
Logo
Extensions and examples

ACORNS!Fr

Acknowledgements
Most of the examples in this book were produced by Nick Benton. Some of the
ideas were suggested by John and Audrey Laski.

Copyright © Acornsoft Limited 1984

All rights reserved

First published in 1984 by Acornsoft Limited

No part of this book may be reproduced by any means without the prior
permission of the copyright holder. The only exceptions are as provided for by
the Copyright (photocopying) Act, or for the purpose of review, or in order for
the software herein to be entered into a computer for the sole use of the owner
of this book.

FIRST EDITION

ISBN O 907876 77 3

Note: British Broadcasting Corporation has been abbreviated to BBC in this
publication.

Acornsoft Limited, Betjeman House, 104 Hills Road,
Cambridge CB2 lLQ, England. Telephone 316039

Contents

1 Introduction 1
1.1 The programs on tape 1

2 Logo examples 3
2.1 Loadingexamples 3

EDSHAPE 5
GRAVITY 7
HAND 8
LETTERS 9
LOGIC 11
LOGOP 18
MAP 19
MAZE 23
MIRROR 26
PLANTS 28
SCATTER 32
SPIRAL 34
STORY 35
TOOLBOX 37
TRI 39
WAFFLE 41

3 Logo extensions 46
3.1 Loading extensions 46

BUGGY 47
CALC 47
CLEPSON 48
EPSON 48
JESSOP 49
MOS 49
MULT 49
OLIV 50
PROP 50
SECT 51
VALIANT 52

1 Introduction

This manual describes the contents of the tape and disc supplied with Acornsoft
Logo for the BBC Microcomputer.

There are two types of program: extensions and examples.

Extensions add features to Logo, for example to control a particular printer, or to
support multiple turtles. When an extension has been loaded the new features
can be used by any Logo program.

The examples are written in Logo and generally show some of the less obvious
things that Logo can do.

1.1 The programs on tape
The tape starts with the extensions in alphabetical order, followed by the
examples. However, when an example uses a particular extension the code of
that extension is repeated after the example since this simplifies the loading of
the example.

The order of files on the tape is as follows:

BUGGY
CALC
CLEPSON
EPSON
JESSOP
MOS
MULT
OLIV
PROP
SECT
VALIANT

EDSHAPE
MOS (used by EDSHAPE)
GRAVITY
SECT (used by GRAVITY)
HAND
LETIERS
SECT (used by LETIERS)

1

LOGIC

LOGOP

MAP

MAPIRE (data on Ireland)

MAPSCOT (data on Scotland)

MAZE

MAZED AT (a picture of a trial maze)

MIRROR

MULT (used by MIRROR)

PLANTS

SCATTER
STORY

TOOLBOX
WAFFLE

PROP (used by WAFFLE)

2

2 Logo examples

A few of the examples (namely EDSHAPE, LETTERS, MAP and SCATTER)
may be of use in your Logo projects.

The others should be fun to use for a time, but they have served their purpose
best if you find them a useful source of ideas for your own projects.

You may choose to add to or improve the programs supplied, or you may use
them as a source of ideas on how to achieve some of the effects you want.

The examples supplied are as follows:

EDSHAPE - editing character shapes
GRAVITY - moving turtles
HAND - left and right game
LETTERS - for posters
LOGIC- artificial intelligence
LOGOP - a pattern for floor turtles
MAP - drawing maps
MAZE - edit and solve mazes
MIRROR- turtles reflecting each other
PLANTS - the computer learns
SCATTER - spreading objects
SPIRAL - pattern drawing
STORY - help the computer write a story
TOOLBOX - a conversational program
TRI - space filling by recursion
WAFFLE - the computer gossips

2.1 Loading examples
Examples are loaded as for any other program. However, as explained below, it is
safest to restart Logo before loading an example. Thus:

*LOGO
LOAD "LOGOP

All the examples will run automatically when loaded. If an extension is required
this will also be loaded automatically provided that it is on the same disc or
follows the example on the tape.

3

Several Logo examples change the Logo system by the extensions they load, by
burying procedures or by redefining primitives. If these changes are still :in effect
when another example is loaded it may not work correctly. For this reason it is
always desirable to be careful to restart Logo before running another program.

4

EDSHAPE

Introduction
This is a utility program which allows you to define and edit user-definable

_characters. These can then be incorporated into your own programs.

The program is simple to op~rate because it uses only 5 keys (the cursor arrows
and RETURN) to control everything.

How to use the program
When the program is LOA Ded, you will be shown an 8x8 grid of boxes with four
separate boxes to the right, labelled CH AR, DE F I NE, ED I T and END . In the top
left-hand corner of the large grid you will see an arrow. This is the cursor and it
can be moved about with the arrow keys. At the top right of the screen you will
see a number and a character. This is the 'current character' - one of the
user-defined characters in the range 224 to 249.

Designing a new shape
To design a new shape, move the cursor about the grid and use the RETURN key
to 'flip' the squares (ie change an empty square to a filled-in square, and vice
versa). When a design looks right, you ean copy it into the current character
(shown at the top right of the screen) by moving the cursor into the D E F I NE box
and pressing RETURN. The cursor changes into an 'hourglass' and the VDU 2 3
codes needed to define the shape in a program are displayed at the bottom of the
screen.

Changing the current character
To choose which user-defined character is to be the current character, move the
cursor into the C HA R box and press RETURN. The cursor will become a double
headed vertical arrow. Pressing the up arrow key will cause the current
character number to be increased, whilst pressing the down arrow will decrease
it. When you find the correct character, you can select it by pressing RETURN.
This restores the cursor's arrow shape.

Editing the definition of the current character

To edit an existing character definition, the definition of the current character
can be copied onto the defining grid. This is done by moving the cursor to the
EDIT box and pressing RETURN. The cursor changes into an hourglass to

5

indicate a short delay whilst the definition is read, converted into the program's
internal format and displayed on the grid.

As the definition is read the VDU 2 3 codes for the current character are
displayed at the bottom of the screen. The shape on the grid can then be edited in
the same way as a new shape is defined.

Leaving the program
If the cursor is moved into the END box and RETURN pressed, the program will
end. It can be restarted by typing START (assuming you haven't altered the
program or its data in the meantime).

Over to you
Once you have defined a character, such as number 225, you might like to use it
as the turtle shape by, in this case, S ET S H 2 2 5.

There are several ways in which you might like to extend the program as
presented here. One of the most obvious is to write a program which allows the
definition of several characters on screen at once. This would make the design of
multi-character shapes (such as those used in the program to draw the
hourglass) much simpler. Other possible facilities include displaying the
characters in different screen modes or colours.

6

GRAVITY

Introduction
This program allows you to control a turtle moving in a plane under the laws of
Newtonian mechanics. You may try to land the turtle within a small region, or
you may have a course which you can try to follow. You can also decide on the
acceleration due to gravity and whether or not the turtle should leave a trail.

How to use the program
When the program is LO A D ed, you are shown a summary of the instructions and
then the screen goes into graphics mode when the Space Bar is pressed. In the
text area you will be asked whether or not you want a 'course' on the screen. If
you press 'Y' in response to this question, a curving track will be drawn, starting
on the left of the screen and ending on the right. This course is only for guidance
as nothing actually happens if you stray off it. If you press anything except 'Y' in
response to the course question, the landing pad will be drawn at the bottom of
the screen.

The next thing you have to decide is how much gravity you want. This is a
number which should be between O (no gravity) and 1 (gravity exactly balances
the turtle's rocket) . Enter the number and press RETURN.

