
Introduction to
Logo
on the BBC Microcomputer
and Acorn Electron

BARRY MORRELL

ACORNseFT

c·I nowh•clJ.!<•m nt '
'l'hp I ,o~ o oft worn was designed by Richards Computer Products and was
1111pl1•11111111!•cl by ' hris Jobson and John Richards .

M1111 y p1•opl • h •Ip •din the preparation of this book. In particular, I should like
lo lli1111k Ri hnrd Noss of AUCBE and Julian Pixton and Linda Spear of
WnlHnll Logo proj et for their teaching advice. I also owe a lot to Steve and
I ,111d11 for their help with the illustrations.

'!'hunks arc a lso due to John Richards, Chris Jobson, Mike Fellows, John Laski
11nd J nny Raggett. Finally, I should like to thank Paul Fellows and
Puul hristensen of Acornsoft, and Elaine Morrell.

Harry Morrell

lSBN O 907876 95 1

Copyright © Acornsoft Limited 1984

All rights reserved

First published in 1984 by Acornsoft Limited

No part of this book may be reproduced by any means without the prior consent
of the copyright holder. The only exceptions are as provided for by the
Copyright (photocopying) Act or for the purposes of review or in order for the
software herein to be entered into a computer for the sole use of the owner of
the book.

Note: Within this publication the term 'BBC' is used as an abbreviation for
'British Broadcasting Corporation'.

FIRST EDITION

Acornsoft Limited, Betjeman House, 104 Hills Road,
~ambridge CB2 lLQ, England. Telephone (0223) 316039

Contents

How to use this book

1 Meet the turtle
What ifl make a mistake?
Summary of chapter

2 Saving yourself some work
The REPEAT command
Spinning squares
Summary of chapter

:J The artistic turtle
The turtle's pen and eraser
Using different nibs
1"ields and fences
Putting colour on the map
Summary of chapter

4 Teaching the turtle
Summary of chapter

r, Saving your procedures and pictures
I ,ooking at procedures in your workspace
, '11v ing your procedures
, '11vi ng your pictures
, '11m mary of chapter

H Learning more about procedures
11 mg one procedure within another
I J tng several procedures within another
, 11111mary of chapter

1

3
5
7

8
9

10
11

12
12
13
14
16
19

20
23

24
24
25
27
28

30
30
32
33

7 What to do when your procedures don't work
Kt•t•pi ng your procedures tidy
ktting rid of the bugs

Summary of chapter

Using inputs with your procedures
' ummary of chapter

9 Using numbers with Logo
Changing the order of calculation
Using decimals
Using negative numbers
Summary of chapter

10 Using boxes with Logo
Boxes with the same name
Summary of chapter

11 Recursion
The third wish
Stopping your spirals
Recursion without turtles
Summary of chapter

12 Multiple turtles
Random movements
' Drawing multiple circles
Moving letters
Summary of chapter

13 Turtle navigation
Getting to the point
Find the turtle
Turtle Island
Summary of chapter

34
34
36
39

40
42

43
44
44
45
45

47
48
49

50
50
51
51
52

54
56
57
58
59

60
60
61
62
62

14 Playing with words
How does Logo handle words?
Getting words out of lists
Getting little lists out of big ones
Joining lists together
Words can be lists too!
Writing back-to-front
Summary of chapter

15 Writing interactive procedures
Reading characters from the keyboard
Improving your procedures
Summary of chapter

Appendix A
l•:diting your command lines

AppendixB
l•:cliting your procedures

Appendix C
I lHc of colour

ppendix D
1,ol{o primitives

l•'11rther reading

(11JL1X

65
65
67
67
69
69
70
72

74
74
75
76

77
77

78
78

80
80

82
82

85

87

88

How to use this book
?/

~
If you are not familiar with the computer language Logo, this book is for you. It
teaches you the main ideas of Logo using examples that you can, and should,
try out for yourself. If you are experienced in Logo, you might want to go
straight to Logo on the BBC Microcomputer and Acorn Electron, the reference
manual which is part of the Acornsoft Logo package. If you start by reading
this introductory book and find that it is going too slowly for you, you will find
the main points summarised at the end of each chapter.

Whichever· type of reader you are, you will find a glossary at the back of this
book to help you with unfamiliar terms.

Don't worry about damaging your computer. You can type anything you like
without doing it any harm. If there is anything you don't understand in this
hook, try it out on your computer and talk it over with your friends .

1

Figure 1

2

1 Meet the turtle

The Logo turtle is a small creature which lives in a 'field' on your screen and
you can 'teach' it to do things without being bitten or trampled underfoot. Your
turtle already understands a few things; for example, you can get it to move
forward or back, or you can get it to turn.

Attached to the turtle is a 'pen' which can draw a 'trail' in different colours as
the turtle moves. You can use the words which the turtle already understands,
together with this pen, to explore the world of Logo and draw complicated and
att ractive patterns like those shown in figure 1. You can also teach it new
words which extend its 'vocabulary' and help you make it draw even more
interesting patterns in brilliant colours.

There are two kinds of turtle . The first kind are called 'floor turtles' because
they crawl across the floor . The others are called 'screen turtles', because they
appear on your television screen. Each kind can be controlled from the
keyboard of your computer. You can use floor turtles with Acornsoft Logo, if
you wish, but for the present we will stick to screen turtles. If you want to use a
floor turtle , the Logo reference manual tells you how to do so.

Now, let's take a look at your turtle. To do this:

Make sure that your computer is connected up and switched on, as described
in the user guide for your computer.
The message We L come to Logo should have appeared on your screen. If
it hasn't , type* LOGO then press the RETURN key.

I{ •member, whenever you want the computer to do what you have typed, you
11'11 it to do so by pressing the RETURN key. Until you do this, it will do nothing
PX.cept show what you have typed on the screen .

The screen should now look like this:

3

Your lurlle is the triangle in the middle of the screen and its 'field' is the area
surrounded by a line.

Th ? in the bottom part of your screen is called a 'prompt' . It appears
whenever the computer is waiting for you to type something on your keyboard.
To the right of the prompt is a flashing underline symbol. This is called the
'cursor' and it shows where the next letter or number you type will appear on
the screen.

When you have finished reading this paragraph, try typing the two lines
printed below it and watch what happens. Check each line after you have typed
it and, if you make a mistake, don't worry. Just use the DELETE key to remove
the text before the cursor, then retype the correct version.

FORWARD 100
LEFT 60

FORWARD 100 LEFT 60

FORWARD, LE FT and other words which the turtle understands are called
'commands'. The numbers after them are called 'inputs'. You can think of
commands in the same way as you would the pieces of a Lego or Meccano set:
they are 'bricks' with which you can build more complicated structures.

RIGHT and BACK are two other commands related to the two you have typed
in; they also need inputs. Try finding out for yourself how RIGHT and 8 ACK
work and use them to put the turtle back where it started from (this is called its
'home position'). If you lose track of what you have done, you can get back to
the starting point of this paragraph by typing:

DRAW
FORWARD 100
LEFT 60

You can use different numbers as inputs after FORWARD and LE FT if you like.
Try using them with all kinds of numbers and see what happens.

Instead of typing the full names of commands you can use their short forms.
F O R WA R D has the short form F D and LE F T has the short form LT. When we
introduce a new command in the rest of this book we will put its short form (ifit
has one) after it, in brackets, for example: FORWARD (F D). Try to find out for

4

yourself what the short forms of BACK and R I G H T are. If you can't find them,
look in the summary at the end of this chapter.

There are three other commands which will help you with your pictures: DRAW ,
HO ME and C LE AN . DRAW and HOME both return the turtle to its home position,
but they each have a different effect on the turtle's trail. Try typing them in
and work out what the difference is (but first make sure that the turtle is away
from its home position). Then try using C LE AN and find out what that does.

What if I make a mistake?
l~veryone makes mistakes when they learn something new. In Logo, the most
common mistake is missing out the space between a command and its input.
For example:

FOR WARD100

The next most common mistakes are typing errors (pressing the wrong key or
pressing two keys at the same time). For example, you might type FOR WR AD
1 0 0 instead of F O R WA R D 1 0 0. If you notice the mistake before you press the
RETURN key, you can correct it using the DELETE key as described earlier. If
you do not, Logo will notice the mistake and reply with the message:

Lo go doesn't know how to FORWRAD

You can then retype the entire line.

Whenever you type something wrong, or ask Logo to do something it does not
understand, it will reply with a message which tells you clearly what it thinks
11-1 wrong. Try it.

5

'l111rU fun
11 11 1 n Il l'(' 11 ~ •w id as that you might like to try out.

I l<'ind out the heigh t and width of the screen in steps. You could write your
n•HultH on this diagram, if you like.

2. Try drawing the following pictures. If you are not sure how to do them, try
'playing turtle' and pace them out on the floor.

3. Try drawing the following picture using only the RIGHT and BACK
commands.

6

Summary of chapter
1. To display the turtle, switch on your computer (if necessary, type * LOG 0
to get into Logo). The turtle is the triangle at the centre of the screen (its 'home
position') and the ? symbol is a 'prompt'.

2. You can move the turtle using the commands FORWARD (FD), BACK (BK),
LE FT (LT) and RIGHT (RT). For example:

FO RWARD 100

LT 60

The number on each line is called an 'input'.

3. HOME and DRAW return the turtle to its home position. DRAW clears the
screen as well, but HOME does not. CLEAN clears the screen but leaves the
turtle where it was.

7

2 Saving yourself
some work

If you tried some of the activities in the last chapter you might have drawn a
square using commands like these:

FORWARD 100
LEFT 90
FORWARD 100
LEFT 90
FORWARD 100
LEFT 90
FORWARD 100
LEFT 90

If you didn't try these activities, clear the screen using DRAW and try them out
now.

So far, you have typed a single command on each line but you don't have to do
this. If you want, you can put a number of commands on each line to make
them easier to read:

FORWARD 100 LEFT 90
FORWARD 100 LEFT 90
FORWARD 100 LEFT 90
FORWARD 100 LEFT 90

Clear your screen, then try this out and see for yourself. Try using other
commands in this way as well. In particular, try typing them all on the same
line and watch what happens when you reach the end of the line. See how
many you can get on the same line.

You might have noticed that the last few lines you typed are displayed at the
bottom of the screen to remind you of what you have done. If you type two or
three commands on each line, these lines will show you much more than if you
had only typed one command on each line.

8

The REPEAT command
Suppose someone said to you: 'I want you to lay a treasure trail for someone to
follow. Walk forward ten paces then put down a marker'. You would probably
not mind doing this. But if they had to say it to you ten times, one after the
other, you would both be a little irritated. They are telling you to do the same
things over and over again and you are not stupid. Why couldn't they just say:
'I would like you to repeat a number of actions ten times. The actions are as
follows:

- Walk forward ten paces.
- Put down a marker.

Now go ahead and do them, please'.

In Logo you can be in the same situation . A lot of the things you type in are
groups of the same comrriands repeated over and over again. When you drew
the square opposite, for example, you typed the following commands four times:

FORW ARD 100 LEFT 90

lnstead, you could have typed:

RE PEAT 4 [FORWARD 100 LEFT 90]

This just means: 'Take the list of commands inside the square brackets and
repeat it four times' . Clear your screen, then try it out and see.

If you mistype the number of repeats and end up with something like:

RE PEAT 4000 [FORWARD 100 LEFT 90]

Logo will keep drawing squares for a long time when you press RETURN. If
you want to stop Logo drawing, you can always do this by holding down the
CTRL key, then pressing ESCAPE. Try the above example and see for yourself,
then remember what happened! You will find this combination of keys a useful
tool whenever you need to stop Logo doing something.

You could use REPEAT to draw a triangle. Try working out for yourself how to
do this. You might like to see what happens if you put other commands in the
square brackets.

9

Here are two other examples to try . Type them in and watch what happens.

REPEAT 6 [FD 200 BK 200 LT 60]

REPEAT 12 [FD 200 BK 200 LT 30]

Can you make a picture with 24 rays?

