
TL/EE/9160

N
S
3
2
C

0
3
2
-1

0
/
N

S
3
2
C

0
3
2
-1

5
H

ig
h
-P

e
rfo

rm
a
n
c
e

M
ic

ro
p
ro

c
e
s
s
o
rs

November 1995

NS32C032-10/NS32C032-15
High-Performance Microprocessors

General Description
The NS32C032 is a 32-bit, virtual memory microprocessor

with a 16-MByte linear address space and a 32-bit external

data bus. It has a 32-bit ALU, eight 32-bit general purpose

registers, an eight-byte prefetch queue, and a slave proces-

sor interface. The NS32C032 is fabricated with National

Semiconductor’s advanced CMOS process, and is fully ob-

ject code compatible with other Series 32000É processors.

The Series 32000 instruction set is optimized for modular,

high-level languages (HLL). The set is very symmetric, it has

a two address format, and it incorporates HLL oriented ad-

dressing modes. The capabilities of the NS32C032 can be

expanded with the use of the NS32081 floating point unit

(FPU), and the NS32082 demand-paged virtual memory

management unit (MMU). Both devices interface to the

NS32C032 as slave processors. The NS32C032 is a gener-

al purpose microprocessor that is ideal for a wide range of

computational intensive applications.

Features
Y 32-bit architecture and implementation
Y Virtual memory support
Y 16-MByte linear address space
Y 32-bit data bus
Y Powerful instruction set

Ð General 2-address capability

Ð Very high degree of symmetry

Ð Addressing modes optimized for high-level

languages
Y Series 32000 slave processor support
Y High-speed CMOS technology
Y 68-pin leadless chip carrier

Block Diagram

TL/EE/9160–1

FIGURE 1

Series 32000É and TRI-STATEÉ are registered trademarks of National Semiconductor Corp.

XMOSTM is a trademark of National Semiconductor Corp.

C1995 National Semiconductor Corporation RRD-B30M115/Printed in U. S. A.

Table of Contents

1.0 PRODUCT INTRODUCTION

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 General Purpose Registers

2.1.2 Dedicated Registers

2.1.3 The Configuration Register (CFG)

2.1.4 Memory Organization

2.1.5 Dedicated Tables

2.2 Instruction Set

2.2.1 General Instruction Format

2.2.2 Addressing Modes

2.2.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding

3.2 Clocking

3.3 Resetting

3.4 Bus Cycles

3.4.1 Cycle Extension

3.4.2 Bus Status

3.4.3 Data Access Sequences

3.4.3.1 Bit Accesses

3.4.3.2 Bit Field Accesses

3.4.3.3 Extending Multiply Accesses

3.4.4 Instruction Fetches

3.4.5 Interrupt Control Cycles

3.4.6 Slave Processor Communication

3.4.6.1 Slave Processor Bus Cycles

3.4.6.2 Slave Operand Transfer Sequences

3.5 Memory Management Option

3.5.1 Address Translation Strap

3.5.2 Translated Bus Timing

3.5.3 The FLT (Float) Pin

3.5.4 Aborting Bus Cycles

3.5.4.1 The Abort Interrupt

3.5.4.2 Hardware Considerations

3.6 Bus Access Control

3.7 Instruction Status

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.8 NS32C032 Interrupt Structure

3.8.1 General Interrupt/Trap Sequence

3.8.2 Interrupt/Trap Return

3.8.3 Maskable Interrupts (The INT Pin)

3.8.3.1 Non-Vectored Mode

3.8.3.2 Vectored Mode: Non-Cascaded Case

3.8.3.3 Vectored Mode: Cascaded Case

3.8.4 Non-Maskable Interrupt (The NMI Pin)

3.8.5 Traps

3.8.6 Prioritization

3.8.7 Interrupt/Trap Sequences Detailed Flow

3.8.7.1 Maskable/Non-Maskable Interrupt

Sequence

3.8.7.2 Trap Sequence: Traps Other Than Trace

3.8.7.3 Trace Trap Sequence

3.8.7.4 Abort Sequence

3.9 Slave Processor Instructions

3.9.1 Slave Processor Protocol

3.9.2 Floating Point Instructions

3.9.3 Memory Management Instructions

3.9.4 Custom Slave Instructions

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation

Delays

4.4.2.2 Input Signals Requirements

4.4.2.3 Clocking Requirements

4.4.3 Timing Diagrams

Appendix A: Instruction Formats

Appendix B: Interfacing Suggestions

List of Illustrations
CPU Block Diagram ÀÀ1-1

The General and Dedicated Registers ÀÀ2-1

Processor Status RegisterÀÀÀ2-2

CFG RegisterÀÀ2-3

Module Descriptor FormatÀÀÀ2-4

A Sample Link Tabale ÀÀ2-5

General Instruction Format ÀÀ2-6

Index Byte Format ÀÀÀ2-7

Displacement EncodingsÀÀ2-8

Recommended Supply Connections ÀÀ3-1

Clock Timing RelationshipsÀÀ3-2

Power-On Reset Requirements ÀÀ3.3

General Reset Timing ÀÀ3-4

Recommended Reset Connections, Non-Memory-Managed SystemÀÀÀ3-5a

Recommended Reset Connections, Memory-Managed System ÀÀÀ3-5b

2

List of Illustrations (Continued)

Bus ConnectionsÀÀÀ3-6

Read Cycle Timing ÀÀÀ3-7

Write Cycle Timing ÀÀÀ3-8

RDY Pin Timing ÀÀ3-9

Extended Cycle Example ÀÀ3-10

Memory Interface ÀÀÀ3-11

Slave Processor Connections ÀÀ3-12

CPU Read from Slave ProcessorÀÀ3-13

CPU Write to Slave Processor ÀÀ3-14

Read Cycle with Address Translation (CPU Action) ÀÀ3-15

Write Cycle with Address Translation (CPU Action) ÀÀ3-16

Memory-Managed Read CycleÀÀ3-17

Memory-Managed Write Cycle ÀÀ3-18

FLT TimingÀÀÀ3-19

HOLD Timing, Bus Initially Idle ÀÀ3-20

HOLD Timing, Bus Initially Not Idle ÀÀ3-21

Interrupt Dispatch and Cascade Tables ÀÀ3-22

Interrupt/Trap Service Routine Calling Sequence ÀÀÀ3-23

Return from Trap (RETT n) Instruction Flow ÀÀ3-24

Return from Interrupt (RET) Instruction FlowÀÀ3-25

Interrupt Control Connections (16 levels)ÀÀÀ3-26

Cascaded Interrupt Control Unit Connections ÀÀÀ3-27

Service Sequence ÀÀ3-28

Slave Processor Protocol ÀÀ3-29

Slave Processor Status Word Format ÀÀ3-30

NS32C032 Connection Diagram ÀÀÀ4-1

Timing Specification Standard (Signal Valid After Clock Edge)ÀÀ4-2

Timing Specification Standard (Signal Valid Before Clock Edge) ÀÀ4-3

Write CycleÀÀ4-4

Read CycleÀÀ4-5

Floating by HOLD Timing (CPU Not Initially Idle)ÀÀ4-6

Floating by HOLD Timing (CPU Initially Idle) ÀÀÀ4-7

Release from Hold ÀÀÀ4-8

FLT Initiated Float Cycle TimingÀÀ4-9

Release from FLT Timing ÀÀ4-10

Ready Sampling (CPU Initially READY) ÀÀ4-11

Ready Sampling (CPU Initially NOT READY)ÀÀ4-12

Slave Processor Write TimingÀÀÀ4-13

Slave Processor Read Timing ÀÀ4-14

SPC Timing ÀÀ4-15

Reset Configuration TimingÀÀÀ4-16

Clock Waveforms ÀÀÀ4-17

Relationship of PFS to Clock Cycles ÀÀÀ4-18

Guaranteed Delay, PFS to Non-Sequential Fetch ÀÀ4-19a

Guaranteed Delay, Non-Sequential Fetch to PFS ÀÀ4-19b

Relationship of ILO to First Operand of an Interlocked Instruction ÀÀ4-20a

Relationship of ILO to Last Operand of an Interlocked Instruction ÀÀ4-20b

Relationship of ILO to Any Clock Cycle ÀÀ4-21

U/S Relationship to any Bus Cycle Ð Guaranteed Valid IntervalÀÀÀ4-22

Abort Timing, FLT Not Applied ÀÀ4-23

Abort Timing, FLT AppliedÀÀ4-24

Power-On Reset ÀÀ4-25

Non-Power-On ResetÀÀ4-26

INT Interrupt Signal Detection ÀÀ4-27

MNI Interrupt Signal TimingÀÀÀ4-28

Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ4-29

Processor System Connection DiagramÀÀÀB-1

3

List of Tables
NS32C032 Addressing Modes ÀÀÀ2-1

NS32C032 Instruction Set SummaryÀÀ2-2

Bus Access Type ÀÀ3-1

Access SequenceÀÀ3-2

Interrupt SequencesÀÀ3-3

Floating Point Instruction Protocols ÀÀÀ3-4

Memory Management Instruction ProtocolsÀÀ3-5

Custom Slave Instruction ProtocolsÀÀÀ3-6

4

1.0 Product Introduction
The Series 32000 microprocessor family is a new genera-

tion of devices using National’s XMOS and CMOS technolo-

gies. By combining state-of-the-art MOS technology with a

very advanced architectural design philosophy, this family

brings mainframe computer processing power to VLSI proc-

essors.

The Series 32000 family supports a variety of system con-

figurations, extending from a minimum low-cost system to a

powerful 4 gigabyte system. The architecture provides com-

plete upward compatibility from one family member to an-

other. The family consists of a selection of CPUs supported

by a set of peripherals and slave processors that provide

sophisticated interrupt and memory management facilities

as well as high-speed floating-point operations. The archi-

tectural features of the Series 32000 family are described

briefly below:

Powerful Addressing Modes. Nine addressing modes

available to all instructions are included to access data

structures efficiently.

Data Types. The architecture provides for numerous data

types, such as byte, word, doubleword, and BCD, which may

be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case

instructions that compilers can’t use, the Series 32000 fami-

ly incorporates powerful instructions for control operations,

such as array indexing and external procedure calls, which

save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs

represent two-address machines. This means that each op-

erand can be referenced by any one of the addressing

modes provided. This powerful memory-to-memory archi-

tecture permits memory locations to be treated as registers

for all useful operations. This is important for temporary op-

erands as well as for context switching.

Memory Management. Either the NS32382 or the

NS32082 Memory Management Unit may be added to the

system to provide advanced operating system support func-

tions, including dynamic address translation, virtual memory

management, and memory protection.

Large, Uniform Addressing. The NS32C032 has 24-bit ad-

dress pointers that can address up to 16 megabytes without

requiring any segmentation; this addressing scheme pro-

vides flexible memory management without added-on ex-

pense.

Modular Software Support. Any software package for the

Series 32000 family can be developed independent of all

other packages, without regard to individual addressing. In

addition, ROM code is totally relocatable and easy to ac-

cess, which allows a significant reduction in hardware and

software cost.

Software Processor Concept. The Series 32000 architec-

ture allows future expansions of the instruction set that can

be executed by special slave processors, acting as exten-

sions to the CPU. This concept of slave processors is

unique to the Series 32000 family. It allows software com-

patibility even for future components because the slave

hardware is transparent to the software. With future ad-

vances in semiconductor technology, the slaves can be

physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-

vide three primary performance advantages and character-

istics:

High-Level Language Support

Easy Future Growth Path

Application Flexibility

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture includes 16 registers on the

NS32C032 CPU.

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general

storage requirements, such as holding temporary variables

and addresses. The general purpose registers are free for

any use by the programmer. They are thirty-two bits in

length. If a general register is specified for an operand that

is eight or sixteen bits long, only the low part of the register

is used; the high part is not referenced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the NS32C032 are as-

signed specific functions.

PC: The PROGRAM COUNTER register is a pointer to

the first byte of the instruction currently being executed.

The PC is used to reference memory in the program

section. (In the NS32C032 the upper eight bits of this

register are always zero.)

SP0, SP1: The SP0 register points to the lowest address

of the last item stored on the INTERRUPT STACK. This

stack is normally used only by the operating system. It is

used primarily for storing temporary data, and holding

return information for operating system subroutines and

interrupt and trap service routines. The SP1 register

points to the lowest address of the last item stored on

the USER STACK. This stack is used by normal user

programs to hold temporary data and subroutine return

information.

In this document, reference is made to the SP register.

The terms ‘‘SP register’’ or ‘‘SP’’ refer to either SP0 or

SP1, depending on the setting of the S bit in the PSR

register. If the S bit in the PSR is 0 the SP refers to SP0.

If the S bit in the PSR is 1 then SP refers to SP1. (In the

NS32C032 the upper eight bits of these registers are

always zero).

Stacks in the Series 32000 family grow downward in

memory. A Push operation pre-decrements the Stack

Pointer by the operand length. A Pop operation post-in-

crements the Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a proce-

dure to access parameters and local variables on the

stack. The FP register is set up on procedure entry with

the ENTER instruction and restored on procedure termi-

nation with the EXIT instruction.

The frame pointer holds the address in memory occu-

pied by the old contents of the frame pointer. (In the

NS32C032 the upper eight bits of this register are al-

ways zero.)

SB: The STATIC BASE register points to the global vari-

ables of a software module. This register is used to sup-

port relocatable global variables for software modules.

5

2.0 Architectural Description (Continued)

TL/EE/9160–3

FIGURE 2-1. The General and Dedicated Registers

The SB register holds the lowest address in memory

occupied by the global variables of a module. (In the

NS32C032 the upper eight bits of this register are al-

ways zero.)

INTBASE: The INTERRUPT BASE register holds the

address of the dispatch table for interrupts and traps

(Sec. 3.8). The INTBASE register holds the lowest ad-

dress in memory occupied by the dispatch table. (In the

NS32C032 the upper eight bits of this register are al-

ways zero.)

MOD: The MODULE register holds the address of the

module descriptor of the currently executing software

module. The MOD register is sixteen bits long, therefore

the module table must be contained within the first 64K

bytes of memory.

PSR: The PROCESSOR STATUS REGISTER (PSR)

holds the status codes for the NS32C032 microproces-

sor.

The PSR is sixteen bits long, divided into two eight-bit

halves. The low order eight bits are accessible to all

programs, but the high order eight bits are accessible

only to programs executing in Supervisor Mode.

TL/EE/9160–4

FIGURE 2-2. Processor Status Register

C: The C bit indicates that a carry or borrow occurred

after an addition or subtraction instruction. It can be

used with the ADDC and SUBC instructions to perform

multiple-precision integer arithmetic calculations. It may

have a setting of 0 (no carry or borrow) or 1 (carry or

borrow).

T: The T bit causes program tracing. If this bit is a 1, a

TRC trap is executed after every instruction (Sec. 3.8.5).

L: The L bit is altered by comparison instructions. In a

comparison instruction the L bit is set to ‘‘1’’ if the sec-

ond operand is less than the first operand, when both

operands are interpreted as unsigned integers. Other-

wise, it is set to ‘‘0’’. In Floating Point comparisons, this

bit is always cleared.

F: The F bit is a general condition flag, which is altered

by many instructions (e.g., integer arithmetic instructions

use it to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a

comparison instruction the Z bit is set to ‘‘1’’ if the sec-

ond operand is equal to the first operand; otherwise it is

set to ‘‘0’’.

N: The N bit is altered by comparison instructions. In a

comparison instruction the N bit is set to ‘‘1’’ if the sec-

ond operand is less than the first operand, when both

operands are interpreted as signed integers. Otherwise,

it is set to ‘‘0’’.

