BCPL

Stand Alone Generator
onthe BBCMicrocomputer

7o

GENERATOR

=L

onthe BBCMicrocomputer

CHRIS JOBSON

ACORNSE&FT

Disclaimer

Richards Computer Products Limited and Acornsoft Limited reserve
the right to make improvements in the product described in this
book at any time and without notice. Every effort has been made
to ensure the accuracy of the material presented in this book.
Nevertheless, experience shows that some textual and software
errors always remain to be discovered. If you find any errors,
or have any suggestions on how to improve this book, please
contact Richards Computer Products Limited, Brookside, Westbrook
Street, Blewbury, Didcot, Oxfordshire 0OX11] 9QA, England.

Copyright (C) 1983, Richards Computer Products Limited and
Acornsoft Limited

All rights reserved worldwide
First published in 1983, by Acornsoft Limited

No part of this book may be reproduced by any means without the
prior consent of one of the copyright holders. The only
exceptions are as provided for by the Copyright (photocopying)
Act or for the purposes of review or in order for the software
herein to be entered into a computer for the sole use of the
owner of this book.

FIRST EDITION

Published by:

Acornsoft Limited
Betjeman House
104 Hills Road
Cambridge

CB2 11L.Q

Contents

Introduction

How to use this guide
System features
Requirements

Generating stand alone programs
Example command files

Stand alone environment

Starting and stopping

Differences from development environment
I/0 options

Layout of store

Utilities
FILETRN - file transfer

FIXCIN - create program to run in RAM
PACKCIN - pack CINTCODE

ROMCIN - create program as language ROM
UTILCIN - create program as utility ROM
Procedures

Discussion

ESCAPE handling

Handling “*° commands

Location of global vector and heap
Machine code programs

Overlaying

Program termination

Programs to run on non-BBC machines
Replacing SYSLIB procedures
Writing programs to execute in ROM

awnN -

NoJEN |

13
13
15
19
22

25
26
27
31
33
37

41

47
48
50
51
53
57
60
63
65
65

Summaries

Error numbers and fatal error codes
Files provided

Global variables

Global vector

Utilities

Utility error messages

Appendix

Globals used by Stand Alone Generator
Re-use of global numbers

Running in the 6502 second processor
Sections in SYSLIB

Sizes

Stand alone file formats

System data areas

System procedures

69
70
71
72
74
74
75

79
80
80
81
82
86
88
94
95

]. Introduction

The BCPL CINTCODE system on the BBC Microcomputer
provides a powerful environment for the develop-
ment of BCPL and small assembler programs, but
programs developed using it can normally only be
run on BBC Microcomputers fitted with the BCPL
Language ROM.

The BCPL Stand Alone Generator greatly enhances
the usefulness of the BCPL CINTCODE system by
permitting the easy distribution of developed BCPL
programs. The utilities in the package convert
developed programs into stand alone programs which
can be run on any BBC Microcomputer, whether or
not it is fitted with the BCPL Language ROM.
Indeed it is even possible to develop stand alone
programs for other 6502-based computers (eg for
dedicated control applications).

Stand alone programs can be generated in two main
formats:

- as files which may be held on any suitable
medium and which are run using the “*RUN
filename’ filing system command (often this
can be shortened to ‘*filename’);

- as language ROMs which can be plugged into the
sideways ROM sockets and which are run by
“*name’ commands (the names used are chosen
when the stand alone program is generated).

The Stand Alone Generator is designed for use with
the BCPL CINTCODE system on the BBC Microcomputer.
It works by linking the application program with
the BCPL interpreter and an appropriate subset of
the BCPL library procedures.

Some features of the development system (ie the
BCPL CINTCODE system) are not available to stand
alone programs. In particular store files and the
separate run and command states are not supported.
Nevertheless, converting programs to run in a
stand alone environment is generally straight-
forward and often very few, if any, modifications
will be required.

Licensing arrangements

All BCPL programs produced by the Stand Alone
Generator include the BCPL interpreter and a num-
ber of BCPL library procedures. The interpreter
and library procedures are copyright software and
a licence is needed to distribute programs con-
taining them.

A licensing agreement is included with the Stand
Alone Generator and its terms should be studied
before distributing any stand alone programs.

Special Requirements

The Stand Alone Generator is designed to cope with
the majority of foreseeable requirements for cre-
ating stand alone BCPL and assembler programs.
Any users with special requirements involving
changes or additions to the Stand Alone Generator
software are invited to contact Richards Computer
Products Limited for assistance.

HOW TO USE THIS GUIDE

All readers are recommended to read the remainder
of this Introduction as well as chapters 2 and 3,
which give an overview of the use of the package
and of the environment in which stand alone
programs run.

Readers preparing to generate a stand alone
program should follow the steps outlined in
chapter 2, referring as necessary to chapters 4, 5
and 6 which respectively explain how to use the
utilities, summarise the library procedures avail-
able and discuss various features of stand alone
programs.

Chapter 7 contains summaries of the utilities and
the stand alone environment. It may be used for
quick reference by experienced users.

The Appendix describes the various features
provided and contains other information which may
be of interest to experienced users or to users
with special requirements.

This guide assumes that the reader is familiar
with the BCPL CINTCODE development system and has
access to the User Guide for that system. The
sections covering language ROMs assume some fam-
iliarity with the concepts of sideways ROMs, but
very little knowledge of this subject is needed to
generate a stand alone program as a language ROM
using this package.

SYSTEM FEATURES
Language ROMs and utility ROMs

The Stand Alone Generator has the ability to
create two types of sideways ROMs, referred to in
this guide as language ROMs and utility ROMs,
(although both types are actually language ROMs
from the point of view of the BBC Microcomputer
operating system).

The difference is that language ROMs have only one
entry point whereas utility ROMs have several.
Typically a language ROM would be used for a large
stand alone program with one basic function (eg an
editor), whereas a utility ROM could be used to
hold a number of small programs, each entered by
its own “*name’ command (eg a set of disc
utilities).

Utility programs

The Stand Alone Generator contains five utility
programs:

FILETRN is a utility to copy a file preserving the
load and execution addresses. It can copy
files from one filing system to another
(eg from disc to tape) or from one disc to
another even if only one disc drive is
available.

FIXCIN 1is the utility which creates a stand alone
program as a file which can be run by the
"*RUN° command. It also creates stand
alone programs for target systems other
than the BBC Microcomputer.

PACKCIN is a utility to compact CINTCODE files by
removing SECTION and NEEDS directives and
merging hunks. It is most useful for
minimising the space required by stand
alone programs but can also be used to
advantage on programs to be run in the
development environment.

ROMCIN 1is the utility which creates a stand alone
program as a language ROM.

UTILCIN is the utility which creates a stand alone
program as a utility ROM.

System libraries

The system library files supplied with the Stand
Alone Generator contain the CINTCODE of special
versions of the library procedures in the BCPL
Language ROM and the development system library,
LIB. They also contain a special version of the
BCPL interpreter.

Two library files are provided, SYSLIB1l and
SYSLIB2. They differ only in some of the I/O
procedures. The term °‘SYSLIB® is used throughout
this guide as a generic term for these two files
when the differences between them are unimportant.

REQUIREMENTS

A Model B BBC Microcomputer with the BCPL CINTCODE
system and a filing system such as disc or Econet
(cassette tape only is not sufficient) is required
to use the Stand Alone Generator.

The output of the utilities ROMCIN and UTILCIN is
a ROM image file. To copy this file into an
EPROM, an EPROM programmer and suitable software
to drive it is required.

The computer requirements of particular stand
alone programs depend largely on the programs
themselves, but to use ROMs generated by ROMCIN or
UTILCIN operating system 1.0 or later is required
and to access disc files DOS version 0.90 or later
is required.

Many programs produced by the Stand Alone
Generator will run unchanged in a 6502 second
processor. The Appendix details the effects of
running in the second processor.

Z Generating Stand Alone
Programs

A BCPL CINTCODE program is converted into a stand
alone program by linking the CINTCODE with the
library routines used and with the interpreter
(both these are extracted from SYSLIB). The re-
sulting file is compacted using PACKCIN then con-
verted by FIXCIN, ROMCIN or UTILCIN into a stand
alone program file or a ROM image file.

The use of PACKCIN is not essential but results in
a significantly smaller stand alone progranm.

In more detail the recommended sequence of events
for producing a straightforward stand alone BCPL
program is as follows:

(1) Write the program and test it (as far as
possible) using the development system.

(2) Make any changes necessary to the code for
the stand alone version.

(3) Go carefully through the program, listing all
library routines used (this includes routines
from the BCPL language ROM as well as those
from LIB). Look up the entry in chapter 5
for each of these routines and thus prepare a
list of the sections to be extracted from
SYSLIB. (This process also checks that the
program does not use any routines not avail-
able in the stand alone environment.)

(4) Add the section "INTERP" (which contains the
interpreter) to this list.

(5) Decide which, if any, of the I/O options
described in chapter 3 is required and add
the appropriate section to the list.

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Decide which, if any, of the termination
options described in ‘Program termination” in
chapter 6 is required and add the appropriate
section to the 1list.

Include the required NEEDS directives in the
program source. This may be done either by
including the relevant directives in indi-
vidual source files, by including all the
directives in one of the source files or by
preparing a separate source file containing
all the directives. The third option is
recommended (the source file need hot contain
any code).

Compile all the program source files (includ-
ing the new one with the NEEDS directives)
with the NONAMES option (this saves space in
the stand alone program). Use JOINCIN to
join all the CINTCODE files together.

Decide whether the sections NEEDed should be
extracted from SYSLIB1 or SYSLIB2. The
difference is important only if the program
uses file I/0. See “I/O0 options’ in chapter
3 for details..

Use NEEDCIN to extract the sections from the
chosen SYSLIB file. The result of this step
is a CINTCODE file containing the progranm,
the interpreter and all necessary library
procedures.

Use PACKCIN to compact the CINTCODE file into
a smaller CINTCODE file. This removes the
section names and NEEDS directives thus
resulting in a smaller final program.

If the stand alone program is to be built as
a language or utility ROM then create a
‘Spec’ file, which contains details of the
ROM header and entry points (see the sections
on ROMCIN and UTILCIN in chapter 4).

(13) Decide on the location of the global vector
and heap (see ‘Location of global vector and
heap’ in chapter 6). Decide whether a
particular screen mode should be set up
before the stand alone program is entered.
These decisions affect the parameters that
will be given to FIXCIN, ROMCIN or UTILCIN.

(14) Use FIXCIN, ROMCIN or UTILCIN to create the
stand alone program, either as a file which
can be executed by “*RUN’ (from FIXCIN) or as
a ROM image file. In the case of ROM image
files check that the file will fit in the
type of EPROM it is proposed to use, remem-
bering that the maximum size of a language
ROM is 8192 words.

(15) If the output file from FIXCIN is to be
copied then use FILETRN (rather than
READ/SAVE/COPY) since the file contains load
and execution addresses which must be
preserved.

EXAMPLE COMMAND FILES

It is suggested that EX command files are set up
to assist in the process of building stand alone
programs. Two examples of typical command files
are given here.

Example 1

This command file uses FIXCIN to create a stand
alone program. The parameters to the command file
are:

INFILE the name of the CINTCODE file containing
the program;

OUTFILE the name to be given to the stand alone
program file. (FIXCIN always creates the
stand alone program file as a current
filing system file.)

The command file assumes that SYSLIB1l is to be
used, that the global vector is to be located at
hex byte address 1900 and that all optional FIXCIN
parameters are defaulted.

Store files are used for the temporary files
needed. This works only for fairly small
programs. For larger programs there is not enough
room in store and the current filing system has to
be used for these temporary files (see the second
example).

.KEY INFILE/A,OUTFILE/A

NEEDCIN <INFILE> SYSLIB1 STEMP1

PACKCIN FROM STEMP1 TO S$STEMP2

DELETE $TEMP1

FIXCIN FROM STEMP2 TO <OUTFILE> GV=1900
DELETE $TEMP2

Example 2

This command file uses ROMCIN to create a ROM
image file. The parameters to the command file
are:

INFILE the name of the CINTCODE file containing
the program;

OUTFILE the name to be given to the ROM image
file. The command file creates this as a
current filing system file;

SPEC the name of the “Spec’ file;
GV the hex byte address at which the global
vector is to be located (defaults to 1900

if not specified);:

LIBNO 1" or ‘2° for SYSLIBl1 or SYSLIB2 (de-
faults to SYSLIB1 if not specified);

10

PARS any additional parameters:to be given to
ROMCIN eg if the screen mode is to be set
to 5 then the EX command line might
include:

PARS = "MODE 5"

Filing system files are used for all temporary
files to avoid running out of store when dealing
with large programs.