Next, try the following:

REPEAT 24 [FD 200 LT 60 FD 100 BK 100 RT 60 BK 200 LT 15]

REPEAT 6 [FD 100 LT 30 FD 50 RT 90]

Can you draw some different pictures using REPEAT ?

Spinning squares
You can make some very attractive pictures by drawing squares and turning
each square relative to the one drawn before it. Try typing this:

REPEAT 12 [LEFT 30 REPEAT 4 [FORWARD 200 LEFT 90]]

It draws a number of squares like the following:

It might surprise you that REPEAT can be used inside the square brackets of
another REPEAT command like this. You can, in fact, use most commands in
this way.

Actually, there is a much neater way of drawing this picture, but you'll have to
wait a little while before you find out how!

10

Turtle fun
I. Try using REPEAT to draw the following pictures. (Hint: work out first
which part is being repeated.)

D
:l. The following command draws six 'spinning squares':

REP EAT 6 [LEFT 60 REPEAT 4 [FORWARD 200 LEFT 90]]

Try drawing some more using a different number of squares. (Hint: look at the
relationship between the number of repeats and the angle of spin.)

:1. Try some different commands inside the brackets (for example RT) and see
what sort of pictures you can make.

Summary of chapter
l. You can put a number of commands on one line. For example, the following
draws a square:

FOR WARD 100 LEFT 90
FOR WARD 100 LEFT 90
FOR WARD 100 LEFT 90
FOR WARD 100 LEFT 90

2. You can repeat a number of commands several times using the REPEAT
command. For example , the following will draw the same square:

REPE AT 4 [FORWARD 100 LEFT 90]

Here the commands inside the square brackets are repeated four times.

11

3 The artistic turtle

The turtle has a 'pen' underneath it, as you have already discovered. It also has
an 'eraser'. In addition, the pen can have a number of 'nibs', allowing it, for
example, to draw normal lines or dotted lines.

If you have a colour screen you can make the turtle leave trails in different
colours and change the 'background' colour of your screen (this is set to black
when you start). If you have a black and white screen you cannot get the full
benefit of these facilities, but try them anyway. You will get pen and
background colours in different shades of grey, depending upon which colour
you selected.

Now let's see if you can turn yourself into an artist.

The turtle's pen and eraser
You control the turtle's pen with the PENUP(PU) and PEN DOWN(PD)
commands. These do exactly what they say. Try them out for yourself and see.

When you have finished exploring, try typing in the following commands and
watch what happens:

REPEAT 9 [F D 50 LT 20 PENU P FD 50 LT 20 PEND OWN]

This draws an 18-sided figure, but the pen is lifted for every other side. If you
look again at the instructions to the turtle you can work out what is happening
at each stage.

Now, before you do anything else, type the following and watch what happens:

PE REPEAT 9 [FD 50 LT 20 FD 50 LT 20]

The first command on the line, PE, is short for Pen Erase and puts the turtle's
eraser down. The rest of the commands retrace the turtle's previous path and
erase the lines drawn. If you try to move the turtle now it will leave no trail as
the eraser is still down. To lift it you must replace it with the pen by typing:

PENDOWN

Try using these three commands yourself. See if you can make the turtle's trail
look like a dotted line and draw some figures with it. Try drawing a square and
a triangle, for example.

12

U ing different nibs
With some pens you can get nibs which produce lines of different thicknesses.
1,ogo's SET NIB command can draw dotted lines and other nice effects. Try the
following:

DR AW
ET NIB 80

REP EAT 4 [FD 200 LT 90]

SETNIB 80 REPEAT 4 [FD 200 LT 90]

Th<• number after the SET NIB command tells Logo the type of nib you want.
This is the 'value' of the nib, each value giving another type of nib.

Now try this:

l>RAW
ITN IB 16

tllDE TUR TLE

You can hide the turtle shape by typing HIDE TUR T LE (HT)
and bring it back by typing SHOW TU RT LE (S T). This can

improve your picture - try it out and see!

1£PE AT 4 [FD 200 LT 90]

SETNIB 16 REPEAT 4 [FD 200 LT 90]

13

This is much easier than using PENUP and PEN DOWN , which you may have
tried earlier, but at least you learned how to use them!

The turtle's nib normally has the value 8 and is reset to this value (called its
'default') whenever you type DRAW . If you want to explore the other nib types
available, you can find descriptions of them under the command SET NIB in
the Logo reference manual. Or you could just try typing in some S ET N I B
commands and see what happens. Some numbers will give the same effect . Can
you work out which numbers change the effect? Try numbers up to 80.

Fields and fences
Type the following and watch what happens:

DRAW
RIGHT 35 [REPEAT 10 [FORWARD 190]]

Your screen display should now look like this:

Whenever the turtle goes off the screen it will reappear at the opposite side.
This type of screen display is called 'wrap mode' to distinguish it from other
modes which you will come across later. See if you can get the lines going in a
different direction to make a 'check' pattern.

Now try typing in the following commands and see what happens. Don't worry
if you lose sight of the turtle after the second command. Just keep on typing.

14

DRA W
WIN DOW
FO RWARD 1000
RI GHT 180
FO RWARD 1000
RI GHT 180

Your turtle should have moved off the screen , turned round and come back to
I he home position , then turned round again. Just because it is off the screen
dot>im't mean it can't move! What you can see is a small part of the turtle's field,
111 t ·1s though you are looking through a small window. There is a lot of space
1,, ._,ond this. Clear the screen and try it again, if you like.

Thl• type of display you have now is called 'window mode'. You get into it by
I vping WINDOW and you get back to wrap mode by typing WRAP .

When you feel that you understand what is happening, try this: see if you can
1-: l'I the turtle to move forward off the screen then go round the outside of the
l"t't'en, coming back to the home position from the left-hand side. The idea is
hown in the diagram below:

.,_
r --- -,
I I

! :
I
I ~-

II you want to stop the turtle moving off the screen, you can do so using the
I I N C E command. This draws a thick line as a 'fence' around the edge of the
1 11•en. lf the turtle hits this fence, the following message appears:

lurtle hit fence

11'1 y it out by typing:

PRA W
I INCE
IORWARD 600
JIACK 400

15

You can remove the fence and restore the wrap on your territory again by
using the W RA P command. Try it now by typing:

WRAP
CLEAN
FORWARD 1000
RIGHT 180
FORWARD 1000
RIGHT 180

Putting colour on the map
'l'he background colour of your .screen at the moment is black, and the pen
colour white, but you can change these if you want to. The colours you can use
depend upon the 'screen mode' and this, in turn, depends upon the equipment
you have. Screen modes are described in detail in Appendix C, 'Use of colour'.

When Logo is first loaded into your computer it always uses screen mode 4. You
can change this by typing SET MODE followed by a number corresponding to
the mode you want. Try typing the following, for example, and watch what
happens:

SETMODE 5
SETBG 2

SETPC 1
REPEAT 24 [LT 15 REPEAT 4 [FD 200 LT 90]]

You should get a picture like the one in figure 2. The S ET BG (SET Back Ground
colour) and S ET PC (SET Pen Colour) commands define the colour of the screen
and pen trace, respectively. The inputs you should give them are defined in
Appendix C for each screen mode. Try a few different ones and see what
happens. After you have done this, try combining them with the SET NIB
command to see what other effects you can come up with. For example, try this:

SETMODE 5
SETBG 2
SETPC 1
SETNIB 80
REPEAT 24 [LT 15 REPEAT 4 [FD 200 LT 90]]

Then try this:

SETMODE 5
SETBG 2

16

SE TPC 1
SE TNIB 80
PE NUP FD 200 PENDOWN
RE PE AT 24 [LT 15 REPEAT 4 [FD 200 LT 90]]

You could also use the SET PT (SET Pen Type) command, described in the Logo
1pf •rence manual. This defines how colour is to be used. Don't worry if you don't
understand it at first. Have a go with a few different numbers and see what
liu ppens. This example will get you started:

IIO ME
CLE AN
S TNI B 80
\ TPT 3
R PEAT 4 [FD 200 LT 90]

Figure 2

Turtle fun
1. Type W I N DOW then see if you can get the turtle to move as shown in the
diagram below:

~-...
~ ..

t r-

---~---' 't ~ I ~

.. ~ ... __ .311,

2. Now try to get it to go up off the screen, then come back to its home position
from the right. This is the route:

~

r------,
I I

: !
I

___ J

3. Do exactly the same, but persuade the turtle to come back to its home
position from below.

18

...... ,------,
I

I I

L-----_J

'1 . Now try to get the turtle to go up off the screen, then right around the
outside and back from the top.

Summary of chapter
I You can stop the turtle leaving a trail by lifting its 'pen'. You do this using
PE NUP (PU) and put it back down using PEN DOWN (PD).

l You can remove lines using the turtle's 'eraser'. This is brought into action
11Hing PE (Pen Erase) and the pen is reset using PEN DOWN .

:1 The turtle's 'pen' can have different 'nibs' which allow you to draw, for
1•xample, normal lines or dotted lines. The nib is changed using the SET NIB
rnmmand and reset to its normal state or value (8) by DRAW.

I When you first use Logo and start using the turtle your screen is in 'wrap
mode'. If the turtle disappears off one side of the screen it will reappear on the
ul her side. To get back into wrap mode, type WRAP.

r, If you type WI ND OW t he area you see on your screen is just part of the turtle's
f'u·ld'. If you move the turtle off the screen you can still give it commands in this
111ode (called 'window mode', because you are effectively looking through a
'w indow' at it).

It You can put a 'fence' around the screen to stop the turtle wandering off it by
11 141 ng the F ENC E command. If the turtle attempts to cross this fence it will stop
111 the fence and display the message:

lurt le hit f e n ce

'/ You can set the pen and background colours using the S E T P C (SET Pen
C 'olour) and SET BG (SET Back Ground colour) commands respectively. The
rnlours depend upon the screen mode, and this is set using the S ET MOD E
rnmmand. For example, the following commands set the pen colour to red and
I 111' background colour to yellow in screen mode 5:

:.1 TM ODE 5

'll TP C 1
£T BG 2

' l'hl' pen and background colours, together with the screen modes, are described
111 detail in Appendix C, 'Use of colour'.

19

4 Teaching. the turtle

Imagine that you are stranded on your own in the north of Canada. You have a
lot of food but you cannot cook, so you start by heating a few cans of baked
beans.

You can live off baked beans for a long time, but after a few days of having the
same meals every day you would probably get bored. However, you have a wide
variety of food and, on looking further , you find a recipe book. Your first
attempt at making an omelette works and soon you are building an oven to
help you cook more exciting meals.

As there are plenty of animals in this part of Canada you start hunting to get
some fresh meat for your dishes . You shoot a moose and then run up against a
problem: your recipe book doesn't tell you how to cook moose meat.

You now have to improvise and try cooking it a number of ways, based upon
methods you have already used for tinned beef or lamb. Eventually you start to
write your own recipes based upon your successful efforts. And soon after, you
aren't on your own any more. Everyone from miles around has noticed the
cooking smells and you make a fortune selling your moose stews to them!

The recipe for moose stew is a set of instructions, or
a 'procedure', that tells you, or someone else, how to
do a certain task. You write it once and it can be
used over and over again by anyone who can read
it.

You can write procedures in Logo to cook up the
effects you want on the screen. They may not be as
tasty as moose stew, but they can still make life
easier for you.

As a simple example, we can turn the commands you used to draw a square
into a procedure by adding the two commands underlined below (but don't type
them yet):

TO SQUARE
FORWARD 100
LE FT 90
FORWARD 100
LEFT 90

20

FORWARD 100
LE FT 90
FORWARD 100
LE FT 90
END

The first of these lines, TO SQUARE, is the 'title line'. TO tells Logo that you
want to define a procedure and you will call it by the name that follows (in this
rnse SQUARE). The last line of the procedure, END , tells Logo that this is the
Pnd of the procedure. In between these two lines is the 'body' of the procedure.

When you type in the commands they are not executed immediately, as they
were before . Instead, they are held in the computer's memory for later use.
When you type the first line, the ? prompt disappears and you now have one
that looks like >.

