FileStore Service Manual

Part no. 0482,001 Issue 1 21 Sept. 1989 Neither the whole nor any pan of the information contained in, or the product described in this Manual may be adapted or reproduced in any material form except with the prior written approval of Acorn Computers Limited.

The products described in this Manual and products for use with it are subject to continuous development and improvement. All information of a technical nature and particulars of the products and their use (including the information and particulars in this Manual) are given by Acorn Computers Limited in good faith. However, Acorn Computers Limited cannot accept any liability for any loss or damage arising from the use. of any information or particulars in this manual, or any incorrect use of the products. All maintenance and service on the products must be carried out by Acorn Computers' authorised dealers or Approved Service Centres. Acorn Computers Limited can accept no liability whatsoever for any loss or damage caused by service, maintenance or repair by unauthorised personnel.

All correspondence should be addressed to:

Customer Service Acorn Computers Limited Fulbourn Road Cherry Hinton Cambridge CB1 4JN

Information can also be obtained from the Acorn Support Information Database (SID). This is an on-line viewdata system available to registered SID users. Initially, access SID on Cambridge (0223) 243642: this will allow you to inspect the system and use a response frame for registration.

ACORN, ECONET and FILESTORE are trademarks of Acorn Computers Limited.

Within this publication the term 'BBC' *is* used as an abbreviation for 'British Broadcasting Corporation'.

CENTRONICS is a trademark of the Centronics Data Computer Corporation.

Contents

Introduction	1
Part I : FileStore E01	3
1. Introduction to the EO1 unit	5
1.1 Equipment description	5
1.2 Function	5
1.3 Prerequisites for use	5
1.4 Enhancements	5
2. E01 Specification	7
2.1 General specification	7
2.2 Physical	8
2.2.1 E01 unit	8
2.2.2 E01 packaging	8
2.3 Operation	8
2.3.1 Indicators	8
2.3.2 Controls	8
2.4 Signal connectors	9
2.4.1 FileStore E01 expansion bus pinouts	9
2.4.2 Econet port	9
2.4.3 Printer port	10
2.5 Power input	10
2.5.1 Power input requirements	10
2.5.2 Mains interruptions ('Brown out')	10
2.5.3 Power input plug and cable description	10
2.5.5 Fower supply	11
2.6.1 Power required	11
2.6.2 Specification	11
2.7 Safety standards	11
2.8 Electromagnetic interference	11
2.8 1 Standards	11
2.8.2 Mains transients	11
2.8.3 Electrostatic discharge	12
2.0.5 Dicertostate disentarge	12
2.9 1 Operating	12
2.9.1 Operating 2.9.2 Storage and shipping	12
2.10 Operational lifetime	12
3 F01 Disassembly and assembly	15
3.1 Disassembly procedure	15
3.2 Assembly procedure	15
4 F01 Circuit description	13
4 1 Timing	17
4.2 Sequential circuits	17
4.2.1 RAM refresh	17
4.2.2 ROM/RAM latch	17
4 2 3 INTON/INTOFF	17
4.2.4 Econet clock	17
4.3 The RESET circuitry	17
4 4 Battery backup	10
4.5 The central processor	10
4 6 Random access memory (RAM)	10
	10

4.7 Read-only memory (ROM)	18
4.8 The Econet port	19
4.8.1 The Econet network	19
4.8.2 Econet module	19
4.8.3 Econet clock active terminator	19
4.9 The disc interface	20
4.10 The pointer/ VIA circuitry	20
4.11 The real-time clock (RTC)	20
4.12 The FileStore Expansion bus and E20 interface	20
4.12.1 Termination	20
4.13 Main signal paths	20
4.13.1 Data bus	20
4.13.2 Address bus	20
4.13.3 Address decoding	21
4.13.4 Machine Operating System function calls	22
4.14 Link survey	24
5. E01 Fault finding	25
5.1 Stage 1: Initialisation	25
5.2 Stage 2: Net link	25
5.3 Stage 3: Final checks	25
Part II: FileStore E20	27
1. Introduction to the E20 unit	29
1.1 Packaging	29
1.2 Identification	29
2. E20 Specification	31
2.1 General specification	31
2.1 Contrar specification 2.1.1 Hardware components	31
2.1.1 Hardware components	31
2.1.2 Software components	31
2.21 Hysical $2.2.1$ F20 unit	31
2.2.1 E20 unit 2.2.2 F20 packaging	31
2.3 Operation	32
2.3 Operation 2.3.1 Controls	32
2.3.1 Controls	32
2.4 Host Adaptor	32
2.4 Host Adaptor 2.5 FileStore F20 Expansion Input/ Output Ports	32
2.5 Thestore E20 Expansion input Output Poils	32
2.6 Derver input	32
2.0 Power input	24 24
2.6.1 Power input requirements	24 24
2.6.2 Mains interruptions (Brown out)	34 24
2.0.5 Power input plug cable description	34 24
2.7 Power supply	34
2.7.1 Power required	34
2.8 Safety standards	35
2.9 Electromagnetic interference	35
2.9.1 Standards	35
2.9.2 Mains Transients	35
2.9.3 Electrostatic discharge	35
2.10 Environment	35
2.10.1 Operating	35
2.10.2 Storage and shipping	36
2.11 Emitted Acoustic Noise	36
2.12 Operational lifetime	36

3. E20 Disassembly and assembly	37
3.1 Disassembly procedure	37
3.2 Serviceable parts	37
3.3 Assembly procedure	37
4. E20 Circuit description	39
4.1 The disc controller board	39
4.2 SCSI control and data lines	39
4.2.1 Other pins	40
4.2.2 SCSI connector pinout (PL2 and J4)	40
4.3 Bus phases	40
4.3.1 Bus free phase	41
4.3.2 Selection phase	41
4.3.3 Information transfer phase	41
4.4 The reset condition	42
4.5 The 2MHz bus	42
4.6 Winchester Disc Host Adaptor	43
4.6.1 Address decoding and handshaking	43
4.6.2 Buffering	44
4.6.3 Termination	45
5. E20 Fault finding	47
5.1 Power supply	47
5.2 Address decoding	48
5.3 Handshaking	48
5.4 Bus lines	48
5.5 Final checks	48
Part III: FileStore E01S	49
1. Introduction to the E01S unit	51
1.1 Equipment description	51
1.2 Function	51
1.3 Prerequisites for use	51
1.4 Enhancements	51
2. E01S Specification	53
2.1 General specification	53
2.2 Physical	54
2.2.1 E018 unit	54
2.2.2 E01S packaging	54
2.3 Operation	54
2.3.1 Indicators	54
2.3.2 Controls	54
2.4 Signal connectors	55
2.4.1 FileStore EUIS expansion bus pinouts	33
2.4.2 Econet port	55
2.4.3 Printer port	50
2.5 Power input	50
2.5.1 Power input requirements	50 56
2.5.2 Mains interruptions (Drown out)	57
2.6. Dower supply	57
2.0 r Ower suppry 2.6.1 Dower required	51
2.6.2 Specification	57
2.0.2 Specification	57
2.7 Salicity statualus 2.8 Electromagnetic interference	57
2.6 Electromagnetic interference 2.8.1 Standards	57
$\angle 0.1$ Standards	57

2.8.2 Mains transients	58
2.8.3 Electrostatic discharge	58
2.9 Environment	58
2.9.1 Operation	58
2.9.2 Storage and shipping	59
2.10 Operational lifetime	59
3. E01S Disassembly and Assembly	61
3.1 Disassembly procedure	61
3.2 Assembly procedure	63
4. E01S Circuit description	65
4.1 The Central Processor	65
4.2 Random access memory (RAM)	65
4.3 Timing	65
4.3.1 The Real-Time Clock (RTC)	65
4.4 Sequential Circuits	67
4.4.1 RAM Refresh	67
4.4.2 Memory read/ write	68
4.4.3 ROM CONTROL	68
4.4.4 INTON/ INTOFF	69
4.4.5 Econet Clock Generation	70
4.5 Battery Backup	70
4.6 The Econet port	70
4.6.1 Econet Module	70
4.6.2 Econet clock and active terminator	70
4.7 The disc interface	70
4.8 The printer / VIA circuitry	71
4.9 The FileStore expansion bus and E40S/ E60S interface	71
4.9.1 Buffering	72
4.9.2 Termination	72
4.10 Main signal paths	72
4.10.1 Data bus	72
4.10.2 Address bus	72
4.10.3 Address decoding	72
4.10.4 Machine Operating System function calls	73
4.11 Link survey	75
5. E01S Fault finding	77
5.1 Power supply	77
5.2 Initialisation	80
5.3 Net link	80
5.4 Final checks	80
Part IV: FileStore E40S and E60S	81
1. Introduction to the E40S and E60S	83
2. E40S/ E60S Specification	85
2.1 General specification	85
2.1.1 Hardware components	85
2.1.2 Software components	85
2.2 Physical	85
2.2.1 E40S and E60S units	85
2.2.2 E40S/ E60S packaging	85
2.3 Operation	85
2.3.1 Controls	86
2.3.2 Indicators	86
2.4 Expansion input/ output ports	86

2.4.1 FileStore E40S/ E60S expansion bus connector	86
2.5 Power input	87
2.5.1 Power input requirements	87
2.5.2 Mains interruptions ("Brown out")	87
2.5.3 Power input plug and cable description	87
2.6 Power supply	87
2.6.1 Power required	87
2 7 Safety standards	88
2.8 Electromagnetic interference	88
2.8 1 Standards	88
2.8.7 Mains transients	88
2.8.2 Flectrostatic discharge	88
2.0.5 Electrostatic discharge	88
2.9 Environment	00 QQ
2.9.1 Operating	00
2.9.2 Storage and snipping	09
2.10 Ennued acoustic noise	89
	89
3. E405/ E605 Disassembly and assembly	91
3.1 Disassembly procedure	91
3.2 Parts not serviceable	93
3.3 Assembly procedure	93
4. E40S/ E60S Circuit description	95
4.1 Bus phases	95
4.1.1 Bus free phase	95
4.1.2 Selection phase	95
4.1.3 Information transfer phase	95
4.1.4 Termination	97
5. E40S/ E60S Fault finding	99
5.1 Power supply	99
5.2 Address decoding	100
5.3 Handshaking	100
5.4 Bus lines	100
5.5 Final checks	101
Appendix A. Test Equipment	103
Equipment required	103
Setting up	103
Connecting the test station	103
Connecting the UUT	103
Test procedure	104
Menus	104
Selecting menu entries	104
FServCopy	105
FServEdit	106
FServFmt	107
FServInit	108
EServCMOS	100
FServSoak	110
FServTest	110
FileStore F01	111
FileStore E01S	111
Charling the test equipment (validation)	112
Equipment required	113
Equipment required	113
v andation procedure	113

Modifying the test software	113
Appendix B. Parts lists	115
FileStore E01 main circuit pcb	116
FileStore E01 Final Assembly – Communicator	121
FileStore E01 Final Assembly – Master	123
FileStore E20 Main circuit pcb	125
FileStore E20 Final Assembly – Communicator	126
FileStore E20 Final Assembly – Master	128
Stacking FileStore E01S Main circuit pcb	130
Stacking FileStore E01S Final Assembly	135
Stacking FileStore E40S Final Assembly	137
Stacking FileStore E60S Final Assembly	139
Appendix C. Diagrams	141

Introduction

This manual is designed to provide the information required to diagnose and repair faults on the FileStore E01 and E20 units and the Stacking FileStore E01S, E40S and E60S units, developed by Acorn Computers Limited of Cambridge, England.

The information contained in this manual is for the use of engineers who will be servicing the above units. It includes a specification of each unit, circuit descriptions, disassembly and assembly details and faultfinding procedures.

The manual is divided into four parts:

- Part 1 covering the FileStore E01 twin floppy-disc unit
- Part 11 covering the FileStore E20 hard disc unit
- Part 111 covering the Stacking FileStore E01S twin floppy-disc unit
- Part IV covering the Stacking FileStore E40S and E60S hard disc units.

The Appendices at the back of the manual contain:

- An Appendix describing the test software that can be used for testing all possible combinations of FileStore types.
- An Appendix containing the parts lists for FileStore and Stacking FileStore units.
- An Appendix containing the relevant drawings and diagrams for FileStore and Stacking FileStore units.

Part I: FileStore E01

1. Introduction to the E01 unit

1.1 Equipment description

FileStore E01 is The twin floppy-disc version of the FileStore file server. There are two versions of the FileStore E01, the Master version used with Acorn and BBC computers (Part number 0354,002) and the Communicator version supplied for use with the Acorn Communicator intelligent Videotex terminal (Part number 0354,000).

The differences between these two versions are confined to the colour finish of the case and plastic parts, and the software supplied with the unit.

1.2 Function

To provide a mass storage facility for Econet users. When connected to the Econet, the FileStore will provide an Econet clock if one is not present. Also present is a Real Time Clock and a printer output for use as a printer server. An upgrade path to the hard disc FileStore E20 is also provided.

1.3 Prerequisites for use

The E01 unit is used by connecting it to one of the following:

- Econet Network
- BBC Microcomputer
- Acorn Master Series Microcomputer
- Acorn Cambridge Workstation (ACW)
- Acorn Communicator
- Acorn Archimedes Workstation
- Acorn R140 RISC ix Workstation
- Acorn A3000 Microcomputer
- Other Econet network stations.

1.4 Enhancements

The following items may be connected to the E01 to provide additional functions:

- Printers
- Hard disc FileStore E20
- Econet bridges

2. E01 Specification

This chapter gives details of the main features of the E01 unit, including electrical specifications for the interface ports.

2.1 General specification

Within the E01 unit are two 3.5" floppy disc drives, a switch mode power supply unit (PSU) and a Fileserver disc drive PCB. The PSU supplies +5V and +12V rails and meets BS5850.

The file server disc drive PCB contains 64K of RAM and 64K of ROM .(two 27256 EPROMs), a Real Time Clock with battery backup, a floppy disc controller, an Econet Interface and a printer interface. The microprocessor is a 65C102 device, running at 2MHz, which provides the processing required.

The ROM contains the operating system, filing system and Econet code needed to run the file server. The 64K of RAM and ROM are never in the memory map at the same time. On power up the ROM is read and it copies its file server code into the memory map. At the completion of this exercise the memory map is almost totally resident in RAM.

Two 3.5" discs are also supplied with the unit: the Master lib disc (containing programs used to run FileStore) and the data disc (for users' own files).

A Real Time Clock circuit incorporating the 146818 RTC is used to provide the information to allow date stamping of files and also to offer the facility of the Time and Date commands to users. The RTC is battery backed-up by a rechargeable nickel cadmium cell.

The Econet Interface is based upon the Acorn Econet module. Collision detection and an internal line biasing circuit are fitted. An Econet clock is generated if no clock is present.

The floppy disc interface is based upon the 2793 disc controller to provide a SA400 interface.

A Centronics-compatible printer interface is driven by a VIA.

A door flap switch (an optical sensor) is used to inform the processor when a disc is about to be changed and whether to power up in user mode or maintenance mode.

During normal operation, when a user opens the door flap, the processor needs to save the complete disc maps (held in memory) on the discs before they are removed. It is therefore essential that when users remove a disc, they first wait until the drive motors have stopped, indicating that the maps have been stored.

FileStore will normally only accept network filing system commands. To format discs and issue direct commands to the disc, you must put FileStore into a different mode: 'maintenance mode'. (This is to prevent users erasing and formatting discs by mistake.) To enter maintenance mode, you can either power up with the access flap open, or use the *FSMODE M command from a user station (see the *FileStore Network Manager's Guide* for further details).

For connection to the E20 unit a FileStore expansion bus interface, similar to the BBC microcomputer 1MHz bus interface, but running at 2MHz, is fitted to the rear of the unit.

The following ports are provided:

FileStore Expansion Bus:	34 way IDC - Rear Panel
Printer:	26 way IDC - Rear Panel
Econet:	5 pin DIN - Rear Panel
Mains in:	Permanently attached cable through grommet in rear panel

2.2 Physical

2.2.1 E01 unit

Dimensions:	length 333mm
	width 351mm
	height 78.8mm
Colour:	Acorn Specification 0920,208 (Pantone 537)
Material:	Acorn Part No. 900.000 (ABS Cycolac)
	Mild Steel Chassis
Finish:	Vapour blast
Net weight:	5kg

2.2.2 E01 packaging

Material:	Neopolene Inner, Triwall cardboard outer
Overall dimensions:	length 545mm
	width 500mm
	height 230mm
Weight (gross):	7kg

2.3 Operation

Upon power up (with the front door closed), the FileStore starts itself up into network mode ready for use over the network. If the door is open, the unit will accept requests via the network to allow maintenance and disc formatting.

2.3.1 Indicators

Green LED:	Power on indicator
Red LED:	Mode indicator

2.3.2 Controls

Mains switch	Mounted on rear panel
Front door flap	Actuates door open/closed sensor, also controlling the
	operating mode

2.4 Signal connectors

2.4.1 FileStore E01 expansion bus pinouts

Connector Type: 34 way IDC male. The pin allocations are as follows:

Pin 1	Gnd
Pin 2	R/not W
Pin 3	Gnd
Pin 4	I2 (2MHz Clock)
Pin 5	Gnd
Pin 6	not NMI
Pin 7	Gnd
Pin 8	not IRQ
Pin 9	Gnd
Pin 10	Not WENCH
Pin 11	Gnd
Pin 12	Not Used
Pin 13	Gnd
Pin 14	Not RST
Pin 15	Gnd
Pin 16	Not Used
Pin 17	Gnd
Pin 18	D0
Pin 19	D1
Pin 20	D2
Pin 21	D3
Pin 22	D4
Pin 23	D5
Pin 24	D6
Pin 25	D7
Pin 26	D8
Pin 27	A0
Pin 28	A1
Pin 29	Gnd
Pin 30	Gnd
Pin 31	Gnd
Pin 32	Gnd
Pin 33	5v
Pin 34	Gnd

2.4.2 Econet port

Data rate of up to 200 Kbps (determined by the Econet clock rate)

Connector type: 5 pin, 180 degree DIN socket.

Econet port pinouts are as follows:

Pin 1	DATA+	Data positive
Pin 2	GND	Ground
Pin 3	CLK-	Clock negative
Pin 4	DATA-	Data negative
Pin 5	CLK+	Clock positive

FileStore Service Manual

Chapter 2 2.4.3 Printer port

Connector type: 26 way IDC connector

Standard Centronics - compatible port with control signals STRB, ACK, BUSY, SELECT (all active low).

Printer port pinouts are as follows:

Pin 1	Data ready strobe	notSTRB
Pin 3	Data 0	D0
Pin 5	Data 1	D1
Pin 7	Data 2	D2
Pin 9	Data 3	D3
Pin 11	Data 4	D4
Pin 13	Data 5	D5
Pin 15	Data 6	D6
Pin 17	Data 7	D7
Pin 19	Data acknowledge	notACK
Pin 21	N/C	N/C
Pin 23	N/C	
Pin 25	N/C	N/C
Pins 2-22 even	0V	GND
Pin 24	N/C	
Pin 26	N/C	

2.5 Power input

2.5.1 Power input requirements

The power input requirements are as follows:

	Minimum	Nominal	Maximum	Units
Voltage	198	220/240	264	V AC
Frequency		50		Hz
Power		25		Watts

2.5.2 Mains interruptions ('Brown out')

The equipment has been designed to operate without malfunction during mains interruptions as detailed below. The mains is assumed to be at nominal at all other times.

Voltage [V]	Duration [msec]	Frequency [Hz]
0	20	0.2
50%	50	0.2

2.5.3 Power input plug and cable description

Plug type:	BS1363A, sleeved L+N pins BSI Kitemake and/or ASTA
	Diamond marked
No. of pins/connectors:	3
Fuse Value:	3A to BS1362 ASTA approved
Cable type:	To BS6500 Table 16 (BASEC and/or CENELEC
	harmonised and marked)
No. of conductors:	3
Length of cable:	2m

2.6 Power supply

2.6.1 Power required

		nominal	max
pcb	5V	1.3A	1.7A
Drives	5V	32OmA	560mA
	12V	l4OmA	
Drive start	12V	14OrnA	1.0A (400msec)
Fan	5V	250mA	

2.6.2 Specification

5-5.25V	0-2A
5-5.25V	0.05-0.6A
11.4-12.6V	0-0.4A
	0-1A

2.7 Safety standards

The equipment is designed and manufactured to comply with the following standards:

- BS415
- BS5850
- BS6204

2.8 Electromagnetic interference

2.8.1 Standards

The equipment is designed and manufactured to comply with BS6527 Class B.

2.8.2 Mains transients

The equipment functions and is undamaged in the presence of mains borne interference having voltage spikes detailed as follows:

Frequency:	0.2 times mains frequency
Risc Time:	5ns

Half-Pulse width duration:	5Ons
Polarity:	+ve or -ve
Phase Angle:	Free non-synchronous
Peak Voltage:	1000V shall not cause malfunction (soft errors)
-	1500V shall not cause physical damage, but
	visible malfunction is permitted

2.8.3 Electrostatic discharge

The equipment function is undamaged when subjected to a discharge (at both +ve and -ve polarity) from a 5pF capacitor charged to a voltage specified below, limited by a 150Ω resistor. The discharge is applied to any user accessible points, interconnecting cables and also the ground reference plane adjacent to the equipment.

Discharge Voltage:	6kV shall not cause malfunction (soft errors)
	12kV shall not cause physical damage, but
	visible malfunction is permitted

2.9 Environment

2.9.1 Operating

The equipment operates and functions to specification while under the following environmental conditions:

Temperature	10 to +35°C
Relative Humidity	10 to 80% non-condensing
Mechanical Shock	Not operating: 40g ¹ / ₂ sinusoid l0ms maximum repetition rate 1 every 10 seconds. 10 shocks on all six faces.
	Operating: 5g ¹ / ₂ sinusoid 10ms, maximum repetition rate 1 every 10 seconds. 10 shocks on all six faces
Vibration	To BS2011 Part 2Fd, vibration in each plane (X,Y and Z). (Time limit for each test 90 minutes)
	Operating: 20 to 500Ff, O.5G max (20 to 500Hz at 0.0005 G sq/Hz) Not operating: 10Hz to 200 Hz at 20G max (10Hz to 200 Hz at 0.02G sq/Hz)

2.9.2 Storage and shipping

The packaged equipment is designed end manufactured to withstand the following conditions:

Temperature	$-40 \text{ to } \text{c}60^{\circ}\text{C}$
Relative Humidity	5 to 90% non-condensing
Thermal Shock	20° C per hour within the range $-20 + 60^{\circ}$ C
Mechanical Shock	Will withstand a drop of 1 metre on each face
	and on the most susceptible corner

2.10 Operational lifetime

The equipment has been designed to provide an operational lifetime of 3 years (26,208 hours, based on a 24 hour day, 7 days-a week).