.KEY INFILE/A,OUTFILE/A,SPEC/A,GV,LIBNO,PARS
.DEF GV=1900

.DEF LIBNO=1

NEEDCIN <INFILE> SYSLIB<LIBNO> /F.S$TEMP1

PACKCIN S$TEMP1 /F.STEMP2

*DELETE STEMP1

ROMCIN STEMP2 /F.<OUTFILE> <SPEC> GV=<GV> <PARS>
*DELETE STEMP2

11

12

3 Stand Alone Environment

The environment provided for stand alone BCPL
programs can be considered as a much simplified
form of the development environment. The princi-
pal differences from the development environment
(which are discussed in more detail below) are:

- there is no command state;

- the main stack is of fixed size;

- there is no automatic ESCAPE handling;
- store files are not provided.

STARTING AND STOPPING
Starting

A stand alone program which has been created as a
file is started by selecting the appropriate
filing system and typing:

*RUN filename

(in some filing systems this can be abbreviated to
*filename).

The file is loaded by the filing system into a
pre-defined place in RAM and the initialisation
code is entered. This code optionally selects a
particular screen mode and sets up the global
vector, the main stack and the heap. It then
enters the interpreter which starts executing a
CINTCODE initialisation routine.

The size of the global vector is governed by the
Mmaximum global used or defined in the program.
Unused entries are initialised to GLOBWORD. The
Size of the main stack is fixed. The stack is not
initialised to zeros.

13

The CINTCODE initialisation routine initialiseg
various globals and I/0 streams and then calls thg
application procedure START.

A stand alone program which has been created as 4
language or utility ROM is entered by typing:

*name

where name is one of the names associated with the
ROM (these names are specified as input to ROMCIN
or UTILCIN).

The initialisation process is similar to that
described above, except that the code is all ex-
ecuted in ROM and therefore is not loaded into
RAM. 1In the case of a utility ROM the first BCPL
procedure called by the CINTCODE initialisation
routine is not necessarily START but depends on
the particular name used.

If the language or utility ROM is installed as the
right-most language ROM in a BBC Microcomputer
then it is entered automatically when the computer
is switched on or if CTRL-BREAK is pressed.

Pressing BREAK when a stand alone program is run-
ning re-enters the current language ROM. If the
stand alone program was created by FIXCIN then
this re-enters the language that was running when
the “*RUN” command was entered (in the 6502 second
processor BREAK crashes the system and CTRL-BREAK
must be used to break out of the program). If the
stand alone program was created by ROMCIN or
UTILCIN then this re-enters the stand alone
program.

Stopping

All the usual methods of stopping are available to
stand alone programs, ie returning from START (or
whichever procedure was first entered in the case
of programs generated by UTILCIN), calling ABORT,
ENDPROG or STOP or executing the statement FINISH.

14

yarious options are available to control what
happens When a stand alone program stops and these
are detailed in ‘Program termination’ in chapter
6. In brief the options available are:

_ prompt the user to enter a “*° command for the
language or utility he wants to use next:;

- re-enter the current language (but this does
not work for programs running in a 6502 second
processor) ;

- do nothing (ie the machine will lock up until
BREAK is pressed).

The first of these options is likely to be the
best in many cases, but often it will be better
for the program itself to incorporate a means of
exiting without calling STOP etc. Such a means
might be for the program to ask the user for a “*’
command or for the program to always return to
BASIC. Some programs may never exit (eg dedicated
control systems).

Note that if a stand alone program is in the
right-most language ROM in a BBC Microcomputer
then the user has no way of entering “*° commands
(eg to set up serial I/O baud rates or enter other
language ROMs) unless either the stand alone pro-
gram explicitly allows him to enter “*° commands
or the stand alone program exits with the first
option mentioned above.

DIFFERENCES FROM DEVELOPMENT ENVIRONMENT

This section describes a number of the differences
between the stand alone environment and the devel-
Opment environment, and suggests the types of
Program changesg that may be necessary to cope with
these differences.

15

Argument handling

When a stand alone program is run (by “*RUN file:
or “*name’) it is not possible to read the pro.
gram’s arguments from the command line. Thus 4
program that expects arguments should prompt for
them explicitly before calling RDARGS.

A good way to do this might be to use the strin
passed to RDARGS (in the same way as RDARGS itselft
does if the user enters “?°) eg

ARGSTR := "FILE/A,NEW"
WRITES (ARGSTR); WRITES(":*N")
IF RDARGS(ARGSTR, ARGVEC, SIZE) = O THEN ...

Command state and ESCAPE

In the development system the existence of a run
state and a command state allows application pro-
grams to trap to the command state in certain
error conditions (eg running out of store) and
also allows the user to interrupt applications
programs.

In the stand alone environment there is only one
state and by default the ESCAPE key is disabled.
There are a number of significant effects:

- the TRAP procedure cannot be used (as there is
nowhere to trap to).

- the program must check all GETVEC calls for
success and must itself handle the conse-
quences of a GETVEC call failing.

- ESCAPE cannot be used to abandon cassette tape
1/0.

16

if the user is to be given the facility to
interrupt the program then the.program itself
must check at intervals to see if the user has
interrupted (by whatever method is chosen) and
must itself take whatever action is required.
"ESCAPE handling’ in chapter 6 discusses the
effects of the program re-enabling ESCAPE.

- the program itself may have to provide a way
for users to enter the ‘** commands which they
can enter in the command state in the develop-
ment environment (eg to look at a disc direc-
tory or specify the printer ignore character).
‘Handling “*° commands” in chapter 6 discusses
this subject in more detail.

Coroutines

Coroutines can be used in the same way as they are
used in the development system. One minor differ-
ence is that in the stand alone system the main
stack is not linked into COLIST.

Error checking

Many of the error checks made in the 1library
procedures in the development system are omitted
in the stand alone versions of these procedures
(eg VECTOFILE does not check that the vector is a
heap vector).

Thus it is important to debug programs fully be-
fore converting them to stand alone programs. It
is also important that programs do not rely too
much on the error checking in the library pro-
Cedures (eg by deliberately causing errors and
then trapping the resultant ABORTs). Chapter 7
lists the error codes which are supported in the
Stand alone system.

17

RUNPROG of built-in commands and utilities

Although the procedure RUNPROG is available in thg
stand alone system, its only function is to issuyg
operating system/filing system commands. Thus it
cannot be used to run ‘built-in” commands such aj
PAUSE or utilities such as JOIN.

STARTINIT and stack size

In the development system the procedure STARTINI?
is used to enable a program to set up its environ-
ment before START is called, and in particular tg
say what size stack it needs.

In the stand alone system STARTINIT is completely
ignored and all stand alone programs are entered
with approximately 440 words of stack available,
If this is insufficient then two options are
available:

- reduce the stack requirement (eg by replacing
VECs by calls to GETVEC);

- treat the main body of the program as a co-
routine and call CREATECO (to set up a stack
of the required size) then CALLCO (to enter
the main body of the program) from START.

Store files

The stand alone environment does not support store
files and does not recognise the device “/S’. 1In
particular procedures such as FINDOUTPUT and
DELFILE, which in the development system treat 3
file name without a device specifier as a store
file name, in the stand alone system treat it as 3
current filing system file name.

The procedures FILETOVEC, READVEC, SAVEVEC and
VECTOFILE are all available however.

18

1/0 OPTIONS

gupport of the full range of I1/0 devices provided
in the development system requires a significant
amount of code. In order to leave more space free
for applications code which uses only a subset of
the full I/O facilities a number of different I/O
options are provided.

A particular option is selected by including a
particular NEEDS directive in the stand alone
program. Only one of the I/O options may be
included in any one program.

Note that use of FILETOVEC, READVEC, SAVEVEC and
VECTOFILE is independent of the choice of I/O
option (with one exception discussed in ‘Choice of
SYSLIB1 or SYSLIB2® below). Thus I/0 option 2
(which only provides console and keyboard I/0) may
be selected for a program which writes files away
to the current filing system using SAVEVEC.

The options available are:
Default

This option is selected if none of the NEEDS
directives for other options are included. The
only I/0 procedures available are SELECTOUTPUT,
WRBIN, WRCH and WRITES.

SELECTOUTPUT is a dummy procedure which has no
effect.

WRBIN, WRCH and WRITES all output to the current
OSWRCH destination. On entry to the program this
1s the screen.

Since no stream input is provided, this option is
most likely to be useful for a program which
Performs its own I/O using the appropriate
Operating system calls.

19

Option 1

This is selected by NEEDS "INOUT1l" and provideg
one input stream which is the console read a line
at a time with echo (equivalent to /C in the
development system) and one output stream which is
the screen. CNSLINSTR and CNSLOUTSTR point to
these streams.

The I/0 procedures available are ENDREAD,
ENDWRITE, FINDINPUT, FINDOUTPUT, INPUT, OUTPUT,
RDBIN, RDCH, SELECTINPUT, SELECTOUTPUT, UNRDCH,
WRBIN, WRCH and WRITES.

ENDREAD, ENDWRITE, SELECTINPUT and SELECTOUTPUT
are all dummy procedures. FINDINPUT and
FINDOUTPUT are also dummy procedures which return
pointers to the one input stream and the one
output stream respectively.

Input is performed by calling OSRDCH and output by
calling OSWRCH. On entry to the program the
OSRDCH source is the keyboard and the OSWRCH
destination is the screen. If these assignments
are changed (eg by *FX2 or *FX3 calls) then the
BCPL I/0 will use the new assignments.

Option 2

This is selected by NEEDS "INOUT2". It is ident-
ical to option 1 except that the input stream is
the keyboard read a character at a time with no
echo (equivalent to /K in the development system).

Option 3

This is selected by NEEDS "INOUT3". It provides
all the I/0 devices available in the development
system apart from store files and the current
filing system ie /C, /E (errorstream), /K, /L, /N
and /P.

The list of procedures available is the same as
for option 1, but none of them are dummies.

20

on entry to the program the current input stream
is CNSLINSTR (/C) and the current output stream is
CNSLOUTSTR (/C). ERRORSTREAM points to an error
stream, as in the development system.

option 4

This is selected by NEEDS "INOUT4". It is similar
to option 3 but also supports the current filing
system. Names beginning °/F.”:or not beginning
with °/’ are taken as current filing system file
names.

One additional procedure, FSTYPE, is provided by
this option.

There are two different versions of the section
INOUT4, one in SYSLIB1 and the other in SYSLIB2.
The differences are detailed below.

Choice of SYSLIBl1 or SYSLIB2

The differences between SYSLIB1 and SYSLIB2 are
irrelevant except when using I/0 option 4 or any
of the procedures FILETOVEC, READVEC, SAVEVEC and
VECTOFILE.

The SYSLIB1 procedures assume that the current
filing system is either disc, Econet or some simi-
lar filing system ie is a filing system whose
FSTYPE attributes are “supports OSGBPB” and
‘OSFILE can read file length’. The version of
FSTYPE provided by SYSLIB1 for I/O option 4 always
returns these attributes, irrespective of the true
characteristics of the current filing system.

An attempt to access a tape or ROM file from a
Program using SYSLIB1 procedures will probably
fail in an obscure fashion.

The SYSLIB2 procedures adapt to the character-
1stics of the current filing system in the same
Wway as the I/0 procedures in the development
System.

21

An important restriction when using SYSLIB2 ig
that if FILETOVEC or READVEC are used then I/0
option 4 is automatically selected. If the pro-
gram attempts to use a different I/0 option as
well then the results are unpredictable.

LAYOUT OF STORE

There are three main areas used by stand alone
BCPL programs - zero page, the language RAM and
the free RAM from the operating system/filing
system workspace up to the display RAM.

Zero page

The use made of this area is identical to the use
made of it by the development system, except that
some of the data areas used by the development
system are not used by stand alone programs.
Details are given in the Appendix. Bytes 112 to
143 are still available for applications use.

Language RAM

This area contains some system data (again very
similar to that used by the development system)
and the main stack. In the stand alone system the
main stack is not part of the heap.

Free RAM

The free RAM contains the global vector, the heap
and, in the case of programs generated by FIXCIN,
the program itself. Parameters to FIXCIN, ROMCIN
and UTILCIN can specify the addresses of each of
these areas individually if required, but defaults
are provided as follows.

In all cases the base address of the global vector
has to be specified. This will normally be chosen
to be the lowest address not used by the operating
system in the target machine (eg for a Model B
with discs this address is byte 1900 hex).

