
VLSI Technology, inc.

ACORN RISC
MACHINE (ARM)
FAMILY
DATA MANUAL

Application Specific

Logic Products Division

Prentice Hall, Englewood Cliffs, New Jersey 07632

The information contained in this document has been carefully checked and is believed to be reliable.

However, VLSI Technology, Inc., (VLSI) makes no guarantee or warranty concerning the accuracy of
said information and shall not be responsible for any loss or damage of whatever nature resulting from
the use of, or reliance upon, it. VLSI does not guarantee that the use of any information contained
herein will not infringe upon the patent or other rights of third parties, and no patent or other license

is implied hereby.

This document does not in any way extend VLSI's warranty on any product beyond that set forth in its

standard terms and conditions of sale. VLSI Technology, Inc., reserves the right to make changes in the
products or specifications, or both, presented in this publication at any time and without notice.

LIFE SUPPORT APPLICATIONS
VLSI Technology, Inc., products are not intended for use as critical components in life support
appliances, devices, or systems in which the failure of a VLSI Technology product to perform could
reasonably be expected to result in personal injury.

Copyright © 1990 by VLSI Technology, Inc.

Published by Prentice-Hall, Inc.

A Division of Simon & Schuster

Englewood Cliffs, New Jersey 07632

This book can be made available to businesses

and organizations at a special discount when ordered

in large quantities. For more information, contact:

Prentice-Hall, Inc.

Special Sales and College Marketing

College Technical and Reference Division

Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book may be

reproduced, in any form or by any means,

without permission in writing from the publisher.

Printed in the United States of America

10 987654321

ISBN O-lB-TaiblA-l

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

VLSI Technology, inc.

CONTENTS
PAGE

ACORN RISC MACHINE (ARM) DATA MANUAL NUMBER

SECTION 1 INTRODUCTION: THE RISCSYSTEM SOLUTION FOR SMALL COMPUTERS 1-3

SECTION 2 VL86C010 - 32-BIT RISC MICROPROCESSOR 2-3

Description 2-3
Signal Description 2-5
Functional Description 2-6
Examples of the Instruction Set 2-12
Instruction Cycle Operations

, 2-13
Timing and AC Characteristics

, 2-21

RISC PROGRAMMER'S MODEL 2-25
Byte Significance

o 2-25
Registers 2-25
Exceptions 2-26
Instruction Set

, 2-29
Branch, Branch-and-Link (B, BL) 2-29
ALU Instructions (AND, EOR, SUB, RSB, ADD, ADC, SBC,

-••-.•••

RSC, TST, TEQ, CMP, CMN, ORR, MOV, BIC, MVN) 2-31
Multiply, Multiply-Accumulate (MUL, MLA) 2-36
Load/Store Value from Memory (LDR, STR) 2-37
Load/Store Register List (LDM, STM) 2-40
Software Interrupt (SWI) 2-44
Coprocessor Data Operations (CPD) 2-45
Coprocessor Load/Store Data (LDC, STC) 2-45
Coprocessor Register Transfer (MCR, MRC 2-48
Undefined (Reserved) Instructions 2-49
Instruction Set Summary (and Examples) 2-49
Appendix A 2-53

SECTION 3 VL86C020 - 32-BIT MICROPROCESSOR WITH CACHE MEMORY 3-3
Description 3.3
Signal Description 3.8
RISC PROGRAMMER'S MODEL ZZZZZZZZZZZZZ.73-12
Byte Significance3-12

Registers3-12

Exceptions 3_13
Instruction Set 3_16
Branch, Branch-and-Link (B, BL) 3-16
ALU Instructions (AND, EOR, SUB, RSB, ADD, ADC, SBC,
RSC, TST, TEQ, CMP, CMN, ORR, MOV, BIC, MVN) 3-18
Multiply, Multiply-Accumulate (MUL, MLA) 3-23
Load/Store Value from Memory (LDR, STR) '...'.'.'.'.'.3-25

Load/Store Register List from Memory (LDM, STM) 3-28
Single Data Swap (SWP) .'3.32

Software Interrupt (SWI) ZZZZZ.Z3-34
Coprocessor Data Operations (CDO) 3.35
Coprocessor Data Transfers (LDC, STC) 3.36
Coprocessor Register Transfers (MCR, MRC)

, 3^g
Undefined (Reserved) Instructions 3-40
Instruction Set Summary (and Examples) 3-40
CACHE OPERATION3-44

Read/Write Operations
, 3.44

Cache Validity
, 3.44

Non-cachable Areas of Memory 3.44
Doubly Mapped Space

, 3.44
Control Registers

, 3.45
VL86C020 Memory Timing 3-47

VLSI Technology, inc.

CONTENTS
PAGE

ACORN RISC MACHINE (ARM) DATA MANUAL NUMBER

Cycle Types 3-48

Data Transfer 3-48

Byte Addressing 3"48

Locked Operations 3"49

Line Fetch Operations 3"50

Address Timing 3 '50

Virtual Memory Systems 3 '50

Stretching Access Times 3"50

Coprocessor Interface 3'5 ^

Data Transfer Cycles 3"52

Register Transfer Cycle 3"53

Privileged Instructions 3"53

Repeatability 3"54

Undefined Instruction 3"54

VL86C020 Instruction Cycles 3'54

Instruction Tables 3*54

Software Interrupt and Exception Entry 3 "59

Coprocessor Data Operation 3 -60

Coprocessor Data Transfer 3_6°

Coprocessor Data Transfer (From Coprocessor to Memory) 3-61

Coprocessor Data Transfer (Load from Coprocessor) 3-62

Coprocessor Data Transfer (Store to Coprocessor) 3-62

Undefined Instruction and Coprocessor Absent 3-62

Instruction Speeds 3"63

Cache Off 3"63

Cache On 3"64

Compatibility with Existing Arm Systems 3-66

Test Conditions 3_68

AC Characteristics 3_69

Absolute Maximum Ratings 3_73

DC Characteristics 3"73

SECTION 4 VL86C1 10 - RISC MEMORY CONTROLLER 4-3

Description 4"3

Signal Description 4"5

Functional Description 4"8

Memory Pages 4_8

Master/Slave Configuration 4_8

Memory Map 4*8

Logically Mapped RAM 4_8

Physically Mapped RAM 4"9

I/O Controllers 4"9

ROM 4"9

DMA Address Generators 4_9

Logical-Physical Translator 4_9

Effect of Reset 4'9

Access Times 4"9

N-Cycles and S-Cycles 4"10

Processor Interface 4"10

DMA Address Generators 4_16

DMA and Memory Arbitration 4'18

Video Controller (VIDC) Interface 4"20

I/O Controller Interface 4"20

Timing and AC Characteristics 4"21

VLSI Technology inc.

. CONTENTS
ACORN RISC MACHINE (ARM) DATA MANUAL NUMBER

SECTION 5 VL86C310 - RISC VIDEO CONTROLLER
„ 5.3

Description
""""""" ° """

5-3
Signal Description

, ZZZZZZ"
"""""

5.5
Functional Description "

'"

s 7
using the vidc ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ. 5-13
Display Formats

...,.,.., 1

•""""'

Sound System ZZZZZZZZZZZZZZ [5-17
Timing and AC Characteristics

."".........I....."................!..."......... 5-19

SECTION 6 VL86C410 -RISC I/O CONTROLLER 6.3
Description

""".'"""".'""""""""'

6-3
Signal Description ZZZZZ 6-5
Functional Description

, 6 .8
Internal Registers

'.'".'.'.'..'.'.ZZZZZZZ. 6-8
External Peripherals ZZZZZZZZZZZZZZ" 6-12
Timing and AC Characteristics ZZZZZZZZZZZZZZZZZZZZZZZZZZ..6--\5

SECTION 7 RISC DEVELOPMENT TOOLS OVERVIEW
b 7.3

SECTION 8 PACKAGING INFORMATION
k 8.3

68-Pin Plastic Leaded Chip Carrier (PLCC) '.

ZZZZZZZZZZZZZZZZZZZZZ... 8-3
84-Pin Plastic Leaded Chip Carrier (PLCC) ZZZZZZZZZZZ'ZZZZZZZZZ. 8-4
144-Pin Ceramic Pin Grid Array ZZZZZZZZZZZZZZZZ.. 8-5
1 60-Pin Ceramic Pin Grid Array ZZZZZZZZZZZZZZZZZZZZZZZZZZ. B-6

SECTION 9 SALES OFFICES, DESIGN CENTERS, AND DISTRIBUTORS
, 9.3

VLSI Technology, inc.

CONTENTS

VLSI Technology, inc.

CONTENTS

INTRODUCTION - ACORN RISC MACHINE

VL86C010 -32-BIT RISC MICROPROCESSOR

VL86C020 - 32-BIT RISC MICROPROCESSOR WITH CACHE MEMORY

I

VL86C110 - RISC MEMORY CONTROLLER E

VL86C310 - RISC VIDEO CONTROLLER

VL86C410 - RISC I/O CONTROLLER

RISC DEVELOPMENT TOOLS OVERVIEW

PACKAGING
!INFORMATION

E

E

El

SALES OFFICES, DESIGN CENTERS, AND DISTRIBUTORS El

VLSI Technology, inc.

VLSI Technology inc.

PREFACE

This book provides the reader with an in-depth and concise reference on the VLSI Technology, Inc. VL86C01 RISC system
product. The RISC microprocessor and three RISC peripherals described in this text are both world-class and international. They
were designed in the United Kingdom by Acorn Computer Ltd., using VLSI Technology, Inc. design tools, and afe presently
manufactured in the United States by VLSI. In addition, under recently! signed alternate sourcing agreement, Sanyo, Ltd., will both
manufacture the VL86C010 RISC family in Japan and develop derivative product.

In addition to a detailed hardware description of each device, this text extensively examines the software aspect of RISC Archi-
tecture. The instruction set is thoroughly explained, with numerous examples shown of programming techniques. Most readers
who have some programming experience, whether familiar with existing "standard" microprocessors or not, should quickly under-
stand programming in VLSI RISC system environment.

Except for the cover and VLSI logo, this book was entirely produced using desktop publishing. To maximize the desktop publish-
ing program's usefulness, this text was produced using a preceding minus (-) sign rather than an overbar or asterisk to indicate a
complemented signal.

VLSI Technology, inc.

VLSI Technology inc.

SECTION 1

INTRODUCTION -

ACORN RISC
MACHINE

Application Specific

Logic Products Division

VLSI Technology, inc.

VLSI Technology, inc.

INTRODUCTION • ACORN RISC MACHINE
32-BIT RISC MICROPROCESSOR FAMILY

THE RISC SYSTEM SOLUTION FOR SMALL COMPUTERS
INTRODUCTION
Perhaps the most important topic in the

computer industry the past few years

has been the emergence of the

Reduced Instruction Set Computer
(RISC) touted as the next generation of

performance oriented architectures.

Several different suppliers - both

component and system - have an-

nounced new computers based on the

RISC design methodology. All claim

that RISC offers much higher perform-

ance than more traditional Complex
Instruction Set Computers (CISC). The
common denominator among these
suppliers has been a systems approach
to the CPU design problem, in other

words, the CPU is considered as a
single unit. When multi-chip solutions

are involved (as most are), interfaces

are defined around performance and
bandwidth requirements more than
functional blocks, the partitioning found
in most commercial microprocessors

today. Component suppliers often

partition their systems around functions,

like scalar processor, memory manage-
ment unit, and floating point processor.

This allows each circuit to be used
without the others, meaning that not all

components have to be available before

sales start. By partitioning around
functions, the component suppliers

usually sacrifice performance or require

other system elements, such as

memory, be faster than necessary at a
given performance level.

As RISC technology moves from the

laboratory into the commercial environ-

ment it Is important for system design-

ers to understand these new considera-

tions. When new applications arise that

cannot be addressed cost-effectively by
CISC architectures, this new technol-

ogy may provide the only solution. By
examining the following system, the

designer will become familiar with this

new, emerging computer technology

and learn how systems can be parti-

tioned around parameters other than

functional blocks.

Brief Evolution of CISC and RISC
Architectures

Most commercially available computers
today should be classified as CISC.
Many of these machines have existed

for more than a decade, and have their

foundation in technology that was
radically different from today. When
most existing machines began, logic

and memory were expensive. In

addition, software development was
limited by the programming ability of

assembler language and lack of

efficient high-level language compilers.

Early system designers were forced to

heavily encode their limited instruction

sets to minimize memory requirements

of the system. Many processors began,
with what was then considered as large,

address spaces of 64K words/bytes of

memory. Of course 64K words of

assembler language code did represent

a very large programming effort at the

time.

Higher integration in semiconductor
technology brought down the high cost

of logic and memory. Soon, computer
architects found they could build an
equivalent system cheaper, with lower

power requirements, and having more
reliability. Also, integration allowed

them to add enhancements to the

instruction set to improve performance
of key customer applications for less

cost than before. Assembler language
programmers wanted more enriched

addressing modes that moved some of

the computing functions from software

to hardware. In addition, it improved
programmer productivity by reducing

the number of lines of assembler
language necessary to code programs.
Less lines per function meant more
functions could be coded in the same
time - i.e. higher productivity. High-

level languages were available but

generally were too Inefficient to use
except in the most complex applications

level.

Hardware designers began adding new
instructions and addressing modes to

meet the programmer requests while

remaining compatible with previous

generations of software. Soon, system
architects realized that they could

provide more performance if they could
sacrifice backwards compatibility and
redefine their instruction sets to exploit

new technologies. Instruction complex-
ity had increased to the point where
decoding multi-word, multMormat
instructions was the limiting factor in

processor speed. Unfortunately,

customers had huge investments in

software and were reluctant to change
to hardware that could not execute their

installed base. New architectures were
limited to new customers and applica-

tions.

High-level language efficiency and
hardware performance improved
dramatically and became useful for

most applications. This helped two
areas of concern in computer systems,
programmer productivity and program
transportability. High-level languages
helped programmers write code that

was hardware independent, at least in

theory, as compilers stood between the

programmer and the execution environ-

ment (physical hardware and operating

system). Compiler differences and
ambiguous language specifications

caused some portability problems, but

in general it was practical to port

programs between machines.

With more high-level language pro-

grams being written, hardware suppliers

felt pressured to add even more
complication to their instruction sets to

support compiled code. Many architec-

tures added hardware Implementations
of high-level constructs like FOR,
WHILE, and PROC (procedure calls)

directly into the instruction set. The
problem arose as to which language to

support because each is different, e.g.

whether the conditional execution

expression is evaluated at the begin-

ning of the loop or the end. As a result,

most architectures may support only

one language well or are so general
that the compiler cannot exploit them
efficiently (Wulf, 1981).

In the mid-seventies computer scien-

tists began to investigate new methods
to support all high-level languages more
efficiently. It was becoming apparent
that most problems were too complex to

be written in assembler language and
no one high-level language was
sufficient to support ^applications.

From these development efforts came
the RISC methodology for CPU design.

What constitutes a RISC computer is

yet another area of debate, but most
emerging machines do have some
characteristics in common.

VLSI Technology, inc.

INTRODUCTION • ACORN RISC MACHINE

First, most RISC machines are based

on single-cycle instruction execution.

Unlike their Complex Instruction Set

Computers (CISC) counterparts that

may take up to 100 minor (clock) cycles

to complete complex instructions, the

RISC machines instruction set is limited

to primitive functions that can execute

in a single or extremely few machine

cycles. Compiler writers have sug-

gested that it is more efficient to provide

primitives to build solutions rather than

solutions in the instruction set. When
instructions have too much semantic

content, a clash occurs between the

language and the instruction set (Wulf,

1981) introducing inefficiency and

increasing compiler complexity. In

addition, single clock execution helps

lower interrupt latency, thus making the

system more responsive to the asyn-

chronous environment of today's time-

shared and/or networked systems.

Another common trait of RISC ma-

chines is a load/store architecture

providing larger CPU register files. In a

load/store architecture, the data

processing instructions (logical and

numeric functions) can only operate on

the CPU registers. A separate set of

instructions are used for memory
reference that usually support a limited

set of addressing modes. Streamlining

the addressing modes helps simplify

instruction decode, eliminate special-

purpose address ALUs, and speed

pipeline processing that can be slowed

by multi-word address operand fetches.

Recent improvements in the global

register allocation problem faced by

compilers have made efficient use of

large numbers of registers possible. In

response to compiler improvements,

most RISC systems have added larger

register files to improve performance.

Two factors bring about significant

performance increases from added

registers: (1) register operations

execute much faster, and (2) memory

references are reduced because

registers can hold temporary results.

In general, RISC machines are tightly

coupled to their memory. The simple

instruction set translates into a higher

effective instruction execution rate,

meaning the processors demand a high

bandwidth from their memory systems

to provide peak performance. In order

to provide this bandwidth most, but not

all, systems have implemented very

sophisticated caching techniques which

increase system cost and complexity

dramatically.

The VLSI Technology RISC
Computer System
VLSI Technology has a full system

solution to the design of a cost-

effective, small computer. This system

was designed by Acorn Computers Ltd.

of Cambridge, United Kingdom, using

the VLSI Technology, Inc. CAD system.

What makes this system different is its

unique method of partitioning the four

circuits. Instead of designing the

circuits around self-contained functions,

this system is partitioned around basic

computer fundamentals such as

memory bandwidth, die size of all four

components, and low-cost packaging

available today. Careful attention to

these fundamentals has yielded a small

computer system that can bring

excellent performance to the user at

significantly lower cost than ever

before. An examination of the system

and its alternate form of partitioning will

highlight the advantages of a top down
design approach to the entire problem,

not just CPU optimization.

The computer shown in Figure 1 is

partitioned into four circuits: the

VL86C010 Acorn RISC Machine (ARM)

processor, VL86C1 1 Memory Control-

ler (MEMC), VL86C310 Video Control-

ler (VIDC), and VL86C410 I/O Control-

ler (IOC). These four circuits together

form a full 32-bit microcomputer system

with performance in the 5 to 6 million-

instructions-per-second (MIPS) range.

Somewhat surprising is the fact that the

four parts are available in one 84-pin

(processor) and three 68-pin packages

(JEDEC Type-B or Plastic-Leaded-

Chip-Carriers, PLCC) while implement-

ing full 32-bit functions. A more

surprising fact is that no part in the

system has a die size larger than 230

mils square in VLSI Technology's 2 u.m

double-layer metal CMOS process

which means highly manufacturable

circuits are available.

Partitioning The System
Traditionally, component designers

viewed a computer system as "cen-

tered" around the CPU. The processor

was designed in a vacuum, without

concern for other elements in the

system. The CPU was optimized to be

high-performance and then the system

designers found that in order to exploit

the performance, they had to resort to

expensive memory systems or cache

sub-systems, increasing the cost

FIGURE 1. RISC SYSTEM BLOCK DIAGRAM
-VDAK

7^

sr

ADDRES8 BUS =NM

FlYBK

RA9-RA0

£

7Y

ROUT
QOUT
BOUT

-HSYC
-VICS

• LCH
• -LCH
RCH
-RCH

\7
DRAM
ARRAY

J£
ADDRESS
LATCH

DATA BUS (32 BITS)
n:

VLSSC410
-BL

-WBE
-RBE

ACA2 D7-D0

->- Q DATA ""•

~7 u
a DATA
E OUTPUT

LATCH

Q DATA
E INPUT
LATCH

~7T

$

I/O

DATA
BUS

I/O

ADDRESS
BUS

1-4

VLSI Technology inc.

INTRODUCTION ACORN RISC MACHINE

dramatically. The CPU made such high

demands on the memory that I/O

transactions were not sufficiently

served. This forced the systems
designer to implement ever more
complex I/O sub-systems, yet another

addition to cost, complexity, and
decreased reliability. Even today's

most popular personal computers use

plug in cards with on-board memory
sub-systems for video and data com-
munications.

FIGURE 2. VL86C110 MEMORY CONTROLLER (MEMC) BLOCK DIAGRAM

ABRT -MREQ RES
-R/W

1_
SPMD

-MREQ
A25 - AO , SEQ

LOGICAL
TO

PHYSICAL
ADDRESS

TRANSLATOR
(CAM)

H
DMA AND
REFRESH
ADDRESS

GENERATOR

\7
DRAM ADDRESS
MULTIPLEXER

^F
RA9 - RAO

CLK

SYSTEM
TIMING
GENER-
ATOR

2-1.

VIDEO
AND

SOUND
DMA

CONTROL

DRAM TIMING
GENERATOR

-IORQ
RCLK
-IOGT
01
02
DBE
-RMCS
-VIDW

FLBK
-HSYC

-VDRQ
-VDAK

-SDRQ
-SDAK
-SIRQ

-B/W

T~TF
-RAS -CAS3--CAS0

FIGURE 3. VL86C110 MEMORY CONTROLLER (MEMC) PIN DIAGRAM

PROCESSOR
INTERFACE "^

K
a25-ao ;

-R/W

-B/W ^
-MREQ

SEQ ^
SPMD »

01

02
DBE•4 =^

^ ABRT

I/O

CONTROLLER
INTERFACE

MEMC
CONTROL

-IQRQ
REF

-IOGT

CLK
RES

VDD(2)

VSS(2)

VL86C110

RA9 - RAO
t>

-CAS3
DRAM

>- CONTROL

-RMCS > ROM
CONTROL

-VIDW
FLBK

-HSYC
-VDRQ
-VUAK

-SDRQ
-SDAK

-SIRQ >

VIDC
INTERFACE

INTERRUPT
CONTROL

The requirements for a small computer
today, are very much different than

even a few years ago. Now users

expect a small computer to have
capabilities that were only available in

minicomputers. Full color displays at

resolutions up to 640 by 480, real

memory of 1 Mbyte, and networking

support are common features de-

manded by end-users.

The VLSI Technology, Inc. system is

"centered" around the memory, with

each element designed to use the

bandwidth efficiently without making
large demands that require premium
memory components. The video

display is integrated into the design to

utilize the main memory for display

area, eliminating the need for expensive

add-on video cards. The system
operates with a 24 MHz clock that

yields a basic processor cycle of 8 MHz
(125 ns). Even at this ispeed, the

memory system uses inexpensive 120
ns access time page-mode DRAMs.

Memory Controller Functions
Since the system is designed around
the memory, it is logical that the

VL86C1 10 Memory Controller (MEMC)
should be discussed first. Understand-

ing how this part functions provides

insight into the other elements and how
they are coordinated together.

As the name would indicate, the MEMC
generates the timing and control signals

required by DRAM. In ; addition, MEMC
acts as the main interface between the

other three components by providing

the critical timing signals for all ele-

ments from a single clock input. Figure

2 shows a block diagram and Figure 3

the functional pin out of the memory
controller. It should be noted that

MEMC does not have a data bus
connection allowing it to be placed in a

68-pin package. To program the

internal registers of MEMC, the data is

encoded on the address bus during a
processor write to the part. While at

first this may seem a large overhead,

using the simple/fast addressing modes
and barrel shifter in the processor, the

programmer will find that the address

encoding causes very little impact.

The part generates all the timing signals

required for interfacingithe elements

with the memory. High speed timing is

generated from a single clock, usually

24 MHz for an 8 MHz processor. All

1-5

VLSI Technology, inc.

INTRODUCTION ACORN RISC MACHINE

FIGURE 4. CLOCK SKEW TIMING EXAMPLE

DATA O'-

CLOCK o-

BUFFER
FLOP

Mlnlmim Setup Time = Flop Setup Time + Data Buffer Maximum - Clock Buffer Minimum

Minimum Hold Time = Flop Hold Time + Clock Buffer Maximum - Data Buffer Minimum

system timing is generated on the

MEMO with minimal buffering on the

other devices. This scheme minimizes

clock skew in the system allowing

slower access time memory devices to

be used. Figure 4 shows an example of

how clock skew occurs in timing paths.

Having all buffers on a single chip

allows delays to track more closely than

the total process variation. As shown

by the example, fewer buffers in the

path lower the amount of lime that data

must be valid on the bus, minimizing

setup and hold times. Removing the

clock buffer will eliminate the difference

between the clock buffer delay mini-

mum and maximum times.

The clock is divided by three and used

to generate the processor and main

system bus reference clocks. The
MEMO drives up to 32 memory parts

directly in several different configura-

tions. Various configurations provide

for up to 4 Mbytes of real memory in the

system. The bandwidth of the low-cost

DRAM memory is increased through

extensive use of page-mode transfers

because many memory references in

computer systems are sequential in

nature. MEMC also provides memory
map decoding for I/O and ROM in the

system. In order to optimize bandwidth,

MEMC will take the ROM chip select

active at the beginning of every non-

sequential access and remove it if the

cycle is not a ROM access making

slower ROM accesses more efficient

and once again allowing lower-cost

ROMs to used.

MEMC supports several key functions

in the system that usually have a

tendency to impact performance or

require faster components, so that this

is not the case in this system. If a small

computer is to support networking it

must provide for multi-tasking and

process isolation. MEMC provides full

virtual memory support with a Logical-

to-Physical Address Translator imple-

mented as a 128 entry content address-

able memory (CAM). Logical pages

can be 4K, 8K, 1 6K, or 32K bytes each.

RAM memory is always treated as 128

physical pages, meaning that MEMC
contains a CAM entry (descriptor) for

each physical page in memory. Having

a CAM location for every physical page

of memory eliminates descriptor

thrashing, thus improving system

performance. Thrashing occurs when
the MMU system has fewer descriptors

than physical pages of memory which

introduces another source of address

translation misses - the data is resident

in memory but a descriptor to translate

to that page is not available. A descrip-

tor must be taken from another page to

point to the requested page.

Many current memory management
units contain only a small sub-set of the

page tables and must retranslate the

logical address whenever a new logical

page is referenced (descriptor miss).

Translation can take up to several

microseconds depending on how many
memory cycles must be performed. In

this system the address translation is

not in the critical path and does not

require faster memory than a system

that uses physical addresses. No
translation takes place on the row

address values which are required early

in the memory cycle. The mapped
address bits are placed into the column

address field and are therefore not

needed until much later in the cycle.

This approach can be taken because

the memory is usually configured as a

single bank meaning all memories are

active when the RAS becomes active

regardless. Systems that have more

than one bank of DRAM and use this

approach would be required to select

(bring RAS active) all memory devices

on every cycle. Multi-bank memory
systems designed in this manner would

have much higher power consumption

and lose much of the advantage of

DRAM technology.

The simple CAM contained in MEMC
can support demand paging with some
software assistance and it provides a

full virtual memory implementation with

three levels of access protection

efficiently. The goal of virtual memory
support in this system was to let

programs be written independent of real

memory size rather than for multi-user

support. Today's most popular PC has

suffered recently due to the artificial real

memory limitation placed on it by the

machine designers.

MEMC contains all the address

generators to support DMA activity

related to video, cursor, and sound

generation. These were placed on this

circuit for two reasons. First, it elimi-

nates the need to have the full address

bus placed on the video Interface

circuit. This allows the VIDC to have

the full 32-bit data bus and still be

packaged in a 68-pin package. Sec-

ond, this arrangement uses the memory
bandwidth more efficiently by reducing

synchronization and buffer delays on

the memory bus while improving DMA
latency. In most systems a DMA opera-

tion proceeds as follows: (1) the DMA
device requests a transfer, (2) the

memory controller synchronizes to the

system clock and recognizes the

request, (3) processor is signaled to

relinquish the bus, (4) processor

synchronizes and recognizes the

request, (5) processor issues grant to

memory controller, (6) memory control-

ler synchronizes and recognizes grant,

(7) memory controller issues DMA
grant, (8) DMA synchronizes and

recognizes grant, (9) DMA device

enables address bus drivers, (10)

memory controller receives address

and multiplexes address to memory
devices, (11) memory controller issues

data acknowledge, (12) DMA device

synchronizes and recognizes acknowl-

edge, and (13) DMA device removes

request to end cycle.

MEMC provides the memory arbitration

and all address sources in a single

1-6

VLSI Technology, inc.

INTRODUCTION ACORN RISC MACHINE

device within the system. This elimi-

nates several levels of pulse synchro-

nizers and buffering delays. When the

VIDC signals a DMA request, MEMO
only has to recognize the request,

disable the processor when appropri-

ate, and enable the address from the

internal source. The DMA device has a

simple interface to latch the data when
the acknowledge signal goes inactive.

This interface provides a very efficient

DMA capability for read-only devices

like video and sound generators. In

order to optimize bandwidth usage,

MEMO performs four memory cycles

per DMA request, one full access taking

250 ns and three sequential page-mode
accesses of 125 ns each.: Four cycle

bursts were chosen for all devices to

increase bandwidth but keep bus

latency to a reasonable value. Long
latency introduces other costly prob-

lems that are usually solved with

expensive FIFO buffers or other

interface hardware that is duplicated in

every device that connects to the bus.

RISC Processor Functions

The VL86C010 RISC processor

provides the computational element in

the system. The processor has a

radically reduced instruction set

containing a total of only 46 different

operations. Unlike most others, all

instructions occupy one 32-bit word of

memory. In keeping With the tradition of

RISC methodology, the processor is

implemented as with a single-cycle

execution unit and a Idad/store architec-

ture. The basic addressing mode
supported is indexed from a base
register, with several different methods
of index specification. The index can
be a 12-bit immediate value contained

within the instruction, or another

register (optionally shifted in some

TABLE 1. VL86C010 INSTRUCTIONS
FUNCTION MNENOMIC OPERATION PROCESSOR CYCLES
Data Processing

Add with Carry ADC Rd:-Rn + Shfft(Rm) + C 1S

Add ADD Rd>Rn + Shift(Rm) 1S
And AND Rd:-Rn • Shift(Rm) 1S
Bit Clear BIC Rd:-Rn • Not Shift(Rm) 1S
Compare Negative CMN Shtft(Rm) + Rn 1S
Compare CMP Rn - Shift(Rm) 1S

Exclusive - OR EOR Rd:-Rn XOR Shift(Rm) 1S

Multiply with Accumulate MLA Rn:-Rm * Rs + Rd 16Smax
Move MOV Rn:-Shift(Rm) 1S
Multiply MUL Rn:-Rm * Rs 16Smax
Move Negative MVN Rd:-NOT Shift(Rm) 1S
Inclusive - OR ORR Rd:-Rn OR Shfft(Rm) 1S

Reverse Subtract RSB Rd:-Shift(Rm) - Rh 1S
Reverse Subtract with Carry RSC Rd:-Shift(Rm) - Rh - 1 + C 1S
Subtract with Carry SBC Rd:-Rn - Shift(Rrrf) - 1 + C 1S

Subtract SUB Rd:-Rn - Shift(Rm) 1S

Test for Equality TEQ Rn XOR Shift(Rm) 1S

Test Masked TST Rn • Shift(Rm) 1S

Data Transfer

Load Register LDR Rd:-Effactive address 2S+1N
Store Register STR Effective address:- Rd 2N

Multiple Data Transfer

Load Multiple LDM Rlist:-Effective Address (n"+1)S + 1N
Store Multiple STM Effective Address:-Rlist (n"+1)S + 2N

Jump
Branch B PC:-PC+Offset 2S+1N
Branch and Link BL R14:-PC, PC:- PC+Offset 2S+1N
Software Interrupt SWI R14:-PC, PC:- Vector # 2S+1N

*Shift() denotes the output of the 32-bit barrel-shifter. One operand can be shifted in several manners on every data processing
instruction without requiring any additional cycles.

** - n is the number of registers in the transfer list.

N denotes a non-sequential memory cycle and S a sequential cycle.

1-7

VLSI Technology, inc.

INTRODUCTION • ACORN RISC MACHINE

manner). The index can be used in a

pre or post-indexed fashion for any

method of specification.

Table 1 shows the instructions sup-

ported by the processor. These
instructions operate only on the CPU
internal registers. Only the multiply

instruction requires more than one cycle

to execute (32 x 32 multiply in 16 clocks

worst case) and it is not the limiting

factor in interrupt response time. All

instructions have conditional execution

implementing a type of skip architec-

ture. Unexecuted instructions require a

single processor cycle and keep the

three-stage pipeline intact. This

approach was taken as opposed to the

delayed branch approach to simplify the

virtual memory page fault recovery

process. When the branch and delayed

instruction are contained on separate

physical pages and a fault occurs on

the fetch after the taken branch, the

recovery process can be extremely

expensive in both software and

hardware complexity. Studies have

shown that compiled code generated on

the VAX averaged three instruction

executions between every taken branch

(Clark and Levy, 1982). While instruc-

tion set differences may cause the

number of instructions between

branches to vary, the conditional

execution helps the processor keep its

pipeline intact for forward reference

branches of short length.

The VL86C010 supports two types of

branch instructions, branch and branch-

with-link for subroutine calls. Again,

both branch types offer conditional

execution. For subroutine calls, the

current value of the machine state

contained in register 15, program

counter and status register, is copied

into register 1 4. Linking subroutine

calls through the registers instead of the

more traditional memory stack, reduces

the call/return overhead. For a single-

level linkage, the state is saved within

the machine in a single clock and can

be restored also in a single clock. For

multi-level call sequences, full machine

state is contained in a single word,

requiring only a single memory refer-

ence for stacking.

Two types of data transfer instructions

are supported for memory references.

A single register can be read or written

to memory in two clock cycles. In order

to exploit sequential memory access

modes, the processor also performs

load and store multiple operations. For

these instructions more than one
register is transferred, taking two clocks

for the first register and one clock for

each additional one. This instruction

greatly enhances the processor's ability

to move large blocks of memory and

context switches that save the entire

machine state. A block transfer

instruction of all 16 registers is the

longest instruction and therefore is the

limiting factor in interrupt response time.

Figure 5 shows a block diagram of the

processor. Several hardware features

are worthy of note. First, by streamlin-

ing the instruction set, more silicon area

can be dedicated to hardware functions

that enhance performance. The
VL86C010 contains a full 32-bit barrel

shifter that can be used to pre-shift one
operand on every processor cycle

without additional delay. The barrel

shifter increases the performance of

shift intensive applications like graphics

manipulations significantly. Second,

the addition of a memory interface

signal (SEQ) to alert the VL86C1 10 that

the next memory address is sequential

to the current address. This extra

status allows the processor and

memory controller to exploit the page-

mode capability of DRAMs and obtain

higher bandwidth without requiring

faster memory devices.

The third major hardware feature is the

partially overlapped register file

containing 27 locations, although only

1 6 are visible to the program at any one
time. Unlike some other RISC proces-

sors, the registers in the VL86C010
overlap across processor modes
instead of procedure calls. The
processor supports four modes of

operation: User, System, Fast Interrupt

Request (FIRQ), and Normal Interrupt

Request (IRQ). In the User mode the

program has 16 (RO to R15) registers.

R1 5 contains the program counter and

status register and R14 is used for

subroutine linkage. The other 14

registers are general purpose as is R14
when it is not needed for linkage.

Whenever a mode change is per-

formed, new registers are mapped into

the visible space. Two new registers

(R13 and R14) are available to the

System and IRQ modes respectively.

Seven additional registers are available

in the FIRQ mode which lowers the

processor's interrupt latency. The FIRQ

FIGURE 5. VL86C010 RISC PROCESSOR BLOCK DIAGRAM

1-8

VLSI Technology inc.

INTRODUCTION ACORN RISC MACHINE
mode has a worst case interrupt latency

of 22.5 clocks and can be as little as 2.5

clocks. The extra registers can hold

DMA pointers and word counts allowing

the processor to implement high speed
DMA transfers without external control-

lers, further reducing system cost

without significant overhead.

Most other RISC processors overlap

the registers across procedure calls,

implementing a register stack that is

used for local variables and parameter

passing. This scheme works well with

the C language because C does not

allow nested scopes like other lan-

guages such as Modula2 and PASCAL.
These languages require the program
to access variables of all levels that are

active at the same time. In addition, the

processor must handle the case where
the register stack overflows (Hennessy,

1984). Both these problems complicate

the processor design and can slow

context switching across processor

modes. It was determined that the

overlap across modes was a more
efficient use of chip area for supporting

all high-level languages and making the

processor more responsive to the

asynchronous environment posed by

network support. Besides, the large

register bank is expensive and can

extend processor cycles with extra

levels of decode internally.

Video Support in the System
The video support is integrated into the

design of the processor system to

eliminate add-on video sub-systems

and dedicated display memory buffers.

The VL86C310 Video Controller (VIDC)

provides a highly flexible choice of

display formats in both color and high

resolution monochrome. Horizontal

timing is controlled in units of two pixel

times and vertical in units of raster

times. Besides performing video

operations, the VIDC also can generate

high quality stereo sound with up to

eight channels of separate stereo

position.

Figure 6 shows a block diagram of the

video controller. The part accepts video

data in a packed pixel format from the

memory, serializes the data into pixel

information, and presents the data to

the color-mapping RAM (video palette)

where it is converted to analog values

suitable for driving an RGB monitor.

FIGURE 6. VL86C310 VIDEO CONTROLLER (VIDC) BLOCK DIAGRAM

-SDRQ
-SDAK •

-VDRQ4

wi-Do rj

-VDAK—

rv

SOUND
FIFO

5
SOUND
LATCH

SOUND
FREQUENCY
GENERATOR

STEREO
IMAGE

REGISTER

rtf

SOUND
DAC

LCH

-LCH

RCH
-RCH

U,
- -L/R

VIDEO -N

FIFO y>

VIDEO
SHIFT

REGISTER

Us VIDEO
PALETTE

-N
V
-**> VIDEO
-y mux

"^ CURSOR
y FIFO

-IS CURSOR
SHIFT

REGISTER

-N CURSOR
-y PALETTE

•V DATA/
SOUND
MUX } -SD3-

-SDO

- NSEL

-SUP

S
HIGH
RES

SHIFTER ^ -VED3-
-VEDO

RED
DAC

Us GREEN
DAC

<-h BLUE—y> DAC

G ADDRESS
DECODER

TIMING
CONTROL

-VIDW -

CKIN -

iZZTEi
HORIZONTAL

TIMING
VERTICAL.

TIMING

-+ -V/CS
-* FLBK
->• -HSYC
-• -HI

VIDC contains three channels of DMA
for interfacing to the video: and sound
systems but does not generate the

addresses directly. For video refresh,

the part supports separate DMA
channels for video and cursor Informa-

tion. The third DMA channel generates

the sound data fetches. Each DMA
channel has a dedicated FIFO of four

32-bit words for cursor and sound and
1 6 words for video. The FIFO depth

can be small because of the highly

efficient and responsive bus implemen-

tation of the system. Each channel

uses the four word burst transfers

discussed before to exploit the page-

mode access mode of DRAMs.

The output of the video FIFO is

connected to the video ser.ializer. The
pixel rate is programmable at values of

8, 12, 1 6 or 24 MHz. In addition, the

video data format can be selected to be
1 , 2, 4, or 6 bits per pixel. Once the

video data is serialized, it is presented

to the color palette. The palette

provides 16 words of 13 bits each,

allowing the part to support 256
simultaneous colors from 4096 possible

choices or an external video source.

The output of the palette is multiplexed

with the cursor information and pre-

sented to the video DACs for conver-

sion to analog RGB formats. The VIDC
can support displays of up to 640 by
480 with 16 colors (high-resolution PC
type display) directly without any
addition logic. The only external

components required are a simple

circuit to convert the current sink DAC
outputs to an appropriate voltage. A
suitable circuit is shown in Figure 7.

The cursor is handled as a separate

sprite making its manipulation simple

and it is allowed pixel level positioning

anywhere on the screen. The cursor is

defined as 32-bits wide: and any number
of rasters high. Cursor information is

fetched during horizontal retrace on
rasters where the cursor will appear.

The cursor sprite can contain up to

three different colors from the 4096
palette, with a fourth alternative color of

1-9

VLSI Technology, inc.

INTRODUCTION • ACORN RISC MACHINE

FIGURE 7. EXAMPLE VIDEO
OUTPUT DRIVER

VDD

i Rr : '. D1 < RZ

RVDAC 5 R1

*
/
Q1

-C1
GND

1—

*

Red Output
75 a
Line

Suggested Component Values
Rr - 10 kQ
R1 - 330 a
R2- 68 ft

D1 should have similar characteristics

to the emitter-base junction ol Q1

transparent. Each pixel that is transpar-

ent allows the video information to be

displayed instead of the cursor. The
background video color "shows

through" the cursor. The transparent

attribute allows cursors of various

shapes to be defined, allowing each

application the option of customizing

the display to enhance the man-

machine interface. Figure 8 shows an

example of how a non-rectangular

shaped cursor would be defined. Each

bit of the cursor sprite can be specified

with no limitations as to the number of

color changes or length of color fields

found in systems that use run-length

encoding for data reduction.

Most small computers support some
type of sound output as does this

system. The difference here is the

support for full-stereo sound. Up to

eight channels of stereo position are

supported yielding very high quality

sound. Due to the small die size and

large pin count, the addition of stereo

sound adds nothing to the cost of the

part (perhaps a small test cost in-

crease) if it is not needed. However,

the system designers can use this

interface to greatly differentiate their

machines. Applications programs could

be written to exploit the power of the

processor to run signal processing

algorithms and utilize compressed

speech or other sound information to

enhance man-machine interfaces or

provide other useful functions. This

sound capability in conjunction with the

VIDC's ability to synchronize to external

FIGURE 8. VL86C310 CURSOR SPRITE EXAMPLE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31

1 1
2

3

4

5

e

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 |
31

displays, could provide a highly

effective system for the computer-

based training market.

Supporting I/O Transactions

Input/output control is very important in

computer systems. Most component

vendors concentrate all their design

effort and analysis on the CPU, striving

to achieve the highest performance.

I/O is left as an after-thought at best, or

the I/O sub-system is designed as a

special-purpose CPU trying to maxi-

mize its performance without regard to

the other elements in the system.

Interfaces grow complex and establish

bottlenecks to system performance or

even worse, sub-systems become
isolated and difficult to control. For

example, many graphics processors

proposed in the past few years did not

allow the host processor access to the

display memory. Software engineers

proclaimed this as an unmanageable
solution and as a result many compo-

nent designers reworked their inter-

faces to provide more control. Address-

ing I/O and CPU designs at the same
time is Important because many of

today's high performance systems are

totally I/O bound, forcing the CPU into

idle states, and causing the users to

pay for performance they cannot obtain

in the execution environment.

The last element in the VLSI Technol-

ogy, Inc. small computer system is the

VL86C410 Input/Output Controller

(IOC). The circuit provides a unified

environment for I/O related activities

such as interrupts and peripheral

controllers. This environment simplifies

system software and allows the

processor to interface easily with

existing low-cost peripheral controllers

such as VL16C450 Asynchronous

Communications Element and VL1772
Floppy Disk Controller. Using these

low-cost, mature devices is a key to

providing a cost-effective small com-
puter in today's market.

A block diagram of IOC is shown in

Figure 9. The part provides the system

with several general I/O support

functions. The VL86C41 contains four

1 6-bit counter/timer circuits, two

configured as general-purpose timers

and two as baud rate generators. One
baud rate generator is dedicated to the

Keyboard Asynchronous Receiver/

Transmitter (KART) and the other

1-10

VLSI Technology inc.

INTRODUCTION ACORN RISC MACHINE

FIGURE 9. VL86C410 INPUT/OUTPUT CONTROLLER (IOC) BLOCK DIAGRAM

CLK4 *-
CLK1 «-

_L
CLOCK
tSbNEH
ATOR

A6 - A2 Q

-dl. -iunw -nc —wc pg - p\.

I/O CYCLE
STATE MACHINE

PERIPHERAL
BANK

DECODER C>
-87"81

REGISTER
DECODER

D7-D0 £
—

N

''6
L

TIMEH

-IRQ
-FIRQ

£

KART
CONTROL

TIMER
1

-'B

TIMEH
2

-'6
*

TIMER
3

'TIS - '2

INTER-
RUPT

CONTROL

H

KIN

KOUT

''2

PARALLEL
IAD ^

PULSE SYNCHRONIZERS

tMI t) M
-IL7--IL0 -IF IR -FH1--FH0 -FL -POR

FIGURE 10. VL86C410 INTERRUPTIBLE CYCLE EXAMPLE

Start

I/O Cycle

DMA Or
*- Refresh

Cycle

Complete
"I/O Cycle

02

REF

-IORQ

-IOGT

controls the BAUD output pin of the

device. Timing of external events

becomes more important in systems

that must support networking and multi-

tasking. Most network protocols require

nodes to respond within a certain time

(three seconds is common) and the

initiator node must detect a timeout and

invoke error recovery procedures.

Multi-tasking operating systems usually

require some type of timing interrupt for

task control.

The KART section is a simple fixed-

format asynchronous bidirectional serial

communications link designed basically

for keyboard input. The format is fixed

with an eight bit character; one start bit,

and two stop bits. The clock rate is a

standard 1 6 times the data rate and the

transmit and receive clocks are at the

same rate and controlled by Timer 3

within IOC. To improve noise immunity,

false start bits of less tham one-half bit

duration are ignored. TheiKART is

ideal for interfacing to the low speed
character rate (up to 31 K characters/

second) from a keyboard but it can be
used for other purposes if the format is

suitable.

The major task of IOC is the implemen-

tation of an efficient interface between
the high speed system' and the lower

speed I/O peripheral controller buses.

The system exploits the low-cost

peripheral controllers but should not be

severely impacted with performance/

latency penalties for using them. The
part contains six programmable bi-

directional I/O pins for implementing

special processor control. Interrupts

are supported with control for both

normal (IRQ) and fast (FIRQ) interrupts

through mask, requests and status

registers. Sixteen interrupt sources are

supported, fourteen level and two edge-

triggered, meaning thel IOC should have

the total interrupt status for most

system configurations.

Centralizing the interrupts in this

manner reduces polling, improves

efficiency, and reduces latency within

the system. Fast response time allows

the processor to replace expensive

dedicated logic with software, lowering

the system cost accordingly. Many
component vendors demand higher

prices for their DMA device than for

their CPU. Unfortunately, the CPU is

usually idled during DMA transfers

because they share the address and
data buses to the memory. If the CPU
was more responsive, It could provide

the transfers without any degradation in

system performance and eliminate the

expensive DMA hardware.

The peripheral controller cycles are

supported with four different lengths for

access times. This allows peripheral

controllers from various vendors with

different bus clocking schemes to be
interfaced easily and cheaply without

extra logic. Each VL86C410 supports

seven peripheral select lines which are

independently selectable from the four

access cycle times. If more than seven
peripheral controllers are needed,

multiple lOCs can be used in the sys-

tem or the select lines can be decoded
further externally because the system

provides sufficient address set-up time.

In order to maintain low latency on the

high speed system bus, the IOC is

1-11

VLSI Technology, inc.

INTRODUCTION • ACORN RISC MACHINE

designed to allow an I/O cycle to be

interrupted by a DMA access on the

system bus. Figure 10 shows a timing

diagram of this operation. The IORQ is

generated by MEMO whenever an I/O

access address is detected. The IOC
will respond with an IOGT signal when
the access is complete. If the MEMC
detects a pending DMA request, it

removes IORQ and performs the

transfer. IOC turns off the buffers that

isolate the two buses and continues

with the I/O cycle until the MEMC
returns the IORQ. Then, the cycle is

completed when both the master and

slave device parameters have been

met. This interruptible I/O cycle elimi-

nates the slower peripheral devices

from the system bus latency calcula-

tions, improves efficiency, and lowers

system cost.

Conclusions

Whenever a system is partitioned, the

designers should consider the entire

problem as a single coherent entity,

optimizing all parts together rather than

each separately. The VLSI Technology,

Inc. system demonstrates the advan-

tages of partitioning around system bus

parameters instead of the more
traditional functional, stand-alone

blocks. This system exploits low-cost

memory and peripheral components

while achieving excellent throughput

with superior cost/performance ratios.

With careful attention, the system

designer can eliminate large die sizes

and expensive high-pin count packages

without sacrificing throughput and

achieve superior cost-performance

ratios.

References

Clark, D. and H. Levy. "Measurement
and analysis of instruction use in the

VAX 1 1/780," In Proceedings of the 9th

Annual Symposium on Computer
Architecture . ACM/IEEE, Austin, Texas,

April 1982.

Hennessy, John L. "VLSI Processor

Architecture." IEEE Transactions on

Computers . Volume C - 33, Number 1

2

(December 1984), pp. 1221-1246.

Wulf, William A. "Compilers and

Computer Architecture." Computer . July

1981. pp. 41-47.

1-12

VLSI Technology, inc.

SECTION 2

VL86C010 w
32-BIT RISC E
MICROPROCESSOR

Application Specific

Logic Products Division

VLSI Technology, inc.

VLSI Technology inc.

VL86C010
32-BIT RISC MICROPROCESSOR

FEATURES
32-bit internal architecture

32-bit external data bus

64M-byte linear address space

Bus timing optimized for standard

DRAM usage with page mode
operation

48M-byte/second bus bandwidth

Simple/powerful instruction set

providing an excellent high level

language compiler target

Hardware support for virtual memory
systems

Low interrupt latency for real-time

application requirements

Full CMOS implementation results in

low power consumption

Single 5 V + 5% operation

84-pin plastic leaded chip carrier

(PLCC)

DESCRIPTION
The VL86C010 Acorn RISC Machine
(ARM) is a full 32-bit general-purpose

microprocessor designed using reduced

instruction set computer (RISC)

methodologies. The processor is

targeted for the microcomputer,

graphics, industrial and controller

markets for use in stand-alone or

embedded systems. Applications in

which the processor is useful include

laser printers, formatters, graphics

engines, Numerical Control machines,

or any other systems requiring fast real-

time response to external interrupt

sources and high processing through-

put.

The VL86C010 features a 32-bit data

bus, 27 registers of 32 bits each, a
load-store architecture, a partially over-

lapping register set, 22.5 clocks worst-

case Interrupt latency, conditional

Instruction execution, a 26'bit linear

address space and an average instruc-

tion execution rate of from five-to-six

million instructions per second (MIPS).

Additionally, the processor supports two
addressing modes: program counter

(PC) and base register relative modes.

The ability to do pre- and post-indexing

allows stacks and queues to be easily

implemented in software. All instruc-

tions are 32 bits long (aligned on word
boundaries), with register-to-register

operations executing in one cycle. The
two data types supported are 8-bit

bytes and 32-bit words.

Using a load-store architecture simpli-

fies the execution unit of the processor,

because only a few instructions deal

directly with memory and the rest

operate register-to-register. Load and
store multiple register instructions

provide enhanced performance, making

context switches faster and exploiting

sequential memory access modes.

The processor supports two types of

interrupts that differ in priority and
register usage. The lowest latency is

provided by the fast interrupt request

(FIRQ) which is used primarily for I/O to

peripheral devices. The other interrupt

type (IRQ) is used for interrupt routines

that do not demand low-latency service

or where the overhead of a full context

switch is small compared with the

interrupt process execution time.

PIN DIAGRAM
PLASTIC LEADED CHIP CARRIER (PLCC)

-TRAN
_f|RQABRT _opc 01 _BflN _cpl M0 D2fl cpA

VCC RES -IRQ~MREQ-RW 02 DBE D31 D29 D27 QNDnnnnnnnnnnnn nnnnnnnnn

ORDER INFORMATION

CPBC
-M1

-MO
SEQC
ALE

A25

A24C
A23C
A22C
A21 C
A20C
A19

A18

A17

A16C
A15t=

AU
A13

A12C
A11 C
VCC

12
10 9 8 7 6 5 4 3 2 1 84 83 82 8180 79 78 77 76 75

W 73

72

71

70

VL86C010
TOP VIEW

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

uuuuuuuuuuuuuuuuuuuuu
GND A9 A7 A5 A3 A1 ABE D1 D3 D5 D7

A10 A8 A6 A4 A2 A0 DO D2 D4 D6

=>D26

D25

D24

D23

=11)22

D21

3D20
3D19
D18

3D17
D16

3D15
3D14
D13

3D12
3D11
D10

D9

-1D8

vcc
3 GND

Part

Number
Clock

Frequency Package

VL86C010-10QC 10 MHz
Plastic Leaded
Chip Carrier (PLCC)

VL86C010-12QC 12 MHz
Plastic Leaded
Chip Carrier (PLCC)

Note: Operating temperature range is 0°C to +70°C.

2-3

VLSI Technology, inc.

VL86C010

BLOCK DIAGRAM

INSTRUCTION
DECODE
AND

EXECUTION
PIPELINE

A

INCREMENTER BUS

ADDRESS
BUS SL.

lz

MEMORY
ADDRESS
REGISTER

AJ

PIPELINE
DATA IN

BUS

ALU OUTPUT BUS

ADDR BUS,,
-^l/

Vi

ADDRESS
INCRE-
MENT
LOGIC V

\7
REGISTER

FILE

H READ PORT B BUS

32 - BIT
BARREL
SHIFTER

BOOTH'S
MULTIPLIER

A-

lLJ£
READ PORT A BUS

32 - BIT
FIXED
POINT
ALU

MEMORY
DATA

REGISTER
(READ)

(P
DATA
BUS

MEMORY
DATA

REGISTER
(WRITE)

=> DATA
BUS

2-4

VLSI Technology inc.

VL86C010

SIGNAL DESCRIPTIONS
Signal

Name
Pin

Number
Signal

Description

01,02

-IRQ

-FIRQ

RES

ABRT

D31 - DO

DBE

-BAN

-M1.-M0

2,1

7

8

81-77,74-56

46-53

83

84

13,14

A25 - AO

ABE

17-31,
34-44

45

ALE 16

Note:

1.

Processor Clock 01 and 02 Inputs - These two inputs provide the clock to the processor. In

order to minimize clock skew, these inputs are not buffered internally and therefore must
swing monotonically between GND and VCC without overshoot. The clocks must be non-
overlapping and should be driven directly by 74HCXX outputs. A typical circuit is shown on
the following page. The VL86C1 1 (MEMC) will normally drive these inputs directly.

Interrupt Request Input - This is the normal interrupt request pin. It may be asserted asyn-
chronously to cause the processor to be interrupted. It is active low.

Fast Interrupt Request Input - This interrupt request line has a higher priority than IRQ, but
otherwise is the same. It too is active low.

Reset Input - This is the reset signal for the processor. While active, the processor executes
no-ops (with -MREQ and SEQ both held active) until the RES signal goes inactive, from
which point execution starts at the reset exception vector location. This signal is active high.

Abort Input - This signal can be used to abort the current bus cycle being executed by the
processor. Typically, it is connected to a memory management unit, such as the VL86C1 1 0,

to control accesses for protection purposes. The abort signal is active high and requires a
two clock minimum pulse to insure the reset operation will occur.

Data31 - DataO - This is the 32-bit bidirectional data bus used to transfer data to and from the
memory. These lines are three-state and active high.

Data Bus Enable Input - This is the: asynchronous three-state control signal tor controlling

the drivers of the data bus. When asserted the data bus is enabled and when low the data
bus drivers are forced into the high-impedance state. During read operations the bus drivers

are in the high-impedance state as well. This signal is active high. Systems that do not
require the data bus for DMA or similar activities may tie this signal high.

Not Byte/Word Output - This pipeline (note 1) signal indicates to the memory system that the
current memory cycle is a byte rather than a word operation. It is asserted during the last

portion of the cycle preceding the byte operation. When asserted (low) the memory system
should deal with bytes by decoding the A1 , AO address lines. It is active low.

Mode 1,0 Outputs - These two signals are used to indicate the current operating mode of

the processor. They can be used as address space modifiers to increase the address space,
or to assist a memory management unit in offering various protection modes. The lines are
active low and the inverse of bits 1 ,0 of the processor status register.

=Ml=Mfl MODE
Supervisor

IRQ
FIRQ
USER

Address 25 - Address Outputs - These are the 26 address lines. A1 and AO are byte
addresses. During jumps and opcode fetches, the current mode value appears on these
signals. The address lines are three-state and active high. AO, A1 are valid bits for all

indexed transfers but are mode bitst

Address Bus Enable Input - This is the asynchronous three-state control signal for

controlling the drivers of the address bus. When asserted, the address bus is enabled. The
signal is active high.

Address Latch Enable Input - This signal is used to control internal transparent latches on
the address outputs. When ALE is high the address outputs change during 02 to the value
required for the next cycle. Direct Interfacing to ROMs requires address lines to be stable
until the end of 02. Holding ALE low until the end of 02 will latch the address outputs for

ROM cyclas. Systems that do not directly interface to ROMs may tie ALE high.

1

1

1 1

Pipeline signals are asserted during the last portion of the cycle preceding the cycle for which they will be used.

2-5

VLSI Technology, inc.

VL86C010

SIGNAL DESCRIPTIONS (Cont.)

Signal

Name
Pin

Number
Signal

Description

-R/W 3 Not Read/Write Output - This is the read/write signal from the processor. When asserted (low), it

indicates that the processor is performing a read operation. When negated (high), the processor is

performing a write operation. This signal is a pipeline (note 1) signal and is active low.

-MREQ 5 Next Memory Cycle Start Output - This is an pipeline (note 1) indicator that is asserted before the

processor will start a memory cycle during the next clock phase. This signal is active low. During the

reset condition this signal is held active as the processor executes no-ops.

-TRAN 1 Translate Enable Output - This signal, when asserted by the processor tells a memory management

unit that translation should be done on the current address. When negated, it Indicates that the

address should pass through untranslated. This signal is active low.

-OPC 4 Instruction Fetch Output - This pipeline (note 1) signal when asserted indicates that the current bus

cycle is an instruction fetch. This signal is active low.

SEQ 15 Next Address Sequential Output - This pipeline (note 1) signal is asserted when the processor will

generate a sequential address during the next memory cycle. It may be used to control fast memory

access modes. This signal is active high. During the reset condition this signal is held active as the

processor executes no-ops.

-CPI 82 Coprocessor Instruction (CMOS level output) - When the VL86C010 executes a coprocessor instruc-

tion, this output is driven low and the processor will wait for a response from an attached coprocessor

device. The action taken is dependent upon the coprocessor response signalled on the CPA and CPB
inputs.

CPB 1

2

Coprocessor Busy (III level input) - An attached coprocessor that is capable of performing the

operation which the VL86C010 is requesting (by asserting the -CPI), but cannot begin immediately,

should indicate the busy condition by driving this signal high. When the coprocessor is ready to start it

should bring the CPB signal low. The VL86C010 samples this signal on the falling edge of the 01

clock while the -CPI is active (low).

CPA 76 Coprocessor Absent (TTL level input) - A coprocessor capable of executing the operation currently

requested by the VL86C01 (-CPI active) should bring the CPA low immediately. If the CPA is high

on the falling edge of the 01 clock, the processor will abort the coprocessor handshake and take the

undefined instruction trap. If the CPA is low and remains low during the -CPI active time, then the

VL86C010 will busy-wait until the CPB signal becomes low and complete the coprocessor instruction.

FUNCTIONAL PIN DIAGRAM

K ADDRESS BUS
A25 - AO

TYPICAL CLOCK

f VCC(3)

VL86C010

GENERATOR
74AC02

CLOCK o, t-^

POWER ^ QND(3) *"
>

V * V

ni nr.v C ®^ »

A IV DATA BUS

\ 1/
W1 - W

r. ^L
-O01

INPUTS -\ 02 „
V. -Ml *.->

I PROCESSOR
' MODE 74AC04 74AC02-MO

*J
CONTROL'S -FIRQ

fc 4 DBE >

BUS
> CONTROL

V. •
^ ABE

^ ALE

-B/W ^
CONTROL^ ABRT „ -raw ;

V_ * -MREQ
j.

-TRAN
„.

c CPA
* -OPC v

SEQINTERFACE "S
cp|

*

*V
L"*

2-6

VLSI Technology inc.

VL86C010

FUNCTIONAL DESCRIPTION
The philosophy of RISC processor

design is based on the idea that some
processing functions can be moved
from hardware to software with the

result that the simplified hardware can

actually execute functions in software

faster than with complicated hardware.

Analysis done several years ago at

major research centers has shown that

a processor and compiler combination

can replace the traditional processor-

alone architectures. A historical fact of

the 1 6-bit processor world is that after

chip designers spent many man-months
figuring out how to implement univer-

sally acceptable complicated instruc-

tions to do things, few compiler writers

actually took advantage of these

complex instructions. Most compilers

only use a fraction of the instructions

and addressing modes of traditional

computer architectures.

The customers pay for the unused
silicon required to implement these

instructions. They pay for the inefficient

utilization in both cost of the processor

and in lower performance. The silicon

spent for complex instruction decoding

and micro-sequencing could have been
used for additional pipelining, larger

register sets, or other special-purpose

hardware that can be used efficiently. If

the addition of a new instruction causes
all instructions to execute 10% slower

due to internal processor delays, then

the new instruction had better be used
more than 10% of the time, otherwise,

overall performance has been sacri-

ficed. This makes an argument for

simple performance oriented architec-

tures that are more dependent on
compiler technology to implement less

frequently used instructions.

COMPARISON OF PROCESSORS
Inherent in the concept of RISC proces-

sors is the notion that more Instructions

are required to implement the same
functions that could be done by fewer

instructions with a complex instruction

set computer (CISC) processor. In

most cases even when more instruc-

tions are needed by RISC processors,

the function can still be performed

quicker on RISC processors than CISC
processors. This is causing the

industry to doubt the Million Instruction

Per Second (MIPS) ratings of RISC
processors, for good reason. MIPS are

often used exclusively as a means of

benchmarking performance. Abetter

measure of performance is
1

to time

actual execution of real-world problems,

independent of the number of instruc-

tions required to implement the func-

tion.

Benchmarks such as Dhrystone 1.1

attempt to approximate real conditions.

Measurement is based in Dhrystone

loops per second. The VL86C01
delivers about 740 loops per second

using DRAM, and about 1000 per

second using SRAM, per clock mega-
hertz.

An Important parameter to keep
constant when benchmarking proces-

sors is the memory access times, since

not all processors will meet perform-

ance claims when working with com-
modity memories.

Another traditional measure of perform-

ance in the microprocessor world is the

clock frequency of the processor.

Faster is better has been the rule of

thumb, but what is actuallythe most
important consideration is the average

number of bus cycles per instruction. A
processor with a low clock frequency

and a low number of bus cycles per

instruction can actually outperform a
processor with a high clock frequency

and a higher number of bus clock

cycles per instruction. The; best choice

of processors is one that benchmarks
high while using a relatively low clock

frequency and a small number of clocks

per instruction executed. The
VL86C01 possesses these character-

istics, giving it the best future evolution

path to exploit advances in process

technology. ^_
PROGRAMMING MODEL B
The VL86C010 contains a large,

partially overlapping set of 27 32-bit

registers, although the programmer can
access only 16 registers in any mode of

operation. Fifteen of the registers are

general purpose; with the remaining 12

dedicated to functions such as User
Mode, FIRQ Mode, IRQ Mode, Supervi-

sor Mode and the Progjam Counter

(PC)/Processor Status Register (PSR).

Figure 1 shows the register model of

theVL86C010. Registers R0-to-R1

3

are accessible from theiuser mode for

any purpose. The fifteenth register,

user-mode return-link register, is

specific to the user mode. Its contents

are mapped with those of other return-

link registers as the mode is changed.
The return-link register is used by the

Branch-and-Link instruction in a
procedure call sequence but may be
used as a general-purpose register at

other times. The least significant two
bits of the processor status word (PSW)
define the current mode of operation.

FIGURE 1. VL86C010 REGISTER MODEL
31

USER
MODE

FAST

MODE

R11

R14
(LINK)

IRQ
MODE

SUP
MODE

31302928272625
INIZICIVI I IFI "

R9

R14
(LINK)

R14
(LINK)

R14
(LINK)

PROGRAM COUNTER |M1|M0| R15
PSR IPC

2-7

VLSI Technology, inc.

VL86C010
Seven registers are dedicated to the

FIRQ mode and overlie user-mode

registers R8-to-R1 4 when the fast

interrupt request is serviced. The
registers R8 FIRQ-to-R13 FIRQ are

local to the fast interrupt service routine

and are used instead of the user-mode

registers R8-R1 3. Register R14 FIRQ
holds the address used to restart the

interrupted program instead of pushing

it onto a stack at the expense of another

memory cycle. Using a link-register

helps provide very fast servicing of I/O

related interrupts without disturbing the

contents of the general-purpose register

set although the FIRQ routine can

access the R0-to-R7 user-mode

registers if desired. The FIRQ mode is

used typically for very short interrupt

service routines that might fetch and

store characters in a disk-or-tape-

controller application.

The next two registers are dedicated to

the IRQ mode and overlie user mode
registers R13 and R14 when the IRQ is

serviced. Once again, R14 IRQ is the

return link register that holds the restart

address and R13 IRQ is general-

purpose and dedicated to the IRQ
mode. This mode is used when the

interrupt service routine will be lengthy

and the overhead of saving and

reloading the register set will not be a

significant portion of the overall execu-

tion time.

Two registers are dedicated to the

supervisor mode and overlie user mode
registers R13 and R14 when a supervi-

sor mode switch is made using a

software interrupt (SWI) instruction.

Operation of these two registers is the

same as previously discussed.

The last register (R15) contains the

processor status word and program

counter and is shared by all modes of

operation. The upper six bits are

processor status, the next 24 bits are

the program counter (word address),

and the last two indicate the mode.

PROCESSOR STATUS REGISTER
Like most 32-bit processors, the

VL86C010 makes a distinction between

user and supervisor modes: the user

executes at the lowest privilege level,

and the supervisor and interrupts

execute at higher levels of privilege.

Figure 2 shows the processor status

word containing the control line states

associated with each mode.

FIGURE 2. PROCESSOR STATUS REGISTER
31302928272625

IN I Z |C | V| iTfT PROGRAM COUNTER
2 1

I M 1

1

MOI

PC • 24 BITS YIELDS 64MB MODE'
ADDRESS SPACE 7~

ADDRESS TRANSLATION

I- FAST INTERRUPT MASK *
1

— NORMAL INTERRUPT MASK

'

2

— OVERFLOW 3

— CARRY, -BORROW, ROTATE EXTEND
— ZERO
— NEGATIVE, SIGNED LESS THAN

USER FORCED
FAST IRQ UNDER PROGRAM CONTROL
NORMAL IRQ UNDER PROGRAM CONTROL
SUPERVISOR UNDER PROGRAM CONTROL

ACCESS FROM NON-USER
MODES ONLY

Translate is a control signal provided by

the processor for control of an external

memory management unit. The

translate line is enabled in the user

mode and disabled in the supervisor,

fast interrupt and normal interrupt

modes, since all modes except for the

user mode are expected to be running

secure code. Translated fetches can be

made from the non-user modes by

setting an optional bit in the load/store

instructions.

The processor status register (PSR)

contains the program counter, mode
control bits, and condition codes as

shown in Figure 2. The bits marked

with an asterisk are alterable only from

non-user modes. If the user tries to

write to these bits, they remain un-

changed and the processor continues

operation in the user mode. In other

words, this is not a trap condition. The
flags in the processor status register are

the standard Negative, Zero, Carry, and

Overflow. The 1 6 allowable combina-

tions of the condition code bits are

shown in Table 1 . These combinations

are used in all instruction executions

since a conditional branch is nothing

more than a jump instruction with

conditional execution.

EXCEPTIONS
The VL86C010 supports a partially

overlapping register set so that when
interrupts are taken, the contents of the

register array do not have to be saved

before new operations can begin.

Improved response time is accom-
plished, in the case of the fast interrupt,

by dedicating six general-purpose

registers, in addition to a return-link

register, that are only accessible in the

FIRQ mode. These dedicated registers

can contain all the pointers and byte-

counts for simple I/O service routines

thus incurring no overhead when

2-8

context switching between processing

and servicing interrupts at high rates.

The other modes (IRQ and SUP) each

have one general-purpose and one

return address (link) register dedicated

to them. The general-purpose register

is ideally suited for implementing a local

stack for each mode. The need for

dedicated registers in these modes is

not as great since the time spent in an

interrupt or supervisor routine is on the

average much greater than the time

spent in transition between the routines.

The working registers can be saved and

restored from stacks without significant

overhead.

The interrupt latency of the VL86C010
is very short because the instruction

execution time is typically two clocks,

with a maximum of 18 clocks (for a

load-multiple instruction, loading 16

registers). Once the processor recog-

nizes an interrupt is pending, the time to

begin processing is 4.5 making a total

worst-case interrupt latency of 22.5

clocks. Systems supporting virtual

memory should add three clocks as the

address exception and data abort

exceptions are higher priority and must

be entered first to prevent losing status.

In addition to Interrupts, six other types

of exceptions are supported by the

processor. These are address excep-

tions, data-fetch cycle aborts, instruc-

tion-fetch cycle aborts, software

interrupts, undefined instruction traps

and reset.

The VL8GC010 supports a 26-bit linear

address space allowing a total of 64

Mbytes of physical memory. Data refer-

ences outside the range 0-to-

3FF,FFFFH cause an address excep-

tion trap which ca,n be used to detect a

run-away program. The program

counter will wrap around to O0O0H
without causing an address exception

condition.

VLSI Technology inc.

VL86C010
TABLE 1. INSTRUCTION CONDITION CODES

Condition

Encoded
Value Operation

AL. E Always

CC 3 Carry Clear/Unsigned Lower Than

CS 2 Carry Set/Unsigned Higher Or Same

EQ Equal (2 Set

)

GE A Greater Than Or Equal (N • V) + (-N • -V

)

GT C Greater (((N • V) + (- N • -V)) • -Z)

HI 8 Higher Unsigned (C • -Z

)

LE D Less Than Or Equal (((N • -V) + (-N • V)), + Z

)

LS 9 Lower Or Same Unsigned (-C + Z

)

LT B Less Than (N • -V) + (-N • V))

Ml 4 Negative (N

)

NE 1 Not Equal (-Z

)

NV F Never

PL 5 Positive (-N

)

VC 7 Overflow Clear

vs 6 Overflow Set

If the abort signal is asserted by the

memory management unit during a data

fetch the processor will abort data
transfer instructions (LDR, STR) as if

they had never been executed. If the

instruction was a block data transfer

(LDM, STM) the processor will allow the
instruction to complete. If the write back
control bit in these instructions is set,

the base address will be updated even if

it would have been overwritten during

the instruction execution. An example
of this would be execution of a block

data transfer instruction with the base
register in the list of registers to be
overwritten.

Software interrupt Instructions are used
to change from user mode to supervisor

mode. When an SWI is encountered
the processor will save the current

program counter (R15) into R14 SUP,
set the mode bits to the supervisor

mode, and start execution at the

software interrupt vector address. An
undefined instruction will cause a trap

similar to the execution of a software

interrupt except that the Undefined

Instruction Vector will be used as the

next address. Reset is treated similarly

to the other traps and will start the

processor from a known address.

When the reset condition is recognized

the currently executing instruction will

terminate abnormally, the processor will

enter the supervisor mode; disable both

the FIRQ and IRQ interrupts, and begin

execution at address 0000H. While the
reset condition remains, the processor
will execute dummy instruction fetches

with-MREQ and SEQ'held active.

The processor exception vector map is

illustrated in Table 2. The exceptions

are prioritized reset (highest), address
exception, data abort, FIRQ, IRQ,

prefetch abort, undefined instruction,

and software interrupt (lowest). These
vector addresses normally will contain a
branch instruction to the associated

service routine except for the FIRQ
entry. In order to further reduce
latency, the FIRQ service routine may
begin at address 001 CH if the software

designer so chooses.

Whenever the processor enters the

supervisor mode, whether from an SWI,
address exception, undefined

instruction trap, prefetch or data abort,

the IRQ is disabled and the FIRQ
unchanged.

INSTRUCTION SET
The VL86C010 supports five basic

types of instructions, with several

options available to the: programmer.
These instruction types are: data

processing, data transfer, block data

transfer, branch, and sbftware interrupt.

All instructions contain a 4-bit condi-

tional execution field (shown in Table 1

)

that can cause an instruction to be
skipped if the condition specified is not

true. The execution time for a skipped

instruction is one sequential cycle

(1 00 ns for a 1 MHz processor).

Data processing instructions operate

only on the internal register file, and
each has three operand references: a
destination and two source fields. The
destination (Rd) can beiany of the

registers including the processor status

TABLE 2. EXCEPTION VECTOR MAP
Address (Hex) Function Priority Level

000 0000 Reset.

000 0004 Undefined Instruction Trap 6

000 0008 Software Interrupt 7

000 oooc Abort (Prefetch) 5

000 0010 Abort (Data) 2

000 0014 Address Exception 1

000 0018 Normal Interrupt (IRQ) 4

000 001C Fast Interrupt (FIRQ) 3

2-9

VLSI Technology, inc.

TABLE 3. DATA PROCESSING INSTRUCTIONS

Instruction Function Operation

Flags

Affected

ADC Add With Carry Rd:-Rn+Sh»t(S2)+C N, Z, C, V

ADD Add Rd:-Rn+Shift(S2) N, Z, C, V

AND And Rd:- Rn • Shift(S2) N,Z, C

BIC Bit Clear Rd:- Rn • -Shift(S2) N.Z.C

CMN Compare Negative Shift(S2)+Rn N, Z, C, V

CMP Compare Rn-Shift(S2) N, Z, C, V

EOR Exclusive OR Rd:-Rn(B Shift(S2) N,Z,C

MLA Multiply with Accumulate Rd:-Rm * Rs + Rd N, Z, C, V

MOV Move Rd:-Shift(S2) N.Z.C

MUL Multiply Rd:-Rm * Rs N, Z, C, V

MVN Move Negative Rd:- -Shift(S2) N,Z,C

ORR Inclusive OR Rd:-Rn+Shift(S2) N,Z, C

RSB Reverse Subtract Rd:-Shift(S2)-Rn N, Z, C, V

RSC
Reverse Subtract

With Carry Rd:-Shift(S2)-Rn-1+C N, Z, C, V

SBC Subtract With Carry Rd:-Rn-Shift(S2)-1+C N, Z, C, V

SUB Subtract Rd:-Rn-Shift(S2) N, Z, C, V

TEQ Test For Equality Rn© Shift(S2) N.Z.C

TST Test Masked Rn • Shift(S2) N.Z, C

TABLE 4. MEMORY ADDRESSING MODES

Addressing Mode Operation Syntax

PC Relative EA* - PC +/- Offset (1 2 Bits) LABEL

Base Register Offset

With Post-Increment

EA* - Rn
Rn +/- Offset—* Rn [Rn],Off

Base Register Offset

With Pre-lncrement"

EA* - Rn +/- Offset (12 Bits)

Rn +/- Offset — Rn [Rn.Off]

Base Register Index

With Post-Increment

EA* - Rn
Rn +/- Rm- Rn [Rn],Rm

Base Register Index

With Pre-lncrement"

EA* - Rn +/- Rm
Rn+/-Rm-*»- Rn [Rn.Rm]

Effective Address
' Program control of index register update; i.e., Rn may be left unchanged.

VL86C010

register, although some bits in R15 can

only be changed in particular modes.

The source operands can have two

forms: both can be registers (Rm and

Rn) or a register (Rn) and an 8-bit

immediate value. Both forms of

operand specification provide for the

optional shifting of one of the source

values using the on-board barrel shifter.

If both operands are registers, the Rm
can be shifted. For the other case, it is

the immediate value that can pass

through the shifter. Another field in

these instructions allows for the optional

updating of the condition codes as a

result of execution of the operation.

Table 3 shows the possible data proc-

essing operations and the status flags

affected.

Data transfer instructions are used to

move data between memory and the

register file (load), or vice-versa (store).

The effective address is calculated

using the contents of the source

register (Rn) plus an offset of either a

12-bit immediate value or the contents

of another register (Rm). When the

offset is a register it can optionally be

shifted before the address calculation is

made. Table 4 shows the addressing

modes supported and their correspond-

ing assembler syntax. The offset may
be added to, or subtracted from the

index register Rn. Indexing can be

either pre- or post- depending on the

desired addressing mode. In the post-

indexed mode the transfer is performed

using the contents of the index register

as the effective address and the index

register is modified by the offset and re-

written. In the pre-indexed mode the

effective address is the index register

modified in the appropriate manner by

the offset. The modified index register

can be written back to Rn if the write

back bit is set or left unchanged if

desired. When a register is used as the

offset, it can be pre-scaled by the barrel

shifter in a similar manner as with data

processing instructions.

Data transfer instructions can manipu-

late bytes or words in memory. When a

byte is read from the memory, it is

placed in the low-order eight bits of the

register and zero-extended to a full

word. For byte writes the lower eight

bits of the register are written to the

byte address referenced and the other

bytes within the word are unaffected.

2-10

VLSI Technology, inc.

VL86C010

Words are written into the address

space as least-significant byte first.

That is, the byte at the lowest address

will be found right justified in a register.

The VL86C010 supports both logical

and physical address spaces at a lower

level in hardware than other processors.

Data transfer instructions contain a
translate enable bit that allows non-user

mode programs to select the logical or

physical address space as desired.

The bit from the instruction is placed on
the -TRAN pin of the processor to

signal an external memory manage-
ment unit (MMU) whether to translate or

pass the address from the processor

bus to the memory. This allows

programs executing in the supervisor or

interrupt modes to have easy access to

user memory areas for page fault

correction or to have bounds checking

performed on dynamic data structures

in the system space by the MMU. In

the user mode, addresses are always

translated by the MMU if it is imple-

mented in the system.

The block data transfer instructions

allow multiple registers to be moved in a

single instruction. The instruction has a
field containing a bit for each of the

sixteen registers visible in the current

mode. Bit corresponds to RO, and bit

15 corresponds to R15, the program
counter. A bit set in a particular position

means that the corresponding register

will be affected by the transfer. The
registers are always saved from lowest

to highest, and RO will always appear at

a lower address than R1. The ability to

pre- or post-increment or decrement

allows both stacks and queues to be

implemented efficiently with any
convention chosen by the programmer.

The branch instruction has two forms,

branch and branch-with-link. The
branch instruction causes execution to

start at the current program counter

plus a 24-bit offset contained in the in-

struction. The offset is lefNshifted by
two bits (forming a 26-bit address)

before it is added to the program
counter. Since all instructions are word-

aligned, a branch can reach any
location in the address space. The
branch-with-link instruction; copies the

program counter and processor status

register into R14 prior to branching to

the new address. Returning from the

branch-with-link simply involves

reloading the program counter from R14
(MOV PC.R14). The PSR can option-

ally be restored from R14 (MOVS
PC.R14).

TABLE 5. INSTRUCTION EXECUTION TIMES

Operation

Base Execution

Time
Adjustment for

Source Shift

Adjustment for PC
Modification

RS-#->- RD 1S ISforShift(RS) 1S + 1N if PC Modified

RS-RS-^ RD 1S ISforShift(RS) 1S + 1N if PC Modified

LDR 2S + 1N 1S+1N if PC Modified

STR 2N

LDM (n* + 1)S+1N 1S+1N if PC Modified

STM (n*-1)S + 2N

BR 2S + 1N

BR & LINK 2S + 1N

SWI 2S+1N

MUL, MLA 16S"

* - The number of registers transfered in a Load/Store Multiple instruction. If the

condition field in an instruction is not true, the instruction is skipped and the execu-
tion time is 1S cycle.
** - This is the worst case time. The actual time is a function of the value in the Rs
register.

The software interrupt instruction format

is used primarily for supervisor service

calls. When this instruction is executed,

the PC and PSR are saved in R14 SUP.
The PC is then set to the SWI vector

location and the processor placed in the

supervisor mode.

Instructions operate at speeds depend-

ent upon the options selected. Table 5

shows the instruction types, execution

rates and adjustments for operand
shifting or affecting theiprogram

counter. The table is expressed in

terms of N and S cycles representing

Non-sequential and Sequential cycles

respectively. The processor is able to

take advantage of memories that have
faster access times when accessed
sequentially in the nibble or column
mode. These faster cycles are desig-

nated as S-cycles, while the N-cycles

typically take twice as I6ng. If faster

static memory is used, the N and S
cycles would be equal.

The VL86C010 is offered in an 84-pin

Plastic Leaded Chip Carrier (PLCC)
package for lower cost applications.

The PLCC package can be either

surface mounted directly onto the board

or socketed with currently available

standard sockets depending on
manufacturing requirements and/or ca-

pabilities.

S implies a sequential cycle.

N implies a non sequential cycle.

2-11

VLSI Technology, inc.

VL86C010

EXAMPLES OF THE INSTRUCTION SET
The following examples illustrate methods by which basic processor instructions can be combined to yield efficient code. None of

the methods saves a large amount of execution time, although they all save some, mostly they result in more compact code.

EXAMPLE 1 - USING THE CONDITIONAL EXECUTION FOR THE LOGICAL-OR FUNCTION

q THENCMP
BEQ
CMP
BEQ

Rn, p
Label

Rm, q
Label

By using conditional execution, the routine compresses to:

CMP Rn, p
CMPNE Rm, q
BEQ Label

EXAMPLE 2 - ABSOLUTE VALUE

TEQ
RSBMI

Rn,

Rn, Rn,

EXAMPLE 3 - UNSIGNED 32-BIT MULTIPLY

LOOP
MOV
MOVS
ADDCS
ADD
BNE

Rm,
Ra, Ra LSR 1

Rm, Rm, Rb
Rb, Rb, Rb
LOOP

; IF Rn - p OR Rm .

; GOTO Label

;
if Rn not equal p, try other test

; check sign

; and 2's complement if required

; Enter with numbers in Ra, Rb - product contained in Rm
; init result register

; stops when Ra becomes zero

; Rm - Ra * Rb

; (Ra - 0, Rb is altered)

EXAMPLE 4 - MULTIPLICATION BY 4, 5, OR 6 AT RUN TIME

MOV Re, Ra LSL 2 ; multiply by 4

CMP Rb, 5 ; test multiplier value

ADDCS Re, Re, Ra ; complete multiply by 5

ADDHI Re, Re, Ra ; complete multiply by 6

EXAMPLE 5 - MULTIPLICATION BY CONSTANT (2*N)+1 USING THE BARREL SHIFTER (3,5,9,17, ...)

ADD Ra, Ra LSL n

EXAMPLE 6 - MULTIPLICATION BY CONSTANT (2«N) - 1 (3, 7, 15, ...)

RSB Ra, Ra, Ra LSL n

EXAMPLE 7 - MULTIPLICATION BY 6

ADD
MOV

Ra, Ra, Ra LSL 1

Ra, Ra LSL 1

; multiply by 3

; and then by 2

EXAMPLE 8 - MULTIPLY BY 10 AND ADD EXTRA NUMBER (DECIMAL TO BINARY CONVERSION)

ADD
ADD

Ra, Ra, Ra LSL 2

Ra, Re, Ra LSL 1

EXAMPLE 9 - DIVISION AND REMAINDER

; enter with numbers in Ra and Rb

DIV1

DIV2

MOV
CMP
MOVCC
MOVCC
BCC
MOV
CMP
SUBCS
ADDCS
MOVS
MOVNE
BNE

Rent, 1

Rb, Ra
Rb, Rb LSL 1

Rent, Rent LSL 1

DIV1

Re,

Ra, Rb
Ra, Ra, Rb
Re, Re, Rent

Rent, Rent LSR 1

Rb, Rb LSR 1

DIV2

; multiply by 5

; multiply by 2 and add in next digit

; bit to control the division

; move Rb until greater than Ra

; result in Re

; remainder in Ra

; test for possible subtraction

; subtract if valid

;
put relevant bits in result

; shift control bit

: halve unless finished

2-12

VLSI Technology inc.

VL86C010

INSTRUCTION CYCLE OPERATIONS
In the following tables -MREQ. and SEQ
(which are pipelined up to one cycle

ahead of the cycle to which they apply)

are shown in the cycle in which they

appear, so they predict the address of

the next cycle. The address bus value,

-BAN, -R/W, and -OPC (which appear
up to half a cycle ahead) are shown in

the cycle to which they apply.

BRANCH AND BRANCH WITH LINK
A branch instruction calculates the

branch destination in the first cycle,

while performing a prefetch from the

current PC. This prefetch is done in all

cases, since by the time the decision to

take the branch has been reached it is

already too late to prevent the prefetch.

During the second cycle a fetch is

performed from the branch destination,

and the return address is stored in

register 14 if the link biMs set.

The third cycle performs a fetch from

the destination + 4, refilling the instruc-

tion pipeline, and if the branch is with

link, R14 is modified (4 is subtracted

from it) to simplify return from SUB PC,

R14, #4toMOVPC,R14. This makes
the STM . .(R14) LDM .. . (PC) type of

subroutine work correctly.

TABLE 6. BRANCH AND BRANCH WITH LINK

Cycle Address -B/W -R/W Data SEQ -MREQ -OPC

1 PC+8 1 (PC+8)

2 ALU 1 (ALU) 1

3 ALU+4 1 (ALU+4) 1

(PC is the address of the branch instruction, ALU is an address calculated by the processor, (ALU) is the contents of that

address, etc.)

DATA OPERATIONS
A data operation executes in a single

datapath cycle except where the shift is

determined by the contents of a

register. A register is read onto the A
Bus, and a second register or the

immediate field onto the B Bus. The
ALU combines the A Bus source and
the shifted B Bus source according to

the operation specified in the instruc-

tion, and the result (when required) is

written to the destination register.