You will then be asked whether or not the turtle should leave a trail. If you press
'Y', the turtle will draw a line of dots behind it to mark its path. If you press any
other key, no trail will be left.

Having answered the questions, the program proper will begin. Use the 'Z' key to
rotate the turtle left and the 'X' key to rotate it right. To turn the turtle's rocket
on, press': ' (the state of the rocket is printed in the text area) . To turn the rocket
off, press'/'.

If you hit a wall, a message will be printed in the text area to tell you that you
have crashed and the game will end. There are two exceptions to this: if you have
a course and you pass through its end (at the right of the screen) you will be
congratulated. If you do not have a course and you hit the landing pad (at the
bottom of the screen) you will be given a message of success or failure depending
on your vertical speed when you landed.

7

HAND

Introduction
This is a game designed to improve spatial awareness and recognition ofleft and
right. A picture of a man with a flag in one hand is displayed and you have to
press (as quickly as possible) a key corresponding to the hand in which the flag is
held.

How to use the program
When the program has been loaded, instructions will be displayed on the screen.
When you are ready, you can start the game by pressing the Space Bar.

You will be shown a picture of a man facing either towards or away from you and
rotated by 0, 90, 180 or 270 degrees. You can tell which way he is facing because
his face is visible when he faces towards you. In one of his hands, he will be
holding a flag and your job is to decide which of his hands it is in. If you think it is
in his left hand, press the cursor left key. Similarly, if you think it is in his right
hand, press the the cursor right key.

When the game has finished it can be restarted by typing S TA RT .

8

LETTERS

Introduction
This example allows you to create posters on the screen using letters of
different sizes. It also provides some ideas to help you if you would like to create
your own letters, numbers or symbols.

LETTERS will not work with floor turtles.

How to use the program
The example supports procedures called A, B, C, etc, up to Z. These draw the
appropriate letter at the turtle position and heading with the current turtle
pen, and then move the turtle to a position for the next letter.

The supporting procedures are:

B S move turtle left by one character space
S P move turtle right by one character space
UC letters are to be drawn in upper case (Capitals)
L C letters are to be drawn in lower case
L F move down a line
SETS I Z E < s i z e > this sets the size for letters. Useful sizes are from 1 to 10
and the initial size is 3.

If you wish to put letters on a picture you have drawn, it may be best to save
the picture using S AV E P I C T then develop a procedure to place the letters as
you want them.

To place letters on successive lines you should remember the start of each line,
so that you can return to this point and then call L F. For example:

SETPOS [-400 300]
MAKE "OLDPOS POS
C A T
writes CAT on the first line
SETPOS :OLDPOS
LF
MAKE "OLDPOS POS
S A T

9

writes SAT on the second line
SETPOS :OLDPOS
LF
MAKE "OLDPOS POS

0 N
and so on.

If you wish to create your own letters or numbers in a similar way you will find
that the procedures in the package use the extension S EC T and the procedures

ARC < rad i us> <an g Le> < w i d t h > to draw an arc
ARM < s i de 1 > < s i de 2 > to draw an arm of a letter
MR <fwd> <right> to move without drawing
0 PA <fwd> < w i d t h > to draw a pair of parallel lines
PA < s i de 1 > <an g Le> < s i de 2 > to draw a parallelogram
TZ <side1> <angle> <side2> <side3> to draw a trapezium

Each letter calls LETS TART before drawing and LET END at the end to move
to the next position.

10

LOGIC

Introduction
This program is a much simplified version of the logic programming language
Prolog. In fact it resembles true Prolog to about the same extent that a turtle
graphics package resembles a true Logo implementation.

The program allows you to input facts and rules about facts which are stored in
a 'database' (a collection of data). These are then used to answer queries from
the user. The program will cope with most of the simple database query
applications used to introduce Prolog, but has none of the built-in functions or
list processing capabilities of the real language.

How to use the program
When the program is loaded, you will be presented with a short summary of the
main commands available and then the LOGIC program prompt & • .

To clear the program's memory (removing any facts from the database), type
C LE A R and press the RETURN key.

Formulating assertions

Now we can make some assertions. Assertions are usually of the form:

[<relationship> <individual> <individual>]

or

[<class> <individual>]

Here are some English assertions and the form in which they are required by
the program:

English - Logic

Mary likes John. - LIKES MARY JOHN
Steak is served with chips. - SERVED • WITH STEAK CH IP S
Bill is a man. - MAN BILL
Fred'sparents areJimandSheila- PARENTS FRED JIM SHEILA
The borogroves are mimsy. - MIMSY BOROGROVES

The reason why the relationships are put at the front (in so-called 'prefix form')
is that the database is indexed on the first word of each assertion so as to speed
searches. This representation also leads to a more consistent way of expressing

11

assertions. You should notice that when a relationship name has more than one
word (as in 'served with'), it has to be made into one word; usually by using an
underline character or full stop to separate two English words.

Adding new assertions to the database

To actually add an assertion to the database, you use the built in command
ADD :

ADD [[LIKES MARY JIM]]
ADD [[MALE BILL]]
ADD [[HUMAN BILL]]
ADD [[LIKES JIM FRED]]

The assertions are surrounded by double list brackets because some assertions
can contain more than one clause (as we shall see later).

Listing the assertions

A list of all the assertions which have been entered can be obtained by using
the command DIS PALL (for DISPlay ALL). Alternatively, a listing of all the
assertions under a particular index or indices can be obtained by the use of the
command DI S P, as in DI S P " LI KE S to obtain a listing of all the LI KE S
relationships or D I S P [LI KE S HUMAN J to obtain a listing of both the
LI KE S and H UM AN assertions.

Asking yes / no questions

So far, we have put information into the database and got a listing ofit, but we
have not actually asked any questions of the database. We can ask if a
particular assertion is in the database by using the command DOES :

DOES [[LIKES MARY JIM]]
YES

('Does Mary like Jim?')

DOES [[HUMAN BILL]]
YES

DOES [[HUMAN MARY]]
NO

('Is Bill human?')

('ls Mary human?')

The program operates on what is called a 'closed-world assumption'. That is to
say that all true statements are either in the database or are derivable from
statements in the database by rules which are in the database. Thus, the
answer to the last question is NO because the program has not been told and
cannot show that MARY is HUMAN .

12

The wildcard character
We may also want to know if a particular kind of assertion is in the database.
For example, to ask 'Does Mary like anybody?' We want to see if there are any
assertions of the form:

[[LIKES MARY <anything>]]

where any word will match against <any t h i n g > in the query. This is done by
using the underline character (under the£ sign on the keyboard) as a 'wildcard'
character:

DOES [[LIKES MARY _JJ
YES

DOES [[EATS JIM _JJ
NO

Asking 'which' questions

It is far more likely that we will want to know 'Who does Mary like?' than 'Does
Mary like anybody?'. To do this we need a way of 'getting back' the word which
was matched with the wildcard character in the above example. This is done by
using variables and the W H I C H command:

WHICH [?XJ [[LIKES MARY ?XJJ
('Which x is such that Mary likes x?')
Answer is: ?X=JIM
No (more) answers.

WHICH [?X ?Y] [[LIKES ?X ?YJJ
Answer is: ?X=MARY, ?Y=JIM
Answer is: ?X=JIM, ?Y=FRED
No (more) answers.

Notice that whilst there can only be one answer to a DOES query, there may be
many ways of satisfying a WHICH query, all of which are found by the system.
If you don't want all the possibilities, use ONE instead of W H I CH. This prints
each answer as it is found and waits for you to press a key. If you press
RETURN then it will carry on to find the next answer, otherwise it will stop.