22

The global vector is positioned at the specified
address. Its size is governed by the highest
global number defined in, or referenced by, the
program .

For programs generated by FIXCIN the program
immediately follows the global vector. The
program proper is followed by initialisation code.
Once initialisation is complete this code 1is
discarded and becomes part of the heap, which runs
from the top of the program proper to the bottom
of display memory.

For programs generated by ROMCIN or UTILCIN the
heap runs from the top of the global vector to the
bottom of display memory.

‘Location of global vector and heap’ in chapter 6
discusses various alternatives to the default
options. The Appendix explains the layout of
store when running in a 6502 second processor.

23

24

4 utilities

This chapter describes the utility programs
provided with the Stand Alone Generator. These
are as follows:

FILETRN

FIXCIN

PACKCIN

ROMCIN

UTILCIN

copies a filing system file, preserving
the load and execution addresses. It can
copy files from one filing system to
another.

creates a stand alone program as a file
that can be executed by the “*RUN’
command.

compacts a CINTCODE file by removing
SECTION and NEEDS directives and merging
hunks.

creates a stand alone program as a
language ROM.

creates a stand alone program as a
utility ROM.

Many of the error messages produced by the
utilities are self-explanatory. Those that need
more explanation are listed in ‘Utility error
messages’ in chapter 7.

25

FILETRN - file transfer
Purpose

To copy a filing system file, preserving the loaqg
and execution addresses, to another file in either
the same filing system or a different filing sys-
tem. FILETRN is particularly useful for copying
the stand alone program files produced by FIXCIN.

Examples

(1) FILETRN :0.MYPROG :1.MYPROG
(2) FILETRN MYPROG MYPROG PAUSE
(3) FILETRN MYPROG MYPROG *DISC *TAPE

Arguments
FROM/A, TO/A,FROMFS, TOFS, PAUSE/S

FROM The name of the file to be copied. The
file must be a filing system file. The
name should be the ‘pure’ file name ie it
should not include °/F.”.

TO The file name of the copy. Again this
must be a ‘pure’ file name. The file is
created as a filing system file.

FROMFS The filing system containing the file to
be copied. If not specified the current
filing system is used. 1If specified it
must be the “*° command used to select the
filing system (see example 3 above).

TOFS The filing system in which the copy is to
be created. If not specified the filing
system from which the file was copied is
used. If specified it must be the °*’
command used to select the filing system
(see example 3 above).

26

pAUSE If specified the program will pause (with
the message ‘Type CONT to resume’) after
reading the FROM file but before writing
the TO file. This allows a file to be
copied from one disc to another on a
system with only a single disc drive.

Remarks

FROMFS must be one which supports the OSFILE call
to read the length of a file. Thus a file cannot
pe copied from tape using this program (though it
can be copied to tape).

The program works by reading the file as a
contiguous store file. Thus the biggest file that
can be handled is dependent on the amount of
contiguous free heap space available when the
program is run.

If a store file exists with the same name as FROM
then it is deleted.

If TOFS is specified then it will be the current
filing system when the program exits.

FIXCIN - create program to run in RAM
Purpose

To generate a stand alone program as a file that
can be executed by the “*RUN’ command. This
program can also be used to generate stand alone
programs to run in target hardware other than the
BBC Microcomputer.

Examples
(1) FIXCIN MYPROG MYFILE GV=1900

(2) FIXCIN MYPROG MYFILE GV=16AF MODE 5 MAX
REPORT /L

27

Arguments

FROM/A, TO
MAX/S,NOT

FROM

TO

GV

BASE

HEAP

HEAPEND

MODE

28

/A,GV/A/K,BASE/K, HEAP/K, HEAPEND/K, MODE/K,
BBC/S, REPORT /K,NOINT/S

The name of the CINTCODE file contalnlng
the program to be made stand alone.

The name of the stand alone file to be
created. This must be a “pure’ file name
(ie with no device specifier) and ig
taken to be a current filing system file,

The hex byte address of the base of the
global vector in the stand alone system.

The hex byte address of the program ip
the stand alone system. If not specified
the program follows the global vector,
This address is the load address and the
execution address of the TO file.

The hex byte address of the heap in the
stand alone system. If not specified the
heap follows the program. The address is
rounded up to a 4-byte boundary.

The hex byte address of the end of the
heap in the stand alone system. If not
specified the heap extends to the base of
the display RAM. The address is rounded
down to a 4-byte boundary.

The screen mode to be set up before the
stand alone program is entered (a number
in the range 0 to 7). 1If not specified
the screen mode is left unchanged when
the program is entered.

NOTBBC

REPORT

NOINT

Remarks

By default the stand alone program file
is built up in RAM then copied out to the
current filing system when complete.
When building large stand alone programs
this strategy may fail through running
out of RAM. Specifying MAX causes the
stand alone program file to be written to
the current filing system as it is built
up, allowing large programs to be created
at the expense of FIXCIN taking longer to
run.

This is specified when building a stand
alone program for a target machine other
than the BBC Microcomputer. In this case
BASE, HEAP and HEAPEND must all be
specified but MODE may not be specified.
See ‘Programs to run on non-BBC machines’
in chapter 6 for more details.

When FIXCIN finishes it normally displays
a report on the screen giving details of
the file and stand alone environment
produced. The REPORT argument allows
this report to be written to another
device eg a disc file or the printer (as
in example 2).

If the stand alone program is written
entirely in assembler and contains no
BCPL code at all (and therefore the BCPL
interpreter has not been included in the
FROM file) then this argument must be
specified. See "Machine code programs’
in chapter 6 for more details.

The file FIXINI (supplied as part of the stand
alone generator) is read by FIXCIN, and must
therefore either be in store or on the current
filing system device when FIXCIN is run.

29

Execution of the application code in FROM beging
at the procedure START.

Unless the MAX argument is specified any storg
file with the same name as the TO file will bg
deleted, even though the TO file is created as 4
filing system file.

The report produced by FIXCIN gives the following
details (in both decimal words and hex bytes):

- the size of the TO file;

- the base address and size of the global
vector;

- the base address and size of the code (ie
program). The base address of the code is
also the load address and execution address of
the TO file. The difference between the size
of the code and the size of the file is the
size of the initialisation code and data
(which is normally overwritten by the heap
once initialisation is complete).

- the addresses of the heap and (if HEAPEND'ha‘
been specified) of the end of the heap. If
NOINT has been specified then this information
is omitted as no heap will be set up.

Since the TO file contains load and execution

addresses it should be copied with FILETRN rather
than with READ, SAVE, COPY etc.

30

pACKCIN - pack CINTCODE
purpose

To compact a CINTCODE file by removing SECTION and
NEEDS directives and merging hunks. PACKCIN is
primarily intended for use with the Stand Alone
Generator, since it is often important to minimise
the size of stand alone programs, but since its
output is a valid CINTCODE file it can also be
used to reduce the size of programs run in the
development system.

Examples

(1) PACKCIN CODEFIL PACKFIL
(2) PACKCIN MYFILE /F.P.MYFILE REPORT /L

Arguments
FROM/A,TO/A, REPORT/K

FROM The name of the input file ie the CINTCODE
file which is to be compacted.

TO The name of the output file.

REPORT When PACKCIN finishes it normally displays
a report on the screen giving details of
the file created. The REPORT argument
allows this report to be written to
another device eg a disc file or the
printer (as in example 2).

Remarks

The TO file is created from the FROM file by
discarding all SECTION names and NEEDS directives,
as well as the name of the first procedure in each
hunk that contains procedure names. The hunks in
the FROM file are made up of the hunks from the TO
file according to the following rules:

31

- any hunks consisting only of SECTION and NEEDg
directives are discarded;

- all machine code hunks are copied before an
BCPL hunks (but the ordering of hunks ijg
otherwise maintained);

- as many hunks as possible are merged subject
to the restriction that no output hunk cajy
contain more than 4095 words of code (except
in the case of an input hunk bigger than thij
which is copied unchanged):

- the type of an output hunk is ‘“machine code’
if it is made up from either all machine code
hunks or from a mixture of machine code ang
BCPL hunks. The type is “BCPL’ otherwise.

If the PROM file contains more than one definition
of the same global then the TO file contains only
the last such definition.

The report produced by PACKCIN shows (in both
decimal words and hex bytes):

- the size of the TO file;

- the size of the code in the TO file ie exclud-
ing hunk headers, global definitions and
machine code relocation data;

- the space in the TO file taken up by global
definitions.

FIXCIN, ROMCIN and UTILCIN discard hunk header:
and relocate machine code when creating a stand
alone program. In addition FIXCIN incorporatef
the global definitions into the initialisatiof
data that normally becomes part of the heap. Thuf
the last two entries in the report are useful fo!
estimating the space that will be used by TO if i!
is converted to a stand alone program.

32

ROMCIN -

Purpose

create program as language ROM

To create a stand alone program as a ROM image
file of a BBC Microcomputer language ROM.

Examples

(1) ROMCIN MYPROG MYROM MYSPEC GV=1900
(2) ROMCIN MYPROG /F.MYROM :1.MYSPEC GV 1900

HEAP

2FAA REPORT /L

Arguments

FROM/A,TO/A,SPEC/A,GV/A/K,HEAP/K, HEAPEND/K, MODE/K,

REPORT/K,

FROM

TO

SPEC

GV

HEAP

NOINT/S

The name of the CINTCODE file containing
the program to be made stand alone.

The name of the ROM image file to be
created. This is a normal file name and
so will be a store file unless a device
specifier is included.

The name of the “Spec’ file. This is a
file containing details of the ROM header
and the “*° commands to enter the ROM.
See ‘The Spec file’ below for more
details.

The hex byte address of the base of the
global vector in the stand alone system.

The hex byte address of the heap in the
stand alone system. If not specified the
heap follows the global vector. The
address is rounded up to a 4-byte
boundary.

33

HEAPEND

MODE

REPORT

NOINT

The hex byte address of the end of the
heap in the stand alone system. If not
specified the heap extends to the base of
the display RAM. The address is roundeg
down to a 4-byte boundary.

The screen mode to be set up before the
stand alone program is entered (a number
in the range 0 to 7). If not specifieq
the screen mode is left unchanged whepn
the program is entered.

When ROMCIN finishes it normally displays
a report on the screen giving details of
the file and stand alone environment
produced. The REPORT argument allows
this report to be written to another
device eg a disc file or the printer (as
in example 2).

If the stand alone program is written
entirely in assembler and contains no
BCPL code at all (and therefore the BCPL
interpreter has not been included in the
FROM file) then this argument must be
specified. See “Machine code programs’
in chapter 6 for more details.

The Spec file

ROM header

The format of the ROM header (ie the first few
words) of a language ROM is defined by the BBC
Microcomputer Operating System. Although the user
of the Stand Alone Generator need not be concerned
with the details of this format, four items within
the header must be specified.

34

These items are the version number (a decimal
number in the range 0-255 used to identify differ-
ent releases of the same ROM), the version text
(not necessarily related to the version number),
the copyright text (detailing the copyright in the
ROM) and the title (which is displayed by the
operating system when the ROM is entered).

Although the title is displayed when the ROM is
entered, it is immediately erased if the MODE
argument is specified (changing mode clears the
screen).

The copyright text is never displayed but must
begin with “(C)”.

spec file format

The Spec file is a text file (normally it would be
created with ED or TED) which specifies the four
items listed above and the “*° command(s) that
will cause the ROM to be entered.

All lines that do not begin with °.” are ignored
and may be used for commenting the file. All
other lines must begin with one of the five com-
mands °.ENTRY’, °.VERNO’, °.VERSTR’, °.TITLE’ and
" .COPYR".

The commands may be specified in any order. The
only one that is mandatory is .ENTRY, which
specifies a “*" command that will cause the pro-
gram to be entered.

The first item on the line after .ENTRY is taken
as the “*° command. It need not include the “*°,
The rest of the line may be used for comments.
When a “*” command is entered upper and lower case
are considered equivalent. Thus the “*° command

*fREQ

35

would enter a ROM whose Spec file included
.ENTRY FRed

The Spec file may contain more than one .ENTRy
command, allowing different “*° commands to be
accepted - see the example below.

The version number is initially set to 0. It may
be changed by the .VERNO command, whose parameter
is a decimal number in the range 0-255.

The version text and title are both initialised to
spaces. They may be changed by the .VERSTR ang
.TITLE commands respectively. In both cases the
rest of the line (from the first non-space charac-
ter after .VERSTR or .TITLE) is taken as the text,

The copyright text is initially set to “(C)". It
may be changed by the .COPYR command. The rest of
the line (from the first non-space character after
.COPYR) is taken as the copyright text. The first
three characters must be “(C)”.