TO SQUARE
>

'l'he ? means 'Tell me to do something'; the > means 'Teach me how to do
omething. '

When you type the END line, the screen display returns to the way it was
lu•fore and the prompt changes back to ?

Now type the procedure in, as shown above. It is a good idea to check each line
for mistakes before you press RETURN; if you make any mistakes use the
I >J•:LETE key to correct them. If you want to erase the entire procedure and
turl again, you can do so by typing the following (including the "): •

IRAS E "SQUARE

'l'lw ER AS E command merely tells Logo to forget about a procedure you have
t 1> din .

Wh n you have typed in your procedure you will get the message
, QU A RE de f i n e d printed out. You can now run it by typing:

QUA RE

21

Try doing this and see what happens. The turtle should have drawn a square,
as it did before. Next, type:

DRAW
SQUARE

Thi:, should clear the screen and draw the square again.

Now try writing a procedure similar to SQUARE, but with a few differences.
What would happen if you used a different input from FORWARD? Think about
it, try it out and watch what happens. Don't forget to give your new procedure a
difforc nt name; if you try to use a name you have already used, Logo will
complain.

When you have done this, try putting your new procedure within the REPEAT
brackets and see what happens. Then try 'doodling' a little by putting a number
of different commands inside a procedure.

Procedures are just another type of command with one difference: they are
commands which you define yourself. The other group of commands, things like
FORWARD, LEFT and DRAW , are called 'primitives' because they are the basic
things you can use to build more complex commands. From now on, we will use
the word 'procedure' to refer to a command you have defined yourself, and the
word 'primitive' to refer to Logo's built-in commands.

1. Think of the things you have done up to now which have produced attractive
pictures. Now turn them into procedures so that you can run them at any time.
You could start with the examples in chapter 1, 'Meet the turtle', and then try
the ideas you have had yourself.

2. Try to define procedures to draw the following figures:

D D
22

ummary of chapter
You can define 'procedures' which save you typing in the same group of
commands at different times. This is done by adding two lines to the group of
l'ommands, as shown below:

TO SQUARE
fO RWARD 100
LEF T 90
fO RWARD 100
LEF T 90
IOR WARD 100
lEFT 90
IOR WARD 100
l EFT 90
I ND

The fi rst line is the 'title line'; it tells Logo that you are defining a procedure
11 nd gives the name by which it will be known (in this case, SQUARE). The last
lme tells Logo that it has reached the end of the procedure.

When you type the title line, Logo allows you to type in each line of the
procedure without it being executed. When you type the END line, Logo returns
lo its normal state. You call the procedure by typing:

'iQUA RE

l'rncedures are commands which you define for yourself. 'Primitives' are the
l1111lt-in commands which Logo gives you to start with, so that you can build up
v1111r own procedures.

I RAS E tells Logo to forget about a procedure you have typed in, for example:

I RASE "SQUARE

23

5 Sav.ing your procedur~
and pictures ~

When you define a procedure it is stored in your computer's immediate
memory; this memory is called its 'workspace'. If you want to look at the
procedures in your workspace, you can do so using a number of primitives
described in this chapter.

Unfortunately, the workspace cannot hold your procedures indefinitely: when
you switch the computer off, the contents of your workspace are lost. If you
want to keep a set of procedures after this point you must save them on disc or
cassette tape. Then, when you use Logo again, you can load them back into
your workspace.

You can also save the pictures you have drawn on to disc or tape. So if you have
built up an interesting screen, you don't have to remember how you did it.

Looking at procedures in your workspace
First of all, you need to be able to display more than six lines of text on your
screen, otherwise you may not be able to see a complete procedure. You can ask
Logo to use the entire screen for text using the T S (Text Screen) primitive. All
you need do is type:

TS

and you should do this now. DRAW takes you back to the turtle graphics screen.

You can print the title lines of all your procedures using the primitive POTS
(Print Out Title lineS). Try it now, by typing:

POTS

To look at the procedures themselves, you use the POPS (Print Out
ProcedureS) primitive. Try this one, as well, by typing:

PO PS

If you just want to look at one procedure, the PO (PrintOut) primitive will do
this for you. To look at the procedure SQUARE , you should type:

PO "S QUA RE

24

Typ ' this in and see what happens. Then try looking at some of your other
prn<· dures.

I lon't forget, when you want to display the turtle graphics screen again you can
do HO by typing DRAW.

Hitving your procedures
You can save the procedures in your workspace with the SAVE primitive and
1 PIH i them back with the LO AD primitive. The instructions for using these are
1•1vl'n below. Where you see the symbol Lg...gj, the instructions that follow refer to
1 IHHt·tte tape. Where you see the symbol W , the instructions refer to floppy
dlHl'H.

l•'1rHt, wind the tape you are going to use to a free space.

N1•xt, you should type:

AVE "MYWORK

111d press the RECORD button. All of the procedures you have created in your
workspace will now be stored on the tape in a 'file' called MY WORK. You could, of
, 1111rse, have used any name instead of MY WORK , as long as it consisted of n1)

11111r1• than ten characters.

Notice that the filename must have quotes before it. This is
because filenames are a s·pecial type of Logo object called
'words'. These are described in chapter 14, 'Playing with

words' .

1111 will , of course, want to load the procedures you have saved back into
·mkspace at some time. To do this, you use the LOAD primitive.

I• 11 HI of all we'll get rid of all the procedures in your workspace. You can do this
11 1111{ t he ERPS (ERase all ProcedureS) primitive:

It PS

111 wind your tape to the beginning of the file you want to load. Then type:

IOAO "MYWORK

25

You should now start your tape recorder running. Your procedures will then be
loaded back into your workspace, replacing its current contents.

You will now be able to save any procedures you have written and retrieve
them again at any time. It is a good idea to save your workspace periodically,
when working on long jobs. This will prevent you losing everything if, for
example, you have a power failure.

Ensure that the disc doesn't have a write protect label on it.

Next, you should type:

SAVE "MYWORK

All of the procedures you have created in your workspace will now be stored on
the disc in a 'file' called MY WORK. You could, of course, have used another name
instead of MY WORK , and you need to think of a new name each time you want to
save new work:

Logo will allow you to have filenames of any length.
However, the filing system you have may itself impose a

limit on the filenames used. For example, the BBC
Microcomputer Disc Filing System allows filenames of up to

seven characters only.

Notice that the filename must have quotes before it. This is
because filenames are a special type of Logo object called
'words'. These are described in chapter 14, 'Playing with

words'.

You will, of course, want to load the procedures you have saved back into
workspace at some time. To do this, you use the LOAD primitive.

First of all we'll get rid of all the procedures in your workspace. You can do this
using the ERPS (ERase all ProcedureS) primitive:

ERPS

Now all you need to do is type:

LOAD "MYWORK

Your procedures will then be read back into your workspace, replacing its
current contents.

26

You should now be able to save any procedures you have written and retrieve
tlH'm again at any time. It is a good idea to save your workspace periodically,
when working on long jobs. This will prevent you losing everything if, for
1• 11mple, you have a power failure .

('hccking your files
"r' ou can check that you've saved a file by using the CAT primitive. If you are
111-ung discs, all you need do is type:

l AT

11 you are using cassette tape, rewind the tape, type CAT then press RETURN.
11 you then press PLAY, this displays the names of all your files and MY WORK
11 liould be included. At the end of the tape you should press ESCAPE to regain
11111trol.

II vou can't remember the name of a file that you want to load, remember that
1111 t·an check it by typing:

I A I

1i,, 11Hing your files
11 1111 want to erase a file on disc you can do so by using the ER F I LE primitive.
11111 Pxample, to erase the file MY WORK you should type the following:

l I I I LE "MYWORK

111111 't forget the quotes!

v ing your pictures
wPII as saving and reading procedures, Logo allows you to save and read

pll 111 l'l'S. You do this using the SAVE PI C T and RE AD PI C T primitives.

nit• that you must have a picture to save. If you try to use SAVEPI CT when
lim; been used, nothing will be saved.

I wi nd the tape you are going to use to a free space.

"SPINFIL

111 11v •s your picture into a file named SPIN FIL . You could, of course, have
, 1 ,I II difTerent filename.

27

When you have done this, clear your screen and rewind the tape back to the
beginning of the file. Now try to read the picture back on to the screen again by
typing:

READPICT "SPINFIL

and then starting your tape recorder.

Make sure that your disc doesn't have a write-protect label upon it. Next, type:

SAVEPICT "SPINFIL

This saves your picture into a file named SPIN FI L. You could, of course, have
used a different filename .

When you have done this, clear your screen and try to read the picture back on
to the screen again by typing:

READPICT "SPINFIL

Summary of chapter
The computer's immediate memory is called its 'workspace' . When you switch
the computer off, everything in the workspace is lost. If you want to save
procedures, variables and pictures in your workspace you can do so as follows:

1. The SAVE primitive saves the contents of your workspace on to disc or
cassette tape. The following example saves it into a file called MY WORK:

SAVE "MYWORK

2. The LOAD primitive loads the contents of a file into your workspace. The
following example loads the contents of the file MY WORK:

LOAD "MYWORK

3. The SAVE PI C T primitive saves the picture on your screen on to disc or
cassette tape. The following example saves the screen into the file SPIN FIL:

SAVEPICT "SPINFIL

4. The RE AD PI C T primitive displays the picture in a file . The following
example loads the picture contained in the file SPIN FIL:

READPICT "SPINFIL

You can, of course, change the filename in each of the command lines shown
above.

28

If' you want to examine the files on your disc or tape you can do so using the
LAT primitive. If you are using disc, you just need to type:

AT

11 you are using tape, you should first rewind it, then type CAT and finally press
I 'I.A Y. To regain control at the end of the tape you must press ESCAPE.

11 vou want to erase a file you can do so using the ER F I LE primitive. For
l'K 11mple, the following erases the file MY FI LE:

IIHIL E "MYFILE

, 1111 can examine the procedures in your workspace using a number of Logo
1111111itives:

I You can print the title lines of your procedures with the primitive POTS
1 I '1111t Out Title LineS).

" You can examine your procedures with the primitive POPS (Print Out
I 11 clC'PdureS).

I A procedure itself can be listed using the primitive PO (Print Out). The
J11ll11wing example lists the procedure SQUARE:

111 "S QUARE

1111 t·nn use the entire screen to display text by using the T S (Text Screen)
11111111,ve.

29

6 Learning more about
procedures

Using one procedure within another
If you have saved your procedure SQUARE , load it now. If you haven't , redefine
it.

Next, start off by typing the following commands and watch what happens:

TO SPIN
REPEAT 6 [SQUARE LEFT 60]
END

SPIN

You should recognise the picture from chapter 2, 'Saving yourself some work'.
The only difference is that here the squares are drawn by the procedure
SQUARE, and this is called by S PI N. We have a situation where one procedure
is calling another one.

In case this puzzles you, let's explore it a bit more. There are two things to think
about:

- Why should you want to have one procedure calling another one?
- How does it work?

The first problem can be illustrated by an example from outside the world of
computers.

30

11 you were making a model aeroplane from a kit you would probably use a
pl1111. This tells you the types and quantities of materials you need and how to
l111•11k the job up into a number of smaller jobs, or 'modules'. You would not
t II t at the nose then work round one wing to the tail, and finally come back

1111111d the other wing. If you built it this way it would probably never fly!
lnHll'ud, you would probably break the job up into:

I '!'he fuselage, o, body. <! __ _::_ _______________ J

t The tailplane.

I The tail fin.

11'l11 •r • are so many problems involved in doing each part separately that by
tl11111j.{ it this way you will prevent a problem that occurs, for example, in the
111 Plage, from affecting the wings or other parts.

1111 can use the same method in many other areas of life, but especially with
111111puters. In the SPIN example above, you have a lot of similar squares

prnning' around one point. If you were designing the picture from the
1 .. 11nning you might notice this and think: 'That square is a separate job in
II Plf'. It could be put into a separate procedure and made to work. When I've
111111• this I'll be well on the way to solving the larger job, which itself is a

11111,·c dure.'