A variable is one of ? V, ? W, ? X, ? Y or ? Z. This is not as restrictive as it sounds
since variables are always completely local to the assertion or query in which
they appear.

We can also ask compound queries, that is to say queries having several
different goals to be satisfied simultaneously. For example, using the following
database:

13

ADD [[BIG LORRY]]
ADD [[BIG HOUSE]]
ADD C[COLOUR LORRY RED]]
ADD [[COLOUR HOUSE WHITE]]

We could ask 'What is big a nd white ?' like this:

WHICH [?XJ [[BIG ?XJ [COLOUR ?X WHITE]]

('which x is such that x is big and x is white ?')

Answer is: ?X=HOUSE
No (more) answers.

Assertions containing variables

So far, the only information which we have got out of the database has been
explicitly entered - the system only knows that Mary likes Jim because we told
it so. A more powerful kind of information can also be entered into the database
which will allow the system to infer new facts without being explicitly told
them. For example, one of the classic forms of syllogism is often stated as:

1 Socrates is human

2 All humans are mortal

therefore Socrates is mortal.

Assertion 1 is the sort we have met already. We could enter it as:

ADD [[HUMAN SOCRATES]]

Assertion 2, however, is of a different kind. We are introducing a general rule
which could be stated: 'If x is human then we can deduce that x is also mortal'
or, alternatively, as this: 'To solve the problem of who is mortal, first solve the
problem of who is human'.

This rule would be added to our database as follows:

ADD [[MORTAL ?XJ [HUMAN ?XJJ

We could then ask the system 'Who is mortal ?' like this:

WHICH [?XJ [[MORTAL ?X]J
Answer is: ?X=SOCRATES
Answer is: ?X=BILL
No (more) answers.

There is no relationship between the ? X in the assertion and the ? X in the
question; we could equally well have used ? X in the rule and ? Z in the
question, or asked a question with no variable in it, like this:

14

DOES [[MORTAL SOCRATES]]

In the same way as we can have compound queries, we can make compound
assertions. For example, we might want to store some data on a family tree and
to do this we may have a rule corresponding to '(x is the brother of y) if (x is
male) and (the parents ofx are v and w) and (the parents ofy are also v and w)':

ADD [[BROTHER ?X ?Y] [MALE ?X] [PARENTS ?X ?V ?WJ
[PARENTS ? Y ? V ? W J J (type as one line)

Notice that this rule can make somebody his own brother (since he has the
same parents as himselD but that this will only be the case for those males who
have parent data stored:

ADD [[MALE FRED]]
ADD [[FEMALE SHEILA]]
ADD [[MALE JIM]]
ADD [[PARENTS JIM FRED SHEILA]]
ADD [[PARENTS SALLY FRED SHEILA]]
ADD [[FEMALE SALLY]]
WHICH [?X ?YJ [[BROTHER ?X ?Y]J
Answer is: ?X=JIM, ?Y=SALLY
Answer is: ?X=JIM, ?Y=JIM
No (more) answers.

So J IM is his own brother, but FRED isn't since we cannot show that he has the
same parents as himself.

Recursive rules and the danger of infinite loops
Rules can be recursive (they can invoke themselves), but you have to be very
careful about not allowing infinite loops to arise. As an example of a legal kind
of recursion, consider a database concerning some blocks on a table:

ADD [[DON A TABLE]] (A is directly on the table)
ADD [[DON E TABLE]] (E is directly on the table)
ADD [[DON B AJJ (B is directly on A)
ADD [[DON C A]] (C is directly on A)
ADD [[DON D CJ] (D is directly on C)

Now we want to define SUPPORTS so that 'x supports y if y is directly on top of
x OR y is directly on top of some z such that x supports z'. This is quite legal:

ADD [[SUPPORTS ?X ?YJ [DON ?Y ?XJJ
ADD [[SUPPORTS ?X ?Y] [DON ?Y ?ZJ [SUPPORTS ?X ?ZJJ
DOES [[SUPPORTS TABLE DJ]
YES

15

(Notice how the OR part of the definition is implemented by having two rules
starting with '[[SUPPORTS ?X ?YJ').

It would NOT be a good idea to define our second SUPPORTS rule like this:

[[SUPPORTS ?X ?Y] [SUPPORTS ?X ?Z] [DON ?Y ?Z]J

because the interpreter works from left to right trying to satisfy each goal,
backing up when some goal fails. In this case it would respond to a query like:

WHICH [?X ?Y] [[SUPPORTS ?X ?Y]]

by first trying to find x and z such that x supports z. This would lead to a
recursive call of the same rule which would carry on going deeper and deeper
until the program was interrupted or ran out of stack space.

Infinite looping can occur quite simply:

ADD [[LIKES BILL JANE]]
ADD [[LIKES JANE ?X] [LIKES ?X JANE]]

This was intended to say that Jane likes anybody who likes her, but will run
into problems because the program cannot decide whether or not Jane likes
herself - if she does then she does but if she doesn't then she doesn't!

For example:

WHICH [X?] [[LIKES JANE ?X]]

will give

Answer is: ?X = BILL

and then go into an infinite loop which will continue until ESCAPE or CTRL
ESCAPE is pressed.

Over to you
Obviously it is tempting to try and expand this simple system into a much fuller
implementation of Prolog. This is not really practicable, given the constraints of
memory and speed which are imposed by using Logo (Logo would, however, be
a reasonable environment in which to test your ideas before translating them
into machine code or a compiled language such as BCPL). There are some
simple improvements which would add to the utility of the program (though
probably at the expense of some execution time):

16

1 Add a NOT function . This would be very useful in queries and could be used
like this:

WHICH [?XJ [[LARGE ?XJ [NOT HEAVY ?X]J or
ADD [[EQUAL ?X ?XJJ (defines EQUAL)
ADD [[NE ?X ?VJ [NOT EQUAL ?X ?Y]J (defines NOT EQUAL)

Note that negative information cannot be entered - the mere absence of the
positive version has the same interpretation

2 Add some simple numerical predicates - a built in 'less than' relationship is
not too difficult (and is very useful). The arithmetic ones require a little more
thought because they have to work in both directions:

WHICH [?XJ [[SUM 2 3 ?XJJ
WHICH [?XJ [[SUM 2 ?X SJJ

(which x is equal to 2+3?)
(which x is such that 2+x is equal
to 5?)

17

LOGOP

This example draws a word in a way that can be used either on the screen or by
a floor turtle. For example, to draw with the Jessop turtle, place the turtle on a
large piece of paper on the floor so that it can move at least 600 mm forward
and 800 mm right. Then type:

LOAD "LOGOP
Hold CTRL and press ESCAPE
LOAD "JESSOP
FLOOR
START

Type SC RE EN to drive the screen turtle again.

The word can be drawn again by typing:

START

18

MAP

Introduction
This set of procedures is for drawing maps. The maps are held as lists of
longitude and latitude pairs which are joined together to draw the outline of a
country, the course of a river or whatever other feature you wish to map. You
can map all or selected features of a country at any desired scale and about any
centre. Two examples of using the maps in simple games are also included.

Using the program
The main procedure is called MAP and is used in the form:

MAP :<country> <featurelist>

For example:

MAP :ENGLAND [BORDERS]

maps an outline of England;

MAP :ENGLAND [BORDERS TOWNS]

maps the borders and towns of England;

MAP : ENGLAND []

maps all features of England.

Note that to enable more than one map to be drawn on the screen at once, MAP
does not clear the screen before drawing, so that CLEAN may be necessary
between maps.