Example

Spec file for editor produced by XYZ Ltd
.VERNO 3

.VERSTR 2.13

.TITLE XYZEDIT

.COPYR (C) 1983 XYZ LTD.

.ENTRY XYZEDIT full form

.ENTRY XYZE. abbreviation

.ENTRY EDXYZ yet another version

Remarks

The file ROMINI (supplied as part of the Stand
Alone Generator) is read by ROMCIN, and must
therefore either be in store or on the current
filing system device when ROMCIN is run.
Execution of the application code in FROM begin$
at the procedure START.

36

The report produced by ROMCIN givéds the following
details (in both decimal words and hex bytes):

- the size of the TO file (ie the size of the
ROM image):;

- the base address and size of the global
vector;

- the addresses of the heap and (if HEAPEND has
been specified) of the end of the heap. 1If
NOINT has been specified then this information
is omitted as no heap will be set up.

UTILCIN - create program as utility ROM

Purpose

To create a stand alone program as a ROM image
file of a utility ROM ie a BBC Microcomputer
language ROM which has multiple entry points.

Examples

(1) UTILCIN MYPROG MYROM MYSPEC GV=1900
(2) UTILCIN MYPROG /F.MYROM :1.MYSPEC GV=1900
HEAP=2300 HEAPEND=3000 REPORT=/F.MYREPORT

Arguments

FROM/A,TO/A,SPEC/A,GV/A/K,HEAP/K, HEAPEND/K,
REPORT /K

FROM The name of the CINTCODE file containing
the program to be made stand alone.

TO The name of the ROM image file to be
created. This is a normal file name and
so will be a store file unless a device
specifier is included.

37

SPEC

GV

HEAP

HEAPEND

REPORT

The name of the “Spec” file. This is
file containing details of the ROM heade,
and the “*” commands to enter the ROM,
See “The Spec file” below for morg
details.

The hex byte address of the base of thg
global vector in the stand alone system,

The hex byte address of the heap in the
stand alone system. If not specified the
heap follows the global vector. The
address is rounded up to a 4-byte
boundary.

The hex byte address of the end of the
heap in the stand alone system. If not
specified the heap extends to the base of
the display RAM. The address is rounded
down to a 4-byte boundary.

When UTILCIN finishes it normally dis-
plays a report on the screen giving
details of the file and stand alone en-
vironment produced. The REPORT argument
allows this report to be written to
another device, eg a disc file (as in
example 2) or the printer.

The Spec file

The subsection “The Spec file” in the description
of ROMCIN above explains the fields in the ROM
header and the format of the Spec file for ROMCIN,
With the exception of the format of the “.ENTRY
command that subsection applies equally well to
UTILCIN and is therefore not repeated here.

38

gach .ENTRY command specifies one of the entry
points to the ROM. A particular entry point may
appear in more than one .ENTRY command. The
general format of the command is:

_ENTRY name global [/A] [/M mode] [comment]
where square brackets denote optional items.

name is the “*’ command for that entry point
(the “*° itself need not be included);

global is the global number of the procedure to
be entered (in decimal);

/A denotes that the entry point is an
assembler routine ie that there is no
need to initialise the BCPL interpreter
before entering the code. See "Machine
code programs’ in chapter 6 for more
details.

/M mode specifies that a particular screen mode
is to be set up before entering the
program. mode must be an integer in the
range 0 to 7. If /M mode’ is not
specified the screen mode 1is 1left
unchanged when the program is entered.

comment is any text after global not beginning /A
or /M.

If a utility ROM is installed as the right-most
language ROM in a BBC Microcomputer then it is
entered automatically at power-on and when CTRL-
BREAK is pressed. The entry point used is that
ipecified in the first .ENTRY command in the Spec
ile.

39

Example

Spec file for file utilities produced by XYZ Ltd
.VERNO 3

.VERSTR 2.13

.TITLE XYZ UTILITIES

.COPYR (C) 1983 XYZ LTD.

.ENTRY CATALOG 250

.ENTRY CAT. 250 short form

.ENTRY FORMAT 260 /A assembler code
.ENTRY FORM 260 /A

.ENTRY DISPLAY 265 /M 7 uses mode 7
.ENTRY DISP. 265 /M 7

.ENTRY DISP80 265 /M 3 80 column version

using mode 3
.ENTRY PATCH 300 /A /M 5 assembler & mode 5
Remarks

The file UTILINI (supplied as part of the Stand
Alone Generator) is read by UTILCIN, and must
therefore either be in store or on the current
filing system device when UTILCIN is run.

The report produced by UTILCIN gives the following
details (in both decimal words and hex bytes):

- the size of the TO file (ie the size of the
ROM image);

- the base address and size of the global
vector;

- the addresses of the heap and (i f HEAPEND has
been specified) of the end of the heap. If
all the entry points to the ROM are specified
in the Spec file as being assembler entry
points then this information is omitted as no
heap will ever be set up.

40

5 Procedures

This chapter shows the procedures which can be
used by stand alone programs and describes any
differences in the functions of the development
and the stand alone versions of particular
procedures.

The following table lists every procedure
mentioned in chapter 5 of the User Guide for the
development system. The section name is given for
procedures in SYSLIB. The notes follow the table.

The section name "INOUTx" means one of the sec-
tions INOUT1 to INOUT4 - see ‘I/O options’ in
chapter 3 for details.

PROCEDURE SECTION SEE NOTES
ABORT always included 1, 2
ADVAL ADVAL

APTOVEC APTOVEC

BACKMOVE BACKMOV 3
BACKMVBY BACKMOV 3
CALL always included

CALLBYTE always included

CALLCO CORTNS

CAPCH CAPCH

COMPCH COMPCH

COMPSTRING COMPSTR

COWAIT CORTNS

CREATECO CORTNS

DELETECO CORTNS

DELFILE DELFILE 4
DELXFILE not available

ENDPROG ENDPROG 2
ENDREAD INOUTx 5
ENDWRITE INOUTx 5
ENVELOPE ENVELOP

ERRORMSG ERRORMS 2, 6, 20

41

EXTSFILE
FILETOVEC
FINDARG
FINDINPUT
FINDOUTPUT
FINDXINPUT

FINDXOUTPUT

FREEVEC
FSTYPE
GETBYTE
GETVEC
GLOBIN
GLOBUNIN
INPUT
LEVEL
LOADSEG
LONGJUMP
MAXVEC
MODE
MOVE
MOVEBYTE
MULDIV
NEWLINE
NEWPAGE
OPSYS
OUTPUT
PACKSTRING
PUTBYTE
RANDOM
RDARGS
RDBIN
RDCH
RDITEM
READ
READN
READVEC
READWORDS
RENAME
RESUMECO
RUNPROG
SAVE
SAVEVEC

42

not available
FILETOV
FINDARG

INOUTx

INOUTx

not available
not available
always included
INOUT4

use OPT version
always included
GLOBIN

GLOBIN

INOUTx

LEVEL

not available
always included
MAXVEC

MODE

always included
always included
always included
NEWLINE

NEWPAGE

always included
INOUTx

use OPT version
use OPT version
RANDOM

RDARGS

INOUTx

INOUTx

RDITEM

not available
READN

FILETOV

READWOR

RENAME

CORTNS

RUNPROG

not available
VECTOFI

10
11
11

11

13

13

13

16

17

12

13,

15

14

SELECTINPUT INOUTx 5

SELECTOUTPUT always included 5

GHUFFLE not available

SOUND SOUND

SPLIT SPLIT

STACKSIZE STACKSI

START user-defined 18

STARTINIT not available 19

STOP always included 20

TESTFLAGS TESTFLA

TESTSTR TESTSTR

TIME TIME

TRAP not available

UNLOADSEG not available 11

UNPACKSTRING use OPT version

UNRDCH INOUTx

VDU VvDU 21

VDUINFO VDUINFO

VECTOFILE VECTOFI 17

WRBIN always included 2

WRCH always included 2

WRITEA not available

WRITEBA not available

WRITED WRITED 2

WRITEDB not available

WRITEF WRITEF1l or 2, 22
WRITEF2

WRITEHEX WRITEHE 2

WRITEN WRITEN 2

WRITEOCT WRITEOC 2

WRITES always included 2

WRITET WRITET 2

WRITEU WRITEU 2

WRITEWORDS WRITEWO 13

Notes

(1) Unless the program is trapp}ng ABORTs a
message ‘ABORT’ is displayed and the program
terminates. If the procedure ERRORMSG is
included the message ‘Error nnn’ is also
produced, where nnn is the abort code.

43

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

44

Unless I/0 options 3 or 4 have been selecte
any output will go to the current OSWRcy
destination.

If the count (converted to bytes in the casg
of BACKMOVE) is negative then it is treateqy
as an unsigned value in the range 32768.
65535.

Filenames with no device specifier, or with 4
device specifier of “/F.”, refer to thg
current filing system. A device specifier of
“/S.” is invalid.

Dummy procedure if I/0 option 1 or 2 has beenp
selected.

In the development system ERRORMSG always
produces the text “Escape” for error 1017
instead of accessing the operating systen
fault text. In the stand alone system this
special processing for error 1017 is not
performed.

If the SYSLIB2 version of this procedure is
used then I/0 option 4 is automatically
selected (ie section INOUT4 is included).
Unpredictable results will occur if NEEDS
directives for other I/0 options are included

The versions for I/0 options 1 and 2 always
return CNSLINSTR or CNSLOUTSTR.

The SYSLIBl version does not check the
attributes of the current filing system, but
assumes it has the attributes of a disc or
Econet filing system.

If there is not enough heap space available 3
result of 0 is given. There is no “shuffle
facility.

See “Overlaying” in chapter 6.

(12)

(13)

(14)

(15)

(16)

(17)

' (18)

(19)

If the program does not need to change screen
modes then the options in FIXCIN, ROMCIN and
UTILCIN to set up the mode before the program
is entered should be used.

If this procedure is used then one of I/0
options 1 to 4 should be selected.

RDARGS uses the current I/0 streams. Note in
particular that if I/0 option 2 is selected
then the input to RDARGS is taken from the
keyboard but is not echoed to the screen.

The procedure WRITEF must be included in the
program (it is not included automatically
because there are two versions available).

The expanded string is always passed to
MOSCLI, whether or not it begins with “*°,
If the string contains any “%” characters
(ie if it is to be expanded) then an appro-
priate version of WRITEF must be included in
the program. If the expanded string is
longer then 255 characters it is truncated.
If the string contains a “*N” character then
it is treated simply as line feed, not as
line feed/carriage return.

The second parameter must be a filing system
file. Thus:

SAVEVEC (myvec, "/P")
VECTOFILE(myvec, "/L")

are not allowed.

START must be included in a stand alone
program created by FIXCIN or ROMCIN. It need
not be included in one created by UTILCIN.

If STARTINIT is included in a stand alone
program it is ignored.

45

(20)

(21)

(22)

46

Error and warning messages are only produceq
if ERRORMSG is included.

Outputs to the current OSWRCH device.

WRITEF1 supports %I, %N and %S only. WRITEF)
supports %C, %I, %N, %S, %X and %S.

6 Discussion

This chapter discusses various topics concerned
with the stand alone environment and with specific
problems that may be encountered when creating
stand alone programs.

The following subjects are covered:

ESCAPE handling

Handling “*° commands

Location of global vector and heap

Machine code programs

Overlaying

Program termination

Programs to run on non-BBC machines

Replacing SYSLIB procedures

Writing programs to execute in ROM

47

ESCAPE HANDLING

All stand alone programs are entered with the
ESCAPE key generating an ASCII code instead of
causing an ESCAPE condition. This has song
advantages (in particular it is not necessary tq
test for an ESCAPE condition whenever OSRDCH g,
OSWORD(0) is called), but also has disadvantages .
in particular:

(1) there is no simple way for the user t,
interrupt a stand alone program;

(2) there is no way for the user to abandon sloy
I/0 operations (eg there is no way to termin-
ate “*CAT" on the tape filing system, or tg
persuade the system to give up the search for
a particular tape file).

A program can re-enable the normal ESCAPE effects
and subsequently disable them again by

oPSYS(229, x, O)

where x is O to re-enable ESCAPE and 1 to disable
it. If a program does enable ESCAPE, however,
then it must itself handle the effects of ESCAPE
being pressed (in the development system these
effects are handled by the system procedures).