3. E01 Disassembly and assembly

DANGER

Removing the cover of an E01 unit exposes dangerous *voltages*. Ensure that the unit is switched off and the plug removed from the mains supply before removing the cover.

WARNING

A number of components within the units are STATIC SENSITIVE. It *is* possible that these components may be damaged if subjected to a static discharge. Avoid contact with the components of the PCBs except where necessary to perform the exchange or faulty components. When exchanging components, take appropriate anti-static precautions.

3.1 Disassembly procedure

- (1) Power down the FileStore unit for disassembly.
- (2) Disconnect the unit from the mains.
- (3) Unclip the front and rear mouldings.
- (4) Unclip the side mouldings.

(5) Remove the four screws holding the top metal wrap to the unit and slide it off backwards.

If you want to access the circuit board or remove the drive(s) then remove the top shield from the drive(s) and remove the mounting screws in the base plate. Disconnect the (data) ribbon and power connectors. This allows the drive to be removed, up and backwards.

The floppy disc units are not a serviceable item, and in the event of failure should be replaced by a new or reconditioned unit.

The floppy disc interface is contained on the E0l main processor board. If the interface is suspected to be faulty, refer to Appendix A - *Test Equipment*, which contains a suitable test of the floppy disc interface.

3.2 Assembly procedure

To reassemble the unit, simply reverse the above procedure.

When reassembling the unit, ensure that full earth testing has been satisfactorily completed.

4. E01 Circuit description

Read this chapter in conjunction with the circuit diagrams for FileStore E01, in Appendix B at the back of this manual.

4.1 Timing

The master system clock is 8MHz, generated by IC3 together with X2, C4, C5, and R11. This is internally divided down by four to produce the 2MHz phase related timing clocks 02 and 04, output on pins 39 and 3 of IC3 respectively.

4.2 Sequential circuits

There are four sequential circuits in FileStore:

- RAM refresh
- ROM/RAM latch
- Inton/intoff
- Econet clock

These are described below.

4.2.1 RAM refresh

RAM Access and Refresh are handled by IC6, IC31, IC34, IC7 and IC32.

In Normal Access, RAS pulse is off at 04 and CAS is low on the rising edge at 02.

Refresh is generated by a CAS before RAS, using the internal counters in the 4464 RAM chips. IC6 divides 02 by 60. On the next instruction fetch (synch), the processor wait state and CAS low are asserted.

The RAS is pulsed, then after one more cycle CAS is restored and the wait state is released.

4.2.2 ROM/RAM latch

This is performed by IC7, IC31, IC34 and IC35. In its initial state, all reads are made from ROM and all writes are made to RAM.

4.2.3 INTON/INTOFF

Non-maskable interrupts (NMIs) are performed by IC17, IC30 and IC35. Disable is at FC24 and enable at FC28. Econet network NMI is normally enabled, but is disabled during disc access.

4.2.4 Econet clock generation

IC16, IC28 and IC26 generate the Econet clock signal with selectable speed and mark space ratio. Links 3 and 4 select μ s or 2μ s clock rates, derived from 0.5 μ s 02. IC28 is a pre-loadable counter, links 5, 6 and 7 selecting loaded count 1, 2 and 4. The optimum setting is 200kHz. 1 μ s loaded count = 4. IC26 is the clock transmitter, enabled by CB2 on IC21.

4.3 The RESET circuitry

A simple reset is supplied by the components IC24, D6, R9 and C6 which provides an extended low level on the system reset line when power is applied, to allow time for the 5 Volt rail to become established and the IC2, IC3 and IC20 id reset correctly.

4.4 Battery backup

Some system variables are maintained in the CMOS *RAM* contained within IC2. The supply to this RAM is produced during power down conditions by BT1. BT1 is charged by a constant current source circuit (consisting of *Q5*, D3, N, R1 and R2) during power on conditions. IC2's supply is switched between the *5* Volt rail and BT1 by Dl and D5.

4.5 The central processor

The processing power of the machine is provided by a 65C102 (IC3), an enhanced CMOS version of the 6500 series microprocessor with its own system clocks. This processor uses 8 bit architecture.

Interrupts to the processor occur when either of the inputs IRQ or NM1 are low. Interrupts can occur from the following sources:

- IRQs from the hard disc Filestore E20 port
- NMIs from the floppy disc controller
- NMIs from the Econet Network IRQs from the RTC
- IRQs from the printer port.

Interrupts can be disabled within the RTC by writing to the interrupt enable bits in register B (0 disables, 1 enables). Interrupts from the printer can be disabled by writing to the relevant register within the 65C22.

4.6 Random access memory (RAM)

There are two types of RAM in the unit..

Main memory is two 4464s (IC12 and IC13), these are organised as 64K by 4 bits per device and together provide a 64K by 8 bit map.

The second type of RAM is the CMOS RAM contained within the RTC (IC2), which is organised as 64 by 8 bits. The first 14 bytes are used by the RTC for time, date and other storage etc. The remaining 50 bytes are partly used by the system software for configuration and error recording.

4.7 Read-only memory (ROM)

Two 27256 EPROMs are fitted (IC4 and IC5), organised as 32K by 8 bits per device. These contain the operating system and file server code respectively. These two devices are only accessed following a power up, when their contents is copied into main memory; execution is then transferred to the copy in RAM.

4.8 The Econet port

4.8.1 The Econet network

Econet is the Acorn local area network (LAN) for microcomputers. It uses inexpensive 5 core screened cable, which carries the differential clock, data lines and ground. Data rates up *to* 200Kbps are possible. The clock pair are terminated passively at each end with the TX/RX clock being centrally connected. The clock data pair passive are passively terminated at each end with a central active termination or alternatively with a passive at one end and with a active/ passive at the other.

It is possible to connect up to 254 stations to a network, which may be computers or (in this case) the E01. It is possible to send messages between stations and access other stations' memory. etc. Protection is provided against unwelcome access by a remote station.

4.8.2 Econet module

The majority of the Econet hardware is provided on a removable PCB module which connects to the main PCB via SK10 and SK11. SK10 provides an interface to a standard Econet port, presented as a 5-pin 180 degree DIN socket. The Econet PCB module contains the 68B54 high speed data link controller and its associated buffer circuitry. The data link controller and its under the control of the main processor using NMI. The module provides the following functions:

- Data transmission
- Data reception
- Clock reception and detection
- Collision detection
- Error detection
- On-board circuits provide the Econet clock and termination.

4.8.3 Econet clock and active terminator

An on board clock is implemented using the master system clock at 2MHz divided down by IC16 and ICV28. This is passed to a differential line driver IC26 and thence to the clock lines. Q6 and Q7 implements an active terminator which generates a 0.2V differential across the data lines. The control lines for these two circuits are from IC21 PIN 19. The insertion of the clock and terminator is automated to the extent that if a error in transmission or reception occurs, the circuit is enabled. It will also be enabled if on power up the processor detects the absence of the insertion of the DCD signal on the Econet module.

The frequency of the Econet clock is adjusted by links 3 and 4. See the Link Survey for selection detail.

4.9 The disc interface

The disc interface is controlled by IC20, IC29, IC8, IC30 and IC19. Drive selection is carried out by IC19. Data request and IRQ lines cause an NMI.

All floppy disc I/O is handled by a 2793 Floppy Disc Controller (IC20). For exact details of this operation refer to the manufacturer's data sheet

In this application it is programmed to support 250Kbps data transfer and MFM encoding. C14 and C15 are used to adjust the on chip voltage controlled oscillator. The frequency produced (on TP2) should be 250kHz +1- 12.5% when the FDC is in test mode (see the manufacturer's data sheet).

4.10 The printer/VIA circuitry

IC23 and IC21 control the printer interface. Port A of this device is used to generate a Centronics parallel type interface with data buffering by IC23 and strobe by IC35 and IC31, acknowledge going directly to CA1. Only CB2 of port B is used, as an output to control the state of the Econet TX/RX clock Terminator circuit.

4.11 The real-time clock (RTC)

This is a 146818-type fully programmable battery-backed device that provides time and calculation information via its multiplexed address/data bus. The bus condition is controlled by the logic level IC2's CE, R/W, DS and AS pins (13, 15, 17 and 14 respectively).

The frequency of the internally generated time base is controlled by the crystal (X1) and the components R3, C2, C3 and R4. In test mode, TPI is used to the frequency. Fine adjustment is provided by SOT12 and SOT13. An internal timer is programmed by system to generate regular interrupts for the operating system service routines.

4.12 The FileStore Expansion bus and E20 interface

The FileStore expansion bus is handled by IC15, IC27 and IC33. It is a buffered 2MHz processor internally addressed at FC30 and externally strapped at FC40 (Acorn 1MHz bus). The data is buffered to IC15 with direction being controlled by the R/W line from the processor.

Expansion bus signals are as follows:

D0-7 R/W A0-A1 RST NMI IRQ ENABLE Ø2

4.12.1 Termination

The FileStore expansion bus is terminated by a resistor pack RP1 in the E01.

For more information about the operational phases of the FileStore expansion bus, refer to the later section entitled *Bus phases in Chapter 4 - Circuit Description* in Part II of this manual.

4.13 Main signal paths

4.13.1 Data bus

This is a 8 bit bi-directional bus emanating from the central processor going to all the major devices. The direction of the data flow is controlled by the CPU's R/W line, a high level indicating a read by the processor.

4.13.2 Address bus

This is a 16 bit uni-directional bus emanating from the central processor.

4.13.3 Address decoding

The main decoding component are IC11, IC14, IC18 and IC1. These supply the decoding to support the software activity as follows.

The layout of the file server memory map is as follows:

From	То	Function
0 &100 &200 &400 &7C00 &E800 &FC00 &FD00	&FF &1FF &3FF &7BFF &F7FF &F7FF &F7FF &F7FF &F7FF &F7F2	Zero page, see suballocation below Hardware stack MOS workspace file server and print server code if loaded file and print server workspace MOS code Memory mapped I/O, see suballocation below MOS code
&FFE3 &FFE7 &FFEE &FFF1 &FFF4		OSASCI entry OSNEWL entry OSWRCH entry OSWORD entry OSBYTE entry
&FFFA &FFFC &FFFE		NMI vector RST vector IRQ vector

Page zero is suballocated as follows:

From	То	Function
&00	&1F	spare (some locations used if debug options enabled in MOS)
&20	&8F	file server/ print server workspace
&90	&9F	spare at present, but may be allocated to file server
&A0	&AF	Éconet driver workspace
&B0	&BF	file server workspace
&C0	&DF	Econet driver workspace
&E0	&FF	Disc handler workspace

Page &FC (the memory mapped I/O page) is suballocated as follows:

&FC00[-&FC03]	146818 RTC address register
&FC04[-&FC07]	146818 RTC data register
&FC08[-&FC0B]	(read) ROM/RAM memory access latch (currently will always will
	select RAM, but moving a jumper makes it toggle).
&FC08[-&FC0B]	(write) miscellaneous function latch
&FC0C-&FC0F	2793 floppy Disc Controller
&FC10-&FC1F	6522 Versatile Interface Adaptor
&FC20-&FC23	6854 Econet interface disabled
&FC24[-&FC27]	Econet interrupt disable
&FC28[-&FC2B]	Econet interrupt enable
&FC2C[-&FC2F)	floppy drive door switch state
&FC30-&FC33	FileStore expansion bus interface. Strapped to emulate bus address
	&40. The bottom two bits of the &FC3x address indicate bus &4x.

Higher values in this page will access the same registers as above if taken modulo &40. Values in square brackets above are also alternate addresses for the various registers. Note that addresses are subject to change, and this should be borne in mind when designing software to address these registers.

4.13.4 Machine Operating System function calls

The file server MOS provides a subset of the BBC MOS interface. It is not necessarily the case that any test programs running in place of the file server *will* be able to obtain all the *desired* support from the MOS. Such test programs should however be written with an awareness of the MOS in mind. In particular, it is recommended that the contents of the hardware registers and interrupt vectors are saved and restored over the execution of a test program, and the stack pointer restored to its value on entry.

The file server MOS provides the following functions, at the standard addresses:

OSASCI, OSNEWI, OSWRCH

These have the same specification as for the BBC MOS, except that the character in A is always inserted into the printer output buffer, not the current output stream buffer. If the buffer is full, these routines wait until there is room to store the character.

OSWORD

The following OSWORD functions are supported (*X*/*Y* point to the data block):

A=1 A=2	Read date/time from RTC chip. Write date/time to RTC chip. The date and time <i>are</i> in the file server format, which is: byte 0: date in month byte 1: years since 1981 / month (4 bits each) byte 2: hours (24 hour clock) byte 3: minutes byte 4: seconds
A=3 A=4	Read timer interval. Write timer interval. The timer is a 5 byte value counting in 1/100 seconds, however <i>as</i> it is driven from the RTC in increments in steps of 1 second. There are no 'events' <i>in</i> the machine, the caller must poll the time regularly to see if an interval expires.
A=5 A=6	Read non-volatile memory in RTC. Write non-volatile memory in RTC. One byte is transferred between the address at (X/Y)+4 and the RTC chip address indicated by the bottom six bits of the byte at (X/Y). Note that the first 14 locations are used by the RTC itself, and the remainder allocated as follows for non-volatile use by the file server and print server: 14-15 station ID + ones complement 16-19 reserved for use by MOS 20-24 internal error logout area 25 MAXUSERS setting 26 MAXDRIVE setting 27-32 alternative POLLPS name for printer Test routines are recommended to start from 63 downwards if they wish to use the RTC storage.
A=16 A=17	Econet TRANSMIT – as BBC Econet RECEIVE – as BBC A maximum of one transmit block and eighteen receive blocks may be active at a time.
A=19	Station information - function codes available are: 1 - write file server number 5 - write protection mask
A=114	Read/write block. Function codes available are: &08 read block(s) &0A write block(s) &0D set drive parameters &0F format drive

OSBYTE

The following OSBYTE functions are supported:

A=50	POLL TRANSMIT – as BBC
A=51	POLL RECEIVE – as BBC
A=52	Delete RECEIVE – as BBC
A=128	X=0: Read COMMAND/ USER and Floppy drive door switch states, returns 2 if drive 2 open, 1 if in COMMAND mode X=252: Read free bytes in printer output buffer.
A=132	Read address of top of workspace area to X/Y. The value returned is the current base of the MOS.
A=137	LED control. X=0 will turn off the programmable led, X=1 will turn it on.

4.14 Link survey

Link functions are as follows:

LINK	Function
1	I/O IRQs on/off (made = on)
2	A15 addressing on/off (made = on)
3	1us. Net clock enable
4	2us net clock enable
5	Net clock divide by 2 enable
6	Net clock divide by 4 enable
7	Net clock divide by 8 enable
8	Net NMIs enable/ disable (made = enable)
9	0 to &7FFF addressing disable (unmade = enable)
10	Rom latch enabled/ disabled (made = enabled)

5. E01 Fault finding

The following chapter describes the suggested methods of fault finding on a FileStore E01 unit when the fault is not clearly in a specific area.

When the FileStore E01 is powered up, the following sequence of operations, should take place, as indicated by various activity indicators on the FileStore:

- (1) On initial power up, the power indicator and mode/activity indicator should light up.
- (2) The disc drive activity light for any connected FileStore E20 will flicker
- (3) The floppy disc drive indicator for the FileStore ECU will light up.
- (4) All indicator lights should then extinguish, except the power indicator lights. The FileStore E01 is now ready for use.

If the power on routine fails, then the File-Store is faulty.

Follow the fault finding procedures outlined below. These should help you to discover any basic fault with the FileStore. The procedure consists of disco discrete stages, which should be followed in the order they are described.

5.1 Stage 1: Initialisation

If you have a suitable printer available, plug it into the unit and turn it on. Open the unit's Access flap and then turn the unit on, while observing the printer. If the printer performs a line feed, proceed with stage 2

If the printer does not perform a line feed, check the following with an oscilloscope:

Processor clock:	2MHz on pin 3 and 39 of IC3
NMI line:	High end pin 6 of IC3
RTC frequency:	1024 kHz at TPI (at IC2)
Address lines:	for activity (at IC3)
Darn lines:	for activity (at IC3)

5.2 Stage 2: Net link

If it appears that the link to the network is failing, the most common causes are:

Symptom action

Net module faulty	Replace it
No clock	Check clock path and enable
Line jammed	Check for approximately 0.3V across the data pair

5.3 Stage 3: Final checks

If the procedure outlined above fails to uncover the fault, then as a final check, you should refer to Appendix A - *Test Equipment at* the back of this manual, which contains more thorough tests of the FileStore.

The tests to run and the order in which to run them are as follows:

- Run all the tests in FServTest
- Run FServFmt on each disc
- Run FServInit on each disc
- Run FServSoak, running all the test patterns on each disc.

Part II : FileStore E20

1. Introduction to the E20 unit

The FileStore E20, Acorn part no. 0354,407 for the Master version, and 0354,005 for the Communicator version, is an expansion of the FileStore E01 unit providing Econet users with increased mass storage.

It is a self-contained mains-powered unit, providing approximately 20MByte of storage.

The E20 has a daisy-chain 2MHz connector, for adding other 2MHz bus devices to the E01 Unit.

1.1 Packaging

The E20 unit is provided in a two-part cardboard and neapolene package, also including the cable required to connect it co the E01 unit.

1.2 Identification

The E20 unit is uniquely identified by a serial number at the rear of the case.
Chapter 2 2. E20 Specification

This chapter gives details of the main features of the FileStore E20 hard disc file server.

2.1 General specification

2.1.1 Hardware components

Within the box is a switch mode power supply, 3.5" 20 Mbyte hard disc with onboard SCSI controller, and an E20 host adaptor. The E20 host adaptor performs the function of converting the 2MHz FileStore Expansion Bus from the E01 unit to the SCSI bus. The hard disc contains a pcb to provide read/write and head selection, motor speed control, data serialiser/ deserialiser, dual port sector buffer, ECC generation/correction, and SCSI bus interface.

2.1.2 Software components

The hard disc is already formatted (as an ADFS disc), initialised as a file server and contains a variety of management and user utilities. There are no other software components; the filing system software is contained in the E01 unit.

2.2 Physical

2.2.1 E20 unit

Case Dimensions	length 333mm width 351mm height 78.8mm
Case colour	Acorn Specification 0920,208
Case material	Acorn Pan No. 900,000 (ABS Cycolac) Mild Steel Chassis
Case Finish	Vapour Blast
Net weight	5kg
2.2.2 E20 packaging	
Packaging material	Neopolene Inner Triwall cardboard outer Tray to hold expansion cable
Package dimensions	length 545mm width 500mm height 230mm
Gross weight	7kg

l

2.3 Operation

When the E20 is connected to a FileStore E01 and powered up, the FileStore E01 recognises the hard disc. The FileStore unit, comprising the FileStore E01 and E20, then starts up in network mode, ready for use.

2.3.1 Controls

Power on/off switch

On rear panel

2.3.2 Indicators

Green LED	Power on indicator
Red LED	Drive active

2.4 Host Adaptor

SCSI to 2MHz FileStore expansion bus

2.5 FileStore E20 Expansion Input/ Output Ports

FileStore Expansion Bus	37 way D-Type Rear Panel 2 off
Mains in	Hard wired-in connection
SCSI Interface	Internal

2.5.1 The FileStore E20 expansion bus connector

The E20 unit is equipped with two expansion bus connectors, for connecting to the E01 and an (optional) second 2MHz bus device. The connection to the E01 unit is made with the supplied FileStore Expansion Bus Cable.

The connectors are 34-way DC male sockets, wired as below:

Pin	Signal Comments
1	Gnd
2	R/notWrite
3	Gnd
4	12 2MHz Clock
5	Gnd
6	Not MNI
7	Gnd
8	Not IRQ
9	Gnd
10	not WENCH
11	Gnd
12	Not Used
13	Gnd
14	Not RST
15	Gnd
16	Not Used
17	Gnd
18	D0
19	D1
20	D2
21	D3
22	D4
23	D5
24	D6
25	D7
26	D8
27	A0
28	A1
29	Gnd
30	Gnd
31	Gnd
32	Gnd
33	5V
34	Gnd

If the second connector is used, the E20 device must be modified by removing resistor packs, as described in *Termination*, at the end of the chapter entitled *Circuit Description*.

2.6 Power input

2.6.1 Power in put requirements

The power input requirements arc as follows:

	Minimum	Nominal	Maximum	Units
Voltage	198	220/240	264	V AC
Frequency		50		Hz
Power		40		Watts

2.6.2 Mains interruptions ('Brown out')

The equipment has been designed to operate without malfunction during mains interruptions as detailed below. The mains is assumed in be at nominal at all other times.

Voltage [V]	Duration [ms]	Frequency [Hz]
0	20	0.2
50%	50	0.2

2.6.3 Power input plug and cable description

Plug type	BS1363-Sleeved L+N pins, BSI Kitemarked and/or ASTA Diamond marked
No. of pins/connectors	3
Fuse Value	3A to BS1362 ASTA approved
Cable type	To BS6500 Table 16 (BASEC and/or CENELEC harmonised and marked)
No. of conductors	3
Conductor cross section	0.75mm ² each
Length of cable	2m

2.7 Power supply

2.7.1 Power required

		nominal	max
Drive	5V	0.95A	1.2A
	12V	0.67	0.9
Drive start	12V		
Fan	5V	250mA	

2.8 Safety standards

The equipment is designed and manufactured to comply with the following Standards:

- BS415
- BS5850
- BS6204

2.9 Electromagnetic interference

2.9.1 Standards

The equipment is designed and manufactured to comply with the following Standards:

Agency	Country	Standard	Comments
BSI	U.K.	BS6527	Class B

2.9.2 Mains Transients

The equipment functions and is undamaged in the presence of mains-borne interference having voltage power spikes detailed as follows:

Frequency	0.2 times mains frequency
Rise Time	5ns
Half-Pulse width duration	50ns
Polarity	+ve or -ve
Phase Angle	Free, non-synchronous
Peak Voltage	1000V shall not cause malfunction (soft errors)
C	1500V shall not cause physical damage, but may
	cause visible malfunction

2.9.3 Electrostatic discharge

The equipment functions/is undamaged when subjected in discharge (at both –ve and +ve polarity) from 5pF capacitor charged to a voltage specified below, limited by 150Ω resistor. The discharge is applied to any user accessible points, interconnecting cables and also the ground reference plane adjacent to the equipment.

Discharge Voltage:	6kV shall not cause malfunction (soft errors)
6 6	12kV shall not cause physical damage, but visible
	malfunction is permitted.

