
(2) Lower portion, derived from a line flyback 'slice' for line blanking

LINE OUTPUT - DESCRIPTION AND OPERATION A. Line

Output

1. L202. L203 and T202 primary, are tuned during the flyback period by C222. This lasts for 11.8/11. 1uS, on 14 "/20" monitors.
2. Line output transistor TR2C2, is driven directly from the secondary winding of T201. 'ON' current is controlled by R227, turn off dissipation is minimised by L204.
3. Line linearity correction is provided by L203, which is damped by C217, R230 'S' correction is provided by C218.
4. Field timebase +25 V (IC301), is achieved by rectifying a negative going flyback voltage from a secondary winding on line output transformer. A fusable resistor provides CRT protection under possible fault conditions.

LINE SYNC with 10 to 1 scope probe

TR202 COLLECTOR with 100 to 1 scope probe
B. EHT Supply

1. 23.5 kV required for CRT is generated by a tripler module driven from a 7.5 kV , overwind on T203. Inductance of the transformer (between primary and overwind), is tuned to the 7th harmonic of the flyback frequency by tripler input capacitance and self capacitance of the overwind.
2. The 'breathing' performance of the display is further improved by deriving a high focus potential from a resistive thick film/substrate potential divider from the EHT. giving rise to a constant bleed current from EHT, thus lowering output impedance of the EHT circuit.
3. An extra input diode within the tripler has its anode connected to the tube base ground and via a beam current sensing circuit to 0 V . C223 and a network of resistors provide a load for the diode and effectively damp out ringing which may occur during scan. The resulting 1000 V which occurs across C223 is used to generate A1 potential across CRT.
C. HT Supply
4. Derived from the main secondary winding of the switch mode power supply via R231. R231 is chosen to optimise picture breathing performance and offer protection to TR202, during CRT flashover.
 produ; ~: j '2C.S : .: .: -'- 3": at pin 12 - •? - ; •.-.-;,:-- s :?'ved from potential across C305 and C306 as •--••. :ange towards -25Vsupp . . $-j$ - 11- R305 R306 and R301. When field scan is completed the ' COuS pulse discharges C305 and C306 ready for charging cycle to be restarted.
5. Field Linearity
A. Sawtooth output on pin ? of IC301 via R?13 and ???? field linearity control.

IC301 PIN 1 with 10 to 1 scope probe
2. Field Flyback
A. In order to achieve a short fieid flyback time, a supply voltage larger than required during scan, must be applied to field deflection coils during flyback period. Made possible by using a separate field flyback generator, within IC301.
B. Main HT supply for IC301 is supplied to pin 5 via D302. During flyback the generator doubles the supply on pin 5 , the potential on pin 3 is switched from 0 V during scan to +25 V during flyback The change in voltage occurs on pin 5 via C304 causing potential to double during flyback.
C. D302 isolates pin 5 from +25 V supply. When deflection coil field has collapsed and potential across field scan coils has fallen below +25 V pin 3 is switched back to 0 V and scan cycle resumed.
D. Synchronisation of IC301 is achieved by feeding a positive going) field sync pulse on pin 8 of IC301

!C301 PIN 8 with 10 to 1 scope probe

3. HT Supply for IC301

A. Derived from a scan rectified rail from the line output stage. C305, C306 are fed via VR306 (height control) from scan rectified supply and 12 V rail. Proportions of current and associated time constants R303, C301 and D301 are used to minimise "picture bounce" thus maintaining accurate tracking of the field scan with line scan amplitude during CRT beam current variations, therefore reducing picture "breathing" effects.
4. Field Output
A. Sawtooth output on pin 1 is applied to output stage (within IC301) and scan output is available from pin 4 to field deflection coils. Current within coils is sampled by R323, then fed back via R31 7 to the virtual earth input pin 10 of IC301.
B. Gain of output amplifier is set by the ratio of R314 and R31 7. DC operating point by R318 and R316.

IC301 PIN 4 with 10 to 1 scope probe
5. Picture Geometry
A. CRT E-W pincushion distortion is corrected by modulation of line deflection current in transductor (T202) actively driven by TR301. which is then fed from the parabolic waveform at the top of the S correction capacitor C311. AC gam from the amplifying driver is used to control amount of correction applied to CRT.

TR301 COLLECTOR with 10 to 1 scope probe

1. CRT Tube Base Panel (Refer to fig. 1)
2. Circuit Description
A. All CRT electrodes are protected by a resistor, capacitor and spark gap.
(1) Scark gaps on all electrodes (except focus) are formed by a $1-2 \mathrm{kV}$ ring trap gap, positioned within CRT base socket assembly. High focus voltage has a separate 10 kV spark gap contained within tube base socket.
(2) CRT cathodes are stood off from video outputs by 220 ohm resistors, the grid 100k and A1's 820k.
(3) Decoupling of grid and A1's is achieved by C910 and C911.
(4) Focus voltage is provided by a potential divider located within tripler module, providing an adjustable voltage of $5-8 \mathrm{KV}$.
(5) A1 voltage is adjusted by VR932, offering a range of $350-820$ volts.
(6) CRT heaters may be disconnected by removing TL901, in order to make video adjustments.
(7) CRT cathodes are directly driven from video output stages mounted on CRT panel.

NOTE: The component values given in this section refer to a standard 14 inch model. For equivalent values, refer to the parts listing.
3. Video Output Stages - Circuit Description and Operation

NOTE: Red, Green and Blue video outputs are identical, the following text refers to the red output stage.
A. TR902 forms a class 'A' amplifier, AC gain is derived from the ratio of R935 to R902. VR903 and DC gain by a DC offset current from R905 and VR906.
B. R904 forms video output load and TR902 represents a low impedance drive source to CRT input capacitance during its conduction.
C. During turn off of TR902. the source impedance of the load R904 is considerably reduced by TR901, ensuring a good 'pull-up' performance.
D. Video compensation is achieved by split capacitances, C902, C903 to help maintain a constant amplifier response curve over the full range of VR903.
E. The emitters of TR902. TR904 and TR906 are connected together with a DC reference of approximately 7.5 V , used to set video black level voltage.
F. TR907 performs line and field blanking of video information.
(1) TR907 is driven by negative (going) mixed blanking pulses from TR102. TR907 conducts providing a 7.5 V black level reference.
(2) During line and field flyback TR907 is turned off, forcing video outputs off.
(3) Beam current information is sensed on tube base panel resistively, across line output ground to 0 V line by R937, D117, D118 on main PCB.

NO PICTURE -
LINE OSC:LATING

BURST MODE

[^0]LINE SYNC

MONITOR DEAD -
NEON NOT ILLUMINATED

CHECK - F1,F2 AND
MAINS FUSE
ARE ANY OF THESE
FUSES OPEN CIRCUIT?