If ESCAPE is pressed when the normal ESCAPE
effects are enabled then an escape condition is
declared. This sets the top bit in byte 255. 1In
addition:

(1) if the computer is currently executing a?
OSRDCH call or an OSWORD call to read a 1line¢
of input then the C bit is set and the
character returned is 1B hex. The library
procedures in SYSLIB do not check for this.

48

(2)

(3)

if the computer is currently executing certain
other operating system I/0 routines (eg to
open a cassette tape file) a fault condition
is declared and the BCPL fault routine is
entered. The fault routine acknowledges the
escape condition and sets MCRESULT to #XFF1ll.
The subsequent action is up to the routine
that called the operating system ,routine.
Library routines that can return a failure
indication to the caller (eg FINDINPUT) do so.
Those that cannot (eg RDCH) call ABORT. In
both cases the error number (in RESULT2) or
the abort code is 1017.

until the escape condition is acknowledged any
subsequent calls to the routines mentioned in
(1) and (2) above have the effects described
there.

The processing required in the program to handle
these effects is as follows:

(1)

(2)

If ESCAPE is to be used as a means of
interrupting the program then the program
should periodically check for an escape con-
dition and, if it exists, acknowledge it and
take appropriate action. Suitable code might
be:

IF 0%255 > 127 THEN // escape condition
$(OPSYS(126) // acknowledge it
.o // take action

$)

After each read from devices /C, /K or /P the
program should check for an escape condition.
If an escape condition is present it should be
acknowledged and suitable action taken. This
might include repeating the read. The check
must also be done after calling library pro-
cedures which read from these devices, eg
READN, RDITEM, RDARGS and ENDPROG.

49

(3) After each call to a library procedure whicy
uses operating system I/0 routines and whicy
returns an error indication, the prograp
should check specially for error 1017 and take
the appropriate action.

(4) ABORTs should be trapped. If ABORTCODE ig
1017 appropriate action should be taken.

The details of the action to be taken by the
program when it detects that ESCAPE has been
pressed are obviously specific to the program.

HANDLING “*° COMMANDS

In the development system the existence of the
command state allows the user to enter various “*
commands, eg to display a disc directory or to set
up the baud rate of the serial output. He can
even interrupt running programs to do this.

In the stand alone environment there is no command
state and so stand alone programs may have to make
explicit provision for the user to enter “*” com-
mands. This is less important with programs
created by FIXCIN, since the user can presumably
enter any necessary “*° commands before entering
the “*RUN” command to run the program, but is very
important with programs created by ROMCIN or
UTILCIN.

Such programs may be installed as the right-most
language ROM and are therefore entered when the
computer is switched on. Unless they allow “*
commands to be entered then the user will never be
able to access any other language ROMs in the
machine.

50

There are two approaches that may be adopted:

Prompt the user for specific options and call
OPSYS or OSCLI from within the program. For
example, a program about to use the printer
might prompt for the printer ignore character,
serial or parallel printer and (if serial) the
baud rate.

Allow the user to enter any “*° command and
pass the command directly to OSCLI. This
method is particularly convenient if the
program is one that periodically gets input
from the user; the recommended convention is
that if the input begins with “*° then the
whole line is given to OSCLI.

If a program adopts the second method above, and
is reading the user input from device /C, then it
is not necessary to copy the input line into a
special buffer before calling OSCLI. Instead the
address of the buffer used by the BCPL I/0O can be
passed to OSCLI as in the following example:

GLOBAL $(CISBUF:49 §)
MANIFEST $(OSCLI=#XFFF7 §)

IF /* first character of line is “*° */ THEN
$(RESULT := CALLBYTE(OSCLI, 0O, CISBUF << 1)

$)

etc.

LOCATION OF GLOBAL VECTOR AND HEAP

When creating a stand alone program the location
of the global vector in the target system must
always be specified. The location of the heap may
optionally be specified as well.

51

If the location of the heap is not specified they
it follows the global vector (for programs ip
language ROMs) or follows the program, whicy
itself follows the global vector (for programg
created by FIXCIN). In the latter case the heap
overwrites the initialisation code and data. 1Ip
both cases the heap extends to the bottom of the
display RAM. (See the Appendix for details of the
heap when a program is running in a 6502 secong
processor.)

To make best use of this default arrangement the
global vector should be located at as 1low an
address as possible, subject to its not
overwriting the operating system/filing systems
workspace. Any RAM between the top of this
workspace and the base of the global vector is not
used by the BCPL system (although individual
programs can access it directly if required).

When generating a stand alone program which is
intended to be run only on machines with a
particular configuration of filing systems, then
the highest workspace address is known and the
global vector can be located immediately above it
(eg for a machine with no filing system other than
cassette the global vector can be located at hex
byte address OEO0O; for a machine with the standard
disc filing system the corresponding address is
hex byte 1900).

When generating a stand alone program to be run on
a variety of machines with a variety of different
filing systems then a relatively high address must
be specified for the global vector, wasting space
on those machines with fewer filing systems. ToO
help overcome this problem a procedure is provided
(in source form) which 1links the area from the top
of the workspace to the bottom of the global
vector into the heap.

52

This procedure is supplied in the file EXTHEAP.
The code is commented and should be self-
explanatory. It allows a number vf words to be
reserved above the workspace eg to allow for user-
defined characters.

I1f a program uses EXTHEAP then it should call it
at an early stage of processing. It is quite a
good idea to position the global vector fairly
close to the bottom of the display RAM (though
this involves knowing whether the program is to be
run on a Model A or a Model B version of the BBC
Microcomputer) so that the initial heap is quite
small. Then when EXTHEAP is called a large
contiguous area will be obtained.

Note that the initial heap must be big enough for
any I/O streams set up during system initial-
isation (with I/0 options 1, 2, 3 and 4 approxi-
mately 100 words, 30 words, 120 words and 120
words respectively are needed).

Various other arrangements of the global vector,
the heap and the program are possible. The de-
scription of the heap format given in the Appendix
provides the necessary information for writing
procedures such as EXTHEAP.

MACHINE CODE PROGRAMS

The mechanism of calling machine code procedures
from stand alone BCPL programs is identical to the
mechanism used in the development system. This
section is mainly concerned with programs written
entirely in machine code. It also covers the
case of machine code entry points in utility ROMs
which may also contain CINTCODE entry points.

53

Starting

The initialisation performed when a stand alone
machine code program is started is similar to
that performed for a BCPL program as described in
chapter 3, with the following differences:

- no stack is set up:
- no heap is set up:
- the interpreter is not initialised;

- if the global procedure FAULTROUTINE is
included in the program (or the utility ROM)
then this is set up as the fault routine (ie
the byte address of the routine is set up in
$202/$203).

The machine code program is entered at START (or,
in the case of programs generated by UTILCIN, at
the defined global procedure). If the first byte
of the procedure is $0D or $CF (the two special
bytes used for starting machine code procedures to
be called from BCPL) then the procedure is entered
at the second byte.

If a fault routine has not been set up automati-
cally then the program should set one up before
making any operating system calls that might
generate faults.

Stopping

As a general rule a machine code program must
handle termination itself. It cannot, for
example, exit by any of the JMPs to page 4
locations that are available to machine code
routines called by CINTCODE and it certainly must
not simply RTS (this will give unpredictable
results).

54

It is possible, however, to include one of the

termination options described in the section

‘Program termination’ below and to jump to it by

code such as:

ENDMSG GLOBAL 149 global number of
term. option

~e o ~eo

WORK EQU $400 work area
LDA ENDMSG ; convert word address
ASL A ; to byte address in
STA WORK ;s work area
LDA ENDMSG+1
ROL A
STA WORK+1
LDA #0 ; parameter for term.
PHA H option
JMP (WORK) ; enter term. option

The advice given on tidying up in ‘Program
termination” below applies to machine code
programs (in particular ESCAPE should be re-
enabled).

Use of RAM

A stand alone machine code program may use all the
RAM areas normally reserved for the current
language - in particular bytes $00 to $8F in the
zero page and all of pages 4 to 7. Additionally
all the RAM from the top of the operating system
workspace to the bottom of the display RAM is
available, apart from the area used for the global
vector and (for programs generated by FIXCIN) the
area in which the program itself resides.

A machine code program can get the address of the
global vector by code such as:

MAXGLOB GLOBAL O

GVADDR: DW MAXGLOB
LDX GVADDR
LDY GVADDR+1

55

which sets up X/Y with the byte address of the
global vector. The length of the global vector
can be calculated from MAXGLOB.

A machine code program created by FIXCIN can fing
its start and end addresses by code similar to the
following:

STRLAB: ;: MUST be first line of code
CODSTR: DwW STRLAB
CODEND: DW ENDLAB
LDX CODSTR ; X/Y contain start addr
LDY CODSTR+1
ENDLAB: ; MUST be last line of code

Of course, if the machine code program is in
several sections then care must be taken to
JOINCIN them in the right order (and if NEEDCIN is
used to extract sections from a library then the
section containing ENDLAB must be JOINCINed onto
the end of the output from NEEDCIN). It will also
be necessary to declare STRLAB and ENDLAB as
globals.

Generating machine code programs

The stages in generating a stand alone machine
code program are similar to the stages for
generating a stand alone BCPL program, described
in chapter 2. The main difference is that no
sections from SYSLIB will be included (except
perhaps for a termination option).

When using FIXCIN or ROMCIN the NOINT argument
must be specified. When using UTILCIN the /A
parameter must be specified on each ‘.ENTRY’
statement in the Spec file.

56

OVERLAYING

The development environment provides the pro-
cedures LOADSEG, GLOBIN, GLOBUNIN and UNLOADSEG
which provide a simple method of reading overlays
into store, linking them and unlinking them.

LOADSEG and UNLOADSEG are not provided in the
stand alone environment, but overlays can still be
handled by reading CINTCODE files into vectors
(using READVEC or FILETOVEC). Both GLOBIN and
GLOBUNIN take the address of the vector as a
parameter. Thus code to use an overlay in the
CINTCODE file "OVER1" (on the current filing
system) might be:

LET OVPTR = FILETOVEC("OVER1")
TEST OVPTR NE 0 & // read OK &
GLOBIN(OVPTR) THEN // linked OK

$(
code to use the overlay
GLOBUNIN (OVPTR) // unlink it
FREEVEC (OVPTR) // and return the vector

$)

Note that FILETOVEC and READVEC using SYSLIB2
force I/0 option 4 to be used.

The principal differences in the use of GLOBIN and

GLOBUNIN, compared with the development system
are:

57

- there is no way to relink the procedures in
the program. Thus if an overlay needs to
temporarily redefine a procedure in the pro-
gram it must save and restore the o0ld value,
For example

LET OLDRDCH = RDCH
RDCH := LOCAL.RDCH

code using the redefined RDCH

RDCH

= OLDRDCH

- there is no chaining of linked files. Thus
GLOBUNIN always returns a result of 0;

- it is not necessary to use GLOBUNIN before
releasing or re-using a vector containing an
overlay, provided that it is guaranteed that
none of the procedures in that overlay will be
called again. One advantage of using
GLOBUNIN, however, is that a program can
compare a global with GLOBWORD to decide if an
overlay should be loaded.

If a program uses several overlays in turn it is
recommended that it allocates a vector for use as
an ‘overlay bay’. The vector should be large
enough to hold the biggest overlay used. This
strategy ensures that overlays can always be
loaded, regardless of other demands for heap
space.

The size of the global vector created in a stand
alone environment is governed by the highest
global number used or declared in the program. If
an overlay is to use higher global numbers than
those used in the program then the program must
contain a reference to the highest global
required.

58

It is not sufficient to just include a statement
such as

GLOBAL $(HIGLOB:532 $)

The global must be referred to in the code, eg as
a label.

Care must be taken when creating overlays con-
taining library procedures from SYSLIB. In par-
ticular an overlay should not contain a procedure
which is also contained in the root. (Once the
overlay has been linked the global vector entry
will point to the procedure in the overlay rather
than to the one in the root. When the overlay is
unlinked or overwritten the procedure can no
longer be called by the root.)

Note that some sections in SYSLIB contain NEEDS
directives for other sections. If it is required
to include a section in an overlay without
including the sections NEEDed by it, the overlay
should contain dummy versions of those sections.

“Sections in SYSLIB” in the Appendix lists the
sections NEEDed by other sections.