2.10 Environment

2.10.1 Operating

The equipment operates end functions to specification continuously while under the following environmental conditions:

Temperature	+10 to +35°C
Relative Humidity	10 to 80% non-condensing
Thermal Shock	10° C per hour maximum

Chapter 2 E20 Specification Mechanical Shock Not operating: 35g 1(2 sinusoid 10ms, maximum repetition rate once every 10 seconds. 10 shocks on all six faces Operating: 10g 1/2 sinusoid 10ins, maximum repetition rate once every 10 seconds. 10 shocks on all six faces Vibration To BS2011 Part 2Fd, vibration in each plane (X, Y and Z). (Time limit for each test 90 minutes.) Operating: 10g peak acceleration, 20Hz to 500Hz (20 to 500Hz at 0.0050G sq/Hz) Not operating: 2.0g peak acceleration, 10Hz to 200Hz (10 to 200Hz at 0.02 sq/Hz)

2.10.2 Storage and shipping

The packaged equipment is designed and manufactured to withstood the following conditions:

Temperature	$-20 \text{ to } +60^{\circ} \text{C}$
Relative Humidity	10 to 80% non-condensing
Thermal Shock	20° C per hour maximum
Mechanical Shock	Will withstand a drop of 1 metre on each face and
	on the most susceptible corner

2.11 Emitted Acoustic Noise

54dBA (continuous maximum) at 1m from nearest point on the drive.

2.12 Operational lifetime

The equipment has been designed to provide the following operational lifetime; 26,208 hours or 3 years (Based on 24-hour day, 7 days a week)

To ensure trouble-free operation of the disc drives, the E01 and E20 should not be exposed to Excessive heat, moisture, direct sunlight or vary dusty conditions.

3. E20 Disassembly and assembly

DANGER

Removing the cover of an E20 unit exposes dangerous voltages. Ensure that the unit is switched off and the plug removed from the mains supply before removing the cover.

WARNING

A number of components within the units are STATIC SENSITIVE. It is possible that these components may be damaged if subjected to a static discharge. Avoid contact with the hard disc at all times without taking adequate precautions against static.

WARNING

When the hard disc drive is removed for service work, great care must be taken not to drop, jar or shock the unit in any way. Under no circumstances should the drive itself be opened to expose the head mechanism: this can only be done by the manufacturer in a special ultraclean room.

3.1 Disassembly procedure

- (1) Power down the unit for disassembly.
- (2) Disconnect the unit from the mains.
- (3) Unclip the front and rear mouldings.
- (4) Unclip the side mouldings.
- (5) Remove the four screws holding the top metal wrap to the unit and slide it off backwards.

3.2 Serviceable parts

The only dealer-serviceable part of the E20 unit is the Host Adaptor printed circuit board. Faults detected in the disc drive, disc controller board or power supply mean that the faulty part must either be returned for repair or replaced. Dealers may hold stock of these items and should refer to information provided by their supplier for service procedures for these units.

3.3 Assembly procedure

To reassemble the unit, simply reverse the above procedure.

When reassembling the unit, ensure that full earth testing has been satisfactorily completed.

4. E20 Circuit description

Read this chapter in conjunction with the circuit diagrams for FileStore E20, in Appendix C at the back of this manual.

The only part of the E20 unit which is serviceable by Acorn dealers is the Host Adaptor pcb (see circuit diagram) and its connectors, cables, etc. This provides an interface between the asynchronous SCSI interface the disc controller board, and the synchronous 2MHz expansion bus interface on the E01 unit.

The following circuit description will provide enough information about the disc controller board and the2MHz expansion bus to allow a full understanding of the operation of the Host Adaptor board. For a full specification of the SCSI interface see the ANSI SCSI specification (X3.131 1986 SCSI standard and CCS document Revision 4b.)

4.1 The disc controller board

The disc controller used in the E20 unit is a device which will send or accept parallel (byte) data to or from the host system i.e. E01 unit (via 2MHz bus and Host Adaptor), and will read or write this data serially to or from the hard disc.

4.2 SCSI control and data lines

The 8 control and 8 data lines on the SCSI side of the controller (shown on the right side of the Host Adaptor circuit (the initiator) diagram in the appendix) are all active-low open collector, and are as follows:

SELECT (SEL, pin 44)

Is an open collector signal which is asserted by the initiator as the first step in any transfer of data through the interface.

BUSY (BSY, pin 36) Is an open collector signal which is asserted by the disc controller (the target) to indicate that the data bus is in use. This is the first response of the target to the initiator's assertion of SEL, and the SEL/BSY handshake is the first communication in any Winchester filing system operation.

CONTROL/DATA (C/D, pin 46)

Is asserted by the target when the bus carries control information, and is deasserted when the bus carries data.

INPUT/OUTPUT (I/O, pin 50)

Controls the direction of data flow, and is asserted by the target to indicate input to the initiator (disc to computer), and is deasserted to indicate output to the target (computer to disc).

REQUEST (REQ, pin 48)

Is asserted by the target to indicate a request for a REQ/ACK data transfer handshake.

ACKNOWLEDGE (ACK, pin 38)

Is asserted by the initiator to indicate acknowledgement of a REQ/ACK data transfer handshake. The REQJACK handshake provides the asynchronous timing of all data transfer between initiator and target.

RESET (RST, pin 40)

Is asserted by the initiator on power-up and when the host microcomputer's BREAK key is pressed (if connected direct to a microcomputer). It causes the "reset condition It which immediately clears the bus and resets the system.

MESSAGE (MSG, pin 42)

Is asserted by the target when it issues a message byte to notify completion of a command. See Bus phases, below.

DATA BUS (DB0 to DB7, pins 2,4,6,8,10,12,14 and 16)

Is a parallel data bus consisting of 8 signals from DB0 (least significant) to DB7 (most significant). 1 byte of information is transferred across the bus with each REQ/ACK handshake. It is important to remember that the data lines are active-low and therefore are inverted in both directions when communicating with the host microcomputer.

4.2.1 Other pins

All odd numbered pins are 0V, and pin 34 is +5V.

4.2.2 SCSI connector pinout (PL2 and J4)

SCSI pinouts are as follows:

Signal	Pin	Pin	Signal
0V	1	2	DB0
0V	3	4	DB1
0V	5	6	DB2
0V	7	8	DB3
0V	9	10	DB4
0V	11	12	DB5
0V	13	14	DB6
0V	15	16	DB7
0V	17	18	}
0V	19	20	}
0V	21	22	}
0V	23	24	For future expansion
0V	25	26	}
0V	27	28	}
0V	29	30	}
0V	31	32	}
0V	33	34	+5V to supply test equipment
0V	35	36	BSY
0V	37	38	ACK
0V	39	40	RST
0V	41	42	MSG
0V	43	44	SEL
0V	45	46	C/D
0V	47	48	REQ
0V	49	50	I/O

4.3 Bus phases

The bus has several distinct operational phases and cannot be in more than one of these phases at any given lime.

Bus phases occur in a prescribed sequence. The reset condition can interrupt any phase and is always followed by bus free. Any other phase can also be followed by the bus free phase.

The prescribed sequence is from bus free to selection to one or more of the information transfer phases to bus free again.

There are no restrictions on the order of information transfer phases, and a phase *will* often follow itself, e.g. two data phases one after the other.

A typical sequence would be:

- bus free
- select controller selection phase
- transfer command bytes command phase
- transfer data bytes (if necessary) data in/out phase
- status phase
- message phase

The phases are as follows:

4.3.1 Bus free phase

Indicates that the bus is available for use. The bus free phase is indicated by all control signals described in the previous section being deasserted. If SEL and BSY and RST are not asserted, that is sufficient to guarantee bus free.

4.3.2 Selection phase

Allows the initiator to select the target. After detecting bus free, the initiator asserts SEL. The target detects SET asserted and BSY and I/O deasserted, and responds by asserting BSY. The initiator deselects SET and may then change the data signals.

4.3.3 Information transfer phases

Allow transfer of information across the bus. There are several different types of information transfer phase, and the type is determined by, MSG, C/D and I/O. The information transfer phase is shown below:

Signals

MSG	C/D	I/O	Phase name	Direction of information transfer
1	1	1	data out phase	initiator to target
1	1	0	data in phase	target to initiator
1	0	1	command phase	initiator to target
1	0	0	status phase	target to initiator
0	0	1	message out phase	initiator to target (not used)
0	0	0	message in phase	target to initiator

All signals active-low:

0=assertion 1=deassertion

The information transfer phases use the REQ/ACK handshake to control information transfer each REQ/ACK allows the transfer of 1 byte. The handshake sequence is:

(1) Target asserts REQ to request data transfer

- (2) Initiator asserts ACK when data is valid on bus
- (3) Target deasserts REQ when darn has been transferred
- (4) Initiator deasserts ACK ready for next handshake

Prior to and during information transfer, the I/O signal determines the direction of the transfer.

Before each information transfer phase the target will set up the MSG C/D and I/O lines in such a *way* that these control signals are stable for 450ns before the REQ of the first handshake, and remain valid until the deassertion of ACK at the end of the last handshake.

During each information transfer phase the BSY line remains asserted and SEL deasserted.

Each information transfer phase is now described in turn.

Command phase

Allows the initiator to direct the subsequent action of the target by transferring command bytes. The target asserts C/D and deasserts MSG and I/O.

Status phase

Allows the initiator to read the target's status information. The target asserts C/D and I/O and deasserts MSG.

Data out phase

Allows data to be transferred from initiator to target. The target deasserts par MSG, C/D and I/O.

Data in phase

Allows data to be transferred from target in initiator. The target asserts I/O and deasserts MSG and C/D.

Message out phase

Not used by the system - available for future expansion.

Message in phase

Allows the target to send a message byte to notify completion of a command.

4.4 The reset condition

The reset condition is caused by the assertion of RST, and immediately clears the bus and resets the system. Regardless of the prior bus phase, the bus resets to the bus free phase. The hard disk controller reads the drives parameters off the disc.

Reset can only occur in the E01/E20 system at power-up rime.

4.5 The 2MHz bus

The following is a description of the 2MHz expansion bus signals used by the Winchester Disc Host Adaptor.

R/NW (read/not-write, pin 2) is the system read/write line.

NIRQ (not-IRQ, pin 8) is the interrupt request line which is open collector and asserted by a device pulling it low. IRQ is level triggered active-low.

NEST (not-reset, pin 14) is output only active-low system reset line. It is active on power-up.

NPGFC (not-page &FC, pin 10) is a signal decoded from the top 8 system address lines (A8 to A15). NPGFC is an active-low signal which is low when the address high byte is &FC, i.e. when the full address is &FC00 to &FCFF. Four locations in this range are used by the Winchester system: &FC40 to &FC43 inclusive, see section 11.6.1.

A0 to A7 (address low, pins 27 to 34) are the bottom 8 system address lines.

D0 to D7 (system data bus) are the bi-directional *data* lines. Direction determined by R/NW. The data lines use buffered, and the buffer enabled only when NPGFC is active.

Pins 1,3,5,7,9,11,13,15,17 and 26 are 0V.

2MHz Bus Connector pinouts are as follows:

Signal	Pin	Pin	Signal
0V	1	2	R/NW
0V	3	4	$2MH_2E$
0V	5	6	For other applications
0V	7	8	NIRQ
0V	9	10	NPGFC
0V	11	12	For other applications
0V	13	14	NRST
0V	15	16	For other applications
0V	17	18	D0
0V	19	20	D2
0V	21	22	D4
0V	23	24	D6
0V	25	26	0V
0V	27	28	A1
0V	29	30	A3
0V	31	32	A5
0V	33	34	A7

4.6 Winchester Disc Host Adaptor

In conjunction with the following description, reference should do made to the Winchester Disc Host Adaptor circuit diagram in the appendix.

The Winchester Disc Host Adaptor is an interface between the SASI/SCSI interface and the 2MHz expansion Bus. It consists of address decoding and handshake control, buffering of the signals in either direction, and termination.

4.6.1 Address decoding and handshaking

The Host Adaptor decodes 4 locations in the host microcomputer's page FC I/O space. Those four locations are as follows:

Address	Read	Write
&FC40 &FC41 &FC42 &FC43	data status -	data (direction determined by R/NW) - select enable IRQ

Page FC is decoded in the host system and this is available to the Host Adaptor as NPGFC (not-page FC). NPGFC is synchronised with 2MHzE by de-glitch circuit (half of IC10) and the clean signal is labelled CNPGFC (pin 5, IC10).

The low order address lines A0 to A7 are buffered through IC5.

IC6, a 3 to 8 line decoder with three enable inputs, decodes the low order addresses &40 to &43, i.e output pin 15 goes low when the low order address is &40, &41, &42 or &43.

IC7 is another 3 to 8 line decoder which takes the output from IC6 and CNPGFC and 2MhzE as enable inputs. The 2 least significant address bits A0 and A1 are decoded along with R/NW into the required 5 separate signals shown above.

- (1) Y0 (pin 15) Is read data (R/NW = 1)
- (2) Y4 (pin 11) is write data (R/NW = 0)
- (3) Y1 (pin 14) is status
- (4) Y6 (pin 9) is select (5) V7 (pin 7) is smalle IF
- (5) Y7 (pin 7) is enable IRQ

All these outputs are active-low.

When either *of* the two data transfer paths is selected (Y0 or Y4) an ACK signal is generated by clocking a D-type flip-flop (half of IC11). This flip-flop is cleared direct from the REQ line, and thus the REQ/ACK handshake is facilitated.

The other half of IC11 facilitates the SEL/BSY handshake. The D-type is clocked by Y6 to generate select and is cleared by BSY.

When Y7 is selected, the least significant bit on the data bus (D0) is clocked into a D-type flip-flop (half of *IC* 10). If this value is a 1 then the latch (2 NANDs of IC12) is enabled and an IRQ will be generated at the next failing edge of REQ. To disable interrupts Y7 is selected with ad on D0. IR*Qs* are enabled only for a very short time (around 10ms) when ensuring a sequential file buffer.

4.6.2 Buffering

The data bus (D0 to D7 of host system, DB0 to DB7 of SCSI interface) is buffered in the write direction by an octal 3-state buffer IC1 and an octal transparent latch (IC2). IC2 is enabled by Y4 of IC7 which is the write data signal. Because IC2 is a transparent latch, *data* will remain valid on the output side when the enable is deasserted. The outputs from IC2 are gated through 8 open collector NAND buffers which are enabled from the I/O control line of the SCSI interface and which invert the bus signals. To write data across the Host Adapter requires that both R/NW = 0 and I/O = 1.

The data bus is buffered and inverted in the read direction by an octal 3-state inverting buffer which is enabled by Y0 of IC7 which is the read data signal, see previous subsection.

The control signals need by the SCSI interface are available for rending by the host system. They can be latched onto IC4, an octal transparent latch, which when it is enabled by Y1 of IC7. The control signals appear on the data bus as shown in the following table:

D0 MSG D1 BSY

- D1 BS D2 0
- D2 D3
- D4 NIRQ (see 11.6.1)
- D5 REQ

0

- D6 I/O
- D7 C/D

All these control signals are inverted either by IC15 or IC9 prior to being latched, so all values read from the data bus are active high.

4.6.3 Termination

The Host Adaptor pcb carries 4 resistor packs, RP1 to RP4 which are used for *terminating* the various buses and control lines.

RP1 terminates the SCSI lines from the hard disk controller board.

IMPORTANT

RP2, RP3, and RP4 terminate the 2MHz bus lines and are fitted if the E20 unit is the only or last peripheral on the 2MHz bus. If another peripheral is attached to the 2MHz bus through the E20 unit, then these terminators should be removed and retained.

5. E20 Fault finding

The following chapter describes the suggested methods of fault finding on a FileStore E20 unit when the fault is not clearly in a specific area.

When the FileStore E20 is powered up, the following sequence of operations, should take place, as indicated by various activity indicators on the FileStore:

- (1) On initial power up, the power indicator and mode/activity indicator should light up.
- (2) The hard disc will spin up to speed in about 10 seconds. This process produces a rising pitch humming noise which means that the hard disc is spinning. If the disc is not spinning, then check the power supply and connections.
- (3) The floppy disc drive indicator for the FileStore E01 will light up.
- (4) All indicator lights should then extinguish, except the power indicator lights, on the FileStore E01 and the connected E20. The FileStore E20 is now ready for use.

If the above power on routine fails, then the FileStore is faulty. Follow the fault finding procedures outlined below. These should help you to discover any basic fault with the FileStore.

The E20 unit consists of three major components:

- the hard disc drive
- the Host Adaptor board
- the switch-mode power supply

5.1 Power supply

The E20 unit is powered by a switch mode power supply. The power supply output cables are colour-coded as follows:

black	ground
red	+5V
orange	+12V

The power supply can be tested by measuring the +5 voltage between the black and red cables, and the +12 voltage between the black and orange cables. The allowable voltage ranges are as follows:

+5V (black and red) 4.9 V to 5.2V

+12V (black and orange) 11.4V to 12.6V

These measurements should be made with all connectors in place.

Next measure the current drawn by each of components specified above from the +5V and +12V supplies. The current measurement should be series with either the red cable (+5V) or the orange cable (+12V). The connections to the meter to do this must be made with the power switched off. The measurements must be made after power-up as some of the circuitry, when working correctly, will alter its current consumption with time as show below. The current drawn by each component from each voltage rail should be as follows:

The hard disc unit:

+5V around 1 to 1.5A +12V up in 4.5A, falling to around 2A when up to speed.

Host Adaptor board:

+5V	around 500mA
+12V	zero (not used)

The above figures are approximate and will enable checks to be made for open/short circuits and malfunctioning components.

5.2 Address decoding

To test the address decoding, execute a program to access the relevant memory location. This is done by the SCSI interface tests in the FServTest program of the FileStore test software. See Appendix A – *Test Equipment* at the back of this manual for further details.

5.3 Hand shaking

To test the SEL/BSY handshake, use the handshake test of the SCSI interface tests in the FservTest program of the FileStore test software. See Appendix A – *Test Equipment*, for further details.

5.4 Bus lines

When the buses are not being asserted by the host system, i.e. in the bus free phase, all bus lines will float according to the values of their terminating resistors.

Measure the voltage of each bus line in turn and make sure that none of them is stuck at +5V, which would indicate a short circuit, or at 0V, which would indicate that there was a short circuit. The correct voltages are as follows:

2 MHz expansion bus D0 to D7 and A0 to A7 should all be 2.5V.

If for example, D0 to D7 are all at 0V or a mixture of 0V and 2.5V, then one of the buffers is probably enabled.

5.5 Final checks

If the procedures outlined above fail to uncover the fault, then as a final check you should refer to Appendix A - *Test Equipment*, which contains more thorough tests of the FileStore.

The tests to run and the order in which to run them are as follows:

- Run all the tests in FServTest
- Run FServFmt on each disc
- Run PServInit on each disc
- Run FServSoak, running all the test patterns on each disc.

Part III : FileStore E01S

1. Introduction to the E01S unit

1.1 Equipment description

E01S is the twin floppy disc FileStore base unit

1.2 Function

FileStore E01S provides a mass storage facility for Econet users. In addition to its own disc storage, it also allows the addition of up to four E40S and/or E60S hard disc FileStore units. When connected to the Econet, the FileStore provides an Econet clock for use on "one-room" networks if one is not present. A Real Time Clock is also provided, together with a printer output to enable FileStore to be used as a printer server. A SCSI interface for hard disc and tape archive devices is also provided.

1.3 Prerequisites for use

The E0IS may be connected to an Econet network, or directly to one of die following:

- Econet network
- BBC Microcomputer
- Acorn Master Series Microcomputer
- Acorn Cambridge Workstation (ACW)
- Acorn Communicator
- Acorn Archimedes Workstation
- Acorn R140 RISC iX Workstation
- Acorn A3000 Microcomputer
- Other Econet network stations.

1.4 Enhancements

The following components may be connected to the E01S to provide additional functions:

- Any combination of FileStore E40S or E60S units, to a maximum of four in all
- Printers
- Econet bridges.

2.E01S Specification

This chapter gives details of the main features of the E01S, including electrical specifications for the interface ports.

2.1 General specification

The E01S unit has two 3.5" floppy disc drives, a switch mode power supply unit (psu) and a fileserver disc drive pcb. The psu supplies +5V and +12V rails and meets BS5850 (IEC380).

The file server disc drive pcb contains 64k of RAM and ROM (one 27512 EPROM), a Real Time Clock with battery backup, a floppy disc controller, an Econet Interface and a printer interface. The microprocessor is a 65C102 device, running at 2MHz, which provides all the processing required.

The ROM contains operating system, filing system and Econet code needed to run the file server. The 64k of RAM and ROM are never in the memory map at the same time. On power up the ROM is read and it copies its file server code into in RAM. At the completion of this exercise the memory map is almost totally resident in RAM.

A Real Time Clock circuit incorporating the 146818 RTC is used to provide the information to allow date stamping of files and also to offer the facility of the Time and Date commands to users. The RTC is battery backed-up by a rechargeable nickel cadmium cell.

The Econet Interface is based upon the Acorn Econet module. An Econet clock is generated if no clock is present.

The floppy disc interface is based upon the 2793 disc controller to provide an SA400 interface.

A Centronics-compatible printer interface is driven by a VIA which also reads the door flap switch in order to inform the processor

- when a disc is about to be changed
- whether to power up in user mode or maintenance mode.

A front door flap switch (an optical sensor) is used to inform the processor when a disc is about to be changed and whether to power up in user mode or maintenance mode.

During normal operation, when a user opens the door flap, the processor needs to save the complete disc maps (held in memory) on the discs before they are removed. It is therefore essential that before removing a disc, the user first waits until the drive motors have stopped, indicating that the maps have been stored.

FileStore will normally only accept network filing system commands. To format discs and issue direct commands to the disc, you must put FileStore into a different mode; "maintenance mode". (This is to prevent users erasing and formatting discs by mistake.) To enter maintenance mode, either power up with the access flap open, or use the *FSMODE M command from a user station (see the FileStore Network Manager's Guide for further details).

For connection to the E40S or E60S units, a FileStore expansion bus interface, similar to the BBC microcomputer 1MHz bus interface, but running at 2MHz, is fitted to the rear of the unit.

A terminator plug is supplied with the unit and is used to terminate the FileStore expansion bus when the E01S is connected to a FileStore E40S or E60S hard disc unit.

The following ports are provided:

FileStore expansion Bus: <i>Printer:</i> Econet: Mains in: Mains out: Disc interface:	 50-way Delta - rear panel 24 way Delta Connector- rear panel 5 pin DIN - rear panel Permanently attached cable through grommet in rear panel IEC320-6 socket - rear panel Internal
2.2 Physical	
2.2.1 E01S unit	
Dimensions:	length 333mm width 351mm height: 78 8mm
Colour:	Acorn Specification 0920,000
Material:	Acorn Part No. 900,000 (ABS Cycolac) Mild Steel Chassis
Finish:	Vapour blast
Net weight:	5kg
2.2.2 E0IS packaging	
Material:	Neopolene Inner, Triwall cardboard outer
Overall dimensions:	length 545mm width 500mm height 230mm
Weight (gross):	7kg

2.3 Operation

Upon power up (with the front door closed), the FileStore starts itself up into network mode ready for use over the network. If the door is open the unit will accept requests via the network to allow maintenance and disc formatting.