U: If the U bit is ‘‘1’’ no privileged instructions may be

executed. If the U bit is ‘‘0’’ then all instructions may be

executed. When U e 0 the NS32C032 is said to be in

Supervisor Mode; when U e 1 the NS32C032 is said to

be in User Mode. A User Mode program is restricted

from executing certain instructions and accessing cer-

tain registers which could interfere with the operating

system. For example, a User Mode program is prevent-

ed from changing the setting of the flag used to indicate

its own privilege mode. A Supervisor Mode program is

assumed to be a trusted part of the operating system,

hence it has no such restrictions.

S: The S bit specifies whether the SP0 register or SP1

register is used as the stack pointer. The bit is automati-

cally cleared on interrupts and traps. It may have a set-

ting of 0 (use the SP0 register) or 1 (use the SP1 regis-

ter).

P: The P bit prevents a TRC trap from occurring more

than once for an instruction (Sec. 3.8.5.). It may have a

setting of 0 (no trace pending) or 1 (trace pending).

I: If I e 1, then all interrupts will be accepted (Sec. 3.8.).

If I e 0, only the NMI interrupt is accepted. Trap en-

ables are not affected by this bit.

2.1.3 The Configuration Register (CFG)

Within the Control section of the NS32C032 CPU is the four-

bit CFG Register, which declares the presence of certain

external devices. It is referenced by only one instruction,

SETCFG, which is intended to be executed only as part of

system initialization after reset. The format of the CFG Reg-

ister is shown in Figure 2-3 .

C M F I

FIGURE 2-3. CFG Register

6

2.0 Architectural Description (Continued)

The CFG I bit declares the presence of external interrupt

vectoring circuitry (specifically, the NS32202 Interrupt Con-

trol Unit). If the CFG I bit is set, interrupts requested through

the INT pin are ‘‘Vectored.’’ If it is clear, these interrupts are

‘‘Non-Vectored.’’ See Sec. 3.8.

The F, M and C bits declare the presence of the FPU, MMU

and Custom Slave Processors. If these bits are not set, the

corresponding instructions are trapped as being undefined.

2.1.4 Memory Organization

The main memory of the NS32C032 is a uniform linear ad-

dress space. Memory locations are numbered sequentially

starting at zero and ending at 224 - 1. The number specify-

ing a memory location is called an address. The contents of

each memory location is a byte consisting of eight bits. Un-

less otherwise noted, diagrams in this document show data

stored in memory with the lowest address on the right and

the highest address on the left. Also, when data is shown

vertically, the lowest address is at the top of a diagram and

the highest address at the bottom of the diagram. When bits

are numbered in a diagram, the least significant bit is given

the number zero, and is shown at the right of the diagram.

Bits are numbered in increasing significance and toward the

left.

7 0

A

Byte at Address A

Two contiguous bytes are called a word. Except where not-

ed (Sec. 2.2.1), the least significant byte of a word is stored

at the lower address, and the most significant byte of the

word is stored at the next higher address. In memory, the

address of a word is the address of its least significant byte,

and a word may start at any address.

15 MSB’s 8 7 LSB’s 0

Aa1 A
Word at Address A

Two contiguous words are called a double word. Except

where noted (Sec. 2.2.1), the least significant word of a dou-

ble word is stored at the lowest address and the most signif-

icant word of the double word is stored at the address two

greater. In memory, the address of a double word is the

address of its least significant byte, and a double word may

start at any address.

31 MSB’s 24 23 16 15 8 7 LSB’s 0

A a 3 A a 2 A a 1 A
Double Word at Address A

Although memory is addressed as bytes, it is actually orga-

nized as double-words. Note that access time to a word or a

double-word depends upon its address, e.g. double-words

that are aligned to start at addresses that are multiples of

four will be accessed more quickly than those not so

aligned. This also applies to words that cross a double-word

boundary.

2.1.5 Dedicated Tables

Two of the NS32C032 dedicated registers (MOD and INT-

BASE) serve as pointers to dedicated tables in memory.

The INTBASE register points to the Interrupt Dispatch and

Cascade tables. These are described in Sec. 3.8.

The MOD register contains a pointer into the Module Table,

whose entries are called Module Descriptors. A Module De-

scriptor contains four pointers, three of which are used by

NS32C032. The MOD register contains the address of the

Module Descriptor for the currently running module. It is au-

tomatically up-dated by the Call External Procedure instruc-

tions (CXP and CXPD).

The format of a Module Descriptor is shown in Figure 2-4 .

The Static Base entry contains the address of static data

assigned to the running module. It is loaded into the CPU

Static Base register by the CXP and CXPD instructions. The

Program Base entry contains the address of the first byte of

instruction code in the module. Since a module may have

multiple entry points, the Program Base pointer serves only

as a reference to find them.

TL/EE/9160–5

FIGURE 2-4. Module Descriptor Format

The Link Table Address points to the Link Table for the

currently running module. The Link Table provides the infor-

mation needed for:

1) Sharing variables between modules. Such variables are

accessed through the Link Table via the External ad-

dressing mode.

2) Transferring control from one module to another. This is

done via the Call External Procedure (CXP) instruction.

The format of a Link Table is given in Figure 2-5 . A Link

Table Entry for an external variable contains the 32-bit ad-

dress of that variable. An entry for an external procedure

contains two 16-bit fields: Module and Offset. The Module

field contains the new MOD register contents for the mod-

ule being entered. The Offset field is an unsigned number

giving the position of the entry point relative to the new

module’s Program Base pointer.

For further details of the functions of these tables, see the

Series 32000 Instruction Set Reference Manual.

TL/EE/9160–6

FIGURE 2-5. A Sample Link Table

7

2.0 Architectural Description (Continued)

2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2-6 shows the general format of a Series 32000 in-

struction. The Basic Instruction is one to three bytes long

and contains the Opcode and up to two 5-bit General Ad-

dressing Mode (‘‘Gen’’) fields. Following the Basic Instruc-

tion field is a set of optional extensions, which may appear

depending on the instruction and the addressing modes se-

lected.

Index Bytes appear when either or both Gen fields specify

Scaled Index. In this case, the Gen field specifies only the

Scale Factor (1, 2, 4 or 8), and the Index Byte specifies

which General Purpose Register to use as the index, and

which addressing mode calculation to perform before index-

ing. See Figure 2-7 .

TL/EE/9160–8

FIGURE 2-7. Index Byte Format

Following Index Bytes come any displacements (addressing

constants) or immediate values associated with the select-

ed address modes. Each Disp/Imm field may contain one or

two displacements, or one immediate value. The size of a

Displacement field is encoded with the top bits of that field,

as shown in Figure 2-8 , with the remaining bits interpreted

as a signed (two’s complement) value. The size of an imme-

diate value is determined from the Opcode field. Both Dis-

placement and Immediate fields are stored most significant

byte first. Note that this is different from the memory repre-

sentation of data (Sec. 2.1.4).

Some instructions require additional, ‘‘implied’’ immediates

and/or displacements, apart from those associated with ad-

dressing modes. Any such extensions appear at the end of

the instruction, in the order that they appear within the list of

operands in the instruction definition (Sec. 2.2.3).

Byte Displacement: Range b64 to a63

Word Displacement: Range b8192 to a8191

Double Word Displacement:

Range (Entire Addressing Space)

TL/EE/9160–11

FIGURE 2-8. Displacement Encodings

2.2.2 Addressing Modes

The NS32C032 CPU generally accesses an operand by cal-

culating its Effective Address based on information avail-

able when the operand is to be accessed. The method to be

used in performing this calculation is specified by the pro-

grammer as an ‘‘addressing mode.’’

TL/EE/9160–7

FIGURE 2-6. General Instruction Format

8

2.0 Architectural Description (Continued)

Addressing modes in the NS32C032 are designed to opti-

mally support high-level language accesses to variables. In

nearly all cases, a variable access requires only one ad-

dressing mode, within the instruction that acts upon that

variable. Extraneous data movement is therefore minimized.

NS32C032 Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen-

eral Purpose Registers. In certain Slave Processor instruc-

tions, an auxiliary set of eight registers may be referenced

instead.

Register Relative: A General Purpose Register contains an

address to which is added a displacement value from the

instruction, yielding the Effective Address of the operand in

memory.

Memory Space. Identical to Register Relative above, ex-

cept that the register used is one of the dedicated registers

PC, SP, SB or FP. These registers point to data areas gen-

erally needed by high-level languages.

Memory Relative: A pointer variable is found within the

memory space pointed to by the SP, SB or FP register. A

displacement is added to that pointer to generate the Effec-

tive Address of the operand.

Immediate: The operand is encoded within the instruction.

This addressing mode is not allowed if the operand is to be

written.

Absolute: The address of the operand is specified by a

displacement field in the instruction.

External: A pointer value is read from a specified entry of

the current Link Table. To this pointer value is added a dis-

placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SP0 or

SP1) specifies the location of the operand. The operand is

pushed or popped, depending on whether it is written or

read.

Scaled Index: Although encoded as an addressing mode.

Scaled Indexing is an option on any addressing mode ex-

cept Immediate or another Scaled Index. It has the effect of

calculating an Effective Address, then multiplying any Gen-

eral Purpose Register by 1, 2, 4 or 8 and adding it into the

total, yielding the final Effective Address of the operand.

Table 2-1 is a brief summary of the addressing modes. For a

complete description of their actions, see the Instruction Set

Reference Manual.

2.2.3 Instruction Set Summary

Table 2-2 presents a brief description of the NS32C032 in-

struction set. The Format column refers to the Instruction

Format tables (Appendix A). The Instruction column gives

the instruction as coded in assembly language, and the De-

scription column provides a short description of the function

provided by that instruction. Further details of the exact op-

erations performed by each instruction may be found in the

Instruction Set Reference Manual.

Notations:

i e Integer length suffix: B e Byte

W e Word

D e Double Word

f e Floating Point length suffix: F e Standard Floating

L e Long Floating

gen e General operand. Any addressing mode can be

specified.

short e A 4-bit value encoded within the Basic Instruction

(see Appendix A for encodings).

imm e Implied immediate operand. An 8-bit value append-

ed after any addressing extensions.

disp e Displacement (addressing constant): 8, 16 or 32

bits. All three lengths legal.

reg e Any General Purpose Register: R0–R7.

areg e Any Dedicated/Address Register: SP, SB, FP,

MOD, INTBASE, PSR, US (bottom 8 PSR bits).

mreg e Any Memory Management Status/Control Regis-

ter.

creg e A Custom Slave Processor Register (Implementa-

tion Dependent).

cond e Any condition code, encoded as a 4-bit field within

the Basic Instruction (see Appendix A for encodings).

9

2.0 Architectural Description (Continued)

TABLE 2-1

NS32C032 Addressing Modes

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS

Register

00000 Register 0 R0 or F0 None: Operand is in the specified

00001 Register 1 R1 or F1 register

00010 Register 2 R2 or F2

00011 Register 3 R3 or F3

00100 Register 4 R4 or F4

00101 Register 5 R5 or F5

00110 Register 6 R6 or F6

00111 Register 7 R7 or F7

Register Relative

01000 Register 0 relative disp(R0) Disp a Register.

01001 Register 1 relative disp(R1)

01010 Register 2 relative disp(R2)

01011 Register 3 relative disp(R3)

01100 Register 4 relative disp(R4)

01101 Register 5 relative disp(R5)

01110 Register 6 relative disp(R6)

01111 Register 7 relative disp(R7)

Memory Relative

10000 Frame memory relative disp2(disp1(FP)) Disp2 a Pointer; Pointer found at

10001 Stack memory relative disp2(disp1(SP)) address Disp1 a Register. ‘‘SP’’

10010 Static memory relative disp2(disp1(SB)) is either SP0 or SP1, as selected

in PSR.

Reserved

10011 (Reserved for Future Use)

Immediate

10100 Immediate value None: Operand is input from

instruction queue.

Absolute

10101 Absolute @disp Disp.

External

10110 External EXT (disp1) a disp2 Disp2 a Pointer; Pointer is found

at Link Table Entry number Disp1.

Top of Stack

10111 Top of stack TOS Top of current stack, using either

User or Interrupt Stack Pointer,

as selected in PSR. Automatic

Push/Pop included.

Memory Space

11000 Frame memory disp(FP) Disp a Register; ‘‘SP’’ is either

11001 Stack memory disp(SP) SP0 or SP1, as selected in PSR.

11010 Static memory disp(SB)

11011 Program memory *adisp

Scaled Index

11100 Index, bytes mode[Rn:B] EA (mode) a Rn.

11101 Index, words mode[Rn:W] EA (mode) a 2c Rn.

11110 Index, double words mode[Rn:D] EA (mode) a 4c Rn.

11111 Index, quad words mode[Rn:Q] EA (mode) a 8 c Rn.

‘Mode’ and ‘n’ are contained

within the Index Byte.

EA (mode) denotes the effective

address generated using mode.

10

2.0 Architectural Description (Continued)

TABLE 2-2

NS32C032 Instruction Set Summary

MOVES

Format Operation Operands Description

4 MOVi gen,gen Move a value.

2 MOVQi short,gen Extend and move a signed 4-bit constant.

7 MOVMi gen,gen,disp Move Multiple: disp bytes (1 to 16).

7 MOVZBW gen,gen Move with zero extension.

7 MOVZiD gen,gen Move with zero extension.

7 MOVXBW gen,gen Move with sign extension.

7 MOVXiD gen,gen Move with sign extension.

4 ADDR gen,gen Move Effective Address.

INTEGER ARITHMETIC

Format Operation Operands Description

4 ADDI gen,gen Add.

2 ADDQi short,gen Add signed 4-bit constant.

4 ADDCi gen,gen Add with carry.

4 SUBi gen,gen Subtract.

4 SUBCi gen,gen Subtract with carry (borrow).

6 NEGi gen,gen Negate (2’s complement).

6 ABSi gen,gen Take absolute value.

7 MULi gen,gen Multiply

7 QUOi gen,gen Divide, rounding toward zero.

7 REMi gen,gen Remainder from QUO.

7 DIVi gen,gen Divide, rounding down.

7 MODi gen,gen Remainder from DIV (Modulus).

7 MEIi gen,gen Multiply to Extended Integer.

7 DEIi gen,gen Divide Extended Integer.

PACKED DECIMAL (BCD) ARITHMETIC

Format Operation Operands Description

6 ADDPi gen,gen Add Packed.

6 SUBPi gen,gen Subtract Packed.

INTEGER COMPARISON

Format Operation Operands Description

4 CMPi gen,gen Compare.

2 CMPQi short,gen Compare to signed 4-bit constant.

7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN

Format Operation Operands Description

4 ANDi gen,gen Logical AND.

4 ORi gen,gen Logical OR.

4 BICi gen,gen Clear selected bits.

4 XORi gen,gen Logical Exclusive OR.

6 COMi gen,gen Complement all bits.

6 NOTi gen,gen Boolean complement: LSB only.

2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

11

2.0 Architectural Description (Continued)

TABLE 2-2 (Continued)

NS32C032 Instruction Set Summary (Continued)

SHIFTS

Format Operation Operands Description

6 LSHi gen,gen Logical Shift, left or right.

6 ASHi gen,gen Arithmetic Shift, left or right.

6 ROTi gen,gen Rotate, left or right.

BITS

Format Operation Operands Description

4 TBITi gen,gen Test bit.

6 SBITi gen,gen Test and set bit.

6 SBITli gen,gen Test and set bit, interlocked

6 CBITi gen,gen Test and clear bit.

6 CBITli gen,gen Test and clear bit, interlocked.

6 IBITi gen,gen Test and invert bit.

8 FFSi gen,gen Find first set bit

BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records

used in Pascal. ‘‘Extract’’ instructions read and align a bit field. ‘‘Insert’’ instructions write a bit field from an aligned

source.

Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).