(Compares and tests do not produce

results, only the ALU status flags are

changed.)

An instruction prefetch occurs at the

same time as the above operation, and
the program counter is incremented.

When the shift length is specified by a
register, an additional datapath cycle

TABLE 7. DATA OPERATIONS
Typo Cycle Address -B/W -R/W Data SEQ -MREQ -OPC

1 PC+8 1 (PC+8) 1

PC+12

1 PC+8 (PC+8)

Dest-PC 2 ALU (ALU) 1

3 ALU+4 (ALU+4) 1

ALU+8

1 PC+8 (PC+8) 1

Shift (RS) 2 PC+12 - 1 1

PC+12

1 PC+8 (PC+8) 1

2 PC+12 -
1

Shift (RS),

Dest=PC 3 ALU (ALU) 1

4 ALU+4 (ALU+4) 1

ALU+8

occurs before the above operation to

copy the bottom eight bits of that

register into a holding latch in the barrel

shifter. The instruction iprefetch will

occur during this first cycle, and the

operation cycle will be internal (i.e., will

not request memory). This internal

cycle is configured to merge with the

next cycle into a single memory N-cycle

when the VL86C1 1 is used as the

memory interface.

The PC may be any (or all) of the

register operands. When read onto the

A Bus it appears without the PSR bits,

on the B Bus it appears with them.

Neither will affect external bus activity.

When it is the destination, however,

external bus activity may be affected. If

the result is written to the PC, the

contents of the instruction pipeline are

invalidated, and the address for the next

instruction prefetch is taken from the

ALU rather than the address incremen-

ted The instruction pipeline is refilled

before any further execution takes

place, and during this time exceptions

are locked out.

2-13

VLSI Technology, inc.

VL86C010

INSTRUCTION CYCLE OPERATIONS (Cont.)

MULTIPLY AND MULTIPLY ACCUMULATE
The multiply instructions make use of

special hardware which implements a

two-bit Booth's algorithm with early ter-

mination. During the first cycle the ac-

cumulate register is brought to the ALU,

which either transmits it or produces

zero (according to whether the instruc-

tion is MLA or MUL) to initialize the

destination register. During the same

TABLE 8. MULTIPLY AND MULTIPLY ACCUMULATE

Type Cycle Address -B/W -R/W Data SEO -MREQ -OPC

1 PC+8 1 (PC+8) 1

(Rs) = 0,1 2 PC+12 1
- 1 1

PC+12

1 PC+8 1 (PC+8) 1

2 PC+12 1 - 1 1

(Rs) > 1

. PC+12 1
- 1 1

M PC+12 1
- 1 1

M+1 PC+12 1 - 1 1

PC+12

cycle one of the operands is loaded into

the Booth's shifter via the A Bus.

The datapath then cycles, adding the

second operand to, subtracting it from,

or just transmitting, the result register.

The second operand is shifted in the

Nth cycle by 2N or 2N + 1 bit, under

control of the Booth's logic. The first

operand is shifted right two bits per

cycle, and when it is zero the instruction

terminates (possibly after an additional

cycle to clear a pending borrow). All

cycles except the first are internal.

If the destination is the PC, all writing to

it is prevented. The instruction will

proceed as normal except that the PC
will be unaffected. (If the S bit is set the

PSR flags will be meaningless).

(M is the number cycles required by the Booth's algorithm; see the section on

instruction speeds.)

LOAD REGISTER
The first cycle of a load register

instruction performs the address

calculation. The data is fetched from

memory during the second cycle, and

the base register modification is

performed during this cycle (if required).

During the third cycle, the data is

transferred to the destination register

and external memory is unused. This

third cycle may normally be merged

with the following prefetch to form one

memory N-cycle.

Either the base or the destination (or

both) may be the PC, and the prefetch

sequence will be changed if the PC is

affected by the instruction.

The data fetch may abort, and in this

case, the base and destination modifi-

cations are prevented.

TABLE 9. LOAD REGISTER

Type Cycle Address -B/W -R/W Data SEQ -MREQ -OPC -TRAN

1 PC+8 1 (PC+B)

Normal
2 ALU B/W (ALU) 1 1 t

3 PC+12 1
- 1 1

PC+12

1 PC+8 1 (PC+8)

2 ALU B/W (ALU) 1 1 t

3 PC+12 1
- 1

Dest - PC
4 (ALU) 1 ((ALU)) 1

5 (ALU)+4 1 «ALU)+4) 1

(ALU)+8

1 PC+8 1 (PC+8)

2 ALU B/W (ALU) 1 1 t

Base - PC, 3 PC 1 - 1

Write back,

Dest #PC 4 PC 1 (PC) 1

5 PC+4 1 (PC+4) 1

PC+8

1 PC+8 1 (PC+8)

Base-PC,
Write back

2 ALU B/W (ALU) 1 1 t

3 PC 1 - 1

Dest-PC
4 (ALU) 1 ((ALU)) 1

5 (ALU)+4 1 «ALU)+4) 1

(ALU)+8

(PC is the PC value modified by write back; t shows the cycle where the force

translation option in the instruction may be used.)

2-14

VLSI Technology inc.

VL86C010

INSTRUCTION CYCLE OPERATIONS (Com.)

STORE REGISTER
The first cycle of a store register is

similar to the first cycle of load register.

During the second cycle, the base

modification is performed and at the

same time, the data is written to mem-
ory. There Is no third cycle.

The PC will only be modified if it is the

base and write back occurs. A data

abort prevents the base write back.

TABLE 10. STORE REGISTER
Typo Cycle Address -B/W -R/W Data SEQ -MREQ -OPC -TRAN

1 PC+8 1 (PC+8)

Normal
2 ALU B/W 1 RD 1 t

PC+12

1 PC+8 1 (PC+8)

Base-PC, 2 ALU B/W 1 RD 1 t

Write back,

Dest - PC 3 IPC 1 (PC) 1

4 IPC+4 1 (PC+4) 1

PC+8

LOAD MULTIPLE REGISTERS
The first cycle of LDM is used to

calculate the address of the first word to

be transferred while performing a

prefetch from memory. The second
cycle fetches the first word and per-

forms the base modification. During the

third cycle, the first word is moved to

the appropriate destination register

while the second word is fetched from

memory, and the modified base is

moved to the ALU A Bus input latch for

holding in case it is needed to patch up
after an abort. The third cycle is re-

peated for subsequent fetches until the

last data word has been accessed, then

the final (internal) cycle moves the last

word to its destination register. The last

cycle may be merged with the next

instruction prefetch to form a single

memory N-cycle.

If an abort occurs, the instruction

continues to completion, but all register

writing after the abort is disabled. The
final cycle is altered to restore the

modified base register (which may have
been overwritten by the load activity

before the abort occurred). If the PC is

the base, write back is prevented.

When the PC is in the list of registers to

be loaded, and assuming that no abort

takes place, the current instruction

pipeline must be invalidated. Note that

the PC is always the last register to be
loaded, so an abort at any point will

prevent the PC from being overwritten.

TABLE 11. LOAD MULTIPLE REGISTERS
Typo Cycle Address -B/W -R/W Data SEQ -MREQ -OPC

1 PC+8 (PC+8)

One 2 ALU ALU 1 1

Register 3 PC+12 - 1 1

PC+12

1 PC+8 (PC+8)

One
Register,

2 ALU PC 1 1

3 PC+12 -
1

Dest - PC 4 PC (PC) 1

5 PC+4 (PC+4) 1

PC+8

1 PC+8 (PC+8)

2 ALU (ALU) 1 1

N Registers, • ALU+. (ALU+.) 1 1

(N>1)
N ALU+. (ALU+.) 1 1

N+1 ALU+. (ALU+.) 1 1

N+2 PC+12 - 1 1

PC+12

1 PC+8 (PC+8)

2 ALU (ALU) 1 1

• ALU+. (ALU+.) 1 1

N Registers, N ALU+. (ALU+.) 1 1

(N>1,

Ind. PC)
N+1 ALU+. PC 1 1

N+2 PC+12 -
1

N+3 PC (PC) 1

N+4 PC+4 (PC+4) 1

PC+B

2-15

VLSI Technology, inc.

VL86C010

INSTRUCTION CYCLE OPERATIONS (Com.)

STORE MULTIPLE REGISTERS
Store multiple proceeds very much as

load multiple, but without the final cycle.

The restart problem is much more

straightforward here, as there is no

wholesale overwriting of registers with

which to contend.

TABLE 12. STORE MULTIPLE REGISTERS

Type Cycle Address -B/W -R/W" Data SEQ -MREQ -OPC

One register
1 PC+8 (PC+8)

2 ALU 1 RA 1

1 PC+8 (PC+8)

N Registers,

(N>1)

2 ALU 1 RA 1 1

. ALU+. 1 R. 1 1

N ALU+. 1 R. 1 1

N+1 ALU+. 1 R. 1

SOFTWARE INTERRUPT AND
EXCEPTION ENTRY
Exceptions (and software interrupts)

force the PC to a particular value and

refill the instruction pipeline from there.

During the first cycle, the forced

address is constructed and a mode
change may take place. The return

address is moved to register 14.

During the second cycle, the return

address is modified to facilitate return.

This modification is less useful than in

the case of branch with link.

The third cycle is required only to

complete the refilling of the instruction

pipeline.

TABLE 13. SOFTWARE INTERRUPT & EXCEPTION ENTRY

Cycle Address -B/W -R/W Data SEQ -MREQ -OPC -TRAN

1 PC + 8 1 (PC+8) 1

2 Xn 1 (Xn) 1 1

3 Xn+4 1 (Xn+4) 1 1

(For software interrupt, PC is the

address of the SWI instruction; for

interrupts and reset, PC is the address

of the instruction following the last one

to be executed before entering the

exception; for prefetch abort, PC is the

address of the aborting instruction; for

data abort, PC is the address of the

instruction following the one which

attempted the aborted data transfer. Xn

is the appropriate trap address.)

COPROCESSOR DATA OPERATION
A coprocessor data operation is a

request from VL86C010 for the

coprocessor to initiate some action.

The action need not be completed for

some time, but the coprocessor must

commit to doing it before pulling CPB
low.

If the coprocessor can never do the

requested task, it should leave CPA
and CPB to float high. If it can do the

task, but can't commit right now, it

should pull CPA low but leave CPB
high until it can commit. VL86C01 will

busy-wait until CPB goes low.

TABLE 14. COPROCESSOR DATA OPERATION
Type Cycle Addreaa —B/W -R/W Data SEQ -MREQ -OPC -CPI CPA CPB

Ready
1 PC+8 1 (PC+8) 1

PC+12

1 PC+8 1 (PC+8) 1 1

Not Ready
a PC+8 1

- 1 1 1

. PC+B 1 - 1 1 1

N PC+8 1 - 1

2-16

VLSI Technology inc.

VL86C010

INSTRUCTION CYCLE OPERATIONS (Cont.)
CO-PROCESSOR DATA TRANSFER
(FROM MEMORY TO COPROCES-
SOR)
Hare the coprocessor should commit to

the transfer only when it is ready to

accept the data. When CPB goes low,

the CPU will produce addresses and

expect the coprocessor to take the data

at sequential cycle rates. The
coprocessor is responsible for deter-

mining the number of words to be trans-

ferred, and indicates the last transfer

cycle by allowing CPA and CPB to float

high.

The VL86C010 spends the first cycle

(and any busy-wait cycles) generating

the transfer address, and performs the

write-back of the address during the

transfer cycles.

TABLE 15. COPROCESSOR DATA TRANSFER (FROM MEMORY TO COPROCESSOR)

Type Cycle Address -B/W -R/W Data SEQ -MREQ -OPC -CPI CPA CPB

1 PC+8 (PC+8)
One Register

Ready 2 ALU (ALU) 1 1 1 1

PC+12

1 PC+8 (PC+8) 1 1

2 PC+8 - 1 1 1

One Register
• PC+8 - 1 1 1

Not Ready N PC+8 -
1

N+1 ALU (ALU) 1 1 1: 1

PC+12

1 PC+8 (PC+8)

2 ALU (ALU) 1 1 1

N Registers

(N>1)

Ready

• ALU+. (ALU+.) 1 1 1 a

N ALU+. (ALU+.) 1 1 1

N+1 ALU+. (ALU+.) 1 1 1 1

PC+12

M Registers 1 PC+8 (PC+8) 1 1

(M>1)

Not Ready
2 PC+8 - 1 1 1

• PC+8 -
1 1 1

N PC+8 -
1

N+1 ALU (ALU) 1 1 1

Ready • ALU+. (ALU+.) 1 1 1

N+M ALU+. (ALU+.) 1 1 1

N+M+1 ALU+. (ALU+.) 1 1 1 1

PC+12

2-17

VLSI Technology, inc.

VL86C010

INSTRUCTION CYCLE OPERATIONS (Com.)

COPROCESSOR DATA TRANSFER The VL86C01 controls these instruc-

(FROM CO-PROCESSOR TO MEM- tions exactly as for memory to

ORY) coprocessor transfers, with the one

exception that the -Ft/W line is inverted

during the transfer cycle.

TABLE 16. COPROCESSOR DATA TRANSFER (FROM COPROCESSOR TO MEMORY)

Type Cycle Address -B/W -R/W Data SEQ -MREQ -OPC -CPI CPA CPB

1 PC+8 (PC+8)

One Register

Ready 2 ALU 1 CPdata 1 1 1 1

PC+12

1 PC+8 (PC+8) 1 1

2 PC+8 - 1 1 1

One Register
• PC+8 - 1 1 1

Not Ready N PC+8 - 1

N+1 ALU 1 CPdata 1 1 1 1

PC+12

1 PC+8 (PC+8)

2 ALU 1 CPdata 1 1 1

N Registers . ALU+. 1 CPdata 1 1 1

(N>1)

Ready N ALU+. 1 CPdata 1 1 1

N+1 ALU+. 1 CPdata 1 1 1 1

PC+12

M Registers 1 PC+8 (PC+8) 1 1

(M>1)

Not Ready
2 PC+8 - 1 1 1

. PC+8 - 1 1 1

N PC+8 - 1

N+1 ALU 1 CPdata 1 1 1

Ready . ALU+. 1 CPdata 1 1 1

N+M ALU+. 1 CPdata 1 1 1

N+M+1 ALU+. 1 CPdata 1 1 1 1

PC+12

2-18

VLSI Technology inc.

VL86C010

INSTRUCTION CYCLE OPERATIONS (Com.)

COPROCESSOR REGISTER TRANS- limited to one data word, and the CPU
FER (LOAD FROM COPROCESSOR) puts the word Into the destination

Here the busy-wait cycles are much as register in the third cycle. The third

the previous cycles, but the transfer is cycle may be merged with the following

prefetch cycle into one memory N-oycle

as with all VL86C010 register load in-

structions.

TABLE 17. COPROCESSOR REGISTER TRANSFER (LOAD FROM COPROCESSOR)

Type Cycle Address -B/W -R/W Data SEQ -MREQ -OPC -CPI CPA CPB

1 PC+8 (PC+8) 1 1

Ready 2 PC+12 CPdata 1 1 1 1 1

3 PC+12 - 1 1 1 - -

PC+12

1 PC+8 (PC+8) 1 1

2 PC+8 - 1 1 1

•

PC+8 - 1 1 Q 1

Not Ready
N PC+8 - 1 1 1

N+1 PC+12 CPdata 1 1 1 1 1

N+2 PC+12 - 1 1 1 - -

PC+12

COPROCESSOR REGISTER TRANS-
FER (STORE TO COPROCESSOR)
This is the same as for the load from

coprocessor, except that the last cycle

is omitted.

TABLE 18. COPROCESSOR REGISTER TRANSFER (STORE TO COPROCESSOR)

Type Cycle Address -B/W -R/W Data SEQ -MREQ -OPC -CPI CPA CPB

1 PC+8 (PC+8) 1 1

Ready 2 PC+12 1 Rd 1 1 1 1 1

PC+12 -

1 PC+8 (PC+8) 1 1

2 PC+8 - 1 1 1

Not Ready

•

PC+8 - 1 1 1

N PC+8 - 1 1 1

N+1 PC+12 1 Rd 1 1 1 1 1

PC+12

2-19

VLSI Technology, inc.

VL86C010

INSTRUCTION CYCLE OPERATIONS (Cont.)

UNDEFINED INSTRUCTIONS AND
COPROCESSOR ABSENT
When a coprocessor detects a
coprocessor instruction which it cannot

perform, and this must include all

undefined instructions, it must not drive

CPA or CPB. These will float high,

causing the undefined instruction trap to

be taken.

TABLE 19. UNDEFINED INSTRUCTIONS AND
COPROCESSOR ABSENT
Cycle Address -B/W -R/W Data SEQ -MREQ -OPC -CPI CPA CPB

1 PC+8 1 (PC+8) 1 1 1

2 PC+8 1 -
1 1 1

3 Xn 1 (Xn) 1 1 1 1

4 Xn+4 1 (Xn+4) 1 1 1 1

Xn+8

UNEXECUTED INSTRUCTIONS
Any instruction whose condition code is

not met will fail to execute. It will add
one cycle to the execution time of the

code segment in which it is embedded.

TABLE 20. UNEXECUTED INSTRUCTIONS
Cycle Address -B/W -R/W Data SEQ -MREQ -OPC

1 PC+8 1 (PC+8) 1

PC+8

INSTRUCTION SPEEDS
Due to the pipelined architecture of the

CPU, instructions overlap considerably.

In a typical cycle, one instruction may be
using the data path while the next is

being decoded and the one after that is

being fetched. For this reason the

following table presents the incremental

number of cycles required by an in-

struction, rather than the total number of

cycles for which the instruction uses part

of the processor. Elapsed time (in

TABLE 21. INSTRUCTION SPEEDS

Instruction

Type
Instruction Timing

Equation

Data Processing 1 S

Data Processing With Register Controlled Shift 1 S + 1 S

Data Processing With PC Modified 2S + 1 N

Load Register 1 S + 1 N + 1 I

Load Register With PC Loaded 2S + 2N + 1 I

Store Register 2N

Load Multiple nS + 1 N + 1 I

Load Multiple With PC Loaded (n + 1) S + 2N + 1 I

Store Multiple (n-1)S + 2N

Branch and Branch With Link 2S + 1 N

Software Interrupt, Trap 2S + 1 N

Multiply and Multiple With Accumulate 1 S+m I

Coprocessor Data Operation 1 S + bl

Load or Store Coprocessor Data To Memory 1S + 2N + bl

Move From VL86C01 To Coprocessor Register 1S + bl + 1 C

Move From Coprocessor To VL86C01 Register 1 S + (b+ 1)1 + 1 C

cycles) for the routine may be calculated

from these figures.

If the condition is met the instruction

execution time Is shown in Table 1

6

below.

n is the number of words transferred.

m is the number of cycles required by

the multiply algorithm, which is deter-

mined by the contents of Rs. Multi-

plication by any number between

2A(2m-3)and2A(2m-1)-1 inclusive

takes m cycles for m>1 . Multiplica-

tion by or 1 takes 1 cycle. The
maximum value m can take is 16.

I is an internal cycle. For systems

using the VL86C1 1 Memory
Controller, internal cycles are one
clock, the same as S cycles.

b is the number of cycles spent in the

coprocessor busy-wait loop.

If the condition is not met, all instructions

take one S cycle.

2-20

VLSI Technology, inc.

VL86C010

TIMING CHARACTERISTICS: ta = o°c to +70°c, vcc = 5 v ±5%

Parameter

VL86C010-10 VL86C010-12

UnitsSymbol Mln. Typ. Max. Mln. Typ. Max. Conditions

tv Clock Non-overlap Time - - - - ns

tCK Clock Period 100 - 10000 80 - 10000 ns

tCKL Clock Period Low 40 - 10000 38 - 10000 ns

tCKH Clock Period High 40 - 10000 38 - 10000 ns

tABE Address Bus Enable - - 30 - - 30 ns

tABZ Address Bus Disable - - 30 - - 30 ns

tALE Address Latch Fall-Through - - 25 - - 22 ns

tALEL ALE Low Time - - 10000 - - 10000 ns See Note 1

tADDRS 02 To Address Valid Delay - - 35 - - 35 ns See Note 2

tADDRN 01 To Address Valid Delay - - 95 - - 90 ns

tAH Address Bus Hold Time 5 - - 5 - - ns

tDBE Data Bus Enable Time - - 45 - - 40 ns

tDBZ Data Bus Disable Time - - 45 - - 40 ns

tDOUT Data Bus Output Delay - - 55 - - 50 ns

tDOH Data Bus Hold Time 10 - - 10 - - ns

tDIS Data In Setup Time 10 - - 10 - - ns

1DIH Data In Hold Time 5 - - 5 - - ns

tABTS ABRT Setup Time 25 - - 20 - - ns

tABTH ABRT Hold Time 5 - - 5 - - ns

tIRS Interrupt Setup Time 10 - - 10 - - ns See Note 3

tRWD 02 To -R/W Valid - - 40 - - 35 ns See Note 4

tRWH -R/W Hold Time 5 - - 5 - - ns

tMSD 01 To -MREQ And SEQ Delay - - 55 - - 45 ns

tMSH -MREQ And SEQ Hold Time 5 - - 5 - - ns

tBWD 02 To -B/W Valid - - 40 - - 35 ns

1BWH -BAN Hold Time 5 - - 5 - - ns

tMDD 01 To M1 - MO Valid - _ 35 - - 35 ns

tMDH M1 - MO Hold Time 5 - - 5 - - ns

Notes:

1

.

ALE controls a dynamic storage latch; this parameter is specified to ensure that the stored charge cannot leak sufficiently to

generate intermediate logic levels in the associated logic.

2. The 01 to address delay only applies to non-sequential cycles, when the address is being calculated in the ALU. For sequential

cycles the address will be valid earlier, at the time given from 02. TADDRS applies to sequential and non-sequential cycles.

3. The interrupt and reset inputs may be asynchronous. This time will guarantee that the interrupt request is latched during this

cycle.

4. The worst case for -RAV occurs only when an address exception happens during a data store operation. The address excep-

tion causes -RAV to switch to read to prevent erroneous writing of memory.

2-21

VLSI Technology, inc.

VL86C010

TIMING CHARACTERISTICS: ta - o»c to +70°c, vcc - 5 v ±5%

Parameter

VL86CQ10-10 VL86C010 - 12

UnitsSymbol Mln. Typ. Max. Mln. Typ. Max. Conditions

tOPCD 02 To -OPC Valid - - 40 - - 40 ns

tOPCH -OPC Hold Time 5 - _ 5 - - ns

tTRMD 01 To -TRAN Valid _ - 35 - - 30 ns

tTRMH -TRAN Hold Time 5 - - 5 - - ns

tTRDD 02 To -TRAN Valid - - 45 - - 40 ns See Note 1

tTRDH -TRAN Hold Time 5 - - 5 - - ns

tCPS CPA, -CPB Setup Time 35 - - 30 - - ns

tCPH CPA, -CPB Hold Time 5 - - 5 - - ns

ICPI 01 To -CPI Delay - - 35 - - 30 ns

tCPIH -CPI Hold Time 5 - - 5 - - ns

TIMING DIAGRAMS
PROCESSOR DATA BUS

D31 - DO
(Write)

D31 - DO
(Read)

Notes:

1 . -TRAN will only change during 02 as the result of a forced translation single data transfer operation while in the user mode.
Otherwise, it will change during 01 when the mode change to/from user mode occurs.

_______ . _ _

VLSI Technology, inc.

VL86C010

TIMING DIAGRAMS
PROCESSOR CONTROL SIGNALS

2-23

VLSI Technology, inc.

VL86C010

ABSOLUTE MAXIMUM RATINGS
Ambient Operating

Temperature -10°Cto+80°C

Storage Temperature -65°C to +1 50°C

Supply Voltage to

Ground Potential -0.5 V to VCC +0.3 V

Applied Output

Voltage

Applied Input

Voltage

Power Dissipation

0.5 V to VCC +0.3 V

-0.5 V to +7.0 V

2.0 W

Stresses above those listed may cause
permanent damage to the device.

These are stress ratings only. Func-

tional operation of this device at these

or any other conditions above those

indicated in this data sheet is not

implied. Exposure to absolute maxi-

mum rating conditions for extended

periods may affect device reliability.

DC CHARACTERISTICS: ta = 0°C to +70°C, VCC = 5 V ± 5%

Symbol Parameter Mln Typ Max Unit Conditions

VOHT Output High Voltage, TTL-DATABUS VCC-0.75 - VCC V IOH = -5.0 mA

VOLT Output Low Voltage, TTL-DATABUS - - 0.8 V IOL - 5.0 mA

VOHC Output High Voltage, CMOS VCC-0.75 - VCC V IOH - -2.5 mA

VOLC Output Low Voltage, CMOS - - 0.4 V IOL = 2.5 mA

VIH Input High Voltage
01,02 VCC-0.3 - VCC+0.3 V

All Others 2.4 - VCC+0.3 V

VIL Input Low Voltage
01,02 -0.3 - 0.3 V

All Others -0.3 - 0.8 V

ILI Input Leakage Current - - 10 uA VIN=0VtoVCC

ILO Output Leakage Current - - 10 uA VOUT - V to VCC

ICC Operating Supply Current - 20 40 mA (Notel)

IOS Output Short Circuit Current - - 40 mA

CAPACITANCE: TA = 25°c,f = lomhz

Symbol Parameter Mln Max Unit Conditions

CI
Clock Input Capacitance (01, 02) - 15 PF VIN - V (Note2)

Other Input Capacitance - 5 PF VIN - V (Note2)

CO Output Capacitance - 8 PF VOUT = V (Note 2)

FIGURE 3. TEST WAVEFORMS
Input 1 Output

3.0 V

0.0 V

Notes:

1.5V

AC Test
~ Points

~

1.5 V

V1 LOAD - 2.4 V, DATABUS
V1 LOAD - 2.3 V, OTHERS
R1 - 1600, DATABUS
R1 = 750ii, OTHER OUTPUTS
C1 - 100 pF, DATABUS
C1 = 50 pF, CPI, ADDR.BUS
C1 - 15 pF, OTHER OUTPUTS

1. Measured with outputs unloaded, at 10 MHz. Add 4 mA per MHz.
2. Periodically sampled, rather than 100% tested.

FIGURE 4. TEST LOAD CIRCUIT

r Device Under Test

t>
* Includes Scope

and Jig

Capacitance

V1 LOAD

2-24

VLSI Technology inc.

VL86C010

PROGRAMMERS' MODEL
The VL86C010 processor has a 32-bit

data bus and a 26-bit address bus. The
processor supports two data types,

eight-bit bytes and 32-bit words, where

words must be aligned on four byte

boundaries. Instructions are exactly

one word, and data operations (e.g.,

ADD) are only performed on word

quantities. Load and store operations

can transfer either bytes or words. The
VL86C010 supports four modes of

operation, including protected supervi-

sor and interrupt handling modes.

BYTE SIGNIFICANCE
Some programming techniques may
write a 32-bit (word) quantity to mem-
ory, but will later retrieve the data as a

sequence of byte (8-bit) items. For

these purposes, the processor stores

word data in least-significant-first (LSB

first) order. This means that the least

significant bytes of a 32-bit word

occupies the lowest byte: address. (The

VLSI Technology, Inc. assemblers,

none the less, display compiled data in

MSBs-first order, but for the sake of

clarity only. The Internal; machine rep-

resentation is preserved as LSBs-first.)

REGISTERS
The processor has 27 registers (32-bits

each), 1 6 of which are visible to the

programmer at any time. The visible

subset depends on the current proces-

sor mode; special registers are

switched in to support interrupt and

supervisor processing. The register

bank organization is shown in Table 17.

User mode is the normal: program

execution state; registers R15 - RO are

directly accessible.

All registers are general purpose and

may be used to hold data or address

values, except that register R15
contains the Program Counter (PC) and

the Processor Status Register (PSR).

Special bits in some instructions allow

the PC and PSR to be treated together

or separately as required. Figure 5

shows the allocation of bits within R15.

R14 is used as the subroutine link

register and receives a copy of R1

5

when a Branch and Link instruction is

executed. It may be treated as a

general purpose register at all other

times. R14_svc, R14:_irq and R14Jirq

are used similarly to Hold the return

values of R15 when interrupts and

exceptions arise, or when Branch and

Link instructions are executed within

supervisor or interrupt routines.

TABLE 22. REGISTER ORGANIZATION

RO General

R1 General

R2 General

R3 General

R4 General

R5 General

R6 General

R7 General

R8 General FIRQ

R9 General FIRQ

R10 General FIRQ

R11 General FIRQ

R 12 (FP) General FIRQ

R13(SP) General Supervisor IRQ FIRQ

R14(LK) General Supervisor IRQ FIRQ

R15(PC) (Shared by all Modes)

Typical Use

General Usage

Data Frame (by convention)

Stack Pointer (by convention)

R15 Save Area for BL or Interrupts

System Program Counter

TABLE 23. BYTE ADDRESSING

31

Byte Addr. 0003 Byte Addr. 0002 Byte Addr. 0001 Byte Addr. 0000

Byte Addr. 0007 Byte Addr. 0006 Byte Addr. 0005 Byte Addr. 0004

Word
Address
Value

0000

0001

2-25

VLSI Technology, inc.

VL86C010

FIRQ Processing - The FIRQ mode
(described in the Exceptions section)

has seven private registers mapped to

R14-R8(R14Jiq-R8Jiq). Many FIRQ
programs will not need to save any

registers.

IRQ Processing - The IRQ state has
two private registers mapped to R14
and R13 (FtUJrq and R13_irq).

Supervisor Mode - The SVC mode
(entered on SWI instructions and other

traps) has two private registers mapped
to R14 and R13 (R14_svc and

R13_svc).

The two private registers allow the IRQ
and supervisor modes each to have a

private stack pointer and link register.

Supervisor and IRQ mode programs are

expected to save the user state on their

respective stacks and then use the user

registers, remembering to restore the

user state before returning.

User mode registers are accessible in

the other modes by using LDM or STM
and setting the S bit.

In user mode only the N, Z, C, and V
bits of the PSR may be changed. The I,

F, and Mode flags will change only

when an exception arises. In supervi-

sor and interrupt modes all flags may be

manipulated directly.

EXCEPTIONS
Exceptions arise whenever there is a

need for the normal flow of program

execution to be broken, so that (for

instance) the processor can be diverted

to handle an interrupt from a peripheral.

The processor state just prior to

handling the exception must be
preserved so that the original program

can be resumed when the exception

routine has completed. Many excep-

tions may arise at the same time.

The processor handles exceptions by

using the banked registers to save

state. The old PC and PSR are copied

into the appropriate R14, and the PC
and processor mode bits are forced to a

value which depends on the exception.

Interrupt disable flags are set where
required to prevent unmanageable
nestings of exceptions. In the case of a

re-entrant interrupt handler, R1 4 should

be saved onto a stack in main memory
before re-enabling the interrupt. When
multiple exceptions arise simultane-

ously, a fixed priority determines the

order in which they are handled.

FIRQ - The FIRQ (Fast Interrupt

Request) exception is externally

generated by taking the -FIRQ pin low.

This input can accept asynchronous

transitions and is delayed by one clock

cycle for synchronization before it can

affect the processor execution flow. H is

designed to support a data transfer or

channel process and has sufficient

private registers to remove the need for

register saving in such applications;

therefore, the overhead of context

switching is minimized. The FIRQ
exception may be disabled by setting

the F flag In the PSR (but note that this

FIGURE 5. PROGRAM COUNTER AND PROCESSOR STATUS REGISTER

31 26 25 16 15 2 1

N Z c V I F
I

|
I I I

|
I I I

|
I I I | I I I | I I I

|
I I

M

u
Program Counter
(Word Aligned)FIRQ Disable

= Enable
1 = Disable

IRQ Disable
- Enable

1 = Disable

Overflow

Carry/Not Borrow/Rotate Extend

Zero

Negative/Signed Less Than

Processor Mode —

'

00 = User Mode
01 = FIRQ Mode
10 « IRQ Mode
1

1

= Supervisor Mode

is not possible from user mode). If the

F flag is clear the processor checks for

a low level on the output of the FIRQ
synchronizer at the end of each

instruction.

The impact upon execution of an FIRQ
interrupt is defined in Table 19. The
return-from-interrupt sequence is also

defined there. This will restore the

original processor state and cause exe-

cution to resume at the instruction

following the interrupted one.

IRQ - The IRQ (Interrupt Request)

exception is a normal interrupt caused

by a low level on the -IRQ pin. It has a
lower priority than FIRQ, and is masked
out when a FIRQ sequence is entered.

Its effect may be masked out at any

time by setting the I bit in the PC (but

note that this is not possible from user

mode). If the I flag is clear, the proces-

sor checks for a low level on the output

of the IRQ synchronizer at the end of

each instruction.

The impact upon execution of an IRQ
interrupt is defined in Table 19. The
return-from-interrupt sequence is also

defined there. This will restore the

original processor state and re-enable

the IRQ interrupt and will cause
execution to resume at the instruction

following the interrupted one.

Address Exception Trap - An address

exception arises whenever a data

transfer is attempted with a calculated

address above 3FFFFFFH. The
VL86C010 address bus is 26 bits wide,

and an address calculation will have a

32-bit result. If this result has a logic

one in any of the top six bits it is

assumed that the address is an error

and the address exception trap is taken.

Note that a branch cannot cause an

address exception and a block data

transfer instruction, which starts in the

legal area but Increments into the illegal

area, will not trap. The check is per-

formed only on the address of the first

word to be transferred.

When an address exception is seen, the

processor will respond as defined in

Table 19. The return-from-interrupt

sequence is also defined there. This

will resume execution of the interrupted

code sequence and restore the original

processor state.

2-26

VLSI Technology, inc.

VL86C010

Normally, an address exception is

caused by erroneous code and it is

inappropriate to resume execution. If a

return is required from this trap, use

SUBS PC, R14_svc, 4, as defined in

Table 19. This will return to the instruc-

tion after the one causing the trap.

Abort - The ABRT signal comes from

an external memory management
system, and indicates that the current

memory access cannot be completed.

For instance, in a virtual memory
system the data corresponding to the

current address may have been moved
out of memory onto a disk, and consid-

erable processor activity may be
required to recover the data before the

access can be performed successfully.

The processor checks for an abort at

the end of the first phase of each bus

cycle. When successfully aborted, the

VL86C01 will respond in one of three

ways:

(i) If the abort occurred during an

instruction prefetch (a prefetch

abort), the prefetched instruction is

marked as invalid; when it comes to

execution, it is reinterpreted as

below. (If the instruction is not

executed, for example as a result of

a branch being taken while it is in

the pipeline, the abort will have no

effect.)

(ii) If the abort occurred during a data

access (a data abort), the action

depends on the instruction type.

Data transfer instructions (LDR,

STR) are aborted as though they

had not executed. The LDM and

STM instructions complete, and if

write back is set, the base is up-

dated. If the instruction would

normally have overwritten the base

with data (i.e. LDM with the base in

the transfer list), this overwriting is

prevented. All register overwriting is

prevented after the abort is indi-

cated, which means in particular that

R15 (which is always last to be

transferred) is preserved in an

aborted LDM instruction.

(iii) If the abort occurred during an

internal cycle it is ignored.

Then, in cases (i) and (ii), the processor

will respond as defined in Table 19.

The return from Prefetch Abort defined

in Table 19 will attempt toexecute the

aborting instruction (which will only be

effective if action has been taken to

remove the cause of the original abort).

A Data Abort requires any auto-indexing

to be reversed before returning to re-

execute the offending instruction. The
return Is performed as defined in the

Table 19.

The abort mechanism allows a demand
paged virtual memory system to be

implemented when a suitable memory
management unit (such as the

VL86C1 1 0) is available. The processor

Is allowed to generate arbitrary ad-

dresses, and when the data at an

address is unavailable, the memory

manager signals an abort. The proces-

sor traps into system software which

must work out the cause of the abort,

make the requested data available, and

retry the aborted instruction. The
application program needs no knowl-

edge of the amount of memory avail-

able to it, nor is its state in any way
affected by the abort.

Software Interrupt - The software

interrupt is used for getting into supervi-

sor mode, usually to request a particular

supervisor function. The processor

response to the SWI instruction is

defined in Table 1 9, as: is the method of

returning. The indicated return method
will return to the instruction following the

SWI.

TABLE 24. EXCEPTION TRAP CONSIDERATIONS

Trap Type CPU Trap Activity Program Return Sequence

Reset

1.SaveR15inR14(SVC).
2. Force M1 , MO to SVC mode,

and set F & I status bits in PC.

3. Force PC to 0x000000.

(n/a)

Undefined

Instruction

1.SaveR15inR14(SVC).
2. Force M1 , M0 to SVC mode,

and set I status bit in the PC.

3. Force PC to 0x000004.

MOVS PC, R14 ;SVC'sR14.

Software

Interrupt

1.SaveR15inR14(SVC).
2. Force M1, M0 to SVC mode,

and set I status bit in the PC.

3. Force PC to 0x000008.

MOVS PC, R14 ;SVC'sR14.

Prefetch

and Data

1.SaveR15inR14(SVC).
2. Force M1 , M0 to SVC mode,

and set I status bit in the PC.

3. Force PC to 0x00001 0-data.

Force PC to 0x0000C-Pre-.

Prefetch Abort:

SUBS PC, R14,4 ;SVC'sR14.
Aborts

Data Abort:

SUBS PC, R14.8 ;SVC'sR14.

Address

Exception

1. Convert: Stores to Loads.

2. Complete the instruction (see

text for details).

3. SaveR15in R14 (SVC).

4. Force M1 , M0 to SVC mode,
and set I status bit in the PC.

5. Force PC to 0x000014.

SUBS PC, R14.4 ;SVC'sR14.

(Returns CPU to address following

the one causing the trap.)

IRQ

1.SaveR15inR14(IRQ).
2. Force Ml, M0 to IRQ mode,

and set 1 status bit in the PC.

3. Force PC to 0x000018.

SUBS PC, R14.4 ;IRQ'sR14.

FIRQ

1. Save R15 in R14 (FIRQ).

2. Force M1 , M0 to FIRQ mode,

and set the F and I status bits

in the PC.

3. Force PC to 0x00001 C.

SUBS PC, R14.4 ;FIRQ'sR14.

2-27

VLSI Technology, inc.

VL86C010

Undefined Instruction Trap - When
the VL86C010 executes a coprocessor

instruction or an undefined instruction, it

offers it to any coprocessors which may
be present. If a coprocessor can

perform this instruction but is busy at

that moment, the processor will wait

until the coprocessor is ready. If no

coprocessor can handle the instruction,

the VL86C010 will take the undefined

instruction trap.

The trap may be used for software

emulation of a coprocessor in a system

which does not have the coprocessor

hardware, or for general purpose

instruction set extension by software

emulation.

When the undefined instruction trap is

taken, the VL86C010 will respond as

defined in Table 1 9. The return from

this trap (after performing a suitable

emulation of the required function)

defined in Table 19 will return to the in-

struction following the undefined

instruction.

Reset - When RES goes high, the

processor will stop the currently

executing instruction and start execut-

ing no-ops. When Reset goes low

again, it will respond as defined in Table

19. There is no meaningful return from

this condition.

Vector Table

The conventional means of implement-

ing an interrupt dispatch function is to

provide a table of jumps to the appropri-

ate processing table as shown below:

Address Function

0000000 Reset

0000004 Undefined instruction

0000008 Software interrupt

ooooooc Abort (prefetch)

0000010 Abort (data)

0000014 Address exception

0000018 IRQ
000001

c

FIRQ

These are byte addresses, and each

contains a branch instruction pointing to

the relevant routine. The FIRQ routine

might reside at 000001CH onwards,

and thereby avoid the need for (and

execution time of) a branch instruction.

Exception Priorities - When multiple

exceptions arise at the same time, a

fixed priority system determines the

order in which they will be handled:

1

)

Reset (highest priority)

2) Address exception and

Data aborts

3) FIRQ
4) IRQ

5) Prefetch abort

6) Undefined Instruction and

SWIs (lowest priority)

Note that not all exceptions can occur at

once. Address exception and data

abort are mutually exclusive, since if an

address is illegal the processor ignores

the ABRT input. Undefined instruction

and software interrupt are also mutually

exclusive since they each correspond to

particular (non-overlapping) decodings

of the current instruction.

If an address exception or data abort

occurs at the same time as a FIRQ and
FIRQs are enabled (i.e., the F flag in

the PSR is clear), the processor will

enter the address exception or data

abort handler and then immediately

proceed to the FIRQ vector. A normal

return from FIRQ will cause the address

exception or data abort handler to

resume execution. Placing address

exception and data abort at a higher

priority than FIRQ is necessary to

ensure that the transfer error does not

escape detection, but the time for this

exception entry should be reflected in

worst case FIRQ latency calculations.

Interrupt Latencies - The worst case

latency for FIRQ, assuming that it is

enabled, consists of the longest time

the request can take to pass through

the synchronizer (Tsyncmax), plus the

time for the longest instruction to

complete (Tldm, the longest instruction

is load multiple registers), plus the time

for address exception or data abort

entry (Texc), plus the time for FIRQ
entry (Tf iq). At the end of this time, the

processor will be executing the instruc-

tion at 1CH.

Tsyncmax is 2.5 processor cycles, Tldm
is 18 cycles, Texc is three cycles, and

Tfiq is two cycles. The total time is

25.5 processor cycles, which is just

over 2.5 microseconds in a system

using a continuous 10 MHz processor

clock. In a DRAM based system

running at 4 and 8 MHz (for example,

using the VL86C1 10) this time becomes
4.5 microseconds, and if bus bandwidth

is being used to support video or other

DMA activity, the time will increase

accordingly.

The maximum IRQ latency calculation

is similar, but must allow for the fact that

FIRQ has higher priority and can delay

entry into the IRQ handling routine for

an arbitrary length of time.

The minimum lag for interrupt recogni-

tion for FIRQ or IRQ consists of the

shortest time the request can take

through the synchronizer (Tsyncmin)

plus Tfiq. This is 3.5 processor cycles.

The FIRQ should be held until the mode
bits indicate FIRQ mode. It may be
safely held until cleared by an I/O

instruction in the FIRQ service routine.

2-28

VLSI Technology, inc.

VL86C010

INSTRUCTION SET
All VL86C010 instructions are condi-

tionally executed which means that

their execution may or may not take

place depending on the values of the

N, Z, C, and V flags in the PSR at the

end of the preceding instruction.

If the ALways condition is specified,

the instruction will be executed

irrespective of the flags, and likewise

the Never condition will cause it not to

be executed (it will be a no-op, taking

one cycle and having no effect on the

processor state).

The other condition codes have

meanings, as detailed above. For

instance, code 0000 (EQual) causes

the instruction to be executed only if

the Z flag is set. This would corre-

spond to the case where a compare
(CMP) instruction had found the two

operands were different, the compare
instruction would have cleared the Z
flag, and the instruction will not be
executed.

FIGURE 6. CONDITION FIELD

31

I I I
|

I I I

Condx

24 23 16 15
V "i i i i rn i i i i r

(Any Instruction) •

8 7TTT TTT

Condition Field

0000 = EQ - Z set (equal)

0001 = NE- Z clear (not equal)

001 = CS - C set (unsigned higher or same)
001

1

= CC - C clear (unsigned lower)

0100 = Ml - N set (negative)

0101 =PL - N clear (positive or zero)

0110 = VS-V set (overflow)

0111 = VC - V clear (no overflow)

1 000 = HI - C set and Z clear (unsigned higher)

1 001 = LS - C clearer Z set (unsigned lower or same)
1 01 = G E - N set and V set, or N clear and V clear (greater or equal)
1 01

1

= LT - N set and V clear, or N clear and V set (less than)
1 100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)

1101 =LE -Zset, orN set and V clear, or N clear and V set (less than or equal)
1110 = AL - Always
1111 = NV - Never

E

BRANCH, BRANCH AND LINK
(B, BL.)

The B and BL instructions are only exe-

cuted if the condition code field is true.

All branches support a 24-bit offset. The
offset is shifted left two bits and added
to the PC, with overflows being ignored.

The branch can, therefore, reach any

word aligned address within the

address space. The branch offset must
take account of the prefetch operation,

which causes the PC to be two words
ahead of the current instruction.

Link bit - Branch with Link writes the

old PC and PSR Into R14 of the current

bank. The PC value written into the link

FIGURE 7. BRANCH, AND BRANCH WITH LINK (B, BL)

31 28 27 24 23
TT-r
Condx 1 1 L

I I I I I I I I I I I

PC-Relative Offset '

I I I TTT I I I

Condition

Field

link Bit

= Branch
1 = Branch With Link (Subroutine call)

register (R14) is adjusted to allow for

the prefetch, and contains the address
of the instruction following the branch

and link instruction.

Return from Subroutine - When
returning to the caller, there is an option

to restore or to not restore the PSR.
The following table illustrates the

available combinations.

Restoring PSR:
Not Restoring PSR:

Link Register Valid

MOVS PC.R14
MOV PC.R14

Link Saved to a Stack

LDM Rnl, (PC)A

LDM Rn!, (PC)

Syntax:

B(L){cond} <expression>

where L is used to request the Branch-with-Link form of the instruction.

If absent, R14 will not be affected by the instruction.

cond is a two-character mnemonic as shown in Condition Code section (EQ, NE,
VS, etc.). If absent then AL (Always) will be used.

expression is the destination. The assembler calculates the relative (word) offset.

Items in { } are optional. Items in <> must be present.

2-29

VLSI Technology, inc.

VL86C010

Examples:
Here BAL Here

B There

CMP
BEQ

R1.0

Fred

BL ROM + Sub

ADDS
BLCC

R1, 1

Sub

BLNV Sub

Assembles to EAFFFFFE. (Note effect of PC offset)

Always condition used as default

Compare register one with zero, and branch to Fred if

register one was zero. Else continue next instruction.

Unconditionally call subroutine at computed address.

Add one to register one, setting PSR flags on the result.

Call Sub if the C flag is clear, which will be the case unless

R1 contained FFFFFFFFH. Else continue next instruction.

Never call subroutine (this is a NO-OP).

2-30

VLSI Technology, inc.

VL86C010
ALU INSTRUCTIONS
The ALU-type instruction is only

executed if the condition is true. The
various conditions are defined in the

Condition Code section.

The instruction produces a result by
performing a specified arithmetic or

logical operation on one or two oper-

ands. The first operand is always a

register (Rn). The second operand may
be a shifted register (Rm) or a rotated

8-bit immediate value (Imm) according

to the value of the I bit in the instruction.

The condition codes in the PSR may be
preserved or updated, as a result of this

instruction, according to the value of the

S bit in the instruction. Certain opera-

tions (TST, TEQ, CMP, CMN) do not

write the result to Rd. They are used
only to perform tests and to set the

condition codes on the result, and
therefore should always have the S bit

set. (The assembler treats TST, TEQ,
CMP and CMN as TSTS, TEQS, CMPS
and CMNS by default).

FIGURE 8. ALU INSTRUCTION TYPES

31 28 25 20 16 15 12 11
I I I

Condx
I

I Opcode S
I I I

Rn
I I I

Rd
I I I I I l I I I I I

1 Operand 2

Condition

Code

Destination Register

1 st Operand Register

_Set Condition Codes
- Do not alter condition codes

1 = Set condition codes (S suffix)

Immediate Value -I

= Operand 2 is a register.

1 = Operand 2 is an
immediate value.

Operation Code
0000 = AND - Rd = Op1 AND Op2
0001 - EOR - Rd - Op1 EOR Op2
0010 -SUB- Rd = Op1 -Op2
0011 -RSB- Rd»Op2-Op1
0100 - ADD - Rd = Op1 + Op2
0101 = ADC - Rd - Op1 + Op2 + C
01 10 = SBC - Rd = Op1 - Op2 + C
0111 = RSC - Rd = Op2 - Op1 +C
1000 = TST - set condition codes on Op1 AND Op2
1 001 => TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
101

1

= CMN - set condition codes on Op1 + Op2
1100-ORR-Rd = Op1 OROp2
1101 -MOV-Rd = Op2
1110 = BIC -Rd = Op1 ANDnotOp2
1111 - MVN - Rd = not Op2

Bit 25 = 1 --> Operand 2 is an immediate value.

11 8 7
I I I I I I ITT

Rotate Immediate

L— Unsigned 8-bit immediate value

— Right-rotate amount to be applied
to 8-bit Imm (2-blt shift units).

Bit 25-0 --> Operand 2 is in a register.

11 4 3
I I I I I I I

Shift Field
I I I

Rm

11 5 4 11

r 2nd Operand Register

5 4
I I I I

Rs:
T"

1

Shift applied to Rm (as shown
In below expansion figures).

t
Shift Amount

Shift amount is a 5-bit

unsigned Integer.

Shift Amount
Shift amount Is specified

In bottom byte of Rs.

1 Shift Type
00 = Logical Left (LSL)
01 = Logical Right (LSR)
1 = Arithmetic Right (ASR)
1

1

- Rotate Right (ROR)

2-31

VLSI Technology, inc.

VL86C010

DATA PROCESSING OPERATIONS
Assembler
Mnemonic Opcode
AND 0000

EOR 0001

SUB 0010

RSB 0011

ADD 0100

ADC 0101

SBC 0110

RSC 0111

TST 1000

TEQ 1001

CMP 1010

CMN 1011

ORR 1100

MOV 1101

BIC 1110

MVN 1111

PSR Flags - The operations may be

classified as logical or arithmetic. The

logical operations (AND, EOR, TST,

TEQ, ORR, MOV, BIC, MVN) perform

the logical action on all corresponding

bits of the operand or operands to

produce the result. If the S bit is set

(and Rd is not R1 5) the V flag in the

PSR will be unaffected, the C flag will

be set to the carry out from the barrel

shifter (or preserved when the shift

operation is LSL 0), the Z flag will be set

if and only if the result is all zeroes, and

the N flag will be set to the logical value

of bit 31 of the result.

The arithmetic operations (SUB, RSB,

ADD, ADC, SBC, RSC, CMP, CMN)
treat each operand as a 32-bit integer

(either unsigned or 2's complement

signed, the two are equivalent). If the S
bit is set (and Rd is not R15) the V flag

in the PSR will be set if an overflow

occurs into bit 31 of the result; this may
be ignored if the operands were

considered unsigned, but warns of a

possible error if the operands were 2's

complement signed. The C flag will be

set to the carry out of bit 31 of the ALU,

the Zflag will be set if and only if the

result was zero, and the N flag will be

set to the value of bit 31 of the result

(indicating a negative result if the

operands are considered to be 2's

complement signed).

Shifts - When the second operand is

specified to be a shifted register, the

operation of the barrel shifter is con-

trolled by the shift field in the instruction.

Action

Bit-wise logical AND of operands

Bit-wise logical Exclusive Or of operands

Subtract operand 2 from operand 1

Subtract operand 1 from operand 2

Add operands

Add operands plus carry (PSR C flag)

Subtract operand 2 from operand 1 plus carry

Subtract operand 1 from operand 2 plus carry

as AND, but result is not written

as EOR, but result is not written

as SUB, but result is not written

as ADD, but result is not written

Bit-wise logical OR of operands

Move operand 2 (operand 1 is ignored)

Bit clear (bit-wise AND of operand 1 and NOT operand 2)

Move NOT operand 2 (operand 1 is ignored)

This field indicates the type of shift to be

performed (logical left or right, arithme-

tic right or rotate right). The amount by

which the register should be shifted

may be contained in an immediate field

in the instruction, or in the bottom byte

of another register as shown in

Figure 8.

When the shift amount is specified in

the instruction, it is contained in a 5-bit

field which may take any value from

zero to 31. A logical shift left (LSL)

takes the contents of Rm and moves

each bit by the specified amount to a

more significant position. The least

significant bits of the result are filled

with zeroes, and the high bits of Rm
which do not map into the result are

discarded, except that the least

significant discarded bit becomes the

shifter carry output which may be

latched into the C bit of the PSR when

the ALU operation is in the logical class

(see above). For example, the effect of

LSL 5 is:

FIGURE 9. LOGICAL SHIFT LEFT (LSL)

31 24 23 16 15

Carry

Contents of Rm, which will appear (shifted) in Operand 2

Carry Flag
31 24 23 16 15 _. 87

Bit 27
I | I I

I Lower 27 bits of Rm '

g
l l I l

Example of shifted result in Operand 2 (shifted content of Rm)

Note that LSL is a special case where

the shifter carry out is the old value of

the PSR C flag. The contents of Rm
are used directly as the second

operand.

2-32

A Logical Shift Right (LSR) is similar,

but the contents of Rm are moved to

less significant positions in the result.

LSR 5 has the following effect:

VLSI Technology, inc.

VL86C010

FIGURE 10. LOGICAL SHIFT RIGHT (LSR)

31 24 23 1615 8 7
I I

Contents of Rm, which will appear (shifted) in Operand 2

31 24 23 1615 8 7
I II

1 Upper 27 bits of Rm 1

Example of shifted result in Operand 2 (shifted content of Rm)

—
Carry

Carry Flag

—
Bit 4

I

The form of the shift field which might

be expected to correspond to LSR is

used to encode LSR 32, which has the

zero result, with bit 31 of Rm as the

carry output. Logical shift right zero is

redundant, as it is the same as logical

shift left zero. Therefore, the assem-

bler converts LSR 0, ASR 0, and ROR

into LSL 0, and allows LSR 32 to be

specified.

The Arithmetic Shift Right (ASR) is

similar to the logical shift right, except

that the high bits are filled with repli-

cates of the sign bit (bit 31) of the Rm
register, instead of zeros. This signed

shift preserves the correct representa-

tion of a (signed) negative integer to be

divided by powers of two via a right

shift. For example, ASR 5 has the

following effect:

FIGURE 11. ARITHMETIC SHIFT RIGHT (ASR)

31 24 23 16 15 8 7

sign

I I

extend
Contents of Rm, which will appear (shifted) In Operand 2

31
3I3I3I 3I3

11111

24 23 1615 87 O
3 I I | I.J. MINIMI JJ..I I.LI I I I I I I

(Sign extended) upper 27 bits of Rm

Example of shifted result In Operand 2 (shifted content of Rm)

—*•
Carry

Ca rry Flaj

—*•
Bit 4

The form of the shift field which might

be expected to give ASR is used to

encode ASR 32. Bit 31 of Rm is again

used as the carry output, and each bit

of operand 2 is also equal to the sign

bit (bit 31) of Rm. The result is, there-

fore, all ones or all zeros according to

the value of bit 31 of Rm.

Rotate Right (ROR) operations reuse

the bits which "overshoot" in a logical

shift right operation by wrapping them
around at the high end of the result.

For example, the effect of a ROR 5 is:

FIGURE 1 2. ROTATE RIGHT (ROR)

31 24 23 16 15 8 7
II I I I I

|
I I I I I I I

|
I I I I I II I I I I I I I I

Contents of Rm, which will appear (shifted) In Operand 2:

3 1 I No
1 ' Upper 27 bits of Rm value ^s

Carry

31 24 23 16J5 8 7
CmrV Fla9

o lolo I o lo

Bit 4

Example of shifted result in Operand 2 (shifted content of Rm)

2-33

VLSI Technology, inc.

VL86C010

The form of the shift field which might

be expected to give ROR is used to

encode a special function of the barrel

shifter, Rotate Right Extended (RRX).

This is a rotate right by one bit position

of the 33-bit quantity formed by append-

ing the PSR C flag to the most signifi-

cant end of the contents of Rm:

FIGURE 13. ROTATE RIGHT EXTENDED (RRX)

31 24 23 1615 8 7
I I

Carry

Contents of Rm, which will appear (shifted) In Operand 2

Register-Based Shift Counts - Only

the least significant byte of the contents

of Rs is used to determine the shift

amount. If this byte is zero, the

unchanged contents of Rm will be used

as the second operand, and the old

value of the PSR C flag will be passed

on as the shifter carry output.

If the byte has a value between one and

31 , the shifted result will exactly match

that of an instruction specified shift with

the same value and shift operation.

Shifts of 32 or More - The result will be

a logical extension of the shifting

processes described above:

Shift

LSL by 32
LSL by more than 32

LSR by 32

LSR by more than 32

ASR by 32 or more
ROR by 32
ROR by more than 32

Action

Result zero, carry out equal to bit zero of Rm.
Result zero, carry out zero.

Result zero, carry out equal to bit 31 of Rm.
Result zero, carry out zero.

Result filled with, and carry out equal to, bit 31 of Rm.
Result equal to Rm, and carry out equal to, bit 31 of Rm.
Same result and carry out as ROR by n-32. Therefore, repeatedly

subtract 32 from count until within the range one to 32.

Note: The zero in bit seven of an instruction with a register controlled shift is compulsory; a one in this bit will cause the instruc-

tion to be a multiply or an undefined instruction.

Immediate Operand Rotation - The

immediate operand rotate field is a 4-bit

unsigned integer which specifies a shift

operation on the 8-bit immediate value.

The immediate value is zero extended

to 32 bits, and then subject to a rotate

right by twice the value in the rotate

field. This enables many command
constants to be generated, for example

all powers of two. Another example is

that the 8-bit constant may be aligned

with the PSR flags (bits zero, one, and

26 to 31). All the flags can thereby be

initialized in one TEQP instruction.

Writing to R15 - When Rd is a register

other than R15, the condition code flags

in the PSR may be updated from the

ALU flags as described above. When
Rd is R15 and the S flag in the instruc-

tion is set, the PSR is overwritten by the

corresponding bits in the ALU result, so

bit 31 of the result goes to the N flag, bit

30 to the Z flag, bit 29 to the C flag and

bit 28 to the V flag. In user mode the

other flags (I, F, Ml, MO) are protected

from direct change, but in non-user

modes these will also be affected,

accepting copies of bits 27, 26, one and

zero of the result respectively.

When one of these instructions is used

to change the processor mode (which is

only possible in a non-user mode), the

following instruction should not access

a banked register (R14-R8) during its

first cycle. A no-op should be inserted if

the next instruction must access a

banked register. Accesses to the

unbanked registers (R7-R0 and R15)

are safe.

If the S flag is clear when Rd is R1 5,

only the 24 PC bits of R15 will be

written. Conversely, if the instruction is

of a type which does not normally

produce a result (CMP, CMN, TST,

TEQ) but Rd is R15 and the S bit is set,

the result will be used in this case to

update those PSR flags which are not

protected by virtue of the processor

mode.

Setting PSR Bits - It is suggested that

TEQP be used to set PSR bits in SVC
mode. Because these bits are not

presented to the ALU input (even when
R1 5 is the operand), the TEQP's
operands replace all current PSR bits.

For example, to remain in SVC mode
but set the interrupt-disable bits, use a

TEQP PC, 0XCOOOOO3' instruction.

2-34

VLSI Technology, inc.

VL86C010

R1 5 as an Operand - If R1 5 is used as

an operand in a data processing

instruction it can present different

values depending on which operand

position it occupies. It will always

contain the value of the PC. It may or

may not contain the values of the PSR
flags as they were at the completion of

the previous instruction.

When R15 appears in the Rm position it

will give the value of the PC together

with the PSR flags to the barrel shifter.

When R1 5 appears in either of the Rn
or Rs positions, it will give the value of

the PC alone with the PSR bits replaced

by zeroes.

The PC value will be the address of the

instruction, plus eight or 12 bytes due to

instruction prefetching; If the shift

amount is specified in the instruction,

the PC will be eight bytes ahead. If a

register is used to specify the shift

amount, the PC will be eight bytes

ahead when used as Rs, and 12 bytes

ahead when used as Rn or Rm.

Syntax:

MOV, MVN single operand instructions:

<opcode>{cond}{S} Rd,<Op2>

CMP, CMN, TEQ, TST - instructions not producing a result:

<opcode>{cond}{P} Rn,<Op2>

AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, ORR, BIC:

<opcode>{cond}{S} Rd, Rn, <Op2>

whoreOp2 Is Rm{<shift>} or, <expression>

cond Two-character condition mnemonic, see Condition Code section.

S Set condition codes if S present (implied for CMP, CMN, TEQ, TST).

P Make Rd - R15 in instructions where Rd is: not specified, otherwise Rd will

default to RO. (Used for changing the PSR directly from the ALU result.)

Rd, Rn and Rm Are any valid register name, such as R0-R15, PC, SP, or LK.

<shift> Is <shiftname> <register> or <shiftname> expression, or RRX (rotate right

one bit with extend).

<shiftname>s Are any of: ASL, LSL, LSR, ASR, or ROR.

Note: If <expressbn> is used, the assembler will attempt to generate; a shifted immediate eight-bit field to match the expression.

If this is impossible, it will give an error.

Examples:
ADDEQ

TEQS

SUB

TEQP

R2, R4, R5

R4.3

R4, R5, R7 LSR R2

R15.0;

MOVNV RO, RO

MOV PC, LK

MOVS PC, R14

Equivalent to: if (ZFLAG) R2 - R4+R5.

Test R4 for equality with 3 (The S is redundant, as the assembler

assumes it. Equivalent to: ZFLAG - R4==3.

Logical Right Shift R7 by the number in the bottom byte: of R2, subtract

the result from R5, and put the answer into R4.

Equivalent to: R4 - R5 - (R7»R2).

(Assume non-user mode here). Change to

user mode and clear the N,Z,C,V,I, and F

flags. Note that R15 is in the Rn position, so

it comes without the PSR flags.

Equivalent to: R15 = FLAGS = 0.

Is a no-op, avoiding mode-change hazard.

Equivalent to: RO - RO.

Equivalent to: PC-LK, or PC = R14.

Return from subroutine (R14 is an active one).

Equivalent to: PC, PSR - R14.

Return from subroutine, restoring the status.

2-35

VLSI Technology inc.

VL86C010
FIGURE 14. MULTIPLY, AND MULTIPLY-ACCUMULATE (MUL, MLA)

31 28 27 22 19 16 15 8 7
I I I I I I I

Condx O'O AS
tt

Rd
I I I

Rn
TTT

Rs
I

i i i i i i r
M 1 Rm

Conditional Execution
Control Field

Operand registers

MUL: Rd = Rm * Rs (Rn Is Ignored)

MLA: Rd . Rm * Rs + Rn

Set Condition Codes
= Do not alter Condition Codes

1 = Set Condition Codes

Accumulate bit (MLA specifier)

= Multiply (MUL)
1 = Multiply and Accumulate (MLA)

The Multiply and Multiply-Accumulate

instructions use a 2-bit Booth's algo-

rithm to perform integer multiplication.

They give the least significant 32 bits of

the product of two 32-bit operands and
may be used to synthesize higher

precision multiplications.

The Multiply form of the instruction

gives Rd - Rm*Rs. Rn is ignored and

should be set to zero for compatibility

with possible future upgrades to the

instruction set.

The Multiply-Accumulate form gives

Rd m Rm*Rs+Rn which can save an

explicit ADD instruction in some circum-

stances.

Both forms of the instruction work on

operands which may be considered as

signed (two's complement) or unsigned

integers.

Operand restrictions - Due to the way
the Booth's algorithm has been imple-

mented, certain combinations of

operand registers should be avoided.

(The assembler will issue a warning if

these restrictions are violated.)

The destination register (Rd) should not

be the same as the Rm operand
register, as Rd is used to hold interme-

diate values and Rm is used repeatedly

during the multiply. A MUL will give a

zero result if Rm - Rd, and a MLA will

give a meaningless result.

The destination register Rd should not

be R1 5 since it is protected from modifi-

cation by these instructions. The
instruction will have no effect, except

that meaningless values will be placed

in the PSR flags if the S bit is set. All

other register combinations will give

correct results, and Rd, Rn and Rs may
use the same register when required.

PSR Flags - Setting the PSR flags is

optional, and is controlled by the S bit in

the instruction. The N and Z flags are

set correctly on the result (N is equal to

bit 31 of the result, Z is set if and only if

the result is zero), the V flag is unaf-

fected by the instruction (as for logical

data processing instructions), and the C
flag is set to a meaningless value.

Writing to R15 - As mentioned above,

R15 must not be used as the destina-

tion register (Rd). If it is so used, the in-

struction will have no effect except

possibly to scramble the PSR flags.

R15 As An Operand - R15 may be
used as one or more of the operands,

though the result will rarely be useful.

When used as Rs, the PC bits will be
used without the PSR flags and the PC
value will be eight bytes on from the

address of the multiply instruction.

When used as Rn, the PC bits will be
used along with the PSR flags, and the

PC will again be eight bytes on from the

address of the instruction. When used

as Rm, the PC bits will be used together

with the PSR flags, but the PC will be
the address of the instruction plus 12
bytes in this case.

Syntax

MUL{cond}{S)

MLA {cond}{S}

Rd, Rm, Rs
Rd, Rm, Rs, Rn

where cond Is a two-character condition code mnemonic
5 Set condition codes if present.

Rd, Rm, Rs and Rn Are valid register mnemonics, such as R0-R15, SP, LK, or PC.

Notes:

Rd must not be R15 (PC), and must not be the same as Rm.
Items in {} are optional. Those in o must be present.

2-36

VLSI Technology, inc.

VL86C010

Examples:
MUL
MLAEQS

R1,

R1,

R2, R3
R2, R3, R4

; R1 - R2 * R3. (R1.R2.R3 - Rd.Rm.Rs)

; Equivalent to: if (ZFLAG) R1 = R2*R3 + R4.

; Condition codes are set, based on the result.

The multiply instruction may be used to synthesize higher precision multiplications.

For instance, multiply two 32-bit integers and generate a 64-bit result::

Notes

MOV RO, R1 LSR 16 R0 (temporary) = top half of R1

.

MOV R4, R2LSR16 R4 -top half of ; R2.

BIC R1.R1.R0LSL16 R1 - bottom half of R1

.

BIC R2, R2, R4LSL16 R2 = bottom half of R2.

MUL R3, RO, R2 Low section of result.

MUL R2, RO, R2 Middle section of result.

MUL R1.R4, R1 Middle section of result.

MUL R4, RO, R4 High section of result.

ADDS R1.R2, R1 Add middle sections. (MLA not used, as we need R3 correct)

ADDCS R4, R4, 0x1 0000 Carry from above add.

ADDS R3, R3, R1 LSL16 R3 is now bottom 32 product bits.

ADC R4, R4, R1 LSR 16 R4 is now top 32 bits.

1

.

R1 , R2 are resigters containing the 32-bit integers. R3, R4 are registers for the 64-bit result.

2. R0 is a temporary register.

3. R1 and R2 are overwritten during the multiply.

Load/Store Value from Memory
(LDR.STR)
The register load/store instructions are

used to load or store single bytes or

words of data. The LDR and STR
instructions differ from MOV instructions

in that they move data between registers

and a specified memory address. In

contrast, the MOV instructions move
data between registers, or move a

constant (contained in the instruction)

into a register.

The memory address used in LDR/STR
transfers is calculated by adding an

offset to or subtracting an offset from a

base register. Typically, a load of a

labeled memory location involves the

loading via a (signed) offset from the

current PC. Regardless of the base
register used, the result of the offset

calculation may be written back into the

base register if 'auto-indexing' is

required.

Offsets and Auto-indexing - The offset

from the base may be either a 12-bit

binary immediate value in the instruction,

or a second register (possibly shifted in

some manner). The offset may be

added to (U-1) or subtracted from

(U=0) the base register Rn. The
offset modification may be performed

either before (pre-indexed; P-1) or

after (post-indexed, P-0) the base is

used as the transfer address.

The W bit gives optional auto incre-

ment and decrement addressing

modes. The modified base value may
be written back into the base (W=1),

or the old base value may be kept

(W=0). In the case of post-indexed

addressing, the write backbit is

redundant since the old base value

can be retained by setting the offset to

zero. Therefore, post-indexed data

transfers always write back the

modified base.

Hardware Address Translation -

The only use of the W bit in a post-

indexed data transfer is in non-user

mode code where setting the W bit

forces the -TRAN pin low for the

transfer, allowing the operating

system to generate a user address in

a system where the memory manage-
ment hardware makes suitable use of

this pin, as when the MEMC chip is

used.

Shifted Register Offset - The eight

shift control bits are described in the

data processing instructions, but the

register specified shift amounts are not

implemented in this instruction class.

Bytes and Words - This instruction

class may be used to transfer a byte

(B-1) or a word (B=0) between a

processor register and 'memory. In the

discussion, remember that the

VL86C010 stores words into memory
with the Least Significant Byte at the

lowest address (i.e., LSB first).

A byte load (LDRB) expects the data on

bits D7 to DO if the supplied address is

on a word boundary, on bits D15 to D8
if it is a word address plus one byte,

and so on. The selected byte is placed

in the bottom eight bitsof the destina-

tion register, and the remaining bits of

the register are filled with zeroes.

A byte store (STRB) repeats the bottom

eight bits of the source'register four

times across the data bus. The external

memory system should activate the

appropriate byte subsystem to store the

data.

2-37

VLSI Technology, inc.

VL86C010

FIGURE 15. LOAD/STORE VALUE FROM MEMORY (LDR.STR)

31 28 25 20 16 15 12 11

I I I

Condx
I

1 I P u B W L
I I I

Rn
I I I

Rd
I I I I I I I I I I I

Operand 2

Condition
Code

1 . Source/Destination Register

Base Register

Load/Store: - STR, 1 - LDR

.Write Back Bit

- No write back
1 - Write address back into base (!).

Byte/Word Bit

- Word transfer

1 = Byte transfer (B)

Up/Down Bit

- Offset is negative

1 - Offset is positive

Pre/Post Indexing

Post: [base],index

1 - Pre: [base.index] Shift Amount

Immediate Value
1 - Operand 2 is a register.

- Operand 2 is an
immediate value.

Bit 25-0 --> Operand 2 is an immediate value.

11

I I I I I I I I I

Unsigned 12-bit value

Bit 25 - 1 -> Operand 2 is in a register.

11 7 6 5 4 3
1 1

1

1

I I I I

Rm

u J

Shift amount is a 5-bit

shift count, to be applied

to the Rm register.

L 2nd Operand Register

Shift Type

00 m Logical Left (LSL)
01 - Logical Right (LSR)
1 - Arithmetic Right (ASR)
1

1

- Rotate Right (ROR)

Note: There is no Rs or shift for the LDR/STR class. That is, the shift amount cannot be contained in a register.

Non-Allgned Accesses - A word load

(LDR) should generate a word aligned

address. An address offset from a word

boundary will cause the data to be
rotated into the register so that the

addressed byte occupies bits D7to DO.

External hardware could perform a

double access to memory to allow non-

aligned word loads, but the VL86C1 1

Memory Controller does not support this

function.

Use of R15 - These instructions will

never cause the PSR to be modified,

even when Rd or Rn is R15.

If R15 is specified as the base register

(Rn), the PC is used without the PSR
flags. When using the PC as the base

register one must remember that it

contains an address eight bytes

advanced from the address of the

current instruction.

If R15 is specified as the register offset

(Rm), the value presented will be the

PC together with the PSR.

When R15 is the source register (Rd) of

a register store (STR) instruction, the

value stored will be the PC together

with the PSR. The stored value of the

PC will be 1 2 bytes advanced from the

address of the instruction. A load

register (LDR) with R15 as Rd will

change only the PC, and the PSR will

be unchanged.

Address Exceptions - If the address

used for the transfer (i.e., the unmodi-

fied contents of the base register for

post-indexed addressing, or the base

modified by the offset for pre-indexed

addressing) has a logic one in any of

the bits D31 to D26, the transfer will not

take place and the address exception

trap will be taken.

Note that only the address actually used

for the transfer is checked. A base

containing an address outside the legal

range may be used in a pre-indexed

transfer if the offset brings the address

within the legal range. Likewise, a
base within the legal range may be

modified by post-indexing to outside

the legal range without causing an
address exception.

Data Aborts - A transfer to or from a

legal address may still present special

cases for a memory management
system. For instance, in a system

which uses virtual memory, the

required data may be absent from main
memory. The memory manager can
signal a problem by taking the proces-

sor ABRT pin high, whereupon the

data transfer instruction will be
prevented from changing the processor

state, and the data abort trap will be
taken. It is up to the system software

to resolve the cause of the problem.

The instruction can then be restarted

and the original program continued.

2-38

VLSI Technology inc.

VL86C010

Syntax:

LDR/STR{cond}{B}{T} Rd,<Address>

where LDR means Load from memory into a register.

STR means store from a register into memory.

cond is a two-character condition mnemonic (see Condition Code section).

B If present implies byte transfer, else a word transfer.

T If present, the W bit is set In a post-indexed instruction, causing the

-TRAN pin to go low for the transfer cycle. T is not allowed when a pre-

indexed addressing mode is specified or implied.

Rd is a valid register: R0-R15, SP, LK, or PC.

Address Can be any of the variations in the following table.

Address Variants:

Address expression: An expression evaluating to a relocatable address:

<expression> The assembler will attempt to generate an instruction using the PC
as a base, and a corrected offset to the location given by the

expression. This is a PC-relative pre-indexed address. If out of range

(at assembly or link time), an error message will be given.

Pre-indexed address: Offset is added to base register before using as effective address, and

offsets are placed within the
[]

pair. Rn may be viewed as a pointer:

[Rn, <expression>]{l} Signed offset of expression bytes is added to base pointer.

[Rn, Rm]{l} Add Rm to Rn before using Rn as an address pointer.

[Rn, Rm <shift> count]{!} Signed offset of Rm (modified by shift) is added to base pointer.

Post-indexed address: Offset is added to base reg, after using base reg for the effective address.

Offsets are placed after the
[] pair:

[Rn],<expression> Expression is added to Rn, after Rn's usage as a pointer.

[Rn], Rm Rm is added to Rn, after Rn's usage as an address pointer.

[Rn], Rm <shift> count Shift the offset in Rm by count bits, and add to Rn, after

Rn's usage as an address pointer.

[Rn] No offset is added to base address pointer.

where expression A signed 13-bit expression (including the sign).

Rm, Rn Valid register names: R0-R15, SP, LK, or PC. If RN - PC, the assembler

will subtract 8 from the expression to allow for processor address read-ahead.

shift Any of: LSL, LSR, ASR, ROR, or RRX.
count Amount to shift Rm by. It is a 5-bit constant, and may not be

specified as an Rs register (as for some other instruction classes).

/ If present, the I sets the W-bit in the instruction, forcing the

effective offset to be added to the Rn register, after completion.

Examples (Pre-lndex and Optional Increment):

In each of these examples, the effective offset is added to the value in the Rn (base pointer) register prior to using that value as

the effective address. Rn is then updated only if the I suffix is supplied;

; "(R2+R1) = R1. Then R2 += R1.

; *(R2) - R3.

; R1 - *(R0 + 16). Don't update RO.

; R9 - *(R5 + (R2«2)). Don't update R5.

; if (Zflag) R2 = *(R5 + 5), a zero-filled byte load.

STR R1,[R2, R1]l

STR R3, [R2]

LDR R1,[R0, 16]

LDR R9, [R5, RO LSL 2]

LDREQB R2, [R5, 5]

2-39

VLSI Technology, inc.

VL86C010

Examples (Post-Index and Increment):

In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the

effective address. That is, Rn is then updated unconditionally, regardless of any ! suffix.

STR R1,[R2], R1

STR R3, [R2], R5
LDR R1,[R0], 16

LDR R9, [R5], RO ASR 3

LDREQB R2, [R5], 5

•R2-R1. ThenR2+=R1.
*(R2) - R3. Then R2 += R5.

R1 -*R0. ThenR0+-16.
R9 = *R5. Then R5 += (RO / 8).

if (Zflag) R2 - *R5, a zero-filled byte load, and then R5 +=

Examples (Expression):

In these examples, the PLACE label is an internal or external PC-relative label, typically created as shown. PC-relative refer-

ences are precompensated for the 8-byte read-ahead done by the processor. PARMx is a register-relative label, typically created

via a DTYPE directive, and assumed to be relative to the LK (R14) register. DATAx is similar, but is presumably defined relative

to the SP (R13) register, and GENERAL relative to RO. In any case, they may be located up to ±4096 bytes from the associated

base register.

LDR RO, DATA1
STR R2, PLACE
LDR R1.PARM0
STR R1, GENERAL
B

PLACE DW
Across • • •

Across

SP-relative. Same as: LDR RO, [SP+DATA1].

PC-relative. Same as: STR R2, [PC+16].

LK-relative. Same as: LDR R1, [LK+DATA1].

RO-relative. Same as: STR R1
,
[RO+GENERAL].

Skip over the data temporary.

Temporary storage area.

Resume execution.

FIGURE 16. LOAD/STORE REGISTER LIST FROM MEMORY (LDM,STM)

31 28 27 25
I I I I I I

Condx 1 P U S W L

2019T 1615
I I I I I I I I I I

Register ListRn

Condition

Code

Base Register

Load/Store: = STM, 1 = LDM

Write back bit

= no write back
1 = Write address back into base (!).

PSR Or Force-User bit (
A
suffix)

= Do not load PSR or force user mode registers.

1 = Load PSR or optionally force user mode regsiters(A
).

Up/Down Bit

= offset is negative

1 = offset is positive

Pre/Post Indexing Form
= Post: after each register

is transferred.

1 = Pre: before each register

is transferred.

2-40

VLSI Technology, inc.

VL86C010

The multi-register transfer instructions

are used to load (LDM) or store (STM)

any subset of the currently visible

registers. They support all possible

stacking modes (push up/pop down, or

push down/pop up). They are very

efficient instructions for saving or

restoring context, or for moving large

blocks of data around main memory.

The Register List - The instruction can

cause the transfer of any registers in

the current bank (and non-user mode
programs can also transfer to and from

the user bank). The register list is

contained in a 1 6-bit field in the

instruction, with each bit corresponding

to a register. A logic one in bit zero of

the register field will cause RO to be
transferred, a logic zero will cause it not

to be transferred; similarly bit one

controls the transfer of R1, and so on.

Addressing Modes - The transfer

addresses are determined by the

contents of the base register (Rn), the

pre/post bit (P) and the up/down bit (U).

The registers are transferred in the

order lowest to highest, so R15 (if in the

list) will always be transferred last. The

lowest register also gets transferred to/

from the lowest memory address. This

is illustrated in Figures 17 and 18.

Transfer of R15 - Whenever R15 is

stored to memory, the value transferred

is the PC together with the PSR flags.

The stored value of the PC will be 1

2

bytes advanced from the address of the

STM instruction.

If R1 5 is in the transfer list of a load

multiple (LDM) Instruction, the PC is

overwritten and the effect on the PSR is

controlled by the S bit. If the S bit is

zero the PSR is preserved unchanged,

but if the S bit is set the PSR will be

overwritten by the corresponding bits of

the loaded value. In user mode,
however, the I, F, M1 , and MO bits are

protected from change, whatever the

value of the S bit. The mode at the start

of the instruction determines whether

these bits are protected, and the

supervisor may return to the user

program, reenabling interrupts and

restoring user mode with one LDM
instruction.

Transfers to User Bank - For STM
instructions the S bit is redundant as the

PSR is always stored with the PC
whenever R15 is in the transfer list. In

user mode the S bit is ignored, but in

other modes it has a second interpreta-

tion. S-1 is used to force; transfers to

take values from the user register bank

instead of from the current:register

bank. This is useful for saving the user

state on process switches. Note that

when it is so used, write back of the

base will also be to the user bank,

though the base will be fetched from the

current bank. Therefore don't use write

back when forcing user bank.

In LDM instructions the S bit is redun-

dant if R15 is not in the transfer list, and

again in user mode it is ignored. In

non-user mode where R15 is not in the

transfer list, S-1 is used to force loaded

values into user registers instead of the

current register bank. When used in

this manner, care must betaken not to

read from a banked register during the

following cycle; if in doubt.insert a NO-
OP. Again, don't use write back when
forcing a user bank transfer.

R15 as the Base - When the base is the

PC, the PSR bits will be used to form

the address as well, so unless all

interrupts are enabled and all flags are

zero an address exception will occur.

Also, write back is never allowed when
the base is the PC (setting the W bit will

have no effect).

Base Within the Register List - When
write back is specified, the base is

written back at the end of the second
cycle of the instruction. During an STM,
the first register is written out at the start

of the second cycle. A STM which

includes storing the base, with the base
as the first register to be stored, will

therefore store the unchanged value,

whereas with the base second or later

In the transfer order, will store the

modified value. An LDM will always

overwrite the updated base if the base

is in the list.

Address Exceptions - When the

address of the first transfer falls outside

the legal address space (i.e., has a

logic one somewhere in bits 31 to 26),

an address exception trap will be taken.

The instruction will first complete in the

usual number of cycles, though an STM
will be prevented from writing to

memory. The processor state will be

the same as if a data abort had oc-

curred on the first transfer cycle.

Only the address of theifirst transfer is

checked in this way; if subsequent

addresses over or unde'r-flow into illegal

address space they will' be truncated to

26 bits but will not cause an address

exception trap.

Data Aborts - Some legal addresses

may be unacceptable to a memory
management system, and the memory
manager can indicate a. problem with an

address by taking the ABRT pin high.

This can happen on any transfer during

a multiple register load or store, and

must be recoverable if the processor is

to be used in a virtual memory system.

Abort During an STM - If the abort

occurs during a store multiple instruc-

tion, the processor takds little action

until the instruction completes, where-

upon it enters the data abort trap. The
memory manager is responsible for

preventing erroneous Writes to the

memory. The only change to the

internal state of the processor will be

the modification of the base register if

write back was specified, and this must

be reversed by software (and the cause

of the abort resolved) before the

instruction may be retried.

To illustrate the various load/store

modes, consider the transfer of R1 , R5
and R7 in the case where Rn - 1000H
and write back of the modified base is

required (W - 1). These figures show
the sequence of register transfers, the

addresses used, and the value of Rn
after the instruction has completed.

In all cases, had write back of the

modified base not been required (W=0),

Rn would have retained its initial value

of 1000H unless it wasialso in the

transfer list of the load multiple register

instruction. Then it would have been
overwritten with the loaded value.

Aborts During LDM - When the

processor detects a data abort during a

load multiple instruction, it modifies the

operation of the instruction to ensure

that recovery is possible.

2-41

VLSI Technology inc.

VL86C010
Mode Bits - During the execution of

LDMs and STMs, the two LSBs of the

instruction will contain the (noninverted)

mode status bits. These may be used
by external hardware to force memory
accesses from an alternative bank.

The following figures illustrate the

impact of various addressing modes.

R1 , R5, and R7 are moved to/from

memory, where Rn-0x1000, and a write

back of the modified base is done
(W-1). The figures show the sequence
of incrementing "pushes", the ad-

dresses used, and the final value of Rn.

Without write back, Rn would remain at

0x1000.

Figure 17 illustrates the use of incre-

menting stack "pushes".

Figure 18 illustrates decrementing

"pushes" to the stack based upon Rn.

FIGURE 17. INCREMENTING INDEX

Post-Increment Addressing

0x1 00C

Hn- 0X1000

0X0FF4

RT

(1) Before STM Instruction (2) After First Transfer

0x1 00C Rn—
"TE~
R1 0x1000

-R7-
itr
"fTT

(3) After Second Transfer
(4) STM Instruction Complete

0x1000 Rn-

FIGURE18. DECREMENTING INDEX

Post-Decrement Addressing

0x1 00C

0x1000

(1) Before STM Instruction

(3) After Second Transfer

R1

0x1 00C

(2) After First Transfer

0x0FF4 Rn - 0x0FF4

(4) After STM instruction Complete

Pre-lncrement Addressing

OxIOOC

0x1000

0x0FF4

OxIOOC

0x1000

0X0FF4

Rn—*-

Pre-Decrement Addressing

0x1000

0x1000

0X0FF4

OxIOOC

0x1000

OxOFF4

R1

R1

(1) (2) (1) (2)

0x1 00C Rn—

0x1000

0X0FF4

R7 OxIOOC

0x1000

0X0FF4 Rn —!>

R5 R5
R1 R1

R7
R5 R5
R1 R1

(3) (4) (3) (4)

2-42

VLSI Technology, inc.

VL86C010

Overwriting of registers stops when the

abort happens. The aborting load will

not take place, nor will the preceding

one, but registers two or more positions

ahead of the abort (if any) will be

loaded. (This guarantees that the PC
will be preserved, since it is always the

last register to be overwritten.)

The base register is restored to its

(modified) value if write back was
requested. This ensures recoverability

in the case where the base register is

also in the transfer list and may have

been overwritten before the abort

occurred.

The data abort trap is taken when the

load multiple has completed, and the

system software must undo any base

modification (and resolve the cause of

the abort) before restarting the instruc-

tion.

Syntax:

where

LDM|STM{cond}<mode> Rn{l}, <Rlist>{'>}

cond Is an optional 2-letter condition code common to all instructions.

mode Is any of: IA, IB, DA, or DB.

Rn Is a valid register name: R0-R15, SP, LK, or PC.