PARTS LISTING SERIES 3 SERVICE MANUAL

COMP REF	MODEL NO.	PART NO.	COMPONENT DESCRIPTION
R1		RK105GKO	100K CARBON COMP. RESISTOR 10\% 0.5W AXIAL
R2		RF185JJO	180K CARBON FILM RESISTOR 5\% 1W AXIAL
R3		RF393DJO	3K9 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R3	$\begin{aligned} & (1441 / \mathrm{AL}) \\ & (1441 / \mathrm{AS}) \\ & (1441 / \mathrm{MS}) \\ & (1441 / \mathrm{MS} 4) \end{aligned}$		
	(1449/AS)	RF273DJO	2K7 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R3	$\begin{aligned} & \text { (1496/LI2U) } \\ & \text { (1486/L12U) } \end{aligned}$	RF363DJO	3K5 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R3	$\begin{aligned} & \text { (1241/AS) } \\ & (1446 / L 12) \end{aligned}$		
	(1451/MQ3)	RF473DJO	4K7 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R3	(1446/LF)	RF333DJO	3K3 CARBON FILM RESISTOR 5\% 0.25W AXIAL
VR4 R5		$\begin{aligned} & \text { RQ103AL2 } \\ & \text { RF104DJO } \end{aligned}$	1 K PRESET POT CARB. MIN. H MTG 20\% 0.1W AXIAL 10K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R5	$\begin{aligned} & \text { (1441/AL) } \\ & (1441 / \mathrm{AS}) \\ & (1441 / \mathrm{MS}) \\ & (1441 / \mathrm{MS} 4) \end{aligned}$		
	(1449/AS)	RF683DJO	6K3 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R5	(1486/LI2U)	RF323DJO	8K2 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R6		RW154XJ 6	15K WW RESISTOR 5\% 7W RADIAL
R7		RF471DJO	47R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R8		RF333JJO	3K3 CARBON FILM RESISTOR 5\% 1W AXIAL
R8	(1496/L12U)		
	(1486/LI2U)	RF224GJO	22K CARBON FILM RESISTOR 5\% 0.5W AXIAL
R8	(1451/AS)	RF564GJO	56K CARBON FILM RESISTOR 5\% 0.5W AXIAL
R10		RF392DJO	390R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R11		RF221DJO	22R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R12		RW103XJ5	1K WW RESISTOR 5\% 9W RADIAL
R12	$\begin{aligned} & \text { (1451AP/DS) } \\ & \text { (1451/DS) } \end{aligned}$	RW103VJ5	1K WW RESISTOR 5\% 7W RADIAL
R13		RF274DJO	27K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R14		RF102DJO	100R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R15		R0150LJO	1 R5 METAL OXIDE RESISTOR 5\% 2W AXIAL
R16		RW472ZJ5	470R RESISTOR 5\% 1 1W RADIAL
R16	(1496/LI2U)		
	(1486/L12U)	RW103XJ5	1K WW RESISTOR 5\% 9W RADIAL
R16	(1451/AS)	RW333RJO	3K3 WW RESISTOR 5\% 5W RADIAL
R16	$\begin{aligned} & \text { (1451AP/DS) } \\ & \text { (1431/DS) } \end{aligned}$		
R17	(1451/DS)	$\begin{aligned} & \text { RW103VJ5 } \\ & \text { RG336GJO } \end{aligned}$	1K WW RESISTOR 5\% 7W RADIAL ! 3M3 METAL GLAZE RESISTOR VDE/BS415 APPROVED 5\% 0.5W AXIAL
R18/20		RF394GJO	39K CARBON FILM RESISTOR 5\% 0.5 AXIAL
R21		RF392DJO	390R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R22		RF682DJO	680R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R23		RF104DJO	10K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R23	(1441/AL)	RF683DJO	6K8 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R24		RF224DJO	22K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R25		R0470UO	4R7 METAL OXIDE RESISTOR 5\% 2W AXIAL
R26		RL470GJO	! 4R7 FUSIBLE METAL RESISTOR 5\% 0.5W AXIAL
R27		RF125DJO	120K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R29		RF185DJO	180K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R29	(1486/LI2U)	RF684DJO	68K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R30		WL2214TU1	LINK $5 \mathrm{~mm} \times 14 \mathrm{~mm} \times 5 \mathrm{~mm}$

COMP REF	MODEL NO.	PART NO.	COMPONENT DESCRIPTION
R32	(1431AP/MS)		
	$\begin{aligned} & \text { (1431AP/DS) } \\ & \text { (1451AP/DS) } \end{aligned}$		
	(2040/CS5)	RF392DJO	390R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R101		RF103DJO	1K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R102-107		RF152DJO	150R CARBON FILM RESISTOR 5\% 0.25VV AXIAL
R108		RF474DJO	47K CARSON FILM RESISTOR 5\% 0.25W AXIAL
R110		RF474DJO	47K CARBON FILM RESISTOR 5\% 0.25W AXIAL
VR1 11		KP0025A05	PLUG 5-WAY 20/3445
VR11 1	(1451/AS)		
	$\begin{aligned} & (1441 / \mathrm{AS}) \\ & (1241 / \mathrm{AS}) \end{aligned}$	RQ104CL1	10K PRESET POT CARB MIN 20\% 0.15W V.MTG
VR111	$\begin{aligned} & \text { (1439/AS) } \\ & \text { (1431AP/MS4) } \\ & \text { (1431AP/DS) } \\ & (1435 / \mathrm{MS}) \end{aligned}$		
	(1439/MS)	KP0026A08	PLUG 8-WAY PRESSAC 2S/20/3448/BDFH
R112/113		RF103DJO	1K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R114-116		RF472DJO	470R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R117		RF632DJO	53CR CARBON FILM RESISTOR 5\% 0.25W AXIAL
R118		RF222DJO	220R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R120-123		RF153DJO	1K5 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R124		RF472DJO	470R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R125		RF153DJO	1K5 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R126		RF103DJO	IK CARBON FILM RESISTOR 5\% 0.25W AXIAL
R127/128		RF222DJO	220R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R130		RF222DJO	220R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R131-133		RF102DJO	100R CARBON FILM RESISTOR 5\% 0.25W AXIAL
VR134		RQ103AL2	1K PRESET POT CARBON MIN 20\% 0.1W H.MTG
R135/R136		RF103DJO	1K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R137		RF185DJO	180K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R138		RF105DJO	100K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R138	(1441/AL)		
	(1441/AS)		
	$\begin{aligned} & \text { (1441/MS) } \\ & \text { (1441/MS4) } \end{aligned}$		
	(1496/LI2U)		
	(1486/LI2U)		
	(1451/AS)		
	(1451/MS)		
	(1451/DS)		
	(1451AP/MS4		
	(1451AP/DS)		
	(1241/AS)		
	(1446/LF)		
	$\begin{aligned} & (1446 / \mathrm{LI} 2) \\ & (1241 / \mathrm{AT}) \end{aligned}$	RF1850JO	180K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R140		RF474DJO	47K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R201		RF273DJO	2K7 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R202		RF223DJO	2K2 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R203		RF686DJO	6M8 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R204		RF156DJO	1M5 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R205		RF226DJO	2M2 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R206		RF394GJO	39K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R207		RF103DJO	1K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R208		RF101DJO	10R CARBON FILM RESISTOR 5\% 0.25W AXIAL

COMP REF	MODEL NO.	PART NO.	COMPONENT DESCRIPTION
R317		RF563DJO	5K5 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R317	(1241/AS)	RF154DJO	15K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R318		RF184DJO	18K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R313	(1241/AS)	RF274DJO	27K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R320		RF330DJO	3R3 CARBON FILM RESISTOR 5\% 0.25W AXIAL
VR321		RS103PL2	1K PRESET POT CARB MIN WW H.VTG 20\% 4W
R322		RF332JJO	330R CARBON FILM RESISTOR 5\% 1W AXIAL
R323		RF100DJO	1R0 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R323	(1441/AL)	RF333DJO	3R3 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R324		RF103DJO	1K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R325		RF182JJO	180R CARBON FILM RESISTOR 5\% 1W AXIAL
R326		RF152GJO	150R CARBON FILM RESISTOR 5\% 0.5W AXIAL
R327		RF331DJO	33R CARBON FILM RESISTOR 5\% 0.25W AXIAL
VR328		RQ222AL2	220R PRESET POT CARB MIN 20\% 0.1W H.MTG
R801		R0154LJO	15K METAL OXIDE RESISTOR 5\% 2W AXIAL
R802		RL102GJO	! 100R FUSIBLE METAL FILM RESISTOR 5\% 0.25W AXIAL
R803/804		RF224GJO	22K CARBON FILM RESISTOR 5\% 0.5W AXIAL
R805		RF183DJO	1 K 8 CARBON FILM RESISTOR 5\% 0.25W AXIAL
$\begin{array}{\|l\|} \hline \text { VR806 } \\ \text { R807 } \end{array}$		$\begin{aligned} & \text { RQ103AL2 } \\ & \text { RF223DJJ } \end{aligned}$	1K PRESET POT CARS MIN H MTG 20\% 0.1 W 2K2 CARBON FILM RESISTOR 5\% 0.25W AXIAL
VR808		RQ473AL2	4K7 CARSON POT CARB MIN MTG 20% 0.1W
R309		RF331DJO	33R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R810		RF103DJO	10K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R811		RF472DJO	470R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R811	(1441)		
	(1442)	RF331DJO	33R CARBON FILM RESISTOR 5\% 0.25W AXIAL
$\begin{array}{\|l} \text { R812 } \\ \text { R813 } \end{array}$		$\begin{aligned} & \text { R0154LJO } \\ & \text { RL102GJO } \end{aligned}$	15K METAL OXIDE RESISTOR 5\% 2W AXIAL ! 100R FUSIBLE METAL FILM RESISTOR 5\% 0.25W AXIAL