8 INSi reg,gen,gen,disp Insert bit field (array oriented).

7 EXTSi gen,gen,imm,imm Extract bit field (short form).

7 INSSi gen,gen,imm,imm Insert bit field (short form).

8 CVTP reg,gen,gen Convert to Bit Field Pointer.

ARRAYS

Format Operation Operands Description

8 CHECKi reg,gen,gen Index bounds check.

8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.

STRINGS

String instructions assign specific functions to the Gen-

eral Purpose Registers:

R4 - Comparison Value

R3 - Translation Table Pointer

R2 - String 2 Pointer

R1 - String 1 Pointer

R0 - Limit Count

Options on all string instructions are:

B (Backward): Decrement string pointers after each step

rather than incrementing.

U (Until match): End instruction if String 1 entry matches

R4.

W (While

match): End instruction if String 1 entry does not

match R4.

All string instructions end when R0 decrements to zero.

Format Operation Operands Descriptions

5 MOVSi options Move String 1 to String 2.

MOVST options Move string, translating bytes.

5 CMPSi options Compare String 1 to String 2.

CMPST options Compare translating, String 1 bytes.

5 SKPSi options Skip over String 1 entries

SKPST options Skip, translating bytes for Until/While.

12

2.0 Architectural Description (Continued)

TABLE 2-2 (Continued)

NS32C032 Instruction Set Summary (Continued)

JUMPS AND LINKAGE

Format Operation Operands Description

3 JUMP gen Jump.

0 BR disp Branch (PC Relative).

0 Bcond disp Conditional branch.

3 CASEi gen Multiway branch.

2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero.

3 JSR gen Jump to subroutine.

1 BSR disp Branch to subroutine.

1 CXP disp Call external procedure.

3 CXPD gen Call external procedure using descriptor.

1 SVC Supervisor Call.

1 FLAG Flag Trap.

1 BPT Breakpoint Trap.

1 ENTER [reg list],disp Save registers and allocate stack frame (Enter Procedure).

1 EXIT [reg list] Restore registers and reclaim stack frame (Exit Procedure).

1 RET disp Return from subroutine.

1 RXP disp Return from external procedure call.

1 RETT disp Return from trap. (Privileged)

1 RETl Return from interrupt. (Privileged)

CPU REGISTER MANIPULATION

Format Operation Operands Description

1 SAVE [reg list] Save General Purpose Registers.

1 RESTORE [reg list] Restore General Purpose Registers.

2 LPRi areg,gen Load Dedicated Register. (Privileged if PSR or INTBASE)

2 SPRi areg,gen Store Dedicated Register. (Privileged if PSR or INTBASE)

3 ADJSPi gen Adjust Stack Pointer.

3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length)

3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length)

5 SETCFG [option list] Set Configuration Register. (Privileged)

FLOATING POINT

Format Operation Operands Description

11 MOVf gen,gen Move a Floating Point value.

9 MOVLF gen,gen Move and shorten a Long value to Standard.

9 MOVFL gen,gen Move and lengthen a Standard value to Long.

9 MOVif gen,gen Convert any integer to Standard or Long Floating.

9 ROUNDfi gen,gen Convert to integer by rounding.

9 TRUNCfi gen,gen Convert to integer by truncating, toward zero.

9 FLOORfi gen,gen Convert to largest integer less than or equal to value.

11 ADDf gen,gen Add.

11 SUBf gen,gen Subtract.

11 MULf gen,gen Multiply.

11 DIVf gen,gen Divide.

11 CMPf gen,gen Compare.

11 NEGf gen,gen Negate.

11 ABSf gen,gen Take absolute value.

9 LFSR gen Load FSR.

9 SFSR gen Store FSR.

MEMORY MANAGEMENT

Format Operation Operands Description

14 LMR mreg,gen Load Memory Management Register. (Privileged)

14 SMR mreg,gen Store Memory Management Register. (Privileged)

14 RDVAL gen Validate address for reading. (Privileged)

14 WRVAL gen Validate address for writing. (Privileged)

8 MOVSUi gen,gen Move a value from Supervisor

Space to User Space. (Privileged)

8 MOVUSi gen,gen Move a value from User Space

to Supervisor Space. (Privileged)

13

2.0 Architectural Description (Continued)

TABLE 2-2 (Continued)

NS32C032 Instruction Set Summary (Continued)

MISCELLANEOUS

Format Operation Operands Description

1 NOP No Operation.

1 WAIT Wait for interrupt.

1 DIA Diagnose. Single-byte ‘‘Branch to Self’’ for hardware

breakpointing. Not for use in programming.

CUSTOM SLAVE

Format Operation Operands Description

15.5 CCAL0c gen,gen Custom Calculate.

15.5 CCAL1c gen,gen

15.5 CCAL2c gen,gen

15.5 CCAL3c gen,gen

15.5 CMOV0c gen,gen Custom Move.

15.5 CMOV1c gen,gen

15.5 CMOV2c gen,gen

15.5 CMOV3c gen,gen

15.5 CCMP0c gen,gen Custom Compare.

15.5 CCMP1c gen,gen

15.1 CCV0ci gen,gen Custom Convert.

15.1 CCV1ci gen,gen

15.1 CCV2ci gen,gen

15.1 CCV3ic gen,gen

15.1 CCV4DQ gen,gen

15.1 CCV5QD gen,gen

15.1 LCSR gen Load Custom Status Register.

15.1 SCSR gen Store Custom Status Register.

15.0 CATST0 gen Custom Address/Test. (Privileged)

15.0 CATST1 gen (Privileged)

15.0 LCR creg,gen Load Custom Register. (Privileged)

15.0 SCR creg,gen Store Custom Register. (Privileged)

14

3.0 Functional Description
3.1 POWER AND GROUNDING

The NS32C032 requires a single 5-volt power supply, ap-

plied on 4 pins. The Logic Voltage pins (VCCL1 and VCCL2)

supply the power to the on-chip logic. The Buffer Voltage

pins (VCCB1 and VCCB2) supply the power to the output driv-

ers of the chip. The Logic Voltage pins and the Buffer Volt-

age pins should be connected together by a power (VCC)

plane on the printed circuit board.

The NS32C032 grounding connections are made on 5 pins.

The Logic Ground pins (GNDL1 and GNDL2) are the ground

pins for the on-chip logic. The Buffer Ground pins (GNDB1

to GNDB3) are the ground pins for the output drivers of the

chip. The Logic Ground pins and the Buffer Ground pins

should be connected together by a ground plane on the

printed circuit board.

Both power and ground connections are shown below (Fig-

ure 3-1).

TL/EE/9160–12

FIGURE 3-1. Recommended Supply Connections

3.2 CLOCKING

The NS32C032 inputs clocking signals from the Timing

Control Unit (TCU), which presents two non-overlapping

phases of a single clock frequency. These phases are

called PHI1 (pin 26) and PHI2 (pin 27). Their relationship to

each other is shown in Figure 3-2 .

Each rising edge of PHI1 defines a transition in the timing

state (‘‘T-State’’) of the CPU. One T-State represents the

execution of one microinstruction within the CPU, and/or

one step of an external bus transfer. See Section 4 for com-

plete specifications of PHI1 and PHI2.

TL/EE/9160–13

FIGURE 3-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is

recommended that the conductors carrying PHI1 and PHI2

be kept as short as possible, and that they not be connect-

ed anywhere except from the TCU to the CPU and, if pres-

ent, the MMU. A TTL Clock signal (CTTL) is provided by the

TCU for all other clocking.

3.3 RESETTING

The RST/ABT pin serves both as a Reset for on-chip logic

and as the Abort input for Memory-Managed systems. For

its use as the Abort Command, see Sec. 3.5.4.

The CPU may be reset at any time by pulling the RST/ABT

pin low for at least 64 clock cycles. Upon detecting a reset,

the CPU terminates instruction processing, resets its inter-

nal logic, and clears the Program Counter (PC) and Proces-

sor Status Register (PSR) to all zeroes.

On application of power, RST/ABT must be held low for at

least 50 msec after VCC is stable. This is to ensure that all

on-chip voltages are completely stable before operation.

Whenever a Reset is applied, it must also remain

TL/EE/9160–14

FIGURE 3-3. Power-on Reset Requirements

15

3.0 Functional Description (Continued)

active for not less than 64 clock cycles. The rising edge

must occur while PHI1 is high. See Figures 3-3 and 3-4 .

The NS32C201 Timing Control Unit (TCU) provides circuitry

to meet the Reset requirements of the NS32C032 CPU.Fig-
ure 3-5a shows the recommended connections for a non-

Memory-Managed system. Figure 3-5b shows the connec-

tions for a Memory-Managed system. TL/EE/9160–15

FIGURE 3-4. General Reset Timing

TL/EE/9160–16

FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System

TL/EE/9160–17

FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System

3.4 BUS CYCLES

The NS32C032 CPU has a strap option which defines the

Bus Timing Mode as either With or Without Address Trans-

lation. This section describes only bus cycles under the No

Address Translation option. For details of the use of the

strap and of bus cycles with address translation, see Sec.

3.5.

The CPU will perform a bus cycle for one of the following

reasons:

1) To write or read data, to or from memory or a peripheral

interface device. Peripheral input and output are memory-

mapped in the Series 32000 family.

2) To fetch instructions into the eight-byte instruction queue.

This happens whenever the bus would otherwise be idle

and the queue is not already full.

3) To acknowledge an interrupt and allow external circuitry

to provide a vector number, or to acknowledge comple-

tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi-

cal. For timing specifications, see Sec. 4. The only external

difference between them is the four-bit code placed on the

Bus Status pins (ST0–ST3). Slave Processor cycles differ in

that separate control signals are applied (Sec. 3.4.6).

The sequence of events in a non-Slave bus cycle is shown

below in Figure 3-7 for a Read cycle and Figure 3-8 for a

Write cycle. The cases shown assume that the selected

memory or interface device is capable of communicating

with the CPU at full speed. If it is not, then cycle extension

may be requested through the RDY line (Sec. 3.4.1).

16

3.0 Functional Description (Continued)

A full-speed bus cycle is performed in four cycles of the

PHI1 clock signal, labeled T1 through T4. Clock cycles not

associated with a bus cycle are designated Ti (for ‘‘Idle’’).

During T1, the CPU applies an address on pins AD0–AD23.

It also provides a low-going pulse on the ADS pin, which

serves the dual purpose of informing external circuitry that a

bus cycle is starting and of providing control to an external

latch for demultiplexing Address bits 0–23 from the AD0–

AD23 pins. See Figure 3-6 . During this time also the status

signals DDIN, indicating the direction of the transfer, and

BE0–BE3, indicating which of the four bus bytes are to be

referenced, become valid.

During T2 the CPU switches the Data Bus, AD0–AD31 to

either accept or present data. It also starts the data strobe

(DS), signalling the beginning of the data transfer. Associat-

ed signals from the NS32C201 Timing Control Unit are also

activated at this time: RD (Read Strobe) or WR (Write

Strobe), TSO (Timing State Output, indicating that T2 has

been reached) and DBE (Data Buffer Enable).

The T3 state provides for access time requirements, and it

occurs at least once in a bus cycle. At the end of T2 or T3,

on the falling edge of the PHI2 clock, the RDY (Ready) line

is sampled to determine whether the bus cycle will be ex-

tended (Sec. 3.4.1).

If the CPU is performing a Read cycle, the Data Bus (AD0–

AD31) is sampled at the falling edge of PHI2 of the last T3

state. See Section 4. Data must, however, be held at least

until the beginning of T4. DS and RD are guaranteed not to

go inactive before this point, so the rising edge of either of

them may safely be used to disable the device providing the

input data.

The T4 state finishes the bus cycle. At the beginning of T4,

the DS, RD or WR, and TSO signals go inactive, and at the

rising edge of PHI2, DBE goes inactive, having provided for

necessary data hold times. Data during Write cycles re-

mains valid from the CPU throughout T4. Note that the Bus

Status lines (ST0–ST3) change at the beginning of T4, an-

ticipating the following bus cycle (if any).

TL/EE/9160–18

FIGURE 3-6. Bus Connections

17

3.0 Functional Description (Continued)

TL/EE/9160–20

FIGURE 3-7. Read Cycle Timing

18

3.0 Functional Description (Continued)

TL/EE/9160–19

FIGURE 3-8. Write Cycle Timing

19

3.0 Functional Description (Continued)

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any

speed of memory or peripheral device, the NS32C032 pro-

vides for extension of a bus cycle. Any type of bus cycle

except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8 , note that during T3 all bus control

signals from the CPU and TCU are flat. Therefore, a bus

cycle can be cleanly extended by causing the T3 state to be

repeated. This is the purpose of the RDY (Ready) pin.

At the end of T2 on the falling edge of PHI2, the RDY line is

sampled by the CPU. If RDY is high, the next T-states will be

T3 and then T4, ending the bus cycle. If RDY is low, then

another T3 state will be inserted after the next T-state and

the RDY line will again be sampled on the falling edge of

PHI2. Each additional T3 state after the first is referred to as

a ‘‘WAIT STATE’’. See Figure 3-9 .

The RDY pin is driven by the NS32C201 Timing Control

Unit, which applies WAIT States to the CPU as requested

on three sets of pin:

1) CWAIT (Continuous WAIT), which holds the CPU in WAIT

states until removed.

2) WAIT1, WAIT2, WAIT4, WAIT8 (Collectively WAITn),

which may be given a four-bit binary value requesting a

specific number of WAIT States from 0 to 15.

3) PER (Peripheral), which inserts five additional WAIT

states and causes the TCU to reshape the RD and WR

strobes. This provides the setup and hold times required

by most MOS peripheral interface devices.

Combinations of these various WAIT requests are both legal

and useful. For details of their use, see the NS32C201 Data

Sheet.

Figure 3-10 illustrates a typical Read cycle, with two WAIT

states requested through the TCU WAITn pins.

TL/EE/9160–21

FIGURE 3-9. RDY Pin Timing

3.4.2 Bus Status

The NS32C032 CPU presents four bits of Bus Status infor-

mation on pins ST0–ST3. The various combinations on

these pins indicate why the CPU is performing a bus cycle,

or, if it is idle on the bus, then why is it idle.

Referring to Figures 3-7 and3-8 , note that Bus Status leads

the corresponding Bus Cycle, going valid one clock cycle

before T1, and changing to the next state at T4. This allows

the system designer to fully decode the Bus Status and, if

desired, latch the decoded signals before ADS initiates the

Bus Cycle.

The Bus Status pins are interpreted as a four-bit value, with

ST0 the least significant bit. Their values decode as follows:

0000 – The bus is idle because the CPU does not need to

perform a bus access.

0001 – The bus is idle because the CPU is executing the

WAIT instruction.

0010 – (Reserved for future use.)

0011 – The bus is idle because the CPU is waiting for a

Slave Processor to complete an instruction.

0100 – Interrupt Acknowledge, Master.

The CPU is performing a Read cycle. To acknowl-

edge receipt of a Non-Maskable Interrupt (on

NMI) it will read from address FFFF0016, but will

ignore any data provided.

To acknowledge receipt of a Maskable Interrupt

(on INT) it will read from address FFFE0016, ex-

pecting a vector number to be provided from the

Master NS32202 Interrupt Control Unit. If the vec-

toring mode selected by the last SETCFG instruc-

tion was Non-Vectored, then the CPU will ignore

the value it has read and will use a default vector

instead, having assumed that no NS32202 is

present. See Sec. 3.4.5.

0101 – Interrupt Acknowledge, Cascaded.

The CPU is reading a vector number from a Cas-

caded NS32202 Interrupt Control Unit. The ad-

dress provided is the address of the NS32202

Hardware Vector register. See Sec. 3.4.5.

0110 – End of Interrupt, Master.

The CPU is performing a Read cycle to indicate

that it is executing a Return from Interrupt (RETI)

instruction. See Sec. 3.4.5.

0111 – End of Interrupt, Cascaded.

