
Logo
on the BBC Microcomputer
and Acorn Electron

BARRY MORRELL

ACORNS!FT

A ·kn wl dgements
'I'll • A ·ornsofL Logo program was written in BCPL by Chris Jobson and John
llidH1rds with assistan ce and advice from many other people. We would like to
lhnnk Richard Noss of the Advisory Unit for Computer Based Education, in
purti ula r , for his advice.

ISBN O 907876 96 X

Copyright © Acornsoft Limited 1984

All rights reserved

First published in 1984 by Acornsoft Limited

No part of this book may be reproduced by any means without the prior consent
of the copyright holder. The only exceptions are as provided for by the

opyright (photocopying) Act or for the purposes of review or in order for the
softwa re herein to be entered into a computer for the sole use of the owner of
th book.

Not : Within this publication the term 'BBC' is used as an abbreviation for
'British Broadcasting Corporation'.

l•' I R T EDITION

A ·orm1 ft Limited, Betjeman House, 104 Hills Road,
;umbridg B2 l LQ, England. Telephone (0223) 316039

Contents

How to use this book

1 Introduction to Logo for experienced programmers
1.1 Acornsoft Logo
1.2 Starting up Logo
1.3 Use of typefaces in this book
1.4 Typing direct commands at the keyboard
1.5 Procedures
1.6 The use ofCTRL and ESCAPE
1.7 Greedy primitives
1.8 Logo objects
1.9 Naming things
l.10 Arithmetic
1.11 Order of evaluation
1.12 Special characters
L.13 Creating a Logo environment
1.14 Extensions to Logo
1.15 Syntax of primitives

2 Turtle graphics
2. 1 Summary of primitives
:l.2 Primitives

:J Flow of control
:i I Repetition
:i 2 Conditionals
:1.:l Recursion
:1.'1 Summary of primitives
:1./"i Primitives

Using the editor
1. 1 Editing procedures
1.:.! Editing variables
1.:1 ummary of primitives
l.'1 Primitives
t.r, Editing keys

1

2
2
3
3
3
5
7
8
9
9

10
11
11
13
13
13

15
16
17

37
37
38
39
40
40

48
48
50
51
51
52

5 Work pace management
5. 1 lnlroduction
5.2 ummary of primitives
5.:3 Primitives

6 Input/ output
6.1 Summary of primitives
6.2 Primitives

7 Procedures and variables
7.1 Summary of primitives
7 .2 Primitives

8 Arithmetic
8.1 Summary of primitives
8.2 Primitives

9 Words and lists
9.1 Introduction
9.2 Summary of primitives
9.3 Primitives

10 Handling keyboard errors and debugging
10.1 Correcting keyboard mistakes
10.2 Handling errors by program
10.3 Debugging your procedures
10.4 Summary of primitives
10.5 Primitives

11 Floor turtles
11 .1 Summary of primitives
11 .2 Primitives

12 Turtle shapes and multiple turtles
J 2.1 Changing the turtle's shape
12.2 Multiple turtles
12.3 ummary of primitives
12.4 rimitives

54
54
55
55

61
61
62

71
71
71

76
77
78

88
88
90
91

101
101
101
102
103
104

108
108
109

110
110
112
115
115

13 Interface to machine functions
13.1 Summary of primitives
13.2 Primitives

14 Property lists
14. 1 Summary of primitives
14.2 Primitives

15 Screen modes and the use of colour
15.1 Screen modes
15.2 Using colour
15.3 Summary of primitives
J 5.4 Primitives

16 Creating a Logo environment
16.1 Summaryofprimitives
16.2 Primitives

Appendix A
Logo primitives

AppendixB
I ,ogo error messages

Appendix C
AS II code table

Index

119
119
119

123
125
126

129
129
131
132
132

136
139
139

142
142

155
155

157
157

159

How to use this book

If you are new to programming and to Logo you should start by reading the
<·ompanion book, Introduction to Logo on the BBC Microcomputer and Acorn
/;;/ectron. This reference manual is intended for those who are familiar with
programming but not with Logo.

A general description of Logo appears in chapter 1 and, in addition, most
('hapters begin with some background information and a summary of the
primitives. If you want to give yourself a quick briefing on Logo you may find it
h lpful to glance through these areas first.

'l'o aid easy reference, this book has Logo primitives arranged by chapters into
distinct groupings. This means that if you want a primitive to perform a specific
t.a k you can find the appropriate group by looking in the Contents list. For
d •tails of a particular primitive you should look it up in the Index.

Once you are more familiar with Logo you will probably find that you use the
u companying Logo Reference Card most of the time and refer to this book only
occasionally.

1

1 Introduction to Logo for
experienced programmers

1.1 Acornsoft Logo
Acornsoft Logo is a full, new and accurate version of this attractive educational
language and it conforms closely to the implementations developed at the
Massachusetts Institute of Technology. It can thus accept most published
programs in Logo and can be used with the most popular books on the language.

Acornsoft Logo is also faithful to the BBC Microcomputer and the Acorn
Electron. It allows full use of their powerful graphics features and has integrated
these into Logo as new pen characteristics. It also supports the 6502 Second
Processor and the sound, analogue, joystick and VDU functions.

Since the world of Logo is constantly developing with new hardware devices and
new ideas for microworlds, this implementation has been designed to accept
'extensions' to the language, and an initial range of such extensions is provided.

The turtle graphics facilities allow the use of words or shapes as turtles and
support up to 32 screen turtles, as well as a range of floor turtles . A flexible set of
trace and debugging functions is also provided.

Logo's traditional list processing commands can also be applied to words in all
cases. Additional list processing commands are provided to access and change
individual items within a list.

Many commands which take a single word as an input can also take a list and
apply to each word in the list. This provides a simple introduction to list
processing.

You can easily tailor Acornsoft Logo to your own, individual requirements. For
example, the floating point number system can be restricted to integers and
primitives can be redefined.

Finally, a completely new set of Logo example programs illustrates the use of the
language in a wide variety of different activities such as conversation, data
systems, mapping, maze following, logical language and natural language. We
hope and expect that once you have enjoyed the attractions of turtle graphics
t h examples will encourage further exploration of the extensive possibilities
ofLo o.

1.2 Starting up Logo
The accompanying leaflet will have shown you how to install your Logo RO Ms (in
the BBC Microcomputer) or ROM cartridge (in the Acorn Electron Plus 1). To
i,il.art up Logo you merely need to switch on your machine and the following
message will be displayed:

We lc ome to Logo

If you do not get this message, you can still get into Logo by typing *LOGO.

When you first enter Logo you are in 'graphics mode' and you can use any of the
turtle graphics primitives described in this book. You can get into 'text mode' by
typing T S then pressing RETURN. To get back to graphics mode again, type
DR AW then press RETURN, or use any of the graphics primitives such as
CL EAN.

If you are using turtle graphics, Logo allocates six lines at the bottom of the
i,icreen for text; the rest is devoted to graphics. You can vary the number of text
Imes between one and 20:

(DR AW 20)
(DR AW 8)

Some of the more advanced and little used parts of Logo are held on the tape or
disc which accompanies your Logo package; they are known as Logo 'extensions'.
An accompanying booklet describes the contents of these extensions and how to
load them.

1.3 Use of typefaces in this book
Dialogue between yourself and the computer is printed in this book in a different
typeface from the normal one; it resembles more closely the sort of typeface you
will see upon your screen, for example:

PRI NT [HELLO WORLD]
HELL O WORLD

1.4 Typing direct commands at the keyboard

1.4.1 Primitives

When Logo is expecting you to type a 'command line' at the keyboard, it displays
the ? prompt. It is then said to be in 'command mode'.

The commands you can type include the following:

DR AW This initiates turtle graphics and puts the turtle at the centre of
the screen (the 'home position') pointing upwards.

3

CL AN

HOME

FORWARD

LEFT

RIGHT

This clears whatever graphics are on the screen but leaves the
turtle wherever it was.

This returns the turtle to its home position and leaves it pointing
upwards.

This moves the turtle forward by a number of steps.

This turns the turtle left (anticlockwise) by a specified angle (in
degrees).

This turns the turtle right (clockwise) by a specified angle (in
degrees).

These commands are examples of 'primitives'. Primitives are words which are
built into Logo; when you switch on your computer they are already there.

Some of these primitives do not need any other information (for example, CLEAN
and HOME); you can type them in and they will perform a unique action. Others
need 'inputs' which you can vary, for example:

FORWARD 10 0
FORWARD 300
RIGHT 60
LEFT 90

1.4.2 Error handling
When you type in a primitive you get Logo to take action upon it by pressing
RETURN . If you make a mistake before you press this you can correct it using
DELETE. If you don't do this, Logo will reply with an error message telling you
what is wrong. For example, if you type F OR W RA D 1 0 0 you will get the
message:

Logo doesn't kn o w how to FORWRAD

You can then type the correct information.

1.4.3 Usingprimitives
When you type in a line at the keyboard, Logo searches it from left to right for the
name of a primitive or a procedure (procedures are described later in this
chapter). Then, if Logo expects inputs, it looks for these and evaluates them.
Finally, it does something with the result (such as moving the turtle).

Logo allows you to type a number of primitives separated by spaces on the same
lin , although they will not be executed until you press RETURN. If you type

r than will fit onto one line, the rest of your command line will run onto the
n t lin but will still be valid. In this book, long command lines are shown with

the continuation lines printed white on black where they would appear in inverse
video in the Logo editor (which is described in chapter 4).

Logo also allows you to type in short forms of some primitives, for example,
FOR WAR D can be replaced by F D, LE F T by LT and R I G H T by RT . The short
forms are given with the description of each primitive in the following chapters,
nnd they follow its name.

l.5 Procedures
You can teach Logo new words in terms of those words it already knows, and
these are called 'procedures'. You define a procedure using the TO primitive. The
following commands form two procedures which draw a square and a triangle
rt•spectively:

TO SQUA RE
RE P EAT 4 [FORWARD 200 LEFT 90]
EN D

ro TRI ANGLE
RE PE AT 3 [FORWARD 200 LEFT 120]
I ND

'l'he first line of these procedures is called the 'title line'. It tells Logo that you
wnnt to define a procedure named SQ U A R E or T R I ANG LE . You can then type in
rnmmands which are stored in memory for later execution. When you are
,lt•fi ning a procedure, Logo displays the prompt >. When you are back in
rnmmand mode, the ? prompt appears.

You can abandon the procedure definition at any titne by pressing ESCAPE.

'l'h(• END primitive tells Logo that you have finished defining your procedure and
It r •turns control to command mode. You can then run your procedures by
I yping:

QU AR E
l>RA W
IIU ANG LE

II you want to modify your procedures you cannot do so using the TO primitive.
111 I(nd, you must use the Logo editor described in chapter 4, 'Using the editor'.

· 0 11 ·un also define a .new procedure using the editor, if you wish, and this can
1111H times be more convenient than using TO .

5

You ·un cull other procedures from within one procedure. For example:

TO HOUSE
SQUARE
FORWARD 200
LEFT 30
TRIANGLE
PENUP
HOME
HIDETURTLE
END

1.5.1 Inputs to procedures

HOUSE

Your procedures can have inputs, just like some of the primitives mentioned
above. For example, the following changes would make SQUARE and
TRI ANG LE draw shapes of varying size:

TO SQUARE :SIDE
REPEAT 4 [FORWARD :SIDE LEFT 90]
END

TO TRIANGLE :SIDE
REPEAT 3 [FORWARD :SIDE LEFT 120]
END

SQUARE 100 SQUARE 300 TRIANGLE 100
TRI ANG LE 300

In the title line for SQUARE , you are creating a 'box' and giving it the name
S I DE . Within the procedure you want to perform an action using the contents
of the box called S I D E, and the colon (:) , known in Logo as 'dots', indicates
that you are referring to these contents.

Now, when you type in a command line like SQUARE 200, the value 200 is
put into this box and the primitive FORWARD : S I DE uses the contents of the
box to produce:

FORWARD 200

6

Your procedures can have more than one input. When they do, the inputs must
lw separated by spaces, for example:

ro RECTANGLE :SIDE1 :SIDE2
RE PEAT 2 [FORWARD :SIDE1 LEFT 90 FORWARD :SIDE2 . ~
END

1.5.2 Outputs from procedures
AA well as having inputs, your procedures can output values using the OUTPUT
11rimitive. Look at the following procedure, for example:

10 NUM BER.SQUARE :NUMBER
OU TP UT :NUMBER* :NUMBER
~ND

Note the use of the full stop in the title line to make the procedure name
NU MB ER . SQUARE more legible. You can't use a space here as the name would
hccome NUMBER.

In this example, the procedure NUMBER • SQUARE outputs the square of its
mput and this can be displayed using the PRINT primitive:

PRIN T NUMBER.SQUARE 10
10 0

1.6 The use of CTRL and ESCAPE
V ou can use the ESCAPE key to interrupt the execution of a command line or a
11rocedure. If you do this whilst the command line:

RE PE AT 1000 [FD 200 LT 90]

111 •xecuting, the turtle will stop moving and the line that was being executed
will be printed in the text area, together with the [J ? prompt:

Int er rupted
RE PE AT 1000 [FD 200 LT 90]
[] ?

V ou can continue execution by typing CO or C ON T I NU E.

If you press ESCAPE whilst a procedure is executing, the turtle will stop and
t ht• line that was being executed will be printed, together with the procedure
11n me and the ? prompt. For example:

I nt err upted, in SQUARE
R PE AT 1000 [FD 200 LT 90]

QUA RE?

7

!\l{nin, you can continue execution by typing CONT IN U E, or just CO.

If you w nt to 'break out' of the procedure or command line completely, you can
do so by holding down the CTRL key then pressing ESCAPE. The line that was
b ing executed will be printed, together with the procedure name. For example:

Sto pped, in SQUARE
REPEAT 1000 [FD 200 LT 90]
?

In this case you cannot continue execution.

1. 7 Greedy primitives
Some primitives have optional inputs; these are called 'greedy primitives'. For
example:

DRAW
(DRAW 10)

When you want to use the inputs that are optional, you must surround the
entire primitive with round brackets (as above); otherwise, you should omit the
optional inputs and the brackets.

In the following chapters, greedy primitives can be identified by the first lines
of their definition, for example:

SUM <number1> <number2>
(SUM <number1> <number2> ... <numbern>)

The first of these lines contains the default number of inputs.

Check this against the definition of SUM in chapter 8, 'Arithmetic'.

Greedy primitives can appear at the end of a line with less than their default
number of inputs; in this case, they do not need brackets. For example:

PRINT SUM 2 3
5
PRINT (SUM 2 3 4 5)
14
PRINT (SUM 1)

1
PRINT SUM 1
1

1.8 Logo objects
I II Logo, there are two types of 'object': words and lists.

I ,uuo words are similar to words in the English language: they consist of groups
111 rh racters. You indicate that something in Logo is a word by preceding it
with quotes, as in the following:

l'RI NT "HELL O
Ill LLO

Y 1111 can break words into smaller words or combine them to form long ones. A
word with no elements is indicated by " and is called an 'empty word'.

Numbers are a type of Logo word and you can perform arithmetic on them.
'l'lwy are slightly different from normal words in that you do not need to
pn• ede them by quotes, for example:

l'RI NT 25
i'S

li1,1t is made up of Logo objects, and these can be words or other lists. You
Indicate that something is a list by surrounding it with square brackets, for
, nmple (as part of a line):

!JA MAI CA HAWAII 5 [CATS DOGS]]

luait with no elements is called an 'empty list' and is indicated by [J .

ou can manipulate lists in a similar way to words: breaking them into smaller
Ii t.H or combining them to form longer ones. You can also use them with
p11rni tives such as PRINT :

IRI NT [JAMAICA HAWAII 5 [CATS DOGS]]
IAM AI CA HAWAII 5 [CATS DOGS]

Words and lists are described in chapter 9, 'Words and lists' .

I J) Naming things
N11rnes can consist ofletters, numbers and punctuation. Logo does not care if a
11 a me is in lower or upper case. For example, the following are regarded as
111 ing the same:

I OR WAR D 100
for war d 100

Wh11n you define procedures you give names to a number of things: the
1111 ·t•dure itself and its inputs (if it has any) .

9

You un u l ogive names to data, or variables, using the MAKE command. For
oxumpl :

MAKE "NUMBER 10
PRINT :NUMBER
10

The first input to the MAKE command is the name of a 'box' and the second is
the thing you are going to put into it: its contents. In the example above, you
are giving the value 10 to the name NUMBER. In the PRINT command you are
looking at the contents of the box (note the dots in front of NUMBER).

Another way of getting the contents of a box is to use the primitive TH I NG.
This is equivalent to dots (:) in the following, simple example:

PRINT THING "NUMBER
10

However, it is more flexible than dots because it can be part of a more general
expression, for example:

MAKE "PLACE [HAWAII HONOLULU]
PRINT THING FIRST [PLACE STREET]
HAWAII HONOLULU

Here, P LA C E is defined as a list using MAKE and the next line prints the
contents of the first element of the list [PLACE STREET] . FIRST is a
primitive which outputs the first element of the list (in this case, "PLACE).
You could not use dots with this example, because dots can only be used before
a name.

The names that you use as inputs to procedures are 'private' or 'local' to the
procedures themselves. As a result, you don't need to worry about Logo getting
mixed up between inputs to different procedures.

1.10 Arithmetic
In Logo, numbers are words made up of digits. They can contain a sign, a
decimal point and an E or N. They are described in more detail in chapter 8,
'Arithmetic'.

Logo allows you to perform arithmetic operations using the normal operators:
+ (plus), - (minus), * (multiplication) and / (division).

When you use - (minus) as an operation, it must be followed by a space.

PR INT 3 - 1
2
PR INT 3 - 1
3
Log o doesn't know what to do with -1

There are also a number of arithmetic primitives such as SQRT , SUM and COS
nnd they are all described in chapter 8, 'Arithmetic' .

1.11 Order of evaluation
The order in which the various operators and primitives are evaluated when
t hey occur together is as follows:

I Multiplication and division.

l. Addition and subtraction.

:1. Most primitives; where a number of these occur together they are evaluated
from left to right.

I The operators >, < and = .

(1 The primitives ALLOF , ANYOF , IF , LOCAL, MAKE , NOT , OUTPUT , PRINT ,
~ HO W, TEST, TIT LE and TYPE . Where a number of these occur together they
IIH' evaluated from left to right.

If you want to have Logo perform a particular calculation before any other, you
rnn make it do so by surrounding the calculation with brackets. For example:

I RlNT 20 * (20 - 15)

"10
I l1 •n•, the subtraction will be done before the multiplication.

1. 12 Special characters
I 12.1 Quot.es, or "

Wht•n used before a word, these indicate that whatever follows is to be used as a
m d, not the name of a procedure or the contents of a variable ('box').

1,12.2 Dots, or:

Wl11•11 Ufl d before a word, these indicate that you are referring to the contents
111 t 111• vn riable ('box') named.

11

I)olH u t th nd of a word indicate that the word is a label which is used with the
GO primilive, for example:

HERE:

Lab Is can only be used at the start of a line or list.

1.12.3 Square brackets, or [J

These surround a list.

1.12.4 Round brackets, parentheses, or ()

These are used to group items into the order in which you want Logo to
interpret them, or to identify greedy primitives (see section 1.7).

1.12.5 Up arrow, or ·

This tells Logo to interpret the next character literally, rather than as a
character which has a special meaning in Logo. It is used before the following
characters:

space - () [J * / - \ < > =

For example:

PRINT "3 + 5
8
PRINT "r+ 5
3+5

1.12.6 Backslash, or \

This tells Logo that the text after it is to be treated as a 'comment' . In other
words it is to be used to clarify the logic of your procedures rather than to be
acted upon by Logo. For example:

TO CIRCLE\ This procedure draws a circle
REPEAT 360 [FD 3 LT 1]
END

1.12.7 Star, or*
If this is the first character in a line or list, it tells Logo that the line is an
op rating system command. For example, *TAPE and *LOGO.

You can use an operating system command inside a procedure, but it must be
th only thing on a line or in a list.

I :l

l. l3 Creating a Logo environment
You may want to restrict the facilities which Logo offers or extend them in
ome way. For example, you might want to:

I Restrict the precision of numbers.

'). Redefine primitives such that FORWARD 1 0 moves the turtle by 100 steps
111stead of 10.

·1 Change the initial screen mode and start up colours.

t llave certain of your procedures treated as primitives in that they cannot be
•·dited by users.

r, Rename primitives for use with other languages.

You can do any of these things by creating a 'Logo environment'. The actions
tl('eded are described in chapter 16, 'Creating a Logo environment'.

1.14 Extensions to Logo
(>ne of the main benefits of Acornsoft Logo is the fact that it supports
'1•xtensions' which can be loaded from disc and tape. This means that its
usefulness is not limited by future improvements to either Logo or your
1·omputer.

Where a primitive is included in an extension , we will mention this fact under
the description of the primitive. Descriptions of the extensions themselves are
1-(iven in an accompanying booklet. Future extensions will be described in the
documentation supporting them.

l•:xtensions are loaded using the primitive LO AD. For example, the following
rommand loads the multiple turtles extension MU LT:

LO AD "MULT

1.15 Syntax of primitives
In the descriptions of primitives throughout the following chapters, wherever
inputs are required these are given as text in angled brackets, for example:

OU TPUT <object>

This means that the primitive OUTPUT needs one input which is a Logo object.

The words which we use in describing the inputs to Logo primitives are
t•xplained here:

< a , b > An expression which is either "TRUE or " FA LS E.

13

<by t > A unit of data used by the computer. Integer between O and 255.

< c h r a c t er> Letters of the alphabet, numbers, etc. See Appendix C, 'ASCII
cod tab! '.

<de g r e e s > An angle in degrees. (See <numb e r > .)

<di st ance> (See <number>.)

< f i L en am e > Any valid filename for the current filing system.

< i t em> An object which is part of another object such as a list in another list.

< L i s t > Either the empty list [J or one or more items enclosed by square
brackets .

<n> A number in the range -32768 to 32767.

<name> A word of between 1 and 63 characters, which may be used for a Logo
procedure or variables. It must not start with a numeric character or Logo
punctuation, ie () [J * / \ < > = space - .

<numb e r > On input, <numb e r > is a word without spaces containing an
optional sign, a decimal number with an optional decimal point, and an optional
exponent. Positive exponents are introduced by E and negative exponents by
N. On output, numbers are shown in decimal format if zero or in the range 0.01
to 99999999.

< o b j e c t > Any Logo word or list (characters and numbers are particular
kinds of words).

< p rope r t y n a me > A name used as a property description.
or <p r >

<word> Contains any set of characters preceded by a " Any Logo
punctuation in a word must be preceded by "

2 Turtle graphics

When you type DRAW , Logo displays the turtle graphics screen. You can then
I ypc in the turtle primitives described in this chapter or run procedures which
UH<' them.

Most of the primitives which move the turtle produce movements relative to
I he turtle's current position. However, some primitives such as SET X and

ET Y produce absolute movements using the following system of coordinates:

+Y

-x- -+x

-y

The use of colour is not described in this chapter. You can produce some
(•xtremely attractive effects when you combine turtle graphics with colour and
the range of possibilities is large. For this reason, colour is treated as a separate
topic and has a chapter to itself: chapter 15, 'Screen modes and the use of
t·olour'.