R

814/815
R816
VR817
R818
R819
VR820
R821
R822
R822
R823/82
R825
VR826
R827
VR828
R829
R830/831/832
833
R833

22K CARBON FILM RESISTOR 5\% 0.5W AXIAL 1K8 CARBON FILM RESISTOR 5\% 0.25W AXIAL 1K PRESET POT CARB MIN H MTG 20\% 0.1W 2K2 CARBON FILM RESISTOR 5\% 0.25W AXIAL 33R CARBON FILM RESISTOR 5\% 0.25W AXIAL 4K7 PRESET POT CARB MIN H MTG 20\% 0.1W 15K METAL OXIDE RESISTOR 5\% 2W AXIAL ! 1K FUSIBLE METAL FILM RESISTOR 5\% 0.25W AXIAL
! 100R FUSIBLE METAL FILM RESISTOR 5\% 0.25W AXIAL 22K CARBON FILM RESISTOR 5\% 0.5W AXIAL 1K8 CARBON FILM RESISTOR 5\% 0.5W AXIAL 1K PRESET POT CARB MIN H MTG 20\% 0.1W 2K2 CARBON FILM RESISTOR 5\% 0.25W AXIAL 4K7 PRESET POT CARB MIN H MTG 20\% 0.1W 33R CARBON FILM RESISTOR 5\% 0.25W AXIAL

220R CARBON COMP RESISTOR 10\% 0.5W AXIAL

COMP REF	MODEL NO.	PART NO.	COMPONENT DESCRIPTION
R824		RF273DJO	2K7 CARBON FILM RESISTOR 5\% 0.25W AXIAL
R835		RF475DJO	470K CAPBON FILM RESISTOR 5\% 0.25W AXIAL
R836		RK825GKO	820K CARBON COMP RESISTOR 10\% 0.5W AXIAL
VRR.37 R838			2M 2 PRFSFT POT C.ARR H MTG 20% n 15W 180K CARBON FILM RESISTOR 5\% 1W AXIAL
R840		???????	150K CARBON FILM RESISTOR 5\% 1W AXIAL
VR901		RQ103AL1	1K PRESET POT CARB MIN - MTG 20\% 0.1W AXIAL
R901		RF103DJO	1K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R902		RF223DJQO	2K2 PRESET POT CARB MIN H MTG 20\% 0.1W AXIAL
VR902		RF222DJO	2K2 CARBON FILM RESISTOR 5\% 0.25W AXIAL
VR903		RQ102AL2	1K PRESET POT CARB MIN H MTG 20\% 0.1W
R904		R0154LJO	1 5K METAL OXIDE RESISTOR 5\% 2W AXIAL
R905		RF223DJO	2K2 CARBON FILM RESISTOR 5\% 0.25W AXIAL
VR906		RQ473AL2	4K7 PRESET POT CARB MIN H MTG 20\% 0.1W
R907		RL102GJO	! 100R FUSIBLE METAL FILM RESISTOR 5\% 0.5W AXIAL
R908		RF223DJO	2K2 CARBON FILM RESISTOR 5\% 0.25W AXIAL
VR910		RQ103AL2	1K PRESET POT CARB MIN H MTG 20\% 0.1W
R911		RF474JJO	47K CARBON FILM RESISTOR 5\% 1W AXIAL
R912		RG154LJO	1 5K METAL OXIDE RESISTOR 5\% 2W AXIAL
R913		RF223DJO	2K2 CARBON FILM RESISTOR 5\% 0.25W AXIAL
VR914		RQ473AL2	4K7 PRESET POT CARB MIN H MTG 20\% 0.1W
R915		RF223DJO	2K2 CARBON FILM RESISTOR 5\% 0.25W AXIAL
VR916		RQ103AL2	1K PRESET POT CARB MIN H MTG 20\% 0.1W
R917		RF474JJO	47K CARBON FILM RESISTOR 5\% 1W AXIAL
R918		R0154LJO	15K METAL OXIDE RESISTOR 5\% 2W AXIAL
R920		RF223DJO	2K2 CARBON FILM RESISTOR 5\% 0.25W AXIAL
VR921		RQ473AL2	4K7 PRESET POT CARB MIN H MTG 20\% 0.1W
R922		RL102GJO	! 100R FUSIBLE METAL FILM RESISTOR 5\% 0.5W AXIAL
R923		RF472DJO	470R CARBON FILM RESISTOR 5\% 0.25W AXIAL
R924-926		RK222GKO	220R CARBON COMP RESISTOR 10\% 0.5W AXIAL
R927		RK105GKO	100K CARBON COMP RESISTOR 10\% 0.5W AXIAL
R928		RF475DJO	470K CARBON FILM RESISTOR 5\% 0.25W AXIAL
R931		RK825GKO	820K CARBON COMP RESISTOR 10\% 0.5W AXIAL
VR932		RQ226CL2	2M2 PRESET POT CARBON H MTG 20\% 0.15W
R933		RF155JJO	150K CARBON FILM RESISTOR 5\% 1W AXIAL
R933		RF185JJO	180K CARBON FILM RESISTOR 5\% 1W AXIAL
R934		RF185JJO	180K CARBON FILM RESISTOR 5\% 1W AXIAL
R934		RF225JJO	220K CARBON FILM RESISTOR 5\% 1W AXIAL
R935		RF474JJO	47K CARBON FILM RESISTOR 5\% 1W AXIAL
R936		RL102GJO	! 100R FUSIBLE METAL RESISTOR 5\% 0.5W AXIAL
R937		RF273DJO	2K7 CARBON FILM RESISTOR 5\% 0.25W AXIAL
C1		CX225NL6	! 220nF 250V AC MET POLY CLASS X CAP 20\% RADIAL
C2/3		CY103NL6	! 1000pF 250V AC CERAMIC DISC CAPACITOR CLASS Y
C4			AS C1
C5		CD472YL6	470pF 2KV CERAMIC CAPACITOR 20\% RADIAL
C6		CM104TL6	10nF 630V MET POLY CAPACITOR 20\% RADIAL
C7		CD472YL6	470pF 2KV CERAMIC CAPACITOR 20\% RADIAL
C8			AS C6
C10		CM554RK6	56nF 400V POLY CAPACITOR 20\% RADIAL
C10	$\begin{aligned} & \text { (1496/LI2U) } \\ & \text { (1486/LI2U) } \end{aligned}$	CM105NL6	100 nF POLY CAPACITOR 20\% RADIAL
C11		CA108RM7	100uF 385V ALUM ELECT CAPACITOR - 20+50\% RADIAL
C11		CA288QM7	220uF 385V ALUM ELECT CAPACITOR - 20+50\% RADIAL
C12		CA476HM6	4.7 uF 35 V ALUM ELECT CAPACITOR - $20+50 \%$ RADIAL
C13/14		CM105RL6	100 nF 400 V MET POLY CAPACITOR 20% RADIAL
C15		CD473KK6	4700pF 100V CERAMIC CAPACITOR 20\% RADIAL