Now we will look at the other problem: how can you use one procedure inside
1111ther?

l'l11H is probably the easier one to solve: in chapter 4, 'Teaching the turtle', we
w how the Logo commands you had been using (for example, FORWARD,

I I I T and DRAW) could be used within a procedure. But procedures themselves
11 another type of command, so they, also, can be used within a procedure.

31

Using several procedures within another
In the SPIN example we only have one procedure within another, but there is
no reason why you cannot have one procedure calling several others. Look at
the following picture, for example:

This has two shapes you have already drawn, at various times. Try drawing the
picture using a procedure HOUSE which calls two other procedures, SQUARE
and T R I A N G L E .

Turtle fun

If you run into problems and you need to change a
procedure, you can do this in two ways.

One way is to erase the procedure using the ER AS E
primitive and then type it in again. The other way is to use
the Logo editor to change the procedure. This is described

in Appendix B, 'Editing your procedures', and its use is
covered in the next chapter.

Try drawing the following pictures by breaking them up into smaller problems
and solving these separately:

D D

0 D

32

/VV

'ummary of chapter
1111 can use procedures within other procedures. For example:

10 S P IN
I IPE AT 6 [SQUARE LEFT 60]
I ND

11 vou want to change a procedure you can do this in two ways:

I You can erase the procedure using the ER AS E primitive, then type in the
, 111 rc•ct version.

" You can use the Logo editor to change the procedure. This is described in
ppcndix B, 'Editing your procedures', and its use is covered in the next

1 linpter .

33

7 What to do when your
procedures don't work

We are now going to introduce two new words: 'bugs' and 'debugging'. Bugs are
faults in procedures. The process of removing them is called debugging.

The most common bugs are caused by mistyping. Fortunately, a lot of these can
he weeded out. For example, if you type in the primitive:

FORWARD 100@

Logo will warn you with the message:

FORWARD doesn't Like 100@ as input

Messages like this which Logo uses to tell you what is wrong are called 'error
messages'. Everyone gets error messages like this at some time!

If you type this mistake within a procedure, the error will not be spotted until
you run the procedure. To see this type the following, then run the procedure
and watch what happens:

TO BADSQUARE

REPEAT 4 [FORWARD 100@ LEFT 90]

END

However, if you type FORWARD 1000 when you really mean
FORWARD 1 0 0, you will get no warning until your procedure starts doing
unexpected things. This might not happen until much further into the
procedure than the faulty line. If you have two or more bugs like this in the
same procedure you can end up with very strange results.

Keeping your procedures tidy
The most effective way of removing bugs is to trap them before you run the
procedure. For example, look at the following primitives; they produce the
picture shown on their right.

RIGHT 60

BACK 100
FORWARD 100
LEFT 120

BACK 100

34

I OR WARD 100
IUG HT 60
IOR WARD 200
HIG HT 60
IIACK 100
I OR WARD 100
l[FT 120
IIACK 100
I ORW ARD 100
HlGH T 60
IORW ARD 50
HIGHT 90
HlPE AT 36 [FORWARD 10 LEFT 10]

FT 90

This sequence of primitives works, but you can't see what it is doing without
pt•nding a lot of time thinking about it. The primitives may do something

p11rticularly clever, but this won't be obvious to anyone trying to follow them.
f\l;, well as this, if they took the form of a long procedure, this could well have a
lot. of bugs hiding in .it.

I low could you improve it? Well, you could split the problem into a number of
mailer procedures. Each of these is unlikely to contain more than one bug and

1·1111 be tested on its own. So, for the above example, you could make your
procedures look like this:

10 MAN
VLE
IORW ARD 200
VIE
IOR WARD 50
Ill AD
IND

It iH much clearer what this is meant to do. The procedure will also be easy to
cl1•hug when you have written it since you only need to debug VEE, HEAD and
1111' main procedure, MAN. The first two might look like this:

10 VE E
HfGHT 60
I I NE
IIFT 120
I I NE

fGHT 60
IND

35

where LINE is defined by:

TO LINE
FORWARD 100
BACK 100
END

and

TO HEAD
RIGHT 90
REPEAT 36 [FORWARD 10 LEFT 10]
LE FT 90
END

Getting rid of the bugs

0

J
If you type in the above procedures and run them (by typing MAN) you will get
the picture shown below. This is because there are bugs somewhere in the
procedures.

You have two primitives to help you with debugging: PAUSE and CONT IN U E
(CO). If you put a PAUSE primitive in your procedure, the procedure will stop
when it reaches that point. You can then look at what has happened so far and,
if you're happy with it, make it run on again from the same point by typing
CONT I NU E.

Our MAN seems to be going wrong during the calls to VEE : both the legs and
arms are being drawn upside down. To find out what is going wrong, we need to
put two PA US E primitives into VEE as shown below:

TO VEE
RIGHT 60
LINE

36

l'A USE
ILF T 120
I I N E
PAU SE
HIG HT 60
IN D

'l'o change VEE like this we need to use the Logo editor, for which the
pnmitive is ED IT (ED). First of all type:

IDI T "VEE

V F E will be shown like this:

You can move the cursor about the procedure using the cursor keys:

~E]E]
~ornrn
~I I
_JOLJ

37

Try doing this, without typing anything else. Then, when you are ready, move
the cursor to the end of the first line containing LI NE and press RETURN. The
text will move down, leaving a gap where you can type the new primitive,
PAUSE . Now move the cursor down to the end of the second line containing
LINE and do the same again. Finally, to leave the editor, press the COPY key.

Now try running VEE on its own and watch what happens:

VEE
Pausing, in VEE
PAUSE
VEE?

CONTINUE
Pausing, in VEE
PAUSE
VEE? CONTINUE

The picture went wrong right from the start and there are only two primitives
before the PAUSE that could have caused this: either RIGHT 6 0 or LI NE . We
didn't try to debug LI NE first, because it contains only two simple primitives.
So it is likely that the error is in LI N E. In fact, if you look closer at LI N E, the
order of the primitives is reversed. LI NE should look like this:

TO LINE
BACK 100
FORWARD 100
END

Try changing them using the editor. You can delete a line by moving the cursor
to the end of the line then pressing the DELETE key until the text disappears
and the lines close up. As well as this, remove the PAUSE primitives from VEE .
If you try running VEE again you should get the right picture, with the vee
pointing upwards.

38

Now try running HEAD and then MAN itself. You should get the correct result
l his time too:

If you would like to know more about the editor, turn to Appendix B, 'Editing
your procedures'. Up to now we have used only a few of the things you can do
with it.

Summary of chapter
The most effective ways of keeping bugs out of your procedures are as follows:

I. Keep your procedures short and simple.

:l. Keep detailed design notes, so that you know what your procedure is doing at
Pach stage of its development.

:1. Check your typing before you press the RETURN key.

If', despite these measures, you still get bugs in your procedures, look at the
problem carefully and, if you still cannot see what is going wrong, use the
PA US E and CONT IN U E (C 0) primitives to isolate the bugs. If you put a PAUSE

in your procedure it will stop when it gets to the PAUSE primitive. When you
nre ready, you can run it from that point by typing CONT IN U E.

When you have found the bugs, you can correct your procedures using the
DI T (ED) primitive. This is described in detail in Appendix B, 'Editing your

procedures'.

39

8 Using inputs with
your procedures

Up to now, whenever you have wanted to draw similar pictures of different
sizes you have had to write a separate procedure for each size of figure. There's
nothing wrong with this, but you can make life a lot easier for yourself by using
only one procedure and giving it a special 'input' to pass different sizes into the
procedure.

For example, type in the following procedure:

TO TRIANGLES :SIDE
REPEAT 3 [FO RWAR D :SIDE LEFT 120]
END

Now try the following:

TRI ANG LES 100 TRIANGLES 300

What is actually happening is this: the first line of the procedure definition (the
title line) names a 'variable' called SID E. Think of a variable as a 'box'.
Whenever you call the procedure, by typing something like:

TRIANGLES 200

you put the input value (in this case 200) into the box called S I DE. Logo takes
this value from the box and puts it wherever : S I D E occurs inside the
procedure (: is called 'dots' in Logo). Notice that there is no space between the
dots and the variable name (SIDE).

In the above example, the value 200 will be put into the box called S I D E and
used inside the procedure. This makes the second line of the procedure look like
the following line:

REPEAT 3 [FORWARD 200 LEFT 120]

40

'1'1 y writing procedures with inputs for some of the other figures you have
,I, 11wn. You could try these to start with:

0
When you have finished experimenting, think about this new idea: if a
procedure can have one input, why can't it have more? Below is the title line for
11 procedure with two inputs:

10 RECTANGLE :SIDE1 :S1DE2

l'lus is intended to draw a rectangle. See if you can write the rest of the
procedure yourself.

Variables have many other uses and can have other things besides numbers as
values. You will learn more about this when you read chapter 14, 'Playing with
words' .

Turtle fun
I. Try to write some procedures with the input : SIDE which will draw the
following figures :

D60

41

2. Try to write a procedure S PI RA LS QUA RE which draws a picture like this:

n

3. Try writing other procedures to produce, for example, spiral triangles and
six-sided figures.

Summary of chapter

Procedures which you define yourself can have inputs, just like primitives.
These allow you to vary the size of items within the procedure. For example:

TO TRI ANGLES :S I DE
REPE AT 3 [FORWARD :S I DE LEFT 12 0]
EN D

SIDE is a 'variable' and variables are preceded by dots (:) when referring to
their value.

To use the procedure, you call it as follows:

TRIANGLE S 100
TRIANGLE S 30 0

and whatever you typed as the input is used in place of : S I DE within the
procedure.

You can use more than one input to a procedure.

42

9 Using numbers
with Logo

You can use numbers with Logo and you have two ways of showing the result of
my calculations.

l•'1rst of all, you can use the turtle. Type the following in and watch what
h11ppens:

IIAC K 200
IOR WARD 50 + 200 - 50

Now think of a few calculations, work out what you think the results are, then
dwck them using the turtle.

The symbol for multiplication is * and / stands for division. To see them in
11rtion, try the following:

f OR WAR D 10 * 20
RIG HT 180 / 2

Now try a few other calculations using* and / .

The other way you can look at the result of a calculation is by using Logo's
huilt-in calculator. Work out the following, then type it in just as it is, and
watch what happens:

1 + 3 - 2

Logo will have worked out the result, but you have not told it what you want it
lo do next. If all you want to do is show the number on the screen, you can use
the PRIN T (PR) primitive:

PRI NT "HELLO

llELL O

PRI NT 1 + 3 - 2

?

Now repeat some of your earlier examples, but try using the calculator this
time.

43

When you have finished experimenting, think about this calculation:

2-1*5+5

Work out what you think the answer should be, then try it out. Did the answer
surprise you?

What actually happens is this: Logo tackles calculations in a particular order.
Multiplication and division are done first , then addition and subtraction.

Now run through it again, using this rule to work out what is happening.

Changing the order of calculation

You can get Logo to work out one part of a calculation first by putting it in
brackets. For example, look at this:

3 + 2 * 2

The calculation 2 * 2 will be worked out first , because it is a multiplication.
However, if you want to add the 2 to the 3 first you can do this by using
brackets:

(3 + 2) * 2

Try out both calculations yourself and see what happens. Then try working out
the following and check your answers:

20 * (10 - 5)
20 * (10 - 5 * 2) + 100
10 - (200 - 200 / 2)

Using decimals

You can use decimals with Logo, either on their own or mixed with whole
numbers. Try the following and see what happens (the full stop key near the
bottom of your keyboard is used to print the decimal point). Think about each
line before you type it in.

FORWARD 100
LEFT 20
FORWARD 200 * 0.5
LEFT 60 I 3
FORWARD 400 * 0.25
LEFT 50 I 2. 5

Make up a few calculations yourself for further practice. Work out beforehand
what you think will happen, then check out your results with the turtle or the
calculator.
44

Using negative numbers

You can also get negative numbers as a result of your calculations. For
.. xample, try the following:

IOR WAR D - 100 - 100
IOR WARD 200

If you are not used to dealing with negative numbers, try a few more
l'lllculations using both the turtle and the calculator to check the results. Try
11Hmg other symbols such as * with negative numbers and find out what
happens with them.