Primitives which redefine the turtle's shape and handle multiple turtles are
covered in chapter 12, 'Turtle shapes and multiple turtles'. However, some of
the turtle graphics primitives which can be used with one turtle have a special
d Tect when used with multiple turtles. Where this is the case, it will be
mentioned in the present chapter under the descriptions of the primitives
concerned.

15

~. l ummary of primitives

l rimitive

BACK
BG
CLE AN
CS
CT
DISTANCE
DOT
DRAW

FENCE
FORWARD
HEADING
HIDETURTLE
HOME
LE FT
MODE
PAL
PC
PE
PEN
PENDOWN
PENRESET
PENUP
PENUPQ
POS
PX

RIGHT
SCR
SECT
SE TBG
SETDOT
SETHEADING
SE TMODE
SE TNIB
SET PC
SET PEN

1.

Effect

Moves turtle backwards
Returns background colour
Erases graphics area without moving turtle
Erases graphics area and homes turtle
Clears text area
Returns distance from turtle to a specific point
Returns colour of a dot
Erases graphics area, homes turtle and resets
some screen functions
Sets fence round graphics area
Moves turtle forwards
Returns turtle's heading
Hides turtle from view
Moves turtle to centre of screen
Turns turtle to left
Returns the screen mode
Sets logical colour
Returns the pen colour
Puts turtle's eraser down
Returns current pen parameters
Puts turtle's pen down
Resets turtle's pen to initial state
Lifts turtle's pen
Reports whether pen is up
Returns turtle's position as [x y]

Makes turtle draw new lines but erases existing
ones
Turns turtle to right
Returns aspect ratio of screen
Draws sectors of a circle
Changes background colour
Puts a dot at a specific position
Turns turtle to point to a specific heading
Changes the screen mode
Selects graphics option of BASIC PLOT statement
Changes the pen colour
Set pen parameters

Primitive

ETPOS
SE TPT

ETSCR
ETSH
ETX
ETY
H

HOWTURTLE
TAMP

TIT LE
TO WARDS

WI NDOW

WR AP

XP OS
YP OS

2.2 Primitives

BACK(BK)

BA CK <distance>

Effect

Moves turtle to [x y]

Defines the use of colour on the screen
Changes aspect ratio of screen
Changes turtle's shape
Moves turtle horizontally
Moves turtle vertically
Returns turtle's shape
Makes turtle visible
Stamps the turtle's shape on the screen
Prints text in graphics area
Returns heading that would point the turtle at
position [x y J
Removes restrictions imposed by F ENCE and
WRAP
Arranges for turtle to 'wrap' from one side of
screen to the other when it hits fence
Returns turtle's x-coordinate
Returns turtle's y-coordinate

Moves the turtle backwards by <di stance> steps. The turtle's heading does
not change.

BACK 100

17

n
It •turns an integer which represents the logical background colour (see chapter
15, ' r en modes and the use of colour').

LEAN
!ears (erases) whatever graphics are on the screen, but does not move the

turtle or cha nge its state.

CLEAN

CS
Clears (erases) whatever graphics are on the screen and returns the turtle to
its home position with a heading of zero.

CS

CT
Clears the text area and puts the cursor on the first line of the text area .

DISTANCE
DISTANCE <List>

Returns the distance from the current turtle position to a point on the screen
addressed by < L i s t >.

18

J,; ample

HO ME
PR I NT DISTANCE [100 100]
14 1 .42136

DOT
DO T <List>

ltcturns the colour of the dot at a position in the form [x y J specified by
< Li s t >. The numbers returned correspond to the colours shown in table 15.2.

If the position is off the screen, the value 255 is returned.

DRAW

DRAW
(DRAW <n>)

This primitive does the following things:

I. Sets the background colour to O (normally black) .

2. Sets the screen to wrap mode and clears the graphics screen and text area .

:3. Destroys all turtles except turtle O if multiple turtles are in use (see chapter
12, 'Turtle shapes and multiple turtles').

4. Returns turtle Oto the 'home position' (the centre of the graphics screen) and
makes it visible. Resets the turtle's shape to a triangle.

5. Sets the pen colour to 7 (normally white) and puts the pen down. Selects the
default S ET N I B and PENS TATE options.

If < n > is specified, this number of lines will be reserved at the bottom of the
screen for text (up to 20 text lines are allowed). You can reset the text area to
its default size (6 lines) by omitting < n > :

DRAW

19

•F.N E
' ts a fence a round the graphics area. An error will occur if the turtle hits this
~ n

T h fe nce is created immediately in logical colour 7, which is normally white
(logical colours are described in chapter 15, 'Screen modes and the use of
colour ') .

ee also W I N DOW and W RA P.

Example

FE NCE
FORWARD 2000

gives the error message Turtle hit fence .

FORWARD(FD)
FORWARD <distance>

Moves the turtle forward by < d i s tan c e > steps. Its heading (see HEAD I NG ,
below) does not change.

Example

FORWARD 100

HEADING
HEADING
(HEADING <n>)

Returns the turtle's heading, or the heading of turtle < n >. The heading is the
direction in which the turtle is pointing, in degrees, using the following system:

0

270 i 90

180

1':xample

TO TURN
RI GH T 15
IF HEADING= 90 [PRINT [YOU ARE HEADED EAST]]
EN D

RE PE AT 6 [TURN]
YO U ARE HEADED EAST

I IIDETURTLE(HT)

1 lides the turtle from view until the next occurrence of the SHOW TUR T LE
primitive.

l~xample

HIDETURTLE

HOME
Moves the turtle to the centre of the screen (the 'home position') and leaves it
pointing upwards. The screen is not cleared and if the pen is down, the track to
the centre is drawn.

HOME

21

LEFT(LT)
L FT <de grees>

This primitive turns the turtle left (anticlockwise) through an angle specified
by < d e g r e e s >.

If < degrees> is negative, the turtle will turn in a clockwise direction.

Examples

LEFT -45

MODE
Returns the screen mode. Screen modes are described in chapter 15, 'Screen
modes and the use of colour'.

PAL
PAL <Logicalcolour> <physicalcolour>

Stands for PALette. Sets one of the logical colours of the BBC Microcomputer or
Acorn Electron to a specific physical colour. See chapter 15, 'Screen modes and
the use of colour', for a full description.

PC
(PC <n>)

Returns the current pen colour. If you are using multiple turtles you can find
the pen colour for turtle < n > using the 'greedy' form of the primitive shown
above. Otherwise, it needs no inputs.

Examples

The following example shows how you can use PC with one turtle:

PRINT PC
7

The next example shows how it can be used with a number of turtles:

PRINT (PC 2)

7

This shows the colour of turtle number 2.

PE
Puts the turtle's 'eraser' in the down position. When the turtle moves it will
then erase lines over which it passes. To lift the eraser you must use PEN DOWN ,
P E N U P, P X or P E N R E S E T .

Example

PEN
PEN
(PEN <n>)

PE

FORWARD 200

This operation returns the current pen parameters in the form of a list. If you
are using multiple turtles you can find the pen parameters for turtle < n > using
the 'greedy' form of the primitive shown above. Otherwise, it needs no inputs.

The elements of the list returned are as follows:

[PENSTATE SHOWN COLOUR NIB PENTYPE]
I

Defines use of colour (see the S E T PT
primitive in this chapter).

Graphics option (see the SET NIB primitive
in this chapter).

Pen colour as defined in table 15.2 in section 15.2.

Whether or not turtle is visible (T RU E or F A LS E).

'-------- One of the values PU , PD, PE or PX.

23

J,; t/111ple

PRI NT PEN
PD TRUE 7 8 0

PENDOWN(PD)

Puls t.he turtle's 'pen' down. When the turtle is moved it will then draw lines in
t.h current pen colour. DRAW resets the pen to the down position.

Example

PENUP

PENRESET

FORWARD 150 PENDOWN
FORWARD 150

Resets the pen to the state it was in when it was first used. The colour will be
set to logical colour 7 (normally white), the nib to 8 and the pen type to 0. The
pen will be put down and the turtle will be shown.

PENUP(PU)
Lifts the turtle's pen . When the turtle subsequently moves it will not draw
lines.

PENUPQ

PENUP
FORWARD 200

l{t'I urns TRUE if the pen is up and FALSE if it is down.

1•os
CP OS <n>)

l{t>lurns the turtle's position (in the form of x- , y-coordinates) as a list [x y J.
After you type DRAW , the turtle will be at [0 0 J , the home position.

II" you are using multiple turtles you can find the position of turtle <n> using
I he 'greedy' form of the primitive shown above. Otherwise, it needs no inputs.

l•:xample

This example assumes the turtle is away from the home position. The
primitives below draw a circle at the home position then move the turtle back to
wherever it was on the screen:

TO CIRCLE
RE PEAT 360 [FORWARD 3 LEFT 1]
EN D

TO HOMECIRCLE
MA KE "SAVEPOSITION POS
PE NUP
HO ME
PE NDO WN
CI RCLE
PE NUP
SE TP OS :SAVEPOSITION
EN D

HOMECIRCLE

The following example shows how PO S can be used with multiple turtles:

PR INT (POS 2)
10 0 100

PX
Sets a reversing pen. When you use this primitive and then move the turtle , the
pen will draw new lines, but erase existing ones.

25

1,; wnple

Th' fo llow ing procedure draws spinning squares without any 'spokes' and then
remov s t h m:

TO SPIN.WIPE
PX
SET MOD E 5
SETP C 0
SET BG 2
REPEAT 2 [SPIN WAIT 2]
END

TO SPIN
REPEAT 24 [LT 15 SQUARE]
END

TO SQUARE
REPEAT 4 [FD 200 LT 90]
END

RIGHT(RT)

RIGHT <degrees>

Turns the turtle right (clockwise) through an angle specified by <deg re e s >.
If <degrees> is negative, the turtle will turn in an anticlockwise direction.

Examples

RIGHT 45 RIGHT - 45

The following procedure will draw triangles of varying sizes:

TO VARIABLE.TRIANGLE :SIDE
REPEAT 3 [FORWARD :SIDE RIGHT 120]
END

26

H R

ll!'turns the aspect ratio of the screen (see SETS CR).

l•.'xample

PR INT SCR
1

SECT
SE CT <radius> <angle> <width>

I >raws a sector through the specified <an g Le> . <radius> is the distance
I rom the turtle to the centre of curvature (a positive radius means that the
rt>ntre is to the right of the turtle). <width> specifies the separation of the two
I Ines of the arc (a positive width means that the second line is to the right of the
I urtle) . If< an g Le> is positive, the turtle moves forward; if negative, it moves
hnckwards.

The turtle finishes at the other end of the line from its starting point.

If the nib has been set to 80, the space between the lines is filled .

l•:xamples of the use of SECT are given in the booklet which describes the
t•xtensions.

SETBG

SE TBG <n>

< 'hanges the logical background colour (initially black, or 0) to colour <n> . See
l'hapter 15, 'Screen modes and the use of colour', for a full description. Logo also
performs an immediate CLEAN using the new colour.

SETDOT

SET DO T <List>

l'uts a dot at the position given by < L i s t >, using the turtle's current pen
l'olour. The turtle is not moved during this process. < L i s t > is in the form of x-,
v coordinates.

If the position is off the screen, an error is generated in WRAP or F ENCE modes
11 nd the command is ignored in W I N DOW mode.

l•:xample

ro CIR CLE
MAKE "ANGLE 0
REP EAT 360 [PLOT MAKE "ANGLE :ANGLE+ 1]

27

ND

TO PLOT
S TDOT LIST (100 * SIN :ANGLE) (100 * COS :ANGLE)
END

HOME

SETHEADING(SETH)
SETHEADING <degrees>

• •
•

• • • •

' • • • •

CIRCLE

•
•
•
•

•

Turns the turtle so that it is pointing in t he direction (ie has the heading) given
by < d e g r e e s > .

Examples

HOME

SETMODE
SETMODE <n>

SETHEADING - 45 SETHEADING 45

Selects screen mode < n >. For a full description of S ET MODE , see chapter 15,
'Screen modes and the use of colour'.

ETNIB
SET NIB <n>

Attractive effects can be produced with this primitive, which allows you to
select the graphics option of the BBC BASIC PLOT statement. The available

2

values of< n > are summarised in the following table , together with their effects
(the default value is 8). Unlike BBC BASIC (where the intervening values have
different effects) Logo does not use the least significant three bits of < n > so
that the values of< n > may at first seem strange. For example, if 18 is used , it
will have the same effect as 16.

<n >

0

8

l6

24

;32

64

72

80

88- 255

Examples

Effect

Draws line including last point

Draws line but omits last point

Draws dotted line

Draws dotted line but omits last point

Reserved for Graphics Extension ROM

Plots a single point only

Reserved

Plots and fills a triangular area
between the current t u rtle position
and the last two points visited

Reserved for future expansion

The range of effects you can produce is quite large and some of the effects are
i;pectacular. Below are some examples:

SETNIB 16
SQUARE 300

SETNIB 80
SQUARE 300

SETNIB 64
SQUARE 300

29

ETPC
SETPC <n>

hanges the logical pen colour to the value represented by < n > (see chapter 15,
'Screen modes and the use of colour').

SETPEN
SETPEN <list>

Sets the current pen parameters from the values held in <Li s t >. The
elements of < L i s t > are as follows:

[PENSTATE SHOWN COLOUR NIB PENTYPEJ

l Defin~s use of colour (see the S E T PT
primitive in this chapter).

Graphics option (see the SET NI B
primitive in this chapter) .

.__ ___ Pen colour as defined in table 15.2 in
section 15.2.

~------- Whether or not turtle is visible (TRUE
or FALSE).

~------------ One of the values PD , PU , PE or PX .

Example

HOME
SETPEN [PD FALSE 1 80 0]

SETPOS
SETPOS <List>

FORWARD 200
LE FT 90
FORWARD 200

Moves the turtle to the position given by <Li s t >, where < Li s t > is in the
form of x-, y-coordinates. The position must be on the screen, unless window

30

mode is in use, when x and y must be in the range -10000 to 10000.

After any movement the turtle's heading is unchanged. If the pen is down a line
wi ll be drawn.

Example

HOME

SETPT
SE TPT <n>

SETPOS [0 150] SETPOS [150 0]

Defines the way that colour is to be plotted upon the screen (see chapter 15,
'Screen modes and the use of colour', for a full description).

SETSCR
SE TSC R <number>

Allows you to change the aspect ratio of the screen (the ratio vertical
step/horizontal step). It is intended to be used when squares appear like
rectangles on your display. <numb e r > can take any positive value other than
zero.

l~xamples

'l'he following command line makes each vertical step half the length of a
horizontal one:

SE TS CR . 5

The following command line returns the aspect ratio to normal:

SE TSCR 1

HETSH
SET SH <object>
(S ETSH <object1> <object2> •..)

Defines the shape of the turtle . See chapter 12, 'Turtle shapes and multiple

31

lurll s', for full details.

ETX
SETX <number>

Moves the turtle horizontally to the point with the x-coordinate <number>
a nd leaves they-coordinate of the turtle unchanged. The point must be on the
screen, unless window mode is in use, when <numb e r > must be in the range
- 10000 to 10000.

If the pen is down a line will be drawn. The turtle's heading will be left
unchanged.

Example

HOME

FD 150

SETY
SETY <number>

SETX 200

SETX 0

Moves the turtle vertically to the point with the y-coordinate <numb e r > and
leaves the x-coordinate of the turtle unchanged. The point must be on the
screen, unless window mode is in use, when <number> must be in the range
- 10000 to 10000.

If the pen is down, a line will be drawn. The turtle's heading will be left
unchanged.

32

Example

SH

HOME
RT 45

FD 50

SETY 100

SETY 50

Returns a list which defines the turtle's shape. See chapter 12, 'Turtle shapes
nnd multiple turtles', for full details.

SHOWTURTLE(ST)

Makes the turtle visible (see HIDE TURTLE also).

11:xample

HOME HIDETURTLE
FD 200 LT 120
FD 200

SHOWTURTLE

33

TAMP

ta mps the turtle's shape on the screen.

E ample

Th following procedure stamps a series of turtle shapes in a circle around the
horn position:

TO STAMP.CIRCLE
PENUP
SETPOS [180 -40]
REPEAT 12 [FORWARD 100 LEFT 30 STAMP]
HOME
END

TITLE

TITLE <object>
(TITLE <object1> <object2> •..)

Prints text on the graphics screen in the turtle's pen colour and at the turtle's
position; it does not output a RETURN. If the greedy form of the primitive is
used, no spaces will be put between the objects.

The turtle does not move during the operation.

Example

TOWARDS

TOWARDS <List>

TITLE [HELLO]

Returns a heading that would make the turtle face the position given by
< L i s t >. < L i s t > is in the form [x y J and the heading returned is between
ze ro degrees and 360 degrees.

WINDOW

R moves any restrictions on the turtle's 'territory' that may have been imposed

34

using F E N C E and W RA P.

The screen becomes a window that shows only part of the field in which the
turtle can move. If the turtle moves outside this· window you can still make it
move and turn, but you cannot see it.

The new field has a measurement of 10000 steps from the home position along
both the x and y axes and is about 20 times the size of the screen. Movements
past the new boundary will wrap around.

Example

WI ND OW
CS
FORW ARD 600
RI GHT 170
FORW ARD 300

WRAP
Places a fence around the screen, but arranges that when the turtle hits the
fence it reappears on the opposite side of the screen.

Example

WR AP
CS
RT 30
FD 2000

XPOS

DRAW
WRAP

(XP OS <n>)

RT 30 FD 2000

l{Plurns the x-coordinate of the current turtle position. If you are using
multiple turtles you can find the x-coordinate of turtle < n > using the 'greedy'
form of the primitive shown above . Otherwise, it needs no inputs.

35

E ample

SETPOS (100 200]
PRINT XPOS
100

YPOS
(YPOS <n>)

This operation returns they-coordinate of the current turtle position. If you are
using multiple turtles you can find the y-coordinate of turtle < n > using the
'greedy' form of the primitive shown above. Otherwise, it needs no inputs.

Example

SETPOS (100 200]
PRINT YPOS
200

3 Flow of control

The first three sections of this chapter describe the ways in which you can
change the flow of control in Logo procedures. The last section describes in
detail the primitives that help you do this.

3.1 Repetition
If you want to execute a list of instructions a number of times, you can do this
using the REPEAT primitive:

TO SPIN
REPE AT 12 [LEFT 30 SQUARE]
END

TO SQUARE
RE PEAT 4 [FORWARD 200 LEFT 90]
END

The second lines of both SPIN and SQUARE tell the computer to execute the
primitives inside the lists 12 and 4 times respectively.

If you don't know how many times you want a sequence repeated you can use
lhe DO FOREVER primitive:

TO POLY :ANGLE
DO FORE VER [FORWARD 200 LEFT :ANGLE]
EN D

This repeats the primitives inside the brackets indefinitely to draw a closed
ligure . : ANGLE determines the type of figure drawn: it is the angle of turn (the
t'Xternal angle). The table on page 38 shows some of the types of closed figure
I hat can be drawn.

37

:ANGLE Number of sides Type of figure

45 8 Octagon

60 6 Hexagon

72 5 Pentagon

90 4 Square

120 3 Triangle

If you want to stop POLY executing you should hold down the CTRL key and
then press ESCAPE.

3.2 Conditionals
If you want a number of actions to be performed only if a certain condition is
true, you can use 'conditionals' to do this. Look at the following procedure, for
example:

TO CHECK.SIGN "NUMBER

IF :NUMBER < 0 [OUTPUT "NEGATIVE] [OUTPUT "POSITIVE]

END

PRINT CHECK.SIGN 25

POSITIVE

PRINT CHECK.SIGN - 25

NEGATIVE

The second line checks the number that is input. If a particular condition is true
(in this case, if NUMBER is negative), the contents of the first square brackets
are executed; if it is false (NUMBER is positive), the contents of the second
brackets are. The IF primitive is called a 'conditional'. It tests the truth of a
condition.

The above procedure could also look like this:

TO CHECK.SIGN :NUMBER

IF :NUMBER < 0 [OUTPUT "NEGATIVE]

OUTPUT "POSITIVE

END

The second list after IF can be omitted if the IF primitive is placed last on the
line, as this example shows. Alternatively, you could use a null list [J in place
of the second list.

Conditionals give a way of breaking out of DO FOREVER loops. For example:

TO SPIRAL
MAKE "SIDE 100
DO FOREVER [FD :SIDE LT 120 MAKE "SIDE :SIDE + 20 IF
:SIDE> 400 [STOP]]
END

This procedure draws spiral triangles until SIDE is greater than 400, then the
STOP primitive in the square brackets is obeyed and returns control to the
caller of the procedure.

3.3 Recursion
This is another way of repeating a series of actions when you do not know how
many repetitions will be necessary. The procedure SPIRAL in the last section
could now be designed in the following , more elegant way:

TO SPIRAL :SIDE
FD :SIDE
LT 120
S P IRAL :SIDE + 20
END

I [ere, SPIRAL calls itself on the last line but one, the 'recursive line' , and
draws lines indefinitely . You can make it stop by putting a conditional
1•xpression in it as follows:

TO SPIRAL :SIDE
IF :SIDE> 400 [STOP]
fD :SIDE
LT 120

P I RAL :SIDE+ 20
IND

3.4 ummary of primitives

Primitive

ALLOF

ANYOF

BREAK
CATCH

DO FOREVER

GO

IF

IF FALSE
I FT RUE
LOOP

NOT

OUTPUT
REPEAT
RUN
STOP

TEST
THROW

3.5 Primitives

ALLOF

Effect

Returns TRUE if all its inputs are true, otherwise
it returns FALSE
Returns TRUE if at least one of its inputs is true,
otherwise it returns FA LS E
Breaks out of REPEAT or DO FOREVER
Runs a list. If a THROW is called during its
execution, control returns to the command after
CATCH
Repeats a list of actions forever, or until an
interruption occurs
Transfers control to the command following a
label
Executes one of two lists of primitives, depending
upon the truth of a condition
Executes a list if most recent TEST was false
Executes a list if most recent TEST was true
Returns to beginning of R E P EA T / DO FOR E V E R
list, incrementing the repeat count if REPEAT is
used
Returns TRUE if input is false and FA LS E if input
is true
Returns a value to the calling environment
Repeats a list of primitives
Runs a list of primitives
Stops procedure and returns control to calling
environment
Notes if an expression is true or false
(See CATCH , above)

ALLOF <expression1> <expression2>
(ALLOF <expression1> <expression2> <expression3> ...)

Returns T RU E if both < e x p r e s s i o n 1 > and < e x p r e s s i on 2 > are true,
otherwise it returns FA LS E.

40

Examples

P RI NT ALLOF (2
FAL SE
P RI NT ALLOF (2
TR UE

ANYOF

3) C 4

2) C 4

4)

4)

AN YOF <expression1> <expression2>
(A NYOF <expression1> <expression2> <expression3> ...)

Returns TRUE if at least one of< exp re s s i on 1 > and <exp re s s i on 2 > is
true, otherwise it returns FALSE .

Examples

PR INT ANYOF (2 3) (4 4)
TR UE
PR IN T ANYOF (2 3) (4 5)

FA LS E
PR IN T ANYOF (2 2) (4 4)
TRU E

BREAK
Breaks out of REPEAT or DO FOREVER loop.