COMP REF	MODEL NO.	PART NO.	COMPONENT DESCRIPTION
C16		CR104MKO	10nF 160V POLYSTYRENE CAPACITOR 2.5\% AXIAL
C17		CL223XJ6	! 2200pF 2000V POLYPROPYLENE CAPACITOR 5\% RADIAL
C13		CA106JL0	1 F 50V ALUM ELECT CAPACITOR 20\% AXIAL
C20		CY103NL6	$!1000 \mathrm{pF}$ 250V AC CERAMIC DISC CAPACITOR CLASS Y 20% RADIAL
C21		CM1C5RL6	100nF 400V POLY CAPACITOR 20\% RADIAL
C22		CD223FL6	2200pF 25V CERAMIC CAPACITOR 20\% RADIAL
C23		CA476HM6	4.7uF 35V ALUM ELECT CAPACITOR - 20+50\% RADIAL
C24		CM105NL6	100 nF 250 V MET POLY CAPACITOR 20% RADIAL
C25		CD472RL6	470pF 400V CERAMIC CAPACITOR 20\% RADIAL
C26-28		CA477NM6	47uF 250V ALUM ELECT CAPACITOR - 20+50\% RADIAL
C30		CD472RL6	470pF 400V CERAMIC CAPACITOR 20\% RADIAL
C31		CA478FM6	470uF 25V ALUM ELECT CAPACITOR - 20+50\% RADIAL
C32,33		CM105ML6	100 nF 160V POLY CAPACITOR 20\% RADIAL
C34		CA228FM6	220uF 25V ALUM ELECT CAPACITOR - 20+50\% RADIAL
C101, 102		CA107FM6	10uF ALUM ELECT CAPACITOR - $2+50 \%$ RADIAL
C103. 104		CM105ML6	100nF 160V POLY CAPACITOR 20\% RADIAL
C105			AS C101
C106		CM225KL6	220 nF 100V MET POLY CAPACITOR 20% RADIAL
C201/202		CD102FL6	100pF 25V CERAMIC CAPACITOR 20\% RADIAL
C203		CM475KL6	470nF 100V MET POLY CAPACITOR 20\% RADIAL
C204		CM225KL6	$220 n F 100 \mathrm{~V}$ MET POLY CAPACITOR 20\% RADIAL
C205		CM105ML6	100 nF 160V MET POLY CAPACITOR 20% RADIAL
C206		CA685JLO	680nF 50V ALUM ELECT CAPACITOR 20\% AXIAL
C207		CA476HM6	4.7uF 35V ALUM ELECT CAPACITOR - $20+50 \%$ RADIAL
C208		CM104TL6	10 nF 630V MET POLY CAPACITOR 20\% RADIAL
C210		CP473GGO	4700pF 30V POLYSTYRENE CAPACITOR 2.5\% AXIAL
C211		CM105ML6	100 nF 160V POLY CAPACITOR 20\% RADIAL
C212		CA228FM6	220uF 25V ALUM ELECT CAPACITOR - 2O+50\% RADIAL
C213		CM474NK6	47 nF 250 V MET POLY CAPACITOR 20\% RADIAL
C214/215		CM105NL6	100 nF 250 V MET POLY CAPACITOR 20% RADIAL
C216/217		CD104YL6	10nF 2KV CERAMIC CAPACITOR 20\% RADIAL
C218		CL335KN6	! 0.33uF 250V POLYPROPYLENE CAP 10\% RADIAL
C220		CM104TL6	10uF 630V MET POLY CAPACITOR 20\% RADIAL
C221		CM475RL6	470 nF 400 V MET POLY CAPACITOR 20\% RADIAL
C222		CL753XJ6	! 7500pF 1500V POLYPROPYLENE CAP 5\% RADIAL
C222	1441, 1442 M		
	$\begin{array}{\|l} (1446 / \text { LF }) \\ (1446 / L 12) \\ (1451 / M Q 3) \end{array}$	CL563YJ6	5600pF 2000V POLYPROPYLENE CAP 5\% RADIAL
C222	(1241/AS)	CL333XJ6	3 n 32000 V POLYPROPYLENE CAP 5\% RADIAL
C222	(1241/AT)	CL473YJ6	4700pF 2000V POLYPROPYLENE CAP 5\% RADIAL
C223		CM684XK6	68nF 1500 V POLY CAPACITOR 20\% RADIAL
C224		CA109IN7	1000uF 40V ALUM ELECT CAPACITOR - 20+50\% RADIAL
C225		CD561RL6	56 pF 400 V CERAMIC CAPACITOR 20\% RADIAL
C301		CM225KL6	220 nF 100 V MET POLY CAPACITOR 20% RADIAL
C302		CM105NK6	100 nF 250 V POLY CAPACITOR 20% RADIAL
C			
303	$\begin{aligned} & \text { (1241/AS) } \\ & \text { (1241/AT) } \end{aligned}$	CM155KK6	150nF 100V MET POLY CAPACITOR 20\% RADIAL
C304		CA108HM6	100uF 35V ALUM ELECT CAPACITOR - 20+50\% RADIAL
C305/306			AS C302
C306		CM225KL6	220 nF 100V MET POLY CAPACITOR 20% RADIAL
C307		CD122RL6	120pF 400V CERAMIC CAPACITOR 20\% RADIAL
C308		CA107FM6	10uF 25V ALUM ELECT CAP - 20+50\% RADIAL
C310		CM105NK6	100 nF 250V POLY CAPACITOR 20% RADIAL
C311		CA478HM6	470uF 35V ALUM ELECT CAP - 20+50\% RADIAL
C312		CA228FM6	220uF 25V ALUM ELECT CAP - 20+50\% RADIAL

COMP REF	MODEL No.	PART NO.	COMPONENT DESCRIPTION
C801	CD104YL6	CM105NL6	100nF 250V METAL POLYESTER CAPACITOR 20\% RADIAL
C802/804/806		CP271GGO	27pF 30V POLYSTYRENE CAPACITOR 2.5% AXIAL
C803/805/807		CP561GG0	56pF 30V POLYSTYRENE CAPACITOR 2.5% AXIAL
C808		CD104YL6	10 nF 2KV CERAMIC CAPACITOR 20\% RADIAL
C810		CM105NL6	100 NF 250V METAL POLYESTER CAPACITOR 20\% RADIAL
C811		10nF 1-2KV CER	IMIC CAPACITOR 20% RADIAL
C901		CM105NL6	100nF 250V METAL POLYESTER CAPACITOR 20\% RADIAL
C902,904,906		CP271GGO	27pF POLYSTYRENE CAPACITOR 2.5\% AXIAL
C903,905,907		CP122GG1	120pF POLYSTYRENE CAPACITOR 2.5\% AXIAL
C910.911		CD104YLS	10nF 2KV CERAMIC CAPACITOR 20\% RADIAL
C913		CM105NL6	0.1uF 250V METAL POLYESTER CAPACITOR 20\%
D1-4		DP4007UMO	POWER RECTIFIER DIODE IN4007 MOTOROLA AXIAL
D5		OP4005UMO	POWER RECTIFIER DIODE IN4005 MOTOROLA AXIAL
D6		DF0157UEO	FAST RECOVERY DIODE BA157 MOTOROLA AXIAL
D7		DF0159UEO	FAST RECOVERY DIODE BA159 MOTOROLA AXIAL
D8, 10-14		DS4148UTO	SMALL SIGNAL DIODE IN4148 THOMPSON AXIAL
D11-13		DS4148UTO	SMALL SIGNAL DIODE IN4148 THOMPSON AXIAL
D15,16		DP4002UMO	POWER RECTIFIER DIODE 1N4002 MOTOROLA AXIAL
D17		DF0159UEO	FAST RECOVERY DIODE BA159 MOTOROLA AXIAL
D18		DZ3875CFCO	ZENER DIODE BZY88C7V5 400 mW 5\% AXIAL
D20		D279331FCO	ZENER DIODE BZX79C33V 400mW 5\% AXIAL
D21		DP4002UMO	POWER RECTIFIER DIODE IN4002 MOTOROLA AXIAL
D22		DF0159UEO	FAST RECOVERY DIODE BA159 MOTOROLA AXIAL
D23		DF0818UMO	FAST RECOVERY DIODE MR818 MOTOROLA AXIAL
D24		DF0157UEO	FAST RECOVERY DIODE BA157 MOTOROLA AXIAL
D25,116		DP4002UMO	POWER RECTIFIER DIODE IN4002 MOTOROLA AXIAL
D101-107		DS4148UTO	SMALL SIGNAL DIODE IN4148 THOMPSON AXIAL
D108,110,111		DZ79560FCO	ZENER DIODE BZX79C5V6 400mW 5\% AXIAL
	(1431/AP/MS4)(1431AP/DS)(1431/AS)(1432/AS)(1431/MS4)(1431/BS)(1431/LS1)(1431/MB4)(1431/MZ3)(1431/MZ4)(1431/MR4)(1435/MS)(1436/LS1)(1436/M54)(2030/CS5)(1439/AS)(1439/MS4)(1439/MS)(1451AP/DS)(1449/AS)	DZ79430FCO	ZENER DIODE BZX79C4V3 400mW 5\% AXIAL
D117		DZ79121FCO	ZENER DIODE BZX79C12V 400mW 5\% AXIAL
D118			AS D108
D201		DF0157UEO	FAST RECOVERY DIODE BA157 MOTOROLA AXIAL
D301		DS4148UTO	SMALL SIGNAL DIODE 1N4148 THOMPSON AXIAL
D302		DP4005UMO	POWER RECTIFIER DIODE IN4005 MOTOROLA AXIAL
D801-803		DS4148UTO	SMALL SIGNAL DIODE IN4148 THOMPSON AXIAL

GENERAL

The 'Triple Standard - PAL Interface Assembly' is designed to interface between the Series 3 main chassis PCB assembly and the host system. It is designed to accept RS170 video signals (0.7 vp p p video +0.3 vp -p mixed -Ve Sync into 75R). In wire-frame chassis format, output connections from interface to main chassis PCB are made via hard-wired flexible leads and rnultiway plug-in connectors PL102 and PL103, located on the mam chassis.

On some models, an interface input wiring harness lead assembly is provided. This is supplied with one end only of the harness terminated in a 17-way connector, the opposite wire ends being unterminated. Circuit details and connections for this harness lead assembly are given in the accompanying diagram - ' 17 -Wav Harness Connections' and Table of Options'.