Turtle fun

Try to write a procedure POLY with the inputs : S I DE and : ANG LE which will
draw the following figures:

ODO
See what other figures you can get by changing : ANGLE .

Summary of chapter
< 'alculations can be used with primitives. For example:

IOR WAR D 100 + 200
LEF T 30 + 60

They can also be used within procedures and by themselves.

The symbol for multiplication is * and / stands for division.

In calculations, Logo carries out multiplicati<;>n and division first, then addition
1111d subtraction. You can specify operations you want worked out first by
1•nclosing them in brackets. In the following example:

10 * (10 - 5)

45

the subtraction will be worked out first.

You can use decimals and negative numbers in calculations.

You can display the results of a calculation with the PR I NT (PR) primitive. For
example:

PRINT 100 + 150
250

46

10 Using boxes
w ith Logo

Imagine a cardboard box. You could give this a name based upon what you are
going to use it for. If you want to put rubbish into it you could call it a rubbish
bin, or you could put toys into it and call it a toy box. Whatever you call it, the
contents of the box will probably vary from time to time: the rubbish you put
into it today probably won't be the same as the rubbish you put into it
tomorrow.

Logo has boxes as well, and these are called 'variables'. You have already come
across one type of variable: the inputs you used with your procedures.

Logo variables have names, just like ordinary boxes. They also have contents
that can vary from time to time; these are called Logo 'objects' and they include
such things as numbers.

When you specify an input to a procedure, the value of the variable is passed to
the procedure from the outside. In the procedure below, it is set up within the
procedure itself by the MAKE primitive.

TO SPIRAL
MAKE "SIDE 100
REPEAT 32 [FD :SIDE LT 90 MAKE "SIDE (:SIDE+ 20)]
END

S PI RA L is basically very similar to a square-drawing procedure, but after each
side is drawn the variable SIDE has 20 added to it. So a 'spiral square' is
drawn. Try it out and see for yourself.

What happens is this. The first MAKE primitive
names the box SIDE and gives it the value 100 (the
quotes (") tell Logo that you are referring to the
name of the box).

Nt•xt, the REPEAT primitive uses the contents of
I he box to draw a line, turns 90 degrees, then puts
1111other value, 120, into the box. The second MAKE
primitive does this by adding 20 to the present
vnlue, 100.

47

When it next goes down this path, MAKE uses the new contents of the box and
adds 20 again to give it a new value, 140. And so on ...

If you are not sure about what is happening, read through it again. Variables
are extremely useful in Logo, and you need to understand them properly.

When you feel confident, try modifying SPIRAL to draw a 'spiral triangle'.
There are two ways you can do this: by varying either the side or the angle.
Have a go at one of them first , then the other, then both.

You should remember one thing when defining variables: you can give them
any name you want, but it is better if names are meaningful so that your
procedures will be easy to understand.

Boxes with the same name

The names you use as inputs to your procedures are 'private' to the procedures
themselves. As a result, you don't need to worry about Logo getting mixed up
between inputs to different procedures. Look at the following procedures for
example (and try them out for yourself):

TO PRIVATE :NUMBER
PRINT :NUMBER
DOPRINT :NUMBER +1
PRINT :NUMBER
END

TO DOPRINT :NUMBER
PRINT :NUMBER
END

Now look at the results:

PRIVATE 1
1
2
1

(this is printed in PRIVATE)
(this is printed in DO PRINT)
(this is printed in PRIVATE)

NUMBER has the value 1 in PRIVATE and 2 in DO PR I NT . This is because
PRIVATE and DOPRINT each have their own, private, version of NUMBER .

48

Turtle fun

Try writing procedures to draw these shapes:

I

Summary of chapter

Inputs are just one example of a general Logo class called 'variables' .

Variables are like 'boxes'; they can have names and different contents. Their
contents are called Logo 'objects'; numbers are one type of Logo object.

You can define a variable within the body of a procedure using the MA KE
primitive. For example:

MAKE "NUMBER 10

gives the variable NUMB ER the value 10. The quotes (") tell Logo that you are
referring to the name of the variable.

You can give a variable any name you want, but it is better to stick to short,
meaningful names so that your procedures are easy to follow.

49

11 Recursion

The third wish
In chapter 10, 'Using boxes with Logo', you learned how to draw spirals. The
procedure you used looked like this:

TO SPIRAL
MAKE "SIDE 100
REPEAT 32 [FD :SIDE LT 90 MAKE "SIDE (:SIDE+ 20)]
END

Now type in the following, run it and watch what happens:

TO NEW.SPIRAL :SIDE
WINDOW
FORWARD :SIDE
LEFT 90
NEW.SPIRAL (:SIDE+ 20)
END

NEW.SPIRAL 100

Notice the use of the full stop in the name NEW . SPIRAL. You can't use a
space, but the full stop makes the name easier to read.

You should get a similar result with both procedures shown above, except that
with NEW. SPIRAL the spirals continue off the screen. If you want to stop
them you can do so by holding down the CTRL key and pressing the
ESCAPE key.

The new procedure looks a lot tidier than the old one, although you might be
surprised by the last line but one in NEW • S PI RA L. It calls NEW • S PI RA L
itself, and the procedure seems to run forever . This new idea is called
'recursion'.

If recursion puzzles you, an example from outside computing might help: if
someone said you could have three wishes and you were very clever and
greedy, your last one would probably be for another three! And this could go on
forever.

50

What actually happens in NEW . S PI RA L is this: when the call to
NEW . S PI RA L is made from within itself, another version of N E W . S PI RA L is
created, and so on, until the whole thing is stopped using the ESCAPE key.

Try writing another version of NEW . S PI RA L that spirals inwards upon itself.

Stopping your spirals

Up to now, your recursive procedures will only stop if you press CTRL and
ESCAPE together, or, in some cases, when the computer runs out of memory.
There is a much neater way of stopping them. The following modified version of
N E W • S P I RA L shows you how:

TO NEW.SPIRAL :SIDE
IF :SIDE> 500 [STOP]
FORWARD :SIDE
LEFT 90
NEW.SPIRAL (:SIDE+ 20)
END

In this version, the I F primitive in the second line helps the turtle decide what
to do by testing if a condition (S I DE > 5 0 0) is true or false. If it is true, the
procedure stops; in other words, the I F primitive lets the procedure continue
from where it left off if there is more still to do, or stops if not. Try changing
your version of NEW . S PI RA L, using the editor, to include the new line.

Recursion without turtles

Here is an example of recursion which does not use turtles:

TO COUNTDOWN :NUMBER
IF :NUMBER= 0 [STOP]
PRINT :NUMBER
COUNTDOWN :NUMBER - 1
EN D

Try it out with a few examples like this:

COUNTDOWN 10

Work out for yourself what is happening.

51

Turtle fun

1. Write a recursive procedure that draws spiral triangles like the following:

2. Write a similar procedure that varies the angle of the triangle.

Summary of chapter
A procedure can call itself, and this is known as 'recursion'. For example:

TO NEW.SPIRAL :SIDE
FORWARD :SIDE
LEFT 90
NEW.SPIRAL (:SIDE+ 20)
END

You can use a full stop as part of a procedure name (as above) to give it
legibility.

You can stop a procedure by holding down the CTRL key and pressing the
ESCAPE key.

52

You can also stop a procedure using the I F primitive in conjunction with
STOP . For example:

TO NEW.SPIRAL :SIDE
I F :SIDE> 500 [STOP]
FORWARD :SIDE
LEFT 90
NEWSPIRAL (:SIDE+ 20)
END

53

12 Multiple turtles

Until now you have had only one turtle on the screen, but Acornsoft Logo
allows you to control more than one turtle at the same time.

The part of Logo which controls such 'multiple turtles' is held on disc or tape
and is an 'extension' to the normal Logo system. To load it you must use the
LOAD primitive described in chapter 5, 'Saving your procedures and pictures'.
First of all load the cassette or disc which is included in your Logo package and
then type:

LOAD "MULT

The extension will then be loaded.

The turtle on your screen is called 'turtle O'. You can create other turtles using
the HATCH primitive, and these are 'hatched' at the position turtle O occupies
at the time. For example, type the following:

DRAW
HATCH 1

You will not see the new turtle (turtle 1) yet, as it is hidden by turtle 0. In fact ,
if you turn turtle O by typing the following:

RIGHT 45

you still won't see it. This is because turtles are invisible when they are first
hatched. To make :me visible you must first tell Logo to talk to it using the
TE L L primitive:

TELL 1

You can then make turtle 1 visible and turn it by typing:

SHOWTURTLE
LEFT 45

54

Type these lines in and watch what happens. You should have two turtles on
your screen in the form of a 'V ':

Primitives such as LE FT and FORWARD which are used after TE L L has been
called are applied only to the turtle selected. That is why turtle O didn't move.

If you want, you can select a number of turtles at the same time by putting
their numbers in the TELL command in the following way:

TELL [0 1]

This selects turtles O and 1, and subsequent primitives are applied to both at
the same time. To see the effect, type it in then type the following as well:

REPEAT 100 [FORWARD 100]

You should end up with a check pattern on the screen .

If you look at the last TE L L command you will see that the turtle numbers are
enclosed by square brackets. Anything that appears in this way is called a 'list',
and you have come across these in two other places. First of all, you have used
them with REPEAT . Then you used them in chapter 11 , 'Recursion' (the IF
statement contained the list [STOP J).

Lists have many uses and more of these are described in chapter 14, 'Playing
with words'. For the present, think of them as a way of telling Logo that you
want to do something to a number of turtles at the same time.

Next, have a look at the following procedures:

TO CROSS
DRAW
HATCH [1 2 3]
START 0 START 1 START 2 START 3
TELL [0 1 2 3]

END

TO START :NUMBER
TELL :NUMBER
RIGHT :NUMBER* 90
SHOWTURTLE
END

55

Tog ,t,h r , th y hat h t.urU s one Lo t.hre and put them into the positions shown
in the diagram below. All you need do is type CROSS .

Notice the DRAW primitive at the very start of CROSS . As wel! as clearing the
screen, it tells Logo that if any turtles have been hatched, it should forget about
them and start from scratch again.

You can use these procedures to start off some interesting patterns. For
example, try typing the following (if you still have the procedure called
SQUARE , you don't need to type it in again):

TO SQUARE
REPEAT 4 [FD 100 LT 90]
END

CROSS
FORWARD 200 SQUARE

Your turtles should draw four squares all at the same time. Try using
procedures that draw other shapes. Then modify CROSS and START to handle
more than four turtles.

Ranclom movements

When you have finished exploring, ensure that CROSS and START are in their
original form, then type the following and watch what happens (you can stop
the movement at any time and get back to Logo by pressing CTRL and
ESCAPE together):

CROSS
REPEAT 500 [LEFT (RANDOM 360) FORWARD (RANDOM 100)]

56

The brackets around RAN DOl'I 360 and RAN DOl'I 100 are
not necessary, but are used to show that these things are

worked out before LEFT and RIGHT are acted upon.

RAND OM is a new primitive. It takes the number used as its input and produces
a random number less than this number. In the example used above, RANDOM
3 6 0 tells Logo to choose any number between O and 359. This number is then
used by LE FT to make the turtle turn left by this random amount. Each time
RANDOM is called, it will pick a different number.

Work out for yourself what the other example of RANDOM does. Then try
changing CROSS to give the turtles different colours.

Drawing multiple circles

Again, ensure that CROSS and START are in their original form, then type in
the following procedure:

TO MULTI.SPIRAL
CROSS
DOFOREVER [FD 100 LT 10]
END

Now try running it. You can stop it using the CTRL and ESCAPE keys!

DO FOREVER is a new primitive that is similar to REPEAT . It runs the list of
commands inside the square brackets, then does the same thing again, . .. and
again, and goes on forever! To stop it, hold down the CTRL key then press
ESCAPE (there are other ways of stopping it, using I F but we don't need them
here) .