The CPU is reading from a Cascaded Interrupt

Control Unit to indicate that it is returning (through

RETI) from an interrupt service routine requested

by that unit. See Sec. 3.4.5.

1000 – Sequential Instruction Fetch.

The CPU is reading the next sequential word from

the instruction stream into the Instruction

20

3.0 Functional Description (Continued)

TL/EE/9160–22

FIGURE 3-10. Extended Cycle Example

Note: Arrows on CWAIT, PER, WAITn indicate points at which the TCU samples. Arrows on AD0–AD15 and RDY indicate points at which the CPU samples.

21

3.0 Functional Description (Continued)

Queue. It will do so whenever the bus would oth-

erwise be idle and the queue is not already full.

1001 – Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruction

code after the Instruction Queue is purged. This

will occur as a result of any jump or branch, or any

interrupt or trap, or execution of certain instruc-

tions.

1010 – Data Transfer.

The CPU is reading or writing an operand of an

instruction.

1011 – Read RMW Operand.

The CPU is reading an operand which will subse-

quently be modified and rewritten. If memory pro-

tection circuitry would not allow the following

Write cycle, it must abort this cycle.

1100 – Read for Effective Address Calculation.

The CPU is reading information from memory in

order to determine the Effective Address of an

operand. This will occur whenever an instruction

uses the Memory Relative or External addressing

mode.

1101 – Transfer Slave Processor Operand.

The CPU is either transferring an instruction oper-

and to or from a Slave Processor, or it is issuing

the Operation Word of a Slave Processor instruc-

tion. See Sec. 3.9.1.

1110 – Read Slave Processor Status.

The CPU is reading a Status Word from a Slave

Processor. This occurs after the Slave Processor

has signalled completion of an instruction. The

transferred word tells the CPU whether a trap

should be taken, and in some instructions it pre-

sents new values for the CPU Processor Status

Register bits N, Z, L or F. See Sec. 3.9.1.

1111 – Broadcast Slave ID.

The CPU is initiating the execution of a Slave

Processor instruction. The ID Byte (first byte of

the instruction) is sent to all Slave Processors,

one of which will recognize it. From this point the

CPU is communicating with only one Slave Proc-

essor. See Sec. 3.9.1.

3.4.3 Data Access Sequences

The 24-bit address provided by the NS32C032 is a byte

address; that is, it uniquely identifies one of up to

16,777,216 eight-bit memory locations. An important feature

of the NS32C032 is that the presence of a 32-bit data bus

imposes no restrictions on data alignment; any data item,

regardless of size, may be placed starting at any memory

address. The NS32C032 provides special control signals.

Byte Enable (BE0–BE3) which facilitate individual byte ac-

cessing on a 32-bit bus.

Memory is organized as four eight-bit banks, each bank re-

ceiving the double-word address (A2–A23) in parallel. One

bank, connected to Data Bus pins AD0–AD7 is enabled

when BE0 is low. The second bank, connected to data bus

pins AD8–AD15 is enabled when BE1 is low. The third and

fourth banks are enabled by BE2 and BE3, respectively.

See Figure 3-11.

TL/EE/9160–23

FIGURE 3-11. Memory Interface

Since operands do not need to be aligned with respect to

the double-word bus access performed by the CPU, a given

double-word access can contain one, two, three, or four

bytes of the operand being addressed, and these bytes can

begin at various positions, as determined by A1, A0. Table

3-1 lists the 10 resulting access types.

TABLE 3-1

Bus Access Types

Type Bytes Accessed A1,A0 BE3 BE2 BE1 BE0

1 1 00 1 1 1 0

2 1 01 1 1 0 1

3 1 10 1 0 1 1

4 1 11 0 1 1 1

5 2 00 1 1 0 0

6 2 01 1 0 0 1

7 2 10 0 0 1 1

8 3 00 1 0 0 0

9 3 01 0 0 0 1

10 4 00 0 0 0 0

Accesses of operands requiring more than one bus cycle

are performed sequentially, with no idle T-States separating

them. The number of bus cycles required to transfer an op-

erand depends on its size and its alignment. Table 3-2 lists

the bus cycles performed for each situation.

22

3.0 Functional Description (Continued)

TABLE 3-2

Access Sequences

Data BusV â W
Cycle Type Address BE3 BE2 BE1 BE0 Byte 3 Byte 2 Byte 1 Byte 0

A.Word at address ending with 11 BYTE 1 BYTE 0 w A

1. 4 A 0 1 1 1 Byte 0 X X X

2. 1 A a 1 1 1 1 0 X X X Byte 1

B.Double word at address ending with 01 BYTE 3 BYTE 2 BYTE 1 BYTE 0 w A

1. 9 A 0 0 0 1 Byte 2 Byte 1 Byte 0 X

2. 1 A a 3 1 1 1 0 X X X Byte 3

C.Double word at address ending with 10 BYTE 3 BYTE 2 BYTE 1 BYTE 0 wA

1. 7 A 0 0 1 1 Byte 1 Byte 0 X X

2. 5 A a 2 1 1 0 0 X X Byte 3 Byte 2

D.Double word at address ending with 11 BYTE 3 BYTE 2 BYTE 1 BYTE 0 w A

1. 4 A 0 1 1 1 Byte 0 X X X

2. 8 A a 1 1 0 0 0 X Byte 3 Byte 2 Byte 1

E.Quad word at address ending with 00 BYTE 7 BYTE 6 BYTE 5 BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0 w A

1. 10 A 0 0 0 0 Byte 3 Byte 2 Byte 1 Byte 0

Other bus cycles (instruction prefetch or slave) can occur here.

2. 10 A a 4 0 0 0 0 Byte 7 Byte 6 Byte 5 Byte 4

F.Quad word at address ending with 01 BYTE 7 BYTE 6 BYTE 5 BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0 w A

1. 9 A 0 0 0 1 Byte 2 Byte 1 Byte 0 X

2. 1 A a 3 1 1 1 0 X X X Byte 3

Other bus cycles (instruction prefetch or slave) can occur here.

3. 9 A a 4 0 0 0 1 Byte 6 Byte 5 Byte 4 X

4. 1 A a 7 1 1 1 0 X X X Byte 7

G.Quad word at address ending with 10 BYTE 7 BYTE 6 BYTE 5 BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0 w A

1. 7 A 0 0 1 1 Byte 1 Byte 0 X X

2. 5 A a 2 1 1 0 0 X X Byte 3 Byte 2

Other bus cycles (instruction prefetch or slave) can occur here.

3. 7 A a 4 0 0 1 1 Byte 5 Byte 4 X X

4. 5 A a 6 1 1 0 0 X X Byte 7 Byte 6

H.Quad word at address ending with 11 BYTE 7 BYTE 6 BYTE 5 BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0 w A

1. 4 A 0 1 1 1 Byte 0 X X X

2. 8 A a 1 1 0 0 0 X Byte 3 Byte 2 Byte 1

Other bus cycles (instruction prefetch or slave) can occur here.

1. 4 A a 4 0 1 1 1 Byte 4 X X X

2. 8 A a 5 1 0 0 0 X Byte 7 Byte 6 Byte 5

X e Don’t Care

23

3.0 Functional Description (Continued)

3.4.3.1 Bit Accesses

The Bit Instructions perform byte accesses to the byte con-

taining the designated bit. The Test and Set Bit instruction

(SBIT), for example, reads a byte, alters it, and rewrites it,

having changed the contents of one bit.

3.4.3.2 Bit Field Accesses

An access to a Bit Field in memory always generates a Dou-

ble-Word transfer at the address containing the least signifi-

cant bit of the field. The Double Word is read by an Extract

instruction; an Insert instruction reads a Double Word, modi-

fies it, and rewrites it.

3.4.3.3 Extending Multiply Accesses

The Extending Multiply Instruction (MEI) will return a result

which is twice the size in bytes of the operand it reads. If the

multiplicand is in memory, the most-significant half of the

result is written first (at the higher address), then the least-

significant half. This is done in order to support retry if this

instruction is aborted.

3.4.4 Instruction Fetches

Instructions for the NS32C032 CPU are ‘‘prefetched’’; that

is, they are input before being needed into the next available

entry of the eight-byte Instruction Queue. The CPU performs

two types of Instruction Fetch cycles: Sequential and Non-

Sequential. These can be distinguished from each other by

their differing status combinations on pins ST0–ST3 (Sec.

3.4.2).

A Sequential Fetch will be performed by the CPU whenever

the Data Bus would otherwise be idle and the Instruction

Queue is not currently full. Sequential Fetches are always

type 10 Read cycles (Table 3-1).

A Non-Sequential Fetch occurs as a result of any break in

the normally sequential flow of a program. Any jump or

branch instruction, a trap or an interrupt will cause the next

Instruction Fetch cycle to be Non-Sequential. In addition,

certain instructions flush the instruction queue, causing the

next instruction fetch to display Non-Sequential status. Only

the first bus cycle after a break displays Non-Sequential

status, and that cycle depends on the destination address.

Note: During non-sequential fetches, BE0–BE3 are all active regardless of

the alignment.

3.4.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or

more bus cycles whose purpose is interrupt control rather

than the transfer of instructions or data. Execution of the

Return from Interrupt instruction (RETI) will also cause Inter-

rupt Control bus cycles. These differ from instruction or data

transfers only in the status pesented on pins ST0–ST3. All

Interrupt Control cycles are single-byte Read cycles.

This section describes only the Interrupt Control sequences

associated with each interrupt and with the return from its

service routine. For full details of the NS32C032 interrupt

structure, see Sec. 3.8.

24

3.0 Functional Description (Continued)

TABLE 3-3

Interrupt Sequences

Data BusV â W
Cycle Status Address DDIN BE3 BE2 BE1 BE0 Byte 3 Byte 2 Byte 1 Byte 0

A. Non-Maskable Interrupt Control Sequences

Interrupt Acknowledge

1 0100 FFFF0016 0 1 1 1 0 X X X X

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequences

Interrupt Acknowledge

1 0100 FFFE0016 0 1 1 1 0 X X X X

Interrupt Return

1 0110 FFFE0016 0 1 1 1 0 X X X X

C. Vectored Interrupt Sequences: Non-Cascaded.

Interrupt Acknowledge

1 0100 FFFE0016 0 1 1 1 0 X X X Vector:

Range: 0-127

Interrupt Return

1 0110 FFFE0016 0 1 1 1 0 X X X Vector: Same as

in Previous Int.

Ack. Cycle

D. Vectored Interrupt Sequences: Cascaded

Interrupt Acknowledge

1 0100 FFFE0016 0 1 1 1 0 X X X Cascade Index:

range b16 to b1

(The CPU here uses the Cascade Index to find the Cascade Address.)

2 0101 Cascade 0 See Note Vector, range 9–255; on appropriate byte of

Address data bus.

Interrupt Return

1 0110 FFFE0016 0 1 1 1 0 X X X Cascade Index:

Same as in

previous Int.

Ack. Cycle

(The CPU here uses the Cascade Index to find the Cascade Address)

2 0111 Cascade 0 See Note X X X X

Address

X e Don’t Care

Note: BE0-BE3 signals will be activated according to the cascaded ICU address. The cycle type can be 1, 2, 3 or 4, when reading the interrupt vector. The vector

value can be in the range 0–255.

25

3.0 Functional Description (Continued)

3.4.6 Slave Processor Communication

In addition to its use as the Address Translation strap (Sec.

3.5.1), the AT/SPC pin is used as the data strobe for Slave

Processor transfers. In this role, it is referred to as Slave

Processor Control (SPC). In a Slave Processor bus cycle,

data is transferred on the Data Bus (AD0–AD15), and the

status lines (ST0–ST3) are monitored by each Slave Proc-

essor in order to determine the type of transfer being per-

formed. SPC is bidirectional, but is driven by the CPU during

all Slave Processor bus cycles. See Sec. 3.9 for full protocol

sequences.
TL/EE/9160–24

FIGURE 3-12. Slave Processor Connections

TL/EE/9160–25

Note:

(1) CPU samples Data Bus here.

(2) DBE and all other NS32C201 TCU bus signals remain inactive because no ADS pulse is received from the CPU.

FIGURE 3-13. CPU Read from Slave Processor

26

3.0 Functional Description (Continued)

3.4.6.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock

cycles, labeled T1 and T4 (see Figures 3-13 and 3-14). Dur-

ing a Read cycle SPC is active from the beginning of T1 to

the beginning of T4, and the data is sampled at the end of

T1. The Cycle Status pins lead the cycle by one clock peri-

od, and are sampled at the leading edge of SPC. During a

Write cycle, the CPU applies data and activates SPC at T1,

removing SPC at T4. The Slave Processor latches status on

the leading edge of SPC and latches data on the trailing

edge.

Since the CPU does not pulse the Address Strobe (ADS),

no bus signals are generated by the NS32C201 Timing Con-

trol Unit. The direction of a transfer is determined by the

sequence (‘‘protocol’’) established by the instruction under

execution; but the CPU indicates the direction on the DDIN

pin for hardware debugging purposes.

3.4.6.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more

Slave bus cycles. A Byte operand is transferred on the

least-significant byte of the Data Bus (AD0–AD7), and a

Word operand is transferred on bits AD0–AD15. A Double

Word is transferred in a consecutive pair of bus cycles,

least-significant word first. A Quad Word is transferred in

two pairs of Slave cycles, with other bus cycles possibly

occurring between them. The word order is from least-signif-

icant word to most-significant.

Note that the NS32C032 uses only the two least significant

bytes of the data bus for slave cycles. This is to maintain

compatibility with existing slave processors.

TL/EE/9160–26

Note:

(1) Slave Processor samples Data Bus here.

(2) DBE, being provided by the NS32C201 TCU, remains inactive due to the fact that no pulse is presented on ADS. TCU signals RD, WR and TSO also remain

inactive.

FIGURE 3-14. CPU Write to Slave Processor

27

3.0 Functional Description (Continued)

3.5 MEMORY MANAGEMENT OPTION

The NS32C032 CPU, in conjunction with the NS32082

Memory Management Unit (MMU), provides full support for

address translation, memory protection, and memory alloca-

tion techniques up to and including Virtual Memory.

3.5.1 Address Translation Strap

The Bus Interface Control section of the NS32C032 CPU

has two bus timing modes: With or Without Address Trans-

lation. The mode of operation is selected by the CPU by

sampling the AT/SPC (Address Translation/Slave Proces-

sor Control) pin on the rising edge of the RST (Reset) pulse.

If AT/SPC is sampled as high, the bus timing is as previous-

ly described in Sec. 3.4. If it is sampled as low, two changes

occur:

1) An extra clock cycle, Tmmu, is inserted into all bus cycles

except Slave Processor transfers.

2) The DS/FLT pin changes in function from a Data Strobe

output (DS) to a Float Command input (FLT).

The NS32082 MMU will itself pull the CPU AT/SPC pin low

when it is reset. In non-Memory-Managed systems this pin

should be pulled up to VCC through a 10 kX resistor.

Note that the Address Translation strap does not specifical-

TL/EE/9160–27

FIGURE 3-15. Read Cycle with Address Translation (CPU Action)

28

3.0 Functional Description (Continued)

ly declare the presence of an NS32082 MMU, but only the

presence of external address translation circuitry. MMU in-

structions will still trap as being undefined unless the

SETCFG (Set Configuration) instruction is executed to de-

clare the MMU instruction set valid. See Sec. 2.1.3.

3.5.2 Translated Bus Timing

Figures 3-15 and 3-16 illustrate the CPU activity during a

Read cycle and a Write cycle in Address Translation mode.

The additional T-State, Tmmu, is inserted between T1 and

T2. During this time the CPU places AD0–AD23 into the

TRI-STATEÉ mode, allowing the MMU to assert the trans-

lated address and issue the physical address strobe PAV.