2.3.1 Indicators

Green LED:	Power on indicator
Red LED:	Mode indicator
2.3.2 Controls	
Mains switch	Mounted on rear panel
Front door flap	Actuates door open/closed sensor and controls the operating mode

2.4 Signal connectors2.4.1 FileStore E01S expansion bus pinouts

Connector Type: 50-way 'Type 57' (Delta) male. The pin allocations are as follows:

Pins 1-12	Gnd
Pin 13	Leave open
Pins 14-25	Gnd
Pin 26	-DB(0)
Pin 27	-DB(1)
Pin 28	-DB(2)
Pin 29	-DB(3)
Pin 30	-DB(4)
Pin 31	-DB(5)
Pin 32	-DB(6)
Pin 33	-DB(7)
Pin 34	-Not connected
Pin 35	Gnd
Pin 36	Gnd
Pin 37	Gnd
Pin 38	Not connected
Pin 39	Gnd
Pin 40	Gnd
Pin 41	Not connected
Pin 42	Gnd
Pin 43	-BSY
Pin 44	-ACK
Pin 45	-RST
Pin 46	-MSG
Pin 47	-SEL
Pin 48	-C/D
Pin 49	-REQ
Pin 50	-I/O

2.4.2 Econet port

Data rate of up to 200 Kbps (determined by the Econet clock rate)

Connector type: 5 pin, 180 degree DIN socket.

Econet port pinouts are as follows:

Pin 1	DATA+	Data positive
Pin 2	GND	Ground
Pin 3	CLK-	Clock negative
Pin 4	DATA-	Data negative
Pin 5	CLK+	Clock positive

FileStore Service Manual

Connector type: 24 way Delta connector

Standard Centronics-compatible port with control signals STRB,ACK, BUSY,SELECT (all active low).

Printer port pinouts are as follows:

Pin 1	Data ready strobe	notSTRB
Pin 3	Data 0	D0
Pin 5	Data 1	D1
Pin 7	Data 2	D2
Pin 9	Data 3	D3
Pin 11	Data 4	D4
Pin 13	Data 5	D5
Pin 15	Data 6	D6
Pin 17	Data 7	D7
Pin 19	Data acknowledge	notACK
Pin 21	N/C	N/C
Pin 23	N/C	
Pin 25	N/C	N/C
Pins 2-22 even	0V	GND
Pin 24	N/C	
Pin 26	N/C	

2.5 Power input

2.5.1 Power input requirements

The power input requirements are as follows:

	Minimum	Nominal	Maximum	Units
Voltage	198	220/240	264	V AC
Frequency		50		Hz
Power		25		Watts

2.5.2 Mains interruptions ('Brown out')

The equipment has been designed to operate without malfunction during mains interruptions as detailed below. The mains is assumed to be at nominal at all other times.

Voltage [VI]	Duration [ms]	Frequency [Hz]
0	20	0.2
50%	50	0.2

2.5.3 Power input plug and cable description

Plug type:	BS1363A sleeved L+N pins, BSI Kitemarked and/or	
	ASTA Diamond marked	
No of pins/connectors:	3	
Fuse Value:	5A to B51362 ASTA approved	
Cable type:	To B56500 Table 16 (BASEC and/or CENELEC harmonised and	
	marked)	
No. of conductors:	3	
Conductor cross sectio	n 0.75 mm ² each	
Length of cable:	2m	

2.6 Power supply 2.6.1 Power required

	nominal	max
5V	1.3A	1.7A
5V	320rnA	560mA
12V	140mA	
12V	840mA	1.0A (400msec)
5V	120mA	
5-5.25V	0-2A	
5-5.25V	0.05-0.6A	
11.4-12.6V	0-0.4A	
	0-1A	
	5V 5V 12V 12V 5V 5-5.25V 5-5.25V 11.4-12.6V	nominal 5V 1.3A 5V 320rnA 12V 140mA 12V 840mA 5V 120mA 5V 0-2A 5-5.25V 0.05-0.6A 11.4-12.6V 0-0.4A 0-1A

2.7 Safety Standards

The equipment is designed and manufactured to comply with the following standards:

- BS415
- BS5850

2.8 Electromagnetic interference

2.8.1 Standards

The equipment is designed and manufactured to comply with BS6527 Class B.

2.8.2 Mains transients

The equipment functions and is undamaged in the presence of mains-borne interference having voltage spikes detailed as follows:

Frequency:	0.2 times mains frequency
Rise Time:	5ns
Half-Pulse width duration:	50ns
Polarity:	+ve or-ve
Phase Angle:	Free, non-synchronous
Peak Voltage:	1000V does not cause malfunction (soft errors)
C	1500V does not cause physical damage, but visible
	malfunction is permitted

2.8.3 Electrostatic discharge

The equipment function is undamaged when subjected to a discharge (at both +ve and -ve polarity) from a 5pF capacitor charged to a voltage specified below, limited by a 150 Ω resistor. The discharge is applied to any user accessible points, interconnecting cables and also the ground reference plane adjacent to the equipment.

Discharge Voltage:	6kV does not cause malfunc6on (soft errors)
	12kV does not cause physical damage, but visible malfunction is
	permitted

2.9 Environment

2.9.1 Operating

The equipment operates and functions to specification while under the following environmental conditions:

Temperature	10 to +35°C
Relative Humidity	10 to 80% non-condensing
Mechanical Shock	Not operating: .40g 1/2 sinusoid l0ms, maximum repetition rate 1 every10 seconds. 10 shocks on all six faces
Operating:	5g 1/2 sinusoid 10ms, maximum repetition rate 1 every 10 seconds. 10 shocks on all six faces
Vibration	To BS2011 Part 2Fd, vibration in each plane (X,Y and Z). (Time limit for each test 90 minutes)
	Operating: 20 to 500Hz, 0.5G max (20 to 500Hz at 0.0005G sq/Hz)
	Not operating: 10Hz so 200 Hz, 2.0G max (10 to 200Hz at 0.02G sq/Hz)

2.9.2 Storage and shipping

The packaged equipment is designed and manufactured to withstand the following conditions:

Temperature	$-40 \text{ to } +60^{\circ}\text{C}$
Relative Humidity	5 to 90% non-condensing
Thermal Shock	20° C per hour within the range -20 to + 60° C
Mechanical Shock	Will withstand a drop of 1 metre on each face and on the most susceptible corner

2.10 Operational lifetime

The equipment has been designed to provide an operational lifetime of 3 years (26,208 hours, based on a 24 hour day, 7 days a week).

E01S Specification

Figure 1: Rear plastic removal

(10) Remove the floppy drives (Item 50).

- Each of the floppy drives stands off the base on four pillars (Item 10). To remove the floppy drives along with the pillars from the base metalwork, turn the FileStore unit on its side.
- Support the floppy drives while unscrewing the eight Posidriv screws (Item 62).
- Remove the two ribbon cable assemblies and power cable from the rear of the floppy drives.
- Slide both drives back from the front panel until adequate clearance is achieved to allow them to be lifted clear.
- The mounting pillars can then be unscrewed.

(11) Remove Power Supply (Item 37).

- The upper surface of the psu is covered by an insulating material (Item 36) fixed by four Posidriv screws (Item 63) to the psu. Unscrew these four screws and remove the insulator.
- Between the insulator and the psu are four small plastic spacers (Item 11) used to ensure the pcb does not pierce the insulator. Remove these.
- The psu is now held by various cable assemblies. Unplug the 4-way disc drive power cable from the floppy drives.

- Unplug the psu output cable assembly (Item 24) from the psu.
- Remove the mains input cable assembly (Item 25) by pulling the faston receptacles free from the mains-switch.
- The earth wire can then be removed from the central earth point using a ring socket spanner.
- The psu should now lift clear.
- (12) Remove the fan (Item 34) Note that the psu needs to be removed to allow access to the fan. Remove the four fixing screws (Item 62) to free the fan guard (Item 74). The fan is part of the psu output cable assembly and should be replaced as a complete assembly, if it is found to be faulty.
- (13) Remove the pcb (Item 22).
- Unscrew the bail-locks from the rear panel with a flat screwdriver and spanner.
- Unclip the printer cable (Item 28) from the latched connector on the pcb.
- Remove the earth (Item 35) and psu output cable assemblies (Item 24) by pulling the faston receptacles free from the pcb.
- Finally remove the six fixing screws, slide the pcb forward and it should now come free.

3.2 Assembly procedure

To reassemble the unit, simply reverse the above procedure.

When reassembling the unit, ensure that full earth testing has been satisfactorily completed.
4.E01S Circuit description

Read this chapter in conjunction with the circuit diagrams for Stacking FileStore E01S in Appendix D at the back of this manual.

4.1 The Central Processor

The processing power of the machine is provided by the 65C102 (IC16), an enhanced CMOS version of the 6500 series microprocessor with its own system clocks $\phi 2$ and $\phi 4$. This processor uses 8-bit architecture and runs at 2MHz.

Interrupts to the processor occur when either of the inputs IRQ or NMI are low. Interrupts occur from the following sources:

- IRQs from the Hard disc
- NMIs from the floppy Disc Drive
- NMIs from the Econet Network
- IRQs from the RTC
- IRQs from a printer, if connected.

The processor has no control over the first two of these interrupts, but can disable the Econet NMIs

during disc access, under software control.

Interrupts can be disabled within the RTC by writing to the interrupt enable bits in register B (0 disables, 1 enables). Interrupts from the printer can be disabled by writing to the relevant register within the 65C22.

The processor provides two clocks 90 degrees out of phase of each other $-\varphi 2$ and $\varphi 4$.

4.2 Random access memory (RAM)

Main memory is provided by two 4464s (IC9 and IC10). These are organised as 64K by 4 bits per device and together provide a 64K by 8 bit map.

4.3 Timing

The master system clock is 8MHz, generated by IC16 together with X2, C6, CS and R16. This is internally divided by four to produce the 2MHz phase-related timing clocks φ 2 and φ 4, output on pins 39 and 3 of IC l6 respectively.

4.3.1 The Real-Time Clock (RTC)

This is a 6818 fully programmable battery-backed device that holds FileStore system information (User id, station number, time and date etc).

The device has a multiplexed address/data bus connected directly onto the processor bus. Data and address information is strobed in and out of the device by use of the /CE, R/W, AS and DS signals.

When the FileStore is powered down, the /CE pin is held high by the battery backup circuitry. This Ceases the address/data bus, AS, DS and R/W to be disconnected within the device from the rest of the system, hence reducing the current taken from the battery.

After the system is powered-up, whenever the device is accessed the ,CE is taken low when the address strobe (AS) is valid (high) /CE is initialised by the write-only latch at &FC08 IC14 pin 15. The address strobe is decoded as &FC00 from 12 and IC17. The memory address is latched in on the falling edge of the AS.

When reading from the CMOS RAM within the 6818 (IC1) the RTC R/W line is held high and the data is read on the rising edge of DS. DS is decoded as &FC04 by IC12 and IC17. The /CE is removed at the end of the access by IC14 pin 15 going low and clearing the base of Q2 low, hence /CE goes high.

When writing the only difference from the read cycle is that DS is held high while R/W is strobed, allowing data to be written to the CMOS RAM in the 6818 (IC1) on the rising edge of R/W. Refer to Fig 2 for details.

Figure 2: RTC Read/Write timing

The frequency of the internally-generated time base is controlled by the crystal (X1) and the components R3, R6, C1, C3 and C4. In test mode TP1 is used to set the frequency. Fine adjustment is provided by C2. An internal timer is programmed by system software to generate regular interrupts for operating system service routines.

NOTE

A modification has been made to the circuit that prevents spurious writes to the memory of the RTC. This is implemented by gating /CE off the rising edge of AS so that /CE IC1 pin 13 only goes low when AS goes high. The synchronising of /CE and AS is carried out by ICmod.

4.4 Sequential Circuits

There are four sequential circuits in FileStore:

- RAM refresh
- ROM/RAM latch
- Inton/Intoff
- Econet Clock

These are described below.

4.4.1 RAM Refresh

During every op-code fetch the processor activates (high) the Sync line IC16 pin 7. This has the effect of turning IC21 output pin 11 into the inverse of IC11 pin 8. IC11, the LS57, is wired as a divide by 60 frequency counter. Upon receipt of 30 φ 2 cycles, the QC output goes high, changing on the falling edge of φ 2. This change occurring with sync high will make the K input of the JK IC6 low. Upon receipt of the falling edge of the not φ 2 clock, the Ready signal to the processor will go low and the clear signal to the LS57 will go high. This causes two operations to occur: one is that when the processor sees Ready going low during the same cycle as sync going high the processor will wait in its current state and will remain in that state until Ready goes high. The second operation that occurs is that the Clear pin of the frequency divider has become active (high). This means that the counting of the following 30 cycles of φ 2 before changing state (high for 30 cycles, low for 30 cycles – divide by 60) is stopped and the QC output is taken low which in turn takes the K input of IC6 high. On the falling edge of not φ 2 Ready goes high and the processor is running again.

The effect of all this on CAS is that the two open collector outputs from IC21 pins 8 and 11 swap control of the CAS signal during this process. At the start of the cycle IC21 pin 8 is low due to φ^2 . As φ^2 goes low QC of IC11 is clocked high which, along with a high sync, IC21 pin 11 will go low. On the next rising edge of φ^2 the Ready signal on the processor will go low. At the same time IC11 will be cleared which will take IC21 pin 11 high. The same rising edge of φ^2 will cause IC21 pin 8 to go low. See Fig 3 for details.

Figure 3: RAM Refresh (every 30 cycles of Φ 2)

During refresh control (i.e. when an op-code fetch occurs from RAM) the processor is reading hence pin 10 IC21 is always high. For further control of pin 10 IC21 see Memory read/write below.

The RAS signal is generated from $\varphi 4$. The purpose of the resistor capacitor network R17, C9 and R18, C8 is to alter the rise and fall times (i.e. stretch) of $\varphi 4$, hence producing RAS.

Refresh utilises the CAS before RAS refresh cycle of the 4464 DRAM which allows the CAS signal to be held high while the RAS signal continues to cycle. Within the 4464 DRAM is a counter for strobing the individual internal addresses of The DRAM.

- RAS occurs every 500ns.
- The LS57 counts 30 cycles then holds the processor.
- Consequently, a refresh cycles occurs every $500ns \times 30 = 15us$.
- The DRAM requires 256 cycles in 4rns 15us x 256 = 3.84ms

4.4.2 Memory read / write

IC9 and 10 are 64k by 4 bit DRAMs with an access time of 120ms. Together they provide 64k bytes of memory. The RAS signal is generated from φ 4 by utilising IC20 as an inverter. The CAS signal comes from φ 2 and is factored with the output of IC22 pin 10. During RAM accesses pin 8 of IC6 (the ROM enable latch) will be low, causing pin 9 of IC6 to disable the ROM from the memory map. Due to pin 8 IC6 being low, the output of IC21 pin 3 will be high. IC3 decodes page &FC the IO page which is not allocated within the DRAM, hence during the DRAM read/ writes pin 8 IC3 will be high (not page &FC) therefore making pin 10 IC21 high. Due to pin 10 IC21 being high the CAS signal will always be the inverse of φ 2.

The row and column addresses are strobed into the DRAM by use of IC2 and IC8. The DRAM internal row address is strobed in on the falling edge of /RAS with A0-7 on the outputs of IC2 and IC8. The row address being on the bus after /RAS goes low for a time caused by the propagation delay of IC18, IC5, IC2 and IC8. The DRAM internal column address is strobed into the DRAM on the falling edge of /CAS with A8-15 on the outputs of IC2 and IC8.

For read operations the data is read from the DRAM on the rising edge of /CAS with the DRAM output enable low and the processor R/W high. The output enable is controlled from IC12 pin 7. Pin 1 IC12 will be enabled (low) when either $\varphi 2$ or $\varphi 4$, or both, are high. To provide the correct input for pin 7 to go low the processor R/W needs to be high, (read) along with pin 11 IC12. Pin 11 IC12 will be high, provided the read is not if page &FC, which is decoded by IC3 and IC17. See Fig 4 for details.

For write operations, the data is written to the DRAM on the falling edge of the /CAS signal with the DRAM output enable high and the processor R/W low. The DRAM output enable will always be high due to the processor R/W line preventing pin 7 IC12 from going low. See Fig 5 for details.

4.4.3 ROM CONTROL

A 27512 EPROM is fitted as IC7, organised as a 64k by 8bit device. It contains the operating system and the fileserver code. This device is only accessed following a power-up, when its contents are copied into main memory. Execution is then transferred to the copy in RAM.

On power-up C13 is charged from the supply rail via R45 and D7. As power is first applied, the JK latch IC6 is cleared and the EPROM IC7 is enabled. The processor is reset and hence jumps to vector &FFFC and &FFFD. The contents of the EPROM are them copied into the DRAM up to page &FC. When address &FC is encountered, the output of IC3 pin 8 will go low, causing IC17 to be enabled. At address &FC08 pin 10 IC12 will go low, which in turn will cause pin 11 IC13 to go low. The result of pin 11 going low will cause a negative edge to clock IC6 pin 9 high and disable the EPROM. The output enable of the EPROM is controlled by pin 7 IC13, which decoded a read to memory locations outside page &FC. Data is

read from the EPROM when the /OE and /CE are both low.

4.4.4 INTON/INTOFF

Non-maskable interrupts (NMIs) are generated from two sources - the disc drive interface or the Econet network interface.

Interrupts from the floppy disc controller function in the following manner;

Upon start-up IC 19 pin 9 is cleared by the reset, causing pin 11 IC23 to be high, hence the NMI is high (inactive). If either the Data Request (DRQ) pin 38 or the Interrupt Request (IRQ) pin 39 of IC 26 of the Floppy Disc Controller go high, an NMI will be produced. For information on the cause of these and how to clear them refer to the manufacturer's data sheet. When pins 38 and 39 are cleared low, the low on pin 12 IC19 will be clocked through by φ 2 and the NMI will go high, provided that pin 9 or pin 10 of IC23 is low.

When an interrupt is generated from the Econet network, pin 1 of the Econet module will go low which will take pin 6 IC22 high. IC19 pin 6 determines whether this causes an active NMI to the processor. Pin 3 IC19 is decoded by IC17 to be &FC28, which is used as the Econet Interrupt Enable, hence when this goes low pin 9 IC23 will go high and provided that TR0 (pin 1 Econet Module) is low the NMI on the processor will be low. Pin 5 IC17 decodes to &FC24 the Econet Interrupt Disable which will set pin 9 IC23 low, hence causing changes on pin 10 IC23 to have no effect on the processor NMI pin.

FileStore Service Manual

4.4.5 Econet Clock Generation

IC15, IC27 and IC22 generate the Econet clock signal with selectable speed and mark space ratio. Links 6 and 7 select $-1 \mu s$ or 2 μs clock rates, derived from 0.5 $\mu s \varphi 2$. IC27 is a preloadable counter, links 5, 4 and 3 selecting loaded count 1, 2 and 4. The optimum setting is 200kHz. 1 μ s loaded count = 4. IC26 is the clock transmitter, enabled by CB2 on IC31.

4.5 Battery backup

Some system variables are maintained in the CMOS RAM contained within IC1. The supply to this RAM is produced during power down conditions by B1. B1 is charged by a constant current source circuit (consisting of Q1, D1, D2, R4 and R5) during power on conditions. IC1's supply is switched between the 5 Volt rail and B1 by D4 and D5.

4.6 The Econet port

4.6.1 Econet module

Most of the Econet hardware is provided on a removable PCB module which connects to the main PCB via SK10 and SK11. SK10 provides an interface to a standard Econet port, presented as a 5-pin 180 degree DIN socket. The Econet PCB module contains the 68B54 high speed data link controller and its associated buffer circuitry. The data link controller is under the control of the main processor using NMI. The module provides the following functions:

- Data transmission
- Data reception
- Clock reception and detection
- Collision detection
- Error detection

On-board circuits provide the Econet clock and termination.

4.6.2 Econet clock and active terminator

An on board clock is implemented using the master system clock at 2MHz divided down by IC15 and IC27. This is passed to a differential line driver IC28 and thence to the clock lines. Q6 and Q7 implements an active terminator which generates a 0.2V differential across the data lines. The control lines for these two circuits are from IC31 PIN 19. The insertion of the clock and terminator is automated to the extent that if a error in transmission or reception occurs, the circuit is enabled. It will also be enabled if on power up the processor detects the absence of the insertion of the DCD signal on the Econet module.

The frequency of the Econet clock is adjusted by links 3 and 4. See the Link Survey for selection detail.

4.7 The disc interface

The disc interface is controlled by IC26, IC25, IC14, IC24 and IC23. Drive selection is carried out by IC14. Data request and IRQ lines cause an NMI.

All floppy disc I/O is handled by a 2793 Floppy Disc Controller (IC26). For exact details of this operation refer to the manufacturer's data sheet

In this application it is programmed to support 250kbps data transfer and MFM decoding. Cl1 and Cl2 are used to adjust the on-chip voltage controlled oscillator. The frequency produced (on TP2) should 250KHz +/- 12.5% when the FDC is in test mode (see the manufacturers data sheet).

4.8 The printer /VIA circuitry

IC31 and IC32 control the printer interface. Port A of this device is used to generate a Centronics parallel type interface with the data buffering by IC32 and strobe by IC21 and IC22, acknowledge going directly to CA1. Only CB2 of port B is used, as an output to control the state of the Econet TX/RX clock and terminator circuit. Busy high indicates that the printer is unable to accept data.

4.9 The FileStore expansion bus and E40S/E60S interface

The FileStore expansion bus appears between locations &FC30 and &FC33. Page &FC is decoded by 1C23 and IC17. When page &FC is selected a buffer in the data bus (IC30) is enabled. The direction of this buffer is determined by the read/write line. The read/write line also selects which set of four outputs on IC35 are used. Page &FC is further decoded into &FC30 to &FC33 by IC29, IC34 and IC35. The four locations are as follows.

Address	Read	Write
&FC30 &FC31 &FC32 &FC33	data status -	data - select enable IRO

The outputs of IC35 are as follows:

• Y0(pin 15) low - read data or Y4(pin 11) low - write data

Due to the action of Y0 going low IC40 and IC41 will clock a D-type IC33 causing an acknowledge Signal, this D-type IC33 will be cleared by a request signal returning from the hard disc drive. The Request / Acknowledge handshake cycle is then complete.

• **Y1(pin 14) low - read status** When &FC31 is selected, Y1 will go low which enables the Status Register IC36. All these control signals are inverted by either IC41 or IC42 prior to being latched, so all values read from the data bus are active high. The control signals appear in the following table:

DB0	Message
DB1	Busy
DB2	0v
DB3	0v
DB4	NIRQ
DB5	Request
DB6	Input/ Output
DB7	Command/ Data

- Y2(pin 13), Y3(pin 12), Y5(pin 10) are not used.
- Y6(pin 9) low select

The action of Y6 going low will clock the other half of IC33 causing the select signal to be produced. This D-type IC33 will be cleared via IC40 and IC41 by the hard disc producing a busy signal.