1<;xample

The following procedure prints a word on the screen continuously until you
press the 'A' key. It uses the R C primitive described in chapter 6,
' Input/output'.

TO READ.UNTIL.A
DOF OREVER [IF NOT KEYQ [BREAK] [IF RC
"CUSTARD! STOPJJJ
PRI NT "RHUBARB
REA D.UNTIL.A
[ND

CATCH
CAT CH <name> <List>

"A [PRINT

This runs < L i s t >. If THROW <name> is called during its execution, control
n•turns to the command after the CATCH primitive. If CATCH "TRUE is used,
this will catch any THROW .

41

CAT CH II ERROR catches an error which would otherwise print an error
m ssage and return to command level. When errors are caught, the error
m sage tha t would normally have been printed is suppressed and you can use
lhe primitive ERROR to return information to your procedures.

CATCH II ESCAPE allows you to control the use of the ESCAPE key.

See chapter 10, 'Handling keyboard errors and debugging' for a complete
description and an example.

DO FOREVER
DOFOREVER <List>

Repeats < Li s t > forever, or until one of the following occurs:

l. A BREAK, LOOP , OUTPUT or STOP is encountered.

2. An error occurs.

3. A THROW or GO is executed and moves control out of the list.

4 . ESCAPE is pressed.

Example

DOFOREVER [LT 15 SQUARE]

GO
GO <name>

Transfers control to the instruction following the label <name> in the same
procedure. <name> is normally a quoted word and can be any valid name.
Labels are declared in the form :

LABEL 1:

LABEL2:

IF
IF <expression> <List1>
IF <expression> <List1> <List2>

In the first form of IF , if <expression> is TRUE , <List1> will be
xecuted; if <express i on> is FALSE the next command will be executed.

I F must be the last command on the line.

42

In the second form of I F, if < e x p r e s s i o n > is T RU E, < L i s t 1 > will be
executed; if <exp re s s i on> is FA LS E, < L i s t 2 > will be executed.

In both cases, if < Li s t 1 > or < L i s t 2 > generated an output, the value output
will be passed back to the calling statement.

Examples

The following procedure tests for the letter 'A ' being input. Three different
forms of the procedure a re used.

I F used to control execution:

TO DECISION :TEXT
IF :TEXT = "A [PRINT "YES STOP]
PRINT "NO
END

DECISION "B
NO
DECISION "A
YE S

A different method for the same result:

TO DECISION :TEXT
IF :TEXT = "A [PRINT "YES] [PRINT "NO]
END

DECISION "B
NO
DEC ISION "A
YE S

I F used to return a result :

TO DECISION :TEXT
OU TPUT IF :TEXT = "A ["YES] ["NO]
END

PR I NT DECISION "B
NO
PR I NT DECISION "A

YE S

43

IFFAL E
IFFALSE <List>

If the result of the most recent TEST in the current procedure was FALSE , this
primitive executes <Li s t >, otherwise it does nothing (see also IF TRUE).

Example

The following procedure tests if a number input is positive or negative:

TO SIGN :NUMBER
TEST : NUMBER < 0
IFTRUE [OUTPUT "NEGATIVE]
IFFALSE [OUTPUT "POSITIVE]
END

PRINT SIGN 25
POSITIVE

PRINT SIGN 100 - 330
NEGATIVE

IFTRUE
IFTRUE <List>

If the result of the most recent TEST in the current procedure was TRUE , this
primitive executes < L i s t >, otherwise it does nothing (see also I F F A LS E).

LOOP
This returns control to the beginning of the REPEAT or DO FOREVER list. In
the case of REPEAT , it increments the repeat count.

Example

The following procedure reads ten characters. If a capital A is typed it will
print:

CAPITAL A TYPED

If a small A is typed it will print:

SMALL A TYPED

TO A.LOOP
REPEAT 10 [LOCAL "CH RC IF :CH "A [TYPE "CAPITAL]
[IF :CH= "a [TYPE "SMALL]] [LOOP]] PRINT" - A- TYPED]
END

44

NOT

NO T <expression>

Returns T RU E if <exp re s s i on> is false and FA LS E if it is true.

1<:xamples

PR INT NOT (2 2)

FAL SE
PR INT NOT (2 4)
TR UE

OUTPUT(OP)

OU TPUT <object>

This is meaningful only when it is within a procedure. It makes < o b j e c t > the
output of the procedure and passes control back to the environment (procedure
or command line) that called it.

gxample

TO AVERAGE :NUMBER1 :NUMBER2
OU T PUT (SUM :NUMBER1 :NUMBER2)/2

EN D

PR I NT AVERAGE 10 20
15
PR INT AVERAGE 20 25
22 . 5

REPEAT

RE PE AT <n> <List>

This primitive runs < L i s t > < n > times, unless one of the following occurs:

I. A BREAK, LOOP , OUTPUT or STOP is encountered.

' An error occurs.

:1. A THR OW or GO is executed and moves control out of the list.

I ESCAPE is pressed.

n > can be zero, but not negative.

/ 1.'xample

REP EAT 12 [LT 30 SQUARE]

45

RUN
RUN < List>

Executes a list of primitives.

Example

TO CALCULATE
PRINT RUN READLIST
CALCULATE
END

CALCULATE
5 + 2
7
12 = 4 * 4
FALSE
12 = 3 * 4
TRUE

STOP
This is only allowed within a procedure. It stops the procedure and returns
control to the point at which it was called.

Example

TO COUNTDOWN :NUMBER
IF :NUMBER = 0 [STOP]
PRINT :NUMBER
COUNTDOWN :NUMBER - 1
END

COUNTDOWN 4
4

3
2
1

TEST
TEST <expression>

This tests whether <express i on> is TRUE or FA LS E and remembers the
result in case there is a subsequent call to I FT RUE or I F FA LS E. Each use of
TEST is local to the procedure in which it is used.

4

Example

TO QUIZ
PRINT [WHAT IS THE CAPITAL OF FRANCE?]
TEST READLIST = [PARIS]
I FTRUE [PRINT [THAT'S RIGHT!] STOP]
I FFALSE [PRINT [SORRY! TRY AGAIN]]
QUIZ
END

QUIZ
WHAT IS THE CAPITAL OF FRANCE?
MARSEILLES
SORRY! TRY AGAIN
WHAT IS THE CAPITAL OF FRANCE?
PARIS
TH AT'S RIGHT!

THROW

THROW <name>

This has meaning only when used with the CATCH primitive. Its use is
described in section 10.2.

TH ROW " TO P LEV E L returns control to the highest command level.
TH ROW 11 LEV E L returns control to the most recent command level.

47

4 Using the editor

Acornsoft Logo contains an interactive editor which allows you to modify your
procedures and variables in a very straightforward way. You can also define a
procedure using the editor, instead of via TO . Sometimes this is more
convenient; if you make a mistake when using TO you have to use the editor to
correct it anyway.

4.1 Editing procedures
The editor can operate on one procedure at a time, or a group of procedures. To
edit one or more procedures you use EDIT , to edit all of your procedures you
use ED PS .

As an example, to edit the procedure SQUARE (which we will assume has
already been defined) you type:

EDIT "SQUARE

and the following would be displayed.

You can move around this text using the arrow keys at the right-hand side of
your keyboard, and you can change the text using the small number of keys
d scribed in section 4.5. Characters are inserted at the cursor position.

48

If any of the lines overflow the width of the screen, they will be continued in
reverse video on the second and subsequent lines. For example:

Unless you have a 6502 Second Processor, the editor will always change from
whatever text mode you are using to mode 6, the 40 character text mode; it will
also leave you in mode 6 on exit.

As you add or delete lines, the last line of text moves down, or up, respectively.
When the line at the bottom of the screen is reached, the text scrolls upwards. If
you then try to move the cursor up off the top of the screen, the text will scroll
downwards.

To get out of the editor and preserve the changes you have made you should
press COPY. To get out of it and leave the procedure as it was before you
started, you should press ESCAPE.

When you leave the editor, the text is still left in the 'edit buffer' and you can
re-enter the editor by typing:

EDIT

The edit buffer is preserved until one of the following situations occurs:

I. You start to use turtle graphics.

:l. You change the screen mode to something other than mode 6 or 7.

When you leave the editor the screen will be left in mode 6, unless you are using
11 6502 Second Processor, and the T S primitive will subsequently use this mode.
If you are using a 6502 Second Processor, the screen mode will be left
unchanged from before you used the editor.

49

J f you xit from the editor using COPY and you are not editing or defining a
pr edure, any primitives in the edit buffer will be executed immediately.

If you want to edit several procedures together you must put their names into a
li s t as follows:

EDIT [PROCA PROCBJ

4.2 Editing variables
The editor can operate upon one name (variable) at a time or a number of
names. To edit one or more names you use ED N, to edit all of your names you
use E DNS .

If you want to edit the name NUMBER (which might have the value 25, say),
you would type:

EDN "NUMBER

and the edit screen will be displayed. This looks similar to the screen described
in the last section, but instead of a procedure being displayed you will see a
MAKE primitive with NUMBER as its input:

You can now edit the name, just as you would a procedure.

4.3 Summary of primitives

Primitive

EDAL L
EDIT
EDN
EDN S
EDP S

4.4 Primitives

EDALL

Effect

Edits all procedures and names in workspace
Edits a procedure or list of procedures
Edits one or more names
Edits all names
Edits all procedures

Puts all names and procedures into the edit buffer and allows you to edit them
using the keys described in section 4.5.

EDIT(ED)

EDI T <object>

Puts the procedure or procedures specified by < o b j e c t > into the edit buffer
and allows you to edit it/them using the keys described in section 4.5.
< o b j e c t > can be a word or a list. If < o b j e c t > is absent, the current
contents of the edit buffer will be displayed.

If < o b j e c t > does not currently exist, the edit screen will be displayed and a
title line for < o b j e c t > will be inserted; you can then create a new procedure
<object > using the editor.

Examples

EDIT "CIRCLE
EDIT [SQUARE CIRCLE TRIANGLE]

EON
EDN <object>

Puts the variable or variables specified by < o b j e c t > into the edit buffer and
allows you to edit it/them using the keys described in section 4.5. < o b j e c t >
can be a word or a list. If < o b j e c t > is absent, the current contents of the edit
buffer will be displayed.

If < o b j e c t > does not currently exist, the edit screen will be displayed and a

51

MAK primitive for <object> will be inserted. If you exit from the editor
uHing OPY, this primitive and any other ones you put into the edit buffer will
b • x cuted immediately, unless one of them defines a procedure.

Rxamples

EDN "SIDE
EDN [SIDE ANGLE]

EDNS
This primitive is similar to ED N, but it allows you to edit all names.

EDPS
This primitive is similar to ED I T, but it allows you to edit all procedures.

4.5 Editing keys
Note that some functions use the FUNC key on the Electron or the CTRL key
on the BBC Microcomputer. This is indicated below by CTRL/FUNC.

Function Actions necessary

Move cursor to left Press the - key

Move cursor to right Press the - key

Move cursor up one row Press the i key

Move cursor down one row Press the ! key

Move cursor to start of
Logo line

Move cursor to end of Logo
line

Move cursor to top of text

Move cursor to bottom of
text

Insert line

52

Ho he CTRL/FUNC key down then press the -
key

Hold the CTRL/FUNC key down then press the -
key

Hold the CTRL/FUNC key down then press the i
key

Hold the CTRL/FUNC key down then press the !
key

Move the cursor to any point on the Logo line
above the one you want to insert then hold the
CTRL/FUNC key down and press N
simultaneously, or move the cursor to the end of
the previous line and press RETURN

Function Actions necessary

Delete character at cursor Hold the CTRL/FUNC key down then press the D
position key

Delete character before Press the DELETE key
cursor

Delete from cursor to end of Hold the CTRL/FUNC key down and press L
line

Delete line

Close up lines

Escape from the editor
without altering the
original procedure(s)/
name(s)

Exit from the editor and
preserve the edited
procedure(s)/name(s)

simultaneously

Move the cursor to any point on the line, then hold
down CTRL/FUNC and press U

Put the cursor at the start of the empty line then
press DELETE

Press the ESCAPE key

Press the COPY key

53

5 Workspace management

5.1 Introduction
Wh n you define a procedure it is stored in the computer's memory (the
'workspace') until the machine is switched off; it is then destroyed. If you want
to keep a set of procedures for future use, you must save them into disc or tape
'files', using the SAVE command. You can then load them hack into the
computer later using the LO AD command.

You can examine the variables and procedures in your workspace using
various primitives described in this section. You can also erase them from the
workspace or modify them using other primitives.

When you are listing procedures and variables the computer is normally in
'scroll mode'. In this state, the text will scroll up when more lines are displayed
than would fit onto the screen. You can get it to display a 'page' at a time by
holding down CTRL and pressing N. Subsequent pages can be displayed by
pressing SHIFT. You can restore scroll mode by holding down CTRL and
pressing 0.

Some of the primitives in this chapter print procedures and variables on the
text screen. If you wish, you can send this output to a printer, as well, by
holding down the CTRL key then pressing B. When you have finished, you can
disable printer output by holding down the CTRL key and pressing C.

As you add more procedures and data to the workspace, it fills up. When Logo
finds that there is no more room in the workspace, it tries to make room by a
process known as 'garbage collection'. During this process, procedures or data
items which are no longer needed are erased from the workspace. Garbage
collection can be observed as a short pause at intervals while your program is
running. If such a pause would be inconvenient during a particular operation,
you can force garbage collection beforehand using the primitive TI DY.

You can check the state of the workspace at any time using the primitive W S.
This returns a list of two numbers, the first being the total number of free bytes
in the workspace, the second the maximum workspace available for any one
item such as a list.

54

5.2 Summary of primitives

Primitive

CAT
ERALL

ERA SE
ER FILE
ERN
ERNS
ERP S
LOAD
PO
POALL

PO NS

PO PS
PO TS
RE ADPICT
SA VE

SA VEPICT
TI DY
ws

5.3 Primitives

CAT
CAT <word>

Effect

Catalogues disc or tape
Erases all procedures and variables from
workspace
Erases one or more procedures from workspace
Erases a file
Erases one or more variables from workspace
Erases all variables (names) from workspace
Erases all procedures from workspace
Loads the contents of a file into workspace
Prints definition of one or more procedures
Prints definition of all procedures and contents of
all variables in workspace
Prints name and value of every variable in
workspace
Prints definition of every procedure in workspace
Prints title line of every procedure in workspace
Reads a picture from a file
Saves all or some procedures and variables in
workspace into a file
Saves a picture in a file
Performs a garbage collection
Reports the state of the workspace

Prints the catalogue of the drive specified by <word> . CAT by itself prints the
catalogue of the current drive or tape.

Example

The following command line catalogues drive 1:

CAT 1

55

,.n LL
1°: ,· 1Ht•H 111 1 proc durcs and variables currently in the workspace. Property lists
w, 11 not b ra · d by this command; they will be erased by ERP LI ST S as
dl'Ht:ribed in chapter 14, 'Property lists'.

ERA E(ER)
ERASE <object>

Erases one or more procedures from the workspace.

Example

The following command line erases the SQUARE procedure:

ERASE "SQUARE

The following line erases the procedures SQUARE and T R I ANG LE:

ERASE [SQUARE TRIANGLE]

ERFILE
ER FILE <fi Lename>

Erases the file < f i L e n a me >.

Example

ERFILE "MYFILE

ERN
ERN <object>

Erases one or more variables from the workspace. < o b j e c t > can be a word or
a list.

Example

The following command line erases the variables S I DE and ANG LE:

ERN [SIDE ANGLE]

Note that only the most recent occurrence of the name is erased:

TO FRED :N
PRINT :N
ERN "N
PRINT :N
END

5

MAK E "N 4
IRE D 6
l,

'•
ERNS
This erases all variables from the workspace. Note that ER N erases only the
111ost recent occurrence of a particular variable whereas ER N S erases all
occurrences of all variables.

ERPS
This erases all procedures from the workspace.

LOAD
LOA D <fi Lename>

Loads the contents of the file < f i Len am e > into the workspace. The file to be
loaded must be either an extension or have been saved using the SAVE
command. Note that loading a file may redefine existing procedures and
variables.

lf the file loaded includes the procedure LO AD I NI T (as a procedure that takes
no parameters) then LOADINIT will be executed just before LOAD returns.
The circumstances in which this could be useful are described under SAVE , in
this chapter.

Example

LO AD "TURPROG

PO
PO <object>

Prints the definition of one or more procedures on the screen. < o b j e c t > can
be a word or a list.

Example

PO "TRIANGLE
TO TRIANGLE
RE PEAT 3 [FD 200 LT 120]
EN D

57

POALL
Prints the definition of every procedure and the contents of every variable
currently in the workspace. Pressing ESCAPE will abandon PO ALL.

PONS
Prints the name and value of every variable currently held in the workspace.
Pressing ESCAPE abandons PONS .

Example

PONS
"CITY is "DURHAM
"NUMBER is 337
"SHIP is [TRAMP LINER TUG FERRY]

POPS
Prints out the definition of every procedure m the workspace. Pressing
ESCAPE abandons POPS.

POTS
Prints out the title line of every procedure in the workspace. Pressing ESCAPE
abandons POT S.

Example

POTS
TO SQUARE :SIDE
TO RECTANGLE :SIDE1 :SIDE2
TO COUNTDOWN :NUMBER

READPICT
READPICT <fi Lename>

Copies the picture in the file < f i Len am e > onto the screen. The file to be
loaded will usually have been saved using the SAVE PI C T command.

Note that this primitive might change the screen mode, number of text lines,
palette and screen type (fence, wrap or window).

Example

READPICT "PICTURE

5

SAVE

S AVE <fi Lename> <object>

Creates the file < f i Len am e > and saves procedures and variables into it.
< o b j e c t > can be a word or a list.

If < o b j e c t > is omitted, all procedures and variables will be saved into
< f i Len am e >. If < o b j e c t > is present, all variables will be saved into
< f i Len am e > but the only procedures which will be saved are the ones
specified by < o b j e c t >.

If a procedure called LO AD IN IT is saved, then when < f i Len am e > is loaded
again , LO AD I N I T will be executed automatically. This could be used to:

I. Set up a particular environment for the procedures (see chapter 16, 'Creating
a Logo environment').

2. Run the procedures automatically on loading.

Note that LOAD IN IT must have no inputs for it to be executed automatically.

See also the LO AD command.

Example

SA VE "TURPROC

SA VE "MYFILE [SQUARE TRIANGLE]

SAVEPICT

SA VEPI CT <fi Lename>

Creates the file < f i Len am e > and saves into it the screen picture. See also the
RE AD PI C T command.

fl:xample

SA VEPICT "PICTURE

TIDY

When Logo runs short of workspace it automatically clears out early versions of
variables which have been changed and procedures which have been deleted. If
you want to do this yourself before a time-dependent activity, you can do so
using TIDY.

w
R ports on the state of the workspace. W S returns a list of two integers. The
first is the total number of bytes free in the workspace. The second is the
maximum workspace available for one individual item such as a list. If space is
running short, workspace may be freed automatically by garbage collection or
by calling T I DY.

6 Input/output

This chapter describes the primitives that you can use for communication
between the computer and the outside world through the keyboard, screen ,
RS423 channel, printer port, A-D channels, loudspeaker, etc.

6.1 Summary of primitives

I rimitive

AD VAL
BE EP
BU TTO NQ
CI
CT
CU RSOR
EN VEL OPE
IN KEY

KE YQ
PR INT
PR SCREE N
RC
RE AD LIST
RE ADWORD
SE TCURS OR
SH OW

SO UND
TI ME

TI ME RESET
TS
TY PE

VD U
WA IT

Effect

Accesses analogue to digital converter channels
Generates brief sound from loudspeaker
Tells you if a joystick is pressed
Clears keyboard input buffer
Clears text area of screen
Returns text cursor position [x y]

Controls pitch and volume of sound
Inputs key value if key is pressed within a given
time
Tests if key is pressed but does not wait
Prints object(s) in text area followed by a new line
Copies screen to printer
Reads next character from keyboard
Returns line from keyboard as list
Returns a word from the keyboard
Places text cursor at a given position
Prints object on screen followed by carriage
return and brackets, ifit is a list
Generates sounds from the speaker
Returns time since computer switched on or last
TIMERESET
Resets time counter to zero
Reserves entire screen for text
Prints object(s) in text area without adding a new
line
Sends codes to VDU driver
Stops execution for a given time

6.2 Primitives

ADVAL
ADVAL <n>

This primitive is equivalent to the AD VA L operation of BBC BASIC: it allows
you to access the analogue to digital converter channels of the computer.

If< n > is in the range one to four, AD VAL returns the value of that channel as
an integer between O and 4095. If < n > is anything else then it is equivalent to
the BBC BASIC AD VAL.

Full details of AD VAL are given in the User Guide for your computer.

Examples

The following command line will print the number of free spaces in the printer
buffer:

PRINT ADVAL -4

The following procedure allows you to control the turtle using a joystick:

TO DRIVE
RIGHT (2048 - ADVAL 1) / 64
FORWARD (ADVAL 2) / 128
DRIVE
ENO

BEEP
Generates a brief sound from the computer's loudspeaker.

BUTTONQ
BUTTON <n>

Returns the value TRUE if the button on the appropriate joystick is pressed,
otherwise it returns the value FALSE. The joystick is identified by < n > and
this has the following significance:

<n> Meaning

1 Button on joystick 1
2 Button on joystick 2

Any other value of < n > is treated as an error.

62

Cl
Clears the keyboard input buffer. Any keys pressed before C I is issued will be
forgotten.

CT
Clears the text area of the screen and puts the cursor at its upper left hand
corner. The graphics area is not cleared.

CURSOR
Returns the text cursor position as a list of its x- and y-coordinates.

You can set the cursor to a specific text position using SET CURSOR.

ENVELOPE
This primitive is identical to the ENVELOPE operation of BBC BASIC: it is
used with the SOUND operation to control the volume and pitch of a sound and
it has 14 parameters. Full details are given in the User Guide for your
computer.

Examples

EN VELOPE 1 1 4 -4 4 10 20 10 127 0 0 -5 126 126

The following commands give a warbling 'ray gun' noise:

ENVELOPE 2 1 96 0 0 100 100 100 127 -2 -1 -1 126 0
RE PEAT 5 [SOUND 2 2 1 25]

INKEY
I NKEY <n>

If < n > is in the range:

0 <= <n> <= 3276

IN K E Y waits for that number of tenths of seconds or until a key is pressed. If
no key is pressed, the empty word is returned; if a key is pressed, the
one-character word CH AR <code> is returned, where <code> is the ASCII
value of the key. If < n > is greater than 3276 an error is generated.

If < n > is negative, a specific key is tested and the value TRUE is returned if
that key is currently pressed; otherwise, the value FALSE is returned.

'3

Example

The following command line waits for up to a second and puts the value of any
key pressed into CH A RAC TE R:

MAKE "CHARACTER INKEY 10

KEYQ
This primitive returns the value TRUE if a key has been pressed and its value
has not been used by R C, RE AD WORD or RE AD LI NE ; otherwise, it returns the
value FA LS E.

Example

The following procedures allow you to control the movement of the turtle using
only four keys; this could be suitable for use by small children.