T2 through T4 of the cycle are identical to their counterparts

without Address Translation. Note that in order for the

NS32082 MMU to operate correctly it must be set to the

32032 mode by forcing A24/HBF low during reset. In this

mode the bus lines AD16–AD23 are floated after the MMU

address has been latched, since they are used by the CPU

to transfer data.

Figures 3-17 and 3-18 show a Read cycle and a Write cycle

as generated by the 32C032/32082/32C201 group. Note

that with the CPU ADS signal going only to the MMU, and

with the MMU PAV signal substituting for ADS everywhere

else, Tmmu through T4 look exactly like T1 through T4 in a

non-Memory-Managed system. For the connection diagram,

see Appendix B.

TL/EE/9160–28

FIGURE 3-16. Write Cycle with Address Translation (CPU Action)

29

3.0 Functional Description (Continued)

TL/EE/9160–29

FIGURE 3-17. Memory-Managed Read Cycle

30

3.0 Functional Description (Continued)

TL/EE/9160–30

FIGURE 3-18. Memory-Managed Write Cycle

31

3.0 Functional Description (Continued)

3.5.3 The FLT (Float) Pin

The FLT pin is used by the CPU for address translation

support. Activating FLT during Tmmu causes the CPU to

wait longer than Tmmu for address translation and valida-

tion. This feature is used occasionally by the NS32082 MMU

in order to update its translation look-aside buffer (TLB)

from page tables in memory, or to update certain status bits

within them.

Figure 3-19 shows the effect of FLT. Upon sampling FLT

low, late in Tmmu, the CPU enters idle T-States (Tf) during

which it:

1) Sets AD0–AD23, D24–D31 and DDIN to the TRI-STATE

condition (‘‘floating’’).

2) Suspends further internal processing of the current in-

struction. This ensures that the current instruction re-

mains abortable with retry. (See RST/ABT description,

Sec. 3.5.4.)

Note that the AD0–AD23 pins may be briefly asserted dur-

ing the first idle T-State. The above conditions remain in

effect until FLT again goes high. See the Timing Specifica-

tions, Sec. 4.

TL/EE/9160–31

FIGURE 3-19. FLT Timing

32

3.0 Functional Description (Continued)

3.5.4 Aborting Bus Cycles

The RST/ABT pin, apart from its Reset function (Sec. 3.3),

also serves as the means to ‘‘abort’’, or cancel, a bus cycle

and the instruction, if any, which initiated it. An Abort re-

quest is distinguished from a Reset in that the RST/ABT pin

is held active for only one clock cycle.

If RST/ABT is pulled low during Tmmu or Tf, this signals

that the cycle must be aborted. The CPU itself will enter T2

and then Ti, thereby terminating the cycle. Since it is the

MMU PAV signal which triggers a physical cycle, the rest of

the system remains unaware that a cycle was started.

The NS32082 MMU will abort a bus cycle for either of two

reasons:

1) The CPU is attempting to access a virtual address which

is not currently resident in physical memory. The refer-

enced page must be brought into physical memory from

mass storage to make it accessible to the CPU.

2) The CPU is attempting to perform an access which is not

allowed by the protection level assigned to that page.

When a bus cycle is aborted by the MMU, the instruction

that caused it to occur is also aborted in such a manner that

it is guaranteed re-executable later. The information that is

changed irrecoverably by such a partly-executed instruction

does not affect its re-execution.

3.5.4.1 The Abort Interrupt

Upon aborting an instruction, the CPU immediately performs

an interrupt through the ABT vector in the Interrupt Table

(see Sec. 3.8). The Return Address pushed on the Interrupt

Stack is the address of the aborted instruction, so that a

Return from Trap (RETT) instruction will automatically retry

it.

The one exception to this sequence occurs if the aborted

bus cycle was an instruction prefetch. If so, it is not yet

certain that the aborted prefetched code is to be executed.

Instead of causing an interrupt, the CPU only aborts the bus

cycle, and stops prefetching. If the information in the In-

struction Queue runs out, meaning that the instruction will

actually be executed, the ABT interrupt will occur, in effect

aborting the instruction that was being fetched.

3.5.4.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must be

followed in applying an Abort to the CPU. These rules are

followed by the NS32082 Memory Management Unit.

1) If FLT has not been applied to the CPU, the Abort pulse

must occur during or before Tmmu. See the Timing Spec-

ifications, Figure 4-22.

2) If FLT has been applied to the CPU, the Abort pulse must

be applied before the T-State in which FLT goes inactive.

The CPU will not actually respond to the Abort command

until FLT is removed. See Figure 4-23.

3) The Write half of a Read-Modify-Write operand access

may not be aborted. The CPU guarantees that this will

never be necessary for Memory Management functions

by applying a special RMW status (Status Code 1011)

during the Read half of the access. When the CPU pres-

ents RMW status, that cycle must be aborted if it would

be illegal to write to any of the accessed addresses.

If RST/ABT is pulsed at any time other than as indicated

above, it will abort either the instruction currently under exe-

cution or the next instruction and will act as a very high-pri-

ority interrupt. However, the program that was running at the

time is not guaranteed recoverable.

3.6 BUS ACCESS CONTROL

The NS32C032 CPU has the capability of relinquishing its

access to the bus upon request from a DMA device or an-

other CPU. This capability is implemented on the HOLD

(Hold Request) and HLDA (Hold Acknowledge) pins. By as-

serting HOLD low, an external device requests access to

the bus. On receipt of HLDA from the CPU, the device may

perform bus cycles, as the CPU at this point has set the

AD0–AD23, D24–D31, ADS, DDIN and BE0–BE3 pins to

the TRI-STATE condition. To return control of the bus to the

CPU, the device sets HOLD inactive, and the CPU acknowl-

edges return of the bus by setting HLDA inactive.

How quickly the CPU releases the bus depends on whether

it is idle on the bus at the time the HOLD request is made,

as the CPU must always complete the current bus cycle.

Figure 3-20 shows the timing sequence when the CPU is

idle. In this case, the CPU grants the bus during the immedi-

ately following clock cycle. Figure 3-21 shows the sequence

if the CPU is using the bus at the time that the HOLD re-

quest is made. If the request is made during or before the

clock cycle shown (two clock cycles before T4), the CPU

will release the bus during the clock cycle following T4. If

the request occurs closer to T4, the CPU may already have

decided to initiate another bus cycle. In that case it will not

grant the bus until after the next T4 state. Note that this

situation will also occur if the CPU is idle on the bus but has

initiated a bus cycle internally.

In a Memory-Managed system, the HLDA signal is connect-

ed in a daisy-chain through the NS32082, so that the MMU

can release the bus if it is using it.

33

3.0 Functional Description (Continued)

TL/EE/9160–32

FIGURE 3-20. HOLD Timing, Bus Initially Idle

34

3.0 Functional Description (Continued)

TL/EE/9160–33

FIGURE 3-21. HOLD Timing, Bus Initially Not Idle

35

3.0 Functional Description (Continued)

3.7 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (ST0–ST3),

the NS32C032 CPU also presents Instruction Status infor-

mation on three separate pins. These pins differ from ST0–

ST3 in that they are synchronous to the CPU’s internal in-

struction execution section rather than to its bus interface

section.

PFS (Program Flow Status) is pulsed low as each instruction

begins execution. It is intended for debugging purposes, and

is used that way by the NS32082 Memory Management

Unit.

U/S originates from the U bit of the Processor Status Regis-

ter, and indicates whether the CPU is currently running in

User or Supervisor mode. It is sampled by the MMU for

mapping, protection, and debugging purposes. Although it is

not synchronous to bus cycles, there are guarantees on its

validity during any given bus cycle. See the Timing Specifi-

cations, Figure 4-21.

ILO (Interlocked Operation) is activated during an SBITI (Set

Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.

It is made available to external bus arbitration circuitry in

order to allow these instructions to implement the sema-

phore primitive operations for multi-processor communica-

tion and resource sharing. As with the U/S pin, there are

guarantees on its validity during the operand accesses per-

formed by the instructions. See the Timing Specification

Section, Figure 4-19.

3.8 NS32C032 INTERRUPT STRUCTURE

INT, on which maskable interrupts may be requested,

NMI, on which non-maskable interrupts may be request-

ed, and

RST/ABT, which may be used to abort a bus cycle and

any associated instruction. See Sec. 3.5.4.

In addition there is a set of internally-generated ‘‘traps’’

which cause interrupt service to be performed as a result

either of exceptional conditions (e.g., attempted division by

zero) or of specific instructions whose purpose is to cause a

trap to occur (e.g., the Supervisor Call instruction).

3.8.1 General Interrupt/Trap Sequence

Upon receipt of an interrupt or trap request, the CPU goes

through three major steps:

1) Adjustment of Registers.

Depending on the source of the interrupt or trap, the CPU

may restore and/or adjust the contents of the Program

Counter (PC), the Processor Status Register (PSR) and

the currently-selected Stack Pointer (SP). A copy of the

PSR is made, and the PSR is then set to reflect Supervi-

sor Mode and selection of the Interrupt Stack.

2) Vector Acquisition.

A Vector is either obtained from the Data Bus or is sup-

plied by default.

3) Service Call.

The Vector is used as an index into the Interrupt Dispatch

Table, whose base address is taken from the CPU Inter-

rupt Base (INTBASE) Register. See Figure 3-22. A 32-bit

External Procedure Descriptor is read from the table en-

try, and an External Procedure Call is performed using it.

The MOD Register (16 bits) and Program Counter (32

bits) are pushed on the Interrupt Stack.

TL/EE/9160–34

FIGURE 3-22. Interrupt Dispatch and Cascade Tables

36

3.0 Functional Description (Continued)

This process is illustrated in Figure 3-23, from the viewpoint of the programmer.

TL/EE/9160–35

TL/EE/9160–36

FIGURE 3-23. Interrupt/Trap Service Routine Calling Sequence

37

3.0 Functional Description (Continued)

3.8.2 Interrupt/Trap Return

To return control to an interrupted program, one of two in-

structions is used. The RETT (Return from Trap) instruction

(Figure 3-24) restores the PSR, MOD, PC and SB registers

to their previous contents and, since traps are often used

deliberately as a call mechanism for Supervisor Mode pro-

cedures, it also discards a specified number of bytes from

the original stack as surplus parameter space. RETT is used

to return from any trap or interrupt except the Maskable

Interrupt. For this, the RETI (Return from Interrupt) instruc-

tion is used, which also informs any external Interrupt Con-

trol Units that interrupt service has completed. Since inter-

rupts are generally asynchronous external events, RETI

does not pop parameters. See Figure 3-25.

3.8.3 Maskable Interrupts (The INT Pin)

The INT pin is a level-sensitive input. A continuous low level

is allowed for generating multiple interrupt requests.

The input is maskable, and is therefore enabled to generate

interrupt requests only while the Processor Status Register I

bit is set. The I bit is automatically cleared during service of

an INT, NMI or Abort request, and is restored to its original

setting upon return from the interrupt service routine via the

RETT or RETI instruction.

The INT pin may be configured via the SETCFG instruction

as either Non-Vectored (CFG Register bit I e C) or Vec-

tored (bit I e 1).

3.8.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT

pin will cause an Interrupt Acknowledge bus cycle, but the

CPU will ignore any value read from the bus and use instead

a default vector of zero. This mode is useful for small sys-

tems in which hardware interrupt prioritization is unneces-

sary.

TL/EE/9160–37

FIGURE 3-24. Return from Trap (RETT n) Instruction Flow

38

3.0 Functional Description (Continued)

TL/EE/9160–39

FIGURE 3-25. Return from Interrupt (RETI) Instruction Flow

39

3.0 Functional Description (Continued)

3.8.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control

Unit (ICU) to prioritize up to 16 interrupt requests. Upon re-

ceipt of an interrupt request on the INT pin, the CPU per-

forms an ‘‘Interrupt Acknowledge, Master’’ bus cycle (Sec.

3.4.2) reading a vector value from the low-order byte of the

Data Bus. This vector is then used as an index into the

Dispatch Table in order to find the External Procedure De-

scriptor for the proper interrupt service procedure. The serv-

ice procedure eventually returns via the Return from Inter-

rupt (RETI) instruction, which performs an End of Interrupt

bus cycle, informing the ICU that it may re-prioritize any in-

terrupt requests still pending. The ICU provides the vector

number again, which the CPU uses to determine whether it

needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the

vectors provided must be in the range of 0 through 127; that

is, they must be positive numbers in eight bits. By providing

a negative vector number, an ICU flags the interrupt source

as being a Cascaded ICU (see below).

3.8.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is

made both in the CPU and in the NS32202 Interrupt Control

Unit (ICU) to transparently support cascading. Figure 3-27,

shows a typical cascaded configuration. Note that the Inter-

rupt output from a Cascaded ICU goes to an Interrupt Re-

quest input of the Master ICU, which is the only ICU which

drives the CPU INT pin.

In a system which uses cascading, two tasks must be per-

formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU

must be informed of the line number (0 to 15) on which it

receives the cascaded requests.

2) A Cascade Table must be established in memory. The

Cascade Table is located in a NEGATIVE direction from

the location indicated by the CPU Interrupt Base (INT-

BASE) Register. Its entries are 32-bit addresses, pointing

to the Vector Registers of each of up to 16 Cascaded

ICUs.

Figure 3-22 illustrates the position of the Cascade Table. To

find the Cascade Table entry for a Cascaded ICU, take its

Master ICU line number (0 to 15) and subtract 16 from it,

giving an index in the range b16 to b1. Multiply this value

by 4, and add the resulting negative number to the contents

of the INTBASE Register. The 32-bit entry at this address

must be set to the address of the Hardware Vector Register

of the Cascaded ICU. This is referred to as the ‘‘Cascade

Address.’’

Upon receipt of an interrupt request from a Cascaded ICU,

the Master ICU interrupts the CPU and provides the nega-

tive Cascade Table index instead of a (positive) vector num-

ber. The CPU, seeing the negative value, uses it as an index

into the Cascade Table and reads the Cascade Address

from the referenced entry. Applying this address, the CPU

performs an ‘‘Interrupt Acknowledge, Cascaded’’ bus cycle

(Sec. 3.4.2), reading the final vector value. This vector is

interpreted by the CPU as an unsigned byte, and can there-

fore be in the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-

dure executes the Return from Interrupt (RETI) instruction,

as it would for any Maskable Interrupt. The CPU performs

an ‘‘End of Interrupt, Master’’ bus cycle (Sec. 3.4.2), where-

upon the Master ICU again provides the negative Cascade

Table index. The CPU, seeing a negative value, uses it to

find the corresponding Cascade Address from the Cascade

Table. Applying this address, it performs an ‘‘End of Inter-

rupt, Cascaded’’ bus cycle (Sec. 3.4.2), informing the Cas-

caded ICU of the completion of the service routine. The byte

read from the Cascaded ICU is discarded.

Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the Interrupt Mask Register of the Interrupt Con-

troller.

However, if an interrupt is set pending during the CPU instruction that

masks off that interrupt, the CPU may still perform an interrupt ac-

knowledge cycle following that instruction since it might have sampled

the INT line before the ICU deasserted it. This could cause the ICU to

provide an invalid vector. To avoid this problem the above operation

should be performed with the CPU interrupt disabled.

TL/EE/9160–40

FIGURE 3-26. Interrupt Control Unit Connections (16 Levels)

40

3.0 Functional Description (Continued)

TL/EE/9160–41

FIGURE 3-27. Cascaded Interrupt Control Unit Connections

3.8.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable Interrupt is triggered whenever a falling

edge is detected on the NMI pin. The CPU performs an

‘‘Interrupt Acknowledge, Master’’ bus cycle (Sec. 3.4.2)

when processing of this interrupt actually begins. The Inter-

rupt Acknowledge cycle differs from that provided for Mask-

able Interrupts in that the address presented is FFFF0016.