Blist Can be a single register (as described above for Rn), or may be a list of

registers, enclosed in { } (eg {R0,R2,R7-R10,LK}).

/ If present, requests write back (W=1). Otherwise W=Q.
*

If present, set S bit to load the PSR with the PC, or force transfer of user

bank, when in non-user mode.

Addressing Mode Names - There are different assembler mnemonics for each of the addressing modes, depending on whether

the instruction is being used to support stacks, or for other purposes. The names and instruction bit values are:

Function Mnemonic
Pre-increment load LDMIB
Post-increment load LDMIA
Pre-decrement load LDMDB
Post-decrement load LDMDA

Pre-increment store STMIB
Post-increment store STMIA
Pre-decrement store STMDB
Post-decrement store STMDA

LBIt PBIt UM.
1 1 1

1 1

1 1

1

1 1

110

Operation

Pop upwards

Pop upwards

Pop downwards
Pop downwards

Push upwards

Push upwards

Push downwards
Push downwards

IA, IB, DA, DB allow control of when the memory printer is changed and; simply mean Increment After, Increment Before, Decre-

ment After, Decrement Before.

Examples
LDMIA SPI, {R0, R1 , R2) ; unstack 3 registers

STMIA R2, {R0-R15} ; save all registers

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling routine;

STMDB SPI, {R0-R3, LK} ; Save R0 to R3 for workspace,and R1 4 for returning.

BL Subroutine ; This call will overwrite R1

4

LDMIA SPI, {R0-R3, PC}A
; Restore workspace and return, restoring PSR flags.

2-43

VLSI Technology inc.

VL86C010
FIGURE 19. SOFTWARE INTERRUPT (SWI)

31 28 27 24 23
I I I | I I I

Condx 1111 I I I l l I I I I I I I I I I I I I

Instruction to Executive (ignored by CPU)

Condition

Field

Note: The machine comments field in bits 23 - are ignored by the hardware. They are made available for free interpretation by
the software executive, and may be found in LSB-first byte order on the stack.

The Software Interrupt (SWI) instruction

is used to enter supervisor mode in a
controlled manner. The instruction

causes the software interrupt trap to be
taken, which effects the mode change,

with execution resuming at 0x08. If this

address is suitably protected (by

external memory management hard-

ware) from modification by the user, a

fully protected operating system may be
constructed.

Return from the Supervisor - The PC
and PSR are saved in R14_svc upon

executing the software interrupt trap

with the PC adjusted to point to the

word after the SWI instruction. MOVS
R15, R14_svc will return to the user

program, restore the user PSR and
return the processor to user mode.

Note that the link mechanism is not re-

entrant, so if the supervisor code
wishes to use software interrupts within

itself it must first save a copy of the

return address.

Machine Comments Field - The
bottom 24 bits of the instruction are

ignored by the processor and may be
used to communicate with the supervi-

sor code. For instance, the supervisor

may extract this field and use it to index

into an array of entry points for routines

which perform various supervisor

functions.

Syntax:

SWI{cond}

where cond
expression

Examples:

aeons

<expression>

Is the two-character condition code common to all instructions.

Is a 24-bit field of any format. The processor itself ignores it, but the

typical scenario is for the software executive to specify patterns in it,

which will be interpreted in a particular way by the executive, as commands.

Zero-0, ReadC-1, Write1=2 ; Assembler constants.

SWI ReadC ; Get next character from read stream
SWI Writel+V ; Output a "k" to the Write stream
SWINE ; Conditionally call supervisor with in comment field

The above examples assume that suitable supervisor code exists. For instance:

; Assume that the R1 3_svc (the supervisor's R13) points to a suitable stack.

aeons Zero=0, ReadC-1, Write1-2 ; Assembler constants.

aeons CC_Mask = 0xFC00003 ; Non-address area mask.

08h B Super
; SWI entry point

; Save working registers.

; Strip condx codes from SWI instruction address.

; Get copy of SWI instruction.

; Get lower 24 bits of SWI, only.

; Get absolute address of PC-relative table.

; Jump indirect on the table.

; Address of service routines.

Super STMOB SPI,{rO,r1,r2, R14)

BIC r1,r14, CC Mask
LDR R0, [R1.-4]

BIC RO, RO, OxFFOOOOOO
MOV R1.SWI Table

LDR PC, [R1.R0LSL2]

SWI Table dw Zero Action

dw ReadC Action

dw Write1_Action

Writel Action

LDMIA R13!,{R0-R2, PC}*

; Typical service routine.

; Restore workspace, and return to inst after SWI.

2-44

VLSI Technology, inc.

VL86C010

FIGURE 20. COPROCESSOR DATA OPERATIONS (CDO)

31 28 27 2423 20 19 16 15 12 11 8 7 5 4 3

I I I I I I I I I I I I I I I I I I I

CRn CRd CP# AUX CRm
~i—i r~\ i i i I i i r
Condx 1110 CPOpc

Condition

Code
Coprocessor
Operation
Code

I

Coprocessor
Destination

Register

IT
Coprocessor Operand
Registers

Coprocesser Auxiliary

Information

Coprocessor Number

The instruction is executed only if the

condition code field is true. The field is

described in the Condition Codes
section.

This is actually a class of instructions,

rather than a single instruction, and is

equivalent to the ALU class on the

processor. All instructions in this class

are used to direct the coprocessor to

perform some internal operation. No
result is sent back to the CPU, and the

VL86C01 will not wait for the operation

to complete. The coprocessor could

maintain a queue of such instructions

awaiting execution. Their execution

may then overlap other VL86C01
activity, allowing the two processors to

perform Independent tasks in parallel.

Coprocessor Fields - Only bit 4 and

bits 31 -24 are significant to the

VL86C010; the remaining bits are used

by coprocessors. The above field

names are used by convention, but

particular coprocessors may redefine

the use of any or all fields as appropri-

ate, except for the CP#. For the sake of

future family product introductions, it is

encouraged that the above conventions

be followed, unless absolutely neces-

sary.

By convention, the coprocessor should

perform an operation specified in the

CP Ope field (and possibly in the CP
field) on the contents ofCRn and CRm,
placing the result into CRd.

Syntax:

CDO{cond} cp#,<expression1>, CRd, CRn, CRm{,<expression2>}

where cond Is the conditional execution code, common to all instructions.

cp# Is the (unique) coprocessor number, assigned by hardware.

CRd, CRn, CRm These are valid coprocessor registers: CR0-CR15.

expressionl Evaluates to a constant, and is placed in the CP Opcfield.

expressions (Where present) evaluates to a constant, and Is placed in the AUXiiM.

Examples:
CDO 1,10, CR1.CR7.CR2

CDOEQ 2, 5, CR1, cr2, Cr3, 2

; Request coproc #1 to do: operation 1 on CR7 and CR2, putting result into CR1

.

; If the Z flag is set, request coproc #2 to do

; operation 5 (type 2) on CR2 and CR3, placing the result into CR1.

FIGURE 21. COPROCESSOR LOAD/STORE DATA (LDC/STC)

31 28 27 24 23 20 19 16 15 12 11 8 7
1 II I I

Condx 1 1 P U N W L
-r-r

Rn
I I I

CRd
I I I

CP#
I I I I I I I

Offset

Condition

Code

Index Control —
= Post-move

1 = Pre-move

Up/Down
= Subtract

1 = Add Offset

VL86C010 Coprocessor
Base Pointer Src/Dst

Register Register

b 8-Bit Positive

Immediate
Offset

.
Coprocessor
Number

Write Back
= No Write Back

1 = Write e.a. to Rn

Transfer Length

Load/Store Bit

= Store to Memory
1 = Load to Coproc Reg

2-45

VLSI Technology, inc.

VL86C010
The LDC and STC instructions are used
to load or store single bytes or words of

data. They differ from MCR and MRC
instructions in that they move data

between coprocessor registers and a
specified memory address. In contrast,

the other instructions move data

between registers, or move a constant

(contained in the instruction) into a

register.

The memory address used in LDC/STC
transfers is calculated by adding an

offset to or subtracting an offset from a

base pointer register, Rn. Typically, a

load of a labeled memory location

involves the loading via a (signed) offset

from the current PC. Regardless of the

base register used, the result of the

offset calculation may be written back

into the base register if 'auto-indexing'

is required.

Coprocessor Fields - The CP# field

identifies which coprocessor shall

supply or receive the data. A coproces-

sor will respond only if its number
matches the contents of this field.

The CRd field and N bit contain

information which may be interpreted in

different ways by different coproces-

sors. By convention, however, CRd is

the register to be transferred (or the first

register, where more than one is to be
transferred). The N bit is used to

choose one of two transfer length

options. For instance, N-0 could select

the transfer of a single register, and
N=1 could select the transfer of all

registers for context switching.

Offsets and Indexing - The VL86C010
is responsible for providing the address

used by the memory system for the

transfer, and the modes available are

similar to those used for the processor's

LDR/STR instructions.

Only 8-bit offsets are permitted, and the

VL86C01 automatically scales them by

two bits to form a word offset to the

pointer in the Rn register. Of itself, the

offset is an 8-bit unsigned value, but a

9-bit signed negative offset may be
supplied. The assembler will comple-

ment it to an 8-bit (positive) value and
will clear the instruction's U bit, forcing a
compensating subtract. The result is a
±256 word (1024 byte) offset from Rn.

Again, the VL86C010 internally shifts

the offset left two bits before addition to

the Rn register.

The offset modification may be per-

formed either before (pre-indexed, P-1

)

or after (post-indexed, P-0) the base is

used as the transfer address. The
modified base value may be written

back into the base (W-1), or the old

base value may be kept (W=0). In the

case of post-indexed addressing, the

write back bit is redundant, since the old

base value can be retained by setting

the offset to zero. Therefore, post-

indexed data transfers always write

back the modified base.

For an offset of +1 , the value of the Rn
base pointer register (modified, in the

pre-indexed case) is used for the first

word transferred. Should the instruction

be repeated, the second word will go
from/to an address one word (4 bytes)

higher than pointed to by the original

Rn, and so on.

Use of R1S - If R15 is specified as the

base register (Rn), the PC is used
without the PSR flags. When using the

PC as the base register note that it

contains an address eight bytes

advanced from the address of the

current instruction. As with the LDR/
STR case, the assembler performs this

compensation automatically.

Hardware Address Translation - The
W bit may be used in non-user mode
programs (when post-indexed address-

ing is used) to force the -TRANS pin low

for the transfer cycle. This allows the

operating system to generate user

addresses when a suitable memory
management system is present.

Address Exceptions - If the address

used for the first transfer is illegal, the

address exception mechanism will be
invoked. Instructions which transfer

multiple words will only trap if the first

address is illegal; subsequent address

will wrap around inside the 26-bit

address space.

Note that only the address actually used
for the transfer is checked. A base
containing an address outside the legal

range may be used in a pre-indexed

transfer if the offset brings the address

within the legal range. Likewise, a
base within the legal range may be

modified by post-indexing to outside the

legal range without causing an address

exception.

Data Aborts - If the address is legal but

the memory manager generates an

abort, the data abort trap will be taken.

The write back of the modified base will

take place, but all other processor state

data will be preserved. The coproces-

sor is partly responsible for ensuring

restartability. It must either detect the

abort, or ensure that any actions

consequent from this instruction can be
repeated when the instruction is retried

after the resolution of the abort.

Syntax:

<LDC/STC>{cond}{L){T}{N} cp#, CRd, <Address>{!}

where LDC
STC
cond

L

T

cp#

CRd
Address

means Load from memory into a coprocessor register.

means store a coprocessor register to memory,
is a two-character condition mnemonic (see Condition Code section).

If present implies long transfer (N-1), else a short transfer (N=0).

If present, the W bit is set in a post-indexed instruction, causing the

-TRAN pin to go low for the transfer cycle. T is not allowed when a pre-

indexed addressing mode is specified or implied.

N sets the value of bit 22 of instruction.

Valid coprocessor number, determined by hardware.

Valid coprocessor register number: CR0-CR15.
Can be any of the variations in the following table.

2-46

VLSI Technology, inc.

VL86C010

Address Variants:

Address expression: An expression evaluating to a relocatable address:

<expression> The assembler will attempt to generate an instruction using the PC
as a base, and a corrected offset to the location given by the 9-bit

expression. This is a PC-relative pre-indexed address. If out of range

(at assembly or link time), an error message will be given.

Pre-indexed address: Offset is added to base register before using as effective address, and

offsets are placed within the
[] pair. Rn may be viewed as a pointer:

[Rn]{!) No offset is added to base address pointer.

[Rn, <expression>] Signed offset of expression (bytes) is added to base pointer.

[Rn, <expression>]{l} Signed offset of expression (bytes) is added to base pointer. Then

this effective address is written back to Rn.

Post-indexed address: Offset is added to base reg, after using base reg for the effective

address. Offsets are placed after the []
pair:

[Rn],<expression> Expression is added to Rn, after Rn's usage as a pointer.

where expression A signed 9-bit expression (including the sign).

Rn Valid register names: RO-R 15, SP, LK, or PC. If Rn - PC, the

assembler will subtract 8 from the expression to allow for processor

address read ahead.

Examples (Pre-lndex):

In each of these examples, the effective offset is added to the Rn (base pointer) register prior to using the Rn register as the

effective address. Rn is then updated only if the I suffix is supplied. Coprocessor #1 is used in all cases, for simplicity.

STC 1.CR3, [R2] ;*(R2)-CR3.

LDC 1.CR1, [RO, 16] ; CR1 - "(R0 + 16). Don't update RO.

LDCEQ 1 ,CR2, [R5, 12]! ; if (Zflag) CR2 - *(R5 + 12). Then, R5 += 12.

Examples (Post-Index):

In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the

effective address. Rn is then updated unconditionally. Coprocessor #3 is used in all cases, for simplicity.

STC 3, CR1,[R2], 8 ; *R2-CR1. Then R2 +- 8.

LDC 3, CR1 , [RO], 16 ; CR1 - *R0. Then RO += 1 6.

LDCEQL 3, CR2, [R5], 4 ; if (Zflag) CR2 - *R5, and then (implicitly), R5 +- 4.

; Use the long option (probably to store multiple words).

Examples (Expression):

In these examples, the PLACE label is an internal or external PC-relative label, typically created as shown. PC-relative refer-

ences are precompensated for the 8-byte read-ahead done by the processor. It may be located up to ±1 024 bytes from the

associated base register, and must be a multiple of 4 bytes in offset.

STC 3, CR5, PLACE ; PC-relative. Same as: STC 3, CR5, [PC+8].

B Across ; Skip over the data temporary.

PLACE DW ; Temporary storage area.

Across • • •
; Resume execution.

2-47

VLSI Technology, inc.

VL86C010
FIGURE 22. COPROCESSOR REGISTER TRANSFER (MCR.MRC)

31 28 27 24 23 21 19 16 15 12 11 8 7 5 4 3
I I I

Condx
I I I 7 7—

1 1 1 CP Ope L
I I I

CRn
I I I

Rd
I I I

CP#
I I

AUX 1

r i i

CRm

1 Coprocessor

Condition Operation

Code Code

Load/Store Bit

= Store to coproc
1 = Load from coproc

I

VL86C010
Src/Dst

Register

Coprocessor Operand
Registers

I Coprocessor Auxiliary

Information

Coprocessor Number

The instruction is executed only if the

condition code field is true. The field is

described in the Condition Codes
section.

This is actually a class of instructions,

rather than a single instruction, and is

equivalent to the ALU class on the

processor. Instructions in this class are

used to direct the coprocessor to

perform some operation between a
processor register and a coprocessor

register. It differs from the CPD
instruction in that the CPD performs

operations on the coprocessor's internal

registers only.

An example of an MCR usage would be
a FIX of a floating point value held in

the coprocessor, where the number is

converted to a 32-bit integer within the

coprocessor, and the result then

transferred back to an ARM register.

An example of an MRC usage would be

the converse: A FLOAT of a 32-bit

value in a VL86C010 register into a
floating point value within a coprocessor

register.

An intended use of this instruction is to

communicate control information

directly between the coprocessor and
the processor PSR flags. As an
example, the result of a comparison of

two floating point values within the

coprocessor can be moved to the PSR
to control subsequent execution flow.

Coprocessor Fields - The CP# field is

used by all coprocessor instructions to

specify which coprocessor is being

invoked.

The CP Ope, CRn, CP, and CRm fields

are used only by the coprocessor, and
the interpretation of these fields is set

only by convention; other incompatible

interpretations are allowed. The

conventional interpretation is that the

CP Ope and CP fields specify the

operation for the coprocessor to

perform, CRn is the coprocessor

register used as source or destination of

the transferred information, and CRm is

the second coprocessor register which
may be involved in some way depend-
ent upon the operation code.

Transfers To/From R15: When a

coprocessor register transfer to

VL86C010 has R15 as the destination,

bits 31-28 of the transferred word are

copied into the N, Z, C, and V flags,

respectively. The other bits of the

transferred word are ignored; the PC
and other PSR flags are unaffected by

the transfer.

A coprocessor register transfer from

VL86C01 with R1 5 as the source

register will save the PC together with

the PSR flags.

Syntax:

MCR/MRC{cond} CP#,<expression1>, Rd, CRn, CRm{,<expression2>}

where cond Is the conditional execution code, common to all instructions.

CP# Is the (unique) coprocessor number, assigned by hardware.
Rd Is the ARM source or destination register.

CRn, CRm These are valid coprocessor registers: CR0-CR15.
expressionl Evaluates to a constant, and is placed in the CP Ope field.

expression2 (Where present) evaluates to a constant, and is placed in the AUX field.

Examples:

MCR 1,6, R1.CR7, CR2

MRCEQ2.5, R1,cr2, Cr3, 2

Request co-proc #1 to do operation 6 on
CR7 and CR2, putting result into ARM'S R1

.

If the Z flag is set, transfer the ARM'S R1 reg to the co-proc register (defined
by hardware), and request co-proc #2 to do oper 5 (type 2) on CR2 and CR3.

2-48

VLSI Technology, inc.

VL86C010

FIGURE 23. UNDEFINED (RESERVED) INSTRUCTIONS

31 28 27 24 23 8 7

I I I

Condx 1

I I I

I

I I I

I

I I I

I

I I I

xxx x'xxxx'xxxx'xxxx
m

1 X X 1

4 3
r-n

X X X X

31 28 27 24 23
I I I I I

"FT I I I I I I I I I I I

8 7 5 4 3
I I IT

Condx 1 1|X'XXXX'XXXX'XXXX'XXXX'XXX|1|XXXX

Note: The above instructions will be presented for execution only if thei condition field is true.

If the condition is true, the Undefined

Instruction trap will be taken.

Note that the undefined instruction

mechanism involves offering these

instructions to any coprocessors which

may be present, and all coprocessors

must refuse to accept them by taking

CPA high.

Assembler Syntax - At present the

assembler has no mnemonics for

generating these instructions. If they

are adopted in the future for some
specified use, suitable mnemonics will

be added to the assembler. Until such

time, these instructions should not be

used.

INSTRUCTION SET EXAMPLES
The following examples show ways in

which the basic processor instructions

can combine to give efficient code.

None of these methods saves a great

deal of execution time (although they

may save some), mostly they just save

code.

Using Conditional Instructions -

(1) Using conditionals for logical OR, this sequence:

CMP R1,p
BEQ Label

CMP R2, q
BEQ Label

can be replaced by

CMP R1,p
CMPNE Rm, q
BEQ Label

(2) Absolute value

TEQ R1.0
RSBMI R1.R1.0

(3) Multiplication by 4, 5 or 6 (run time)

MOV R2, R0 LSL 2

CMP R1.5
ADDCS R2, R2, R0
ADDHI R2, R2, R0

(4) Combining discrete and range tests

TEQ R2, 127

CMPNE R2, "
"-

MOVLS R2, ","

; If R1=p or R2-q then goto Label

; If condition not satisfied try other test

; Test sign

; and 2's complement if necessary

; Multiply by 4

; Test value

; Complete multiply by 5

; Complete multiply by 6

;lf(R2«127)

; Range test and if (R2<' ')

;Then, R2-"."

2-49

VLSI Technology, inc.

VL86C010

Division and Remainder
; Enter with numbers in RO and R1

MOV
Div1 CMP

CMPCC
MOVCC
BCC
MOV

Div2 CMP
SUBCS
ADDCS
MOVS
MOVNE
BNE

; Division result is in R2.

; Remainder is in RO.

R4, 1

R1 , 0x80000000
R1.R0
R1.R1 LSL1
Div1

R2.0
RO, R1

RO, RO, R1

R2, R2, R4
R2, R4 LSR 1

R1.R1 LSR1
Div2

; Bit to control the division

; Move R1 until greater than RO

; Test for possible subtraction

; Subtract if ok

; Put relevant bit into result

; Shift control bit

; Halve unless finished

FIGURE 24. INSTRUCTION SET SUMMARY

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3
I I I

Condx O I

I I I

Opcode s
I I I

Rn
I I I

Rd
I I I I I I I I I I

Operand 2

'

l I I

Condx
I I

O'O A s
I I I

Rd
I I I

Rn
I I I

Rs
-

\ I I

10 1

I I I

Rm
I 'i" " i

Condx
I I I

1

I

X X X X
I I I

X X X X
I I I

X X X X
I I I

X X X X
I I I

1 X X 1

I I I

X X X X
T T T

Condx 1 I P u B W L
I I I

Rn
T T'T" 1

Rd
I I I

Off!

I I I

et (variants
I I I

)

I'll ""

Condx 1 1 X X X X X X X X X
1 1 1

X X X X
Ill II

X X X X X X X 1 X X X X
I I I

Condx 1 p
I I

U S W L Rn
III III

R15-* Regis!
i i III

T r i

Condx 1 1 L
i I I I I I i i i i I I l I I I I I I I I

Word address offset '

III'
Condx 1 1 P U

|

N |w| L
I I I

Rn
I I I

CRd
I I I

CP#
1 1 1 1 1 1 1

Offset
r "T t
Condx 1 1 1 CPOpc CRn

I I I

CRd
"1

I I

CP#
1 1

CP
I I I

CRm
I I I

Condx 1 1

I

1

I I

CPOpc L CRn
I I I

Rd
I I I

CP#
1 1

CP 1 CRmMP
Condx 1 1

I

1 1

I I I l l

Bitsp
I I I

ace ignorec
I I I

by process
1 1

or
I I I

Data Processing

Multiply

Undefined

Load, Store

Undefined

Multi-Register Transfer

Branch, Call

Coproc Data Transfer

Coproc Data Opr

Coproc Register Transfer

Software Interrupt

2-50

VLSI Technology inc.

VL86C010

Pseudo Random Binary Sequence
Generator - It is often necessary to

generate (pseudo-) random numbers

and the most efficient algorithms are

based on shift register-based genera-

tors with exclusive or feedback rather

like a cyclic redundancy check genera-

tor. Unfortunately, the sequence of a

32-bit generator needs more than one
feedback tap to be maximal length (i.e.

2*32-1 cycles before repetition). The

basic algorithm is Newbit - bit_33 xor

bit_20, shift left the 33-bit number and

put in Newbit at the bottom. Then do

this for all the Newbits heeded i.e. 32 of

them. Luckily, this can all be done in

5S cycles:

Enter with seed in RO (32 bits), R1 (1 bit in R1 Isb)

Uses R2
TST R1.R1 LSR1 ; Top bit into carry

MOVS R2, RO RRX ; 33 bit rotate right

ADC R1.R1.R1 ; Carry into Isb of! R1

EOR R2, R2, R0LSL12 ;
(Involved!)

EOR RO, R2, R2 LSR 20 ;
(Whew!)

; Multiply by 5

; Multiply by 2 and add in next digit

; New seed in RO, R1 as before

Multiplication by Constant:

(1) Multiplication by 2An (1,2,4,8,16,32..)

MOV RO, RO LSL n

(2) Multiplication by 2An+1 (3,5,9,17..)

ADD RO, RO, RO LSL n

(3) Multiplication by 2A n-1 (3,7,15..)

RSB RO, RO, RO LSL n

(4) Multiplication by 6

ADD RO, RO, RO LSL 1 ; Multiply by 3

ADD RO, RO LSL 1 ; and then by 2

(5) Multiply by 10 and add in extra number

ADD RO, RO, RO LSL 2

MOV RO, R2, RO LSL 1

(6) General recursive method for R1 -R0*C,C a constant:

(a) If C even, say C - 2An*D, D odd:

D-1: MOV R1,R0LSLn
Do1: (R1 =R0*D)

MOVR1.R1 LSLn

(b) If C MOD 4 - 1 , say C - 2An*D+1 , D odd, N>1

:

D-1: ADD R1.R0.R0 LSLn
Do1: (R1 = R0*D)

ADD R1.R0. RILSLn

(c) If C MOD 4 - 3, say C - 2An*D-1 , D odd, n>1

:

D-1: RSB R1.R0, ROLSLn
Do1: (R1 =R0*D)

RSB R1.R0, RILSLn

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB
RSB
ADD

rather than by:

ADD
ADD

R1.R0, R0LSL2
R1.R0, R1 LSL 2

R1.R0, R1 LSL 2

R1.R0, R0LSL3
R1.R1.R1 LSL2

Multiply by 3

Multiply by 4*3-1 = 1

1

Multiply by $*1 1+1 - 45

; Multiply by 9

; Multiply by 5*9 = 45

2-51

VLSI Technology, inc.

VL86C010
Loading a Word with Unknown Alignment:

Enter with address in RO (32 bits)

Uses R1.R2; result in R2.

Note R2 must be less than R3, e.g. 2, 3

BIC R1.R0,

3

LDMIA R1,{R2,R3}

AND R1.R0,

3

MOVS R1.R1LSL3
MOVNE R2, R2, LSR R1

RSBNE R1.R1.32
ORRNE R2, R2, R3 LSL R1

; Get word aligned address.

; Get 64 bits containing answer.

; Correction factor in bytes, not in bits.

; Test if aligned.

; Product bottom of result word (if not aligned).

; Get other shift amount.

; Combine two halves to get result.

Sign Extension of Partial Word
MOV RO, R0LSL16
MOV RO, RO, LSR 16

Move to top

... and back to bottom

(Use ASR to get sign extended version).

Return, Setting Condition Codes
BICS PC, R14.CFLAG ; Returns, clearing C flag ROM link register.

ORRCCS PC, R14, CFLAG ; Conditionally returns, setting C flag.

Above code should not be used except in User mode, since it will reset the interrupt enable flags to

their value when R14 was set up. This generally applies to non-user mode programming.
e.g., MOVSPC.R14 MOVPC.R14 issaferl

2-52

VLSI Technology, inc.

VL86C010

MACHINE CODE INSTRUCTIONS
This chapter describes machine code
instructions that are unique to the

VL86C010 processor. Each symbolic

instruction line is translated into exactly

one 32-bit memory word, each aligned

on a machine-word boundary.

Bit 31 N

Bit 30 Z

Bit 29 C

Bit 28 V

Bit 27 I

Bit 26 F

Appendix A.1 Condition Codes
All instructions executed by the

VL86C010 contain a 4-bit field that per-

mits them to be executed only if certain

conditions are true. If the specified con-

ditions are not true, the instruction is

skipped over. Even an illegally-

formatted instruction will be properly

skipped over if its condition code field is

properly set.

Program Status Register (PSR) - In-

structions that use the processor's arith-

metic/logic unit set one or more of four

status bits. (These are not the same as

the 4-bit condition code field of an in-

struction.) The "program status

register" is not really a register of itself,

but is a series of bits within the R15
(PC) register. The bits are set to indi-

cate Carry, Zero, overflow, or Negative,

as follows:

is set if bit 31 is set in the result, indicating:a negative result.

is set if the result of the operation is zero, all bits reset. Certain instructions (as CMP and TST) do not

actually store the result to a destination register, but do alter the status.

is set if there was a carry out of bit 31 . Logic-only instructions do not use (and cannot generate) this carry.

Usually, these set C to zero, or do not alter it.

is set if the signs of both operands were identical, but the sign of the result differs from them. It indicates

that the 32-bit result register was too short to hold the result.

set to 1 to disable the IRQ interrupts.

set to 1 to disable the FIRQ interrupts.

Other status bits exist in the PSR, indi-

cating the current interrupt-enable state

(bits 27 and 26) and the current

processor execution state (bits 1 and 0.

The latter may include user, interrupt

service, or supervisor modes. These
modes are encoded into bits and 1 of

the PC, and are discussed page 2-26.

Instruction Condition Code Field -

The instruction condition code field bits

specify how certain combinations of

PSR bits are to be interpreted. Rather

than require the programmer to specify

the needed combination of status bits,

the most useful combinations are

encoded into the condition code field.

This allows most-often used tests to be

performed in one instruction rather than

two.

Bits 31 to 28 are encoded according to

the table below. Each encoding is rep-

resented by a 2-letter suffix that is ap-

pended to the base instruction mne-
monic. If no such suffix is given, the

always encoding is assumed.

Field Code

0000 EQ

0001 NE

0010 CS

0011 CC

0100 Ml

0101 PL

0110 VS

0111 VC

1000 HI

1001 LS

1010 GE

1011 LT

1100 GT

1101 LE

1110 AL

1111 NV

Purpose

Z set (operands are equal)

Z clear (operands are unequal)

C set (1st operand higher or same as 2nd, unsigned compare)

C clear (1st operand lower than 2nd, unsigned compare)

N set (result is negative)

N clear (result is positive or zero)

V set (overflow occurred)

V clear (no overflow occurred)

C set and Z clear (1st operand higher than 2nd, unsigned compare)

C clear or Z set (1 st operand lower or same as 2nd, unsigned compare)

N set and V set, or N clear and V set (1st operand greater or equal to 2nd, signed)

N set and V clear, or N clear and V set (1st operand less than 2nd, signed)

Z clear, and either N set and V set, or N clear and V set (1st operand greater than 2nd, signed)

Z set, or N set and V clear, or N clear and V set (1st operand less than or equal to 2nd one, signed).

Always (unconditional execute the instruction)

Never (never execute the instruction)

2-53

VLSI Technology, inc.

VL86C010

Appendix A.2 Miscellaneous

Machine-specific information not in-

cluded elsewhere in this manual is

noted in this section.

Word Alignment - All machine-code

instructions for the VL86C01 are word-

aligned. That is, they must be encoded

into memory beginning on a 4-byte

boundary. CASM permits most

directives to align data which they might

create on arbitrary (byte) boundaries.

When a machine instruction (opcode

mnemonic) is found, CASM forces it to

begin on the next higher word bound-

ary. The CLINK linker is also directed

to keep it on such a boundary.

Default Condition Code - If no condi-

tional-execution suffix code is ap-

pended to an opcode mnemonic, the AL
(Always) case is assumed. Illegal

(reserved) instruction patterns may be

safely encountered by the program

counter if their condition code is set to

NV (Never); they will never reach the

instruction decoder.

Large Immediate Operands - Certain

classes of instructions permit the use of

immediate constants, that is, constants

that are to be loaded and that are speci-

fied as a part of the 32-bit machine in-

struction. For some, an 8-bit constant

field is provided, but they permit se-

lected values that are greater than 255.

In these cases, any constant may be

used that contains a pattern of 1s that

span more than 8 contiguous bits.

Regardless where the bits may lie in the

32-bit word to be loaded, they may be

shifted or rotated by CASM to store

them in the 8-bit constant field of the

instruction. CASM then computes the

type and number of shifts required to

recreate the desired constant. The

condition where some bits are located

at each end is permitted, as the value

can be rotated to place all 1 -bits in the

least significant part of the instruction.

This type of constant is noted in the in-

structions that permit them.

Appendix A.3 Reserved (Undefined)

Instructions

Several instructions are undefined.

They are not currently implemented in

the hardware and are reserved for

future versions of the processor. The
two instructions are:

Bits 27-24 == 0001 , and bits 7

and 4 are 1 . All other bits are

don't-care conditions.

Bits 27-25 =- 01 1, and bit 4 is 1.

All other bits are don't-care

conditions.

In both cases, the condition field is

validly decoded; if bits 31-28 are set to

1 1 1 1 , the instruction will be ignored by

the instruction fetch logic.

Appendix A.4 Shifts

For arithmetic-logic instructions where

shifts of an operand are permitted, the

shift forms in this section are permitted.

The source of the shift count may be a

5-bit constant, or may be given in a

register, as specified for the individual

instruction types.

2-54

VLSI Technology inc.

ADC
Appendix A.5 ADC - Arithmetic Add
with Carry

ADC adds two 32-bit 2's complement
operands, placing the result into a
register. A value of +1 is added to the

sum if the carry bit was set prior to the

instruction; nothing is added to the sum
if the carry was previously clear.

The normal use for Add-with-Carry is to

compute sums of numbers that are

VL86C010

greater than 32 bits in length. The
multi-precision add sequence is to ADD
the lowest words together (without carry

compensation), possibly generating a
carry in the process. Theinext most
significant word pair is then added to-

gether with ADC, with thei carry from the

first pair added to the sum. If even
more precision is used than two words
per operand, they are successively

ADC'd together until the most signifi-

cant word pair has bean added. (The
same process is used'for multi-

precision subtracts, but using SUB and
SBC.)

An 8-bit constant maybe supplied as
the second operand. The constant may
consist of any 8-bit pattern in a 32-bit

field, so long as it may be rotated to

produce an 8-bit constant.

Intended Usage: Add the upper portions of a multi-wordi operand pair together.

Operational Function: Rd - Rn + Op2 + Carry

Flags Effected: N, Z, C, V

Syntax:

where condition

S

Rd,Rn

Op2

ADC{condition}{S) Rd, Rn, Op2

is an optional 2-character condition code. See the Condition Code section.

(if present) sets condition codes based on the result.

are any valid register names, such as R0-R15, PC, SP, or LK.

is second operand, and may have anyiof the following forms:

Rtn shift Rs

Rm shift expression!

Rm RRX
expression2

is any valid register names, as per fldor Rn above, the operand value.

is a register, per Rd above, containing a shift count in range of 1..32.

is any of: ASL, LSL, LSR, ASR, or ROR
expressionl is any positive absolute shift count in the range of 1 ..31

.

expression2 is any signed expression shiftable into an 8-bit value.

Rm
Rs

shift

Examples:

Variations:

Add two 64-bit operands. RO, R1 contain one operand and is to contain the result. R2, R3 contains the other
operand.

ADD R
I , R3 ; Add LSBs together.

ADC RO, R2
;
Add RO = RO - R2 * Carry (if any).

If a negative constant isspecified as the 2nd operand, the 1 's complement of it is used, and a SBC is substituted
for the ADC. This effectively extends the range to 9 bits (including sign), and provides for siqn extension to
a full 32 bits.

2-55

VLSI Technology, inc.

ADD VL86C010

Appendix A.6 ADD - Arithmetic Add
Perform a 32-bit addition of two 2's

complement signed numbers. The

state of the Carry bit before the addition

is ignored, and the result is placed into

a designated register. A carry-out from

bit 31 will set the Carry flag. If the sum
of two numbers of like signs should

result in a change of sign in the result,

the Overflow (V) bit is set; a carry may
or may not occur simultaneously.

An 8-bit constant may be supplied as

the second operand. The constant may

consist of any 8-bit pattern in a 32-bit

field, so long as it may be rotated with

2-bit shifts to produce an 8-bit constant.

Intended Usage: Add two operands together, or add together the lower words of a multi-word operand pair.

Operational Function: Rd - Rn + Op2

Flags Effected: N, Z, C, V

Syntax: ADD{cond/f/on}{S} Rd, Rn, Op2

where condition is an optional 2-character condition code. See the Condition Code section.

S (if present) sets condition codes based on the result.

Rd, Rn are any valid register names, such as R0-R1 5, PC, SP, or LK.

Op2 is second operand, and may have any of the following forms:

Rm shift Rs

Rm shift exprassionl

Rm RRX

expression2

Rm is any valid register names, as per Rdor Rn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR

axpressionl is any positive absolute shift count in the range of 1 ..31

.

expression2 is any signed expression shiftable into an 8-bit value.

Examples:

ADD

ADD

R0,R0,R2ASR2

R5,R4,0x6000

RO = RO (R2/4)

R5 = R4 * 32766

Variations: If a negative constant is specified as the 2nd operand, the 2's complement of it is used, and a SUB is substituted

for the ADD. This effectively extends the range to 9 bits (including sign), and provides for sign extension to

a full 32 bits.

2-56

VLSI Technology inc.

D
Appendix A.7 AND - Logical AND
The logical AND operation is performed

on two operand words, and the 32-bit

result is written to the destination

register. For each bit position in the two

operands, a test is made to determine

that they are both set (1). If so, the

same bit position in the destination

VL86C010

register is turned on. It is otherwise

turned off. The same operation is

performed for each of the^-bit posi-

tions.

An 8-bit constant may be supplied as

the second operand. The constant may
consist of any 8-bit pattern in a 32-bit

field, so long as it may be rotated with

2-bit shifts to produce an 8-bit constant.

As with all logical operations, no carries

are involved between bits in the same
register, whether the source or the des-

tination. However, the Carry status flag

is set if bit 31 is set in both of the

source operand registers.

Intended Usage: Mask selected portions of an operand value to preserve only those bits specified by the second

operand. Also, perform the logical AND operation on two words. (To clear only those bits specified by

the second operand, use the BIC instruction.)

Operational Function: Rd - Rn AND Op2

Flags Effected: N, Z, C

Syntax: AND{concf/fK>n}{S} Rd, Rn, Op2

where

S

Rd, Rn

Op2

condition is an optional 2-character condition code. See the Condition Code section.

(if present) sets condition codes based on the result.

are any valid register names, such as R0-R15,:PC, SP, or LK.

is second operand, and may have any of the following forms:

Rm shift Rs

Rm shift expression 1

Rm RRX

expression2

is any valid register names, as per Rdat Rn above, the operand value,

is a register, per Rd above, containing a shift count in range of 1..32.

is any of: ASL, LSL, LSR, ASR, or ROR

expressionl is any positive absolute shift count in the range of 1 ..31

.

expression2 is any signed expression shiftable into an 8-bit value.

Rm
Rs

shift

Examples:

Variations:

AND R9, R9, OxFFFFFFOO

AND R2, R1LSL2

;SameasBICR9,R9,0xFF.

;
Mask via another register.

If a negative constant is specified as the 2nd operand, the 1 's complement of it is used, and a BIC is substituted

for the AND. This effectively extends the range to 9 bits (including sign), and provides for sign extension to

a full 32 bits.

2-57

VLSI Technology, inc.

Bcc
Appendix A.8 B - Branch
Force the program to branch to a new
(word-aligned) address. The Program
Counter (PC) is kept in the R15
register. The B instruction forces the

value in R15 to be the sum of its current

value and the instruction's operand
field. That addition makes this a PC-
relative branch, not an absolute branch.

The 24-bit operand field permits a
branch to any word address within the

processor's address space.

The idea of a "relative" branch is that

the processor can jump to any desired

offset from its current position, the

implication being that code containing

the instruction may be moved around
at will. This way, there is no need to

compensate the operand field of the

instruction for the address change if

the code is moved around.

Most code using the branch instruction

contains other material that may
prevent it from being truly position

independent, however. For example,
an LDC instruction also uses a

position-relative addressing scheme,
but it may load a constant from

memory to be used as an instruction

or data pointer. That constant will be

VL86C010

the original address of the target

instruction or data, and will remain

uncompensated for any repositioning of

the program. The moral is that position-

independent code can be created, with

care.

Note that at all times, the program
counter (R15) will be 8 bytes ahead, a
result of prefetching to fill the

processor's 2-word instruction pipeline.

CASM automatically compensates for

this when computing the offset to the

target label. CLINK will do that com-
pensation if the target is in another

location counter or is an external label.

Intended Usage: Continue execution from a new address given by a label or an expression.

Operational Function: Jump to PC-relative address.

Flags Effected: (none)

Syntax: B addross_expression

where address_expression may be an expression Involving relocatable or external labels, or may be a fully defined
(absolute) numeric value. If absolute, the processor will jump to that specific numeric
address.

Examples:

BEQ Contin_5
; Relative branch to C0NTIN_5 label.

B Ox 3800000
; Jump into ROM space.

Variations: A branch to a fixed address in memory is possible, e.g., a jump to 0x1 000 or some other fixed address, regard-
less of any ORG statements used with the CLINK linker. This may be done in either of two ways:

1

.

Simply ensure that the target expression is an absolute address, without any relocatable labels in

it.

2. Compute and load the target address into any register. Then MOV the result from that register into
the PC (R15).

CASM recognizes the condition in method #1, and instructs the linker to process the address accordingly.

2-58

VLSI Technology, inc.

BIC VL86C010

Appendix A.9 BIC - Bit Clear

Clear those bits in one operand indi-

cated by the bits in the same position in

the other operand. The result is placed

into the specified destination register.

An 8-bit constant may be supplied as

the second operand. The constant may
consist of any 8-bit pattern in a 32-bit

field, so long as it may be rotated to

produce an 8-bit constant.

As with all logical operations, no carries

are involved between bits in the same
register, whether the source or the des-

tination. However, the Carry status flag

is set if bit 31 is set in both of the

source operand registers.

Note: BIC and ORR cannot be used (even in supervisor mode) to set or clear PSR bits. Use TEQP for that purpose.

Intended Usage: Mask out selected bits from the source register (Rn).

E

Operational Function: Rd = Rn AND 1's-complement-of (Op2)

Flags Effected: N, Z, C

Syntax: BIC{cono7f/on}{S} Rd, Rn, Op2

where condition is an optional 2-character condition code. See the Condition Code section.

S (if present) sets condition codes based on the result.

Rd, Rn are any valid register names, such as R0-R15, PC, SP, or LK.

Op2 is second operand, and may have any of the following forms:

Rm shift Rs

Rm shift expression 1

Rm RRX
expression2

Rm is any valid register names, as per Rd or Rn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR
expressionl is any positive absolute shift count in the range of 1 ..31

.

expression2 is any signed expression shiftable into an 8-bit value.

Examples:

BIC

BIC

Rl.Rl, 5

RO, RO, I

; Same as AND R I ,R 1 ,0xFFFFFFF2

;
Clear LSB of RO.

Variations: If a negative constant is specified as the 2nd operand, the 1 's complement of it is used, and aAND is substituted

for the BIC. This effectively extends the range to:9 bits (including sign), and provides for sign extension to a

full 32 bits.

2-59

VLSI Technology, inc.

VL86C010

Appendix A.10 BL - Branch with Link operand area of the instruction to the

Save the address of the next instruc-

tion, and then branch to the address

indicated in the instruction. The target

address is computed by adding the

relative (word) offset given in the

current value in the program counter

(RlS.or'PC).

Branch-with-Link (BL) differs from the

simple Branch (B) instruction in that it

preserves the address of the next in-

struction in sequence in R14. This

permits the routine at the target address

to return to that next instruction when it

completes its activity.

Intended Usage: Jump to a subroutine, saving address of next instruction for the return. To

return from the subroutine, the following are two simple ways to get back:

1. MCVS PC, Rl4 ; Restore original status.

2. MOV PC.R14
; Leave current status unchanged.

Many other variations to force a return are possible and are permitted.

Operational Function: Save PC in R14, and jump to PC-relative address.

Flags Effected: (none)

Syntax: BL address_expression

where address_expression may be an expression involving relocatable or external labels,

or may be a fully defined (absolute) numeric value. If absolute,

the processor will jump to that specific numeric address.

Examples:

Variations:

BLGT READ
; Call the READ routine.

ACONS R0M=Ox 3800000

BL ROMHCL.WRITE ; Call subroutine in ROM space.

A subroutine call to a fixed address in memory is possible, e.g., a jump to 0x1 000

or some other fixed address, regardless of any ORG statements used with the

CLINK linker. This may be done in either of two ways:

1

.

Simply ensure that the target expression is an absolute address, without

any relocatable labels in it.

2. Compute and load the target address into any register. Then MOV the result

from that register into the PC (R15).

CASM recognizes the condition in method #1 , and instructs the linker to process the

address accordingly.

2-60

VLSI Technology inc.

CDO VL86C010

Appendix A.11 CDO - Coprocessor
Data Operations

Initiate some data processing action in

an attached coprocessor. Actual

function of the instruction is implemen-

tation dependent. No information (other

than for register number and control

information) is passed between the

CPU and coprocessor. The instruction

forces the following items to appear at

the coprocessor interface:

' Three coprocessor register-number fields.

• A coprocessor number, specifying which of several coprocessors to activate.

• A 4-bit coprocessor opcode field, indicating the action to be performed.

• An additional unallocated 3-bit field to supply additional information to the coprocessor.

In actual fact, only coprocessor number
and the CPU instruction's opcode bits

are required by the hardware; all other

fields are assigned within CASM by

convention only. The assembler will

accept information and assign values to

the various fields as defined below.

As with all coprocessor instructions,

depending upon hardware design, they

may hang the CPU up if they are exe-

cuted without there being a hardware

coprocessor that can respond to it.

Intended Usage: Force execution of an internal coprocessor opcode operation.

Operational Function: If the condition field evaluates true, Instruct the coprocessor to perform

the instruction assigned to the indicated coprocessor opcode.

Flags Effected: (none)

Syntax: CDO{conof/r/or?} cp#, coproc_opc, CRd, CRn, CRm {, expression}

where condition is any of the condition codes shown in the Condition Codes section.

cp# is an expression giving the coprocessor number, ranging 0..15.

coprocjopc is the coprocessor opcode, an expression in the range of 0..15.

Rn is a valid CPU destination register, R0.iR15, SP, LK, or PC.

CRn, CRm, CRM are any valid coprocessor registers, CR0..CR15.

expression is an optional expression in the range of 0..7, of auxiliary information.

Examples:

CDONE I, 6, CR9, CR1.CR0, 7

CDO 0, 13, CR12, CR3.CR3

2-61

VLSI Technology, inc.

CMN VL86C010

Appendix A.1 2 CMN - Set Negative

Compare
The CMN instruction is to compare an

operand against a 2's complement

negative value. It is the negative-

number counterpart of the CMP
instruction. See the Variations section

below for the method of processing

negative constants. (When comparing

against a constant, it is suggested for

maintainability and ease of understand-

ing that CMP be used for all compares,

letting CASM choose between CMP or

CMN based upon the sign of the

constant.) Of course, the second

operand need not be a constant and

may be a register.

This is a "logical" instruction, so no

inter-bit carry is permitted iri the

hardware, and an overflow condition is

not possible. The V status bit is,

therefore, not altered by the instruction.

Because the only purpose for this in-

struction is to perform a test, setting

the condition codes on the result, the

'S' suffix (save status) is redundant,

and is automatically implied by CASM.

An 8-bit constant may be supplied as

the second operand. The constant

may consist of any 8-bit pattern in a

32-bit field, so long as it may be

rotated to produce an 8-bit constant.

Intended Usage: Comparison against a negative constant.

Operational Function: Rn + Op? (result not stored)

Flags Effected: N, Z, C, V

Syntax: CMN(condition}{P} Rn, Op2

where condition is an optional 2-character condition code. See the Condition Code section.

P (if present) sets PSR bits based upon bits 28-31 of the ALU result.

Rn is any valid register names, such as R0-R15, PC, SP, or LK.

Op2 is second operand, and may have any of the following forms:

Rm
Rm shift Rs

Rm shift expressionl

Rm RRX

expression2

Rm is any valid register names, as per Rd or Rn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR

expressionl is any positive absolute shift count in the range of 1 ..31

.

expression2 is any signed expression shiftable into an 8-bit value.

Examples:

CMN RO, -23

CMN R I 0, R2

; Same as CMP RO, 22

;
EqulvtoCMPRIO, (NOT R2)

Variations: If a negative constant is specified as the 2nd operand, the 2's complement of it is

used, and a CMP is substituted for the CMN. This effectively extends the range to

9 bits (including sign), and provides for sign extension to a full 32 bits.

An S suffix is optional, and is always implied.

When a P suffix is used, the those bits of the 32-bit ALU result which map over the

PSR bits in R15 are loaded directly into the PSR. This bypasses the usual status

store to the PSR.

2-62

VLSI Technology, inc.

CMP VL86C010

Appendix A.13 CMP - Arithmetic

Comparison
Compare a register against the value in

another register or a constant. No reg-

ister is set with the result, but the flag

bits in the PSR are updated accord-

ingly. Constant values may be positive

or negative, but consult the below Vari-

ations subsection for processing of

negative values.

Because the only purpose for this in-

struction is to perform a test, setting the

condition codes on the result, the 'S'

suffix (save status) is redundant, and is

automatically assumed by CASM.

An 8-bit constant may be supplied as

the second operand. The constant may
consist of any 8-bit pattern in a 32-bit

field, so long as it may be rotated to

produce an 8-bit constant.

Intended Usage: Compare two operands for their relative size to each other.

Operational Function: Rn - Op2 (result is not saved)

Flags Effected: N, Z, C, V

Syntax: CMP {condition){P} Rn, Op2

where condition is an optional 2-character condition code. See the Condition Code section.

P (if present) sets PSR bits based upon bits 28-31 of the ALU result.

Rn is any valid register names, such as R0-R1 5, PC, SP, or LK.

Op2 is second operand, and may have any of the following forms:

Rm shift Rs

Rm shift exprossionf

Rm RRX
expression2

Rm is any valid register names, as per Rdot Rn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR

Bxprossionl is any positive absolute shift count in the range of 1 ..31

.

exprossion2 is any signed expression shiftable into an 8-bit value.

Example: A routine to do character range checks and ASCII-hex conversion is given here. R1 holds

hex string (upper case), and result goes into RO. Stop at first non-hex character found.

Hex MCV

Hex 10 LDRB

cmp

movcc

cmp

sub Is

bis

cmp

movcc

cmp

movgt

sub

Hex 20 add

b

R0,0

R2,[R1],I

r2,
"0"

PC,LK

R2, "9"

r2,r2,'0'

Hex 20

r2,"A"

PCLK

r2,"F"

PCLK
r2,r2,'A'-10

r0,r2,r0LSL4

Hex 10

Clear result.

Get ASCI I character.

Check 0-9.

Return to caller.

;
Convert decimal to binary.

;
Check A-F.

; Return to caller.

Variations:

Return to caller.

Convert hex to binary.

Merge in digit.

Do next digit.

If a negative constant is specified as the 2nd operand, the 2's complement of it is used, and a CMN is

substituted for the CMP. This effectively extends the range to 9 bits (including sign), and provides for

sign extension to a full 32 bits. An S suffix is optional, and is always implied. If a P suffix is used, the

PSRbits are loaded directly from their equivalent positions in the 32-bit ALU result.

2-63

VLSI Technology inc.

EOR VL86C010

Appendix A.14 EOR - Logical Exclu-

sive OR
The logical Exclusive OR operation is

performed on two operand words, and
the 32-bit result is written to the desti-

nation register. For each bit position in

the two operands, a test is made to de-

termine that they differ from each other,

i.e., only one bit in each pair may be

set, and one must be set. If so, the

same bit position in the destination

register is turned on; it is otherwise

cleared. The operation is performed for

each of the 32-bit positions.

An 8-bit constant may be supplied as
the second operand. The constant may
consist of any 8-bit pattern in a 32-bit

field, so long as it may be rotated to

produce an 8-bit constant.

As with all logical operations, no carries

are involved between bits in the same
register, whether it is the source or the

destination. The Exclusive OR opera-

tion may be viewed as an add operation

without inter-bit carries.

Intended Usage: Compute the Exclusive-Or logical function of two operands, saving the

results into a destination register.

Operational Function: Rd - (Rn AND NOT Op2) OR (Op2 AND NOT Rn)

Flags Effected: N, Z, C

Syntax: EOR{condition){S) Rd, Rn, Op2

where condition is an optional 2-character condition code. See the Condition Code section.

S (if present) sets condition codes based on the result.

Rd, Rn are any valid register names, such as R0-R15, PC, SP, or LK.

Op2 is second operand, and may have any of the following forms:

Rm shift Rs

Rm shift expressionl

Rm RRX
expressions

Rm is any valid register names, as per fldor Rn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR
expressionl is any positive absolute shift count in the range of 1 ..31

.

expression2 is any signed expression shiftable into an 8-bit value.

Examples:

EOR R5, R5.32

EOR R I 0, R 1 0, r l 3

;
Complement bit 5.

2-64

VLSI Technology inc.

LDC VL86C010

Appendix A.15 LDC - Load Coproces-
sor from Memory
LDC loads a coprocessor register from

memory. Both a coprocessor and the

desired register within it must be speci-

fied. This instruction is the coprocessor

equivalent to the LDR instruction. As
with the LDR, pre- and post-indexing of

the Rn CPU register is provided for, and
the target address may be a register-

relative address.

Intended Usage: Load a coprocessor register from the indicated memory location.

Operational Function: Load the specified CRn register in the indicated coprocessor from

memory. Indexing of a CPU register gives the effective memory address.

Flags Effected: (none)

Syntax:

where

N

LDC{cond/ffo/7}{/.}{7} cp#, CRd, address^

condition is one of the optional condition test codes described in Condition Codes.

Implies a hardware-dependent function specified by the N bit. By con-

vention, W=1 implies long transfer. If N is missing, a short transfer is

indicated.

Set the IVbit, indicating that address translation is to take place. The

TRAN pin is pulled low for the transfer cycle,

is a coprocessor number in the range of 0..15.

is a coprocessor register number, CR0..CR15.

forces the effective address to be written back to Rn, if Rn is present.

can be any of the variations given below:

expression

[Rn] (Tsuffix is not allowed)

[Rn, expression] (Tsuffix is not allowed)

[[Rn], expression

is an expression in the range of -1023 to +1023 (bytes) relative to the

current program counter. It is scaled right 2 bits by CASM, and the

complement of the sign is placed in the U-bit. The 8-bit absolute value

if the expression is used in the instruction.

is any valid (CPU) processor register, R0..R15. If R15 is used, the status

bits are stripped before usage.

cp#

CRd

!

address

expression

Rn

Examples:

LDC I ,CR2,[LK,-4]

LDCEQ 2,CR0,[R5],4

LDC 2,cr0,800

;
SetCR2 from word after last call.

2-65

VLSI Technology, inc.

LDM VL86C010

Appendix A.16 LDM - Load Multiple

Registers

From one to 16 registers may be loaded

from memory by a single LDM instruc-

tion. Any specific register may be

included in the register set list; registers

in the set need not be contiguous.

Sixteen bits in the instruction's operand

field indicate which registers are to be

loaded. Up to 1 6 registers may be

loaded in one instruction.

Variations in the mnemonic indicate

whether the registers are to be loaded

in ascending or descending addresses,

and whether the base pointer (stack)

register is to be incremented/decre-

mented before or after each register

gets loaded. The lowest numbered

register is always obtained from the

lowest address in memory.

As with all instructions, the LDM is only

executed if the status specified by the

optional conditional code is met.

Intended Usage: Restore multiple registers at one time from a stack.

Operational Function: Perform repeated "pops" via a register designated as a stack base

register to the registers supplied in a list. While the value in the stack base register is

effectively updated during the transfer, the final value is not written back unless

so indicated by the '!' suffix on the register list.

Flags Effected: None, unless the S-bit in the instruction has been set via the '*' caret marker.

Syntax: LDM{condition}mode Rn{!),{reg_list}{A}

where condition is an optional condition, as given in the Condition Codes section,

is a required mode indicator, taken from the following table,

is any valid register in the range of R0..R15.

indicates that the updated base address is to be saved back into

the Rn register.

User mode: A
is ignored.

Non-User mode: If R15 is in list, PSR is loaded, and any other registers in the list reference

the register bank of the cu/renf mode. Else, any registers in the list reference

the user mode register bank,

(braces are required) is a list of registers to be loaded. They may be

any of the valid registers R0..R15 separated by commas. A range of

registers may also be included by separating them by a dash.

The above mode field must be selected from one of the following codes:

mode

Rn

I

{regjist}

Modes:

Codes Meaning Usage Function

IB Increment Before Pop upwards Pre-increment load

IA Increment After Pop upwards Post-increment load

DB Decrement Before Pop downwards Pre-decrement load

DA Decrement After Pop downwards Post-decrement load

Other alternative forms for the above codes are supported, for completeness.

They are not documented here, and their use is discouraged.

Examples: STMDA

LDMIB

LDMIB

SPI,{R0-R5,LK)

SP!,CrO-r5,PCr

R2,{R3-LK)

Save regs & status.

Restore status and return.

Restore a bunch.

Variations: R15 may be used in the transfer list. If loaded using an LDM, the PC's value will be

reduced 1 2 bytes (3 words) from the value stored in memory, to compensate for the value

stored by an STM. If the A marker is used, the PSR will be reset to the PSR value which was

stored by the STM.

2-66

VLSI Technology, inc

LDR
Appendix A.17 LDR - Load Register

from Memory
Load a register with the 8-bit or 32-bit

value obtained from the designated

memory address. The operand
address may be specified as relative to

any register (including the PC), and
either a word or a byte value may be
loaded. If a word value is loaded, it

must be word aligned, not straddling a
word boundary. The ability to specify a
base register and an increment or

decrement amount is of significant

value when accessing arrays of data, or

when working with data pointers.

The base register may be offset by a
13-bit (including sign) constant either

before or after the transfer. The
constant is stored in the instruction in its

positive form, and the complement of

the original sign is stored in the U-bit

field.

Alternatively, the base register may be
modified (before or after the transfer) by
the value contained in a second
register. This modification register's

VI86C010

value may optionally be first shifted or

rotated rotated from 1 to 31 bits.

LDR differs from MOV OR LEA in that

the latter loads values from another
register. When operating in supervisor

mode, the T suffix may be appended
(with post-incrementing only) to force

the normally untranslated memory
address space to be translated. This

uses the logical-to-physical address
translation tables inside the MEMC
memory controller, via the TRAN pin of

the processor.

Intended Usage: Load an 8-bit or 32-bit quantity from memory into a register. The memory address

may be PC-relative or register relative. (An ordinary program label would be

PC-relative). A MOV should be used to load a constant value to the register.

Operational Function: Load register Rd from the effective address.

Flags Effected: (none)

Syntax: LDR{condition}{B}{T} Rd, address {I}

where condition is a code given in the section on Condition Codes.

B is given to force the loading of an 8-bit byte, rather than a 32-bit word.

T is given (in post-increment mode only) to force an address translation.

Rd is any valid CPU register, R0..R1 5.

/ forces the Rn register to be updated by the value of the offset afterwards.

address is any of the following variations:

Variation

[Rn]

[Rn, expression]

[Rn, Rm]

[Rn, Rm shift count]

[Rn], expression

[Rn], Rm
[Rn], Rm shift count]

Effective Address Mode

Rn N/A

Rn + expression Pre-indexed.*

Rn + Rm Pre-indexed.*

Rn + (Rm shifted by count). Pre-indexed.*

Rn Post-increment.

Rn Post-increment.

Rn Post-increment.

Rn is any valid CPU register, R0..R15, and holds the transfer base address.

Rm is any valid CPU register, R0..R15, and holds a (signed) address increment.

expression is an expression in the range of -4095 to +4095.

shift is any shift type indicator: LSL, LSR, ASR, ROR, or RRX
count is any constant in the range of 1 ..31 , and is the shift count.

*lf I follows the '
]

', then Rn is also incremented, i.e. post increment mode.

2-67

VLSI Technology, inc.

LDR VL86C010

Appendix A.17 LDR (Cont.)

Remarks: The "address modifier" is the amount to add to the base transfer address (in Rn). It is

added to Rn before the transfer if pre-indexed, or after the transfer if post-indexed. Pre- or

post-indexing is determined by where the modifier is found. If it is given inside the []
brackets,

it is a pre-indexed case, and the modifier becomes included in the effective address. If given

outside oi the [] brackets, it is a post-indexed case; the modifier comes into play only after

the transfer has taken place.

Examples:

LDR RI,[Rl5]

LDREQ R3,[SP*0X10]!

LDR R5, [R3, R2 SHL 2]

LDR LK, [LK]

;SP = SP+16.

Variations: R1 5 usage has a number of special cases associated with it:

1

.

PSR is never modified, even when Rd or Rn is the PC.

2. If Rn is R1 5, the PC is used without any of the PSR flags. Note: it will

be advanced by 8 bytes from the current instruction.

3. If PC is used as the offset (Rm) register, the value used includes the flags, and thus will be

an invalid address unless they are all zero.

2-68

VLSI Technology inc.

LEA VL86C010

Appendix A.18 LEA - Load Effective

Address

This pseudo-instruction may be used to

load any register with a large constant

or an address that is outside of the

range of an 8-bit offset (or is unknown).

Note that the effective address, not the

value stored at that address, is loaded

to the designated register.

Intended Usage: Load the effective address of distant locations (or large constants) to a register.

Operational Function: Generate a variant machine instruction to load the desired constant.

If necessary, create a forward-reference entry in a literal constant table that is

within reach of this instruction. Created instruction may be any of ADD, SUB,

MOV, MVN, or LDR.

Flags Effected: None, if address is a forward reference, is in a different location counter, is

external, or is outside of 256-byte range. Otherwise, N, Z, C, V.

Syntax: LEA fid, expression

where Rd is the (destination) register to be loaded with a value or address, R0..R1 5.

expression is an expression of any size, absolute, relocatable, or external, that is

legal within the assembler.

Example:

LEA R10,Table*20

LEA Rl.Savearea

LEA RO, 0X12345678

LEA R9, ForwarcLRef

; Reverse reference expression.

; Reverse reference.

; A large constant.

: Forward reference.

Remarks: If the effective address (or value) is within a 256-byte range of the program counter or is relative to some register, a
simple MOV, MVN, ADD, or SUB instruction is generated to perform the load of the effective address. If this is not possible, the

effective address is computed and Is stored as a 32-bit memory word In a "long reach" table. An LDR is generated to load the

value to the designated register.

Constants which will be inserted into the long-reach table are accumulated by the assembler, leaving the corresponding LEA
unresolved. When the program has been processed to a point where the distance from the farthest unresolved LEA reaches

4096 bytes, a long-reach table is inserted into the assembler source. (Actually, the offset may not reach precisely 4096 bytes, as
the size of the table itself is accounted for in the distance.)

The current release of CASM generates a new table entry whenever a forward reference is involved. That is, the entry is made if

the target label (or expression) has not yet been defined.

There is one table accumulated for each location counter. If any have not been inserted into the program source by the end of

the source file, they are inserted at that time. Whenever a table is inserted into the program source by the assembler, due to the

distance from the farthest unresolved LEA, a branch instruction is prefixed to it, so that the processor will avoid the table during

execution.

In addition, the programmer may specify where a long-reach table Is to be insertped, by using the REACH pseudo-instruction.

The directive itself is effectively replaced by the generated table. In this case, since the programmer has specified where the

table is to be placed, CASM will not first create the bypassing branch instruction. The long-reach table for the currently active LC
is inserted. Other tables may be inserted (if they are known to exist) by using NEWLC to switch to a new location counter, and
following it with a REACH directive.

Whenever a long-reach table is inserted, a new one is started for the subsequent source code. There may be multiple tables for

a single location counter if the program is long enough to warrant them.

2-69

VLSI Technology, inc.

MCR VL86C010

Appendix A.1 9 MCR - Move Coproces-

sor to CPU
Transfer a register from an attached

coprocessor to a CPU register, option-

ally performing some action within the

coprocessor. The instruction forces the

• Two coprocessor register-number fields.

• A coprocessor number, specifying which of several coprocessors must respond.

• A 3-bit coprocessor opcode field, indicating the action to be performed.

• An additional unallocated 3-bit field to supply additional information in.

following items to appear at the

coprocessor interface:

Only coprocessor number and the

CPU instruction's opcode bits are

actually required by the hardware; all

other fields are assigned within CASM
by convention only. The assembler

will accept information and assign

values to the various fields as defined

below. Other than to load Rd from the

data bus, the operation of the instruc-

tion is entirely implementation depend-

ent.

Intended Usage: Transfer a 32-bit data register from the coprocessor to a CPU register.

Operational Function: If the condition field evaluates true, read the indicated register from

the data bus, passing along the other information to the coprocessor.

Flags Effected: (none)

Syntax: MCR{co/icM/bn} cp#, coproc_opc, Rd, CRn, CRm {, expression}

where condition is any of the condition codes shown in the Condition Codes section.

cptt is an expression giving the coprocessor number, ranging 0..15.

coproc_opc is the coprocessor opcode, an expression in the range of 0..7.

Rn is a valid CPU destination register, R0..R15, SP, LK, or PC.

CRn, CRm are any valid coprocessor registers, CR0..CR1S.

expression is an optional expression in the range of 0..7, of auxiliary information.

Examples:

MCR 1,6, R9,CR1, CRO,

MCRLT 0, 0,R12, CR3, CR3, Code-'A' ; Code is 'A' thru '6'.

2-70

VLSI Technology inc.

MLA VL86C010

Appendix A.20 MLA - Multiply and
Accumulate

Perform a 32-bit by 32-bit multiply to

yield a 32-bit result. A single 32-bit

value is then added to the result. All

operands and the result are contained

in registers. A modified Booth algorithm

is used, and the results are obtained in

1 6 clock times worst case. If the upper

bits of the operands are clear, a

truncated cycle is used to return the

results faster.

MLA differs from MUL in that it is

intended for multiple-precision oper-

ands. The typical usage is for accumu-
lating the inner products of the multi-

word operands.

Either (or neither) operand may be a
signed value, and the resulting sign is

correctly processed. When the multipli-

cation of byte values Is involved, they

are treated as full 32-bit operands, and
the result appears in the lowest bits of

the Rd register as expected.

Overflow is not possible, as the sign bit

from one operand will be redundant in

the result. The freed bit is sufficient to

hold the data that might otherwise

overflow.

The Rd and Rm registers may not be
one and the same register, and R15
(PC) may not be used for Rd. The
result is not meaningful if Rm - Rd.

The status bits may be set based upon
the result, if the S suffix is used.

Intended Usage: Multiply two 32-bit values to produce a 32-bit result, adding in a (partial product)

result, typically from a previous multiply.

Operational Function: Rd = Rm*Rs + Rn

Flags Effected: N, Z(C is scrambled, and Vis not effected.)

Syntax: MLA Rd, Rm, Rs, Rn

where Rd is the destination register, and is RD-R1 4, SP, or LK.

Rm, Rs are operand registers, and are R0-R15, SP, LK, or PC.

Rn is a partial-products intermediate addend register, as per Rm.

Examples:

MLAS R1,R2,R3,R4

MLA R1,R2,R1,R4

Variations: The following exception conditions exist:

1

.

The Rd must not be the same as the Rm register.

2. The Rd may not be R1 5 (PC).

3. If R15 is used as an operand, it will be displacedion beyond the instruction.

4. When the PC is used as the Rm the PSRflags are included, and the PC is offset +12.

5. When the PC is used as the Rs the PSR flags are ignored, and the PC is offset +8.

6. When the PC is used as the Rn the PSR flags are included, and the PC is offset +8.

7. A 64-bit result can be synthesized using 4 multiplies, using 16-bit partial factors. Each

partial factor is the upper or lower portion of a 32i-bit operand, and each has the 1 6 upper

bits cleared, permitting an early exit from the multiply after a maximum of 8 clocks each.

2-71

VLSI Technology, inc.

MOV
Appendix A.21 MOV-Move Register or

Constant
Move a 32-bit item from one register to

another, or move an 8-bit constant into

a register. When an 8-bit constant is

supplied as the second operand, the

constant may consist of any 8-bit wide

pattern in a 32-bit field. It will be rotated

VL86C010

to produce an 8-bit constant in the least

significant bits of the instruction, but will

be re-expanded at execution time to its

proper position within the destination

register.

MOV can only load positive constants

into a register. If a negative value is

given, CASM automatically substitutes

a MVN opcode into the instruction, and

compensates the operand for the 1 's

complement format used by MVN.
(Similarly, CASM will convert a MVN in-

struction with a negative operand into

the equivalent MOV instruction.)

Intended Usage: Move the contents of one register to another, or load a constant into a register.

Operational Function: Rd - Op2

Flags Effected: N, Z, C

Syntax: MOV{cond/ton}{S} Rd, Op2

where condition is an optional 2-character condition code. Seethe Condition Code section.

S (if present) sets condition codes based on the value of the operand.

Rd is any valid register name, such as R0-R15, PC, SP, or LK.

Op2 is second operand, and may have any of the following forms:

Rm shift Rs

Rm shift expressionl

Rm RRX

expression2

Rm is any valid register name, as per Rdor Rn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR

expressionl is any positive absolute shift count in the range of 1 ..31

.

expression2 is any signed expression that can be rotated into an 8-bit value in the least significant bits.

Examples:

MCVS

MOV

MCV

MOV

MCV

MCV

PC, LK

PC, Rl4

Rl, 0XC000003F

RI3, -254

Rl
.

-

1

R8, R6 LSR R3

Same aa (PC, PSR) = R14.

Sub return, previous status.

Load big constant.

Load negative constant.

Special case is handled.

R3 has shift count.

Variations: If a negative constant is specified as the 2nd operand, the 1 's complement of it is

used, and a AfVWis substituted for the MOV. This effectively extends the range to

9 bits (including sign), and provides for sign extension to a full 32 bits.

2-72

VLSI Technology, inc.

MRC VL86C010

Appendix A.22 MRC - Move CPU Reg-
ister to Coprocessor

Transfer a processor register to an at-

tached coprocessor, optionally perform-

ing some action within the coprocessor.

The instruction forces the following

• Two coprocessor register-number fields.

• Data from a designated CPU register.

• A coprocessor number, specifying which of several coprocessors to activate.

• A 3-bit coprocessor opcode field, indicating the action to be performed.

• An additional unallocated 3-bit field to supply additional information in.

items to appear at the coprocessor

interface:

E
In actual fact, only coprocessor number
and the CPU instruction's opcode bits

are required by the hardware; all other

fields are assigned within CASM by
convention only. The assembler will

accept information and assign values

to the various fields as defined below.

Other than to make Rd available for

writing, the operation of 'the instruction

is entirely implementation dependent.

Intended Usage: Transfer a 32-bit data register from the CPU to the coprocessor.

Operational Function: If the condition field evaluates true, place the indicated register on

the data bus along with the other control information.

Flags Effected: (none)

Syntax: MRC{ condition) cp#, coprocjopc, Rd, CRn, CRm{, expression}

where condition is any of the condition codes shown in the Condition Codes section.

cp# is an expression giving the coprocessor number, ranging 0..1 5.

coprocjopc is the coprocessor opcode, an expression in the range of 0..7.

Rn is a valid CPU source register, R0..R15..SP, LK, or PC.

CRn, CRm are any valid coprocessor registers, CR0..CR1 5.

expression is an optional expression in the range of;0..7, of auxiliary information.

Examples:

MRCNE 1, 6, R9, CR15, CRO, 5

MRC 0, 0, R
1 , CR3, CR3

2-73

VLSI Technology, inc.

MUL VL86C010

Appendix A.23 MUL - Multiply

Perform a 32-bit by 32-bit multiply to

yield a 32-bit result. All operands and

the result are contained in registers. A
modified Booth algorithm is used, and

the results are obtained in 16 clock

times worst case. If the upper bits of

the operands are clear, a truncated

cycle is used to return the results

faster.

Either (or neither) operand may be a

signed value, and the resulting sign is

correctly processed. When the multipli-

cation of byte values is involved, they

are treated as full 32-bit operands, and

the result appears in the lowest bits of

the Rd register as expected.

The Rd and Rm registers may not be

one and the same register, and R15
(PC) may not be used for Rd. The
result is meaningless if Rm = Rd. The
Rn register field is forced to zero for

compatibility with future processor

family derivatives.

The status bits may be set based upon

the result, if the S suffix is used.

Intended Usage: Multiply two 32-bit values to produce a 32-bit result.

Operational Function: Rd = Rm " Rs

Flags Effected: N, Z(C is scrambled, and Vis not effected.)

Syntax: MUL Rd, Rm, Rs

where Rd is the destination register, and is R0-R14, SP, or LK.

Rm, Rs are operand registers, and are R0-R15, SP, LK, or PC.

Examples:

MULS R1.R2.R3

MUL R1 ,R2,R1 ; Source & Destination are the same.

Variations: The following exception conditions exist:

1

.

The Rd must not be the same as the Rm register.

2. TheRo"maynotbeR15(PC).

3. When the PC is used as the Rm the PSR flags are included, and the PC is offset +1 2.

4. When the PC is used as the Rs the PSR flags are ignored, and the PC is offset +8.

5. A 64-bit result from multiplying two 32-bit operands may be synthesized by using 4 multiplies,

yielding partial products. The four 1 6-bit factors used in the cross multiply are made up of the

upper and lower portions of the original 32-bit operands. By clearing the upper 16 bits of each

partial factor, an early exit may be taken by the hardware for each multiply, using only 8 clock

cycles each.

2-74

VLSI Technology, inc.

MVN VL86C010

Appendix A.24 MVN - Move
Complement of Register

This instruction loads the 1's comple-

ment of a constant (or of another

register) into the destination. The
instruction moves a 32-bit item. When
an 8-bit constant is supplied as the

second operand, the constant may

consist of any 8-bit wide pattern in a

32-bit field. It will be rotated to produce

an 8-bit constant in the least significant

bits of the instruction, but will be rotated

at execution time to its proper position

within the destination register.

The hardware instruction MVN can only

load (the complement of) positive

constants into a register. If a negative

value is given, CASM will automatically

substitute a MOV instruction, using the

1 's complement of the operand. (Simi-

larly, CASM will convert a MOV
instruction with a negative operand into

the equivalent MVN instruction.)

Intended Usage: Load destination register with (1's) complement of a constant or a register.

Operational Function: Rd - OxFFFFFFFF XOR Op2

Flags Effected: N, Z, C

Syntax: MVN{com//ffon}{S} Rd, Op2

where conditbn is an optional 2-character condition code. Seethe Condition Code section.

S (if present) sets condition codes based on the result.

Rd is any valid register names, such as R0-R15, PC, SP, or LK.

Op2 is second operand, and may have any of the following forms:

Rm shift Rs

Rm shift expression 1

Rm RRX

expression

Rm is any valid register names, as per Rdot Rn above, the operand value.

Rs is a register, per Rd above, containing aishift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR

expressionl is any positive absolute shift count in the range of 1 ..31

.

expressior>2 is any signed expression that can be rotated into an 8-bit value in the least significant bits.

Examples:

MVN R12.R5

MVNNV RO, RO

MVN R3, R2 ASR 5

MVN R4, R4 RRX

;
A no- operation case.

; Shift complement thru carry.

Variations: If a negative constant is supplied, the value is complemented and a MOV is substituted

for the MVN. This effectively permits a 9-bit constant (including sign) that is sign

extended to 32 bits in the destination.

2-75

VLSI Technology, inc.

ORR VL86C010

Appendix A.25 ORR - Logical OR
The logical OR operation is performed

on two operand words, and the 32-bit

result is written to the destination

register. For each bit position in the two

operands, a test is made to determine if

either is set (1). If so, the same bit

position in the destination register is

turned on. It is otherwise turned off.

The same operation is performed for

each of the 32-bit positions.

An 8-bit constant may be supplied as

the second operand. The constant may
consist of any 8-bit pattern in a 32-bit

field, so long as it may be rotated to

produce an 8-bit constant.

As with all logical operations, no carries

are involved between bits in the same
register, whether the source or the des-

tination.

Note: BIC and ORR cannot be used (even in supervisor mode) to set or clear PSR bits. Use TEQP for that purpose.

Intended Usage: Perform a logical OR between equivalent bit positions in the two source registers.

Operational Function: Rd = Rn OR Op2

Flags Effected: N, Z, C

Syntax: ORR{conoVfton){S} Rd, Rn, Op2

where condition is an optional 2-character condition code. See the Condition Code section.

S (if present) sets condition codes based on the result.

Rd, Rn are any valid register names, such as R0-R15, PC, SP, or LK.

Op2 is second operand, and may have any of the following forms:

Rm shift Rs

Rm shift expression 1

Rm RRX

expression2

Rm is any valid register names, as per Rd or Rn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR

expressionl is any positive absolute shift count in the range of 1 ..31

.

expression2 is any signed expression that can be rotated into an 8-bit value in the least significant bits.

Examples:

ORR R1.R1.R0

ORRS R0,R0,32

ORR R0.R1.R3 LSR 4

;R1 =R1 0RR0.

; Force ASCI I to lower case.

2-76

VLSI Technology, inc.

RSB VL86C010

Appendix A.26 RSB - Reverse-

Operand Subtract

This instruction is identical in operation

to the SUB instruction, except that the

operand order is reversed. In SUB, the

first operand must be in a register and

considerable flexibility is given in

addressing the second one. RSB
permits the addressing flexibility to

effectively be applied to the first

operand.

An 8-bit constant may besupplied as

the second operand. The constant

may consist of any 8-bit pattern in a 32-

bit field, so long as it may be rotated to

produce an 8-bit constant.

Intended Usage: Perform a subtraction of two 32-bit operands, or perform the subtraction of

the lower words in a multi-precision operand pair. The minuend is obtained

from an indexed address. I.e., Rn is subtracted from operand 1

.

Operational Function: Rd - Op1 - Rn

Flags Effected: N, Z, C, V

Syntax: RSB{co/id/f/on}{S} Rd, Rn, Op1

where condition is an optional 2-character condition code. See the Condition Code section.

S (if present) sets condition codes based on the result.

Rd, Rn are any valid register names, such as R0-R1 5, PC, SP, or LK.

Op1 is second operand, and may have any ofthe following forms:

Rm shift Rs

Rm shift expressionl

Rm RRX

expression2

Rm is any valid register names, as per RdorRn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR

expressionl is any positive absolute shift count in theirange of 1 ..31

.

expression2 is any signed expression that can be rotated into an 8-blt value in the least significant bits.

Examples: Subtract R5 from a very large constant.

RSB R5, R5, OxEAOOOOOO

2-77

VLSI Technology, inc.

RSC VL86C010

Appendix A.27 RSC • Rev-Operand contained in a register while consider-

Subtract, Carry
The RSC instruction is identical to the

SBC instruction, except that the order

of the two operands is reversed. In

the SBC, the first operand must be

able flexibility is given in the addressing

of the second. The RSC may be used
when the more flexible addressing is

needed for the first operand. The
"carry" operation is actually a borrow

operation.

An 8-bit constant may be supplied as

the second operand. The constant may
consist of any 8-bit pattern in a 32-bit

field, so long as it may be rotated to

produce an 8-bit constant.

Intended Usage: Perform subtract of upper words in a multi-precision operand pair, where the

minuend is obtained from an indexed address. I.e., Rn is subtracted from

operand 1 . Carry is also added in (a "borrow" is performed).

Operational Function: Rd - Op1 - Rn - 1 + Carry

Flags Effected: N, Z, C, V

Syntax: RSC{co/7d/f)bn}{S} Rd, Rn, Op1

where condition is an optional 2-character condition code. See the Condition Code section.

S (if present) sets condition codes based on the result.

Rd, Rn are any valid register names, such as R0-R15, PC, SP, or LK.

Op1 is second operand, and may have any of the following forms:

Rm shift Rs

Rm shift expression 1

Rm RRX

expression2

Rm is any valid register names, as per Rdot Rn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR
expressionl is any positive absolute shift count in the range of 1 ..31

.

expression2 is any signed expression that can be rotated into an 8-bit value in the least significant bits.

Example: Subtract a 64-bit number in R0.R1 from the 64-bit number 0x3FC00O0u,OO000000

RSB RO,RO,0
; Handle LSBs.

RSC R0,R0,0X3FC00000
;
Handle MSBs (with "borrow").

2-78

VLSI Technology, inc.

SBC VL86C010

Appendix A.28 SBC - Subtract, with

Carry

SBC subtracts two 32-bit operands,

placing the difference into a register. A
value of +1 is subtracted from the

difference if the carry bit was clear prior

to the instruction; nothing is subtracted

from the difference if the carry was
previously set.

The normal use for Subtract-with-Carry

is to compute difference of numbers

that are greater than 32 bits in length.

The multi-precision subtraction se-

quence is to SUB the lowest words
together (without carry compensation),

possibly generating a carry in the

process. The next most significant

word pair is then subtracted using SBC,
with the carry from the first pair

correcting the difference.

If even more precision is used than two
words per operand, they are succes-

sively SBC'd together until the most

significant word pair has been sub-

tracted. (The same process is used for

multi-precision addition, but using ADD
and ADC.)

An 8-bit constant may be supplied as

the second operand. The constant

may consist of any 8-bit pattern in a 32-

bit field, so long as it may be rotated to

produce an 8-bit constant. E

Intended Usage: Multi-precision subtraction.

Operational Function: Rd - Rn - Op2 - 1 + Carry

Rags Effected: N, Z, C, V

Syntax: SBC{cono7f/on}{S} Rd, Rn, Op2

where condition is an optional 2-character condition code. See the Condition Code section.

S (if present) sets condition codes based on the result.

Rd, Rn are any valid register names, such as R0-R15, PC, SP, or LK.

Op2 is second operand, and may have any of the following forms:

Rm shift Rs

Rm shift expression 1

Rm RRX

expression

Rm is any valid register names, as per Rdar Rn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROM
expression is any positive absolute shift count in the range of 1 ..31

.

expression2 is any signed expression that can be rotated into an 8-bit value in the least significant bits.

Example: Assume that R0.R1 holds a 64-bit integer, as does the R2.R3 pair. Subtract the

second pair from the first.

SUB RO, R2.R2 ; Handle the LSBs.

SBC Rl,Rl,R3
; Handle Che MSBs (with borrow).

Variations: If a negative constant is specified as the second operand, the 1 's complement of it is used, and an ADD is substituted

for the SUB. This effectively extends the range to 9 bits (including sign), and provides for sign extension to a ful

32 bits.

2-79

VLSI Technology, inc.

STC VL86C010

Appendix A.29 STC - Store Coproces-

sor to Memory
STC stores the contents of a coproces-

sor register to memory. Botha

coprocessor and the desired register

within it must be specified. This

instruction is the coprocessor equiva-

lent to the STR instruction. As with the

STR, pre- and post-indexing of the Rn
CPU register is provided for, and the

target address may be a register

relative address.

Intended Usage: Store coprocessor register to indicated memory location.

Operational Function Store contents of specified CRn coprocessor register of the indicated coprocessor

to memory. Indexing of a CPU register gives the effective memory address.

Flags Effected: (none)

Syntax:

where

STC(cono7?/on}{L}{7} cp#, CRd, address[li

condition

N

cp#

CRd

I

address

expression

Rn

is one of the optional condition test codes described in Condition Codes.

Implies a hardware-dependent function specified by the Wbit. By con-

vention, AM implies long transfer. If N is missing, a short transfer is

indicated.

Set the Wbit, indicating that address translation is to take place. The

IRAN pin is pulled low for the transfer cycle,

is a coprocessor number in the range of 0..15.

is a coprocessor register number, CR0..CR15.

forces the effective address to be written back to Rn, if Rn is present,

can be any of the variations given below:

expression

[Rn] (Tsuffix is not allowed)

[Rn, expression] (Tsuffix is not allowed)

[[Rn], expression

is an expression in the range of -1023 to +1023 (bytes) relative to the

current program counter. It is scaled right 2 bits by CASM, and the

complement of the sign is placed in the l/-bit. The 8-bit absolute value

if the expression is used in the instruction.

is any valid (CPU) processor register, R0..R15. If R1 5 is used, the status

bits are stripped before usage. If Rn is missing, expression is assumed to

be relative to R15.

Examples:

STC l,CR5,[RI]

STC I ,CR5,[R2],4

STC 2,CR7,Label

Load Indirect on Rl.

As above. Then Rl=Rl*4

Label same as PC+Label.

2-80

VLSI Technology inc.

STM VL86C010

Appendix A.30 STM - Store Multiple

Registers

From one to 16 registers may be stored

to memory by a single STM instruction.

Any specific register may be included

in the register set list, and registers in

the set need not be contiguous.

Sixteen bits in the instruction's operand

field indicate which registers are to be

loaded.

Variations in the mnemonic indicate

whether the registers are to be stored in

ascending or descending addresses,

and whether the base pointer (stack)

register is to be incremented/decre-

mented before or after each register

gets stored. The lowest numbered

register is always stored to the lowest

address in memory.

As with all instructions, the STM is only

executed if the status specified by the

optional conditional code is met.

Intended Usage: Save multiple registers at one time onto the system or user stack.

Operational Function: Perform repeated "pushes" via a register designated as a stack base register

from the registers supplied in a list. While the stack base register is effectively updated

during the transfer, the final value is not written back unless so indicated by the 'I'

suffix on the base register.

Flags Effected: None, unless the S-bit in the Instruction has been set via the <A ' caret marker.

Syntax: QTU{condition}mode Rn{l},{reg_list}{A}

where condition is an optional condition, as given in the Condition Codes section.

mods is a required mode indicator, taken from the following table.

Rn is any valid register in the range of R0..R1 5.

/ indicates that the updated base address is to be saved back into

the Rn register.

A User mode: " is ignored.