TO TURTLEMOVE
GETKEY
TURTLEMOVE
END

TO GETKEY
MAKE "KEY TESTKEY
Cl
IF :KEY = "L [LEFT 1 5 J
IF :KEY = "R [RIGHT 15]
IF :KEY = "F [FORWARD 20]
IF :KEY = "B [BACK
IF :KEY = "D [DRAW]
END

TO TESTKEY
IF KEYQ [OUTPUT RC]
OUTPUT "
END

20]

Here, the procedure TEST KEY checks to see if a key has been pressed and
returns the empty word or the value of the key pressed.

PRINT(PR)
PRINT <object>
(PRINT <object1> <object2> •..)

This takes one or more words or lists and outputs them at the text cursor
position; it then outputs a RETURN. A space is output between successive
items.

64

PR I NT is similar to TYPE but it inserts spaces between items and it ends the
text with a RETURN.

Examples

P RINT SENTENCE [THIS IS] [A LONG LIST]
THIS IS A LONG LIST
P RINT SENTENCE "THIS [IS ANOTHER LIST]
THIS IS ANOTHER LIST
(PRINT "SO "IS "THIS)
SO IS THIS

PRSCREEN

This primitive copies the contents of the screen to the printer. Both the
graphics and text areas are copied. If the screen is in modes 3, 6 or 7, this
primitive does nothing. If ESCAPE is pressed the printout is abandoned.

P R SCREEN is supplied as part of each printer extension, for example, EPSON.
You must load the appropriate extension for your printer.

L-<«<««««<««<««<«<«««««««<««<««-«<««<j

Sample of PR S C RE EN output

RC

This primitive reads the next character from the keyboard; if none is available, it
waits until something is typed. The character is not shown on the screen.

l<br an example of its use, see the description of the primitive KEY Q in this chapter.

READLIST(RL)

This operation returns a line that is read from the keyboard in the form of a liHt.
The line is shown on the screen.

(j

You can use the normal BBC Microcomputer or Acorn Electron line editing
facilities as you are inputting the line.

Example

TO WATER
PRINT [WHAT SEPARATES BRITAIN FROM FRANCE?]
IF RL = [ENGLISH CHANNEL] [PRINT [CORRECT!] STOP]
PRINT [NO, TRY AGAIN]
WATER
END

WATER
WHAT SEPARATES BRITAIN FROM FRANCE?
THE COMMON MARKET
NO, TRY AGAIN
WHAT SEPARATES BRITAIN FROM FRANCE?
ENGLISH CHANNEL
CORRECT!

READWORD(RW)

This operation returns the first word of a line that is read from the keyboard.
The line is shown on the screen. If the line has no characters when RETURN is
pressed, an empty word is returned.

You can use the normal BBC Microcomputer or Acorn Electron line editing
facilities as you are inputting the line.

SETCURSOR

SETCURSOR <List>

This primitive places the text cursor at the position given by < L i s t >.
< L i s t > has the column number as the first element and the line number as
the second. Line and column numbering on the screen depend upon the screen
mode, but the top left-hand corner of the text area is always [0 0 J .

Example

SETCURSOR [20 12]

66

SHOW
SHOW <object>

Prints the contents of < o b j e c t > on the screen, followed by a carriage return.
If < o b j e c t > is a list, the list brackets are printed around it.

Examples

SHO W SENTENCE [THIS IS] [A LONG LIST]
[THIS IS A LONG LIST]

SHO W "THIS
THIS

SOUND
SOU ND <channel> <amplitude> <pitch> <duration>

This is equivalent to the SOUND command in BBC BASIC. It is used to make
the BBC Microcomputer or Acorn Electron generate sounds from the internal
loudspeaker. Full details are given in the User Guide for your computer.

Example

The following command line will play a note on sound channel 1 with a loudness
of - 15 (maximum volume), a pitch value of middle C and a duration of one
second (20 twentieths of a second):

SO UND 1 -15 53 20

TIME

Returns the time (in tenths of a second) since one of the following events
occurred:

1. The computer was switched on.

2. BREAK was pressed.

3. The TIMERS ET operation (see below) was last used.

The time returned is accurate to within one tenth of a second. The time 'wraps
round' to zero at 26214 (after 43 minutes, 41.44 seconds).

Examples

PRI NT TIME
53 12

DR AW
RE PEAT 10 [FORWARD 32 TITLE TIME]

·7

TIMERESET
This primitive resets the time counter to zero.

Example

PRINT TIME
5312
TIMERESET
PRINT TIME
10

The time count returned would have been zero if we could type a little faster!

TS
Reserves the entire screen for text and clears the entire screen. It may change
the screen mode.

TYPE
TYPE <object>
(TYPE <object1> <object2> ...)

This primitive takes one or more words or lists and outputs their contents at
the text cursor position; it does not output a RETURN. The text cursor moves
to the end of the printed text.

TYPE is similar to PR I NT , but it does not insert spaces between items or end
the text with a RETURN.

Example

The following procedure types a message followed by a space. It then moves the
turtle forward a distance specified by the user. Note the presence of the -
character; this tells Logo that a special character (in this case the space)
follows.

TO MOVETURTLE
TYPE [HOW MANY STEPS SHOULD I TAKE?]
TYPE" / (space)
FORWARD RW
MOVETURTLE
END

MOVETURTLE
HOW MANY STEPS SHOULD I TAKE? 100
HOW MANY STEPS SHOULD I TAKE? 50
HOW MANY STEPS SHOULD I TAKE? -150

6

VDU
VDU <object>
(V DU <object1> <object2> ...)

This is equivalent to the VDU command of BBC BASIC: it allows you to send
codes to the VDU driver of your computer.

Each input can be:

l. A number.

2. A list, each of whose items is either a number or ; .

3. The word 11
;.

The input 11
; can occur only after an input which is a number.

Specifying a list is exactly like specifying each item of the list as a separate
input.

Examples

The following command line turns the printer on and copies all text typed
subsequently to it:

VDU 2

This one turns it off:

VD U 3

The following procedure changes the turtle's shape to a 'pencil':

TO DEFPEN
VD U [23 224 0 0 0 0 0 1 2 2]
VD U [23 225 0 0 0 0 0 128 64 32]
VD U [23 226 5 4 8 8 16 17 33 34]
VD U [23 227 32 192 64 128 128 0 0 0]
VD U [23 228 66 68 228 248 240 224 192 128]
SE TSH [11 228 11 8 226 227 11 8 8 224 225]
EN D

WAIT
WA IT <n>

This command stops the program running for < n > tenths of a second or until
you press ESCAPE.

(if)

Example

The following procedure draws a hexagon. After the procedure draws each side
it makes the loudspeaker beep and waits for two and a half seconds before it
draws the next side.

TO HEXAGON :SIDE
REPEAT 6 [FORWARD :SIDE LEFT 60 BEEP WAIT 25]
END

70

7 Procedures and variables

A variable can be regarded as a 'box' containing a word or a list. You can put
information into variables in two ways: by making them inputs (or parameters)
to procedures (see section 1.5) or by assigning values to them using the MAKE
and LOCAL primitives.

This chapter describes the primitives used to put information into these
variables. Primitives connected with procedures are also described here.

7.1 Summary of primitives

Primitive

COPYDEF
DEFINE

DEFINEDQ

END
LOCAL

MAKE
P RIMITIVE Q
TEXT

THING
THINGQ

TO

7.2 Primitives

COPYDEF

Effect

Copies a procedure definition and renames it
Allows you to write procedures that define other
procedures
Tests if a word is a procedure name
Defines the end of a procedure
Makes a variable local to procedure within which
LO C A L is used
Assigns a value to a variable
Tests if a command is a primitive
Extracts text of a procedure in the form of a list
Returns contents of a variable
Checks if a name is a variable
Defines a procedure and names its inputs

COPYDEF <newname> <name>

Copies the definition of the procedure <name> and gives it the name
<new name> . If <name> is a procedure rather than a primitive, <new name>
is part of the workspace and can be erased or redefined. If it is a primitive,
<new name> is also a primitive and cannot be saved, erased or redefined. On
use of COPY DE F might be to shorten the name of a primitive.

71

COPY DE F cannot be used to copy the definitions of operators such as + and - .

Example

The following command line gives the procedure F the same definition as the
primitive F O R WA R D:

COPYDEF "F "FORWARD

DEFINE
DEFINE <name> <List>

Allows you to write procedures that define other procedures. <name> is the
procedure to be defined; <Li s t > helps with the definition and it consists of the
following sub-lists:

List

First sub-list

Second sub-list

Third sub-list

Fourth sub-list

etc.

Contents

Inputs to the procedure. If there are no inputs this
must be the empty list

First line of the procedure

Second line of the procedure

Third line of the procedure

The primitive TEXT returns the contents of a procedure definition in the above
form.

Example

The following procedure defines another procedure which draws spirals. Note
that there are no quotes or colons on the inputs and there is no END primitive.

TO DEFSPI
DEFINE "SPI [[SIDE ANGLE] [FD :SIDE RT :ANGLE] [SPI
:SIDE + 10 :ANGLE]]

END

DEFINEDQ
DEFINEDQ <word>

Returns the value TRUE if <word> is the name of a procedure or primitive,
otherwise it returns the value FA LS E.

72

END
Tells Logo that the definition of a procedure which began using TO is complete.
END must be on a line by itself.

LOCAL
LOCAL <name> <item>

This primitive hides any previous occurrence (if one exists) of <name> from
the current procedure or list (for example, REPEAT) and establishes a new one
containing < i t em>. The previous value is restored in the following
circumstances:

1. On leaving the procedure or list in the normal way.

2. When a THROW transfers control to a procedure at a higher level.

3. When ER N is used to erase the name.

4. When CTRL and ESCAPE are pressed together.

LOCAL should always be used for data that is local to a procedure; it makes
writing large programs much easier.

MAKE

MAKE <name> <object>

Assigns the value < o b j e c t > to <name>.

Examples

MAKE "PET "DOG
PRINT :PET
DOG

MAKE "NUMBERS [12 24 36 48]
PR INT :NUMBERS
12 24 36 48

PRIMITIVEQ

PR IMITIVEQ <object>

Returns T RU E if < o b j e c t > is the name of a primitive, otherwise it returns
FA LS E.

7'

Examples

PRINT PRIMITIVEQ "FORWARD
TRUE

PRINT PRIMITIVEQ "SQUARE
FALSE

TEXT
TEXT <name>

Returns the definition of <name> as a list of lists. The output is suitable for
input to DE F IN E.

Example

In this example we assume that the procedure SPIRAL is defined as follows:

TO SPIRAL :SIDE
FD :SIDE
LT 90
SPIRAL :SIDE+ 20
END

TO DEFSPI
DEFINE "SPI TEXT "SPIRAL
END

DEFSPI

will result in S PI having the same definition as SPIRAL.

THING
THING <item>

Returns the contents of < i t em>. TH I NG is similar to dots (:) but can be
applied to expressions whereas dots can only be applied to names.

Example

MAKE "SHIP "TRAWLER
PRINT :SHIP
TRAWLER

PRINT THING "SHIP
TRAWLER

PRINT THING (WORD "SH "IP)
TRAWLER

74

THINGQ
THINGQ <item>

Returns the value TRUE if < i t em> has some value, otherwise it returns the
value FA LS E.

Example

PRINT THINGQ "ARTIST
FALSE
MAKE "ARTIST "RENOIR
PRINT THINGQ "ARTIST
TRUE

TO
TO <name>
TO <name> <name1> <name2> ••• <namen>

Tells Logo that a procedure called <name> is being defined with the inputs
<name 1 >, etc (if present). All subsequent lines up to and including the END
line will be stored in the workspace for later execution.

The prompt changes from ? to > to show that Logo is 'learning' a new
procedure rather than obeying commands.

The procedure definition can be abandoned by pressing ESCAPE.

'I ,

8 Arithmetic

Logo gives you a set of facilities which let you add, subtract, multiply and
divide numbers. It also provides primitives for trigonometric and other
functions.

Numbers are treated as a special category of words. They are handled like text
unless the context forces them to be treated as values, for example:

PRINT 1000
1000
PRINT 1000 + 500
1500

The numbers themselves can be whole numbers or decimal numbers.
Acceptable number formats include 9999, 99.99, 0.9, .99, 9.99E33 and 9.99N9.
Numbers are rounded to eight significant digits and numbers too large to be
stored (typically, larger than 1.0E38) are not accepted.

2E3 means two multiplied by (10 to the power of 3), or 2000. 2N3 means two
multiplied by (10 to the power of minus 3), or 0.002. Other examples of the E
and N form of numbers are:

Number Equivalent

6E2 600
2.4E2 240
6N2 0.06
2.4N2 0.024
6E6 6 OOO OOO

Numbers output by primitives do not use the E or N format unless they are
larger than 99,999,999 or smaller than 0.1 (but see the SET DEC S primitive
described in this chapter). Leading and trailing zeros are omitted, except that
values less than one have a leading zero. Positive numbers are not shown with
a + sign.

The biggest number that can be held is 1.7014118E38. The smallest non-zero
value is 1.469368N39.

Some primitives require numeric inputs in the form of integers within the more

76

restricted range of - 32768 to 32767. Such primitives round fractions to the
nearest integer, for example:

RE PEAT 4.6 [. ..]

will execute the list five times. The primitives which allow the full range of
numbers (apart from the operators + , - , etc) are: AT N, BACK, COS , EXP ,
EX PLORE , FORWARD,INT,LEFT , LN , PRODUCT , QUOTIENT,REMAINDER,
RI GHT, ROUND, SETH, SIN , SQRT (positive numbers only), SUM and TAN .

8.1 Summary of primitives

Primitive

ASN
ATN
cos
DEC S

EXP
I NT
LN
NUMBERQ
PI
PRO DUCT
QUO TIENT
RAN DOM
REM AINDER
RER ANDOM
ROU ND
SE TD ECS
SI N
SQR T
SUM
TA N
+

*
I

>
<
C

Effect

Returns arcsine
Returns arctangent
Returns cosine
Returns a value which defines the number of
decimal places being used
Returns exponential function
Returns integer part
Returns natural logarithm
Tests if an object is numeric
Returns the value ofpi
Returns product of its inputs
Returns integer part of a/ b
Returns random integer
Returns remainder of a/ b
Seeds the random number generator
Rounds number to nearest integer
Controls the handling of numbers
Returns sine
Returns square root of its input
Returns the sum of its inputs
Returns tangent
Adds numbers on either side and returns result
Subtracts number on right from number on left
Returns product of numbers on either side
Divides number on left by number on right and
returns result
Return the result of comparing
the numbers on each side (TRUE
or FALSE)

77

8.2 Primitives

ASN
ASN <number>

Returns the arcsine (inverse sine) of <numb e r >. The arcsine is the angle in
degrees corresponding to a given sine value. It is in the range - 90 to 90.

The arccosine of a number can be calculated by first evaluating its arcsine and
then subtracting the result from 90. This gives a value between O and 180.

This primitive is in the extension CAL C.

Examples

PRINT ASN 1
90
PRINT ASN 0.8660254
60

ATN
ATN <number>

Returns the arctangent (inverse tangent) of< number> . The arctangent is the
angle in degrees corresponding to a given tangent value. It is in the range - 90
to 90.

Examples

PRINT ATN 1
45
PRINT ATN 1.7320508
60

cos
COS <degrees>

Returns the cosine of <deg r e e s >.

Examples

PRINT COS 30
0.8660254
PRINT COS 60
0.5

78

DECS
Returns a value which indicates the number of decimal places used in
calculations (see SET DEC S).

EXP
EX P <number>

Returns the exponential function of <number>, in other words 2.7182818 to
the power of < numb e r >.

This primitive is in the extension CAL C.

Example

PR INT EXP 1
2. 7182818

INT

I NT <number>

Returns the integer part of <number>; any decimal part is stripped off. No
rounding occurs when I NT is used (contrast this with the ROUND operation
described later in this chapter).

Examples

PR INT INT 9. 12 3
9
PR INT INT -9.123
-1 0
PR INT INT 9.5
9
PR INT INT 9.999
9

LN

LN <number>

Returns the natural logarithm of <numb e r >. This primitive is in the
extension C A L C .

Example

PRI NT LN 2.7182819
1

7

NUMBERQ
NUMBERQ <object>

Returns the value TRUE if the < o b j e c t > is a number, otherwise it returns
the value FA LS E.

Examples

PRINT NUMBERQ 23
TRUE

PRINT NUMBERQ [23]
FALSE

PRINT NUMBERQ 3.33E20
TRUE

PRINT NUMBERQ II

FALSE

PRINT NUMBERQ []

FALSE

PI
Returns the value of pi (ie 3.141592654). This primitive is in the extension
CA LC.

PRODUCT
PRODUCT <number1> <number2>
(PRODUCT <number1> <number2> .•• <numbern>)

Returns the product of its inputs. It has the same effect as the* operator except
that, being a greedy primitive, it can take more than two inputs.

Examples

PRINT PRODUCT 10 10
100
PRINT (PRODUCT 1 2 3)
6

QUOTIENT
QUOTIENT <number1> <number2>

Divides <numb e r 1 > by <numb e r 2 > and returns the integer part
unrounded. If <numb e r 2 > is zero, an error will be generated.

80

Q U OT I ENT and REM A IND ER are intended for use with integer arithmetic.
However, they also have uses in other cases, for example:

MAKE "HEAD REMAINDER :ANGLE 360

Examples

PRINT QUOTIENT 10 2
5
PRINT QUOTIENT 10 3
3
PRINT QUOTIENT 10 13
0
PRINT QUOTIENT 14 3
4
PR INT QUOTIENT 14 -3
-5
PR INT QUOTIENT -14 3
-5
PR INT QUOTIENT -14 -3
4

RANDOM

RA NDOM <n>

Returns a random non-negative integer less than <n> . See also RE RANDOM .

You do not get the same sequence of numbers each time the computer is
switched on.

Example

RAN DOM 2 could output 0 or 1 and could be used to simulate tossing a coin:

TO COIN
IF RANDOM 2 = 0 [PRINT "HEADS STOP]
PRI NT "TAILS
COI N
END

COI N
TAIL S
TAIL S
HEAD S

The exact number of TA I LS will vary.

HI

REMAINDER
REMAINDER <number1> <number2>

Divides <number 1 > by <number 2 > and returns the remainder. If
<numb e r 2 > is zero an error will be generated. Contrast with Q U OT I ENT.

Examples

PRINT REMAINDER 10 2
0
PRINT REMAINDER 10 3
1
PRINT REMAINDER 10 13
10
PRINT REMAINDER -10 3
2
PRINT REMAINDER 14 3
2
PRINT REMAINDER 14 -3
-1
PRINT REMAINDER -14 3
1
PRINT REMAINDER -14 -3
-2

RERANDOM
RERANDOM <n>
RERANDOM

This primitive 'seeds' the random number generator so that it produces a
repeatable sequence of random numbers when RANDOM is called. Different
values of < n > give different sequences.

If < n > is not specified, this will seed the random number generator with a
random number. You can use this to break out of a repeatable sequence.

Example

RANDOM 2 could output 0 or 1 and could be used to simulate tossing a coin. In
the following example, the same sequence would be obtained each time the
program is run:

82

TO COIN
IF RANDOM 2 = 0 [PRINT "HEADS STOP]
PR INT "TAILS
CO IN
EN D

TO REP.COIN
RE RANDOM 17
COIN
END

REP.COIN
TAILS
HE ADS

ROUND
RO UND <number>

This primitive rounds <number> to the nearest integer. Contrast the
examples given below with those for IN T.

PR INT ROUND
9
PR INT ROUND
10
PR INT ROUND
10
PR INT ROUND
- 10

SETDECS
SET DECS <n>

9. 123

9.5

9.999

-9.5

Controls the handling of numbers. If< n > is in the range O to 7, the N format of
numbers will not be output. Instead, numbers will be rounded to the given
number of decimal places. If < n > is 8, normal output will be restored.

SET DEC S 0 provides for integer arithmetic.

/<,'xample

PRI NT 1/3
0 .3 3333333
SE TD ECS 2
PRI NT 1/3
0 .33

Note that SET DEC S also affects calculations. For example:

SETDECS 2
PRINT (1234/1000) * 100
123

SIN
SIN <degrees>

This primitive returns the sine of <deg re e s >.

Examples

PRINT SIN 30
0.5
PRINT SIN 60
0.8660254

SQRT
SQRT <number>

This primitive returns the square root of <numb e r >. If <numb e r > is
negative an error will be generated.

Examples

PRINT SQRT 4
2
PRINT SQRT 2
1.4142136

SUM
SUM <number1> <number2>
(SUM <number1> <number2> ••• <numbern>)

This primitive returns the sum of its inputs.

Examples

PRINT SUM 5 10
15
PRINT (SUM 1 2 3)
6
PRINT (SUM 2.5 5)
7.5
PRINT (SUM 1 2 -4)
-1

84

TAN
TAN <degrees>

This primitive returns the tangent of <deg re e s >. It is in the extension
CA LC .

Examples

PRINT TAN 45
1
PR INT TAN 0
0

The + Operator
<number1> + <number2>
+<n umber>

This operation returns the sum of its inputs.

Examples

PRINT 5 + 10
15

The - Operator
<n umber1> - <number2>
-< number>

- is treated as the binary form unless one of the following situations occurs:

l. It follows a space and is followed by a number without a space between the
two, for example: (PR I NT 3 - 2)

2. The context is such that it mu~t be unary, for example: PR I NT - 2

Examples

PRI NT 10 - 3
7

(P RINT 3 -2)
3 - 2

The * Operator
<n um ber1> * <number2>

This operator returns the product of its inputs.

Example

PRINT 2 * 3
6

The / Operator
<number1> / <number2>

This operator returns a value equal to <numb e r 1 > divided by <numb e r 2 >.
It returns an error if <numb e r 2 > is zero.

Examples

PRINT 10/2
5

PRINT 10/3
3.3333333

The > Operator
<number1> > <number2>

This returns the value TRUE if the number on its left is greater than the one on
its right, otherwise it returns the value FA LS E.

Examples

PRINT 10 > 4
TRUE

PRINT 10 > 20
FALSE

The < Operator
<number1> < <number2>

This returns the value T RU E if the number on its left is less than the one on its
right, otherwise it returns the value FA LS E.

Examples

PRINT 10 < 20
TRUE

PRINT 10 < 4
FALSE

86

The = Operator
<number1> = <number2>

This returns the value TRUE if the object on its left is equal to the one on its
right, otherwise it returns the value FALSE.

If both objects are numeric it does a numeric comparison, otherwise it does a
textual one. To force a textual comparison, you should place the items in lists.

Examples

PRINT 5 = 5
T RUE

PRINT 5 = 10
FALSE

PRINT "1E4 = "10E3
T RUE

PRINT (LIST "1E4) = (LIST "10E3)
FALSE

PRINT "1E4A = "10E3A
FALSE

87

9 Words and lists

Logo has two types of object: 'words' and 'lists'. It also has operations which
allow you to join objects together, break them into distinct parts or examine
them. The first section of this chapter tells you more about words and lists; we
then go on to describe the primitives that you can use with them.

9.1 Introduction

9.1.1 Words

In English and many other languages, groups of letters with an accepted
meaning are termed 'words'. In Logo, a similar system applies. You indicate
that a Logo object is a word by preceding it with quotes, as in:

PRINT "HELLO
HELLO
PRINT "A
A
PRINT " WHAT?
WHAT?