For example, an overlay might require ENDPROG.
The section ENDPROG includes a NEEDS directive for
CAPCH, which might be required in the root. The
code for the overlay might start:

SECTION "CAPCH"
// dummy section

SECTION "OVERLAY"
NEEDS "ENDPROG"

59

PROGRAM TERMINATION
Overview of program termination

When a BCPL stand alone program terminates by
calling STOP, calling ABORT, calling ENDPROG,
executing FINISH or returning from START (or the
entry point procedure in the case of utility ROMs)
the system procedure ENDINT (global 8) is called.

If a stand alone program terminates with a fatal
interpreter error (eg run out of stack, call to
uninitialised global) then ENDINT is entered from
the interpreter.

ENDINT is a machine code procedure which re-
enables ESCAPE then checks to see if a termination
option has been included in the program. If so
the termination option is entered. 1If not then
ENDINT just loops - the only way out is BREAK.

Three termination options (described below) are
provided in SYSLIB. It is also possible to in-
clude a user-written termination option. As a
general rule any program which exits by calling
STOP etc should include a termination option. 1If
the program always exits by some other method (eg
by prompting the user for a “*" command), or never
exits then there is no need for a termination
option, other than to catch fatal interpreter
errors. The latter should not occur in fully
debugged programs.

Standard termination options
A termination option is included in a program by

extracting the appropriate section from SYSLIB
with a NEEDS directive.

60

DIAGMSG

This option is useful in the early stages of
testing a stand alone program since it provides
diagnostic information if there is a fatal
interpreter error.

OSRDCH and OSWRCH are reset to read from the
keyboard and write to the screen. If a fatal
interpreter error has occurred then

FATAL ERROR x

is displayed, where x is the error letter,
followed by a display (in hex) of the CINTCODE P,
PC and A registers and the 8 CINTCODE instructions
immediately preceding the address in the PC. Note
that the P register is the word address of the
current stack frame whereas the PC register is the
byte address of the next CINTCODE instruction to
execute.

In many cases the information displayed will be
sufficient to locate the cause of the error. 1In
particular if the error is error G (calling an
uninitialised global) then disassembling the
CINTCODE will usually reveal which procedure is
being called.

Whether or not a fatal interpreter error has
occurred ‘PROGRAM ENDED - ENTER “*° COMMAND’ is
displayed followed by a prompt (‘*°). When the
user has entered a line of input it is passed
straight to OSCLI. If the line is a command to
enter a language ROM (eg ‘BASIC’) then that ROM is
entered and the language started up. If not then
the prompt (‘*°) is re-issued and the process
repeated.

ENDMSG
This option is identical to DIAGMSG except that if

a fatal interpreter error has occurred the
CINTCODE P, PC etc are not displayed.

61

It is probably the best of the three options fo
general use.

ENDRST

This option re-enters the current language, unlesg
the program is running in the 6502 second pro-
cessor when it sets OSWRCH to output to the
screen, displays ‘Please press BREAK® and sits ip
a loop.

It is likely to be of most use in stand alone
programs generated by FIXCIN which are not
expected to be run in a second processor, since it
will restart the language from which the “*RUN’
command was 1issued. In the case of programs
generated by ROMCIN and UTILCIN re-entering the
current language simply restarts the program.

Writing termination options

User-written termination options may be included
simply by writing appropriate assembler code,
assembling it using RAS and including the
resultant code in the program.

The assembler code must define global 149. ENDINT
enters the termination option by JMPing to this
global. The top byte of the stack contains 0 if
the program has ended by calling STOP etc or the
error letter (ASCII) if it has ended by calling a
fatal interpreter error. A typical termination
option might start like this:

TERMIO GLOBAL 149

TERMIO: PLA ; normal exit ?

BEQ ISNORM ; branch if yes

CMP #°G’ ; uninitialised global ?

etc.

62

On entry to the termination routine the OSRDCH
source and OSWRCH destination may not be the
defaults (keyboard and screen). ESCAPE 1is
enabled. The fault routine is the BCPL fault
routine. The termination routine should replace
this by its own fault routine before doing any-
thing that might cause a fault. (The byte address
of the fault routine is stored in bytes 202/203
hex.)

Tidying up

When a BCPL program running in the development
system terminates the development environment
automatically tidies up after it. 1In the stand
alone environment there is no automatic tidying

up.

Before exiting a program should perform as many of
the following tidying up operations as are appro-
priate (if the program exits via ENDINT then
ESCAPE will be re-enabled and some of the termin-
ation options also reset the OSRDCH and OSWRCH
assignments):

- re-enable ESCAPE;

- reset OSRDCH to read from the keyboard:
- reset OSWRCH to write to the screen;

- close all open files;

- re-enable cursor editing:

- reset function keys to generate strings:
- turn off the printer.

PROGRAMS TO RUN ON NON-BBC MACHINES

FIXCIN can be used to generate BCPL or assembler
programs which can be executed on target machines
other than the BBC Microcomputer. The output from
FIXCIN is a file containing code designed to be
loaded and executed at a certain address in the
target machine’s address space. If appropriate
the code can be held and executed in ROM.

63

Target machine requirements

The target machine must satisfy the following
requirements:

- the processor must be a 6502;

- the following hex byte addresses must exist ip
RAM:

0000 to 0059
0100 to Ol1FF
0400 to 97FF (only for BCPL programs)

Additionally the areas for the global vector
and (for BCPL programs only) the heap must
exist in RAM;

- there must be a way of entering the program
(at the address specified by the BASE
parameter to FIXCIN).

Restrictions on the program

The program is entered in the same way as normal,
except that the initialisation code does not
make the operating system call to disable ESCAPE.
The way the program exits must be specific to the
application; the standard termination options in
SYSLIB must not be used since they make operating
system calls.

The program must not use BCPL I/O (as the I/0
routines use operating system calls). In
particular none of the four I/O options must be
included (since they all cause operating system
calls to be made during program initialisation).

The program must not call any operating systemnm

routines and must not call any library procedures
that call operating system routines.

64

If the program is to be put into ROM it must
conform to the restrictions detailed in "Writing
programs to execute in ROM’ later in this chapter.

FIXCIN arguments

The argument NOTBBC must be specified. Addition-
ally BASE, HEAP and HEAPEND must all be specified.
MODE may not be specified.

REPLACING SYSLIB PROCEDURES

The normal method of generating a stand alone
program is to JOINCIN the various sections of the
program into one file then use NEEDCIN to append
the required SYSLIB sections. Thus the SYSLIB
sections come after the program sections and so if
the same global is defined in the program and in
the included SYSLIB sections the SYSLIB definition
will be the one actually used.

If the program is to redefine SYSLIB procedures
such as ABORT (always included) or FSTYPE (always
included if I/0 option 4 is selected) the
section(s) containing the redefined procedures
must be JOINCINed with the rest of the program
after NEEDCIN has been used to extract the SYSLIB
sections.

WRITING PROGRAMS TO EXECUTE IN ROM

This section lists some restrictions that must be
observed when writing programs which are to
execute in a language ROM.

- STATIC data, TABLEs and strings cannot be
modified (since they are all held with the
CINTCODE). Thus there is little point in
using STATIC data at all.

65

66

The restriction on modifying strings meang
that

LET X =

n CAR"
X33 ‘T’

= ’"T
will not work, but

LET X = "CAR"
X := "CAT"

will work.

Assembler routines must not include any data
that is to be changed with the code. Thus

COUNT: DB 0
INC COUNT

will not work.

The method for calling global procedures from
machine code recommended in the development
system User Guide cannot be used. One poss-
ible method of calling the global procedure
PROCB is

LDA #$4C ; JMP instruction

STA TEMP

LDA PROCB ; convert to byte addr
ASL A

STA TEMP+1

LDA PROCB+1

ROL A

STA TEMP+2

JSR TEMP ; JSR to JMP instruction

where TEMP is a suitable 3-byte area.

Any strings or parameter blocks which are to
be passed to operating system routines must be
in RAM and not in the ROM. The reason is that
other sideways ROMs may be invoked to deal
with the call and they will interpret the
address of the string or block as being an
address in their own ROM.

Thus an attempt to restart BASIC using OSCLI
such as

MANIFEST $(OSCLI = #XFFF7 §)
LET STRING = "**BASIC*C"
CALLBYTE(OSCLI, ?, (STRING << 1) + 1)

will fail. Instead code such as

MANIFEST $(OSCLI = #XFFF7 $)

LET STRING = VEC 3

MOVE ("**BASIC*C", STRING, 4)

CALLBYTE(OSCLI, ?, (STRING << 1) + 1)

should be used.

All library routines such as FINDINPUT,
DELFILE, RUNPROG etc copy their parameters
into RAM, so it is safe to code

RUNPROG("**BASIC")

(The final “*C’° is not needed as RUNPROG adds
it automatically.)

67

68

7 Summaries

This chapter summarises the features of the BCPL
Stand Alone Generator under the following
headings:

Error numbers and fatal error codes

Files provided

Global variables

Global vector

Utilities

Utility error messages

69

ERROR NUMBERS AND FATAL ERROR CODES

This section lists all the error numbers and codeg
that can be generated in the stand along
environment. A comparison of this list with the
corresponding list in the development system Usey
Guide will show which error checks have beep
omitted in the stand alone environment.

Error numbers

15 MODE - cannot free necessary heap space to
change mode.

18 RENAME - illegal device specified (eg /L).
23 DELETE - illegal device specified (eg /P).
27 file does not exist in current filing system,

50 READVEC, FILETOVEC - “from” device is not the
current filing system;
SAVEVEC, VECTOFILE - “to’ device is not the
current filing systenm.

51 not enough store to get vector or vector too
small. This error is generated by GETVEC if
it fails to get a vector and also by various
other library procedures if they cannot get
the vector(s) they need;

READVEC - the supplied vector is not big
enough.

52 device not recognised. A device/file name
begins with “/” but the next character is not
one of the devices recognised by the system.
This error is also generated if the ".” sep-
arating °/F’ from the filename is omitted.

55 GLOBIN/GLOBUNIN - vector does not contain a
valid CINTCODE file.

70

56 GLOBIN - unable to link. The vector contains
a hunk which uses or defines a global vari-
able beyond the end of the global vector.

60 FINDINPUT/FINDOUTPUT - attempt to use input
device for output or vice versa.

101 cannot output.

122 GETVEC - heap corrupt. The program is
unlikely to be able to recover from this
error.

123 APTOVEC - no room in stack.

Error numbers in the range 1000-1255 correspond to
the operating system error numbers 0-255. See
the BBC Microcomputer User Guide and the relevant
filing system User Guides for full details of
these errors.

Fatal error codes

If the interpreter detects an error it enters the
termination option with the error letter on the
6502 stack (see ‘Program termination” in chapter

6). The error letters are:

G Call to uninitialised global.
S Stack overflow.

X Invalid CINTCODE instruction.
Z Attempt to divide by zero.

FILES PROVIDED

This section lists the files provided with the
Stand Alone Generator.

B.EXTHEAP the source of EXTHEAP (procedure to

extend the heap in a stand alone
environment).

71

FILETRN program to copy a file preseving thg
load and execution addresses.

FIXCIN program to create a stand alone progray
as a file run by “*RUN’.

FIXINI initialisation code read by FIXCIN.
PACKCIN program to compact CINTCODE files.
ROMCIN program to create a stand alone prograp

as a language ROM.
ROMINI initialisation code read by ROMCIN.

SYSLIB1 procedure library (assuming disc- or
Econet-like filing system).

SYSLIB2 procedure library (supporting all
filing systems).

UTILCIN program to create a stand alone program
as a utility ROM.

UTILINI initialisation code read by UTILCIN.

GLOBAL VARIABLES

This section lists the global variables which may
be useful in stand alone programs. The global
number and ‘L° for LIBHDR or ‘S’ for SYSHDR are
given in brackets after the global name. Unless
otherwise stated these variables are used in
exactly the same way as they are used in the
development system.

ABORTCODE (4 S)
ABORTLABEL (5 S)
ABORTLEVEL (6 S)

72

CNSLINSTR (52 L)

Provided one of the four I/0 options is in-
cluded this is initialised by the system to
a console input stream. It may be selected
by a program whenever input from the console
is required. Note that with I/0 option 2 the
console is read as device /K (ie a key at a
time with no echo) whereas with options 1, 3
and 4 it is read as device /C (a line at a
time with echo). Set to GLOBWORD if no I/O
option is selected.

CNSLOUTSTR (53 L)
Provided one of the four I/O options is
included this is initialised by the system to
a console output stream. It may be selected
by a program whenever output to the screen is
required. Set to GLOBWORD if no I/O option is
selected.