DOUBLE STANDARD/TRIPLE STANDARD INPUTS

Depending on how the interface assembly is installed, input modes for either double or triple standards may be accommodated as follows:

1. TTL and PAL Video Mode - Double Standard

2. TTL, 1 volt 75 ohm and PAL Video Mode - Triple Standard
3. Double Standard Input

When wired as indicated in the diagram - TTL' and 'PAL Video' Modes are accommodated. Either one of these two modes may be selected by a 'single pole change-over' switch as shown in the diagram.
2. Triple Standard Input

Wiring details to accommodate Triple-Standard inputs and the various input options are given in the' 17-Way Harness Connections' Diagram and the accompanying Table of Options'. Suitable additional switching may be incorporated to accommodate the various options, depending on user require-ments.

OPERATIONAL NOTES

1. PAL/Sync Input

When this input (PL1-pin 16) is used as the separate sync input of a 1v/75R R.G.B. + sync video source, the amplitude of the sync MUST BE between $0.2 \mathrm{vp}-\mathrm{p}$ and $0.7 \mathrm{v} \mathrm{p}-\mathrm{p}$, nominally 0.3 v peak to peak. If the amplitude exceeds these values, an 'In-Line' B.N.C. attenuator must be used.
2. Sync-On Green Option

Setting Plug Link TL1' on the PAL Interface PCB to 'Position 2', allows a 'sync-on-green' 1V/75R RGB Video Source to be used.

NB: Note that the 'Green' 1V/75R video input (PL1-pin 12) now also becomes the PAL input.
See wiring diagram and Table of Options'.

BRIGHTNESS CONTROL LIMIT

If required - a resistor of 5 K 6 ohms 0.25 W - may be incorporated in series with the 'brightness' control to limit the control's range of 'brightness' variation - as shown in the diagram.

AUDIO STAGE

On some versions of the interface, either single channel or twin channel audio amplifier stages may be incorporated, depending on model and specification.

Inputs and outputs for the audio stage(s) are marked as left-hand channel (L) and right-hand channel (R) and are terminated in 2-pin connectors. Normally, only a single channel audio stage is provided in most applications.

Audio input to the stage may be fed across a 47k 'gain control' pot, with the slider taken to the audio stages input.

T SERIES CABINET - 14 INCH MODEL

A foam polyurethane moulded cabinet incorporating a swivel base assembly T SERIES
CABINET COMPONENT PARTS

IDENT NO.	PART NO.	DESCRIPTION
1	PC5047I02	FACIA. CABINET BEZEL MOULDING
2	PC5046I01	CABINET COVER MOULDING
3	PC5045IO1	CABINET BASE MOULDING
4	CABINET PLINTH MOULDING	

M SERIES CABINET - 14 AND 20 INCH MODELS
This cabinet is an all metal, rugged construction. The 20 inch model was deleted from production in December 1983.

M SERIES CABINET COMPONENT PARTS

IDENT NO.	PART NO.	DESCRIPTION
1	MC0066I04	FACIA. CABINET BEZEL
2	MC0021I05	CABINET TOP/SIDE ASSEMBLY
3	MC0019I03	CABINET BASE ASSEMBLY
4	MC0094I03	CABINET BACK ASSEMBLY

L SERIES CABINET - 14 INCH MODEL
This cabinet is constructed of high density structural foam. A modern compact design, available in different colours.
L SERIES CABINET COMPONENT PARTS

IDENT NO.	PART NO.	DESCRIPTION
1	PC0103I05	FACIA. CABINET BEZEL
2	PC0104I02	CABINET TOP/SIDE ASSEMBLY
3	PC0107IO2	CABINET BASE ASSEMBLY (MOULDED)
4	PC0308I01	CABINET BASE PANEL (MOULDED)
5	M0014101	CABINET BACK ASSEMBLY
6	INPUT AND CONTROLS BRACKET ASSEMBLY (METAL)	

D SERIES CABINET - 14 INCH MODEL

This cabin is injection moulded, and is one of the latest designs offered in the MICROVITEC CUB monitor range and is available in different colours.

D SERIES CABINET COMPONENT PARTS

IDENT NO.	PART NO.	DESCRIPTION
1	PC0124I01	FACIA, CABINET BEZEL
2	PC0125I01	CABINET
3	PC0126I01	HINGED DOOR
4	M00221I04	INPUT BRACKET ASSEMBLY (METAL)

C SERIES CABINET - 20 INCH MODEL
This cabinet is an all metal, rugged construction, incorporating carrying handles fitted on each side.
C SERIES CABINET COMPONENT PARTS

IDENT NO.	PART NO.	DESCRIPTION
1	PC0136I03	FACIA, CABINET BEZEL
2	MC0137I04	CABINET TOP/SIDE ASSEMBLY
2	MC0150I03	CABINET TOP/SIDE ASSEMBLY (INCL. SPEAKER)
3	M00235I02	CABINET BASE ASSEMBLY
4	CABINET BACK ASSEMBLY	
5	MC0139IO1	BLISTER. FITTED TO CABINET BACK

COMP REF	MODEL NO.	PART NO.	COMPONENT DESCRIPTION
$\begin{aligned} & \text { TL102A/B, } \\ & 201 A / B \end{aligned}$		KM3070Y01	PIN TEST 10/3070 PRESSAC

COMP REF	MODEL NO.	PART DESCRIPTION	COMPONENT	NO.
TL101-106	$\begin{aligned} & \text { (2030/CS5) } \\ & \text { (2031/AX) } \\ & (2032 / A M) \\ & (1431 \text { AP/MS4) } \end{aligned}$			
(1431,AS)		KP0024A03	3-WAY PLUG 20/3423	

COMP REF	MODEL MO.	PART NO.	C OMPONENT DESCRIPTION
T1			LINKS $2 \times 14 \mathrm{~mm}$ T1A/1B
		LM0001UA1	CHOKE (OREGA) 88545-00

$\begin{aligned} & \text { COMP } \\ & \text { REF } \end{aligned}$	MODEL NO.	PART NO.	COMPONENT DESCRIPTION
PL3			
PL101	$\begin{aligned} & (1446 / \text { LF }) \\ & (1446 / \text { LI2 }) \\ & (1241 / \text { AT }) \end{aligned}$	$\begin{aligned} & \text { KP0300D05 } \\ & \text { KP0026A10 } \end{aligned}$	5-2 PIN INLINE PLUG MTG SHROUDED LOCKABLE, PRESSAC 320/3765 10 PIN INLINE PLUG PCB MTG SHROUDED PRESSAC 20/3450
$\begin{aligned} & \text { PL102 } \\ & \text { PL103 } \end{aligned}$		$\begin{aligned} & \text { KP0025A05 } \\ & \text { KP0025A10 } \end{aligned}$	5-2 WAY INLINE PLUG PCB MTG 20/3345 10 PIN INLINE PLUG PCB MTG UNSHROUDED PRESSAC 20/3430
PL103 PL201	$\begin{aligned} & \text { (2030/CS5) } \\ & \text { (1431AP/MS4) } \\ & \text { (1431AP/DS) } \\ & \text { (1435/MS) } \\ & \text { (1439/AS) } \\ & \text { (1451AP/MS4) } \\ & \text { (1449/AS) } \end{aligned}$	KP0026A10 KP0222D08 OR KP0300D08	10 PIN INLINE PLUG PCB MTG SHROUDED PRESSAC 20/3450 8 PIN INLINE PLUG PCB MTG UNSHROUDED PRESSAC 220/1138 8 PIN INLINE PLUG PCB MTG UNSHROUDED LOCKABLE, PRESSAC 320/3768

COMP REF	MODEL NO.	PART NO.	COMPONENT DESCRIPTION
L925		LW154UA5	5uH (IN SERIES WITH R925)
	$\begin{aligned} & \text { (1496/LI2U) } \\ & \text { (1431AP/MS4) } \end{aligned}$		
	(1431AP/DS)		
	(1432/AS)		
	(1431/BS)		
	(1431 /LS1)		
	(1431/MZ3)		
	(1431/MZ4)		
	(1431/MB4)		
	(1431/MR4)		
	(1431/MS4)		
	(1431/DS)		
	(1435/MS)		
	(1436/LS1)		
	(1436/MS4)		
	(1439/AS)		
	(1439/MS)		
	(1441/MS4)		
	(1451AP/MS4)		
	(1451/MS4)		
	(1451/MQ3)		
	(1451AP/DS)		
	(1451/DS)		
	(1456/LI2)		
	(2030/CS5)		
	(2031/CS5)		
	(2031/AX)		
	(2032/AM)	LW154SK2LW154UA5	CHOKE 15uH B78108-T1153-K 15uH (IN SERIES WITH R926)
L926	(1496/LI2U)		
	(1431AP/MS4)		
	(1431AP/DS)		
	(1431/AS)		
	(1432/AS)		
	(1431/BS)		
	(1431/LS1)		
	(1431/MZ3)		
	(1431/MZ4)		
	(1431/MB4)		
	(1431/MR4)		
	(1431/MS4)		
	(1431/DS)		
	(1435/MS)		
	(1436/LS1)		
	(1436/MS4)		
	(1439/AS)		
	(1439/MS)		
	(1441/MS4)		
	(1451AP/MS4)		
	(1451/MS4)		
	(1451/MQ3)		
	(1451AP/DS)		
	(1451/DS)		
	(1456/LI2\}		
	(2030/CS5)		
	(2031/CS5)		
	(2031/AX)		
	(2032/AM)	154SK2	E 15uH B78108-T1153-K