The quotes are not part of the word and they must only appear at the start ofit.
If they are put around the word, as they are in ordinary punctuation, the last
quotes will be printed:

PRINT " HELL O"
HELLO"

You do not, however, have to use quotes before numbers. For example:

PRINT 10 6 6
1066
PRINT 3.14159
3.14159

Words can be broken into smaller words using the F I R S T, LA S T, I T EM,
BUT F I R ST and BUT LAST primitives. For example:

PRINT FIRST "CAT S
C
PRINT BUTFIRST "CATS
ATS

88

If you were to type the following:

PRINT BUTFIRST "C

everything but the first character (C) would be output. You would get a word
containing no characters and this is called 'the empty word'. You can use the
empty word in your procedures by typing quotes followed by no characters, as
m:

PRINT II

(empty line)

9.1.2 Lists
A list is a sequence of 'elements' separated by spaces. Each element can be
either a word or another list:

PRINT [THIS IS [A LIST]]
TH IS IS [A LISTJ

The items between the square brackets are a list with the elements:

TH IS
I S
[A LISTJ

PR I NT strips off the outer square brackets and prints just the elements of the
List. The square brackets are a way of identifying the sequence as a list. SHOW
displays the list with the brackets intact:

SHOW [THIS IS [A LIST]]
[THIS IS [A LIST]]

The first two elements are words, the last is another list. Spaces are used only
to separate the elements of the list; extra spaces are ignored. For example:

PRI NT [LOOK
LOO K NO SPACES

Words in a list do not need quotes:

PRI NT "HELLO
HE LLO
PR I NT ""HELLO
"H ELLO
PR I NT FIRST [HELLO]
HE LL O
PR I NT FIRST ["HELLO]
"H EL LO

NO SPACES]

You can manipulate lists in a similar manner to words, using the primitives
F I R ST , LAS T, IT EM , BUT F I R ST and B U T LAS T. However, instead of them
operating on the characters of a word to give words, they operate on the list to
give words or another list:

PRINT FIRST [THIS IS [A LIST]]
THIS
PRINT LAST [THIS IS [A LIST]]
A LIST

If you were to type the line:

PRINT BUTFIRST [THIS]

everything but the word TH I S would be printed. Logo would give you a list
containing no words and this is known as 'the empty list' . You can use the
empty list in your programs by typing [J , as in the following:

PRINT [J

(empty line)

9.2 Summary of primitives

Primitive

ADD ITEM
ASCII
BUTFIRST
BUTLAST
CAPS
CHAR
COUNT
EMPTYQ

ER ITEM
FIRST
FPUT

ITEM
LAST
LIST
LISTQ

LPUT

90

Effect

Inserts a new element in a list or word
Returns ASCII code of its input
Returns everything but first element of an object
Returns everything but last element of an object
Changes letters of an object to capitals
Returns character whose ASCII code is its input
Returns number of elements in a list or word
Tests if an object is the empty word or the empty
list
Removes an element from a word or list
Returns first element of an object
Produces a new object by putting an object at the
front of an old one
Returns an element of a list or word
Returns last element of an object
Combines objects to form a list
Tests if object is a list
Produces a new object by putting an object at the
end of an old one

Primitive

MEM BER

ME MBERQ
SENT ENCE
SET ITEM
WOR D
WOR DQ

9.3 Primitives

ADDITEM

Effect

Tests if an object is part of a word or list and
returns element number, ifit is
Tests if object is an element of a list or word
Combines objects to form a list
Changes an element of a list or word
Combines words to form another word
Tests if an object is a word

ADDI TEM <n> <object> <newitem>

Creates a new object from an old object with <new i t em> added at position
< n >. If < i t em> is a word, <new i t em> must not be an empty word and only
its first character will be used.

Examples

MAKE "CAPITALS [OTTAWA WASHINGTON LONDON]
MAKE "CAPITALS ADDITEM 3 : CAPITALS "OSLO
PRI NT : CAPITALS
OTT AWA WASHINGTON OSLO LONDON

MAKE "NAME "JON
MAKE "NAME ADDITEM 3 :NAME "H

PRI NT :NAME
J OHN

ASCII

ASCI I <character>

This returns the ASCII code for <character> ; if the word used as input
contains more than one character, only the first will be used. Appendix
contains a list of ASCII codes and their equivalent characters.

The primitive CH AR has the reverse effect to ASCII.

Examples

PRI NT ASCII "A
65

PRINT ASCII "a
97

PRINT ASCII 1
49

BUTFIRST(BF)
BUTFIRST <object>

This outputs everything but the first element of < o b j e c t >, which can be a
word or a list. If you try to use the empty word or the empty list an error will be
generated.

Examples

PRINT BUTFIRST "CATS
ATS

PRINT BUTFIRST [TORTOISESHELL CATS ARE GREAT]
CATS ARE GREAT

TO TRIANGLE :TEXT
IF : TEXT = II [STOP]
PRINT :TEXT
TRIANGLE BUTFIRST :TEXT
END

TRIANGLE "QUEBEC
QUEBEC
UEBEC
EBEC
BEC
EC
C

BUTLAST~L)
BUTLAST <object>

This outputs everything but the last element of < o b j e c t >, which can be a
word or a list. If you try to use it on the empty word or the empty list an error
will be generated.

Examples

PRINT BUTLAST "CATS
CAT

92

P RINT BUTLAST [ORANGES LEMONS [CITRUS FRUIT]]
ORANGES LEMONS

The following procedure reverses the text typed in; it uses the operation WORD
to combine two words. The inputs to WORD are each surrounded by brackets to
make the example clearer, but the brackets are not necessary.

TO REVERSE :TEXT
I F :TEXT = II [OUTPUT "]
OUT PUT WORD (LAST :TEXT) (REVERSE BUTLAST :TEXT)
END

P RI NT REVERSE "HELLO
OLLE H

P RI NT REVERSE "THERE
ERE HT

The third line of REV ER S E outputs the last letter of TEXT joined to the reverse
of the rest of TEXT , and so on, until an empty word is encountered.

CAPS
CAPS <object>

This outputs < o b j e c t > with all the letters in it in upper case.

Examples

MAK E "NAME
PR INT CAPS
SUS AN

PR INT CAPS
[FRED JIM]

CHAR
CHAR <n>

"susan
:NAME

[[FRED jim] Shei La]
SHE ILA

This is the reverse of AS C I I : it returns a one character word whose ASCII cod
is <n> .

The ASCII codes and t heir corresponding characters are listed in Appendix

Examples

P RI NT CHAR 65
A
P RI NT CHAR 49
1

The following procedure converts a list of ASCII characters back into text form:

TO CONVERT.BACK :TEXT
IF :TEXT= [J [STOP]
TYPE CHAR (FIRST :TEXT)
CONVERT.BACK BUTFIRST :TEXT
END

CONVERT.BACK [76 79 71 79]
LOGO

In this procedure, the brackets around F I R ST : TEXT are not needed; they
are included merely for the purpose of clarity.

COUNT
COUNT <object>

This returns the number of elements in < o b j e c t >, which can be a word or a
list.

Examples

PRINT COUNT [TORONTO SEATTLE LONDON HARARE]
4
PRINT COUNT "TORONTO
7
PRINT COUNT [[A B CJ [DE FJJ
2

EMPTYQ
EMPTYQ <object>

This returns the value TRUE if< o b j e c t > is the empty word or the empty list,
otherwise it returns the value FA LS E.

Examples

EMPTYQ 12
outputs FALSE

EMPTYQ [DOGS CATS]
outputs FALSE

EMPTYQ II

outputs TRUE

EMPTYQ [J

outputs T RU E

94

ERITEM
ERITEM <n> <oldobject>

Generates an object from a given < o L do b j e c t > with the element at position
< n > of < o L d o b j e c t > erased.

Examples

MA KE "CAPITALS [OTTAWA HARARE WASHINGTON LONDON]
PR INT ERITEM 3 :CAPITALS
OT TAWA HARARE LONDON

MA KE "CONTINENT "AUSTRALASIA
MA KE "CONTINENT ERITEM 8 :CONTINENT
MA KE "CONTINENT ERITEM 8 :CONTINENT
PRI NT :CONTINENT
AUSTRALIA

FffiST
FI RST <object>

This returns the first element of < o b j e c t >, which can be a word or a list. If
you try to use the empty word or the empty list, an error will be generated.

Examples

PR INT FIRST "NAPOLEON
N
PRI NT FIRST [NAPOLEON BONAPARTE]
NA POLEON

FPUT

FPUT <object> <oldobject>

This takes < o l do b j e c t > and produces a new object by putting < o b j e c t >
at the beginning ofit. If <o ldob j e c t > is a word, <object> must not be an
empty word and only its first character is used. ·

Examples

FP UT [THIS IS] [A LONG LIST]
outputs [[TH I S I S J A LONG LI S T]

FP UT "THI S [IS ANOTHER LIST]
outputs [TH I S I S ANO T H E R LI S TJ

FP UT "A " ANOTHER
outputs "A ANOTHER

FPUT "A []
outputs [A J

ITEM
ITEM <n> <object>

This returns the < n >th element of < o b j e c t >, which can be a word or a list.
An error will be generated if < n > is greater than the number of items in
< o b j e c t > or if < o b j e c t > is the empty list.

Examples

PRINT ITEM 1 [ATLANTIC PACIFIC MEDITERRANEAN AEGEAN]
ATLANTIC
PRINT ITEM 3 [ATLANTIC PACIFIC MEDITERRANEAN AEGEAN]
MEDITERRANEAN
PRINT ITEM 3 "ATLANTIC
L

LAST
LAST <object>

This returns the last element of < o b j e c t >, which can be a word or a list. If
you try to use the empty word or the empty list, an error will be generated.

Examples

PRINT LAST "ICELAND
D
PRINT LAST [NORTH AMERICA]
AMERICA

LIST
LIST <object1> <object2>
(LIST <object1> <object2> •..)

This returns a list whose elements are < o b j e c t 1 >, < o b j e c t 2 > , etc. Each
element can be a word or another list.

Contrast this primitive with SENT ENC E.

Examples

LIST [THIS IS] [A LONG LIST]
outputs [[TH I S I S] [A LONG LI S T]]

96

LIST "THIS [IS ANOTHER LIST]
outputs [TH IS [IS ANOTHER LIST]]

LI ST "AND "ANOTHER
outputs [AN D ANO TH E R]

LI ST "A []
outputs [A []]

LISTQ
LI STQ <object>

This returns the value TRUE if < o b j e c t > is a list ; otherwise it returns the
value FA LS E.

Examples

PRINT LISTQ 25
FALSE
PRINT LI STQ [10 20 30 40]
TR UE
PRINT LI STQ []

TRUE
PRINT LISTQ II

FAL SE

LPUT
LPU T <object> <oldobject>

This tak es < o L do b j e c t > and produces a new object by put ting < o b j e c t >
at the end of it. If< o L do b j e c t > is a word, < o b j e c t > must not be an empty
word and only its first character is used.

Examples

LP UT [THIS IS] [A LONG LIST]
outputs [A LONG LI S T [TH I S I S]]

LP UT "THIS [IS ANOTHER LIST]
outputs [I S ANOTHER LI ST TH I S]

LP UT "A "ANOTHER
outputs "A NOTH ERA

LP UT " A []
outputs [A]

11'1

MEMBER
MEMBER <object1> <object2>

If < o b j e c t > is an element of < o b j e c t 2 >, it returns the element number,
otherwise it returns zero.

Examples

PRINT MEMBER "LONG [A LONG LIST]

2

PRINT MEMBER "WORD [A LONG LI STJ
0

MEMBERQ
MEMBERQ <object1> <object2>

This returns the value TRUE if < o b j e c t 1 > is an element of < o b j e c t 2 >,
otherwise it returns the value FA LS E. < o b j e c t 1 > and < o b j e c t 2 > can be
either words or lists. If < o b j e c t 1 > and < o b j e c t 2 > are both words, only the
first character of < o b j e c t 1 > is used.

Note that the comparison takes note of upper and lower case differences. For
example:

MEMBERQ "A [a b]

is false
MEMBERQ "a [a b]

is true

Examples

MEMBERQ "AFRICA [EUROPE AMERICA AFRICA ASIA]
outputs TRUE

MEMBERQ "AMERICA [EUROPE AMERICA AFRICA ASIA]

outputs T RU E

MEMBERQ "GREENLAND· [EUROPE AMERICA AFRICA ASIA]

outputs FALSE

MEMBERQ "B "AMERICA
outputs FALSE

MEMBERQ "A "AMERICA
outputs T RU E

98

SENTENCE(SE)
SENTENCE <object1> <object2>
(SENTENCE <object1> <object2> <object3> ...)

This takes objects (which may be words or lists) as inputs and combines them to
form one list.

Examples

PR INT SENTENCE "CAT "FISH

CA T FISH

PRI NT SENTENCE [CAT] [FISH]

CAT FISH

SE NTENCE "MONET [RENOIR LAUTREC WHISTLER]

outputs [MON ET R ENO I R LA U T R E C W H I S T LE R J

If an input is a list, SENTENCE uses the members of that list, rather than the
list itself:

(LIST [A [8 CJ] [D E FJ "G)

returns [[A [8 CJ J [D E F J G J , a list with three elements.

(SENTENCE [A [8 CJ] [DE FJ "G)

returns [A [8 CJ D E F G J , a list with six elements.

SETITEM
SE TITEM <n> <object1> <object2>

Returns a new object based on < o b j e c t 1 > with element < n > of< o b j e c t 1 >
changed to < o b j e c t 2 >. If < o b j e c t 1 > and < o b j e c t 2 > are both words,
< o b j e c t 2 > must not be an empty word and only the first character of
< o b j e c t 2 > is used.

Examples

MAK E "CAPITALS [OTTAWA HARARE WASHINGTON LONDON]

PRI NT SETITEM 4 :CAPITALS "OSLO

OTT AWA HARARE WASHINGTON OSLO

WORD
WOR D <word1> <word2>
(WO RD <word1> <word2> <word3> ...)

This returns a word which is built up from the words input to it.

99

Examples

PRINT WORD "CAT "FISH
CATFISH
PRINT WORD "LOG "O
LOGO

WORDQ
WORDQ <item>

This returns the value TRUE if < i t em> is a word; otherwise it returns the
value FA LS E.

Examples

PRINT WORDQ 25
TRUE
PRINT WORDQ [10 20 30 40]
FALSE
PRINT WORDQ []

FALSE
PRINT WORDQ II

TRUE

100

10 Handling keyboard
errors and debugging

The first section in this chapter describes the facilities available for correcting
keyboard mistakes when you are in command mode; the second describes how
you can handle errors within your procedures. The third section describes the
facilities available to help you with debugging. Finally, the last two sections
describe the primitives used for all these functions.

10.1 Correcting keyboard mistakes
A special group of six keys on the right-hand side of your keyboard is used to
alter lines on the screen. You can also use them to repeat command lines. The
keys are COPY, DELETE and the four arrow keys. Their effect is the same as
for the line editor described in the User Guide for your computer_.

When you press one of the arrow keys, the computer enters what is known as
edit mode. It then displays two cursors: a white block termed the 'write cursor'
and the flashing 'read cursor'. Moving the read cursor (using the arrow keys) to
a word and then pressing the COPY key will copy the text under the cursor to
the new line at the write cursor. When you are part way through copying a line
you can move the read cursor to another piece of text and copy this into the new
line.

You can also type in new characters and delete them (using DELETE), or
delete a line using CTRL U.

Whatever appears in your new line is input to Logo when you press RETURN.

10.2 Handling errors by program
You can trap input errors by using CATCH and THROW. These can be used fo r
other things beside error handling, but they are described in this chapt r ~ r
convenience.

The TH ROW primitive can be called when an error is detected by your progra m.
It will then return control to a CATCH primitive which may be in a diJt r 11 1.
procedure.

There are five special cases of CAT C H and TH ROW:

I. CATCH "ERROR, which catches an error which would oth rwiH prinl 11 11

nror message and return to command level. When errors ar cough , l h 4 41 11 oi

lOJ

message that would normafly have been printed is suppressed and you can use
the primitive ERROR to obtain the information for your procedures.

2. THROW "LEVEL, which returns control to the most recent command level.

3. THROW "TOP LEVEL, which allows you to return to command level.

4. CATCH " ES CAPE, which allows you to control the use of the ESCAPE key
(but not CTRL and ESCAPE).

5. CATCH "TRUE, which catches all throws other than errors or ESCAPE.

Perhaps the easiest way of explaining the use of CATCH and THROW is with an
example:

The procedure SQUARE . PRINT reads numbers from the keyboard and prints
their squares. If you type something other than a number, the RE AD NUMBER
procedure prints an appropriate message then returns control to
SQUARE.PRINT, which carries on working.

TO SQUARE.PRINT
CATCH "NOTNUMBER [CALCULATE]
SQUARE.PRINT
END

TO CALCULATE
PRINT [TYPE A NUMBER, PLEASE:]
PRINT READNUMBER
END

TO READNUMBER
LOCAL "TEXT READLIST
IF EMPTYQ :TEXT [THROW "TOPLEVELJ
IF NOT NUMBERQ FIRST :TEXT [PRINT [NUMBERS ONLY,
PLEASE!] THROW ''NOTNUMBER]
IF NOT EMPTYQ BUTFIRST :TEXT [PRINT
[ONLY ONE NUMBER, PLEASE!] THROW "NOTNUMBER]

OUTPUT (FIRST :TEXT) * (FIRST :TEXT)
END

10.3 Debugging your procedures
When there is a 'bug' in a program, the program frequently does not fail on the
line containing the bug. In fact, sometimes it does not fail at all but runs and
produces unexpected results. As well as this, ifthere is more than one 'bug' in a
program they can combine to produce spectacular results.

102

With these points in mind, you can m1mmise the need for debugging by
designing your programs as collections of 'procedures', each of which is so sma ll
that it is unlikely to contain more than one 'bug'. You can then test each
procedure independently of the others.

If 'bugs' still occur, they are likely to be caused by interaction between two
procedures and you can use the primitives described in the next section to
control the execution of your procedures and check what is happening at each
stage.

Three other facilities are available to help you check your procedures:

1. If you press the SHIFT key when using graphics commands, your procedure
will pause for half a second after each move or turn.

2. If you hold down the CTRL and SHIFT keys when using printing or graphics
commands your procedure will pause until you release either of them.

3. You can interrupt a procedure or list (such as a REPEAT list) using the
ESCAPE key and use PR I NT , for example, to find out what is happening. You
can then continue running it using CONT IN U E(CO).

10.4 Summary of primitives

Primitive

CAT CH

CONTINUE
ERRMSG
ERROR
PAUSE
SETERR

T C

TH ROW
TRA CE

Effect

Runs a list of instructions. If a THROW is called
during its execution, control returns to CATCH

Continues running after a PAUSE
Prints an error message
Returns error number to your procedure
Suspends running until CONT I NU E is typed
Makes original error appear to occur at the point
where you called S ET E R R

Displays names of procedures called
See C A T C H, above
Controls tracing

10.5 Primitives

CATCH

CATCH <name> <List>

This runs < L i s t >. If THROW <name> is called during its execution, control
returns to the command after the CATCH primitive.

Special cases of C AT C H are:

1. CATCH "ERROR .

2. CATCH "ESCAPE.

3. CATCH "TRUE.

and these are described in section 10.2, 'Handling errors by program'. An
example of the use of CATCH is also given in this section.

CONTINUE(CO)

This resumes running after a PA US E has been executed or ESCAPE has been
pressed.

ERRMSG

ERRMSG <List>

If< Li s t > is a list in the form returned by ERROR (see below), this prints the
appropriate error message.

ERROR

This primitive returns information about an error which has occurred while a
CATCH " ERROR is in effect. The information is in the form of a list with two
items:

1. The error number (a wor~). Error numbers are given in Appendix B, 'Logo
error messages'.

2. The two parameters of the error or empty lists, if non-existent.

E RR O R returns this list the first time it is called after the error has occurred,
providing Logo has not returned to command level. If ERROR is called at any
other time, it returns the empty list.

104

PAUSE

This suspends the execution of a procedure until CONT I NU E is typed in and
tells you that the procedure is suspended. You can then type instructions to
debug your procedure (for example, you might type TRACE 7 , then
CO NT IN U E, to trace the execution of part of your procedure).

During a pause you can access all local variables.

SETERR
SE TERR <List>

lf you use CATCH " ERROR to check errors, you might decide not to take
action upon some errors. You can then use SET ERR and this will make it
appear as though the error occurred at the point where you called SET ERR .
~'or example:

CATCH "ERROR [MYPROCESSJ
MA KE "NEWERROR ERROR

MA KE "ERRNO FIRST :NEWERROR
IF :ERRNO = 305 [...]
IF :ERRNO = 310 [...] ,.

SE TERR :NEWERROR

This catches all errors and handles errors 305 and 310, perhaps providing
diagnostic information before finishing the program. Other errors (for example,
:l03) are not handled and SET ERR generates them again, causing a return to
the highest command level.

TC
This primitive name stands for 'Type Calls'. It shows the chain of current
procedure calls in the form:

(< p rocedure> <input> <input> ...)
(. . .)

(<procedure> ••.)

'l'he most recent procedure is shown first. TC is most useful after a procedur iH
interrupted using PAUSE or the ESCAPE key, since it shows how thi p in t
was reached.

lU

THROW
THROW <name>

Special cases are T H ROW II T O P LEV E L and T H ROW II LE V E L. These return
control to the top command level and the most recent command level
respectively.

Otherwise, THROW is only used with the CATCH primitive described above. Its
use is described in section 10.2.

TRACE
TRACE <n>

This primitive introduces tracing. < n > specifies the trace characteristics:

TRAC E 1 traces every line and gives a trace message.

TRAC E 2 traces every procedure call and gives a trace message (buried
procedures are not traced).

TRACE 4 traces every primitive and buried procedure call and gives a trace
message.

TRACE 8 stops after every trace message and waits for you to press RETURN.

These can be combined by addition to give a wide range of tracing information.
For example,

TRACE 7

traces lines, procedures and primitives.

TRACE 15

stops after any line, procedure or primitive.

TRAC E 0 produces no tracing information and this is the default state. To
change the trace characteristics while tracing, you must first stop the program
using ESCAPE. You can then enter a new TRACE command.

Example

The best way to understand tracing is to run through an example and observe
what happens on the screen. Try the following:

TO SQUARE :SIZE
REPEAT 4 [SIDE :SIZE]

END

106

TO SIDE :LENGTH
FD :LENGTH RT 90
STOP
END

TRA CE 7
SQU ARE 200
TRACE 0

107

11 Floor turtles

Extensions are available for several different floor turtles. These are held on
the disc or tape which accompanies the Acornsoft Logo package.

For example, the extension for the BBC Buggy is loaded by typing:

LOAD "BUGGY

Once the extension is loaded, you need to tell Logo that subsequent commands
apply to the floor turtle , instead of the screen turtle. This is done by typing:
F LOO R. You can stop using the floor turtle and continue using the screen turtle
by typing: S C R E E N.

The floor turtle will respond to the primitives summarised in section 11.1. Most
of these are described in chapter 2, 'Turtle graphics'. The remainder are
described in section 11.2.

Note that, when using floor turtles, if you try to use graphics primitives which
are not supported (for example, S ET P T) these will usually have no effect. If you
try to use screen commands which return information (for example, POS), an
error will be generated.