Scales and centres
In addition to the lists of features , each country list also has a default centre
and scale. These are used if none is specified by the user before plotting. The
effect of this is that if you (say) MAP England and then MAP Wales, England
will be centred and Wales will be plotted in its correct position relative to
England. If, however, you were to MAP Wales first and then MAP England, the
map would be centred on Wales and would have a much larger scale (a lot of
England would be off the screen).

If you want to override the defaults, use

MAKE "MAPSCA <number>

19

and

MAKE "MAPCENT <List>

before MA Pping a country. The map scale is in units of screen units per
kilometre whilst the centre is a position on the Earth's surface given as
longitude and latitude in hundredths of a degree (the best way to learn how
this works is to experiment).

Plotting grids
Two grid plotting procedures are supplied:

DEGGRID <n>

places a grid over the map at < n > / 100 degree intervals whilst

KMGRID <xkm> <ykm>

overlays the map with a grid of rectangles < x km> by < y km> kilometres.

Garnes
Two very simple examples of the use of the map drawing procedures as a basis
for other programs are also included. These are RA L LY and D I S T GA M E.

D I ST GAME will draw a map of England with a 100km grid and mark on some
towns. Then it asks ten questions of the form 'WHAT IS THE DISTANCE
BET W E E N < t own 1 > AN D < t own 2 > ? ' Each time it gets a response it tells
you the correct answer and then, after ten questions, it gives a percentage
score.

RALLY is also based on a map of England. Each of the towns is labelled with a
letter and the user chooses a route which visits each town once and once only.
This route is plotted on the map as it is entered and the total distance is printed
out when all the towns have been visited.

Loading other map data files
Data is stored with the program on England and Wales. More data on Scotland
is stored in the file called MA PS C OT , and more on Ireland in MA P I R E. See the
'How the program works' section for details on how to put your own maps into
the program from an atlas.

To load the data from the MAP IRE or MAPS COT files, you must first make
enough space for it. You can delete all the map data stored in the program with
the command ER DAT A. This does not delete the map centre and scale. Thus,
you can MAP one lot of data and then erase the data, load some new data (using
LOAD "MAPS COT or LOAD "MAPIRE) and MAP that, all on the screen at

20

once and to the same scale. You can also free some space by deleting the games
(RALLY and DISTGAME). This is done by calling ERGAMES .

How the program works
The data for each country is stored in several pieces to make it easier to enter.
The data structure for England looks like this:

"ENGLAND is [CENTRE [-146 5291]

"OUTER is
"LONDON is

etc.

SCALE 1
BORDERS [OUTER SWALES OUTER2 ... J
TOWNS [LONDON BIRMINGHAM ...]
RIVERS [TRENT THAMES SEVERN ... J J

[[-200 5578] [-143 5561] ... J
[[-7 5090] J

The data structure for any country is a list of pairs: the name of a feature type
followed by a list of names which make up that feature type. The first pair must
be the default C ENT RE for that country and the second the default S CALE .
The order of the actual plottable features is not important.

Each individual feature (eg "0 UTE R) is a list of coordinates which were
entered directly from a map. The coordinates are in hundredths of a degree
longitude east (west is negative) and latitude north (south is negative). The
way in which these are transformed into screen coordinates is dependent on the
current values of" MAPS CA (the scale of the map in screen units per kilometre)
and "MAP CENT (the longitude and latitude of the point which will be at the
middle of the screen).

When the program is given a list of coordinate values to plot, these are joined
by straight lines plotted in the current pen state. When, on the other hand, the
object to be plotted consists of a single coordinate (as does " LONDON above),
then a special symbol (plotted by the procedure C IT Y MARK) is put at that
position instead.

Also stored with the data on England and Wales is the data required to drive
the RA L LY and D I S T GA M E procedures.

Over to you
Putting in your own data from an atlas is not difficult. Simply delete the data in
the program (see 'How to use the program') and then enter your own data in
the format described above. The features which are described in the example
data are BO R D E R S, TOWNS and R I V E R S, but you can add more if you wish
(motorways or railways, perhaps). New data should be entered using the Logo

21

editor to edit the coordinate lists and the country data lists, since many of them
will be more than 255 characters long and could not, therefore , be entered
directly in response to the Logo prompt.

To save your data, you can either resave the program along with your data, or
you can save just the data by using:

SAVE <fi Lename> [J

22

MAZE

Introduction
This program allows you to create simple mazes on the computer screen. You
can then either attempt to solve the maze or write a program for a maze
running 'robot' to use in solving the maze. Mazes can also be saved to and
loaded from disc or tape.

How to use the program
When you load the "MA Z E file , a LO AD I N I T procedure explains the basis of
using the procedures to generate and save your own mazes. Then the screen
goes into DRAW mode with a small menu in the text window. This gives you the
option of:

1 Making a maze

2 Trying a maze

3 Running a maze robot program

4 Loading a maze

5 Saving a maze

6 Returning to command level

Constructing a maze

Option 1 allows you to create a maze from scratch. You are given a grid of cells
with a little man in the bottom left hand corner. The little man can be moved
about the maze with the cursor arrow keys. If you press DELETE, the man
becomes a hammer. This can be moved about in the same way, but instead of
walking through the walls of the maze it will knock down existing walls and
build new ones where old ones have previously been knocked down. Pressing
DELETE again will change the hammer back to the man.

To mark the start of the maze, press the 'S' key (this will remove any previously
defined start). To mark the finish , press the 'F' key (this will remove any
previously defined finish). To exit the maze definition procedure, press the 'Q'
key. The system will not allow you to end the construction of a maze unless
start and finish have been defined.

23

Trying to solve a maze
Option 2 lets you try to solve the maze which is currently on the screen (either
just made or loaded from disc or tape). A smiling face appears in the start
position of the maze and this can be moved about using the cursor arrow keys.
Attempting to move through walls generates an 'ouch' message and a 'boinng'
noise . When the face reaches the goal position of the maze, a message of
congratulation is printed and a little tune is played. The 'Q' key allows you to
give up before finishing.

Running a maze solving procedure

OptioD. 3 executes a previously defined maze running procedure. The maze
running robot is represented by a thick arrow and is initially placed in the start
position of the maze facing upwards. Control is then passed to the user's
procedure which has the following sub-procedures at its disposal:

1 GO A L Q returns "TRUE if the robot is at the end of the maze, otherwise it
returns "FA LS E.

2 MO V E F moves the robot forward if there is no wall in the way.

3 WA L L F, WA L LB , WA L L R and WA L L L return " T R U E if there is a wall in front
of, behind, to the right of and to the left of the robot, respectively. Otherwise,
they return "FA LS E.

4 TURN R and TURN L turn the robot through 90 degrees right and left
respectively.

Your procedure should simply STOP or END when it finds the goal or when it
gives up.

There is already one simple maze running procedure loaded which you might
like to try. It is called RAN WA L K and is not very bright! Pressing 'Q' will return
you to the menu.

Loading a maze

Option 4 will load a maze from tape or disc and there is then a short delay
whilst the procedure identifies the start and finish of the maze. Try loading
MA Z E DAT from the tape or disc.

Saving a maze
Option 5 simply saves the maze which is currently on the screen to tape or disc.

24

Quitting the program
Selecting option 6 from the menu just passes control back to command level. To
return to the menu type START .

Over to you
One of the purposes of this program is to provide an environment in which you
can write your own maze solving procedures. Experiment with different
strategies - you may find that different strategies work best in different kinds
of maze. Can you write a procedure that will solve any maze? You will probably
find it helpful to keep track of where your robot has been already, to stop it
getting trapped and going round in circles.