Non-User mode: Forces referenced user mode register bank.

Note: PSR is always stored if RT5 is in the list.

{regjist} (braces are required) is a list of registers to be stored. They may be

any of the valid registers R0..R15 separated by commas. A range of

registers may also be included by separating them by a dash.

Modes: The above mode field must be selected from oneiof the following codes:

USSO& Function

Rush upwards Pre-increment store

Push upwards Post-increment store

Rush downwards Pre-decrement store

Push downwards Post-decrement store

Codes Meaning

IB Increment Before

IA Increment After

DB Decrement Before

DA Decrement After

Other alternative forms for the above codes are supported, for completeness.

These earlier forms are not documented here, and their use is discouraged.

Example: Simulate a conventional push-down stack, whereithe stack pointer gets updated

after each transfer, and pushes downward:

STMDA SPI,{R4R5,R9-R1I,PC)

Variations: R1 5 may be used in the transfer list. If stored using the STM, the PC's value will be

advanced 12 bytes (3 words) forward of the STM., and the status will be stored with it.

A later LDM may use the * marker to load the PSR with the value which was stored by the STM.

2-81

VLSI Technology, inc.

STR VL86C010

Appgndlx A.31 STR - Store Register to

Memory
Store a 32-bit register value to the des-

ignated memory address. The operand

address may be specified as relative to

any register (including the PC), and

either a word or a byte value may be

stored.

If a word value is stored, it must be

word aligned, not straddling a word

boundary. The ability to specify a base

register and an increment or decrement

amount is of significant value when
accessing arrays of data, or when
working with data pointers.

The base register may be offset by a

13-bit (including sign) constant either

before or after the transfer. The
constant is stored in the instruction in

its positive form, and the complement

of the original sign is stored in the U-bit

field.

Alternatively, the base register may be

modified (before or after the transfer) by

the value contained in a second

register. This modification register's

value may optionally be first shifted or

rotated rotated from 1 to 31 bits.

STR differs from a MOV in that the

MOV stores a value to another register.

Intended Usage: Store a register to specified (PC-Relative) memory address

Operational Function: Store a single register at any address within the range of ± 4095 bytes from

the current PC (R1 5), or relative to any other register (such as a data-frame or stack-frame register.

Flags Effected: (none)

Syntax: STR{condition}{B){T) Rd, address (I)

where condition

B

T

Rd

I

address

is a code given in the section on Condition Codes.

is given to force the storing of an 8-bit byte, rather than a 32-bit word.

is given (in post-indexed mode only) to force an address translation.

is any valid CPU register, R0..R15.

forces the Rn register to be updated by the value of the offset afterwards.

is any of the following variations:

Rn

Rm
expression

shift

count

Effective Address M?(fe

Rn N/A.

Rn + expression Pre-indexed.*

Rn + Rm Pre-indexed.*

Rn + (Rm shifted by count). Pre-indexed.*

Rn Post-increment.

Rn Post-increment.

Rn Post-increment.

is any valid CPU register, R0..R15, and holds the transfer base address.

is any valid CPU register, R0..R15, and holds a (signed) address increment.

is an expression in the range of -4095 to +4095.

is any shift type indicator: LSL, LSR, ASR, ROR, or RRX

is any constant in the range of 1..31 , and is the shift count.

Variation

[Rn]

[Rn, expression]

[Rn, Rm]

[Rn, Rm shift count]

[Rn], expression

[Rn], Rm
[Rn], Rm shift count]

*lf I follows the '] ', then Rn is also incremented, i.e., post increment mode.

2-82

VLSI Technology, inc.

STR VL86C010

Appendix A.31 STR (Cont.)

Remarks: The "address modifier" is the amount to add to the base transfer address (in Rn). It is

added to Rn before the transfer if pro-indexed, or after the transfer if post-incremented. Pre-indexing or

post-incrementing is determined by where the modifier is found. If it is given /ns/cte the [] brackets,

it is a pre-indexed case, and the modifier becomes included in the effective address. If given

outside of the [] brackets, it is a post-increment case; the modifier comes into play only after

the transfer has taken place.

Examples:

STR RI,[R15]

STREQ R3, [SP-Ox 1 0]l

STR R5, [R3, R2 SHL 2]

STR LK, [LK]

SP = SP* I 6.

Variations: R15 usage has a number of special cases associated! with it:

1

.

PSR is never modified, even when Rd or Rn is the PC.

2. If Rn is R1 5, the PC is used without any of the PSR flags. Remember that it will

be advanced by 8 bytes from the current instruction.

3. If PC is used as the offset (Rm) register, the value used includes the flags.

2-83

1

VLSI Technology, inc.

SUB VL86C010

Appendix A.32 SUB - Subtract

Subtract one 32-bit operand from an-

other, putting the result back into a reg-

ister. The first operand must be a

register, but the second is permitted a

much more general addressing

scheme. An 8-bit constant may be
supplied as the second operand. The

constant may consist of any 8-bit

pattern in a 32-bit field, so long as it

may be rotated to produce an 8-bit

constant.

Intended Usage: Compute the arithmetic difference of two operands.

Operational Function: Rd - Rn - Op2

Flags Effected: N, Z, C, V

Syntax: SUB{condition}{S} Rd, Rn, Op2

where condition is an optional 2-character condition code. See the Condition Code section.

S (if present) sets condition codes based on the result.

Rd, Rn are any valid register names, such as R0-R15, PC, SP, or LK.

Op2 is second operand, and may have any of the following forms:

Rm
Rm shift Rs

Rm shift expreasionl

Rm RRX

expressions

Rm is any valid register names, as per Rd or Rn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR
expressionl is any positive absolute shift count in the range of 1 ..31

.

expressions is any signed expression shiftable into an 8-bit value.

Examples:

SUB Rl.Rl.R2 ;SetRl=R!-R2

Sub RO.RO, "A"
;
Subtract a constant from RO.

2-84

VLSI Technology, inc.

SWI VL86C010

Appendix A.33 SWI - Software

Interrupt

Perform a "software interrupt" (system

call), changing the processor into

supervisor mode. This is equivalent to

a subroutine call to the routine whose
entry point is branched to by the branch

instruction in location x 8 in physical

memory. By convention, the action

taken by that routine is defined entirely

by the system SVC-mod© (SWI)

handler. The instruction's lower 24-bit

field is interpreted by that handler.

The instruction is conventionally used to

pass requests to the operating system

for I/O transfers and other system-

specific operations. When operating in

"user" mode, the program will not have

access to the I/O space in memory
mapped systems; the only recourse is

to offload system input/output to the

executive.

Intended Usage: Request operating-system or I/O function of the system executive.

Operational Function: Pass a 24-bit field to the system supervisor for interpretation.

Flags Effected: (determined by the supervisor)

Syntax: S\N\{condition} operand

where condition is an optional 4-bit code defined in the Condition Codes section.

operand is a 24-bit expression that is right-justified in the SWI instruction.

Examples: Predefine certain I/O operations to be done by the operating system. Assume

READB reads a byte into bits 0-7 of R, and WRITEB writes the byte constant found in

bits 0-7 R0 to some I/O device.

aeons READB = Ox I

aeons WRITEB =0x20

SWI READB ; Read byte to R0.

MCV R0, ' J

'

SWI WRITEB ; Write'
J

'to device.

2-85

VLSI Technology, inc.

TEQ VL86C010

Appendix A.34 TEQ - Set Condition

Codes via XOR
Test that the two operands are equal,

but without saving any results except

for the status bits. This differs from a
CMP or CMN In that no overflow or

carry Is possible. (Carry will be
cleared). This is a "logical" instruction,

so no inter-bit carry is permitted in the

hardware, and overflow is not possible.

The V status bit is therefore not altered,

however, C is reset by the instruction.

Because the only purpose for this in-

struction is to perform a test, setting the

condition codes on the result, the 'S'

suffix (save status) is redundant, and is

automatically implied by CASM.

An 8-bit constant may be supplied as
the second operand. The constant may
consist of any 8-bit pattern in a 32-bit

field, so long as it may be rotated to

produce an 8-bit constant.

Intended Usage: Test for bit-wise equality, without regard to relative magnitude.

Operational Function: RnXOROp2 (result is not stored)

Flags Effected: N, Z, C

Syntax: TEQ{condition}{P) Rn, Op2

where condition is an optional 2-character condition code. See the Condition Code section.

P Force PSR loading, directly from 32-bit ALU result.

Rn is any valid register names, such as R0-R15, PC, SP, or LK.

Op2 is second operand, and may have any of the following forms:

Rm shift Rs

Rm shift expressionl

Rm RRX

expression2

Rm is any valid register names, as per Rd'or Rn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR
expression is any positive absolute shift count in the range of 1 ..31

.

expression? is any signed expression shiftable into an 8-bit value.

Examples:

TEQR4.5
; See If R4 contains the value 5.

BEQOut
; Jump If It does.

TEQP R 1 5,0xC0000000
; Set N,Z. Clear C.V.

Variations: An Ssuffix is optional, and is always implied. If a P suffix is used, the bits 28-31 and 0-1 of the

32-bit ALU results are stored directly into the PSR bits, rather than the PSR being loaded

from the ALU status itself.

2-86

VLSI Technology, inc.

TST
Appendix A.35 TST - Set Condition

Codes via AND
Test that any of the bits specified by

the second operand are set in the

source register. This is a "logical"

instruction, so no inter-bit carry is

permitted in the hardware, and an

VL86C01

overflow condition is not possible. The

V status bit is therefore not altered by

the instruction.

Because the only purpose for this in-

struction is to perform a test, setting the

condition codes on the result, the 'S'

suffix (save status) is redundant and is

automatically implied by CASM.

An 8-bit constant may be supplied as

the second operand. The constant

may consist of any 8-bit pattern in a 32-

bit field, so long as it may be rotated to

produce an 8-bit constant.

Intended Usage: Test for nonzero in selected bit field(s). It is a substitute for AND where no result other

than the status needs to be retained.

Operational Function: Rn AND Op2 (result is not stored)

Flags Effected: N, Z, C

Syntax: TST{condition){P} Rn, Op2

where condition is an optional 2-character condition code. See the Condition Code section.

P Force PSR loading, directly from 32-bit ALU result.

Rn is any valid register names, such as R0-R15, PC, SP, or LK.

Op2 is second operand, and may have any of the following forms:

Rm shift Rs

Rm shift expressionl

Rm RRX
expressions

Rm is any valid register names, as per Rdot Rn above, the operand value.

Rs is a register, per Rd above, containing a shift count in range of 1 ..32.

shift is any of: ASL, LSL, LSR, ASR, or ROR

expression! Is any positive absolute shift count in the range of 1 ..31

.

expression2 is any signed expression shiftable into an 8-bit value.

Examples: Test RO to see if bits 1 and 7 are both zero, regardless of the setting of any other bits.

TST R0,0x82

BEQBoth_Zero

BNEElther_Set

Variations: An S suffix is optional, and is always implied. If a P suffix is used, the bits 28-31 of the

32-bit ALU results are stored directly into the PSR bits, rather than the PSR being loaded from

the ALU status itself.

2-87

VLSI Technology, inc.

Notes:

VLSI Technology, inc.

SECTION 3

VL86C020
32-BIT RISC
MICROPROCESSOR
WITH CACHE
MEMORY

I

Application Specific

Logic Products Division

VLSI Technology inc.

VLSI Technology, inc. raEUMGMmf
VL86C020

32-BIT RISC MICROPROCESSOR WITH CACHE MEMORY
FEATURES
• On-chip 4 Kbyte (1 K x 32 bits) cache

memory

- Instructions and data in a single

memory
- 64-way set associative with

random replacement
- Line size of 1 6 bytes (4 words)

• Compatible with existing support

devices

• Upwardly software compatible with

VL86C010

• Semaphore instruction added for

multiprocessor support

• Full-speed operation up to 20 MHz
using typical DRAM devices

• Low interrupt latency for real-time

application requirements

• CMOS implementation - low power
consumption

• 1 60-pin plastic quad flatpack package

(PQFP)

DESCRIPTION
The VL86C020 Acorn RISC Machine

(ARM) is a second generation 32-bit

general purpose microprocessor

system. The device contains both a

general purpose CPU and a full cache
memory subsystem in the same pack-

age. Several benefits are attained by

having the CPU and cache within the

same device. First, the processor clock

is effectively decoupled from the

memory system. This lowers the

processor bandwidth demands on the

memory and allows most memory
cycles to remain on-chip where buffer

delays are minimized. Second, a high

level of integration is maintained as

external components are not required to

implement the cache subsystem.

Third, package sizes are reduced as

bus widths can remain at reasonable

widths. Fourth, memory system design

is greatly simplified because most
critical timings are handled internally to

the device.

The processor is targeted for use in

microcomputer and embedded control-

ler applications that require high per-

formance and high integration solutions.

Applications where tha processor is

best applied are: laser printers,

graphics engines, network protocol

adapters, and any other system that

requires quick response to external

events and high processing throughput.

Since the VL86C020 typically utilizes

only about 14% of the: available bus

bandwidth, it is particularly well suited

to applications where the memory is

shared with another high bandwidth

device, e.g. a graphics system where
the screen refresh occurs from the

same memory devices. In addition,

systems with more than one processor

attached to a single memory system

become feasible and are supported with

the new semaphore instruction. The
instruction performs an indivisible read-

modify-write cycle to the memory to

allow for management of globally

allocated resources reliably.

BLOCK DIAGRAM ORDER INFORMATION

I
^ ALE -WAIT MCLK FCLK

ADDRESS BUS INTERFACE

Y
INTERNAL ADDRESS BUS

z
CACHE
4 KBYTE
MIXED

DATA AND
INSTRUCTION

H

11
CLOCK

GENERATOR

CPU

INTERNAL DATA BUS
H

i> 1^
DATA BUS INTERFACE

3BE N/

-TEST -RESET

1 1 *— MSE

—« -MREQ

L
-*- SEQ
-— ABORT

CONTROL
LOGIC

• IRQ

•4 FIQ

—

»

TRANS

=£>-M1,-M0
-»- -R/W
-m- -B/W
-* LOCK
—» LINE

T CBE

*
CPE

-*- CPCLK

-— CPSPV

CO- —•» -OPC

PROCESSOR
INTERFACE

-»- -CPI

/ \ CPD31-
\|VCPD0
4— CPA
«•— CPB

Part

Number
Clock

Frequency Package

VL86C020-20FC 20 MHz Plastic Quad
Flatpack (PQFP)

VL86C020-20GC 20 MHz Plastic Pin

Grid Array (PGA)

Note: Operating temperature range is 0°C to +70°C.

3-3

VLSI Technology, inc.

VL86C020

PIN DIAGRAM - PLASTIC QUAD FLATPACK

VL86C020

D27C
D28C
D29

D30C
D31

-B/W

-R/WE
NC

-TRANS C
LINE c
LOCK
-MOC
VDD
NC

GND
-M1

-FIQ

-IRQ

MSE
SEQ

-MREQ

FOLK

MCLK

GND
VDD
CBE

NC

ABE

ALE 1= 29

D8E1

ABORT 1

-RESET I

NCI

-WAIT I

-TEST I

AOI

A1I

A2I

GND I

A3C

CVDDDDD DDDGD DDDDDVGVDDD G VP
D2 2222N221 N1N1 1 1 1 1DND11 1 DNDDDDNNDDDDDDO
D6 543 2C1 09 D8C765 4 3 D D D 2 1 09C87 65 DC4321 DO
nnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnn
111111111111111111111111111111111111155555655554444444444333333333322222229876543210987654321098765432109876543

30

31

32

33

34

35

36

37

38

39

40
4
1

—LT

v
D

TOP VIEW

44444444552345678901 55555555666666662345678901234567 67777777779012346678

120

119

118

117

116

115

114

113

112

111

110

109

108

107

106

105

104

103

102

101

100

99

98

97

96

95

94

93

92

91

90

ta CPD1

CPD2

3CPD3
CPD4

GND
3 CPD5

CPD6

NC

CPD7

CPD8

CPD9
CPD10

CPD11

NC

CPD12

=1 CPD13

CPD14

GND
VDD

CPD15

UCPD16
CPD17

CPD18
CPD19

CPD20

CPD21

NC

CPD22

CPD23

CPD24

GND
Zl CPD25

NC

3 VDD
GND
CPD26

CPD27

CPD2B

CPD29

CP030

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
AA AAAANAAA AGNVAAAAAAA AAAA NAGC C-CN-OC C C » C G456789C111 1NCD1 11 11122222C2NPPPCPPPPDPN0123D D45678901234 5DCSI CEABDDDLP 3

K V 1

3-4

VLSI Technology, inc.

VL86C020

PIN DIAGRAM - PLASTIC PIN GRID ARRAY

10 12 13 14 15

/ GND D24 D20 D19 D18 D14 D13 VDD D11 D10 D7 GND D3 DO CPD1

' ©144 ©140 ©136 ©135 ©133 ©129 ©128 ©125 ©123 ©122 ©119 ©116 ©114 ©111 ©108

D29 VDD D23 D21 GND D16 D15 D12 D8 D6 D4 D1 VDD CPD2 GND

©3 ©143 ©139 ©137 ©134 ©131 ©130 ©124 ©120 ©118 ©115 ©112 ©110 ©107 ©104

-B/W D28 D26 D25 D22 D17 VDD GND D9 D5 D2 CPDO CPD3 CPD5 CPD8

©6 ©2 ©142 ©141 ©138 ©132 ©127 ©126 ©121 ©117 ©113 ©109 ©106 ©103 ©100

-TRANS D30 D27 CPD4 CPD7 CPD9

©6 ©4 ©1 \ ©105 ©101 ©99
-MO -R/W D31 CPD6 CPD10 CPD11

©11

-M1

©7
LOCK

©5
LINE

INDEX PIN
(INACTIVE)

©102

CPD12

©98
CPD13

©97
GND

©14 ©10 ©9 ©96 ©95 ©93

-FIQ VDD GND CPD15 CPD14 VDD

©15 ©12 ©13 ©91 ©94 ©92
MSE -IRQ SEQ CPD16 CPD18 CPD17

©17 ©16 ©18 TOP VIEW ©90 ©88 ©89
FOLK GND - MREQ CPD2I CPD22 CPD19

©20 ©22 ©19 ©85 ©84 ©87
MCLK VDD CBE GND CPD24 CPD20

©21 ©23 ©24 ©81 ©82 ©86
ABE ALE -WAIT CPD26 VDD CPD23

©25 ©26 ©30 ©77 ©79 ©83
DBE -•RESET A1 CPD30 CPD27 CPD25

©27 ©29 ©33 ©73 ©76 ©80
ABORT -TEST A2 VDD A7 A11 VDD A18 A19 A24 -OPC CPB VDD CPD29 GND

©28 ©31 ©34 ©37 ©41 ©45 ©49 ©54 ©55 ©60 ©66 ©69 ©70 ©74 ©78
AO GND A4 A6 A9 A12 GND A16 A22 A23 GND -CPI CPE CPD31 CPD28

©32 ©35 ©38 ©40 ©43 ©46 ©48 ©52 ©58 ©59 ©62 ©65 ©67 ©71 ©75
A3 A5 A8 A10 A13 A14 A15 A17 A20 A21 A25 CPCLK CPSPV CPA GND

©36 ©39 ©42 ©44 ©47 ©50 ©51 ©53 ©56 ©57 ©61 ©63 ©64 ©68 ©72

3-5

VLSI Technology, inc.

VL86C020

CPU BLOCK DIAGRAM

ADDRESS

r^UU
ADDRESS REGISTER

Z\

Rz

n
ADDRESS

INCREMENTER

I

N
C
R
E
M
E

-"N
-,T

REGISTER BANK
(27 32-BIT REGISTERS)

1/LJ

3
A '"N BOOTHS

r-^/ MULTIPLIER

il
BARREL
SHIFTER

^ 21
32-BIT ALU 7

H
WRITE DATA REGISTER

5
21

Zi

INSTRUCTION
DECODER

AND
CONTROL
LOGIC

H
INSTRUCTION PIPELINE
& READ DATA REGISTERH

5

DATA

3-6

VLSI Technology, inc.

FUNCTIONAL DIAGRAM

PBEDJMDNAIBY
VL86C020

r FCLK

VL86C020

N "\

A25-A0 >
]

ADDRESS
BUSV J

MCLKCLOCKS

-R/W A

DATA

-WAIT BUS
v.

r -IRQ
-B/W ^
LOCK ^_INTERRUPTS -FIQ
LINE r

CONTROL

f -TEST

BUS
-TRANS ^

K
VL86C020 -M1.-M0 >
CONTROLS -RESET V J

-MREQ "^V

f ALE

MEMORY
SEQ

r
MANAGEMENT

ABORT INTERFACE

f:

ABE
"" J
CPCLK "^

BUS DBE
CONTROLS CBE CPSPV

MSE -OPC

CPE -CPI COPROCESSOR

VDD(11)

CPA INTERFACE

CPB

/I K
POWER GND(14) <CPD31-CPD0>

3-7

VLSI Technology, inc.

VL86C020
SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK

Signal

Name
Pin

Number
Signal

Type
Signal

Description

A0-A25

ABE

ABORT

ALE

42-47, 49-52, OCZ
56-66, 68, 36,

38-40

28

31

29

ITP

IT

ITP

-B/W

CBE

CPA

26

76

OCZ

ITP

ITP

CPB 77 ITP

CPCLK 70 OCZ

Processor Address Bus - If ALE (address latch enable) is high, the

addresses change while MCLK is high, and remain valid while

MCLK is low; their stable period can be modified by using ALE.

Address Bus Enable - When this input is low, the address bus drivers (A0-
A25) are put into a high impedance state (Note 1). ABE may be left

unconnected when there is no system requirement to turn off the address
drivers (ABE is pulled high internally - see Note 2).

Memory Abort - This input allows the memory system to signal the proces-

sor that a requested access is not allowed. This input is only monitored

when the VL86C020 is accessing external memory.

Address Latch Enable - This input is used to control transparent latches on
the address outputs. Normally the addresses change while MCLK is high.

However, when interfacing directly to ROMs, the address must remain
stable throughout the whole cycle; taking ALE low until MCLK goes low will

ensure that this happens. If the system does not require address lines to

be held in this way, ALE may be left unconnected (it is pulled high internally

- see Note 2). The ALE latch is dynamic, and ALE should not be held low
indefinitely.

NOT Byte/Word - This is an output signal used by the processor to indicate

to the external memory system when a data transfer of a byte length is

required. -B/W is high for word transfers and low for byte transfers, and is

valid for both read and write operations. The signal changes while MCLK is

high, and is valid by the start of the active cycle to which it refers.

Control Bus Enable - When this input is low, the following control bus
drivers are put into a high impedance state (Note 1):

-BAV, LINE, LOCK, -M1, -MO, -R/W, -TRANS

CBE may be left unconnected when there is no system requirement to turn

off the control bus drivers (CBE is pulled high internally - see Note 2).

Coprocessor Absent - A coprocessor which is capable of performing the

operation which the VL86C020 is requesting (by asserting -CPI) should

take CPA low immediately. The VL86C020 samples CPA when CPCLK
and -CPI are both low, the VL86C020 will busy-wait until CPB is low and
then complete the coprocessor instruction. If no coprocessors are fitted,

CPA may be left unconnected (it is pulled high internally - see Note 2).

Coprocessor Busy - A coprocessor which is capable of performing the

operation which the VL86C020 is requesting (by asserting -CPI), but

cannot commit to starting it immediately, should indicate this by taking CPB
high. When the coprocessor is ready to start it should take CPB low. The
VL86C020 samples CPB when CPCLK and -CPI are both low. If no
coprocessors are fitted, CPB may be left unconnected (it is pulled high

internally - see Note 2).

Coprocessor Clock - This pin provides the clock by which all VL86C020
coprocessor interactions are timed. CPCLK is derived from MCLK or FCLK
depending on whether the processor is accessing external memory or the

cache; the coprocessors must, therefore, be able to operate at FCLK
speeds.

3-8

VLSI Technology, inc.

VL86C020
SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (Cont.)

Signal Pin Signal

Name Number Type

CPD0-CPD31 121-117,115,

114,112-108,

106-104,101-

95,93-91,89,

85-81,79

ITOTZ

Signal

Description

CPE

-CPI

CPSPV

D0-D31

75 ITP

72

71

ocz

ocz

DBE

FCLK

123-127, 130-

133, 135-138,

142-146, 148,

150-152,154-

158,1-5

30

ITOTZ

22

ITP

IC

Coprocessor Data Bus - These are bidirectional signal paths which are

used for data transfers between the processor and external coprocessors,

as follows:

• For processor instruction fetches (when -OPC - 0), the opcode is sent

to the coprocessors by driving CPD0-CPD31 while CPCLK is high.

Coprocessor instructions are broadcast unaltered, butnon coprocessor

instructions are replaced by &FFFFFFFF.

• During data transfers from VL86C020 to a coprocessor, the data is

driven onto CPD0-CPD31 while CPCLK is high.

• During register and data transfers from the coprocessor to VL86C020,
CPD0-CPD31 are inputs, and the data must be setup to the falling edge
of CPCLK.

Coprocessor Bus Enable - When this input is low, the following coproces-

sor bus drivers are put into a high impedance state (see Note 1):

CPCLK, CPD0-CPD31 , -CPI, CPSPV, -OPC

CPE is provided to allow the coprocessor outputs to be disabled while

testing the VL86C020 in-circuit, and CPE should be left unconnected for

normal operation (it is pulled high internally - see Note 2):. If no coproces-

sor is to be connected to the VL86C020, CPE may be tied low, but CPCLK,
CPD0-CPD31, -CPI, CPSPV and -OPC must not be left floating.

NOT Coprocessor Instruction - When VL86C020 executes a coprocessor

instruction, it will take this output low and wait for a response from the

appropriate coprocessor. The action taken will depend an this response,

which the coprocessor signals on the CPA and CPB inputs. -CPI changes
while CPCLK is low.

Coprocessor Supervisor Mode - As instructions are broadcast to the

coprocessors on CPD0-CPD31 , this output reflects the mode in which
each instruction was fetched by the processor (CPSPV - 1 for supervisor/

IRQ/FIQ mode fetches, CPSPV • for user mode fetches). The coproces-

sors may use this information to prevent user-mode programs executing

protected coprocessor instructions. CPSPV changes while CPCLK is high.

Data Bus - These are bidirectional signal paths which are used for data

transfers between the processor and external memory, as follows:

• For read operations (when -R/W - 0), the input data must be valid

before the falling edge of MCLK.

For write operations (when -R/W

.

while MCLK is low.

1), the output data will become valid

Data Bus Enable - When this input is low, the data bus drivers (D0-D31)
are put into a high impedance state (Note 1). The drivers will always be
high impedance except during write operations, and DBE may be left

unconnected in: systems which do not require the data bus for DMA or

similar activities (DBE is pulled high internally - see Notei2).

Fast Clock Input - When the VL86C020 CPU is accessing the cache, per-

forming an internal cycle, or communicating directly with the coprocessor, it

is clocked with the fast clock, FCLK. This is a free-running clock which is

independent of iMCLK; the maximum FCLK frequency is determined by the

speed of the processor/coprocessor combination.

3-9

VLSI Technology, inc. iUDMoniNiAmf
VL86C020

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (Com.)

Signal

Name
Pin

Number
Signal

Type
Signal

Description

-FIQ 17

-IRQ 18

LINE 10

IT

IT

OCZ

LOCK 11

-M0.-M1 12,16

OCZ

OCZ

MCLK 23

-MREQ 21

MSE

-OPC

19

74

-RESET 32

IC

OCZ

ITP

OCZ

IT

NOT Fast Interrupt Request - If FIQs are enabled, the processor will

respond to a low level on this input by taking the FIQ interrupt exception.

This is an asynchronous, level-sensitive input, and must be held low until a

suitable response is received from the processor.

Not Interrupt Request - As -FIQ, but with lower priority. May be taken low

asynchronously to interrupt the processor when the -IRQ enable is active.

Line Fetch Operation - This signal is driven high to signal that the CPU is

fetching a line of information for the cache. Line fetch operations always

read four words of data (aligned on a quad-word boundary), so the LINE

signal may be used to start a fast quad-word read from memory. The
signal changes while MCLK is high, and remains high throughout the line

fetch operation.

Locked Operation - When LOCK is high, the processor is performing a

"locked" memory access, and the memory manager should wait until LOCK
goes low before allowing another device to access the memory. LOCK
changes while MCLK is high, and remains high for the duration of the

locked memory accesses (data swap operation).

NOT Processor Mode - These output signals are the inverses of the

internal status bits indicating the processor operation mode (-M0, -M1):

1 1 - User Mode, 1 - FIQ Mode, 01 - IRQ Mode, 00 - Supervisor Mode).

-MO, -M1 change while MCLK is high.

Memory Clock Input - This clock times all VL86C020 memory accesses.

The low period of MCLK may be stretched when accessing slow peripher-

als; alternatively, the -WAIT input may be used with a free-running MCLK
to achieve the same effect.

NOT Memory Request - This is a pipelined signal that changes while

MCLK is low to indicate whether the following cycle will be active (proces-

sor accessing external memory) or latent (processor not accessing

external memory). An active cycle is flagged when -MREQ - 0.

Memory Request/Sequential Enable - When this input is low, the -MREQ
and SEQ cycle control outputs are put into a high impedance state (Note

1). MSE is provided to allow the memory request/sequential outputs to be

disabled while testing the VL86C020 in-circuit, and it should be left uncon-

nected for normal operation (MSE is pulled high internally - see Note 2).

Opcode Fetch - -OPC is driven low to indicate to the coprocessors that an

instruction will be broadcast on CPD0-CPD31 when CPCLK goes high.

-OPC is held valid when CPCLK is low, and changes when CPCLK is

high.

NOT Reset - This is a level sensitive input signal which is used to start the

processor from a known address. A low level will cause the instruction

being executed to terminate abnormally, and the cache to be flushed and

disabled. When -RESET becomes high, the processor will re-start from

address 0. -RESET must remain low for at least two FCLK clock cycles,

and eight MCLK clock cycles. During the low period the processor will

perform dummy instruction fetches from external memory with the address

incrementing from the point where -RESET was activated. The address

value will wrap around to zero if -RESET is held beyond the maximum
address limit.

3-10

VLSI Technology inc.

VL86C020
SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (Cont.)

Signal

Name
Pin

Number
Signal

Type

-R/W

SEQ

-TEST

-TRANS

-WAIT

VDD

GND

NC

20

35

34

ocz

ocz

ITP

OCZ

ITP

13,25,41,55,

78,87,102,122,
139,141, 159

15,24,39,53,
69, 80, 86, 90,

103,116, 129,

140,149,160

8,14,27,33,

48, 54, 67, 73,

88,94, 107,113,

128,134,147,153

Key to Signal Types:

Signal

Description

NOT Read/Write - When high this signal indicates a processor write
operation; when low, a read operation. The signal changes while MCLK is

high, and is valid by the start of the active cycle to whiclr it refers.

Sequential Address - This signal is the inverse of -MREQ, and is provided
for compatibility with existing ARM memory systems (VL86C020 has a
subset of VL86C010 bus operations; see Memory Interface section).

NOT Test - When this input is low, the VL86C020 enters:a special test
mode which is only used for off-board testing. -TEST must not be driven
low while the VL86C020 is in-circuit, but may be left unconnected as it is

pulled high internally (see Note 2).

NOT Memory Translate - When this signal is low it indicates that the
processor is in user mode, or that the supervisor is using; a single transfer
instruction withithe force translate bit active. It may be used to tell memory
management hardware when translation of the addresses should be turned
on, or as an indicator or non-user mode activity.

NOT Wait - When accessing slow peripherals, the VL86G020 can be made
to wait for an integer number of MCLK cycles by driving -WAIT low. Inter-
nally, -WAIT isiANDed with the MCLK clock, and must otily change when
MCLK is low. If -WAIT is not used in a system, it may be left unconnected
(it is pulled high internally - see Note 2).

Power supply: +5 V

Ground

I

No connect

IC

IT

ITP

OCZ
ITOTZ

CMOS-level input

TTL-level input

TTL-level input with pull-up resistor (Note 2)
3-state CMOS-level output

Bidirectional: 3-state TTL-level output; TTL-level input

Notes:

1

.

When output pads are placed in the high impedance state for long periods, care must be taken to ensure that they do not
tioat to an undefined logic level, as this can dissipate a lot of power, especially in the pads,

2. The "ITP" class of pads incorporate a pull-up resistor which allows: signals with normally high inputs to be left unconnected
The value of the pull-up resistor will fall within the range 10 kfl - 1 00 kQ.

3-11

VLSI Technology, inc.

VL86C020

PROGRAMMERS' MODEL
The VL86C020 processor has a 32-bit

data bus and a 26-bit address bus. The

processor supports two data types,

eight-bit byte and 32-bit words, where

words must be aligned on four byte

boundaries. Instructions are exactly

one word, and data operations (e.g.

ADD) are only performed on word

quantities. Load and store operations

can transfer either bytes or words. The

VL86C020 supports four modes of

operation, including protected supervi-

sor and interrupt handling modes.

BYTE SIGNIFICANCE
Some programming techniques may

write a 32-bit (word) quantity to mem-
ory, but will later retrieve the data as a

sequence of byte (8-bit) items. For

these purposes, the processor stores

word data in least-significant-first (LSB

first) order. This means that the least

significant bytes of a 32-bit word

occupies the lowest byte address. (The

VLSI Technology, Inc. assemblers,

none the less, display compiled data in

MSBs-first order, but for the sake of

clarity only. The internal machine

representation is preserved as LSBs-

first.)

REGISTERS
The processor has 27 registers (32-bits

each), 16 of which are visible to the pro-

grammer at any time. The visible

subset depends on the current proces-

sor mode; special registers are

switched in to support interrupt and

supervisor processing. The register

bank organization is shown in Table 1.

User mode is the normal program

execution state; registers R15-R0 are

directly accessible.

TABLE 1. REGISTER ORGANIZATION

RO General

R1 General

R2 General

R3 General

R4 General

R5 General

R6 General

R7 General

RS General FIQ

R9 General FIQ

R10 General FIQ

R11 General FIQ

R12(FP) General FIQ

R13(SP) General Supervisor IRQ FIQ

R14(LK) General Supervisor IRQ FIQ

R15(PC) (Shared by all Modes)

All registers are general purpose and

may be used to hold data or address

values, except that register R15

contains the Program Counter (PC) and

the Processor Status Register (PSR).

Special bits in some instructions allow

the PC and PSR to be treated together

or separately as required. Figure 1

shows the allocation of bits within R15.

R14 is used as the subroutine link

register, and receives a copy of R15

when a Branch and Link instruction is

executed. It may be treated as a

general purpose register at all other

times. R14_svc, R14_irq and R14_fiq

are used similarly to hold the return

values of R15 when interrupts and

exceptions arise, or when Branch and

Link instructions are executed within

supervisor or interrupt routines.

Typical Use

General Usage

Data Frame (by convention)

Stack Pointer (by convention)

R15 Save Area for BL or Interrupts

System Program Counter

TABLE 2. BYTE ADDRESSING

31

Byte Addr. 0003 Byte Addr. 0002 Byte Addr. 0001 Byte Addr. 0000

Byte Addr. 0007 Byte Addr. 0006 Byte Addr. 0005 Byte Addr. 0004

Word
Address
Valua

0000

0001

3-12

VLSI Technology; inc. PIF5IUWDDWIACW
VL86C020

FIQ Processing - The FIQ mode
(described in the Exceptions section)

has seven private registers mapped to

R14-R8 (R14_fiq-R8Jiq). Many FIQ
programs will not need to save any
registers.

IRQ Processing - The IRQ state has

two private registers mapped to R14
and R13 (R14_irq and R13_irq).

Supervisor Mode - The SVC mode
(entered on SWI instructions and other

traps) has two private registers mapped
to R14 and R13 (R14_svc and
R13_svc).

The two private registers allow the IRQ
and Supervisor modes each to have a
private stack pointer and line register.

Supervisor and IRQ mode programs
are expected to save the user state on
their respective stacks and then use the

user registers, remembering to restore

the user state before returning.

In user mode only the N, Z, C and V
bits of the PSR may be changed. The I,

F and Mode flags will change only when
an exception arises. In supervisor and

interrupt modes, all flags may be ma-
nipulated directly.

EXCEPTIONS
Exceptions arise whenever there is a
need for the normal flow of program
execution to be broken, so that (for

instance) the processor can be diverted

to handle an interrupt from a peripheral.

The processor state just pitior to

handling the exception must be
preserved so that the original program
can be resumed when the exception

routine has completed. Many excep-

tions may arise at the same time.

The processor handles exceptions by

using the banked registers to save
state. The old PC and PSR are copied

into the appropriate R14, and the PC
and processor mode bits are forced to a
value which depends on the exception.

Interrupt disable flags are set where
required to prevent unmanageable
nestings of exceptions. In the case of a
re-entrant interrupt handler, R1 4 should

be saved onto a stack in main memory
before re-enabling the interrupt. When
multiple exceptions arise simultane-

ously, a fixed priority determines the

order In which they are handled.

FIQ - The FIQ (Fast Interrupt Request)

exception is externally generated by

taking the -FIQ pin low. This input can
accept asynchronous transitions, and is

delayed by one clock cycle for synchro-

nization before it can affect the proces-

sor execution flow. It is designed to

support a data transfer or channel

process, and has sufficient! private

registers to remove the need for

register saving In such applications, so
that the overhead of context switching

is minimized. The FIQ exception may
be disabled by setting the F flag in the

FIGURE 1. PROGRAM COUNTER AND PROCESSOR STATUS REGISTER

31 26 25 16 15 2 1

N Z C V I F
I

|

I I I
|

I I I
|

I I I
|

I I I | I I I
|

I I

M

u
Program Counter
(Word Aligned)FIQ Disable

= Enable
1 = Disable

IRQ Disable

= Enable
1 = Disable

Overflow

Carry/Not Borrow/Rotate Extend
Zero

Negative/Signed Less Than

Processor'Mode —

I

00 = User Mode
01 = FIQ Mode
10 = IRQ Mode
11 = Supervisor Mode

PSR (but note that this is not possible

from user mode). If the F flag is clear,

the processor checks for a low level on
the output of the FIQ synchronizer at

the end of each instruction.

The impact upon execution of an FIQ
interrupt is defined in Table 3. The
return-from-interrupt sequence is also

defined there. This will resume
execution of the interrupted code
sequence, and restore the original

processor state.

IRQ - The IRQ (Interrupt Request)

exception is a normal interrupt caused
by a low level on the -IRQ pin. It has a
lower priority than FIQ, and is masked
out when a FIQ sequence is entered.

Its effect may be masked out at any
time by setting the I bit in the PC (but

note that this is not possible from user

mode). If the I flag is clear, the proces-

sor checks for a low level on the output

of the IRQ synchronizer at the end of

each instruction.

The impact upon execution of an IRQ
interrupt is defined in Table 3. The
return-from-interrupt sequence is also

defined there. This will cause execution

to resume at the instruction following

the interrupted one, restore the original

processor state, and reenable the IRQ
interrupt.

Address Exception Trap - An address
exception arises whenever a data

transfer is attempted with a calculated

address above 3FFFFPFH. The
VL86C020 address bus is 26-bits wide,

and an address calculation will have a
32-bit result. If this result has a logic

one in any of the top six bits, it is as-

sumed that the address is an error and
the address exception trap is taken.

Note that a branch cannot cause an
address exception, and a block data

transfer instruction which starts in the

legal area but increments into the illegal

area will not trap. The check is

performed only on the address of the

first word to be transferred.

When an address exception is seen,

the processor will respond as defined in

Table 3. The return-from-interrupt

sequence is also defined there. This

will resume execution of the interrupted

code sequence, and restore the original

processor state.

3-13

VLSI Technology, inc.

VL86C020

Normally, an address exception is

caused by erroneous code, and it is

inappropriate to resume execution. If a

return is required from this trap, use

SUBS PC, R14_svc, 4, as defined in

Table 3. This will return to the instruc-

tion after the one causing the trap.

Abort - The ABORT signal comes from

an external memory management

system, and indicates that the current

memory access cannot be completed.

For instance, in a virtual memory
system the data corresponding to the

current address may have been moved

out of memory onto a disc, and consid-

erable processor activity may be

required to recover the data before the

access can be performed successfully.

The processor checks for an abort at

the end of the first phase of each bus

cycle. When successfully aborted, the

VL86C020 will respond in one of three

ways:

1

.

If the abort occurred during an

instruction prefetch (a prefetch

abort), the prefetched instruction is

marked as invalid; when it comes

to execution, it Is reinterpreted as

below. (If the instruction is not

executed, for example as a result

of a branch being taken while it is

in the pipeline, the abort will have

no effect.)

2. If the abort occurred during a data

access (a data abort), the action

depends on the instruction type.

Data transfer instructions (LDR,

STR, SWP) are aborted as though

the instruction had not executed.

The LDM and STM instructions

complete, and if write back is set,

the base is updated. If the

instruction would normally have

overwritten the base with data (i.e.

LDM with the base in the transfer

list), this overwriting is prevented.

All register overwriting is prevented

after the abort is indicated, which

means in particular that R1 5 (which

is always last to be transferred) is

preserved in an aborted LDM
instruction.

3. If the abort occurred during an

internal cycle it is ignored.

Then, in cases (1) and (2), the proces-

sor will respond as defined in Table 3.

The return from Prefetch Abort defined

in Table 3 will attempt to execute the

aborting instruction (which will only be

effective if action has been taken to

remove the cause of the original abort).

A Data Abort requires any auto-

indexing to be reversed before returning

to re-execute the offending instruction.

The return is performed as defined in

Table 3.

The abort mechanism allows a demand
paged virtual memory system to be

implemented when a suitable memory
management unit (such as the

VL86C110) is available. The processor

is allowed to generate arbitrary ad-

dresses, and when the data at an

address is unavailable the memory
manager signals an abort. The
processor traps into system software

which must work olit the cause of the

abort, make the requested data

available, and retry the aborted

instruction. The application program

needs no knowledge of the amount of

memory available to it, nor is its state in

any way affected by the abort.

Software Interrupt - The software

interrupt is used for getting into supervi-

sor mode, usually to request a particu-

lar supervisor function. The processor

TABLE 3 EXCEPTION TRAP CONSIDERATIONS

Trap Type CPU Trap Activity Program Return Sequence

Reset

1.SaveR15inR14(SVC).

2. Force M1 , MO to SVC mode,

and set F & I status bits in PC.

3. Force PC to 0x000000.

(n/a)

Undefined

Instruction

1.SaveR15inR14(SVC).

2. Force M1 , M0 to SVC mode,

and set I status bit in the PC.

3. Force PC to 0x000004.

MOVS PC.R14 ;SVC'sR14.

Software

Interrupt

1.SaveR15inR14(SVC).

2. Force M1 , M0 to SVC mode,

and set I status bit in ihe PC.

3. Force PC to 0x000008.

MOVS PC.R14 ;SVC'sR14.

Prefetch

and Data

1.SaveR15inR14(SVC).

2. Force M1 , M0 to SVC mode,

and set I status bit in the PC.

3. Force PC to 0x00001 0-data.

Force PC to 0x0000C-Pre-.

Prefetch Abort:

SUBS PC, R14.4 ;SVC'sR14.

Aborts Data Abort:

SUBS PC, R14.8 ;SVC'sR14.

Address

Exception

1

.

Convert Stores to Loads.

2. Complete the instruction (see

text for details).

3.SaveR15inR14(SVC).

4. Force M1 , M0 to SVC mode,

and set I status bit in the PC.

5. Force PC to 0x000014.

SUBS PC, R1 4,4 ; SVC's R1 4.

(Returns CPU to address following

the one causing the trap.)

IRQ

1.SaveR15inR14(IRQ).

2. Force M1 , M0 to IRQ mode,

and set I status bit in the PC.

3. Force PC to 0x00001 8.

SUBS PC, R14.4 ; IRQ'sR14.

FIQ

1.SaveR15inR14(FIQ).

2. Force M1 , M0 to FIQ mode,

and sat the F and I status bits

in the PC.

3. Force PC to 0x00001 C.

SUBS PC, R14.4 ;FIQ'sR14.

3-14

VLSI Technology inc.

response to the (SWI) instruction is

defined in Table 3, as is the method of

returning. The indicated return method
will return to the instruction following the
SWI.

Undefined Instruction Trap - When
VL86C020 executes a coprocessor
instruction or the undefined instruction,

it offers it to any coprocessors which
may be present. If a coprocessor can
perform this instruction but is busy at

that moment, the processor will wait

until the coprocessor is ready. If no
coprocessor can handle the instruction

the VL86C020 will take the undefined
instruction trap.

The trap may be used for software

emulation of a coprocessor in a system
which does not have the coprocessor
hardware, or for general purpose
instruction set extension by software

emulation.

When the undefined instruction trap is

taken the VL86C020 will respond as
defined in Table 3. The return from this

trap (after performing a suitable

emulation of the required function),

defined in Table 3 will return to the
instruction following the undefined

instruction.

Reset - When -RESET goes high, the
processor will stop the currently

executing instruction and start execut-

ing no-ops. When -RESET goes low
again it will respond as defined in Table
3. There Is no meaningful return from
this condition.

Vector Table - The conventional

means of Implementing an interrupt

dispatch function is to provide a table of

jumps to the appropriate processing
table, as follows:

iyiitiGMifW
VL86C020

Address Function

0000000 Reset
0000004 Undefined Instruction

0000008 Software Interrupt

ooooooc Abort (Prefetch)

0000010 Abort (Data)

0000014 Address Exception
000001

8

IRQ
000001 c FIQ

These are byte addresses, and each
contains a branch instruction pointing to

the relevant routine. The FIQ routine

might reside at 000001C onwards, and
thereby avoid the need for (and
execution time of) a branch instruction.

Exception Priorities - When multiple

exceptions arise at the same time, a
fixed priority system determines the

order in which they will be handled:

1 * Reset (highest priority)

2. Address Exception, Data Abort
3. FIQ
4. IRQ
5. Prefetch Abort

6. Undefined Instruction, Software
Interrupt (lowest priority)

Note that not all exceptions can occur
at once. Address exception and data
abort are mutually exclusive, since if an
address is illegal, the processor ignores
the ABORT Input. Undefined instruc-

tion and software interrupt are also

mutually exclusive since they each
correspond to particular (non-overlap-

ping) decodings of the current Instruc-

tion.

If an address exception or data abort

occurs at the same time as a FIQ, and
FIQs are enabled i.e. the F flag in the

PSR is clear, the processor will enter

the address exoeption or data abort

handler and then Immediately proceed
to the FIQ vector. A normal return from
FIQ will cause the address exception or
data abort handler to resume execution.
Placing address exception and data

abort at a higher priority than FIQ is

necessary to ensure that the transfer

error does not escape detection, but the
time for this exception entry should be
reflected in worst case FIQ latency cal-

culations.

Interrupt Latencies - The worst case
latency for FIQ, assuming that it is

enabled, consists of the longest time
the request can take to pass through
the synchronizer (Tsyncmax), plus the
time for the longest instruction to

complete (Tldm, the Ibngest instruction

is load multiple registers), plus the time
for address exception or data abort _
entry (Texc), plus theitime for FIQ entry I
(Tfiq). At the end of this time the I
processor will be executing the instruc-

tion at 1C.

Tsyncmax is 2.5 processor cycles, Tldm
is 18 cycles, Texc is three cycles, and
Tfiq is two cycles. The total time is,

therefore, 25.5 processor cycles, which
is just over 2.5 microseconds in a
system using a continuous 10 MHz
processor clock. In a iDRAM based
system running at 4 and 8 MHz, for

example using the VU86C110, this time
becomes 4.5 microseconds, and if bus
bandwidth is being used to support
video or other DMA activity, the time will

increase accordingly.

The maximum IRQ latency calculation

is similar, but must allow for the fact

that FIQ has higher priority and could
delay entry into the IRQ handling

routine for an arbitrary length of time.

The minimum lag for interrupt recogni-

tion for FIQ or IRQ consists of the
shortest time the request can take
through the synchroniser (Tsyncmin)
plus Tfiq. This is 3.5 processor cycles.

The FIQ should be held until the mode
bits indicate FIQ mode. It may be
safely held until cleared by an I/O

instruction in the FIQ service routine.

3-15

VLSI Technology, inc.

VL86C020

INSTRUCTION SET
All VL86C020 instructions are condi-

tionally executed, which means that

their execution may or may not take

place depending on the values of the N,

Z, C and V flags in the PSR at the end

of the preceding instruction.

If the ALways condition is specified, the

instruction will be executed irrespective

of the flags, and likewise the Never

condition will cause it not to be exe-

cuted (it will be a no-op, i.e. taking one

cycle and having no effect on the proc-

essor state).

The other condition codes have

meanings as detailed above, for

instance, code 0000 (EQual) causes

the instruction to be executed only if the

Z flag is set. This would correspond to

the case where a compare (CMP)

instruction had found the two operands

were different, the compare instruction

would have cleared the Z flag, and the

instruction would not be executed.

FIGURE 2. CONDITION FIELD

31
I I I

Condx
I I I

24 23 16 15

I I I I I I I I I I I

(Any Instruction)

B 7
I I | I I ID

b Condition Field

0000 = EQ - Z set (equal)

0001 = NE - Z clear (not equal)

0010 = CS - C set (unsigned higher or same)

001

1

= CC - C clear (unsigned lower)

0100 = Ml - N set (negative)

0101 = PL - N clear (positive or zero)

01 10 - VS - V set (overflow)

0111 = VC - V clear (no overflow)

1 000 = HI - C set and Z clear (unsigned higher)

1001 = LS - C clear or Z set (unsigned lower or same)

1010 = GE - N set and V set, or N clear and V clear (greater or equal)

101

1

= LT - N set and V clear, or N clear and V set (less than)

1 100 - GT - Z clear, and either N set and V set, or N clear and V clear (greater than)

1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal)

1110 = AL - Always
1111 -NV - Never

Branch and Branch with Link (B, BL)

The B, BL instructions are only exe-

cuted if the condition field is true.

All branches take a 24-bit offset. The

offset is shifted left two bits and added

to the PC, with overflows being ignored.

The branch can therefore reach any

word aligned address within the

address space. The branch offset must

take account of the prefetch operation,

which causes the PC to be two words

ahead of the current instruction.

Link Bit - Branch with Link writes the

old PC and PSR into R14 of the current

bank. The PC value written into the link

FIGURE 3. BRANCH AND BRANCH WITH LINK (B, BL)

31 28 27 24 23 _^
._
| I IMill

Condx 10 1

'I I I I I I I I I I I
I

PC-Relative Offset I

TT T^
Condition

Field

Unk Bit

= Branch
1 = Branch With Link (Subroutine call)

register (R14) is adjusted to allow for

the prefetch, and contains the address

of the instruction following the branch

and link instruction.

Return from Subroutine - When
returning to the caller, there is an option

to restore or to not restore the PSR.

The following table illustrates the

available combinations.

Link Register Valid

Restoring PSR: MOVS PC.R14

Not Restoring PSR: MOV PC.R14

Link Saved to a Stack

LDM Rnl, (PC)*

LDM Rnl, (PC)

Assembler Syntax:

B(L){cond}

where L

cond

expression

<expression>

is used to request the Branch-with-Link form of the instruction.

If absent, R1 4 will not be affected by the instruction,

is a two-character mnemonic as shown in Condition Code section (EQ, NE,

VS, etc.). If absent then AL (Always) will be used,

is the destination. The assembler calculates the relative (word) offset.

Items in { } are optional. Items in <> must be present.

3-16

VLSI Technology, inc. L^EUIIOIMW
VL86C020

Examples:
Hore BAL Here

B There

CMP
BEQ

R1.0

Fred

BL ROM + Sub

ADDS
BLCC

R1.1

Sub

BLNV Sub

Assembles to EAFFFFFE; (Note effect of PC offset)

Always condition used as default

Compare register one with zero, and branch to Fred if

register one was zero. Else continue next instruction.

Unconditionally call subroutine at computed address.

Add one to register one, setting PSR flags on the result.

Call Sub if the C flag is clear, which will be the case unless

R1 contained FFFFFFFFH. Else continue next instruction.

Never call subroutine (this is a NO-OP).

E

3-17

VLSI Technology, inc. PUELW
VL86C020

FIGURE 4. ALU INSTRUCTION TYPES

31 28 25
I I I I I

Condx I

20
I I "I"

Opcode S
I I I

Rn

16 15
I I I

Rd

12 11

I I I I I I I I I I

Operand 2

Condition

Code

Immediate Value -
= Operand 2 Is a register.

1 - Operand 2 is an
immediate value.

Operation Code

b Destination Register

1st Operand Register

_Set Condition Codes
= Do not alter condition codes

1 = Set condition codes (S suffix)

0000 = AND - Rd = Op1 AND Op2
0001 = EOR - Rd . Op1 EOR Op2
001 = SUB - Rd = Op1 - Op2
001

1

= RSB - Rd = Op2 - Opl
0100 = ADD - Rd = Op1 + Op2
0101 = ADC - Rd = Op1 + Op2 + C
0110 = SBC - Rd = Op1 - Op2 + C
01 1

1

- RSC - Rd - Op2 - Op1 + C
1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 =CMN -set condition codes on Op1 +Op2
1100 = ORR - Rd = Op1 OR Op2
1101 =MOV-Rd = Op2
1110 = BIC - Rd = Op1 AND not Op2
1111= MVN - Rd = not Op2

Imm

11T
= 1 -> Operand 2 is an Immediate value.

8 7
FT

Rotate
I I I I I I I

Immediate

Unsigned 8-bit Immediate value

Right-rotate amount to be applied

to 8-bit Imm (2-bit shift units).

Imm = --> Operand 2 is In a re<

11 4 3 6~
i i i r

Shift Field
I I I

Rm

11 5 4 11

r 2nd Operand Register

5 4'TTT
Rs

I

1

Shift applied to Rm (as shown
in below expansion figures).

t
Shift Amount

Shift amount is a 5-bit

unsigned integer.

Shift Amount
Shift amount is specified

in bottom byte of Rs.

Shift Type
00 = Logical Left (LSL)
01 = Logical Right (LSR)
10 = Arithmetic Right (ASR)
1

1

- Rotate Right (ROR)

ALU Instructions - The ALU-type
instruction is only executed if the

condition is true. The various condi-

tions are defined in Condition Field

Section.

The instruction produces a result by
performing a specified arithmetic or

logical operation on one or two oper-

ands. The first operand is always a

register (Rn). The second operand may
be a shifted register (Rm) or a rotated

8-bit immediate value (Imm) according

to the value of the I bit in the instruction.

The condition codes in the PSR may be
preserved or updated as a result of this

instruction, according to the value of the

S bit in the instruction. Certain opera-

tions (TST, TEQ, CMP, CMN) do not

write the result to Rd. They are used
only to perform tests and to set the

condition codes on the result, and
therefore, should always have the S bit

set. (The assembler treats TST, TEQ,
CMP and CMN as TSTS, TEQS, CMPS
and CMNS by default.)

3-18

VLSI Technology, inc.

VU86C020

DATA PROCESSING OPERATIONS

Assembler
Mnemonic Opcode
AND 0000

EOR 0001

SUB 0010

RSB 0011

ADD 0100

ADC 0101

SBC 0110

RSC 0111

TST 1000

TEQ 1001

CMP 1010

CMN 1011

ORR 1100

MOV 1101

BIC 1110

MVN 1111

Action

Bit-wise logical AND of operands

Bit-wise logical Exclusive Or of operands

Subtract operand 2 from operand 1

Subtract operand 1 from operand 2

Add operands

Add operands plus carry (PSR C flag)

Subtract operand 2 from operand 1 plus carry

Subtract operand 1 from operand 2 plus carry

as AND, but result is not written

as EOR, but result Is not written

as SUB, but result is not written

as ADD, but result is not written

Bit-wise logical OR of operands

Move operand 2 (operandi is ignored)

Bit clear (bit-wise AND of operand 1 and NOT operand 2)

Move NOT operand 2 (operand 1 is ignored)

PSR Flags - The operations may be

classified as logical or arithmetic. The
logical operations (AND, EOR, TST,

TEQ, ORR, MOV, BIC, MVN) perform

the logical action on all corresponding

bits of the operand or operands to

produce the result. If the S bit is set

(and Rd is not R15), the V flag in the

PSR will be unaffected, the C flag will

be set to the carry out from the barrel

shifter (or preserved when the shift

operation is LSL 0), the Z flag will be

set if and only if the result is all zeros,

and the N flag will be set to the logical

value of bit 31 of the result.

The arithmetic operations (SUB, RSB,

ADD, ADC, SBC, RSC, CMP, CMN)
treat each operand as a 32-bit integer

(either unsigned or 2's complement

signed, the two are equivalent). If the S
bit is set (and Rd is not R15) the V flag

in the PSR will be set if an overflow

occurs into bit 31 of the result; this may
be ignored if the operands were

considered unsigned, but warns of a

possible error if the operands were 2's

complement signed. The C flag will be

set to the carry out of bit 31 of the ALU,

the Z flag will be set if and only if the

result was zero, and the N flag will be

set to the value of bit 31 of the result

(indicating a negative result if the

operands are considered to be 2's

complement signed).

Shifts - When the second operand is

specified to be a shifted register, the

operation of the barrel shifter is

controlled by the shift field! in the in-

struction. This field indicates the type

of shift to be performed (logical left or

right, arithmetic right or rotate right).

The amount by which the register

should be shifted may be contained in

an immediate field in the instruction, or

in the bottom byte of another register as

shown in Figure 4.

When the shift amount is specified in

the instruction, it is contained in a 5-bit

field which may take any value from

to 31 . A logical shift left (LSL) takes the

contents of Rm and moves each bit by

the specified amount to- a more signifi-

cant position. The least significant bits

of the result are filled with zeros, and

the high bits of Rm which do not map
into the result are discarded, except

that the least significant discarded bit

becomes the shifter carry output which

may be latched into the: C bit of the

PSR when the ALU operation is in the

logical class. (See Data Processing

Operations above.) For example, the

effect of LSL 5 is:

FIGURES. LOGICAL SHIFT LEFT (LSL)

31 24 23 16 15

Carry

8 7
I i I I I

Contents of Rm, which will appear (shifted) in Operand ,2

Carry Flag

Bit 27

31 24 23 16 15 8 7
I I I I I I I

•

I I I I I I I I I I I I I I I I I I I |l I I I

' Lower 27 bits of Rm '-

Example of shifted result in Operand 2 (shifted content of Rm)

Note that LSL is a special case,

where the shifter carry out: is the old

value of the PSR C flag. The contents

of Rm are used directly as! the second

operand.

A Logical Shift Right (LSR) is similar,

but the contents of Rmiare moved to

less significant positions in the result.

LSR 5 has the effect shown in Figure 6.

3-19

VLSI Technology, inc.

VL86C020
FIGURE 6. LOGICAL SHIFT RIGHT (LSR)

31 2423 1615 87
I I I I

|
I I I I I I I

|
I I I I I I I

|
I I I I | | I

TT

31

I I I I

Contents of Rm, which will appear (shifted) in Operand 2

2423 1615 8 7
I I I I I I I I I I I I I 1 I I

1 Upper 27 bits of Rm
I I I I I I I I I

—
Carry

Carry Flag

—
Bit 4

Example of shifted result in Operand 2 (shifted content of Rm)

The form of the shift field which might

be expected to correspond to LSR is

used to encode LSR 32, which has a

zero result with bit 31 of Rm as the

carry output. Logical shift right zero is

redundant as it is the same as logical

shift left zero. Therefore, the assembler

converts LSR 0, and ASR 0, and ROR
into LSL 0, and allows LSR 32 to be

specified.

The Arithmetic Shift Right (ASR) is

similar to logical shift right, except that

the high bits are filled with replicates of

the sign bit (bit 31) of the Rm register,

instead of zeros. This signed shift

preserves the correct representation of

a (signed) negative integer to be
divided by powers of two via a right

shift. For example, ASR 5 has the

following effect:

FIGURE 7. ARITHMETIC SHIFT RIGHT (ASR)

31 24 23 16 15 8 7
I I

'

sign

Carry

extend
Contents of Rm, which will appear (shifted) in Operand 2

31 24 23
3T3T3T3T3
11111

1615 87
3I I

Carry Flag

(Sign extended) upper 27 bits of Rm Bit 4

Example of shifted result in Operand 2 (shifted content of Rm)

The form of the shift field which might

be expected to give ASR is used to

encode ASR 32. Bit 31 of Rm is again

used as the carry output, and each bit of

operand 2 is also equal to the sign bit

(bit 31) of Rm. The result is, therefore,

all ones or all zeros according to the

value of bit 31 of Rm.

Rotate Right (ROR) operations reuse
the bits which "overshoot" in a logical

shift right operation by wrapping them
around at the high end of the result.

For example, the effect of a ROR 5 is:

FIGURE 8. ROTATE RIGHT (ROR)

31 24 23 16 15 8 7
I I I I I I I

|

I I I I I I I
|

I I I I I I I

|

I I I I I I I

Contents of Rm, which will appear (shifted) in Operand 2

Carry

31 24 23 16 15 8 7
Carry Flag

lolo 1 to

Bit 44 3 2 10
3l I lo
1 ' Upper 27 bits of Rm value 5

Example of shifted result in Operand 2 (shifted content of Rm)

3-20

VLSI Technology inc. PlMUMOLM^Y
VL06CO2O

The form of the shift field which might

be expected to give ROR is used to

encode a special function of the barrel

shifter, rotate right extended (RRX). of the 33-bit quantity formed by append-
This is a rotate right by one-bit position ing the PSR C flag to the most signifi-

cant end of the contents of Rm:

FIGURE, 9. ROTATE RIGHT EXTENDED (RRX)

31 24 23 16 15 8 7

1

—

1 II II 1 l| 1 —
Carry

Contents of Rm, which will appear (shifted) in Operand 2

Register-Based Shift Counts - Only

the least significant byte of the contents

of Rs is used to determine the shift

amount. If this byte is zero, the un-

changed contents of Rm will be used as

the second operand, and the old value

of the PSR C flag will be passed on as
the shifter carry output.

If the byte has a value between 1 and

31 , the shifted result will exactly match

that of an instruction specified shift with

the same value and shift operation.

Shifts of 32 or More - The result will

be a logical extension ofthe shifting

processes described above:

Shift Action

LSL by 32
LSL by more than 32
LSR by 32
LSR by more than 32
ASR by 32 or more
ROR by 32
ROR by more than 32

Result zero, carry out equal to bit zero of Rm.
Result zero, carry out zero.

Result zero, carry out equal to bit 31 of Rm.
Result zero, carry out zero.

Result filled with, and carry out equal to, bit 31 of Rm.
Result equal to Rm, and carry out equal to, bit 31 of Rm.
Same result and carry out as ROR by n-32. Therefore, repeatedly

subtract 32 from count until within the range one to 32.

Note: The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause the instruction

to be a multiply or an undefined instruction.

Immediate Operand Rotation - The
immediate operand rotate field Is a 4-bit

unsigned integer which specifies a shift

operation on the 8-bit immediate value.

The immediate value is zero extended

to 32 bits, and then subject to a rotate

right by twice the value in the rotate

field. This enables many common
constants to be generated, for example
all powers of 2. Another example is

that the 8-bit constant may be aligned

with the PSR flags (bits 0, 1 , and 26 to

31). All the flags can thereby be
initialized in one TEQP instruction.

Writing to R15 - When Rd is a register

other than R15, the condition code flags

in the PSR may be updated from the

ALU flags as described above. When
Rd is R1 5 and the S flag in the instruc-

tion is set, the PSR is overwritten by the

corresponding bits in the ALU result, so
bit 31 of the result goes to the N flag, bit

30 to the Z flag, and 29 to the C flag

and bit 28 to the V flag. In user mode
the other flags (I, F, M1, MO) are

protected from direct change, but in

non-user modes these will also be
affected, accepting copies of bits 27,

26, 1 and of the result respectively.

When one of these instructions is used
to change the processor mode (which is

only possible in a non-user mode), the

following instruction should not access

a banked register (R8-R1 4) during its

first cycle. A no-op should be inserted if

the next instruction must access a
banked register. Accesses to the

unbanked registers (R0-R7 and R15)
are safe. This restriction is required for

the VL86C010 processor and does not

apply to VL86C020, but should be
adhered to for compatibility.

If the S flag is clear when Rd is R1 5,

only the 24 PC bits of R15 will be
written. Conversely, if the instruction is

of a type which does not normally

produce a result (CMP, CMN, TST,
TEQ) but Rd is R15 andithe S bit is set,

the result will be used to> update those

PSR flags which are nonprotected by

virtue of the processor mode.

Setting PSR Bits - It is suggested that

TEQP be used to set PSR bits in SVC
mode. Because these bits are not

presented to the ALU input (even when
R15 is the operand), theTEQP's
operands replace all current PSR bits.

For example, to remain iri SVC mode
but set the interrupt-disable bits, use a

"TEQP PC, Ox C000003" instruction.

3-21

VLSI Technology, inc. PBELOWDONL
VL86C020

R15 as an Operand - If R15 is used as

an operand in a data processing

instruction It can present different

values depending on which operand

position it occupies. It will always

contain the value of the PC. It may or

may not contain the values of the PSR
flags as they were at the completion of

the previous instruction.

When R15 appears in the Rm position it

will give the value of the PC together

with the PSR flags to the barrel shifter.

When R15 appears in either of the Rn

or Rs positions it will give the value of

the PC alone, with the PSR bits

replaced by zeros.

The PC value will be the address of the

instruction, plus 8 or 12 bytes due to

instruction prefetching. If the shift

amount is specified in the instruction,

the PC will be 8 bytes ahead. If a

register is used to specify the shift

amount, the PC will be 8 bytes ahead

when used as Rs, and 12 bytes ahead

when used a Rn or Rm.

Assembler Syntax:

MOV, MVN single operand instructions:

<opcode>{cond}{S} Rd,<Op2>

CMP, CMN, TEQ, TST - instructions not producing a result:

<opcode>(cond}(P} Rn,<Op2>

AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, ORR, BIC:

<opcode>{cond}{S} Rd, Rn, <Op2>

where OpZ Is Rm{<shift>} or, <exprassion>

cond Two-character condition mnemonic, see Condition Code section.

S Set condition codes if S present (implied for CMP, CMN, TEQ, TST).

P Make Rd - R1 5 in Instructions where Rd Is not specified, otherwise Rd will

default to RO. (Used for changing the PSR directly from the ALU result.)

Are any valid register name, such as R0-R15, PC, SP, or LK.

Is <shiftname> <registor>ox <shiftname> express/on, or RRX (rotate right

one bit with extend).

Are any of: ASL, LSL, LSR, ASR, or ROR.

Note: If <expresslon> is used, the assembler will attempt to generate a shifted immediate eight-bit field to match the expression.

If this is impossible, it will give an error.

Rd, Rn and Rm
<shift>

<shiftname>s

Examples:

ADDEQ R2, R4, R5

TEQS R4.3

SUB R4, R5, R7 LSR R2

TEQP R15, 0;

MOVNV RO, RO

MOV PC, LK

MOVS PC, R14

Equivalent to: if (ZFLAG) R2 = R4+R5.

Test R4 for equality with 3 (The S is redundant, as the assembler

assumes it). Equivalent to: ZFLAG = R4=«3.

Logical Right Shift R7 by the number in the bottom byte of R2, subtract

the result from R5, and put the answer into R4.

Equivalent to: R4 - R5 - (R7»R2).

(Assume non-user mode here). Change to

user mode and clear the N,Z,C,V,I, and F

flags. Note that R15 is in the Rn position, so

it comes without the PSR flags.

Equivalent to: R15 - FLAGS = 0.

Is a no-op, avoiding mode-change hazard.

Equivalent to: RO - RO.

Equivalent to: PC - LK, or PC-R14.
Return from subroutine (R14 is an active one).

Equivalentto: PC, PSR-R14.
Return from subroutine, restoring the status.

3-22

VLSI Technology inc.

VL86C020

FIGURE 10. MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

31 28 27 22 19 16 15 8 7TTT
Condx o io A S

TT
Rd Rn

I I I

Rs
I I I I I I I

M 1 Rm

Conditional Execution

Control Field

L_J
Operand registers

MUL: Rd = Rm * Rs (Rn Is Ignored)

MLA: Rd = Rm*Rs + Rn

Set Condition Codes
= Do not alter Condition Codes

1 = Set Condition Codes

Accumulate bit (MLA specifier)

= Multiply (MUL)
1 = Multiply and Accumulate (MLA)

The multiply and multiply-accumulate

instructions use a 2-bit Booth's algo-

rithm to perform integer multiplication.

They give the least significant 32 bits of

the product of two 32-bit operands, and

may be used to synthesize higher

precision multiplications.

The multiply form of the instruction

gives Rd - Rm*Rs. Rn is ignored, and

should be set to zero for compatibility

with possible future upgrades to the

instruction set.

The multiply-accumulate form gives

Rd - Rm*Rs+Rn, which can save an

explicit ADD instruction in some
circumstances.

Both forms of the instruction work on

operands which may be considered as

signed (2's complement) or unsigned

integers.

Operand Restrictions - Due to the way
the Booth's algorithm has been
implemented, certain combinations of

operand registers should be avoided.

(The assembler will issue a warning if

these restrictions are violated.)

The destination register (Rd) should not

be the same as the Rm operand

register, as Rd is used to hold interme-

diate values and Rm is used repeatedly

during the multiply. A MUL will give a

zero result if Rm-Rd, and a MLA will

give a meaningless result.

The destination register Rd should also

not be R15, as it is protected from

modification by these instructions. The
instruction will have no effect, except

that meaningless values will be placed

in the PSR flags if the S bit is set. All

other register combinations will give

correct results, and Rd, Rh and Rs may
use the same register when required.

PSR Flags - Setting the PSR flags is

optional, and is controlled by the S bit in

the Instruction. The N and Z flags are

set correctly on the result (N is equal to

bit 31 of the result, Z is set if and only if

the result is zero), the V flag is unaf-

fected by the instruction (as for logical

data processing instructions), and the C
flag Is set to a meaningless value.

Writing to R15 - As mentioned previ-

ously, R15 must not be used as the

destination register (Rd). If it is so

used, the instruction will have no effect

except possibly to scramble the PSR
flags.

R15 As an Operand - R15 may be

used as one or more of the operands,

though the result will rarely be useful.

When used as Rs the PC bits will be

used without the PSR flags, and the PC
value will be 8 bytes advanced from the

address of the multiply instruction.

When used as Rn, the PC bits will be

used along with the PSR flags, and the

PC will again be 8 bytes advanced from

the address of the instruction. When
used as Rm, the PC bits will be used

together with the PSR flags, but the PC
will be the address of the instruction

plus 12 bytes in this case.

3-23

VLSI Technology, inc.

VL86C020

Assembler Syntax:

where

MUL{cond}{S}

MLA {cond}{S}

cond
S
Rd, Rm, Rs and Rn

Rd, Rm, Rs
Rd, Rm, Rs, Rn

Is a two-character condition code mnemonic
Set condition codes if present.

Are valid register mnemonics, such as R0-R15, SP, LK, or PC.

Notes:

Rd must not be R15 (PC), and must not be the same as Rm.
Items in {} are optional. Those in <> must be present.

Examples:

MUL
MLAEQS

R1 , R2, R3 ; R1 - R2 * R3. (R1 ,R2,R3 = Rd.Rm.Rs)
R1 , R2, R3, R4 ; Equivalent to: if (ZFLAG) R1 = R2*R3 + R4.

; Condition codes are set, based on the result.

The multiply instruction may be used to synthesize higher precisian multiplications.

For instance, multiply two 32-bit integers and generate a 64-bit result:

MOV R0.R1 LSR16 R0 (temporary) = top half of R1

.

MOV R4, R2LSR16 R4 - top half of R2.

BIC R1,R1,R0LSL16 R1 - bottom half of R1.

BIC R2, R2, R4LSL16 R2 - bottom half of R2.

MUL R3, RO, R2 Low section of result.

MUL R2, RO, R2 Middle section of result.

MUL R1.R4, R1 Middle section of result.

MUL R4, RO, R4 High section of result.

ADDS R1.R2, R1 Add middle sections. (MLA not used, as we need R3 correct)

ADDCS R4.R4, 0x10000 Carry from above add.

ADDS R3, R3, R1 LSL16 R3 is now bottom 32 product bits.

ADC R4, R4, R1 LSR16 R4 is now top 32 bits.

Notes:

1

.

R1 , R2 are registers containing the 32-bit integers. R3, R4 are registers for the 64-bit result.

2. R0 is a temporary register.

3. R1 and R2 are overwritten during the multiply.

3-24

VLSI Technology, inc.

VL86C020
Load/Store Value from Memory
(LDR.STR) - The register load/store

instructions are used to load or store

single bytes or words of data. The LDR
and STR instructions differ from MOV
instructions in that they move data

between registers and a specified

memory address. In contrast, the MOV
instructions move data between

registers, or move a constant (con-

tained in the instruction) into a register.

The memory address used in LDR/STR
transfers is calculated by adding an
offset to or subtracting an offset from a
base register. Typically, a load of a
labeled memory location involves the

loading via a (signed) offset from the

current PC. Regardless of the base
register used, the result of the offset

calculation may be written back into the

base register if "auto-indexing" is

required.

Offsets and Auto-Indexing - The
offset from the base may be either a 12-

bit binary immediate value in the

instruction, or a second register

(possibly shifted in some manner). The
offset may be added to (U=1) or

subtracted from (U=0) the base register

Rn. The offset modification may be
performed either before (pre-indexed,

P=1) or after (post-indexed, P=0) the

base is used as the transfer address.

The W bit gives optional auto increment

and decrement addressing modes. The
modified base value may be written

back into the base (W-1), or the old

base value may be kept (W-0). In the

case of post-indexed addressing, the

write back bit is redundant, since the

old base value can be retained by
setting the offset to zero. Therefore,

post-indexed data transfers always

write back the modified base.

Hardware Address Translation The
only use of the W bit in* a post-indexed

data transfer is in non-user mode code,

where setting the W bit; forces the

-TRANS pin to go low for the transfer,

allowing the operating system to

generate a user address in a system

where the memory management
hardware makes suitable use of this

pin, as when the MEMffi chip is used.

Shifted Register Offset - The eight

shift control bits are described in the

data processing instructions, but the

register specified shift amounts are not

available in this instruction class.

Bytes and Words - This instruction

class may be used to transfer a byte

(B-1) or a word (B»0) between a
VL86C020 register and: memory. In the

discussion, remember that the

VL86C020 stores words into memory
with the Least Significant Byte at the

lowest address (i.e., LSB first).

FIGURE 11. SINGLE DATA TRANSFER (LDR, STR)

31 28 25 20 16 15 12 11
I I I

Condx
I

1 I p u B W L
I I I

Rn
I I I

Rd
I I I I I I I I I I I

Operand 2

Condition
Code

L . Source/Destination Register

Base Register

I— Load/Store: - STR, 1 - LDR

I Write Back Bit

= No write back
1 = Write address back into base (I).

Byte/Word Bit

= Word transfer

1 = Byte transfer (B)

Up/Down Bit

- Offset is negative
1 - Offset Is positive

Pre/Post Indexing
- Post: [base],lndex

1 - Pre: [basejndex]

Immediate Value
1 = Operand 2 is a register.

= Operand 2 Is an
immediate value.

Imm = --> Operand 2 is an Immediate value.

11

I I I I I I I I I

Unsigned 12-bit value

Imm - 1 -> Operand 2 is in a register.

11 7 6 5 4 3
I I I

I

I I I I

Rm

u
Shift Amount

Shift amount is a 5-bit

shift count, to be applied

to the Rm register.

J

-2nd Operand Register

L Shift Type

00- Logical jLeft (LSL)
01 "LogicaliRight (LSR)
10 -Arithmetic Right (ASR)
1 1 > Rotate Sight (ROR)

3-25

VLSI Technology, inc.

VL86C020

Non-Allgned Addresses - A byte load

(LDRB) expects the data on bits D7 to

DO if the supplied address is on a word

boundary, on bits D1 5 to D8 if it is a

word address plus one byte, and so on.

The selected byte is placed in the

bottom eight bits of the destination

register, and the remaining bits of the

register are filled with zeros.

A byte store (STRB) repeats the bottom

eight bits of the source register four

times across the data bus. The external

memory system should activate the

appropriate byte subsystem to store the

data.

Non-Allgned Accesses - A word load

(LDR) should generate a word aligned

address. An address offset from a word

boundary will cause the data to be

rotated into the register so that the

addressed byte occupies bits D7 to DO.

See the below example.

External hardware could perform a

double access to memory to allow non-

aligned word loads, but the VL86C1 1

Memory Controller does not support this

function.

Use of R15 - These instructions will

never cause the PSR to be modified,

even when Rd or Rn is R15.

If R15 is specified as the base register

(Rn), the PC is used without the PSR
flags. When using the PC as the base

register one must remember that it

contains an address 8 bytes advanced

from the address of the current instruc-

tion.

If R15 is specified as the register offset

(Rm), the value presented will be the

PC together with the PSR.

When R15 is the source register (Rd) of

a register store (STR) instruction, the

value stored will be the PC together

with the PSR. The stored value of the

PC will be 1 2 bytes advanced from the

address of the instruction. A load

register (LDR) with R15 as Rd will

change only the PC, and the PSR will

be unchanged.

Address Exceptions - If the address

used for the transfer (i.e. the unmodified

contents of the base register for post-

indexed addressing, or the base

modified by the offset for pre-indexed

addressing) has a logic one in any of

the bits D31 to D26, the transfer will not

take place and the address exception

trap will be taken.

Note that only the address actually

used for the transfer is checked. A
base containing an address outside the

legal range may be used in a pre-

indexed transfer if the offset brings the

address within the legal range. Like-

wise, a base within the legal range may
be modified by post-indexing to outside

the legal range without causing an

address exception.

Data Aborts - A transfer to or from a

legal address may still present special

cases for a memory management
system. For instance, in a system

which uses virtual memory, the required

data may be absent from main memory.

The memory manager can signal a

problem by taking the processor

ABORT pin high, whereupon the data

transfer instruction will be prevented

from changing the processor state and

the data abort trap will be taken. It is up

to the system software to resolve the

cause of the problem. The instruction

can be restarted and the original

program continued.

Cache Interaction - When the cache is

turned on, a data load operation (LDR,

LDRB) will read data from the cache if it

is present. If the cache is turned off, or

does not contain the required data, the

external memory is accessed.

A data store operation (STR, STRB) will

always cause an immediate external

write to allow the external memory
manager to abort the access if it is

illegal. If the write operation is not

aborted, and the cache contains a copy

of data from the address being written

to, the cache will be automatically

updated with the new byte or word of

data. This updating occurs even when
the cache is turned off (to maintain

cache consistency), but can be disabled

by programming the updateable control

register appropriately. (See Cache

Operation.)

Example: Read two 1 6-bit values from an I/O port, merging into a 32-bit word.

MASK: DW OxFFFF

IO 16 DW 0x3100000 ; I/O port address

WORD DW ; 32-bit result

LDR R3, IO 16 ; Get word-aligned source address.

LEA R4, BUF ; Get word-aligned destination address

LDR R0, MASK
LDR R1,[R3),2 ; Fetch even half-word from 16-bit port

AND R1.R1.R0 ; Keep lower 16 bits.

LDR R2, [R3], 2 ; Fetch 'add' half-word, rotated.

BIC R2, R2, R0 ; Keep upper 16 bits.

ORR R1.R1.R2 ; Merge even/odd halves.

STR R1,[R4],4 ; Store 32-bit composit.

3-26

VLSI Technology, inc. [p^ELDHDi^^Y
VL86C020

Assembler Syntax:

LDR/STR{cond}{B}{T) Rd,<Address>

where LDR means Load from memory into a register.

STR means store from a register into memory.

cond is a two-character condition mnemonic (see Condition Code section).

B V present implies byte transfer, else a word transfer.

T If present, the W bit is set in a post-indexed instruction, causing the

-TRANS pin to go low for the transfer cycle. :T is not allowed when a pre-

indexed addressing mode is specified or implied.

Rd is a valid register: R0-R15, SP, LK,or PC.

Address Can be any of the variations in the following table.

Address Variants: tgt
Address expression: An expression evaluating to a relocatable address: M

<expression> The assembler will attempt to generate an instruction using the PC
as a base, and a corrected offset to the location given by the

expression. This is a PC-relative pre-indexed address. If out of range

(at assembly or link time), an error message will be given.

Pre-indexed address: Offset is added to base register before using as effective address, and

offsets are placed within the [] pair. Rn may be viewed as a pointer:

[Rn] No offset is added to base address ipointer.

[Rn, <expression>(!}] Signed offset of expression bytes is added to base pointer.

[Rn, Rm]{l} Add Rm to Rn before using Rn as an address pointer.

[Rn, Rm <shift> count]{l} Signed offset of Rm (modified by shift) is added to base pointer.

Post-indexed address: Offset Is added to base reg, after using base reg for the effective address.

Offsets are placed after the [] pair:

[Rn],<expression> Expression is added to Rn, after Rri's usage as a pointer.

[Rn], Rm Rm is added to Rn, after Rn's usagB as an address pointer.

[Rn], Rm <shift> count Shift the offset in Rm by count bits, and add to Rn, after

Rn's usage as an address pointer.

where expression A signed 13-bit expression (including the sign).

Rm, Rn Valid register names: R0-R15, SP, LK, or PC. If RN - PC, the assembler

will subtract 8 from the expression to allow for processor address read-ahead.

shift Any of: LSL, LSR, ASR, ROR, or RRX.

counf Amount to shift Rm by. It is a 5-bit constant,: and may not be

specified as an Rs register (as for some other instruction classes).

/ If present, the ! sets the W-bit in the instruction, forcing the

effective offset to be added to the Rn register, after completion.

Examples (Pre-lndex and Optional Increment):

In each of these examples, the effective offset is added to the Rn (base; pointer) register prior to using the Rn register as the

effective address. Rn is then updated only if the I suffix Is supplied.

STR R1,[R2, R1]l ;*(R2+R1)-R1. ThenR2+-R1.
STR R3, [R2] ; *(R2) - R3.

LDR R1, [RO, 16] ; R1 - *(R0+ 16). Don't update RO.

LDR R9, [R5, RO LSL 2] ; R9 - *(R5 + (R2«2)). Don't update R5.

LDREQB R2, [R5, 5] ; if (Zflag) R2 - *(R5 + 5), a zero-filled byte load.

3-27

VLSI Technology, inc. raEynDG^iFaY
VL86C020

Examples (Post-Index and Increment):

In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the

effective address. Rn is then updated unconditionally, regardless of any "I" suffix.

*R2 = R1. ThenR2+=R1.
*(R2) - R3. Then R2 += R5.

R1 -*R0. ThenR0+-16.
R9 - *R5. Then R5 +- (RO / 8).

if (Zflag) R2 - *R5, a zero-filled byte load, and then R5 += 5.

STR R1,[R2], R1

STR R3, [R2], R5
LDR R1,[R0], 16

LDR R9, [R5], RO ASR 3

LDREQB R2, [R5], 5

Examples (Expression):

In these examples, the PLACE label is an internal or external PC-relative label, typically created as shown. PC-relative refer-

ences are precompensated for the 8-byte read-ahead done by the processor. PARMx is a register-relative label, typically created

via a DTYPE directive, and assumed to be relative to the LK (R14) register. DATAx is similar, but is presumably defined relative

to the SP (R13) register, and GENERAL relative to RO. In any case, they may be located up to ±4096 bytes from the associated

base register.

; SP-relative. Same as: LDR RO, [SP+DATA1].

; PC-relative. Same as: STR R2, [PC+16].

; LK-relative. Same as: LDR R1, [LK+DATA1].

; RO-relative. Same as: STR R1, [RO+GENERAL].
; Skip over the data temporarily.

; Temporary storage area.

; Resume execution.

LDR RO, DATA1
STR R2, PLACE
LDR R1.PARM0
STR R1, GENERAL
B Across

PLACE DW
Across

FIGURE 12. LOAD/STORE REGISTER LIST FROM MEMORY (LDM.STM)

31 28 27 25 20 19 1615
I I I

Condx
I I

1 P U S W L
I 1 1

Rn
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 Register List '

Condition

Code

Base Register

Load/Store: 0. STM, 1 = LDM
Write back bit

- No write back
1 - Write address back into base (I).

PSR Or Force-User bit (
A suffix)

- Do not load PSR or force user mode registers.

1 - Load PSR or optionally force user mode regsiters(A).

Up/Down Bit

- Offset is negative

1 = Offset is positive

Pre/Post Indexing Form
m Post: after each register

is transferred.

1 - Pre: before each register

is transferred.

3-28

VLSI Technology, inc. tP^EUMDM^IiW
VL86C020

Multi-Register Transfer (LDM, STM)
The instruction is only executed if the

condition is true. The various condi-

tions are defined in Control Field

Section.