Try changing the inputs to F D and LT and run the procedure with different
values. Then try defining the angle of turn outside the DO FOREVER list, using
MAKE , and changing its value within the list.

57

Moving letters
You can redefine the shape of your turtles to produce space ships, animals and
other things. There are a number of ways of doing this and they are all
described in the Logo reference manual. For the present, we will look at just
one.

First of all , use the Logo editor to change your procedure START to the
following (the new lines are underlined):

TO START :NUMBER
TELL :NUMBER
SETSH 65 + :NUMBER
PENUP
RIGHT :NUMBER* 90
SHOWTURTLE
END

Now type the following and watch what happens! You should get part of the
alphabet flying around your screen!

CROSS
REPEAT 500 [LEFT (RANDOM 360) FORWARD (RANDOM 100)]

The important line is the one containing the new primitive, SETS H
(SET SHape). SETS H takes a number or a list as its input and uses this to
redefine the current turtle's shape. In our case it redefines turtles Oto 3 to have
the values 65 to 68, and these correspond to the shapes A to D.

Try putting some other numbers after SETS H and see what happens. If you
want to know more about this subject, look at the Logo reference manual.

Turtle fun
1. Try to get the whole alphabet flying around the screen.

2. See if you can get two turtles starting at opposite sides of a circle and moving
together. Hint: the following procedure draws a circle:

TO CIRCLE
REPEAT 180 [FD 10 LT 2]
END

58

Summary of chapter
1. New turtles can be 'hatched' at the current turtle position using the HATCH
primitive. This can apply to one turtle or a list of turtles.

2. When turtles are hatched they have the same position as the current turtle
but they are invisible.

3. You tell Logo to 'talk' to a specific turtle or list of turtles using the T E L L
primitive. Subsequent commands then apply to this (those) turtle(s).

4. To make a turtle visible you must first use TE L L and then SHOW TURTLE .

5. You can redefine a turtle's shape using the primitive S ET S H. This takes a
number or list of numbers as input and these are used to define the shape.

6. The primitive RANDOM can be used to generate random numbers. It takes
one input and the number returned is between zero (inclusive) and the value of
this input (exclusive). Each time RANDOM is used it produces a different
number:

7. The primitive DO FOREVER is used to repeat a list of commands forever. You
can stop it using CTRL and ESCAPE.

59

13 Turtle navigation

If you want to get to a particular place in the world, or tell someone else how to,
it helps if you have a map. Have a look at a map of the area where you live. You
will probably find that it has a 'grid' upon it which consists oflines drawn from
north to south and others running east to west. Using these lines you can
pinpoint any location and say, for example, 'London Street is in box E4,' or
'Bristol has the position 110637.'

The turtle's world consists of the screen and you can pinpoint any position on it
in a similar way. If you draw a horizontal line and a vertical line through the
home position, as shown below, the turtle's position can be shown in terms of
these lines.

I
Bi- - _J1.f>Q.-,A

I I I

I 1 I -~rto--,--tso - +614 . . ,

The horizontal line is called the 'x-axis' and the vertical line the 'y-axis'. We
show the position of a point on the screen, relative to these axes, in the form [x
y]. The home position is represented by [0 0 J and point A in the diagram has
the position [1 5 0 100 J. In mathematics, numbers like this which represent a
position are called 'coordinates', and we will use this word from now on.

Getting to the point
You can move the turtle to an exact position on the screen using the S ET PO S
primitive, which has the general form:

SETPOS [x y]

You could move it to the position A, [1 5 0 1 0 0 J , by typing this:

SETPOS [150 100]

60

Try it and see. Then clear the screen again using DRAW .

There is another way in which you can move to the point A (apart from using
RIGHT and FORWARD , of course). Type the following primitives and watch what
each one does:

SETX150
SETY 100

Now try to move the turtle to the point B. Remember, to get a number less than
0, you must put a minus sign (-) before it.

If you want to turn the turtle to point to a given 'heading' as well, you can do so
with the S ET H (SET Heading) primitive. For example:

SETH 180

makes the turtle point 'south'. Try it and see.

Find the turtle
As well as getting to a particular point yourself, you might have to describe to
someone else where it is so that they can join you. You can get the turtle to tell
you exactly where it is (even ifit is off the screen) using the primitives POS ,
X PO S and Y PO S.

Move the turtle to the point shown as A on the last diagram. Then type the
following and watch what happens each time:

PRINT POS
PRINT XPOS
PRINT YPOS

The first of these prints the position of the turtle, the second its x-coordinate
and the third its y-coordinate. Notice that the square brackets are not printed.
Try moving the turtle around a bit and use these primitives a few times.

When you have finished experimenting, look at this procedure then try it out.
All it does is draw a circle:

TO CIRCLE
REPEAT 360 [FD 5 LT 1]
END

Now add another primitive which prints the turtle's position after each move:

TO CIRCLE
REPEAT 360 [FD 5 LT 1 PRINT POS]
END

61

Wh n you have typed it in, try the following and watch how the printed
coordinates change. If you want to stop the turtle and examine them, you can
do so by pressing CTRL and SHIIT together; if you release these keys, the
turtle will continue its movement.

S ETX 300
CIRCLE

Turtle Island
Real turtles have a marvellous navigation system which allows them to travel
across thousands of miles of sea and still return to the same place to lay their
eggs. Figure 3 shows 'Turtle Island' and the spot (e) where they lay their eggs.
Try to draw the island and the features shown by using the primitives you have
found in this, and previous chapters.

When you have drawn the island, start the turtle off from its home position and
take it to where it lays its eggs without crossing the land. (Hint: use a
procedure to draw the island.)

Turtle fun
Hatch turtle 1 somewhere on your screen using SET PO S and put turtle O back
in the home position. Now, 'home' turtle O on to turtle 1. To help you a little, the
following primitives set the heading of turtle O to point towards turtle 1:

SETH TOWARDS (POS 1)

Next, hatch f~ur turtles at the corners of the screen and get each one to chase
its left hand neighbour.

Summary of chapter
The turtle's position can be given in the form of coordinates [x y], where
[0 0 J is the home position. You can move the turtle to a specific point and
change its heading using the following primitives:

1. S E T X moves the turtle in the x direction, for example:
SETX 200

2. SET Y moves the turtle in the y direction, for example:
SETY 150

62

-4----x---~

-400 -200 0 200 400
400 400

200 200

y 0 0 y

-200
I , - --. --

I -200
"' I

I - 1 - I ,.,,,
I .. • I

•
I

I --
-400 - -400

-400 -200 0 200 400

~---x---~
~ Figure 3 Turtle Island

3. SET PO S moves the turtle in both the x and y directions, for example:
SETPOS [200 -150]

4. SETH alters the turtle's heading, for example:
SETH 90

You can find out the turtle's position using the following primitives:

1. X PO S returns the x-coordinate of the turtle's position.

2. Y PO S returns the y-coordinate of the turtle's position.

3. PO S returns both the x- and y-coordinates of the turtle's position in the form
[x yJ.

64

14 Playing with words

Logo is one of several computer languages designed to help you talk to a
computer. Most computer languages (for example, BASIC and FORTRAN)
have been designed to manipulate numbers. In computer jargon, they are
called 'number crunchers' because they devour numbers with great relish!

You have probably heard of computers which perform mathematical
calculations of amazing complexity in only a fraction of a second. These will
have been programmed with a language of this type.

The problem with number crunchers however, is this: they don't like words. If
you try and instruct a computer to deal with ordinary English, using a
language devised originally to deal with numbers, it is difficult, if not
impossible.

Logo is a member of a group of programming languages which can, however,
cope with words. This doesn't mean that it can't do arithmetic: you have
already seen that it can!

In this chapter, you will find out a little of how Logo handles words and
sentences. Once you have learned this you will be encouraged to enter a world
of exploration.

How does Logo handle words?
A computer cannot attach meaning to a word in the same way that we do. For
instance, if you type MO USE and FUR RY at the keyboard and then press
RETURN, the computer will remain totally unimpressed. It will give you a
message equivalent to 'so what?'.

This happens because the computer has been given absolutely no clues at all
about how MOU SE and FURR Y relate to one another, or indeed what sort of
words they are.

When we use words to speak to one another, we group them together in
sentences. We also use special words like 'the', 'an', 'a', and special symbols like
commas and full stops as clues to show what part each word plays in the
sentence. In order to get a computer to use words, much the same ideas apply.
Two things are needed: a way of grouping words together and rules which
clearly indicate where one word has a particular role within the group.

65

In Logo, the 'word cruncher' lists are the central and most important tool.
Here is a Logo list:

[NOSE PRETTY PINK]

This list resembles a sentence in that it is a group of words. Notice that the
beginning and end of the list are marked by square brackets and that the words
are separated by spaces. The computer, of course, hasn't the slightest idea what
the individual words mean. All it 'sees' is groups of characters. For this reason,
total nonsense words and even numbers are quite acceptable to it: Ax99Z,
BULLABR, POORQ, GU and G are happily dealt with as Logo objects in a list.
In this case, the Logo objects are also Logo words.

Sometimes the order of words in a list looks strangely like a sentence! For
instance:

[THIS NOSE IS PRETTY AND PINK]

To Logo, this is just another list. So long as each Logo word is separated by a
space and is within square brackets, Logo will be able to use it.

We said earlier that symbols indicating particular roles and relationships of
words were useful in helping computers to 'word crunch'. Let's now look more
carefully at how square brackets make lists in Logo.

Look at the following example. It's a description of a house:

MAKE "HOUSE1 [LOUNGE KITCHEN STAIRS BATHROOM BEDROOM]

Look at this example, too:

MAKE "HOUSE2 [[LOUNGE KITCHEN] STAIRS [BATHROOM BEDROOM]]

The first is relatively simple to understand. The word HOUSE has been made
the name of a long list of rooms. In the second description, some extra brackets
have been added. Look at the effect that this has on our model:

HOUSE1

66

[II]

LOUINGE

KITyHEN

STAfRS

BAT1ROOM

BEDROOM

HOUSE2

STAIRS

In the second model, two smaller lists have been made on the basis of
downstairs and upstairs rooms. These are 'lists within a list' . The computer
knows about their existence on account of the new sets of square brackets
placed within the original pair.

Getting words out of lists
You must by now be wondering how, once you have made a list like this, you
get the words 'out' again. This would be impossible were it not for special Logo
tools provided for that very purpose. These are the primitives needed:

FIRST
BUTFIRST (BF)
LAST
BUT LAST (BL)

Returns the first element in a list
Returns all but the first element in a list
Returns the last element in a list
Returns all but the last element in a list

To see how they work, type in the first description of the house:

MAKE "HOUSE1 [LOUNGE KITCHEN STAIRS BATHROOM BEDROOM]

Now type:

PRINT FIRST :HOUSE1

You should get the answer:

LOUNGE

Try also:

PRINT LAST :HOUSE1
PRINT BUTFIRST :HOUSE1
PRINT BUTLAST :HOUSE1

and lastly:

PRINT :HOUSE1

This should give all the rooms in the house.

Getting little lists out of big ones
By now, you ought to be familiar with FIRST, BUTFIRST , LAST and
BUT LA S T as tools for extracting words from lists.

Now try out the same four operations on the second model of the house:

MAKE "HOUSE2 [[LOUNGE KITCHEN] STAIRS [BATHROOM BEDROOM]]

This time you should find that the 'lists within a list' are treated in exactly the

67

same way as were the individual words in the first example. This means that,
for instance:

PRINT FIRST :HOUSE2

gives

LOUNGE KITC HEN

- the downstairs!

How can you print a list of upstairs rooms? See if you can work it out for
yourself!

To print the stairs alone, we do this:

PRINT FIR ST BUTF IRST :HOUSE2

Logo works this out from the inside outwards, so that BUT F I R ST is applied
initially to the list. This causes the stairs and upstairs to be nibbled off together
and the downstairs 'thrown away':

CRACK!!