CURRCO (22 S)

ERRORSTREAM (58 S)

Provided that I/O option 3 or option 4 is
included then this is set up as a dummy
stream. It is the stream that is selected for
input following ENDREAD and for output follow-
ing ENDWRITE. Also selected by SELECTINPUT(O)
and SELECTOUTPUT(0). An attempt to read from
or write to this stream causes unpredictable
results. If neither I/0 option 3 nor option 4
is included then ERRORSTREAM 1is set to
GLOBWORD.

LIBBASE (117 S)
Initialised to 0. 1Included for compatibility
with the development system.

MAXGLOB (0 S)

MCRESULT (11 L)

RESULT2 (15 L)

73

SYSINDEX (18 S)
Pointer to an 8-word table initialised tg
zeros. Included for compatibility with the
development system.

GLOBAL VECTOR

The following globals declared in LIBHDR ang
SYSHDR must not be used by stand alone programs:

CLIINSTR CONTPRG DELXFILE
ENDTRAP EXTSFILE FINDXINPUT
FINDXOUTPUT LASTERROR LINKEDFILES
LOADSEG MAINSTACK READ

SAVE SHUFFLE STARTINIT
STOREFILES TIDYSTATE TRAP
TRAPSTACK TRAPSTART UNLOADSEG
WRITEA WRITEBA WRITEDB

Dummy versions of the globals LIBBASE and SYSINDEX
are provided.

The first free global for general use is number
250.
UTILITIES

FILETRN - file transfer
FROM/A,TO/A,FROMFS, TOFS,PAUSE/S

FIXCIN - create program to run in RAM
FROM/A,TO/A,GV/A/K,BASE/K,HEAP/K,HEAPEND/K,
MODE/K,MAX/S,NOTBBC/S, REPORT/K,NOINT/S

PACKCIN - pack CINTCODE
FROM/A,TO/A, REPORT/K

ROMCIN - create program as language ROM

FROM/A,TO/A,SPEC/A,GV/A/K,HEAP/K, HEAPEND/K,
MODE /K, REPORT /K, NOINT/S

74

Spec file commands are:

.COPYR <string beginning “(C)’>
.ENTRY <name> [comments]

.TITLE <string>

.VERNO <number> [comments]
.VERSTR <string>

UTILCIN - create program as utility ROM
FROM/A,TO/A,SPEC/A,GV/A/K,HEAP/K,HEAPEND/K,
REPORT/K

Spec file commands are:

.COPYR <string beginning “(C)’>

.ENTRY <name> <global> [/A] [/M <mode>]
[comments]

.TITLE <string»>

.VERNO <number> [comments]

.VERSTR <string>

UTILITY ERROR MESSAGES

The majority of the error messages produced by the
utilities are self-explanatory. Those that are
not are listed in alphabetical order below.

CANNOT FIND ‘FROM’ FILE LENGTH
The filing system from which the file is being
copied does not support the OSFILE call to
find a file’s length.

CANNOT SAVE xxXx
Unless the MAX argument is specified the stand
alone program file is created in store then
written to the current filing system using the
procedure SAVE. This message indicates that
the SAVE has failed (xxx is the file name).

CANNOT SELECT “FROM® FILING SYSTEM
An error has occurred selecting FROMFS. The
most likely reason is that FROMFS is not a
valid “*’° command.

75

CANNOT SELECT ‘TO” FILING SYSTEM
An error has occurred selecting TOFS. The
most likely reason is that TOFS is not a valig
“*’ command.

"FROM’° FILE IS STORE FILE
A file named FROM exists in store and cannot
be deleted.

GLOBAL xxx ENTRY POINT OMITTED
A “.ENTRY " command in the Spec file specifieg
an entry point as global number xxx, but that
global is not defined in the FROM file.

HEAP SIZE O OR -VE
The address specified for HEAPEND is not at
least four bytes above that specified (or
calculated) for the heap.

INVALID ‘.COPYR” ON LINE xxx OF SPEC FILE
The parameter for °.COPYR’ does not begin with
’(C)’.

INVALID NUMBER ON LINE xxx OF SPEC FILE
Either a number has been omitted where one is
expected (eg in a command such as

.ENTRY FRED /A

where the global number is missing) or a
number has been specified but is out of range
eg an invalid screen mode such as

.ENTRY FRED 250 /M 8

INVALID RELOCATION DATA IN xxX
The file xxx (normally the FROM file) contains
assembler code which is to be relocated
relative to the globals COMMON2 or COMMON3.

NEED “BASE’, ‘HEAP’ & ‘HEAPEND’ WITH °“NOTBBC’

The argument NOTBBC has been specified without
specifying all of BASE, HEAP and HEAPEND.

76

PROGRAM TOO BIG
The ROM image being created is larger than
8192 words, which is the maximum size for a
language ROM.

"SAINIT UNDEFINED
The initialisation file FIXINI, ROMINI or
UTILINI does not include the system procedure
SAINIT. The most likely cause is that a
private version of the initialisation file has
been used.

SECTION “INTERP® INCLUDED BUT

NO BCPL ENTRY POINTS
Despite the /A parameter being specified for
all the “.ENTRY’ commands in the Spec file,
indicating that the program is written
entirely in assembler, the BCPL interpreter
has been included in the FROM file.

SECTION “INTERP’ INCLUDED BUT

"NOINT® SPECIFIED
Despite the NOINT argument having been
specified, indicating that the program is
written entirely in assembler, the BCPL
interpreter has been included in the FROM
file.

SECTION “INTERP® MISSING

The FROM file does not include the BCPL inter-
preter. Either the NOINT argument should have
been specified (for UTILCIN the /A parameter
should have been specified for all the
".ENTRY’ commands in the Spec file) or the
NEEDS "INTERP" directive has been omitted from
the program (or the stage of extracting
sections from SYSLIB has been omitted).

"START’ UNDEFINED

The FROM file does not include the global
procedure START.

77

"SYSINIT” UNDEFINED

This error indicates that the BCPL interpretey
is included in the FROM file but that the
section "RTPROCS" has been omitted. Since the
section "INTERP" includes a NEEDS directive
for "RTPROCS" the most likely cause is that 4
private version of the interpreter or of
SYSLIB has been used.

UNRECOGNISED COMMAND ON LINE xxx OF SPEC FILE

78

4

A line in the Spec file begins with
not one of the five valid commands.

.' but is

Appendix

This Appendix contains a number of sections
describing various aspects of the use of the Stand
Alone Generator and of the stand alone environment
which may be of interest to the more advanced
user.

It includes details of the stand alone environment
in a 6502 second processor, notes on how to
estimate the size of a stand alone program in
advance (though it may well be easier just to
create the program and see how big it 1is),
descriptions of the output files from FIXCIN,
ROMCIN and UTILCIN and specifications of the
system data areas and procedures used in the stand
alone environment.

This Appendix is divided into the following
sections:

Globals used by Stand Alone Generator
Re-use of global numbers

Running in the 6502 second processor
Sections in SYSLIB

Sizes

Stand alone file formats

System data areas

System procedures

79

GLOBALS USED BY STAND ALONE GENERATOR

The three programs FIXCIN, ROMCIN and UTILCIN make
use of three special globals when generating stang
alone programs.

SAINIT (206)
This global should be defined in the initial-
isation file (FIXINI, ROMINI or UTILINI). Tt
is the assembly language procedure that ig
JMPed to when the stand alone program ig
executed and which sets up the global vector,
stack, heap etc.

The global is only used during the process of
generating the stand alone program and is not
set up in the global vector in the stand alone
environment.

DSPTAB (207)
This global is defined in section "INTERP" in
SYSLIB. It marks the start of the jump tables
used by the despatch routine in the
interpreter.

INTERP (208)
This global is defined in section "INTERP" in
SYSLIB. It is the entry point to the BCPL
interpreter. FIXCIN, ROMCIN and UTILCIN use
this global to decide whether or not the
interpreter is included in the FROM file.

RE-USE OF GLOBAL NUMBERS

Some of the global numbers allocated to system
data areas and procedures in the development
system have been re-used for different data areas
and procedures in the stand alone environment. It
is thus very important that stand alone programs
do not attempt to use these globals with their old
meanings.

80

The global numbers affected are as follows. The
majority of them are described in the Appendix in
the development system User Guide, and the names
used for them there are also listed.

7 PRGENDLEVEL
8 PRGENDLABEL
16 STOREFILES

102 EXTSFILE (library procedure in development

system)

113 SFCNTRL

119 -

149 CONTPRG

206 RUNSUSP

207 EXERROR

208 TIDYSTATE

RUNNING IN THE 6502 SECOND PROCESSOR

A stand alone BCPL program can normally run with
no alterations in the 6502 second processor. 1If
the program was created by FIXCIN then the file is
automatically loaded into the second processor by
the "*RUN’ command. If the program is in a
language ROM then the code in the ROM is auto-
matically copied over to the second processor by
the operating system.

The main effects of running in the second pro-
cessor are that more RAM is available and that
processing speed is significantly increased. Pro-
vided that the HEAPEND argument was not specified
when the program was created the initialisation
code uses this extra RAM to extend the heap as
follows:

81

- for programs created by FIXCIN the hej
extends from the top of the program (or frop
the address specified by the HEAP argument) up
to hex byte address FO0OO. Note that the heap
therefore overwrites the copy of the current
language ROM so it is not possible to re-entery
the current language by pressing BREAK or by:

JMP $8000

- for programs created by ROMCIN/UTILCIN the
heap extends from the top of the global vector
(or from the address specified by the HEApP
argument) up to hex byte address FO000, but
with the area occupied by the program (ie hex
byte address 8000 up to some address less than
or equal to CO000) marked as an allocated
vector.

The only other feature of the system that appears
different is that the heap is not adjusted by the
MODE procedure and so error 15 (not enough heap
space to change display mode) can never occur.

SECTIONS IN SYSLIB

The following table contains one entry for each
section in SYSLIB, showing the procedures con-
tained in that section, the other SYSLIB sections
NEEDed by that section and the approximate size of
the code plus global relocation data in that
section (decimal words).

SECTION PROCEDURES NEEDS SIZE
ADVAL ADVAL - 9
APTOVEC APTOVEC - 30
BACKMOV BACKMOVE, BACKMVBY - 43

82

SECTION PROCEDURES NEEDS SIZE
CALLOSF System procedure used b§ - 75

READVEC/FILETOVEC/

SAVEVEC/VECTOFILE
CAPCH CAPCH - 10
CHANGEC CHANGECO - 64
COMPCH COMPCH CAPCH 7
COMPSTR COMPSTRING COMPCH 33
CORTNS CALLCO, COWAIT, CHANGEC 79

CREATECO, DELETECO,

RESUMECO
DELFILE DELFILE FNAME 48
DIAGMSG Termination option - 137
ENDMSG Termination option - 74
ENDPROG ENDPROG CAPCH 34
ENDRST Termination option - 40
ENVELOP ENVELOPE - 19
ERRORMS ERRORMSG WRITEN 49
FILETOV FILETOVEC, READVEC CALLOSF 67
(SYSLIB1) FNAME

OPENMSG
FILETOV FILETOVEC, READVEC CALLOSF 144
(SYSLIB2) INOUT4
MAXVEC

FINDARG FINDARG COMPCH 50
FNAME FILENAME, NAMESTR FINDARG 75

83

GLOBIN GLOBIN, GLOBUNIN - 178

INOUT1 Various I/O procedures IOCOM 76
INOUT2 Various I/O procedures I0COM 65
INOUT3 STRCNTL IODEV 160
FINDARG
INOUT4 STRCNTL FNAME 244
(SYSLIBI1) IODEV
OPENMSG
INOUT4 STRCNTL FNAME 294
(SYSLIB2) IODEV
OPENMSG
INTERP BCPL interpreter, CALL, RTPROCS 1346

CALLBYTE, MOVE, MOVEBYTE,
MULDIV, OPSYS

IOCOM INPUT, OUTPUT, RDBIN, - 68
RDCH, UNRDCH

IODEV Various I/O procedures I0COM 215
for I/0 options 3 & 4

LEVEL LEVEL - 5

MAXVEC MAXVEC - 23

MODE MODE - 49

NEWLINE NEWLINE - 4

NEWPAGE NEWPAGE - 5

OPENMSG FSTYPE - 11

(SYSLIB1)

OPENMSG FSTYPE - 89

(SYSLIB2)

84

RANDOM

RDARGS

RDITEM

READN

READWOR

RENAME

RTPROCS

RUNPROG

SOUND

SPLIT

STACKSI

TESTFLA

TESTSTR

TIME

VDU

VDUINFO

VECTOFI

WDIOCOM

RANDOM

RDARGS

RDITEM

READN

READWORDS

RENAME

ABORT, FREEVEC, GETVEC,
LONGJUMP, STOP, SYSINIT
RUNPROG

SOUND

SPLIT

STACKSI

TESTFLAGS

TESTSTR

TIME

VDU

VDUINFO

SAVEVEC, VECTOFILE

Common routine for
READWORDS & WRITEWORDS

COMPSTR
FINDARG
RDITEM

CAPCH

WDIOCOM

FNAME
RUNPROG

CALLOSF
OPENMSG
FNAME

169

103

41

79

63

116

88

34

20

14

12

122

28

44

71

85

WRITED WRITED - 60
WRITEF1 WRITEF CAPCH 74

WRITED
WRITEF2 WRITEF CAPCH 9]

WRITED

WRITEHE
WRITEHE WRITEHEX - 25
WRITEN WRITEN WRITED 5
WRITEOC WRITEOCT - 13
WRITET WRITET - 15
WRITEU WRITEU WRITED 16
WRITEWO WRITEWORDS WDIOCOM 42
SIZES

This section describes how to calculate the
approximate size of the stand alone program files
generated by FIXCIN, ROMCIN and UTILCIN. It may
often be easier to build a stand alone program and
find out how big it actually is than to attempt to
calculate the size.