OMP REF	MODEL NO.	PART NO.	COMPONENT DESCRIPTION
L901	(1496/LI2U)	LW154SK2 LW154UA5	CHOCK WIRE ENDED 15uH B78108-T1153-K 15uH (IN SERIES WITH R924)
	$\begin{aligned} & \text { (1431AP/MS4) } \\ & \text { (1431AP/DS) } \\ & \text { (1431/AS) } \\ & \text { (1432/AS) } \end{aligned}$		
	(1431/LS1)		
	(1431/MZ3)		
	(1431/MZ4)		
	(1431/MB4)		
	(1431/MR4)		
	(1431/MS4)		
	(1435/MS)		
	(1436/LS1)		
	(1436/MS4)		
	(1439/AS)		
	(1439/MS)		
	(1451/AS)		
	(1451/MS4)		
	(1451/MQ3)		
	(1451AP/MS4)		
	(1451AP/DS)		
	(1451/DS)		
	(1456/LI2)		
	(2030/CS5)		
	(2031/CS5)		
	(2031/AX)		
	(2032/AM)		
	(1496/LI2U)		
	(1431AP/MS4)		
	(1431AP/DS)		
	(1431/AS)		
	(1432/AS)		
	(1431/BS)		
	(1431/LS 1)		
	(1431/M23)		
	(1431/M24)		
	(1431/MB4)		
	(1431/MR4)		
	(1431/MS4)		
	(1431/DS)		
	(1435/MS)		
	(1436/LS1)		
	(1436/MS4)		
	(1439/AS)		
	(1439/MS)		
	(1451/AS)		
	(1451/MS4)		
	(1451AP/MS4		
	(1451AP/DS)		
	$\begin{array}{\|l\|} \hline \text { (1451/DS) } \\ \text { (1451/MQ3) } \end{array}$		
	(1456/LI2)		
	(2030/CS5)		
	(2031/CS5)		
	(2031/AX) (2032/AM)		
	(2032/AM)	LW154SK2	CHOKE 15uH B78108-T1153-K

$\begin{aligned} & \text { COMP } \\ & \text { REF } \end{aligned}$	MODEL NO.	PART NO.	COMPONENT DESCRIPTION
L2	(1496/LI2U) (2030/CS5) (2031/CS5) (2031/AX) (2032/AM) (1431AP/MS4) (1431AP/DS) (1431/AS) (1432/AS) (1431/BS) (1431/LS1) (1431/MZ3) (1431/MZ4) (1431/MB4) (1431/MR4) (1431/MS4) (1431/DS) (1435/MS) (1436/LS1) (1436/MS4) (1439/AS) (1439/MS) $(1441 / \mathrm{AL)}$ (1441/AS) (1441/MS) (1441/MS4) (1486/LI2U) (1451/AS) (1451/DS) (1451/MS) (1451AP/MS4) (1451AP/DS) (1449/AS) (1456/LI2) (1241/AS) $(146 / L)$		
$\begin{gathered} \text { L201 } \\ \text { L202 } \\ \text { L203 } \end{gathered}$	$\begin{aligned} & \text { (1446/LF) } \\ & (1446 / \mathrm{LI} 2) \\ & (1241 / \mathrm{AT}) \end{aligned}$	LW104UA7 LW154SK2 LV001UA5 LN002UA5 LW104UA7	CHOKE WIRE ENDED 10uH PC5640 CHOKE WIRE ENDED 15uH B78108-T1153-K COIL WIDTH PC3398 COIL LINE LINEARITY PC5580 CHOKE WIRE ENDED 10uH PC5640
$\begin{aligned} & \mid \text { L801-804 } \\ & \\ & \text { L801 } \\ & \left\lvert\, \begin{array}{l} \text { L802 } \\ \text { L803/804 } \\ \text { L901 } \end{array}\right. \end{aligned}$	$\begin{aligned} & \text { (1441/AL) } \\ & (1441 / \mathrm{AS}) \\ & (1441 / \mathrm{MS}) \\ & (1442) \\ & \text { (1446/LF) } \\ & \text { (1446/LI2) } \\ & \text { (1241/AT) } \end{aligned}$	LW154SK2 LW154VA5 LW104VA4 LW104VA4 LW154UA5	CHOKE 15uH B78108-T1153-K CHOKE WIRE ENDED 15uH PC3391 CHOKE WIRE ENDED 10uH PC2677 CHOKE WIRE ENDED 10uH PC2677 CHOKE WIRE ENDED 15uH PC3391

COMP REF	MODEL NO.	PART NO.	COMPONENT DESCRIPTION
FH3A/B			
HARNESS HARNESS	(1241/AT)	KS0001Y01 A00584101 A00585I01	FUSE CLIP-PCB MTG (5mm) TB -NO. 1 (4 LEADS) BR, OR, W, Y. TB - NO. 2 (8 LEADS)
HARNESS	$\begin{aligned} & \text { (2031/CS5) } \\ & \text { (1449/AS) } \end{aligned}$	A00815101	TB - NO. 1 (4 LEADS) BR, OR, W, Y.
HARNESS	2031/CS5)	A00816101	TB - NO. 2 (8 LEADS)
HARNESS	(1441/AL)	A00104I01	TB - NO. 1 (4 LEADS)
HARNESS	(1441/AL)	A00179101	TB - NO. 2 (8 LEADS)
$\begin{aligned} & \text { IC1 } \\ & \text { IC1 } \end{aligned}$		IV7812MX3	VOLTAGE REGULATOR 1C 78M12
(HEATSINK) IC101 IC102 IC201 IC301 IC301 (HEATSINK) L2		HH0003HAO IT74136MM2 IV7805LXO IL1180PS2 IL1170SS2 HHC001HCO LW473UA6	HEATSINK 1 STAVER TYPE V6-2L OR/TTL LOGIC SN74LS136N VOLTAGE REGULATOR IC "1" 78L05 LINEAR BI-POLAR IC TDA 1180P PLASTIC DIL S.G.S. LINEAR BI-POLAR IC TDA 1170 S PLASTIC DIL S.G.S. HEATSINK STAVER V8-800 CHOKE WIRE ENDED 10uH PC3774

COMP REF	MODEL NO.	PART NO.	COMPONENT DESCRIPTION
F2	(2031/AX)		
	(2032/AM)		
	(1431/AS)		
	(1432/AS)		
	(1431AP/MS4)		
	(1431AP/DS)		
	(1439/AS)		
	(1439/MS)		
	(1451/AS)		
	(1451/MS)		
	(1451AP/MS4)		
	(1451AP/DS)		
	(1451/DS)		
	(1241/AS)		
	(1446/LF)		
	(1446/LI2)		
	(1456/LI2)		
	(1241/AT)	KA2001BAO	! FUSE 2AMP (20mm) TIME DELAY
F3	(2031/AX)		
	(1431/AS)		
	(1432/AS)		
	(1431AP/MS4)		
	(1431AP/DS)		
	(1431/AS)		
	(1432/AS)		
	(1431/BS)		
	(1431/LS1)		
	(1431/MZ3)		
	(1431/MZ4)		
	(1431/MB4)		
	(1431/MR4)		
	(1431/MS4)		
	(1431/DS)		
	(1435/MS)		
	(1436/LS1)		
	(1436/MS4)		
	(1439/AS)		
	(1439/MS)		
	(1441/AL)		
	(1441/AS)		
	(1441/MS)		
	(1441/MS4)		
	(1451/AS)		
	(1451/MS)		
	(1451AP/MS4)		
	(1451/DS)		
	(1446/LF)		
	(1449/AS)		
	(1241/AS)		
	(1446/LF)		
	(1446/LI2)		
	(1456/LI2)		
	(1241/AS)	KA1001BQO	
FH1 A/B	A/B	KS0001Y01	