LOUNGE KITCHEN BEDROOM

Then, F I R ST takes the first item of the list left over and removes and prints it:

68

Joining lists together
In order to give the computer a more detailed model of an object such as a house
you might like to take several descriptive lists and join them together to make a
'tree' like this:

SINK BED

DUCK BATH TOWEL

You can do this by joining up the lists for each room. First, make up the lists for
each room:

MAKE "Kl [KITCHEN [SINK COOKER FOOD]]
MAKE "BA [BATHROOM [BATH TOWEL DUCK]]
MAKE "BE [BEDROOM [TEDDY PILLOW BED]]

Now join them up under one roof! This is done using the LIST primitive:

MAKE "HOUSE (LIST :Kl :BA :BE)

The brackets on this line are needed to tell Logo that LI S T has more than two
inputs.

How does HOUSE now behave towards FIRST, BUTFIRST , LAST and
BUT LAST? How many 'levels' does the computer model have? Experiment with
these Logo tools at your disposal until you understand the model clearly. Then
build a more complicated one!

Words can be lists too!
So far you will have gathered that Logo can cope with lists of words and even
lists-within-lists of words. What you may not realise is that words themselves
can be seen as lists. This becomes apparent when you apply the Logo primitives
for breaking down lists to words themselves.

69

For example, try these:

PRINT "INFATUATE
PRINT FIRST "INFATUATE
PRINT BUTLAST BUTLAST BUTLAST BUTLAST "INFATUATE
PRINT BUTFIRST "INFATUATE

Don't forget to put quotes (") before I N FAT U ATE . This tells Logo that
IN FAT U ATE is a word and it is always needed when the word is not part of a
list.

You can combine a number of words to form a longer one using the WORD
primitive. For example, type the following and watch the result:

PRINT WORD "CAT "FISH

See if you really understand how to break up a list by printing the words ATE ,
U, I N and F AT from I N FAT U AT E. Then combine them again using WO R D (if
you try to use more than two inputs to WORD you must surround it with
brackets, just as we did in the LIST example above) .

Writing back-to-front
You already have a number of useful list processing commands in F I R S T,
B U T F I R S T, LA ST, BUT LAS T and PR I NT. In this section you are going to find
out now how to build another list-processing command from existing Logo
commands, or primitives.

Let's try writing a procedure called, say, REVERSE that will allow you to do the
following:

PRINT REVERSE "HELLO
OLLEH

PRINT REVERSE "THERE
EREHT

What we are doing here is stripping off the last letter (0), then taking the
remaining word, (H E L L) and stripping off its last letter (L), then taking the
remaining word (HE L) and stripping off its last letter ... and so on.

0 L L E H

HELLO t 1 1) HELL
HEL
HE
H

70

Sounds just like recursion again, doesn't it? In fact, you would use a recursive
procedure to do it:

TO REVERSE :TEXT
OUTPUT WORD (LAST :TEXT) (REVERSE BUTLAST :TEXT)

END

The brackets on the second line are used to show you the inputs to WORD .

The OUTPUT (0 P) primitive in the second line of REVERSE passes back the
value of its input to the calling procedure. In this case, the value passed back is
the result of the WORD primitive. 0 U T PUT , in this case, effectively joins the last
letter of the word to all the earlier letters in reverse order.

If you now try out this procedure, it won't work! There is nothing inside
REVERSE that tells it how to stop. It keeps on going until it tries to apply LAST
to a word with no elements , an 'empty word'. Try it and see.

What you need to do is stop it when it gets to the empty word. You can do this
by inserting the following line as the first line of the procedure:

IF : TEXT = " [OUTPUT "]

Include it in your procedure, now, and try it out.

" on its own is used to refer to an empty word, and it is called 'the empty word'.
[J on its own is used to refer to an empty list and it is called 'the empty list'.

You could use REV ER S E, now, to test if a word reads the same in reverse as it
does forwards (this type of word is called a 'palindrome'):

TO PALINDROME :TEXT
IF :TEXT = REVERSE :TEXT [OUTPUT "TRUE]
OUTPUT "FALSE

END

PRINT PALINDROME "KAYAK
TRUE

PRINT PALINDROME "KAY
FALSE

Try it and see. Then try to understand how the procedure works.

71

Turtle fun
If sentences can be seen as lists of words, it should be possible to first break
them up and then join them together to form new and different sentences.

Try to use Logo to make some new sentences from the following:

[Pigs are [rather fat [with hairy earsJJJ
[You are [extremely beautiful [and very clever]]]

Summary of chapter
1. Groups of characters such as "FRED and "A BC 1 2 3 are called 'words'. A
word is always preceded by quotes (").

2. Words separated by spaces and enclosed in square brackets are called 'lists',
for example:

[THIS IS A LIST]

3. Words can be joined using the WORD primitive, or broken into shorter strings
using the FIRST, LAST , BUTFIRST (BF) and BUT LAST (BL) primitives. For
example:

PRINT WORD "CAT "FISH
CATFISH

PRINT FIRST "CAT
C

4. Lists can be combined to form longer strings using the LI ST primitive, or
can be broken into shorter ones using the FIRST, LAST, BUT FIRST and
BUT LAST primitives. For example:

LIST [OTTAWA LONDON] [OSLO HARARE WASHINGTON]

returns [[0 TT A W A LO N D O N J [0 S LO H A R A R E W A S H I N G T O N J J

PRINT FIRST [CATS ARE FURRY]
CATS

72

5. A word containing no characters is called 'the empty word'. It is represented
by " on its own.

6. A list containing no elements is called 'the empty list'. It is represented by
[] .

7. The OUTPUT (OP) primitive passes back to the calling procedure the value of
its input.

73

15 Writing interactive
procedures

'Interactive' procedures are ones which let you change what is happening in the
computer as it is happening. Arcade games are good examples.

This chapter shows you how to write interactive procedures. It uses, as an
example, a procedure which allows you to control the movement of the turtle
with only five keys; such a procedure· could be used to show small children the
turtle at work.

Reading characters from the keyboard
You can read characters such as the letters A to Z from the keyboard using the
primitive R C (Read Character). Look at the following, for example:

TO INPUT
MAKE "LETTER RC
IF :LETTER="@ [STOP]
PRINT : LETTER
INPUT
END

INPUT
ASDFQWER

This procedure puts the value of the key you press into LETTER and will print
any character you type other than @. When it reads this character it will stop.
Type it in and try it for yourself. Then see if you can modify INPUT so that it
stops when you press the 1 key.

Next, look at the following procedures. They allow you to control the turtle
using only five keys:

TO TURTLEMOVE
GETKEY
TU RT LEMOVE
END

TO GETKEY
MAKE "KEY RC
IF :KEY= "F [FORWARD 10]

74

IF :KEY = "L [LEFT 15]
IF :KEY = "R [RIGHT 15]
IF :KEY = "B [BACK 20]
IF :KEY = "D [DRAW]

CI
END

C I (Clear Input) is another new primitive. It merely tells Logo to forget any
keys that were pressed before it was called.

Work out what you think is happening. Then type the procedure in and try it
out.

You could also, if you wish, redefine other keys to produce particular shapes.
For instance, you could use the S key to draw a square and the T key to draw a
triangle. You will need to alter G ET KE Y.

You could also try thinking of some new ideas, such as getting the turtle to
draw other figures or draw lines in different colours.

Improving your procedures
R C makes your procedure stop and wait until a key is pressed before it does
anything. This would not be much use in a fast-moving arcade game.

Logo provides another primitive which allows your procedure to run
continuously and be stopped only when a key has been pressed: the KEY Q
primitive. This outputs the value "TRUE if a key has been pressed and
" F A LS E otherwise. If a key has been pressed, you can then get the character
using RC .

Your procedures might now look like the ones shown below. The underlined
parts are the ones that have been changed. Also, the line in GET KEY that
moved the turtle forward has been deleted so that the turtle always moves
forward unless one of your special keys is pressed.

TO TURTLEMOVE
FORWARD 10
I F KEYQ [GETKEYJ
TURTLEMOVE
END

TO GETKEY
MAKE "KEY RC
IF :KEY = "L [LEFT 15]
I F :KEY= "R [RIGHT 15]

75

IF :KEY= "B [BACK 20]
IF :KEY= "D [DRAW]
Cl
END

Put these new lines in, using the editor, then satisfy yourself that they work.

Turtle fun
1. Set up a 'target' on the screen and use the procedures you have defined to
'home' the turtle on to it.

2. In chapter 12, 'Multiple turtles', you may have written some procedures to
home one turtle on to another. Try to modify these so that you can control the
'homing' turtle from your keyboard.

3. Change the same set of procedures so that this time you are controlling the
'target', instead of the 'homing' turtle, from your keyboard.

Summary of chapter
1. Interactive procedures let you change what is happening in the computer as
it is happening.

2. Your procedure can read characters from the keyboard using R C (Read
Character). This waits until a key is pressed then outputs its value.

3. C I (Clear Input) tells Logo to i~ore any text input at the keyboard.

4. KEY Q can be used to make your procedures faster. This outputs the value
TRUE if a key has been pressed and FALSE otherwise. When the value is
T RU E, you can read the character using R C.

This introduction to Logo is now complete and we hope you have enjoyed
exploring its uses. But don't stop here. The things we have covered are just a
small part of Logo. To find out more, look at Logo on the BBC Microcomputer
and Acorn Electron and read some of the books given under 'Further reading'
at the back of this book.

76

Appendix A
Editing your command lines
As well as the DELETE key, which allows you to correct keyboard mistakes,
there is a group of five keys on the right hand side of the keyboard which can be
used to edit or alter program lines displayed on your screen. The arrow keys
enable you to move a flashing cursor around the screen to a line that you want
to edit. As soon as you press one of these keys, the computer enters a special
'editing mode' where it displays two cursors. The large white block is called the
'write cursor' and it shows you where anything you enter will appear. The other
small, flashing ·cursor (the 'read cursor') is the one that can be moved around
the screen by the arrow keys.

If you move the read cursor (using the arrow keys) until it is under a letter and
then press the COPY key, everything that the read cursor passes under will be
copied into the new input line. Halfway through copying a line you can always
use the arrow key~ to move the read cursor to some new place on the screen
before using COPY again to duplicate some other text on your new input line.
You can also use the DELETE key to delete characters from the input line, or
you can type in new characters at any time. When you have completed your
new input line you just press RETURN in the normal way.

77

AppendixB
Editing your procedures
You get into the Logo editor by typing ED I T, followed by quotes then your
procedure name. For example:

EDIT "VEE

You can get out of it at any time, leaving your original procedure unchanged,
by pressing ESCAPE. To carry out the changes you have made, you must leave
the editor by pressing COPY.

When you get into the editor, the screen might look like this:

If any text is too long to fit on to one line, the part that overflows onto the next
line is displayed in what is called 'inverse video': you get dark letters printed on
a light background.

You can move the cursor around your procedure using the cursor control keys
at the right of your keyboard (the arrow keys). The following list shows what
you can do to your procedures and the actions and keys involved:

Function
Move cursor to left

Move cursor to right

Move cursor up one row

78

Actions necessary

Press the - key

Press the - key

Pressthe j key

Function

Move cursor down one row

Move cursor to start of
Logo line

Move cursor to end of Logo
line

Move cursor to top of text

Move cursor to bottom of
text

Insert line

Actions necessary

Press the ! key

Hold down the CTRL (BBC) or FUNC (Electron)
key then press the - key

Hold down the CTRL (BBC) or FUNC (Electron)
key then press the ~ key

Hold down the CTRL (BBC) or FUNC (Electron)
key then press the j key

Hold down the CTRL (BBC) or FUNC (Electron)
key then press the ! key

Move the cursor to any point on the Logo line
above the one you want to insert then hold down
the CTRL (BBC) or FUNC (Electron) key and
press N simultaneously, or move the cursor to the
end of the previous line and press RETURN

Delete character at cursor Hold down the CTRL (BBC) or FUNC (Electron)
position key then press the D key

Delete character before Press the DELETE key
cursor

Delete from cursor to end
of line

Delete line

Close up lines

Escape from the editor
without altering the
original procedure

Exit from the editor and
preserve the edited
procedure

Hold down the CTRL (BBC) or
FUNC (Electron) key and press the L key

Move the cursor to any point on the line, then hold
down the CTRL (BBC) or FUNC (Electron) key
and press the U key

Put the cursor at the start of the empty line then
press DELETE

Press the ESCAPE key

Press the COPY key

79

AppendixC
Use of colour
You can change the pen and background colours, if you want, using the S ET PC
and SET BG primitives. The colours you can use depend upon the 'screen mode'.