Multi-register transfer instructions are

used to load (LDM) or store (STM) any

subset of the currently visible registers.

They support all possible stacking

modes (push up/pop down, or push
down/pop up). They are very efficient

instructions for saving or restoring

context, or for moving large blocks of

data around main memory.

The Register List - The instruction can
cause the transfer of any registers in

the current bank (and non-user mode
programs can also transfer to and from

the user bank). The register list is

contained in a 16-bit field in the

instruction, with each bit corresponding

to a register. A logic one in bit zero of

the register field will cause RO to be
transferred, a logic zero will cause it not

to be transferred; similarly bit 1 controls

the transfer of R1 , and so on.

Addressing Modes - The transfer

addresses are determined by the

contents of the base register (Rn), the

pre/post bit (P) and the up/down bit (U).

The registers are transferred in the

order lowest to highest, so R15 (if in the

list) will always be transferred last. The
lowest register also gets transferred to/

from the lowest memory address. This

is illustrated in Figures 13 and 14.

Transfer of R15 - Whenever R15 is

stored to memory, the value transferred

is the PC together with the PSR flags.

The stored value of the PC will be 12
bytes advanced from the address of the

STM instruction.

If R1 5 is in the transfer list of a load

multiple (LDM) instruction the PC is

overwritten, and the effect on the PSR
is controlled by the S bit. If the S bit is

zero the PSR is preserved unchanged,
but if the S bit is set the PSR will be
overwritten by the corresponding bits of

the loaded value. In user mode,
however, the I, F, M1 and MO bits are

protected from change, whatever the

value of the S bit. The mode at the

start of the instruction determines

whether these bits are protected, and
the supervisor may return to the user

program, re-enabling interrupts and
restoring user mode with one LDM
instruction.

Transfers to User Bank - For STM
instructions the S bit is redundant as
the PSR is always stored with the PC
whenever R15 is in the transfer list. In

user mode the S bit is ignored, but in

other modes it has a second interpreta-

tion. S=1 is used to force transfers to

take values from the user register bank
instead of from the current register

bank. This is useful for saving the user

state on process switches. Note that

when it is so used, write back of the

base will also be to the user bank,

though the base will be fetched from the

current bank. Therefore, do not use
write back when forcing user bank.

In LDM instructions the S bit is redun-

dant if R15 is not in the transfer list, and
again in user mode it is ignored. In

non-user mode where R15 is not in the

transfer list, S-1 is used to force loaded

values in to the user registers instead of

the current register bank. When used
in this manner, care must be taken not

to read from a banked register during

the following cycle; if in doubt, insert a
no-op. Again, do not use write back
when forcing a user bank transfer.

R15 As the Base - When the base is

the PC, the PSR bits will be used to

form the address as well, so unless all

interrupts are enabled and all flags are

zero an address exception will occur.

Also, write back is never allowed when
the base is the PC (setting the W bit will

have no effect).

Base within the Register List - When
write back is specified, the base is

written back at the end ofithe second
cycle of the instruction. During a STM,
the first register is written;out at the

start of the second cycle. A STM which
includes storing the base, with the base
as the first register to be stored, will

therefore store the unchanged value,

whereas with the base second or later

in the transfer order, will store the

modified value. An LDM will always
overwrite the updated base if the base
is in the list.

Address Exceptions - When the

address of the first transfer falls outside

the legal address space (i.e. has a logic

one somewhere in bits 31 to 26), an

address exception trap will be taken.

The instruction will first complete in the

usual number of cycles, though an STM
will be prevented from writing to

memory. The processor state will be
the same as if a data abort had
occurred on the first transfer cycle.

Only the address of the first transfer is

checked in this way; if subsequent
addresses over or under-flow into illegal

address space they will be truncated to

26 bits but will not cause an address
exception trap.

Data Aborts - Some legal addresses

may be unacceptable to a memory
management system, and the memory K
manager can indicate a problem with an
address by taking the ABORT pin high.

This can happen on any transfer during

a multiple register load or store, and
must be recoverable if VL86C020 is to

be used in a virtual memory system.

Abort during STM - If the abort occurs

during a store multiple instruction,

VL86C020 takes little action until the

instruction completes, whereupon it

enters the data abort trap. The memory
manager is responsible for preventing

erroneous writes to the memory. The
only change to the internal state of the

processor will be the modification of the

base register if write back was speci-

fied, and this must be reversed by
software (and the cause of the abort

resolved) before the instruction may be
retried.

To illustrate the various load/store

modes, consider the transfer of R1 , R5
and R7 in the case where Rn - 1 000H
and write back of the modified base is

required (W=1). These figures show
the sequence of register transfers, the

addresses used, and the value of Rn
after the instruction has completed.

In all cases, had write back of the

modified base not been required (W-0),
Rn would have retained its initial value

of 1000H unless it was also in the

transfer list of the load multiple register

instruction. Then it would have been
overwritten with the loaded value.

Aborts during LDM - When
VL86C020 detects a data abort during a
load multiple instruction, it modifies the

operation of the instruction to ensure
that recovery is possible.

3-29

VLSI Technology, inc.

The following figures illustrate the

impact of various addressing modes.

R1 , R5, and R7 are moved to/from

memory, where Rn-0x1000, and a write

back of the modified base is done

(W-1). The figures show the sequence

of incrementing "pushes", the ad-

dresses used, and the final value of Rn.

PIF3EUI1Q1M3Y
VL86C020

Without write back, Rn would remain at

0x1000.

Figure 13 illustrates the use of incre-

menting stack "pushes".

Figure 14 illustrates decrementing

"pushes" to the stack based upon Rn.

Mode Bits - During LDM and STM
execution, the two LSBs of the instruc-

tion will contain the (noninverted) mode
status bits. These may be used by

external hardware to force memory
accesses from an alternative bank.

FIGURE 13. INCREMENTING INDEX

Post-Increment Addressing

0x100C

Rn-»- 0x1000

OxOFF4

R1

0x100C

0x1000

0x0FF4

(1) Before STM Instruction

Ox100C

R5
R1

(2) After First Transfer

Rn-H _| 0x1000

0x1000

0x0FF4

R7
R5
R1 0x1000

0X0FF4

(3) After Second Transfer (4) STM Instruction Complete

Pre-increment Addressing

Rn-

(1)

R5
R1

0x1 00C

0x1000

0x0FF4

0x1 00C

0x1000

0x0FF4

R1

(2)

Rn-»- R7
R5
R1

0x1000

0x1000

0X0FF4

0x1000

0x1000

0x0FF4

(3) (4)

FIGURE 14. DECREMENTING INDEX

Post-decrement Addressing

0x1000

Rn-*- 0x1000

OX0FF4

R1

(1) Before SRM Instruction

R5
R1

0x1000

0x1000

OxOFF4

(2) After First Transfer

0x1000

0x1000

0x0FF4

0x1000

0x1000 R7
R5
R1

0x0FF4 Rn -*1

(3) After Second Transfer (4) After STM Instruction Complete

Pre-decrement Addressing

Rn-

(1)

R5
R1

(3)

0x1000

0x1000

0X0FF4

0x1000

0x1000

R1

(2)

R7
R5

0X0FF4 Rn-H R1

(4)

0x1 00C

0x1000

0X0FF4

0x1000

0x1000

0x0FF4

3-30

VLSI Technology, inc.

VL86C020

Overwriting of registers stops when the

abort happens. The aborting load will

not take place, nor will the preceding

one, but registers two or more positions

ahead of the abort (if any) will be
loaded. (This guarantees that the PC
will be preserved, since it is always the

last register to be overwritten.)

The base register is restored to its

modified value if write back was
requested. This ensures recoverability

in the case where the base register is

also in the transfer list, and may have

been overwritten before the abort

occurred.

The data abort trap is taken when the

load multiple has completed, and the

system software must undo any base

modification (and resolve the cause of

the abort) before restarting the instruc-

tion.

With the cache turned on, a block load

operation (LDM) will read data from the

cache where it is present. When the

cache does not contain the required

data, the external memory is accessed.

A block store operation (STM) always

generates Immediate external writes to

allow the external memory manager to

abort the accesses if they are illegal.

The cache is automatically updated as

the data is written to memory (provided

the area being written to is updateable,

see Cache Operation Section).

Assembler Syntax:

LDM|STM{cond}<mode> Rn{!}, <Rlist>(*}

where cond Is an optional 2-letter condition code common to all instructions.

mode Is any of: FD, ED, FA, EA, IA, IB, DA, or DB.

Rn Is a valid register name: R0-R15, SP, LK, or PC.

Rlist Can be a single register (as described above for Rn),. or may be a list of

registers, enclosed in { } (eg {R0,R2,R7-R10,UK}).

/ If present, requests writeback (W-1). Otherwise W-0.
* If present, set S bit to load the PSR with the PC, or force transfer of user

bank, when in non-user mode.

Addressing Mode Names

Function Mnemonic UBil EM. Ublt Operation

Pre-increment load LDMIB 1 1 1 Pop upwards
Post-increment load LDMIA 10 1 Pop upwards
Pre-decrement load LDMDB 1 1 Pop downwards
Post-decrement load LDMDA 1 Pop downwards

Pre-increment store STMIB 1 1 Push upwards
Post-increment store STMIA 1 Push upwards
Pre-decrement store STMDB 10 Push downwards
Post-decrement store STMDA Push downwards

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment After, Increment Before,

Decrement After, Decrement Before.

Examples
LDMFD SPI, {R0, R1 , R2} ; unstack 3 registers

STMIA R2, {R0, R15) ; save all registers

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling routine;

STMED SPI, {R0-R3, LK} ; Save R0 to R3 for workspace, and R14 for returning.

BL Subroutine ; This call will overwrite R1 4.

LDMED SPI, {R0-R3, PC} ; Restore workspace and return, restoring PSR flags.

3-31

VLSI Technology, inc.

VL86C020

FIGURE 15. SINGLE DATA SWAP (SWP)

31 28 27 2322212019 16 15 12 11 8 7 4 3
I I

Condx 1 B Rn Rd 10 1 Rm

Condition

Code

I L
Byte/Word Bit

= Swap Word
1 - Swap Byte

Destination

Register

Source
Register

Base
Register

Single Data Swap (SWP) - The instruc-

tion is only executed if the condition Is

true. The various conditions are

defined in Condition Field Section.

The data swap instruction is used to

swap a byte or word quantity between a

register and external memory. This

instruction is implemented as a memory
read followed by a memory write which

are locked together (the processor

cannot be Interrupted until both

operations have completed, and the

memory manager is warned to treat

them as inseparable). This class of

instruction is particularly useful for

implementing software semaphores.

The swap address is determined by the

contents of the base register (Rn). The
processor first reads the contents of the

swap address (the external memory is

always accessed, even if the cache

contains a copy of the data). The
processor then writes the contents of

the source register (Rm) to the swap
address, and stores the old memory
contents in the destination register (Rd).

The same register may be specified as

both the source and destination.

The LOCK pin goes high for the

duration of the read and write opera-

tions to signal to the external memory
manager that they are locked together,

and should be allowed to complete

without interruption. This is important in

multi-processor systems where the

swap instruction is the only indivisible

instruction which may be used to

implement semaphores; control of the

memory must not be removed from a

processor while it is performing a

locked operation.

Bytes and Words - This instruction

class may be used to swap a byte (B-1

)

or a word (B-0) between a VL86C020
register and memory.

A byte swap (SWPB) expects the read

data on bits to 7, if the supplied

address is on a word boundary, on bits

8 to 15 if it is a word address plus one
byte, and so on. The selected byte is

placed in the bottom eight bits of the

destination register, and the remaining

bits of the register are filled with zeros.

The byte to be written is repeated four

times across the data bus. The
external memory system should

activate the appropriate byte subsystem

to store the data (see Memory Interface

Section).

A word swap (SWP) should generate a

word aligned address. An address

offset from a word boundary will cause

the data read from memory to be

rotated into the register so that the

addressed byte occupies bits to 7.

The data written to memory are always

presented exactly as they appear in the

register (i.e. bit 31 of the register

appears on D31).

Use of R1 5 - If R1 5 is selected as the

base, the PC is used together with the

PSR. If any of the flags are set, or

interrupts are disabled, the data swap

will cause an address exception. If all

flags are clear, and interrupts are

enabled (so the top six bits of the PSR
are clear), the data will be swapped
with an address 8 bytes advanced from

the swap instruction, although the

address will not be word aligned unless

the processor is in user mode. (M1 and

M0 bits determine the byte address).

When R15 is the source register (Rm),

the value stored will be the PC together

with the PSR. The stored value of the

PC will be 12 bytes advanced from the

address of the instruction.

When R15 is the destination register

(Rd), the PSR will be unaffected, and

only the PC will change.

Address Exceptions - If the base
address used for the swap has a logic

one in any of the bits 26 to 31 , the

transfer will not take place and the

address exception trap will be taken.

Data Aborts - If the address used for

the swap is unacceptable to a memory
management system, the memory
manager can flag the problem by

driving ABORT high. This can happen

on either the read or the write cycle (or

both). In either case, the data swap
instruction will be prevented from

changing the processor state, and the

Data Abort trap will be taken. It is up to

the system software to resolve the

cause of the problem. Then the instruc-

tion can be restarted and the original

program continued.

3-32

VLSI Technology, inc.

VL86C020
Cache Interaction - The swap instruc-

tion always reads data from external

memory, even if a copy is present in the

cache. In multi-processor systems,

semaphores may be used to control

access to system resources; as the

semaphores are accessed by more
than one processor, the cache copy of

a semaphore may be out of date (the

cache is only updated if the host CPU
writes new data to the external mem-
ory). It is, therefore, important always

to read the semaphore from the shared

external memory, and not the private

cache.

The write operation of the swap
instruction will still update the cache if a

copy of the address is present, and

updating is enabled (see Cache
Operation Section).

Assembler Syntax:

S\NP(cond}{B}

where cond
B
Rd,Rm,Rn

Rd,Rm,[Rn]

Two-character condition mnemonic, see section Condition Field

If B is present then byte transfer,:otherwise word transfer.

Are expressions evaluating to valid register numbers. Rn is required.

I

Examples:

SWP
SWPB
SWPEQ

RO, R1,[BASE]
R2, R3, [BASE]

RO, RO, [BASE]

Load RO with the contents of BASE, and store R1 at BASE.
Load R2 with the byte at BASE, and store bits to 7 of R3 at BASE.
Conditionally swap the contents of BASE with RO.

3-33

VLSI Technology, inc.

VL86C020

FIGURE 16. SOFTWARE INTERRUPT (SWI)

31 28 27 24 23
I I I I I I I I I I I I I I I I I

Instruction to Executive (Ignored by CPU) '

I I I I I I I

Condx 1 111 I I I

Condition
Field

Note: The machine comments field in bits 23-0 are ignored by the hardware. They are made available for free interpretation by

the software executive, and may be found in LSB-first byte order on the stack.

The Software Interrupt (SWI) instruction

is used to enter supervisor mode in a

controlled manner. The instruction

causes the software interrupt trap to be

taken, which effects the mode change,

with execution resuming at Ox 08. If

this address is suitably protected (by

external memory management hard-

ware) from modification by the user, a

fully protected operating system may be

constructed.

Return from the Supervisor - The PC
and PSR are saved in R14_svc upon

entering the software interrupt trap, with

the PC adjusted to point to the word

afterthe SWI instruction. MOVSR15,
R14_svc will return to the user program,

restore the user PSR and return the

processor to user mode.

Note that the link mechanism is not re-

entrant, so if the supervisor code

wishes to use software interrupts within

itself it must first save a copy of the

return address.

Machine Comments Field - The
bottom 24 bits of the instruction are

ignored by the processor, and may be

used to communicate with the

supervisor code. For instance, the

supervisor may extract this field and

use it to index into an array of entry

points for routines which perform

various supervisor functions.

Assembler Syntax:

SWI{cond}

where cond
expression

Examples:
aeons

<expression>

Is the two-character condition code common to all instructions.

Is a 24-bit field of any format. The processor itself ignores it, but the

typical scenario is for the software executive to specify patterns in it,

which will be interpreted in a particular way by the executive, as commands.

Zero-0, ReadC=1, Write1-2 ; Assembler constants.

SWI ReadC ; Get next character from read stream

SWI Writel+"k" ; Output a "k" to the Write stream

SWINE ; Conditionally call supervisor with in comment field

The above examples assume that suitable supervisor code exists. For instance:

; Assume that the R13_svc (the supervisor's R13) points to a suitable stack.

aeons Zero=0, ReadC=1, Write1»2 ; Assembler constants.

aeons CC_Mask - 0xFC00003 ; Non-address area mask.

08h B Super ; SWI entry point

; Save working registers.

; Strip condx codes from SWI instruction address.

; Get copy of SWI instruction.

; Get lower 24 bits of SWI, only.

; Get absolute address of PC-relative table.

; Jump indirect on the table.

; Address of service routines.

Super STMFD SP!,{r0,r1, r2,r14)

BIC r1,r14, CC Mask
LDR R0,[R1,-4]

BIC R0, R0, OxFFOOOOOO

MOV R1.SWI Table

LDR PC,[R1,R0LSL2]

SWI Table dw Zero Action

dw ReadC Action

dw Write1_Action

Write1_Action

LDM R13,{R0-R2, PC}"

; Typical service routine.

; Restore workspace, and return to inst after SWI.

3-34

VLSI Technology, inc. [p^EUMOiMlAuW
VL86C020

FIGURE 17. COPROCESSOR DATA OPERATIONS (CDO)

31 28 27 24 23 20 19 16 15 12 11

TTT
Condx

T-TT1110 T~T
CPOpc

I I I

CRn
I I I

CRd
I I I

CP#

8 7

Aux

5 4 3
I I I I I

CRm]

Condition

Code
Coprocessor
Operation
Code

I

Coprocessor
Destination

Register

^M ^
Coprocessor Operand
Registers

Coprocesser Auxiliary

Information

Coprocessor Number

The instruction is only executed if the

condition code field is true. The field is

described in the Condition Codes

Section.

This is actually a class of instructions,

rather than a single instruction, and is

equivalent to the ALU class on the

CPU. All instructions in this class are

used to direct the coprocessor to

perform some internal operation. No

result is sent back to the CPU, and the

CPU will not wait for the operation to

complete. The coprocessor could

maintain a queue of such instructions

awaiting execution. Their execution

may then overlap other CPU activity,

allowing the two processors to perform

independent tasks in parallel.

Coprocessor Fields - Only bit 4 and

bits 31-24 are significant to the CPU;

the remaining bits are used by

coprocessors. The aboveifield names

are used by convention, and particular

coprocessors may redefine the use of

any or all fields as appropriate except

fortheCP#.

For the sake of future family product

introductions, it is encouraged that the

above conventions be followed, unless

absolutely necessary.

By convention, the coprocessor should

perform an operation specified in the

CP Ope field (and possibly in the CP
field) on the contents of CRn and CRm,
placing the result into CRd.

VL86C010 CDO Instruction - The im-

plementation of the CDO instruction on

the VL8GC010 processor causes a

Software Interrupt (SWI) to take the

undefined instruction trap if the SWI
was the next instruction after the CDO.
This is no longer the case on the

VL86C020, but the sequence

CDO
SWI

should be avoided for program compati-

bility.

Assembler Syntax:

CDO{cond} CP#,<expression1>, CRd, CRn, CRm{,<expression2>}

where cond Is the conditional execution code, common to all instructions.

CP# Is the (unique) coprocessor number, assigned by hardware.

CRd, CRn, CRm These are valid coprocessor registers: CR0-CR15.

oxpressionl Evaluates to a constant, and is placed in the CP Opcfield.

9xpression2 (Where present) evaluates to a constant, and is placed in the CPfield.

Examples:
CDO 1, 10, CR1.CR7, CR2

CDOEQ 2, 5, CR1, cr2, Cr3, 2

; Request coproc #1 to do operation 10 on CR7 and CR2, putting result into CR1

.

; If the Z flag is set, request coproc #2 to do

; operation 5 (type 2) on CR2 and CR3, placing the result into CR1

.

3-35

VLSI Technology, inc.

VL86C020
FIGURE 18. COPROCESSOR DATA TRANSFERS (LDC, STC)

31 28 27 24 23 20 19 16 15 12 11 8 7
I I I

Condx 1 1 P U N W L
I I I

Rn CRd
1 1 r
CP#

I I I I I I

Offset

Condition

Code

Index Control —
= Post-move

1 = Pre-move

Up/Down
= Subtract

1 = Add Offset

ARM Base Coprocessor
Pointer Src/Dst

Register Register

• 8-Bit Positive

Immediate
Offset

.
Coprocessor
Number

Load/Store Bit

Write Back
= No Write Back

1 = Write e.a. to Rn.

Transfer Length

- Store to Memory
1 = Load to Coproc Reg

The LDC and STC instructions are used
to load or store single bytes or words of

data. They differ from MCR and MRC
instructions in that they move data

between coprocessor registers and a
specified memory address. In contrast,

the other instructions move data

between registers, or move a constant

(contained in the instruction) into a
register.

The memory address used in LDC/STC
transfers is calculated by adding an

offset to or subtracting an offset from a
base pointer register, Rn. Typically, a
load of a labeled memory location

involves the loading via a (signed)

offset from the current PC. Regardless

of the base register used, the result of

the offset calculation may be written

back into the base register if "auto-

indexing" is required.

Coprocessor Fields - The CP# field

identifies which coprocessor shall

supply or receive the data. A coproces-

sor will respond only if its number
matches the contents of this field.

The CRd field and the N bit contain

information which may be interpreted in

different ways by different coproces-

sors. By convention, however, CRd is

the register to be transferred (or the first

register, where more than one is to be
transferred). The N bit is used to

choose one of two transfer length

options. For instance, N=0 could select

the transfer of a single register, and

N=1 could select the transfer of all the

registers for context switching.

Offsets and Indexing - The VL86C020
is responsible for providing the address

used by the memory system for the

transfer, and the addressing modes
available are similar to those used for

the VL86C020's LDR/STR instructions.

Only 8-bit offsets are permitted, and the

VL86C020 automatically scales them
by two bits to form a word offset to the

pointer in the Rn register. Of itself, the

offset is an 8-bit unsigned value, but a
9-bit signed negative offset may be
supplied. The assembler will comple-

ment it to an 8-bit (positive) value and

will clear the instruction's U bit, forcing a
compensating subtract. The result is a
±256 word (1 024 byte) offset from Rn.

Again, the VL86C020 internally shifts

the offset left 2 bits before addition to

the Rn register.

The offset modification may be per-

formed either before (pre-indexed, P=1)

or after (post-indexed, P=0) the base is

used as the transfer address. The
modified base value may be written

back into the base (W-1), or the old

base value may be kept (W-0). In the

case of post-indexed addressing, the

write back bit is redundant, since the

old base value can be retained by

setting the offset to zero. Therefore,

post-indexed data transfers always

write back the modified base.

For an offset of +1 , the value of the Rn
base pointer register (modified, in the

pre-indexed case) is used for the first

word transferred. Should the instruction

be repeated, the second word will go
fromAo an address one word (4 bytes)

higher than pointed to by the original

Rn, and so on.

Use of R15 - If R15 is specified as the

base register (Rn), the PC is used
without the PSR flags. When using the

PC as the base register note that it

contains an address 8 bytes advanced
from the address of the current instruc-

tion. As with the LDR/STR case, the

assembler performs this compensation
automatically.

Hardware Address Translation - The
W bit may be used in non-user mode
programs (when post-indexed address-

ing is used) to force the -TRANS pin

low for the transfer cycle. This allows

the operating system to generate user

addresses when a suitable memory
management system is present.

Address Exceptions - If the address

used for the first transfer is illegal, the

address exception mechanism will be
invoked. Instructions which transfer

multiple words will only trap if the first

address is illegal; subsequent ad-

dresses will wrap around inside the 26-

bit address space.

Note that only the address actually

used for the transfer is checked. A
base containing an address outside the

legal range may be used in a pre-

indexed transfer if the offset brings the

3-36

VLSI Technology inc.

VL86C020

address within the legal range. Like-

wise, a base within the legal range may
be modified by post-indexing to outside

the legal range without causing an

address exception.

Data Aborts - If the address is legal but

the memory manager generates an

abort, the data abort trap will be taken.

The write back of the modified base will

take place, but all other processor state

data will be preserved. The coproces-

sor is partly responsible for ensuring

restartability. It must either detect the

abort, or ensure that any actions

consequent from this instruction can be

repeated when the instruction is retried

after the resolution of theiabort.

Cache Interaction - When the cache is

on, LDC instructions will attempt to read

data from the cache. STC instructions

update the cache data if the address

being written to matches a cache entry

(see Cache Operation Section).

When an STC instruction is executed

with the cache turnedioff, the

VL86C020 will drive data onto D31-D0
(provided DBE is high) in the latent

cycle preceding the fiiist writs operation

(latent+active cycle); therefore, no other

device should be driving the bus during

this cycle.

Assembler Syntax:

<LDC/STC>{cond}{L}{T}(N} cp#, CRd, <Address>{|}

where LDC
STC
cond
L

T

N
cp#

CRd
Address

means load from memory into a coprocessor register.

means store a coprocessor register to memory.

is a two-character condition mnemonic (see Condition Code section).

If present implies long transfer (N-1), else a short transfer (N=0).

If present, the W bit is set in a post-indexed instruction, causing the

-TRANS pin to go low for the transfer cycle. T is not allowed when a pre-

indexed addressing mode is specified or implied.

Sets the value of bit 22 of instruction.

Valid coprocessor number, determined by hardware.

Valid coprocessor register number: CR0-CR15.
Can be any of the variations in the following table.

3-37

VLSI Technology inc. PI^EOMOMAI1W
VL86C020

Address Variants:

Address expression: An expression evaluating to a relocatable address:

<expression> The assembler will attempt to generate an instruction using the PC
as a base, and a corrected offset to the location given by the 9-bit

expression. This is a PC-relative pre-indexed address. If out of range

(at assembly or link time), an error message will be given.

Pre-indexed address: Offset is added to base register before using as effective address, and
offsets are placed within the

[] pair. Rn may be viewed as a pointer:

[Rn]{l} No offset is added to base address pointer.

[Rn, <expression>] Signed offset of expression in bytes is added to base pointer.

[Rn, <expression>]{!) Signed offset of expression in bytes is added to base pointer. Then
this effective address is written back to Rn.

Post-indexed address: Offset is added to base reg after using base reg for the effective

address. Offsets are placed after the []
pair:

[Rn],<expression> Expression is added to Rn, after Rn's usage as a pointer.

where expression A signed 9-bit expression (including the sign).

Rn Valid register names: R0-R15, SP, LK, or PC. If Rn - PC, the

assembler will subtract 8 from the expression to allow for processor

address read ahead.

Examples (Pre-lndex):

In each of these examples, the effective offset is added to the Rn (base pointer) register prior to using the Rn register as the

effective address. Rn is then updated only if the I suffix is supplied. Coprocessor #1 is used in all cases, for simplicity.

STC 1.CR3, [R2] ;*(R2)-CR3.
LDC 1,CR1,[R0,16] ;CR1 -*(R0+ 16). Don't update RO.

LDCEQ 1.CR2, [R5, 12]l
;

if (Zflag) CR2 - *(R5+ 12). Then, R5+= 12.

Examples (Post-Index):

In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the

effective address. Rn is then updated unconditionally, regardless of any I suffix. Coprocessor #3 is used in all cases, for simplic-

ity.

;*R2-CR1. ThenR2+-8.
; CR1 - *R0. Then RO += 1 6.

; if (Zflag) CR2 - *R5, and then (implicitly), R5 += 4.

; Use the long option (probably to store multiple words).

Examples (Expression):

In these examples, the PLACE label is an internal or external PC-relative label, typically created as shown. PC-relative refer-

ences are precompensated for the 8-byte read-ahead done by the processor. It may be located up to ±1 024 bytes from the

associated base register, and must be a multiple of 4 bytes in offset.

STC 3, CR5, PLACE ; PC-relative. Same as: STC 3, CR5, [PC+8].

B Across ; Skip over the data temporary.

PLACE DW ; Temporary storage area.

Across • •
; Resume execution.

STC 3,CR1,[R2],8I

LDC 3,CR1,[R0], 16

LDCEQL 3, CR2, [R5], 4

3-38

VLSI Technology, inc.

VL86C020

FIGURE 19. COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

31 28 27 24 23 21

T .

CPOpc

19 16 15
I I I

Rd

12 11 5 4 3
I I I

CP#
,

. TT
AUX 1 CRm

I I I

Condx 1110 CRn

1 Coprocessor

Condition Operation

Code Code

Load/Store Bit

T

= Store to coproo
1 = Load from coproc

J LJ L J L

i

ARM
Src/Dst
Register

Coprocessor Operand
Registers

I Coprocessor Auxiliary

Information

Coprocessor Number

This instruction is executed only if the

condition code field is true. The field is

described in the Condition Codes
Section.

This is actually a class of instructions,

rather than a single instruction, and is

equivalent to the ALU class on the

VL86C020 processor. Instructions in

this class are used to direct the

coprocessor to perform some operation

between a VL86C020 register and a

coprocessor register. It differs from the

CPD instruction in that the CPD
performs operations on the coproces-

sor's internal registers only.

An example of an MCR usage would be

a FIX of a floating point value held in

the coprocessor, where the number is

converted to a 32-bit integer within the

coprocessor, and the result then

transferred back to a VL86C020
register. An example of an MRC usage

would be the converse: A FLOAT of a

32-bit value in a VL86C020 register into

a floating point value within a coproces-

sor register.

An intended use of this instruction is to

communicate control information

directly between the coprocessor and

the VL86C020 PSR flags. As an

example, the result of a comparison of

two floating point values within the

coprocessor can be moved to the PSR
to control subsequent execution flow.

Coprocessor Fields - The CP# field is

used, by all coprocessor instructions to

specify which coprocessor is being

invoked.

The CP Ope, CRn, CP and CRm fields

are used only by the coprocessor, and

the interpretation of these fields is set

only by convention; othenincompatible

interpretations are allowed. The
conventional interpretation is that the

CP Ope and CP fields specify the

operation for the coprocessor to

perform, CRn is the coprocessor

register used as source or destination

of the transferrred information, and

CRm is the second coprocessor

register which may be involved in some
way dependent upon the operation

code.

Transfers to/from R1S - When a

coprocessor register transfer to

VL86C020 has R15 as the destination,

bits 31-28 of the transferred word are

copied into the N, Z, C and V flags

respectively. The other bits of the

transferred word are ignored, and the

PC and other PSR flags are unaffected

by the transfer.

A coprocessor register transfer from

VL86C020 with R15 as the source

register will save the PC together with

the PSR flags.

Assembler Syntax:

MCR/MRC{cond} CP#,<expression1>, Rd, CRn, CRm{,<expression2>}

where cond Is the conditional execution code, common to all instructions.

CP# Is the (unique) coprocessor number, assigned by hardware.

Rd Is the ARM source or destination register.

CRn, CRm These are valid coprocessor registers: CR0-CR15.

expression! Evaluates to a constant, and is placed in the CP Ope field.

expressions (Where present) evaluates to a constant, and is placed in the AUX field.

Examples:
MCR 1,6, R1.CR7, CR2

MRCEQ 2, 5, R1 , cr2, Cr3,

2

; Request coproc #1 to do operation 6 on

; CR7 and CR2, putting result into VL86C020's R1

.

; If the Z flag is set, transfer the VL86C020's R1 reg to the coproc register (defined

; by hardware), and request coproc #2 to do oper 5 (type 2) on CR2 and CR3.

3-39

VLSI Technology, inc.

VL86C020

FIGURE 20. UNDEFINED (RESERVED) INSTRUCTION

31 28 27 24 23
I I I

Condx
I I I

1

11111111111111
X x x x'x X X X'X X X X] X X X X

1 1 1

1 X X 1

I I I

X X X X

31 28 27 24 23 8 7 5 4 3
I I I

Condx
I I

1 1 x'x x x x'x x x x<x x x xix x x xix X X 1

I I I

X X X X

Note: The above instructions will be presented for execution only if the condition field is true.

If the condition is true, the undefined

instruction trap will be taken.

Note that the undefined instruction

mechanism involves offering these

instructions to any coprocessors which

may be present, and all coprocessors

must refuse to accept it by taking CPA
high.

Assembler Syntax - At present the

assembler has no mnemonics for

generating these instructions. If they

are adopted in the future for some
specified use, suitable mnemonics will

be added to the assembler. Until such

time, these instructions should not be

used.

Instruction Set Examples
The following examples show ways in

which the basic VL86C020 instructions

can combine to give efficient code.

None of these methods save a great

deal of execution time (although they

may save some), mostly they just save

code.

Using Conditional Instructions -

(1) Using conditionals for logical OR, this sequence:

CMP R1,p
BEQ Label

CMP R2, q
BEQ Label

can be replaced by

CMP R1,p
CMPNE Rm, q
BEQ Label

(2) Absolute value

TEQ R1.0
RSBMI R1.R1.0

(3) Multiplication by 4, 5 or 6 (run time)

MOV R2, R0 LSL 2

CMP R1,5
ADDCS R2, R2, R0
ADDHI R2, R2, R0

(4) Combining discrete and range tests

TEQ R2, 127

CMPNE R2, " "-1

MOVLS R2, ","

;
If R1=p or R2=q then goto Label

; If condition not satisfied try other test

; Test sign

; and 2's complement if necessary

; Multiply by 4

; Test value

; Complete multiply by 5

; Complete multiply by 6

; If (R2o127)
; Range test and if (R2<' ')

;Then, R2 -"."

3-40

VLSI Technology, inc. ;uMiiiMAmf
VL86C020

Division and Remainder

; Enter with numbers in RO and R1

MOV R4,

1

Div1 CMP R1 , 0x80000000
CMPCC R1.R0
MOVCC R1.R1 LSL1
BCC Div1

MOV R2,

Div2 CMP R0, R1

SUBCS R0.R0.R1

ADDCS R2, R2, R4
MOVS R2, R4 LSR 1

MOVNE R1.R1 LSR1
BNE Div2

; Division result is in R2.

; Remainder is in RO.

; Bit to control the division

; Move R1 until! greater than R0

; Test for possible subtraction

; Subtract if ok

; Put relevant bit into result

; Shift control bit

; Halve unless finished

FIGURE 21. INSTRUCTION SET SUMMARY

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3
I I I

Condx I

I I I

Opcode S
I I I

Rn
I I I

Rd
I I I I I I I I I

'Operand 2

'

I I I

Condx
1

1 '

'o A S
I I I

Rd
I I I

Rn
I I I

Rs
I I I

10 1

I I I

Rm
I I I

Condx
1 1 1 1

10 B
I I I

Rn
I I I

Rd
I I I I I I

10 1

I I I

Rm
I I I

Condx 1 I P U B W L
I I I

Rn
I I I

Rd
III III

Offset (variants
I I I

I I I

Condx 1 1 X X X X X X X X X
I I I

X X X X
I I I I I I

X X X X X X X 1

I I I

X X X X
I I I

Condx 1

I I I

plU SWL I I I

Rn
I I I I I I I I I I I I I

I I I

Condx 1 1 L
I I I I I I I I I I I I T I I I I I I I I

Word address offset '

I 1 1

Condx 1 1 P u N W L
I I I

Rn
I I I

CRd
I I I

CP#
I I I I I I I

Offset

1 1 1

Condx 1 1 1 CPOpc
I I I

CRn
I I I

CRd
I I I

CP#
I I

CP
I I I

CRm
1 1 1

Condx 1 1

I

1

I I

CPOpc L
I I I

CRn
I I I

Rd
I I I

CP#
I I

CP 1

I I I

CRm
1 1 1

Condx
I I1111 I I III III III II

Bit space ignored by processor
I I I

Data Processing

Multiply

Single Data; Swap

Load, Store

Undefined

Multi-Register Transfer

Branch, Call

Coproc Data Transfer

Coproc Data Opr

Coproc Register Transfer

Software Interrupt

3-41

VLSI Technology, inc. P^EUMGMuW
VL86C020

Pseudo Random Binary Sequence
Generator - It is often necessary to

generate (pseudo-) random numbers

and the most efficient algorithms are

based on shift register-based genera-

tors with exclusive or feedback rather

like a cyclic redundancy check genera-

tor. Unfortunately the sequence of a

32-bit generator needs more than one

feedback tap to be maximal length (i.e.

2A32-1 cycles before repetition). The
basic algorithim is Newbit - bit_33 xor

bit_20, shift left the 33-bit number and

put in Newbit at the bottom. Then do

this for all the Newbits needed, i.e. 32

of them. Luckily, this can be done in 5S
cycles:

Enter with seed in RO (32 bits), R1 (1 bit in R1 Isb)

Uses R2
TST R1.R1 LSR1 ; Top bit into carry

MOVS R2, RO RRX ; 33 bit rotate right

ADC R1.R1.R1 ; Carry into Isb of R1

EOR R2, R2, R0LSL12 ;
(Involved I)

EOR R0.R2.R2LSR20
;
(Whew I)

; Multiply by 5

; Multiply by 2 and add in next digit

; New seed in RO, R1 as before

Multiplication by Constant:

(1) Multiplication by 2An (1,2,4,8,16,32..)

MOV RO, RO LSL n

(2) Multiplication by 2An+1 (3,5,9,17..)

ADD RO, RO, RO LSL n

(3) Multiplication by 2A n-1 (3,7,15..)

RSB RO, RO, RO LSL n

(4) Multiplication by 6

ADD RO, RO, RO LSL 1 ; Multiply by 3

ADD RO, RO LSL 1 ; and then by 2

(5) Multiply by 10 and add in extra number
ADD RO, RO, RO LSL 2

MOV RO, R2, RO LSL 1

(6) General recursive method for R1 =R0*C,C a constant:

(a) If C even, say C - 2An*D, D odd:

D-1: MOV R1,R0LSLn
Do1: (R1 -R0*D)

MOVR1.R1 LSLn

(b) If C MOD 4 - 1 , say C - 2An*D+1 , D odd, N>1

:

D-1: ADD R1.R0, ROLSLn
Dol: (R1 -R0*D)

ADD R1.R0, RILSLn

(c) If C MOD 4 - 3, say C - 2An*D-1 , D odd, n>1

:

D-1: RSB R1.R0, ROLSLn
Dol: (R1 -R0*D)

RSB R1.R0, RILSLn

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB R1 , RO, RO LSL 2 ; Multiply by 3

RSB R1 , RO, R1 LSL 2 ; Multiply by 4*3-1 = 1

1

ADD R1.R0, R1LSL2 ; Multiply by 4*11+1 = 45

rather than by:

ADD
ADD

R1.R0, R0LSL3
R1.R1.R1 LSL 2

; Multiply by 9

; Multiply by 5*9 = 45

3-42

VLSI Technology, inc.

VL86C020

Loading a Word with Unknown Alignment:

Enter with address in RO (32 bits)

Uses R1.R2; result in R2.

Note R2 must be less than R3, e.g. 2,

3

BIC R1.RO, 3

LDMIA R1,{R2,R3}

AND R1.R0, 3

MOVS R1.R1LSL3
MOVNE R2, R2, LSR R1

RSBNE R1.R1.32
ORRNE R2, R2, R3 LSL R1

; Get word aligned address.

; Get 64 bits containing answer.

; Correction factor in bytes, not in bits.

; Test if aligned.

; Product bottom of result word (if not aligned).

; Get other shift amount.

; Combine two halves to get result.

Sign Extension of Partial Word
MOV RO, R0LSL16
MOV RO, RO, LSR 16

Move to top

... and back toibottom

(Use ASR to get sign extended version).

Return, Setting Condition Codes
BICS PC, R14.CFLAG ; Returns, clearing C flag ROM link register.

ORRCCS PC, R14.CFLAG ; Conditionally returns, setting C flag.

Above code should not be used except in user mode, since it will reset the interrupt enable flags to

their value when R14 was set up. This generally applies to non-user mode programming,

e.g., MOVSPC.R14 MOVPC.R14 is safer!

3-43

VLSI Technology inc. [p[F3EL0MGM[fW
VL86C020

CACHE OPERATION
The VL86C020 contains a 4 Kbyte

mixed instruction and data cache; the

cache has 256 lines of 16 bytes (4

words), organized as four blocks of 64
lines (making it 64-way set associative),

and uses the virtual addresses gener-

ated by the CPU core.

Read Operations - When the CPU
performs a read operation (instruction

fetch or data read), the cache is

searched for the relevant data; if found

in the cache, the data is fed to the CPU
using a fast clock cycle (from FCLK). If

the data is not found in the cache, the

CPU resynchronizes to the external

memory clock, MCLK, reads the

appropriate line of data (4 words) from

external memory and stores it in a

pseudo-random ly chosen entry in the

cache (a line fetch operation).

Write Operations - The cache uses a

write-through strategy, i.e. all CPU write

operations cause an immediate external

memory write. This ensures that when
the CPU attempts to write to a protected

memory location, the memory manager
can abort the operation.

If the cache holds a copy of the data

from the address being written to, the

cache data is normally automatically

updated. In certain cases, automatic

updating is not required; for instance,

when using the MEMC memory
manager, a read operation in the

address space between 3400000H-
3FFFFFFH accesses the ROMs, but a

write operation in the same address

space will change a MEMC register,

and should not affect the data stored in

the cache.

Control Register 4 must be programmed
with the addresses of all updateable

areas of the processor's memory map
(see section Register 4: Updateable

Areas Register - Read/Write).

Cache Validity - The cache works with

virtual addresses, and is unaware of the

mapping of virtual addresses to

physical addresses performed by the

external memory manager. If the virtual

to physical mapping in the memory
manager is altered, the cache still

maintains the data from the old map-
ping which is now invalid. The cache
must, therefore, be flushed of its old

data whenever the memory manager
mapping is changed.

Note that just removing or introducing a

new virtual to physical mapping (e.g.

page swapping) does not invalidate the

cache, but that a total re-ordering of the

mapping (e.g. process swap) does.

Two methods of cache flushing are

supported:

1

.

Automatic cache flushing. Control

Register 5 may be programmed to

recognize write operations to

certain areas of memory as re-

programming the memory manager
address mapping, (e.g. write

operations to addresses between

3800000H-3FFFFFFH re-program

the page mapping in MEMC).
When the CPU sees a write opera-

tion to one of these disruptive

memory locations, the cache is

automatically flushed.

2. Software cache flushing. Writing to

Control Register 1 will flush the

cache immediately.

Automatic cache flushing invalidates

the cache unnecessarily on page

swaps, but allows all existing ARM
programs to be run without modifica-

tion.

Non-cacheable Areas of Memory
Certain areas of the processor's

memory map may be uncacheable. For

instance, when using MEMC, the area

between 3000000H-3400000H corre-

sponds to I/O space, and must be
marked as uncacheable to stop the

data being stored in the cache. When
the processor is polling a hardware flag

in I/O space, it is important that the

processor is forced to read data from

the external peripheral, and not a copy
of some data held in the cache.

Control Register 3 must be pro-

grammed with the addresses of all

cacheable areas of the processor's

memory map (see section Register 3:

Cacheable Area Register - Read/Write).

Doubly Mapped Space - Since the

cache works with virtual addresses, it

assumes every virtual address maps to

a different physical address. If the

same physical location is accessed by

more than one virtual address, the

cache cannot maintain consistency, as

each virtual address will have a

separate entry in the cache, and only

one entry will be updated on a proces-

sor write operation. To avoid any cache
inconsistencies, both doubly-mapped
virtual addresses should be marked as

uncacheable.

If, when using MEMC, the Physically

Mapped RAM between 2000000H-
2FFFFFFH is used to alter the contents

of a cacheable virtual address, the

cache must be flushed immediately

afterwards. This may be performed

automatically by marking the Physically

Mapped RAM area as disruptive (see

Register 5: Disruptive Areas Register).

3-44

VLSI Technology, inc.

VL86C020

FIGURE 22. VL86C020 CONTROL REGISTERS

31

15

Monitor

Mode
Shared
Address
Space

Cache
On

The VL86C020 contains six control

registers as shown in Figure 22. These

registers are implemented as coproces-

sor 15, and are accessed using

coprocessor register transfer opera-

tions, where MRC is a control register

read, and MCR is a control register

write:

<MCR/MRC>{cond} 15,0,Rd,A3Cn,0

cond two character condition mnemonic, see section Condition Field.

Rd is an expression evaluating to a valid ARM register number.

A3Cn is an expression evaluating to one of the control register numbers.

These registers can only be accessed

while the processor is in a non-user

mode, and only by using coprocessor

register transfer operations. The
VL86C020 will take the undefined in-

struction trap if an illegal access is

made to coprocessor 15 (illegal

accesses include coprocessor data

operations, data transfers and user

mode register transfers).

Register 0: Identity Register - Read
Only - This is a read-only register that

returns a 32-bit VLSI-specified number
which decodes to give the chip's

designer, manufacturer, part type and

revision number:

3-45

VLSI Technology, inc.

VL86C020
ID Example:

Bit 31 -Bit 24

Bit 23-Bit 16

Bit 15-Bit 8

Bit 7-Bit

(VL86C020 rev. 0)

Designer code

Manufacturer code

Part type

Revision number

(=41 H - Acorn Computer Ltd.)

(-56H - VLSI Technology Inc.)

(-03H - VL86C020)
(-00H - Revision 0)

Register 1 : Cache Flush (Write Only)

Writing any value to this register

immediately flushes the cache.

Register 2: Cache Control (Read/

Write) - This is a three-bit register that

controls some special features of the

VL86C020:

1

.

Reg ister Bit(O) - Cache On/Off -

If Bit(O) is low, the cache is turned

off and all processor read opera-

tions will go directly to the external

memory. The automatic cache

flush and cache update mecha-
nisms operate even when the

cache is turned off. This allows the

cache to be turned off for a time

and then turned on again with no

loss of cache consistency.

If Bit(0) is high, the cache is turned

on. Care must be taken that the

cacheable, updateable and
disruptive registers are correctly

programmed before turning the

cache on.

2. Register Bit(1) - Separate/Shared

User-Supervisor Address Space -

the CPU can work with two

different memory-mapping
schemes:

a. Shared Supervisor/User

Address Space - The memory
manager uses the same

3.

translation tables for User and
Supervisor modes, so the

same physical memory
location is accessed regard-

less of processor mode
(although the user may only

have restricted access). If the

memory manager uses this

translation system (as MEMC
does), Bit(1) must be set high.

b. Separate Supervisor/User

Address Space - The memory
manager uses different

translation tables for user and

supervisor modes, and the

processor will access com-

pletely different physical

locations depending on its

mode. K the memory manager
uses this translation system,

Bit(1) must be set low.

Register Bit(2) - Monitor Mode -

In normal operation, when the CPU
is executing from cache, the

external address lines are held

static to conserve power, and only

coprocessor instructions and data

are broadcast on the coprocessor

data bus.

In the software selectable monitor

mode, the internal addresses are

always driven onto the external

address bus, and all CPU instruc-

tion and data fetches (whether from

cache or external memory) are

broadcast on the coprocessor data

bus; this allows full program tracing

with a logic analyzer. To conserve

power, monitor mode forces the

VL86C020 to synchronize perma-
nently to MCLK (even for cache ac-

cesses).

Monitor mode is selected by setting

Bit(2) high. Normal operation is

achieved by setting Bit(2) low (the

default on reset).

4. Register Bits 31 -3 - Reserved -

These bits are reserved for future

expansion. When writing to

register 2, bit 31 -bit 3 should be set

low to guarantee code compatibility

with future versions of VL86C020.
Reading from register 2 always

returns zeros in bits 31-3.

When the VL86C020 is reset, all three

control bits are set low (cache off,

separate user/supervisor space,

monitor mode off).

Register 3: Cacheable Area (Read/

Write) - This is a 32-bit register that

allows any of the 32, 2 Mbyte areas of

the 64 Mbyte processor virtual address

space to be marked as cacheable:

Cacheable Areas Register:

Bit 31.

Bit 31:

Data from addresses 3E0OOO0H - 3FFFFFFH is cacheable

Data from addresses 3E0OO00H - 3FFFFFFH is NOT cacheable

Bit 0-1

Bit 0-0
Data from addresses 0000000H - 01FFFFFH is cacheable

Data from addresses 0000000H - 01 FFFFFFH is NOT cacheable

3-46

VLSI Technology, inc.

VL86C020

On a cache-miss, if the address is

marked as cacheable, a line of data will

be fetched from external memory and

stored in the cache (when the cache is

turned on). If the area is marked as

non-cacheable, or the cache is turned

off, only the requested byte/word of

data will be read from external memory,
and it will not be stored in the cache.

This register is undefined ;at power-up,

and must be correctly programmed
before the cache is turned on.

Register 4: Updateable Areas (Read/

Write) - This is a 32-bit register that

allows any of the 32, 2 Mbyte areas of

the 64 Mbyte processor virtual address

space to be marked as updateable:

Updateable Areas Register:

Bit 31 =

Bit 31 =

Data from addresses 3E00000H •

Data from addresses 3E00000H
3FFFFFFH is updateable

3FFFFFFH is NOT updateable

Bit 0=1 Data from addresses 0000000H - 01 FFFFFH is updateable

Bit 0-0 Data from addresses 0000000H - 01 FFFFFH is NOT updateable

Data stored in the cache from areas

marked as updateable will be updated

when the processor writes new data to

that address. This register is undefined

at power-up, and must be correctly

programmed before the cache is turned

Register 5: Disruptive Areas (Read/

Write) • This is a 32-bit register that

allows any of the thirty-two, 2 Mbyte
areas of the 64 Mbyte processor virtual

address space to be marked as

disruptive:

If the processor performs a write

operation to an area marked as
disruptive, the cache will automatically

be flushed. This register is undefined at

power-up, and must be correctly

programmed before the cache is turned

Disruptive Areas Register:

Bit 31-1

Bit 31-1

Data from addresses 3E00000H •

Data from addresses 3E00000H
3FFFFFFH is disruptive

3FFFFFFH is NOT disruptive

Bit 0-1

Bit 0-0
Data from addresses OOOOOOOH •

Data from addresses OOOOOOOH
01 FFFFFH is disruptive

01 FFFFFH is NOT disruptive

FIGURE 23. VL86C020 MEMORY TIMING

L-CYCLE

JMCLK

-MREQ

SEQ

-RAS

-CAS

ADDRESS

CONTROL

DATA (READ)

DATA (WRITE)

ABORT

X
X

:

J

A-CYCLE

_J
A-CYCLE L-CYCLE

X
X

IZZZX

_>—

c

zx^

3-47

VLSI Technology, inc.

VL86C020

MEMORY INTERFACE
The VL86C020 reads instructions and

data from, and writes data to, its main

memory via a 32-bit data bus. A
separate 26-bit address bus specifies

the memory location to be used for the

transfer, and a 7-bit control bus gives

information about the type of transfer

(including direction, byte or word

quantity and processor mode).

CYCLE TYPES
The memory interface timing is con-

trolled by the memory clock input,

MCLK. Each memory cycle (defined as

the period between consecutive falling

edges of MCLK) may be either active or

latent.

- Active cycles (A-cycles) involve the

transfer of data between CPU and

memory. The address, control and

(for write operations) data buses

are valid, and the CPU monitors

the ABORT input to check that the

current operation is valid.

Where more than one word of data

is to be transferred, consecutive

active cycles are used; in this case,

each successive transfer will be to/

from an address one word after the

previous one. At the end of a

multiple transfer, when the CPU
wishes to access an address which

is unrelated to the one used in the

preceding cycle, it will request a

latent cycle.

- Latent cycles (L-cycles) are flagged

when the CPU does not have to

transfer any data to/from memory.

Typically, this will be because the

CPU is fetching data from the

internal cache; the CPU must still

be clocked with MCLK during latent

cycles, since MCLK is used in the

^synchronization process.

The address, control and (for write

operations) data buses are all valid

during the latent cycle preceding

an active cycle; this allows the

memory system to start the data

transfer during the latent cycle as

soon as the following active cycle

is flagged (by -MREQ going low).

Active and latent cycles are flagged to

the memory system using the -MREQ
output. The SEQ output is the inverse

of -MREQ, and is provided to allow the

VL86C020 to work with the current

versions of MEMC. The states en-

coded by -MREQ and SEQ correspond

to the internal and sequential cycles

used by the VL86C01 processor, and

are shown in the following table.

-MREQ SEQ Cycle Type

(Unused)

1 Active

1 Latent

1 1 (Unused)

The memory interface has been
designed to facilitate the use of DRAM
page-mode to allow rapid access to

sequential data. Figure 23 shows how
the DRAM timing might be arranged to

allow the CPU to access two consecu-

tive words of memory.

The address and control signals change

when MCLK is high, and apply to the

following cycle. Both the address and

control buses are valid during the L-

cycle preceding the first A-cycle, so the

memory system can start the DRAM
access by driving -RAS low once the A-

cycle has been flagged (by -MREQ
being low on the rising edge of MCLK).
Since -MREQ remains low during the

first A-cycle, the memory system knows
that the next cycle will be an access to

the consecutive word of memory, and

so may leave -RAS low and fetch the

next word from the same page of

DRAM. Note that the memory system

must check that the consecutive access

will be in the same page of DRAM
before commiting to a page-mode

access; if it is not, the memory system

must stop the CPU while the new row

address is strobed into the DRAM.

The end of the consecutive accesses is

denoted when an L-cycle is flagged (by

-MREQ being high on the rising edge
of MCLK).

When interfacing the VL86C020 to

static RAM, L-cycles may be ignored,

and RAM accessed only when A-cycles

are flagged. The address bus timing

may have to be modified (see section

on Address timing).

DATA TRANSFER
The direction of data transfer is

determined by the state of -R/W.

When -R/W is low, the CPU is reading

data from memory, and the appropriate

data must be setup on the data bus

before the falling edge of MCLK in the

active cycle.

When -R/W is high, the CPU is writing

data to memory. The data bus be-

comes valid during the first half of the L-

cycle preceding the A-cycle, and

remains valid until the A-cycle has

completed. In consecutive write

operations, the data bus changes
during the first half of each A-cycle.

In systems where the VL86C020 is not

the only device using the data bus, DBE
must be driven low when the CPU is not

the bus master. This will prevent the

CPU from driving data onto the bus un-

expectedly during L-cycles.

BYTE ADDRESSING
The processor address bus provides

byte addresses, but instructions are

always words (where a word is four

bytes) and data quantities are usually

words. Single data transfers

(LDR.STR.SWP) can, however, specifiy

that a byte quantity is required. The

-B/W control line is used to request a

byte from the memory system; normally

it is high, signifying a request for a word

quantity, but it goes low when the

addresses change to request a byte

transfer.

When a byte is requested in a read

transfer, the memory system can safely

ignore the fact that the request is for a

byte quantity and present the whole

word. The CPU will perform the byte

extraction internally. Alternatively, the

memory system may activate only the

addressed byte of the memory. (This

may be desirable in order to save

power, or to enable the use of a

common decoding system for both read

and write cycles.)

If a byte write is requested, the CPU will

broadcast the byte value across the

data bus, presenting it at each byte

location within the word. The memory
system must decode address bits A1-

AO to determine which byte is to be

written.

One way of implementing the byte

deoode in a DRAM system is to

separate the 32-bit wide block of DRAM
into four byte wide banks, and generate

3-48

VLSI Technology inc.

VL86C020

FIGURE 24. BYTE ADDRESSING

AO A1 -B/W MCLK CAS

^o^o
^O-O

oi>

=o -CASO

O -CAS1

O -CAS2

to -CAS3

the column address strobes independ-

ently. (See Figure 24.)

-CASO drives the DRAM bank which is

connected to D7-D0, -CAS1 drives the

bank connected to D15-D8, and so on.

This has the added advantage of

reducing the load on each column
strobe driver, which improves the

precision of this time critical signal.

LOCKED OPERATIONS
The VL86C020 includes a data swap
(SWP) instruction that allows the

contents of a memory location to be
swapped with the contents of a proces-

sor register. This instruction is imple-

mented as an uninterruptable pair of

accesses as shown in Figure 25; the

first access reads the contents of the

memory, and the second writes the

register data to the memory. These
accesses must be treated as a contigu-

ous operation by the memory manager
to prevent another device from chang-
ing the affected memory location before

the swap is completed. The CPU
drives the LOCK signal high for the

duration of the swap operation to warn
the memory manager not to give the

memory to another device.

FIGURE 25. DATA SWAP OPERATION

READ MEI\

L-CYCLE

/IORY DATA
A-CYCLE

WRITE REG
L-CYCLE

ISTER DATA
A-CYCLE

MCLK __T I
I

|
j

MRFO ~

I

_l I _|
SEQ _J~

~~
I

I

—\

ADDRESS X X
-B/W X X
-R/W |

|
I

LOCK

RATA (READ)

I

/

—

\
I

\ /

< /

ABORT ilii ililiiiiiiiii: iix xin iliX Mil

3-49

VLSI Technology, inc. PBiUBfOONlAmf
VL86C020

FIGURE 26. LINE FETCH OPERATION

MCLK _f
-MREQ

SEQ

ADDRESS ~ X"

-B/W
|

-R/W I

LINE

DATA (READ)

DATA (WRITE)

J

ABORT 11

L-CYCLE A-CYCLE A-CYCLE A-CYCLE A-CYCLE

I

xx..xOH X xx..x4H X"

xx..x6H X xx..xCH

<foORDrj> <jWORDJ> QjQRDp <yVORDJ>-

|XCZI>€i:

LINE FETCH OPERATIONS
A line fetch operation involves reading

exactly four words of data from the

memory system into the on-chip cache.

The access always starts on a quad-

word aligned address (i.e. xx..xOH,

xx..x4H or xx..xCH), and consists of

one L-cycle followed by four consecu-

tive A-cycles as shown in Figure 26.

Line fetch operations may only be

aborted during the first access (to

address xx..xOH); it is assumed that if

the first word of a line is readable, the

whole line is readable. The VL86C020
signals a line fetch by driving LINE high

for the duration of the five cycle

operation.

ADDRESS TIMING
Normally the processor address

changes when MCLK is high to the

value which the memory system should

use during the following cycle. This

gives maximum time for driving the

address to large memory arrays, and

for address translation where required.

Dynamic memories usually latch the

address on chip, and if the latch is

limed correctly, they will work even

though the address changes before the

access has completed. Static RAMs
and ROMs will not work under such

circumstances, as they require the

address transition must be delayed until

MCLK goes low. An on chip address

latch, controlled by ALE, allows the

address timing to be modified in this

way.

In a system with a mixture of dynamic

and static memories (which for these

purposes means a mixture of devices

with and without address latches), the

use of ALE may change dynamically

from one cycle to the next, at the

discretion of the memory system.

VIRTUAL MEMORY SYSTEMS
The CPU is capable of running a virtual

memory system, and the address bus

may be processed by an address

translation unit before being presented

to the memory. The ABORT input to

the processor is used by the memory
manager to inform the processor of ad-

dressing faults.

The minimum page size allowed by the

VL86C020 is four words (the length of a

cache line). Various page protection

levels can be suported using the

VL86C020 control signals:

- -R/W can be used by the memory
manager to protect pages from

being written to.

- -TRANS indicates whether the

processor is in a user or non-user

mode, and may be used to protect

system pages from the user, or to

support completely separate

mappings for the system and the

user. In the latter case, the T bit in

LDR and STR instructions can be

used to offer the supervisor the

user's view of the memory.

- -M1 -MO can present the memory
manager with full information on

the processor mode.

The cache control register must be

programmed to implement the appropri-

ate cache consistency mechanism
depending on whether the memory
manager uses a shared or separate

user/non-user translation system (see

Cache Operation Section).

STRETCHING ACCESS TIMES
All memory timing is defined by MCLK,
and long access times can be accom-

modated by stretching this clock. It is

usual to stretch the low period of MCLK,
as this allows the memory manager to

abort the operation if the access is

eventually unsuccessful (ABORT must

be setup to the rising edge of MCLK in

A-cycles).

Either MCLK can be stretched before it

is applied to the CPU, or the -WAIT
input can be used together with a free-

running MCLK. Taking -WAIT low has

3-50

VLSI Technology, inc.

VL86C020

the same effect as stretching the low

period of MCLK, and -WAIT must only

change when MCLK is low.

The VL86C020 contains dynamic logic,

and relies upon regular clocking to

maintain its internal state. For this

reason, a limit is set upon the maximum
period for which MCLK may be

stretched, or -WAIT held low (see AC
parameters).

COPROCESSOR INTERFACE
The functionality of the CPU instruction

set may be extended by the addition of

up to 15 external coprocessors. When
a particular coprocessor is not present,

instructions intended for it will trap, and

suitable software may be installed to

emulate its functions. Adding the

relevant coprocessor hardware will then

increase the system performance in a

software compatible way.

Interface Signals - The coprocessor

interface timing is specified by CPCLK,
a clock generated by the VL86C020.

CPCLK is derived from either MCLK or

FCLK depending on whether the CPU
is accessing external memory or the

cache; the coprocessors must, there-

fore, be able to operate at FCLK
speeds. A coprocessor cycle is defined

to be the period between consecutive

falling edges of CPCLK. Three

dedicated signals control the coproces-

sor interface, coprocessor instruction

(-CPI), coprocessor absent (CPA) and

coprocessor busy (CPB).

Coprocessor Present/Absent - The
CPU takes -CPI low whenever it starts

to execute a coprocessor (or undefined)

instruction (this will not happen if the

instruction fails to be executed because

of the condition codes). Each

coprocessor will have a copy of the

instruction, and can inspect the CP#
field to see which coprocessor it is for.

Every coprocessor in a system must

have a unique number, and if that

number matches the contents of the

CP# field, the coprocessor should pull

the CPA (coprocessor absent) line low.

If no coprocessor has a number which

matches the CP# field, CPA will float

high, and the CPU will take the unde-

fined instruction trap. Otherwise, the

VL86C020 observes the CPA line going

low, and waits until the coprocessor

flags that it is not busy (using CPB).

Busy-Waiting - If CPA goes low, the

CPU will watch the CPB (coprocessor

busy) line. Only the coprocessor which

is pulling CPA low is allowed to drive

CPB low, and it should do so when it is

ready to complete the instruction. The
VL86C020 will busy-wait while CPB is

high, unless an enabled interrupt

occurs, in which case it will break off

from the coprocessor handshake to

process the interrupt. Normally the

CPU will return from processing the

interrupt to retry the coprocessor

instruction.

When CPB goes low, the instruction

continues to completion; in the case of

register transfer or data: transfer instruc-

tions, this will involve data transfers

taking place along the coprocessor data

bus (CPD31 -CPDO) between the

coprocessor and CPU. Data operations

do not transfer any data, and complete

as soon as the coprocessor ceases to

be busy.

All three interface signals are sampled
by both CPU and the coprocessor(s) on

the rising edge of CPCLK. If all three

are low, the instruction is committed to

execution, and where transfers are

involved they will start in the next

CPCLK cycle. If -CPI has gone high

after being low, and before the instruc-

tion is committed, the VL86C020 has

broken off from the busy-wait state to

service an interrupt. The instruction

may be restarted later, but other

coprocessor instructions may come
sooner, and the instruction should be

discarded. An external pull-up resistor

is normally required on both CPA and

CPB.

FIGURE 27. COPROCESSOR DATA OPERATION

CDP
BROADCAST

CPCLK f

-OPC

urUdl" yw- i'Wim iw.-iK.

CPDO % >

CPSPV

-CPI

CPA

CPB

X
-<CDP >

X

CDP CDP
DECODED EXECUTED

COPROCESSOR COPROCESSOR
BUSY READY

-<PC+4 >

X
-<PC+8 -IZV

X
-<PC.f1

2

3-51

VLSI Technology, inc.

VL86C020

Pipeline Following - In order to

respond correctly when a coprocessor

instruction arises, each coprocessor

must have a copy of the instruction.

This is achieved by having each

coprocessor maintain a copy of the

processor's instruction pipeline. If

-OPC is low when CPCLK is low, then

the CPU will broadcast a processor in-

struction that cycle. The coprocessors

should latch the instruction off CPD31-
CPDO at the end of the cycle (as

CPCLK falls) and clock it into their

instruction pipelines.

To reduce the number of transitions on
CPD31-CPD0, the VL86C020 inspects

the instruction stream and replaces all

non coprocessor instructions with

&FFFFFFFF (which still decodes as a

non coprocessor instruction); all

coprocessor instructions are broadcast

unaltered.

This scheme is disabled when monitor

mode is selected, and all CPU instruc-

tions and data fetches are broadcast

unaltered (see Cache OperationSec-

tion).

DATA TRANSFER CYCLES - Once
the coprocessor has gone no-busy in a

data transfer instruction, it must supply

or accept data at the VL86C020 bus

rate (defined by CPCLK). The direction

of transfer is defined by the L bit in the

instruction being executed. The
coprocessor is responsible for deter-

mining the number of words to be

transferred; VL86C020 will continue to

increment the address by one word per

transfer until the coprocessor tells it to

stop. The termination condition is

FIGURE 28. COPROCESSOR DATA TRANSFER (FROM MEMORY TO COPROCESSOR)

COPROCESSOR
READY

CPCLK _ f

-OPC

CPD31-
CPDO IN

-CPI

CPA

CPB

FIRST
DATA

TRANSFER

PENULTIMATE
DATA

TRANSFER

#-

DATAQ)

FINAL
DATA

TRANSFER

DATA(M-l) DATA(M)

EXTRA
DATA

(IGNORED)

DATA(M+1)

-<cz> -<PC+1 s

FIGURE 29. COPROCESSOR DATA TRANSFER (FROM COPROCESSOR TO MEMORY)

C;oprocessor
READY

FIRST
DATA

TRANSFER

PENULTIMATE
DATA

TRANSFER

FINAL
DATA

TRANSFER

CPCLK J I

I

I // I I A _1
//

-OPC
^

f

|~

s

j_ r
CPD31- >—> <PC+8 4mm

<^PC+1^>-CPDO OUT f

DATA(N
)

S

%;s«5;s

DATA(l') DATA(M-D
CPD31- s W < >- <N ?

-CPI ~l J
__~~

I

CPA L J
' L

CPB
L r L

3-52

VLSI Technology, inc.

VL86C020
indicated by the coprocessor releasing

CPA and CPB to float high.

The data being transferred to/from

memory is pipelined by one cycle within

the CPU. In the case of a coprocessor

load from memory, this means that the

CPU is one word ahead of the

coprocessor, and always fetches one
extra word of data. This extra fetch will

not adversely affect the CPU or the

coprocessor, but may cause unex-

pected faults In the memory system
(e.g. if the extra fetch accesses a read-

sensitive peripheral).

There is no limit in principle to the

number of words which one coproces-

sor data transfer can move, but by
convention no coprocessor should allow

more than 1 6 words in one instruction.

More than this would worsen the worst

case CPU interrupt latency, since the

instruction is not interruptable once the

transfers have commenced. At 16
words, this instruction is comparable
with a block transfer of 1 6 registers, and
therefore does not affect the worst case
latency.

REGISTER TRANSFER CYCLE
Register transfer operations involve the

transfer of a single word between the

CPU and the appropriate coprocessor

along CPD31-CPD0. The transfer

takes place in the cycle after the one in

which the CPU and the coprocessor
committed to the instruction.

PRIVILEGED INSTRUCTIONS
The coprocessor may restrict certain

instructions for use in a privileged (non-

user) mode only. To do this, the

coprocessor may use the CPSPV

FIGURE 30. COPROCESSOR REGISTER TRANSFER (LOAD FROM COPROCESSOR)

TRANSFER
COPROCESSOR COPROCESSOR

READY DATA

CPCLK f

-OPC

CPD31-
CPDO OUT

CPD31-
CPDO IN

-CPI

CPA

CPB

-<DATA

~€

>-

-<pc+i2;

FIGURE 31. COPROCESSOR REGISTER TRANSFER (STORE TO COPROCESSOR)

CPD31-
CPDO IN

-CPI

CPA

CPB

COPROCESSOR
READY

CPCLK f

-OPC —
CPD31-

CPDO OUT

TRANSFER
REGISTER
DATA

-<PC+1S >-

3-53

VLSI Technology, inc.

VL86C020

output of the VL86C020; this signal is

valid while CPCLK is low, and applies

to the instruction being broadcast

during that cycle. When CPSPV is

high, the broadcast instruction is

privileged.

As an example of the use of this facility,

consider the case of a floating point

coprocessor (FPU) in a multi-tasking

system. The operating system could

save all the floating point registers on

every task switch, but this is inefficient

in a typical system where only one or

two tasks will use floating point opera-

tions. Instead, there could be a

privileged instruction which turns the

FPU on or off. When a task switch

happens, the operating system can turn

the FPU off without saving its registers.

If the new task attempts an FPU
operation, the FPU will appear to be

absent, causing an undefined instruc-

tion trap. The operating system will

then realize that the new task requires

the FPU, so it will re-enable it and save

FPU registers. The task can then use

the FPU as normal. If, however, the

new task never attempts an FPU
operation (as will be the case for most

tasks), the state saving overhead will

have been avoided.

REPEATABILITY
A consequence of the implementation

of the coprocessor interface, with the

interruptable busy-wait state, is that all

instructions may be interrupted at any

point up to the time when the coproces-

sor goes not-busy. If so interrupted, the

instruction will normally be restarted

from the beginning after the interrupt

has been processed. It is, therefore,

essential that any action taken by the

coprocessor before it goes not-busy

must be repeatable, i.e. must be repeat-

able with identical results.

For example, consider a FIX operation

in a floating point coprocessor which

returns the integer result to a CPU
register. The coprocessor must stay

busy while it performs the floating point

to fixed point conversion, as the CPU
will expect to receive the integer value

on the cycle immediately following that

where it goes not-busy. The coproces-

sor must, therefore, preserve the

original floating point value and not

corrupt it during the conversion be-

cause it will be required again if an

interrupt occurred during the busy

period.

The coprocessor data operation class

of instruction is not generally subject to

repeatablity considerations, as the proc-

essing activity can take place after the

coprocessor goes not-busy. There is

no need for the CPU to be held up until

the result is generated, because the

result is confined to stay within the

coprocessor.

UNDEFINED INSTRUCTION
The undefined instruction is treated by

the CPU as a coprocessor instruction.

All coprocessors must be absent (i.e. let

CPA float high) when the undefined

instruction is presented. The CPU will

then take the undefined instruction trap.

Note that the coprocessor need only

look at bit 27 of the instruction to

differentiate the undefined instruction

(which has in bit 27) from coprocessor

instructions (which all have 1 in bit 27).

VL86C020 INSTRUCTION CYCLES
This section shows the cycles per-

formed by the VL86C020's CPU and

coprocessor for all possible instructions.

Each class of instruction is taken in

turn, and its operation is broken down

into constituent cycles.

EXPLANATION OF INSTRUCTION TABLES
Example:

Cycle OPRTN Type Address Data -OPC CPD31-CPD0 -CPI CPA CPB

1 Read PC+8 (PC+8) 1 X X

2 Intnl _ PC+8 (PC+8)

3 Intnl _ < - not clocked - > 1 Dl(1) 1 1 1

4 Write N ALU Dl(1) < . not clocked = >

Read N PC+12 1 1\)

Each row in the table represents a

single CPU or coprocessor cycle. The

cycles which constitute the instruction

are numbered from 1 to n.

The OPRTN column shows the CPU
operation being performed in each

cycle. There are four types of CPU
operation as follows:

1 . Read: A CPU read operation; the

data will be read from the cache if it

is present, otherwise an external

read or line fetch operation will be

necessary.

2. Write: A CPU write operation;

VL86C020 always writes data im-

mediately to the main memory.

3. Intnl: An internal operation where

the CPU is not transferring data.

4. Trnsf : A coprocessor register

transfer where data passes

between the CPU and a coproces-

sor.

The type column gives extra information

about the type of operation being

performed:

Read and write operations may be

one of two types, Sequential ("S")

or Non-sequential ("N"). A
sequential access involves the

CPU transferring data with an

address that is one word after the

preceding access. A non-

sequential access is flagged when

the current CPU address is

unrelated to the one used in the

preceding access.

Read and write operations

normally work on word quantities,

but the single data load, store and

3-54

VLSI Technology, inc. P^ELOMOM^lrW
VL86C020

swap instructions allow byte

quantities to be specified; this is

indicated by the symbol "(BAN)" in

the type column.

3. The coprocessor register transfer

instruction may either transfer data

into ("I") or out from ("O") the CPU.

The address and data columns show
the contents of VL86C020's internal

address and data busses. Note that in

normal mode, the internal data bus

cannot be observed directly, and the

address bus is only observable when
the CPU is synchronized to MCLK.

The -OPC, CPD31-CPD0, -CPI, CPA
and CPB columns (where shown)

indicate the state of the external

coprocessor interface. Note that in

normal mode CPD31-CPD0 only

broadcasts coprocessor instructions

and data (see section Pipeline Follow-

ing). By selecting monitor mode, the

internal address bus can be viewed on
A25-A0, and all data will be broadcast

onCPD31-CPD0.

The final, un-numbered operation in an

instruction shows what will happen in

the first cycle of the next instruction.

Note that the first cycle of an instruction

is always an instruction fetch (word

read operation), but may be either an

N-type or S-type read depending on the

previous instruction.

INSTRUCTION TABLES
Branch and Branch with Link - A branch

instruction calculates the branch

destination in the first cycle, while

performing a prefetch from the current

PC. This prefetch is done in all cases,

since by the time the decision to take

the branch has been reached it is

already too late to prevent the prefetch.

During the second cycle a fetch is

performed from the branch destination,

and the return address Is stored in

register 14 if the link bit is set. The first

cycle's prefetch data is broadcast on

the external coprocessor data bus

(there is a one cycle delay between the

coprocessor and CPU).

The third cycle performs a fetch from

the destination +4, refilling the instruc-

tion pipeline, and if the branch is with

link, R14 is modified (4 is subtracted

from it) to simplify return from SUB
PC<R14,#4toMOVPC,R14. This

makes the STM ..{R14}iLDM ..{PC}

type of subroutine work correctly.

Cycle OPRTN Type Address Data

1 Read PC+8 (PC+8)

2 Read N ALU (ALU)

3 Read S ALU+4 (ALU+4)

Read S ALU+8

-OPC CPD31-CPD0

(PC+8)

(ALU)

(ALU+4)

(PC is the address of the branch instruction, ALU is an address calculated by the CPU, (ALU) is the contents of the address,

etc).

Data Operations - A data operation

executes in a single datapath cycle

except where the shift is determined by

the contents of a register. A register is

read onto the A bus, and a second

register or the immediate field onto the

B bus. The ALU combines the A bus
source and the shifted B bus source

according to the operation specified in

the instruction, and the result (when

required) is written to the destination

register. (Compares and tests do not

produce results, only the ALU status

flags are affected.)

An instruction prefetch occurs at the

same time as the above operation, and

the program counter is incremented.

When the shift length is specified by a

register, an additional datapath cycle

occurs before the above operation to

copy the bottom 8 bits of that register

into a holding latch in the barrel shifter.

The instruction prefetch will occur

during this first cycle, and the operation

cycle will be internal (i.e. will not

perform a data transfer).

The PC may be any (or all!) of the

register operands. When read onto the

A bus it appears without the PSR bits,

on the B bus it appears: with them.

Neither will affect external bus activitiy.

When it is the destination, however, the

contents of the instruction pipeline are

invalidated, and the address for the

next instruction prefetch is taken from

the ALU rather than the address

incrementer. The instruction pipeline is

refilled before any further execution

takes place, and duringithis time

exceptions are locked out.

3-55

VLSI Technology, inc.

VL86C020

Cycle OPRTN Type Address Data -OPC CPD31-CPD
Normal 1 Read PC+8 (PC+8)

Read S PC+12 (PC+8)

DEST=PC 1 Read PC+8 (PC+8)

2 Read N ALU (ALU) (PC+8)

3 Read S ALU+4 (ALU+4) (ALU+4)

Read S ALU+8 (ALU+4)

Shift (RS) 1 Read PC+8 (PC+8)

2 Intnl - PC+12 - (PC+8)

Read N PC+12 1 -

Shift (RS), 1 Read PC+8 (PC+8)

DEST=PC 2 Intnl - - - (PC+8)

3 Read N ALU (ALU) 1 -

4 Read S ALU+4 (ALU+4) (ALU)

Read S ALU+8 (ALU+4)

Multiply and Multiply Accumulate -

The multiply instructions make use of

special hardware which implements a

2-bit Booth's algorithm with early termi-

nation. During the first cycle the accu-

mulate register is brought to the ALU,

which either transmits it or produces

zero (according to whether the instruc-

tion is MLA or MUL) to initialize the

destination register. During the same

cycl, one of the operands is loaded into

the Booth's shifter via the A bus.

The datapath then cycles, adding the

second operand to, subtracting it from,

or just transmitting, the result register.

The second operand is shifted in the

Nth cycle by 2n or 2n+1 bits, under

control of the Booth's algorithm logic.

The first operand is shifted right 2 bits

per cycle, and when it is zero the

instruction terminates (possibly after an

additional cycle to clear a pending

borrow).

All cycles except the first are internal.

If the destination is the PC, all writing to

it is prevented. The instruction will

proceed as normal except that the PC
will be unaffected. (If the S bit is set

PSR flags will be meaningless.)

(RS) = 0,

1

(RS)>1

)ycle OPRTN Type Address Data -OPC CPD31-CPD0

1 Read PC+8 (PC+8)

2 Intnl - PC+12 - (PC+8)

Read N PC+12 - 1 -

1 Read PC+8 (PC+8)

2 Intnl - PC+12 - (PC+8)

Intnl - PC+12 - 1 -

m+1 Intnl - PC+12 - 1 -

Read N PC+12 1 -

(m is the number of cycles required by

the Booth's algorithm, which is deter-

mined by the contents of Rs. Multiplica-

tion by and number between 2A(2m-3)

and 2A(2m-1)-1 inclusive takes m cycles

for m>1 . Multiplication by zero or one

takes one cycle. The maximum value

m can take is 1 6.)

Load Register - The first cycle of a

load register instruction performs the

address calculation. The data is

fetched during the second cycle, and

the base register modification is

performed during this cycle (if required).

During the third cycle the data is

transferred to the destination register,

and the CPU performs an internal cycle.

The data read may be a byte or word

quantity (B/W), and the processor mode
may be forced into user mode while the

read takes place (depending on the

state of the T bit in the instruction).

Either the base or the destination (or

both) may be the PC, and the prefetch

sequence will be changed if the PC is

affected by the instruction.

The data fetch may abort, and in this

case the base and destination modifica-

tions are prevented.

3-56

VLSI Technology inc.

VL86C020
Cycle OPRTN

Normal 1 Read
2 Read N(BAV)
3 Intnl -

Read N

DEST-PC 1 Read
2 Read N(BAV)
3 Intnl -
4 Read N
5 Read S

Read S

BASE=PC 1 Read
Write Back 2 Read N(BAV)
DEST=PC 3 Intnl -

4 Read N
5 Read S

Read s

BASE=PC 1 Read
Writ -Back 2 Read N(B/W)
DEST=PC 3 Intnl _

4 Read N
5 Read S

Read S

Address Data -OPC CPD31-CPD0

PC+8
ALU
PC+12
PC+12

(PC+8)

(ALU)

1

1

(PC+8)

(ALU)

PC+8
ALU
PC+12
(ALU)

(ALU)+4

(ALUJ+8

(PC+8)

(ALU)

((ALU))

«ALU)+4)

1

1

(PC+8)

(ALU)

((ALU))

((ALU)+4)

PC+8
ALU
PC-

PC
PC+4
PC+8

(PC+8)

(ALU)

(PC)
(PC+4)

1

1

(PC+8)

(ALU)

(PC)

(PC+4)

PC+8
ALU
PC
(ALU)

(ALU)+4

(ALU)+8

(PC+8)

(ALU)

((ALU))

«ALU)+4)

1

1

(PC+8)

(ALU)

((ALU))

((ALU)+4)

(PC is the PC value modified by write back; T shows the cycle where the force translation option in the instruction may be used.)

Store Register - The first cycle of a
store register is similar to the first cycle

of load register. During the second
cycle the base modification is per-

formed, and at the same time the data
is written to external memory. There is

no third cycle.

The data written may be a byte or word
quantity (B/W), and the processor mode
may be forced into user mode while the

write takes place (depending on the

state of the T bit in the instruction).

The PC will only be modified if it is the

base and write back occurs.

A data abort prevents the base write

back.

Cycle OPRTN Type Mode Address

Normal

BASE=PC
Write Back

1 Read
2 Write

Read

Read
Write

Read
Read
Read

N(B/W)
N

N (B/W) T
N
S
S

PC+8
ALU
PC+12

PC+8
ALU
PC
PC+4
PC+8

Data

(PC+8)

RD

(PC+8)

RD
(PC)
(PC+4)

-OPC CPD31-CPD0

(PC+8)

RD

(PC+8)

RD
(PC)
(PC+4)

3-57

VLSI Technology, inc.

VL86C020

Store Multiple Registers - Store

multiple proceeds very much as load

multiple (see next section), without the

final cycle. The restart problem is much

more straightforward here, as there is

no wholesale overwriting of registers to

contend with.

Cycle OPRTN Type Address Data -OPC CPD31-CPD0

1 Register 1

2

Read
Write

Read
N
N

PC+8
ALU
PC+12

(PC+8)

R(A)

1

(PC+8)
R(A)

n Registers

(n>1)

1

2

3

Read
Write

Write

N
S

PC+8
ALU
ALU+4

(PC+8)

R(A)

R(A+1) 1

(PC+8)

R(A)

n+1 Write

Read
S
N

ALU+.
PC+12

R(A+n) 1

1

R(A+n-1)

R(A+n)

Load Multiple Registers - The first

cycle of LDM is used to calculate the

address of the first word to be trans-

ferred, while performing a prefetch.

The second cycle fetches the first word,

and performs the base modifications.

During the third cycle, the first word is

moved to the appropriate destination

register while the second word is

fetched, and the modification base is

moved to the ALU A bus input latch for

holding in case it is needed to patch up

Cycle OPRTN Type

after abort. The third cycle is repeated

for subsequent fetches until the last

data word has been accessed, then the

final (internal) cycle moves the last

word to its destination register.

If an abort occurs, the instruction

continues to completion, but all register

writing after the abort is prevented. The

final cycle is altered to restore the

modified base register (which may have

been overwritten by the load activity

before the abort occurred).

Address

If the PC is the base, write back is

prevented.

When the PC is in the list of registers to

be loaded, and assuming that no abort

takes place, the current instruction

pipeline must be invalidated.

Note that the PC is always the last

register to be loaded, so an abort at any

point will prevent the PC from being

overwritten.

1 Register 1 Read PC+8
2 Read N ALU
3 Intnl - PC+12

Read N PC+12

1 Register 1 Read N PC+8

DEST=PC 2 Read N ALU
3 Intnl - PC+12
4 Read N PC
5 Read S PC+4

Read S PC+8

n Registers 1 Read PC+8

(n>1) 2 Read N ALU
• Read S ALU+.

n+1 Read S ALU+.

n+2 Intnl - PC+12
Read N PC+12

n Registers 1 Read PC+8

(n>1) 2 Read N ALU

incl. PC • Read S ALU+.

n+1 Read S ALU+.

n+2 Intnl - PC+12
n+3 Read N PC
n+4 Read S PC+4

Read S PC+8

Data -OPC CPD31-CPD0

(PC+8)

(ALU)

1

1

(PC+8)

(ALU)

(PC+8)

PC
1

(PC+8)

PC
(PC)
(PC+4)
(PC+8)

1

(PC)

(PC+8)

(PC+8)

(ALU)

(ALU+.)

(ALU+.)

1

1

1

1

(PC+8)

(ALU)

(ALU+.)

(ALU+.)

(PC+8)

(ALU)

(ALU+.)

PC
1

1

1

(PC+8)

(ALU)

(ALU+.)

PC
(PC)

(PC+4)
(PC+8)

1

(PC)

(PC+8)

3-58

VLSI Technology, inc.

Data Swap - This is similar to the load

and store register instructions, but the

actual swap takes place in cycles two
and three. In the second cycle, the

data is fetched from external memory (it

is always read from the external

memory, even if the data is available in

the cache). In the third cycle, the

contents of the source register are

written out to the external memory. The
data read in cycle two is written into the
destination register during the fourth

cycle.

The LOCK output of the VL86C020 is

driven high for the duration of the swap

VIL86C020
operation (cycles two and three) to

indicate that both cycles should be
allowed to complete without interrup-

tion.

The data swapped may be a byte or

word quantity (B/W).

The prefetch sequence will be changed
if the PC is specified as the destination

register.

When R15 is selected asithe base, the

PC is used together with the PSR. If

any of the flags are set, or interrupts are

disabled, the data swap will cause an

address exception. If: all flags are clear,

and interrupts are enabled (so the top

six bits of the PSR are clear), the data
will be swapped with an address eight

bytes advanced from the swap instruc-

tion (PC+8), although Ithe address will

not be word aligned unless the proces-
sor is in user mode (as the M1 and MO
bits determine the byte address).