• Y7(pin 7) low - enable IRQ

When Y7 is selected, the least significant bit of the data bus (D0) is clocked into a D-type flip-flop (half of IC34). If this value is a one then the latch (2 NANDs of IC40) is enabled and an IRQ will be generated at the next falling edge of REQ. To disable Interrupts Y7 is selected with a 0 on D0. IRQs are enabled only for a very short time (around 10ms) when ensuring a sequential file buffer.

4.9.1 Buffering

The data bus (DB0-DB7) is buffered in the write direction by the octal transparent latch IC38. IC38 is enabled by Y4 of IC35 which is the write data signal. Due to IC38 being a transparent latch, data will remain valid on the output side when the enable is deasserted. The outputs from IC38 are gated through 8 open collector NAND buffers which are enabled from the I/O control line of the FileStore expansion bus and which invert the bus signals.

The data bus is buffered and inverted in the read direction by an octal 3-state inverting buffer which is enabled by Y0 of IC35 which is the read data signal.

4.9.2 Termination

The FileStore expansion bus is terminated by a resistor pack RP1 in the E01S and by an external Termination pack placed in the FileStore expansion bus port of the unit at the other end of the bus.

For more information about the operational phases of the FileStore expansion bus, refer to the section entitled *Bus phases* in Chapter 4 - Circuit Description in Part IV of this manual.

4.10 Main signal paths

4.10.1 Data bus

This is a 8 bit bi-directional bus emanating from the central processor, going to all the major devices. The direction of the data flow is controlled by the CPU R/W line, a high level indicating a read by the processor.

4.10.2 Address bus

This is a 16 bit uni-directional bus emanating from the central processor.

4.10.3 Address decoding

The main decoding components are IC3, ICl2, ICl3, and 1C17. These supply the decoding to support the software activity as described below.

The layout of the file server memory map is as follows:

From	То	Function
0	&FF	Zero page, see suballocation below
&100	&1ff	Hardware stack
&200	&3FF	MOS workspace
&400	&7BFF	File server and print server code if loaded
&7C00	&E7FF	File server and print server workspace
&E800	&FBFF	MOS code
&FC00	&FCFF	Memory mapped 1/0, see suballocation below
&FD00	&FFE2	MOS code
001 200		

&FFE3	OSASCI entry
&FFE7	OSNEWL entry
&FFEE	OSWRCH entry
&FFF1	OSWORD entry
&FFF4	OSBYTE entry
&FFFA	NMI vector
&FFFC	RST vector
&FFFE	IRQ vector

Page zero is suballocated as follows:

From	То	Function
&00 &20 &90 &A0 &B0 &C0	&1F &8F &9F &AF &BF &DF	Spare (some locations used if debug options enabled in MOS) File server/print server workspace Spare at present, but may be allocated to file server Econet driver workspace File server workspace Econet driver workspace
&EU	αγγ	Disc handler workspace

Page &FC (the memory mapped I/O page) is suballocated as follows:

&FC00[-&FC03] &FC04[-&FC07] &FC08[-&FC0B]	146818 RTC address register 146818 RTC data register (read) ROM/RAM memory access lamb (currently will always select RAM)
&FC08[-&FC0B]	(write) miscellaneous function latch
&FC0C-&FC0F	2793 Floppy Disc Controller
&FC10-&FC1F	6522 Versatile Interface Adaptor
&FC20-&FC23	6854 Econet interface
&FC24[-&FC27]	Econet interrupt disable
&FC28[-&FC2B]	Econet interrupt enable
&FC2C[-&FC2F]	Floppy drive door switch state
&FC30-&FC33	FileStore expansion bus interface. Strapped to emulate bus
	address &40, the bottom two bits of the &FC3x address
	indicate bus &4x.

Higher values in this page will access the same registers as above if taken modulo &40. Values in square brackets above are also alternate addresses for the various registers. Note that addresses are subject to change, and this should be borne in mind when designing software to address these registers.

4.10.4 Machine Operating System function calls

The file server MOS provides a subset of the BBC MOS interface. It is not necessarily the case that any test programs running in place of the file server will be able to obtain all the desired support from the MOS. Such test programs should however be written with an awareness of the MOS in mind. In particular, it is recommended that the contents of hardware registers and interrupt vectors are saved and restored over the execution of a test program, and the stack pointer restored to its value on entry.

The file server MOS provides the following functions, at the standard addresses:

OSASCI, OSNEWL, OSWRCH

These have the same specification as for the BBC MOS, except that the character in A is always inserted into the printer output buffer, not the current output stream buffer. If the buffer is full, these routines wait until there is room to store the character. OSWORD

The following OS WORD functions are supported (X/Y point to the data block):

A=1 A=2	Read date/time from RTC chip. Write date/time to RTC chip. The date and time are in the file server format, which is: byte 0: date in month byte 1: years since 1981 / month (4 bits each) byte 2: hours (24 hour clock) byte 3: minutes byte 4: seconds
A=3 A=4	Read timer interval. Write timer interval. The timer is a 5 byte value counting in 1/100 seconds, however as his driven from the RTC it increments in steps of 1 second. There are no 'events' in the machine; the caller must poll the time regularly to see if an interval expires.
A=5 A=6	Read non-volatile memory in RTC. Write non-volatile memory in RTC. One byte is transferred between the address at (X/Y)+4 and the RTC chip address indicated by the bottom six bits of the byte at (X/Y). Note that the first 14 locations are used by the RTC itself, and the remainder allocated as follows for non-volatile use by the file server and print server: 14-15 station ID + ones complement 16-19 reserved for use by MOS 20-24 internal error logout area 25 MAXUSERS setting 26 MAXDRIVE setting 27-32 alternative POLLPS name for printer
	Test routines are recommended to start from 63 downwards if they wish to use the RTC storage.
A=16 A=17	Econet TRANSMIT- as BBC Econet RECEIVE - as BBC A maximum of one transmit block and eighteen receive blocks may be active at a time.
A=19	Station information - function codes available are: 1 - write file server number 5 - write protection mask
A=114	Read/write block. Function codes available are: &08 read block(s) &0A write block[s] &0D set drive parameters &0F format drive

OSBYTE

The following OSBYTE functions are supported:

A=50	POLL TRANSMIT - as BBC
A=51	POLL RECEIVE - as BBC
A=52	Delete RECEIVE - as BBC
A=128	X=O: Read COMMAND/USER and Floppy drive door switch states, returns 2 if drive door open, 1 if in COMMAND mode X=252: Read free bytes in primer output buffer.
A=132	Read address of top of workspace area to X/Y. The value returned is the current base of the MOS.
A=137	LED control. X=0 will turn off the programmable led, X=1will turn it on.

4.11 Link survey

Link survey functions are as follows:

Function
1µs net clock enable
2µs net clock enable
Net clock divide by enable
Net clock divide by 4 enable
Net clock divide by 8 enable

5. E01S Fault finding

The following chapter describes the suggested methods of fault finding on a Stacking FileStore E01 unit when the fault is not clearly in a specific area.

When the E01S unit is powered up, the following sequence of operations, should take place, as indicated by various activity indicators on the FileStore:

- (1) On initial power up, the power indicator and mode/activity indicator should light up.
- (2) The disc drive activity light for any connected Stacking FileStore units will flicker in turn.
- (3) The floppy disc drive indicator for the FileStore E01S will light up.
- (4) All indicator lights should then extinguish, except the power indicator lights, for all connected FileStore units. The FileStore E01S is now ready for use.

If the power on routine fails, then the FileStore is faulty. Follow the fault finding procedures outlined below. These should help you to discover any basic fault with the FileStore.

The E01S unit consists of three major components:

- the pcb
- two floppy disc drives
- the switch-mode power supply.

5.1 Power supply

The EO1 power unit is powered by a switch mode power supply. The power supply has two outputs. The 5V power supply cables are colour-coded as follows:

Black	ground
Red	+5V

The power supply can be tested by measuring the +5V voltage between the black and red cables. The allowable voltage ranges are as follows:

+5V (black and red) 5.0V to 5.25V

The measurements should be made with all connectors in place.

Next, measure the current drawn by the pcb from the +5V supply. The current measurement should be made in series with the red cable. The connections to the meter to do this must be made with the power switch off. The measurements must be made after power-up as some of the circuitry when working correctly, will alter its current consumption with time. Also ensure that:

- the Econet module is fitted
- the SCSI interface is disconnected from other devices, but still have the SCSI terminator fitted
- The front flap should be closed.

E01S Fault finding

The current drawn should be as follows:

The pcb:

Following start up, after the EPROM has been copied into RAM, the current should drop by about 100mA just before the discs are accessed.

The second output supplies the floppy disc drives. It is daisy-chained from the power supply to the disc drive. Looking down on to the top of the disc drive with the bezel towards you, the power supply pinouts are orientated as shown below:

*	*	*	*
+5V	Gnd	Gnd	+12V

Alternatively, some connectors are labelled 1 to 4, hence the supply would be shown:

1	2	3	4
*	*	*	*
+5V	Gnd	Gnd	+12V

The output can be tested by measuring the +5V and +12V voltage between the relevant pin and ground. The allowable voltage ranges are as follows:

+5v	500V to 5.25 V
+12V	11.4V to 12.6V

In order to measure the currents drawn by the disc drives it would be necessary to make up a small board that could be placed in-line between the power supply socket on the flying lead and the disc drive plug. This board would need to have links which can be made or broken depending on which line the current is being measured in. See- Fig 6 for details.

Figure 6: Board layout

Tale care not to cause any short circuits between the power supply pins and also between the board and the top of the disc drives and other components in the FileStore, i.e. the power supply pcb.

The measured values should be:

+5V	Standby R/W	50mA nominal 275mA nominal
+12V	Motor or start up Seek R/W	500mA nominal 140mA 90mA

See Fig. 7 for a diagram of the typical waveform produced:

Figure 7: E01S start-up waveform

NOTE

The above figures are per drive. Also note that the quality of diskette and type of drive used can affect the values given.

5.2 Initialisation

If you have a suitable printer available, plug it into the unit and turn it on. Open the units Access flap and then turn the unit on, while observer the printer as you turn it on. If the printer performs a line feed, refer to section 5.3 Net Link.

If the printer does not perform a line feed, check the following with an oscilloscope:

Test

For

Data lines: for activity (at IC16)	Processor clock: NMI line: RTC frequency: Address lines: Data lines:	2MHz on pin 3 and 39 of IC16 High on pin 6 if IC16 1024 Khz at TPI (at IC1) for activity (at IC16) for activity (at IC16)
------------------------------------	--	---

5.3 Net link

If it appears that the link to the network is failing, the most common causes are:

Symptom	Action
Net module faulty	Replace net module
No clock	Check clock path and enable
Line jammed	Check for approximately 0.3V across the data pair

5.4 Final checks

If the procedures outlines above fail to uncover the fault, then as a final check you should refer to Appendix A – *Test Equipment* at the back of this manual, which contains more thorough tests of the FileStore.

The tests to run and the order in which to run them are as follows:

- Run all the tests in FServTest
- Run FServFmt on each disc
- Run FServInit on each disc
- Run FServSoak, running all the test patterns on each disc.

Part IV: FileStore E40S and E60S

1. Introduction to the E40S and E60S

The E40S and E60S provide increased mass storage on hard discs for Econet users, of 40Mb and 60Mb respectively. They are used in conjunction with the E01S floppy disc FileStore; up to four E40S or E60S units may be linked to a single E01S in any combination.

2. E40S/ E60S Specification

This chapter gives details of the main features of the FileStore E40S and E60S hard disc.

2.1 General specification

2.1.1 Hardware components

Within the box is a switch mode power supply, 3.5" 40Mb hard disc (or for the E60S with an onboard SCSI controller.

2.1.2 Software components

The hard disc is already formatted (as an ADFS disc), initialised as a fileserver and management and user utilities. There are no other software components; the filing contained in the E01S unit.

2.2 Physical 2.2.1 E40S and E60S units

ColourAcorn Specification 0920,000MaterialAcorn Part No. 900,000 (ABS Cycola Mild Steel ChasisFinishVapour BlastNet weight5kgE40S/E60S packagingPackaging materialNeopolene Inner Triwall cardboard outer Tray to hold expansion cablePackaging dimensionslength 545mm width 500mm height 230mmGross weight7kg		Dimensions	length 333mm width 351mm height 78.8mm
MaterialAcorn Part No. 900,000 (ABS Cycola Mild Steel ChasisFinishVapour BlastNet weight5kgE40S/E60S packagingPackaging materialNeopolene Inner Triwall cardboard outer Tray to hold expansion cablePackaging dimensionslength 545mm width 500mm height 230mmGross weight7kg		Colour	Acorn Specification 0920,000
FinishVapour BlastNet weight5kgE40S/E60S packagingPackaging materialNeopolene Inner Triwall cardboard outer Tray to hold expansion cablePackaging dimensionslength 545mm width 500mm height 230mmGross weight7kg		Material	Acorn Part No. 900,000 (ABS Cycolac) Mild Steel Chasis
Net weight5kgE40S/E60S packagingPackaging materialNeopolene Inner Triwall cardboard outer Tray to hold expansion cablePackaging dimensionslength 545mm width 500mm 		Finish	Vapour Blast
E40S/E60S packagingPackaging materialNeopolene Inner Triwall cardboard outer Tray to hold expansion cablePackaging dimensionslength 545mm width 500mm height 230mmGross weight7kg		Net weight	5kg
Packaging materialNeopolene Inner Triwall cardboard outer Tray to hold expansion cablePackaging dimensionslength 545mm width 500mm height 230mmGross weight7kg	E40	S/E60S packaging	
Packaging dimensionslength 545mm width 500mm height 230mmGross weight7kg		Packaging material	Neopolene Inner Triwall cardboard outer Tray to hold expansion cable
Gross weight 7kg		Packaging dimensions	length 545mm width 500mm height 230mm
		Gross weight	7kg

2.3 Operation

2.2.2

When the E40/E60S is connected to a FileStore E01S and powered up, the FileStore hard disc. The FileStore unit, comprising the FileStore E01S and E40S/E60S, then mode, ready for use.

2.3.1 C	ontrols Power on/off switch Drive id switch	On rear panel On rear panel
2.3.2 Ir	ndicators Green LED Red LED	Power on indicator Drive active
2.4 Ex	xpansion input/outpu	it ports
	FileStore expansion bus:	2×50 way 'Type 57' (De

FileStore expansion bus:	2 x 50-way 'Type 57' (Delta) connectors, one male, one female, daisy-chained.
Mains in	IEC320: flying lead with plug for 'In' daisy- chained to panel-mounted socket for 'Out'
FileStore expansion bus	Rear Panel

2.4.1 FileStore E40S/E60S expansion bus connector The E40S/E60S unit is equipped with two expansion bus connectors, for connecting to the E01S and an (optional) second FileStore expansion bus device. The connection to the E01S unit is made with the supplied FileStore expansion Bus Cable, Acorn part number 154,728.

The Connectors are 50-way IDC male sockets, wired as below:

D' 1 10	C 1
Pins 1-12	Gnd
Pin 13	Leave open
Pins 14-25	Gnd
Pin 26	-DB(0)
Pin 27	-DB(1)
Pin 28	-DB(2)
Pin 29	-DB(3)
Pin 30	-DB(4)
Pin 31	-DB(5)
Pin 32	-DB(6)
Pin 33	-DB(7)
Pin 34	NC
Pin 35	Gnd
Pin 36	Gnd
Pin 37	Gnd
Pin 38	TERMPWR
Pin 39	Gnd
Pin 40	Gnd
Pin 41	NC
$\frac{1}{2}$	Gnd
$\frac{1}{111} \frac{1}{42}$	DCV
$\begin{array}{c} \Gamma \\ \Pi \\ H \\ H$	
P1n 44	-ACK
Pin 45	-RST
Pin 46	-MSG
Pin 47	-SEL
Pin 48	-C/D
Pin 49	-REO
Pin 50	I/O

2.5 Power input2.5.1 Power input requirements

Power input requirements are as follows:

	Minimum	Nominal	Maximum	Units
Voltage	198	220/240	264	VAC
Frequency		50		Hz
Power		40		Watts

2.5.2 Mains interruptions ('Brown out')

The equipment has been designed to operate without malfunction during mains interruptions as detailed below. The mains is assumed to be at nominal at all other times.

Voltage [V]	Duration [ms]	Frequency [Hz]
0	20	0.2
50%	50	0.2

2.5.3 Power input plug and cable description

Plug type	IEC320	
No of pins/connectors	3	
Cable type	To BS6500 Table 16 (BASEC and	'or
	CENELEC harmonised and marked)	
No. of conductors	3	
Conductor cross section	0.75 mm ² each	
Length of cable	350mm	

2.6 Power supply

$\Delta (1)$	D	• 1
2.6.1	Power	required

		nominal	max
Drives	5V	0.7A (0.6A standby)	0.8A (0.65A standby)
	12V	(0.6A standby) 0.5A (0.4A standby)	(0.05A standby) 0.9A (0.45A standby)
Drive start	12V		2.5A for 2 seconds
Fan	5V	120mA	

2.7 Safety standards

The equipment is designed and manufactured to comply with the following Standards:

• BS415

• BS5850

2.8 Electromagnetic interference

2.8.1 Standards

The equipment is designed and manufactured to comply with the following Standard:

Agency	Country	Standard	Comments
BSI	UK	BS6527	Class B

2.8.2 Mains transients

The equipment functions and is undamaged in the presence of mains-borne interference having voltage spikes detailed as follows:

Frequency	0.2 times mains frequency
Rise Time	5ns
Half-Pulse width duration	50ns
Polarity	+ve or -ve
Phase Angle	Free, non-synchronous
Peak Voltage	1000V does not cause malfunction (soft errors)
e	1500V does not cause physical damage, but may
	cause visible malfunction

2.8.3 Electrostatic discharge

The equipment functions/is undamaged when subjected to discharge (at both –ve and –ve polarity) from 5pF capacitor charged to a voltage specified below, limited by 150Ω resistor. The discharge is applied to any user accessible points, interconnecting cables and also the ground reference plane adjacent to the equipment.

Discharge Voltage. 6kV does not cause malfunction (soft errors) 12kV does not cause physical damage, but visible malfunction is permitted

2.9 Environment

2.9.1 Operating

The equipment operates and functions to specification continuously while under the following environmental conditions:

Temperature	$+10 \text{ to } +35^{\circ}\text{C}$
Relative Humidity	10 to 80% non-condensing
Thermal Shock	10°C per hour maximum
Mechanical Shock	Not operating: 35g ¹ / ₂ sinusoid 10ms, maximum
	repetition rate once every 10 seconds.10 shocks on
	all six faces

Chapter 2	E40S/E60S Specification
	Operating: $10g \frac{1}{2}$ sinusoid 10ms, maximum repetition rate once every 10 seconds. 10 shocks on all six faces.
Vibration	To BS2011 Part 2Fd, vibration in each plane (X, Y and Z). (Time limit for each test 90 minutes)
	Operating: 1.0g peak acceleration, 20Hz to 500Hz (20 to 500Hz at 0.005G sq/Hz)
	Not operating: 2.0g peak acceleration, 10Hz to 200Hz (10 to 200Hz at 0.02 sq/Hz)
2.9.2 Storage and shipping	5

2.9.2 Storage and shipping The packaged equipment is designed an manufactured to withstand the following conditions:

Thermal Shock20°C per hour maximumMechanical ShockWill withstand a drop of 1 metre on each face and on most susceptible corner	Temperature Relative Humidity Thermal Shock Mechanical Shock	-20 to +60°C 10 to 80% non-condensing 20°C per hour maximum Will withstand a drop of 1 metre on each face and on the most susceptible corner
---	---	--

2.10 Emitted acoustic noise

54dBA (continuos maximum) at 1m from the nearest point on the drive.

2.11 Operating lifetime

The equipment has been designed to provide the following operational lifetime: 26,208 hours, or 3 years (Based on a24-hour day, 7 days a week).

To ensure trouble-free operation of the disc drives, the E01S and E40S/ E60S should not be exposed to excessive heat, moisture, direct sunlight or very dusty conditions.

3. E40S/E60S Disassembly and assembly

DANGER

Removing the cover of an E40S or E60S unit exposes dangerous voltages. Ensure that the unit is switched off and the plug removed from the mains supply before removing the cover.

WARNING

A number of components within the units are STATIC SENSITIVE. It is possible that these components may be damaged if subjected to a static discharge. Avoid contact with the hard disc at all times without taking adequate precautions against static.

WARNING

When the hard disc drive is removed for service work, great care must be taken not to drop, jar or shock the unit in any way. Under no circumstances should the drive itself be opened to expose the head mechanism: this can only be done by the manufacturer in a special ultra-clean room

3.1 Disassembly procedure

The numbered items mentioned in the following procedure refer to the E40S/E60S final assembly drawing in Appendix C.

- (1) Power down the unit for disassembly.
- (2) Disconnect the unit from the mains.
- (3) Remove the unit from the stack.
- (4) Remove the rear plastic moulding (Item19) by levering the top up and back. The plastic mouldings are fixed to the FileStore box by locating lugs on the inner top and bottom faces. These lugs are about 10mm wide by 2mm thick.
- Remove the front plastic moulding (Item 13). Care must be taken not to damage the cable assemblies fixed to the front plastic.
- Turn the FileStore unit over so that it rests on its top cover and the top faces of the plastics.
- Insert a flat screwdriver between the base of the metalwork and upper face of the plastic approx. 25mm from one corner. Exert a small force to lift the plastic away from the metal.
- With a second flat screwdriver repeat this action at the centre. See Fig 8.
- Remove the first screwdriver and repeat the exercise at the remaining corner. The plastic will still be connected to the FileStore by flying leads to the LEDs.
- Remove the side plastic (Item 18).
- Turn the FileStore unit the correct way up.
- Lever the top of the plastic away from the metal.

(5) Remove the top cover (Item 14). This is fixed by six Posidriv screws (Item 61) through the base of the unit.

Warning

Before continuing disassembly of the rest of the unit ensure that full anti-static procedures are taken.

(6) The top cover will now slide off the rear of the unit.

Figure 8: Rear plastic removal

(7) Remove the hard disc drive (Item 40).

- The drive stands off the base on four pillars (Item 8). To remove the drive along with the pillars from the base metalwork, turn the FileStore unit on its side.
- Support the drive while unscrewing the four Posidriv screws (Item 61).
- Remove the two ribbon cable assemblies, earth wire and power cable from the rear of the hard disc drive.
- The mounting pillars can then be unscrewed. After the drive has been removed, ensure that it is still kept free of static discharges.

(8) Remove Power Supply (Item 38).