25

MIRROR

Introduction
This program is intended to demonstrate the use of multiple turtles. It also
shows the way in which you can redefine the basic Logo primitives to
'customise' the system to a certain extent. The basic idea is that the screen is
divided vertically into two halves and there is a turtle in each section of the
screen; one on the left and one on the right. Any turtle graphics commands
which are given (either directly or from within a procedure) are then executed
directly by the turtle on the right and mirrored by the turtle on the left.
Because this program redefines primitives and makes use of buried procedures
it is advisable to reinitialise the language by typing * LOGO before running
any of the other examples.

How to use the program
When you LO AD the program, you will be presented with a page of instructions
and then the screen will clear to leave two turtles, each centred in its half of the
screen and separated by a vertical line. There is a short turtle graphics
procedure called DEMO which you might try at this stage. To return to having
just one turtle, type S I NG LE. The procedure MI RR OR will then restore the
mirror turtles. Apart from these two commands, you should just use turtle
graphics as before (but avoid using commands like SET PO S, which are based
on Cartesian coordinates).

The only thing to bear in mind is this: whilst you normally control the right
hand turtle directly and the left hand one mirrors its actions, if the turtle leaves
its half of the screen then it may wrap round. Thus, your turtle will be on the
left and the mirror turtle on the right.

How the program works
When the program is first loaded, the old definitions of DRAW , LE FT, R I G H T
and HOME are 'saved' by COPY DE F ing them. Then new versions are
substituted which direct different commands to the two different turtles. The
advantage of doing things this way is that a procedure can work in a normal
one-turtle environment (for example, DEMO will work in SINGLE mode as
well) and then work unchanged when there are two turtles responding in
different ways.

26

Over to you
This simple idea has a lot of potential for further experiments with different
kinds of symmetry. You could start by varying some or all of the following:

1 The initial states of the turtles

2 The number of turtles on the screen

3 Scaling factors for the two turtles (one turtle moves with bigger 'steps' than
the other)

4 The definition of a straight line - try distorting turtle paths around a point
for example (this is more complicated).

27

PLANTS

Introduction
This simple program allows you to 'teach' the computer how to distinguish
between members of a set of objects. Initially, the computer 'knows' very little
but it gradually 'learns' more from the person using it.

How to use the program
The way in which this program works is to ask you to think of a member of the
class of objects (such as plants) . It then attempts to guess what you are
thinking of by asking you a series of YES/NO questions. The computer will
then say what it thinks is the answer, and ask if it is correct. If not, it will ask
for the name of the object of which you were thinking, and a new question
which it can use in future so as not to make the same mistake twice.

Here is a sample session with the 'plants' databa~e which is initially in memory
when the program is loaded:

START "PLANTS
(this starts the program om

THINK OF A PLANT
IS IT A TREE ? N
IS IT A WEED ? N
IS IT A VEGETABLE? Y
I THINK I T IS A CARROT. AM I RIGH T? N
WHA T I S IT THEN? A LETTUCE
PLE AS E GI VE ME A QUES TI ON WH ICH I CA N
US E TO DIS TINGUISH A CARROT FROM A LE TTUC E
? DO ES IT GROW UNDERGROUND?
SO IF I ASKED YOU:
DOES IT GROW UNDERGROUND?
AND YOU WERE THINKING OF A LETTUCE
WHAT WOULD THE ANSWER BE? N
OK

THINK OF A PLANT
IS IT A TRE E ? N
I S IT A WEED ? N
I S I T A VEGETABLE ? y

DO ES IT GROW UNDERGROUND ? N

28

(the new question)
I THINK IT IS A LETTUCE. AM I RIGHT? Y
Whoopee!

THINK OF A PLANT
IS IT A TREE ? Q

(Q for QUIT)
? (command level)

If you save the program after a session, the new state of its 'knowledge' will be
saved with it. You can then keep building up its expertise over several sessions.

Starting a new tree
The structure which is used to hold the information in this program is called a
'binary tree' ('binary' because there are two choices at each question and 'tree'
because the structure resembles the branches of a tree when it is drawn on
paper, although it is normally drawn to look more like the roots.

To initialise a tree on a new subject, type NEW from command level. First you
will be asked what you want to call the tree. This name should be the subject
about which the tree is going to hold information; for example, CARS , PEOPLE ,
AN IM AL S, PLANETS or COMPUTERS . The procedure will next ask you for the
singular of your name; for example: CAR , PERSON , AN IM AL. Then you have to
say whether or not your subject will require an 'article' . This piece of
information is used when the program makes a guess , so that it will say
I TH I N K I T I S A MIN I when you're talking about cars, but
I THINK IT IS SHAKESPEARE (rather than A SHAKESPEARE) when
you're talking about people. The final question which you must answer to
create a new tree is an example of your subject. This is needed to start the tree
off.

Erasing a tree
If you want to wipe a tree from the computer's memory (either to make more
room for another tree or so you can start a new tree with the same name), type

WIPE <treename>

For example:

WIPE "PLANTS

You will be asked to confirm your decision before the tree is actually destroyed
as there is no way to get it back if it has not been saved.

29

How the program works
The information for this program is held in a single Logo list for each topic. This
list contains three elements: the first is TRUE or FA LS E depending on whether
or not the names are proper names; the second is the singular form of the tree
name, and the third is a classification tree.

A classification tree is held as a single Logo list with the following structure: a
tree-list is either an atom or

[[question List]
[tree-List for yes]
[tree-List for no]]

If the chosen sub-list in the above structure is an atom (that is to say, a Logo
word rather than a list) , the atom is interpreted as a terminal node (sometimes
called a leaf, for obvious reasons) and is printed out as the computer's guess.

For example, say you have just created a new tree concerning CARS and you
have given it BUGATTI as an example, then : CARS is
FALSE CAR BUGATTI. If you then think ofa 2CV and add the question:

IS IT FRENCH

to the database, : CARS 1s:

FALSE CAR [[IS IT FRENCH] 2CV BUGATTI]

The addition of the new car CHEVROLET and the question :

IS IT AMERICAN

then makes : CARS equal to:

FALSE CAR [[IS IT FRENCH] 2CV [[IS IT AMERICAN]
CHEVROLET BUGATTI]]

The procedure which actually does the questioning is called TRAVERS E; it
prints out a question (the first element of its input list) and then calls itself on
the second or third element of the list, depending on the answer. TRAVERSE
also keeps a list of the sequence of 'Y's and 'N's which you type. This is used to
speed up the REPLACE procedure which modifies the tree when a new question
is to be added.

Over to you
There are many interesting additions which you could make to the basic
program as presented here. A fairly simple one would be a function to print out
the structure of a tree. Such a function is called a 'pretty printer' and it should
produce something like this:

30

"CARS is:

[[IS IT FRENCH]

2CV
[[IS IT AMERICAN]

CHEVROLET
BUGATTI]]

Another function which would be rather nice is an editor which allows changes
to the tree structure - especially useful when you make a mistake. The
program at present does not check for inconsistent input: you can have the
same object at different places in the tree (which is obviously wrong). Since the
mistake might well be in either occurrence of the name, detecting this kind of
error is not very useful until you have implemented some sort of editor, so that
you can correct the list structure (you can, of course, use ED N, but this works on
the list as a string of characters, rather than a nested structure, and is
therefore fairly inconvenient).

31

SCATTER

Introduction
This is a set of procedures which is designed to be used with your own
programs. It allows you to spread your pictures about the screen in various
ways. The images may be of fixed or variable size or they may be plotted with
diminishing size to give the effect of perspective.