11.1 Summary of primitives

Primitive

BACK

EXPL ORE

FLOO R
FOR WARD

HOOT
LEFT
PENDO WN
PENUP
PENUPQ
RIGHT

10

Effect

Moves turtle backwards (BA C K 1 moves the
turtle back by about Imm)
Moves turtle forward until an obstacle is
encountered
Activates a floor turtle
Moves turtle forwards (F D 1 moves the turtle
forward by about Imm)
Activates speaker
Turns turtle to left
Puts turtle's pen down
Lifts turtle's pen
Tests if turtle's pen is up
Turns turtle to right

Primitive

SC REEN
SC REENQ
SE NSE

11.2 Primitives

EXPLORE
EXPLORE <number>

Effect

Restores the screen turtle
Tests if screen turtle is in use
Tests if turtle is touching anything

Moves the turtle forward by <numb e r > steps. If an obstacle is encountered
before this, it stops and returns the number of steps travelled. If the turtle does
not have appropriate sensors, EXPLORE can be terminated by pressing the
ESCAPE key on the computer.

FLOOR
Activates the floor turtle and stops the screen turtle. The driver for a floor
turtle must first have been loaded from the disc or tape which accompanies the
Acornsoft Logo package, otherwise an error will be generated.

HOOT
Activates the hooter on the floor turtle, if one exists, otherwise it causes a
BEE P at the computer.

SCREEN
Stops subsequent commands being applied to the floor turtle and addresses
them to the screen turtle.

CREENQ
Tests if floor or screen turtle is in use. If the screen turtle is in use , SCREEN Q

returns T RU E, otherwise it returns FA LS E.

SENSE
SE NS E <n>

Returns the value TRUE if turtle sensor< n > is touching anything, oth ' rwiH11 II
returns the value FA LS E.

!<'or sensors on some turtles, SENSE returns a numb r . 1'l.(1f11r to t ht
llocumentation on individual floor turtle extensions ford tnilH.

1

12 Turtle shapes and
multiple turtles

Acornsoft Logo allows you to change the turtle's shape and drive several turtles
around the screen at the same time. This- chapter tells you how to do both of
these things.

12.1 Changing the turtle's shape
You can change the turtle's shape using the SETS H primitive. For example,
the following command changes the turtle shape to the letter A:

SETSH ASCII "A

You can also do this with the following:

SETSH 65

Each character which you type in at the keyboard has an associated 'ASCII
code'. When the computer is told to use this character it looks up the code and
treats it as an 8 x 8 matrix of dots. The letter A, as used above, has the ASCII
code 65. Other codes are shown in Appendix C, 'ASCII code table'.

SETS H can take a list as input and this is shown by the following examples,
which change the turtle's shape to the letters shown on their right:

SETSH [65 66]

SETSH [65 66 67 68]

SETSH [65 66 8 8 10 67 68]

AB

ABCD

AB
CD

In the last example, 8 is the ASCII code for 'backspace' and 10 is the code for
'linefeed'.

Certain ASCII code values have been left to be defined by the user. They
include the values 224 to 255 and they can be defined using the VDU
command, then used by SETS H to create more picturesque shapes.

110

Suppose you wanted to make a turtle pattern. You should first plan the
character on an 8 x 8 square grid as shown below.

a
b
C

d
e
f
g
h

To store this shape as code number 240, type in the following:

VD U [23 240 16 84 56 56 56 56 68 0]

The numbers which follow VDU [2 3 2 4 0 tell the computer the pattern of
dots in each horizontal row of the grid. For example, row a has the value 16,
while row c has the value 56 (32 + 16 + 8).

Once you have typed in the line shown above, you can redefine the turtle's
shape by typing:

SE TSH 240

The EDS HAPE example on the disc or tape which accompanies your Logo
package provides another way of building shapes.

The following procedure changes the turtle's shape twice to give the effect of a
bird flying. It swaps between two shapes with the wings in the up and down
positions respectively.

TO FLY
VD U [23 224 129 66 36 24 24 0 0 0]
VD U [23 225 0 0 0 60 90 129 129 0]
WI NDO W RT 45 PU
DO FOREV ER [SETSH 224 SETSH 225 FD 20]
EN D

111

You can also build more complex shapes by using a number of user-defined
characters with S ET S H. For example, the following procedure turns the turtle
into a pen shape:

TO DEFPEN

VDU [23 224 0 0 0 0 0 1 2 2]
VDU [23 225 0 0 0 0 0 128 64 32]
VDU [23 226 5 4 8 8 16 17 33 34]
VDU [23 227 32 192 64 128 128 0 0 0]
VDU [23 228 66 68 228 248 240 224 192 128]
SETSH [11 228 11 8 226 227 11 8 8 224 225]
END

You can restore the triangular turtle shape at any time by typing:

SETSH

12.2 Multiple turtles
Acornsoft Logo allows you to have up to 32 turtles on your screen at the same
time. Using this facility you might, for example, direct one turtle onto a
randomly moving target using the keyboard. Or you could reverse this game by
letting a number of turtles home in upon one turtle that is controlled via the
keyboard or a joystick.

Turtles are 'hatched' using HATCH, and they are created at the current turtle
position. You 'talk' to one or more of them using TE L L. When they are newly
hatched, they are invisible; you must use TELL and then SHOW TURTLE before
you can see them. When you are finished with one or more turtles, you can
remove them using F O R G ET .

The special primitives which control multiple turtles are described later in this
chapter. Otherwise, the primitives you can use are the normal turtle graphics
primitives. Most of these are no different whether you are using one or more
turtles. However, a few of them (for example, POS) need information about one
turtle ·and so cannot apply to a list of turtles. If the last T E L L command
contained a list of turtles, these primitives will use the first turtle in the list. All
primitives of this kind are greedy for a turtle number; thus, (PO S 2) returns
information about turtle 2, regardless of which turtles are currently selected.

The accompanying book, Introduction to Logo on the BBC Microcomputer and
A corn Electron, shows a number of ways that you can use multiple turtles with
turtle shapes redefined as the letters of the alphabet. In the present chapter we
will show you two more sophisticated uses of multiple turtles.

112

First of all, you need to load the multiple turtle extension from the disc or lup
which accompanies your Logo package. You do this by typing:

LOAD "MULT

Now type the following:

TO FLAGS
DRAW
MAKE "N 1
RE PEAT 11 [HATCH :N TELL :N RT 30 ST MAKE "N :N + 1]
TE LL TURTLES
FD 200
SE TNIB 80
RE PEAT 4 [RT 90 FD 50]
HT
EN D

This example creates twelve turtles. It then produces some attractive moving
effects using a simple drawing pattern together with SET NI B. To work out
what it is doing, and why it is called FLAGS , remove the SET NIB command
and put a few PAUSE commands into it at appropriate points.

The next example uses multiple turtles to show how a number of words can be
sorted into alphabetical order using a 'bubble sort'. It allows you to input five
words and displays them above one another on the screen. They are then
compared, two at a time. The pair of words being compared is highlighted in
yellow and, if they are in order, they are changed back to white. If they are out
oforder, they are highlighted in green and one of them moves out to the right.
One then moves down while the other moves upwards, and they are returned to
lhe list. Finally, the colours are reset to white.

TO CODEL :W
OUT PUT IF EMPTYQ :W [[]] [FPUT ASCII :W CODEL BF :WJ
END

TO ORDEREDQ :A :B
I F EMPTYQ :A [OUTPUT "TRUE]
IF EMP TYQ :B [OUTPUT "FALSE]
I F FI RST :A= FIRST :B [OUTPUT ORDEREDQ BF :A BF :BJ
OUT PUT ASCII :A < ASCII :B

ND

11 'J

TO SWAP
SETPC 1 TELL :P
FD 400 SETH 180
TELL : N SETH 0
TELL SE : p : N FORWARD
TELL : p BACK 400
TELL SE : p : Q
END

TO COMPARE :X :Y
MAKE "P ITEM :X :ORD
MAKE "N ITEM :R :ORD
TELL SE :P ;Q
SETPC 2 WAIT 20

100 SETH 90

TEST ORDEREDQ THING WORD "W :P THING WORD "W ;Q
IFFALSE [SWAP MAKE "SWAP "TRUE MAKE "ORD ADDITEM :X
ERITEM :R :ORD ITEM :R :ORD]
SETPC 3
END

TO SORT
MAKE "J 4
BACK:
MAKE "I 1
MAKE "SWAP "FALSE
REPEAT :J [COMPARE :I :I + 1 MAKE "I :I + 1]
IF :SWAP [MAKE "J :J - 1 GO "BACK]
END

TO START
DRAW
SETMODE 5
PAL 1 2
PU SETPOS [-500 -350] SETPC 2 TITLE [The Bubble Sort]
SETPC 7
HATCH [1 2 3 4]
MAKE "I 0
REPEAT 5 [TELL :I PU SETX -300 SETR 300 - 100 * :I
SETH 90 ST MAKE "I :I + 1]
PR [Input 5 words]
MAKE "I 0
REPEAT 5 [TYPE "> MAKE WORD "W : I RW TELL : I

114

SETSH CODEL THING WORD "W :I MAKE "I :I +1]
MAKE "ORD [0 1 2 3 4]
SORT
END

In the examples of multiple turtles where TELL has been applied to a numb r
of turtles at once, each subsequent command will be applied to all turtles at th
same time. If, instead, you want to apply a list of commands first to one turtl ,
then to another, and so on, you can do so using the following procedure, EACH :

TO EACH : LST
MAKE"$ WHO\ an unusual name
MAKE"$$ WHO
CATCH "ERROR [DOFOREVER [IF EMPTYQ :$ [TELL :$$ STOP]

[] TELL FIRST :$ RUN :LST MAKE"$ BUTFIRST :$]]

TELL :$$

SETERR ERROR
END

12.3 Summary of primitives

Primitive

ALIVEQ
FORGET
HATCH

SETSH
SH
TELL

Effect

Tests if a given turtle is alive
Destroys the named turtle(s)
Creates one or more turtles
Redefines the turtle's shape
Returns the turtle's shape as a list
Applies subsequent commands to the tw·tles
specified
Returns list of all 'live' turtles TURTLES

WHO Returns the numbers of turtles currently b ing
'talked to'

12.4 Primitives

ALIVEQ
ALIVEQ <n>

Returns TRUE if turtle < n > is alive, otherwise it returns FALSE .

11

PRINT ALIVEQ 0
TRUE

PRINT ALIVEQ 10
FALSE

FORGET
FORGET <object>

Destroys the turtle or turtles specified by < o b j e c t > and removes it/them
from the screen. < o b j e c t > can be an integer or a list of integers.

Turtle O cannot be destroyed. If you try to FOR G ET it, the command will be
ignored.

Examples

FORGET 1

FORGET [1 2 4]

HATCH

HATCH <object>
(HATCH <object> <shape>)

Creates the turtle or turtles specified by < o b j e c t >, which can be an integer
or list of integers. The new turtles are invisible and can be selected using TELL,
then made visible using SHOW TURTLE . The turtle you started with is called
turtle 0.

In the greedy form of HATCH shown above, < s hap e > consists of the inputs
used by S ET S H. Otherwise, the turtle takes the shape and other
characteristics of the current turtle(s) .

Examples

HATCH 1

HATCH [1 2 3 4]

The following example creates turtle 1 and makes it look like the letters A B:

(HATCH 1 [65 66])
TELL 1
SHOWTURTLE

116

SETSH
SETSH <object>
(SETSH <object>)

Changes the turtle's shape to the value given by < o b j e c t >, which can b a
word or a list. If <object> is omitted then the turtle returns to the triangul ar
shape used initially.

In the greedy form of SETS H shown above, < o b j e c t > corresponds to Lh
parameters of the BBC BASIC VDU command. It can consist of:

1. A number.

2. A list, each of whose items is either a number or ; .

3. The word " ; .

Or any combination of these.

Examples

SETSH 65

SETSH [65 66]

The following converts the turtle to a line, drawn from the current position (an
'elastic band' effect):

(SETSH 25 5 FIRST POS "; LAST POS ";)
REPEAT 50 [FD 10 RT 5]

SH
SH
(SH <n>)

Returns the current turtle shape in the form of a list. If the greedy form of Lh
primitive is used, the shape returned will be that of turtle < n >.

Example

SE TSH [65 66 8 8 10 67 68]
PR INT SH
65 66 8 8 10 67 68

TELL
TE LL <object>

Tells Logo which turtle(s) you want to 'talk' to. Turtle command will b ' 11 ppltt •d
Lo turtle O unless you tell Logo otherwise.

11

Example

The following procedures put four turtles at the main points of the compass and
a pply subsequent commands to them:

TO COMPASS
HATCH [1 2 3]
START 0 START 1 START 2 START 3
TELL [0 1 2 3]
END

TO START :NO
TELL :NO
SHOWTURTLE
RIGHT :NO * 90
END

TURTLES
Checks which turtles have been created and returns their numbers in the form
of a list.

Example

HATCH [1 2 3]
PRINT TURTLES
0 1 2 3
TELL TURTLES

WHO
Checks which turtles are currently being 'talked to' using TE L L and returns
their numbers in the form of a list.

Example

HATCH [1 2 3 4]
TELL [1 2]
PRINT TURTLES
0 1 2 3 4
PRINT WHO
1 2

118

13 Interface to machine
functions

The BBC Microcomputer and Acorn Electron have a wide range of machine
functions which can be accessed using 'OSBY TE calls'. They are described and
listed in detail in the User Guide for your computer and will not be repeated
here.

You can access these functions from Logo using the O S BY T E, CA L L,
DATAAREA, DEPOSIT , HIBYTE , LOBYTE and EXAMINE primitives. You
can also access machine code routines from Logo using the CA L L command.

13.1 Summary of primitives

Primitive

CALL
DA SIZE
DA TAAREA
DE POSIT
EXA MINE
HE X
HI BYTE

LOBY TE

OS BY TE

13.2 Primitives

CALL
CA LL <n>

Effect

Calls a machine code routine
Returns the size of the data area in bytes
Returns byte address of a data area
Changes contents of memory
Examines contents of memory
Returns decimal value of a hexadecimal number
Returns the most significant byte of a two byte
value
Returns the least significant byte of a two byte
value
Performs an OS BY T E call

This primitive calls a machine code routine. < n > must be a sign •d I (i ht 1
integer (it is often convenient to use HEX to specify this addr ss. 1'huH, to 1•1 dl
OSWORD (hex FFFl), either of the following could be used:

1 t

CALL -15
CALL HEX "FFF1

but not:

CALL 65521

since this is an unsigned 16-bit integer.

On entry to the machine code, the A, X and Y registers are set up from bytes 0,
1 and 2, respectively, of DAT A ARE A.

On return, bytes Oto 3 are set up from the A, X, Y and P registers respectively.
If a MOS fault has occurred, byte 3 of DAT A ARE A is set to 255 (the P register
can never have this value at any other time) and byte 1 contains the fault
number. In this case, bytes 2 and 3 of DAT A ARE A are undefined. If a fault has
occurred, any ESCAPE condition will have been acknowledged.

Note that incorrect use of CALL can crash the system or cause random errors.

CA L L is in the extension MOS .

DASIZE
Returns the size of the data area in bytes.

DAS I Z Eis in the extension MOS .

DATAAREA

DATAAREA
DATAAREA <n>

This returns the byte address of a data area for use by your Logo program. The
address is a signed integer in the range O to 32767 and its position is allocated
by Logo. If< n > is specified, an area of size < n > bytes is allocated. If you ask for
an area for which there is insufficient memory available, an error will be
generated.

Logo can allocate only one such area at a time. If you need space for two or
more purposes, you should obtain sufficient space for all purposes and allocate
its use within your program.

If the data area is to be used by CA L L with a command such as the following:

CALL :OSWORD

bytes O to 3 of the data area will be used by CA L L.

D A T A A R E A is in the extension M O S .

120

DEPOSIT
DEPOSIT <n> <n>

This command allows you to change the contents of the computer's memory.

The first input is a byte address and it must be a signed 16-bit integer, as for
CALL. The second input is the value to be deposited. If this is greater than 255,
the least significant eight bits are used.

Note that incorrect use of DEPOSIT can crash the system or cause random
errors.

EXAMINE
EXA MINE <n>

This command allows you to look at the contents of the computer's memory.

< n > is a byte address and it must be a signed 16-bit integer, as for CALL. It can
take the form of an 'absolute' address, for example:

PRI NT EXAMINE 16132

or a 'relative' address:

PRI NT EXAMINE DATAAREA + 23

HEX
HE X <word>

Returns the decimal value of <word> as a signed integer. HEX is in th
extension MOS .

Example

PR INT HEX "FFF4
- 12

HIBYTE

HI BY TE <n>

H.eturns the most significant byte of a two byte value given by < n >.

J<:xa mple

PRI NT HIBYTE 1000
3

LOBYTE
LOBYTE <n>

Returns the least significant byte of a two byte value given by < n >.

Example

PRINT LOBYTE 1000
232

OSBYTE
OSBYTE <integer>
OSBYTE <integer> <integer> <integer>

Calls the operating system OSBY TE routine. The inputs are , respectively, the
A, X and Y registers and the X, Y registers can be omitted.

The value returned is an integer which is made up of the contents of the X and
Y registers. The X register contents are in the low byte of the call and can be
accessed using LOB Y TE . The Y register contents are in the high byte of the call
and can be accessed using H I BY T E.

For further details of OSBY TE calls, refer to the User Guide for your computer.

122

14 Property lists

Logo allows you to build up a simple 'filing system' for yourself using 'property
lists'.

Before you can use the primitives which manipulate property lists you must
load them from the extension PROP . This is held on the tape or disc which is
part of your Logo package. To load it, type:

LOAD "PROP

You should then type T S to get into text mode.

Suppose you want to build up a record of peoples' names, telephone numbers
and other such things. You could start this off as follows:

PPROP "JOHN "TELEPHONE [0734 55555]
PPROP "JOHN "AGE 12
PPROP "JOHN "HOBBY "FISHING

PPR OP stands for Put PROPerty. It creates a property list which is connected
to the name J OH N. A property list consists of an even number of elements.
Each pair of elements consists of the name of a property (for example
TEL EPHONE , AGE and HOBBY) and its value ([0734 55555], 12 and
FIS HING , respectively). You can look at the entire property list using the
P LI ST primitive:

PRI NT PLIST "JOHN
TE LEPHONE [0734 55555] AGE 12 HOBBY FISHING

You can now build up your filing system by adding other entries, for example:

PP ROP "ANN "TELEPHONE [91 44444]
PP ROP "ANN "AGE 13
PP ROP "ANN "HOBBY "READING

lf you want to look at the value of a specific property for one person you can do
HO using GP RO P (Get PROPerty):

PR I NT GPROP "ANN "AGE
13

PR I NT GPROP "JOHN "HOBBY
FI SHING

1' .

You can look at all the properties for one person using PPS:

PPS "JOHN
JOHN's TELEPHONE is [0734 55555]
JOHN's AGE is 12
JOHN's HOBBY is FISHING

Note the difference between this and the output from P LIST above.

You can also look at all the properties and their values using PP ALL:

PPALL
ANN's TELEPHONE is [91 44444]
ANN's AGE is 13
ANN's HOBBY is READING
JOHN's TELEPHONE is [0734 55555]
JOHN's AGE is 12
JOHN's HOBBY is FISHING

Once you have a filing system you can add new properties to it using PPROP,
for example:

PPROP "JOHN "HAIR "BROWN
PPROP "ANN "HAIR [ASH BLONDE]

PPALL
ANN's TELEPHONE is [91 44444]
ANN's AGE is 13
ANN's HOBBY is READING
ANN's HAIR is [ASH BLONDE]
JOHN's TELEPHONE is [0734 55555]
JOHN's AGE is 12
JOHN's HOBBY is FISHING
JOHN's HAIR is BROWN

You can also change existing properties with PPR OP:

PPROP "JOHN "HAIR "BLACK

PRINT GPROP "JOHN "HAIR
BLACK

124

With a little bit of effort, you can list a given property for a number of p pi •,
together with their names:

TO LIST.PROPS :LST :PROP
MAKE "N 1
DO FOREVER [IF :N > COUNT :LST [STOP] [(PRINT ITEM :N
:LST GPROP ITEM :N :LST :PROP) MAKE "N :N + 1]]

END

LI ST.PROPS [JOHN ANN] "TELEPHONE
J OHN 0734 55555
ANN 91 44444

LI ST.PROPS [JOHN ANN] "HOBBY
J OHN FISHING
ANN READING

If you want to keep a copy of your property lists on disc or tape you can do so
using S A V E and LO A D .

14.1 Summary of primitives

Primitive

ER PLIST

ER PLISTS
GP ROP
PLI ST

PP ALL
PP ROP

PP S

RE MPROP

Effect

Erases a property name or list of property names,
together with their properties
Erases all property names and their properties
Returns the value of a property for a given name
Returns property list associated with a given
name
Prints all properties of every name
Associates a property and its value with a given
name
Prints the properties associated with a name,
together with their values
Removes a property and its value from a given
name

L''

14.2 Primitives

ERPLIST
ERPLI ST <object>

Erases the property names specified by < o b j e c t >, together with their
properties. < o b j e c t > can be either a word or a list.

Examples

ERPLI ST "JOHN

ERP LIST [JOHN ANN]

ERPLISTS
Erases all property names and their properties.

GPROP
GPROP <name> <property name>

Stands for Get PROPerty. Returns the value of a property associated with
<name>. If there is no such property, it returns the empty list.

Example

PRINT GPROP "JOHN "TELEPHONE
0734 55555

PLIST
PLIST <name>

Returns the property list associated with <name> .

Example

PRINT PUST "ANN
TELEPHONE [91 44444] AGE 13 HOBBY READING

PPALL
Prints the property list of every name. Contrast the output with that of P LI ST .

Example

PPALL
ANN's TELEPHONE is [91 44444]
ANN's AGE is 13
ANN's HOBBY is READING

126

ANN's HAIR is ASH BLONDE
JO HN's TELEPHONE is [0734 55555]
JO HN's AGE is 12
JO HN's HOBBY is FISHING
JO HN's HAIR is BROWN

PPROP

PP ROP <name> <property name> <object>

StandsforPutPROPerty. Gives <name> the property <property name>
with value < o b j e c t >. < o b j e c t > can be a word or a list. PPR OP can be used
to change an existing property, as well as create a new one.

Example

PPS "ANN
ANN 's HOBBY is READING
PPR OP "ANN "HAIR [ASH BLONDE]
PPS "ANN
ANN's HOBBY is READING
ANN 's HAIR is [ASH BLONDE]
PPR OP "ANN "HOBBY (LIST GPROP "ANN "HOBBY "CYCLING)
PRI NT GPROP "ANN "HOBBY
REA DING CYCLING

PPS
PPS <object>

Stands for Print PropertieS. Prints the property list(s) of everything associated
with < o b j e c t >, which can be a word or a list.

Example

PP S [ANN JOHN]
AN N's TELEPHONE is [91 44444]
AN N's AGE i s 1 3
AN N's HOBBY i s READING
AN N's HAIR i s ASH BLONDE
JO HN's TELEPHONE i s [0734 55555]
JO HN's AGE i s 12
JO HN's HOBBY i s FISHING
JO HN's HAIR i s BROWN

1 ·•

REMPROP
REMPROP <name> <property name>

Removes the property <pro p e rt y name> and its value from the property list
of <name> .