- The upper surface of the psu is covered by a insulating material (Item 25) fixed by four Posidriv screws (Item 62) to the psu. Unscrew these four screws and remove the insulator.
- Between the insulator and the psu are four small plastic spacers (Item 11) used to ensure the pcb does not pierce the insulator. Remove these.
- The psu is now held by various cable assemblies. Unplug the 13 way cable assembly (Item 34). It should now be possible to unplug the mains cable assembly (Item 10) from the component side of the psu. The Earth wire is fixed by a faston receptacle which can be pulled clear.

- The psu should now be free of the FileStore unit.
- (9) Remove Fan (Item 34). Note that the psu needs to be removed to allow access to the fan. Remove the four fixing (Item 63) to free the fan guard (Item 74) and fan. The fan is part of the psu Output cable assembly and should be replaced as a complete assembly, if it is found to be faulty.

3.2 Parts not serviceable

Faults detected in the disc drive, disc controller board or power supply, mean that the faulty part must either be returned for repair or replaced. Dealers may hold stock of these items and should refer to information provided by their supplier for service procedures for these units.

3.3 Assembly procedure

To reassemble the unit, simply reverse the above procedure.

When reassembling the unit, ensure that full earth testing has been satisfactorily completed.

4.E40S/E60S Circuit description

Read this chapter in conjunction with the circuit diagrams for Stacking FileStore E40S and E60S in Appendix E at the back of this manual.

4.1 Bus phases

The bus has several distinct operational phases and cannot be in more than one of these phases at any given time.

Bus phases occur in a prescribed sequence. The reset condition can interrupt any phase and is always followed by bus free. Any other phase can also be followed by the bus free phase.

The prescribed sequence is from bus free to selection to one or more of the information transfer phases to bus free again.

There are no restrictions on the order of information transfer phases, and a phase will often follow itself, that is there will be two data phases, one after the other.

A typical sequence would be:

- bus free
- select controller selection phase
- transfer command bytes command phase
- transfer data bytes (if necessary) data in/out phase
- status phase
- message phase

The phases are as follows:

4.1.1 Bus free phase

Indicates that the bus is available for use. The bus free phase is indicated by all control signals described in the previous section being deasserted. If SEL, BSY and RST are not asserted, that is sufficient to guarantee bus free.

4.1.2 Selection phase

Allows the initiator to select the target. After detecting bus free, the initiator asserts SEL. The target detects SEL asserted, and BSY and I/O deasserted, and responds by asserting BSY. The initiator deasserts SEL and may then change the data signals.

4.1.3 Information transfer phases

Allow transfer of information across the bus. There are several different types of information transfer phase, and the type is determined by MSG, C/D and I/O.

The information transfer phase is as follows:

Signa Msg	ls C/D	I/O	Phase name	Direction of information transfer
1 1 1 1	1 1 0 0	1 0 1 0	data out phase data in phase command phase status phase	initiator to target target to initiator initiator to target target to initiator
$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	1 0	message out phase message in phase	initiator to target target to initiator
All sig	nals ac	tive-low:		0 = assertion 1 = deassertion

The information transfer phases use the REQ/ACK handshake to control information transfer: each REQ/ACK allows the transfer of 1 byte. The handshake sequence is:

- (1) Target asserts REQ to request data transfer
- (2) Initiator asserts ACK when data is valid on bus
- (3) Target deasserts REQ when data has been transferred
- (4) Initiator deasserts ACK ready for next handshake.

Prior to and during information transfer, the I/O signal determines the direction of the transfer.

Before each information transfer phase the target will set up the MSG, C/D and I/O lines in such a way that these control signals are stable for 450ns before the REQ of the first handshake, and remain valid until the deassertion of ACK at the end of the last handshake.

During each information transfer phase the BSY line remains asserted and SEL deasserted.

Each information transfer phase is now described in turn:

• Command phase

Allows the initiator to direct the subsequent action of the target by transferring command bytes. The target asserts C/D and deasserts MSG and I/O.

• Status phase

Allows the initiator to read the target's status information. The target asserts C/D and I/O and deasserts MSG.

• Data out phase

Allows data to be transferred from initiator to target. The target deasserts MSG, C/D and I/O.

• Data in phase

Allows data to be transferred from target to initiator. The target asserts I/O and deasserts MSG and C/D.

• Message out phase

Not used by the system - available for future expansion.

• Message in phase

Allows the target to send a message byte to notify completion of a command.

4.1.4 Termination

An external termination pack is provided with the E01S unit to terminate the expansion bus of E40S/E60S units. The pack is placed in the expansion bus port of the unit at the end of the bus.

5. E40S/E60S Fault finding

The following chapter describes the suggested methods of fault finding on a FileStore E40S/E60S when the fault is not clearly in a specific area.

When the FileStore E40S/E60S is powered up, the following sequence of operations, should take place, as indicated by various activity indicators on the FileStore:

- (1) On initial power up, the power indicator and mode/activity indicator should light up.
- (2) The hard disc will spin up to speed in a few seconds. This process produces a rising pitch humming noise which means that the hard disc is spinning, If the disc is not spinning, then check the power supply and connections.
- (3) Each hard disc is then accessed in turn, as indicated by the drive indicator.
- (4) The floppy disc drive indicator for the FileStore E01S will light up.
- (5) All indicator lights should then extinguish, except the power indicator lights, on the FileStore E01 and any connected E40S/E60S units. The FileStore E4OS/E60S is now ready for use.

If the above power on routine fails, then the FileStore is faulty. Follow the fault finding procedure outlined below. This should help you to discover any basic fault with the FileStore.

The F40S/E60S unit consists of two major components:

• the hard disc drive

• the switch-mode power supply.

5.1 Power Supply

The E40S/E60S is powered by a switch mode power supply. The power supply output cables are colour- coded as follows

black	ground
red	+5V
orange	+12V

The power supply can be tested by measuring the +5 voltage between the black and red cables, and the +12 voltage between the black and orange cables. The allowable voltage ranges are as follows:

+5V (black and red) 4.9V to 5.2V +12V (black and orange) 11.4V to 12.6V

These measurements should be made with all connectors in place.

Next measure the current drawn by the components specified above from the .5V and +12V supplies. The current measurement should be made in Series with either the red cable (+5V) or the orange cable (+12V). The connections to the meter to do this must be made with the power switch off. The measurements must be made after power-up as some of the circuitry, when working correctly, will alter its current consumption with time as shown below. The current drawn by each component from each voltage rail should be follows:

+5V	0.7 to 1A
+12V	up to 2.5 <i>A</i> , falling to around 0.4 to 0.9A when up to speed, in approximately two seconds.

See Fig 9 for a diagram of the typical waveform produced:

Figure 9: E40S/ E60S start-up waveform

The above figures are approximate and will enable checks to be made for open/short Circuits and malfunctioning components.

5.2 Address decoding

To test the address decoding, execute a program to access the relevant memory location. This is done by the SCSI interface tests in the FServTest program of the FileStore test software. See Appendix A - *Test Equipment* at the back of this manual for further details.

5.3 Hand shaking

To test the SEL/BSY handshake, use the handshake test of the SCSI interface tests in the FServTest program of the FileStore test software. See Appendix A - *Test Equipment*, for further details.

5.4 Bus lines

When the buses are not being asserted by the host system, ie in the bus free phase, all bus lines will float according to the values of their terminating resistors.

Measure the voltage of each bus line in turn and make sure that none of them is stuck at +5V, which would indicate a short circuit, or at 0V, which would indicate that there was a short circuit.
Chapter 5

The correct voltages are as follows:

• 2 MHz expansion bus D0 to D7 and A0 to A7 should all be 2.5V.

If for example, D0 to D7 are all at 0V or a mixture of 0V and 2.5V, then one of the buffers is probably enabled.

5.5 Final checks

If the procedure outlined above fail to uncover the fault, then as a final check, you should refer to Appendix A - *Test Equipment*, which contains more thorough tests of the FileStore.

The tests to run and the order in which to run them are as follows:

- Run all the tests in FServTest
- Run FServFmt on each disc
- Run FServInit on each disc
- Run FServSoak, running all the test patterns on each disc.

Chapter 5

Appendix A. Test Equipment

This appendix describes the equipment required and the procedures used to test the FileStore E01 and E20 units and the Stacking FileStore E01S, E40S and E60S units.

The test software is supplied on a 5.25" disc and provides a set of programs to test individual areas of the FileStore unit. To facilitate their use, the programs contain the following common features:

- the design of the user interface
- the concept of the current drive
- timeout characteristics for network operations.

Equipment required

The FileStore dealer test software requires the following hardware and software:

- An Acorn Master 128 Microcomputer with ADFS and a 5.25 floppy disc drive
- A network connected to the FileStore to be tested, known as the unit under test or UUT. (The network connection may be via a Bridge.)
- An Econet Test Box (Acorn part no. 0003,012)
- FileStore dealer test disc (Acorn part no. 0282,030)

Setting up

DANGER

PERSONNEL ARE EXPOSED TO MAINS VOLTAGES WHEN THE TOP COVER IS REMOVED AND MAINS POWER APPLIED.

DANGER

AT ALL TIMES DURING THE TEST PROCEDURE THE POWER MUST BE THE LAST CONNECTION TO MADE BEFORE THE TEST COMMENCES, AND THE FIRST CONNECTION REMOVED WHEN THE TESTING HAS BEEN COMPLETED.

Connecting the test station

Make the following connections:

- From: Master 128, 'User port' To: Test Box, central (unlabelled) socket Using 20 way parallel connector cable
 - From: Test Box, 'Tester' socket To: the Econet containing the Master 128 Using: Econet cable

Connecting the UUT

Make the following connections:

• From: Test box, 'UUT' socket To: the Econet containing the FileStore Using: Econet cable

Any of the above connections should not be made on a network that is in active use. For example, one of the purposes of the Econet test box is to simulate a poor Econet connection by transmitting noise on the line. This would annoy other users.

Test procedure

Insert the dealer test software disc into the disc drive of the Master 128 and press <Shift>— <Break>.

You are prompted to specify which FileStore you wish to test. Type in a station number - either the number of a station on the local network, or else a net number followed by a full stop and a station number on that network (if you are using a network bridge).

You will be logged onto that station, if possible, and be offered a menu (FServMenu) containing the test programs of the suite:

Main menu - logged on to station station number

C Copy disc sector by sector E Edit file server disc structure F Format disc, ready for initialisation H Help, prints this message I Initialise disc, ready for use in the FileStore L Logon to a new station N Non-volatile RAM editor Q Quit this program suit S Soak test discs T Test main board * Execute a star command

Option:

If you fail to log on to the station specified, an error message is printed, and a truncated menu of just 'Help', 'Logon', 'Quit' and 'Star commands' will be offered, so that you can take whatever corrective action is needed.

Menus

All programs in the suite use the FileStore chosen when FServMenu starts up. This may be changed by the 'Logon to new station' ('L') option in FServMenu. The programs all share the idea of the 'current drive' which may be changed by the 'Select drive' ('D') option and examined by the 'Drive information' ('I') option (in those program for which it is relevant).

All programs also have menus containing a ('Q') option, 'which takes you back to FServMenu (or from FServMenu back to the BASTC prompt) and a 'Help'('H') option, which prints the option list.

Selecting menu entries

Menu entries are selected, and yes/no questions are answered, by a single key-press only. An invalid choice a has no effect. When you choose a menu option, Space bar and <CR> are both equivalent to 'Help' ('H').

Numerical input may be given in decimal or hexadecimal (preceded by a '&'): some questions supply a '&' after the prompt automatically: this may be deleted if you wish to give the number in decimal.

The following sections describe each of the options that can be selected from FServMenu.

FservCopy

Select 'C' from the FServMenu. This invokes FservCopy, the disc copying utility and displays the following menu:

Copy disc from drive source to drive target C Copy source disc to target disc (DESTROY ALL DATA) D Change target drive H Help, display this message I Target drive information J Source drive information Quit back to main menu S Change source drive

Using the options from the above menu, you can copy the entire contents of a disc from one drive to another. The discs must both be the same 'shape' i.e., the same number of sectors, divided into the same number of cylinders, heads and tracks (this is checked by the program), and the target disc must be formatted (but it need not be initialised, as the initialisation data will be copied as well).

The copy is done sector by sector, and sectors of the disc that are not used by any file are not copied, for efficiency. The result is an exact duplicate of the original disc. The title should be changed before it is used in a FileStore, as it will be the same as the disc from which the copy was made. This can be done using the FServEdit, or the FileStore command FSNamedisc.

To duplicate a disc onto a disc of a different shape, the utility NetMgr (supplied with the FileStore) should be used: this copies the files and directories individually.

FServEdit

Select E' from FServMenu, this invokes FServEdit, the sector-by-sector disc structure editor and displays the following menu:

```
Edit FileStore structures on drive drive

A Add directory entry K Compare bit maps V Validate disc

C List map chain L List directory X Remove directory entry

D Change drive M List bit map blocks Y Re-validate bit maps

E Edit sector Q Quit this program Z Change disc name

H Display help message R Read sector

I Show disc information T Print tree
```

Using the options from the above menu you can edit the structure of a disc sector-by-sector, making any kind of modification to the structure of a disc.

WARNING

It cannot be emphasised too strongly that FServEdit is completely 'insecure' in that it lets you do anything to any sector, with no consistency checking unless you explicitly ask for it. It is very easy to delete data from sectors, or alter directories so that they no longer refer to files, Of course, without this flexibility it would be less useful than it is.

The main features of FileStore discs that FServEdit knows about are:

- Directories
- Map chains
- Sectors
- The cylinder allocation bitmaps
- The disc name.

A FileStore directory contains, along with the catalogue information about a file, the sector number (called the System Internal Number (SIN)) of an object called a 'map chain' which is a list of sector numbers where the data for the file can be found. This also applies to directories. To refer So a file, you refer to the SIN of its map chain.

Each disc has a boot sector (and a redundant copy of this). FServEdit can list the contents of the boot sector: this contains the SIN of the root directory, \$ (really, the SIN of the map chain that refers it).

Directories can be listed ('List directory' 'L') and entries can be added to them ('Add entry', 'A') and removed ('Remove entry', 'X').

Map chains can be listed ('List map chain, 'C').

The contents of sectors can be edited: there is screen editor to allow the user to alter the contents of any disc sector, using the command 'Edit sector' ('E') or 'Read sector' ('R').

The cylinder allocation bitmaps can be listed ('List bitmap blocks', 'M') and checked: 'Validate disc ('V') makes a new allocation bitmap (in an ordinary disc file), by following the directory entries on disc, without reference to the bitmaps on the disc; then 'Compare bitmaps' (K') can be used to compare the bitmaps on the disc with the contents of this file, and 'Revalidate bitmaps' ('Y') to replace the bitmaps on the disc with the ones from the file, in the case that they are different.

The name of the disc: 'Change disc name' ('Z') is equivalent to the FileStore command FSNamedisc.

FServFmt

Select 'F' from FServMenu. This invokes FServFmt, a general formatting program for formatting Acorn hard disc drives used in FileStore units (Rodime R0650 and RO3000 series). The following menu is displayed:

	Format disc - current drive is	drive
Q	Quit	F Format disc (DESTROY ALL DATA)
М	Change format parameters	A Add defects at logical block
С	Change the drive parameters	P Print disc controller page
U	Initialise maintenance pages	T Type the defect list
V	Verify area of disc	W Write ADFS structure
3	Certify	R Change error recovery
Е	Enquiry	4 Sector error read/ write tests
Ι	Drive information	D Change drive
Н	Help	S Self test
?	Error Log	

Using the options from the above menu, you can carry out all the operations necessary to preparing a hard disc for formatting.

The disc controller pages may be examined ('Print disc controller page' 'F'), and the contents of user pages A, B may be written ('Initialise maintenance pages' 'U'): for Acorn drives, these must contain the eight characters '(C) Acorn'. Note that near page B is 'write-once:' after it has bane written, another attempt is an error. The error recovery parameters of the drive may be changed ('Change error recovery', 'R'). See the Rodime User Manuals for full details.

The numbers of heads and cylinders can be specified, if they can't be read from the drive. ('Change drive parameters 'C').

The Rodime self-test facility may be invoked ('Self test', 'S'). Again, see the Rodime manual.

The defect list may be examined ('Type the defect list', 'T') and changed ('Add defects at logical block', 'A').

There is a testing facility ('Sector read/ write tests', '4') (with error log, '?') similar to the soak test provided in FServSoak.

The main purpose of inn program is to format the disc ('F'). After formatting, it writes an ADFS partition, and will then optionally verify or certify the disc automatically, under the control of 'Change format parameters ('M'). The interleave factor may be changed: the default is 8, which is believed to be optimal over a range of usable types if FileStores.

Also, the ADFS partition may be written without first formatting the disk ('W'). The ADFS partition is on cylinder 0 and it contains the disc parameters in the form that the ADFS understands. This allows the disc to be initialised by FServInit (it is not suitable for use as a FileStore disc at this point).

Verification (checking by reading each sector, 'V') and certification (checking by reading and writing each sector, '3') are also available as separate options.

FServInit

Select 'I' from FServMenu. This invokes FServInit, the FileStore disc initialiser and displays the following menu:

Initialise disc structures on drive *drive* D Change drive number H Help, display this message I Drive information Q Quit back to main menu W Write directory and initialise FileStore

Using the options from the above menu, you can use FServInit to modify the ADFS partition (on cylinder 0) and the FileStore partition (on cylinder 1) for a disc, based on an existing ADFS partition put in place by FServFmt. After this has been done, the disc is ready for use in a FileStore.

FServCMOS

Select 'N' from FServMenu. This invokes FServCMOS, the FileStore non-volatile (CMOS) RAM editor and displays the following menu:

```
Edit non - volatile RAM
&OE Station number = 254 OK
&14 Last error was &04, X=&84, Y=&00 at &02C0 S.I.N. = &FFFFFF
&1C MaxUser = 80
\&1D MaxDrive = 4
&1E Printer is "Puce<00><00>"
&30 PrPage is off
&24 FSUser is "SYST<00><00><00><00><00><00>" check is &54 OK
    00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII data
00
                                                     FΕ
                                                        01
    00 00 00 00 04 84 00 C0 02 FF FF FF 50 05 50
                                                        75
10
                                                            .....P.Pu
    63 65 00 00 53 59 53 54 00 00 00 00 00 00 00 54 ce..SYST....T
20
    4E 00 00 00 00 04 00 40 20 44 00 00 FC 00 04 00 N.....@ D......
30
```

The editor reads a CMOS RAM address (in the range &E to &3F) and then prompts for a new value, which it writes at that address. It is possible to leave the CMOS RAM in an inconsistent state, as some of the entries are check summed. You are warned if this happens.

Many of the fields of the CMOS RAM have FileStore commands to alter their contents: there are the station number, MaxUsers, MaxDrivers, the printer port name, PrPage, and FSUser.

FServSoak

Select 'S' from FServMenu. This invokes FServSoak, the FileStore soak test program and displays the following menu:

Using the options from the above menu, you can test any combination of discs on a FileStore unit and control the execution of the soak test.

FServSoak does not use the 'current disc' that the other programs use. Instead, it provides a list of 'activities', which may be examined with the 'View activities' ('A') option from the secondary menu. The active activities use executed cyclically, and may be changed with 'Modify parameters' ('M').

The current statue of the parameters (that is, whether or not they are active) may be saved and loaded on disc, using the options 'S' and 'L' respectively. The initial settings are read from a file called P1, which enables tests 'Net GdLne IntCk' (network test with a good line using the FileStore clock) and 'Gen Net Comm' (general network communications) only. Note that, if any of the disc tests are started, then the data on those discs will be destroyed.

Soak test discs A View activities B Begin testing E End testing F File error log H Help, print this message L Load parameters M Modify parameters Q Quit S Save parameters to disc T View test in progress ? View error log

FServTest

Select 'T' from FServMenu. This invokes FServTest, the FileStore main board test program and displays the following menu:

```
Test main board

C Continuous read/write of FileStore memory

E Econet test

F Floppy disc controller test

H Help, print this menu

M Memory test

N Non-volatile RAM test

O Optical door sensor test

P Printer test

Q Quit this program

R Read FileStore memory

S SCSI interface test

T Real-time clock test

W Write FileStore memory

X Econet test with external clock
```

Using the options from the above menu, you can test many of the features of the E01 or E01S main circuit board including:

- the RAM ('C', 'M', 'R', 'W')
- the non-volatile (CMOS) RAM ('N')
- the Econet connection ('E', 'X')
- the floppy disc controller ('F')
- the real-rime clock ('T')
- the optical door sensor ('O')
- the printer ('P')
- the SCSI interface ('S')

Some of these tests generate a waveform, which can be checked with an oscilloscope. The tests and the resulting waveform produced for an E01 or E01S unit are detailed below:

FileStore E01

- Printer test the printer port pin corresponding to the bit number that was selected should show a show a square wave. All other pins should flat signals.
- SCSI interface read data ('R'): pin 1 of IC3 should be as shown in Fig 10 (and not stuck either high or low).
- SCSI interface write data ('W'): pin 11 of IC2 should be as shown in Fig 10 (and not stuck either high or low).
- SCSI interface read status ('?'): pin 1 of IC4 should be as seen in Fig 10 (and not stuck either high or low).
- SCSI interface write select ('S'): pin 11 of IC10 should be as seen in Fig 10 (and not stuck either high or low).
- SCSI interface write IRQ enable 0 ('0'): pin 11 of IC10 should be as seen in Fig 10 (and not stuck either high or low). Pin 9 of IC10 should be logic 0.

- SCSI interface write IRQ enable 1 ('1'): pin 11 of IC10 should be as seen in Fig 10 (and not stuck either high or low). Pin 9 of Ic10 should now be logic 1.
- SCSI interface SEL/BSY handshaking ('H'): the result 2 should be printed. If nothing happens then there is either a loose connection or a fault in the disc controller board. The handshake operates during data transfer. If the hardware for this handshake is faulty, there can be no data transfer.

FileStore E01S

- Printer test the printer port pin corresponding to the bit number that was selected should show a square wave. All other pins should show flat signals.
- SCSI interface read data ('R'): pin 1 of IC37 should be as shown in Fig 10 (and not stuck either high or low).
- SCSI interface write data ('W'): pin 11 of IC38 should be as shown in Fig 10 (and not stuck either high or low).
- SCSI interface read status ('?'): pin 1 of IC36 should be as seen in Fig 10 (and not stuck either high or low).
- SCSI interface write select ('S'): pin 11 of IC33 should be as seen in Fig 10 (and not stuck either high or low).
- SCSI interface write IRQ enabled 0 ('0'): pin 11 of IC34 should be as seen in Fig 10 (and not stuck either high or low). Pin 9 of IC10 should now be logic 1.
- SCSI interface write IRQ enable 1 ('1'): pin 11 of IC34 should be as seen in Fig 10 (and not stuck either high or low). Pin 9 of IC10 should now be logic 1.
- SCSI interface SEL/BSY handshaking ('H'): the result 2 should be printed. If nothing happens then there is either a loose connection or a fault in the disc controller board. The handshake operates during data transfer. If the hardware for this handshake is faulty there can be no data transfer.