TYPICAL AUDIO SPECIFICATIONS

Typical specifications for the audio amplifier stage are as follows:
Input impedance: 47 k nominal
Input sensitivity: 100 mV typical
Output: $\quad 2$ watts max @ 1kHz into 16 ohms

TABLE OF OPTIONS				
Connector		Available Standards		
Pin No.	Wire Colour Coding	TTL	1V/75R	PAL
10	Brown	O/C	OV (S/C)	OV (S/C)
15	Mauve	-	$>0.7 \mathrm{~V}<12 \mathrm{~V}(\mathrm{O} / \mathrm{C})$	OV (S/C)
17	Pink	OV (S/C)	$>10.5 \mathrm{~V}<12 \mathrm{~V}(\mathrm{O} / \mathrm{C})$	$\begin{aligned} & >10.5 \mathrm{~V}<12 \mathrm{~V} \\ & (\mathrm{O} / \mathrm{C}) \end{aligned}$

NOTES:

- Not Critical (May be 0V to 12 V or O/C)
$0 / C=$ Open Circuit (No connection)
S/C = Short Circuit (<10 R) to OV (Ground)

R5, 20, 21, 23, 25, 27, 28
R6, 8
R7, 30
R9
R10
R11, 12
R13, 18
R14, 15
R16
R17
R19
R22, 24, 26
R31
R32
R33
R40
R101, 201
R102, 202
R103, 203
VR1
CAPACITORS

C1,2
C3
C4
C5
C6, 8-15
C7
C16. 17, 18, 19, 20, 27
C21
C22
C23 CK103JKO
C24 CK151JKO
C25, 26 CM4758K6
C30 CA107JL7
C31
C101, 102, 201, 202
C103, 203
C104, 204
C105, 205
C106, 206
C107, 207

RF104DJO
RF562DJO
RF473DJO
RF156DJO
RF183DJO
RF392DJO
RF225DJO
RF123DJO
RF272DJO
RF273DJO
RF184DJO
RF103DJO
RL101DJO
RF392DJO
RF152DJO
RF103DJO
RF104DJO
RF222DJO
RF100DJO
RQ102AL2

RESISTOR C/F 10K 1/4W 5\%
RESISTOR C/F 560R 1/4W 5\%
RESISTOR C/F 4K7 1/4W 5\%
RESISTOR C/F 1M5 1/4W 5\%
RESISTOR C/F 1K8 1/4W 5\%
RESISTOR C/F 390R 1/4W 5\%
RESISTOR C/F 220K 1/4W 5\%
RESISTOR C/F 1K2 1/4W 5\%
RESISTOR C/F 270R 1/4W 5\%
RESISTOR C/F 2K7 1/4W 5\%
RESISTOR C/F 18K 1/4W 5\%
RESISTOR C/F 1K0 1/4W 5\%
RESISTOR M/FUS, 10R 1/4W 5\%
RESISTOR C/F 390R 1/4W 5\%
RESISTOR C/F 150R 1/4W 5\%
RESISTOR C/F 1KO 1/4W 5\%
RESISTOR C/F 10K 1/4W 5\%
RESISTOR C/F 220R 1/4W 5\%
RESISTOR C/F 1R0 1/4W 5\%
POT PRESET 100R 0.1W H7

CAPACITOR ALUM/ELEC 33 uF 16 V
CAPACITOR CERAMIC/T 33 pF 50 V
CAPACITOR CERAMIC/T 12 pF 50 V
CAPACITOR CERAMIC/T 68pF 50V
CAPACITOR CERAMIC/T 10nF 25V 20\%
CAPACITOR MET/T 0.22uF 100 V
CAPACITOR MET/T 0.1uF 250V CAPACITOR CERAMIC/T 220pF 50V
CAPACITOR MET/P 0.1uF 250V
CAPACITOR CERAMIC/T 1 nF 50 V
CAPACITOR CER/T 15pF 50V AXIAL
CAPACITOR MET/P 470nF 63V
CAPACITOR A/ELEC 10uF 50V 20\% RAD PR
CAPACITOR CERAMIC/T 100 nF
CAPACITOR A/ELEC 2.2uF 63V PREF
CAPACITOR A/ELEC 10uF 50V 20\% RAD PR
CAPACITOR MET/P 0.22uF 100V
CAPACITOR ALUM/ELEC 1000uF 35V
CAPACITOR MET/P 0.1uF 250V
CAPACITOR ALUM/ELEC 470uF 25V
Circuit Reference Component Reference Component Description

DIODES

D1, 2, 3	DZ73560FRO	DIODE ZENER BZX79B5V6 2\%
D4, 5	DS4143UTO	DIODE 1N 4148 THOMSON
INTEGRATED CIRCUITS		

IC1 IL3301UM

IC2
IC101, IC201
IG4551UM2
IL19080S2
CHOKES \& DELAY LINES

L1
LW474SK2
LW105SK2
LW104SK2
LV001TA3
LW154SK2
ED0001P01
ED0002P01
CONNECTORS

PL1	KP0026A17
PL2	KP0026A16
PL102	KP0025A05
PL103	KP0025A03
PL104	KP0025A04
TL1	KP0024A03

MISCELLANEOUS

FIT TL1	KL9005Z02
X1	XC0014UU6
2 TRACK CUTS	BC0111102
LK1, 2, 3	WL2214TU1
LK6 7, 8	WL2212TU1
LK9, 10	WL2214TU1
LK12, 13	WL2212TU1
	A01647101

PLUG 17-WAY 20/3457
PLUG 16-WAY 20/3456
PLUG 5-WAY 20/3445
PLUG 3-WAY 20/3443
PLUG 4-WAY 20/3444
PLUG 3-WAY 20/3423

LINK TEST MOLEX 90059-0009 P/0
CRYSTAL IQD TYPE 'P' A124D
PCB PAL INTERFACE
WIRE LINK $5 \mathrm{~mm} \times 14 \mathrm{~mm} \times 5 \mathrm{~mm}$
WIRE LINK $5 \mathrm{~mm} \times 12 \mathrm{~mm} \times 5 \mathrm{~mm}$
WIRE LINK $5 \mathrm{~mm} \times 14 \mathrm{~mm} \times 5 \mathrm{~mm}$
WIRE LINK $5 \mathrm{~mm} \times 12 \mathrm{~mm} \times 5 \mathrm{~mm}$
I/FACE ASSEMBLY TPL/STD - MC REV 3

SPECTRUM INTERFACE CARD - DESCRIPTION/OPERATION

1. LUMINANCE CHANNEL (Y)

A. The $(-Y)$ signal contains:
(1) Video information
(2) line sync pulses
(3) frame sync pulse
3. The incoming Y signal is attenuated by the potential divider, R16, R17 the resultant signal is then amplified by TR6.
C. Transistors TR7, TR8 and TR9 have the following functions:-
(1) TR7 - Separates the sync pulses
(2) TR8 - Inverts the sync pulses
(3) TR9 - Buffers the sync pulses

R28 and R29 in the emitter of TR9, splits the voltage swing to produce a 'SYNC TTL' output.
D. The rising edge of the sync output signal is used by C6, R3Q and TR24 to produce a pulse which has the same duration and timing as the colour burst gating pulse on the $+/-(R-Y)$ signal.
E. The luminance signal on the collector of TR6, is clamped to the black level by C10 and TR25.
F. The black level is set by resistor/diode potential divider formed by VR1, (R36. R37, R65 and 2 IN4148 diodes).

2. COLOUR DIFFERENCE CHANNELS

A. The -(B-Y) Channel
(1) The -(B-Y) signal is attenuated by a potential divider network R32 and R34. TR10 inverts and amplifies to produce $+(B-Y)$. TR11 and $C 9$ use the sync pulses to clamp the $+(B-Y)$ signal to the black level.
(2) TR21 merges + $(\mathrm{B}-\mathrm{Y})$ clamped signal to +Y clamped signal to produce the BLUE output.
(3) TR22, is an electronic switch that has its threshold set by R56 and R57.
(4) The gain of TR22 is set by R58 and R59 to produce TTL levels. TR23 emitter follows the TTL signal which produces a buffered output.
B. The +/- (R-Y) Channel

This channel is a phase alternating line (PAL) signal, which requires alternate lines, inverted to produce $+(\mathrm{R}-\mathrm{Y})$.
(1) The incoming +/- (R-Y) signal is A.C. coupled by C17, C1 and TR1 thus forming a unity gain, phase splitter.
(2) The non inverted output of TR1 drives an electronic switch (TR3). The inverted output of TR1 is buffered by TR2.
(3) The (R-Y) switch is enabled during the colour burst, gating pulse.
(4) A set/re-set flip-flop switch formed by IC 1C and IC 1D works in the following :-
(a) SET - If next line of video is POSITIVE
(b) RESET - If next line of video is NEGATIVE
(5) The outputs of 1C1D enable bi-directional switches which will either:
(a) Connect $+(\mathrm{R}-\mathrm{Y})$ through C 1
(b) Connect inverted -(R-Y) through C2.