How to use the procedures
Your procedures should take just one parameter to control size. For example:

TO TREE :S
IF :S<16 [STAMP STOP]
FD :S RT 30
TREE :S/1.5
LEFT 60
TREE :S/1.5
RT 30 BACK :S
END

Images are plotted on the screen within a rectangular area (initially set to the
whole screen) which you can define using the procedure call:

LIMITS <Low x> <Lowy> <high x> <high y>

(these are the limits within which the start of a drawing may lie - your
procedure may well cause the turtle to exceed these boundaries).

To plot an image on the screen after you have defined the procedure, the basic
command is:

PLACE <proc name> <max size>

This will plot one <pro c name> at a random position.

The size of the image plotted by P LAC E is defined by the <ma x s i z e > input
and also by which one of three possible options has been selected before doing
the PLACE. If the procedure F IX ED has been run, then the size of the
resulting image will be exactly <ma x s i z e >. If VARY has been run first, the
size of the resulting image will be a random number between O and
<ma x s i z e >. The other option is PERS PE C T IV E which causes the size to
vary with Y-coordinate from <ma x s i z e > in the foreground to O on the
horizon.

32

If you want to PLACE several images on the screen (for example, to create a
garden of T RE Es), you can use the SC AT TE R command; this will PLACE a
random number of drawings within the defined window. For example:

SCATTER 20 "TREE 150

will PLACE between 1 and 20 T RE Es with <ma x s i z e > 150 on the screen.

If you require a demonstration of the different commands, type H E L P. The best
way to learn how to use the procedures is simply to experiment with them.

33

SPIRAL

This example is so short that it has been left for you to type in.

S PI RA L shows how a very simple Logo program can be used to create a large
variety of interesting patterns. It is also an example of tail recursion and can be
used to illustrate this powerful idea.

The program to be typed in is as follows:

TO SPIRAL : FWD :ANGLE : INC
FORWARD :FWD
RIGHT :ANGLE
SPIRAL :FWD (:ANGLE+ :INC) :INC

END

Having entered this procedure you could try out the variety of possible effects,
by entering commands such as:

CS SPIRAL 20 6 9

If you would like to study how these effects are produced, press ESCAPE while
the program is running, then type:

TRACE 15 CO

The program will now run step by step, waiting at each stage for you to press a
key, and you will be able to see each line before it is executed, then each
command with the actual data to the command.

Less comprehensive traces are possible. For example, press ESCAPE and type:

TRACE 10 CO

This now shows each call to the procedure S PI RA L.

To exit from tracing press ESCAPE and type:

TRACE 0 CO

34

STORY

Introduction
This program is for writing a kind of computer/human generated story. The
computer decides on sentence structures at random and then allows you to
choose the actual words from lists of words which it 'thinks' would be suitable.

How to use the program
When the program is LOA Ded, you are shown a page of instructions and then
the screen clears. The story will appear word by word at the top of the screen
whilst your choice& are made at the bottom.

Choices are made by pressing the RETURN key to cycle through the list of
words and then pressing the space bar to select the desired word. This is then
printed at the top of the screen.

Press CTRL and ESCAPE together to exit from the program.

Over to you
After you have used the program for a while, you will begin to see several
improvements which could be made. For example, there is no way of
'unmaking' a choice and there is no way of getting hard copy of your story. Both
of these changes are fairly straightforward to make (although you'll have to
back up on the sentence structure to undo a choice).

At a more fundamental level, the way in which the program decides on a
sentence structure and then sticks to it can be slightly limiting. An alternative
way of generating a sentence would be to allow the structure to develop at the
same time as the sentence is actually being built up. For example, if you had
selected 'Once upon a time' as the start of your sentence, the structure would
still be completely undecided. Then you might select 'the', and this choice would
then rule out all the sentence structures which start with a place or an adverb
(eg UNDER THE SHOEBOX, •.. or STIFFLY, ...). This sort of
program would allow you much more control over the way in which the story
develops (although the program would be quite a bit more complicated than
this one).

35

The example program WA F F LE shows one possible approach to making the
computer generate the sentences completely on its own, but making the
sentences hang together into a coherent (or even semi-coherent) whole is very
difficult without some kind of internal model of what it is that the sentences are
describing.

36

TOOLBOX

Introduction
This program is intended to show how the computer can be made to 'understand'
a very small set of English questions about a limited domain and respond in an
'intelligent' manner.

The idea is that the computer has a box containing several objects, each of which
has several properties like size and colour. Whilst you can't just ask the computer
what is in the box (that would be too easy), you can ask it simpler questions such
as:

IS THERE A RED SCREWDRIVER lN THE BOX?
HOW MANY SPANNERS ARE THERE?
WHAT COLOUR IS THE SMALL HAMMER?
WHAT TYPE IS THE BIG BLUE THING?
ARE THERE ANY BIG OBJECTS IN THE BOX?

How to use the program
Using the program is really just a matter of typing the questions. When the
program is loaded you are presented with a page of instructions and then the
colon (:) prompt appears. Type a question like one of those above then press
RETURN. The computer will either respond with an answer or it will print
'EH?' to signify that it could not understand your input.

Press CTRL and ESCAPE together to exit from the program.

The computer answers questions with full sentences which tell you what
question it has actually answered. This prevents it from appearing to tell lies
when it has really misunderstood you. For example:
'HOW MANY TRUFFLES ARE THERE?' would be interpreted as
'HOW MANY anythings ARE THERE ?' because the word 'TRUFFLES'
in the input is not in any of the computer's lists. The computer would therefore
respond with something like:

THERE ARE THREE OBJECTS IN THE BOX.

Changing the contents of the box is very easy, just type PONS from the
command level and you will see the structure of the data. Edit this to change
the objects, their properties or whatever.

37

How the program works
The heart of the program is a general purpose pattern matching procedure called
MA T C H (a very similar function does most of the work in the LOG I C program).
This procedure is used to 'analyse' the input sentence and to call the appropriate
routine. Property words like BIG or BLUE in the input are used to construct a
filter to decide which objects interest us . This filter is applied to each object in
turn and if it matches, the appropriate action (printing 'yes there is one' or
adding one to the count of objects satisfying the conditions) is taken.

Some fairly simple procedures then generate the program's response, such as:

THERE ARE FOUR BIG BLUE THINGS IN THE BOX.
I DON'T KNOW WHICH BIG RED OBJECT YOU MEAN.
THERE IS AT LEAST ONE SMALL SCREWDRIVER IN THE BOX.
THE BIG SCREWDRIVER IS GREEN.

Over to you
The area of natural language processing by computer is a very large and
complicated one. If you want to write more powerful natural language programs,
you should read a book on artificial intelligence. However, you can go some way
by just adding to this sort of system. The program could be extended to deal with
a wider variety of sentence constructs and possibly with relationships between
objects (for example, 'How many things are bigger than the red brick?' or 'What
is on top of the book?'). Systems of this kind are very useful for allowing
non-specialists to interact with information stored on computers.

You can make the computer appear more intelligent by adding a fairly simple
natural-language 'front-end' to a program which performs some other pseudo
intelligent task (such as working out how to stack bricks on a table).

38

TRI

This example is so short that it has been left for you to type in.

This shows how a simple Logo program can be used to fill an area in an attractive
way. It is also an example of full recursion, and can be used to illustrate this
powerful idea.