Figure 10: Example waveform

Checking the test equipment (validation)

Equipment required

(1) A known working FileStore.

(2)This document and the equipment called up in *Equipment required*, above.

Validation procedure

- Set up the equipment undergoing validation (EUV) as described in *Connecting the test* (1)station above.
- Connect the known working FileStore as described in *Connecting the* UUT, above. (2)
- (3)Cycle through all the tests in FServTest five times.
- If the EUV fails any of the tests it must be repaired and the whole assembly retested (4)from the
- (5)
- beginning of this procedure. If the EUV passes all the tests it may be considered sound. (6)

Modifying the test software

If it is necessary to modify the programs for any reason, it is most easily done with a Second Processor, connected to the 'Tube' port of the Master Microcomputer. This should be attempted only as a last resort and after Acorn Computers Limited have been contacted.

WARNING

Any changes made to the test software without the written approval of Acorn Computers Limited will not be supported and are carried out entirely at the risk of the modifier.

The programs as provided are in a highly compressed ('crunched') form, so they are not particularly easy to change (although in absence of a second processor, there is no choice). The directory S source contains the programs as they were before they were crunched along with a file called DoCrunch that generates the compressed versions. (Type '*exec docrunch' - this uses the programs HiBASIC and Crunch from the directory S. Library.)

The test software is provided on a 5.25" disc and contains the following files:

!Boot	Start-up file
ReadMe	A summary of the test software programs
FServMenu	Main menu, used to run the other programs
FServCMOS	CMOS RAM editor
FservCopy	Sector-by-sector disc duplicator
FServEdit	Disc structure editor
FServFmt	Formatter for FileStore hard discs
FServInit	Initialiser for FileStore hard discs
FServSoak	Disc and Econet soak tester
FServTest	E01S circuit board tester
FSDB	Machine code for use by FServSoak
P1	Parameter file for use by FServSoak
Library	Library containing system utilities
source	Directory containing 'uncrunched' source

Test Equipment

Appendix B. Parts lists

This Appendix contains the parts lists for FileStore and Stacking FileStore units.

A summary of the parts lists contained in the Appendix is listed below. The issue number for each parts list is the one that was current at the time of publication:

Title	Part number	Issue
FileStore E01 Main circuit pcb parts list	0154,000,P	5
FileStore E01 Final assembly parts list	0054.000,P- Communicator	2
	0054,002/P- Master	4
FileStore E20 Main circuit pcb parts list	0127,000/P	
FileStore E20 Final assembly parts list	0054.005/P- Communicator	2
	0054,007/P- Master	3
Stacking FileStore E01 Main circuit pcb parts list	0182,000/P	1
Stacking FileStore E01 Final assembly parts list	0082,000/P	1
Stacking FileStore E40S/E60S Final assembly parts list	0082,200/P - E40S	1
	0082,300/P - E60S	1

Parts lists

FileStore E01 main circuit pcb

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
1 2 3 4	0254, 000 D154,000/A 0154,000/C	BARE PCB ASSEMBLY DRAWING CIRCUIT DIRGRAM 1 PER BATCH	1 1	PER BATCH
5 6 7	0159,200	ECONET 2 MODULE 1		
8 9 10 11 12 13 14 15 16 17 18	0800,114 0800,116 0800,120 0800,120 0800,124 0800,128 0800,128 0800,140 0800,140	SKT IC 14/0.3" NORM SKT IC 16/0.3" NORM SKT IC 20/0.3" NORM SKT IC 20/0.3" NORM SKT IC 24/0.6" NORM SKT IC 28/0.6" NORM SKT IC 28/0.6" NORM SKT IC 40/0.6" NORM SKT IC 40/0.6" NORM	1 1 1 1 1 1 1 1 1	IC29 IC26 IC16 IC23 IC2 IC4 IC5 IC3 IC20 IC21
19 20	0800,070	CONR 2W SHUNT 0.1"	6	LK1,2,3,7,8,13
21 22	0884,059 0895,081	SPCR DBL LATCHED 19mmH FOAM PAD S/ADH DBL SIDED	2 2	NET MODULE UNDER X1 & X2
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15	0502,911 0502,391 0502,565 0502,154 0502,272 0502,272 0502,272 0502,272 0502,272 0502,103 0502,272 0502,475 0502,103 0502,331 0502,331	RES 910R C/MF 5% OW25 RES 390R C/MF 5% OW25 RES 150K C/MF 5% OW25 RES 2K7 C/MF 5% OW25 RES 2K7 C/MF 5% OW25 RES 2K7 C/MF 5% OW25 RES 2K7 C/MF 5% OW25 RES 10K C/MF 5% OW25 RES 4M7 C/MF 5% OW25 RES 10K C/MF 5% OW25 RES 330R C/MF 5% OW25 RES 33R C/MF 5% OW25 RES 33R C/MF 5% OW25	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
R16 R17 R18 R19 R20	0502,472 0502,472 0502,472 0502,271 0502,271	RES 4K7 C/MF 5% OW25 RES 4K7 C/MF 5% OW25 RES 4K7 C/MF 5% OW25 RES 270R C/MF 5% OW25 RES 270R C/MF 5% OW25	1 1 1 1	

ITEM PART NO	DESCRIPTION	QTY	REMARKS
R21 0502,271 R22 0502,271 R23 0502,102 R24 0502,223 R25 0502,472 R26 0502,332 R27 0502,681 R28 0502,152 R29 0502,331 R30 0502,331 R31 0502,472 R32 0502,222 R33 0502,560 R34 0502,472 R35 0502,153 R36 0502,271 R37 0502,560 R38 0502,103	RES 270R C/MF 5% OW25 RES 270R C/MF 5% OW25 RES 1K0 C/MF 5% OW25 RES 22K C/MF 5% OW25 RES 4K7 C/MF 5% OW25 RES 3K3 C/MF 5% OW25 RES 680R C/MF 5% OW25 RES 1K5 C/MF 5% OW25 RES 330R C/MF 5% OW25 RES 330R C/MF 5% OW25 RES 2K2 C/MF 5% OW25 RES 56R C/MF 5% OW25 RES 15K C/MF 5% OW25 RES 15K C/MF 5% OW25 RES 270R C/MF 5% OW25 RES 56R C/MF 5% OW25 RES 56R C/MF 5% OW25 RES 56R C/MF 5% OW25 RES 10K C/MF 5% OW25	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
R56 0502,103 R57 R58 R59 0502,103 R60 0502,272 R61 0502,132 R62 0502,152 R63 0502,821 R64 0502,221 R65 0502,152	RES 10K C/MF 5% OW25 RES 10K C/MF 5% OW25 RES 2K7 C/MF 5% OW25 RES 1K3 C/MF 5% OW25 RES 1K5 C/MF 5% OW25 RES 820R C/MF 5% OW25 RES 220R C/MF 5% OW25 RES 1K5 C/MF 5% OW25	1 NOT FITTE 1 1 1 1 1 1 1 1 1 1	D D
C1 0635,221 C2 0631,033 C3 0631,033 C4 0631,018	CPCTR ALEC 220uF 16V RAD CPCTR CPLT 33pf 30V 2% CPCTR CPLT 33Pf 30V 2% CPCTR CPLT 18Pf 30V 2%	1 1 1 1	
C5 0631,018 C6 0610,100 C7 C8 0631,027 C9 0631,047 C10 0650,224 C11 0610,100 C14 0631,033	CPCTR CPLT 18Pf 30V 2% CPCTR TANT 100Uf 10v 20% CPCTR CPLT 27pF 30V 2% CPCTR CPLT 47pF 30V 2% CPCTR MPSTR 220n 50V 20% CPCTR TANT 100uF 10V 20% CPCTR CPLT 33pF 30V 2%	1 1 NOT USED 1 1 1 1 1	

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
C15				FITTED ON TEST
SOT12 SOT13	20631,022 3	CPCTR CPLT 22Pf 30V 2%	1	FITTED ON TEST
A	0680,002	CPCTR DCPLR 33/47Nf 0.2"	29	
IC1	0744,139	IC 74ALS139 TTL 16/0.3"	1	
IC2	0706,818	IC 6818 RTC CMOS	1	
IC3	0706,103	IC 65C102 PROC	1	
IC4 TC5	0254,204 0254 205	IC EUI MOS ROM IC RO1 ES ROM	1	
IC5 IC6	0742,057	IC 74LS57	1	
IC7	0747,073	IC 74HC73 CMOS 14/0,3"	1	
IC8	0747,123	IC 74HC123 CMOS 16/0.3"	1	
IC9	0747,157	IC 74HC157 CMOS 16/0.3"	1	
IC10	0747,157	IC 74HC157 CMOS 16/0.3"	1	
TC12	0747,030	10.74HC30 CMOS 1470.3" TC 4464 DRAM 120Ng 64ky4	1	
IC12	0704,104	IC 4464 DRAM 120NS 64kx4	1	
IC14	0744,139	IC 74ALS139 TTL 16/0.3"	1	
IC15	0742,245	IC 74LS245 TTL 16/0.3"	1	
IC16	0747,074	IC 74HC74 CMOS 14/0.3"	1	
ICI/	0/4/,0/4	IC /4HC/4 CMOS 14/0.3"	1	
TC19	0744,139	IC 74HC273 CMOS	1	
IC20	0701,793	IC TMS2793	1	
IC21	0706,523	IC 6522A VIA NMOS 2MHz	1	
IC22				NOT USED
IC23	0742,244	IC 74LS244 TTL 20/0.3"	1	
ICZ4	U/4Z,UI4	IC /4LSI4 IIL 14/U.3"	Ţ	
IC25				NOT USED
IC26	0732,630	IC 26LS30 RS422/423 DRVR	1	
IC27	0742,125	IC 74LS125 TTL 14/0.3"	1	
IC28	0747,163	IC74HC163 CMOS 16/0.3"	1	
TC30	U/4U,UI6 0740 038	IC /416 TTL 14/0.3" IC 7/38 TTI 1//0.3"	1	
IC31	0740,038	IC 7438 TTL 14/0.3"	⊥ 1	
IC32	0747,002	IC 74HC02 CMOS 14/0.3"	1	
IC33	0742,032	IC 74LS32 TTL 14/0.3"	1	
IC34	0747,000	IC 74HC00 CMOS 14/0.3"	1	
IC35	0741,004	IC 74S01 TTL 14/0.3"	1	NOT HEED
1036 1037	0747.125	IC 74HC125 CMOS 14/0 3"	1	NOT USED
1001	, ±20	10 / 1110120 01100 11/ 0.0	-	

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
Q1 Q2 Q3 Q4 Q5 Q6 Q7	0780,183 0780,213 0780,213 0780,213	TRANS BC183L NPN TO92 TRANS BC213L PNP TO92 TRANS BC213L PNP TO92 TRANS BC213L PNP TO92	1 1 1 1	NOT USED NOT USED NOT USED
D1 D2 D3 D4 D5 D6 D7	0790,047 0790,047 0794,148 0794,148 0794,148 0794,148 0794,148	DIODE GER/SB OA47/BAT85 DIODE GER/SB OA47/BAT85 DIODE SI IN4148 DIODE SI IN4148 DIODE SI IN4148 DIODE SI IN4148 DIODE SI IN4148	1 1 1 1 1 1	
SK1 SK2 SK3 SK4 SK5 SK6	0800,870 NOT USED 0800,004 0800,870 0800,008	CONR 34W WAFR 2ROW 0.1" CONR 5W SKT DIN RA PCB CONR 34W WAFR 2ROW 0.1" CONR 26W HDR ICD RA 4WALL	1 1 1 1	NOT USED
SK7 SK8 SK9 SK10 SK11	0800,870 0800,481 0800,484	CONR 34W WAFR 2ROW 0.1" CONR 5WAY PCB NET MODULE CONR 17WAY PCB NET MOD.	1 1 1	NOT USED NOT USED
LK1 LK2 LK3 LK4	0800,050 0800,050 0800,050 0800,050	CONR 2W WAFR 0.1" ST PCB CONR 2W WAFR 0.1" ST PCB CONR 2W WAFR 0.1" ST PCB CONR 2W WAFR 0.1" ST PCB	1 1 1 1	

ITEM PART NO	DESCRIPTION	QTY	REMARKS
LK5 0800,050	CONR 2W WAFR 0.1" ST PCB	1	
LK6 0800,050	CONR 2W WAFR 0.1" ST PCB	1	
LK7 0800,050	CONR 2W WAFR 0.1" ST PCB	1	
LK8 0800,050 LK9	CONR 2W WAFR 0.1" ST PCB	1	
LK10 0800,050 LK11 LK12	CONR 2W WAFR 0.1" ST PCB	1	
LK13 0800,051 LK14	CONR 3W WAFR 0.1" ST PCB	1	
LK15 0800,054	CONR 8W WAFR 0.1" ST PCB	1	
LK16 0800,051	CONR 3W WAFR 0.1" ST PCB	1	
PL1 0800,200	FSTN TAB 2.8mmx0.5 ST PCB	1	
PL2 0800,200	FSTN TAB 2.8mmx0.5 ST PCB	1	
0V 0800.200	FSTN TAB 2.8mmx0.5 ST PCB	1	
+5V 0800,200	FSTN TAB 2.8mmx0.5 ST PCB	1	
BT1 0817,000	BAT NI-CAD 3.6V	1	
X1 0821,327	XTAL 32.768KHz CC 0.05"	1	
X2 0820,080	XTAL 8.00MHz HC18/U	1	

Parts lists

FileStore E01 Final Assembly – Communicator

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
1 2 2	0054,000/A	E01 FINAL ASSEMBLY	1	PER BATCH
3 4 5 6	0154,000	E01 DISC CONTROLLER PCB	1	
7 8	0154,706 0154,712 0154,621	E01 MAINS CABLE DETAIL DISC DATA CABLE (SONY) DISC DATA CABLE (NEC)	1 2	OPTION
10 11 12 13 14	0154,713 0154,718 0154,719 0154,720	E01 PCB TO REAR PL. RIB E01 FAN, PCB. TO PSU. E01 POWER, MODE TO PCB. E01 OPTO, SW TO PCB.	1 1 1 1	
15 16 17 18 19 20 21 22 23	0254,401 0254,402 0254,403 0254,404	E01 REAR LABEL E01 FRONT LABEL (LEFT) E01 FRONT LABEL (CENTRE) E01 FRONT LABEL (RIGHT)	1 1 1	
24 25 26 27 28	0254,605 0254,606	E01 SIDE MOULDING E01 REAR MOULDING	2 1	
29 30 31 32 33 34 35 36 37 38 39 40	0254,700 0154,732 0154,711 0154,714 0254,702 0254,703 0254,704 0254,705 0254,709 0254,710 0254,726	E01 BOX FRONT MOULDING E01 FLAP ASSY/ARTWORK E01 EARTH CABLE (LONG) E01 EARTH CABLE (SHORT) E01 LOWER WRAP E01 TOP WRAP E01 PSU STANDOFF E01 PAU INSULATOR E01 DISC DRIVE STANDOFF E01 PSU MODIFICATION E01 PSU SPACER	1 1 1 1 1 4 1 8 1 4	
41 42 43 44 45 46	0799,005 0885,208 0885,204 0831,035	OPTO LED REC MTG GRMT FAN 5V 62x62x14mm FAN GUARD DISC DRIVE 3.5"(SONY)	2 1 1 2	

Parts lists

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
48 49 50	0154,740 0805,900	DISC DRIVE 3.5" (NEC) SW DPST 250V 4A ROC SNP	1 1	OPTION
50 51 52 53 54	0880,024	CBL GRMT RND 7.4mmD 4CT	1	
55 56	0882,121	SCW M3x6 PAN HD POSI	20	
57	0882,125	SCW M3x16 PAN HD POSI	11	
59 60 61	0882,126 0882,145	SCW M3x20 PAN HD POSI SCW M4x16 PAN HD POSI	4 6	
62 63	0882,902	NUT M3 STL FULL Z/PAS	8	
64 65	0882,985	WSHR M3 PLN NYL 10		
66 67	0882,962	WSHR M3 PLN STL Z/PAS	10	
68 69 70	0882,972	WSHR M3 SPRF IT STL	27	
70 71 72	0882,964	WHSR M4 PLN STL Z/PAS	12	
73	0890,006	FOOT SCW RUBR 17.5Dx17.5	4	
75	0890,010	MATL RUBR SEALANT	A/R	
70 77 78 79	0800,222	FSTN TAB 6,3/0,8 M3 45DEG	1	

79 80

Parts lists

FileStore E01 Final Assembly – Master

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
1 2	0054,000/A	E01 FINAL ASSEMBLY	1	PER BATCH
3 4 5	0154,000	E01 DISC CONTROLLER PCB	1	
6 7 8	0154,706 0154,712	E01 MAINS CABLE DETAIL DISC DATA CABLE (SONY)	1 2	
10 11	0154,621 0154,713 0154,718	DISC DATA CABLE (NEC) E01 PCB TO REAR PL. RIB. E01 FAN, PCB. TO PSU.	1	OPTION
12 13 14	0154,719 0154,720	E01 POWER, MODE TO PCB. E01 OPTO, SW TO PCB.	1 1	
15 16 17 18	0254,427	E01 REAR LABEL E01 FRONT LABEL (LEFT)	1	
19 20 21	0254,425 0254,426	E01 FRONT LABEL (CENTRE) E01 FRONT LABEL (RIGHT)	1 1	
22 23 24				
25 26 27 28	0258,103 0258,115	B.B. SIDE MOULDING B.B. REAR MOULDING	2 1	
29 30 31 32	0254,735 0154,738 0154,711	E01 BOX FRONT MOULDING E01 FLAP ASSY/ ARTWORK E01 EARTH CABLE (LONG)	1 1 1	
33 34 35 36	0154,714 0254,702 0254,737 0254,704	E01 EARTH CABLE (SHORT) E01 LOWER WRAP E01/E20 TOP WRAP E01 PSU STANDOFF	1 1 1 4	
37 38 39	0254,705 0254,709 0254,710	E01 PSU INSULATOR E01 DISC DRIVE STANDOFF E01 PSU MODIFICATION	1 8 1	
40	0254,726	E01 PSU SPACER	4	
41 42 43	0799,005	OPTO LED REC MTG GRMT	2	
44 45	0885,208 0885,204	FAN 5V 62x62x14mm FAN GUARD	1 1	

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
46	0831,035 0154,740	DISC DRIVE 3.5" (SONY) DISC DRIVE 3.5" (NEC)	2	OPTION
48 49 50 51	0805,900	SW DPST 250V 4A ROC SNP	1	
52 53 54	0880,024	CBL GRMT RND 7.4mmD 4CT	1	
56 57	0882,121	SCW M3x6 PAN HD POSI	20	
58 59	0882,125	SCW M3x16 PAN HD POSI	11	
60 61 62	0882,126 0882,145	SCW M3x20 PAN HD POSI SCW M4x16 PAN HD POSI	4 6	
63 64	0882,902	NUT M3 STL FULL Z/PAS	8	
65 66	0882,985	WSHR M3 PLN NYL	10	
67 68	0882,962	WHSR M3 PLN STL Z/PAS	10	
69 70	0882,972	WSHR M3 SPRF IT STL	27	
71 72	0882,964	WSHR M4 PLN STL Z/PAS	12	
73 74	0890,006	FOOT SCW RUBR 17.5Dx17.5	4	
75 76	0890,010	MATL RUBR SEALANT	A/R	
77 78 79 80	0800,222	FSTN TAB 6,3/0,8 M3 45DEG	1	

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
1 2 3	0227,000 0127,000/A	BARE PCB ASSEMBLY DRAWING	1 1	PER BATCH
4 5 6 7 8 9	0502,222 0572,221 0573,222 0571,222 0800,116	RES 2K2 C/MF 5% OW25 RESNET 220/330R DIL 2% RESNET 2K2 DIL 5% 16P RESNET 2K2 DIL 2% 16P SKT IC 16/0.3" NORM	1 2 1 3	R1 RP1 RP2,3 RP4 RP2,3,4
10 11 12 13 14	0680,002 0622,220	CPCTR 33/47n DCPLR 0.2" CPCTR 22u ALEC 16v AX	16 1	A Cl
15 16 17 18 19 20 21 22 23 24 25 26 27	0740,007 0740,014 0740,038 0742,000 0742,004 0742,014 0742,014 0742,138 0742,240 0742,244 0742,373	IC 7407 TTL 14/0.3" IC 7414 TTL 14/0.3" IC 7438 TTL 14/0.3" IC 74LS00 TTL 14/0.3" IC 74LS04 TTL 14/0.3" IC 74LS14 TTL 14/0.3" IC 74LS138 TTL 14/0.3" IC 74LS138 TTL 16/0.3" IC 74LS240 TTL 20/0.3" IC 74LS244 TTL 20/0.3" IC 74LS373 TTL 20/0.3"	1 2 1 1 2 2 1 2 2	IC16 IC15 IC13,14 IC12 IC9 IC8 IC10,11 IC6,7 IC3 IC1,5 IC2,4
28 29 30 31	0800,870 0800,871	CONR 34W WAFR 2ROW 0.1" CONR 50W WAFR 2ROW 0.1"	1 1	PL1 PL2
32 33 34 35 36 37 38 39 40	0800,787	FSTN TAB 2,8/0,8 RA 5H	2	0V,5V

Parts lists

FileStore E20 Final Assembly – Communicator

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
1 2	0054,005/A	E20 FINAL ASSEMBLY	1	PER BATCH
3 4 5 6	0154,005	E20 WINCHESTER HOST PCB	1	
7 8 9 10 11 12 13 14 15 16	0154,706 0154,715 0154,716 0154,721 0154,722 0154,723 0154,724 0154,725	E01 MAINS CABLE ASSY E20 HOST TO REAR PL. RIBB E20 WINCH. TO HOST RIBBON E20 EARTH TO PSU CABLE E20 PSU TO MAINS SW. CABLE E20 WINCH. TO PSU CABLE E20 HOST ADAT TO PSU CBL E20 IND. & FAN TO PSU CBL	1 1 1 1 1 1 1	
17 18 19 20 21 22	0254,406 0254,408	E20 FRONT LABEL E20 REAR LABEL	1 1	
23 24 25 26 27 28	0254,603 0254,604 0254,605 0254,606	E20 WINCH. DISC DRIVE E20 P.S.U. E01 SIDE MOULDING E01 REAR MOULDING	1 1 2 1	
30 31 32	0254,700 0254,733	E01 BOX FRONT MOULDING E01 FLAP ASSY/ARTWORK	1 1	
33 34 35 36 37 38 39 40	0254,703 0254,704 0254,705 0254,707 0254,708 0254,726	E01 TOP WRAP E01 PSU STANDOFF E01 PSU INSULATOR E20 WINCH. STANDOFF E20 LOWER WRAP E01 PSU SPACER	1 4 1 4 1 4	
41 42 43	0799,005	OPTO LED REC MTG GRMT	2	
44	0880,208	FAN 5V 62x62x14mm	1	
46	0885,204	FAN GUARD	1	