The swap operation may be aborted in

either the read or write cycle, and in

both cases the destination register will

not be affected.

Normal

Cycle OPRTN Type Lock Address Data -OPC CPD31-CPD0

Read
Read
Write

Intnl

Read

N (B/W) 1

N (B/W) 1

N

PC+8
RN
RN
PC+12
PC+12

(PC+8)

(RN)

RM
(PC+8)

(RN)

RM

DEST=PC Read
Read
Write

Intnl

Read
Read
Read

N(B/W)
N(B/W)

N
S
S

PC+8
RN
RN
PC+12
PC
PC+4
PC+8

(PC+8)

PC
RM

(PC)
(PC+4)

Software Interrupt and Exception
Entry - Exceptions (and software
interrupts) force the PC to a particular

value and refill the instruction pipeline

from there. During the first cycle the

forced address is constructed, and the

(PC+8)

PC
RM

(PC)

(PC+4)

processor enters supervisor mode. The
return address is moved to register 14.

During the second cycle the return

address is modified to facilitate return,

though this modification isless useful

than in the case of branch with link.

The third cycle is required only to

complete the refilling of the instruction

pipeline.

Cycle OPRTN Type Mode Address Data -OPC CPD31-CPD0

1 Read PC+8 (PC+8)
2 Read N SPV XN (XN)
3 Read S SPV XN+4 (XN+4)

Read S SPV XN+8

(For software interrupt PC is the

address of the SWI instruction, for

interrupts and reset PC is the address
of the instruction following the last one
to be executed before entering the

exception, for prefetch abort PC is the
address of the aborting instruction, for

data abort PC is the address of the

instruction following the one which

(PC+8)

(XN)

(XN+4)

attempted the aborted data transfer. Xn
is the appropriate trap address.)

3-59

VLSI Technology, inc. p^eumoimjw
VL86C020

Coprocessor Data Operation - A
coprocessor data operation is a request

from the CPU for the coprocessor to

initiate some action. The action need

not be completed for some time, but the

coprocessor must commit to doing it

before pulling CPB low.

If the coprocessor can never do the

request task, it should leave CPA and

CPB to float high. If it can do the task,

but can't commit right now, it should pull

CPA low but leave CPB high until it can

commit. The CPU will busy-wait until

CPB goes low.

The coprocessor interface normally

operates one cycle behind the CPU to

allow time for the instructions to be

broadcast. When the CPU starts

executing a coprocessor instruction, it

busy-waits for one cycle (Cycle 2) while

the coprocessor catches up.

Cycle OPRTN Type Address Data -OPC CPD31-CPD0 -CPI CPA CPB

1 Read PC+8 (PC+8) 1 X X

2 Intnl - PC+8 - (PC+8)

Read N PC+12 1
— 1

Not Ready 1 Read PC+8 (PC+8) 1 X X

2 Intnl PC+8 - (PC+8) 1

Intnl _ PC+8 - 1
- 1

n Intnl - PC+8 - 1
-

Read N PC+12 1 1

Coprocessor Data Transfer - Here,

the coprocessor should commit to the

transfer only when it is ready to accept

the data. When CPB goes low, the

CPU will read the appropriate data and

broadcast it to the coprocessor (if the

data is read from the cache, it will be

broadcast at FCLK rates). Note that the

coprocessor is not clocked while the

CPU fetches the first word of data; the

data is broadcast to the coprocessor in

the next cycle.

During the data transfer, the VL86C020

operates one cycle ahead of the

coprocessor, and so always fetches

one word more than the coprocessor

wants. This extra data is simply

discarded.

The coprocessor is responsible for

determining the number of words to be

transferred, and indicates the last

transfer cycle by allowing CPA and

CPB to float high.

The CPU spends the first cycle (and

any busy-wait cycles) generating the

transfer address, and performs the write

back of the address base during the

transfer cycles.

Cycle OPRTN Type Address Data -OPC CPD31-CPD0 -CPI CPA CPB

1 Register

Ready

1 Register

Not Ready

m Registers

(m>1)

Ready

n

n+1

Read
Intnl

Read
Read

Read
Intnl

Intnl

Intnl

Read

1 Read
2 Intnl

3 Read
4 Read

m+3 Read
Read

N
S

S
N

PC+8 (PC+8)

PC+8
ALU DO(1)

PC+12

PC+8 (PC+8)

PC+8
PC+8
PC+8
ALU DO(1)

PC+8 (PC+8)

PC+B
ALU DO(1)

ALU+4 DO(2)

ALU+. DO(m+1)
PC+12

(PC+8)

< - not clocked -

:

1 DO(1)

(PC+8)

1

1

< = not clocked = >

(PC+8)

< - not colcked =

:

1 DO(1)

DO(m)
DO(m+1)

x

1

X

X

1

1

1

X

3-60

VLSI Technology; inc.

VL86C020
m Registers 1 Read PC+8 (PC+8) 1 X X

(m>1) 2 Intnl - PC+8 - (PC+8)
Not Ready • Intnl - PC+8 - 1 -

1

n Intnl - PC+8 - 1 -
n+1 Read N ALU Dl(1) < = not clocked = >
n+2 Read S ALU+4 Dl(2) 1 Dl(1) 1

n+m+2 Read S ALU+. Dl(m+1) 1 Dl(m) 1 1 1

Read N PC+12 1 Dl(m+1) 1

Coprocessor Data Transfer (from

Coprocessor to Memory) - This in-

struction is similar to the memory to

coprocessor data transfer. In this case,

however, the VL86C020 operates one

cycle behind the coprocessor during the

data transfer to give time for data to get

through the coprocessor interface. The
CPU is halted for a cycle at the start of

1 Register

Not Ready

m Registers

(m>1)

Ready

m Registers

(m>1)

Not Ready

Cycle OPRTN Type Address Data -OPC

1 Register 1

Ready 2

3

4

1

2

n

n+1

n+2

1

2

n

n+1

n+2

the transfer while the coprocessor
outputs the first word of data, and at the

end of the transfer, the coprocessor is

halted for one cycle while the CPU
writes the last word of data to memory.

CPD31-CPD0 -CPI CPA CPB

Read
Intnl

Intnl

Write

Read

Read
Intnl

Intnl

Intnl

Intnl

Write

Read

N
H

1 Read
2 Intnl

3 Intnl

4 Write
• •

m+2 Write

m+3 Write

Read

Read
Intnl

Intnl

Intnl

Intnl

Write

m+n Write

m+n+1 Write

Read

PC+8 (PC+8)

PC+8 - (PC+8)< not clocked -> 1 Dl(1)

ALU Dl(1) <= not clocked =>
PC+12 1

PC+8 (PC+8)

PC+8
PC+8
PC+8
< - not clocked

ALU Dl(1)

PC+12

(PC+8)

1

1

1 Dl(1)

< - not clocked

1

PC+8 (PC+8)

PC+8 - (PC+8)
<- not clocked => 1 Dl(1)

ALU Dl(1) I Dl(2)
• • e

ALU+. Dl(m-1) 1 Dl(m)

ALU+. Dl(m) < = not clocked = >
PC+12 1

PC+8 (PC+8)

PC+8 -
PC+8 - 1

PC+8 - 1

< - not clocked - > 1

ALU Dl(1) 1

(PC+8)

Dl(1)

Dl(2)

ALU+. Dl(m-1) 1 Dl(m)

ALU+. Dl(m) <= not clocked =

PC+12 1

1 X X

1 1

1

1

1

1

1 X X

1

1

1 1 1

1 1

1

1 X X

1

1

• • •

1 1 1

1 1

1

1 X X

1

1

1

1

• .

1 1 1

1 1

3-61

VLSI Technology, inc. [PKEUDtlilllNl^Y
VL86C020

Coprocessor Register Transfer (Load

from Coprocessor) - Here the busy-

wait cycles are similar to the previous

transfer cycle, but the transfer is limited

to one data word, and VL86C020 puts

the word into the destination register in

the third cycle.

Cycle OPRTN Type Address Data -OPC CPD31-CPD0 -CPI CPA CPB

Ready 1 Read PC+8 (PC+8) 1 X X

2 Intnl _ PC+8 (PC+8)

3 Intnl _ < - not clocked -> 1 Dl 1 1 1

4 Trnsf I PC+12 Dl < m not clocked - > 1 1

5 Intnl - PC+12 1
- 1 1 1

Read N PC+12 1
— 1

Not Ready 1 Read PC+8 (PC+8) 1 X X

2 Intnl - PC+8 (PC+8) 1

. Intnl - PC+8 1
- 1

n Intnl - PC+8 1
-

n+1 Intnl - < - not clocked -> 1 Dl 1 1 1

n+2 Trnsf I PC+12 Dl < = not clocked = > 1 1

n+3 Intnl - PC+12 - 1
- 1 1 1

Read N PC+12 1
~ 1

Coprocessor Register Transfer

(Store to Coprocessor) - This instruc-

tion is similar to a single word coproces-

sor data transfer.

Cycle OPRTN Type Address Data -OPC CPD31-CPD0 --CPI CPA CPB

Ready 1 Read PC+8 (PC+8) 1 X X

2 Intnl - PC+8 - (PC+8)

3 Trnsf

Read
O
N

PC+12
PC+12

DO < - not clocked =

1 DO
>

1

1 1

Not Ready 1 Read PC+8 (PC+8) 1 X X

2 Intnl - PC+8 - (PC+8) 1

. Intnl - PC+8 - 1 1

n Intnl - PC+8 - 1

n+1 Trnsf

Read
O
N

PC+12
PC+12

DO < - not clocked =

1 DO
>

1

1 1

Undefined Instruction and Coproces- it cannot perform, and this must include high, causing the undefined instruction

sor Absent - When a icoprocessor all undefined instructions, it must not trap to be taken.

detects a coprocessor instruction which drive CPA or CPB. These will float

Cycle OPRTN Type Mode Address Data -OPC CPD31-CPD0 -CPI CPA CPB

Ready 1 Read PC+8 (PC+8) 1 X X

2 Intnl - PC+8 (PC+8) 1 1

3 Read N SPV Xn (Xn) (PC+8) 1 1 1

4 Read S SPV Xn+4 (Xn+4) (Xn) 1 1 1

Read S SPV Xn+8 (Xn+4)

3-62

VLSI Technology, inc.

VL86C020

Unexecuted Instructions - Any in-

struction whose condition code is not

met will fail to execute. It will add one

cycle to the execution time of the code

segment In which it is embedded.

Cycle OPRTN Type Address

1

Data -OPC

Read
Read

PC+8 (PC+8)

PC+12

CPD31-CPD0

(PC+8)

Instruction Speeds - In order to deter-

mine the time taken to execute any

given instruction, it is necessary to

relate the CPU read, write, internal and

transfer operations to F-cycles (FCLK
cycles), L-cycles (Latent MCLK cycles)

and A-cycles (Active MCLK cycles).

The relationship between the CPU
operations and external clock cycles

depends primarily upon whether the

cache is turned off or on.

Cache Off - When the cache is turned

off, CPU read and write cycles always

access external memory. To avoid

unnecessary synchronization delay

VL86C020 remains synchronized to the

external memory when the cache is

turned off, so all operations are timed

by MCLK. The time taken for each type

of CPU operation is as follows:

Operation Time

N-type Read
S-type Read

L + A
A

N-type Write

S-type Write

L + A
A

Transfer In

Transfer Out
L

L

Internal L

Key:

L - Latent memory cycle period

A - Active memory cycle period

Due to the pipelined architecture of the

CPU, instructions overlap considerably.

In a typical cycle one instruction may be

using the datapath while the next is

being decoded and the one after that is

being fetched. For this reason the

following table presents the incremental

number of cycles required by an

instruction, rather than the total number
of cycles for which the'instruction uses

part of the processor. Elapsed time (in

cycles) for a routine may be calculated

from these figures.

Note: This table only applies when the

cache is turned off.

If the condition is met the instructions

take:

B.BL 1 L + 3A
Data Processing 1A + 2L forSHIFT(Rs)

+1 L+2A if R1 5 written

MUL.MLA (m+1)L+1 A
LDR 3L + 2A + 2A if R15 loaded/written back

STR 2L + 2A + 2A if R15 written-back

LDM 3L + (n+1)A + 2A if R1 5 loaded

STM 2L + (n+1)A

SWP 4L + 3A + 2A if R1 5 loaded

SWI, trap 1 L + 3A
CDO (b+2) L + 1 A
LDC (b+3)L + (n+1)A + 1 A if (n>1)

STC (b+4)L+(n+1)A
MRC (b+4) L + 1 A
MCR (b+3) L + 1 A

n is the number of words transferred.

m is the number of cycles required by

the multiply algorithm, which is deter-

mined by the contents of Rs. Multiplica-

tion by any number between 2A(2m-3)

and 2A(2m-1)-1 inclusive takes m cycles

for m>1 . Multiplication by zero or one

takes one cycle. The maximum value

m can take is 1 6.

b is the number of cycles spent in the

coprocessor busy-wait loop.

If the condition is not met all instructions

take one A-cycle.

3-63

VLSI Technology inc.

VL86C020

Cache On - When the cache is turned

on, the CPU will synchronize to FCLK,

and attempt to fetch instructions and

data from the cache (using FCLK F-

cycles). When the read data is not

available, or the CPU performs a write

operation, the VL86C020 resynchron-

izes to MCLK and accesses the

external memory (using L & A-cycles).

The CPU operations are dealt with as

follows:

1. Read operations. The CPU will

normally be able to read the

relevant data from the cache, in

which case the read will complete

in a single F-cycle.

If the data is not present in the

cache, but is cacheable, the CPU
will synchronize to MCLK and

perform a line fetch to read the

appropriate line (four words) of

data into the cache. The CPU will

be clocked when the appropriate

word is fetched, and subsequently

during the line fetch if it is request-

ing S-type reads or internal

operations.

If the data is not cacheable, the

CPU will synchronize to MCLK and

perform an external read. If the

CPU requests S-type reads, the

CPU will remain synchronized to

MCLK and use A-cycles to read the

appropriate data. The CPU only

resynchronizes back to FCLK when
the CPU stops requesting S-type

reads.

Note that the swap instruction

bypasses the cache, and always

performs an external read to fetch

the data from external memory.

2. Write operations. The VL86C020
synchronizes to MCLK and

performs external writes. When
the CPU stops requesting S-type

writes, VL86C020 resynchronizes

to FCLK.

3. Internal operation. These complete

in a single F-cycle (although some
are absorbed during line fetches).

4. Transfer operation. These
complete in a single F-cycle.

It is not possible to give a table of

instruction speeds, as the time taken to

execute a program depends on its

FIGURE 33. WORST-CASE VL86C020 TIMING FLOWCHART

N-TYPE OR S-TYPE
READ DATA NOT IN

CACHE, BUT MARKED,/
^AS CACHEABLE

SYNCHRONIZE
TO MCLK
(F+2L)

LINE FETCH
WORDO
(L+A)

LINE FETCH
WORD1

(A)

LINE FETCH
WORD 2

(A)

LINE FETCH
WORD 3

(A)

SYNCHRONIZE
TO MCLK
(F+2L)

NOTE: This path can only be taken if the CPU was
not clocked during Line fetch Word 3

SYNCHRONIZE
TO MCLK
(F+2L)

INTERNAL CYCLE
TRANSFER CYCLE
CACHE READ

(F)

-XACHE READ,
INTERNAL OPERATION'\
OR TRANSFER

.OPERATION

Line Fetch Operation

The CPU is clocked as soon as the requested word of data is available.

The CPU will also be clocked if it subsequently requests S-type Read or

Internal operations during the remainder of the line fetch.

interaction with the cache (which

includes factors such as code position,

previous cache state, etc.). In general,

programs will execute much faster with

the cache turned on than with it turned

off.

To calculate the worst-case delay for a

particular piece of code, the routine

should be written out in terms of CPU
cycles. Figure 33 can then be used to

calculate the worst-case VL86C020 op-

eration for each CPU cycle.

When using this technique, the follow-

ing conditions must be assumed:

1

.

No instructions or data are present

in the cache when VL86C020
starts executing the code.

2. A line fetch operation will overwrite

any data already present in the

cache (i.e., the cache only has one
line).

3. All synchronization cycles take the

maximum time.

3-64

VLSI Technology, inc.

VL86C020

EXAMPLE:

Consider the following piece of code:

Asssume code runs in a cacheable area of memory, and that

Code, Areal and Area2 are all quad-word aligned addresses.

Code
MOV
MOV
LDR
LDMIA

End

R0,Area1

R1,Area2

R7, R0,4

R1,{R8-R9}

RO points to data in a cacheable area of memory
R1 points to data in an uncacheable area of memory
Read data from cacheable area into R7
Read data from uncacheable area into R8 and R9

Converting the code into CPU cycles gives:

Cycle OPRTN Type Address Data

Branch to Code
1.0

1.1

1.2

Read
Read
Read

N
S

PC+8
Code
Code +4

(PC+8) (see Note)

(Code)

(Code+4)

MOV R0,Area1 2.1 Read S Code+8 (Code+8)

MOV R1,Area2 3.1 Read S Code+12 (Code+12)

LDR R7,[R0,4] 4.1

4.2

4.3

Read
Read
Intnl

S
N

Code+16
Areal +4
Code+20

(Code+1 6)

(Areal +4)

LDMIA Rl, {R8-R9} 5.1

5.2

5.3

5.4

Read
Read
Read
Intnl

N
N
S

Code+20
Area2

Area2+4

Code+24

(Code+20)

(Area2)

(Area2+4)

Note: Cycle 1 .0 is the last cycle before the routine is entered, and is not counted as part of the code.

Using the worst-case VL86C020 timing flowchart, the required CPU operations can be converted into CPU operations, and as-

signed an execution time.

CPU Operation VL86C020 Operation

<wait> Synchronize to MCLK
1.1 Read N (Code) Line Fetch: (Code)
1.2 Read S (Code+4) (Code+4)
2.1 Read S (Code+8) (Code+8)
3.1 ReadS (Code+12) (Code+12)

<wait> Synchronize to MCLK
4.1 ReadS (Code+16) Line Fetch: (Code+16)

<wait> (Code+20)
<wait> (Code+24)

<wait> (Code+28)

Time

(F+2L)

(L+A)

(A)

(A)

(A)

(F+2L)

(L+A)

(A)

(A)

(A)

3-65

VLSI Technology, inc. Pl^ELD
VL86C020

4.2:

4.3:

<wait>

Read N (Areal +4)

Intnl

<wait>

Line Fetch: (Areal)

(Areal +4)

(Areal +8)

(Areal +12)

5.1:

<wait>

Read N (Code+20)

<wait>

<wait>

Line Fetch:

(Code+16)

(Code+20)

(Code+24)

(Code+28)

5.2:

5.3:

Read N (Area2)

Read N (Area2+4)

Extnl Aces

Extnl Aces

(Area2)

(Area2+4)

5.4:

<wait>

Intnl

Synchronize to FCLK
Internal Operation

(L+A)

(A)

(A)

(A)

(L+A)

(A)

(A)

(A)

(L+A)

(A)

(F)

(F)

Adding together the execution times taken for each of the VL86C020 operations gives a worst-case elapsed time for the code:

Maximum execution time - 4 F-cycles + 9 L-cycles + 18 A-cycles

Assuming that MCLK and FCLK both run at 8 MHz:

Maximum execution time = 31*125 ns - 3.875 us.

COMPATIBILITY WITH EXISTING
ARM SYSTEMS
Compatibility with VL86C010 -

The VL86C020 has been designed to

be code compatible with the VL86C010
processor. The external memory and

coprocessor interfaces are also

designed to be usable with existing

memory systems and coprocessors.

The detailed changes are:

Software changes
1

.

VL86C020 now contains a single

data swap (SWP) instruction. This

takes the place of one of the

undefined instructions in

VL86C010.

2. VL86C020 has a 4 Kbyte mixed in-

struction and data cache on-chip.

This cache should be transparent

to most existing programs, al-

though some system software

(particularly that dealing with

memory management) could be

modified slightly to make more
efficient use of the cache (see

Cache Operalion Section).

3. VL86C020 contains a set of control

registers that govern operation of

the on-chip cache (see Cache
Operation Section). These
registers must be programmed

after VL86C020 is reset in order to

enable the cache.

4. The internal timing associated with

mode changes has been improved

on VL86C020, and a banked

register may now be accessed

immediately after a mode change

(see Data Processing/Writing to

R15). However, for compatibility

with VL86C010, it is recommended

that the earlier restrictions are ob-

served.

5. The implementation of the CDO
instruction on VL86C010 causes a

software interrupt (SWI) to take the

undefined instruction trap if the

SWI was the next instruction after

the CDO. This is no longer the

case on VL86C020 but the se-

quence

CDO
SWI

should be avoided for program

compatibility.

Hardware changes

1

.

VL86C020 is packaged in a 1 60-

pin quad flatpack; VL86C010 uses

an 84-pin plastic leaded chip

carrier (PLCC) package.

2. VL86C020 does not require non-

overlapping clocks for timing

memory accesses. When using

VL86C020 with MEMC, the PH2

clock output of MEMC should be

connected to the MCLK input of

VL86C020; the PH1 clock output of

MEMC is not used.

3. VL86C020 requires a free-running

CMOS-level clock input (FCLK) to

time cache accesses and internal

operations. FCLK is entirely

independent of MCLK.

4. VL86C020 includes two new
control signals, LINE and LOCK.
These warn of cache line fetch

operations and locked swap (SWP)
operations respectively.

5. The -TRANS and -M1 , -MO
outputs on VL86C01 could

change in either (PH2) clock

phase. In VL86C020, these

outputs only ever change when
MCLK is high.

6. The coprocessor interface remains

the same, but now operates

independently of the external

memory using a dedicated bus

(CPD31 -CPDO). Coprocessors

must be able to operate at cache

speeds (determined by FCLK).

7. The -OPC output of VL86C020
now applies exclusively to the

coprocessor interface, and should

not be used in the memory
interface.

3-66

VLSI Technology, inc.

VL86C020

VL86C020 includes pull-up

resistors on various control inputs

(see Coprocessor Interface

Section).

To facilitate board level testing, all

outputs on VL86C020 can be put

into a high impedance state by

using the appropriate enable

controls (see Coprocessor Inter-

face Section).

Compatibility with MEMC (VL86C110)
The memory interface on VL86C020 is

compatible with that used for VL86C01
and the existing MEMC memory
controller is suitable. Figure 33 shows
how VL86C020 may be connected to

MEMC.

FIGURE 33. CONNECTING VL86C020 TO VL86C110 (MEMC)

OSCILLATOR

NC

NC

NC

NC

NC

NC-

I I I

FCLK -IRQ -FIQ -RESET

ALE

H ABE

CBE

MSE

CPE

VL86C020

-TEST

S SYSTEM ADDRESS BUS^

A25-A0

-WAIT

MCLK

-R/W

-B/W

LOCK

LINE

-TRANS

-M1.-M0

-MREQ

SEQ

ABORT

DBE

JV

D31-D0

CPCLK CPSPV -OPC -CPI CPA CPB CPD31-CRD0

-NC NC-

-NC

-NC

-NC

Iz
pH 1 A25-A0

PH2

-R/W

-B/W

VL86C110

SPVMD

-MREQ

SEQ

ABORT

DBE

S SYSTEM ADDRESS BUS~^

COPROCESSOR

3-67

VLSI Technology, inc.

TEST CONDITIONS
The AC timing diagrams presented

in this section assume that the

outputs of VL86C020 have been

loaded with the capacitive loads

shown in the "Test Load" column of

VL86C020

Table 4; these loads have been chosen

as typical of the system in which the

CPU might be employed.

The output pads of the VL86C020 are

CMOS drivers which exhibit a propaga-

tion delay that increases linearly with

the increase in load capacitance. An
"output derating" figure is given for each

output pad, showing the approximate

increase in load capacitance necessary

to increase the total output time by one

nanosecond.

TABLE 4: AC TEST LOADS

Output Signal Test Load (pF)

Output Derating

(pF/ns)

-MREQ 50 8

SEQ 50 8

-B/W 50 8

LINE 50 8

LOCK 50 8

-MO, -M1 50 8

-R/W 50 8

-TRANS 50 8

A0-A25 50 8

D0-D31 100 8

CPCLK 30 8

CPSPV 30 8

-CPI 30 8

-OPC 30 8

CPD0-CPD31 30 8

General note on AC parameters:
• Output times are to CMOS levels

except for the memory and coproces-

sor data buses (D31-D0 and CPD31-
CPD-0), which are to TTL levels.

3-68

VLSI Technology inc.

VL86C020
AC CHARACTERISTICS: ta = o°c to +70°c, vdd = 5 v ±5%

Symbol Parameter Mln Max Unit Conditions

tws -WAIT Setup to MCLK High 15 ns

tWH -WAIT Hold from MCLK High 5 ns

tWAITI -WAIT Low Time 10000 ns

tABE Address Bus Enable 30 ns

tABZ Address Bus Disable 25 ns

tALE Address Latch Open 12 ns

tALEL ALE Low Time 10000 ns Note

tADDR MCLK High to Address Valid 55 ns

tAH Address Hold Time 5 ns

tDBE Data Bus Enable 35 ns (TTL Level)

tDBZ Data Bus Disable 25 ns

tDOUT Data Out Delay 30 ns (TTL Level)

tDOH Data Out Hold 5 ns

IDE MCLK Low to Data Enable 45 ns (TTL Level)

tDZ MCLK Low to Data Disable 40 ns

tDIS Data in Setup 8 ns

tDIH Data in Hold 8 ns

tABTS ABORT Setup Time 40 ns

tABTH ABORT Hold Time 5 ns

tMSE -MREQ and SEQ Enable 20 ns

tMSZ -MREQ and SEQ Disable 15 ns

tMSD MCLK Low to -MREQ and SEQ 55 ns

tMSH -MREQ and SEQ Hold Time 5 ns

tCBE Control Bus Enable 20 ns

tCBZ Control Bus Disable 15 ns

tRWD MCLK High to -R/W Valid 30 ns

tRWH -R/W Hold Time 5 ns

tBLD MCLK High to -B/W and LOCK 30 ns

tBLH -B/W and LOCK Hold 5 ns

tLND MCLK High to LINE Valid 50 ns

tLNH LINE Hold Time 5 ns

1MDD MCLK High to -TRANS/-M1 , -MO 30 ns

1MDH -TRANS/-M1,-M0Hold 5 ns

Note: To avoid A25-A0 changing when MCLK is high, ALE must be driven low within 5 ns of the rising edge of MCLK.

I

3-69

VLSI Technology, inc. p^iuno[mmf
VL86C020

AC CHARACTERISTICS FOR COPROCESSOR INTERFACE:

Symbol Parameter Mln Max Unit Conditions

tCPCKL Clock Low Time 10000 ns Notel

tCPCKH Clock High Time 10000 ns

tOPCD CPCLK High to -OPC Valid 15 ns

tOPCH -OPC Hold Time 5 ns

tSPD CPCLK High to CPSPV Valid 15 ns

tSPH CPSPV Hold Time 5 ns

1CPI CPCLK High to -CPI Valid 15 ns

tCPIH -CPI Hold Time 5 ns

tCPS CPA/CPB Setup 45 ns

tCPH CPA/CPB Hold 5 ns

tCPDE Data Out Enable 10 ns Note 2, 3

tCPDOH Data Out Hold 10 ns

tCPDBZ Data Out Disable 5 ns

tCPDS Data In Setup 10 ns

tCPDH Data In Hold 5 ns

tCPE Coprocessor Bus Enable 30 ns

tCPZ Coprocessor Bus Disable
•

30 ns

Notes: 1 . CPCLK timings measured between clock edges at 50% of VDD.
2. CPD31 -CPD0 outputs are specified to TTL levels.

3. The data from VL86C020 is always valid when enabled onto CPD31-CPD0.
4. These timings allow for a skew of 30 pF between capacitive loadings on the coprocessor bus outputs (CPCLK,

-OPC. CPSPV, -CPI, CPD31-CPD0).

AC CHARACTERISTICS FOR CLOCKS:

Symbol Parameter Mln Max Unit Conditions

tMCLK Memory Clock Period 80 ns Note

tMCLKL Memory Clock Low Time 25 ns

tMCLKH Memory Clock High Time 25 ns

tFCLK Processor Clock Period 50 ns

tFCLKL Processor Clock Low Time 23 ns

tFCLKH Processor Clock High Time 23 ns

Note: MCLK timing measured between clock edges at 50% of VDD.

3-70

VLSI Technology inc.

VL86C020

FIGURE 34. MEMORY INTERFACE TIMING

ALE

ABE

A25-A0

DBE

DATA
OUT

DATA
IN

ABORT

MSE

-MREQ,
SEQ

CBE

-RAW

-B/W,
LOCK

LINE

-TRANS,
-M1 , -MO

MCLK i>

-WAIT

tMCLK-

tMCLKL -

V
tWAITI

tALEL-

J?
C

Jf>tABE

^

.* tALE *-

,7~

-tDE-

tDBE

KXXXXXI
tDOUT

tABTS .^
1MSH

KXXXXXXXI
tMSD

- tMCLKH

1WS

tADDR -

_ tAH

XOOOOOOOK

tDOH •

tA'BTH tDIS^
^w

v
tWH

tABZ*
>-

"^

-tDZ"1

IDBZ

!>
tDIH

<

<

<

tCBE

tRWH-

tBLH-

tLNH-

tMDH-

Z>

tMSZ

>kxxxxxxx
. tRWD •

xoooooooc
- tBLD

>K>ooooo<x
tLND

>kxxxxxx>k
tMDD

t̂MSE
-<:

tCBZ*

>
>-

3-71

VLSI Technology inc.

VL86C020
FIGURE 35. COPROCESSOR INTERFACE TIMING

tCPCKLCPCLK

-OPC

CPSPV

-CPI

CPA,
CPB

CPD31-
CPDO OUT

CPD31-
CPDO IN

*t -?£

;<xxxxx
tCPIH

tCPI

xoo<
"tCPS"

tCPDE

-tCPCKH- ;^_

:>ooooo<:
tOPCH

.tOPCD-

xxxxxx
tSPH

tSPD-

CPE

CPCLK, CPSPV,
OPC, CPI
CPD31-CPD0

"X

tCPZ

00000000CKXXX
tCPH

1CPDS

/

—

30CK

tCPDZ

(C
tCPDOH

tCPDH

tCPE

FIGURE 36. FCLK INTERFACE TIMING

tFCLK -

FCLK "V
tFCLKL ^ tFCLKH ^SL

3-72

VLSI Technology, inc.

VL86C020

ABSOLUTE MAXIMUM RATINGS
Ambient Operating

Temperature -1 0°C to +80°C

Storage Temperature -65°C to +1 50°C

Supply Voltage to

Ground Potential -0.5 V to VDD +0.3 V

Applied Output

Voltage

Applied Input

Voltage

Stresses above those listed may cause

permanent damage to the device.

These are stress ratings only. Func-

tional operation ot this device at these

or any other conditions above those

indicated in this data sheet is not

implied. Exposure to absolute maxi-

mum rating conditions for extended

periods may affect device reliability.

-0.5 V to VDD +0.3 V

-0.5 V to +7.0 V

Power Dissipation 2.0 W

DC CHARACTERISTICS: TA = o°c to +70°c, VDC = 5 V ±S%

Symbol Parameter Mln Typ Max Units Conditions

VDD Supply Voltage 4.75 5.0 5.25 V

VIHC IC Input High Voltage 3.5 VDD V Notes 1 ,

2

VILC IC Input Low Voltage 0.0 1.5 V Notes 1 , 2

VIHT IT/ITP Input High Voltage 2.4 VDD V Notes 1 , 3, 4

VILT IT/IPT Input Low Voltage 0.0 0.8 V Notes 1,3,4

IDD Supply Current 200 mA

ISC Output Short Circuit Current 160 mA Note 5

ILU D.C. Latch-up Current >200 mA Note 6

UN IT Input Leakage Current 10 uA Notes 7, 1

1

MNP ITP Input Leakage Current -500 uA Notes 8, 12

IOH Output High Current (VOUT=VDD -0.4 V) 7 mA Note 9

IOL Output Low Current (VOUT-GND +0.4 V) -11 mA Note 9

VIHTK IC Input High Voltage Threshold 2.8 V Note 10

VILTT IC Input Low Voltage Threshold 1.9 V Note 10

VIHTT IT/ITP Input High Voltage Threshold 2.1 V Notes 11, 12

VILTT IT/ITP Input Low Voltage Threshold 1.4 V Notes 11, 12

CIN Input Capacitance 5 PF

Notes: 1 . Voltages measured with respect to GND.
2. IC - CMOS-level inputs.

3. IT - TTL-level inputs (includes IT and ITOTZ pin types).

4. ITP - TTL-level inputs with pull-ups.

5. Not more than one output should be shorted to either rail at any time, and for as short a time as possible.

6. This value represents the DC current that the input/output pins can tolerate before the chip latches up.

7. Input leakage current for the IT, and ITOTZ pins.

8. Input leakage current for an ITP pin connected to GND. These pins incorporate a pull-up resistor in the range of

iokn-iookn.
9. Output current characteristics apply to all output pads (OCZ and ITOTZ).

1 0. ICk - CMOS-level inputs.

11. IT - TTL-level inputs (includes IT and ITOTZ pin types).

12. TIP - TTL-level inputs with pull-ups.

3-73

VLSI Technology, inc.

Notes:

VLSI Technology, inc.

SECTION 4

VL86C110
RISC MEMORY
CONTROLLER
(MEMC)

E

Application Specific

Logic Products Division

VLSI Technology, inc.

VLSI Technology inc.

VL86C110

FEATURES
• Drives up to 32 standard dynamic

RAMs giving 4 Mbytes of real

memory with 1 -Mbit devices

• Logical-to-physical address

translation (32-Mbyte logical address

space) supporting three protection

levels:

- Supervisor Mode
- Operating System Mode
- User Mode

• Uses fast page-mode DRAM
accesses to maximize bandwidth

from commodity memories

• Internal DMA address generators for

video, cursor and sound data buffers

• Various ROM speeds supported

(access times of 450 ns, 325 ns,

200 ns)

• Provides all critical system timing

including processor clocks, -RAS,
-CAS, and DMA data transfer strobes

• Arbitrates memory between the

processor and DMA systems

RISC MEMORY CONTROLLER (MEMC)
DESCRIPTION
The memory controller (MEMC) acts as

the interface between the VL86C010
processor and other functions in the

system. The four circuits in the RISC
family: MEMC, VL86C01 0, VIDC-video

controller, and IOC-IAD controller, can

be used to implement a small computer

system. MEMC uses a single clock

input to derive timing information for the

other components.

In addition to providing interface signals

to the other controllers, MEMC gener-

ates all the control signalsfor several

access times of read-only memory
(ROM) plus high-resolution timing and

refresh control for dynamic RAM
(DRAM). The controller outputs can

drive up to 32 memory devices directly

in a wide variety of configurations using

various architectures of standard

DRAMs. A loglcal-to-physical address

translator maps the 4-Mbyte physical

memory into the 32-Mbyte logical

address space with three levels of

protection.

Address translation is performed by a
simple 128 entry content-addressable

memory (CAM). MEMC provides a

descriptor entry for every page of

physical memory which eliminates

descriptor thrashing (address transla-

tion misses) from degrading system

performance.

The simple structure allows memory
address translation to be performed

without increasing required memory
access time or decreasing the system

clock. MEMC allows virtual memory
and multi-tasking operations to be im-

plemented without the usual perform-

ance degradation associated with each
function. Fast page-mode DRAM
accesses are used to maximize
memory bandwidth from inexpensive

commodity memory devices.

MEMC supports direct memory access

(DMA) read operations with three

programmable address generators.

Video refresh is performed using a

circular buffer to enhance scrolling

capability plus a separate linear buffer

for a cursor sprite. Sound data uses a

double buffering system.

PIN DIAGRAM
PLASTIC LEADED CHIP
CARRIER (PLCC)

A17 A19 A21 A23 A25 01 RCLK -R/W

VDD
| A18 | A20 | A22 | A24 | CLK | 02 |-B/W| VSS

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

ORDER INFORMATION

/"IT" u u u u u u u u u u u u u u u u
9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61

=> 10 • 60 =
=" 11 59 >=

=> 12 58 1=

=1 13 57 1=

=1 14 56 =
=" 15 55 <=

=1 16 54 1=

=1 17 53 c=

= 18

= 19

VL86C110
TOP VIEW 52 <=

51 1=

=> 20 50 1=

=121 49 1=

=> 22 48 1=

= 23 47 =
=124 46 1=

=125 45 1=

=1 26 44 l=

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

n n n n n n n fiono n n n n n n

VSS I RA1 I RA3 I RA5 I RA7 I RA9 I

RAO RA2 RA4 RA6 RAS -CAS0
I -C

;AS2

'

^S1
-CA:

-RMCS
-IORQ

-K3GT

-SIRQ

DBE
-MREQ
SEQ
ABRT
SPMD
-VIDW

-VDAK
-SDAK

-VDRQ
-SDRQ
-HSYC

FLBK

RES

Part

Number
Bus Clock

Frequency Package

VL86C110-10QC 10 MHz
Plastic Leaded
Chip Carrier (PLCC)

VL86C110-12QC 12 MHz
Plastic Leaded
Chip Carrier (PLCC)

Note: Operating temperature range is 0°C to +70°C.

4-3

VLSI Technology, inc.

VL86C110

BLOCKDIAGRAM

-R/W ABRT A25-A0 -MREQ SEQ RES CLK

SPMD

{ t I I I I

ADDRESS
DECODER

¥ SYSTEM
MANAGER

SYSTEM
TIMING

GENERATOR "

i

i
V

t
L

MEMC
CONTROL
REGISTERs,>

\

LOGICAL
TO

PHYSICAL
ADDRESS

TRANSLATOR
(CAM)

<N
jS.

\/

\7
VIDEO AND
SOUND
DMA

CONTROL

DMA AND
REFRESH
ADDRESS
GENERATOR

u ui^ V <>
DRAM ADDRESS ^
MULTIPLEXER

DRAM TIMING
GENERATOR

\V
L

? 4>

-IORQ

RCLK

-IOGT

01

02

DBE

-RMCS
-VIDW

FLBK

-HSYC

-VDRQ
-VDAK

-SDRQ
-SDAK

-SIRQ

-B/W

RA9-RA0 -RAS -CAS3- -CASO

4-4

VLSI Technology inc.

VL86C110
SIGNAL DESCRIPTIONS
Signal

Name
Pin

Number
Signal

Description

A25-A0 68,1-8,

10-26

-R/W

-BAV

-MREQ

62

63

55

SEQ 54

SPMD

01,02

DBE

ABRT

Notes:

Address 25 - Address (CMOS level inputs) - These are the 26 processor address lines that contain
the address of the memory reference. When 02 is low these signals should contain the address of the
current memory reference. When 02 goes! high, these address pins should be changed to the value
for the next cycle. A1 and A0 are byte addresses and are ignored during word transfer cycles. A3 and
A2 are decoded to determine sequential access boundaries.

Not-Read/Write (CMOS level input) - Determines the direction of data flow during the current memory
access. When asserted (low) the memory cycle will be a read operation, and if negated (high) a
memory write will be performed.

Not-Byte/Word (CMOS level input) - Determines the size of the data transfer of the memory access
(Note 2). When asserted (low) the transfer is byte-wide (8 bits) or negated (high) word-wide (32 bits).

When transferring bytes the A1 and A0 address inputs are decoded to determine which 8-bit field is to
be referenced. Word transfers are always aligned on word boundaries (A1 - A0 = 0) because A1 and
A0 are ignored during word operations.

Processor Memory Request (CMOS level input) - Determines whether a memory cycle will be
performed during the next access time. When asserted (low) this line indicates that the processor will

require either a memory (Note 1) or I/O access during the next cycle time (Note 2). If negated (high),
no cycle is required because the the CPU will perform an internal cycle. This input must be valid well
before the falling edge of the 02 clock signal. Under special circumstances, this signal may affect
operation of the current memory cycle. When both -MREQ and SEQ are asserted during a processor
internal cycle, MEMC begins a DRAM non-sequential cycle immediately which effectively overlaps the
internal cycle with the first half of the non-sequential access time.

Processor Sequential Access (CMOS level input) - Determines whether the next memory cycle will be
a two clock non-sequential (N-cycle) or a one clock sequential (S-cycle) access (Note 2). The
VL86C01 processor asserts this signal whenever the address for the next cycle is sequential (current
address + 4) to the address presently on the bus. When asserted (high), MEMC performs a S-cycle
(page-mode) by removing -CAS while retaining -RAS active. This keeps the row address latched in

the DRAMs and loads in the new column address. In general, the page-mode access time of most
DRAM devices is one-half the random access time. When negated (low), the next memory cycle will

be a two clock N-cycle. MEMC removes both -RAS and -CAS at the end of the current cycle, allows
the memory to properly precharge, and performs a random-access cycle. This signal must be setup
well before the falling edge of the 02 clock signal for the same reasons as the -MREQ.

Supervisor Mode Select (CMOS level input) - When low, the processor is restricted from access to
certain areas of the memory map and will be aborted if illegal access attempts are made. SPMD is

generally connected to the -TRAN output of the VL86C01 processor. If connected to -TRAN,
address remapping is inhibited for all non-user mode transfers.

Processor Clocks (CMOS level outputs) - These signals drive the two phase, non-overlapping clock
inputs of the VL86C01 processor. The frequency of these clocks is the master clock (CLK input) fre-
quency divided by three. The 02 clock is in phase with the reference clock (RCLK output).

Processor Data Bus Enable (CMOS level output) - Determines when the data bus drivers inside the
processor are enabled. When asserted (high) the processor is driving the data bus during a write
cycle. This signal should be inverted externally to provide an active low write enable for the Dynamic
RAMs to prevent three-state driver contention on the data bus.

Processor Abort (CMOS level output) - Determines whether the current memory cycle will terminate
abnormally. When asserted (high) MEMC has detected either an attempted access to a higher
privileged area or a non-existent logical page. Both these conditions will cause an abort of the current
memory cycle and exception processing to be invoked by the processor to determine error recovery
procedures. When negated the current cycle will terminate normally and processing flow continue
under program control.

1

.

The word memory in this context refers to any device mapped into the processor's address space.
2. Some of the processor signals are asserted in the processor cycle preceding that in which they are used.

52

66,65

56

53

4-5

VLSI Technology, inc.

VL86C110

SIGNAL DESCRIPTIONS (Cont.)

Signal

Name
Pin

Number
Signal

Description

-IORQ

-IOGT

CLK

RCLK

RES

59 Input/Output Cycle Request (CMOS level output) - Determines whether the current cycle is a memory

or an I/O reference. When asserted (low), MEMC has detected an I/O address and the proper I/O

controller should respond. When negated (high), the current cycle is a memory reference.

58 Input/Output Cycle Grant (CMOS level input) - Determines when the current I/O access cycle will

terminate. When asserted (low), the selected I/O controller is signaling that the current I/O cycle will

end on the next falling edge of the RCLK clock if the -IORQ is still low.

67 Clock (CMOS level input) - Master input clock used to derive all system timing functions. The input

signal should be approximately a 50% duty cycle with full CMOS levels. This clock is divided down

internally to obtain the two-phase processor clocks, system reference clock, and the DRAM refresh

clock.

64 Reference Clock (CMOS level output) - Provides the main reference clock for bus transactions

between different devices. RCLK clock is in phase with the 02 clock of the processor.

44 Reset (CMOS level input) - Places the MEMC in a known initial state. When asserted (high), MEMC is

forced into the following modes: ROM is continually selected with an access time of 450 ns, DRAM

page size is 4 Kbytes, operating system mode disabled, sound DMA operations disabled, -SIRQ set

low, video/cursor operations unaffected, and -IORQ is held high to prevent I/O controllers from

responding to spurious addresses generated during the reset state.

RA9-RA0 37-28 RAM Address Bus (TTL level outputs) - Provide the multiplexed row and column address lines to the

DRAM array. Each output is capable of driving up to 32 DRAMs without external buffering. The bit

order and logic level of these pins varies according to the page size selected, and are shown in detail

in Appendix A.

38 Row Address Strobe (TTL level output) - Provides the -RAS timing/control signal to the DRAM array.

The falling edge of -RAS strobes the row address on RA9-RA0 pins into the DRAMs. This signal is

capable of driving up to 32 DRAMs without external buffering.

42-39 Column Address Strobes (TTL level outputs) - Provide the -CAS timing/control signals to the DRAM

array. Each output controls one 8-bit byte of the four byte memory word to support byte writes. The

falling edge of a -CAS strobes the column address on RA9-RA0 into the DRAMs. Each signal will

drive up to eight DRAMs without external buffering.

60 ROM Chip Select (CMOS level output) - Provides the chip select control signal to the ROM devices.

When asserted (low), MEMC has detected a ROM address for the current cycle.

51 Video Controller Write Strobe (CMOS level output) - Provides the register select signal to the video

controller (VIDC) device. When asserted (low), MEMC has detected a write request to the video

controller. The data should be latched on the rising edge of this signal.

45 Video Vertical Flyback (CMOS level input) - Provides vertical timing information from the video section.

FLBK is used to time the initalization of the video/cursor DMA address pointers and for refresh control

in certain modes. This signal should be taken high while the video retrace is in progress.

46 Video Horizontal Synchronization (CMOS level input) - Provides horizontal timing information from the

video section. When asserted (low), the video is in horizontal retrace. Video data requests made

while this signal is asserted will obtain data from the cursor data buffer. A video data request made

when -HSYC is negated obtains data from the video data buffer.

48 Video Data Request (CMOS level input) - Provides the synchronization between MEMC and VIDC for

video data interface. When asserted (low), the VIDC is requesting either a video or cursor DMA
operation for video refresh. Video and cursor requests are distinguished by the level of the -HSYC

signal. Requests made during horizontal retrace (-HSYC low) are cursor and all others video.

50 Video Data Acknowledge (CMOS level output) - Provides the synchronization between MEMC and

VIDC for video data interface. When asserted (low), MEMC is indicating that the requested video/

cursor data is being fetched from RAM. The data should be latched on the rising edge of -VDAK.

-RAS

-CAS3-
-CAS0

-RMCS

-VIDW

FLBK

-HSYC

-VDRQ

-VDAK

4-6

VLSI Technology, inc.

VL86C110
SIGNAL DESCRIPTIONS (Con t.)

Signal

Name
Pin

Number
Signal

Description

VSS

VDD

-SDRQ 47 Sound Data Request (CMOS level input) - Provides the synchronization between MEMC and VIDC for

sound data interface. When asserted (low), VIDC is requesting a sound DMA operation.

-SDAK 49 Sound Data Acknowledge (CMOS level output) - Provides the synchronization between MEMC and
VIDC for sound data interface. When asserted (low), MEMC is indicating that the requested sound
data is being fetched from RAM. The data should be latched on the rising edge of -SDAK.

-SIRQ 57 Sound Interrupt Request (CMOS level output) - Provides the synchronization between MEMC and
the processor for sound data interface. When asserted (low), MEMC is requesting a isound service
operation by the processor. The sound DMA address generators interact with interrupt driver software
to implement the sound system. -SIRQ is set low on reset.

61 , 27 Digital ground. The digital ground power supply.

43, 9 Digital power. The digital +5.0 volt power supply.

E
FUNCTIONAL PIN DIAGRAM

c NA25-A0 >
1/

-R/W ^
-B/W ^

PROCESSOR
INTERFACE ~S

-MREQ ^
SEQ ^
SPMD I:

01

02
DBE

ABRT
v.

-IORQ
I/O I RCLK

INTERFACE \ -IOGT ^

MEMC / CLK ^
CONTROL -S RES ^

/
VDD(2)

POWER •< VSS(2) *

VL86C110

RA9 - RAO >
-RAS

-CAS3
-CAS2
-CAS1

-CASO

-RMCS

-VIDW fc^
FLBK

-HSYC
-VDRQ
-VDAK

-SDRQ
-SDAK

-SIRQ

j

^

DRAM
>" CONTROL

ROM
CONTROL

VIDC
INTERFACE

INTERRUPT
CONTROL

4-7

VLSI Technology, inc.

FUNCTIONAL DESCRIPTION
MEMO supports three levels of memory
protection:

- Supervisor Mode - Supervisor mode is

selected while the SPMD input is held

high. This is the most privileged

mode, allowing the entire memory

map to be freely accessed.

- Operating System Mode (OS) - OS
mode is selected by setting a control

bit in the MEMC Control Register

(which may only be done from

supervisor mode). OS mode is more

privileged than user mode when

accessing logically mapped RAM, but

acts as user mode in all other cases.

- User Mode - User mode is the least

privileged of the protection modes.

Access is allowed only to unprotected

pages in the logically mapped RAM
and read cycles to the ROM space.

No other accesses are allowed.

All attempts to access protected

addresses from an insufficiently

privileged mode (user mode or OS
mode) will activate the ABRT line

without performing the access.

Memory Pages
MEMC treats the DRAM as a set of 1 28

sequential physical pages. The page is

the fundamental unit of memory used by

MEMC, and the page size may be

selected as 4, 8, 16, or 32 Kbytes by

programming the MEMC control

register. Please note the MEMC page

unit should not be confused with the

page-mode access capability of RAMs.

The page size selection affects the

DRAM address multiplexers, so it is

essential to choose the correct page

size for the amount of memory being

controlled. Table 1 shows the page size

selection for most DRAM configurations.

VL86C110

FIGURE 1. PROCESSOR MEMORY MAP DECODED BY MEMC
READ WRITE

ROM (High)

ROM (Low)

Logical to Physical

Address Translator

DMA Address Generators
|

MEMC Control Register
|

Video Controller I;

Input/Output

Controllers

* t* "— !i« i

Physically

Mapped
RAM

Logically

Mapped
RAM

3,FFF,FFFh

3,800,000h

3,600,000h

3,400,000h

3,000,000h

2,000,000h

0,000,000h

Master/Slave Configuration

A single MEMC will control up to 4

Mbytes of DRAM. A second MEMC
can be built into a system to extend the

maximum addressable DRAM to 8

Mbytes. The two MEMCs are config-

ured as a Master and a Slave, where

the Slave acts purely as a DRAM driver

(all DMA operations, I/O Controller

interactions, etc. are handled by the

Master).

The -B/W input is sampled as RES
goes low, and its state determines

whether the MEMC will operate in

Master (-B/W - 1) or Slave (-B/W - 0)

mode. In a single MEMC system,

TABLE 1. RECOMMENDED PAGE SIZE SETTINGS

Total Amount
Of RAM Page Size

Number Of

Physical Pages
Number Of

Logical Pages

0.25 Mbytes 4 Kbytes 64 8192

0.50 Mbytes 4 Kbytes 128 8192

1 .00 Mbytes 8 Kbytes 128 4096

2.00 Mbytes 1 6 Kbytes 128 2048

4.00 Mbytes 32 Kbytes 128 1024

VL86C010 holds -B/W high during

reset, so the MEMC is always config-

ured as a Master.

Memory Map
MEMC accepts 26 address lines from

the processor, A25 - A0, which are

decoded as shown by the memory map
in Figure 1. Shaded portions of the

memory map are accessible only while

MEMC is in the supervisor mode.

Logically Mapped RAM (Read/Write:

OOOOOOOh-IFFFFFFh)
The bottom 32 Mbytes of the memory
map consists of logically mapped RAM.
MEMC treats this area of the map as a

set of contiguous logical pages (there

may be 81 92, 4096, 2048, or 1 024

logical pages depending upon the page

size selected).

When a logical page is accessed, the

logical-to-physical address translator

attempts to convert the logical page

number to a physical page number.

Provided the mapping exists, and the

request is being made in a sufficiently

privileged mode, the appropriate

physical page will be accessed. If the

mapping does not exist, or the access is

4-8

VLSI Technology, inc.

VL86C110
made with insufficient privilege, MEMC
will signal the processor by setting the

abort line high, and the DRAM will not

be activated.

The logical-to-physical mapping and
protection status of each logical page is

undefined at power on, but may be pro-

grammed at any time by writing to the

logical-to-physical address translator.

Physically Mapped RAM (Read/Write:
2000000h - 2FFFFFFh)
The physically mapped RAM occupies
1 6 Mbytes of the memory map, and may
only be accessed when supervisor

mode is selected. The 128 physical

pages appear sequentially in this area of

the map, with the RAM image being
repeated after every 128th page (so

that, with a page size of 8 Kbytes, the

entire 1 Mbyte of RAM would occur 16
times throughout this area).

Input/Output Controllers (Read/Write:
300000011 - 33FFFFFh)
This area of the map is reserved for I/O

Controllers (including IOC). When a
Supervisor mode access is made in this

memory range, MEMC asserts -IORQ
(I/O cycle request), and stops the

processor clocks. The I/O cycle ter-

minates when both -IORQ and -IOGT
are low on the rising edge of RCLK.

Please note that care must be taken not

to access a non-existant I/O Controller,

or MEMC will wait indefinitely for an
active -IOGT signal that never appears,

and the system will stop until RES is

asserted.

ROM (Read: 3400000h - 3FFFFFFh)
Read Only Memory may be read freely

from any protection mode. The ROM
space is divided into two areas:

- Low ROM (4 Mbytes from 3400000h
to 37FFFFFh)

- High ROM (8 Mbytes from 3800000h
to 3FFFFFFh)

The two ROM areas are distinguished

only by the fact that each may be pro-

grammed to operate at its own speed.

This would allow the high ROM area to

contain fast system ROMs, with slower

applications ROMs in the low area.

The ROM speeds default to the slowest

setting when RES is asserted, and may
be altered by reprogramming the MEMC
control register.

Video Controller (Write: 3400000h -

35FFFFFh)
A write operation made anywhere in the
video controller space (while MEMC is

in Supervisor mode) activates the

-VIDW output from MEMC.

DMA Address Generators and
Control Register (Write: 3600000 -

37FFFFFh)
This address space decodes to some of

MEMC's internal registers. The DMA
address generators supply the physical
RAM address used to obtain data
during video, cursor, and sound direct

memory access operations. The
MEMC Control Register governs a
number of the functions of MEMC.

The processor data bus is not con-

nected to MEMC; instead, the internal

registers are programmed by encoding
the data on the address bus, and
performing a write operation with

MEMC in supervisor mode. Since most
writes to the MEMC registers occur at a
fairly low frequency, it was felt that the
small amount of overhead incurred

encoding register data on the address
bus did not justify adding the 32 pins

necessary for the data bus interface.

Loglcal-to-Physical Address Transla-
tor (Write: 3800000h - 3FFFFFFh)
The mapping of logical pages to

physical pages, and protection mode
associated with each mapping, may be
controlled by programming the logical-

to-physical address translator. The
translator is programmed by encoding
data in the address lines, and perform-

ing write operations in supervisor mode
to this area of the memory map.

Effect of Reset
When the RES line is taken high,

MEMC initializes to the following state:

- Memory Map - The VL86O01
processor starts executing code from
location 000000H after RES goes
inactive. To ensure that the proces-
sor always finds valid code at this

location (which is normally logically

mapped RAM), MEMC continually

enables ROM.

To restore the normal memory map, the

processor must first perform a memory
access with the address lines A25 and
A24 both low and then perform a mem-
ory access with address line A25 high.

These conditions are satisfied when the
processor starts executing instructions

from location OOOOOOOh, and later

jumps to the normal ROM space.

- ROM access times - The ROM
access times for both high and low
ROM are reset to 450 ns.

- Page sizes - The DRAM page size

defaults to 4 Kbytes on reset.

- Operating System mode - The
Operating system mode is disabled

on reset.

- Direct Memory Access (DMA) opera-
tions - Sound DMA operations are

disabled by reset, and may be
enabled by programming the MEMC
Control Register. Video and cursor

operations are unaffected by reset.

- Sound Interrupts - The sound
interrupt pin, -SIRQ is set low on
reset. The interrupt may be removed
by initializing the sound DMA buffers

in the DMA Address Generators.

- The processor may generate spurious
addresses while RES is active high.

To avoid accidentally triggering an 1/

O controller, the -IORQ signal is held

high during reset.

- The Test mode (used in functional

testing) is disabled by RES. Test
mode may be set by programming
the MEMC control register, but will

crash the system; control is regained
by resetting MEMC.

Access Times
A number of devices appear in the

processor memory map:

- Dynamic Random Access Memory
(DRAM)

- Read Only Memory (ROM)

- Input/Output Controllers

- Video Controller

- MEMC internal registers

Control Register

DMA address generators

Logical to physical address translator

These devices have verydifferent

access times, ranging from 500 ns for a
slow ROM to 125 ns for DRAMs in

page-mode. MEMC provides the

processor clocks, 01 and: 02, which are
stretched to synchronize the processor
with the device it is accessing.

4-9

VLSI Technology, inc.

The processor is the default user of the

memory and data bus. However, DMA
(Direct Memory Access) and refresh

operations require control of the DRAM
and data bus, so MEMC disables the

processor temporarily by placing the

processor data bus in the high-imped-

ance state (using DBE), and stretching

the processor clocks.

N-cycles and S-cycles

MEMC uses the page-mode access

capability of DRAMs, where, once a row

address has been strobed into the

DRAM, any column in that row may be

accessed merely by strobing in the new

column address.

This facility is used whenever a number

of sequential addresses in the DRAM
are to be accessed (either by the

processor or during a DMA operation).

The first memory cycle in the sequence

is a non-sequential (N-cycle) memory

cycle (where both the row and column

addresses are strobed to the DRAMs).

The subsequent memory accesses are

sequential (S-cycle) memory cycles

(where the previous row address is

held, and only the column address is

strobed to the DRAMs).

Processor (VL86C010) Interface

Processor cycles - There are two basic

types of processor operations:

- Memory access cycles - Where the

processor accesses a device in its

address space.

- Internal cycles - Where the processor

performs an internal operation without

access to any external device.

Processor Signals
- Address Bus (A25-A0) - The proces-

sor address bus is decoded by

MEMC to give the processor access

to the various devices.

Much of the processor memory map is

only accessible while MEMC is in

supervisor mode (SPMD line high).

- Memory Request (-MREQ) - This

signal determines whether the next

processor cycle will be a memory

access or internal cycle.

- Not-Read/Write (-R/W) - Determines

the direction of data flow during

processor memory access cycles.

This signal is ignored during proces-

sor internal cycles.

- Not-Byte/Word (-B/W) - Selects a

byte (8-bit) or word (32-bit) data

transfer during processor memory

access cycles. A byte access to

physically and logically mapped RAM
only enables the appropriate 8-bit

block of DRAMs. ROM accesses

return a word quantity, regardless of

the state of -B/W. This signal is

ignored for processor internal cycles.

- Sequential Access (SEQ) - An active

high on this line indicates that the

processor will generate a sequential

address during its next cycle. MEMC
uses SEQ to determine whether a

fast S-cycle may be used during the

next DRAM.

- Supervisor Mode (SPMD) - An active

high on this line puts MEMC into

supervisor mode, allowing the proc-

essor to access restricted areas of

the memory map.

Processor Controls

- Processor Clocks (01, 02) - MEMC
provides the processor with two non-

overlapping clocks, 01 and 02.

Memory access cycles are nominally

250 ns long, (with 01 high for about

TABLE 2. DRAM ADDRESS BUS CONFIGURATIONS

VL86C110
175 ns, and 02 high for around 55 ns),

but the following exceptions apply:

- Sequential DRAM accesses - DRAM
S-cycles are active (01 high - 55 ns).

- ROM accesses - ROM access times

vary from 450 ns to 200 ns. 01 is

held high long enough to meet the

ROM access time requirement.

- I/O Cycles - I/O cycles take a variable

length of time to complete. During

the longer I/O cycles, the processor is

suspended until the I/O controller is

ready to complete the cycle by

holding 02 high. Suspending the

processor during its 02 phase allows

the I/O cycle to be completed much

faster when the I/O controller signals

the end of the cycle.

- DMA and Refresh operations - DMA
and refresh operations have priority

over non-sequential processor

memory access cycles. A processor

non-sequential access is delayed

during DMA and refresh operations

by disabling the processor data bus

drivers (using DBE), and holding the

01 clock high until the operation has

finished. The processor then

continues with its delayed memory

access (unless another DMA/refresh

operation is pending).

DMA and refresh operations may also

occur during long I/O cycles. In this

case, the I/O cycle is delayed until the

DMA/refresh operation completes.

Internal cycles are always 125 ns long,

with both 01 and 02 high for approxi-

mately 55 ns.

- Data Bus Enable (DBE) - Enables the

processor data bus during processor

write cycles. This signal may also be

Total Amount
Of RAM

0.25 Mbytes

0.5 Mbytes

1 Mbytes

2 Mbytes

4 Mbytes

Page Size

Setting

4 Kbytes

4 Kbytes

8 Kbytes

16 Kbytes

32 Kbytes

Typical

Configuration

8 pes. 64K x 4 DRAM
32 pes. 64K x 1 DRAM

16 pes. 64KX4DRAM

8 pes. 256K X 4 DRAM
32 pes. 256K x 1 DRAM

16pcs.256Kx4DRAM

8 pes. 1MX4DRAM
32 pes. 1Mx1 DRAM

Row /Column

Address
Connection

RA7-RA0

RA7-RA0

RA8-RA0

RA8-RA0

RA9-RA0

Bank Select

None

RA8

None

RA9

None

4-10

VLSI Technology, inc.

VL86C110
inverted externally, and used as a
DRAM Write Enable signal.

- Memory Access Abort (ABRT)-Warns
the processor that the requested
access is illegal (either because an
attempt was made to access a
protected address while MEMO was in

an insufficiently privileged mode, or an
access to a non-existent logical page
was attempted).

- Dynamic RAM Memory (DRAM)
Interface

MEMO interfaces directly to most
standard Dynamic RAMs, providing a

10-bit multiplexed RAM address bus,

RA9-RA0, a row address strobe,

-RAS, and a set of four column
address strobes, -CAS3- -CASO.

DRAM Configurations - The page size

setting (in the MEMC Control Register)

controls how the DRAM address is

presented on the RAM address bus,

RA9-RA0, as shown in Table 2.

There are three basic dynamic RAM
configurations supported by MEMC.

- Thirty-two 64Kx1 , 256Kx1 , or 1 Mx1
DRAMs as shown in Figure 2.

This configuration splits the thirty two 1 -

bit DRAMs into four blocks of eight bits.

Each 8-bit block is controlled by one of

the -CAS3 - -CASO lines, allowing

independent access to any of the byte-

wide blocks. The DRAM Write-Enable

line is derived by inverting the DBE
signal from MEMC. The RAM Address
bus, RA9-RA0, and -RAS strobe are
routed to all the DRAMs.

- Eight 64Kx4, 256Kx4, or 1Mx4
DRAMs as shown in Figure 3.

FIGURE 3. DRAM CONFIGURATION WITH 8 FOUR-BIT DEVICES
RAX - RAO

D31 -DO

This configuration is essentially the
same as used for the 1 -bit wide
DRAMs. In this case, only eight chips
are required for the full 32-bit data bus.

- Sixteen 64Kx4, or 256Kx4 DRAMs as
shown in Figure 4.

The sixteen chips are configured as two
parallel banks of eight 4-bit wide
DRAMs. One RAM address bit is used
as a bank select line (valid at the same
time as the column addresses).

Note that a two-of-four decoder is used
to derive an Output-Enable and Write-

Enable signal for each bank. This
insures that only the one bank is

activated during any DRAM access.

When only 0.25 Mbyte is used (eight

64Kx4 or 32 64Kx1 DRAMs), the bank
select address bit, RA8 is ignored by
the DRAMs, so physical pages 64-127
map onto physical pages 0-63.

Byte And Word Accesses
The DRAM is divided into four 8-bit

blocks each with a -CAS signal.

The processor byte/word select line,

-B/W, selects whether a word (32 bits)

or a single byte (8 bits) is to be read
from or written to DRAM. During word
operations, all four blocks are activated,

allowing the full 32 bits to be accessed.
During a byte access, the two least

significant address bits, A1-A0, select

one eight-bit block to be activated, so
that only the appropriate: 8 bits are read
from or written to the DRAMs.

DRAM Cycles
There are three main types of DRAM
accesses as follows:

- Processor access (fetching instruc-

tions and reading/Writing data)

- DMA operation (fetching video, cursor
or sound data)

- Refresh operation

MEMC uses the page-mode capability of

DRAMs, performing sequential accesses
(S-cycles) where possible.

FIGURE 2. DRAM CONFIGURATION WITH 32 ONE-BIT DEVICES
RAX - RAO

\ D31 - DO

////////

H>

zz zzzzzzz
zz 77Z

I.

N * ;

-WE ,

-RAS

-CAS

^&
I"

-WEN

77777777

4-11

VLSI Technology, inc.

VL86C110

FIGURE 4. DRAM CONFIGURATION WITH 16 FOUR-BIT DEVICES

Processor Accesses
MEMO monitors a processor signal,

SEQ, that indicates that the next

processor access will be sequential.

Please note that MEMC uses the SEQ
to detect sequential access, and does

not perform its own check. If the SEQ
signal is asserted incorrectly, the wrong

memory page may be accessed.

If the SEQ signal is low in the processor

cycle preceding a DRAM access (SEQ

is a pipelined signal), an N-cycle DRAM
access will be used. Subsequent

DRAM accesses will use S-cycles as

indicated by the SEQ signal.

DMA operations may not interrupt the

processor if it is about to perform an S-

cycle memory access, so the maximum

number of consecutive S-cycles is

restricted to three. This reduces the

worst case DMA latency to an accept-

able figure, while retaining the improve-

ment that S-cycles bring.

An N-cycle is forced under either of the

following conditions:

- The processor SEQ signal was low in

the preceding cycle, indicating that

this access would not be to a se-

quential address.

- The processor address lines A3 and

A2 will both be low for the access.

This restricts the maximum number of

consecutive S-cycles to three.

MEMC optimizes non-sequential DRAM
accesses following internal processor

cycles as shown in Figure 5. During

internal cycles, the processor outputs

an address and sets SEQ high,

indicating that the address will be valid

in the next cycle. In an internal cycle

preceding a processor memory access,

the -MREQ line will be set low. When
MEMC sees SEQ high, -MREQ low,

and A25-A0 addressing DRAM during

an internal cycle, it starts a DRAM
N-cycle immediately. As the row

address has already been strobed into

the DRAMs, the processor DRAM
access can then complete with a DRAM
S-cycle. This special operation does not

occur if the DRAM address has both A3

and A2 set high (this is a consequence

of the multiple S-cycle limiting logic).

FIGURE 5. DRAM ACCESSE
Processor

SFO LL(DWI MG INTE

Proces

Seque

/

RNAL C\

sor DRAM
ntial Cycle

CLES

•

S

* Internal Cycle

s02 *

\

\ / \ /

-MREQ

SEQ / \
A25- ~\
AO _/< X

\-RAS /

\

-CAS
(READ) \ / \
-CAS
(WRITE)

/ V
4-12

VLSI Technology inc.

DMA Operations
DMA operations always fetch four

words (16 bytes) of data sequentially

from the DRAMs. Thus, DMA opera-
tions are composed of an N-cycle read
followed by three S-cycle reads.

Refresh Operations
A refresh operation is effectively a
single N-cycle DRAM read operation,

with the exception that the -CASx lines

are not strobed low.

DRAM Timing
The -CAS3 - -CASO strobes are

generated early in read operations, and
late in write operations to improve setup
and hold times on the data bus. If an
ABRT is generated during an N-cycle,

the -RAS strobe will be activated as
usual, but the -CAS3 - -CASO signals

are suppressed, effectively disabling

the DRAM cycle.

MEMC does not supply a DRAM Write
Enable signal directly. A suitable signal

may be derived by inverting the DBE
output from MEMC.

Read Only Memory (ROM) Interface

In order to minimize the ROM access
time, the ROM chip select signal from
MEMC, -RMCS, is enabled at the start

of every processor burst, and only

disabled when the processor address
lines have been decoded as addressing
another part of the memory map.

External Address Latches
The ROM low order address lines must
be latched externally on the rising edge
of 02 to hold the address stable to the
end of each processor cycle. The 02
signal must not be loaded too heavily,

otherwise 01 and 02 may overlap, so
02 should be buffered with an external

inverter to provide a suitable address
latching signal.

ROM Speeds
The ROM area of the processor
memory map is divided into two
sections, high ROM and low ROM. The
ROM access time in each area may be
independently programmed through the

MEMC Control Register. Three ROM
access times are available: 450 ns, 325
ns, and 200 ns. When a ROM cycle is

performed, the processor clocks are

stretched to provide the necessary
ROM access time.

MEMC Control Register

The MEMC Control Register is a

VL86C110
programmable location that controls the
functions of MEMC. The part does not
monitor the processor data bus, so the
parameters are encoded into the

address lines, as shown in Figure 6.

The Control Register is programmed by
performing a write operation while

MEMC is in supervisor mode.

Logical And Physical Page Size
The logical and physical page size must
be set to correspond to the type of

DRAM connected to MEMC. Page sizes

of 4 Kbytes, 8 Kbytes, 1 6 Kbytes, or 32
Kbytes may be selected. A default page
size of 4 Kbytes is selected when RES is

asserted.

ROM Access Times
ROM access times of 450 ns, 325 ns, or

200 ns may be selected for each of the
two ROM areas (high ROM and low
ROM). The ROM access time for both

high and low ROM areas is forced to

450 ns when RES is asserted.

Refresh Operations
Video DMA operations address DRAM
locations sequentially at regular inter-

vals, effectively refreshing DRAM, but

video DMA operations are normally

suspended during flyback.

For high resolution displays, the flyback
time is shorter than the DRAM hold time,

and no data is lost during flyback.

Broadcast standard displays have longer
flyback times, and extra DRAM refresh

must be provided during flyback to retain

DRAM integrity.

When no video DMA cycles are re-

quested, all refresh operations must be

FIGURE 6. MEMC CONTROL REGISTER
25 2019 1716 1413121110 9 8

11 1 1 1 X|1 1 1 IX X xlol I I I

generated by MEMC. To cover all

memory requirements, three refresh

modes are available.

Contlnous Refresh
A refresh operation is performed every

4 us. The refresh operation uses the
DMA video pointer as the refresh

address source, incrementing the
pointer after use. As this effectively

scrambles the video DMA pointer, this

mode should never be Selected when
any video display is being generated.

Refresh Only During Video Flyback
A refresh operation is performed every

4 us while FLBK is active. This mode is

selected when a broadcast standard
video display is being generated.

No Refresh
This mode of operation disables refresh

entirely, relying on videp DMA opera-
tions to refresh the DRAM. The flyback

time of the display (when no video DMA
operations are requested) should not

exceed the worst case DRAM storage
time.

Refresh operations take a single N-
cycle. Processor clocks are halted

during the operation and the refresh

address is strobed into the DRAMs
using the -RAS line.

The refresh address is provided using
the DMA address generator's video
pointer, which is incremented after

every refresh operation. Refresh
operations have a lower priority than
DMA operations and will be delayed if a
DMA cycle is in progress when the

refresh is attempted.