Example

PRINT PLIST "JOHN
TE LEPHONE [0734 55555] AGE 12 HOBBY FISHING
REMPROP "JOHN "HOBBY
PRINT PLIST "JOHN
TELEPHONE [0734 55555] AGE 12

128

15 Screen modes and the us
of colour

The BBC Microcomputer and Acorn Electron both have an excellent rang of
colour graphics and this chapter tells you how to make use of them. Even if you
do not have a colour monitor you may still find some parts ofit useful: text and
graphics will be displayed in different levels of brightness on your screen and
you will still be able to use some of the special effects.

The first section in this chapter describes the screen modes you can use; th
second gives you the information you need to handle colour on your comput r .
The last two sections describe the primitives that influence or are influenced by
colour.

15.1 Screen modes
The range of colour and the graphics resolution you can use depend upon th
graphics mode. This depends, in its turn, upon the equipment you have and
how big your program is.

The graphics mode is set using the SET MODE primitive and the modes you can
use are shown in table 15.1.

n

0

2

Table 15.1 Graphics modes

Description

This uses two colours with very high resolution graphics a nd
needs 20K of memory to map the screen (16K on US machin('Hl.

This uses four colours with high resolution graphics and n '('dH
20K of memory to map the screen (16K on US machin s).

This uses 16 colours with medium resolution graphics a nd 11 p1·d H

20K of memory to map the screen (16K on US machin •1-1).

This uses two colours and is a text-only mode. It n 1dH I (ii ul
memory to map the screen.

1" I

n

4

5

6

7

Description

This uses two colours with high resolution graphics and needs
lOK of memory.

This uses four colours with medium resolution graphics and
needs lOK of memory.

This uses two colours and is a text-only mode. It needs 8K of
memory to map the screen (Note: Logo reserves lOK for screen
memory, so 2K of this is unavailable).

This displays Teletext characters and needs 1 K of memory to
map the screen (Note: Logo reserves lOK for screen memory
and the editor's buffer, so using mode 7 does not free any more
space for your programs than mode 6).

Logo is always in one of two 'states':

1. Graphics Mode: In this state the screen is used partly for graphics and partly
for text.

2. Text Mode: In this mode the screen is used entirely for text. This is also the
mode used by the editor.

Logo remembers two screen modes:

1. Default Text Mode: This is initially the screen mode which was used when
Logo was entered. However, if the mode used when Logo was entered was mode
7, mode 6 will be used instead.

2. Default Graphics Mode: This is initially the screen mode which was used
when Logo was entered. If this was one of the text modes 3, 6 or 7, mode 4 will
be selected instead.

The following primitives affect screen modes and the 'states' of Logo:

1. T S: This selects the default text mode and the text state. If there is
insufficient memory to select this mode, the default text mode will be changed
to the current screen mode.

2. DR AW and graphics primitives: These select the default graphics mode and
the graphics state. If there is insufficient memory to select this mode, the
default graphics mode will be changed to the current screen mode. If this is a
text-only mode (modes 3, 6 or 7), mode 4 will be selected instead.

130

3. EDIT: Unless a 6502 Second Processor is in use, this primitive changes Llw
default text mode to mode 6 and uses this mode subsequently.

4. S ET MO DE : This selects the screen mode. If there is insufficient memory Lo
select this mode, nothing happens (note that there is always sufficient memory
to select modes 4 to 7).

If Logo is in the graphics state and the new mode is not a text-only mode (3, 6 or
7), the default graphics mode is changed to the new mode and the graphics
state remains selected. In all other cases, the default text mode is changed to
the new mode and the text state is selected.

15.2 Using colour
In each of the modes mentioned in table 15.2 there are a fixed number of
'logical colours' that you can use . For example, in mode 5 you can have only
four logical colours, 0 to 3.

Table 15.2 shows the 'physical colours' which the logical colours are preset to
for each mode.

Mode
0

0

1

Table 15.2 P reset physical colours

Logical colour numbers

Mode
1

0
1

2

3

Mode
2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Mode
4

0

1

Mode
5

0
1

2

3

Physical colour

0 black
1 red
2 green
3 yellow
4 blue
5 magenta (blue-red)
6 cyan (blue-green)
7 white
8 flashing black-whiL
9 flashing red-cyan

10 flashinggreen-mag nt 11
11 flashing yellow-blu ,
12 flashing blue-y llow
13 flashing magenta-1,{ r<'<' II
14 flashing cya n-r d
15 flashing whit ' -blm·k

1 ·11

The full range of logical colours is available only in mode 2. However, you can
redefine a logical colour number in each mode to map onto any physical colour
using the PAL (for PALette) primitive. For example, when you are in mode 5,
logical colour 3 is preset to white but you can set it to cyan by typing:

PAL 3 6

The physical colour numbers are shown just to the left of the actual colours in
table 15.2.

Logo remembers the physical to logical colour relationships for the default
graphics mode and the default text mode. It restores these relationships when
entering the graphics state or the text state. When the screen mode
corresponding to one of these default modes is changed, the colour relationships
for that state are reset to the BBC Microcomputer or Electron defaults.

15.3 Summary of primitives

Primitive

BG
MODE
PAL
PC
PM

SETBG
SETMODE
SETPC
SETPT

15.4 Primitives

BG

Effect

Returns background colour
Returns the display mode
Sets logical colour to a specific physical colour
Returns pen colour
Protects mode when you are switching between
different screen modes
Changes background colour
Changes the display mode
Changes pen colour
Defines use of colour on screen

Returns an integer that represents the logical background colour. Logical
colours are shown in table 15.2

MODE
Returns the current screen mode.

132

PAL
PAL <Logical colour> <physical colour>

This primitive sets the logical colour of the BBC Microcomputer and Electron t.o
a specific physical colour. It is equivalent to the BBC BASIC VDU code
VD U19 .

Example

The following command line changes logical colour O to flashing white-black:

PAL 0 15

PC
Returns the current pen colour.

PM

PB <n>

If you need to switch between screen modes, PM will ensure that you do not use
more space than would be allowed in mode < n >. You can thus return to mode
< n > without any space problems.

SETBG
SETBG <n>

Changes the logical background colour (initially black, or 0) to the value
represented by < n >. The graphics area is cleared. < n > can be one of the values
shown in table 15.2.

SETMODE
SE TMODE <n>

Selects the screen mode which the computer is about to use. Eight modes are
available with the BBC Microcomputer and seven with the Electron, and they
are shown in table 15.1, together with the appropriate value of < n >.

A full description of the effect of SET MODE is given in section 15.1.

Example

TO SQUARE
RE PEAT 4 [FORWARD 200 LEFT 90]
END

DRAW
SETMODE 4
SQUARE
SETMODE 5
SQUARE

SETPC
SETPC <n>

This primitive changes the pen colour to the value represented by < n >. The
values which you can use are shown in table 15.2.

If you have a monochrome monitor the colours will be represented by different
intensities.

Example

The following procedures draw a black spinning square shape on a yellow
background.

TO SPIN
REPEAT 24 [LEFT 15 SQUARE]
END

TO SQUARE
REPEAT 4 [FORWARD 200 LEFT 90]
END

SETMODE 5
SETPC 0
S ETBG 2
SPIN

134

SETPT
SETPT <n>

Defines the way that colour is to be used on the screen. The input < n > has
the following effect:

n

0

1

2

3

4

Examples

Effect

Use the colours given by the SET PC and SET BG primitives

OR the pen colour and background colour

AND the pen colour and the background colour

Exclusive-OR the pen colour and the background colour

Invert the colour of the point passed

The following procedure draws a circle and then erases it:

TO CIRCLE.WIPE
SET PT 4
REPE AT 720 [FORWARD 2 LEFT 1]
END

I , If I

16 Creating a Logo
environment

In some circumstances you might want to restrict the facilities that Logo offers
or extend them in some way. For example, you might want to:

1. Restrict the precision of numbers.

2. Redefine primitives such that FORWARD 1 0 moves the turtle by 100 steps
instead of 10.

3. Change the initial screen mode and start up colours.

4. Have certain of your procedures treated as primitives in that they cannot be
edited by users.

5. Rename primitives for use with other languages.

You can do any of these things by creating a 'Logo environment'.

As an example, suppose you want to set up a turtle graphics environment for
young children such that the following applies:

F has the same effect as F O R W A R D 1 0 0

B has the same effect as BACK 100

L has the same effect as LE F T 3 0

R has the same effect as R I G H T 3 0

First of all, you would create the procedures F, B, Land R as follows, using the
editor:

TO F
FORWARD 100
END

TO B
BACK 100
END

TOR
RIGHT 30
END

136

TO L
LEFT 30
END

Try them out now. When you type F and press RETURN, this will have the
same effect as:

FO RWARD 100

The only problem now is this: someone could tamper with these new procedures
by using the editor. You can prevent this happening by typing:

BURY ALL

This 'buries' all the procedures in your workspace such that they now look like
primitives and cannot be edited. You can 'unbury' them at any time by typing:

UN BURYALL

If you wish, you can bury only the procedures F, B and R by typing:

BU RY [F B RJ

If you want to set up this environment so that it can be easily created when you
start up Logo, you can do so by first ensuring that F, B, R and Lare unburied,
then typing the following:

TO LOADINIT
BU RYALL
END

and then saving your workspace into a file (MY FI LE , say):

SA VE "MYF ILE

Note that if procedures are to be saved, they must not be buried when you use
the SAVE primitive.

Now, after you have started up Logo, if you type:

LO AD "MYFILE

the procedures F, B, L and R will be loaded into your workspace and buried
automatically. Logo always looks for a procedure LOAD IN IT after you have
used LO AD; if it finds one in the file just loaded, it runs the procedure
automatically.

You can put other things into LO AD IN I T, if you want to. For example, the
following will change the screen mode and background colour, as well as bury
your procedures:

137

TO LOADINIT
SETMODE 5
SETBG 2
BURYALL
END

Suppose you now want to introduce the children to the 'normal' primitives
FORWARD and BACK, together with the concept of inputs, but you want to
redefine their scope such that FORWARD 1 0 and BACK 1 0 both give a
movement of 100 steps. First of all, type the following:

COPYDEF "F "FORWARD
COPYDEF "B "BACK
REDEF

The first two lines create 'copies' of FORWARD and BACK, and REDE F allows
you to redefine primitives. You can now change F O R WA R D by typing:

EDIT "FORWARD

and modifying F OR WA R D to look like the following:

TO FORWARD :STEPS
F :STEPS* 10
END

Alternatively, it would be possible to define FORWARD using the primitive
DEFINE , which is described in chapter 7, 'Procedures and variables'.

After modifying BA CK in a similar way, you can prevent anyone redefining
primitives by typing:

NOREDEF

You can also prevent them tampering with FORWARD and BACK by typing:

BURYALL

Note that redefining FORWARD does not affect F D, so you might want to
redefine this also. One way would be to use COPY DE F (described in chapter 7,
'Procedures and variables'):

REDEF
COPYDEF "FD "FORWARD
NOREDEF

There is one other thing which you can do to set up a special Logo environment:
you can program the user function keys on your computer using the operating
system command *KEY. Type in the following, for example:

13

RUN [*KEY0 "CS:M"J
RUN [*KEY1 "FORWARD "]
RUN [*KEY2 "RIGHT"]
RUN [*KEY3 "LEFT"]

If you now press the function key f1 , then type 1 0 0 and press RETURN, this
will have the same effect as:

FORWARD 100

The other keys are set up to clear the screen and turn the turtle right and left
respectively. Note the use of the : M on the first line. This forces a RETURN
after the CS command to save you having to press RETURN yourself.

16.1 Summary of primitives

Primitive

BURIEDQ
BURY
BURYALL
NOREDEF
REDEF
REDEFQ
UNBURY
UNBURYALL

16.2 Primitives

BURIEDQ
BURIEDQ <word>

Effect

Tests if a procedure is buried
Buries a named procedure or list of procedures
Buries all the procedures in your workspace
Prevents the redefinition of primitives
Allows the redefinition of primitives
Tests if primitives can be redefined
Unburies a named procedure or list of procedures
Unburies all the procedures in your workspace

Tests if the procedure named by < w o r d > is buried. If it is, BUR I ED Q returns
T RU E, otherwise it returns F A LS E.

BURY
BURY <object>

Buries the named procedures in your workspace such that you cannot save,
edit , list or redefine them. This effectively makes the named procedures look
like primitives.

139

Examples

POTS
TO R
TO L

TO F
TO B
BURY "F
POTS
TO R
TO L

TO B

The following buries the procedures F, B, L and R:

BURY [F B L RJ

BURYALL

Buries all of the procedures in the workspace. Note that buried procedures will
not be saved.

NOREDEF
Prevents the redefinition of primitives.

REDEF
Allows the redefinition of primitives.

REDEFQ
Tests if primitives can be redefined. If they can, it returns TRUE , if not it
returns FA LS E.

UNBURY
UNBURY <09ject>

Unburies the named procedures in your workspace such that you can edit, list
or redefine them.

Examples

The following command line unburies the procedure L:

UNBURY "L

The following unburies the procedures F, B, L and R:

UNBURY [F B L RJ

140

UNBURYALL

Unburies all of the procedures in your workspace.

141

Appendix A

Logo primitives
A hash symbol (#) indicates that a procedure can take any number of inputs
(ie, it is greedy). If you give it more than the number indicated, you must
enclose the entire expression in brackets, for example:

PRINT (PRODUCT 50 10 15)

+ indicates that the function applies to the current turtle, unless a turtle
number is enclosed in brackets, for example:

(HEADING 3)

Primitive Effect

A D D I T EM < n > Returns an object made up of the old < o b j e c t >
<object> <new it em> with <new it em> added at position <n>.

AD VAL < n > If 1 < = < n > < = 4, returns an integer (0 to 4095)
representing the ADC voltage, otherwise returns
integer representing value (see the User Guide
for your computer).

A LIVE Q < n > Returns TRUE if turtle < n > is alive.

#ALLOF <a> Returns TRUE ifboth <a> and are TRUE .

#ANY O F <a> < b > Returns TRUE if at least one of< a> , < b > is
TRUE.

AS C I I < c h a r a c t e r > Returns ASCII code for < c h a r a c t e r >.

AS N <number> Returns the arcsine of< number> (in degrees) .

AT N <numb e r > Returns the arctangent of< numb e r > (in
degrees).

BACK (BK) <di stance> Moves turtle <di stance> steps back.

BEEP Generates a brief sound from loudspeaker.

BG Returns number representing background colour.

142

Primitive

BREAK

BURIEDQ <object>

BURY <object>

BURYALL

BUTFIRST (BF)
<object>

BUTLAST(BL)
<object>

Effect

Breaks out of REPEAT or DO FOREVER loop.

Returns T RU E if the procedure < o b j e c t > is
buried.

Buries named procedures in workspace.

Buries all procedures in workspace.

Returns all but first element of< o b j e c t >.

Returns all but last element of< o b j e c t >.

BUTTON Q < n > Returns TRUE if button on joystick < n > (1 or 2) is
down.

CALL < n > Passes control to machine code routine at the byte
address < n > .

CAP S < o b j e c t > Changes any lower case letters in < o b j e c t > to
capitals.

CAT < o b j e c t > Catalogues drive specified by < o b j e c t >.

CATCH <name> < L i s t > Runs < L i s t >; returns when THROW <name> is
encountered or end of< L i s t > is reached.

CH AR < n > Returns a word containing a single character
whose ASCII value is < n >.

C I Clears the keyboard input buffer.

CLEAN Clears graphics screen without moving turtle.
Can be used to select the graphics mode from text.

CONT I NU E (CO) Resumes a procedure after a PA US E or
interruption by ESCAPE.

COPY DE F <new name> Copies definition of< name> to <new name>.
<name>

Returns the cosine of <deg r e e s >. COS <degrees>

COUNT <object>

CS

Returns the number of elements in < o b j e c t >.

Clears screen and homes cursor.

143

Primitive

CT

CURSOR

DASIZE

DATAAREA

DECS

DEFINE <name>
<list>

DEFINEDQ <word>

DEPOSIT
<byteaddress>
<byte>

DISTANCE <List>

DOFOREVER <List>

DOT<List>

#DRAW <n>

EDALL

#EDIT (ED) <object>

144

Effect

Clears text area of screen.

Returns position of text cursor as list ofx,y
coordinates.

Returns the size (in bytes) of the data area as an
integer.

Returns byte address of data area used to pass data
to operating system and machine code routines. If
< n > is specified an area of< n > bytes is reserved.

Indicates number of decimal places used in
calculations.

Makes< Li s t > the definition of procedure
<name>.

Returns T RU E if < w o r d > is the name of a
procedure or primitive.

Puts the value <by t e > into the address
<by t ea d d re s s >. Both are integers.

Returns distance from current turtle position to
screen position < L i s t >.

Repeats < L i s t > forever , or until a command
such as BREAK or STOP is encountered.

Returns logical colour of dot at screen position
given by< Li s t >.

Clears screen, kills all but one turtle, sets W RA P,
moves turtle to [0 0 J, sets heading to 0, resets
pen state. If< n > is used, reserves < n > lines for
text.

Edits all procedures and names in workspace.

Starts the Logo editor and loads named
procedure(s) into the edit buffer. If< o b j e c t > is
not present, displays edit buffer or nothing (if
contents have been erased).

Primitive

#EDN <object>

EDNS

EDPS

EMPTYQ <object>

END

ENVELOPE (14inputs)

ERALL

ERASE (ER) <object>

ER FILE <fi Lename>

ERITEM <n>
<oldobject>

ERN <object>

ER NS

ER PLIST <object>

ER PLISTS

ERPS

ERRMSG <List>

ER ROR

EX AMINE <n>

Effect

Puts variable name(s) given by < o b j e c t > into
the edit buffer. If< o b j e c t > is not present,
displays edit buffer or nothing (if contents have
been erased).

Edits all names in workspace.

Edits all procedures in workspace.

Returns T RU E if < o b j e c t > is the empty list or
the empty word.

Completes definition of a procedure.

Used with SOUND to control volume and pitch of a
sound.

Erases all procedures and variables from
workspace.

Erases procedure(s) named by < o b j e c t > from
workspace.

Erases the file < f i L e n a m e > .

Returns an object with the same contents as
< o L do b j e c t > but with element < n > erased.

Erases most recent version ofvariable(s) named
by < o b j e c t > from workspace.

Erases all variables from workspace.

Erases property name(s) given by < o b j e c t >,
together with their properties.

Erases all property names, together with their
properties.

Erases all procedures from workspace.

Given a list returned by ERROR , it prints the
associated error message.

Returns details oflast error or the empty list.

Returns the value held in the byte address given
by <n> .

145

Primitive

EXP <number>

EXPLORE <number>

FENCE

FIRST <object>

FLOOR

FORGET <object>

FORWARD (FD)
<distance>

FPUT <newobject>
<oldobject>

GO <name>

GPROP <name> <pr>

#HATCH <object>
<shape>

+HEADING

HEX <word>

HIBYTE <n>

HIDETURTLE(HT)

HOME

HOOT

IF <expression>
<list>

14

Effect

Returns the exponential function of< numb e r >.

Moves floor turtle forward by < n um be r > steps. If
an obstacle is encountered, returns the distance
travelled.

Fences the turtle within outline of screen.

Returns first element of< o b j e c t >.

Applies subsequent commands to floor turtle.

Forgets turtle(s) given by < o b j e c t >.

Moves turtle forward by a given <di stance>.

Returns the object formed by putting
<new o b j e c t > at the front of< o l do b j e c t >.

Transfers control to command following the label
given by <name> .

Returns the property < p r > of < n a me >.

Creates (hatches) turtle(s) specified by
< o b j e c t > at current turtle position and with a
given shape. < o b j e c t > is an integer or a list of
integers.

Returns heading of turtle

Returns decimal value of< word>.

Returns the most significant byte of the two byte
value given by < n >.

Makes turtle invisible.

Moves turtle to [0 0 J and sets heading to 0.

Sounds hooter on floor turtle.

If < e x p r e s s i on> is T RU E, runs < l i s t > .
Returns a value, if< l i s t > does.

Primitive

IF <expression>
<List1> <List2>

IFFALSE <List>

IFTRUE <List>

INKEY <n>

INT <number>

ITEM <n> <object>

KEYQ

LAST <object>

LEFT(LT) <degrees>

LIST <object1>
<object2>

LISTQ <object>

LN <number>

LOAD <fi Lename>

LOBYTE <n>

LOCAL <name>
<object>

LOOP

Effect

If < e x p r e s s i o n > is T R U E, runs < L i s t 1 > ,
otherwise, runs < L i s t 2 >. Returns a value, if
either list does.

Runs < L i s t > if most recent TEST was FALSE .

Runs < L i s t > if most recent TEST was TRUE .

If0 <= <n> <= 3276 , waits for <n> tenths of a
second or until a key is pressed. Result is a null
word if no key was pressed or a 1 character word if
a key was pressed. If< n > > 3 2 7 6 , generates
error. If < n > < 0 , tests if specific key was pressed
and returns T RU E or F A LS E.

Returns integer part of number.

Returns element < n > of< o b j e c t >.

Returns T RU E if a key has been pressed but not
used by R C, R L or R W, otherwise returns F A LS E.

Returns last element of< o b j e c t >.

Turns turtle to left (anticlockwise) by the angle
specified.

Returns a list whose elements are < o b j e c t 1 >,
<object2> .

Returns T RU E if < o b j e c t > is a list.

Returns natural log of< numb e r >.

Loads contents of file into workspace.

Returns the least significant byte of the two byte
value given by < n >.

Makes <name> local and makes its contents
equal to< object> .

Returns to the beginning of the R E PE AT /
DO F OR E V E R list and increments the repeat
count, if REPEAT.

147

Primitive

LPUT <newobject>
<oldobject>

MAKE <name>
<object>

MEMBER <object1>
<object2>

MEMBERQ <object1>
<object2>

MODE

NOREDEF

NOT <a>

Effect

Returns object produced by putting
<new o b j e c t > at end of< o L do b j e c t >.

Makes < n a me > refer to < o b j e c t >.

If< o b j e c t 1 > is an element of< o b j e c t 2 >,
returns the element number, otherwise returns 0.

Returns T RU E if < o b j e c t 1 > is a member of
<object2>.

Returns the current display mode.

Prevents anyone redefining primitives.

Returns T RU E if < a > is F A LS E or F A LS E if < a >
is TRUE.

NUMBER Q < o b j e c t > Returns TRUE if< o b j e c t > is a number.

0 SB Y TE <A> < X > < Y > Calls the operating system OSBY TE routine with
register contents <A>, < X > and < Y >. Returns
integer value formed by the contents of the < X >
and < Y > registers. < X > and < Y > can be omitted.

OUT PUT (O P) <object> Returns control to caller and returns <object>
as result of a procedure.

PAL <col1> <col2>

PAUSE

+PC

PE

+PEN

PEN DOWN (PD)

PENRESET

PENUP(PU)

14

Sets logical colour < c o L 1 > to physical colour
<col2> .

Makes procedure pause.

Returns the current pen colour.

Puts turtle's eraser down.

Returns current pen parameters in the form of a
list: pen state, visibility, colour, nib, pen type.

Puts turtle's pen down.

Resets pen colour to 7, nib to 8 and pen type to 0.
Puts pen down and shows turtle.