Eight screen modes are available with the BBC Microcomputer, and seven with
the Electron, but only five are relevant to Turtle Graphics. They are
summarised below:

Mode

0

1

2

4

5

Description

This uses two colours with very high resolution graphics and
needs 20K of memory (16K on US machines) to map the screen.

This uses four colours with high resolution graphics and needs
20K of memory (16K on US machines).

This uses 16 colours with medium resolution graphics and needs
20K of memory (16K on US machines).

This uses two colours with high resolution graphics and needs
lOK of memory.

This uses four colours with medium resolution graphics and
needs lOK of memory.

The mode in use when Logo is loaded is Mode 4. You can change the screen
mode by typing SET MODE followed by the number corresponding to the mode
you want. For example:

SETMODE 5
SETBG 1
SETPC 2
SETNIB 80
REPEAT 4 [FORWARD 100 LEFT 90]

You should end up with a yellow square shape on a red background. The
S E TB G command defines the scre~n colour and the S ET PC command defines
the pen colour. The numbers you can put after them are given below, for each
valid screen mode.

80

Colour numbers

Mode Mode Mode Mode Mode Screen/pen colour

0 1 2 4 5

0 0 0 0 0 black
1 1 1 red

2 green
2 3 2 yellow

4 blue
5 magenta (blue-red)
6 cyan (blue-green)

1 3 7 1 3 white
8 flashing black-white
9 flashing red-cyan

10 flashing green-magenta
11 flashing yellow-blue
12 flashing blue-yellow
13 flashing magenta-green
14 flashing cyan-red
15 flashing white-black

81

AppendixD
Logo primitives
Below is a list of the primitives you have used in this book. There are many
more. For a full list, see the Logo reference manual.

Primitive

BACK(BK) <n>

BUTFIRST(BF)
<object>

Effect

Moves turtle < n > steps back.

Returns all but first element of< o b j e c t >.

BUT LAS T(BL) <object> Returns all but last element of <object> .

Cl

CLEAN

CONT I NU E(CO)

DOFOREVER <List>

DRAW

EDIT (ED) <name>

ERASE <procedure>

ERPS

FENCE

FIRST <object>

FORWARD (FD) <n>

HATCH <turtles>

HIDETURTLE (HT)

82

Clears the keyboard input buffer.

Clears graphics screen without moving turtle .

Resumes a procedure after a PAUSE.

Repeats list forever , or until a STOP is
encountered.

Clears screen, kills all but one turtle, sets WRAP ,
moves turtle to [0 0 J , sets heading to 0, resets
pen state.

Starts the Logo editor and loads the procedure
<name> into the edit buffer. If< name> is not
present, displays edit buffer or nothing (if
contents have been erased).

Erases the named procedure.

Erases all procedures.

Fences the turtle within outline of screen.

Returns first element of< o b j e c t >.

Moves turtle < n > steps forward.

Creates (hatches) turtle or turtles at current
turtle position.

Makes turtle invisible.

HOME

IF <expression>
<List>

KEYQ

LAST <object>

Moves turtle to [0 0] and sets heading to 0.

If < e x p r e s s i o n > is T R U E , runs < L i s t > .
Returns a value, if< L i s t > does.

Returns T RU E if a key has been pressed, but not
used by R C, otherwise returns F A LS E.

Returns last element of< o b j e c t >.

LE F T(L T) <degrees> Turns turtle< degrees> to left (anticlockwise).

LIST <object1>
<object2>

LOAD <name>

MAKE "<name>
<object>

Returns a list whose elements are < o b j e c t 1 >,
<object2> .

Loads file <name> into workspace.

Makes < n a m e > refer to < o b j e c t > .

OUT PUT (O P) <object> Returns control to caller and returns <object>
as result of a procedure.

PAUSE

PE

PENDOWN(PD)

PENUP(PU)

POPS

POS

POTS

PRINT (PR) <object>

PO <procedure>

READPICT <name>

RANDOM <number>

RC

REPEAT <n> <List>

Makes procedure pause.

Puts turtle's eraser down.

Puts turtle's pen down.

Lifts turtle's pen.

Prints definition of every procedure in workspace.

Returns turtle's position as list [x y J

Prints title line of every procedure in workspace.

Prints < o b j e c t > in text area and ends text with
a RETURN.

Prints out definition of< pro c e du re> .

Reads the picture from the file < n a me >.

Returns a random, non-negative integer less than
<number>.

Returns character typed at keyboard and waits if
necessary.

Executes < L i s t > < n > times.

83

RIGHT(RT) <degrees> Turns turtle <degrees> to the right
(clockwise).

SAVE <name> Writes the entire workspace to the file <name>.

SAVE PI C T <name> Saves the current screen picture into the file
<name>.

SETBG <n>

SETHEADING(SETH)

<degrees>

SETMODE <n>

SETNIB <n>

SETPC <n>

SETPOS <pos>

SETSH <object>

SETX <xpos>

Changes background colour to < n >.

Sets turtle heading to <de g r e e s >.

Selects display mode of computer (see Appendix
C).

Selects graphic option of turtle.

Changes turtle's pen colour to < n >.

Moves turtle to <po s >, where <po s > is a list
[X y].

Redefines turtle shape.

Moves turtle horizontally to x-coordinate
<xpos>.

SET Y < y po s > Moves turtle vertically toy-coordinate < y po s >.

SHOW TUR T LE(S T) Makes turtle visible.

STOP Stops procedure and returns control to caller.

TE L L <tu rt Les> Selects turtle or turtles and applies subsequent
commands to it/ them.

TO < n a me> < i n p u t s > Starts definition of procedure < n a me >.

TOWARDS <po s > Returns heading turtle would have if it faced
<po s >. < po s > is a list [x y J .

T S Allows the entire screen to be used for text.

W I N DOW Removes bounds from turtle field.

WO R D < w o r d 1 > Returns word made up of < w o r d 1 > and
<word2> <word2>.

WRAP Wraps turtle field round edges of screen.

X PO S Returns x-coordinate of turtle's position.

Y PO S Returns y-coordinate of turtle's position.

84

Glossary

Commands

Computer language

Expression

Input

List

Memory

Name

Object

Primitive

Procedure

These are the means by which you can control the
turtle or tell Logo to perform some other action.
They include primitives and procedures.

The medium used when you 'talk' to a computer.
There are several languages for different
purposes. Logo is designed for ease of use and to
support drawing and work on words.

A collection of one or more words that you can use
to make something happen to the turtle.

A number, word or list which makes a command
give different effects. For example:

FORWARD 100
FORWARD 200

A number of elements which can be words, other
lists, or a combination of both. They are contained
within square brackets, for example:

[LONDON [TORONTO WASHINGTON]]

The computer has two types of memory: its
immediate memory, or workspace, and its filing
system memory (discs or cassette tape). When the
computer is switched off, the contents of its
workspace are lost. To keep them safe, you must
store them on disc or cassette tape.

A word used to identify a variable or file.

A word or list.

These are commands which are built into Logo,
for example F O R WA R D and R I G H T.

You can make up new commands of your own
using the primitive TO. These are called
procedures.

85

Variable

Word

Workspace

86

A named object whose contents can vary. You can
think of a variable as being a 'box' whose contents
you can change using either the input of a
procedure or MAKE .

A string ofletters and/or numbers preceded by
quotes ("). For example:

"R2D2
"FRED

(see Memory.)

Further reading
ABELSON, Harold
diSESSA, Andrea

ABELSON, Harold

PAPERT, Seymour

Turtle Geometry: The Computer as a Medium for
Exploring Mathematics (MIT Press)
(For the more advanced reader)

LOGO for the Apple II (Byte/McGraw-Hill)

Mindstorms: Children, Computers and Powerful
Ideas (The Harvester Press)

87

Index

BACK (BK) 4
Background colour 12,16
Bugs 34
BUTFIRST (BF) 67
BUTLAST (BL) 67

Calculation - order of 44
CAT 27
Cl 75
CLEAN 5
Colour 16,80
Commands 4,23
Computer language 65
CONTINUE (CO) 36
Coordinates 60
Cursor 4
- read 77
- write 77

Debugging 34
Decimals 44
Default 14
Defining a procedure 21
DOFOREVER 57
Dots 40
DRAW 5,24

EDIT (ED) 37
Editing command lines 77
Editingprocedures 78
Editor 32,37
Empty list 71
Empty word 71
ERASE 21
Eraser 12
Erasing files 27
ERFILE 27
ERPS 25,26
Extensions 54

88

Fence 14
FENCE 15
Field 4,14
Files - erasing 27
FIRST 67
Floor turtle 3
FORWARD (FD) 4

HATCH 54
HOME 5
Home position 4
HIDETURTLE (HT) 13

IF 51
Input 4,40
Interactive procedures 7 4
Inverse video 78

KEYQ 75

LAST 67
LEFT (LT) 4
Lists 66,67
- joining 69
LOAD 25,26
MAKE 47
Memory 85
Mistakes 5
Mode 16
Modules 31
MULT 54
Multiple turtles 54

Name 47
Negativenumbers 45
Nibs 13
Numbers 43

Objects 47 ,60
Order of calculation 44
OUTPUT (OP) 71

PAUSE 36
PE 12
Pen 3,12
Pen colour 16
PENDOWN (PD) 12
Pen type 17
PENUP (PU) 12
PO 24
POPS 24
POS 61
POTS 24
Primitives 22
PRINT (PR) 43
Procedure 20,22
- defining 21
- editing 78
- saving 25
Prompt 4,21

Quotes 47

RANDOM 56
RC 74
Read Cursor 77
READPICT 28
Recursion 50
REPEAT 9
RIGHT (RT) 4

SAVE 25,26
Saving - pictures 27
- procedures 24,25
SA VEPICT 27 ,28
Screen mode 16
Screen turtle 3
SETBG 16
SETH 61
SETMODE 16,80
SETNIB 13

SETPC 16
SETPOS 60
SETPT 17
SETSH 58
SETX 61
SETY 61
Short forms 4
SHOWTURTLE (ST) 13
Spinning squares 10
STOP 51

TELL 54
Title line 21
Trail 3
TS 24
Turtles 3
- floor 3
- multiple 54
- screen 3

Variable 40,47

Window mode 15
WINDOW 15
Word 25,26,66,67,69
WORD 70
Workspace 24
WRAP 15
Wrapmode 15
Writecursor 77

XPOS 61

YPOS 61

89

	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_003
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_004
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_005
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_006
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_007
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_009
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_010
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_011
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_012
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_013
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_014
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_015
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_016
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_017
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_018
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_019
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_020
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_021
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_022
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_023
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_024
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_025
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_026
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_027
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_028
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_029
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_030
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_031
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_032
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_033
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_034
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_035
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_036
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_037
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_038
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_039
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_040
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_041
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_042
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_043
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_044
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_045
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_046
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_047
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_048
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_049
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_050
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_051
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_052
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_053
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_054
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_055
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_056
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_057
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_058
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_059
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_060
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_061
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_062
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_063
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_064
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_065
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_066
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_067
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_068
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_069
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_070
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_071
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_072
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_073
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_074
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_075
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_076
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_077
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_078
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_079
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_080
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_081
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_082
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_083
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_084
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_085
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_086
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_087
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_088
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_089
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_090
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_091
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_092
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_093
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_094
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_095
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_096
	Acornsoft Introduction to Logo on the BBC Microcomputer and Acorn Electron joined unoptimised_Page_097