DEFINITION
~~~

7 6 5 4 3 2 1

Tesl Mode
- Disabled

1 - Not Meaningful For Operation

Operallng System Mode
- OS Mode Off

1 - OS Mode On

Sound DMA Control
- Disable

1 - Enable

VIdeo/Curaor DMA Control
- Disable

1 - Enable

_J
'—L Page Size

00 - 4 Kbytes
01 - 8 Kbytes
10 -16 Kbytes
11 -32 Kbytes

Low ROM Access Time
00 - 450 nsi(Default)

01 - 325 ns
10 -200 ns
1 1 - Not Meaningful

High ROM Access Time
00-450nsl(Default)
01 -325 ns
10 -200 ns
1

1

- Not Meaningful

DRAM Refresh Control
00 - None
01 - During Video Flyback Only
10 -None
1 1 - Continuous

4-13



VLSI Technology, inc.

VL86C110

There is no default setting for refresh

operations, so the system software

must turn on some form of refresh

before using the DRAM. The reset

condition causes the page size to

default to 4 Kbytes. This will alter the

RA9-RA0 configuration and break up

the display unless 4K pages were being

used already. Neither the video enable

nor the refresh mode is affected by a

system reset.

Direct Memory Access (DMA) Control

The video/cursor and sound DMA
operations may be enabled or disabled

as required. Assertion of the RES
signal disables the sound DMA but

does not affect video/cursor operations.

Operating System Mode
When Operating System mode is

enabled, the processor may access

certain protected logical pages in the

logically mapped RAM space. As with

all MEMC Control Register parameters,

Operating System mode may only be

changed while MEMC is in supervisor

mode. Operating System mode is

disabled when RES is asserted.

Test Mode
Test mode reconfigures MEMC to a

known state for functional testing. Test

mode must never be selected during

normal operation, as it removes all

sources of DRAM refresh, and halts the

processor. Test mode is disabled when

RES is asserted.

Loglcal-To-Physlcal Address

Translator

The physical RAM is divided into 128

physical pages, which the processor

may either access directly through the

physically mapped RAM area of the

memory map, or indirectly through the

logically mapped RAM area (composed

of logical pages). The logical-to-

physical address translator controls the

mapping of logical pages to physical

pages, and allows a level of protection

to be attached to each logical page.

Page Protection Levels

The logical page protection levels

available are shown in Table 3. The

protection level is specified by two bits,

but two of the four patterns are identi-

cal, so only three protection levels are

available.

- The lowest protection level (PPL1 = 0,

PPLO - 0) allows the logical page to

be freely accessed when MEMC is in

any protection mode.

-The medium protection level (PPL1 -

0, PPLO - 1) allows the logical page

to be freely accessed from the Super-

visor or OS mode, but prevents write

operations from user mode.

- The highest protection level (PP1 - 1

,

PPLO - X) allows the logical page to

be accessed when MEMC is in

supervisor mode, prevents write

operations from OS mode, and

disallows any user mode accesses.

If the protection mode of MEMC is

insufficently privileged to access a

protected page, or the logical page

being accessed has no physical page

mapping, the ABRT line will be taken

high to inform the processor that the

memory operation was aborted, and the

-CAS3 - -CAS0 lines will be held high

to ensure the DRAM is not activated.

Address Translator Mapping

The address translator consists of a 128

entry lookup table. Each entry corre-

sponds to a physical page number. A
logical-to-physical mapping is made by

storing a logical page number in the

appropriate entry. Each entry also con-

tains the two-bit page protection level.

When the processor accesses logically

mapped RAM, the logical page number

is applied to all 128 table entries simul-

taneously. If one of the entries contains

the required logical page number, and

the current operating mode of MEMC is

sufficiently privileged to overcome the

page protection level, the appropriate

physical page (the number of the entry

that matched) is output to the DRAMs.

If none of the entries matches the

requested logical page or a match is

found, but the page protection level is

too high, the ABRT line is set high, and

DRAM access does not complete.

Note that it is possible to store the same
logical page number in more than one

entry. However, when that logical page

is accessed, many entries will claim to

match, and an invalid physical page

number will result.

Dual MEMC Systems
In a dual MEMC system, the physical

RAM is effectively doubled to 256

physical pages, and the Logical to

Physical Address Translators in both

the Master and Slave MEMCs must be

programmed. When programming the

Address Translators, A(7) specifies

whether the Master or Slave Address

translator is being accessed.

Programming The Address
Translator

The address translator is programmed

by specifying the physical and logical

page numbers that are to be associated

and the required protection level. As

MEMC does not monitor the processor

data bus, the information is encoded

into the address lines, and conveyed to

the address translator by performing a

write operation to the calculated ad-

dress (with MEMC in Supervisor mode).

Note that the page size not only affects

the number of logical pages available,

but also changes the bit order in which

the logical and physical page numbers

are specified. Diagrams showing how

information is encoded into an address

for each of the four possible page sizes

are shown in Figure 7.

The following points should be noted:

- The address translator is undefined

on power up.

- The address translator mappings are

not affected by reset, but are effec-

tively scrambled if the page size is

changed.

- Only one physical page should be

mapped to any given logical page.

TABLE 3. LOGICAL PAGE PROTECTION LEVELS

MEMC Protection

Mode

Page Protection Level (PPL1.PPL0)

00 01 10 11

Supervisor Read/Write Read/Write Read/Write Read/Write

Operating System Read/Write Read/Write Read Read

User Read/Write Read No Access No Access

4-14



VLSI Technology inc.

VL86C110
FIGURE 7. PROGRAMMING THE LOGICAL-TO-PHYSICAL ADDRESS
TRANSLATOR

4-KByte Page - 8192 Logical Pages

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 frTMil

8-KByte Page - 4096 Logical Pages

25 24 23 22 21 20 19 18 17 16 15 14 13 121110 9 8 7 6 5 4 3 2 1

16-KByte Page - 2048 Logical Pages

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Physical Page Number (PPN6 - PPN0)
PPN6 - PPN0 A6^A0

Page Protection Level (PPL1 - PPL0)
PPL1 - PPL0 A9^A8

Logical Page Number (LPN12 - LPN0)
LPN12 - LPN11 AI1-A10
LPN10-LPN0 A22-A12

Physical Page Number (PPN6 - PPNO)
PPN6 AO
PPN5 - PPNO — A6-A1

Page Protection Level (PPL1 - PPLO)
PPL1 - PPLO — A9-A8

Logical Page Number (LPN12 - LPNO)
LPN11 - LPN10 — AT1-A10
LPN9-LPN0 * A22-A13

]

32-KByte Page - 1024 Logical Pages

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 987654321

• Physical Page Number (PPN6 - PPNO)
PPN6-PPN5 — A1-A0
PPN4 - PPNO— A6-A2

Page Protection Level (PPL1 - PPLO)
PPL1 - PPLO — A9-A8

Logical Page Number (LPN12 - LPNO)
LPN10-LPN9 — A11-A10
LPN8-LPN0 A22-A14

Physical Page Number (PPN6 - PPNO)
PPN6 A1
PPN5 A2
PPN4 • AO
PPN3 - PPNO — A6-A3

Page Protection Level (PPL1 - PPLO)
PPL1 - PPLO — A9-A8

Logical Page Number (LPM12 - LPNO)
LPN9-LPN8 —*• A11-A10
LPN7-LPN0 —»• A22-A15

4-15



VLSI Technology, inc.

VL86C110

FIGURE 8. ADDRESS GENERATOR REGISTER FORMATS
25242322 2120191817161514131211 10 987654321

Vinit |1 1 1 1 XlO Of New Register Value T>Tx1

FIGURE 9. CIRCULAR VIDEO
BUFFER

Vstart 11 1 1 1 XlO iT New Register Value Txxl

Vend |1 1 1 1 XlO 1 0|~ New Register Value Txxl

Clnit |1 1 1 1 X|0 1 iT New Register Value JKH

Sstart |1 1 1 1 X|1 0| New Register Value Txxl
Vinit -

SendN M 1011X11 Oil New Register Value I X X
|

Sptr |1 1 01 1 X|1 1 OlXXXXXXXXXXXXXXX X "xl

1

*- Vptr

-*-

Video
aSSs'Circular'is-!

Buffermm

*- 16 Byte

Block Of
Video Data

DMA Address Generators

The DMA address generators automati-

cally provide addresses during DMA
service. These DMA addresses are

used to obtain 16 bytes of data from the

DRAM (all DMA data must be quad-

word aligned). The data is obtained

using four DRAM accesses; each

access supplies one word (4 bytes) of

data which may be latched from the

data bus when the appropriate DMA ac-

knowledge line is strobed.

The DMA address generators imple-

ment three buffers: video, cursor, and

sound. These buffers are defined by

registers in the DMA address genera-

tors that are programmed by encoding

data on the address bus and performing

a write operation to the MEMC while in

the Supervisor mode. Figure 8 shows

how the address is calculated for

storage into the DMA address registers.

Notes on programming the DMA
address registers:

- The register value is calculated by di-

viding the physical address by 16.

- The following side effects occur when

FIGURE 10. LINEAR CURSOR
BUFFER

Cinit

Cursor |

Linear I

Buffer I

Cptr

16 Byte

Block Of
Cursor Data

the sound buffer address generators

are programmed: (1) programming

the Sstart register sets the next buffer

valid flag, and (2) when the Sptr

register is programmed the value of

the Sstart register is copied into the

Sptr register, and the Next Buffer

Valid flag is reset.

Video Buffer

This is a circular buffer, as shown in

Figure 9. The buffer is a section of

memory delimited by Vstart and Vend

that contains the video data for a frame.

When a video DMA is requested, the

address held in Vptr (the video pointer)

is used to obtain four consecutive 32-bit

words of data (1 6 bytes) from the

DRAM. The -VDAK line is pulsed low

as each word of memory data is read.

The Vptr is then incremented ready to

point ot the next four words of video

data, unless it has reached the end of

the buffer (as delimited by Vend), in

which case Vptr is reset to the start of

the buffer (as defined by Vstart).

The Vinit register contains the address

to which Vptr will be initialized just

before the new display frame begins

(denoted by a high-to-low transition on

FLBK), and is thus the address of the

first byte of video data for the new
frame. Hardware scrolling is effected

by reprogramming Vinit.

The processor may program the Vstart,

Vinit, and Vend registers when MEMC
is in supervisor mode. The Vptr register

cannot be altered directly by the

processor, but is always reset to the

value contained in Vinit before a new
video frame is displayed.

The video pointer register, Vptr, doubles

as a refresh counter. When a refresh is

performed the Vptr address is output

and Vptr is incremented (no check is

made that Vptr has reached the end of

the buffer). Refresh operations alter the

contents of Vptr, continous refresh must

never be enabled during video DMA
operation. The special refresh mode
uses Vptr only during flyback, when
video DMAs do not occur.

Cursor Buffer

This is a linear buffer, and is shown in

Figure 10. The cursor data is contained

FIGURE 11

SendC -»•

DOUBLE BUFFERED SOUND SUPPORT

„™~
Current

Sound
Buffer

._

::ii:P;:;lli:::::::|i§^^

ndN -*•

Sptr

Ri liter

:W:W»:-£^

;:8§:;:j:j:&^^

Next

Buffer -Yes
Valid

Sound
Interrupt - No
Active

16 Byte

Block Of

Sound Data

4-16



VLSI Technology inc.

VL86C110
in a section of memory whose initial

(low) address is stored in the Cinit

register. While FLBK is high denoting
video flyback, Cptr (the cursor pointer)

is initialized to address held in Cinit.

When a cursor DMA is serviced, the

address held in Cptr is sent to the
DRAM, and used to obtain four 32-bit

words of data (1 6 bytes). The Cptr is

then incremented ready to point to the
next four words of cursor data.

Sound Buffer

Sound data is divided into areas of

memory called sound buffers. The
sound system can support any number
of sound buffers using a combination of

the DMA address generators and
interrupt driven software. Sound data is

extracted from one buffer at a time, and
when each buffer is exhausted, a new
sound buffer is used.

The DMA address generators contain

information on two sound buffers as
follows and is shown in Figure 11.

- Current Sound Buffer

This is the buffer from which sound
data is extracted when a sound DMA
is requested. The address of the next

1 6 bytes of sound data to be supplied

FIGURE 14. SOUND BUFFER STATE AFTER NEW START VAliUE

SendC 1
'

'

r —
—

—

__

Current

;

Sound i

Buffer |

-

SendN -»>

Sptr

Sstart -

Next
Sound
Buffer

Next

Buffer -Yes
Valid

Sound
Interrupt

Active

•No

in response to a sound DMA request
is held in the sound pointer register,

Sptr, and the end of the current

sound buffer is delimited! by the

current sound end register, SendC.

- Next Sound Buffer

This is the buffer of sound data to

which the sound pointer,:Sptr, will

jump when it reaches the end of the
current sound buffer. The act of Sptr
swapping to the next sound buffer

triggers a processor Interrupt request
(-SIRQ), which should prompt the

processor to define the area of

memory for the next sound buffer.

FIGURE 12 . SOUND BUFFER AFTER SWAP OPERATION

SendN -> SendC

Sstart

Current—
1 Sound -

Buffer II

Hi!

Next
Buffer- No
Valid

Sound
Interrupl-

Active

Sptr

Yes

FIGURE 13. SOUND BUFFER STATE AFTER NEXT END VALID

SendC

Current ?

Sound i

Buffer I

'

.

SendN

i- Sptr

Sstart

- _.

Next

Sound
Buffer .

,+_
,

'"

Next
Buffer - No
Valid

Sound
Interrupt - Yes
Active

The next sound buffer is defined by
programming the Sstart and SendN
registers. (Note that the processor can
only program the start and end address
of the next sound buffer). A hardware
flag, Next Buffer Valid, is set when the
next sound buffer registers have been
programmed.

Sound Buffer Operation
- Sound Buffer Swap
When the sound pointer reaches the
end of the current buffer, it swaps to

the start of the next buffer (provided
the next buffer valid flag is set,

indicating the next buffer parameters
have been set up). This operation

resets the next buffer valid flag, and
generates a processor interrupt by
taking the -SIRQ (sound interrupt)

line low. The SendC and SendN
registers swap over, so that the value
previously set up in SendN defines
the end of the new current buffer.

The state after this ph&se is shown in

Figure 12.

- Next Sound Buffer Setup
The processor should 'react to the
sound interrupt by defining the next
sound buffer that the sound system
should use. The first part of this

process is to define the end address

FIGURE 1 5. INITIAL STATE OF
SOUND BUFFERS

- First -
Sound i

i Buffer I

Next
Buffer - No
Valid

Sound
Interrupt -Yes
Active

SendN
SendC
Sptr

Sstart

- Uninitialized

4-17



VLSI Technology, inc.

FIGURE 16. SOUND BUFFER STATE
AFTER SEND AND SSTART VALID

FIGURE 17. SOUND BUFFER STATE
WRITE TO SPTR REGISTER

Mm^mm:M^M:
M^WM?M^Mi
ili

:: '
:
'
:

'Tirs{ —

-

— Souni

|i| Bi-I:

^;S::';; :

;:o:;;;:;gi;;;S:;';i:Si
:
;;;;i;i|

iSttSH;!;^

i;:xiv?:>:::S*S^ :S:: ::"i-S ;
i
;
;
:
:-;;;;;;;;

- SendN
Next
Buffer

Valid

•Yes

Sound
Interrupt -No
Active

|p£
dC )-- Uninitialized

*- Sstart

Current J

Sound I

Buffer |

-SendC

-No
Next
Buffer

Valid

Sound
Interrupt -Yes
Active

SendN V - Uninitialized

«-Sptr, Sstart

of the next buffer by reprogramming

SendN. The state after this action is

shown in Figure 13. The processor

may now define the start address of

the next buffer by reprogramming

Sstart. This fully defines the next

buffer, setting the next buffer valid

flag and clearing the -SIRQ sound

interrupt line. This action brings the

buffer control to the state shown in

Figure 14. The sequence now

repeats from the buffer swap event.

If the processor fails to setup a new

Sstart value before the sound pointer

reaches the end of the current buffer,

the sound pointer will swap back to the

start of the current buffer (as defined by

the old value of Sstart).

Initializing the Sound Buffers

The following procedure is recom-

mended to initialize the sound buffer

system (on power up, for example):

- Initial State

After power reset, the sound buffer

registers are not defined, and sound

DMA operations are disabled as

shown in Figure 15. To start the

sound system, the processor must

first fill the first sound buffer with data.

Note that the sound interrupt line is

pulled low when RES is asserted.

- Defining the First Buffer

The SendN and Sstart registers are

then programmed with the end and

start addresses of the first sound

buffer. This sets -SIRQ high

(inactive) with the state shown in

Figure 16.

- Initializing the Sound Pointer

The sound pointer is now defined by

performing a write operation (with

MEMC in supervisor mode) to the

Sptr register. Rather than defining an

immediate value to be stored in Sptr,

this operation forces a buffer swap

operation, copying the contents of

Start to Sptr, swapping over SendN

and SendC, and setting the -SIRQ
low as shown in Figure 17.

The processor may now enable sound

DMA operations by reprogramming the

MEMC Control Register, and handle the

sound interrupt in the usual way to set

up the next buffer.

Processor/DMA Memory Arbitration

DMA operations read four words from

the DRAM. The memory accesses are

organized as an N-cycle followed by

three S-cycles. As the DMA operation

uses the system data bus, the proces-

sor must be prevented from performing

accesses until the DMA has finished.

The processor will not be stopped if it is

about to perform a sequential memory

access; Instead, the DMA operation is

postponed until the processor requests

an internal cycle or a non-sequential

memory access. Excessive DMA hold

times are avoided by limiting the

maximum number of consecutive

processor S-cycles to three.

Processor internal cycles may occur

concurrently with DMA operations, but

the processor clocks will be halted (01

held high) if it attempts a memory

access cycle during DMA. The proces-

sor data bus is always disabled during

DMA operations by taking DBE low.

The DMA request may arrive while the

processor is suspended awaiting the

completion of an I/O cycle. In this case,

the -IORQ signal is removed, and the

processor bus disabled when RCLK
next goes low. Once the DMA has

completed, the I/O cycle is resumed by

setting -IORQ low, and enabling the

processor data bus drivers.

DMA Handshaking

Video and cursor DMA operations are

VL86C110

assumed to be mutually exclusive and

are both requested by taking the

-VDRQ line low. The -HYSC line

determines whether a video or cursor

operation is to be performed. If -HSYC
is low when -VDRQ is sent low, a

cursor DMA is performed, otherwise a

video DMA is executed. A sound DMA
operation is requested by taking the

-SDRQ line low.

When the DMA operation is performed,

the DRAM is read, and an acknowledge

line, (either -VDAK for video/cursor

DMA, or -SDAK for sound DMA) is

strobed low as each word of data is

available on the data bus. The rising

edge of -VDAK or -SDAK may be used

to latch the DMA data from the bus.

Some DRAMs disable their data bus

drivers before the DMA acknowledge

line goes high. In this case, the

dynamic storage time of the data bus is

sufficient to hold the data valid until it is

latched.

The appropriate DMA request (-VDRQ
or -SDRQ) should be taken high when

the first DMA acknowledge is given

unless a consecutive DMA is desired.

The FLBK signal prompts MEMC to

initialize the video and cursor buffer

pointers. The cursor pointer is initial-

ized during flyback. The video pointer

is initialized just after FLBK goes low

(inactive) because it (Vptr) is sometimes

used as refresh pointer during flyback.

The -VDRQ, -SDRQ, -HSYC, and

-SDRQ signals may be asynchronous,

so they are all passed through two

synchronization latches in MEMC to

avoid synchronization errors.

DMA Latencies

Video/cursor DMA requests are higher

priority than sound requests, and will be

serviced first. All latency calculations

shown assume a 24 MHz clock input.

The maximum DMA latency from the

time a -VDRQ or -SDRQ line is taken

low to the first 32 bits of DMA data

being read from DRAM is as follows:

- Video/cursor DMA latency

-VDRQ passes through two synchro-

nization latches. The delay through

these latches varies from 10 ns to

125 ns, depending on the relative

phase of -VDRQ and the internal

synchronizing clock. It then requires

1 87 ns to process the video request,

4-18



VLSI Technology inc.

VL86C110
and prepare to execute a DMA cycle.

A further delay of 500 ns Is incurred if

the processor has just started a worst
case uninterruptable DRAM access
(N-cycle + three S-cycles without

internal cycles) in the preceding 8
MHz clock cycle. Finally, it takes 250
ns for the DRAM N-cycle read

operation to supply the first word of

video/cursor data. Thus, the mini-

mum and maximum delay from
-VDRQ going low to the first word of

data available from the DRAMs is:

Minimum video/cursor DMA latency
-10 + 187 + 250 = 450 ns

Maximum video/cursor DMA latency

- 1 25 + 1 87 + 500 + 250 = 1 070 ns

- Sound DMA Latency. The sound
DMA latency is similar to the video/
cursor DMA latency. However, sound
DMA operations have a lower priority

than video/cursor DMA operations,

and are delayed for 625 ns for every
consecutive video/cursor DMA
operation that is requested at the
same time as, or after -SDRQ goes
active low. Thus, the minimum and
maximum delays from -SDRQ going
low to the first word of data being
available from the DRAMs is:

Minimum sound DMA latency .
10+ 1 87 + 250 - 450 ns

Maximum sound DMA latency -
125+1 87+500+250+(625*DMA V/C)
-1070 ns+(625*DMA V/C)

where DMA V/C is the maximum
number of consecutive video/cursor

DMA operations that may occur while

the sound DMA is pending.

Selecting Video or Cursor DMA
Operations

The -HSYC signal determines whether
a video or cursor DMA is to be per-

formed, and is latched on the high-to-

low transition of -VDRQ. The hold time
on -HSYC must be sufficient to allow

the synchronization latches in MEMC to

capture its state. When two or more
video/cursor DMA operations occur
consecutively, -HSYC is sampled on
the falling edge of the penultimate

-VDAK acknowledge strobe, and its

state determines whether the next DMA
operation will fetch video or cursor data.

Flyback Requirements
The video and cursor buffer pointers

must be reset between each video
frame. The cursor pointer is initialized

during flyback (signalled by FLBK high).

The initialization takes 2S0 ns and takes
place automatically provided that the
following conditions are met:

- FLBK is high (indicating flyback is in

operation). It takes up to 250 ns for

MEMC to synchronize and process
the low-to-high transition of FLBK.

- No DMA or refresh operation is being
serviced.

- The processor is performing a non-
sequential memory access, but is not

writing to the DMA address generator
or the MEMC Control Register.

Note that these conditions may be
satisfied many times during flyback, and
the cursor pointer will be initialized on
each occasion. The FLBK signal must
remain high long enough to initialize the
cursor pointer at least once.

The video pointer is not reset until after

FLBK makes a transition from high-to-

low (the end of the flyback period). This
allows the video pointer to be used as a
refresh address register during flyback.

The initialization takes 250 ns and
occurs automatically provided that the
following conditions are satisfied:

- FLBK has made a transition from
high-to-low (signaling the end of

flyback), and the video pointer has
not already been initialized. It takes
up to 250 ns for MEMC to synchro-
nize and process the high-to-low

transition of the FLBK signal.

- No DMA or refresh operation is being
serviced.

- The processor is performing a non-
sequential memory access, but is not
writing to the DMA Address Genera-
tor or the MEMC Control Register.

FIGURE 18. I/O CYCLE

02

RCLK

y
rv/

-IORQ \

The delay between FLBK going low and
the first video DMA being processed
must be long enough to allow the video
pointer to be reset.

Programming the DMA Address
Generators

The DMA address generators are
limited to addressing the bottom 0.5

Mbyte of physical memory. However,
the processor can use the logical-to-

physical address translator to make this

0.5-Mbyte block appear anywhere in the
32-Mbyte logical address space.

MEMC does not monitor the processor
data bus, so the DMA address gener-
ators are programmed by encoding the
data in the address and performing a
write operation with MEMC in Supervi-
sor mode. Figure 8 on page 4-1

6

shows how an address is calculated to

store data in the address generator
registers. The following points should
be noted:

- The address generator has a resolu-

tion of 16 bytes (the number of bytes
read during a DMA transfer). All

DMA buffers must be aligned on 16
byte boundaries. The value stored in

the address generator is the appropri-

ate address divided by 16.

- When the sound pointer register,

Sptr, is programmed, no immediate
value is specified. Instead, a sound
buffer swap is forced, copying the
value from Sstart to Sptr, and
resetting the next buffer valid flag.

- The processor may write to the DMA
registers at any time, but multiple,

consecutive DMA register write

operations (e.g., usirtg the VL86C010
Store Multiple instruction) should
never be used, as this may inhibit the

initialization of the video pointer

register, Vptr.

-/h

^y~v

-IOQT

—//-
—//-

\ r
4-19



VLSI Technology, inc.

Video Controller (VIDC) Interface

To program the VIDC video controller,

the processor performs a write oper-

ation anywhere in the video controller

address space while MEMC is in super-

visor mode. The video controller regis-

ter number and data are encoded

entirely in a 32-bit word which is avail-

able on the processor data bus during

the write operation (see the VL86C310
data sheet for more detail). MEMC
provides a video controller write signal,

-VIDW, that latches the information off

the data bus.

I/O Controller Interface

The IOC I/O controller provides a

unified view of interrupts and peripher-

als within the VL86C01 based system

(see the VL86C410 data sheet for more

details). The processor can access a

number of I/O controllers through its

memory map, and MEMC provides a

handshaking control system for

processor to I/O controller interactions.

VL86C110

When the processor accesses the

Input/Output controller address space

(with MEMC in supervisor mode),

MEMC starts the I/O cycle by taking

-IORQ low, and holding the processor

clocks (stretching the processor cycle

with 02 high). If the -IORQ and -IOGT
signals are both low on the rising edge

of RCLK, the I/O cycle will end on the

next falling edge of RCLK. MEMC then

releases the processor clocks, and sets

the I/O request line, -IORQ, high; the

I/O controller will set the I/O grant line,

-IOGT, high and read or write data

fromAo the processor data bus. An I/O

cycle is shown in Figure 18. The cycle

starts with -IORQ being taken low.

Then follows a number of 8 MHz cycles

until the I/O controller is in a position to

complete the cycle. The -IOGT line is

taken low, and both MEMC and the I/O

controller see -IORQ and -IOGT low on

the rising edge of RCLK, so the I/O

cycles terminates on the next rising

edge of RCLK.

DMA and refresh operations are

allowed during I/O cycles. To prevent

clashes on the data bus, MEMC
ensures that the I/O cycle does not end

during these operations by taking

-IORQ high until they have finished, as

shown in Figure 19.

Some I/O cycles may only take a single

non-sequential cycle (250 ns). To give

the Input/Output controller adequate

time to recognize such operations,

MEMC produces the first -IORQ early

in the I/O cycle (see Figure 20).

The extension of -IORQ only happens

at the start of an I/O cycle; if the -IORQ
signal is removed during a DMA or

refresh operation, it will be reasserted

as RCLK goes low.

Care must be taken not to address a

non-existent Input/Output Controller, as

MEMC will hold the processor clocks

indefinitely until a low is seen on the

-IOGT line, or RES is set high.

FIGURE 19. I/O CYCLE INTERRUPTED BY DMA OR REFRESH

Start

"I/O Cycle

DMA Or

«a Refresh

Cycle

Complete
"
I/O Cycle

"

02

RCLK

-IORQ

-IOGT

FIGURE 20. FAST I/O CYCLE

02 S~\.

RCLK

-IORQ

-IOGT \ /"

4-20



VLSI Technology inc.

VL86C110
TIMING CHARACTERISTICS: TA = 0°C to +70°C, VDD = 5 V ±5%

Parameter

10 MHz 12 MHz

Unit
Symbol Mln Typ. Max Mln Typ. Max Condition

tCK Clock Period 100 80 ns Note 1

tv Cloek Non-overlap 10 10 ns @1.0V
1CKL Clock Low Time 45 38 ns @0.3V
tCKH Clock High Time 34 24 ns @4.7V
t0RF 01, 02 Rise/Fall 8 7 ns Note 1,2

101

L

01 Low to RCLK 7 7 ns Note 1 , 2

t01H RCLK to 01 High 8 8 ns Note 1 , 2

t02L 02 Low to RCLK -2 ns Note 1,2

t02H RCLK to 02 High 12 12 ns Note 1,2

tAS A25-A0 Setup (N-Cycle) 130 105 ns Note 2, 3

tAS A25-A0 Setup (S-Cycle) 30 25 ns Note 2, 4

tAH A25-A0 Hold to RCLK 15 15 ns Note 2

tRWH -R/W Hold to RCLK 5 5 ns Note 2

tDBED DBE Delay from RCLK 16 15 ns Note 2

tDBERD DBE Delay from -R/W 40 40 ns

tABTD ABRT Delay 95 50 ns Note 5

tABTRD ABRT Delay from -R/W 100 50 ns Note 5

tABTH ABRT Hold Time 10 10 ns Note 2

tMSS -MREQ & SEQ Setup 15 15 ns Note 2

tMSH -MREQ & SEQ Hold Time 15 15 ns Note 2

tBWS -B/W Setup to RCLK 50 40 ns Note 2, 6

tBWH -BAV Hold Time 5 5 ns Note 2

1RASS -RAS Setup to RCLK (N-Cyc) 7 5 ns Note 2

tRASS -RAS Setup to RCLK (X-Cyc) 15 13 ns Note 2

tRAS -RAS Pulse Width 100 80 ns Note 7

Notes: 1
. 1 o MHz operation assumes load on 01 , 02 is reduced to 25 pF.

2. All timings are referenced to RCLK 50% point, with nominal load on all signals. Signals other than RCLK are
referenced to high and low levels defined in DC operating conditions section (for inputs) and DC characteristics
section (for outputs).

3. This constraint applies to non-sequential cycles (N-cycles) only.
4. This constraint applies to internal cycles (l-cycles) only.
5. This constraint applies only to N-cycles and merged I- and S-cycles.
6. This constraint applies only to cycles where -CAS0- -CAS3 is active.
7. -RAS may be extended by up to 3Trcf for sequential DRAM cycles.
8. These figures apply to read cycles (early -CAS). -CAS will only go low when -RAS is low.
9. These figures apply to write cycles (late -CAS). -CAS will only go low when -RAS is low

4-21



VLSI Technology, inc.

VL86C110

TIMING CHARACTERISTICS (Cont.): TA = 0°C to +70°C, VDD = 5 V ±5%

Parameter

10 MHz 12 MHz

UnitSymbol Mln Typ. Max Mln Typ. Max Condition

tCASS -CAS Setup Read (N-Cyc) 8 2 ns Note 2, 8

tCASS -CAS Setup Read (X-Cyc) 20 18 ns Note 2, 9

tCASS -CAS Setup Write (N-Cyc) -5 -5

tCASS -CAS Setup Write (X-Cyc) 5 5

iCAS -CAS Pulse Width 40 30 ns

tRARAD Row RA9-RA0 from A25-A0 65 50 ns

tRARS RA9-RA0 Setup to -RAS 20 10 ns Note 2, 10

tRARH RA9-RA0 Hold to -RAS 15 10 ns

tRACD Column RA9-RA0 from -RAS 35 30 ns

tRACH RA9-RA0 Hold to -CAS 20 20 ns

tlORAD -IORQ Delay from A25-A0 80 55 ns Note 2, 11

tlORDF -IORQ Delay (First) 5 25 5 21 ns Note 2, 11

tlORD -IORQ Delay -2 10 -2 10 ns Note 2, 12

tlORH -IORQ Hold Time -12 -12 ns Note 2

tlOGS -IOGT Setup to RCLK 20 15 ns Note 2, 13

tlOGH -IOGT Hold Time 13 13 ns Note 2, 13

tROMD -RMCS Delay 20 15 ns Note 2

tROMCS -RMCS Pulse Width 180 395 140 315 ns Note 14

tVIDWD -VIDW Delay -2 13 -1 10 ns Note 2

tVIDW -VIDW Pulse Width 50 68 40 58 ns

tVDKD -VDAK, SDAK Delay 13 13 ns Note 2

tVDAK -VDAK, SDAK Width 40
|

55 30 45
I

ns

Notes: 10. These figures apply to DMA cycles.

1 1

.

These figures apply to the first IORQ of an I/O transaction.

12. These figures apply to the second and subsequent lORQs of an I/O transaction.

13. Only significant when -IORQ is low.

14. These figures apply to a single ROM access. Nibble mode accesses may be one clock period longer than the

maximum figure, and RMCS may remain low for multiple consecutive ROM accesses.

15. These times are not measured. The maximum delays are derived from SPICE models of the relevant logic functions,

with VLSI slow-slow transistor models, VDD=4.7 volts, VSS-0.1 volts, temperature 100 degrees Centigrade. The

minimum hold times are calculated from the same models of the relevant paths, with the time in the table being the

slow path time divided by four. All numbers have been rounded to the nearest 5 ns. All numbers are subject to

change after device characterization.

1 6. Output times are to CMOS levels except for the DRAM interface signals (-RAS, -CAS0- -CAS3, RA0-RA9) which

are to TTL levels.

The timing diagrams included in this section represent typical AC waveforms in a MEMC system.

4-22



VLSI Technology; inc.

VL86C110
TIMING DIAGRAMS

01

02

K
tv

RCLK

-IOGT

-tCK-

t0RF

-tCKH.

-tCKL-

X
t01H t01L

-tCKL-

/^

•tlORD-».

-IORQ

A25-A0,

SPMD

ABRT

-R/W

DBE

RA9 - RAO

-RAS

-CAS

-RMCS

X

"N:
-tlOGS-

tAH.

-tAS-

-tlORAD-

• tABTD c

- tABTRD

"

-tDBED-y c

-tDBERD-

tv

/-

t0RF

-tCKH- *
-102H t02L-

^k

J~
•4 tlOGH

tlORH

tlORDF

X
^tABTH

- tRARAD

tCASS

X
X

tROMD "tCAS

-tVIDWD-

-VIDW

-VDAK,
-SDAK

n~
tVDKD

tMSS

-MREQ, SEQ

-B/W

X

X
tRWH

K
-tRACH-

tRASS

<

X

-tRARH-

s;

tRARS
tRACD y"

- tRAS

jf
tROMCS-

-tVIDW-

•*

X -tVDAK-

Dr
.tMSH-X

- tBWS .X -H*- tBWH

y
4-23



VLSI Technology, inc.

VL86C110

TIMING Dl;

DRAM PROCE

\GRAMS
SSOR READ CYCLE

Non -

k» -" p-*( Sequential - w
Access Access

/ \02 > / \ >

-WE ^
(See

Note)

SEQ / Mwm.mm

-RAS \ y^

RA9- x x x XRAO

-CAS \ / \ /

RAM / n-— s \_
DATA
OUT

V A^

-RMCS _x—

/

^
Note: -WE is obtained by passing the DBE signal from the VL86C1 10 through an external inverter.

A.C. TEST WAVEFORMS A.C. LOAD CIRCUIT

5.0 V

O

Input

3.5 V

Outputuuipui —I

0.0 V
2.0 V-3K- 2.0 V

AC Test A A
Points

'

f

>
Device Under Test

1 K

35 pF

4-24



VLSI Technology, inc.

TIMING DIAGRAMS
DRAM PROCESSOR WRITE CYCLE

02

-WE
(See

Note)

SEQ

-RAS

RA9-
RAO

-CAS

RAM
DATA
IN

-RMCS

X

y~

Non -

Sequential

Access

y \

y
x
x

x /

< >

x

VL86C110

Sequential

Access

<

\

y

"X /

>

xzl

Note: -WE is obtained by passing the DBE signal from the VL86C1 to through an external inverter.

4-25



VLSI Technology, inc.

VL86C110

TIMING DIAGRAMS
PROCESSOR ROM ACCESS

02

-RMCS X
X X

PROCESSOR MEMO REGISTER ACCESS

02

-R/W

A25-
AO

X X

X
X

3C X
-RMCS

-SIRQ

X
X

X

PROCESSOR VIDC REGISTER ACCESS

\02

-R/W

A25-
AO X
-RMCS

-VIDW

X
X

x:

IX

x

x

x

4-26



VLSI Technology inc.

VL86C110
TIMING DIAGRAMS
DMA OPERATIONS

Non -

Sequential -

—

p.

Cycle

-VDRQ

,

-SDRQ

-VDAK,
-SDAK

RAM Data

-SIRQ

DMA OPERATIONS - DRAM READ CYCLES

02

-WE
(See

Note)

SEQ

-RAS

RA9-
RAO

-CAS

RAM
DATA
OUT

-RMCS

Note: -

X

X

Non-
sequential

Access x

x
X

A

X
<

X

X
>

X

Sequential ^>
AccessX

X
<

X

X
>

xz

WE is obtained by passing the DBE signal from the VL86C1 TO through an external inverter.

4-27



VLSI Technology, inc.

VL86C110

TIMING DIAGRAMS
CURSOR/VIDEO DMA REQUEST

-VDRQ X
-HSYC X K

CONSECUTIVE CURSOR/VIDEO DMA REQUESTS

-VDRQ

-VDAK

-HSYC

Non -

Sequential

Cycle

Sequential p.
Cycle

Sequential ^
Cycle

^g Sequential

Cycle

/ V
X

/ \ x
x

I/O CONTROLLER HANDSHAKING

RCLK y
-IORQ (First Attempt)

-IORQ (Retries)

-IOGT

X
X

X
X

X
y

X

4-28



VLSI Technology, inc.

ABSOLUTE MAXIMUM RATINGS
Ambient Operating

Temperature -1 0°C to +80°C

Storage Temperature -65°C to +150°C

Supply Voltage to

Ground Potential -0.5 V to VDD +0.3 V

Applied Output

Voltag

Applied Input

Voltage -0.5 V to +7.0 V

Power Dissipation 2.0 W

-0.5 V to VDD +0.3 V

Stresses above those listed may cause
permanent damage to the device.

These are stress ratings only. Func-

tional operation of this device at these

or any other conditions above those

VL86C110

indicated in this data sheet is not

implied. Exposure to absolute maximum
rating conditions for extended periods

may affect device reliability.

DC CHARACTERISTICS; ta = o°c to +70»c, vdd - 5 v ±5%

Symbol Parameter Mln Typ Max Units Conditions

VOH Output High

Voltage

Ref CIN VDD-1.25 - VDD V IOH - -1 0.0 mA

TTL 2.4 - VDD V IOH- -10.0 mA

01.02 VDD-0.5 - V IOL. - -5.0 mA

CMOS VDD-1.0 - V IOL - -5.0 mA

Output Low
Voltage

Ref CIN 0.4 V IOH -10.0 mA

VOL TTL 0.8 V IOH -10.0 mA

01,02 0.3 V IOL. - 5.0 mA

CMOS 0.8 V IOL = 5.0 mA

VIHC CMOS Input High Voltage 3.5 - - V

VIHT TTL Input High Voltage 2.4 - - V

VIL Input Low Voltage CMOS and TTL - - 0.8 V

ILI Input Leakage Current - - 10 uA VIN'-O Vto VDD

ICC Operating Supply Current - - 70 mA

IOS Output Short Circuit Current - - 25 mA See; Note.

E

Note: No more than one output should be shorted to either rail at a time and for no longer than one second duration.

4-29



VLSI Technology, inc.

VL86C110

AppendlxA-RAMAddressBus
The RAM address bus (RA9-RA0), as

output from the multiplexer, is derived

from three sources: processor address

bus, logical-to-physical address

translator, and DMA address genera-

tors. When the processor accesses

physically mapped RAM, the higher

order address bits (A25-A2) define the

physical page and the low order bits the

word offset within the page. Similarly,

when the processor requests access to

logically mapped RAM, the logical-to-

physlcal address translator supplies the

physical page number (PPN6-PPN0) if

the current privilege level is sufficient.

The row and column addresses

supplied to the DRAM on the RAM ad-

dresss bus during processor cycles are

a combination of the physical page

number (PPN6-PPN0) and the word

offset (A14-A2).

During DMA operations the DMA
address generators supply a 17-bit

word address value within the DRAM
address space. The DMA operations

can only address 512 Kbytes and the

upper address bits are forced to zeros

which forces the access into the bottom

area of the memory map.

Refresh operations use the Video

Pointer register as the address value,

while the values on the address bus are

a function of the page size selected.

They are shown in Figure A-1 for each

of the four page sizes.

Please note that the RAM address

multiplexer has inverting output drivers

and the address values observed are

complemented from the input value.

FIGURE A-1. RAM ADDRESS BUS VALUES FOR DIFFERENT PAGE SIZES

4-KByte Page Size RAM Address Bus

Row
Processor Address

Access column
Address

Row
DMA And Address

5efresh column
Operations Addresg

8-KByte Page Size

Row
Processor Address

Access column
Address

Row
Address

Column
Address

DMA And
Refresh
Operations

16-KByte Page Size

Row
Processor Address

Access column
Address

DMA And
Refresh

Row
Address

rt .. Column
Operations Address

32-KByte Page Size

Row
Processor Address

Access column
Address

Row
DMA And Address

Re,resh Column
Operations Address

RA9 RA8 RA7 RA6 RA5 RA4 RA3 RA2 RA1 RAO

| X | X | -A11 | -A10 | -A9 | -A8 | -A7 | -A6 | ^A5 | ^A4
|

I
X | -PPN6 | -PPN5 | -PPN4 | -PPN3 | -PPN2 | -PPN1 | -PPNO |

-A3
|

-A2
|

| X
I

X |-DMA11 |-DMA10| -DMA9 | -DMA8 |
-DMA7 | -DMA6 |

-DMA5 | -DMA4 |

| X |-DMA18 |-DMA17 |
-DMA16|-DMA15 |-DMA14 |-DMA13 |-DMA12

|
-DMA3 | -DMA2 |

RA9 RA8 RA7 RA6 RA5 RA4 RA3 RA2 RA1 RAO

I
X | -A12 | -A11 | -A10 | -A9 | -AS | -A7 | -A6 | -A5 | -A4 |

I
X | -PPN5

|
-PPN4

|
-PPN3

|
-PPN2

|
-PPN1 | -PPNO |

-PPN6
|

-A3 | -A2 |

| X [-DMA12 |-DMA11 |-DMA1o| -DMA9 | -DMA8 | -DMA7 |
-DMA6

|
-DMA5

|
-DMA4

|

|
X |-DMA18|-DMA17|-DMA16|-DMA1S|-DMA14|-DMA13| 1 | -DMA3 |

-DMA2
|

RA9 RA8 RA7 RA6 RA5 RA4 RA3 RA2 RA1 RAO

| X | -A12 | -A11 | -A10 | -A9 | -A8 | -A7 |
-A6 | -A5 | -A4

|

| -PPN6 | -PPN4 | -PPN3 | -PPN2 | -PPN1 | -PPNO |
-A13

|
-PPN5

|
-A3

|
-A2 |

I
X |-DMA12 |-DMA11 |-DMA1o| -DMA9 | -DMAS | -DMA7 | -DMA6 |

-DMA5
|
-DMA4

|

| 1 |-DMA18|-DMA17|-DMA16|-DMA15|-DMA14|-DMA13| 1 | -DMA3 | -DMA2
[

RAO RA8 RA7 RA6 RA5 RA4 RA3 RA2 RA1 RAO

| -A13 | -A12 | -A11 | -A10 | -A9 | -A8 |
-A7 | -A6 | -A5 | -A4

|

|
-PPN5 | -PPN3 | -PPN2 | -PPN1 | -PPNO | -A14 | -PPN6 |

-PPN4
|

-A3 | -A2 [

I-DMA13 I-DMA12 |-DMA11 |-DMA1o| -DMA9
|
-DMA8 | -DMA7 |

-DMA6 | -DMA5 | -DMA4 |

! 1 |-DMA18|-DMA17|-DMAie|-DMAI5|-DMA14| 1 ] 1 | -DMA3 | -DMA2 |

4-30



VLSI Technology, inc.

SECTION 5

VL86C310
RISC VIDEO
CONTROLLER
(VIDC)

Application Specific

Logic Products Division



VLSI Technology, inc.



VLSI Technology, inc.

VL86C310
RISC VIDEO CONTROLLER (VIDC)

FEATURES
• Pixel rate selectable as 8, 12, 16, or

24 MHz

• Serializes data to 1 -, 2-, 4-, or 8- bits

per pixel

• 16 x 13-bit words -4096 color lookup

palette

• Three 4-bit DACs (one for each CRT
gun)

• Fully programmable screen parame-
ters

• Screen border in any of the 4096
possible colors

• Flexible cursor sprite

• Support for interlaced display format

• External synchronization capability

• Very high resolution monochrome
mode support

• High quality stereo sound generation

DESCRIPTION
The Video Controller (VIDC) accepts
video data from DRAM under DMA
control, serializes and passes it through

a color look-up palette, and converts it

to analog signals for driving the CRT
guns. The chip also controls all the

display timing parameters! plus the

position and pattern of the cursor sprite.

In addition, the VIDC includes an

exponential DAC and stereo image
table for the generation of high quality

sound from data in the DRAM.

The VIDC requests data from the RAM
when required, and buffers it in one of

three first-in, first-out memories
(FIFOs). Note that the addressing of

the data in RAM is controlled elsewhere

in the system (usually in the VL86C1 10

Memory Controller, MEMC). Data is

requested in blocks of four 32-bit words,

allowing efficient use of page-mode
DRAM without locking up the system
data bus for long periods.

The VIDC is a highly programmable de-

vice, offering a very wide choice of dis-

play formats. The pixel rate can be se-

lected in a range between 8 and 24
MHz and the data can'be serialized to

either 8-, 4-, 2-, or 1-bit per pixel. The
horizontal timing parameters can be
controlled to units of 2lpixels, and the

vertical timing parameters can be
controlled in units of araster. The color

lookup palette which drives the three

on-chip DACs is 13-bifs wide, offering a

choice from 4096 colors or an external

video source.

Extensive use is made of pipelining

throughout the device.

The cursor sprite is 32; pixels wide, and
any number of rasters high. Three

simultaneous colors (from the 4096
possible) are supported, and any pixel

can be defined as transparent, making
possible cursors of many shapes. The
cursor can be positioned anywhere on
the screen.

The sound system implemented on the

device can support up to eight chan-
nels, each with a separate stereo

position.

PIN DIAGRAM
ADED CHIP CARRIER

ORDER INFORMATION
PLASTIC LE

Part Clock

VDAK
\K\ 031

D3C

I

D29
D28

|
D27

D26 D24

|
D2S | D22

D22

I

D21

D20

I

D19
D1C

I

Number Frequency Package
sot D17

VL86C310-12QC 12 MHz
Plastic Leaded/ U

9

^ 10

=1 11

U
8

u
7

u u
6 5

uuuuuuuu
4 3 2 1 88 67 68 8S

•
u
64

U
63

u u
82 61

80 O
69 IZ

D18

D15

Chip Carrier (PLCC)
vsss

VDDS Note: Operating temperature Is 0°C to +70°C.

REFS =3 12 58 C D14

UCH 13 13 57 C D13

HCH =1 14 56 a D12

-LCH zn 15 65 C D11

-RCH -jn 16 64 C D10

-UR

VSSD

Z3 17

Z3 18
VL86C310
TOP VIEW

63 C
82 C

D9

D8

CKIN 3 18 51 C D7

SINK :n 20 60 C U8

-HI 3 21 49 C 05

FLBK :n 22 48 C 04

-VDRQ :n 23 47 IZ D3

-SDRQ 3 24 46 a 02

-HSYC =1 25 45 C D1

-V/CS =1 28 44 C DO

27

n
28 29

n

30

n
31

n

32 33

n n
34 35 36 37

n n n n
38

n
39

n
40

n
41

n

42

n
43

n
-VIDW|-VED3|-VED1

I
NSEL |-SED2|-SEDo| ROUT | BOUT | REFV

-SUP -VED2 -VED0 -SED3 -SED1 VDDD GOUT VSSV

5-3



VLSI Technology, inc.

VL86C310

BLOCKDIAGRAM

-SDRQ
-SDAK

-VDRQ-*-

D31 - DO r~

1
SOUND

FREQUENCY
GENERATOR

STEREO
IMAGE

REGISTER

SOUND
DAC

-* LCH
-* -LCH
-* RCH
-* -RCH

-*• -L/R

-VDAK-

SINK

VIDEO
FIFO V

VIDEO
SHIFT

REGISTER

J -v

'-N CURSOR
n/ RFO

VIDEO
MUX

V DATA/
SOUND
MUX

~~ >-SD3--V -SDO

NSEL
-SUP

L_|\ HIGH _K
> RES >r~V SHIFTER —V

-VED3

-

-VEDO

RED
DAC

rV

-\
-V

GREEN
DAC

BLUE
DAC

ROUT

GOUT

BOUT

U\ ADDRESS
-y> DECODER

TIMING
CONTROL

-VIDW
CKIN

^Z
HORIZONTAL

TIMING

Ek
VERTICAL
TIMING

-* -V/CS
-»- FLBK
-* -HSYC
-* -HI

5-4



VLSI Technology inc.

VL86C310
SIGNAL DESCRIPTIONS
Signal

Name
Pin

Number
Signal

Description

7-1,

68-44

23

CKIN

-VIDW

D31-D0

-VDRQ

-VDAK

-SDRQ

-SDAK

FLBK

SINK

-HI

-SD3 - -SDO 34-37

NSEL

-L/R

REFV

1

9

Clock In (TTL level input); Master 24 MHz system clock input - Usually this is the same signal as the
VL86C1 10 Memory Controller (MEMC) uses to generate system timing. Since VIDC resynchronizes
all its inputs to this clock reference, theseitwo clocks are not required to be the same frequency,
allowing the display frequency to be independent of the processor.

27 Register Write Strobe (TTL level input) - An active low on this line writes data into one of the VIDC
registers. The address of the register is supplied on the upper bits, and the data to be written on the
lower bits of the data bus. Normally, this signal is generated by MEMC as it is the device that

decodes the memory address map in the system.

Data Bus (TTL level inputs) - This 32-bit bus carries data for register writes, video DMA, cursor
DMA, and sound DMA, according to which type of data strobe is present.

Video Data Request (CMOS level output) - This signal is driven active (low) when the VIDC
requires another block of 1 6 bytes of video data (when -HSYC is high) or cursor data (when -HSYC
is low). It is driven high again by the first valid video data acknowledge, -VDAK.

8 Video Data Acknowledge (TTL level input) - An active low on this signal strobes a data word into the
video or cursor FIFO depending on the state of HSYNC when the request was made. Note that a
low on -VDRQ signifies a request for four; words of data, and so -VDAK must go low four times to

service each request.

24 Sound Data Request (CMOS level output) - This signal is driven low when the VIDC requires

another block of 1 6 bytes of sound data. It is driven high again by the first valid -SDAK.

9 Sound Data Acknowledge (TTL level input) - An active low on this signal strobes a data word into

the sound FIFO. Note that a low on -SDRQ signifies a request for four words of data, and so
-SDAK must go low four times to service each request.

22 Vertical Flyback (CMOS level output) - This signal is driven high when the display is in vertical

flyback (retrace). Specifically, it is set high at the start of the first raster which is not display data,

although this may be border, (at the bottom of the screen), and is cleared down at the start of the
first raster which is display data (at the top of the screen).

20 External Synchronization pulse (TTL level: input) - A high on this signal resets the vertical timing
counter, and if interlaced display format is; being used, the odd field is selected. Ths horizontal

timing counter, and all other registers are unaffected by this signal.

21 Horizontal Interlace Marker (Test pin - CMOS level output) - When an interlaced display format is

selected this signal is driven low half way along the raster and stays low until the end of each
raster. If non-interlaced displays are used, this pin may be used as a programmabla timer on each
raster.

Multiplexed Sound Data (Test pins - CMOS level outputs) - These pins are used for testing the
digital data paths through the chip. Normally, depending on the state of NSEL, they output the
inverse of one of the two nibbles of the data byte being fed to the sound DAC, but in test mode
three, they output the inverse of the data being fed to the green or blue DACs, again depending on
the state of NSEL. For more information on test mode three, refer to the control register section.

33 Sound Data Ouput Selector (Test pin - TTL level input) - When this signal is low, the sound data
bus port outputs the low nibble of the sound data, or the green DAC data. When NS5EL is high, the
sound data bus port outputs the high nibble of the sound data, or the blue DAC data.

1

7

Left/Right (Test pin - TTL level output) - This signal is driven low when the sound output is steered
to the left output port, and is high when the sound output is steered to the right output port. In test

mode three, the pin changes its function, and outputs the sound sampling clock instead.

43 Video DAC Reference Current (Analog input) - A current must be fed into this pin to set the output
current of the video DACs. The full scale output current is 1 5 times this current. In most applica-

tions a resistor from VDD to this pin is sufficient to set the current.

5-5



VLSI Technology, inc.

VL86C310
SIGNAL DESCRIPTIONS (Cont.)

Signal

Name
Pin

Number
Signal

Description

GOUT 40

BOUT 41

-SUP 28

25

26

ROUT 39 Red Analog output (Analog output) - The output to the CRT guns is in the form of a current sink.

Maximum brightness is defined as 15 times the reference current, and "black" is defined as zero

current. Level shifting and buffering is normally required to drive the CRT inputs.

Green Analog output (Analog output) - Same description as for ROUT.

Blue Analog output (Analog output) - Same description as for ROUT.

Supremacy output signal (CMOS level output) - This signal is used to control a multiplexer

between the output of VIDC and an external source when video mixing is required. If bit 12 of the

video or cursor palette for any logical color is set, -SUP is driven low when that logical color is

displayed. In this way any logical color can be defined as being supreme or not, on a pixel-by-

pixel basis.

Horizontal Synchronization pulse (CMOS level output) - This signal is required by some monitors.

It is also used by the MEMC to discriminate between cursor and video data requests. The pulse

is active low, and the pulse width is programmable in units of two pixels, though there are certain

system-related restrictions. See section Restrictions On Parameters.

Vertical/Composite Synchronization pulse (CMOS level output) - Depending on bit seven in the

control register, this pin can be either the vertical sync pulse, or a form of composite sync pulse.

The vertical sync pulse width is programmable in units of a raster and, if selected, is active low.

The composite sync pulse is the XNOR of -HSYC and -VSYC.

Video External Data output (CMOS level output) - The inverse of the four bits of data which are

fed to the red DAC are output on these pins. With an external serializer, this data can be used to

produce very high resolution monochrome displays.

Sound DAC Reference Current (Analog input) - A current must be fed into this pin to set the

output current of the sound DAC. The full scale output current is approximately 32 times this

current. In most applications, a resistor from VDD to this pin is sufficient to set the current.

13 Left Channel Positive Sound output (Analog output) - The sound output is the form of a current

sink which is switched to one of four pins (pins 13-1 6). The left channel signal is produced by

externally integrating and subtracting the two signals, LCH and -LCH. Similarly, the right channel

signal is produced by externally integrating and subtracting the two signals RCH and -RCH.

Left Channel Negative Sound output (Analog output) - See description of LCH.

Right Channel Positive Sound output (Analog output) - See description of LCH.

Right Channel Negative Sound output (Analog output) - See description of LCH.

Power (Digital ground) - This pin is the ground supply to the digital circuits in the device.

Power (Sound ground) - This pin is the ground supply to the sound DAC in the device. It must be

connected to the pin VSSD outside the chip.

Power (Video ground) - This pin is the ground supply to the video DACs in the device. It must be

connected to the pin VSSD outside the chip.

Power (Digital +5 V ±5% supply) - This pin is the positive supply to the digital circuits in the

device.

VDDS 1

1

Power (Sound +5 V ±5% supply) - This pin is the positive supply to the sound DAC in the device.

It must be at the same potential as VDDD, and should be decoupled to VSSS. Note that the

sound reference current input and the sound analog output currents are all referenced to this

signal.

-HSYC

-V/CS

-VED0

-VED3

-

REFS

LCH

39-32

12

-LCH 14

RCH 15

-RCH 16

VSSD 18

VSSS 10

VSSV 42

VDDD 38

5-6



VLSI Technology inc.

VL86C310
FUNCTIONAL PIN DIAGRAM

POWER
SUPPLY

MEMO
INTERFACE

DMA ,

INTERFACE <

TEST
SUPPORT

VL86C310

A

>

--VED»

VIDEO
INTERFACE

U
^ SINK

*}

SOUND
INTERFACE

EXTERNAL
SYNCHRONIZATION

FUNCTIONAL DESCRIPTION
Apart from the three 32-bit wide FIFOs
(video, cursor, and sound), the VIDC
contains 46 write-only registers of up to

13-bits each. In all cases the address of

the register is contained in the top 6-bits

(31 -26) of the data field. Bits 25 and 24
are not used. The actual data bits are

distributed among the remaining 24-bits

of the data field according to the register

in question. The encoding format is

shown in Figure 1

.

Treating bit 24 as the least significant

address bit, the register map is shown in

Table I on the following page. Note that

there are 18 undefined locations. These

locations should never be written to as

they may actually contain other regis-

ters. (Some registers are: dual-mapped
within the device.)

In order to define the display format,

eleven registers must be programmed.
Screen parameter definitions are shown
in Figure 2 on the following page.

Video Palette Logical Colors 0-FH:

Addresses 00-3CH
In 1-, 2-, and 4-bits per pixel mode, data

bits D12-D0 define the physical color

corresponding to that logical color. The
data bus encoding is shown in Figure 3.

Figure 4 shows the physical color field

specification.

FIGURE 1. DATA BUS ENCODING FORMAT
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 10

ME
VIDC Data

VIDC Address

FIGURE 3. VIDEO PALETTE LOGICAL COLOR FORMAT
31302928272625242322212019181716151413121110 9 876543210

|o|o|x|x|x|x|x|x|x|x|x|x|xj

FIGURE 4. VIDEO PHYSICAL COLOR FORMAT

Physical
" Color

- Logical

Color

12 11 10 9 8 7 6 5 4 3 2 1

SUP BLUE GREEN RED

D12 D11 D10 D9 D6 D7 D6 D5 D4 D3 D2 D1 DO

D3-D0 define the red amplitude

(DO least significant)

D7-D4 define the green amplitude

(D4 least significant)

D1 1 -D8 define blue amplitude

(D8 least significant)

D12 defines the supremacy bit

for that color

In 8-bits per pixel modfe, only 9-bits are

defined as shown in Figure 5. The
palette outputs define the least signifi-

cant bits of each color. The most
significant bits for each color now come
directly from the upper 4-bits of the

logical color field, givirtg the physical

data field as shown in Figure 6.

In four and 8-bits per pixel mode, all 16

locations should be programmed. In 2-

bits per pixel mode only colors zero,

one, two, and three need to be defined.

In 1-bit per pixel mode, only colors zero

and one need to be programmed.

Border Color Register: Address 40H
In all modes, this register defines the

border physical color. The data bus
encoding is shown in Figure 7.

D3-D0 define the red amplitude

(DO least significant)

D7-D4 define the green amplitude

(D4 least significant)

D11-D8 define the blue amplitude

(D8 least significant)

D1 2 defines the supremacy bit

for the border

5-7



VLSI Technology, inc.

VL86C310
FIGURE 2. VL86C310 DISPLAY PARAMETERS

u
Cursor

TABLE 1. REGISTER ADDRESS ASSIGNMENTS

Address
(Hex) Register Function

Address
(Hex) Register Function

Address
(Hex) Register Function

00 Video Palette Logical Color 44 Cursor Palette Logical Color 1 94 Horizontal Border End Register

04 Video Palette Logical Color 1 48 Cursor Palette Logical Color 2 98 Horizontal Cursor Start Register

08 Video Palette Logical Color 2 4C Cursor Palette Logical Color 3 9C Horizontal Interlace Register

OC Video Palette Logical Color 3 50 -5C Reserved AO Vertical Cycle Register

10 Video Palette Logical Color 4 60 Stereo Image Register 7 A4 Vertical Sync Width Register

14 Video Palette Logical Color 5 64 Stereo Image Register AS Vertical Border Start Register

18 Video Palette Logical Color 6 68 Stereo Image Register 1 AC Vertical Display Start Register

1C Video Palette Logical Color 7 6C Stereo Image Register 2 BO Vertical Display End Register

20 Video Palette Logical Color 8 70 Stereo Image Register 3 B4 Vertical Border End Register

24 Video Palette Logical Color 9 74 Stereo Image Register 4 B8 Vertical Cursor Start Register

28 Video Palette Logical Color A 78 Stereo Image Register 5 BC Vertical Cursor End Register

2C Video Palette Logical Color B 7C Stereo Image Register 6 CO Sound Frequency Register

30 Video Palette Logical Color C 80 Horizontal Cycle Register C4-DC Reserved

34 Video Palette Logical Color D 84 Horizontal Sync Width Register EO Control Register

38 Video Palette Logical Color E 88 Horizontal Border Start Register E4-FC Reserved

3C Video Palette Logical Color F 8C Horizontal Display Start Register

40 Border Color Register 90 Horizontal Display End Register

5-8



VLSI Technology inc.

FIGURE 5. VIDEO PALETTE DATA ENCODING FOR 8 BITS PER PIXEL MODE
31302928272625242322212019181716151413121110 9 876S43210

|o|o|x|x|x|x|x|x|x|x|x|x|xnxT XX
Physical

" Color Data

- Logical

Color

FIGURE 6. VIDEO PALETTE DEFINITION FOR 8 BITS PER PIXEL MODE
12 11 10 9 8 7 6 5 4 3 2 1

SUP BLUE GREEN RED
D12' L7" D10* D9' D8* L6" L5" D5* D4* L4" D2* D1* DO'

* Dn: These bits are from the palette field.
** Ln: These bits are from the logical field.

Cursor Palette Logical Colors 1-3:

Address 44-4CH
In all modes, these registers define the

physical cursor colors corresponding to

the logical colors. Note that cursor

logical color 00 is transparent (i.e., no
cursor display), and this location is used
for the Border Color Register. Figure 8
illustrates the data bus encoding for this

register.

D3-D0 define the red amplitude

(DO least significant)

D7-D4 define the green amplitude

(D4 least significant)

D1 1 -D8 define the blue amplitude

(D8 least significant)

D12 defines the supremacy bit

for that cursoricolor

Stereo Image Registers; Channels 0-

7: Addresses 60H-7CH
These eight registers define the stereo

image position for each of the eight

possible channels as shown in Table 1.

When only four channels are used,

registers 4, 5, 6, 7 should:be program-

med to the same values as registers 0,

1 , 2, 3 respectively. If only two chan-
nels are used, registers 0, 2, 4, and 6

pertain to one channel, and so should

be programmed to the same value, and
registers 1, 3, 5, and 7 pertain to the

FIGURE 7. BORDER COLOR REGISTER DATA BUS ENCODING
313029 28 27 26 25 2423 22 2120191817161514131211 10 9 87654321 O
loli |o|o|o|o|o|olxlxlxixlxlxlx fxTx I X I X

I

FIGURE 8. CURSOR PALETTE DATA BUS ENCODING
313029 28 27 26 25242322212019181716151413121110 987654321

|
Border
Physical
Color

foTiTb"foT~ |Q|o|x|x|x|x|x|x|x|xTxTxTxT :

L

FIGURE 9. STEREO IMAGE REGISTER DATA BUS ENCODING
31 30292827262524232221 20191817161 51413121110 9 8 7 6 5 4 3 2 1

lohh l lololxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxl

Cursor
Physical

Color

Cursor
Logical

Color

Channel
" Address

FIGURE 10. HORIZONTAL CYCLE REGISTER DATA BUS ENCODING
31 30292827262524232221 20 19 18 17 16 15 14 13 12 11 10 9 876543210
|1|0|0|0|0|0|0|0|

L

|X|X|X|X|X|X|X|X|X|X|X|X|X|X|

VL86C310
TABLE 2. STEREO IMAGE
REGISTER VALUES
Value Stereo Image Position

Undefined;

1 100% Left 1 Channel

2 83% Left Channel

3 67% Left Channel

4 Center

5 67% Right Channel

6 83% Right: Channel

7 100% Right Channel

other channel. When only one channel

is used, all eight registers should be
programmed with the same value. The
3-bit value is defined in Table 2 and
data bus encoding is shown in Figure 9.

Horizontal Cycle Register (HCR):
Address 80H
This register defines the period, in units

of two pixels, of the horizontal scan

(i.e., display time + horizontal retrace

time). If N pixels are required in the

horizontal scan period, then a value of

(N-2)/2 should be programmed into the

HCR (N must be even). If interlace

display is selected, N/2 must also be
even. This is a 10-bit register, with bit

14 the least significant; Data bus
encoding is shown in Figure 10.

Horizontal Sync Width Register

(HSWR): Address 84H
This register defines the width, in units

of two pixel periods, of the horizontal

sync pulse. Encoding of the data bus is

shown in Figure 11. If N pixels are re-

quired in the horizontal sync pulse, then

value (N-2)/2 should be programmed
into the HSWR. (N must be even.) The
minimum value programmed may be 0,

but system constraints impose a larger

minimum value. See section Restriction

On Parameters. This is a 10-bit

register, with bit 14 the: least significant.

Horizontal Border Start Register

(HBSR): Address 88H
This register defines the time, in units of

two pixel periods, from the start of

-HSYC pulse to the start of the border

display. If M pixels are required in this

time, then value (M-1)/2 should be
programmed into the HBSR. (M must
be odd.) Note that this register must

5-9



VLSI Technology, inc.

VL86C310

FIGURE 11. HORIZONTAL SYNC WIDTH REGISTER DATA BUS ENCODING
31302928272625242322212019181716151413121110 9 876543210
li lololololi lolo

I

|X|XlXlXlXlX|X|X|X|X|X|X|X|X|

I I Data

FIGURE 12. HORIZONTAL BORDER START REGISTER DATA BUS ENCODING
31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 10

[1 |o|o|o|i|o|o|o|

t 10 l& I I IV » VI WW-T^J*- I V

|

x
|

x|x|x|x|x|x|x|x|x|x|x
|

x
|

x|

I I Data

FIGURE 13. HORIZONTAL DISPLAY START REGISTER DATA BUS ENCODING
31302928272625242322212019161716151413121110 9 8 7 6 5 4 3 2 1

[1 |o|o|o|i|i|o|o|
'

"~"~'
Ix|x|x|x|x|xlxlx|xlx|x|xfx1x1

Data

FIGURE 14. HORIZONTAL DISPLAY END REGISTER DATA BUS ENCODING

31 30 29 2B 272625 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

|i|o|o|i|o|o|o|o| |X|X|X|X|X|X|X|X|X|X|X|X|X|X|

Data

FIGURE 15. HORIZONTAL BORDER END REGISTER DATA BUS ENCODING
31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1

I1I0I0I1I0I1I0I0I |X|X|XlX|X|X|X|X|X|X|X|X|XlX|

L Data

FIGURE 16. HORIZONTAL CURSOR START REGISTER DATA BUS ENCODING

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1

Il|0l0|l|l|0|0l0l |0|0|X|X|X|X|X|X|X|X|X|X|X|

l_l_ - Except For High-Resolution Mode
— -Data

always be programmed, even when a

border is not required. If a border is not

required, then the value in the HBSR
must be such as to start the border in

the same place as the display start (i.e.

M[HBSR] = M[HDSR]). This is a 10-bit

register with bit 14 the least significant.

Data bus encoding is shown in Figure

12.

Horizontal Display Start Register

(HDSR): Address 8CH
This register defines the time, in units of

two pixel periods, from the start of the

-HSYC pulse to the beginning of the

video display. The value programmed

here depends on the screen mode in

use. If M pixels are required in this

time, then: in 8-bits per pixel mode, the

value (M-5)/2 should be program-med

into the HDSR; in 4-bits per pixel mode,

value (M-7)/2 should be programmed

into the HDSR; in 2-bits per pixel mode,

value (M-1 1 )/2 should be programmed

into the HDSR; in 1-bit per pixel mode,

value (M-1 9)/2 should be programmed

into the HDSR. M must be odd in all

cases. This is a 10-bit register, with bit

1 4 the least significant. Data bus

encoding for this register is shown in

Figure 13.

Horizontal Display End Register

(HDER): Address 90H
This register defines the time, in units of

two-pixel periods, from the start of the

horizontal sync pulse to the end of the

video display (i.e., the first pixel which is

not displayed). The value programmed

here depends on the screen mode
used. If M pixels are required in this

time, then: in 8-bits per pixel mode,

value (M-5)/2 should be programmed

into the HDSR; in 4-bits per pixel mode,

value (M-7)/2 should be programmed

into the HDSR; in 2-bits per pixel mode,

value (M-11)/2 should be programmed

into the HDSR; in 1 -bit per pixel mode,

value (M-19J/2 should be programmed

into the HDSR. M must be odd in all

cases. This is a 10-bit register, with bit

14 the least significant. Figure 14

shows data bus encoding of register

values.

Horizontal Border End Register

(HBER): Address 94H
This register defines the time, in units of

two-pixel periods, from the start of

-HSYC pulse to the end of the border

display (i.e., the first pixel which is not

border). If M pixels are required in this

time, then value (M-1)/2 should be

programmed into the HBER. [M must

be odd.] Again, if no border is required,

this register must still be programmed

such that M[HBER] = M[HDER]. This is

a 1 0-bit register, with bit 1 4 the least

significant. Data bus encoding for this

register is shown in Figure 15.

Horizontal Cursor Start Register

(HCSR): Address 98H
This register defines the time, in units of

single pixel periods, from the start of the

-HSYC pulse to the start of the cursor

display. If M pixels are required in this

time, then value (M-6) should be

programmed into the HCSR. This is

normally an 11 -bit register, with bit 13

the least significant. Bits 11 and 12

must be zero except in the High

Resolution mode.

In this mode, where each 24 MHz pixel

is further divided into four pixels, the

cursor sub-position can be defined by

programming bits 1 1 and 12 of the

HCSR, which will move the cursor

position within the 24 MHz pixel. Refer

to the High Resolution Mode section.

Note that only the cursor start positon

needs to be defined, as the cursor is

automatically disabled after 32 pixels. If

a cursor smaller than this is required,

then the remaining bits in the cursor

pattern should be programmed to

logical color 00 (transparent). Figure 16

shows the data bus encoding scheme.

Horizontal Interlace Register (HIR):

Address 9CH
This register must be programmed if an

interlaced sync display is required.

Otherwise, it may be ignored. If value L

is written into the HCR, the value

(L+1)/2 should be written into the HIR.

[L is odd.] This is a 10-bit register with

bit 1 4 the least significant. Data bus

encoding is shown in Figure 17.

Vertical Cycle Register (VCR):

Address A0H
This register defines the period, in units

of a raster, of the vertical scan, i.e.,

display time + flyback time. If N rasters

5-10



VLSI Technology, inc.

VL86C310
FIGURE 17. HORIZONTAL INTERLACE REGISTER DATA BUS ENCODING
313029282726252423222120191817161514131211109 87654321
|1

1 1 1
1 1 M |o | o |

|x|x|x|xjx|x[x|x[x|x|xifx|x|x|

I I

FIGURE 18. VERTICAL CYCLE REGISTER DATA BUS ENCODING
31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1

I

-i
|

1 1
1 1

|| |
| o |

|x|x|x|x|x|x|x|x|x|x|x|x| xlxl

FIGURE 1 9. VERTICAL SYNC WIDTH REGISTER DATA BUS ENCODING
31302928272625242322212019181716 151413121110 9 876543210
lilolilololilolol

Data

Data

|x|x|x|x|x|x|x|x[x
|

x|x|x|x|x|

FIGURE 20. VERTICAL BORDER START REGISTER DATA BUS ENCODING
313029 28272625242322212019181716151413121110 9 876 5 43210

Data

10 10 XX XX X X X X X XX X XX

- Data

FIGURE 21. VERTICAL DISPLAY START REGISTER DATA BUS ENCODING

31302928272625242322212019181716151413121110 9 8 765 4 3.2 1

|1|0|1|0|1|1|0|0| |X|X|X|X|X|X|X|X|X|X|X|X|X|X|

I I

Data

FIGURE 22. VERTICAL DISPLAY END REGISTER DATA BUS ENCODING
31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1

|1|0|1|1|0|0|0|0| |X|X|X|X|X|X|X|X|X|X|X|X|X|X|

I I

Data

FIGURE 23. VERTICAL BORDER END REGISTER DATA BUS ENCODING
31302928272625242322212019181716151413121110 9 876 5 43210
|1|0|1|1|0|1[0|0[ |x|x|x|x|x|x|x|x|x|x| xlxl xlxl

I I

Data

are required in a complete frame, then

value (N-1) should be programmed into

the VCR. If interlaced display is used,

(N-3)/2 must be programmed into the

VCR. [N is odd.] Here N is still the

number of rasters in a complete frame,

not a field. This is a 10-bit register, with

bit 14 the least significant. Figure 18

shows the data bus encoding scheme.

Vertical Sync Width Register

(VSWR): Address A4H
This register defines the width, in units

of a raster, of the -V/CS pulse. If N
rasters are required in the vertical sync

pulse, then value (N-1) should be

programmed into the VSWR. The
minimum value allowed for N is 1 . This

is a 10-bit register, with bit 14 the least

significant. Data bus encoding is shown
in Figure 19.

Vertical Border Start Register

(VBSR): Address ASH
This register defines the time, in units of

a raster, from the start of the; vertical

sync pulse to the start of theiborder

display. If N rasters are required in this

time, then value (N-1) should be
programmed into the VBSR. If no
border is required, then this register

must still be programmed, inthis case
to the same value as the VDSR. This is

a 10-bit register, with bit 14 the least

significant. Figure 20 showsithe data

bus encoding.

Vertical Display Start Register

(VDSR): Address ACH
This register defines the time, in units of

a raster, from the start of theivertical

sync pulse to the start of the video dis-

play. If N rasters are required in this

time, then value (N-1 ) should be pro-

grammed in the VDSR. This is a 10-bit

register, with bit 14 the least significant.

The data bus encoding is shown in

Figure 21.

Vertical Display End Register

(VDER): Address BOH
This register defines the; time, in units of

a raster, from the start of the vertical

sync pulse to the end of the video
display (i.e., the first raster on which the

display is not present). If N rasters are

required in this time, then the value (N-

1) should be programmed into the

VDER. This is a 1 0-bit register, with bit

1 4 the least significant. Figure 22
illustrates the data bus encoding.

Vertical Border End Register (VBER):
Address B4H
This register defines the time, in units of

a raster, from the start of the vertical

sync pulse to the end of the border

display (i.e., the first raster on which the

border is not present). It N rasters are

required in this time, then the value

(N-1 ) should be programmed into the

VBER. If no border is required, then

this register must be programmed to the

same value as the VDER. This is a 10-

bit register, with bit 14 the least signifi-

cant. Data bus encoding for this regis-

ter is shown in Figure 23.

Vertical Cursor Start Register

(VCSR): Address B8H
This register defines the time, in units of

a raster, from the start of the vertical

sync pulse to the start of the cursor

display. If N rasters are required in this

time, then value (N-1) should be pro-

grammed into the VCSR. This is a 10-

bit register, with bit 14 being the least

significant. Figure 24 shows the data

bus encoding for this register.

Vertical Cursor End Register (VCER):
Address BCH
This register defines the time, in units of

a raster, from the start of the vertical

sync pulse to the end of the cursor dis-

play (i.e., the first raster on which the

cursor is not present). If
!N rasters are

required in this time, then value (N-1)

should be programmed into the VCER.
This is a 10-bit register, with bit 14 the

least significant. Data bus encoding is

shown in Figure 25.

5-11



VLSI Technology, inc.

VL86C310

FIGURE 24. VERTICAL CURSOR START REGISTER DATA BUS ENCODING

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 10

1 1 1 1 1 1 1 1 1 1 1 1 I

~
|

x
|

x|x|x|x|x|x|x|x|x|x|xfxTx1

-Data

FIGURE 25. VERTICAL CURSOR END REGISTER DATA BUS ENCODING

31302928272625242322212019181716151413121110 9 876543210
I1I0I1I1I1I1I0I0I |X|X|X|X|X|X|X|X[X|X|X|X|X|X|

— Data

FIGURE 26. SOUND FREQUENCY REGISTER DATA BUS ENCODING

31302928272625242322212019181716151413121110 9 876543210
|i|i|o|o|o|o|o|o|x|x|x|xlx|x|x|x|xix|xlx|x|xlx|i|

-Data

Sound Frequency Register (SFR):

Address COH
This register defines the byte sample

rate of the sound data. It is defined in

units of 1 u.s. If a sample period of N u.s

is required, then (N-1) should be pro-

grammed into the SFR. N may take

any value between three and 256. This

is a 9-bit register with bit the least sig-

nificant. Bit 8 in the SFR is used as a

test bit, and should always be set to

one. When this bit is set to zero, all the

internal timing signals are cleared.

Figure 26 shows the data bus encoding.

Control Register (CR): Address EOH

This register contains the operating

mode controls: a total of 1 1 bits are

defined, and three of these are for test

purposes only. Note that bit 8 in the

SFR must also be set before the device

can operate correctly.

The two bit-pairs for the pixel rate and

the bits per pixel selects are defined in

Figure 27. The bit-pair to define the

point at which the DMA request flag is

set is further explained in the Restriction

On Parameters section.

To select interlaced sync displays, D[6]

in this register must be set as well as

setting the correct values in the vertical

and horizontal timing registers.

The -V/CS pin on the device can be

programmed to output either the vertical

sync pulse or the composite sync pulse

which is the XNOR of vertical and hori-

zontal sync. Selection is made by D[7].

The remaining 3-bits are for testing the

device and are of little interest to the

user, but their action is as follows.

In test mode zero (D[14] high, D[15]

low), the upper 5-bits of the horizontal

counter are clocked by a derivative of

the pixel clock.

In test mode one (D[14] low, D[15] high)

the lower 5-bits of the vertical counter

are clocked by a derivative of the pixel

clock.

In test mode two (D[14] high, D[15]

high), the upper 5-bits of the vertical

counter are clocked by a derivative of

the pixel clock.

In test mode three (D[8] set), the pin

-L/R outputs a signal which is eight

times the frequency of the sound byte

sampling clock, and the pins SD3-SD0
output the inverse of the data which is

fed to the green DAC [NSEL low] or the

blue DAC [NSEL high].

Note that the device cannot function

properly in test modes zero, one, and

two, but test mode three has no effect

on the normal operation.

FIGURE 27. CONTROL REGISTER DATA BUS ENCODING

31302928272625 242322212019181 7161514131211 10 9

I X |
X | X |

X
|
xT

8 7 6 5 4 3

11 11 |1|0|0|010|Q|X|X|X|X|X|X|X|X|

2 1m
Test Mode
00 - Normal Operation

01 - Test Mode
10 -Test Model
1 1 - Test Mode 2

Test Mode
- Normal Operation

1 - Test Mode 3

Composite Sync
- Vertical

1 - Composite

Interlace Sync
- Interlace Off

1 - Interlace On

u LL Pixel Rate
00 - 8 MHz
01 -12Mhz
10 -16 MHz
1 1 - 24 MHz
Bits Per Pixel

00 - 1 Bit Per Pixel

01 - 2 Bits Per Pixel

10 -4 Bits Per Pixel

11-8 Bits Per Pixel

DMA Request
00 - End of Word 0,4

01 -End of Word 1,5

10 -End of Word 2,6

11 - End of Word 3,7

5-12



VLSI Technology, inc.

VL86C310
USING THE VIDC
The DMA Interface

The VIDC has three FIFOs into which
DMA data is written. The sound FIFO is

four 32-bit words deep, and works inde-

pendently from the the other two FIFOs.

The video FIFO is eight 32-bit words
deep, and the cursor FIFO Is again four

32-bit words deep.

Sound FIFO
Each word of data is strobed into the

FIFO on the rising edge of -SDAK.
Data is read out of the FIFO into a byte

wide latch which then drives the DAC.
When the last byte in the FIFO is read

into the latch, the signal -SDRQ is

driven low, requesting another 16 bytes

of data. The signal -SDRQ is driven

high when the first -SDAK is received.

The time available to service this data

request is dependent on the sound data

rate. The minimum value of the SFR is

three, which defines a byte-rate of 3 u.s.

Therefore, the first word must be loaded

into the FIFO less than 3 u.s after the

-SDRQ signal is generated.

Cursor FIFO
The cursor FIFO contains 1 6 bytes of

data, which is enough for two rasters of

cursor display. When the VIDC is pro-

grammed to display a cursor, -VDRQ is

driven low at the same time as -HSYC
goes low on the first raster on which the

cursor is to appear. Data is loaded Into

the FIFO on the rising edge of -VDAK.
The load cycle must be complete before

the -HSYC pulse has ended.

-VDRQ is driven high again when the

first -VDAK is received. The cursor

may be any number of rasters high, and
the cursor FIFO requests data during

the -HSYC of every alternate raster on
which it is displayed.

Video FIFO
The video FIFO is eight 32-bit words
deep, and it Is arranged as a circluar

buffer. Data must always be loaded

into it in blocks of four words, and this

FIFO shares the same -VDRQ and
-VDAK signals as the cursor FIFO.

To accommodate the vastly different

rates at which video data is required In

the different modes, and to accommo-
date different DRAM speeds, the point

at which more data is requested can be

varied. This is done by bits 4 and 5 in

the Control Register.

During the vertical sync pulse, the FIFO
is cleared, and the signal -VDRQ is

high. After the -HSYC pulse of the first

displayed raster, -VDRQ is driven low.

Eight words must now be written into

the FIFO by driving -VDAK low eight

times. This fills the FIFO. -VDRQ is

set high again when the fifth -VDAK is

received.

Thereafter, the -VDRQ signal is set low

whenever the FIFO empties to the point

predetermined by bits 4 and 5 in the

Control Register. The -VDRQ signal is

normally set high when the; first -VDAK
signal is received. However, if the data

request is not serviced quickly, and the

FIFO has emptied to the point where
another four words have been read out

when the first new data word arrives,

then the -VDRQ signal will! stay low,

requesting another four words of data.

The Video DMA Interface

As noted above, the cursor and video

FIFOs share the same DMA interface

signals. Normally, a -VDRQ low during

the -HSYC pulse is a request for cursor
data, and -VDRQ low at any other

times is a request for video: data. Fig-

ure 28 shows the relationships graphi-

cally.

However, often a video request

happens just before the end of a raster

requesting data for the next raster. The
load cycle for this video request is

allowed to overlap the -HSYC pulse,

even if a cursor request happens during

the -HSYC pulse. Note that in this

case the -VDRQ signal may not be
driven high between these two cycles.

The first cycle must be video data and
the second cycle must be cursor data.

The cursor load cycle must still be
complete before the end of the -HSYC
pulse. This is shown in ; Figure 29.

Figure 30 shows the situation where a
cursor is displayed on the first raster of

the frame. Note the double video load

cycle. The cursor load cycle must not

overlap the end of the -HSYC pulse

(otherwise data will be loaded into the

wrong FIFO), and the first word of video

data must be present in the FIFO before

the display starts.

Restrictions On Parameters
It is clear from the above that certain

restrictions must be applied to the

screen parameters, most of which are

system dependent. The following

paragraphs assume the VIDC is being

used in a system with the processor

and MEMC and two/one clock page-
mode DRAM memory. In this system
DRAM cycles consist of! an N-cycle (two

RCLK clocks) followed by up to three

sequential S-cycles (one RCLK clock).

FIGURE 28. VIDEO AND CURSOR DMA OPERATION

wm® ffi Dispray? M

-VDRQ

-VDAK i_rLJi_n_r TJTJ-

D31-DO XDOOOC
V

doooczxz
Cursor

" Load
"

-I
Video

' Load '

FIGURE 29. VIDEO DMA OVERLAPPING -HSYC PULSE

-HSYC

-VDRQ

\ J
^vdakLJTJTJTJ

mmzjcjcDCDc
irirwii u~Lnnj—

Video

Load

XDOOOCZDOOOOC
-A

Cursor

Load
Video

Load

5-13



VLSI Technology, inc.

VL86C310

FIGURE 30. CURSOR DMA AT THE BEGINNING OF A FRAME

FLBK

~L

-HSYC

-VDRQ

-VDAK IXLTUOJ
D31-

"-LTUUTLJ

do)CZ)CDCXZ)CZDCZ)CZXZ)CZ

a_n_r^n_r

k Cursor
_

Load k Video

Load A k

A , A A A A

-I
Video

Load

Hence, a VIDC FIFO load cycle

consists of 1N + 3S requiring five RCLK
clocks (417 ns at 12 MHz).

FIFO Request Pointer Values (Con-

trol Register Bits [4:5])

The video FIFO is a circular buffer,

although the core is asynchronous, with

a ripple-through time of 150 ns from the

top to the bottom. Data is loaded in

blocks of four words, and is read out in

bytes, starting with byte of word zero

and so on. -VDRQ can be set low half

way through reading the last byte of any

of word 0-3 (and correspondingly 7-4)

according to bits 5-4 in the Control Reg-

ister. In the high resolution video

modes where the bytes are being

consumed quickly, the request signal

must be set at an earlier point than in

the low resolution modes. Selections

are defined in Table 3.

The request signal -VDRQ should be

brought low as soon as the FIFO can

accept the four words of data when they

arrive. The minimum time between

setting the request and receiving the

last word of data is 1 87 ns + 625 ns -

812 ns (at 8 MHz). [The 187 ns figure

is the minimum time in which MEMC
can start a DMA cycle.] If the FIFO is

full at the start, then it will have four

words spare 150 ns after the start of

word 4. [150 ns is the ripple-through

time of the FIFO.] Hence, the request

should be made at the first opportunity

after (812 ns - 150 ns - 652 ns) before

the start of word four. The request can

be made halfway through the last byte

of any of words 0-3 by programming the

Control Register.

Depending on the video mode in use,

data can be read from the FIFO at 1 .5,

2, 3, 4, 6, 8, 12, or 16 Mbytes/second.

Figure 31 shows the case for the 16

Mbytes/second mode. The request

must be set at the end of words one

and five.

Figure 32 shows the case for the 1

2

Mbytes/second mode. The request

must be set at the end of words two and

six.

Figure 33 shows 8 Mbytes per second

mode. Again, the request must be set

at the end of words two and six.

In all other modes, the request should

be set at the end of words three and

seven.

Horizontal Sync Pulse Width

The -HSYC pulse width must be long

enough to allow a complete load of the

cursor FIFO. This is made up as

follows:

2*[N+3S] (current + cursor cycles) +

syncmax + 2*Tprop.

i.e. 2*625 + 312+ 100 - 1662 ns.

FIGURE 31. FIFO OPERATING AT 16 MBYTES PER SECOND

652 ns (tJ ->j 250 ns I*-

WordO Wordl Word 2 Word 3 Word 4 1 Word 5 1 Word 6 1 Word 7 1 Word

I Set DMA Request Here I—— Set DMA Request Here

FIGURE 32. FIFO OPERATING AT 12 MBYTES PER SECOND

L#- 652 ns -*•] -*j 333 ns l<#-

WordO Word 1 1 Word 2] Word 3 [ Word 4 1 Word s\ Word e| Word 7 1 Word

TABLE 3. FIFO POINTER
SETTINGS
Control Register

-VDRQ Set At

End Of WordsBit 5 Bit 4

0,4

1 1,5

1 2,6

1 1 3,7

T Set DMA T— Requ""* Lj/^t-rt

INGA

-I 652 ns U- -] 500 ns U-

Set DMA I Set DMA
Request Here L— Request Here

FIGURE 33. FIFO OPERATING AT 8 MBYTES PER SECOND

Word Word 1 1 Word 2| Word 3 1 Word
4J

Word 5 1 Word 6| Word 7| Word

t Set DMA
Request Here t Set DMA

Request Here

5-14



VLSI Technology, inc.

VL86C310
Syncmax is the maximum time MEMO
can take to recognize the DMA request.

Tprop is the time taken for the -VDRQ
signal to reach MEMO, or the time

taken for -VDAK to reach VIDC.

The pulse must also be long enough to

allow the processor to write to the DMA
address generator (DAG) in the MEMO
to reset the screen pointer. This may
be as follows:

3*[N+3S] (current + cursor + sound
cycles) + DAG write.

i.e. 3*625 + 250 = 21 25 ns. Since both

these parameters must be met, this