The calculations given below are for programs
which include some CINTCODE. There is a saving of
33 words for programs written entirely in
assembler.

86

Basic program size

The basic program size is the size of all the BCPL
and assembler code and global definitions. The
easiest way to find it is to run PACKCIN on the
program and add the ‘code size” and “global data
size” figures from the report produced.

It may be estimated from the compiled size of
the application code and required SYSLIB sections,
subtracting four words for each application hunk
and five words for each application SECTION and
NEEDS directive.

FIXCIN output file

The file size is the basic program size plus the
initialisation overhead (224 words).

Once the file has been loaded and initialisation
is complete the initialisation data and code
becomes part of the heap. Thus the size of the
program when running is the basic program size
less two words for each global declared.

ROMCIN output file

The file size is the basic program size plus the
initialisation overhead (340 words) plus the
length of all the text items defined in the Spec
file (ie copyright, title and version texts and
‘** command names).

UTILCIN output file

The file size is the basic program size plus the
initialisation overhead (400 words) plus the
length of all the text items defined in the Spec
file (ie copyright, title and version texts and
*’ command names) plus an extra two words for
each “.ENTRY’ command in the Spec file.

87

STAND ALONE FILE FORMATS

This section describes the formats of the stang
alone files generated by FIXCIN, ROMCIN ang
UTILCIN.

FIXCIN output file

The file is made up of four sections - the entry
code, the program, the initialisation data and the
initialisation code. The load address ang

execution address of the file are the same ang
thus execution begins with the entry code.

The entry code is a few bytes of machine code
which load the byte address of the initialisation
data into X/Y (low byte in X) then jump to the
global SAINIT in the initialisation code. The
entry code may be followed by a null byte so that
the program is word-aligned in memory.

The program is the CINTCODE and machine code from
the FROM file stripped of hunk headers, global
definitions and relocation hunks. All machine
code is relocated.

The initialisation data is a structure made up of
a number of words as follows:

- a word of 0 if the stand alone program is
written entirely in assembler or of -1 if the
program contains CINTCODE;

- the byte address of the global vector:;

- the length in words of the global vector:;

- a number of 2-word preset data entries
terminated by a word of -1;

- the required screen mode, or -1 if the MODE
argument was not specified;

88

- the byte address to which the initialisation
code should jump. This is normally the start
of the interpreter but with all-assembler
programs it is the procedure START.

With all-assembler programs this is the end of the
initialisation data, but with CINTCODE programs
the data continues with:

- byte address of the heap:

- byte address for the end of the heap or -1 if
the HEAPEND argument was not specified;

- a word normally O, but -1 if the target
hardware is not a BBC Microcomputer.

Each preset data entry consists of a word speci-
fying an even byte address followed by a word
containing the data to be written to that address.
There is one preset data entry for each global
defined in the program (these are used to set up
the global vector) plus various others for setting
up the interpreter work areas and initialising
global data. With all-assembler programs the
preset data entries specific to the BCPL
interpreter are omitted.

The initialisation code is machine code from the
file FIXINI, relocated and stripped of hunk
headers, global definitions and relocation hunks.

ROMCIN output file
The file is made up of six sections - the ROM
header, the entry code, the program, the initial-

isation code, the initialisation data and the text
table.

89

The ROM header is structured as follows:

- a 3-byte JMP to the language entry point ip
the entry code;

- a 3-byte JMP to the service entry point in the
entry code;

- the ROM type byte (always C2 hex):;

- a byte containing the byte offset from the
start of the file to the zero byte following
the version string;

- a byte containing the version number;

- the title followed by a zero byte;

- the version text followed by a zero byte;

- the copyright text followed by a zero byte.

The entry code is a few bytes of machine code
which jump to the global SAINIT in the initial-
isation code with the C bit set for a language
entry, clear for a service entry. The entry code
may be followed by a null byte so that the program
is word-aligned in memory.

The program is the CINTCODE and machine code from
the FROM file stripped of hunk headers, global
definitions and relocation hunks. All machine
code is relocated.

The initialisation code is machine code from the
file ROMINI, relocated and stripped of hunk
headers, global definitions and relocation hunks.

The initialisation data is a structure made up of
a number of words as follows:

- the byte address of the text table;

90

- a word of -1 if the stand alone program
contains CINTCODE or of O otherwise;

- the byte address of the global vector:;
- the length in words of the global vector:

- a number of 2-word preset data entries
terminated by a word of -1;

- the required screen mode, or -1 if the MODE
argument was not specified;

- the byte address to which the initialisation
code should jump. This is normally the start
of the interpreter but with all-assembler
programs it is the procedure START.

With all-assembler programs this is the end of the
initialisation data, but with CINTCODE programs
the data continues with:

- byte address of the heap:;

- byte address for the end of the heap or -1 if
the HEAPEND argument was not specified:;

- byte address of the byte beyond the end of the
text table, rounded up to a 2-word boundary
(used for setting up the heap if running in a
6502 second processor).

Each preset data entry consists of a word speci-
fying an even byte address followed by a word
containing the data to be written to that address.
There is one preset data entry for each global
defined in the program (these are used to set up
the global vector) plus various others for setting
up the interpreter work areas and initialising
global data. With all-assembler programs the
preset data entries specific to the BCPL
interpreter are omitted.

91

The text table contains all the names specified by
".ENTRY’ commands. It is simply a list of all the
names (as a set of characters, not as BCPy,
strings) with each name terminated by a zero byte
and an extra zero byte terminating the table.

UTILCIN output file

The file is very similar to that produced by
ROMCIN. The principal differences are:

- the initialisation code is taken from UTILINI;

- the 1initialisation data 1s structuregd
differently:

- the text table is followed by an extra struc-
ture called the entry point table (aligned on
a word boundary).

The initialisation data is a structure made up of
a number of words as follows:

- the byte address of the text table;

- the byte address of the entry point table;

- the byte address of the global vector;

- the length in words of the global vector:

- a number of 2-word preset data entries
terminated by a word of -1 (these entries set
up the global vector and, possibly, the fault
routine address in bytes $202/$203).

With all-assembler programs this is the end of the

initialisation data, but with CINTCODE programs

the data continues with:

- a number of 2-word preset data entries

terminated by a word of -1 (these entries set
up data used by the interpreter):

92

- byte address of the heap:

- byte address for the end of the heap or -1 if
the HEAPEND argument was not specified;

- byte address of the byte beyond the end of the
entry point table, rounded up to a 2-word
boundary (used for setting up the heap if
running in a 6502 second processor);

- byte address of the interpreter entry point.

The text table contains all the names specified by
.ENTRY’ commands. It is simply a list of all the
names (as a set of characters, not as BCPL
strings) with each name terminated by a zero byte
and an extra zero byte terminating the table.

The entry point table contains one 3-byte entry
for each name in the text table. The first entry
corresponds to the first name and so on. The
format of each entry is:

Byte O : bit 7 : BCPL entry point
assembler entry point

1
0
bit 6 : set if screen mode to be set

up before program entered

bits 0-2: required screen mode (only if
bit 6 is set)

Bytes 1-2: for a BCPL entry point the global
number of the BCPL procedure;
for an assembler entry point the byte
address of the assembler procedure.

93

SYSTEM DATA AREAS

This section should be read in conjunction with
the section ‘System data areas” in the Appendix of
the development system User Guide. It describesg
the major differences between the data areas in
the development environment and the data areas in
the stand alone environment.

The sub-sections used correspond to those in the
development system User Guide.

Heap

In the stand alone environment the format of the
first two words of each area is:

word O: address of the next area

word 1l: O if the area is free
127 if the area is allocated.

Language RAM

Words O, 2 to 6 and 9 to 10 of the ‘Index and
miscellaneous data’ are not used in the stand
alone environment. The area from the despatch
routine onwards is used for the main stack (which
is not initialised to zeros).

Miscellaneous

There are no miscellaneous system data areas in
the stand alone environment.

Zero page

Words 0O, 8 to 16 and 19 to 40 are not used in the
stand alone environment.

Stacks

When a stack is created in the stand alone
environment it is not initialised to zeros.

94

Store files

There are no store files in the stand alone
environment.

Stream control blocks

In the stand alone environment the ‘get function’
and ‘put routine’ addresses are undefined if not
relevant (eg there is no get function for an
output stream).

Device type 7 (store file) is not allowed.

Stream control blocks for current filing system
files do not contain the file nanme.

System index

There is no system index in the stand alone
environment.

System saved data

There is no system saved data in the stand alone
environment.

SYSTEM PROCEDURES

This section describes the differences between the
global procedures used by the stand alone environ-
ment and those used by the development environ-
ment. It should be read in conjunction with
‘System procedures’ in the Appendix of the
development system User Guide.

The following system procedures are not available
in the stand alone environment:

CONTPRG ENDTRAP FINDSTFILE
RDTOBLOCK SFCNTRL SFSTATE
TRAPSTART TRUNCVEC

95

The system procedures in the stand alone environ-
ment are described below.

CHANGECO (32)

Identical to development system version
(except that there is no ‘end of program trap’
facility).

CLOSESTREAM (120)

Identical to development system version.

ENDINT (8)

Called to terminate the program. See ‘Program
termination’ in chapter 6 for more details.

Called by:

ENDINT()

FILENAME (60)

Checks that a string is a valid device name or
filename. The procedure NAMESTR (see below)
can be used to convert the string to a
standard format.

Called by:

dev

= FILENAME(string)

dev is -1 if the string is invalid. If the
string is valid dev is the device code (as
held in a Stream Control Block).

IOINIT (7)

Called from SYSINIT (see below) to set up any
I/0 streams before the application program is
entered.

NAMESTR (102)

96

Copies a file name into a vector, terminating
the name with CR and stripping off any leading
"/F.”. More precisely if the first character
of the name is “/° then the first three
characters are ignored.

The resultant vector is not a BCPL string but
is suitable for passing to operating system
routines eg OSFIND. The name should be
checked with FILENAME before calling NAMESTR.

Called by:
vector := NAMESTR(namestring)

The vector is taken from the heap and it is
the user’s responsibility to return it (by
FREEVEC) at a suitable time. véctor is O if

the GETVEC to get the vector from the heap
fails.

STRCNTL (61)
Opens a stream. Called by:

scb := STRCNTL(name, type)

name is the stream name.

type is 1 for input, 2 for output.

scb is the address of the stream control block
or 0 for failure.

SYSINIT (119)
The first procedure executed when the BCPL
interpreter is started. It performs some
initialisation then calls the application
program. Called by:

SYSINIT(glbno)
where glbno is the global number of the

application procedure to be called (1 for
START).

97

BCPL Stand Alone Generator

on the BBC Microcomputer

Acornsoft Limited, Betjeman House, 104 Hills Road,
Cambridge CB2 1QL, England. Telephone: (0223) 316039

Copyright © Richards Computer Products Ltd 1983
Copyright © Acornsoft Limited 1983

This BCPL system was developed by Richards Computer Products Ltd.,

a company that specialises in providing BCPL systems. It was developed in
collaboration with Dr Martin Richards of the Computing Laboratory, Cambridge
University, who invented BCPL in 1967.

SNL12/B

S e = ho R

	Contents
	Introduction
	Generating Stand Alone Programs
	Stand Alone Environment
	Utilities
	Procedures
	Discussion
	Summaries
	Appendix
	backcover