Lifts turtle's pen.

Primitive

PENUPQ

PI

PUST <name>

PM <n>

PO <object>

POALL

PONS

POPS

+POS

POTS

PPALL

PPROP <name> <pr>
<object>

PPS <object>

PRIMITIVEQ
<object>

Effect

Returns T RU E if pen is up.

Returns the value pi.

Returns property list of < n a me >.

Logo will reserve space such that SET MODE will
work with mode < n >, even if you are not using
that mode at present.

Prints out definition ofprocedure(s) given by
<object> .

Prints definition of every procedure and contents
of every variable in workspace.

Prints name and value of every variable in
workspace.

Prints definition of every procedure in workspace.

Returns turtle's position as list [x y J.

Prints title line of every procedure in workspace.

Prints properties of all words that have them.

Gives the word < n a me > a specific property and
associates the value <object> with it.

Prints properties of the name(s) given by
<object> .

Returns TRUE if <object> is a primitive.

P R I N T (P R) < o b j e c t > Prints < o b j e c t > in text area and ends text with
a RETURN. Successive objects are separated by
spaces.

PR SCREEN Copies contents of screen to printer.

PRO DU C T <numb e r 1 > Returns the product of <numb e r 1 > and
<number2> <number2> .

PX Makes turtle pen perform an exclusive-or
operation on the colour passed over.

149

Primitive Effect

Q U OT I ENT <numb e r 1 > Returns integer part of< numb e r 1 > /
<number2> <number2>.

RANDOM < n > Returns a random, non-negative integer less than
<n> .

RC

READLIST (RL)

READPICT
<filename>

READWORD (RW)

REDEF

REDEFQ

REMAINDER
<number1>
<number2>

Returns character typed at keyboard, waiting if
necessary. Character is not displayed.

Returns a line from keyboard in the form of a list.
Waits, if necessary.

Reads the picture from < f i L en a me > on to the
screen.

Returns first word of a line from the keyboard.

Permits the redefinition of primitives.

Returns TRUE if primitives can be redefined.

Returns remainder of < numb e r 1 > /
<number2>.

R EM P RO P < n a me > < p r > Removes property < p r > from < n a me >.

R E PE AT < n > < L i s t > Runs < L i s t > < n > times.

#RE RAN DOM <n > Makes RAN DOM behave in a repeatable way if
< n > is specified. If< n > is omitted, then RANDOM
becomes random again.

RIG H T(R T) <degrees> Turns turtle to the right (clockwise) by a given
angle.

RO UN D <numb e r > Returns <numb e r > rounded to the nearest
integer.

RUN <List>

SAVE <fi Lename>
<object>

150

Executes < L i s t > and returns whatever
< L i s t > does.

Writes all names and some or all procedures in
workspace to < f i L e n a me> . < o b j e c t > can be
omitted.

Primitive

SAVEPICT
<filename>

SCR

SCREEN

SCREENQ

SECT <radius>
<angle> <width>

SENSE <n>

#SENTENCE
<object1>
<object2>

SETBG <n>

SETCURSOR <List>

SETDECS <n>

SETDOT <List>

SETERR <List>

S ETHEADING (SETH)
<degrees>

S ETITEM <n>
<object1>
<object2>

S ETMODE <n>

S ETNIB <n>

Effect

Saves the current screen picture into
<fi Lename>.

Returns the aspect ratio of the screen.

Changes from floor turtle to screen turtle.

Returns TRUE if screen turtle is in use.

Draws a sector through a given< a ng Le> with
< r a d i u s > and < w i d t h >.

Returns a value if turtle sensor < n > is touching
anything. Value depends on floor turtle used.

Returns a list formed by < o b j e c t 1 > and
< o b j e c t 2 >. If either object is a list, S ENT ENC E
takes the elements of that list, but not the list
itself.

Changes logical background colour to < n >.

Puts text cursor at the position given by < L i s t >,
which is in the form [<co Lum n > < L i n e >].

If< n > is in range Oto 7, numbers will be rounded
to < n > places. If it is 8, normal output will be
restored.

Puts a dot at the position given by < L i s t > in
current pen colour. < Li s t > has the form [x y] .

When called with the < L i s t > returned by
ERROR, it regenerates the corresponding error.

Sets turtle heading to < d e g r e e s >.

Returns object derived from < o b j e c t 1 > with
element < n > changed to < o b j e c t 2 >.

Selects display mode of computer.

Selects graphics options of the BBC BASIC PLOT
statement.

151

Primitive

SETPC <n>

SETPEN <List>

SETPOS <List>

SETPT <n>

SETSCR <n>

#SETSH <object>

SETX <number>

SETY <number>

+SH

SHOW <object>

SHOWTU RT LE (S T)

SIN <degrees>

Effect

Changes turtle's pen colour to < n >.

Sets current pen parameters to < L i s t > (in form
returned by <PEN>).

Moves screen turtle to the position given by
< L i s t > . < L i s t > has the form [x y J .

Defines use of colour on screen as in the BBC
BASIC G COL statement.

Sets screen aspect ratio to < n >.

Changes current turtle's shape to the value given
by < 0 b j e C t >.

Moves turtle horizontally on the screen to the
x-coordinate <number>.

Moves turtle vertically on the screen to the
y-coordinate <number>.

Returns current turtle's shape as a list.

Prints < o b j e c t > followed by carriage return,
with brackets for list.

Makes turtle visible.

Returns sine of < d e g r e e s >.

SOUND < c ha n > < Loud> Generates a sound ofloudness < Loud> , pitch
<pi t c h > <du r > <pi t c h > and duration <du r > on sound channel

<chan> .

SQRT <number>

STAMP

STOP

#SUM <number 1 >
<number2>

T AN <degrees>

TC

152

Returns square root of <nu m be r >.

Leaves imprint of turtle's shape on screen .

Stops procedure and returns control to calling
environment.

Returns the sum of < n u m be r 1 > and
<numbe r2> .

Returns the tangent of< deg re e s >.

Prints details of current procedure calls.

Primitive

TELL <object>

TEST <a>

TEXT <name>

THING <object>

THINGQ <object>

Effect

Selects turtle(s) given by < o b j e c t > and applies
subsequent commands to it/them. < o b j e c t >
can be an integer or a list of integers.

Notes if< a> is TRUE or FALSE .

Returns definition of procedure <name> as a list
oflists.

Returns the contents of< o b j e c t >.

Returns the value TRUE if< o b j e c t > has some
value, otherwise returns FALSE .

THROW <name> Transfers control to the corresponding CATCH .

T I D Y Performs garbage collection.

TIME Returns time in tenths of a second since computer
was switched on, CTRL BREAK was pressed or
last T I M E R E S E T was used.

TIMER ES ET Resets time counter to zero.

#TI T LE < o b j e c t > Prints < o b j e c t > at turtle position in current
pen colour. Does not output a RETURN. No
spaces are left between successive objects.

#TO <name1> <name2> Startsdefinitionofprocedure<name1> .
<namen>

TOWARDS <List>

TRACE <n>

TS

TURTLES

TYPE <object>

Returns heading turtle would have ifit faced the
position given by < L i s t >. < L i s t > has the form
[X y] .

Introduces or removes tracing and sets trace
characteristics.

Allots entire screen for text and may change
mode.

Returns list of living turtles.

Prints < o b j e c t > in text area. Does not output a
RETURN. No spaces are left between successive
objects.

153

Primitive

UNBURY <object>

UNBURYALL

#VDU <object>

WAIT <n>

WHO

WINDOW

#WORD <word1>
<word2>

WORDQ <object>

WRAP

ws

+XPOS

+YPOS

154

Effect

Unburies procedure(s) named by < o b j e c t >
from workspace.

Unburies all procedures from workspace.

Sends control codes to VDU driver. (VDU < n >
";) sends < n > as a two-byte value.

Waits for < n > tenths of a second.

Returns list of current turtles as selected by
TELL.

Removes bounds from turtle field.

Returns word made up of < w o r d 1 > and
<word2> .

Returns TRUE if< o b j e c t > is a word.

Alters turtle field so turtle reappears at the
opposite side when it reaches the edge of the
screen.

Returns list of total number of bytes available and
maximum workspace for any individual item.

Returns x-coordinate of turtle's position.

Returns y-coordinate of turtle's position.

AppendixB

Logo error messages

PAR 1 and PAR 2 are the elements of the syntax (procedures, numbers, words,
etc) which give rise to the error .

Error
number

Error message

Unknown error
Logo has run out of space
Word is too Long
Not enough inputs to PAR1
Too many Local variables
Logo doesn't know how to PAR1
PAR1 has no value
Logo doesn't know what to do
PAR1 i s a primitive

with

300
301
302
303
304
305
306
307
308
309
310

PAR1 doesn't Li k e PAR2 as input
PAR 1 didn't output

311 Logo wants another ')'
312 Too much inside '()'s
313 Logo has found an extra ')'
314 Nothing inside '()'s
315 Too many inputs to PAR1
316 PAR1 is already defined
317 Fi Le PAR1 already exists
318 Logo needs to TEST before PAR1
319 PAR1 must be in a procedure

PAR1

320 PAR1 is only allowed as a direct command
3 21 PAR1 is not allowed from within the ed i tor
3 22 Logo can't load fi Le PAR1
3 23 Logo can't find file PAR1
3 24 PAR1 can't find PAR2
3 25 Result of PAR1 is too big
3 26 Turtle is outside fence
32 7 Turtle hit fence

155

Error
number

328
329
330
331
332
333
334
335

Error message

PAR1 is not at start of Line
Too few i tems in PAR1
PAR1 i s not within REPEAT or DOFOREVER
Turtle PAR1 i s not alive
Turtle PAR1 is already alive
PAR1 is buried
PAR1 can't be used with screen turtle
PAR1 can't be used wi th floor turtle

336 Unknown error
337 Unknown error
338 Unknown error
339 Unknown error

156

AppendixC

ASCII code table

Action Code
(Decimal)

Nothing 0 33
Next to printer 1 34
Start printer 2 # 35
Stop printer 3 $ 36
Separate cursors 4 % 37
Join cursors 5 & 38
Enable VDU 6 39
Beep 7 (40
Back 8) 41
Forward 9 * 42
Down 10 + 43
Up 11 , 44
Clear text area 12 45
Carriage return 13 46
Paged mode on 14 I 47
Paged mode off 15 0 48
Clear graphics area 16 1 49
Define text colour 17 2 50
Define graphic colour 18 3 51
Define logical colour 19 4 52
Default logical colours 20 5 53
Erase line or Disable VDU 21 6 54
Select Mode 22 7 55
Reprogram characters 23 8 56
Define graphics area 24 9 57
Plot 25 58
Default screen areas 26 ; 59
Nothing 27 < 60
Define text area 28 = 61
Define graphic origin 29 > 62
Move text cursor to 0,0 30 ? 63
Move text cursor to X, Y 31 @ 64
Space 32 A 65

157

B 66 a 97
C 67 b 98
D 68 C 99
E 69 d 100
F 70 e 101
G 71 f 102
H 72 g 103
I 73 h 104
J 74 105
K 75 j 106
L 76 k 107
M 77 l 108
N 78 m 109
0 79 n 110
p 80 0 111
Q 81 p 112
R 82 q 113
s 83 r 114
T 84 s 115
u 85 t 116
V 86 u 117
w 87 V 118
X 88 w 119
y 89 X 120
z 90 y 121
[91 z 122
\ 92 { 123
] 93 124

94 } 125
95 126

£ 96 Backspace and delete 127

15

Index

< a,b> 13
ADDITEM 91
ADVAL 62
ALIVEQ 115
ALLOF 40
ANYOF 41
Arithmetic 10,76
ASCII 91,110
ASCII code 110,157
ASN 78
ATN 78

BACK(BK) 17,108
BEEP 62
BG 18,132
BREAK 41
Bubble sort 113
BURIEDQ 139
BURY 137,139
BURYALL 137,140
BUTFIRST(BF) 88,92
BUTLAST(BL) 92
BUTTONQ 62
< byte> 14

CALL 119
CAPS 93
CAT 55
CATCH 41 ,101 ,104
CHAR 93
< character> 14
Cl 63
CLEAN 3,4,18
Colon (see Dots)
Colours 129
- logical 131
- physical 131

Command - line 3
- mode 3
Conditionals 38
Continuation lines 5
CONTINUE(CO) 7,103,104
COPYDEF 71,138
cos 78
COUNT 94
CS 18
CT 18,63
CTRL 7
CURSOR 63
Cursor - read 101
- write 101

DASIZE 120
DATAAREA 120
Debugging 101 ,102
DECS 79
Default graphics mode 130
Default text mode 130
DEFINE 72,138
DEFINEDQ 72
< degrees> 14
DEPOSIT 121
DISTANCE 18
< distance> 14
DO FOREVER 37 ,42
DOT 19
Dots(:) 6,11
DRAW 3,19,130

EACH (procedure) 115
EDALL 51
EDIT(ED) 48,51 ,131
Edit buffer 49
Editing keys 52
Editor 48

159

EDN 50,51
EDNS 52
EDPS 48,52
Empty - word 9
- list 9
EMPTYQ 94
END 5,73
ENVELOPE 63
ERALL 56
ERASE(ER) 56
ERFILE 56
ERITEM 95
ERN 56
ERNS 57
ERPLIST 126
ERPLISTS 126
ERPS 57
ERRMSG 104
ERROR 104
"ERROR 101
Error handling 4,101
Error messages 155
Error numbers 155
ESCAPE 7
"ESCAPE 102
EXAMINE 121
EXP 79
EXPLORE 109
Extensions 13

FENCE 20
< filename> 14
Files 54
FIRST 10,88,90,95
FLOOR 109
Floor turtles 108
FORGET 112,116
FORW ARD(FD) 4,20
FPUT 95

arbage collection 54
42

PROP 123,126

1 0

Graphics mode 130
- default 130
Greedy primitives 8

HATCH 112,116
HEADING 20
HEX 121
HIBYTE 121
HIDETURTLE(HT) 21
HOME 4,21
Home position 4
HOOT 109

IF 38,42
IFFALSE 43
IFTRUE 43
INKEY 63
Inputs 4
- to procedures 6
INT 79
Inverse video 5
1/0 61
ITEM 96
< item> 14

Keyboard errors 101
KEYQ 64

Labels 12
LAST 90,96
LEFT(LT) 4,22,108
"LEVEL 102
List - empty 9
LIST 96
LISTQ 97
< list> 14
Lists 9,88
- property 123
LN 79
LOAD 57,124
LOADINIT (procedure) 137
LOBYTE 122
LOCAL 73

Logo environment - creating 13,136
LOOP 44
LPUT 97

Machine functions 119
MAKE 10,73
MEMBER 98
MEMBERQ 98
MODE 22,132
Mode - graphics 129
- scree11 129
- text 129
Multiple turtles 112

< n> 14
< name> 14
Names 9
NOREDEF 138,140
NOT 45
< number> 14
NUMBERQ 80
Numeric ranges 76

Object 9
< object> 14
Order of evaluation 11
OSBYTE 122
- calls 119
OUTPUT(OP) 7,45
Outputs 7

PAL 22,132,133
PAUSE 105
PC 22,133
PE 23
PEN 23
PENDOWN(PD) 24,108
PENRESET 24
PENUP(PU) 24,108
PENUPQ 24,108
PI 80
PLIST 123,126
PM 133

PO 57
POALL 58
PONS 58
POPS 58
POS 25
POTS 58
PPALL 124,126
PPROP 123,124,127
PPS 124,127
Precedence 11
PRIMITIVEQ 73
Primitives 3
- summary 142
< pr> 14
Prompt 3
Property lists 123
< property name> 14
PRINT(PR) 64
Procedures 5,71
PRSCREEN 65
PRODUCT 80
PX 25

Quotes(") 11
QUOTIENT 80

RANDOM 81
RC 65
Read cursor 101
READLIST(RL) 65
READPICT 58
READWORD(RW) 66
Recursion 39
REDEF 138,140
REDEFQ 140
REMAINDER 82
REMPROP 128
REPEAT 37,45
RERANDOM 82
Reverse video 5
RIGHT(RT) 4,26,108
ROUND 83
RUN 46,139

161

SAVE 59,124
SAVEPICT 59
SCR 27
SCREEN 108,109
Screen modes 129
SCREENQ 109
SECT 27
SENSE 109
SENTENCE(SE) 99
SETBG 27,133
SETCURSOR 66
SETDECS 83
SETDOT 27
SETERR 105
SETHEADING(SETH) 28
SETITEM 99
SETMODE 28,129,131,133
SETNIB 28
SETPC 30,134
SETPEN 30
SETPOS 30
SETPT 31,135
SETSCR 31
SETSH 31 ,110,117
SETX 32
SETY 32
SH 33,117
Shape of turtles 110
SHOW 67 ,89
SHOWTURTLE(ST) 33
SIN 84
SOUND 67
Sort - bubble 113
Special characters 11
SQRT 84
STAMP 34
Starting up 3
STOP 39,46
SUM 84
Syntax 13

TAN 85
T 105

l 2

TELL 112,117
TEST 46
TEXT 140
Text mode 130
- default 130
THING 10,74
THINGQ 75
THROW 47 ,101,106
TIDY 54,59
TIME 67
TIMERESET 68
TITLE 34
Title line 5
TO 5,75
"TOPLEVEL 102
TOWARDS 34
TRACE 106
"TRUE 102
TS 3,68,130
TURTLES 118
Turtles - floor 108
- multiple 112
- shapes 110
TYPE 68
Typefaces 3

UNBURY 140
UNBURYALL 137 ,141

Variable 71
VDU 69,110

WAIT 69
WHO 118
WINDOW 34
Word 9
- definition 88
- empty 9
< word> 14
WORD 99
Workspace 54
WORDQ 100
WRAP 35

Write cursor 101
ws 54,60

XPOS 35

YPOS 35

" 11
: 11
[J 12
\ 12
~ 12
() 12
+ 85
- 85
* 12,85
I 86
> 86
< 86
= 87

163

	original complete_Page_01_2R
	original complete_Page_02_1L
	original complete_Page_02_2R
	original complete_Page_03_1L
	original complete_Page_03_2R
	original complete_Page_04_1L
	original complete_Page_04_2R
	original complete_Page_05_1L
	original complete_Page_05_2R
	original complete_Page_06_1L
	original complete_Page_06_2R
	original complete_Page_07_1L
	original complete_Page_07_2R
	original complete_Page_08_1L
	original complete_Page_08_2R
	original complete_Page_09_1L
	original complete_Page_09_2R
	original complete_Page_10_1L
	original complete_Page_10_2R
	original complete_Page_11_1L
	original complete_Page_11_2R
	original complete_Page_12_1L
	original complete_Page_12_2R
	original complete_Page_13_1L
	original complete_Page_13_2R
	original complete_Page_14_1L
	original complete_Page_14_2R
	original complete_Page_15_1L
	original complete_Page_15_2R
	original complete_Page_16_1L
	original complete_Page_16_2R
	original complete_Page_17_1L
	original complete_Page_17_2R
	original complete_Page_18_1L
	original complete_Page_18_2R
	original complete_Page_19_1L
	original complete_Page_19_2R
	original complete_Page_20_1L
	original complete_Page_20_2R
	original complete_Page_21_1L
	original complete_Page_21_2R
	original complete_Page_22_1L
	original complete_Page_22_2R
	original complete_Page_23_1L
	original complete_Page_23_2R
	original complete_Page_24_1L
	original complete_Page_24_2R
	original complete_Page_25_1L
	original complete_Page_25_2R
	original complete_Page_26_1L
	original complete_Page_26_2R
	original complete_Page_27_1L
	original complete_Page_27_2R
	original complete_Page_28_1L
	original complete_Page_28_2R
	original complete_Page_29_1L
	original complete_Page_29_2R
	original complete_Page_30_1L
	original complete_Page_30_2R
	original complete_Page_31_1L
	original complete_Page_31_2R
	original complete_Page_32_1L
	original complete_Page_32_2R
	original complete_Page_33_1L
	original complete_Page_33_2R
	original complete_Page_34_1L
	original complete_Page_34_2R
	original complete_Page_35_1L
	original complete_Page_35_2R
	original complete_Page_36_1L
	original complete_Page_36_2R
	original complete_Page_37_1L
	original complete_Page_37_2R
	original complete_Page_38_1L
	original complete_Page_38_2R
	original complete_Page_39_1L
	original complete_Page_39_2R
	original complete_Page_40_1L
	original complete_Page_40_2R
	original complete_Page_41_1L
	original complete_Page_41_2R
	original complete_Page_42_1L
	original complete_Page_42_2R
	original complete_Page_43_1L
	original complete_Page_43_2R
	original complete_Page_44_1L
	original complete_Page_44_2R
	original complete_Page_45_1L
	original complete_Page_45_2R
	original complete_Page_46_1L
	original complete_Page_46_2R
	original complete_Page_47_1L
	original complete_Page_47_2R
	original complete_Page_48_1L
	original complete_Page_48_2R
	original complete_Page_49_1L
	original complete_Page_49_2R
	original complete_Page_50_1L
	original complete_Page_50_2R
	original complete_Page_51_1L
	original complete_Page_51_2R
	original complete_Page_52_1L
	original complete_Page_52_2R
	original complete_Page_53_1L
	original complete_Page_53_2R
	original complete_Page_54_1L
	original complete_Page_54_2R
	original complete_Page_55_1L
	original complete_Page_55_2R
	original complete_Page_56_1L
	original complete_Page_56_2R
	original complete_Page_57_1L
	original complete_Page_57_2R
	original complete_Page_58_1L
	original complete_Page_58_2R
	original complete_Page_59_1L
	original complete_Page_59_2R
	original complete_Page_60_1L
	original complete_Page_60_2R
	original complete_Page_61_1L
	original complete_Page_61_2R
	original complete_Page_62_1L
	original complete_Page_62_2R
	original complete_Page_63_1L
	original complete_Page_63_2R
	original complete_Page_64_1L
	original complete_Page_64_2R
	original complete_Page_65_1L
	original complete_Page_65_2R
	original complete_Page_66_1L
	original complete_Page_66_2R
	original complete_Page_67_1L
	original complete_Page_67_2R
	original complete_Page_68_1L
	original complete_Page_68_2R
	original complete_Page_69_1L
	original complete_Page_69_2R
	original complete_Page_70_1L
	original complete_Page_70_2R
	original complete_Page_71_1L
	original complete_Page_71_2R
	original complete_Page_72_1L
	original complete_Page_72_2R
	original complete_Page_73_1L
	original complete_Page_73_2R
	original complete_Page_74_1L
	original complete_Page_74_2R
	original complete_Page_75_1L
	original complete_Page_75_2R
	original complete_Page_76_1L
	original complete_Page_76_2R
	original complete_Page_77_1L
	original complete_Page_77_2R
	original complete_Page_78_1L
	original complete_Page_78_2R
	original complete_Page_79_1L
	original complete_Page_79_2R
	original complete_Page_80_1L
	original complete_Page_80_2R
	original complete_Page_81_1L
	original complete_Page_81_2R
	original complete_Page_82_1L
	original complete_Page_82_2R
	original complete_Page_83_1L
	original complete_Page_83_2R
	original complete_Page_84_1L
	original complete_Page_84_2R
	original complete_Page_85_1L
	original complete_Page_85_2R