Thus producing $+(R-Y)$. TR4 and TR5 clamp the $+(R-Y)$ to the black level.
(6) The $+(R-Y)$ clamped signal is added to the $+Y$ clamped signal by TR13 to produce $+R$ signal.
(7) TR14 has its threshold set by R43 and R42. the gain is set by R44 and R45, in order to produce TTL levels.
(8) TR15 emitter follows the TTL signal thus producing a buffered signal output.
C. THE (G-Y) OUTPUT
(1) This signal is generated by mixing the following:-
(a) The (B-Y) clamped signal. TR16 performs this mixing function
(b) The (R-Y) clamped signal, TR16 performs this mixing function
(2) The proportions of ($B-Y$) and ($R-Y$) clamped signals which are added together are set by R54 and R40.
(3) G OUTPUTS
(a) This signal is produced by the addition of the following signals:-(i) Y) clamped signal. TR17 performs this function. (ii) + Y clamped signal, TR17 performs this signal function.
(4) TR18 has its threshold set by R48 and R49. the gam is thus set by, R50 and R51 in order to produce suitable TTL levels. (5) TR19 emitter follows the TTL signal and produces a buffered output.

GENERAL

1. The 'Programmable-read-only-memory' (PROM) interface panel is used with certain models in the 'SERIES-3' range of colour monitors. Two different versions of the panel assembly may be used depending on model and intended country of operation.
2. Basically, the two versions are very similar.
(1) Versions incorporating R.F.I. filtering networks (L/C components L1 to L3 \& C4 to C6), are employed with certain models intended for use in countries other than the UK.
(2) Versions without R.F.I. filtering are currently used for models operating in the U.K.
3. Interface connections:
(1) When installed, this panel assembly interfaces between input connector PL101, located on 'SERIES-3' main chassis PCB and the monitor's 'user' 7-pin Din input socket.

NOTE: The 'customer' contrast control VR111, shown on the 'SERIES-3' main chassis circuit diagram, is not fitted as shown when the PROM interface is used. In this case, the 'customer' contrast control pot is connected to 'PL2', located on the PROM interface panel.
(2) The 'PROM-INTERFACE CONNECTION DIAGRAM' provides wiring interconnection details.

CIRCUIT DIAGRAM

1. The circuit diagram for the 'PROM INTERFACE PANEL' provides circuit details of the panel assembly. Component values are given in the accompanying LIST of COMPONENTS.

CIRCUIT DESCRIPTION

1. The purpose of the 'PROM' interface panel is to convert 4-Bit digital video signals, normally referred to as 'R.G.B. \& Intensity', into Linear R.G.B. signals.
2. Colour Combinations
(1) There are 16 possible colours which can be displayed (2 combinations).
(2) IC2, a fusible link PROM, provides sixteen 8-bit outputs corresponding to one of the 16 addresses selected by the R.G.B. and intensity signals.
These outputs use 3-bits for RED and GREEN, and 2-bits for BLUE video, hence; there are 8 levels of Red and Green and 4 levels of Blue available.
(3) Resistors R3 to R10 and resistors R11 to R18 form potential dividers respectively between base and collector resistors of TR101, TR102, TR103, located on the 'SERIES-3' main PCB. Resistors values are selected to 'weight' respective PROM outputs, to 'least significant' and 'most significant' bits.

NOTE: When the 'PROM interface Panel' is installed, the moveable links PL103, shown in the 'SERIES-3' main circuit diagram, should be fitted into linked POSITION (1).
3. +5 Volt Supply
(1) IC1, C2 and C3 provides a regulated +5 V supply for IC2.
4. Protection \& Termination
(1) Diodes D1 to D5 provide flash-over protection for IC2 and for computer signal 'in' sources.
(2) Reistors R21 to R26 may be fitted on some models to terminate incoming digital signals.
5. Contrast Control
(1) Transfer TR1, R1 and an external pot connected to PL2 provide for 'customer' control of contrast on some models.
(2) TR1 forms an emitter follower, the voltage at the emitter determining the video output amplitude on 'contrast'.

GENERAL

1. Components used in the Prom Interface Panel Assemblies, together with possible component variations are listed following;
2. Details of possible circuit variations, used with different versions of the panel, are shown in the accompanying Prom Interface Circuit Diagram.

RESISTORS

1. Most of the resistors employed in the construction are standard carbon film types of 0.25 watt rating. $\pm 5 \%$ tolerance.

LIST OF COMPONENTS - PROM INTERFACE

| Component Reference | Part No. Component Description |
| :--- | :--- | :--- |

RESISTORS

R1	RF683DJO	RESISTOR C/F 6K8 0.25W 5\%
R2	RF391GJO	RESISTOR C/F 39R 0.5W
R3,6,11,14.20,21,22.23.24.25.26	RF222DJO RF472DJO	RESISTOR C/F 220R 0.25W 5\% RESISTOR C/F 470R
R4,7,10,12		$0.25 W$ 5\%
R15,18	RF103DJO	RESISTOR C/F 470R 0.25W 5\%
R5,8,13	RF103DJO	RESISTOR C/F 1K0 0.25W 5\%
R16	RF683DJO	RESISTOR C/F 1K0 0.25W 5\%
R9,17	RF102DJO	RESISTOR C/F 100R 0.25W 5\%
R19		RESISTOR C/F 2K2 0.25W 5\%
NOTE FOR APPLE MONITORS ONLY; - RESISTOR C/F R9,R17 BECOMES 220R 0.25W 5\%		

CAPACITORS

C1	CA2268M6	CAPACITOR ALUM/ELEC 2.2UF 63V
C2,3	CM105ML6	CAPACITOR MET/P 0.1 UF 160V
C4,5,6	CK151JKO	CAPACITOR CER/T 15PF 50V
DIODES, TRANSISTORS, INTEGRATED CIRCUITS		
TR1	QS0337UTO	TRANSISTOR BC337-5
IC1	IV7805LXO	CIRCUIT INT. 78L05
IC2	IR18030AX2	PROM TBP 18SA030N (PROGRAMMED INDIVIDUALLY
D1,2-5	DS4148UTO	FOR SPECIFIC MODEL)
DIODE IN4148 THOMPSON		
CONNECTORS		
PL1,3	KP0026A10	PLUG 10 PIN 20/3450 PRES
PL2	KP0025A05	PLUG 5 WAY 20/3445
INDUCTORS		
		CHOKE 10 UH

6. Sync Signals
(1) Sync signals are not required by the PROM circuitry and are passed directly through the interface panel.
7. R.F.I. Filtering
(1) On models requiring R.F.I. filtering, L / C networks formed by $L 1 / C 4, L 2 / C 5$ and $L 3 / C 6$ are fitted on R. $G \& B$ outputs.

AMENDMENTS

AFFECTS

All metal cabinet monitors.

DESCRIPTION

Modifications to bring cabinet back vvire routing, dressing and securing in line with current production practice.

IMPLEMENTATION

These modifications only apply whenever a monitor is returned for service.

MODIFICATIONS

With the cabinet top removed check the following:

Signal Wires On Cabinet Back Components

(DIN sockets. BNC sockets, mode switches, brightness/contrast controls etc).
a) It is now the practice to fit a 'tyrap' fastener onto the signal wires on each component. (See diagrams). A 'tyrap' should be fitted to any component which is found not to have one.

Note: The signal wires are already mechanically twisted onto each pin and then soldered : this modification provides additional wire attachment.
b) If it is possible to move any of these signal wires away from its normal position to touch the small exposed section of the terminals on the main switch then sufficient 'tyraps' should be fitted to these wires to hold them in position.

Note: This does not apply to wires which are already contained within a secondary sleeve. Single

Insulated Mains Wires On Mains Switch

This only applies to the short sections of mains cable from which the outer sheath has been removed to allow the individual wires to be attached and soldered to the mains switch.

If it is possible to move any of these short sections of wire away from its normal position to touch a pin on one of the cabinet back components then sufficient 'tyraps' should be fitted to the mains wires to hold them in position. (See diagram).

[^0]: INTERMITTENT -