larger value must therefore be used.

Horizontal Front Porch Width
The front porch may be zero length.

The total time from the end of display to

the end of the -HSYC pulse must be
more than 1912 ns. As the -HSYC
pulse width has to be at least 2125 ns,

this does not impose a restriction on the

value of the back porch.

Horizontal Front Porch Width
The back porch must be long enough to

allow the load of at least one word into

the video FIFO before the data is read

out again. This is important at the start

of the frame because data is required in

the bottom of the FIFO at least four

pixel-times before the start of display,

due to the pipeline delays. Hence the

back porch must be greater than:

N+3S+N (current cycle + video N cycle)

+ syncmax + 2*Tprop + FIFO-ripple + 4
pixels.

i.e. 250 + 375 + 250 + 312+100+150
+ 4*83 - 1 769 ns for 1 2 MHz displays.

or 250 + 375 + 250 + 312 + 100 + 150 +
4*125 = 1 937 ns for 8 MHz displays.

Vertical Sync Pulse and Porch Width
There are no restricitons on the values

of the vertical front porch, back porch,

or sync width. The Vertical Sync Width

Register (VSWR) may be programmed
to a value of which gives a vertical

sync width of one raster.

Horizontal Display Width
The number of bits in the pixels of each
raster must be a multiple of 128.

Border

The border cannot be disabled. If no
border is required, then it should be
programmed to start and finish in

exactly the same place as the display

TABLE 4. SCREEN MODE SUPPORT
Pixel Rats Bits/Pixel FIFO Data Rate Pixel Rate Bits/Pixel FIFO Data Rate

8 Not Supported

12 MHz

8 12 Mbytes /Second

24 MHz
4 12 Mbytes /Second 4 6 Mbytes /Second

2 6 Mbytes /Second 2 3 Mbytes / Second

1 3 Mbytes / Second 1 1.5 Mbytes /Second

8 16 Mbytes /Second

8 MHz

8 8 Mbytes / Second

16 MHz
4 8 Mbytes / Second 4 4 Mbytes / Second

2 4 M ytes / Second 2 2 Mbytes / Second

1 2 Mbytes /Second 1 Not Supported

(both vertically and horizontally).

Cursor Position

The cursor should not be programmed to

be outside the display area vertically, but

it may be programmed to start or end
outside the display area horizontally.

Note that the cursor will not; be displayed

outside the border area either vertically

or horizontally.

DISPLAY FORMATS
Screen Modes
Fourteen of the possible 16idisplay

modes are supported (See Table 4).

Data Display

Pixels are displayed starting at the top

left hand corner of the screen, with the

least significant end of the first word
loaded into the FIFO. In 8-bits per pixel

mode, bits 0-7 of word zero are the first

displayed pixel. In 4-bits per pixel mode,
bits 0-3 of word zero are the first

displayed pixel. In 2-bits per pixel mode,
bits 0-1 of word zero are the first

displayed pixel. In 1 -(bit per pixel mode,
bit zero of word zero is the first displayed

pixel.

Logical Data Fields

In 1 -bit per pixel mode, the data field

selects the palette at location zero or

one. The other 14 locations need not be
programmed. In 2-bits per pixel mode,
the data field addresses theipalette at

locations zero through three; The other

12 locations need not be programmed.
In 4-bits/pixel mode, the data field ad-

dresses the palette at all 1 6 locations.

In 8-bits per pixel mode; the least

significant 4-bits drive the palete as in

4-bits per pixel mode, and the most
significant four bits drive the most
significant bits of the RGB DACs
directly.

Physical Data Fields

In 1-, 2-, and 4- bits per pixel mode, the

physical data field is shown in Figure

34. In 8-bits per pixel mode, the

physical data field is shown in Figure

35. The Dn bits come from the palette

field and the Ln bits come from the

logical field.

Cursor Format
The cursor, in all video modes, is

defined to be 32 pixels wide and any
number of rasters high. Any pixel may
be defined as being transparent,

enabling cursors of any shape to be
constructed within the 32 pixel horizon-

tal limit. It is always 2-bits per pixel,

with bits zero, one in the first word to be
loaded into the cursor FIFO represent-

ing the first pixel, etc. The logical

cursor pixel bit-pairs are defined in

Table 5.

The cursor physical field is exactly as
the video physical field in 1-, 2-, or 4-

bits per pixel modes.

FIGURE 34. PHYSICAL COLOR FIELD DEFINITIONS

12 11 10 9 8 7 6 5 4 3

SUP BLUE GREEN RED

D12 011 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 DO

FIGURE 35. PHYSICAL COLOR FIELD DEFINITIONS FOR 8 BITS'PER PIXEL

12 11 10 9876543210
SUP BLUE GREEN RED

D12 L7 D10 D9 D8 L6 L5 D5 D4 L4 D2 D1 DO

5-15



VLSI Technology, inc.

VL86C310

TABLES. CURSOR
LOGICAL COLORS

Cursor Bit

MSB LSB Color

Transparent

1 Logical Color 1

1 Logical Color 2

1 1 Logical Color 3

Border Field

The border physical field is exactly as

the video physical field in 1-, 2-, and 4-

bits per pixel modes.

Controlling the Screen On / Off

The simplest method of turning the

screen off is to program the Vertical

Display End Register (VDER) to be less

than the VDSR. This will not generate

any video requests, but will display the

border color over the whole screen.

The border can be turned off either by

programming it to physical color black,

or by programming the VBSR to be

greater than the VBER. Doing the latter

will also disable the cursor, though

cursor data requests will still be

generated. Turning the screen back on

should only be done during vertical

flyback.

Cursor On / Off

The cursor should be turned off by

setting the VCER to be less than VCSR.

[Value is suggested.] This will also

disable cursor data requests. Turning

the cursor on, and moving it around

should only be done during vertical

flyback to prevent flash.

FIGURE 36. EXAMPLE VIDEO
OUTPUT CIRCUIT

VDD

Red Output

75 Q
Une

Suggested Component Values
Rr - 10 kn
R1 - 330 a
R2 - 68 n
D1 should have similar characteristics

to the emitter-base junction of Q1

Writing to the Palettes and Other

Registers

The palettes may be programmed

reliably at any time, but are best

programmed during vertical flyback.

Changing the values of other registers

should only be done during vertical

flyback. The signal FLBK is set high

from the start of the first raster after the

end of display (though it may still be

border), until the start of the first raster

which is display.

Video DAC Outputs

The video DAC outputs are in the form

of current sinks. Each DAC has a

resolution of 4-bits, giving a linear

transfer characteristic with 1 6 values.

A digital input value of four zeros gives

zero current sink, and a digital input

value of four ones gives the maximum
current sink. The magnitude of the

output is a function of the video

reference input current, with the

maximum current sink being 15 times

the reference input current.

High Resolution Modes
The four bits of digital data which

normally drive the red DAC are avail-

able to the user on pins -VED3 through

-VED0. This pixel rate bit-stream can

be externally serialized to a single bit-

stream of four times the VIDC pixel rate.

With the VIDC operating at 24 MHz,

four bits per pixel mode, 96 MHz bit

rates are generated giving very high

resolution monochrome displays. Alter-

natively, with an external DAC, 48 MHz
grey-level displays are possible.

Refering to the block diagram, it will be

noted that the data passes through the

High Res. Shifter block before reaching

the pins -VED3 - -VED0. This block

enables the cursor to be positioned to

any (96 MHz) pixel. Note that this block

also inverts the data from the red DAC.

When used in this mode, the VIDC must

be programmed to a different set of

values. But note that the "normal"

analog modes of VIDC are still available

simply by reprogramming: the addition

of the shifter hardware will not affect the

other modes, and the sound system is

totally independent from this.

(1) Four-bits per pixel should always be

selected.

(2) The programmed VIDC pixel rate is

one quarter of the external pixel

5-16

rate. The vertical timing parameters

are unaffected by this as they are

defined in units of a raster, but the

horizontal timing parameters which

are defined in units of two (24 MHz)
pixels can only be programmed in

units of eight (96 MHz) pixels.

There are now four times as many
pixels on a line as are actually

programmed. For example, if a

display of 1 024 * 1 024 is required,

the VIDC should be programmed to

generate a display of 256 (horizon-

tal) by 1 024 (vertical).

(3) All 16 locations of the video palette

should be programmed to a 1 :1

logical to physical mapping. Only

D[0:3] (red DAC values) need to be

programmed, as D[4:1 1] are

ignored. The supremacy bit (D[12J)

may be used if required.

(4) D[4,5] in the Border Color Register

must be set to zero. D[0:3] and

D[12] may also be programmed if a

border is required.

(5) The cursor palette should be

programmed to the following values:

cursor color 1 : 10H
cursor color 2 : 20H
cursor color 3 :30H
Supremacy may also be used.

Then the 2-bits which define each

cursor pixel are defined in Table 6.

Note that the cursor can only be defined

horizontally in units of four (96 MHz)

pixels, though it can be positioned

anywhere on the screen to within one

(96 MHz) pixel. See the section on

Horizontal Cursor Start Register for

more detail. The hardware should be

arranged so that -VEDO is the first bit to

be serialized.

TABLE 6. CURSOR COLOR
IN HIGH-RESOLUTION
MODE
Cursor Bits

MSB LSB Deflntlon

Transparent

1 Cursor Black

1 Do Not Use

1 1 Cursor White



VLSI Technology, inc.

FIGURE 37. HIGH RESOLUTION PIXEL GENERATOR

VL86C310

4To1
Mux/

Serializar

(

h

I

Monochrome
Digital

Output

| VEDO VED1 VED2 VED3
|
VEDO | VED1

| VED2 | VED3

^ VIDC Pixel fcj ^l L^ Monochron19
eTime H *l H Pixel Tim

External Synchronization and Mixing
The VIDC has two signals assoicated

with external synchronization appli-

cations: SUP and SINK. SUP is an
output which can be used to control an
external multiplexer for mixing the VIDC
output with that from an external

source. All video and cursor logical

colors from the palettes and the border

color can control SUP. When D[12] in

any of the above registers is set and
that color is being displayed, SUP is

driven low. The output is pipelined and
is synchronous with the DAC outputs

and the -VED3 - -VEDO signals.

The signal SINK is an input which when
driven high resets the vertical counters

to the first raster. If an interlaced sync
display is being generated, then SINK
will reset the counters to the first raster

of the odd field. The pulse applied to

this pin must be shorter than a raster

time. The horizontal counters are not

affected by this signal. The horizontal

synchronization must be done by

phase-locking (or in simple applications,

by interrupting) the input clock CKIN.
Remember that the sound system is

also driven from a derivative of CKIN.

Composite Sync
According to the setting of D[7] in the

Control Register, the -V/CS can output

a composite sync pulse. This is syn-

thesized from the XNOR of vertical and
horizontal syncs as shown in Figure 38.

Interlaced Displays

The VIDC can generate an interlaced

sync display. An example of interlace

timing is shown in Figure 39. Normally
the video data in each field; is the same.
The VIDC Vertical Cycle Register is set

to a value (N-3)/2, where N is the total

number of rasters in a frame. There are

N/2 raster in the even and odd fields.

On raster (N+1)/2, the vertical sync
pulse is output and the cycle repeats,

but this is now the odd field, so the

vertical sync pulse is delayed by half a
raster time as defined by the value in

FIGURE 38. COMPOSITE SYhJC GENERATION

-VSYC ^_ _]

-HSYC I—

I

~LJ~ u u u u
-v/cs |

| r~- u u u I

FIGURE 39. INTERLACE DISPLAY TIMING GENERATION

HSYNO _TL
2 3 itJ N+1

Ji n__yvji_i_n_L_JL -n—,JL Jl

FIGURE 40. SOUND OUTPUT CIR-
CUIT

VDDS

Left

Channel
Output

VSYNC_T

-M*-
~w

the HIR. On the first raster in the odd
field which is not vertical sync, a dummy
raster is inserted. Thisimakes the odd
field N/2 rasters long as well.

Sound System
The sound system consists of a four

word FIFO and byte wide latch which
drive a 7-bit exponential DAC. The
eighth bit steers the DAiC output to one
of two pairs of output pins, one pair

designated "+", and the other pair

designated "-". The sound signal is

generated externally by integrating and
then subtracting these two pairs of

signals. An example circuit is shown in

Figure 40. The integration is performed
by the capacitor C.

Stereo image is synthesized by time-

division multiplexing the output between
the "left" and "right" pair of output

signals as shown in Figure 41 . The first

quarter of each sample is muted to

allow for DAC settling and deglitching.

The stereo image is specified for each
channel by programming the corre-

sponding Stereo Image iRegister.

The system can operate in 1, 2, 4, or 8
channel modes. In 8 channel mode, the

channels are sampled sequentially,

starting with the first byte of data, which
is channel 0; the second byte of data is

channel 1 and so on. The external

integrating time constant must be long

enough to integrate over a complete
sample cycle. In 4 channel mode, the
fifth byte to be sampled is again
channel 0, so Stereo Image Register 4
must be programmed toithe same value
as Stereo Image Register 0, and so on.

In 2 channel mode, Stereo Image
Registers 0, 2, 4, and 6 correspond to

channel and Stereo Image Registers

1,3,5, and 7 correspond to channel 1

.

In single channel mode, all eight Stereo
Image Registers should contain the

same value.

5-17



VLSI Technology, inc.

VL86C310

FIGURE 41. STEREO IMAGE SYNTHESIS

rcte^iio"! ["Cto^iirn
I
Channel 2~1

I
Channel 3 1 I

Channel 4 | |
Channel 5 | 1

Channels!
|
Channel 7 | |

Channel J

Left

Right
,7L

U \ J~U h_T\-J^^J^
Center Left Rlghl 83% Left 67%Lefl Center 67% Right 83% Right Center

The sample rate is selectable by the

SFR in units of 1 \is, with a minimum

value of 3 (is. Clearly, in eight channel

mode the bytes for each channel are

sampled with one-eighth of the fre-

quency of single channel mode for a

given value in the SFR.

The DAC transfer characteristic

consists of eight linear segments

(chords). Each chord consists of 16

steps, and the step size in one chord is

twice the step in the preceding chord.

This gives an approximation to the

"u.255 law." The sound data field

format is shown in Figure 42.

The outputs are in the form of current

sinks. The magnitude of the output is a

function of the sound reference input

current. The reference current is equal

to the step size in the highest chord,

which is 8i in Figure 43.

FIGURE 42. SOUND DATA FIELD FORMAT

D7 D6 D5 D4 D3 D2 D1 DO

Chord Select Point On Chord Sign

FIGURE 43. SOUND DAC OUTPUT

(247I) -,

i= lref/8

(chord o|chord 1 (chord 2|chord 3|chord 4|chord s|chord 6|chord 7|

5-18



VLSI Technology inc.

VL86C310

TIMING CHARACTERISTICS: TA = o°c to +70°c, VDD = +5 V ±5%

Symbol Parameter Mln Typ Max Units Conditions

t1 CKIN High 10 - - ns

12 CKIN Low 13 - - ns

t3 CKIN Frequency - - 33 MHz

t4 Data Setup Time to -VDAK, -SDAK 9 - - ns

t5 Data Hold Time to -VDAK, -SDAK 9 - - ns

t6 -VDAK, -SDAK Pulse Width 15 - - ns

t7 Data Setup Time to -VIDW 10 - - ns See Note 1

t8 Data Hold Time to -VIDW 20 - - ns

t9 -VIDW Pulse Width 20 - - ns

no CKIN to -SD3 - -SDO Delay - 70 - ns See Notes 2, 3

t11 CKIN to -VED3 - -VEDO, -SUP Delay - 70 - ns See Note 2

t12 CKIN to -HSYC, -V/CS, FLBK - 75 - ns

t13 CKIN to -HI Delay - 75 - ns

t14 CKIN to ROUT, GOUT, BOUT - 30 - ns See Note 2

t15 Analog Output Rise/Fall Time - 10 - ns See Note 4

t16 NIBSELto-SD3--SD0 - 50 - ns

t17
Acknowledge To
Request Delay

-SDAK to -SDRQ - 50 - ns See Note 5

-VDAK to -VDRQ - 50 - ns See Note 5

A.C. TEST WAVEFORMS A.C. TEST LOAD CIRCUIT

Inputs _

Output

Test Points

3.5 V

0.8 V

X 1.5 V

Device Under
Test

30 pF

Notes: 1 . The data must be setup before -VIDW goes active (low) because the data also contains the register address.

2. For pixel rates of 12 and 24 MHz, the outputs are referenced to the rising edge of CKIN. For pixel rates of 8 and
16MHz, the outputs are alternately referenced to either edge of CKIN.

3. The -SD3 - -SDO signals are output one pixel time before ithe corresponding -VED3 - -VEDO due to pipeline

differences.

4. Assumes a 5 pF external load.

5. -VDRQ or -SDRQ are cleared by the first -VDAK or -SDAK respectively, as long as no request is pending.

5-19



VLSI Technology, inc.

VL86C310

TIMING DIAGRAMS
INPUT CLOCK

CKIN

-12—

>

v s \ s
•13

DMA WRITE CYCLES

D31 - DO

-VDAK, -SDRQ

X
X

t6-

X
< M *_15-

X

DMA WRITE CYCLES

D31 - DO

-VIDW

X
t7-

V
t9-

X
18-

X

5-20



VLSI Technology, inc.

VL86C310
TIMING DIAGRAMS
CLOCK OUTPUTS

/ \CKIN \ / /

r-

\ s /

-SD3 -SDO \ /

' /-VED3--VED0.-SUP \ /

r- /-HSYC, -V/CS, FLBK

-m- ti3 -»-

/

c- /-HI \ /

IMAX/2ROUT, GOUT, BOUT \
Jf
-s

t15

NIBSEL TIMING

NIBSEL \ r- f~

-SD3--SD0 HI NIBBLE
>- LOW NIBBLE

i

K HI NIBBLE

<4— tie -+ ~<4 116 »-

DMAACKNOWLEDGECYCLE

D31 - DO X X
-SDAK, -VDAK

-SDRQ, -VDRQ

\ / V
t17-

X X
x_^—

V

5-21



VLSI Technology, inc.

VL86C310

ABSOLUTE MAXIMUM RATINGS
Stresses above those listed may cause

permanent damage to the device.

These are stress ratings only. Func-

Ambient Operating

Temperature

Storage Temperature

Supply Voltage to

Ground Potential

Applied Output

Voltage

Applied Input

Voltage

Power Dissipation

-10°Cto+80°C

-65°Cto+150°C

-0.5 V to VDD +0.3 V

-0.5VtoVDD+0.3V

-0.5 V to +7.0 V

2.0 W

tional operation of this device at these

or any other conditions above those

indicated in this data sheet is not

implied. Exposure to absolute maximum
rating conditions for extended periods

may affect device reliability.

D.C. CHARACTERISTICS: TA = ox to +70°c, VDD = +5 V ±5%

Symbol Parameter Mln Typ Max Units Conditions

VOH Output High Voltage VDD - 0.75 - VDD V IOH = 10.0 mA

VOL Output Low Voltage - - 0.4 V IOL - - 3.0 mA

VIH Input High Voltage 2.4 - - V

VIHV Input High, VIDW 3.5 - - V

VIL Input Low Voltage 0.0 - 0.8 V

ILI Input Leakage Current - - 10 U.A VIN . V - VDD

ILO Output Leakage Current - - 10 HA VOUT= V - VDD

ICC Operating Supply Current - - 20 mA See Note 1

IOS Output Short Circuit Current - 25 - mA See Note 2

IVOUT Output Current Video DACs - - -2.0 mA

ISOUT Output Current Sound DAC - - -2.0 mA

ADVOL RVDAC, RSDAC Voltage - VDD -1.3 - V See Note 3

ILATCH Input/Output Latchup Current 200 - - mA See Note 4

Voltage

Compliance

Video DACs - VDD -1.7 - V IVOUT -- 2.0 mA
VCOMP

Sound DAC - VDD -1.5 - V ISOUT = - 2.0 mA

Current

Compliance

Video DACs - 4.5 - mA VOUT = VDD - 0.7

CCOMP
Sound DAC - 3 - mA VOUT - VDD - 0.7

Notes: 1 . Measured at 24 MHz pixel rate. This value does not include any current output by the video DACs.

2. Not more than one output should be shorted to either rail and for no longer than one second.

3. This assumes 1 kfi resistors to VDD.

4. This value is the current that inputs or outputs can tolerate before the chip latches up. This condition should be

avoided to prevent device damage.

5-22



VLSI Technology, inc.

SECTION 6

VL86C410
RISC I/O

CONTROLLER
(IOC)

Application Specific

Logic Products Division



VLSI Technology, inc.



VLSI Technology, inc.

VL86C410

FEATURES
• Power on reset control

• Four independent 16-bit program-

mable counters

-Two timers

-Two baud rate generators

• Bidirectional serial keyboard interface

• Six programmable bidirectional

control pins

• Interrupt mask, request and status

registers for -IRQ and -FIRQ

• 1 4 level triggered interrupt inputs

• Two edge triggered interrupt inputs

• Four programmable peripheral cycles

-Slow
- Medium
-Fast
- 2 MHz synchronous

• Seven external peripheral selects

• ARM/IO bus interface control

• Expansion bus buffer control

RISC I/O CONTROLLER (IOC)

DESCRIPTION
The VL86C410 Input/Output Controller

(IOC) is designed to interface to the

VL86C01 0/VL86C1 1 0/VL86C31 chip

set to provide a unified view of inter-

rupts and peripherals within an Acorn

RISC Machine (ARM) based computer.

It controls an 8- to 32-bit I/O data bus to

which on-board peripherals and any I/O

expansions are connected. It provides

a set of internal functions, which are

accessed without wait states, and
programmable speed access to external

peripherals.

The VL86C41 provides system level

I/O with six programmable control pins

and a full-duplex, bidirectional serial

keyboard interface. To support system

timing requirements, the VLC6C410
contains four independent program-

mable counters. Two of these counters

are used as baud rate generators. One
is dedicated to the keyboard and the

other controls the BAUD output pin to

generate a free-runnirag clock. The
other two counters can be used to

generate system timing events.

The IOC serves as the interface

between the very high speed RISC
system bus and the slower I/O or

expansion bus. The part provides all

the buffer control required between the

two buses. The VL86C410 supports an

interruptable I/O cycle that allows the

system to use slower, 1 low-cost periph-

eral controllers such as the VL16C450
Asynchronous Communications

Element and VL1772 Floppy Disk

Controller without severe latency on the

system bus.

Peripheral controllers 'are supported

with 16 interrupt inputs (14 level

sensitive and two edge-triggered),

seven peripheral select outputs, and

four programmable I/O cycle times.

PIN DIAGRAM
PLASTIC LEADED CHIP
CARRIER (PLCC)

ORDER INFORMATION

VL86C410

gn:
1CLK -IOGT
l-IORO

|
-BL

-RE

I

CLK/4 T1

-WE | TO | cs
B2

I

B1

BO

I

-S1

-S2

I

-S3

-R/W

/ LI U
9 8

10

u
7
uuuu
6 5 4 3

uuy
2 1 68

•
u
67

u
66

u
65

u
64

u
63

LI

62
u
61

60 CZ

-HBE zj 11 59 1=

-WBE =i 12 58 rZ

A2 Z] 13 57 CZ

A3 zi 14 se rz

M z] 15 65 rZ

A5 =3 16 54 rz

A6 ZJ 17 53 rz

DO Z] 18 TOP VIEW 62 rz.

D1 Z] 19 51 rz

D2 n ao 50 C
D3 zi 21 49 IZ

D4 Z] 22 48 IZ

D5 Z] 23 47 rz

D6 Z] 24 46 rz

D7 Z] 25 45 rz

vcc Z] 26 44 rz

27

n

28

n

29

n

30

JL
31

n

32

n

33

n

34 35 36

n n n
37

n

38

n

39

n

40

n

41

n

42

n

43

n

Part

Number
Clock

Frequency Package

VL86C410-08QC 8 MHz
Plastic Leaded

Chip Carrier (PLCC)

Note: Operating temperature is 0°C to +70°C. E
vcc

-S4

-S7

-SEXT

CLK/1

KOUT

KIN

-IRQ

-FIRQ

CS

C4

C3

C2

C1

CO

BAUD | -RST |
FH1 | -IL0 | -IL2 | -IL4 | -IL6 | -IF | GND

-POR FH0 -FL -IL1 -IL3 -IL5 -IL7 IR

6-3



VLSI Technology, inc.

VL86C410

BLOCKDIAGRAM

CLK4 *-
CLK1 -4-

-WBE •«-

-RBE -4-

RCLK

CLOCK
GENER-
ATOR

A6-A2 £

1\ TIMER
D7-D0

| )

-"6

BAUD -«-

-IRQ *-

-FIRQ +-

-R/W -BL -IORQ -RE -WE B2-B0

CS f -IOGT T1-T0 r~|

I PERIPHERAL
t 1 O

I/O CYCLE
STATE MACHINE

SO

REGISTER
DECODER

-'6

TIMER
1

TIMER
2

-'6

TIMER
3

CS BANK
DECODER

~N -S7--S1

-*- -SEXT

KART
CONTROL

'''13 -"2

INTER-
RUPT

CONTROL

H

KIN

KOUT

KART

PULSE SYNCHRONIZERS

t) 11 It I I

-IL7--IL0 -IF IR FH1-FH0 -FL -POR

-"2

PARALLEL
I/O C>

C5-C0

-RST

6-4



VLSI Technology, inc.

VL86C410
SIGNAL DESCRIPTIONS
Signal

Name

D7-D0

-IORQ

-IOGT

CS

A6-A2

Pin

Number
Signal

Description

RCLK 8

CLK/1 54

CLK/4 2

-BL 5

25-18

T1-T0 68,1

-WW 10

-SEXT 55

-S7--S1 56-59,61-63

B2-B0 66-64

67

17-13

-RBE 11

-WBE 12

-RE 4

Reference Clock (CMOS Level input) - The main reference clock for bus transactions
between different devices. RCLK is In phase with the 02 processor clock.

Buffered System Clock (CMOS level output) - Provides timing for external peripherals.
This is RCLK buffered and inverted.

Peripheral Timing Clock (CMOS level output) - Is the RCLK input divided by four. This
signal is used to generate timing for external peripheral controllers.

External Data Bus Latch Control (CMOS level output, open-drain) - This signal remains
high, making the external data latches transparent, for internal register accesses and
when CS is low. It is taken low during a write to latch the processor data, and during a
read to latch the peripheral data.

Processor data bus (CMOS level input/output) - This is the 8-bit bidirectional three-state
data bus used to transfer dataito/from the attached processor. Normally, these lines
would be connected to one byte of the 32-bit VL86C010 data bus throuqh a transparent
latch.

Input/Output Cycle Request (CMOS level input) - Determines whether the current cycle is

a memory or an I/O reference and is usually connected to the corresponding signal of the
VL86C110 Memory Controller. When asserted (low), the MEMC has detected an I/O
address and the proper IOC should respond. When negated (high), thecurrent cycle is a
memory reference or internal processor cycle that does not require the attention of the I/O
controllers.

Input/Output Cycle Grant (CMOS level output, open-drain) - Determines when the current
I/O cycle will terminate. When: asserted (low), the VL86C41 is signalling that the current
I/O cycle will complete on the next falling edge of the RCLK. An I/O cycle completion is

determined when -IOGT and -IORQ are both low on a rising edge of RCLK.

Cycle Type 1 , (CMOS level inputs) - These signals indicate the type of I/O cycle to be
performed; - slow, 1 = medium, 2 - fast, 3 - synchronous.

Not Read/Write (CMOS level input) - This signal normally is generated by the VL86C010
and determines cycle direction. The signal is low for read or high for write.

External Peripheral Select (CMOS level output) - This signal is used to enable an external
data buffer. It is active for anyMOC external peripheral access. This allows the IOC and
any other -IORQ/-IOGT devices to be isolated from the external peripherals.

Peripheral Selects (CMOS level outputs) - Indicate address and write data are valid on the
bus. The B2-B0 lines are decoded to determine the active select output.

Bank Select Lines (CMOS level inputs) - Are decoded to determine the I/O access device.
A zero value on these lines indicates an access to VL86C41 internal registers. Any
other value will decode to one of the external peripheral select outputs.

Chip Select (CMOS level input) - When high the IOC will perform either an internal
register or external peripheral access cycle. Even when low, the VL86C41 controls the
-RBE and -WBE outputs.

Register Select Lines (CMOS level inputs) - These signals are decoded to determine
which internal register to select. Normally, these signals are a latched version of the
address outputs from the VL86C01 processor.

Read Buffer Enable (CMOS level output) - Is taken low during a read of any -IORQ/
-IOGT device including the IOC.

Write Buffer Enable (CMOS level output) •

-IOGT device including the IOC.

Is taken low during a write of any -IORQ/

Read Enable (CMOS level output) - Provides the external peripheral timing strobe. This
signal is used to time peripheral read access cycles.

6-5



VLSI Technology, inc.

VL86C410

SIGNAL DESCRIPTIONS (Cont.)

Signal

Name

-WE

-RST

-POR

-IRQ

-FIRQ

BAUD

KIN

KOUT

VCC

GND

Pin

Number

3

29

28

-IL7- -ILO 40-33

-IF 41

IR 42

FH1-FH0 31-30

-FL 32

C5-C0 49-44

51

50

27

52

53

26,60

9,43

Signal

Description

Write Enable (CMOS level output) - Provides the external peripheral timing strobe. This

signal is used to time the peripheral write access cycles.

Reset (CMOS level open-drain input/output) - Is driven (active) low whenever the -POR

input is low to provide the system with a power on reset pulse during cold restart. Once

the -POR is inactive, the VL86C410 will monitor the -RST as an input to detect a warm

system restart condition.

Power On Reset (Schmitt trigger, active low input) - Is used to generate a reset pulse

during power on conditions and to differentiate cold restart from subsequent causes of the

reset condition. This signal is usually connected to an RC network.

Interrupt (TTL level inputs) - These signals are the -IRQ interrupt active low inputs.

These signals are level sensitive.

Interrupt (TTL level input) - This signal provides an edge-sensitive -IRQ interrupt source.

An interrupt condition is generated on a falling edge of this input.

Interrupt (TTL level input) - This signal provides an edge-sensitive -IRQ interrupt source.

An interrupt condition is generated when a rising edge is detected on this input.

Fast interrupt (TTL level inputs) - These lines provide -FIRQ interrupt sources. An

interrupt condition is generated whenever the input is high.

Fast interrupt (TTL level input) - Provides a source of FIRQ interrupt. An interrupt condi-

tion is generated whenever this input is low.

Control (Bidirectional open-drain) - These signals provide six lines of general purpose

programmable I/O. The direction of these signals is determined by bits in the Control

Register. The outputs can be forced low by programming the Control Register. Other-

wise the pins can be treated as inputs.

Interrupt Request (CMOS level open-drain) - Provides the interrupt signal to the system

processor. When used with the VL86C01 0, this signal is tied directly to the -IRQ input of

the processor.

Fast Interrupt Request (CMOS level open-drain) - Signals the system processor with the

fast interrupt condition within the system. When used with the VL86C01 0, this signal is

tied directly to the -FIRQ input of the processor.

Baud Clock (CMOS level output) - This signal is generated by Timer 2. The output level is

toggled by the reload event on the counter. The frequency of the BAUD clock is deter-

mined by the equation:

f(baud) - 1/(latch + 1 ) MHz (if the RCLK frequency is 8 MHz)

f(baud) max is obtained when the latch value equals one providing a maximum value of

500 KHz.

Keyboard serial data Input signal (TTL level input) - Is connected to the keyboard input

controller. A clock of 1 6 times the data rate is used by the receiver to clock keyboard data

into the KART section from this line. The data should be input as LSB first on this pin.

Keyboard serial data Output (CMOS level output) - This output provides serial data trans-

mission to the keyboard. The data is transmitted with a fixed format of eight bits per

character with one start bit and two stop bits. The data appears on this pin with LSB first.

Power Supply - 5 V ±5%

Ground

6-6



VLSI Technology, inc.

FUNCTIONAL PIN DIAGRAM

VL86C410

A6-A2

B2-B0

VL86C010 J
INTERFACE A

T1-T0

V

D7-D0

1/
CS

-WW

-IRQ

-FIRQ

-BL
DATA BUS
BUFFER
CONTROL

VL86C110
(MEMC)

INTERFACE

-WBE

-RBE

-IOGT

RCLK

-IORQ

SYSTEM
RESET

CONTROL

POWER
SUPPLY

f -P0R
»V -RST
»

/- VCC(2)

-\ GND(2)

VL86C410

«

<!

PERIPHERAL
SELECTS

•17- -ILO

"A

PERIPHERAL
INTERRUPT

V CONTROL

FH1-FH0

-a
-/

-SEXT

-RE

-WE

PERIPHERAL
DATA

CONTROL

A K *\ GENERAL

Q C5-C0 \ V PURPOSE

KIN

KOUT^} KEYBOARD
INTERFACE

6-7



VLSI Technology, inc.

VL86C410

FUNCTIONAL DESCRIPTION
If the Bank (B2-B0), Type (T1-T0), Chip

Select (CS) and addresses lines (AB-

AS) of IOC are joined to the CPU
address lines, then the IOC and periph-

erals are viewed as memory mapped

devices. This allows the programmer

to specify in a single memory instruc-

tion the peripherals to be accessed and

the type of timing cycle it requires. The

following description of the IOC

assumes the use of a VL86C1 1

(Memory Controller - MEMC) within the

system. For further details of the

operation of the memory controller and

system bus, examine the VL86C1 1

data sheet. In a typical system, as

shown in Figure 1, the VL86C410

space is divided into two halves. The

upper half is occupied by the IOC and

the lower half is left for additional I/O

controllers.

The IOC space is decoded into eight

banks, zero through seven, by the B2-

BO lines. The zero bank maps into the

internal registers of the VL86C410.

The remaining seven banks map onto

the seven peripheral select lines, -S7

through -S1 respectively. Each of the

seven peripheral banks are further

decoded into four types of access by

the T1 -TO signals as shown in Figure 2.

The type of peripheral access deter-

mines the timing of the data transfer

cycle.

A particular peripheral device may be

accessed by choosing an address

where CS is high, B2-B0 decode to the

appropriate select, and T1 -TO indicate

a timing cycle that suits the accessed

device. The remaining low-order

address bits may be used to select the

register within the device.

Access Speed
While the peripherals appear as

memory mapped devices it is not

possible for all accesses to be com-

pleted with the same access time as

main memory. The extra time taken to

complete an I/O cycle is expressed as

a number of extra RCLK cycles.

Addresses
The pipelined VL86C010 addresses are

latched by external buffers to provide

valid signals throughout both I/O

accesses and ROM reads. The latches

are controlled by a VL86C01 clock line

which is stretched during slow cycles.

FIGURE 1. RECOMMENDED VL86C410 INTERCONNECTION

I/O DATA BUS

FIGURE 2. TYPICAL DECODING STRUCTURE

T1-T0 SYNC

VL86C410

EXPANSION

BANK 7 <
-S6

BANK 6
-S5

BANK 5
-S4

BANK 4
-S3

BANK 3
-S2

BANK 2
-S1

BANK1
-SO

BANKO

FAST

MEDIUM

SLOW

A6-A2

Data

The processor data bus is connected to

the I/O data bus by a set of latches.

These provide two functions. First, they

isolate the I/O bus load from the main

data bus and second, they allow for the

mis-match in speed. These buffers are

entirely controlled by the -BL, -RBE,

and -WBE lines from IOC.

Internal Registers

All internal registers are accessed with

no wait states and accesses take two

RCLK cycles to complete. The internal

registers are decoded as bank zero so

to access them, the B2-B0 lines must all

be low and the IOC must be selected by

taking CS high. The individual registers

are then addressed using the A6-A2

lines. The registers are decoded on

word boundaries. The state of T1 -TO

lines is ignored. The address values for

each internal register are shown in

Table 1.

6-8



VLSI Technology, inc.

VL86C410
TABLE 1. VL86C410 INTERNAL REGISTER ASSIGNMENTS
Address
(Hex) Read Write

Address
(Hex) Read Write

00 Control Register Control Register 40 TO Count Low TO Latch Low

04 Serial Rx Data Serial Tx Data 44 TO Count High TO Latch High

08 - - 48 _ TO Go Command

OC - - 4C - TO Latch Command

10 IRQ Status A - 50 T1 Count Low T1 Latch Low

14 IRQ Request A IRQ Clear 54 T1 Count High T1 Latch High

18 IRQ Mask A IRQ Mask A 58 - T1 GoCommand

1C - - 5C - T1 Latch Command

20 IRQ Status B - 60 T2 Count Low T2 Latch Low

24 IRQ Request B - 64 T2 Count High T2 Latch High

28 IRQ Mask B IRQ Mask B 68 - T2 Go Command

2C - - 6C - T2 Latch Command

30 FIRQ Status - 70 T3 Count Low T3 Latch Low

34 FIRQ Request - 74 T3 Count High T3 Latch High

38 FIRQ Mask FIRQ Mask 78 - T3 Go Command

3C - - 7C - T3 Latch Command

Control Register

The control registers allow the external

control pins C5-C0 to be read/written

and the status of the IR and -IF inputs,

prior to level conversion, to be in-

spected. The C5-C0 bits manipulate

the C5-C0 I/O pins of the device. When
the control register is read, they reflect

the current state of the device pins.

When the register value is written with a
logic low value, the corresponding

output pin is driven low. These outputs

are open-drain, and if programmed high

the pin is undriven and may be treated

as an input. On reset all control register

bits are set to logic high; thus C5-C0 will

be inputs after reset.

Keyboard Asynchronous Receiver/

Transmitter (KART)
The KART provides an asynchronous
serial link, usually to the keyboard. The
frame format is fixed with 8-bits per

character, one start bit, and two stop

bits. It divides into two halves, the

receiver and the transmitter. The
receive and transmit speeds are the

same and programmed using Timer 3.

FIGURE 3. CONTROL REGISTER READ (ADDRESS = 00H)

7 6 5 4 3 2 10
IR -IF I C5 I C4 I C3 I C2 I C1ra

L Current

Current

Current

Current

Current

Current

Current

Current

Level

Level

Level

Level

Level

Level

Level

Level

of CO Pin

of C1 Pin

of C2 Pin

of C3 Pin

of C4 Pin

of C5 Pin

of -IF Pin

of IR Pin

The VL86C010 accesses the receiver

via the Serial Rx Data register. A clock

of 1 6 times the data rate is used by the

KART to clock in the serial data from

the KIN pin. When a character has
been received, the SRx bit is asserted

in the IRQ B Status Register to indicate

that a data byte is available for reading.

False start bits of less than a half bit

duration are ignored.

The VL86C010 accesses the transmit-

ter via the Serial Tx Data register. The
byte written to the Serial Tx Data
register is transmitted 'serially from the

KOUT pin and the STx bit is asserted in

the IRQ B Status Register to indicate

that the transmission is finished and the

Serial Tx Data register may be re-

loaded.

Serial Tx Data

Writing to this registeriloads the serial

output shift register, clears any out-

standing interrupt andistarts the

transmission. An interrupt is raised

when the register is ready to be
reloaded. The data format for this

register is shown in Figure 5.

6-9



VLSI Technology, inc.

VL86C410

FIGURE 4. CONTROL REGISTER WRITE (ADDRESS = 00H)

7 6 5 4 3 2 1

1* | r I C5 | C4 | C3 I C2 | C1 |co

* Should Always

Ge Logic One

- CO Pin Driven Low
1 - CO Pin Undriven

- C1 Pin Driven Low
1 - C1 Pin Undriven

- C2 Pin Driven Low
1 - C2 Pin Undriven

.
- C3 Pin Driven Low

1 - C3 Pin Undriven

- C4 Pin Driven Low
1 - C4 Pin Undriven

.
- C5 Pin Driven Low

"

1 - C5 Pin Undriven

FIGURES. SERIAL Tx DATA REGISTER WRITE (ADDRESS = 04H)

7 6

D7 D6 I D5 | D4 | D3 I 02^01 | DO |

KART Data KD7-KD0
~ (LSB Transmitted First)

FIGURE 6. SERIAL Rx DATA REGISTER READ (ADDRESS = 04H)

7 6 5 4 3 2 10
]D7 D6 D5 I D4 D3 D2 D1 DO

KART Data KD7-KD0— (LSB Received First)

FIGURE 7. IRQ STATUS REGISTER A READ (ADDRESS = 10H)

6 1

| 1 | TMl| TMo| POr| IR I IF I IL7 | IL6 |

L 1 - If -IL6 Pin Low
- If -IL6 Pin High

1 - If -IL7 Pin Low
- If -IL7 Pin High

1 - If High-to-Low Edge

Of -IL Detected
*

1 - If Low-to-High Edge

Of IR Detected
*

1 - If Power On Reset

(POR) Detected
*

1 - When Timer Reload

Detected
*

1 - When Timer 1 Reload

Detected
*

' Cleared By An IRQ Clear Register

Serial Rx Data

Reading from this register clears any

outstanding interrupt and returns the

currently received byte as shown in

Figure 6. Data is only valid while the

SRx Bit is set in the IRQ B status

register.

Initialization

After power on, the KART is in an

undefined state. The KART is initialized

by programming the serial line speed

using Timer 3 and performing a read

from the Serial Rx Data register,

discarding the data byte. This will clear

any outstanding receive interrupt and

enable the KART for the next reception.

Finally the Tx Data register should be

written. This will abort any transmission

in progress and cause a new one to be

started and clear any transmit interrupt.

Receive Interrupt

The receive interrupt is set halfway

through the reception of the last data

bit. Care should be taken to ensure that

the last bit has been received before the

Serial Rx data register is read, to

prevent this bit being interpreted as the

start bit of the next packet.

Interrupt Registers

The VL86C410 generates two inde-

pendent interrupt requests, -IRQ and

-FIRQ. Interrupt requests can be

caused by events internal to the device

as well as external events on the

interrupt or control port pins. The

internal sources of interrupt are: timer

(TM1-TM0), power on reset, keyboard

Rx data available (SRx), keyboard Tx

data register empty (STx), and force

interrupts. The sources of external

interrupts are: IRQ active low inputs

(-IL7- -ILO), IRQ falling edge input

(-IF), IRQ rising edge input (IR), FIRQ

active high inputs (FH1-FH0), FIRQ

active low input (-FL), and control port

pins C5-C3.

The IOC interrupts are controlled by

four types of registers, status, mask,

request, and clear. The status registers

reflect the current state of the various

interrupt sources. The mask registers

determine whether the sources may
generate an interrupt. The request

registers are the logical AND of the

status and mask registers, and indicate

which sources are actually generating

interrupt requests. The clear register

allows clearing of interrupt requests

6-10



VLSI Technology, inc.

FIGURE 8. IRQ STATUS REGISTER B READ (ADDRESS = 20H)

7 6 5 4 3 2 10
SRx I STx I IL5 | IL4 | IL3 | IL2 | IL1 | ILO |

L 1 -it-

0-lf-

1-if-

- If
-

ILO Pin Low
ILO Pin High

IL1 Pin Low
IL1 Pin High

* Cleared By A Write To The KART Tx Data Register
** Cleared By A Read From The KART Rx Data Register

FIGURE 9. FIRQ STATUS REGISTER READ (ADDRESS
7 6 5 4 3 2 1

1 - If -IL2 Pin Low
- If -IL2 Pin High

1 - If -IL3 Pin Low
- If -IL3 Pin High

1 - If -IL4 Pin Low
- If -IL4 Pin High

1 -lf-IL5PinLow
- If -IL5 Pin High

1- When KART Tx Data

Register Is Empty *

1 - When KART Rx Data
Register Is Full

**

:30H)

1 ILO I C5 I C4
I
C3 | FL | FH1 | FHO j

L • If FHO Pin Low
If FHO Pin High

If FH1 Pin Low
If FH1 Pin High

1 - If FL Pin Low
- If FL Pin High

1 - If C3 Pin Low
- If C3 Pin High

1 - If C4 Pin Low
' - If C4 Pin High

1 - If C5 Pin Low
- If C5 Pin High

1 -If -ILO Pin Low
0- If -ILO Pin High

where appropriate. The IRQ events are

split into two sets of resisters A and B.

The mask registers are undefined after

power up. There is no priority encoding
of the sources.

Interrupt Sense
The -IF, IR, -POR, and TM1-TM0 are

edge triggered and therefore are

latched by the VL86C410. That is, once
one of these sources has caused an
interrupt it must be explicitly cleared.

An event on one of these sources may
be cleared by writing a logic one to the

appropriate bit in the clear register.

One or many may be cleared in a single

operation.

The other interrupt sources are level-

sensitive. When one of these sources

has caused an interrupt condition, it is

cleared by removing the source.

Timers
Four identical 1 6-bit counters are

provided. Two are used as general

purpose timers, the third for the

keyboard baud rate and the fourth as a

VL86C410
general purpose output baud. They
have fully programmable start/reload

values.

Each counter consists of a 1 6-bit down
counter, a 16-bit input latch (latch low

and latch high) and a 16-bit output latch

(count low and count high) which

contains the value of the counter when
the latch command isigiven. The
counter decrements continuously,

clocked at RCLK/4. When it under-

flows, that is decrements to zero, it is

reloaded from the input latch and
recommences decrementing. The
underflow is used to tnigger different

events depending on the use of the

timer. If a counter is loaded with zero it

continuously reloads and does not

count. If the GO register is written at

the same time as the counter under-

flows an extra clock tick is taken to

reload. After power on the state of the

counters is unknown.

Latch - latch low + 256 * latch high

Timer 0: General purpose interval timer

Timer 1 : General purpose interval timer

Timer 2: External BAUD Pin

Timer 3: KART BAUD rate

Register Actions
-Latch Low - Writing to this updates the

low order byte of the input latch.

-Latch High - Writing to this updates the

high order byte of the input latch.

-GO - Writing to this causes the counter

to be reloaded with the latch value.

-Count Low - This causes the low order

byte of the output latch to be read.

-Count High - This causes the high

order byte of the output latch to be
read.

-Latch - This causes the current value
of the counter to be piaced in the

output latch.

Timers and 1

Two general purpose timers are

provided. The underflow event sets a
timer interrupt, TM1 -Tfl/IO in the IRQ
Status A register. The interrupt is

cleared via the IRQ Clear register. In

order to generate an interrupt after time,

Tinterval, the 1 6-bit value, (latch), to be
used is calculated from the following

equation:

Tinterval = latch/2 u.s

(if the RCLK frequency is 8 MHz)

6-11



VLSI Technology, inc.

VL86C410

FIGURE 10. IRQ CLEAR REGISTER WRITE (ADDRESS = 14H)

7 6 5 4 3 2 10
J

\ TMl| TMoIpOrI IR I IF I I I

- No Action

1 - Clear

- No Action

1 - Clear

- No Action
'

1 - Clear

- No Action
'

1 - Clear

- No Action
'

1 - Clear

FIGURE 11. INTERRUPT REQUEST REGISTERS READ (ADDRESS = 14, 24, 34H)

7 6 5 4 3 2 1

I I I I I 1 1
I

L_
- Mask Disabled Or

No Interrupt Request

1 - Mask Enabled And
Interrupt Request

FIGURE 12. INTERRUPT MASK REGISTERS READ/WRITE

(ADDRESS = 18, 28, 38H)

7 6 5 4 3 2 10
I I I I I I T~l~l

- Interrupt Disabled

1 - Interrupt Enabled

FIGURE 13. TIMER SCHEMATIC

I I

\ y
-»

<?

CONTROL
LOGIC

LATCH
HIGH

LATCH
LOW

' 8

r

GO ,

•> 16-BIT

COUNTER?

CLK/4 -

^ UNDERFLOW

{•

**~l
"*

/8
1

COUNT <
HIGH

COUNT
,

LOW
.^

LATCH
*

DATA BUS D7 DO

Timer 2 (BAUD)
The timer 2 output is used to drive the

BAUD pin. Maximum BAUD rate of 500

KHz is obtained with latch-1

.

BAUD rate:=1/(LATCH+1) MHz

Timer 3 (KART)
The speed of the keyboard serial link is

programmed via the KBaud registers.

The maximum baud rate of 31 ,250 Hz is

obtained for latch-1.

BAUD rate:-1 /((latch + 1)*16) MHz

External Peripherals

The IOC provides control for external

peripherals which cannot be accessed

in a single cycle. A number of differ-

ently timed cycles, selected by the TI-

TO lines, are provided. Decoding of the

T inputs and length of the various

cycles is shown in Table 2. The periph-

eral cycles are controlled by a small

state machine shown in Figure 14.

Internal accesses complete in two

RCLK cycles and the state machine

remains idle. The cycles are timed to

two clocks CLK/4 and CLK/1 . Two
timed data strobes, write enable (-WE)

and read enable( -RE) manipulate data.

The number of RCLK cycles an I/O

access takes to complete depends on

three things: the minimum time for the

cycle; the synchronization time; any

DMA activity on the VL86C010 bus.

The times are expressed as additional

cycles over a normal memory access.

The first three cycles share common
timing and are fixed duration. The last

is a square wave synchronized to the

CLK/4 output. Examples of the periph-

eral access timing are shown in

Appendix A.

Peripheral Address and Data

The peripheral address and data are

not provided by the VL86C410, so their

timing is system dependent. The

following explanation assumes that the

configuration is as shown in Figure 1.

Additionally, buffer delays through the

VL86C410 can be up to half a RCLK
pulse, so there can be a considerable

skew between signals generated by the

IOC and other sources in the system.

Peripheral select lines (-S7- -S1) are

timed at the start of a cycle from -IORQ

and disabled at the end of the cycle by

the internal state machine.

6-12



VLSI Technology inc.

TABLE 2. I/O CYCLE TIMING SELECTIONS

Cycle State

Cycle Name

Minimum
Cycle Length
(Clocks)T1 TO

Synchronization

Time (Clocks)

Slow 7

1 Medium 6

1 Fast 5

1 1 Synchronous 5 0, 1 , 2, 3

FIGURE 14. I/O CYCLE STATE MACHINE DEFINITION

Loop If Idle

Reset

(Note 2)

IDLE
Type 3 Cycle (Note 1)

Type 3 Cycle (Note 1)

Type Cycle
-RE/-WE =

Type 1 Cycle
-RE/-WE =

WAIT

Loop Until

Synchronized

Type 2 Cycle
-RE/-WE =

Type 3 Cycles
5 Type 0, 1 , 2 Cycles

-RE/-WE =

L^ TypeO, 1,2 Cycles

-IOGT =

-IOGT =

Loop Until

VL86C010 Is Ready

VL86C410
External Writes

Since the MEMC may perform DMA
transfers on the main data bus while an
I/O cycle is completed, the write data

must be latched to provide valid data
throughout the I/O cycle. This is done
by taking -BL low at the start of the

cycle. It is taken high again at the end
of the cycle.

External Reads
To provide fixed duration cycles for the

peripherals, the read data is latched by
taking -BL low as the -RE strobe is

taken high. This allows the peripheral

cycle to complete and'the data is held in

the data latches until the I/O cycle

finishes.

Multiple -10RQ/-IOGT Peripherals
The IOC has been designed to allow

multiple -IORQ/-IOGT devices to be
connected to MEMC. For this reason
the -IOGT and -BL lines are open-drain
outputs. Even when it is not selected,

IOC continues to control the external

buffer enables -RBE and -WBE, so
additional I/O devices need not gener-
ate these signals.

-IOGT Signal

In order for an internal register access
to complete in two RCLK cycles the

-IOGT signal cannot be logically

dependent on -IORQ, which indicates

the start of an I/O cycle, because
-IORQ becomes valid too late. There-
fore, -IOGT is generated from B2-B0
and CS only, and will sometimes be
driven low during non- I/O cycles.

During peripheral accesses the -IOGT
signal is controlled by the state ma-
chine.

Reset
The IOC may be reset :in two ways: by
driving the bidirectional -RST line or the

-POR line low. The -POR pin is

designed to be connected to an external

RC network to ensure that when power
is first applied to the IOC, a minimum
width reset signal is generated on
-RST. A typical circuit is shown in

Figure 15. -POR causes an internal

latched interrupt to be set to allow

system software to differentiate

between power on and'soft resets, and
ensures that peripheral! devices have

Notes: 1

.

Type 3 cycles will go into the wait state unless the cycle starts at the optimal point on the CLK/4 cycle.
2. Reset is a forcing signal to return to IDLE from any state.

6-13



VLSI Technology, inc.

VL86C410

had a stable clock for a suitable length

of time before being released from

reset. The control register is initialized

on reset allowing the C5-C0 pins to be

set to a known state, high, before the

processor commences execution. The

power-on reset timing is shown in

Figure 1 6.

FIGURE 16. POWER-ON RESET TIMING

5 Volts

Schmitt

Thresholds

FIGURE 15. TYPICAL CIRCUIT FOR
-POR CIRCUIT

-POR •*

Ground

-RST

VDD /
/ /

//^POR

J

«cu< _^-njinjuinnjuuin_

6-14



VLSI Technology, inc.

VL86C410
TIMING CHARACTERISTICS: ta = o°cto +70°c, VCC = SV±5%

Symbol Parameter Mln. Typical Max. Units Conditions

11 -IORQ to RCLK Setup Time 35 _. _ ns

t2 -IORQ to RCLK Hold Time 5 _ ns

t3 -IORQ to Data Valid 60 120 _ ns

t4 Data Hold Time 5 — ns

t5
B2-B0, -R/W, CS, A6-A2 Setup

Timeto-IORQ
50 - ns

t6
B2-B0, -R/W, CS, A6-A2 Hold

Time from RCLK
5 10 - ns

A.C. TEST WAVEFORMS

Outputs

Inputs

3.0 V —
0.0 V

A.C. Test

Points

A.C. LOAD CIRCUIT
OPEN-DRAIN OUTPUTS

+ 5.0 V

r Device Under

Test

>
1.6 k£l

35 pF

A.C. LOAD CIRCUIT
OTHER OUTPUTS

s
V1 .

V1 ,

R1

1.40 V, Data Bus
2.33 V, Other Outputs

1 00 0, Data Bus

35 pF

R1 = 640 Q, Other Outputs
—

TIMING DIAGRAMS
INTERNAL REGISTER READ CYCLES

s

>*— I/OCJYCLE -

RCLK / \
1—

X~ \ /

S

<— t2

-IORQ \ /
< — t3 -» «-t4

D7-D0 X t i

*

r/w
4— t6

B2-B0 \ -/

<- 15 -> _ <— t6

CS /r

«•— t5 — —
X

A6-A2 > X

I

6-15



VLSI Technology, inc.

VL86C410

TIMING CHARACTERISTICS: TA = O^C to +70°C, VCC = 5 V ±5%

Symbol Parameter Mln. Typical Max. Units Conditions

t11 -lORQ to RCLK Setup Time 35 - - ns

t12 -lORQto RCLK Hold Time 5 - ns

t13 Data Setup Time 30 20 - ns

114 Data Hold Time 5 10 - ns

H5 B2-B0, -R/W, CS, A6-A2 Setup

Time to -IORQ
50 - ns

t16
B2-B0, -R/W, CS, A6-A2 Hold

Time from RCLK
5 10 ns

TIMING DIAGR
INTERNAL REGIST

AMS
ER WRITE CYCLES

JYCLE 1»*•

^RCLK \ /~ \
f ~\f \ _y

<-- t11-# s
— 112

-IORQ ^

<— 113 — <4— 114

D7-D0

B2-B0

-R/W,

CS

A6-A2

>
< X

<-t15 —fr>

'/
— 116

\

<— t15 — •4— t16

/
<-115 — — H6

> =

6-16



VLSI Technology inc.

VL86C410
TIMING CHARACTERISTICS: TA = o°cto +70°c, VCC = 5V±5%

Symbol Parameter Mln. Typical Max. Units Conditions

-S7- -S1

Pulse Width

Peripheral Cycle Type 625 625 _ ns

t21 Peripheral Cycle Type 1 500 500 _ ns

Peripheral Cycle Type 2 375 375 _ ns

t22
-S7--S0
to -RE/-WE

Peripheral Cycle Type 170 187 _ ns

Peripheral Cycle Type 1,2 50 62 _ ns

t23 -RE/-WE to -S7- - SO Delay 50 62 _ ns

124
-RE/-WE
Pulse Width

Peripheral Cycle Type 0,1 350 375 _ ns

Peripheral Cycle Type 2 230 250 _ ns

t25 Read Data Setup Time to -RE - 20 _ ns See Note 1

t26 Read Data Hold Time to -RE - 20 - ns See Note 1

TIMING DIAGRAMS
CYCLE TYPES 0,1, AND 2

-S7- -S1 X
t22-

-WE/-RE N2

t21

D7-D0
•

(READ)

.

t24

zx
V

-t23-

-S

t25

X I
-t26

Note: 1 . Assumes data is latched by the -BL signal.

6-17



VLSI Technology, inc.

VL86C410

TIMING CHARACTERISTICS: TA = o°c to +70°c, vcc = 5V±5%

Symbol Parameter Mln. Typical Max. Units Conditions

t31 -S7- -S1 Setup Time to CLK/2 40 30 - ns

t32 -S7- -S1 Hold Time to CLK/2 20 10 - ns

t33 -RE/-WE to CLK/2 Skew - 10 ns

t34 Read Data Setup Time - 20 - ns

135 Read Data Hold
- 20 - ns

TIMING DIAGRAMS
CYCLE TYPE 3

CLK/2

-S7--S1 X
-WE/-RE X

s
t31

t33

"X

D7-D0
"

(READ)
.

X

t32

y
-t33

y
t34

X
•t35

6-18



VLSI Technology, inc.

= 5V±S%

VL86C410
TIMING CHARACTERISTICS: ta = o°c to +70»c, vcc =

Symbol Parameter Mln. Typical Max. Units Conditions

t41 -BL (Write Cycle) Delay - 15 20 ns

142 -S7- -S1 Setup Time to CLK/1 20 10 _ ns

t43 -RE/-WE Delay - 30 10 ns

TIMING DIAGRAMS
CYCLE START (TYPES 0, 1, AND 2)

CLK/1

-BL
(WRITE)

-BL -

(READ)

-S7--S1

-RE/-WE

I/O CYCLE
BEGINS

A6-A2

D7-D0
(WRITE)

.

\ y v_J^

"nL

t42

X

X
141

X

I/O CYCLE
RETRIES

X /

143

X.

-//

-//-

-//-

1

6-19



VLSI Technology, inc.

TIMING CHARACTERISTICS: ta = o°c to +70°c, VCC = 5 V ±5%

Symbol

151

t52

t53

Parameter

-RE/-WE Delay from CLK/1

-S7 - -S1 Disable Delay

-BL Delay

TIMING DIAGRAMS
CYCLE END (TYPE 0,

1

, AND 2)

Mln.

30

Typical

30

30

30

Max.

10

10

Units

VL86C410

Conditions

I/O CYCLE to^

—

END

r ;CLK/1 \ / \ / \.* __X~~ \

~

r4

—

153

-BL Y
<— t53

(WW lb)"

r
./-BL

(READ) \
t51 —P "4—

-RE/-WE '•
/

t52

-S7--S1 •>V
Afi-A? X

D/-DU
-'

(WRITE) X

6-20



VLSI Technology inc.

VL86C410
TIMING CHARACTERISTICS: ta = o°c to t^c, vcc = 5 v ±5%

Symbol Parameter Mln. Typical Max. Units Conditions

t61 -RBE Delay from -IORQ or -R/W - 50 30 ns

t62 -WBE Delay from -Rffl/ - 50 30 ns

TIMING DIAGRAMS
READ AND WRITE BUFFER ENABLES

-R/W x
t61

S
-IORQ

-RBE

-WBE

X
t61

H
t62

y

f.61

t61

V
X

t62

6-21



VLSI Technology, inc.

VL86C410

ABSOLUTE MAXIMUM RATINGS
Ambient Operating

Temperature

Storage Temperature

Supply Voltage to

Ground Potential -0.5 V to VCC +0.3 V

Applied Output

Voltage

Applied Input

Voltage -0.5 V to +7.0 V

Power Dissipation 2.0 W

-1 0°C to +80°C

65°Cto+150°C

-0.5 V to VCC +0.3 V

Stresses above those listed may cause

permanent damage to the device.

These are stress ratings only. Func-

tional operation of this device at these

or any other conditions above those

indicated in this data sheet is not

implied. Exposure to absolute maximum
rating conditions for extended periods

may affect device reliability.

DC CHARACTERISTICS : TA = 0°C to +7CC, VCC = 5 V ±5%

Symbol Parameter Mln. Typical Max. Units Conditions

Input High Voltage

CMOS Inputs 3.5 - VCC V See Note 1

TTL Inputs 2.4 - VCC V See Note 1

VIH
D7-D0 2.4 - VCC V See Note 1

C5-C0, -RST 2.4 - VCC V See Note 1

Input Low Voltage

CMOS Inputs 0.0 - 0.8 V See Note 1

TTL Inputs 0.0 -
L °-8 V See Note 1

VIL
D7-D0 0.0 - 0.8 V See Note 1

C5-C0, -RST 0.0 - 0.8 V See Note 1

Output High

Voltage

CMOS Outputs VCC -0.75 4.2 - V IIH - 2.5 mA
VOH

D7-D0 2.4 3.0 - V IIH-10mA

Output Low
Voltage

CMOS Outputs - 0.3 0.4 V ML - -2.5 mA

VOL D7-D0 - 0.6 0.8 V IIL = -10mA

C5-C0, -RST - 0.3 0.4 V IIL = -2.5 mA

Schmitt Trigger

Input Rising Edge
Threshold

VCC - 4.75 Volts 2.7 - 3.3 V

VIHST VCC = 5.0 Volts - 2.8 - V

VCC - 5.25 Volts - 3.0 - V

Schmitt Trigger

Input Falling Edge
Threshold

VCC = 4.75 Volts 1.2 1.5 1.8 V

VIHST VCC - 5.0 Volts - 1.7 - V

VCC - 5.25 Volts - 1.9 - V

IOSC Output Short Circuit Current - 25 40 mA See Note 2

UN Input Leakage Current - - 10 mA

IDD Supply Current - - 15 mA At 8 MHz

Notes: 1 . All voltages measured with respect to GND pin.

2. Not more than one output should be shorted to either rail at any time, and for no longer than one second.

6-22



VLSI Technology, inc.

VL86C410
APPENDIX A -1.
CYCLE TYPE READ

RCLKJ
-IORQ A A /V_/^^A,

1_

-IOGT

-S7- -S1

-RE

-RBE A A /Y_^X^\
-BL

D7-D0

A6-A2,

B2-B0, CS

-RAV

X
<x>

X
X

6-23



VLSI Technology, inc.

APPENDIX A - 2.

CYCLE TYPE WRITE

RCLKJ

-IORQ

-IOGT

-S7--S1

-WE

-WBE

-BL

D7-D0

A6-A2,

B2-B0, CS

-RAW

VL86C410

1_AAA A A.

"1

6-24



VLSI Technology inc.

VL86C410
APPENDIX A - 3.

CYCLE TYPE 1 READ

RCLK

-IORO

J

A A A A.

1_

-IOGT

-S7- -S1

-RE

-RBE a_^_^^a.
-BL

D7-D0

A6-A2,

B2-B0, CS

-R/W

X
<z^

X
X

6-25



VLSI Technology inc.

APPENDIX A - 4.

CYCLE TYPE 1 WRITE

VL86C410

RCLKJ 1_

-IORQ a__a_^\ a.

-IOGT

-S7--S1

-WE

-WBE

-BL

D7-D0 X X
A6-A2,

B2-B0, CS X X
-R/W

6-26



VLSI Technology, inc.

APPENDIX A - 5.

CYCLE TYPE 2 READ

VL86C410

RCLKJ 1_

-IORQ a_/v_xy
-IOGT

-S7--S1

-RE

-RBE A A A.

-BL

D7-D0 <zz>
A6-A2,

B2-B0, CS X X
-R/W X X

6-27



VLSI Technology, inc.

APPENDIX A - 6.

CYCLE TYPE 2 WRITE

VL86C410

rclkJ

A A A
~L_

-IORQ

IOGT

-S7--S1

-WE

-WBE J

BL

D7-D0 X X
A6-A2, •x X

-R/W / \

6-28



VLSI Technology inc.

APPENDIX A - 7.

CYCLE TYPE 3 READ

VL86C410

RCLK

-IORQ
(See

Nolel)

-IOGT

CLK/2

1

-S7--S1

-RE

-BL

D7-D0

A6-A2,

B2-B0,

CS

-R/W
(See

Note 1)

Mm

x

r

r

r

>
x
x

Note: 1
.
This illustrates the four different sychronization delays represented by the possible -IORQ timings.

6-29



VLSI Technology, inc.

APPENDIX A - 8.

CYCLE TYPE 3 WRITE

RCLK

-IORQ
(See

Note 1)

-IOGT

CLK/2

1

-S7 - -S1

-WE

-BL

D7-D0

A6-A2,

B2-B0,

CS

-R/W
(See

Notol)

XZ

~~L

)C3CDCD(

~L

VL86C410

~L

r

r

_r

:zx

x
X

Note: 1 . This illustrates the four different sychronization delays represented by the possible -IORQ timings.

6-30



VLSI Technology inc.

SECTION 7

RISC
DEVELOPMENT
TOOLS OVERVIEW

Application Specific

Logic Products Division



VLSI Technology, inc.



VLSI Technology, inc.

RISC DEVELOPMENT TOOLS OVERVIEW
BLUE STREAK DEVELOPMENT BOARD

FEATURES
• Hardware and software prototyping

vehicle

• 1 MByte or 4 MByte memory

• IBM PC/AT drop-in card

• PC bus-master code

• RISC can access PC memory or PC
I/O space

• RS-232C serial port

• Single bootstrap EPROM
• On-board memory manager (MEMC

chip)

• Spare socket for 53C90-type SCSI
adapter

• Fully supports OC disk and I/O opera-

tions

• Includes full source code for RISC
monitor programs

DESCRIPTION
The Blue Streak is a PC/AT® add-in

card that contains a VL86C01 0,

VL86C110, and VL86C410 all operat-

ing at 8 MHz. The board is intended as
a hardware/software development
platform for the processor. The
hardware architecture is such that the
board is a bus master on the PC expan-
sion bus and therefore the RISC has
direct access to the PC memory and I/O

space. For PC-to-board communication

a simple mail box registers used. The
VL86C01 accesses the PC bus under
programmed I/O to simulate a DMA
channel. An expansion bus is available

on a 96-pin DIN connector to allow

custom hardware to be attached for

prototype development. TheVL86C410
provides a full-duplex RS-232 port for

downloading code Into other target

systems. Also on the board (but not

supported in beta site versions) Is a
SCSI interface directly into the RISC
system. Full schematics of the board

are available to assist customers in

interface issues with slower buses. The
board is available 1 Mbyte and 4 Mbyte
configurations or without memory for

customers who can supply their own
memory devices.

DEVELOPMENT SUPPORT
Included with the Blue Streak are all

programs necessary for Interface to the
PC and several software development
tools such as: debuggers, assemblers,

and linkers. Programs are downloaded
into the Blue Streak from the PC via the

parallel bus. Monitor programs
operating in both systems coordinate all

I/O activity between the two systems.

Programs can be written in assembler
language using the Compiling Assem-
bler™ (CASM™) or the Super-C ANSI
C Compiler. CASM is included with the

Blue Streak system utilities; Super-C is

an additional-cost item.

CASM - CASM supports high-level

features like run-time expression evalu-

ation in addition to the traditional macro
capability. Structured constructs are

also provided.

Super-C - Super-C is a full ANSI stan-

dard implementation of the C language
for the VL86C01 0. The VLSI Technol-

ogy, Inc. developed compiler generates

code that is easily placed into ROMs.

LIBR - The object files created by the
compiler or assembler may be merged
into one or more libraries by the LIBR
(librarian) utility program. LIBR is in-

cluded with CASM.

CLINK - The CLINK linker is compatible
with output files from either language. It

links modules from both languages
together into an executable format, and
is included with the CASM assembler.

For beta site releases, CASM,
Super-C, LIBR, and CLINK all execute
on the PC. Full production releases will

support execution on either the PC or

Blue Streak.

VBUG - Programs running on the Blue
Streak can be debugged using the

VBUG Machine Debugger. The VBUG
program allows for totally non-intrusive

debugging in all processor modes.
VBUG supports debug functions such
as break pointing, single step, instruc-

tion tracing, register manipulation, and
memory manipulation.

ORDER INFORMATION

Part

Number Description

VL86C010-SB (No memory version)
VL86C010-SB3 ( 1 meg version)
VL86CG10-SB4 (4 meg version)

Blue Streak Board

VL86C010-DB1 Arm-3 Daughter Card

VL86C01 0-SW1 -CASMPC
VL86C01 0-SW1 -CASMRS

Compiling Assembler (CASM)™

VL86C01 0-SW1 -SUPCPC
VL86C01 0-SW1 -SUPCRS

Super-C ANSI C Compiler

VL86C010-VBUG VBUG Machine Level Debugger

PC/AT® is a registered trademark of

IBM Corporation.

CASM™ and Compiling: Assembler™
are trademarks of NIKOS Corporation

of Phoenix, Arizona.

7-3



53C90

BYTE ISOLATION
LATCHES

'HCS73

CENTRAL
PROCESSOR

VL86C010 CONTROL
CPU

ADDR
DATA

MEMORY MEMORY
MANAGER SUBSYSTEM

RAS 0:9

SIGNALS
VL
m1mc

1°Sas^U

A0:25

D0:31

RAS*
ADDR
1 Mx32bit
DRAMs
(DIPS or

SIMMs)
DATA

ISO IN OE*--o0E<

BL*

F-D Q
>OE

D0:15

. - D0:31

ROMCS*

CLK36-

A0:15,

•HC573

PH1-

ADDR
LATCH

OE

PROM, and
Sequencer
Logic (PAL)

PC-RD-OE*

'HC573

BL*

BD0:7

J-WBE* LA 0:4,"

15:19

HCT573

«-Q D
DE4

PCAT I/O

LATCHES

HCT573

LA0:19

H_ ACTIVE

'HC244 B-LATCH*

ADDR
DRIVER

D Q
>OE

SCSI
INTERFACE
CONTROLLER

D0:7

CS

VL86C410

S3
IOC

DATA s2 k
ADDR WE

RDb

BL

8 SCSI
CONTROL

""LINES

8 SCSI MAX 231

•DATA
UNES

*»

RS-
232C
INTF.

RS-232

00
p-

c
m

33
m
>

CO

3,
H
m
3
a
>
a
3J
>

TCATIO*
WORD_|

PAL 6

PER-WR*
PER-RD*

'HC574

1-D

WR-CTL-REG*- > Q2
"
5

Q0
Q1

IORQ*

>f B-LATCH* £
INTERFACE

PC-IOW •HC244

PC-IOR*

PC-SMEMR*
PC-SMEMW

3-STATE
DRIVER

SBHE*
toPCAT

*„ STROBES
to PCAT

LREAD*

OE ^CONTROL REG
AT-STROBES*

GRAB-BUS
INT-PCAT J LED

DISPLAY

-PC-WR-OE*

^ SD0:15
•TO/FROM

PCAT

.*. SA0:19

ADDRESS HOLD
LATCHES

PCAT ADDRESS
UNE DRIVERS

IN-LATCH* = B-LATCH .OR.-

(IOW .AND. PC-PORT-0) -«

.(MASTER)

(SLAVE)

PAL

(TO PCAT)

PC-DACK
* PC-DRQ

p. PC-MASTER*
-AT-ACTIVE* WE HAVE
AT-STROBES* THE PCAT BUS

-TIME PCAT
MEM & I/O

STROBES

8"

X
z

J
1 Q
O g
a o
m
<m
i-
O
"D

m
z
H
H
o
o
r-

o
<
m
<
m



VLSI Technology, inc.

RISC DEVELOPMENT TOOLS OVERVIEW

DESCRIPTION
This is a daughter card that connects to

the Blue Streak board. It contains a
VL86C020 processor with 4 Kbytes of

instruction and data cache on-chip.

This card contains a PLCC adapter that

lets it replace the processor chip on the

Blue Streak. The new processor runs

at 20 MHz, but uses the same 8 MHz
memory subsystem of the unmodified

ARM-3 DAUGHTER CARD

Blue Streak. Most programs then run

2.5 - 3.0 times faster than the original

processor, when the cache is enabled.

The new board is fully software

compatible with the original processor.

DESCRIPTION
The CASM Assembler provides the

ability to program at the machine level

effectively and efficiently. Since the

processor has fully interlocked pipelines

and very simple parallelism, program-
ming in assembler for the VL86C010 is

very similar to the more traditional CISC
architectures. Performance from the

processor does not depend on highly

optimized compilers, so the assembly
programmer is not required to manage
pipeline flows and optimal scheduling

strategy as in other RISC processors.

CASM can be used as an ordinary

macro assembler or in a compiling

mode that generates machine code
similar to high-level language state-

ments. Support for listing indentation

and structured flow control statements

improve programmer productivity.

COMPILING ASSEMBLER (CASM)

CASM creates relocatable object

modules.

Included with CASM is the CLINK
linker. It allows modules to be as-

sembled or compiled independently,

and combined into one module for

execution. CLINK supports 1 6 location

counters and allows programs to be
partitioned for different classes of

memory (ROM, RAM, stack, common
memory, etc.).

Also included is the LIBR program li-

brarian. This utility merges commonly-
used program modules together into a
single file. The linker can then auto-

matically search that (library) file for

any modules that it needs to complete

the construction of a program. This

eliminates the requirement to tell the

linker the detailed names for common

utility modules often used by programs.

DEVELOPMENT ENVIRONMENT
Two versions are available. One that

executes on the IBM PC and the other

directly on the Blue Streak board. The
Blue Streak includes both CASM and
CLINK in the basic system. Users who
wish to develop code on the IBM PC
and download into their target hardware
may purchase a cross assembler copy
that executes on the PC and produces
VL86C010code.

Modules created on the Blue Streak

board may be freely mixed with those

created on the PC environment, and
vice versa, during the program linking

process.

7-5



VLSI Technology, inc.

RISC DEVELOPMENT TOOLS OVERVIEW

DESCRIPTION
The SUPER-C ANSI C Compiler imple-

ments the full ANSI specification of the

C language for the VL86C010 family

processors. The instruction set

architecture of the VL86C010 lends

itself to efficient compiler implementa-

tions and optimization. The compiler

uses the conditional execution and

condition code control provided by the

instruction set to produce optimized

code. In addition, efficient register

allocation minimizes the number of

load/store instructions.

SUPER-C ANSI C COMPILER

The object code modules produced by

SUPER-C are compatible with the

CASM and CLINK programs to allow

modules written in the high-level

language and assembler to be com-

bined.

The runtime libraries follow the ANSI
definitions, and support the Blue Streak

hardware environment. Source code

may be purchased for the libraries so

that they may be ported to alternative

hardware configurations.

DEVELOPMENT ENVIRONMENT
Two versions are available. One that

executes on the IBM PC and the other

directly on the Blue Streak board.

Users who wish to develop code on the

IBM PC and download into their target

hardware may purchase a cross

compiler copy that executes on the PC
and generates VL86C010 code.

Modules created on the Blue Streak

board may be freely mixed with those

created on the PC environment, and

vice versa, during the program linking

process.

DESCRIPTION
LIBR is a librarian utility that merges

software object modules into a single

file. The resulting library file is used by

the CLINK linker. Placing commonly

used functions and modules into a

library file minimizes the effort needed

to link programs. It also allows pro-

LIBR LIBRARIAN UTILITY (INCLUDED WITH CASM)

grams to be grouped conveniently, such

as a different library for different

hardware configurations.

DEVELOPMENT ENVIRONMENT
Two versions are available. One that

executes on the IBM PC and the other

directly on the Blue Streak board. Mod-

ules created on the Blue Streak board

may be freely mixed with those created

on the PC environment, and vice versa,

during the library merging process.

ODUMP OBJECT DUMP UTILITY (INCLUDED WITH CASM)

DESCRIPTION
ODUMP is a utility program that ex-

tracts and dumps information on an ob-

ject module to the screen. It may be

used to inspect data such as the abject

file header containing dates, times,

source environment, and the like. It is

also used to inspect relocation records,

displaying them in an easy-to-read

manner.

DEVELOPMENT ENVIRONMENT
Only one version is provided, it exe-

cutes on the PC. It may dump data

from modules created on either the PC
or on the Blue Streak environments.

7-6



VLSI Technology inc.

RISC DEVELOPMENT TOOLS OVERVIEW

VBUG MACHINE LEVEL DEBUGGER
DESCRIPTION
The VBUG program is a machine-level

debugger for the VL86C010. It sup-

ports software development at the

object code level. VBUG allows

programs to be loaded into the Blue

Streak and controlled via the keyboard.

Functions supported include trace,

single-step, register examination, and
register/memory modification.

Both Step and Step-Over modes are

supported for the Single-Step and the

Trace commands. Step-Over mode
does not perform tracing inside a
subroutine that may be called.

During both Single Step and Tracing,

options may be selected! such that each
instruction, all 1 6 registers are dis-

played. Alternatively, only the registers

referenced by the instruction, or only

the registers changed by the instruction,

may be automatically displayed.

It is possible to trace or single-step in

any of the four processor modes, and
through transitions from one such mode
to another. It is possible; therefore, to

trace from User mode Into an SWI call

(if not using Step-Over tracing).

At all times that VBUG is in control of

the keyboard, the user's memory is as it

was left. That is, no code is left in the

memory after a trace ior a Step has
been completed. This means that

program crashes will not cause
debugger code to be left in the user

memory areas.

Separate copies are kept of the register

environments for each of the possible

processor machine states.

ROM areas cannot be traced.

DEVELOPMENT ENVIRONMENT
VBUG is provided with the Blue Streak

development board. It is currently only

available on Blue Streak as a disk

based debugger.

DESCRIPTION
The Blue Streak support firmware is

comprised of four sections: Bootstrap

ROM code, Blue Streak initializer, the

RISC-resident monitor, and the PC/AT
resident I/O support shell.

The ROM code contains a short pro-

gram to set up the initial state of the

Blue Streak card and to load a (monitor)

program from the PC/AT. The initializer

program operating in the PC/AT loads

the RISC's monitor program from a disk

file.

BLUE STREAK FIRMWARE AND PC/AT SHELL
(INCLUDED WITH BLUE STREAK BOARD)

The monitor Is a single-tasking program
that maintains an operating environ-

ment for the user code. It supports both

character and disk I/O through DOS, via

the PC/AT shell program. Because of

the DMA-like bus interface on the Blue

Streak card, transfers between the

monitor and the shell arovery fast.

An interface shell program runs on the

PC, and provides I/O services to the

RISC's monitor. Both keyboard and

disk l/Os are handled, using standard

DOS indirection facilities.

The monitor does not support the SCSI
adaptor device on thei Blue Streak card.

Source code is available for all of these

programs.

DEVELOPMENT ENVIRONMENT
The bootstrap and the monitor pro-

grams execute on the Blue Streak

board itself, while the initializer and
shell operate on the PC/AT.

7-7



VLSI Technology, inc.

Notes:



VLSI Technology, inc.

SECTION 8

PACKAGING
INFORMATION

Application Specific

Logic Products Division



VLSI Technology, inc.



VLSI Technology, inc.

PACKAGING
PACKAGE OUTLINES
68-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

.965(24.511)

n

.083 (2.108)

.940 (23.876)

1 .800 (20.320) I

.072(1.829)

[W\
4PLS .058(1.473)

|

j
—— i.

*r - SEATING PLANE

!

Jl .595(15.113) .965(24.511)

] .595(14.859) .940(23.376)

Q SQ

|

—

IS\S\/

.050 (1 .270) TYP wJ L

>-«-aJ
«- ELECTRICALLY

I

ON THIS SIDE

"MTfl .050.(1 .270) TYP 3 PLS

LEAD 1 ONLY

.050 (1.270) TYP
3PLS

E
.040 (1.016) X 45°

CHAMFER INDEX CORNER

8-3



VLSI Technology, inc.

PACKAGING

PACKAGE OUTLINES (Cont.)

84-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

1.000 (25.40) REF

V

PIN 1 INDEX
MAY VARY IN

SIZE AND v

LOCATION

IUUUUUUUU

1.195(30.35)

1.185(30.10)

.048(1.819)

.042 (1.067)

1.158(29.41)

1.150(29.21)

4°ALL SIDES

.049(1.244)
008 (0.203) RAD

1.130(28.70)

1.090(27.69)

x SEE DETAIL A .035 (0.889) RAD

.044(1.117)

NOTES: UNLESS OTHERWISE SPECIFIED.

1

.

TOLERANCE TO BE +,' .005 (0.1 27).

2. LEADFRAME MATERIAL: COPPER.
3. LEAD FINISH: MATTE TIN PLATE OR SOLDER DIP.

4. SPACING TO BE MAINTAINED BETWEEN FORMED LEAD AND MOLDED PLASTIC ALONG FULL LENGTH OF LEAD.
5. MOLDED PLASTIC DIMENSION DOES NOT INCLUDE SIDE FLASH BURR, WHICH IS .010 (0.254) MAX ON FOUR SIDES.

6. CONTROLLING DIMENSIONS ARE METRIC, ALL METRIC DIMENSIONS ARE IN PARENTHESES. 25-60004 4/88

8-4



VLSI Technology, inc.

PACKAGING
PACKAGE OUTLINES (Cent.)

144-PIN CERAMIC PIN GRID ARRAY

S®©®®®®
©
©
©
©
©
©
@
©
©
©
©
©
©
0©®®®®©© © © © © © © m

©©©©©©©<§
®
®
©
©
©
©
©
©
©
©
©
©
©

TTTTTTTTTTTT

TIP RADIUS
.005 TYP

Tl
3L-

- SEATING PLANE

.100 (2.540) TYP .018(0.457)

Pin

Matrix
Cavity

Position

A 0(E) D1 (E1) Q L

Count Mln Max Mln Max Mln Max Ref Ref

144 15x 15 Up
.0780

(1.981)

.1020

(2.591)

1.559

(39.60)

1.591

(40.41)

1.388

(35.26)

1.412

(35.86)

0.050

(1.270)

0.130

(3.302)

i

Notes: 1

.

All dimensions are in inches (mm).

2. Material: AI203

3. Lead Material: Kovar
4. Lead Finish: Gold plating 60 micro-inches min. thickness over 100 micro-inches nominal thickness of nickel

8-5



VLSI Technology, inc.

PACKAGING

PACKAGE OUTLINES (Cont.)

160-PIN CERAMIC PIN GRID ARRAY

1.266 (32.15)

PIN 160-

PIN 1

.152 (3.85)

.136 (3.45)

V— SEATING PLANE

.084 (2.125) i

.053 (1-35)

.141 (3.57)

.125 (3.17)

.008 (.203)
r.004 (.10)

NOTES:

1. CONTROLLING DIMENSION IS MM.

__.037 (.95)

.016 (.40)

DETAIL

8-6



VLSI Technology, inc.

SECTION 9

SALES OFFICES,
DESIGN CENTERS,
AND
DISTRIBUTORS

Application Specific

Logic Products Division

E



VLSI Technology, inc.



VLSI Technology, inc.

SALES OFFICES. DESIGN CENTERS . AND DISTRIBUTORS
VLSI CORPORATE OFFICES '

' ""^w ' ^"Vt
CORPORATE HEADQUARTERS ASIC AND MEMOHY PRODUCTS VLSI Technolooy Inc
APPLICATION SPECIFIC LOGIC AND OOVERNMENT PRODUCTS • VLSI Technology, Inc. •

VLSI SALES OFFICES
AND TECH CENTERS

• 1 109 McKay Drive San Jose, CA
8375 South River Parkway Tempe,

95131 -408-434-3100
AZ 85284 - 602-752-8574

ARIZONA
8375 South River Parkway

Tempe, AZ 05284

602-752-6450

FAX 602-752-6001

CALIFORNIA
2235 Qume Dr

San Jose, CA 95131

408-922-5200

FAX 408-943-9792

TELEX 278B07
MAIL

1109 McKay Drive

San Jose, CA 95131

6345 Balboa Blvd., Sta. 100
Encino, CA 91316
818-609-9981

FAX 818-609-0535

30 Corporate Park, Stes. 100-102

Irvine, CA 92714

714-250-4900

FAX 714-250-9041

FLORIDA
2200 Park Central N., Ste. 600
Pompano Beach, FL 33064

305-971-0404

FAX 305-971 -2086

GEORGIA
2400 Pleasant Hill Rd., Ste 200
Duluth. GA 30136

404-476-8574

FAX 404-476-3790

ILLINOIS

3100HlgginsRd.,Sts.155

Hoffman Estates, IL 601 95
708-884-0500

FAX 70B-884-9394

MARYLAND
124 Maryland Rte 3 N.

MlllBravllle. MD 21108
301-987-8777

FAX 301-987-8779

MASSACHUSETTS
261 Ballardvale St.

Wilmington, MA 01887
508-658-9501

FAX 508-658-0423

NEW JERSEY
311C Enterprise Dr.

Plalnsboro, NJ 08536
609-799-5700

FAX 609-799-5720

TEXAS
850 E. Arapaho Rd., Ste. 270
Richardson, TX 75081
214-231-6716

FAX 214-669-1413

WASHINGTON
405 11 4th Ave. SE, Ste. 300
BBllevue, WA 98004
206-453-5414

FAX 206-453-5229

FRANCE
2, Allee des Garays

F-91124PalaiseauCedex

France

1-6447.04.79

TELEX vlsilr 600 759 F

FAX 1-6447.04.80

GERMANY
Rosenkavallerplatz 10

D-8000 Muenchen 81

West Germany

89-9269050

TELEX 521 4279 vlsld

FAX 89-92690545

HONG KONG
Shui On Centre 28/12

8 Harbor Road

Hong Kong

852-5-865-3755

FAX 852-5-865-3159

JAPAN
Shuwa-Klolcho TBR Bldg., Room 101

5-7 Kojlmachi, Chiyoda-Ku

Tokyo, Japan 102

81-3-239-5211

FAX 81 -3-239-521

5

UNITED KINGDOM
486-486 Midsummer Blvd.

Saxon Gate West, Central Milton

KByes, MK9 2E0

United Kingdom

09 08/66 75 95

TELEX vlsluk 825 135

FAX 09 08/67 00 27

VLSI SALES OFFICES
ALABAMA
2614 Artie St., Ste. 36

Huntsvllle, AL 35805

205-539-5513

FAX 205-536-6622

CONNECTICUT
60 Church St., Ste. 16

Yalesville, CT 06492
203-265-6698

FAX 203-265-3653

FLORIDA
5955T. G.Lee Blvd., Ste. 170
Orlando, FL 32822
407-240-9603

FAX 407-240-9605

MINNESOTA
5871 Cedar Lake Rd„ Ste. 9
St. Louis Park, MN 55416
612-545-1490

FAX 61 2-545-3489

NORTH CAROLINA
1000 Park Forty Plaza, Ste. 300
Durham, NC 27713
919-544-1891/92

FAX 919-544-6667

OHIO
4 Commerce Park Sq.

23200 Chagrin Blvd., Ste.600

Cleveland, OH 44122
216-292-8235

FAX 216-464-7609

OREGON
10300 S.W. Greenburg Rd„ Sto. 365
Portland, OR 97223
503-244-9882

FAX 503-245-0375

TEXAS
9600 Great Hills Trail, Ste. 150W
Austin, TX 78759
512-343-8191

FAX 51 2-343-2759

VLSI AUTHORIZED
DESIGN CENTERS
COLORADO
SIS MICROELECTRONICS, INC.

Longmont, 303-776-1667

MAINE
OUADIC SYSTEMS, INC,

South Portland, 207-871-8244

PENNSYLVANIA
INTEGRATED CIRCUIT SYSTEMS,
King ol Prussia, 215-265-8690

EIRE AND U.K.

PA TECHNOLOGY
Herts. 76-3-61222

FRANCE
CETIA

Toulon Cedex, 9-42-12005

S0REP
Chateaubourg, 99-623955

NORWAY
NORKRETSAS
Oslo, 47-2360677/8

SWEDEN
NORDISKARRAYTEKNIKAB
Solna, 8-734 99 35

VLSI SALES
REPRESENTATIVES
CALIFORNIA
CENTAUR CORP.

Irvine, 714-261-2123

CENTAUR CORP.
Calabasas, 818-704-1655

CENTAUR CORP.

San Diego. 619-278-4950

EMERGING TECHNOLOGY
San Jose, 408-263-9366

EMERGING TECHNOLOGY
Orangevale, 916-988-4387

COLORADO
LUSCOMBE ENGINEERING
Longmont, 303-772-3342

IOWA
SELTEC SALES
Cedar Rapids, 319-364-7660

MARYLAND
DELTA III

Columbia, 301-730-4700

NEW YORK
bbd ELECTRONICS
Rochester, 716-425-4101

OREGON
MICRO SALES
Beaverton, 503-645-2841

UTAH
LUSCOMBE ENGINEERING
Salt Lake City, 801-565-9885

WASHINGTON
MICRO SALES
Bellevue, 206-451 -0568

ISRAEL
RDT ELECTRONICS
Tel Aviv, 3-483211-9

SINGAPORE
DYNAMIC SYSTEMS PTE, LTD
Singapore, 011-65-742-1986

VLSI DISTRIBUTORS
United States represented by

SCHWEBER ELECTRONICS except

where noted

ALABAMA
Huntsville, 205-895-0480

ARIZONA
Tempe, 602-431-0030

CALIFORNIA
IMC. Calabasas, 818-880-9686

Irvine, 714-863-0200

Sacramento, 916-364-0222

San Diego, 619-495-0015

San Jose, 408-432-7171

COLORADO
Englewood, 303-799-025B

CONNECTICUT
Oxtord, 203-264-4700

FLORIDA
Altamonte Springs, 407-331-7555

Pompano Beach. 305-977-751

1

Tampa, 813-541-5100

GEORGIA
Norcross, 404-449-9170

ILLINOIS— Elk Grove Village, 31 2-569-3650

IOWA
Cedar Rapids, 31 9-373-1 41

7

KANSAS
Overland Park, 913-492-2921

MARYLAND
Galthersburg, 301-596-7800

MASSACHUSETTS
Bedford, 617-275-5100

MICHIGAN
Livonia, 313-525-8100

MINNESOTA
Eden Pral re, 612-941-5280

MISSOURI
Earth City. 314-739-0526

NEW HAMPSHIRE
Manchester, 603-625-2250

NEW JERSEY
Fairfield, 201 -227-7880

NEW YORK
Rochester, 716-424-2222

Westbury, 516-334-7474

NORTH CAROLINA
Raleigh. 919-876-0000

OHIO
Beachwood, 216-464-2970

Dayton, 513-439-1800

OKLAHOMA
Tulsa, 918-622-8003

OREGON
ALMAC ELECTRONICS CORP.
Beaverton, 503-629-8090

PENNSYLVANIA
Horsham, 215-441-0600

Pittsburgh, 412-963-6804

TEXAS
Austin, 512-339-0068

Dallas, 214-247-6300

Houston, 713-784-3600

WASHINGTON
ALMAC ELECTRONICS CORP.
Bellevue, 206-643-9992

Spokane, 509-924-9500

WISCONSIN
New Berlin, 414-784-9020

AUSTRALIA
ENERGY CONTROL
Brisbane, 61-7-376-2955

AUSTRIA
TRANSISTOR GmbH
Vienna, 222-8294010

BELGIUM AND LUXEMBURG
MCAtronlx

Angleur, 41-674208

DENMARK
INTEREI.K0

Karlslunde, 3-140700

EIRE AND U.K.

HAWKE COMPONENTS
Sunbury-on-Thames, 1-9797799

QUARNOON ELECTRONICS
Derby, 392-32651

FINLAND
OY COMDAX
Helsinki, 0-670277

FRANCE
ASAP s.E.

Montigny-le-Bretonneux. 1 -3043.82.33

GERMANY
DATA MADUL GmbH
Munich, 89-4180070

SPEZIAL-ELECTRONIC KG
Bueckeburg, 5722-2030

HONG KONG
LESTINA INTERNATIONAL, LTD
Tslmshalsul, 852-3-7351736

ITALY
INTER-REP S.P.A.

Torino, 11-2165901

JAPAN
ASAHI GLASS CO. LTD
Tokyo, 81-3-218-5854

TEKSEL COMPANY, LTD
Tokyo, 81-3-461-5311

TOKYO ELECTRON, LTD
Tokyo, B1 -423-33-8009

KOREA
ANAM VLSI DESIGN CENTER
Seoul, 82-2-553-2106

EASTERN. ELECTRONICS
Seoul, 82-2-464-0399

NETHERLANDS
DIODE

Houten, 3403-91234

SWEDEN AND NORWAY
TRAC0 All

Farsta. 8-930000

SOUTH AMERICA - BRAZIL
INTERNATIONAL TRADE
DEVELOPMENT
Palo Alto, 415-856-6686

SPAIN AND PORTUGAL
SEMICONDUCTORES s.a.

Barcelona, 3-217-23 40

SWITZERLAND
FASRIMEXAG
Zurich, 1-2 5129 29

TAIWAN
PRINCETON TECH CORP.
Taipei, 886-2-717-1439

The Information contained in this document has been care-
fully checked and Is believed to be reliable. However, VLSI
Technology, Inc., (VLS I) makes no guarantee or warranty
concerning the accuracy ol said Information and shall not be
responsible for any loss or damage ol whatever nature
resulting (ram the use of, or reliance upon, H. VLSI does not
guarantee that the use of any Information contained herein
will not infringe upon thB patent or other rights of third

parties, and no patent or other license Is Implied hereby.

This document does not In anyway extend VLSI's warranty
on any product beyond that set forth in ftsi standard terms
and conditions of sale. VLSI Technology; Inc., reserves the
right to make changes In the products or speclllcatlons, or
both, presented In this publication at any time and without
notice.

LIFE SUPPORT APPLICATIONS
VLSI Technology, Inc., productB are'not Intended for use as
critical components In life support appliances, devices or
systems In which the failure ol a VLSI Technology product
to perform could reajonabry be expected to result In per-
sonal Injury. Please contact VLSI for the latest Information
concerning this product. 8360-495390-003
C 1990 VLSI Technology, Inc. Printed In U.S.A.

9-3



VLSI Technology, inc.

Notes:



The VLSI Technology, Inc. family of Reduced Instruction Set Computer (RISC)

components can perform (and in some cases, outperform) the functions of

comparable, conventional microprocessor systems with fewer and smaller

components—at a much lower cost. This VLSI RISC-based system also permits a

high degree of flexibility, allowing programs originally written for different

conventional microprocessors to run without software modification.

This manual contains the hardware and software information necessary to

understand and design a highly competitive RISC-based system, using the VLSI

Technology, Inc., VL86C010 RISC microprocessor, the VL86C020 RISC with

Cache, and their peripheral devices. Hardware and software examples are used

extensively throughout the book.

Section 1 illustrates the RISC system solution for desktop computers. Sections 2

and 3 focus on both the hardware and software aspects of the RISC
microprocessors. Instruction sets are thoroughly explained, using real-world

examples. Section 4 investigates the RISC Memory Controller (MEMC) and its

functions in detail. Similar treatment is given to the RISC Video Controller (VIDC)

and RISC Input/Output Controller (IOC) in Sections 5 and 6. Section 7 defines the

development tools currently available for the system. Section 8 contains the

mechanical packaging information.

PRENTICE HALL, Englewood Cliffs, N.J. 07632

ISBN D-13-?filt,lfl-T