The vector value used for the Non-Maskable Interrupt is

taken as 1, regardless of the value read from the bus.

The service procedure returns from the Non-Maskable In-

terrupt using the Return from Trap (RETT) instruction. No

special bus cycles occur on return.

For the full sequence of events in processing the Non-

Maskable Interrupt, see Sec. 3.8.7.1.

3.8.5 Traps

A trap is an internally-generated interrupt request caused as

a direct and immediate result of the execution of an instruc-

tion. The Return Address pushed by any trap except Trap

(TRC) is the address of the first byte of the instruction during

which the trap occurred. Traps do not disable interrupts, as

they are not associated with external events. Traps recog-

nized by the NS32C032 CPU are:

Trap (SLAVE): An exceptional condition was detected by

the Floating Point Unit or another Slave Processor during

the execution of a Slave Instruction. This trap is requested

via the Status Word returned as part of the Slave Processor

Protocol (Sec. 3.9.1).

41

3.0 Functional Description (Continued)

Trap (ILL): Illegal operation. A privileged operation was at-

tempted while the CPU was in User Mode (PSR bit U e 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe-

cuted.

Trap (DVZ): An attempt was made to divide an integer by

zero. (The FPU trap is used for Floating Point division by

zero.)

Trap (FLG): The FLAG instruction detected a ‘‘1’’ in the

CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-

ed.

Trap (TRC): The instruction just completed is being traced.

See below.

Trap (UND): An undefined opcode was encountered by the

CPU.

A special case is the Trace Trap (TRC), which is enabled by

setting the T bit in the Processor Status Register (PSR). At

the beginning of each instruction, the T bit is copied into the

PSR P (Trace ‘‘Pending’’) bit. If the P bit is set at the end of

an instruction, then the Trace Trap is activated. If any other

trap or interrupt request is made during a traced instruction,

its entire service procedure is allowed to complete before

the Trace Trap occurs. Each interrupt and trap sequence

handles the P bit for proper tracing, guaranteeing one and

only one Trace Trap per instruction, and guaranteeing that

the Return Address pushed during a Trace Trap is always

the address of the next instruction to be traced.

3.8.6 Prioritization

The NS32016 CPU internally prioritizes simultaneous inter-

rupt and trap requests as follows:

1) Traps other than Trace (Highest priority)

2) Abort

3) Non-Maskable Interrupt

4) Maskable Interrupts

5) Trace Trap (Lowest priority)

3.8.7 Interrupt/Trap Sequences: Detailed Flow

For purposes of the following detailed discussion of inter-

rupt and trap service sequences, a single sequence called

‘‘Service’’ is defined in Figure 3-28. Upon detecting any in-

terrupt request or trap condition, the CPU first performs a

sequence dependent upon the type of interrupt or trap. This

sequence will include pushing the Processor Status Regis-

ter and establishing a Vector and a Return Address. The

CPU then performs the Service sequence.

For the sequence followed in processing either Maskable or

Non-Maskable interrupts (on the INT or NMI pins, respec-

tively), see Sec. 3.8.7.1 For Abort Interrupts, see Sec.

3.8.7.4. For the Trace Trap, see Sec. 3.8.7.3, and for all

other traps see Sec. 3.8.7.2.

3.8.7.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin

receives a falling edge, or the INT pin becomes active with

the PSR I bit set. The interrupt sequence begins either at

the next instruction boundary or, in the case of the String

instructions, at the next interruptible point during its execu-

tion.

1. If a String instruction was interrupted and not yet com-

pleted:

a. Clear the Processor Status Register P bit.

b. Set ‘‘Return Address’’ to the address of the first byte of

the interrupted instruction.

Otherwise, set ‘‘Return Address’’ to the address of the

next instruction.

2. Copy the Processor Status Register (PSR) into a tempo-

rary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF0016, applying Status

Code 0100 (Interrupt Acknowledge, Master, Sec.

3.4.2). Discard the byte read.

b. Set ‘‘Vector’’ to 1.

c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFF0016, applying Status

Code 0100 (Interrupt Acknowledge, Master: Sec.

3.4.2). Discard the byte read.

b. Set ‘‘Vector’’ to 0.

c. Go to Step 8.

5. Here the interrupt is Vectored. Read ‘‘Byte’’ from address

FFFE0016, applying Status Code 0100 (Interrupt Ac-

knowledge, Master: Sec. 3.4.2).

6. If ‘‘Byte’’ t 0, then set ‘‘Vector’’ to ‘‘Byte’’ and go to Step

8.

7. If ‘‘Byte’’ is in the range b16 through b1, then the inter-

rupt source is Cascaded. (More negative values are re-

served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The

address is calculated as INTBASE a4* Byte.

b. Read ‘‘Vector,’’ applying the Cascade Address just

read and Status Code 0101 (Interrupt Acknowledge,

Cascaded: Sec. 3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt Stack

as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-28.

Service (Vector, Return Address):

1) Read the 32-bit External Procedure Descriptor from the Interrupt

Dispatch Table: address is Vector* 4 a INTBASE Register contents.

2) Move the Module field of the Descriptor into the MOD Register.

3) Read the new Static Base pointer from the memory address con-

tained in MOD, placing it into the SB Register.

4) Read the Program Base pointer from memory address MOD a 8,

and add to it the Offset field from the Descriptor, placing the result

in the Program Counter.

5) Flush queue: Non-sequentially fetch first instruction of Interrupt

routine.

6) Push MOD Register into the Interrupt Stack as a 16-bit value. (The

PSR has already been pushed as a 16-bit value.)

7) Push the Return Address onto the Interrupt Stack as a 32-bit quanti-

ty.

FIGURE 3-28. Service Sequence

Invoked during all interrupt/trap sequences.

42

3.0 Functional Description (Continued)

3.8.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the

Processor Status Register to their original values at the

start of the trapped instruction.

2) Set ‘‘Vector’’ to the value corresponding to the trap type.

SLAVE: Vector e 3.

ILL: Vector e 4.

SVC: Vector e 5.

DVZ: Vector e 6.

FLG: Vector e 7.

BPT: Vector e 8.

UND: Vector e 10.

3) Copy the Processor Status Register (PSR) into a tempo-

rary register, then clear PSR bits S, U, P and T.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit

value.

5) Set ‘‘Return Address’’ to the address of the first byte of

the trapped instruction.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.3 Trace Trap Sequence

1) In the Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear PSR

bits S, U and T.

3) Push the PSR copy onto the Interrupt Stack as a 16-bit

value.

4) Set ‘‘Vector’’ to 9.

5) Set ‘‘Return Address’’ to the address of the next instruc-

tion.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its original

contents at the beginning of the aborted instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear PSR

bits S, U, T and I.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit

value.

5) Set ‘‘Vector’’ to 2.

6) Set ‘‘Return Address’’ to the address of the first byte of

the aborted instruction.

7) Perform Service (Vector, Return Address), Figure 3-28.

3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS32C032 CPU recognizes three groups of instructions

being executable by external Slave Processor:

Floating Point Instruction Set

Memory Management Instruction Set

Custom Instruction Set

Each Slave Instruction Set is validated by a bit in the Config-

uration Register (Sec. 2.1.3). Any Slave Instruction which

does not have its corresponding Configuration Register bit

set will trap as undefined, without any Slave Processor com-

munication attempted by the CPU. This allows software sim-

ulation of a non-existent Slave Processor.

3.9.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In-

struction field, consisting of an ID Byte followed by an Oper-

ation Word. The ID Byte has three functions:

1) It identifies the instruction as being a Slave Proc-

essor instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Opera-

tion Word of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-

ates the sequence outlined in Figure 3-29. While applying

Status Code 1111 (Broadcast ID, Sec. 3.4.2), the CPU

transfers the ID Byte on the least-significant byte of the

Data Bus (AD0–AD7). All Slave Processors input this byte

and decode it. The Slave Processor selected by the ID Byte

is activated, and from this point the CPU is communicating

only with it. If any other slave protocol was in progress (e.g.,

an aborted Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying

Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2).

Upon receiving it, the Slave Processor decodes it, and at

this point both the CPU and the Slave Processor are aware

of the number of operands to be transferred and their sizes.

The operation Word is swapped on the Data Bus, that is,

bits 0–7 appear on pins AD8–AD15 and bits 8–15 appear

on pins AD0–AD7.

Using the Address Mode fields within the Operation Word,

the CPU starts fetching operand and issuing them to the

Slave Processor. To do so, it references any Addressing

Mode extensions which may be appended to the Slave

Processor instruction. Since the CPU is solely responsible

Status Combinations:

Send ID (ID): Code 1111

Xfer Operand (OP): Code 1101

Read Status (ST): Code 1110

Step Status Action

1 ID CPU Send ID Byte.

2 OP CPU Sends Operaton Word.

3 OP CPY Sends Required Operands

4 Ð Slave Starts Execution. CPU Pre-fetches.

5 Ð Slave Pulses SPC Low.

6 ST CPU Reads Status Word. (Trap? Alter Flags?)

7 OP CPU Reads Results (If Any).

FIGURE 3-29. Slave Processor Protocol

43

3.0 Functional Description (Continued)

for memory accesses, these extensions are not sent to the

Slave processor. The Status Code applied is 1101 (Transfer

Slave Processor Operand, Sec. 3.4.2).

After the CPU has issued the last operand, the Slave Proc-

essor starts the actual execution of the instruction. Upon

completion, it will signal the CPU by pulsing SPC low. To

allow for this, and for the Address Translation strap func-

tion, AT/SPC is normally held high only by an internal pull-

up device of approximately 5 kX.

While the Slave Processor is executing the instruction, the

CPU is free to prefetch instructions into its queue. If it fills

the queue before the Slave Processor finishes, the CPU will

wait, applying Status Code 0011 (Waiting for Slave, Sec.

3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to

read a Status Word from the Slave Processor, applying

Status Code 1110 (Read Slave Status, Sec. 3.4.2). This

word has the format shown in Figure 3-30. If the Q bit

(‘‘Quit’’, Bit 0) is set, this indicates that an error was detect-

ed by the Slave Processor. The CPU will not continue the

protocol, but will immediately trap through the Slave vector

in the Interrupt Table. Certain Slave Processor instructions

cause CPU PSR bits to be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,

if any, and transfer it to the destination. The Read cycles

from the Slave Processor are performed by the CPU while

applying Status Code 1101 (Transfer Slave Operand, Sec.

3.4.2).

An exception to the protocol above is the LMR (Load Mem-

ory Management Register) instruction, and a corresponding

Custom Slave instruction (LCR: Load Custom Register). In

executing these instructions, the protocol ends after the

CPU has issued the last operand. The CPU does not wait for

an acknowledgement from the Slave Processor, and it does

not read status.

3.9.2 Floating Point Instructions

Table 3-4 gives the protocols followed for each Floating

Point instruction. The instructions are referenced by their

mnemonics. For the bit encodings of each instruction, see

Appendix A.

The Operand class columns give the Access Class for each

general operand, defining how the addressing modes are

interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper-

ands issued to the Floating Point Unit by the CPU. ‘‘D’’ indi-

cates a 32-bit Double Word. ‘‘i’’ indicates that the instruction

specifies an integer size for the operand (B e Byte, W e

Word, D e Double Word). ‘‘f’’ indicates that the instruction

specifies a Floating Point size for the operand (F e 32-bit

Standard Floating, L e 64-bit Long Floating).

The Returned Value Type and Destination column gives the

size of any returned value and where the CPU places it. The

PSR Bits Affected column indicates which PSR bits, if any,

are updated from the Slave Processor Status Word (Figure
3-30).

TABLE 3-4

Floating Point Instruction Protocols.

Mnemonic
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Class Class Issued Issued Type and Dest. Affected

ADDf read.f rmw.f f f f to Op. 2 none

SUBf read.f rmw.f f f f to Op. 2 none

MULf read.f rmw.f f f f to Op. 2 none

DIVf read.f rmw.f f f f to Op. 2 none

MOVf read.f write.f f N/A f to Op. 2 none

ABSf read.f write.f f N/A f to Op. 2 none

NEGf read.f write.f f N/A f to Op. 2 none

CMPf read.f read.f f f N/A N,Z,L

FLOORfi read.f write.i f N/A i to Op. 2 none

TRUNCfi read.f write.i f N/A i to Op. 2 none

ROUNDfi read.f write.i f N/A i to Op. 2 none

MOVFL read.F write.L F N/A L to Op. 2 none

MOVLF read.L write.F L N/A F to Op. 2 none

MOVif read.i write.f i N/A f to Op. 2 none

LFSR read.D N/A D N/A N/A none

SFSR N/A write.D N/A N/A D to Op. 2 none

Note:

D e Double Word

i e Integer size (B,W,D) specified in mnemonic.

f e Floating Point type (F,L) specified in mnemonic.

N/A e Not Applicable to this instruction.

44

3.0 Functional Description (Continued)

TL/EE/9160–42

FIGURE 3-30. Slave Processor Status Word Format

Any operand indicated as being of type ‘‘f’’ will not cause a

transfer if the Register addressing mode is specified. This is

because the Floating Point Registers are physically on the

Floating Point Unit and are therefore available without CPU

assistance.

3.9.3 Memory Management Instructions

Table 3-5 gives the protocols for Memory Management in-

structions. Encodings for these instructions may be found in

Appendix A.

In executing the RDVAL and WRVAL instructions, the CPU

calculates and issues the 32-bit Effective Address of the

single operand. The CPU then performs a single-byte Read

cycle from that address, allowing the MMU to safely abort

the instruction if the necessary information is not currently in

physical memory. Upon seeing the memory cycle complete,

the MMU continues the protocol, and returns the validation

result in the F bit of the Slave Status Word.

The size of a Memory Management operand is always a 32-

bit Double Word. For further details of the Memory Manage-

ment Instruction set, see the Instruction Set Reference

Manual and the NS32082 MMU Data Sheet.

TABLE 3-5

Memory Management Instruction Protocols.

Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Mnemonic Class Class Issued Issued Type and Dest. Affected

RDVAL* addr N/A D N/A N/A F

WRVAL* addr N/A D N/A N/A F

LMR* read.D N/A D N/A N/A none

SMR* write.D N/A N/A N/A D to Op. 1 none

Note:

In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single-byte Read cycle from that memory address. For

details, see the Instruction Set Reference Manual and the NS32082 Memory Management Unit Data Sheet.

D e Double Word

* e Privileged Instruction: will trap if CPU is in User Mode.

N/A e Not Applicable to this instruction.

45

3.0 Functional Description (Continued)

3.9.4 Custom Slave Instructions

Provided in the NS32C032 is the capability of communicat-

ing with a user-defined, ‘‘Custom’’ Slave Processor. The in-

struction set provided for a Custom Slave Processor defines

the instruction formats, the operand classes and the com-

munication protocol. Left to the user are the interpretations

of the Op Code fields, the programming model of the Cus-

tom Slave and the actual types of data transferred. The pro-

tocol specifies only the size of an operand, not its data type.

Table 3-6 lists the relevant information for the Custom Slave

instruction set. The designation ‘‘c’’ is used to represent an

operand which can be a 32-bit (‘‘D’’) or 64-bit (‘‘Q’’) quantity

in any format; the size is determined by the suffix on the

mnemonic. Similarly, an ‘‘i’’ indicates an integer size (Byte,

Word, Double Word) selected by the corresponding mne-

monic suffix.

Any operand indicated as being of type ‘‘c’’ will not cause a

transfer if the register addressing mode is specified. It is

assumed in this case that the slave processor is already

holding the operand internally.

For the instruction encodings, see Appendix A.

TABLE 3-6

Custom Slave Instruction Protocols.

Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Mnemonic Class Class Issued Issued Type and Dest. Affected

CCAL0c read.c rmw.c c c c to Op. 2 none

CCAL1c read.c rmw.c c c c to Op. 2 none

CCAL2c read.c rmw.c c c c to Op. 2 none

CCAL3c read.c rmw.c c c c to Op. 2 none

CMOV0c read.c write.c c N/A c to Op. 2 none

CMOV1c read.c write.c c N/A c to Op. 2 none

CMOV2c read.c write.c c N/A c to Op. 2 none

CMOV3c read.c write.c c N/A c to Op.2 none

CCMP0c read.c read.c c c N/A N,Z,L

CCMP1c read.c read.c c c N/A N,Z,L

CCV0ci read.c write.i c N/A i to Op. 2 none

CCV1ci read.c write.i c N/A i to Op. 2 none

CCV2ci read.c write.i c N/A i to Op. 2 none

CCV3ic read.i write.c i N/A c to Op. 2 none

CCV4DQ read.D write.Q D N/A Q to Op. 2 none

CCV5QD read.Q write.D Q N/A D to Op. 2 none

LCSR read.D N/A D N/A N/A none

SCSR N/A write.D N/A N/A D to OP. 2 none

CATST0* addr N/A D N/A N/A F

CATST1* addr N/A D N/A N/A F

LCR* read.D N/A D N/A N/A none

SCR* write.D N/A N/A N/A D to Op.1 none

Note:

D e Double Word

i e Integer size (B,W,D) specified in mnemonic.

c e Custom size (D:32 bits or Q:64 bits) specified in mnemonic.

* e Privileged instruction: will trap if CPU is in User Mode.

N/A e Not Applicable to this instruction.

46

4.0 Device Specifications
4.1 NS32C032 PIN DESCRIPTIONS

The following is a brief description of all NS32C032 pins.

The descriptions reference portions of the Functional De-

scription. Sec. 3.

Unless otherwise indicated reserved pins should be left

open.

4.1.1 Supplies

Logic Power (VCCL1, 2): a5V positive supply.

Buffers Power (VCCB1, 2): a5V positive supply.

Logic Ground (GNDL1, GNDL2): Ground reference for on-

chip logic.

Buffer Grounds (GNDB1, GNDB2, GNDB3): Ground refer-

ences for on-chip drivers.

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals. Sec. 3.2.

Ready (RDY): Active high. While RDY is inactive, the CPU

extends the current bus cycle to provide for a slower memo-

ry or peripheral reference. Upon detecting RDY active, the

CPU terminates the bus cycle. Sec. 3.4.1.

Hold Request (HOLD): Active low. Causes the CPU to re-

lease the bus for DMA or multiprocessing purposes. Sec.

3.6.

Note 1: HOLD must not be asserted until HLDA from a previous

HOLD/HLDA sequence is deasserted.

Note 2: If the HOLD signal is generated asynchronously, it’s set up and hold

times may be violated.

In this case it is recommended to synchronize it with CTTL to mini-

mize the possibility of metastable states.

The CPU provides only one synchronization stage to minimize the

HLDA latency. This is to avoid speed degradations in cases of

heavy HOLD activity (i.e., DMA controller cycles interleaved with

CPU cycles.)

Interrupt (INT): Active low. Maskable Interrupt request.

Sec. 3.8.

Non-Maskable Interrupt (NMI): Active low. Non-Maskable

Interrupt request. Sec. 3.8.

Reset/Abort (RST/ABT): Active low. If held active for one

clock cycle and released, this pin causes an Abort Com-

mand, Sec. 3.5.4. If held longer, it initiates a Reset. Sec. 3.3.

4.1.3 Output Signals

Address Strobe (ADS): Active low. Controls address latch-

es: indicates start of a bus cycle. Sec. 3.4.

Data Direction in (DDIN): Active low. Status signal indicat-

ing direction of data transfer during a bus cycle. Sec. 3.4.

Byte Enable (BE0–BE3): Active low. Four control signals

enabling data transfers on individual bus bytes. Sec. 3.4.3.

Status (ST0–ST3): Bus cycle status code, ST0 least signifi-

cant. Sec. 3.4.2. Encodings are:

0000 Ð Idle: CPU Inactive on Bus.

0001 Ð Idle: WAIT Instruction.

0010 Ð (Reserved).

0011 Ð Idle: Waiting for Slave.

0100 Ð Interrupt Acknowledge, Master.

0101 Ð Interrupt Acknowledge, Cascaded.

0110 Ð End of Interrupt, Master.

0111 Ð End of Interrupt, Cascaded.

1000 Ð Sequential Instruction Fetch.

1001 Ð Non-Sequential Instruction Fetch.

1010 Ð Data Transfer.

1011 Ð Read Read-Modify-Write Operand.

1100 Ð Read for Effective Address.

1101 Ð Transfer Slave Operand.

1110 Ð Read Slave Status Word.

1111 Ð Broadcast Slave ID.

Hold Acknowledge (HLDA): Active low. Applied by the

CPU in response to HOLD input, indicating that the bus has

been released for DMA or multiprocessing purposes. Sec.

3.6.

User/Supervisor (U/S): User or Supervisor Mode status.

Sec. 3.7. High state indicates User Mode, low indicates Su-

pervisor Mode. Sec. 3.7.

Interlocked Operation (ILO): Active low. Indicates that an

interlocked instruction is being executed. Sec. 3.7.

Program Flow Status (PFS): Active low. Pulse indicates

beginning of an instruction execution. Sec. 3.7.

4.1.4 Input-Output Signals

Address/Data 0–23 (AD0–AD23): Multiplexed Address/

Data information. Bit 0 is the least significant bit of each.

Sec. 3.4.

Data Bits 24–31 (D24–D31): The high order 8 bits of the

data bus.

Address Translation/Slave Processor Control (AT/

SPC): Active low. Used by the CPU as the data strobe out-

put for Slave Processor transfers; used by Slave Proces-

sors to acknowledge completion of a slave instruction.

Sec. 3.4.6; Sec. 3.9. Sampled on the rising edge of Reset

pulse as Address Translation Strap. Sec. 3.5.1.

In non-memory-managed systems, this pin should be

pulled-up to VCC through a 10 kX resistor.

Data Strobe/Float (DS/FLT): Active low. Data Strobe out-

put, Sec. 3.4, or Float Command input, Sec. 3.5.3. Pin func-

tion is selected on AT/SPC pin, Sec. 3.5.1.

47

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,

please contact the National Semiconductor Sales

Office/Distributors for availability and specifications.

Temperature Under Bias 0§C to a70§C
Storage Temperature b65§C to a150§C

All Input or Output Voltages with

Respect to GND b0.5V to a7V

Power Dissipation 1.5 Watt

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS TA e 0§ to a70§C, VCC e 5V g5%, GND e 0V

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 VCC a0.5 V

VIL Low Level Input Voltage b0.5 0.8 V

VCH High Level Clock Voltage PHI1, PHI2 pins only 0.85 VCC VCC a0.5 V

VCL Low Level Clock Voltage PHI1, PHI2 pins only b0.5 0.10 VCC V

VCRT
Clock Input

PHI1, PHI2 pins only b0.5 0.6 V
Ringing Tolerance

VOH High Level Output Voltage IOH e b400 mA 0.85 VCC V

VOL Low Level Output Voltage IOL e 2 mA 0.10 VCC V

IILS AT/SPC Input Current (low) VIN e 0.4V, AT/SPC in input mode 0.05 1.0 mA

II Input Load Current
0 s VIN s VCC, All inputs except

b20 20 mA
PHI1, PHI2, AT/SPC

IL Leakage Current 0.4 s VOUT s VCC
b20 20 mAOutput and I/O Pins in

TRI-STATE/Input Mode

ICC Active Supply Current IOUT e 0, TA e 25§C 70 100 mA

TL/EE/9160–2

Bottom View

FIGURE 4-1. NS32C032 Connection Diagram

Order Number NS32C032-10E, NS32C032-15E,

NS32C032-10V or NS32C032-15V

See NS Package Number E68B or V68A

48

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to

2.0V on the rising or falling edges of the clock phases PHI1

and PHI2; to 15% or 85% of VCC on all the CMOS output

signals, and to 0.8V or 2.0V on all the TTL input signals as

illustrated in Figures 4-2 and 4-3 unless specifically stated

otherwise.

TL/EE/9160–43

FIGURE 4-2. Timing Specification Standard

(CMOS Output Signals)

ABBREVIATIONS:

L.E. Ð leading edge R.E. Ð rising edge

T.E. Ð trailing edge F.E. Ð falling edge

TL/EE/9160–44

FIGURE 4-3. Timing Specification Standard

(TTL Input Signals)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C032-10, NS32C032-15

Maximum times assume capacitive loading of 100 pF.

Name Figure Description Reference/Conditions
NS32C032-10 NS32C032-15

Units
Min Max Min Max

tALv 4-4 Address bits 0–23 valid after R.E., PHI1 T1 40 35 ns

tALh 4-4 Address bits 0–23 hold after R.E., PHI1 Tmmu or T2 5 5 ns

tDv 4-4 Data valid (write cycle) after R.E., PHI1 T2 50 35 ns

tDh 4-4 Data hold (write cycle) after R.E., PHI1 next T1 or Ti 0 0 ns

tALADSs 4-5 Address bits 0–23 setup before ADS T.E. 25 20 ns

tALADSh 4-10 Address bits 0–23 hold after ADS T.E. 15 10 ns

tALf 4-5 Address bits 0–23 after R.E., PHI1 T2 25 20 ns

floating (no MMU)

tADf 4-5 Data bits D24–D31 after R.E., PHI1 T2 25 20 ns

floating (no MMU)

tALMf 4-9 Address bits 0–23 after R.E., PHI1 Tmmu 25 20 ns

floating (with MMU)

tADMf 4-9 Data bits 21–31 after R.E., PHI1 Tmmu 25 20 ns

floating (with MMU)

tBEv 4-4 BEn signals valid after R.E., PHI2 T4 60 45 ns

tBEh 4-4 BEn signals hold after R.E., PHI2 T4 or Ti 0 0 ns

tSTv 4-4 Status (ST0–ST3) valid after R.E., PHI1 T4 45 35 ns

(before T1, see note)

tSTh 4-4 Status (ST0–ST3) hold after R.E., PHI1 T4 (after T1) 0 0 ns

49

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C032-8, NS32C032-10 (Continued)

Name Figure Description
Reference/ NS32C032-10 NS32C032-15

Units
Conditions

Min Max Min Max

tDDINv 4-5 DDIN signal valid after R.E., PHI1 T1 50 35 ns

tDDINh 4-5 DDIN signal hold after R.E., PHI1 next T1 or Ti 0 0 ns

tADSa 4-4 ADS signal active (low) after R.E., PHI1 T1 35 26 ns

tADSia 4-4 ADS signal inactive after R.E., PHI2 T1 40 30 ns

tADSw 4-4 ADS pulse width at 15% VCC (both edges) 30 25 ns

tDSa 4-4 DS signal active (low) after R.E., PHI1 T2 40 30 ns

tDSia 4-4 DS signal inactive after R.E., PHI1 T4 40 30 ns

tALf 4-6 AD0–AD23 floating after R.E., PHI1 T1 25 20 ns

(caused by HOLD)

tADf 4-6 D24–D31 floating after R.E., PHI1 T1 25 20 ns

(caused by HOLD)

tDSf 4-6 DS floating after R.E., PHI1 Ti 50 40 ns

(caused by HOLD)

tADSf 4-6 ADS floating after R.E., PHI1 Ti 50 40 ns

(caused by HOLD)

tBEf 4-6 BEn floating after R.E., PHI1 Ti 50 40 ns

(caused by HOLD)

tDDINf 4-6 DDIN floating after R.E., PHI1 Ti 50 40 ns

(caused by HOLD)

tHLDAa 4-6 HLDA signal active (low) after R.E., PHI1 Ti 30 25 ns

tHLDAia 4-8 HLDA signal inactive after R.E., PHI1 Ti 40 30 ns

tDSr 4-8 DS signal returns from after R.E., PHI1 Ti 55 40 ns

floating (caused by HOLD)

tADSr 4-8 ADS signal returns from after R.E., PHI1 Ti 55 40 ns

floating (caused by HOLD)

tBEr 4-8 BEn signals return from after R.E., PHI1 Ti 55 40 ns

floating (caused by HOLD)

tDDINr 4-8 DDIN signal returns from after R.E., PHI1 Ti 55 40 ns

floating (caused by HOLD)

tDDINf 4-9 DDIN signal floating after FLT F.E. 55 50 ns

(caused by FLT)

tDDINr 4-10 DDIN signal returns from after FLT R.E. 40 30 ns

floating (caused by FLT)

tSPCa 4-13 SPC output active (low) after R.E., PHI1 T1 35 26 ns

tSPCia 4-13 SPC output inactive after R.E., PHI1 T4 35 26 ns

tSPCnf 4-15 SPC output nonforcing after R.E., PHI2 T4 30 25 ns

tDv 4-13 Data valid (slave processor after R.E., PHI1 T1 50 35 ns

write)

tDh 4-13 Data hold (slave processor after R.E., PHI1 0 0 ns

write) next T1 or Ti

tPFSw 4-18 PFS pulse width at 15% VCC (both edges) 50 40 ns

50

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C032-10, NS32C032-15 (Continued)

Name Figure Description
Reference/ NS32C032-10 NS32C032-15

Units
Conditions

Min Max Min Max

tPFSa 4-18 PFS pulse active (low) after R.E., PHI2 40 35 ns

tPFSia 4-18 PFS pulse inactive after R.E., PHI2 40 35 ns

tILOs 4-20a ILO signal setup before R.E., PHI1 T1 50 35 ns

of first interlocked

read cycle

tILOh 4-20b ILO signal hold after R.E., PHI1 T3 10 7 ns

of last interlocked

write cycle

tILOa 4-21 ILO signal active (low) after R.E., PHI1 35 30 ns

tILOia 4-21 ILO signal inactive after R.E., PHI1 35 30 ns

tUSv 4-22 U/S signal valid after R.E., PHI1 T4 35 30 ns

tUSh 4-22 U/S signal hold after R.E., PHI1 T4 8 6 ns

tNSPF 4-19b Nonsequential fetch to after R.E., PHI1 T1 4 4 tCp

next PFS clock cycle

tPFNS 4-19a PFS clock cycle to next before R.E., PHI1 T1 4 4 tCp

non-sequential fetch

tLXPF 4-29 Last operand transfer before R.E., PHI1 T1 of first 0 0 tCp

of an instruction to next of first bus

PFS clock cycle cycle of transfer

Note: Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was idling, the sequence will be: ‘‘ . . . Ti, T4, T1 . . . ’’. If the CPU was not

idling, the sequence will be: ‘‘ . . . T4, T1 . . . ’’.