The program to be typed in is as follows:

TO TRI :SIDE :DEPTH
IF :DEPTH=0 [STOP]
REPEAT 3 [TRI :SIDE/2 (:DEPTH - 1) FORWARD :SIDE LEFT 120 J
END

Having entered this procedure, you might like to experiment with commands
such as:

CS TRI 240 5

CS SETPOS [-300 -300] RIGHT 90 CLEAN TRI 600 6

CS SETNIB 80 .SETPT 3 SETPOS [-300 -300] RIGHT 90
FD 0 CLEAN TRI 600 4

The program can be understood as a generalisation of the triangle drawing
procedure:

TO TRIANGLE :SIDE
REPEAT 3 [FORWARD :SIDE LEFT 120 J
END

In TRI, however, a smaller triangle is to be drawn at the start of each side. This is
achieved by calling T R I again with a smaller : S I D E. The : D E PT H parameter is
needed to stop the program trying to draw smaller and smaller triangles for ever.

Tracing the program

You may find it useful in understanding this idea to trace the execution of T R I .
For example, type:

(DRAW 12)
TRACE 15
TRI 240 5

39

and watch the successive calls to TRI. Remember to press a key (such as the
Space Bar) when you see the prompt ' !'.

At any stage you can see the way TRI is calling itself by pressing ESCAPE and
then typing:

TC

The program can then be resumed by typing:

co
Tracing is removed by pressing ESCAPE and then typing:

TRACE 0 CO

You can restore the original number of text lines by typing:

(DRAW 0)

Over to you
You may like to experiment with other similar space filling programs, for
example one that fills space with squares.

40

WAFFLE

Introduction
This program is designed to generate grammatically correct English sentences
by choosing at random from several lists of words and some of their properties.

WA F F LE is a complicated program and so can take over a minute to build each
sentence.

The program generates sentences of the following form (called 'type 1 sentences'
in this explanation):

<subject noun phrase> <verb> (<optional object noun
phrase>).

For example:

THE BIG DOG ATE THE SMALL GREEN BOOK.
THE GIRL SLEPT.

The program can also generate 'type 2 sentences', which have the following form:

<object noun phrase> WAS <verb> BY <subject noun
phrase>.

For example:

THE CUP WAS BROKEN BY THE BIG CLUMSY MAN.

Noun phrases may be either simple:

THE BIG BLUE CARPET

or they may be complex:

THE STEAK WHICH WAS EATEN BY FIDO

(based on a type 2 sentence)

THE BOOK WHICH DISGUSTED MUMMY

(based on a type 1 sentence)

THE BOY WHO CRIE~

(these complex phrases are called 'fancy nouns' in the program).

41

How to use the program
To generate and print out a single random sentence, run the procedure
GENS ENT . If you want the machine to carry on generating sentences (until you
press the ESCAPE key), run the procedure called DRIVEL.

GENS ENT chooses between type 1 and type 2 sentences and will generate either
simple or fancy nouns as subjects and objects. For example:

THE BLUE TABLE WHICH IMPRESSED THE MAN DISGUSTED THE
QUEEN WHO WAS LIKED BY BILL.

MARY DISLIKED THE SMELLY HOUSE WHICH BELONGED TO THE
FAT MAN.

Changing the vocabulary
If you want to add new words to the program's vocabulary, you need to
appreciate the way in which the program uses certain properties of words so that
it does not choose completely at random from lists of nouns, verbs and adjectives.
The details of the classifying scheme are explained below, but you should
remember that this is not the only way to approach the problem; it was chosen
because it appeared to work quite well and you may be able to think of a better
one.

When you understand the classification system and you want to add new words
(or delete old ones) , use ED N on "NOUNS, "VERBS or "AD J EC TI VE S along
with PPROP or REMPROP as appropriate.

How the program works
There are certain restrictions placed on the words that may be chosen in each
position. These aim to prevent you generating completely nonsensical sentences
such as 'Colourless green ideas sleep the skyscraper.' The way in which this
works for a type 1 sentence with simple nouns is (roughly):

1 There are three global word lists

"NOUNS is [BOY GIRL BOOK VIRTUE FIDO MARY ...]
"VERBS is [ATE LIKED AMUSED BROKE ...]
"ADJECTIVES is [BIG HEAVY BLUE GREEN ...]

2 Each noun has a list of qualities which are stored in a property list under the
name "CLASS . These are used to decide whether or not the noun is a sensible
one to use in the current context. For example:

PPROP "DOG "CLASS [COMMON COUNT ANIMATE -HUMAN]

defines the "CLASS of the word "DOG to be COMMON (ie it's not a proper noun),

42

COUNT (ie it's an actual object), ANIMATE (ie it can perform actions) and
-HUMAN which means that it is non-human (the tilde - represents negation).

3 Each verb has a property called "SUB J C which is a list of C LASS conditions
that must be satisfied by a noun for that noun to be used as a subject to the verb.
For example:

PPROP "EMBRACED "SUBJC [HUMAN]

means that only nouns with the property HUMAN can be used as subjects to the
verb 'embraced'.

4 Each verb has a property called "0 BJ C L which is a list of alternative lists of
C LASS conditions that must be satisfied by nouns for use as objects to that verb.
For example:

PPROP "ATE "OBJCL [[COUNT] [-COMMON ANIMATE] [@JJ

means that the verb ATE can take as an object any countable noun
(THE BLUE TABLE or THE FAT MAN), anyproperanimatenoun (FIDO),
or no object at all (the [@] represents the intransitive use of the verb).

5 Each adjective has a property called "AD J C L which is a list of class conditions
that must be satisfied by any noun before the adjective can be applied to the
noun. For example:

PPR OP "B LlJ E ''AD JC L [COUNT - ANIMATE]

limits the application of the adjective BLUE to nouns which are both countable
and inanimate (like CAR).

6 The procedure GENS ENT will generate and print out a random sentence in the
following way:

(a) Decide on a subject for the sentence. This will be a noun group generated at
random with no restrictions

(b) Decide on a main verb for the sentence. This will be a verb picked at random
from those which will accept the noun generated in (a) as subject

(c) Decide on a class type for the object. This will be a random member of the
verb's "0 BJ C L property

(d) If the object class type is not [@ J (ie if we are going to use the verb
transitively), pick an object for the sentence. This will be a noun picked at
random subject to the restriction that it must satisfy the object class condition
decided in (c)

(e) Print out the sentence (subject) followed by (verb) followed by (object)

43

(adjectives and articles are added as appropriate by the noun generating
procedure)

7 The way in which the nouns are subdivided into CLAS Ses is shown by the
following tree diagram:

NOUN

I I COMMON~

~COUNT~ I
IANIMATEl I IANIMATEl

,HUMAN1 1ABSTRACT1 1HUMAN1
BOY DOG BOOK VIRTUE DIRT
GIRL GNOME TABLE TRUTH
MAN HEDGEHOG CHAIR
QUEEN BRICK
LORD COMPUTER

HOUSE
CUP
PIPE

(left- property positive, right- property negative)

For example:

JOHN
MARY
CHOMSKY
BILL

TRUTH's "CLASS is [COMMON COUNT ABSTRACT]
FIDO's "CLASS is CCOMMON ANIMATE HUMAN]

FIDO EGYPT
ROVER PARIS

Some of the verbs have an extra property, called" PAST P, which stores a verb's
past participle if it is different from its past indicative (eg ATE , EATEN or
BROKE , BROKEN). This is stored for use in the type 2 sentence
(JOHN ATE FIDO but FIDO WAS EATEN BY JOHN) or complex noun
phrases built up on the type 2 sentence structure (THE CUP
WHICH WAS BROKEN BY THE GIRL).