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
47 48 49 50	0805,900	SW DPST 250V 4A ROC SNP	1	
51 52 53 54 55	0880,024 0880,030	CBL GRMT RND 7.4mmD 4CT CLAMP CBL SF-ADH 6mmD ALU	1 1	
56 57	0882,121	SCW M3x6 PAN HD POSI.	14	
58	0882,121	SCW M3x10 PAN HD POSI.	1	
59 60 61	0882,126 0882,145	SCW M3x20 PAN HD POSI. SCW M4x16 PAN HD POSI.	4 4	
62	0882,902	NUT M3 STL FULL Z/PAS	6	
64 65	0882,985	WSHR M3 PLN NYL	8	
66 67	0800,983	CNTR JACK SOCKET PR	2	
68 69	0882,972	WSHR M3 SPRF IT STL	21	
70	0882,964	WSHR M4 PLN STL Z/PAS	12	
72 73 74 75	0890,006	FOOT SCW RUBR 17, 5Dx17,5	4	
76 77 78 79 80	0800,222	FSTN TAB 6.3/0.8 M3 45DEG	1	

Parts lists

FileStore E20 Final Assembly – Communicator

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
1 2	0054,005/A	E20 FINAL ASSEMBLY	1	PER BATCH
3 4 5 6	0154,005	E20 WINCHESTER HOST PCB	1	
° 7 8 9 10 11 12 13 14 15 16	0154,706 0154,715 0154,716 0154,721 0154,722 0154,723 0154,724 0154,725	E01 MAINS CABLE ASSY E20 HOST TO REAR PL.RIBB E20 WINCH. TO HOST RIBBON E20 EARTH TO PSU CABLE E20 PSU TO MAINS SW. CABLE E20 WINCH. TO PSU CABLE E20 HOST ADAT TO PSU CBL E20 IND. & FAN TO PSU CBL	1 1 1 1 1 1 1	
17 18 19 20 21 22	0254,430 0254,431	E20 FRONT LABEL E20 REAR LABEL	1 1	
23 24 25 26 27 28 29	0254,603 0254,604 0258,103 0258,115	E20 WINCH. DISC DRIVE E20 P.S.U. B.B. SIDE MOULDING B.B. REAR MOULDING	1 1 2 1	
30 31 32	0254,735 0154,739	E01 BOX FRONT MOULDING E20 FLAP ASSY/ARTWORK	1 1	
33 34 35 36 37 38 39 40	0254,737 0254,704 0254,705 0254,707 0254,708 0254,726	E01/E20 TOP WRAP E01 PSU STANDOFF E01 PSU INSULATOR E20 WINCH. STANDOFF E20 LOWER WRAP E01 PSU SPACER	1 4 1 4 1 4	
41 42 43	0799,005	OPTO LED REC MTG GRMT	2	
44 45	0885,208	FAN 5V 62x62x14mm	1	
46	0885,204	FAN GUARD	1	

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
47 48 49 50	0805 , 900	SW DPST 250V 4A ROC SNP	1	
51 52 53 54 55	0880,024 0880,030	CBL GRMT RND 7.4mmD 4CT CLAMP CBL SF-ADH 6mmD ALU	1 1	
56	0882,121	SCW M3x6 PAN HD POSI.	14	
57 58 59 60 61	0882,123 0882,125 0882,126 0882,145	SCW M3x10 PAN HD POSI. SCW M3x16 PAN HD POSI. SCW M3x20 PAN HD POSI. SCW M4x16 PAN HD POSI.	1 8 4 4	
62	0882,902	NUT M3 STL FULL Z/PAS	6	
64 65	0882,985	WHSR M3 PLN NYL	8	
66 67	0800,983	CNTR JACK SOCKET PR	2	
68 69	0882,972	WSHR M3 SPRF IT STL	21	
70 71	0882,964	WSHR M4 PLN STL Z/PAS	12	
72 73 74 75	0890,006	FOOT SCW RUBR 17.5Dx17.5	4	
76 77 78 79 80	0800,222	FSTN TAB 6,3mmx0,8 M3 45d	1	

Parts lists

Stacking FileStore E01S Main circuit pcb

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
1 2 3	0282,000 0182,000/A 0182,000/C	BARE PCB ASSEMBLY DRAWING CIRCUIT DIAGRAM	1 1 1	PER BATCH PER BATCH
4 5 6 7 8	0159,200	ECONET II MODULE	1	
9 10 11 12	(0282,008)	IC ROM ((0727,512) TBP)	1	IC7
13 14 15 16 17 18 19 20	0502,102 0502,103 0502,132 0502,151 0502,152 0502,154	RES 1K0 C/MF 5% 0W25 RES 10K C/MF 5% 0W25 RES 1K3 C/MF 5% 0W25 RES 150R C/MF 5% 0W25 RES 1K5 C/MF 5% 0W25 RES 150K C/MF 5% 0W25	1 5 1 1 3 1	R14 R2,9,31,32,45 R37 R15 R13,36,38 R6
21 22 23 24 25 26 27	0502,221 0502,222 0502,223 0502,271 0502,272	RES 220R C/MF 5% 0W25 RES 2K2 C/MF 5% 0W25 RES 22K C/MF 5% 0W25 RES 270R C/MF 5% 0W25 RES 2K7 C/MF 5% 0W25	1 2 1 5 5	R39 R34,44 R24 R23,25,26,27,46 R7,8,11,20,43
28 29 30 31 32 33	0502,330 0502,331 0502,332 0502,391	RES 33R C/MF 5% 0W25 RES 330R C/MF 5% 0W25 RES 3K3 C/MF 5% 0W25 RES 390R C/MF 5% 0W25	1 4 1 1	R19 R1,10,17,18 R12 R5
34 35 36 37	0502,472 0502,475	RES 4K7 C/MF 5% 0W25 RES 4M7 C/MF 5% 0W25	6 1	R21,28,29,30,33,35 R16
38 39 40 41	0502,560 0502,565	RES 56R C/MF 5% 0W25 RES 5M6 C/MF 5% 0W25	2 1	R41,42 R3
42 43 44	0502,681	RES 680R C/MF 5% 0W25	1	R22
45 46	0502,821	RES 820R C/MF 5% 0W25	1	R40

ITEM	PART NO	DESCRIPTION	OTY	REMARKS
47			~	
48	0502 011	DES 010D C/ME 5% 0W25	1	D/
50 51	0502,911	RES FIOR C/MF 5% 0W25	Ţ	K4
51	0572,221	RES 220/330R NET DIL 2%	1	RP1
53 54				
55 56				
57				
59 60	0610,100	CPCTR 100UF TANT 10V 20%	2	C10,13
61 62				
63 64	0631,018 0631,022	CPCTR 18pF CPLT 30V 2% CPCTR 22pF CPLT 30V 2%	2 2	C6,7 C1,3
65 66	0631,027 0631,033	CPCTR 27pF CPLT 30V 2% CPCTR 33pF CPLT 30V 2%	1	C9 C2.4.12
67 68	0631,047	CPCTR 47pF CPLT 30V 2%	2	C8,11
69 70	0635 221	CPCTR 22011F ALFC 16W RAD	1	"B"
71 72	00007221		±	
73	0650,224	CPCTR 220nF MPSTR 50V 20%	1	C5
75	0600 002	CDCTD 22/4755 DCDID 0 2"	10	N 7 //
70 77 70	0000,002	CPCIR 55/4/IIF DCPLR 0.2	40	A
79				
81	0701,793	IC 2793 FDC 40/0.6"	1	IC26
82 83	0704,104	IC 4464 DRAM 120nS 64Kx4	2	IC9,10
84 85 86	0706,103	IC 65C102 CPU CMOS 2MHz	1	IC16
87 80	0706,525	IC 65C22 VIA CMOS 2MHz	1	IC31
89	0706,818	IC 6818 RTC CMOS	1	IC1
91	0732,630	IC 26LS30 RS422/432 DRVR	1	IC28

Parts lists

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
92	0740 007		1	T C 2 0
93	0740,007	1C / 40 / 11L 14 / 0.3''	1	1039
94	0740,014	10 7414 111 14/0.3	1	TC25
95	0740,010	TC 7/38 TTT 1//0.3''	1	TC21 23 /3 //
97	0/40,030	IC /430 III I4/0.5	Ť	1021,20,10,11
98	0741.004	IC 74S04 TTL 14/0.3"	1	TC22
99	,		_	
100				
101	0742,032	IC 74LS32 TTL 14/0.3"	1	IC18
102	0742,057	IC 74LS57 TTL 8/0.3″	1	IC11
103	0742,123	IC 74LS123 TTL 16/0.3"	1	IC24
104	0742,163	IC 74LS163A TTL 16/0.3"	1	IC27
105	0742,240	IC 74LS240 TTL 20/0.3"	1	IC37
106	0742,244	IC 74LS244 TTL 20/0.3"	1	IC32
107	0742,245	IC 74LS245 TTL 20/0.3"	1	IC30
108	0742,373	IC 74LS373 TTL 20/0.3"	2	IC36,38
109			_	
110	0744,139	IC 74ALS139 TTL 16/0.3"	3	IC12,13,17
111			0	
112	0749,000	IC 74HCT00 CMOS 14/0.3"	2	1C5,40
113	0749,002	IC /4HCTUZ CMOS 14/0.3"	1 O	
114	0749,004	IC /4HCIU4 CMOS 14/0.3"	2	1029,41
115	0749,030	$10^{-7}4HC130^{-1}CMOS^{-1}4/0.3''$	1	103
117	0749,073	1C 74HCT73 CMOS 14/0.3	L E	ICO IC15 10 22 24 MOD
110	0749,074	$\frac{10}{10} \frac{74HCI}{4} CMOS \frac{14}{0.3}$) 1	ICIS, 19, 33, 34+MOD
110	0749,130	$\frac{10}{4}$	1	1030
120	0749,137	1C 74HCT137 CMOS 1070.3	∠ 1	IC2,0 IC14
120	0149,213	IC /4HCIZ/S CMOS 20/0.5	T	1014
122	0780 183	TRANS BC1831, NPN TO93	1	02
123	0780,213	TRANS BC213L PNP TO93	3	01-3-4
124	0,00,210	Humb Dollon Int 1090	9	21/0/1
125	0790,047	DIODE 0A47/BAT85 GER/SB	2	D3,5
126	0794,148	DIODE IN4148 SI	5	D1,2,4,6,7
127	•			
128				
129				
130				

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
136 137 138	0800,004 0800,020 0800,031	CONR 5W SKT DIN RA PCB CONR 26W HDR IDC ST 4WALL CONR 34W HDR IDC ST 4WALL	1 1 2	SK3 SK5 SK1,8
139	0800,050	CONR 2W WAFR 0.1" ST PCB	5	LK3,4,5,6,7
140 141 142	0800,053 0800,070	CONR /W WAFR 0.1" ST PCB CONR 2W SHUNT 0.1"	1 2	SK2 USE WITH LK3,7
143 144 145	0800,117 0800,121	SKT IC 16/0.3" SUPA SKT IC 20/0.3" SUPA	2 1	USE WITH IC28,RP1 USE WITH IC30
146 147 148 149	0800,125 0800,129	SKT IC 24/0.6" SUPA SKT IC 28/0.6" SUPA	1 1	USE WITH IC1 USE WITH IC7
150 151 152 153 154	0800,203	FSTN TAB 6,3mmx0.8 ST PCB	3	+5V,0V,CHASSIS
155 156 157 158 159	0800,371	CONTRDL 50W SKT RA PCB RFI	1	PL1
160 161 162 163 164	0800,481 0800,484	CONR 5W SKT HSNG 0.1" PCB CONR 17W SKT HSNG .1" PCB	1 1	SK10 SK11
165 166 167	0817,000	BAT NiCAD 3V6 100mA BTN	1	В1
168 169 170				
171 172 173 174 175	0820,080	XTAL 8.00MHz HC18	1	Х2
176 177 178	0821,327	XTAL 32.768KHz CC 0.05"P	1	X1
180 (MOD)	0870,412	WIRE 30AWG W.WRAP	A/R	USE WITH I117

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
181 182 183 184	0870,422	WIRE 25SWG SPR TIN	A/R	USE WITH X1,X2
185 186 187	0882,693	SCW M3x8 PAN POSI ST	2	USE WITH PL1
188 189 190 191 192 193	0882,902 0882,962	NUT M3 STL FULL Z/PAS WSHR M3 PLN STL Z/PAS	2 2	USE WITH PL1 USE WITH PL1
193 194 195 196 197 198 199 200	0884,059	SPCR DBL LATCHED 19mmH	2	USE WITH ECONET MODULE

Parts lists

Stacking FileStore E01S Final Assembly

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
1 2 3	0082,000/A 0082,000/WD	FINAL ASSEMBLY DRAWING WIRING DIAGRAM	1 1	PER BATCH PER PATCH
4 5 6 7	0254,424 0254,425	M SERIES E01 LABEL LEFT M SERIES E01 LABEL CENTRE	1 1	
8 9 10 11 12 13 14	0254,704 0254,709 0254,726 0254,735 0254,737	E01 PSU STANDOFF DISC DRIVE STANDOFF FILESTORE PSU SPACER M SERIES FRONT MOULDING M SERIES TOP WRAP	4 8 4 1 1	
15 16 17 18 19 20	0258,103 0258,115	B.B. SIDE MOULDING B.B. REAR MOULDING	2 1	
21 22 23 24 25 26 27 28 29	0182,000 0182,001 0182,002 0182,003 0182,004 0182,005 0182,006 0182,007	FILESTORE II PCB BOM DISC DATA CABLE ASSY PSU OUTPUT CABLE ASSY IEC SKT TO SW. CABLE ASSY IEC EARTH CABLE ASSY OPTO CABLE ASSY INT. PRINTER ASSY E01S MAINS CABLE ASSY	1 1 1 1 1 1 1	
30 31 32 33 34 35 36 37 38 39 40	0282,010 0282,011 0182,012 0182,023 0282,014 0182,015 0282,016 0254,426 0282,018	E01S LOWER WRAP E01A REAR LABEL 1 E01S FRONT FLAP PCB EARTH CABLE ASSY PSU INSULATOR E01S PSU BASE LABEL E01S LABEL RIGHT F01S DEAD LABEL 2	1 1 1 1 1 1 1	
40 41 42 43 44 45 46	0799,005	OPTO LED REC MTG GRMT	2	

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
47 48	0805,900	SW DPST 250V 4A ROC SNP	1	
50 52	0831,035 0154,740	DISC DRIVE (SONY) DISC DRIVE (NEC)	2	OPTION

FileStore Service Manual

53 54 55 56 57	0865,902 0865,904	PWR SKT PNL SCW IEC PWR SKT PLSTC BOOT	1 1	
58 59	0800,020 0880,101	CBL GRMT RND 7.4mmD 2.5CT CBL TIE LK 97mmL	1 4	
60 61	0880,100	CBL TIE LK 140mmL	1	
62	0882,121	SCW M3x6 PAN HD POSI	24	USED ON ITEMS 13,22,37,50
63	0882,123	SCW M3x10 PAN HD POSI	4	USED ON ITEM 37
64	0882,127	SCW M3x25 PAN HD POSI	5	USED ON ITEMS 24, EARTH
65	0882,145	SCW M4x16 PAN HD POSI	4	USED ON ITEM 77
66	0882,223	SCW M3x10 CSK HD POSI	2	USED ON ITEM 54
67 64,66	0882,902	NUT M3 STL FULL Z/PAS	8	USED ON ITEMS
68	0882,962	WSHR M3 PLN ST Z/PAS	16	USED ON ITEMS 62,64
69	0882,964	WSHR M4 PLN ST ST Z/PAS	12	USED ON ITEM 65
70	0882,972	WSHR M3 SPRF IT STL	25	USED ON ITEMS 62,64,66
71 62,63 72 73	0882,985	WSHR M3 PLN NYL	10	USED ON ITEMS
74 75 76	0885,204	FAN GUARD	1	
77	0890,006	FOOT SCW RUBR 17.5Dx17.5	4	
78 79 80	0890,010	MATL RUBR SEALANT	A/R	
Appendix B

Parts lists

Stacking FileStore E40S Final Assembly

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
1 2 3	0082,100/A 0082,100/WD	FINAL ASSEMBLY DRAWING WIRING DIAGRAM	1 PER BATCH 1 PER BATCH	
5	0254,430	M SERIES E20 FRONT LABEL	1	
6 7 8 9 10 11 12 13 14 15 16	0254,704 0254,707 0154,721 0154,722 0254,726 0254,727 0254,735 0254,737	PSU PILLARS WINCHESTER PILLARS EARTH TO PSU ASSY PSU TO SW CABLE ASSY FILESTORE PSU SPACER E20 FRONT LABEL BACKING M SERIES FRONT MOULDING M SERIES TOP WRAP	4 1 1 4 1 1 1	
17 18 19 20 21 22	0258,103 0258,115	B.B. SIDE MOULDING B.B. REAR MOULDING	2 1	
23 24 25 26 27	0182,003 0182,004 0282,014 0282,016	IEC SKT TO SW. CABLE ASSY IEC EARTH CABLE ASSY PSU INSULATOR M SERIES BASE LABEL	1 1 1 1	
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	0282,110 0282,100 0182,101 0182,102 0182,203 0182,104 0182,107 0282,111 0182,212 0182,115 0182,118 0182,219 0799,005	SCREEN CLAMP BAR LOWER WRAP SCSI CABLE ASSY MAINS INPUT CABLE ASSY WINI DRIVE NO. CABLE ASSY PSU OUTPUT CABLE ASSY WINI EARTH CABLE ASSY E20S REAR LABEL 1 E40S FRONT FLAP E20S PSU E20S REAR LABEL 2 E40S WINCHESTER D.D. OPTO LED REC MTG GRMT	1 1 1 1 1 1 1 1 1 1 1 1 2	
43 44 45 46				

Appendix B

Parts lists

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
47 48 49	0805,900	SW DPST 250V 4A ROC SNP	1	
50 51 52 53 54 55	0865,902 0865,904	PWR SKT PNL SCW IEC PWR SKT PLSTC BOOT	1 1	
55 56 57 58 59 60	0880,020 0880,101 0880,100	CBL GRMT RND 7.4mmD 2.5CT CBL TIE LK 97mmL CBL TIE LK 140mmL	1 3 1	
61	0882,121	SCW M3x6 PAN HD POSI	16	USED ON ITEMS
62 25 38	0882,123	SCW M3x10 PAN HD POSI	4	USED ON ITEMS
63	0882,127	SCW M3x25 PAN HD POSI	5	USED ON ITEMS 34 farth
64 65 67 68 69	0882,145 0882,223 0882,902 0882,962 0882,964 0882,972	CSW M4x16 PAN HD POSI SCW M3x10 CSK HD POSI NUT M3 STL FULL Z/PAS WSHR M3 PLN ST Z/PAS WSHR M4 PLN ST Z/PAS WSHR M3 SPRF IT STL	4 2 8 8 12 23	USED ON ITEM 78 USED ON ITEM 51 USED ON ITEM 63,65 USED ON ITEM 63 USED ON ITEM64 USED ON ITEMS
70 71 72 72	0882,985	WSHR M3 PLN NYL	4	61,63,62,65 USED ON ITEM 62
73 74 75 76 77	0885,204	FAN GUARD	1	
78 79 80	0890,006 0890,010	FOOT SCW RUBR 17.5Dx17.5 MATL RUBR SEALANT	4 A/R	

Parts lists

Stacking FileStore E60S Final Assembly

ITEM	PART NO	DESCRIPTION	QTY	REMARKS
1 2 3	0082,100/A 0082,100/WD	FINAL ASSEMBLY DRAWING WIRING DIAGRAM	1 1	PER BATCH PER BATCH
4 5	0254,430	M SERIES E20 FRONT LABEL	1	
7	0254,704	PSU PILLARS	4	
8	0254,707	WINCHESTER PILLARS	4	
9	0154,721	EARTH TO PSU CABLE ASSY	1	
10	0154,722	PSU TO SW CABLE ASSY	1	
⊥⊥ 12	0254,726 0254 727	FILESTORE PSU SPACER	4	
1.3	0254,727	M SERIES FRONT MOULDING	1	
14	0254,737	M SERIES TOP WRAP	1	
15	,			
16				
17	0050 100		0	
10 10	UZ58,1U3 0258 115	B.B. SIDE MOULDING	ے 1	
2.0	0230,113	D.D. REAR MOULDING	T	
21				
22				
23	0182,003	IEC SKT TO SW. CABLE ASSY	1	
24	0182,004	IEC EARTH CABLE ASSY	1	
25	0282,014	PSU INSULATOR	1	
20	0202,010	M SERIES DASE LADEL		
28				
29	0282,110	SCREEN CLAMP BAR	1	
30	0282,100	LOWER WRAP	1	
31	0182,101	SCSI CABLE ASSY	1	
32	0182,102	MAINS INPUT ASSY	1	
37	0182,203	MINI DRIVE NO. CABLE ASSI DSU OUTDUT CABLE ASSY	1	
35	0182,107	WINT EARTH CABLE ASSY	1	
36	0282,111	E20S REAR LABLE 1	1	
37	0182,312	E60S FRONT FLAP	1	
38	0182,115	E20S PSU	1	
39	0182,118	E20S REAR LABEL 2	1	
40	0182,319	E6US WINCHESTER D.D.	1	
41 42	0799.005	OPTO LED REC MTG GRMT	2	
43	0,00,000		2	
44				
45				
46				

Appendix B

Parts lists

Appendix C. Diagrams

This appendix contains all the relevant drawings and diagrams for FileStore and Stacking FileStore units.

A summary of the diagrams contained in the Appendix is listed below. The issue number given for each diagram is the one that was current at the time of publication:

Title	Part number	Issue
FileStore E01		
Main circuit pcb diagram	0154,00/C	5
Main circuit pcb layout	0154,000/A	4
Main circuit pcb silk screen	0254,000/SS	3
Final assembly diagram	0054,000/A	5
Wiring diagram	0054,000/WD	2
FileStore E20		
Main circuit pcb diagram	0127,000/C	1
Main circuit pcb silk screen	0227,000/SS	3
Final assembly diagram	0054,005/A	4
Wiring diagram	0054,005/WD	1
FileStore E01S		
Main circuit pcb diagram	0182,000/C	4
Main circuit pcb layout	0282,000/SS	2
Final assembly diagram	0082,000/A	1
Wiring diagram	0082,000/WD	1
FileStore E40S/E60S		
Final assembly diagram	0082,100/A	1
Wiring diagram	0082,100/WD	1