4.4.2.2 Input Signal Requirements: NS32C032-10, NS32C032-15

Name Figure Description Reference/Conditions
NS32C032-10 NS32C032-15

Units
Min Max Min Max

tPWR 4-25 Power stable to after VCC reaches 4.5V 50 50 ms

RST R.E.

tDIs 4-5 Data in setup before F.E., PHI2 T3 15 10 ns

(read cycle)

tDIh 4-5 Data in hold after R.E., PHI1 T4 3 3 ns

(read cycle)

tHLDa 4-6 HOLD active (low) setup before F.E., PHI2 TX1 25 17 ns

time (see note)

tHLDia 4-8 HOLD inactive setup before F.E., PHI2 Ti 25 17 ns

time

tHLDh 4-6 HOLD hold time after R.E., PHI1 TX2 0 0 ns

tFLTa 4-9 FLT active (low) before F.E., PHI2 Tmmu 25 17 ns

setup time

tFLTia 4-10 FLT inactive setup before F.E., PHI2 T2 25 17 ns

time

tRDYs 4-11, 4-12 RDY setup time before F.E., PHI2 T2 or T3 15 10 ns

tRDYh 4-11, 4-12 RDY hold time after F.E., PHI1 T3 5 5 ns

tABTs 4-23 ABT setup time before F.E., PHI2 Tmmu 20 13 ns

(FLT inactive)

tABTs 4-24 ABT setup time before F.E., PHI2 Tf 20 13 ns

(FLT active)

tABTh 4-23 ABT hold time after R.E., PHI1 0 0 ns

51

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements NS32C032-10, NS32C032-15 (Continued)

Name Figure Description
Reference/ NS32C032-10 NS32C032-15

Units
Conditions

Min Max Min Max

tRSTs 4-25, 4-26 RST setup time before F.E., PHI1 10 8 ns

tRSTw 4-26 RST pulse width at 0.8V (both edges) 64 64 tCp

tINTs 4-27 INT setup time before F.E., PHI1 20 15 ns

tNMIw 4-28 NMI pulse width at 0.8V (both edges) 70 70 ns

tDIs 4-14 Data setup (slave before F.E., PHI2 T1 15 10 ns

read cycle)

tDIh 4-14 Data hold (slave after R.E., PHI1 T4 3 3 ns

read cycle)

tSPCd 4-15 SPC pulse delay from after R.E., PHI2 T4 30 25 ns

slave

tSPCs 4-15 SPC setup time before F.E., PHI1 30 25 ns

tSPCw 4-15 SPC pulse width from at 0.8V (both edges) 25 20 ns

slave processor

(async input)

tATs 4-16 AT/SPC setup for ad- before R.E., PHI1 of cycle 1 1 tCp

dress translation strap during which RST

pulse is removed

tATh 4-16 AT/SPC hold for ad- after F.E., PHI1 of cycle 2 2 tCp

dress translation strap during which RST

pulse is removed

Note: This setup time is necessary to ensure prompt acknowledgement via HLDA and the ensuing floating of CPU off the buses. Note that the time from the receipt

of the HOLD signal until the CPU floats is a function of the time HOLD signal goes low, the state of the RDY input (in MMU systems), and the length of the current

MMU cycle.

4.4.2.3 Clocking Requirements: NS32C032-10, and NS32C032-15

Name Figure Description
Reference/ NS32C032-10 NS32C032-15

Units
Conditions

Min Max Min Max

tCp 4-17 Clock Period R.E., PHI1, PHI2 100 250 66 250 ns

to next

R.E., PHI1, PHI2

tCLw(1,2) 4-17 PHI1, PHI2 At 2.0V on PHI1, 0.5 tCp 0.5 tCp

Pulse Width PHI2 (Both Edges) b10 ns b6 ns

tCLh(1,2) 4-17 PHI1, PHI2 High Time At 90% VCC on 0.5 tCp 0.5 tCp

PHI1, PHI2 b15 ns b10 ns

tCLl(1,2) 4–17 PHI1, PHI2 Low Time At 15% VCC on 0.5 tCP 0.5 tCP ns
PHI1, PHI2 b6 ns b5 ns

tnOVL(1,2) 4-17 Non-Overlap Time At 15% VCC b2 2 b2 2 ns

on PHI1, PHI2

tnOVLas Non-Overlap Asymmetry At 15% VCC b3 3 b3 3 ns

(tnOVL(1)btnOVL(2)) on PHI1, PHI2

tCLwas PHI1, PHI2 Asymmetry At 2.0V b5 5 b3 3 ns

(tCLw(1)btCLw(2)) on PHI1, PHI2

52

4.0 Device Specifications
4.4.3 Timing Diagrams

TL/EE/9160–45

FIGURE 4-4. Write Cycle

TL/EE/9160–46

FIGURE 4-5. Read Cycle

53

4.0 Device Specifications (Continued)

TL/EE/9160–47

FIGURE 4-6. Floating by HOLD Timing (CPU Not Idle Initially).

Note that whenever the CPU is not idling (not in Ti), the HOLD request (HOLD low) must be active tHLDa before the falling edge

of PHI2 of the clock cycle that appears two clock cycles before T4 (TX1) and stay low until tHLDh after the rising edge of PHI1 of

the clock cycle that precedes T4 (TX2) for the request to be acknowledged.

TL/EE/9160–48

FIGURE 4-7. Floating by HOLD Timing (CPU initially idle)

Note that during Ti1 the CPU is already idling.

TL/EE/9160–49

FIGURE 4-8. Release from HOLD

54

4.0 Device Specifications (Continued)

TL/EE/9160–50

FIGURE 4-9. FLT Initiated Float Cycle Timing

TL/EE/9160–51

FIGURE 4-10. Release from FLT Timing

Note that when FLT is deasserted the CPU restarts driving DDIN before the MMU releases it. This, however, does not cause any

conflict, since both CPU and MMU force DDIN to the same logic level.

TL/EE/9160–52

FIGURE 4-11. Ready Sampling (CPU Initially READY)

55

4.0 Device Specifications (Continued)

TL/EE/9160–53

FIGURE 4-12. Ready Sampling (CPU Initially NOT READY)

TL/EE/9160–54

FIGURE 4-13. Slave Processor Write Timing

TL/EE/9160–55

FIGURE 4-14. Slave Processor Read Timing

TL/EE/9160–56

FIGURE 4-15. SPC Timing

After transferring last operand to a Slave Processor, CPU

turns OFF driver and holds SPC high with internal 5 kX pullup.

TL/EE/9160–57

FIGURE 4-16. Reset Configuration Timing

56

4.0 Device Specifications (Continued)

TL/EE/9160–58

FIGURE 4-17. Clock Waveforms

TL/EE/9160–59

FIGURE 4-18. Relationship of PFS to Clock Cycles

TL/EE/9160–60

FIGURE 4-19a. Guaranteed Delay, PFS to Non-Sequential Fetch

TL/EE/9160–61

FIGURE 4-19b. Guaranteed Delay, Non-Sequential Fetch to PFS

57

4.0 Device Specifications (Continued)

TL/EE/9160–62

FIGURE 4-20a. Relationship of ILO to First Operand Cycle of an Interlocked Instruction

TL/EE/9160–63

FIGURE 4-20b. Relationship of ILO to Last Operand Cycle of an Interlocked Instruction

TL/EE/9160–64

FIGURE 4-21. Relationship of ILO to Any Clock Cycle

TL/EE/9160–65

FIGURE 4-22. U/S Relationship to Any Bus Cycle Ð Guaranteed Valid Interval

58

4.0 Device Specifications (Continued)

TL/EE/9160–66

FIGURE 4-23. Abort Timing, FLT Not Applied

TL/EE/9160–67

FIGURE 4-24. Abort Timing, FLT Applied

TL/EE/9160–68

FIGURE 4-25. Power-On Reset

TL/EE/9160–69

FIGURE 4-26. Non-Power-On Reset

59

4.0 Device Specifications (Continued)

TL/EE/9160–70

FIGURE 4-27. INT Interrupt Signal Detection

TL/EE/9160–71

FIGURE 4-28. NMI Interrupt Signal Timing

TL/EE/9160–72

FIGURE 4-29. Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction

Note: In a transfer of a Read-Modify-Write type operand, this is the Read transfer, displaying RMW Status (Code 1011).

60

Appendix A: Instruction Formats
NOTATIONS

ie Integer Type Field

B e 00 (Byte)

W e 01 (Word)

D e 11 (Double Word)

fe Floating Point Type Field

F e 1 (Std. Floating: 32 bits)

L e 0 (Long Floating: 64 bits)

ce Custom Type Field

D e 1 (Double Word)

Q e 0 (Quad Word)

ope Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2eGeneral Addressing Mode Field

See Sec. 2.2 for encodings.

rege General Purpose Register Number

conde Condition Code Field

0000 e EQual: Z e 1

0001 e Not Equal: Z e 0

0010 e Carry Set: C e 1

0011 e Carry Clear: C e 0

0100 e HIgher: L e 1

0101 e Lower or Same: L e 0

0110 e Greater Than: N e 1

0111 e Less or Equal: N e 0

1000 e Flag Set: F e 1

1001 e Flag Clear: F e 0

1010 e LOwer: L e 0 and Z e 0

1011 e Higher or Same: L e 1 or Z e 1

1100 e Less Than: N e 0 and Z e 0

1101 e Greater or Equal: N e 1 or Z e 1

1110 e (Unconditionally True)

1111 e (Unconditionally False)

shorte Short Immediate value. May contain

quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ, ACB.

cond: Condition Code (above), in Scond.

areg: CPU Dedicated Register, in LPR, SPR.

0000 e US

0001 b 0111 e (Reserved)

1000 e FP

1001 e SP

1010 e SB

1011 e (Reserved)

1100 e (Reserved)

1101 e PSR

1110 e INTBASE

1111 e MOD

Options: in String Instructions

U/W B T

T e Translated

B e Backward

U/W e 00: None

01: While Match

11: Until Match

Configuration bits, in SETCFG:

C M F I

mreg: NS32082 Register number, in LMR, SMR.

0000 e BPR0

0001 e BPR1

0010 e (Reserved)

0011 e (Reserved)

0100 e (Reserved)

0101 e (Reserved)

0110 e (Reserved)

0111 e (Reserved)

1000 e (Reserved)

1001 e (Reserved)

1010 e MSR

1011 e BCNT

1100 e PTB0

1101 e PTB1

1110 e (Reserved)

1111 e EIA

7 0

cond 1 0 1 0

Format 0

Bcond (BR)

7 0

op 0 0 1 0

Format 1

BSR -0000 ENTER -1000

RET -0001 EXIT -1001

CXP -0010 NOP -1010

RXP -0011 WAIT -1011

RETT -0100 DIA -1100

RETI -0101 FLAG -1101

SAVE -0110 SVC -1110

RESTORE -0111 BPT -1111

15 8 7 0

gen short op 1 1 i

Format 2

ADDQ -000 ACB -100

CMPQ -001 MOVQ -101

SPR -010 LPR -110

Scond -011

61

Appendix A: Instruction Formats (Continued)

15 8 7 0

gen op 1 1 1 1 1 i

Format 3

CXPD -0000 ADJSP -1010

BICPSR -0010 JSR -1100

JUMP -0100 CASE -1110

BISPSR -0110

Trap (UND) on XXX1, 1000

15 8 7 0

gen 1 gen 2 op i

Format 4

ADD -0000 SUB -1000

CMP -0001 ADDR -1001

BIC -0010 AND -1010

ADDC -0100 SUBC -1100

MOV -0101 TBIT -1101

OR -0110 XOR -1110

23 16 15 8 7 0

0 0 0 0 0 short 0 op i 0 0 0 0 1 1 1 0

Format 5

MOVS -0000 SETCFG -0010

CMPS -0001 SKPS -0011

Trap (UND) on 1XXX, 01XX

23 16 15 8 7 0

gen 1 gen 2 op i 0 1 0 0 1 1 1 0

Format 6

ROT -0000 NEG -1000

ASH -0001 NOT -1001

CBIT -0010 Trap (UND) -1010

CBITI -0011 SUBP -1011

Trap (UND) -0100 ABS -1100

LSH -0101 COM -1101

SBIT -0110 IBIT -1110

SBITI -0111 ADDP -1111

23 16 15 8 7 0

gen 1 gen 2 op i 1 1 0 0 1 1 1 0

Format 7

MOVM -0000 MUL -1000

CMPM -0001 MEI -1001

INSS -0010 Trap (UND) -1010

EXTS -0011 DEI -1011

MOVXBW -0100 QUO -1100

MOVZBW -0101 REM -1101

MOVZiD -0110 MOD -1110

MOVXiD -0111 DIV -1111

TL/EE/9160–73

Format 8

EXT -0 00 INDEX -1 00

CVTP -0 01 FFS -1 01

INS -0 10

CHECK -0 11

MOVSU -110, reg e 001

MOVUS -110, reg e 011

23 16 15 8 7 0

gen 1 gen 2 op f i 0 0 1 1 1 1 1 0

Format 9

MOVif -000 ROUND -100

LFSR -001 TRUNC -101

MOVLF -010 SFSR -110

MOVFL -011 FLOOR -111

TL/EE/9160–77

Format 10

Trap (UND) Always

62

Appendix A: Instruction Formats (Continued)

23 16 15 8 7 0

gen 1 gen 2 op 0 f 1 0 1 1 1 1 1 0

Format 11

ADDf -0000 DIVf -1000

MOVf -0001 Trap (SLAVE) -1001

CMPf -0010 Trap (UND) -1010

Trap (SLAVE) -0011 Trap (UND) -1011

SUBf -0100 MULf -1100

NEGf -0101 ABSf -1101

Trap (UND) -0110 Trap (UND) -1110

Trap (UND) -0111 Trap (UND) -1111

TL/EE/9160–75

Format 12

Trap (UND) Always

TL/EE/9160–76

Format 13

Trap (UND) Always

23 16 15 8 7 0

gen 1 short 0 op i 0 0 0 1 1 1 1 0

Format 14

RDVAL -0000 LMR -0010

WRVAL -0001 SMR -0011

Trap (UND) on 01XX, 1XXX

23 16 15 8 7 0

n n n 1 0 1 1 0

Operation Word ID Byte

Format 15

(Custom Slave)

nnn Operation Word Format

23 16 15 8

000 gen 1 short x op i

Format 15.0

CATST0 -0000 LCR -0010

CATST1 -0001 SCR -0011

Trap (UND) on all others

23 16 15 8

001 gen 1 gen 2 op c i

Format 15.1

CCV3 -000 CCV2 -100

LCSR -001 CCV1 -101

CCV5 -010 SCSR -110

CCV4 -011 CCV0 -111

23 16 15 8

101 gen 1 gen 2 op x c

Format 15.5

CCAL0 -0000 CCAL3 -1000

CMOV0 -0001 CMOV3 -1001

CCMP0 -0010 Trap (UND) -1010

CCMP1 -0011 Trap (UND) -1011

CCAL1 -0100 CCAL2 -1100

CMOV2 -0101 CMOV1 -1101

Trap (UND) -0110 Trap (UND) -1110

Trap (UND) -0111 Trap (UND) -1111

If nnn e 010, 011, 100, 110, 111

then Trap (UND) Always

63

Appendix A: Instruction Formats (Continued)

TL/EE/9160–77

Format 16

Trap (UND) Always

TL/EE/9160–78

Format 17

Trap (UND) Always

TL/EE/9160–79

Format 18

Trap (UND) Always

TL/EE/9160–80

Format 19

Trap (UND) Always

Implied Immediate Encodings:

7 0

r7 r6 r5 r4 r3 r2 r1 r0

Register Mark, appended to SAVE, ENTER

7 0

r0 r1 r2 r3 r4 r5 r6 r7

Register Mark, appended to RESTORE, EXIT

7 0

offset length - 1

Offset/Length Modifier appended to INSS, EXTS

64

Appendix B. Interfacing Suggestions

T
L
/
E
E
/
9
1
6
0
–
8
1

F
IG

U
R

E
B

-1
.
S
y
s
te

m
C

o
n
n
e
c
ti
o
n

D
ia

g
ra

m

65

66

Physical Dimensions inches (millimeters)

Leadless Chip Carrier (E)

Order Number NS32C032-10E or NS32C032-15E

NS Package Number E68B

67

N
S
3
2
C

0
3
2
-1

0
/
N

S
3
2
C

0
3
2
-1

5
H

ig
h
-P

e
rf

o
rm

a
n
c
e

M
ic

ro
p
ro

c
e
s
s
o
rs

Physical Dimensions inches (millimeters) (Continued)

Plastic Chip Carrier (V)

Order Number NS32C032-10V or NS32C032-15V

NS Package Number V68A

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

http://www.datasheetcatalog.com
http://www.datasheetcatalog.com
http://www.datasheetcatalog.com