There are further minor complications such as the need to say
'THE CUP WHICH WAS ••• ' but 'THE GIRL WHO WAS ••• ' and the
fact that generating a fancy noun to satisfy some list of conditions is more
complicated than generating a simple noun to comply with the same restrictions.

44

Over to you
There are many possible ways in which the program could be extended. These
include:

1 Preventing the same adjective from being used twice on the same noun

2 Giving adjectives a 'binding power' which determines how strongly they
attach to the noun (so that you get TH E BI G BLU E HOUSE rather than
THE BLUE BIG HO USE)

3 Adding new sentence structures (eg allowing indirect objects, adverbs,
negations or questions)

4 Adding a wider range of tenses (this will require the addition oflookup tables
for irregular verbs)

5 Allowing nouns to form proper plurals

(You may find that you need to add extra properties to some word classes in order
to make certain enhancements)

45

3 Logo extensions

The extensions supplied with the package are as follows:

BUGGY - Supports BBC BUGGY
CALC - Mathematical functions
CLEPSON - Prints coloured screen on EPSON-compatible printer
EPSON - Prints screen on EPSON-compatible printer
JESSOP - Supports JESSOP floor turtle
MOS - Operating system primitives
MULT - Multiple turtles extension
OLIV - Prints screen on Olivetti-compatible printer
PROP - Property lists extension
SECT - SECT primitive to draw sectors
VALIANT - Supports VALIANT floor turtle

3.1 Loading extensions
Load any required extension as you would a program, for example:

LOAD "CALC

Do not load extensions repeatedly, since each time you use up more workspace.

If you want your program to have access to a particular extension include a
command such as the following:

IF NOT PRIMITIVEQ "ASN [LOAD "CALCJ

Extensions are not saved with your program.

46

BUGGY

This is the extension for the BBC BUGGY. It supports standard procedures for
Floor Turtles, namely:

BACK(BK) EXPLORE FLOOR FORWARD (FD) HOOT LEFT (LT)
PENDOWN(PD) PENUP(PU) PENUPQ RIGHT (RT) SCREEN
SENSE

FORWARD 1 moves approximately 1 mm.

The action of S EN S E is as follows:

SENSE 1 reads the LDR and returns O to 32760
SENSE 2 reads the barcode sensor and returns O to 32760
SENSE 3 reads an optional input to the ADC and returns O to 32760
SENSE 4 reads an optional input to the ADC and returns O to 32760
SENSE 5 returns " T RU E if the tilt sensor is set
SENSE 6 returns "TRUE if the right bumper is touching
SENSE 7 returns " T RU E if the left bumper is touching

EXPLORE stops•if either SENSE 6 or SENSE 7 is detected or ESCAPE is
pressed

HOOT sounds on the computer's speaker

CALC

This contains the following mathematical functions:

ASN EXP LN PI TAN

Other operations can be derived from these , for example:

TO POWER :NO :EXPONENT
OUTPUT EXP :EXPONENT* LN :NO
END

47

CLEPSON

This contains PR S C R E E N and it prints a coloured screen on an
Epson-compatible printer. The printout is shaded to indicate the different
colours.

This gives a much slower print than is provided by EPSO N.

EPSON

This contains PR S CREE N and it prints a screen on an Epson-compatible
printer. Any part of the screen which is not in logical colour O is printed in
black.

This gives a much faster print than is provided by C LE PS ON .

48

JESSOP

This is the extension for the JESSOP floor turtle. It supports standard
procedures for Floor Turtles, namely:

BACK(BK) EXPLORE FLOOR FORWARD(FD) HOOT LEFT(LT)
PENDOWN(PD) PENUP(PU) PENUPQ RIGHT (RT) SCREEN

. SENSE

F O R WA R D 1 moves approximately 1 mm.

There are , in fact, no sense functions and so SENS E < n > always returns
"FALSE .

EXPLORE goes forward the given distance or until ESCAPE is pressed. In the
latter case it reports the distance actually travelled.

MOS

This contains the machine code interface functions:

CALL DASIZE DATAAREA HEX

MULT

This is the multiple turtle extension. It contains the following:

ALIVEQ FORGET HATCH TELL TURTLES WHO

49

OLIV

This contains PR S CREE N and prints a screen on an Olivetti-compatible
printer. Any part of the screen which is not in logical colour O is printed in
black.

This is a much faster print than is provided by C LE PS ON .

PROP

This is the property list extension. It contains the following:

ERPLIST ERPLISTS GPROP PLIST PPALL PPROP PPS
REMPROP

50

SECT

This contains the primitive SECT . SECT has the following syntax:

SECT <radius> <angle> <width>

It draws a sector through the specified <an g Le> . < rad i us> is the distance
from the turtle to the centre of curvature; a positive < rad i us> means that
the centre is to the right of the turtle. < w i d t h > specifies the separation of the
two lines of the arc; a positive < w i d t h > means that the second line is to the
right of the turtle . If< an g Le> is positive the turtle moves forward; if negative
it moves backwai·ds.

The turtle finishes at the other end of the line from its starting point.

If the nib has been set to 80, the space between the lines is filled.

The following example draws an annulus:

SETNIB 80
SECT 100 360 50

51

VALIANT

This is the extension for the VALIANT floor turtle. It supports standard
primitives for floor turtles, namely:

BACK(BK) EXPLORE FLOOR FORWARD (FD) HOOT LEFT(LT)
PENDOWN(PD) PENUP(PU) PENUPQ RIGHT(RT) SCREEN
SENSE

and two special primitives:

SELECT SELECTED

FORWARD 1 moves approximately 1 mm.

HOOT uses the computer's speaker.

There are no sensors and so S EN S E < n > returns " F A LS E.

EXPLORE <di stance> runs until ESCAPE is pressed or the
< d i s t a n c e > is covered; it returns the length covered.

It is possible to drive up to four turtles. The turtle selected initially is number 0.
Other turtles can be selected by typing SELECT < n > (where < n > is in the
range O to 3).

SE LE C TED returns the number (0 to 3) of the VALIANT turtle currently
selected.

52

	original_Page_01_1L
	original_Page_01_2R
	original_Page_02_1L
	original_Page_02_2R
	original_Page_03_1L
	original_Page_03_2R
	original_Page_04_1L
	original_Page_04_2R
	original_Page_05_1L
	original_Page_05_2R
	original_Page_06_1L
	original_Page_06_2R
	original_Page_07_1L
	original_Page_07_2R
	original_Page_08_1L
	original_Page_08_2R
	original_Page_09_1L
	original_Page_09_2R
	original_Page_10_1L
	original_Page_10_2R
	original_Page_11_1L
	original_Page_11_2R
	original_Page_12_1L
	original_Page_12_2R
	original_Page_13_1L
	original_Page_13_2R
	original_Page_14_1L
	original_Page_14_2R
	original_Page_15_1L
	original_Page_15_2R
	original_Page_16_1L
	original_Page_16_2R
	original_Page_17_1L
	original_Page_17_2R
	original_Page_18_1L
	original_Page_18_2R
	original_Page_19_1L
	original_Page_19_2R
	original_Page_20_1L
	original_Page_20_2R
	original_Page_21_1L
	original_Page_21_2R
	original_Page_22_1L
	original_Page_22_2R
	original_Page_23_1L
	original_Page_23_2R
	original_Page_24_1L
	original_Page_24_2R
	original_Page_25_1L
	original_Page_25_2R
	original_Page_26_1L
	original_Page_26_2R
	original_Page_27_1L
	original_Page_27_2R
	original_Page_28_1L
	original_Page_28_2R
	original_Page_29_1L
	original_Page_29_2R

